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Abstract

Vapour-phase deposition techniques have many advantages including being solventless and pro-

viding fine control (down to the nanometre level) of coating thickness. This thesis is about the

use of both plasmachemical deposition and oxidative vapour-phase deposition to form functional

coatings.

Chapter 1 provides brief reviews of proton exchange membrane fuel cells and vapour-phase

deposition techniques as well as an overall introduction to the thesis.

Chapter 2 is a synopsis of the most commonly used experimental techniques used throughout

this thesis (especial attention is focused on XPS and FTIR as they are used in every chapter).

Chapters 3–4 record the use of plasmachemical deposition to form proton-conducting coatings

for potential use in fuel cells. The strategy described is the use of anhydride precursors in order

to produce layers with a high density of carboxylic acids. In chapter 4 these layers themselves are

used as initiators to graft sulfonic-acid containing polymer brushes for the enhancement of proton

conductivity.

Chapter 5 describes the fabrication of poly(ionic liquid) layers by depositing an imidazole-

containing precursor via pulsed plasmachemical deposition, which is subsequently quaternized via

a vapour-phase reaction with 1-bromobutane. The resultant coatings show high values of ionic

conductivity above 90 ◦C.

In chapter 6 plasma enhanced chemical vapour deposition of metal(II) hexafluoroacetylaceto-

nate precursors is used in order to produce metal-containing nanocomposite layers. The retention

of an organic matrix and its chemical rearrangement under plasma conditions leads to high ionic

conductivities.

Chapters 7–8 utilize an atomized spray delivery system and plasma in conjunction with liquid

precursor mixtures in order to form bioactive coatings (chapter 7) and nanocomposite layers

(chapter 8) which show good adhesion and lithium-ion conductivity values.

Finally chapter 9 utilizes the atomized spray system to deliver high vapour pressures of 3,4-

ethylenedioxythiophene in the presence of triflic anhydride which acts as an oxidant. The ensuing

vapour-phase reaction yields a conducting polymer coating.
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Chapter 1

Literature Review and Introduction

1.1 Review: What are fuel cells?

Fuel cells are electrochemical conversion devices, which are supplied continuously by a fuel (nor-

mally hydrogen or methanol) and an oxidant (normally air or oxygen).1 As global efforts are taking

place to find alternatives to the combustion engine, fuel cells have emerged as a possibility for

automotive, stationary or portable power applications.2–5

The reaction of hydrogen and oxygen at catalytic electrodes, separated by an electrolyte (sul-

furic acid), resulting in an electric current was first noted, independently, by Grove and Schoenbein

in 1839.6 This effect was then developed by the former into the first functioning hydrogen/oxygen

fuel cell (then named the gas voltaic battery), comprising alternating tubes of oxygen and hy-

drogen with platinum foil as a catalyst, submerged in dilute sulfuric acid, which served as the

electrolyte, Figure 1.1.7

The first practical design for a fuel cell was invented in 1889, where a porous separator filled

with dilute sulfuric acid was used in order to keep the catalyst layer of platinum black dry.8 After

this there was little commercial development until proton exchange membrane fuel cells (PEMFCs,

also known as polymer electrolyte membrane fuel cells) were first developed in the early 1960s

for use in the Gemini space programme. These first cells were very expensive to manufacture and

had short lifetimes, due to their lack of oxidative stability.

A PEMFC consists of a membrane electrode assembly (MEA), which is supplied with fuel and

oxidant, Figure 1.2. Hydrogen gas (or sometimes methanol in the case of a direct methanol fuel

cell) is catalytically oxidised at the anode according to the following half-reaction: H2 −−→ 2 H+ +

2 e–. Oxygen is catalytically reduced at the cathode according to the half-reaction: 1
2 O2 +2 H+ +

2 e– −−→ H2O. This gives the overall reaction: H2 + 1
2 O2 −−→ H2O (E0 = 1.229 V). As a result

of this chemical reaction a circuit is completed with the protons as the charge carriers across the

PEM.

High performance proton exchange membranes therefore have the following requirements:

(1) high proton conductivity, (2) low permeability to hydrogen (or methanol) and oxygen, (3)
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Figure 1.1: The first hydrogen/oxygen fuel cell design: tubes of oxygen and hydrogen alternately

submerged in sulfuric acid solution are connected in series to drive the electrolytic separation of

water; the thick dark lines represent platinum foil catalyst. Reproduced from reference 7.

Anode

Catalyst Layer

Proton Exchange Membrane

Catalyst Layer

Cathode

H2

O2

Load

H+ H2 −−→ 2 H+ + 2 e–

1
2 O2 + 2 H+ + 2 e– −−→ H2O

Figure 1.2: Schematic of a proton exchange membrane fuel cell.
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Figure 1.3: Chemical structure of Nafion, where m is usually around 14.

oxidative and hydrolytic stability, (4) adequate mechanical properties to deal with swelling and

contracting and (5) low cost.2 Nafion (a different proton conducting polymer to that used in

the Gemini spacecraft) was commercialized later on that decade by the E. I. Dupont Company,

primarily for use in the chlor-alkali industry.9 Since then, it has become the benchmark against

which other proton exchange membranes are compared.

Proton exchange membranes must also be able to bind with the catalyst effectively. The

catalyst of choice in PEMFCs has been platinum supported on a carbon matrix (in order to

increase surface area and allow the gas to permeate). The catalyst layer therefore consists of (i)

the proton exchange membrane itself, (ii) platinum on a carbon matrix, (iii) sufficient porosity

for gas diffusion. Catalyst is needed at both cathode and anode for the reduction of oxygen and

the oxidation of hydrogen. The kinetics for the reduction of oxygen is orders of magnitude slower

and so the oxygen reduction reaction is a source of voltage loss in the PEMFC.

1.1.1 Proton Exchange Membrane

Nafion

Whilst Nafion has a plethora of other applications including within the chlor-alkali industry,9 and

as a catalyst (due to its superacidity)10 the greatest interest has been its use as as a proton

exchange membrane. Both Nafion’s chemical structure and its morphology in dry and hydrated

states are important for understanding its ability to act as an effective proton exchange membrane.

Nafion is produced by the copolymerization of tetrafluoroethene with a perfluorinated vinyl

ether monomer, which results in the structure given in Figure 1.3. Nafion films are described

by equivalent weight (EW) which is the number of grams of dry Nafion per mole of sulfonic

acid groups. The sulfonic acid groups are responsible for the proton conducting ability of

the membranes by the proton hopping from one sulfonic acid group to the next: RSO3H +

RSO–
3 −−→ RSO–

3 + RSO3H. The perfluorinated structure of the polymer backbone means that

Nafion films are resistant to chemical attack, giving oxidative and hydrolytic stability. The per-

fluorinated structure near the sulfonic acid groups means that Nafion is very acidic (pKa = -6),11

and therefore the O−H bond is more labile, which gives good proton conductivity.

The proton conductivity of Nafion is dependent not only on the equivalent weight, but more

importantly on the water content, with very low conductivity at low humidity.12 The reason

for this is that the chemical structure of a hydrophobic perfluorinated backbone, along with the
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Figure 1.4: Evolution of larger clusters with increased hydration of Nafion from (a) low humidity

to (b) high humidity. Adapted from reference 13.

hydrophilic ether group and sulfonic acid, means that there are different morphologies for different

levels of water content.

The morphology of Nafion is responsible partly for its mechanical properties and also enables

proton conduction across the entire membrane. The hydrophilic parts of the membrane cluster

together to form an inverse micelle type structure. When dry, these micelle-like clusters have

limited connectivity therefore the proton conductivity is very low. Conceptually, as the Nafion

film swells and takes up water, the clusters enlarge and become more connected, Figure 1.4.13

Nafion is the benchmark for proton exchange membranes, because of its good conductivity,

low permeability to hydrogen and oxygen and good mechanical properties. All these can be traced

back to Nafion’s chemical structure and changing morphology. The main weaknesses of Nafion

are that it is expensive and has low conductivity at low humidity and elevated temperatures (above

80 ◦C).14
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Figure 1.5: Chemical structures of (a) unsulfonated and (b) sulfonated poly(arylene ether ether

ketone).

Alternatives to Nafion

With the high cost of Nafion and the other perfluorinated membranes, other polymers have been

investigated as to whether a less expensive, viable alternative for proton exchange can be found.

The aims of these have been to exclude perfluorination, which is expensive, and yet still retain good

proton conductivity along with hydrolytic and oxidative stability.3 The major alternative systems

comprise those based on poly(styrene), poly(arylene ether)s, poly(imide)s and alternatives to

sulfonic acid groups.

The advantage of basing polymer membranes on styrene is that styrene monomers are widely

available and can be easily tailored to specific functions.15 There are, at the moment, two com-

mercially produced proton exchange membranes based on styrene: BAM from Ballard Advanced

Materials Corporation16 and a sulfonated styrene–ethylene–butylene–styrene (SEBS) membrane

manufactured by Dais Analytic Corporation.17 Other PEMs based on styrene have been devel-

oped, but none commercialized. The majority of these membranes have been made by grafting

copolymers onto hydrophobic backbones in an attempt to produce Nafion-like structure, but with

less expensive monomers.18

Given that perfluorination is expensive, as seen in the cost of Nafion and other perfluori-

nated membranes, there has been some interest in constructing polymer backbones out of wholly

aromatic parts. This would also bypass the weakness of the styrene based membranes, which

have shown themselves susceptible to oxidative attack and therefore lack the stability required

for higher temperature applications. Whilst several structures have been reported, the most pop-

ular polymer used is poly(arylene ether ether ketone) (PEEK), Figure 1.5. Generally sulfonation

is carried out after polymerization by using concentrated sulfuric acid.19 Another possibility is

to use sulfonated monomers and then copolymerize, which gives random (or statistical) copoly-

mers.20 These copolymers can give excellent conductivity as there is a high density of sulfonic

acid moieties, but they can also swell (water uptakes of greater than 100 %), which gives inferior

mechanical properties.21
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Five-membered ring poly(imide)s are high performance materials, but when sulfonated they

are particularly susceptible to hydrolytic attack and so are unstable within fuel cell applications.

The hydrophobicity of the six-membered ring poly(imide)s has been used in conjunction with other

sulfonated species (e.g. the sulfonated PEEK above) to form more stable membranes.22 Part of

the idea behind these block copolymers is to recreate the hydrophobic/hydrophilic domains that

exist in Nafion, which give its proton conductivity and stability. Questions still remain over the

stability of the six-membered ring poly(imide)s, however, and studies carried out have confirmed

that the higher the degree of sulfonation of the poly(imide), the lesser the stability.23

Nafion and most other proton exchange membranes rely on sulfonic acid groups to conduct

protons via exchange with water when the membrane is hydrated. This limits good conductiv-

ity in these membranes to below 100 ◦C, unless pressurized conditions are used. Phosphonic or

phosphinic acid containing moieties have not been as well studied, largely due to a more limited

breadth of synthetic procedures. However, it is known that phosphoric acid and some polymers

with immobilized heterocycles conduct protons via a structure diffusion mechanism.24 This means

that their operation can be extended to temperatures far greater than the boiling point of water.

The problems with phosphonic acid based proton exchange membranes is that, despite their im-

proved stability, both chemical and thermal, they are not as acidic as their sulfonated counterparts,

which in turn limits their conductivity.2

1.1.2 Fuel Cell Catalysts

The catalyst layers are critical in the efficient operation of a fuel cell (especially for the reduction

of oxygen). Platinum loaded onto a carbon matrix is by far the most popular catalyst, but,

because of the expense of platinum, alternatives have been sought. These can be broadly split

into precious metal/alloy catalysts, polymer catalysts and carbon nanotubes.

Platinum and other metal catalysts

Platinum has been the benchmark of proton exchange membrane fuel cell catalysts for some

years. It is used for both the oxidation of hydrogen at the anode and the reduction of oxygen

at the cathode. Much research has gone into maximising the surface area of the platinum, in

order to improve its catalytic ability and to reduce cost. The platinum is usually loaded onto

a nanoporous carbon matrix (graphite-like), which ideally will allow the gas to permeate whilst

maximising the surface area of platinum loaded onto it. These carbon matrices include carbon

black,25 and ordered hierarchical nanostructured carbon, which is specifically manufactured for

the purpose of catalyst loading.26 There have been many other attempts to increase the surface

area and improve the oxidative stability of the carbon matrices by modifying the surface with an

organic layer,27 using carbon nanofibres,28 and using a carbon black/ionomer/platinum particle

ink to deposit catalyst layers.29 The actual deposition of the platinum onto these carbon supports

has been done by electrochemical deposition,30 chemical bath deposition,31 a combination of
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the two,31 and chemical vapour deposition.32 The manufacture of platinum crystallites has also

been accomplished along with the deposition of a carbonaceous material onto them (the reverse

procedure).33

In order to reduce the cost of the platinum catalysts, there have been many alloys produced,

especially with non-noble metals to produce core-shell nanoparticles. These are comprised of a

core non-noble metal with a shell of platinum on the outside. If the same catalytic activity can be

achieved without the need for as much platinum then the manufacturing cost of proton exchange

membrane fuel cells will be significantly reduced. The most popular alloys are platinum with

iron/copper,34 ruthenium,35 cobalt,36 and ruthenium/nickel.37

Alternatives to Platinum

Whilst noble metal based catalysts have been the primary focus of improved catalysis in proton

exchange membrane fuel cells, there has been research using polymers as catalysts, in order

to overcome both the cost issues, and also the lack of tolerance of the noble metals to carbon

monoxide (known as CO poisoning). Conductive polymers have been incorporated with traditional

catalytic metal centres (such as platinum or cobalt) with varying degrees of success.38 There has

been recently reported a polymer thin film which displays oxygen reduction catalytic ability in and

of itself.39 At high acidity (pH = 1) the platinum is more catalytically active, but at neutral and

alkaline conditions, the polymer electrode displays similar catalytic ability.

Carbon nanotubes have been more investigated for their porosity and ability to support a

platinum catalyst rather than their intrinsic catalytic ability. Vertically aligned carbon nanotubes

functionalized with nitrogen have been found to be better catalysts than platinum in fuel cells

under alkaline conditions.40 Whilst there is no problem with the availability of carbon (unlike

platinum), the manufacture thereof into aligned carbon nanotubes is still costly and generally at

high temperatures.

Other catalytic systems investigated have been the use of metal (iron or cobalt) porphyrins

which display enhanced oxygen reduction catalytic ability when used in conjunction with conduc-

tive polymers41 or carbon nanotubes.42

1.1.3 Conclusions about PEMFCs

Current barriers to wide-scale commercialization of PEMFCs in portable and stationary energy

sectors are fuel difficulties (i.e. hydrogen is difficult to extract and store) and high cost. The future

of the PEMFC within renewable energy will rely on cheaper alternatives to Nafion and platinum

being found. These materials will not only be less costly, but very reliable/have long lifetimes.
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1.2 Review: Methods for Vapour Deposition of Coatings

Vapour-phase deposition methods can be split into physical vapour deposition (PVD) and chemical

vapour deposition (CVD) processes, both of which usually take place under vacuum conditions.

The former utilize physical processes in order to effect coating manufacture whereas the latter

use chemical reactions.

1.2.1 Physical Vapour Deposition Processes

Physical vapour deposition processes typically comprise one of the following: evaporation, electron

beam PVD, pulsed laser ablation, cathodic arc deposition or rf magnetron sputtering. Evaporation

is simply the heating of a material under low pressure such that a significant vapour pressure is

obtained; the material then condenses on substrates to form a thin coating. Electron beam PVD

involves a similar process whereby a focused electron beam is used to provide high enough energy

such that the material in question is evaporated followed by coating.43 Similarly, pulsed laser

deposition utilizes a laser focused on a target such that the target material is ablated and coats

substrates within the vicinity.44 Cathodic arc deposition and rf magnetron sputtering both use

plasma discharges in conjunction with a target in order to induce ionization in the case of the

former45 (due to the high powers used) and bombardment leading to material sputtering in the

case of the latter46 (and subsequent deposition in both cases). While physical vapour deposition

techniques are well suited for forming thin films of inorganic coatings, they are generally not suited

to less robust, organic coatings due to the high temperatures and harsh conditions created by the

methods of vaporization.

1.2.2 Chemical Vapour Deposition Techniques

Chemical vapour deposition processes can be split into thermal CVD, plasma enhanced CVD,

direct liquid injection CVD and aerosol assisted CVD.

Thermal chemical vapour deposition makes use of organometallic precursors (i.e. metal centres

of interest with organic ligands) to provide a higher vapour pressure of the material in question.

Depending on processing conditions, the organic ligands are removed by the high temperatures

which leaves an inorganic coating, e.g. metal oxide.47 Plasma enhanced chemical vapour deposi-

tion utilizes a similar setup to thermal CVD, but instead of requiring very high temperatures, the

use of a plasma can yield the same effect of removing any organic ligands leaving an inorganic

coating.48

Direct liquid injection and aerosol assisted chemical vapour deposition both utilize a form

of liquid introduction to bypass problems to do with low vapour pressures/high temperatures.

The former uses a liquid precursor mixed with a carrier gas (such as nitrogen) at temperatures

under 200 ◦C in order to provide a high concentration of vapour.49 The latter utilizes a precursor

dissolved in a solvent which is introduced into the deposition chamber via an aerosol spray delivery
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system.50

1.2.3 Other Vapour-Phase Deposition Methods

The above vapour-phase deposition coating techniques generally require high temperatures (i.e.

above 100 ◦C), which are unsuitable for many substrates (e.g. textiles). These processing condi-

tions are also not viable for the manufacture of organic-containing films. Vapour-phase processes

that are carried out at low temperatures are comprised of plasmachemical deposition, oxidative

chemical vapour deposition and initiated chemical vapour deposition.

Plasmachemical deposition is also known as plasma polymerization and involves introducing

an organic precursor into a non-isothermal plasma such that excited organic species are formed,

which then react at the surface of substrates to produce organic coatings.51 This process is

described in more detail in section 2.1 (page 27).

Oxidative chemical vapour deposition is most often used for the manufacture of conducting

polymers such as poly(3,4-ethylenedioxythiophene). It entails introducing monomer vapour in the

presence of an oxidant, which is either in vapour form or already deposited on the substrate. The

redox reaction that takes place at the surface produces a polymer coating.39,52–55

Initiated chemical vapour deposition utilizes conventional organic monomer vapour in con-

junction with initiator vapour. Both these are introduced into a chamber with heated filaments,

which provide the energy to start the polymerization reaction. The substrate to be coated is

cooled and so the initated monomers condense thereon producing polymeric coatings.56

1.2.4 Conclusions about Vapour-Phase Deposition

Vapour-phase deposition techniques have numerous advantages in that they are conformal, sol-

ventless and enable fine control over coating thickness (down to the angstrom range). There

are some serious limitations, however, including the unsuitability of physical vapour deposition

processes for producing organic-containing films (due to the harsh processing conditions) and

the requirement of high temperatures or exotic precursors for several chemical vapour deposition

processes. The utilization of low-temperature vapour-phase deposition techniques therefore can

combine the advantages of low temperature and conventional precursors with conformal coatings

without the need for solvents.

1.3 Introduction

This thesis is concerned with the use of vapour-phase deposition techniques in order to fabricate

thin films for use in proton exchange membrane fuel cells. Chapter 3 expounds the use of pulsed

plasmachemical deposition to create both carboxylic acid- and anhydride-containing films. Whilst

the proton conductivity the maleic anhydride based films are good (on a par with Nafion under
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similar conditions), in chapter 4, a sulfonate-bearing polymer (poly(sodium 4-styrenesulfonate))

is grafted from the anhydride-containing films in order to further improve the proton conductivity.

Such films which contain carboxylic acid and sulfonic acid groups rely on a proton hopping

mechanism in the presence of water (as in the case of Nafion films). At higher temperatures

than 90 ◦C, therefore these films are not able to conduct protons since there is no water present.

In chapter 5 pulsed plasmachemical deposition is used to make imidazole-containing films which

are subsequently quaternized by 1-bromobutane in the vapour phase. This results in a poly(ionic

liquid)-like coating with positively charged imidazolium groups and negatively charged bromide

ions. The resultant coatings show a high level of ionic conductivity above 90 ◦C with moderate

conductivity up to that point. These films therefore could be advantageous for intermediate

temperature fuel cells (100–200 ◦C), which have the added benefits of not requiring careful

water/humidification management and more efficient catalysis.

The advantages of using vapour-phase deposition in order to fabricate proton exchange mem-

branes are that the method is substrate-independent, conformal and there is no requirement for

solvent removal post-manufacture. These advantages would be extended if other parts of the fuel

cell could be deposited in the vapour phase. In chapter 6, therefore, metal containing precursors

(copper(II) and platinum(II) hexafluoroacetylacetonate) are used to coat substrates with a hybrid

nanocomposite layer, which has inorganic nanoparticles (copper or platinum) within an organic

matrix. This organic matrix can conduct protons due to the formation of carboxylic acid species

from the hexafluoroacetylacetonate under plasma conditions. In the case of platinum, the films

can electrically conduct due to the percolation effect (where the nanoparticles are close enough

to each other within the organic matrix for there to be a significant current due to electrons

tunnelling through the potential barrier). These properties (proton and electronic conductivity)

combined with platinum’s known catalytic ability mean that these coatings could form fuel cell

catalysis layers.

Whilst vapour-phase deposition provides many advantages (detailed above), it has significant

limitations, none more important than the requirement for a precursor with a high enough vapour

pressure. The films fabricated in chapters 3–6 are also limited in their deposition rates—6 nm

min-1 is not conducive to scale up, since it would take a long time to build up a thick enough

coating (nearly three hours per micron). As a result, the rest of the thesis is concerned with the

development of a spray plasma deposition process, which combines the advantages of vapour-

phase deposition with a much larger precursor feedthrough, thanks to the use of an ultrasonic

nozzle introducing a fine mist into the reactor chamber. Using this method therefore allows for

non-volatile precursors (including solid-liquid slurries) and yields larger deposition rates. By way

of example, chapter 7 details the use of atomized spray plasma deposition (ASPD) to create

bioactive coatings—those that immobilize biomolecules (alkyl-containing polymers) and those

that are resistant to biomolecules. Within these examples is the deposition of a copolymer, which

is enabled by dissolving a solid precursor (ocatadecyl acrylate) into a liquid precursor (dodecyl

acrylate).
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Further exemplification of the flexibility of the ASPD method is related in chapter 8, where

methacryloyl functionalized silica particles are suspended in monomer precursors in order to im-

prove the properties of the resultant polymer coating. This includes 2-hydroxyethyl methacrylate,

which forms a strong adhesive bond between substrates when deposited. This bond is further

strengthened by the addition of silica particles, which act as crosslinkers to make the polymeric film

more robust. A different improvement is shown in the case of the di(ethylene glycol)-containing

monomer, where the use of silica particles promotes amorphousness within the final film, which

in turn enables ionic conductivity (due to a lithium salt also included in the precursor mixture).

Finally, in chapter 9, the atomized spray deposition process is used without plasma excitation,

in order to produce a conductive polymer film (poly(3,4-ethylenedioxythiophene)), which could

be used as an electrode for electrochemical devices (e.g. batteries and fuel cells) or in plastic

electronics.

Thus, the use of vapour-phase deposition is shown to be a flexible technique for the formation

of thin films and coatings with multiple properties, especially for use within proton exchange

membrane fuel cells.
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Chapter 2

Experimental Techniques

2.1 Plasmachemical Deposition

Plasmas consist of a partially ionized gas. They are often referred to as the fourth state of matter

because of their differing properties to solids, liquids and gases. The term plasma was coined by

Irving Langmuir, who noted that, although plasmas can electrically conduct (due to the significant

concentration of charge carriers), the charges are balanced.1

Plasmachemical deposition, also known as plasma polymerization, refers to the deposition of

polymeric materials/coatings under plasma conditions. The ability of many organic compounds

to form waxy deposits when exposed to electrical discharge was for many years regarded as an

unwanted by-product,2 although the potential for forming new chemical species was realized very

early on.3 The waxy hydrocarbons produced, however, were difficult to characterize due to their

reactivity (susceptibility to oxidation) and random structure, although average molecular weights

above 400 were recorded.4

In the 1960s plasmachemical deposits were better characterized and the insoluble properties

considered for wider applications.5 The harsh conditions of a plasma means that chemical rear-

rangement can easily happen and very high weight, well defined polymers (like those formed by

conventional polymerization processes) are difficult to obtain.6 The next major advance was to

pulse the plasma, which gives an unprecedented level of functionality retention. Several chemical

functionalities have been put down this way including anhydride, organotin, perfluoroaryl, epoxide

and cyano groups.7–11

Typically plasma polymerizations are performed under vaccuum (although atmospheric pres-

sure glow discharge polymerization is known12–14) with pressures between 0.01 and 10 torr. The

applied electric field transfers energy to free electrons in the chamber which are accelerated and

collide with gas molecules to form electrons and ions. These electrons are then accelerated in

their turn and a self-sustained plasma is formed.15 Alternating current rf glow discharges can be

initiated by a coil outside the reaction chamber. Above 500 kHz free electrons oscillate and gain

energy from elastic collisions with gas molecules until they gain enough energy to make inelastic
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Substrate

Precursor (0.2 mbar)

RF supply

Figure 2.1: Plasma deposition process: precursor vapour is introduced under vacuum and rf is

used to generate a plasma using copper coils surrounding the chamber, within which the substrate

is located.

collisions, at which point the plasma is initiated.15

Typical plasma depositions in this thesis were carried out in an electrodeless cylindrical glass

reactor (volume of 480 cm3, base pressure of 3 x 10-3 mbar, and with a leak rate better than, 2 x

10-9 mol s-1) surrounded by a copper coil (4 mm diameter, 10 turns), and enclosed in a Faraday

cage, Figure 2.1. The chamber was pumped down using a 30 L min-1 rotary pump attached

to a liquid nitrogen cold trap; a Pirani gauge was used to monitor system pressure. The output

impedance of a 13.56 MHz radio frequency (rf) power supply was matched to the partially ionized

gas load via an L-C matching unit connected to the copper coil. Prior to each deposition, the

reactor was scrubbed using detergent, rinsed in propan-2-ol, and dried in an oven. A continuous

wave air plasma was then run at 0.2 mbar pressure and 40 W power for 30 min in order to remove

any remaining trace contaminants from the chamber walls. Precursor vapour was allowed to purge

the reactor for 5 min at a pressure of 0.2 mbar prior to electrical discharge ignition. For pulsed

plasma depositions optimum values for the on-time (ton) and the off-time (toff) were used. Upon

plasma extinction, the precursor vapour was allowed to continue to pass through the system for a

further 3 min, and then the chamber was evacuated back down to base pressure, prior to venting

to atmosphere.

2.2 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a powerful technique for analysis of surfaces. Surfaces

are irradiated with monoenergetic soft X-rays typically from a Mg Kα or Al Kα source (1253.6

eV and 1486.6 eV respectively). The X-ray photons interact with atoms on the sample surface

causing electrons to be emitted via the photoelectric effect. The photoelectrons have measured

kinetic energies given by:

KE = hν − BE− φs (2.1)

where hν is the energy of the photon, BE is the binding energy of the atomic orbital from

which the electron is ejected, and φs is the workfunction of the spectrometer. The X-ray photon

penetrates solid samples to distances up to between 1 and 10 µm, but since electrons have far
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Figure 2.2: XPS emission processes for a model atom: (a) an incident photon causes the

emission of a photoelectron from a core level and (b) the relaxation process resulting in emission

of a KL23L23 electron. Adapted from reference 16.

less penetration, only the first 5 nm of a sample will emit electrons which are detectable.

Each element has its own set of binding energies, therefore XPS can be utilised to identify

the individual elements on the surface. By using various standards a quantitative ratio of the

elements on the surface can be calculated from XPS spectra. Also, because the binding energy

changes with chemical environment, there are chemical shifts in the spectra which give additional

information (e.g. the C(1s) peak is shifted by around 8 eV if attached to three fluorine atoms

relative to a hydrocarbon-only polymer).16

As well as the photoemission process, Auger electrons may be emitted as part of the relaxation

process, Figure 2.2. This occurs around 10-14 s after the photoemission. The competing relaxation

process of X-ray fluorescence is a minor one in this energy range. Therefore, photoionization

usually results in two electrons being emitted—a photoelectron and an Auger electron. Auger

lines form complex patterns in the XPS spectra, because there are many different relaxation

pathways (e.g. theoretically nine for the KLL relaxation process seen in Figure 2.2).
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Figure 2.3: Schematic of a typical XPS experiment setup. The wavy line indicates the path of

the incident X-ray photon, the solid line the path of the photoelectron (or Auger electron) and the

dashed lines the paths of electrons with energy too great or small to be focused by the concentric

hemispherical analyzer

An XPS experiment requires a X-ray source, a sample, an analyzer and a detector. One of the

most popular analyzers is the concentric hemispherical analyzer (CHA) which has two stainless

steel hemispheres of differing radii positioned concentrically, Figure 2.3. Negative potentials are

applied to the two hemispheres with V2 > V1. This means that an incident electron with kinetic

energy eV0 (where V0 is the equipotential surface between the two charged hemispheres) will

follow the path shown and be focused at the detector. Electrons which have too great an energy

or too small an energy will not be focused and therefore remain undetected. It is possible to run

the CHA by varying the potential difference across the analyzer and thus obtain a spectrum; this

is called constant retard ratio (CRR) operation. However, this would give differences in absolute

resolution across the spectrum, which is generally undesirable. More commonly, therefore, the

CHA is run under constant analyzer energy (CAE) operation where the potential difference is kept

constant so only electrons with a certain pass energy (e.g. 20 or 50 eV) will be focused. It is then

entirely the job of the lens system to retard the incoming electrons. This leads to a constant peak

width resolution.

XPS analysis needs to be carried out under ultra high vacuum (UHV) conditions (i.e. ∼10-9

mbar) because otherwise there will still be an adsorbed gas layer on the surface from the atmo-

sphere. Since XPS probes only 5 nm deep into the sample, adsorbed layers will significantly alter
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laser interferometer sample detector

Figure 2.4: Scheme showing passage of light through an infrared spectrometer.

the spectrum, and so need to be eliminated. UHV conditions are achieved by using diffusion

pumps and a series of chambers (insertion lock, preparation chamber and main chamber) in order

to pump the sample down to the required pressure.

XPS characterizations within this thesis were carried out using a VG ESCALAB Mk II electron

spectrometer equipped with a non-monochromated Mg Kα X-ray source (1253.6 eV) and a

concentric hemispherical analyser. Photoemitted electrons were collected at a take-off angle of

20◦ from the substrate normal, with electron detection in the constant analyser energy mode (CAE,

pass energy = 20 eV). Experimentally determined instrument sensitivity factors were used in order

to calculate elemental ratios for samples characterized. All binding energies were referenced to

the C(1s) hydrocarbon peak at 285.0 eV.

Data analysis of the XPS spectra included a linear background being subtracted from core

level spectra, which were then fitted using Gaussian peak shapes with a constant full-width-

half-maximum (fwhm).17 Each Gaussian (bell-shaped) peak thus fitted corresponded to a unique

chemical environment of that atom within the film. For example, the poly(alkyl acrylate) C(1s)

peaks (Figure 7.1, page 104) may be fitted to three chemical environments, which correspond

to the hydrocarbon alkyl chains (CxHy), the singly oxygenated carbon (C–O) and the doubly

oxygenated carbon (O–C=O). For more complex curve shapes, where the diversity of chemical

species could be large (e.g. the platinum-containing nanocomposite films in Figure 6.1, page

89), only specifically resolvable peaks were assigned (e.g. the CF3 peak with a distinctive 7–8

eV shift from the hydrocarbon peak), with the fewest number of Gaussian peaks (of constant

full-width-half-maximum) used to fit the rest of the spectrum.

2.3 Fourier Transform Infrared Spectroscopy

Infrared spectroscopy is widely used to analyze chemical compounds, mixtures and films. It utilizes

the fact that molecules undergoing infrared irradiation can (at some frequencies) absorb it. This

excites the molecule from one energy level (En) to another (Em):

hν = En − Em (2.2)

where hν is the energy of the absorbed photon. Satisfying equation 2.2 is not the only requisite

for infrared absorption, since there must be a change in the vibrational quantum number of ±1

(greater changes are formally forbidden). The other selection rule is that infrared light may only

be absorbed when the electric dipole of the molecule changes as a result of the change in molecular

vibrational state.18
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Figure 2.5: Diagram of an attenuated total reflection accessory.

Figure 2.4 shows the passage of light through a Fourier transform infrared spectrometer. Older

techniques required each wavelength of light to be passed through the sample separately, which

led to a very time-consuming process. Fourier transform infrared spectroscopy (FTIR) uses an

interferometer, which utilizes a beamsplitter and a movable mirror. The beamsplitter causes half

the light to go to a fixed mirror and half to a movable mirror. The beams then recombine at the

beamsplitter to produce an interference spectrum, where every wavelength is represented. This

inteference spectrum is passed through the sample, detected, and then decoded by applying a

Fourier transform (a mathematical technique for analyzing the amount of each frequency that

makes up a spectrum). This then gives a plot of percentage of light absorbed (as compared to

a reference or background) versus the frequency of the light (usually measured in wavenumbers

with units cm–1).

FTIR spectra of thin films can be taken either using by coating them onto an infrared trans-

parent material (such as a potassium bromide disc) and measuring the absorbance directly, or

by using an attenuated total reflectance technique (ATR) or reflection-absorption infrared spec-

troscopy (RAIRS).

Figure 2.5 shows an ATR accessory. The beam enters the accessory where it is directed (by

mirrors) into a diamond crystal at an angle such that it will undergo total internal reflection. The

sample is placed above the crystal such that is in contact with the face where internal reflection

is happening (pressure is applied if the sample is solid to ensure contact). When light is totally

internally reflected, an evanescent wave (a product of the wave equation being non-zero at the

diamond-sample interface) extends a few microns into the sample. This makes ATR a powerful

tool for analyzing small amounts of liquid or thin solid samples.

RAIRS can also be used to obtain the infrared spectra of films deposited on silicon wafer.

The incident light is bounced off the surface in question at a low angle (the grazing angle, 66◦

for silicon) and then put through a polarizer in order to remove the s-polarized component (that

which is perpendicularly polarized relative to the surface).

Once the light has passed through (or reflected off) the sample, it goes to the detector.

A popular detector is the mercury cadmium telluride (MCT) detector, which operates at liquid

nitrogen temperatures (77 K). It is composed of an alloy of mercury telluride (a semimetal) and
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cadmium telluride (a semiconductor). When exposed to infrared light its resistance decreases as

there are a number of electrons promoted from the valence band into the conduction band. The

increase in electrical conductivity is directly proportional to the number of charge carriers, which

can then be used to calculate the intensity of the incident infrared radiation.

Infrared spectra within this thesis were acquired using a FTIR spectrometer (Perkin-Elmer

Spectrum One) fitted with a liquid nitrogen cooled MCT detector operating at 4 cm-1 resolution

across the 4000–700 cm-1 range. The instrument included a variable angle reflection-absorption

accessory (Specac Ltd.) set to a grazing angle of 66◦ for silicon wafer substrates and adjusted

for p-polarization as well as a golden gate attenuated total resonance accessory (Specac Ltd.).

2.4 Spectrophotometry

Spectrophotometry is a non-destructive method for measuring the thickness of thin films with

high accuracy (up to ±5 nm). A monochromated UV-visible light source is shone at the surface

and the reflected and transmitted light detected over a range of wavelengths (350–1000 nm). On

encountering an interface of two different materials (e.g. air and sample) the incident ray of light

will be reflected, transmitted or absorbed, Figure 2.6.

The two optical parameters that describe the way in which light acts on encountering a material

are the refractive index, n, and the extinction coefficient, k. The refractive index,
ni
n0

=
ci
c0

, where

ni and n0 are the refractive indices of light in medium, i, and in vacuum respectively, and ci and

c0 are the speed of light in the medium and in vacuum. The extinction coefficient refers to the

fraction of light that is absorbed by the material.

substrate

incident light
θ1 θ2

transmitted light

absorbed light

film

air

n1, k1

n2, k2

d
φ

Figure 2.6: Scheme showing the possible pathways of incident light with regard to a thin polymer

film (n1, k1) on a substrate (n2, k2).

When reflections from two separate interfaces (i.e. the air/film and film/substrate interfaces,
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Figure 2.7: Surface tensions of a liquid droplet on a surface

denoted in Figure 2.6 by θ1 and θ2) recombine, they will interfere with each other. This interfer-

ence will be constructive when

2nd = jλcosφ (where j is an integer) (2.3)

and destructive when

2nd = (j + 1
2 )λcosφ (2.4)

From these equations, the intensity of the reflected light will oscillate over a range of wavelengths

(the reflectance spectrum). A suitable mathematical model can be fitted to the data using an

iterative method, which will give the thickness, d. The model is usually the Cauchy model, which

assumes that k for polymers is approximately zero.

Film thicknesses were measured in this thesis using a spectrophotometer (nkd-6000, Aquila

Instruments Ltd.). Transmittance-reflectance curves (350–1000 nm wavelength range) were ac-

quired for each sample and fitted to a Cauchy material model using a modified Levenberg-

Marquardt algorithm.19

2.5 Goniometry

Contact angle analysis (goniometry) is one of the simplest and most surface sensitive techniques

available. A sessile drop is placed on a surface and the contact angle, θ, is measured by a

goniometer. The goniometer takes a picture of the droplet, which then is analyzed by software

to give θ. The contact angle on a smooth surface, θ, can be related to the surface tensions by

Young’s equation:

γsv = γsl + γlvcosθ (2.5)

where γ denotes surface tension, and the subscripts sv, sl and lv stand for solid-vapour, solid-

liquid, and liquid-vapour respectively, Figure 2.7. A decrease in contact angle means that (all

other things being equal) there is an increase in the surface tension of the solid-liquid interface.

Sessile drop water contact angle measurements in this thesis were performed at ambient tem-

perature using a video capture apparatus in combination with a motorized syringe (VCA2500XE,

A.S.T. Products Inc.) dispensing a 2 µL droplet size. High purity water (B.S. 3978 grade 1) was

used as the probe liquid.
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2.6 Impedance Spectroscopy

Impedance spectroscopy is a powerful technique for characterizing the electrical properties of

materials and interfaces. Impedance, denoted by the character Z, is the alternating current

analogue to resistance:

Z = R + jX (2.6)

where R is the resistance (real component, Re(Z)) and X is the reactance (jX is the imaginary

component, Im(Z)).

Impedance spectroscopy entails applying a single-frequency voltage to the system and mea-

suring the real and imaginary parts of the resulting current at that frequency. The impedance is

thus measured over a frequency range (typically between 1 Hz and 1 MHz).

If a signal with a single frequency, ν(t) = Vmsin(ωt), where ν ≡ ω
2π is applied to a circuit,

then the resulting current i(t) = Imsin(ωt + θ) is measured. In this case θ is the phase difference

between the voltage and the current. The response of the capacitive and inductive elements of

the circuit is given by i(t) = dν(t)
dt C and ν(t) = di(t)

dt L respectively. This leaves a complicated and

sometimes intractable problem.20

Fortunately, the application of Fourier transformation to these differential equations gives

(eventually) the relationship:

Z(j ω) =
F{ν(t)}
F{i(t)}

(2.7)

where F{} denotes a Fourier transform. Equation 2.7 is the alternating current analogue of

Ohm’s law, but only applies when there is linearity, causality and stationarity of the system. Most

systems are non-linear, however, but if the applied voltage Vm is less than the thermal voltage

(which is about 25 mV at room temperature and pressure), then the system is linear to a good

approximation.20

The typical shape of an impedance spectrum for a proton conducting film is shown in Figure

2.8, where the imaginary component of impedance (reactance) is plotted against the real com-

ponent (the resistance). As the frequency, ω, increases the spectrum tends towards the origin (in

the limiting case, ω =∞, then Z=0).

For proton conducting membranes, the bulk resistance of a membrane, RS , can be obtained

from fitting the high frequency arc and extrapolating to find its intercept with the real axis. The

45◦ line is due to the Warburg impedance, which reflects impedance due to charge carrier diffusion

(in proton exchange membranes this is almost exclusively water).21 This corresponds to a Randles

circuit, which comprises a resistor (the membrane) and the Warburg impedance, W , in parallel

with the double layer capacitance, Cdl, all in series with the resistance of the electrical contacts

(R∞), Figure 2.9. Impedance spectra within this thesis were acquired using an LF impedance

analyser (HP 4192A) across the 10 Hz–13 MHz range. The formula σ = l/RSA was used to

calculate proton conductivity, where σ is the membrane conductivity, RS is the bulk membrane

resistance, l is the distance between the electrodes, and A is the cross-sectional area of the film.22
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Figure 2.8: General shape of the impedance spectrum for a proton conducting film.
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Figure 2.9: Randles circuit

2.7 Fluorescence Microscopy

Fluorescence spectroscopy utilizes an excitation source (light at a predetermined wavelength) in

order to effect a transition in the molecule of interest, A, to an excited state, A*, via absorption

of a photon. This takes the form A + hν −−→ A* and when the excited state relaxes back to the

ground state, a photon is emitted. The emitted photon is of a lower wavelength than the incident

excitation since the excited molecule undergoes vibrational relaxation before emission.

Fluorescence microscopy is a simple variant whereby a surface (usually tagged with a fluores-

cent marker) is illuminated by light of a certain wavelength and a CCD is used in conjunction with

optical objectives in order to gain an fluorescent image of the surface in question, Figure 2.10.

Fluorescence microscopy in this thesis entailed use of a fluorescein tag, which has an absoprtion

maximum at 494 nm and an emission maximum at 521 nm. An excitation source at 490 nm and

detection at 528 nm is therefore used.

2.8 Bond Strength Testing

Adhesive bonds are tested using lap shear test which comprises two overlapping substrates bonded

together with an adhesive. The two substrates are then subjected to shear forces (i.e. being pulled

apart) of known magnitude and the distance moved is measured, Figure 2.11. The values obtained
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Figure 2.10: Schematic of a fluorescence microscope.
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Figure 2.11: A lap shear test where two glass substrates joined by an adhesive are pulled apart

thereby subjecting the bond to shear forces

enable a stress-strain curve to be plotted, where the stress is the force per unit area (measured

in MPa) and the strain is the relative deformation of the adhesive (unitless), Figure 2.12. The

curve shape takes the form of a linear section followed by a steep drop, where the adhesive has

failed. This bond failure point is the measure of the shear bond strength, whereas the gradient

of the linear section of the curve is the shear modulus (i.e. how stiff the adhesive is).
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Figure 2.12: General shape of the stress-strain curve for the adhesives tested in this thesis.
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Chapter 3

Pulsed Plasmachemical Deposition of

Proton-Conducting Films

3.1 Introduction

Proton exchange membrane fuel cells (PEMFCs) are green energy devices for automotive, station-

ary, and portable power applications.1–3 These electrochemical cells oxidise fuel (usually hydrogen

gas or methanol) at the anode to produce protons, which travel across the proton exchange mem-

brane and react at the cathode with an oxidant (oxygen gas or air). This completes an electrical

circuit according to the overall reaction H2 + 1
2 O2 −−→ H2O (E0 = 1.229 V). The proton exchange

membrane component of the PEMFC serves to separate the two electrodes, allowing protons to

pass from anode to cathode, but not allowing reactant gases or electrons to traverse (thereby

preventing a short circuit leading to loss of efficiency).1 With widespread efforts aiming to cut

global carbon emissions and move towards cleaner hydrogen-based energy sources, there exists a

strong demand for cost-effective and efficient proton exchange membranes.4,5

The existing benchmark for proton exchange membranes is considered to be perfluorosul-

fonic acid containing polymers (e.g. Nafion6). Proton conductivity relies upon the sulfonic acid

groups, yielding typical values of 80–90 mS cm-1 at 20 ◦C.7–9 However, perfluorosulfonic acid

membranes require toxic precursors (e.g. tetrafluoroethylene) and therefore their manufacture is

considered to be expensive and environmentally unfriendly.6,10 Alternative proton exchange mem-

branes, which have been developed, include sulfonated styrene-based polymers,11–13 sulfonated

poly(arylene ether)s,14,15 sulfonated poly(imides),16–19 sulfonated poly(phosphazene)s,20–22 phos-

phonated polymers23,24 and carboxylated polymers.25 Proton conductivities for these types of

conventional polymer proton exchange membranes range between 0.05–110 mS cm-1 at room

temperature when fully hydrated. However, preparation of such materials involves many steps,16

and often requires dangerous precursors3 and solvents,24 or is limited by time-consuming sep-

aration and purification techniques.24 Furthermore, this introduces the need for an additional

fabrication step (such as solvent casting) during the manufacture of fuel cell membrane elec-
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trode assemblies, which can lead to extra problems associated with controlling the thickness and

conformality of the proton exchange membranes.26

In contrast to the aforementioned multi-step membrane fabrication techniques, plasma poly-

merization is a one-step, solventless methodology, which renders cross-linked, insoluble films.27

Previous plasmachemically deposited acid-containing films for application in proton exchange

membranes have suffered from low proton conductivity,23,28–35 poor stability and cracking when

hydrated36,37 and the reliance upon having to feed precursor mixtures (which can lead to repro-

ducibility issues).

The present study utilises pulsed plasmachemical deposition for the preparation of carboxylic

acid- and anhydride-containing films, which display high proton conductivity values, Scheme 3.1.

This is the first time that stable carboxylic acid-containing films with proton conductivities com-

parable to those of the state-of-the-art Nafion proton conducting membranes have been prepared

using a single-step process entirely at ambient temperature.

3.2 Experimental

3.2.1 Preparation of Proton Exchange Layers

Precursors used for plasma deposition were acrylic acid (Aldrich Ltd.), 2-(trifluoromethyl)acrylic

acid (Apollo Scientific Ltd.), maleic anhydride briquettes (+99%, Aldrich Ltd., ground into a fine

powder) and (trifluoromethyl)maleic anhydride (+97%, Apollo Scientific Ltd.). All these were

loaded into separate, sealable, glass tubes and thoroughly degassed via several freeze-pump-thaw

cycles.

Plasma deposition was carried out in an electrodeless cylindrical glass reactor as detailed in

section 2.1 (page 27). Substrates used for coating were silicon (100) wafer pieces (Silicon Valley

Microelectronics Inc.) and polypropylene sheet (Lawson Mardon Ltd.) with two evaporated gold

electrodes (5 mm length and 1.5 mm separation). Precursor vapour was allowed to purge the

reactor for 5 min at a pressure of 0.2 mbar prior to electrical discharge ignition. Pulsed plasma

deposition was performed using optimal duty cycles of 100 µs on-period and 4000 µs off-period

in conjunction with 30 W peak power for the acid precursors, and 20 µs on-period and 1200 µs

off-period in conjunction with a peak power of 5 W for the anhydride precursors.38 Upon plasma

extinction, the precursor vapour was allowed to continue to pass through the system for a further

3 min, and then the chamber was evacuated back down to base pressure, prior to venting to

atmosphere.

The plasma deposited anhydride-containing films were subsequently hydrated in ultra high

purity water (B.S. 3978 grade 1) at 20 ◦C for 16 h, and then allowed to dry in air at room

temperature.
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Scheme 3.1: Strategies to achieve films with a high density of acid groups: (a) pulsed plas-

machemical deposition of acid-containing films and (b) pulsed plasmachemical deposition of

anhydride-containing films followed by hydrolysis.
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3.2.2 Film Characterization

Film thicknesses were measured using a spectrophotometer (nkd-6000, Aquila Instruments Ltd.)

as detailed in section 2.4 (page 33).

Surface elemental compositions were determined by X-ray photoelectron spectroscopy (XPS)

using a VG ESCALAB II electron spectrometer as detailed in section 2.2 (page 28). Experimentally

determined instrument sensitivity (multiplication) factors were taken as C(1s): O(1s): F(1s) equals

1.00: 0.34: 0.26.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) as

detailed in section 2.3 (page 31).

Sessile drop water contact angle measurements were performed at ambient temperature as

detailed in section 2.5 (page 2.5).

Impedance measurements across the 10 Hz–13 MHz frequency range were carried out using

an LF impedance analyser (HP 4192A) for plasma deposited layers on polypropylene substrates

whilst submerged in ultra high purity water (B.S. 3978 grade 1) at room temperature (20 ◦C) as

detailed in section 2.6 (page 35).

Optical inspection of the films to determine cracking (before and after hydration) was effected

using an optical microscope (Olympus BX40) fitted with a x10 magnification lens.

3.3 Results

3.3.1 Pulsed Plasma Deposition of Carboxylic Acid Layers

In the case of pulsed plasma deposition of acrylic acid the resultant layers were found to be

soluble in water at room temperature regardless of plasma parameters. Upon removal from the

reactor immediate cracking within the film was observed. In contrast pulsed plasma deposited

poly(2-(trifluoromethyl)acrylic acid) was stable in ambient conditions.

The absence of any Si(2p) XPS signal for pulsed plasma deposited poly(2-(trifluoromethyl)-

acrylic acid) layers confirmed coverage of the silicon substrates. The layers displayed distinctive

C(1s) component peaks at 289.9 eV corresponding to O−C−−O acid carbon centres and at 292.5

eV which is characteristic of trifluoromethyl centres (CF3), Figure 3.1.39 This indicates that the

acid group along with the trifluoromethyl group has been retained during the pulsed plasma

deposition process.

The following infrared peaks were able to be assigned for the 2-(trifluoromethyl)acrylic acid

monomer:40 O−H broad stretch (around 3000 cm-1), C−−O acid dimer antisymmetric stretch

(1708 cm-1), C−−C vinyl stretch (1635 cm-1), C−OH in plane bend (1402 cm-1) and OH···O
carboxylic acid dimer wag (891 cm-1), Figure 3.2. For the pulsed plasma deposited poly(2-

(trifluoromethyl)acrylic acid) the vinyl C−−C stretch at 1635 cm-1 disappeared which indicates

conventional polymerization occurring at the C−−C double bond. This was accompanied by a shift

in the carboxylic acid C−−O antisymmetric stretch to 1746 cm-1, which, together with the loss
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Figure 3.1: C(1s) X-ray photoelectron spectrum for pulsed plasma deposited poly(2-

(trifluoromethyl)acrylic acid).

of the OH···O carboxylic acid dimer wag and retention of the C−OH in plane bend, confirms

the move from a dimerized carboxylic acid system to single carboxylic acid groups (consistent

with a change from liquid to solid). There was also the appearance of carboxylic anhydride C−−O

symmetric and antisymmetric stretches at 1876 cm-1 and 1810 cm-1 respectively, which infers

some rearrangement of the monomer within plasma conditions.

3.3.2 Pulsed Plasma Deposition of Anhydride Layers

The absence of any Si(2p) XPS signal for pulsed plasma deposited poly(maleic anhydride) and

poly((trifluoromethyl)maleic anhydride) layers confirmed coverage of the underlying silicon sub-

strates. Pulsed plasma deposited poly(maleic anhydride) layers displayed a distinctive C(1s) com-

ponent peak at 288.9 eV corresponding to anhydride carbon centres (O−C−−O),38 Figure 3.3.

This peak was also evident for pulsed plasma deposited poly((trifluoromethyl)maleic anhydride),

along with a component at 292.5 eV which is characteristic of trifluoromethyl (CF3) centres.39

Infrared spectroscopy provided further evidence for anhydride group retention in both types

of film, Figures 3.4 and 3.5. The infrared spectrum for pulsed plasma deposited poly(maleic

anhydride) layers displays distinctive anhydride symmetric and antisymmetric C−−O stretches at

1870 cm-1 and 1800 cm-1 respectively,41 Figure 3.4 and Table 3.1. These anhydride C−−O stretch

vibrational bands are shifted to higher frequencies when compared to the maleic anhydride precur-

sor molecule (1849 cm-1 symmetric and 1774 cm-1 antisymmetric). This is consistent with there
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Figure 3.2: Infrared spectra of: (a) 2-(trifluoromethyl)acrylic acid monomer and (b) pulsed

plasma deposited poly(2-(trifluoromethyl)acrylic acid) film. * Denotes characteristic vinyl C−−C

stretch.
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Figure 3.3: C(1s) X-ray photoelectron spectra for: (a) pulsed plasma deposited poly(maleic

anhydride) and (b) pulsed plasma deposited poly((trifluoromethyl)maleic anhydride).
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Figure 3.4: Infrared spectra of: (a) maleic anhydride monomer, (b) pulsed plasma deposited

poly(maleic anhydride) film and (c) pulsed plasma deposited poly(maleic anhydride) film hydrol-

ysed in water at 20 ◦C for 16 h. * Denotes characteristic anhydride C−−O stretches.

being a change from a cyclic conjugated anhydride ring molecular structure to a cyclic unconju-

gated anhydride ring system (i.e. polymerization taking place at the C−−C double bond).41 Similar

shifts towards higher C−−O stretch vibrational frequencies were observed for the pulsed plasma

deposited poly((trifluoromethyl)maleic anhydride) layers when compared to the (trifluoromethyl)-

maleic anhydride precursor, which again can be attributed to polymerization of the C−−C double

bond, Figure 3.5 and Table 3.1. Furthermore, the anhydride symmetric and antisymmetric C−−O

stretches for both (trifluoromethyl)maleic anhydride monomer and corresponding pulsed plasma

deposited layer are shifted to higher frequencies compared to their non-fluorinated maleic anhy-

dride counterparts. This can be explained on the basis of the electron-withdrawing effect of the

trifluoromethyl group attached to the anhydride ring in the case of the former,40 Scheme 3.1.

Exposure of the pulsed plasma deposited poly(maleic anhydride) layers to water gave rise to a

loss of anhydride infrared C−−O stretches with the concurrent emergence of a single C−−O stretch

at 1735 cm-1, which is signature of the carboxylic acid dimer C−−O antisymmetric stretch (the
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Figure 3.5: Infrared spectra of: (a) (trifluoromethyl)maleic anhydride monomer, (b) pulsed

plasma deposited poly((trifluoromethyl)maleic anhydride) film and (c) pulsed plasma deposited

poly((trifluoromethyl)maleic anhydride) film hydrolysed in water at 20 ◦C for 16 h. * Denotes

characteristic anhydride C−−O stretches.
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Table 3.1: Infrared carbonyl stretching frequencies for anhydride precursor molecules and the

corresponding pulsed plasma deposited layers

C−−O stretches / cm-1

Anhydride Anhydride Carboxylic Acid

Precursor/Film (symmetric) (antisymmetric) (antisymmetric)

Maleic anhydride 1849 1774 —

Pulsed plasma deposited poly(maleic

anhydride)

1870 1800 —

Pulsed plasma deposited poly(maleic

anhydride) after 16 h hydrolysis in wa-

ter at 20 ◦C

— — 1735

(Trifluoromethyl)maleic anhydride 1848 1782 —

Pulsed plasma deposited

poly((trifluoromethyl)maleic an-

hydride)

1880 1809 —

Pulsed plasma deposited

poly((trifluoromethyl)maleic an-

hydride) after 16 h hydrolysis in

water at 20 ◦C

— — 1739
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symmetric stretch is not infrared-active40), Figure 3.4 and Table 3.1. In addition, a broad band

for the carboxylic acid O−H stretch centred at 2910 cm-1 together with the carboxylic acid C−OH

in-plane bend at 1459 cm-1, provided further evidence for carboxylic acid formation. Similarly, for

the case of the hydrolysed pulsed plasma deposited poly((trifluoromethyl)maleic anhydride) films,

the anhydride C−−O stretches disappeared, and were replaced by a carboxylic acid dimer C−−O

antisymmetric stretch at 1739 cm-1, along with the appearance of the corresponding carboxylic

acid O−H stretch and carboxylic acid COH in-plane bend vibrations at 2910 cm-1 and 1460 cm-1

respectively. Again this is consistent with conversion of anhydride functionalities to carboxylic

acid during hydrolysis.

3.3.3 Proton Conductivity

In the case of the pulsed plasma deposited poly(2-(trifluoromethyl)acrylic acid) films, no proton

conductivity was observed, which was due to the severe cracking of the films when hydrated, Table

3.2. The proton conductivity value for the fully hydrated pulsed plasma deposited poly(maleic

anhydride) films was measured to be 50 mS cm-1, Table 3.2. This arises from the high density

of carboxylic acid groups present in the hydrolysed films, which yields a hydrophilic equilibrium

water contact angle of 38◦. However, such a large level of hydrophilicity for these pulsed plasma

deposited poly(maleic anhydride) films gave rise to the formation of surface cracks upon exposure

to water. In contrast, the pulsed plasma deposited poly((trifluoromethyl)maleic anhydride) films

were not susceptible to surface cracking during hydrolysis, whilst the proton conductivity value

was measured to be significantly greater at 90 mS cm-1. Correspondingly, the equilibrium water

contact angle in this case was more hydrophobic compared to its non-fluorinated counterpart, and

can be attributed to the retention of hydrophobic trifluoromethyl functionalities throughout the

film, Table 3.2. Moreover, as a result of this greater hydrophobicity, the pulsed plasma deposited

poly((trifluoromethyl)maleic anhydride) films remained stable in water, and showed no signs of

cracking following repeated hydration and drying cycles.

3.4 Discussion

Pulsed plasmachemical deposition of acrylic acid and 2-trifluoromethylacrylic acid precursors re-

sults in films which are unstable in water and therefore unsuitable for applications such as proton

exchange membrane fuel cells, which require stability in water at high temperatures (around 80 ◦).

Conversely, pulsed plasmachemical deposition of anhydride-containing films effectively provides a

single-step process for preparing proton exchange membranes at ambient temperatures. The re-

sultant hydrolysed membrane layers contain a high density of carboxylic acid functionalities, which

underpin proton conductivity. Carboxylic acids are weaker acids compared to the more popular

sulfonic acid groups (as used in the current benchmark perfluorosulfonic acid containing polymer

membranes (Nafion)) and therefore have in the past been reported to yield low proton conductiv-
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Table 3.2: Water uptake, proton conductivity, water contact angle, and stability in water at 20
◦C of pulsed plasma deposited films

Hydrated Mass Increase Proton Contact Optical

Film on Hydration/wt % Conductivity/mS cm-1 Angle/◦ Appearance

Poly(2-

(trifluoromethyl)-

acrylic acid)

152±9 — 65±2 Severe cracking

Poly(maleic anhy-

dride)

167±7 50±5 38±1 Cracking

Poly((trifluoromethyl)-

maleic anhydride)

143±3 90±5 84±1 No cracking

ities.25 However, the present study demonstrates that hydrolysis of anhydride functionalities can

lead to a high density of proton conducting carboxylic acid centres. For the case of pulsed plasma

deposited poly(maleic anhydride) and poly(trifluoromethyl-maleic anhydride) films, the measured

proton conductivities are on a par with Nafion (80–90 mS cm-1 at room temperature7–9), Table

3.2.

The high level of anhydride incorporation into these films (functional retention) stems from

the underlying pulsed plasmachemical reaction pathway, which promotes conventional polymer-

ization via the C−−C double bond contained within the monomer during the prolonged duty cycle

off-period38 (in contrast to the structural damage normally associated with the more common

continuous wave plasmas27).

A threefold beneficial effect is achieved by utilising a trifluoromethyl group substituted vari-

ant of maleic anhydride: firstly it provides stabilization of anhydride radicals within the electrical

discharge42 (thus enhancing rate of polymerization and suppressing ablation43,44); secondly its

electron-withdrawing effect gives rise to a stronger carboxylic acid group;45 and thirdly, it provides

a degree of hydrophobicity which helps to avoid cracking (due to less hydrophilicity and therefore

swelling/internal mechanical stress within the layers). Previous attempts made at utilising plas-

machemical deposition for preparing proton conductive membranes have employed much higher

average powers and continuous wave conditions, which lead to structural damage of the grow-

ing film.23,28–35 Furthermore, they have needed to resort to mixing precursors which introduces

inherent reproducibility issues.

The choice of precursors for pulsed plasmachemical deposition of acid-containing films is

limited by the chemical and physical properties of available monomers. For example, sulfonic

acid–containing precursors tend to be unstable with a double bond present (e.g. vinylsulfonic acid

is commercially unavailable), sulfonate salts (which could be converted to acids by ion exchange)
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have negligible vapour pressure, which is the same problem experienced for phosphonic acids.

As a result, carboxylic acid containing monomers, which have good vapour pressure (sufficient

for vapour-phase deposition) and do not autopolymerize (under room temperature conditions)

were investigated. The use of conventional monomer types (i.e. those with carbon-carbon double

bonds present) meant that relatively low plasma powers (relative to previous examples in the

literature23,28–35) are able to be utilized. This in turn leads to better structural retention within

the plasma polymer films as evidenced by the XPS and FTIR data.

Finding the right deposition conditions relies on compromising with plasma parameters. On

the one hand, a higher plasma power will lead to more crosslinking in the film, which therefore

enables it to be stable in water. Too high an input power, however, and the film will contain so

many trapped radicals and reactive species (as caused by precursor ablation within the plasma

itself) that exposure to atmosphere or water will cause the film to crack as it chemically reacts.27

Another disadvantage of a large plasma input power is that the ablation of the monomer leads

to less structural retention within the plasma polymer film, and therefore, in this case, a large

reduction in the number of acid groups per unit volume, which in turn results in lower proton

conductivity (for example, in the case of maleic anhydride, increasing the peak plasma power to 30

W yields more than a hundredfold decrease in conductivity). Conversely, if too low a plasma input

power is used, then the film will either be soluble in water, or, in the extreme case, no deposition

will occur. Therefore, with the anhydride films, a plasma input power and pulsing duty cycle was

used at 5 W and 20 µs on, 1200 µs off, in order to maximise the anhydride density (and thus

acid density) whilst maintaining sufficient crosslinking for stability under hydrated conditions.38

Given the rising demand for fuel cells, the drive towards miniaturised energy sources,4,5 and

the inherently high costs and environmental impact of Nafion proton exchange membrane manu-

facture,10 the outlined single-step plasmachemical deposition approach offers a cost-effective and

viable alternative. Furthermore, elimination of the need to actually handle individual fabricated

membranes can be accomplished by plasmachemical deposition directly onto fuel cell components,

which overcomes the conventional mindset for thicker membranes (lowering costs). Higher plas-

machemical deposition rates and throughputs can be envisaged by incorporating an atomiser for

precursor delivery46 in combination with roll-to-roll processing.

3.5 Conclusions

Pulsed plasmachemical deposition using anhydride precursors yields structurally well-defined thin

films with high levels of functional retention. Subsequent hydrolysis of the anhydride centres

produces a large concentration of carboxylic acid groups which give rise to high proton conductivity

values. This conformal approach offers a range of benefits which include the ability to coat

both two- and three-dimensional proton exchange fuel cell components, thereby negating the

requirement for handling thicker conventional membranes, as well as low environmental impact.
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Chapter 4

Proton Conducting Polymer Grafts

from Plasmachemical Films

4.1 Introduction

In chapter 3, the use of plasma deposition in order to manufacture acid-containing coatings was

detailed. As discussed in section 3.4, the use of vapour-phase deposition techniques entails a

precursor with significant vapour pressure. This requirement precludes sulfonic acid or sulfonate

containing monomers, which would be desirable for proton exchange membranes given their strong

acid groups. A way to incorporate strong sulfonic acid groups into the plasma polymer film (aside

from drastic methods such as boiling in sulfuric acid, which would likely cause severe degrada-

tion to the polymer) could be to use the chemical properties of plasma polymers themselves.

Plasmachemically deposited films have radicals trapped within them even under the relatively

gentle plasma conditions used in chapter 3.1 These radicals survive only a short time (a matter

of minutes) when the polymer is exposed to air, but could potentially be used to initiate con-

ventional radical polymerization from the surface of the films. Since such graft polymerizations

would be done in the solution/liquid phase, the number of available monomers is vastly increased

and includes sulfonate bearing moieties. This chapter expounds the use of the trapped radical

phenomenon in order to improve the proton conductivity of plasmachemically deposited thin films.

Current global efforts targeting the reduction of carbon emissions are aiming towards cleaner

hydrogen-based energy sources as one viable solution. In this context, proton exchange mem-

brane fuel cells (PEMFCs) are under development for automotive, stationary, and portable power

applications.2–4 These electrochemical cells oxidise fuel (usually hydrogen gas or methanol) at the

anode to produce protons, which travel across the proton exchange membrane and react at the

cathode with an oxidant (oxygen gas or air).2 PEMFCs are particularly attractive when utilized in

combination with energy storage media such as lithium ion batteries (which also require efficient

ion conducting membranes).5,6 Therefore there exists a strong demand for cost-effective and high

performance proton exchange membranes.7,8
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Nafion is the current industry benchmark for proton conducting membranes. It consists of

perfluorosulfonic acid groups pendant off a poly(tetrafluoroethylene) backbone, and yields a pro-

ton conductivity of around 80–90 mS cm-1 at room temperature when fully hydrated.9–12 The

inherently high costs and environmental impact of Nafion proton exchange membrane manufac-

ture means that there is an impetus for the development of alternative highly proton conducting

membranes which are stable in water and easy to manufacture.13 Some potential candidates

have included poly(styrene),14,15 poly(imide),16 poly(aryl ether),17,18 or poly(phosphazene)19,20

hydrophobic backbones, which are either copolymerized with a hydrophilic acid-containing moi-

ety,16 17 sulfonated post polymerization,21 or have hydrophilic acid-containing polymer chains

grafted onto the hydrophobic backbone.22,23 Amongst these polymer backbone functionalisation

methods, grafting is particularly attractive since it can yield higher proton conductivity values.22,23

Such graft polymerization techniques can be divided into either graft-from methods, where free

radical creation within the polymer backbone is induced by radiation followed by growth of acid-

containing polymer;24 or graft-to approaches, where polymer brushes are synthesized beforehand

and then attached to the polymer backbone via a reactive moiety (e.g. a double bond).22 However,

both ways suffer from various shortfalls: radiation-induced grafting-from can cause damage to the

polymer backbone,24 whereas graft-to requires multi-step syntheses prolonged reaction times.22

In contrast to the aforementioned complex membrane fabrication techniques, plasma polymer-

ization is a much more straightforward and solventless methodology.1 Previous plasma deposited

proton exchange membranes have suffered from low proton conductivity25–34 and susceptibility

towards cracking when hydrated.35,36

In this investigation, anhydride-containing films are prepared by pulsed plasmachemical depo-

sition, which are then activated by reaction with propylamine (aminolysis). This derivatisation

with by propylamine leads to swelling of the anhydride layers, which provides greater access to

subsurface free radicals trapped within the plasmachemical films.37 These free radicals are then

able to act as initiator sites for graft polymerization of styrene or sodium 4-styrenesulfonate (which

is easily converted into sulfonic acid groups), Scheme 4.1.

This is the first time that carboxylic acid–containing polymer backbone films with intrinsic

proton conductivity have been combined with grafted sulfonic acid–containing polymer brushes,

and found to display high proton conductivity. Furthermore, the measured proton conductivities

are greater than or equal to Nafion, and these layers exhibit good stability in water.

4.2 Experimental

4.2.1 Preparation of Polymer Graft Layers

Plasma deposition of the poly(anhydride) layers was carried out according to the method in

section 2.1 (page 27). Substrates used for coating were silicon (100) wafer pieces (Silicon Valley

Microelectronics Inc.) and polypropylene sheet (Lawson Mardon Ltd.) with two evaporated gold
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Scheme 4.1: (a) Pulsed plasmachemical deposition of anhydride-containing films followed by

(b) aminolysis and (c) subsequent thermal graft-from polymerization of (i) styrene or (ii) sodium

4-styrenesulfonate.
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electrodes (5 mm length and 1.5 mm separation) for proton conductivity testing. Borosilicate glass

slides (VWR Ltd.) were used for radical density quantification measurements. Maleic anhydride

briquettes (+99%, Aldrich Ltd., ground into a fine powder) and (trifluoromethyl)maleic anhydride

(+97%, Apollo Scientific Ltd.) were loaded into separate sealable glass tubes and degassed using

multiple freeze-pump-thaw cycles. Pulsed plasma deposition utilized an optimal duty cycle of 20

µs on-period and 1200 µs off-period in conjunction with a peak power of 5 W.38

The plasma deposited anhydride-containing films were subsequently derivatised by exposure

to propylamine vapour at a pressure of 200 mbar for 30 min, followed by evacuation of the system

back down to base pressure.

Next, the propylamine derivatised anhydride-containing films were placed into a sealable

glass tube together with either 1 mL of styrene (+99%, Aldrich Ltd.) or 18 wt % sodium

4-styrenesulfonate (Aldrich Ltd.) solution in water. These mixtures were subjected to several

freeze-pump-thaw cycles until fully degassed, whereupon the tube was placed into an oil bath

(at 90 ◦C for styrene and at 50 ◦C for sodium 4-styrenesulfonate) to initiate graft-from poly-

merization. Upon completion of the styrene polymerization, the substrates were washed by a

dichloromethane soxhlet for 16 h in order to remove unattached polymer. Upon completion of

the sodium 4-styrenesulfonate polymerization, substrates were washed in high purity water (pH

= 7.0) and aqueous acetic acid (Fisher Scientific Ltd.) solution (pH = 3.7) in order to effect

ion exchange between Na+ and H+. Finally, the samples were allowed to dry in air at room

temperature.

4.2.2 Film Characterization

Surface elemental compositions were determined by X-ray photoelectron spectroscopy (XPS) using

a VG ESCALAB II electron spectrometer as described in section 2.2 (page 28). Experimentally

determined instrument sensitivity (multiplication) factors were taken as C(1s): O(1s): F(1s):

N(1s): Na(1s): S(2p) equals 1.00: 0.34: 0.26: 0.66: 0.05: 0.55.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) as

described in section 2.3 (page 2.3). The instrument included a variable angle reflection-absorption

accessory (Specac Ltd) set to a grazing angle of 66◦ for silicon wafer substrates and adjusted for

p-polarization.

The concentration of radical sites present in the films was determined using 2,2-diphenyl-1-

picrylhydrazyl (DPPH, 95%, Aldrich Ltd).39 A borosilicate glass coverslip slide coated with the

plasmachemical films was placed into a glass tube containing 1 x 10-4 mol dm-3 solution of DPPH

in toluene (which had been thoroughly degassed using multiple freeze-pump-thaw cycles). The

tube was then heated to 50 ◦C for 30 min. The DPPH molecules consumed by surface radicals

were quantified using a spectrophotometer (Philips Scientific Ltd, PU 8625) by measuring the

difference in absorbance at 520 nm between the starting solution and following immersion of each

coated sample.
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Film thicknesses were measured using a spectrophotometer (nkd-6000, Aquila Instruments

Ltd.) as described in section 2.4 (page 33).

Proton conductivity values were obtained by undertaking impedance measurements across the

10 Hz-13 MHz frequency range using an LF impedance analyser (Hewlett-Packard, 4192A) for

coated polypropylene substrates whilst submerged in ultra high purity water at room temperature

(20 ◦C) as described in section 2.6 (page 35).

4.3 Results

Pulsed plasma deposited poly(maleic anhydride) layers display a distinctive XPS C(1s) component

peak at 288.9 eV (O−C−−O) corresponding to anhydride carbon centres, Figure 4.1.38 Follow-

ing reaction with propylamine, this feature shifts to 288.0 eV (N−C−−O), which is consistent

with aminolysis having taken place.40 This is accompanied by an increase in the hydrocarbon

(CxHy) component peak at 285.0 eV attributable to the alkyl chain of propylamine. Subsequent

graft polymerizations of either styrene or sodium 4-styrenesulfonate resulted in the loss of the

anhydride/amide shoulder peak to leave the predominant hydrocarbon (CxHy) feature. This is

consistent with there being complete coverage by poly(styrene) or poly(sodium 4-styrenesulfonate)

of the poly(maleic anhydride) initiator layer. A low intensity π → π* shake-up feature at 291.0

eV characteristic of the phenyl centres is also observed.40

A similar series of reactions was shown to occur for pulsed plasma deposited poly((trifluoro-

methyl)maleic anhydride) layers, which initially display the distinctive anhydride component peak

at 288.9 eV (O−C−−O) as well as a feature at 292.5 eV characteristic of trifluoromethyl (CF3)

centres,41 Figure 4.2. This trifluoromethyl peak remains following aminolysis, but disappears

upon coverage by the grafted poly(styrene) or poly(4-styrenesulfonate) layers.

For both types of anhydride initiator layer, the absence of any Si(2p) XPS signal from the

underlying silicon substrate confirmed surface coverage. For the propylamine derivatized films,

carbon, oxygen and nitrogen signals were detected (along with fluorine in the case of pulsed plasma

deposited poly((trifluoromethyl)maleic anhydride)) confirming reaction of the propylamine with

the anhydride functionalities, Table 4.1. The N:O ratio for the propylamine derivatized pulsed

plasma deposited poly(maleic anhydride) films was 1.0:2.4, whilst a much higher ratio of 1.0:1.1

was measured for the propylamine-derivatized pulsed plasma deposited poly((trifluoromethyl)-

maleic anhydride) layers. This is indicative of the anhydride rings being more susceptible towards

complete aminolysis for the latter and is supported by the accompanying N(1s) XPS region which

shows a single component peak at 399.8 eV (corresponding to amide O−−C−N(H)−C group

formation);40 in the case of pulsed plasma deposited poly(maleic anhydride) there is an extra

smaller peak at 401.6 eV (assigned to C−NH+
3 centres and hence only partial aminolysis40), Figure

4.3. Elemental XPS concentrations for both thermally grafted poly(styrene) and poly(sodium 4-

styrenesulfonate) films show good agreement with the predicted theoretical polymer structure,

Table 4.1. The cationic sodium content is measured to be less as a consequence of some ion
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Figure 4.1: C(1s) XPS spectra for: (a) pulsed plasma deposited poly(maleic anhydride),

(b) propylamine-derivatized pulsed plasma deposited poly(maleic anhydride), (c) poly(styrene)

grafted from propylamine-derivatized pulsed plasma poly(maleic anhydride) and (d) poly(sodium

4-styrenesulfonate) grafted from propylamine-derivatized pulsed plasma poly(maleic anhydride).
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Figure 4.2: C(1s) XPS spectra for: (a) pulsed plasma deposited poly((trifluoromethyl)-

maleic anhydride), (b) propylamine-derivatized pulsed plasma deposited poly((trifluoromethyl)-

maleic anhydride), (c) poly(styrene) grafted from propylamine-derivatized pulsed plasma

poly((trifluoromethyl)maleic anhydride) and (d) poly(sodium 4-styrenesulfonate) grafted from

propylamine-derivatized pulsed plasma poly((trifluoromethyl)maleic anhydride).
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Figure 4.3: N(1s) XPS spectra following propylamine derivatization of: (a) pulsed plasma

deposited poly(maleic anhydride) and (b) pulsed plasma deposited poly((trifluoromethyl)maleic

anhydride).

exchange with H+ having taken place during the cleaning step with water and aqueous acetic

acid following graft polymerization. This was proven by deliberately soaking in pH = 3.7 acetic

acid solution, which gave rise to the complete disappearance of the sodium XPS signal, whilst

other elements remained, thus confirming that ion exchange of Na+ for H+ can take place.

Infrared spectra for the pulsed plasma deposited poly(maleic anhydride) films show fingerprint

anhydride symmetric (1870 cm-1) and antisymmetric (1800 cm-1) C−−O stretches,38 Figure 4.4.

Propylamine derivatization causes attenuation of the anhydride peak (1800 cm-1) with the con-

current appearance of a carboxylic acid antisymmetric C−−O stretch (1711 cm-1), amide C−−O

stretch (1656 cm-1, amide I) and amide C−N−H stretch bend (1577 cm-1, amide II). Alkyl group

features are also evident with CH3 antisymmetric stretch (2966 cm-1), CH2 antisymmetric stretch

(2936 cm-1) and CH3 symmetric stretch (2874 cm-1), along with a broad band corresponding

to the amide N−H stretch (3250 cm-1). After thermal grafting of styrene the following bands

appeared:42 C−H aromatic ring stretches (3100–3000 cm-1), CH2 antisymmetric and symmetric
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Layer %C %O %F %N %Na %S

Pulsed plasma poly(maleic an-

hydride)

67±1 33±1 — — — —

Pulsed plasma

poly((trifluoromethyl)maleic

anhydride)

52±1 15±1 33±1 — — —

Propylamine-derivatized pulsed

plasma poly(maleic anhydride)

69±1 2±1 — 9±1 — —

Propylamine-derivatized pulsed

plasma poly(trifluoromethyl-

maleic anhydride)

63±1 10±1 19±1 9±1 — —

Poly(styrene) thermally grafted

from propylamine-derivatized

pulsed plasma poly(maleic

anhydride)

100 — — — — —

Poly(styrene) thermally

grafted from propylamine-

derivatized pulsed plasma

poly((trifluoromethyl)maleic

anhydride)

100 — — — — —

Theoretical poly(sodium

4-styrenesulfonate)

62 23 — — 8 8

Poly(sodium 4-

styrenesulfonate) thermally

grafted from propylamine-

derivatized pulsed plasma

poly(maleic anhydride)

67±1 22±1 — — 3±1 9±1

Poly(sodium 4-

styrenesulfonate) thermally

grafted from propylamine-

derivatized pulsed plasma

Poly((trifluoromethyl)maleic

anhydride)

66±1 22±1 — — 4±1 9±1

Table 4.1: XPS elemental concentrations
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Figure 4.4: Infrared spectra of: (a) pulsed plasma deposited poly(maleic anhydride), (b)

propylamine-derivatized pulsed plasma deposited poly(maleic anhydride) layer, (c) poly(styrene)

grafted from propylamine-derivatized pulsed plasma deposited poly(maleic anhydride) and (d)

poly(sodium 4-styrenesulfonate) layer grafted from propylamine-derivatized pulsed plasma de-

posited poly(maleic anhydride). * Denotes characteristic benzenesulfonate peaks.

stretches (2921 cm-1 and 2850 cm-1 respectively), ring quadrant stretches (1600 cm-1 and 1582

cm-1) and ring semicircle stretches (1493 cm-1 and 1452 cm-1). Subsequent graft polymerization

of sodium 4-styrenesulfonate gave rise to the appearance of the SO3 symmetric stretch (1045

cm-1), together with the phenyl ring in-plane skeleton vibration (1134 cm-1) and in-plane bending

vibration (1012 cm-1), Figure 4.4.43

In the case of pulsed plasma deposited poly((trifluoromethyl)maleic anhydride) films, the

infrared spectra display similar changes, with there being initially characteristic anhydride C−−O

symmetric (1880 cm-1) and antisymmetric (1809 cm-1) peaks, Figure 4.5. These completely

disappear upon propylamine derivatization, thereby confirming complete reaction throughout the

plasma deposited layer, whilst graft polymerization of styrene gave rise to the appearance of the

C−H aromatic ring stretches at 3100–3000 cm-1, CH2 antisymmetric and symmetric stretches

(2921 cm-1 and 2850 cm-1 respectively), ring quadrant stretches (1600 cm-1 and 1582 cm-1)
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Figure 4.5: Infrared spectra of: (a) pulsed plasma deposited poly(trifluoromethyl)maleic an-

hydride), (b) propylamine-derivatized pulsed plasma deposited poly(trifluoromethyl)maleic an-

hydride) layer, (c) poly(styrene) grafted from propylamine-derivatized pulsed plasma deposited

poly(trifluoromethyl)maleic anhydride) and (d) poly(sodium 4-styrenesulfonate) layer grafted from

propylamine-derivatized pulsed plasma deposited poly(trifluoromethyl)maleic anhydride). * De-

notes characteristic benzenesulfonate peaks.

and ring semicircle stretches (1493 cm-1 and 1452 cm-1). Graft polymerization of sodium 4-

styrenesulfonate similarly gave rise to the appearance of the characteristic SO3 symmetric stretch

(1045 cm-1), along with the phenyl ring in-plane skeleton vibration (1134 cm-1) and in-plane

bending vibration (1012 cm-1), Figure 4.5.

Free radical density assays show that the radical density for the pulsed plasma poly((trifluoro-

methyl)maleic anhydride) is greater by a factor of ten compared to pulsed plasma poly(maleic

anhydride), which can be attributed to the stabilizing effect of the electron withdrawing trifluo-

romethyl group, Table 4.2. Derivatization by propylamine gives rise to a much higher density of

accessible surface radicals for both types of anhydride-containing layer, whereas the number of

radicals measured was below the detection limit after the poly(sodium 4-styrenesulfonate) grafting

step.
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Thickness/ Radical density/ Water uptake/

Film nm 10-9 mol cm-2 wt %

Pulsed plasma poly(maleic an-

hydride)

98±4 2.6±0.2 167±7

Pulsed plasma poly((trifluoro-

methyl)maleic anhydride)

101±5 31±2 143±3

Propylamine-derivatized pulsed

plasma poly(maleic anhydride)

197±7 37±2 120±10

Propylamine-derivatized pulsed

plasma poly((trifluoromethyl)-

maleic anhydride)

211±8 52±4 90±10

Poly(styrene) thermally grafted

onto propylamine-derivatized

pulsed plasma poly(maleic

anhydride), 1h

490±30 0.0±0.1 —

Poly(styrene) thermally

grafted onto propylamine-

derivatized pulsed plasma

poly((trifluoromethyl)maleic

anhydride), 1h

700±30 0.0±0.1 —

Poly(sodium 4-

styrenesulfonate) thermally

grafted onto propylamine-

derivatized pulsed plasma

poly(maleic anhydride), 1 h

248±9 0.0±0.1 140±10

Poly(sodium 4-

styrenesulfonate) thermally

grafted onto propylamine-

derivatized pulsed plasma

poly((trifluoromethyl)maleic

anhydride), 1 h

292±9 0.0±0.1 120±10

Table 4.2: Film thickness, radical density and water uptake of deposited films.
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Film thickness measurements for both types of plasma deposited anhydride containing layers

showed approximately 100% swelling upon propylamine derivatization, which can be attributed

to the aminolysis reaction,37 Table 4.2. Subsequent graft polymerization of both poly(styrene)

and poly(sodium 4-styrenesulfonate) films was found to be more rapid for the propylamine deriva-

tized plasma deposited poly((trifluoromethyl)maleic anhydride) films compared to their maleic

anhydride analogue, which is consistent with there being a higher concentration of radicals. Film

thicknesses did not significantly increase beyond 1 h grafting time, which can be attributed to

termination reactions taking place due to the non-controlled nature of the polymerization.44

Proton conductivity values of 50 ± 5 mS cm-1 and 90 ± 5 mS cm-1 were measured for pulsed

plasma deposited poly(maleic anhydride) and poly((trifluoromethyl)maleic anhydride) films re-

spectively, Figure 4.6. These proton conductivities were drastically reduced for both films upon

aminolysis (10 and 20 mS cm-1 respectively), which can be attributed to the loss of free car-

boxylic acid centres due to reaction taking place with propylamine. Subsequent thermal graft

polymerization of sodium 4-styrenesulfonate gave rise to a significant increase in proton conduc-

tivity exceeding the values for the parent films (95 and 125 mS cm-1 respectively). The higher

proton conductivity of the poly(4-styrenesulfonic acid) films grafted from the propylamine deriva-

tized pulsed plasma deposited poly((trifluoromethyl)maleic anhydride) layers can be attributed

to the more extensive grafting, and therefore greater density of sulfonic acid groups (which are

known to underpin proton conductivity). Control samples in the absence of propylamine derivati-

sation did not show this enhanced proton conductivity behaviour following graft polymerization

of poly(sodium 4-styrenesulfonate). Furthermore, no cracking in the films upon hydration was

observed.

4.4 Discussion

Pulsed plasma deposition of anhydride-containing films effectively provides a single-step process

for preparing proton exchange membranes at ambient temperatures. Upon exposure to water, the

inherent high density of carboxylic acid functionalities gives rise to proton conductivity. Propy-

lamine derivatization leads to a drop in proton conduction, which can be explained on the basis

of a loss of proton conducting carboxylic acid centres due to their consumption in the aminolysis

reaction, Scheme 4.1. Grafting of poly(sodium 4-styrenesulfonate) layers from these aminolysed

carboxylic anhydride membranes leads to a large enhancement in conductivity yielding 125 mS

cm-1 at room temperature for the trifluoromethyl variant, Figure 4.6. This compares favourably

to the current benchmark standard, Nafion, which has a proton conductivity of 80–90 mS cm-1

under similar test conditions.12 These propylamine derivatized carboxylic anhydride films are suf-

ficiently robust to allow growth of sulfonic acid-containing polymer brushes as well as being stable

afterwards in water. This is in marked contrast with previous plasma polymer proton exchange

membranes which suffer from a lack of stability upon hydration.35,36

A threefold beneficial effect is observed for the trifluoromethyl group substituted variant of
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Figure 4.6: Proton conductivity upon immersion in water at 20 ◦C for pulsed plasma-deposited

anhydride films: as deposited; after reaction with propylamine; and subsequent grafting of

poly(sodium 4-styrenesulfonate) followed by proton exchange. No enhanced proton conductivity

behaviour was observed following graft polymerization of poly(sodium 4-styrenesulfonate) in the

absence of propylamine derivatization.
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maleic anhydride precursor: firstly it stabilizes anhydride radicals within the electrical discharge45

(thus enhancing polymer chain growth during the plasma duty cycle off-period, and also increases

the density of radicals contained within the film which can act as initiation centres during the

subsequent grafting step of styrene or sodium 4-styrenesulfonate46,47); secondly, its electron-

withdrawing effect makes the carboxylic acid group more acidic (therefore higher proton conduc-

tivity);48 and finally it makes the carbonyl centre more susceptible towards nucleophilic attack,49

thus maximizing the extent of aminolysis, which helps to enhance the density of radicals contained

in the functional layer.37 Anhydride rings are known to be particularly good at stabilizing radicals

due to resonance effects enabled by the cyclic conjugated anhydride structure.50

Free radical polymerizations can be split into controlled and uncontrolled reactions. The

former include nitroxide mediated polymerization (NMP), atom transfer radical polymerization

(ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. All of these

use some method of trapping the radicals present in the growing polymer brushes such that the

concentration of any terminating species is reduced (for example, ATRP uses a copper catalyst

and the equilibrium between copper(I) and copper(II) to control the polymerization reaction).

In controlled radical polymerizations therefore, since there is a relatively low concentration of

radicals which are reactive, the polymerization from the surface is slow, but has the advantage of

producing polymer brushes with a low polydispersity index (i.e. of similar length).

In the case of growing polymer brushes from the surfaces of plasma polymer films in order

to improve their proton conductivity, however, the use of controlled radical polymerization would

only be advantageous if it directly enabled a greater density of acid groups within the polymer

brushes. For poly(sodium 4-styrenesulfonate) brushes which have been grown from the surface

of different plasma polymer films via controlled radical polymerization (ATRP), however, the

maximum thickness attainable is around 50 nm.51 The brushes do have the advantage of being

a similar length, but in the current case, the grafting of poly(sodium 4-styrenesulfonate) brushes

which have similar length is unnecessary, since this offers no improvement to the conductive

properties of the films. Add to this the disadvantages of either needing an expensive polymerization

agents (NMP and RAFT) or an extensive number of washing steps to remove copper catalyst

(ATRP).

By contrast, thermal polymerization reaction, which simply utilizes the radicals within the

plasma polymer films as an initiator, gives a similar thickness film (in the case of poly(sodium

4-styrenesulfonate)) but without the extra steps involved in controlled radical polymerizations. Ad-

ditionally, many commercial polymerizations are based on thermal free radical reactions, whereas

there are none to date which use controlled radical polymerization therefore engineering barriers

to industry scaleup are minimized.

The outlined plasmachemical deposition process followed by propylamine derivatization, and

the grafting of sulfonic acid containing polymer brushes, is simple, quick to manufacture, and

utilizes water as a solvent (minimal environmental impact in marked contrast to Nafion).52 Addi-

tionally, plasmachemical deposition provides a single-step deposition directly onto fuel cell com-
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ponents (such as platinum loaded carbon black particles), which enables ease of manufacture by

avoiding solvent casting techniques which inherently give rise to lack of conformality.53 These

advantages in the use of graft polymerization of polyelectrolytes from carboxylic acid–containing

layers also have potential applications as lithium ion batteries or gas sensors.6,54

4.5 Conclusions

Pulsed plasmachemical deposition using maleic anhydride precursors yields structurally well-defined

thin films. Subsequent aminolysis at the anhydride centres using propylamine causes swelling,

which provides access to initiator free radical centres for the grafting of sulfonic-acid containing

polymer brushes. The resultant functional layers yield proton conductivity values exceeding or on

a par with Nafion. The inherent capability to conformally coat device components with highly

proton conducting membranes offers advantage in term of lower cost, ease of manufacture, and

avoidance of environmentally unfriendly non-aqueous processing.
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Chapter 5

Pulsed Plasmachemical Deposition of

Ion-Conducting Poly(Ionic Liquid)

Layers

5.1 Introduction

Chapters 3–4 were concerned with the plasmachemical deposition of proton conducting carboxylic

acid-containing films (from anhydride precursors) and the enhancement in proton conductivity

afforded by the grafting of sulfonic acid-containing polymer brushes from said films. Both types

of films (pure carboxylic and carboxylic-sulfonic hybrid) rely on the presence of water for proton

conductivity, however, and, as such, reach a maximum operating temperature of close to 100 ◦C

after which the water present in the membranes will boil away. A similar problem is reported

for Nafion which shows optimum proton conductivity at around 90 ◦C. Higher temperatures are

quite desirable for use in proton exchange membrane fuel cells, however, since they improve the

kinetics of the catalytic oxidation and reduction reactions at the electrodes as well as removing

any need for water management (e.g. humidification of the fuel cell gas supply lines in order to

balance osmotic water movement through the membrane). The use of liquid proton conductors

such as phosphoric acid and ionic liquids, which conduct protons independent of water presence,

is prevalent, but they need solid supports for mechanical reasons and a large membrane thickness

in order to minimize gas crossover. Both these requirements lead to a higher membrane resistance

with accompanying voltage loss (and therefore a fall in efficiency). In this chapter a poly(ionic

liquid) film is deposited using a combination of vapour-phase techniques—the polymeric nature

of the film solves the problems associated with liquid electrolytes and the ionic species within the

polymer give rise to excellent ionic conduction.

Ionic liquids are organic salts which are molten at or near to room temperature. They typically

consist of bulky organic cations, e.g. ammonium,1,2 imidazolium3 or phosphonium,4 in com-

bination with an appropriate anion (typically bis(trifluoromethane)sulfonylimide,2,3 triflate1 or
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halide5). Poly(ionic liquid)s can be prepared from ionic liquids containing polymerizable moieties

(e.g. acrylates or vinyl groups), and offer the advantage of superior mechanical properties.6 Like

their monomeric counterparts, they have found application in chromatography,7 gas separation,8

carbon dioxide absorption,9 synthesis of intrinsically conducting polymers10 and nanoparticles,11

thermochromic dyes,12 light emitting electrochemical cells,13 lithium-ion batteries,6 dye-sensitized

solar cells14,15 and supercapacitors.16 In the case of electrolyte layers in fuel cells,17 metal-air bat-

teries18 and humidity sensors,19 good ionic conductivity at elevated temperatures and humidity

is highly sought after (the current industrial benchmark, Nafion, starts to significantly lose ionic

conductivity above 90 ◦C20). However, poly(ionic liquid)s have previously been reported to exhibit

poor ionic conductivities compared to their parent monomers, which has been primarily attributed

to a lack of polymer chain flexibility.21,22 Normally this is redressed by doping with ionic liquids

or other electrolytes,23 but this occurs at the expense of a deterioration in mechanical proper-

ties.24 Furthermore, the manufacture of such poly(ionic liquid)s typically relies upon wet chemical

approaches, which have inherent disadvantages, including the requirement for solvent extraction

and a separate casting step for application to solid surfaces.

In this chapter pulsed plasmachemical deposition is used to produce thin films with a high

density of imidazole groups, which are subsequently quaternized using vapour-phase reaction with

1-bromobutane, Scheme 5.1. The resultant films show increasing ionic conductivity with rising

temperature reaching values of 93.6 mS cm-1 at 100 ◦C (which is in marked contrast to the widely

cited benchmark, Nafion, whose ionic conductivity starts to drop at elevated temperatures25).

5.2 Experimental

5.2.1 Deposition of Poly(ionic liquid) Layers

Pulsed plasmachemical deposition was carried out in an electrodeless cylindrical glass reactor

(volume of 480 cm3, base pressure of 3 x 10-3 mbar, and with a leak rate better than 2 x 10-9 mol

s-1) as described in section 2.1 (page 27). Substrates used for coating were silicon (100) wafer

pieces (Silicon Valley Microelectronics Inc.) and polypropylene sheet pieces (Lawson Mardon

Ltd.) which had two evaporated gold electrodes (5 mm length and 1.5 mm separation) for ion

conductivity testing. 1-Allylimidazole (+97%, Acros Organics Ltd.) was loaded into a sealable

glass tube and degassed using several freeze-pump-thaw cycles. Precursor vapour was allowed

to purge the reactor for 5 min at a pressure of 0.18 mbar prior to electrical discharge ignition.

Pulsed plasma deposition utilized an optimal duty cycle of 20 µs on-period and 1200 µs off-period

in conjunction with a peak power of 30 W. Upon plasma extinction, the precursor vapour was

allowed to continue to pass through the system for a further 3 min, and then the chamber was

evacuated back down to base pressure. Imidazole ring quaternization entailed exposure of the

deposited layers at 70 ◦C to 1-bromobutane vapour (99%, Sigma-Aldrich Ltd, degassed using

several freeze-pump-thaw cycles) at a pressure of 4 mbar for 4.5 h. Subsequently, the reactor was
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Scheme 5.1: Pulsed plasmachemical deposition of poly(1-allylimidazole) films followed by

vapour-phase quaternization using 1-bromobutane at 70 ◦C.
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evacuated to base pressure prior to venting to atmosphere.

Anion exchange experiments were carried out in the vapour phase by exposing the quater-

nized films to trifluoroacetic acid (Fluorochem Ltd) vapour for 300 s at room temperature before

evacuating the reactor to base pressure prior to venting to atmosphere.

5.2.2 Film Characterization

Film thicknesses were measured using a spectrophotometer (nkd-6000, Aquila Instruments Ltd.)

as described in section 2.4 (page 33). Typical deposition rates and film thicknesses were 16±2

nm min-1 and 580 nm respectively.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) as

described in section 2.3 (page 31).

Surface elemental compositions were determined by X-ray photoelectron spectroscopy as de-

scribed in section 2.2 (page 28). Experimentally determined instrument sensitivity (multiplication)

factors were taken as C(1s): N(1s): Br(3d) equals 1.00: 0.66: 0.36.

Impedance measurements across the 700 Hz–13 MHz frequency range were carried out using

an LF impedance analyser (Hewlett-Packard, 4192A) for coated polypropylene substrates as de-

scribed in section 2.6 (page 35). Saturated salts of sodium chloride (+99%, Sigma-Aldrich Ltd.)

and potassium sulfate (+99%, Sigma-Aldrich Ltd.) were used to create relative humidities of

75.5% and 97.6% at room temperature.26 Ionic conductivity measurements at higher tempera-

tures were carried out by Mikkel Larsen and Peter Lund of IRD Fuel Cells A/S, Denmark.

5.3 Results

Fourier-transform infrared spectroscopy of the pulsed plasma deposited poly(1-allylimidazole) films

confirmed good structural retention of the precursor functionality, Figure 5.1. Characteristic im-

idazole ring absorbances include C−−C−H ring stretch at 3107 cm-1, C−−N ring stretch at 1504

cm-1 and an in-plane bend N−−C−H ring vibration at 1107 cm-1.27,28 Following quaternization

of these imidazole rings with vapour-phase 1-bromobutane at 70 ◦C, a shift was observed in the

imidazole ring vibrations to 3133 cm-1, 1561 cm-1 and 1162 cm-1 respectively, which is consis-

tent with the formation of an imodazolium cation.29 Furthermore, the appearance of new C−H

stretches at 2960 cm-1, 2935 cm-1 and 2873 cm-1 along with the out of plane HCH deforma-

tion at 1463 cm-1 corresponds to the butyl chain belonging to 1-bromobutane. Broad peaks at

3500–3100 cm-1 and 1630 cm-1 can be attributed to water stretches, which is consistent with

the hydrophilic nature of imidazole based polymers.28 Compared to previously deposited pulsed

plasma poly(1-allylimidazole) films,27 the absence of C−−−N stretches at 2230 cm-1 stems from the

milder (more controlled) duty cycle employed in the present study.

X-ray photoelectron spectroscopy (XPS) analysis of the pulsed plasma deposited poly(1-

allylimidazole) layer shows two N(1s) peaks at 398.9 eV and 400.7 eV corresponding to N−C
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Figure 5.1: Fourier transform infrared spectra of (a) 1-allylimidazole monomer, (b) pulsed plasma

deposited poly(1-allylimidazole) and (c) pulsed plasma deposited poly(1-allylimidazole) quater-

nized with 1-bromobutane. * Denotes imidazole ring absorbances. • Denotes imidazolium ring

absorbances.
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Figure 5.2: X-ray photoelectron N(1s) spectra of (a) pulsed plasma deposited poly(1-

allylimidazole) and (b) pulsed plasma deposited poly(1-allylimidazole) quaternized with 1-

bromobutane.

and N−−C centres respectively,30 Figure 5.2. Following quaternization of the imidazole ring, the

XPS N(1s) spectrum shows a new, larger peak at 401.4 eV, which denotes quaternized, positively

charged nitrogen centres.30 The elemental XPS ratio of bromine to nitrogen was measured to be

1.0:3.1, which corresponds to 65% of the imidazole rings being quaternized to imidazolium.

Vapour-phase bromobutane quaternization also gives rise to a swelling in film thickness by

approximately 10%, which, together with the infrared data, indicates that reaction has occurred

throughout the plasmachemically deposited films.

Electrochemical impedance spectroscopy was used to measure the ionic conductivity of the

films. Control samples of pulsed plasma deposited poly(1-allylimidazole) displayed no ionic con-

ductivity, regardless of conditions. In contrast, at room temperature (20 ◦C), the quaternized

poly(1-allylimidazole) films showed ionic conductivity of 0.7 mS cm-1 at 75.5% relative humidity,

which increased to 1.0 mS cm-1 at 97.6% relative humidity. This rise in ionic conductivity with

relative humidity is similar to that reported for imidazolium-based ionic liquids.31 Furthermore, at

higher temperatures of 60 ◦C and 80 ◦C (at 75% relative humidity) the ionic conductivity improves

further to 6.9 mS cm-1 and 13.0 mS cm-1 respectively. Upon raising the temperature to 100 ◦C
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Figure 5.3: Ionic conductivity of pulsed plasma deposited poly(1-allylimidazole) quaternized

with 1-bromobutane at 75% relative humidity (dashed line depicts performance of Nafion under

similar conditions, extrapolated from references 25 and 32).

(relative humidity 75%), there is a sharp increase in the ionic conductivity of the films to 93.6 mS

cm-1, which is comparable to the performance of Nafion films under similar test conditions,25,32

Figure 5.3.

5.4 Discussion

The source of ionic conductivity for the poly(ionic liquid) membranes is the bromide ions which

act as charge carriers with the imidazolium groups anchored to the polymer backbone.21 These

conductivities are lower than those reported for bulk imidazolium ionic liquids due to the lack of

free cationic charge carriers and the reduced mobility of the ions within the film.33 The rise in

ionic conductivity with relative humidity is similar to that reported for other imidazolium-based

poly(ionic liquid)s, which can be attributed to the shielding effect of hydration shells around the

ions within the polymer.31 Polymer mobility is also known to be important for ionic conductivity

since it lowers the energy barrier for anion movement throughout the film.21,22 Therefore the

large increase in ionic conductivity between 80 and 100 ◦C can be attributed to a T g-like transi-

tion, which is responsible for increases in conductivity in conventional polymers due to enhanced

segmental motion.34 The behaviour of conductivity also relied on the nature of the anion, since

after anion exchange with trifluoroacetate was carried out, the resultant films showed lower con-

ductivities (0.33 and 0.68 mS cm-1 at room temperature, 75.5% and 97.6% relative humidity
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respectively) and no significant change at higher temperatures.

In conventional ionic liquids there are many factors which affect ionic conductivity (that is,

ionic mobility) including viscosity, melting point, ion size and humidity. Given this multitude

of factors, there have been a large number of ionic liquids manufactured in order to optimize

conductivity (and the other chemical properties in which ionic liquids excel, as solvents and

catalysts etc.). Of all of these, imidazolium-based ionic liquids yield the highest ionic conductivity,

particularly when combined with bulky anions (in the present study, however, the reverse is true,

since the anion represents the major charge carrier).31

Similar attempts were made at creating poly(ionic liquid) films via pulsed plasmachemical

deposition using 4-vinylpyridine, 1-vinylpyrrolidone and dimethylaminoethyl acrylate. All of the

resultant polymers showed good structural retention upon plasma deposition, but the poly(4-

vinylpyridine) layers were the only ones which reacted with 1-bromobutane at 70 ◦C. This can be

attributed to the higher energy barrier to quaternization for non-aromatic nitrogen moieties (and

indeed steric hindrance is increased in these cases). The quaternized poly(4-vinylpyridine) layers

showed no significant ionic conductivity, however, which is in keeping with the superior conductive

properties of imidazolium-containing (as opposed to pyridinium-containing) ionic liquids.

5.5 Conclusions

In conclusion, this plasmachemical deposition approach combined with vapour-phase quaterniza-

tion yields poly(ionic liquid) films, which display very high ionic conductivities (exceeding 90 mS

cm-1 at 100 ◦C and 75% relative humidity). In principle, this conformal and solventless tech-

nique could be applied directly to components employed in electrochemical devices (including fuel

cells).
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Chapter 6

Plasmachemical Deposition of

Metal-Containing Nanocomposite

Films

6.1 Introduction

In chapters 3–5, proton and ion conducting membranes were manufactured by pulsed plasmachem-

ical deposition (and subsequent post-deposition reactions). These films showed conductivities,

which were high enough for use in proton exchange membrane fuel cells—both low tempera-

ture (<100 ◦C) and intermediate temperature (100–200 ◦C). The potential scaleup opportunities

presented by vapour-phase deposition processes would be increased if other parts of the proton

exchange membrane could also be deposited in this way. These other parts include the catalytic

layer present at both anode and cathode of a fuel cell (see Figure 1.2, page 14). The catalytic

layer at either electrode must conduct protons, but also electronic conductivity is required (unlike

the proton exchange membrane where electronic conductivity would cause a short circuit). Finally,

the catalytic layer must contain moieties able to catalyse the oxidation and reduction reactions.

In this chapter, therefore, organometallic precursors are used in a plasmachemical deposition to

fabricate inorganic nanostructures within an organic matrix. The platinum-containing films ful-

fil the criteria of being able to conduct protons and electrons, which combined with platinum’s

known catalytic ability (it is currently used in commercially produced fuel cells), mean that the

nancomposite layers could be used in proton exchange membrane fuel cells.

Metal-containing nanocomposite layers are highly sought after for many applications includ-

ing catalysis,1–3 photonics,4,5 proton exchange membranes,6 batteries,7 vapour sensors,8 data

storage,9 biosensing,10 cell imaging11 and thermoresponsive materials.12

The most common approaches for producing such nanocomposite materials and films involve

sol-gel synthesis,2 in-situ photocuring,13 layer-by-layer deposition,14,15 self-assembly,5,9,16 sur-

face initiated polymerization17 and electrochemical deposition.18 These tend to be wet-chemical
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Scheme 6.1: Plasmachemical deposition of metal-containing nanocomposite films.

methods and suffer from a number of drawbacks such as the requirement for multiple steps,14 or

potential damage to substrates arising from high processing temperatures.2 Dry (solventless) ap-

proaches, such as plasma enhanced chemical vapour deposition combined with rf sputtering from

an inorganic target to produce catalytic, metal-containing nancomposite films are also known,19

however, composition can be difficult to control and the high input power levels required to in-

duce sputtering often cause damage to temperature-sensitive substrates. The high temperatures

necessary for chemical vapour deposition techniques place similar limitations.20

Non-isothermal plasmachemical deposition is an attractive alternative method for preparing

nanocomposite functional thin films requiring much lower processing temperatures. It utilizes a

glow discharge to effect precursor activation (via VUV irradiation or ion and electron bombard-

ment), which culminates in film growth.21 The level of chemical functionality can be carefully

tailored by varying the average power density.22 In this investigation the plasmachemical deposition

of metal-containing nanocomposite films using platinum(II) and copper(II) hexafluoroacetylacet-

onate at temperatures of 70 ◦C, which concurrently display ionic and electronic conductivities, is

described, Scheme 6.1. This is accomplished by careful choice of plasma process parameters and

metal ligands. Such multifunctional nanocomposite films are highly sought after for electrochem-

ical device components, e.g. batteries23 and fuel cells.3 This is the first example of a single-step

synthesis of metal-containing nanocomposite materials displaying such properties.
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6.2 Experimental

6.2.1 Plasmachemical Deposition of Nanocomposite Layers

Plasmachemical deposition was carried out in an electrodeless cylindrical glass reactor as described

in section 2.1 (page 27). The chamber was contained within an oven set at 70 ◦C. Substrates

used for coating were silicon (100) wafer pieces (Silicon Valley Microelectronics Inc.), polypropy-

lene sheet (capacitor grade, Lawson Mardon Ltd.) with two evaporated gold electrodes (5 mm

length and 1.5 mm separation) for conductivity testing and poly(tetrafluoroethylene) (Goodfellow

Cambridge Ltd.) for transmission electron microscopy. Platinum(II) hexafluoroacetylacetonate

(+98%, Strem Chemicals Ltd.) and copper(II) hexafluoroacetylacetonate (Aldrich Ltd.) precur-

sors were loaded into separate sealable glass tubes and dried under vacuum. The reactor was

then purged with precursor vapour for 5 min at a pressure of 0.1 mbar prior to electrical discharge

ignition. Upon plasma extinction, the precursor vapour was allowed to continue to pass through

the system for a further 3 min, in order to quench any remaining free radical sites within the

films, and then the chamber was pumped back down to base pressure. Following deposition, the

coated substrates were rinsed in deionized water for 16 h in order to test for film stability and

adhesion (as well as to remove any unbound precursor).

6.2.2 Film Characterization

Film thicknesses were measured using a spectrophotometer (nkd-6000, Aquila Instruments Ltd.)

as described in section 2.4 (page 33). Typical film growth rates were 3–6 nm min-1.

Surface elemental compositions were determined by X-ray photoelectron spectroscopy (XPS)

using a VG ESCALAB Mk II electron spectrometer as described in section 2.2 (page 28). Exper-

imentally determined instrument sensitivity (multiplication) factors were taken as C(1s): O(1s):

F(1s): Pt(4f): Cu(2p) equals 1.00: 0.34: 0.26: 0.05: 0.05.

Elemental depth profiling measurements of platinum concentration through the deposited

layer were undertaken by the Rutherford backscattering technique (RBS) using a 4He+ ion beam

(5SDH Pelletron Accelerator) in conjunction with a PIPS detector at 19 keV resolution (carried

out by Dr Richard Thompson).

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) as

described in section 2.3 (page 31).

Transmission electron microscopy images were obtained using a Phillips CM100 microscope.

Coated PTFE squares were embedded into an epoxy resin and then cross-sectioned using a cryo-

genic microtome. The cross-sections were then mounted onto copper grids prior to electron

microscopy analysis.

For ion-conductivity values, impedance measurements across the 10 Hz–13 MHz frequency

range were carried out at 20 ◦C using coated polypropylene substrates with an LF impedance

analyser (Hewlett-Packard, model 4192A) whilst submerged in ultra high purity water (resistivity
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Pt content/atom % Ionic conductivity/ Electronic conductivity/

Plasma power/W XPS RBS mS cm-1 10-6 mS cm-1

2 5.3±0.3 4.3±0.7 120±10 12±2

5 5.2±0.3 4.3±0.7 95±8 31±1

10 5.7±0.4 4.9±0.7 120±10 8±4

Table 6.1: Platinum content and ionic and electronic conductivity of plasmachemically deposited

platinum(II) hexafluoroacetylacetonate films as a function of plasma power.

greater than 18 MΩ cm, organic content less than 1 ppb, Sartorius Arium 611) as described in

section 2.6 (page 35).

Electrical conductivity values were determined for the coated polypropylene substrates by mea-

suring the variation in electrical current across the 0–200 V range (Keithley 2400 SourceMeter).

6.3 Results

6.3.1 Plasmachemical Deposition of Metal-Containing Nanocomposite Layers

XPS analysis following the plasmachemical deposition of platinum-containing layers indicated

the absence of Si(2p) signal, which confirmed coverage of the underlying silicon substrate. The

concentration of platinum measured by XPS was found to be consistent with the Rutherford

backscattering depth profiling studies (which confirmed constant level of metal content throughout

the depth of the films), Table 6.1. Retention of the precursor trifluoromethyl (CF3) groups within

the deposited layers was evident by the distinct C(1s) XPS shoulder at 293.0 eV,24 Figure 6.1.

This feature diminishes in intensity as plasma power is raised, which can be attributed to greater

fragmentation and ablation of the precursor arisng from more energetic plasma excitation.21 The

broad, unresolvable C(1s) shoulder at 288–289 eV is consistent with C−−O group incorporation

into the functional layers.25

Similarly, XPS analysis of plasmachemically deposited copper-containing layers indicated the

absence of Si(2p) signal, which confirmed coverage of the underlying silicon substrate and the con-

centration of copper measured by XPS was found to be consistent with the Rutherford backscat-

tering depth profiling studies, Table 6.2. A trifluoromethyl (CF3) component within the C(1s)

spectra was evident along with a broad, unresolvable shoulder corresponding to C−−O centres,

Figure 6.2.

Infrared spectroscopy provided further evidence for the degree of structural retention within

the nanocomposite films, Figures 6.3 and 6.4. For the platinum(II) hexafluoroacetylacetonate

precursor, the following assignments can be made:26,27 a mixture of C−−C and C−−O stretches

(1581 cm-1 and 1532 cm-1, denoted A), chelate C−H deformation (1434 cm-1, denoted B), CF3

stretches (1346 cm-1, 1196 cm-1 and 1146 cm-1, denoted C) and C−−C chelate stretch (1255 cm-1,
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Figure 6.1: XPS C(1s) spectrum for plasma deposited platinum(II) hexafluoroacetylacetonate at

plasma input powers of: (a) 2 W, (b) 5 W and (c) 10 W.

Cu content/atom %

Plasma power/W XPS RBS Ionic conductivity/mS cm-1

2 3.5±0.8 2.6±0.6 50±10

5 2.3±0.4 1.5±0.9 34±9

10 <0.5 — 130±10

Table 6.2: Copper content and ionic conductivity of plasmachemically deposited copper(II)

hexafluoroacetylacetonate films as a function of plasma power.
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Figure 6.2: XPS C(1s) spectrum for plasma deposited copper(II) hexafluoroacetylacetonate at

plasma input powers of: (a) 2 W, (b) 5 W and (c) 10 W.
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Figure 6.3: FTIR spectra of: (a) platinum(II) hexafluoroacetylacetonate precursor and plasma

deposited platinum(II) hexafluoroacetylacetonate at plasma powers of (b) 2 W, (c) 5 W and (d)

10 W.

denoted D). For the plasmachemically deposited platinum(II) hexafluoroacetylacetonate layers, the

carbonyl C−−O stretches split into several regions including the original beta-diketonate stretches

(A), beta-diketone stretch (1620 cm-1, denoted E), carboxylic acid dimer stretch (1705 cm-1,

denoted F), carboxylic anhydride antisymmetric stretch (1754 cm-1, denoted G) and carboxylic

anhydride symmetric stretch (1826 cm-1, denoted H).28 For all the platinum-containing plasma

deposited films, the C−H deformation (B) is shifted to 1524 cm-1 (denoted I), which is consistent

with a new environment for the chelate unit (i.e. unbound precursor is absent).27 The plasma

deposited films also show broad stretches over the 1400–1100 cm-1 region, which corresponds to

CFx stretches, and there is retention of the shoulder at 1255 cm-1 attributable to C−−C chelate

stretching (D). Although the different plasma deposited films appear similar in nature, some key

differences include the more intense chelate C−H deformation and C−−C stretch (D and I) peaks

for the case of 2 W input plasma power (corresponding to less plasma induced fragmentation at

lower energies21). There is also a significant loss of the carboxylic acid dimer peak (F) for the 5

W plasma deposition.

Infrared spectra for the copper(II) hexafluoroacetylacetonate similarly showed C−−O stretches
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Figure 6.4: FTIR spectra of: (a) copper(II) hexafluoroacetylacetonate precursor and plasma

deposited copper(II) hexafluoroacetylacetonate at plasma powers of (b) 2 W, (c) 5 W and (d) 10

W.
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at 1638 and 1629 cm-1 (denoted A1), a mixture of C−−C and C−−O stretches (1560 cm-1 and 1534

cm-1, denoted A2), chelate C−H deformation (1464 cm-1, denoted B), CF3 stretches (1354 cm-1,

1195 cm-1 and 1132 cm-1, denoted C) and C−−C chelate stretch (1233 cm-1, denoted D), Figure

6.4.27 The plasmachemically deposited copper(II) hexafluoroacetylacetonate layers had less well-

defined infrared spectra than the platinum(II) analogues, however broad peaks corresponding to a

variety of C−−O environments can be seen (E denotes beta diketone stretch, F denotes carboxylic

acid dimer stretch and G denotes carboxylic anhydride stretch).28

Transmission electron microscope images of the plasma deposited copper- and platinum-

containing films show homogeneous films for deposition at 2 W and 10 W, Figure 6.5. For both

metal-containing layers deposited at plasma power of 5 W, however, distinct nanoparticles are

visible within the films. The metal-containing nanoparticles within both films are all significantly

less than 10 nm in size. The organic matrix can be clearly seen around the nanoparticles.

6.3.2 Ionic and Electronic Conductivity of the Metal-Containing Nanocomposite

Layers

Ionic conductivity measurements of the plasmachemically deposited nanocomposite films whilst

immersed in ultrahigh purity water yielded high values exceeding 100 mS cm-1, Tables 6.1 and 6.2.

This can be attributed to the presence of fluorinated carboxylic acid moieties within the films, as

evidenced by infrared spectroscopy. Such strong acidic groups can be expected to give rise to a

high degree of acid dissociation under fully hydrated conditions, which in turn manifests in good

proton conductivity.29 Ionic conductivity values were found to be lower for the films deposited at

5 W, which correlates to the weaker acidic infrared absorbances (in the case of platinum), Figure

6.3.

The plasmachemically deposited, platinum-containing nanocomposite films also exhibit signif-

icant electronic conduction, Table 6.1. This conductivity is greater by a factor greater than 2 in

the case of the 5 W plasma-deposited film (3.1 x 10-5 mS cm-1), and is seen to coincide with the

decrease in acid-containing groups (as shown by FTIR). Given the small particle sizes within the

5 W plasma-deposited films, the observed atomic percentage of platinum within the films is high

enough (5 atom %) for percolation behaviour to take place, whereby conducting particles within

an insulating medium are close enough for electron tunnelling and therefore the film conducts.30

The copper-containing films exhibited no electronic conductivity which is attributed to the lower

metal contents as evidenced by XPS and RBS, Table 6.2.

In contrast to earlier studies, where plasmachemically deposited nanocomposite layers were

unstable in water, the present films did not display any deterioration in performance upon hydra-

tion.31
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.5: Transmission electron microscope images of plasma deposited (a–c) platinum(II)

hexafluoroacetylacetonate films (plasma power = 2 W, 5 W and 10 W respectively) and (d–f)

copper(II) hexafluoroacetylacetonate films (plasma power = 2 W, 5 W and 10 W respectively).

Scale bar = 100 nm in all images
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6.4 Discussion

Mixed ionic-electronic conductors are desirable for use as electrode materials in solid state batter-

ies,32 fuel cells,33 electrochemical reactors34 and light-emitting electrochemical cells.35 They can

comprise inorganic crystalline materials,36 conjugated polymers37 or heterogeneous polymeric

systems and copolymers (i.e. mixtures of ion-conducting and conjugated, electron-conducting

parts).38 All of these systems require separate steps for manufacture and incorporation into an

electrochemical device (usually via solution casting or spin coating in the case of polymer based

systems). In this study it has been shown that one-step plasmachemical deposition using plat-

inum(II) hexafluoroacetylacetonate gives rise to ion- and electron-conducting nanocomposite films.

The conformal nature of the deposited films means that the manufacturing step can be easily

applied to coating electrochemical device components (e.g. carbon cloth).

By careful tuning of the plasma power, metal-containing nanoparticles can be created within

the organic matrix. The formation of nano-sized metal-containing structures within the film

requires a certain degree of precursor fragmentation, which also explains the greater homogeneity

observed at lower powers, Figure 3.39 The host organic matrix, within which the metal-containing

nanoparticles are located, is responsible for ionic conductivity together with good stability under

hydrated conditions. This should be contrasted to nanocomposite films previously manufactured

via plasmachemical deposition which have either produced unstable organic matrices,31 or required

high plasma powers (temperatures) in order to induce sputtering from an inorganic target.19

Previously metal hexafluoroacetylacetonates have been used to deposit inorganic-only films via

chemical vapour deposition methods especially for use in microelectronic devices.40 The current

plasmachemical deposition approach allows a functional organic layer to also be retained. The

specific trifluoromethyl groups present in the metal(II) hexafluoroacetylacetonate precursors serve

a dual purpose: firstly they give the precursor a higher vapour pressure (thus enabling lower

temperature deposition)41 and secondly, when the precursor breaks up within the plasma (forming

carboxylic acid groups), fluorination provides an electron-withdrawing effect, which is known to

produce stronger acid groups (therefore resulting in higher proton conductivity when immersed

in water).42 This is the first example where plasmachemical deposition using a single precursor

under mild conditions yields a robust, metal-containing, nanocomposite film, exhibiting both ionic

and electronic conductivity.

The current commercial manufacturing process for proton exchange membrane fuel cell cata-

lyst layers involves making a catalyst ink, whose components comprise Nafion, platinum nanoparticle-

embedded carbon black particles and an appropriate solvent. This ink is then applied to the gas

diffusion layer (typically carbon cloth) and then left to dry as the solvent evaporates (this tech-

nique is known as solvent casting). Other methods for producing catalytic nanoparticles on a

surface, such as metal sputtering, still require the separate step of adding Nafion (or another

suitable proton exchange membrane). The method outlined in this chapter attempts to combine

all of these separate steps into one deposition process. By using a similar reactor to the work
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carried out in chapters 3–5 (with the small modification of heating the deposition chamber), one

can envisage an all-in-one deposition process where the platinum(II) hexafluoroacetylacetonate

precursor is introduced and deposited followed by deposition of the proton exchange membrane

without any intermediate steps. Since the plasmachemical deposition process is conformal, the

application of the films directly onto carbon cloth/carbon black can be easily achieved.

6.5 Conclusions

Low power plasmachemical deposition has been utilized to fabricate platinum- and copper-

containing nanocomposite films. Careful tailoring of the plasma input power level leads to

metal-containing nanoparticles embedded within a robust organic matrix. The obtained platinum-

containing films exhibit both ionic and electronic conduction. This approach offers a single-step,

low temperature method for conformally coating substrates with metal-containing nanocomposite

layers.
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Chapter 7

Atomized Spray Plasma Deposition of

Bioactive Layers

7.1 Introduction

In chapters 3–6, plasmachemical deposition has been shown to be an effective method of fabri-

cating proton exchange membranes and catalytic nanocomposite layers which could be used in

proton exchange membrane fuel cells. Whilst there are many advantages to plasmachemical depo-

sition (and indeed other vapour-phase deposition techniques), a major shortcoming, which would

potentially block industrial scaleup, is the low deposition rates. For example, in chapter 3, the

deposition of anhydride-containing polymer films under optimum conditions yielded a deposition

rate of up to 6 nm min-1. The time to build up even a 1 micron layer (fuel cell proton exchange

membranes are typically betwee 10 and 100 microns in thickness) is over 2.5 hours. Strategies

for increasing the deposition rate could be to increase the duty cycle (i.e. a shorter off time or

longer on time) or the peak power of the pulsed plasma. This, however, leads to the unwanted

loss of structural retention within the polymer—that is, a lower density of anhydride groups with

a corresponding loss of proton conductivity once hydrated. Plasmachemical deposition also has

the limitation of requiring a precursor with a significant vapour pressure. These drawbacks are

overcome in this chapter by the use of a spray delivery system (ultrasonic nozzle) which introduces

a fine mist of precursor into the plasma reactor chamber. As a proof of concept, this chapter

focuses on alkyl acrylate layers and an N-acryloyl based ester. The functionality of the polymer

coatings is proven by measuring their bioactive properties.

The field of bioactive surfaces is becoming increasingly important as there exist large interests

in the fabrication of biomedically compatible implants,1 as well as for the study of biological

processes2 and for the prevention of biofouling.3 The manufacture of phospholipid-containing,

surface-immobilized layers has been previously used to create biofunctionalized coatings,4 which

can be used for biosensing,5 biomimesis,6 separation,7 vesicle binding,8 biocompatibility9 and

enzyme immobilization.10 Conversely, protein-resistant layers which resist bioadhesion are highly
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desirable for marine antifouling applications11 and cell-resistant medical devices.12

Bioactive phospholipid layers have been attached to surfaces in the past using graft poly-

merization13,14 or via interaction with self-assembled monolayers of alkanethiols,15 thiolipids16

or silanes17 to form lipid bilayers. Similarly, protein-resistant surfaces (which usually comprise

poly(ethylene glycol),18,19 polyacrylamide20 or polysaccharide21 layers) have been produced by

utilization of self-assembled monolayers,18,22 physisorption,23 graft polymerization24,25 or plas-

machemical deposition.26,27

Many of the above methods have distinct disadvantages: self-assembled monolayers require

specific substrates28 and can be moisture sensitive (e.g. silanes29) or unstable in oxidative chemical

environments (e.g. thiols30); physisorption is by its very nature reversible and therefore limited

in application; and graft polymerization requires deposition of an initiator layer31 or surface

modification prior to the grafting step.13,24

In contrast to the aforementioned techniques, plasmachemical deposition is a solventless,

substrate-independent method for thin film production.32 High levels of precursor retention can be

obtained by pulsed plasmachemical deposition, which involves modulating an electrical discharge

in the presence of precursor vapour on the microsecond-millisecond timescale.33 An alternative

approach to enhanced functional retention is to increase the pressure or flow rate of the precursor

vapour within the reactor chamber, which also yields a decrease in average plasma power per

precursor molecule.32,34 Whilst high precursor vapour densities yield higher deposition rates and

better structural retention, this method is inherently limited by plasma inhomogeneities (induced

by the high precursor flow rates) which result in instabilities and eventual plasma extinction.

These shortcomings, however, can be circumvented by the utilization of an atomized spray of the

precursor.35,36

Reported in this chapter is the atomized spray plasma deposition (ASPD) of biocompati-

ble poly(alkyl acrylate) layers and protein-resistant poly(N-acryloylsarcosine methyl ester) layers,

Scheme 7.1. The deposition rates for these layers are increased by factors of over 20 compared

to other vapour-phase deposition techniques.

7.2 Experimental

7.2.1 Atomized Spray Plasma Deposition of Bioactive Coatings

Plasmachemical deposition was carried out in an electrodeless, glass, T-shape reactor (volume 820

cm3, base pressure of 3 x 10-3 mbar, and with a leak rate better than 2 x 10-9 mol s-1) as described

in section 2.1 (page 27). Substrates used for coating were silicon (100) wafer pieces (Silicon

Valley Microelectronics Inc.), PTFE pieces (Goodfellow Cambridge Ltd.) and polypropylene pieces

(Lawson-Mardon Ltd., capacitor grade); these were placed downstream from the atomizer nozzle.

The precursor was loaded into a sealable glass tube and degassed using several freeze-pump-thaw

cycles. Precursors used included n-hexyl acrylate (+98%, Sigma-Aldrich Ltd.), n-dodecyl acrylate
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Scheme 7.1: Atomized spray plasma deposition (ASPD) of (a) poly(alkyl acrylate) layers (m =

5, 11, 17) and (b) poly(N-acryloylsarcosine methyl ester) layers (R = -CH2COOCH3).

(+90% Sigma-Aldrich Ltd.), n-octadecyl acrylate (+97%, Sigma-Aldrich Ltd., utilized as a 1:3

mixture with n-dodecyl acrylate) and N-acryloylsarcosine methyl ester (+97%, Alfa Aesar Ltd.).

Precursor was introduced into the reactor at a flow rate of 0.02 mL s-1 (mediated by a low-flow

metering valve) through an ultrasonic nozzle (Model no. 8700-120, Sono Tek Corp.) operating

at 120 kHz. Deposition entailed running a continuous wave plasma at 50 W for 150 s in parallel

to precursor spraying. Upon plasma extinction, the system was evacuated to base pressure before

venting to atmosphere.

7.2.2 Film Characterization

Surface elemental compositions were determined by X-ray photoelectron spectroscopy (XPS) using

a VG ESCALAB Mk II electron spectrometer as described in section 2.2 (page 28). Experimentally

determined instrument sensitivity (multiplication) factors were taken as C(1s): O(1s): N(1s)

equals 1.00: 0.36: 0.63.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) fitted

with a liquid nitrogen cooled MCT detector as described in section 2.3 (page 31).

Sessile drop water contact angle measurements were performed at ambient temperature as

described in section 2.5 (page 34).

Film thicknesses were measured using a spectrophotometer (nkd-6000, Aquila Instruments

Ltd.) as described in section 2.4 (page 33).
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7.2.3 Bioarray Production and Characterization

In the case of the alkyl acrylates, atomized spray plasma deposition was performed through a

100 mesh brass grid onto PTFE pieces, which were subsequently immersed briefly in successive

solutions of 20 µg mL-1 phospholipid-biotin conjugate (KODE Biotech Ltd.) and 20 µg mL-1

avidin-FITC conjugate (Invitrogen Corp.) in phosphate buffer saline solution (Invitrogen Corp.).

Between immersions the substrate was thoroughly rinsed with deionized water and washed in

phosphate buffer saline solution.

For N-acryloylsarcosine methyl ester, atomized spray plasma deposition was carried out through

a 1500 mesh nickel grid onto polypropylene pieces, which were immersed into a 50 µg mL-1 Pro-

tein A-FITC conjugate (Sigma-Aldrich Ltd.) in phosphate buffer saline solution, and subsequently

thoroughly rinsed with deionized water and washed in phosphate buffer saline solution.

Fluorescence microscopy was performed using an Olympus IX-70 system (DeltaVision RT,

Applied Precision Inc.) as described in section 2.7 (page 36).

7.3 Results

7.3.1 Atomized Spray Plasma Deposited Layer Production

A lack of any Si(2p) XPS signal showed that complete surface coverage of the substrate had

been achieved by atomized spray plasma deposition, Table 7.1. For the atomized spray plasma

deposited poly(alkyl acrylate) layers, there was good agreement between the carbon-to-oxygen

elemental ratios expected theoretically and those obtained in practice, with a slight reduction in

oxygen for each case. Angle-resolved XPS analysis revealed no significant change in these ratios,

which indicates no surface ordering of the alkyl chains. For the atomized spray plasma deposited

poly(N-acryloylsarcosine methyl ester) layers, there was a larger difference between the theoretical

and experimental carbon-to-oxygen ratios, which was accompanied by a concurrent increase in

nitrogen content at the surface, Table 7.1.

Atomized spray plasma deposited poly(alkyl acrylate) layers showed three distinctive compo-

nents in the C(1s) XPS spectrum, Figure 7.1. These are a large hydrocarbon (CxHy) component

at 285.0 eV and two smaller components corresponding to oxygenated carbon centres, C−O (at

286.6 eV) and O−C−−O (at 288.9 eV) respectively. The decrease in the size of the oxygenated car-

bon component peaks with increasing alkyl chain length is in close agreement with that expected

for theoretical poly(alkyl acrylate)s.

In the case of atomized spray plasma deposited poly(N-acryloylsarcosine methyl ester) layers,

the XPS C(1s) spectrum displayed more complex features, which were fully consistent with the

theoretically determined spectrum,27 Figure 7.2. These consisted of components corresponding

to CxHy/C−N (285.0 eV), N−C−COO (285.7 eV), C−O/N−C−−O (286.7 eV), and O−C−−O

(288.6 eV). Therefore, despite the slight differences in XPS elemental ratios, the XPS spectra

obtained for the atomized spray plasma deposited poly(N-acryloylsarcosine methyl ester) layers
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Layer %C %O %N

Theoretical poly(hexyl acrylate) 82 18 —

ASPD poly(hexyl acrylate) 84±1 16±1 —

Theoretical poly(dodecyl acrylate) 88.2 11.8 —

ASPD poly(dodecyl acrylate) 90±1 10±1 —

Theoretical poly(dodecyl acrylate-co-octadecyl acrylate) 89.3 10.7 —

ASPD poly(dodecyl acrylate-co-octadecyl acrylate) 92±1 8±1 —

Theoretical poly(N-acryloylsarcosine methyl ester) 64 27 9

ASPD poly(N-acryloylsarcosine methyl ester) 69±3 20±2 11±2

Table 7.1: Elemental XPS ratios for atomized spray plasma deposited layers.

Figure 7.1: C(1s) X-ray photoelectron spectra of atomized spray plasma deposited: (a) poly(hexyl

acrylate), (b) poly(dodecyl acrylate) and (c) poly(dodecyl acrylate-co-octadecyl acrylate).
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Figure 7.2: X-ray photoelectron spectra of: (a) theoretical poly(N-acryloylsarcosine methyl ester)

and (b) atomized-spray-plasma deposited poly(N-acryloylsarcosine methyl ester).

were in good agreement with those expected theoretically.

Infrared spectra also provided evidence of high levels of structural retention throughout the

atomized spray plasma deposited poly(alkyl acrylate) layers. Whilst stretches due to alkyl C−H

and carbonyl C−−O vibrations remained, there was a disappearance of stretches due to the C−−C

acrylate bond indicative of conventional polymerization having taken place within the layers,

Table 7.2 and Figures 7.3, 7.4 and 7.5. For each layer, there was also an observed increase in

the carbonyl C−−O stretching of 10–18 cm-1, which is consistent with a move from a conjugated

carbonyl group (i.e. an acrylate) to an unconjugated carbonyl group (i.e. polymerization).37

Infrared spectroscopy also confirmed good structural retention within the poly(N-acryloyl-

sarcosine methyl ester) films, Figure 7.6. The following bands can be assigned to the monomer:

νa(CH3) stretch (2954 cm-1), ν(C−−O) carbonyl ester stretch (1743 cm-1), ν(C=O) carbonyl

amide stretch (1649 cm-1), ν(C−−C) vinyl stretch (1612 cm-1), the ν(C−O) ester stretch (1201

cm-1) and the =CH2 twist (795 cm-1).27,37 The stretches due to the carbon-carbon double bond

have disappeared in the atomized spray plasma deposited films, which is consistent with polymer-

ization having taken place.

Contact angle analysis for the films showed that the atomized spray plasma deposited poly(alkyl
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Wavenumber observed / cm-1

Assignment HA ASPD-HA DA ASPD-DA OA ASPD-DA/OA

νa(CH3) 2956 2958 2955 2954 2952 2953

νa(CH2) 2930 2932 2922 2922 2917 2920

νs(CH3) 2872 2872 2871 2871 2869 2871

νs(CH2) 2860 2860 2853 2853 2848 2852

ν(C−−O) 1723 1741 1725 1735 1720 1730

ν(C−−C) 1637 — 1637 — 1633 —

1620 — 1620 —

=CH wag 984 — 983 — 976 —

=CH2 wag 963 — 962 — 963 —

=CH2 twist 809 — 809 — 814 —

Table 7.2: Infrared frequencies of alkyl acrylate monomers and the corresponding atomized spray

plasma deposited polymer layers (HA = hexyl acrylate, DA = dodecyl acrylate, OA = octadecyl

acrylate).

Figure 7.3: FTIR spectra of: (a) hexyl acrylate monomer and (b) atomized spray plasma

deposited poly(hexyl acrylate). * Denotes stretches due to C−−C double bond
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Figure 7.4: FTIR spectra of: (a) dodecyl acrylate monomer and (b) atomized spray plasma

deposited poly(dodecyl acrylate). * Denotes stretches due to C−−C double bond.
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Figure 7.5: FTIR spectra of: (a) octadecyl acrylate monomer and (b) atomized spray plasma

deposited poly(dodecyl acrylate-co-octadecyl acrylate). * Denotes stretches due to C−−C double

bond.
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Figure 7.6: FTIR spectra of: N-acryloylsarcosine methyl ester and (b) atomized spray plasma

deposited poly(N-acryloylsarcosine methyl ester). * Denotes stretches due to C−−C double bond.
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Contact Deposition

Layer angle/◦ rate/nm min-1

ASPD poly(hexyl acrylate) 80±1 4500±300

ASPD poly(dodecyl acrylate) 80±1 3500±200

ASPD poly(dodecyl acrylate-co-octadecyl acrylate) 80±1 3100±200

ASPD poly(N-acryloylsarcosine methyl ester) 53±1 195±9

Table 7.3: Equilibrium water contact angles and deposition rates for atomized spray plasma

deposited layers.

acrylate) layers all had equilibrium water contact angles of 80◦, which is consistent with the hy-

drophobic nature of the alkyl chain, Table 7.3.38 The equilibrium water contact angle for atomized

spray plasma deposited poly(N-acryloylsarcosine methyl ester) films was consistent with those pre-

viously observed for pulsed plasma deposited poly(N-acryloylsarcosine methyl ester) layers.39 The

observed hydrophilicity stems from the terminal ester group and the amide linkages within the

polymer backbone.27

The deposition rates for all types of atomized spray plasma deposited films were large compared

to similar films previously deposited using vapour-phase techniques (increased by a factor of above

20 in all cases), Table 7.3.39,40 The deposition rate decreases with increasing alkyl chain length

and is drastically reduced in the case of N-acryloylsarcosine methyl ester, which can be attributed

to the increase in viscosity which results in decreased monomer spread over the atomizer nozzle

tip becoming the rate-limiting step.

7.3.2 Bioarray Fabrication

Fluorescence micrographs of atomized spray plasma deposited poly(hexyl acrylate) and poly(do-

decyl acrylate) films treated with phospholipid-biotin and avidin-FITC showed no significant fluo-

rescence, Figures 7.7 and 7.8. In contrast, the poly(dodecyl acrylate-co-octadecyl acrylate) layer

showed significant phospholipid binding, which can be attributed to the interdigitation of the 18-

membered phosholipid alkyl groups with the 18-membered alkyl chains present in the octadecyl

acrylate moiety.

Conversely, fluorescence micrographs of atomized spray plasma deposited poly(N-acryloylsar-

cosine methyl ester) films exposed to Protein A–FITC showed negative images, which shows that

the layers are protein resistant, Figure 7.9.

7.4 Discussion

Bioactivity is defined as having an effect on living tissue, which on a chemical level implies inter-

action with biological molecules. Bioactivity in relation to surfaces can therefore be defined as
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Figure 7.7: Fluorescence of atomized spray plasma deposited layers after exposure to

phospholipid-biotin and avidin-FITC (HA = hexyl acrylate, DA = dodecyl acrylate, OA = oc-

tadecyl acrylate).

(a) (b) (c)

Figure 7.8: Fluorescence micrographs of phospholipid-biotin, avidin-FITC treated atomized spray

plasma deposited: (a) poly(hexyl acrylate), (b) poly(dodecyl acrylate) and (c) poly(dodecyl

acrylate-co-octadecyl acrylate). Scale bar is 100 µm in all images.
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(a) (b)

40 µm 20 µm

Figure 7.9: Fluorescence micrographs of atomized spray plasma deposited poly(N-acryloyl-

sarcosine methyl ester) films exposed to Protein A–FITC at: (a) 20x magnification and (b) 40x

magnification.

falling into three categories: (i) the ability to bind biomolecules or biological matter (i.e. immobi-

lization); (ii) the ability to resist biomolecule or biological matter absorption (either chemisorption

or physisorption—protein resistance and antifouling coatings would fall into this category); (iii)

directly affecting biochemical processes (e.g. catalysis or inhibition). The coatings in this chapter

fulfil the first two of these, specifically, the poly(alkyl acrylate)s are able to bind biomolecules

(phospholipids) and the poly(N-acryloylsarcosine methyl ester) is able to resist biomolecule ab-

sorption (proteins).

Previously deposited alkyl-containing layers, which have been able to bind to phospholipids,

have either required specific substrates28 or multiple steps and solvents.13,14 These limitations

hold for the manufacture of protein-resistant surfaces as well. In contrast, atomized spray plasma

deposition provides a substrate-independent, solventless technique to yield conformal poly(alkyl

acrylate) and poly(N-acryloylsarcosine methyl ester) coatings. The deposition rates achieved using

this methodology far exceed that of other vapour-phase deposition techniques such as initiated

chemical vapour deposition (in the case of alkyl acrylates)40 and conventional plasmachemical

deposition (in the case of N-acryloylsarcosine methyl ester).39 Also, use of the atomized spray

means that the negligible vapour pressures of dodecyl acrylate and octadecyl acrylate are no longer

a hindrance to deposition.

Additionally, unlike previously described atomized spray plasma deposition processes, the

method described herein has no requirement of expensive diluent gases such as helium35 and

avoids plasma-induced damage of the growing film41 by positioning of the substrates downstream

from the atomizer nozzle.
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The mechanics of how the ASPD process works to produce polymer coatings is slightly dif-

ferent from conventional plasma polymerization. Instead of a (relatively) uniform distribution of

precursor molecules throughout the reactor in gaseous form, there are a large number of precursor-

filled droplets (average size of around 20 microns). The monomer on the inside of these droplets

is shielded from the plasma by monomer outside it, such that the only molecules to be activated

(initiated) by the plasma are those on the droplet surface. As the droplet travels through the

plasma, therefore, it acquires a large number of initated monomer species on its surface (depend-

ing on the plasma parameters), which begin to propagate as polymer chains. This mixture of

monomer and propagating oligomers then hits the substrate surface, where, dependent on viscos-

ity, it will spread and monomer still present will mix with active polymer chains. This results in

the FTIR spectra observed for all the films where the C−−C double bond stretches have completely

disappeared.

A big advantage of the atomized spray deposition process is not only does it vastly increase

the deposition rate of monomers which already have sufficient vapour pressure for conventional

plasmachemical deposition (hexyl acrylate and N-acryloylsarcosine methyl ester39), but it also

enables deposition of monomers with no vapour pressure (e.g. dodecyl acrylate, which has low

vapour pressure (<0.1 mbar), and octadecyl acrylate, which is a solid and has negligible vapour

pressure). As a result, previously unattainable plasma polymer films are achievable. This is par-

ticularly pertinent in view of the limited number of acid-bearing monomers that are commercially

available with sufficient vapour pressure for conventional plasmachemical deposition. The ability

of depositing liquid monomers with negligible vapour pressure (e.g. vinylphosphonic acid) rep-

resents a significant widening of the scope for plasmachemical deposition of proton exchange

membranes (along with other fuel cell components).

The high deposition rates coupled with the structural and functional retention achieved by

the atomized-spray-plasma methodology means potential use in high-throughput manufacturing

such as utilization of roll-to-roll processes can be envisaged.

7.5 Conclusions

Both lipophilic and protein-resistant, conformal coatings have been prepared by use of atomized-

spray-plasma deposition at room temperature. The use of atomized spray plasma deposition yields

a substrate-independent coating process with high-throughput capabilities for the production of

bioactive layers.
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Chapter 8

Atomized Spray Plasma Deposition of

Polymer-Silica Nanocomposite Layers

8.1 Introduction

It was shown in the previous chapter that an atomized spray used in conjunction with plasma

excitation forms an excellent method of increasing the deposition rate for plasmachemical polymer

coatings. The ability to use precursors with no appreciable vapour pressure also opens up the op-

portunity to use solid precursors as long as they are combined with a liquid (in chapter 7 this is in

the form of a solution). This capability is utilized in the current chapter to create nanocomposite

coatings from a monomer precursor mixed with commercially available silica nanoparticles. This

strategy is particularly pertinent with regard to improving proton exchange membrane properties,

because silica is well known to improve the water retention of proton exchange membranes (mean-

ing that performance does not deteriorate at temperatures higher than 100 ◦C) as well as helping

increase the mechanical strength. The potential use of silica nanoparticles is exemplified in two

different ways in this chapter—by adding to 2-hydroxyethyl methacrylate in order to improve me-

chanical properties and also to a di(ethylene glycol) precursor in order to promote amorphousness

and therefore lithium ion conductivity.

Poly(2-hydroxyethyl methacrylate) coatings are used for a plethora of technological appli-

cations including heavy metal ion removal,1 luminescent materials,2,3 biomaterials,4 nanostruc-

tures,5 polymer electrolytes,6 bioactivity,7 tissue culture8 and solar cells.9 Furthermore, the in-

herent biocompatibility of poly(2-hydroxyethyl methacrylate)10 makes it suitable as an adhesive

for biomedical applications such as dentistry11 and bone implants.12 Nanocomposites can be

formed by the addition of inorganic particles (e.g. zinc oxide,2 calcium carbonate13 or silica14–16)

to the polymer, which can be utilized to improve the luminescent,2 water uptake16 or mechanical

properties of materials.13–15

Poly(ethylene glycol) nanocomposite coatings are also used in many applications including

photoinduced microstructures,17 piezoelectric materials,18 hydrogels,19 biosensors,20–22 drug de-
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livery,23,24 proton conducting membranes,25,26 thixotropic cell support,27 cell imaging,28 pho-

tothermal therapy,29 tissue engineering,30 antibacterial coatings,31,32 gas separation33 and oxy-

gen scavenging.34 Poly(ethylene glycol)–ceramic nanocomposites have been used extensively for

lithium-ion conducting membranes for solid-state battery applications;35–38 ceramic fillers are used

to improve mechanical39 and interfacial40 properties as well as to promote amorphousness within

the electrolyte layers with a corresponding rise in ionic conductivity.35

Previous methods for preparing poly(2-hydroxyethyl methacrylate) nanocomposite layers have

included sol-gel reaction,2,14,15 free radical polymerization,41 photopolymerization,42 emulsion

polymerization,43,44 controlled radical polymerization,45,46 in-situ reduction47,48 and solution in-

tercalation.49 Such wet chemical approaches tend to require catalysts,45 high temperatures,15

multiple steps2 or long reaction times.14

Similarly methods used previously to manufacture poly(ethylene glycol) nanocomposite coat-

ings have included photopolymerization,17,50 dendrimer mediated stabilization,51 suspension poly-

merization,18 coprecipitation,21 sol-gel synthesis25,27 and magnetron sputtering.32 These methods

can be expensive and time consuming,21,24,51 require multiple steps,21 yield a lack of fine control

over coating thickness,34 require a separate casting step31 or utilize high power-inputs (leading

to damage of the polymer film).32

Plasmachemical deposition of functional thin films is recognized as being a single-step, sol-

ventless technique, which provides conformal coatings.52 It has previously been shown that where

the electrical discharge is modulated in the presence of precursor vapour high levels of functional

retention can be achieved.53 An alternative approach for achieving such high levels of structural

retention is to raise precursor vapour pressure within the reactor (i.e. increase the pressure/flow

rate), such that the average plasma power per reactant molecule decreases.52,54 However, in this

case there exist limitations due to high precursor vapour pressures/flow rates leading to plasma

instabilities/inhomogeneity and eventually extinction. Such shortcomings can be overcome by

utilizing an atomized spray of the precursor.55,56

In this chapter the use of atomized spray plasma deposition (ASPD) of 2-hydroxyethyl methacryl-

ate– or di(ethylene glycol) ethyl ether acrylate–silica nanoparticle slurry mixtures to form nanocom-

posite layers is described, Scheme 8.1. In the case of the 2-hydroxyethyl methacrylate precursor,

application of this one-step plasmachemical deposition process to overlapping joints gives rise

to excellent in-situ adhesion. For the case of the di(ethylene glycol) ethyl ether acrylate pre-

cursor, using mixtures with pre-dissolved lithium perchlorate yields layers which show lithium-ion

conductivity at room temperature.
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Scheme 8.1: Atomized spray plasma deposition of nanocomposite: (a) poly(2-hydroxyethyl

methacrylate)–silica layers and (b) poly(di(ethylene glycol) ethyl ether acrylate)–silica layers.

8.2 Experimental

8.2.1 Atomized Spray Plasma Deposition of Nanocomposite Films

Atomized spray plasma deposition was carried out in an electrodeless, T-shape, glass reactor

(volume 820 cm3, base pressure of 3 x 10-3 mbar, and with a leak rate better than 2 x 10-9

mol s-1), enclosed in a Faraday cage. The precursor inlet was surrounded by a copper coil (4

mm diameter, 7 turns). Substrates used for coating were silicon (100) wafer pieces (Silicon

Valley Microelectronics Inc.), borosilicate glass microscrope slides (Smith Scientific Ltd.) and

polypropylene pieces (capacitor grade, Lawson-Mardon Ltd., with two gold electrodes of 3.5 mm

length, 1.5 mm width and 1.5 mm separation). They were placed downstream in line-of-sight

from the atomizer nozzle (Model no. 8700-120, Sono Tek Corp.). Precursors comprised mixtures

of 2-hydroxyethyl methacrylate (+97% Aldrich Ltd.) and methacrylsilane treated fumed silica

particles (Aerosil R711, Evonik Industries AG) and di(ethylene glycol) ethyl ether acrylate (+90%

Aldrich Ltd.) and lithium perchlorate (+99%, Alfa Aesar Ltd.) with silica particles. These were

loaded into separate sealable glass delivery tubes and degassed using several freeze-pump-thaw

cycles. Precursor was then introduced into the reactor at a flow rate of 0.02 mL s-1 through the

ultrasonic nozzle operating at 120 kHz. Deposition entailed running a continuous-wave plasma

at 50 W for 150 s in the presence of precursor atomization. Upon plasma extinction, the system
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was evacuated to base pressure before venting to atmosphere.

8.2.2 Film Characterization

Surface elemental compositions were determined by X-ray photoelectron spectroscopy (XPS)

using a VG ESCALAB Mk II spectrometer as described in section 2.2 (page 28). Experimental

instrument sensitivity (multiplication) factors were C(1s): O(1s): Cl(2p) equals 1.00: 0.36: 0.39.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) as

described in section 2.3 (page 31).

Transmission electron microscopy images were obtained using a Phillips CM100 microscope.

This entailed embedding plasma coated polypropylene squares into an epoxy resin, and then cross-

sectioning using a cryogenic microtome. The cross-sections were mounted onto copper grids prior

to electron microscopy analysis.

Film thicknesses were measured by freezing coated silicon samples in liquid nitrogen followed by

fracture to reveal a cross-section. These were then imaged using an optical microscope (Olympus

BX40) fitted with a x20 magnification lens.

Penetration of the atomized spray plasma deposited poly(2-hydroxyethyl methacrylate)–silica

coatings between two overlapping pieces of flat glass was examined using a Raman microscope

(LABRAM, Jobin Yvon Ltd.). A He-Ne laser was employed as the excitation source (632.8 nm

line, operating at 20 mW). The unattenuated laser beam was focused onto the sample using a x10

microscope objective and the corresponding Raman signals were collected by the same microscope

objective in a backscattering configuration in combination with a cooled CCD detector system.

The spectrometer diffraction grating (300 g/mm) was calibrated against neon light emission lines

in the 600–700 nm range. The depth of penetration was measured by monitoring the relative

intensity of the polymer C−C skeletal stretch peaks at 900–950 cm-1 with distance.

Adhesion testing of the ASPD coatings comprised depositing directly onto two overlapping

borosilicate glass microscope slide pieces. Subsequently, lap shear adhesion tests (attributable to

penetration of deposited material at the joint) were carried out using an Instron 5543 tensilometer

operating at a crosshead speed of 1 mm min-1 as described in section 2.8 (page 36).

Impedance measurements across the 700 Hz–13 MHz frequency range were carried out us-

ing an LF impedance analyser (Hewlett-Packard 4192A) for atomized spray plasma deposited

poly(di(ethylene glycol) ethyl ether acrylate) layers on polypropylene substrates at room temper-

ature (20 ◦C). Impedance plots displayed a single arc which was used to extract the resistance of

the deposited membrane layer, which was used to calculate lithium-ion conductivity as described

in section 2.6 (page 35).
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Layer %C %O %Cl

Theoretical poly(2-hydroxyethyl methacrylate) 67 33 —

ASPD poly(2-hydroxyethyl methacrylate) 77±2 23±2 —

Theoretical poly(di(ethylene glycol) ethyl ether acrylate) 69.2 30.8 —

ASPD poly(di(ethylene glycol) ethyl ether acrylate) 69.1±0.3 30.9±0.3 —

ASPD poly(di(ethylene glycol) ethyl ether acrylate)– 69.2±0.5 30.2±0.5 0.6±0.3

lithium perchlorate (1 wt %)

ASPD poly(di(ethylene glycol) ethyl ether acrylate)– 65.1±0.8 32.9±0.8 2.0±0.5

lithium perchlorate (5 wt %)

ASPD poly(di(ethylene glycol) ethyl ether acrylate)– 65.6±0.8 31.3±0.8 3.0±0.5

lithium perchlorate (10 wt %)

Table 8.1: Elemental XPS compositions of atomized spray deposited layers

8.3 Results

8.3.1 Atomized Spray Plasma Deposition of Nanocomposite Layers

The lack of any Si(2p) XPS signal confirmed coverage of the substrates by the nanocomposite

films, Table 8.1. For the ASPD poly(2-hydroxyethyl methacrylate) layers the C(1s) spectra can

be fitted to three components corresponding to: hydrocarbon CxHy (285.0 eV), singly bonded

carbon-oxygen C−O (286.6 eV) and the carbonyl ester O−C−−O (288.9 eV), Figure 8.1. There

were no discernible differences in the C(1s) XPS spectra regardless of percentage silica content

(up to the maximum loading of 2.4 wt %).

Atomized spray plasma deposited poly(di(ethylene glycol) ethyl ether acrylate) films showed

three component peaks within the C(1s) XPS spectrum, which corresponded to hydrocarbon

CxHy at 285.0 eV, C−O centres at 286.4 eV and O−C−−O centres at 288.8 eV, Figure 8.2. These

component envelopes have the ratio 3.2:4.7:1.1, which is close to the theoretical 3:5:1, therefore

there is good structural retention within the nanocomposite layers. This is confirmed by the

elemental ratio of carbon to oxygen for the atomized spray plasma deposited poly(di(ethylene

glycol) ethyl ether acrylate) layers being the same as that of theoretical polymer, Table 8.1.

Addition of lithium perchlorate led to the appearance of a Cl(2p) peak at 207.7 eV binding

energy, which is characteristic of perchlorate environments.57

For the 2-hydroxyethyl methacrylate monomer, the following infrared assignments can be

made:58 antisymmetric CH3 stretch (2953 cm-1), antisymmetric CH2 stretch (2928 cm-1), sym-

metric CH3 stretch (2881 cm-1), carbonyl C−−O stretch (1713 cm-1), vinyl C−−C stretch (1635

cm-1), =CH2 wag (941 cm-1) and =CH2 twist (814 cm-1), Figure 8.3. Atomized spray plasma

deposited poly(2-hydroxyethyl methacrylate) layers show similar absorbances except for the ab-

sence of peaks due to C−−C double bonds (C−−C stretch, =CH2 wag and =CH2 twist) which are
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Figure 8.1: X-ray photoelectron C(1s) spectra of: (a) theoretical poly(2-hydroxyethyl methacry-

late) and (b) atomized spray plasma deposited poly(2-hydroxyethyl methacrylate).
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Figure 8.2: X-ray photoelectron C(1s) spectra of: (a) theoretical poly(di(ethylene glycol) ethyl

ether acrylate) and (b) atomized spray plasma deposited poly(di(ethylene glycol) ethyl ether

acrylate).
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Figure 8.3: Fourier transform infrared spectra of: (a) 2-hydroxyethyl methacrylate monomer

and (b) atomized spray plasma deposited poly(2-hydroxyethyl methacrylate) film. * Denotes

absorbances due to polymerisable C−−C double bond present in monomer.

replaced by a peak at 747 cm-1 attributed to -CH2- twist. These changes are consistent with

conventional polymerization taking place at the C−−C double bond. As noted for XPS, there were

no discernible differences in the infrared spectra for varying silica contents. The excellent bulk

structural retention illustrated by the infrared spectra (which analyses the entire coating thick-

ness) is consistent with residual plasma-induced modification/damage of the deposited film being

limited to the surface (since XPS only probes the outermost 5 nm59).

The following assignments for the infrared spectrum of the di(ethylene glycol) ethyl ether

acrylate monomer can be made:58,60 CH3 antisymmetric stretch (2974 cm-1), CH2 antisymmetric

stretch (2928 cm-1), CH3/CH2 symmetric stretch (2867 cm-1), carbonyl C−−O stretch (1721 cm-1),

vinyl C−−C stretches (1637 and 1619 cm-1), C−O−C ether antisymmetric stretch (1108 cm-1),

=CH wag (984 cm-1), =CH2 wag (965 cm-1), C−O−C ether symmetric stretch (859 cm-1)

and =CH2 twist (809 cm-1), Figure 8.4. In the case of the atomized spray plasma deposited

poly(di(ethylene glycol) ethyl ether acrylate) the methyl/methylene CH3/CH2 stretches and the

ether C−O−C stretches remain, but the vinyl C−−C stretches have disappeared along with the
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Figure 8.4: Fourier transform infrared spectra of: (a) di(ethylene glycol) ethyl ether acrylate

monomer and (b) atomized-spray-plasma deposited poly(di(ethylene glycol) ethyl ether acrylate).

* Denotes absorbances due to C=C double bond.

=CH/=CH2 wags and =CH2 twist. This is consistent with polymerization having occurred at

the acrylate C−−C double bond. There is also a shift in the C−−O stretch from 1721 cm-1 in

the monomer to 1729 cm-1 in the atomized spray plasma deposited polymer, which is consistent

with a move from a conjugated double bond system (i.e. acrylate) to an unconjugated system

(i.e. poly(acrylate)). Therefore good structural retention is observed by infrared throughout the

atomized spray plasma deposited layers with retention of the ether moieties. The infrared spectra

for polymers codeposited with lithium perchlorate and silica showed no significant differences.

This is attributed to the distinctive perchlorate and silica absorbances both falling within the

1050–1150 cm-1 range (perchlorate at 1076 cm-1, silica at 1107 cm-1)58,61 which is dominated

by the strong C−O−C ether antisymmetric peak of the polymer.

Transmission electron microscopy of the atomized spray plasma deposited 2-hydroxyethyl

methacrylate/1 wt % silica mixture clearly shows clusters of silica nanoparticles (average diameter

15 nm) embedded within the poly(2-hydroxyethyl methacrylate) host matrix, Figure 8.5. Simi-

larly transmission electron microscopy of the atomized spray plasma deposited poly(di(ethylene
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Figure 8.5: Transmission electron microscopy images for atomized spray plasma deposited poly(2-

hydroxyethyl methacrylate)–1 wt % silica at (a) x25,000 and (b) x130,000 magnification.

glycol) ethyl ether acrylate)–silica layers clearly shows silica nanoparticles embedded within a host

polymer organic matrix (albeit more evenly dispersed than the poly(2-hydroxyethl methacrylate)),

Figure 8.6.

Deposition rates for the atomized spray plasma deposited poly(2-hydroxyethyl methacrylate)–

silica layers were 3.7±0.4 µm min-1 and measured to be independent of silica loading. Precursor

mixtures exceeding 2.4 wt % silica content were found to be too viscous to atomize, and there-

fore unable to be deposited. Similarly the deposition rates for atomized spray plasma deposited

poly(di(ethylene glycol) ethyl ether acrylate)–silica layers were 4.0±0.3 µm min-1 independent of

silica loading.

8.3.2 Adhesion of Overlapping Glass Joints Coated with Poly(2-Hydroxyethyl

Methacrylate)–Silica Nanocomposite Layers

Raman spectroscopy showed that the atomized spray plasma deposited poly(2-hydroxyethyl meth-

acrylate)–silica coatings are able to penetrate between two overlapping glass substrates to a depth

of 743±53 µm, Figure 8.7. This phenomenon can be attributed to the liquid precursor droplets

hitting the surface and wetting into the joint. Given that initiation of polymerization happens

during the flight of the droplets through the plasma, then conventional polymerization mechanisms

will continue to take place at the surface/joint interface.

The adhesive bond strength of the overlapping glass joints following atomized spray plasma

deposition of poly(2-hydroxyethyl methacrylate) with no silica content was 5.1 MPa, which rose

rapidly with increasing silica content to reach a maximum value of approximately 84 MPa at 0.5

wt % silica loading for which the adherent (bulk glass) failed, Figure 8.8. At lower silica loadings

the weaker bond failure occurs due to cohesive failure (i.e. the coating itself breaking), whilst at
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100 nm

Figure 8.6: Transmission electron microscopy images for atomized spray plasma deposited

poly(di(ethylene glycol) ethyl ether acrylate)–1 wt % silica.

Figure 8.7: Raman intensity relative to background of the 900–950 cm-1 C−C skeletal stretch

peaks versus the penetration distance of the atomized spray plasma deposited poly(2-hydroxyethyl

methacrylate)–1 wt % silica coating for overlapping glass substrates.
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Figure 8.8: Shear bond strengths of atomized spray plasma deposited poly(2-hydroxyethyl

methacrylate) bonded glass-glass overlap joints as a function of methacrylsilane treated silica

nanoparticle loading. Solid line denotes cohesive failure and dashed line denotes adhesive failure.

higher silica content, the bond strength drops reaching 9.8 MPa at 2.4 wt % silica content, which

is due to adhesive bond failure (i.e. the coating coming away from the glass-coating interface).

This trend would be consistent with the methacryl modified silica particles acting as crosslinkers,

which enhance the coating strength (i.e. a move from cohesive failure to adhesive failure—the

coating coming away from the glass). Above 0.5 wt % silica content, the bond strength falls

due to it becoming more difficult to form Si−O−C bonds between the hydroxyl groups present

on the glass surface and those contained in the poly(2-hydroxyethyl methacrylate) coating via

condensation reactions because the inherent bulk crosslinking causes a drop in polymer chain

mobility.62

Shear moduli obtained from lap shear tests gave 0.35 GPa for atomized spray plasma deposited

poly(2-hydroxyethyl methacrylate) coatings containing no silica, and the measured value rose

linearly with silica content before levelling off at around 6 GPa for silica loading exceeding 1 wt

%, Figure 8.9. This trend is also consistent with the methacryloyl modified silica particles inducing

greater crosslinking within the films and therefore greater stiffness (shear modulus).

8.3.3 Lithium-Ion Conductivity of the Poly(Di(Ethylene Glycol) Ethyl Ether

Acrylate)–Silica Nanocomposite Layers

The atomized spray plasma deposited nanocomposite layers showed lithium-ion conductivity at

ambient temperature up to a value of 1.4 x 10-4 S cm-1 for the case of atomized spray plasma
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Figure 8.9: Shear moduli of atomized spray plasma deposited poly(2-hydroxyethyl methacrylate)

onto glass-glass overlap joints as a function of methacrylsilane treated silica nanoparticle loading.

deposited 1 wt % silica in 10 wt % lithium perchlorate–di(ethylene glycol) ethyl ether acrylate,

Figure 8.10. For the precursor mixtures with no silica, only that with 1 wt % lithium perchlorate

showed lithium-ion conductivity. This is due to the 5 and 10 wt % lithium perchlorate/monomer

precursor mixtures crystallizing at the tip of the ultrasonic nozzle, thus leading to limited deposi-

tion. This problem did not occur for the silica–lithium perchlorate–monomer precursor mixtures

(attributed to the ceramic inhibiting crystallization). For all of the nanocomposite layers, the

optimum silica content for lithium-ion conductivity was found to be 1 wt %. This can be at-

tributed to two competing effects: firstly, addition of silica promotes amorphousness within the

polymer which leads to increased ionic conductivity35 (ethylene glycol-containing polymers with-

out ceramic fillers tend to crystallize at temperatures below 70 ◦C63); secondly, the methacryloyl

groups on the silica particles lead to crosslinking, which will limit polymer segmental motion

thus reducing ionic conductivity. The precursor mixtures with 1 wt % silica therefore provide

the crossover conditions of reduced regions of crystallinity combined with limited crosslinking for

optimum lithium-ion conductivity given these two effects. The nanocomposite layers also showed

increased peak lithium-ion conductivity with higher lithium perchlorate contents (up to a maxi-

mum at 10 wt %, which was the maximum amount of lithium perchlorate able to be dissolved

into the precursor without the viscosity becoming too great for deposition).
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Figure 8.10: Lithium-ion conductivity of atomized spray plasma layers as a function of methacryl-

silane modified silica nanoparticle content with different lithium perchlorate loadings.

8.4 Discussion

Previous approaches for preparing inorganic-polymer nanocomposites have entailed wet chemi-

cal syntheses, which involve multiple steps,2 high temperatures15 and normally require solvent

extraction as well as a separate casting step.44 In contrast, atomized spray plasma deposition

(ASPD) utilizes a precursor-silica nanoparticle slurry mixture for a single-step direct application.

An additional advantage of the atomized spray plasma is that deposition rates are vastly en-

hanced compared to conventional vapour-phase plasma polymerization (by a factor exceeding

250),64 which is due to the high throughput of precursor delivery into the plasma zone.

The shear bond strength (84 MPa) of the optimum poly(2-hydroxyethyl methacrylate)–silica

nanocomposite prepared in the present study by the atomized spray plasma deposition method

exceeds those of conventional poly(2-hydroxyethyl methacrylate) based adhesives (10–45 MPa).65

These high bond strengths for the ASPD nancomposite coating can be attributed to the poly(2-

hydroxyethyl methacrylate) hydroxyl groups undergoing condensation reactions with glass sur-

face hydroxyl groups to create Si−O−C bonds at the glass-coating interface.62 In addition, the

methacryloyl groups present on the silica particles help to enhance the adhesive bond strength

by acting as crosslinkers within the bulk polymer thus raising its stiffness, which is confirmed

by the increase in shear modulus of the coatings from 0.35 GPa to 6 GPa, Figure 8.9. These

stiffness values are comparable to those reported previously for conventional poly(2-hydroxyethyl

methacrylate) grafted from silica nanoparticles.66

Previous methods for the fabrication of poly(ethylene glycol)–ceramic nanocomposite coatings
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have utilized alumina,35,36 titanium dioxide35 or silica37 in order to introduce amorphousness and

therefore improve lithium-ion conductivity. The atomized spray plasma deposited polymer–lithium

perchlorate–silica coatings need much less silica by weight percentage than previous methods (i.e.

1 wt % optimum as compared to 5–10 wt %).37 This can be attributed to the methacryloyl func-

tionalization of the silica particles which are incorporated into the polymer chains thus inducing

crosslinking which promotes amorphousness within the polymer nanocomposite layers. The val-

ues of lithium-ion conductivity reached with the atomized-spray-plasma deposited nanocomposite

coatings described herein are comparable in magnitude to previous poly(ethylene glycol)–ceramic

layers (i.e. 10-5–10-3 S cm textsuperscript-1).35–38

The outlined atomized spray plasma deposition approach is capable of performing in-situ

bonding at room temperature via penetration between overlapping substrates. This is far simpler

and straightforward compared to existing methods for bonding glass or silicon (such as anodic

bonding67 requiring high substrate temperatures,68 or the requirement for metallic interlayers69).

Whilst previously reported nanocomposite fabrication methods may require multiple steps, removal

of solvents or long processing times, atomized spray plasma deposition offers the advantages of

being one-step, solventless, and yields large deposition rates. As a result, the use of the atomized

spray plasma deposition method could be combined with industrial scale processes such as roll-

to-roll to fabricate nanocomposite coatings with high throughputs onto electrochemical device

components (e.g. carbon cloth or graphite).

The potential use of silica nanoparticles with acid-containing monomers to atomized-spray-

plasma deposit robust, proton conducting films can now be envisaged. There are still some limi-

tations experimentally, such as the requirement for silica particles to be well suspended within the

liquid monomer. This suspension ability relies on the surface groups on the silica nanoparticle—for

example, the methacrylsilane modified nanoparticles used in this chapter are only suspendable in

methacrylate or acrylate precursors. However, when combined with the ability to concurrently dis-

solve salts (evidenced by lithium perchlorate in the current work), the dissolution of sulfonic acid

containing monomer solids (e.g. sodium 4-styrenesulfonate) into an acrylate comonomer along

with silica particles would render a coating with a combination of desirable properties.

8.5 Conclusions

Poly(2-hydroxyethyl methacrylate)–silica and poly(di(ethylene glycol) ethyl ether acrylate)–silica

nanocomposite layers have been prepared by a single-step, solventless atomized spray plasma

deposition process. For the former excellent adhesion and mechanical strength have been measured

following in-situ application to overlapping joints and in the case of the latter, dissolution of lithium

perchlorate into the precursor mixture yields coatings with significant lithium-ion conductivity at

room temperature.
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Chapter 9

Atomized Spray Deposition of

Conducting Polymer Layers

9.1 Introduction

Throughout this thesis, the aim has been to realise a proton exchange membrane fuel cell which

could be manufactured entirely by vapour-phase deposition techniques because of the advantages

that would bring (controllable thickness, no requirements for solvents etc.). The plasmachemical

vapour-phase deposition of proton exchange membranes and catalytic nanocomposite layers has

been investigated, but there is still the question of the fuel cell electrodes themselves. The atom-

ized spray deposition technique outlined in the previous two chapters enables the introduction of a

large quantity of monomer into the reactor chamber. Thus far, the polymerization reactions used

have used conventional monomers with carbon-carbon double bonds. In this chapter, however,

the use of a monomer with no polymerizable carbon-carbon double bond is used. The method of

polymerization is via oxidation of a thiophene ring in order to form an electronically conducting

poly(thiophene) coating. The atomized spray is necessary in order to maximise the monomer

input, but in this case the initiation is provided not by plasma but by an oxidising agent

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an intrinsically conducting polymer which has

found use in many applications including dye-sensitized solar cells,1,2 supercapacitors,3 light

emitting diodes,4 thin film transistors,5 oxygen reduction catalysts,6 photodetectors,7 molecular

wires,8 memory storage9 and antistatic coatings.10

Previous methods for the manufacture of PEDOT coatings have entailed photoelectrochem-

ical deposition,1 electropolymerization,11 oxidative polymerization,12 oxidative chemical vapour

deposition,13–15 vapour-phase polymerization,6,16 emulsion polymerization17 and suspension poly-

merization.18 However, these approaches suffer from drawbacks such as the need of additional

steps to remove solvents12 and byproducts6 and the requirement for conducting substrates1 or

high temperatures.14,19

In this chapter the use of an atomized spray precursor delivery system is described to deposit
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Scheme 9.1: Atomized spray deposition of PEDOT layers using EDOT precursor in the presence

of triflic anhydride vapour.

PEDOT layers in the presence of triflic anhydride vapour, which acts as an oxidant in the following

reaction, Scheme 9.1:20

2 EDOT + (CF3SO2)2O −−→ EDOT−EDOT + CF3SO2H + CF3SO3H (9.1)

The oxidation of the EDOT monomer gives rise to polymerization, whereas the triflic anhydride

is reduced to become triflic and triflinic acid. Since the deposition is carried out under vacuum,

the triflic and triflinic acid moieties are removed due to their significant vapour pressures, which

results in no acid damage to the growing polymer chain. As in other oxidation polymerizations

for EDOT,6,14,19 partial doping occurs in the form of remaining oxidant (triflate) anions. After

the reaction is completed, any remaining reactant (either EDOT or triflic anhydride) is pumped

away by the system.

9.2 Experimental

9.2.1 Atomized Spray Deposition of PEDOT Layers

Atomized spray deposition was carried out in an electrodeless, cylindrical, T-shape, glass reactor

(volume 820 cm3, base pressure of 3 x 10-3 mbar, and with a leak rate better than 2 x 10-9 mol

s-1). The chamber was pumped down using a 30 L min-1 rotary pump attached to a liquid nitrogen

cold trap and a Pirani gauge was used to monitor system pressure. Prior to each deposition, the

reactor was scrubbed using detergent, rinsed in propan-2-ol, and dried in an oven. Substrates used

for coating were silicon (100) wafer pieces (Silicon Valley Microelectronics Inc.) and borosilicate
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glass microscrope slide pieces (Smith Scientific Ltd.) with two evaporated gold electrodes (3 mm

length, 1.5 mm width, separated by 1.5 mm). They were placed downstream from the atomizer

nozzle (Model no. 8700-120, Sono Tek Corp.). 3,4-Ethylenedioxythiophene (+98%, TCI Europe

NV) and triflic anhydride (+99%, Apollo Scientific Ltd.) were loaded into separate sealable glass

tubes and degassed using several freeze-pump-thaw cycles. 3,4-Ethylenedioxythiophene precursor

was then introduced into the reactor at a flow rate of 0.02 mL s-1 through the ultrasonic nozzle

operating at 120 kHz, while triflic anhydride vapour was concurrently introduced via a leak valve

at a pressure of 6 mbar. After deposition had occurred triflic anhydride vapour was allowed to

pass through the system for a further 3 mins before subsequent evacuation to base pressure and

venting to atmosphere.

9.2.2 Film Characterization

Surface elemental compositions were determined by X-ray photoelectron spectroscopy as described

in section 2.2 (page 28). Experimental instrument sensitivity (multiplication) factors were C(1s):

O(1s): S(2p): F(1s) equals 1.00: 0.36: 0.59: 0.24.

Infrared spectra were acquired using a FTIR spectrometer (Perkin-Elmer Spectrum One) fitted

with a liquid nitrogen cooled MCT detector as described in section 2.3 (page 31).

Film thicknesses were measured by freezing coated silicon samples in liquid nitrogen followed

by snapping to reveal a cross-section. These were then imaged using an optical microscope

(Olympus BX40) fitted with a x20 magnification lens.

Electrical conductivity values were determined for the coated glass substrates by measuring the

variation in electrical current across the 0–30 V range (Keithley 2400 SourceMeter) and applying

the formula σ = l
RSA

, where σ is the conductivity, l is the separation of the electrodes, RS is the

resistance of the substrate/coating, and A is the cross-sectional area of the film being sampled.

9.3 Results

A lack of any XPS Si(2p) signal confirmed complete coverage of the substrates by the atomized

spray deposition process, Table 9.1. The S(2p) spectrum contains two components corresponding

to the thiophene ring C−S (163.7 eV)21 and triflate SO3CF3 (168.3 eV),22 Figure 9.1. The ratio

of the areas of the S(2p) component peaks correspond to around one triflate or triflinate ion to

every four EDOT monomer units. This ratio is confirmed by the presence of the F(1s) peak and

corresponding adjustments in elemental XPS ratios of the atomized spray deposited PEDOT as

compared to the theoretical (non-doped) polymer, Table 9.1.

Fourier transform infrared spectra of the EDOT monomer lead to the following absorbances

being assigned:23,24 =C−H ring stretch (3107 cm-1), antisymmetric CH2 stretch (2919 cm-1),

symmetric CH2 stretch (2869 cm-1), C−−C aromatic out of phase stretch (1479 cm-1), C−−C

aromatic in phase stretch (1444 cm-1) and C−C deformation (1369 cm-1), Figure 9.2. In the case
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Layer %C %O %S %F

Theoretical PEDOT (undoped) 67 22 11 —

Atomized spray deposited PEDOT–triflic anhydride 54±1 24±1 11±1 11±1

Table 9.1: XPS elemental ratios for atomized spray deposited EDOT in the presence of triflic

anhydride vapour.

Figure 9.1: X-ray photoelectron S(2p) spectrum of atomized spray deposited PEDOT–triflic

anhydride.
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Figure 9.2: FTIR spectra of: (a) EDOT monomer and (b) atomized spray deposited PEDOT–

triflic anhydride. * Denotes =C−H ring stretch; A denotes SO3 symmetric stretch; B denotes

CF3 symmetric stretch.

of the atomized spray deposited PEDOT–triflic anhydride coating: the =C−H ring stretch has

disappeared (which is consistent with polymerization via the 2-position on the thiophene ring);

the CH2 stretches remain confirming retention of the ethylenedioxy substituent; absorbances due

to aromatic vibrations in the fingerprint region broaden out (which is consistent with a doped

conjugated polymer system25); and absorbances due to triflate SO3 symmetric stretch (1083

cm-1, denoted A) and CF3 symmetric stretch (762 cm-1, denoted B) appear.26

Deposition rates for the atomized spray deposition of PEDOT–triflic anhydride films were

measured to be 2.9±0.4 µm min-1.

Conductivity measurements for the atomized spray deposited PEDOT–triflic anhydride layers

gave a value of 0.9 S cm-1 in conjunction with an ohmic response across the 0–30 V range.
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9.4 Discussion

Previous vapour-phase deposition approaches for the polymerization of EDOT have utilized oxi-

dants such as iron(III) chloride or iron(III) tosylate which require an extra washing step to remove

the unwanted iron(II) salt byproduct.6,14 Another approach is to use bromine vapour as the oxi-

dant which alleviates the need for a washing step but still requires the monomer to be heated due

to its low vapour pressure at room temperature.19 In contrast the outlined atomized spray depo-

sition approach requires no post-deposition washing step since any unwanted byproducts (triflic

acid or triflinic acid) are pumped off, and there is no requirement for heating the monomer since

it is introduced as a fine mist of droplets into the reactor. Therefore this approach is completely

solventless and requires only ambient temperatures. This is the first time that triflic anhydride

has been used as an oxidant for the vapour-phase production of conducting polymers. The con-

ductivity of the films thus produced reaches a value of 0.9 S cm-1 which is high enough for use

as an antistatic coating27 or in electrochemical devices, such as capacitor electrodes.28

The ultrasonic nozzle provides small droplets (20 microns average diameter) of 3,4-ethylene-

dioxythiophene monomer into the reactor chamber (similar to previous chapters). In this case,

however, there is not plasma to initiate reaction on the droplet surface but triflic anhydride vapour.

Via a similar method to ASPD, therefore, the polymerization reaction is initiated at the droplet

surface and carries on even after impact of the droplet onto the surface.

Vapour-phase depositions of many different conducting polymers could be envisaged via this

oxidative vapour-phase polymerization mechanism. Monomer examples could also include pyrrole

and aniline based compounds as well as thiophene. The use of conducting polymers as electrodes

for fuel cells is particularly apt since not only do they provide electronic conductivity, but the

dopant cation can provide proton conductivity (triflate is essentially the conjugate base of a

strong acid and so is suited to this task). Additional to both of these properties, if the conducting

polymer chain is very long then catalytic properties can emerge.6 This atomized spray oxidative

vapour deposition polymerization process could thus be used to not only produce electrodes for

fuel cells but catalytic layers as well (after further optimization of parameters such as substrate

temperature etc.).

The outlined atomized spray deposition approach can be used in conjunction with scalable

processes such as roll-to-roll in order to yield high throughput, conformal, conductive polymer

coatings.

9.5 Conclusions

The atomized spray deposition process provides a room temperature, solventless approach for pro-

duction of conducting PEDOT–triflic anhydride coatings with no requirement for post-deposition

steps.
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[11] (a) Randriamahazaka, H.; Noël, V.; Chevrot, C. J. Electroanal. Chem. 1999, 472, 103; (b)

Du, X.; Wang, Z. Electrochim. Acta 2003, 48, 1713; (c) Liu, K.; Hu, Z.; Xue, R.; Zhang, J.;

Zhu, J. J. Power Sources 2008, 179, 858.

[12] Kim, T. Y.; Park, C. M.; Kim, J. E.; Suh, K. S. Synth. Met. 2005, 149, 169.

[13] Lock, J. P.; Im, S. G.; Gleason, K. K. Macromolecules 2006, 39, 5326.

[14] Im, S. G.; Gleason, K. K. Macromolecules 2007, 40, 6552.

[15] Im, S. G.; Olivetti, E. A.; Gleason, K. K. Appl. Phys. Lett. 2007, 90, 152112.

[16] Winther-Jensen, B.; West, K. Macromolecules 2004, 37, 4538.

[17] (a) Kudoh, Y.; Akami, K.; Matsuya, Y. Synth. Met. 1998, 98, 65; (b) Lei, Y.; Oohata, H.;

Kuroda, S.-I.; Sasaki, S.; Yamamoto, T. Synth. Met. 2005, 149, 211.

143



[18] Arbizzani, C.; Mastragostino, M.; Rossi, M. Electrochem. Commun. 2002, 4, 545.

[19] Chelawat, H.; Vaddiraju, S.; Gleason, K. K. Chem. Mater. 2010, 22, 2864.

[20] Maas, G.; Stang, P. J. J. Org. Chem. 1981, 46, 1606.

[21] Lindberg, B. J.; Hamrin, K.; Johansson, G.; Gelius, V.; Fahlman, A.; Nordling, C.; Sieg-

bahn, K. Phys. Scr. 1970, 1, 286.
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Chapter 10

Conclusions and Further Work

10.1 Conclusions

Plasmachemical deposition is a powerful technique for the manufacture of functional thin films.

Pulsing the plasma yields a controllable polymerization process, which in turn leads to high levels of

chemical functionality retention throughout the films. Chapters 3–4 used these properties in order

to manufacture proton conducting films from carboxylic anhydride precursors. Maleic anhydride

based monomers were particularly effective due to the polymerizable double bond and the fact

that they could be hydrated simply to produce acid-containing films. Polymers which have a high

density of carboxylic acids tend to absorb a large amount of water (e.g. poly(acrylic acid) based

super absorbent polymers) or even dissolve under aqueous conditions. The use of a plasma to

initiate polymerization bypassed this problem by ensuring a high enough level of crosslinking within

the poly(anhydride) films to render them insoluble. The addition of a trifluoromethyl group to the

maleic anhydride precursor further optimized the process, providing greater hydrophobicity (and

subsequent stability in water), aiding the stabilization of radicals within the plasma (leading to

faster deposition and better structural retention) and making the acid group stronger (i.e. a more

labile oxygen-hydrogen bond). It was shown that during the plasmachemical deposition process

radicals are temporarily trapped within the growing polymer film. These radicals were used for

the graft-from polymerization reactions of a sulfonate salt monomer, which was then converted

to acid form by ion exchange (washing in dilute acid). Both plasmachemically deposited film

with and without the grafted sulfonic acid showed excellent proton conductivity, with the latter

exceeding that of the industry benchmark, Nafion.

Membranes that did not require water for their conduction mechanism were manufactured in

chapter 5. It was shown that using an imidazole-containing monomer for pulsed plasmachemical

deposition yielded films which, upon quaternization in the vapour phase, showed excellent ion

conduction above 90 ◦C. Doping with acids would render these poly(ionic liquid) films able to

conduct protons in the intermediate temperature range (100–200 ◦C for fuel cells).

In chapter 6 the focus moved to plasmachemical deposition of metal-containing nanocomposite
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layers for use as catalytic layers in proton exchange membrane fuel cells. The twin requirements

of proton conduction and electronic conduction were met in the platinum-containing film (the

copper-containing film was able to conduct protons but not electrons due to its lower metal

content). Combining these properties with the known catalytic ability of platinum nanoparticles

and plasmachemical deposition has produced a viable candidate for fuel cell catalyst layers.

In chapters 7–8 the limitations of vapour phase plasma polymerization were addressed—to

whit, the low deposition rates and the requirement for a precursor with sufficient vapour pressure.

Both these were overcome by the use of an ultrasonic nozzle to introduce a higher quantity of

monomer into the reactor in the form of a fine mist. Proof of concept was provided by deposition of

lipophilic poly(alkyl acrylate) layers along with protein resistant poly(N-acryloylsarcosine methyl

ester) films. The deposition rates for these films were in the order of 0.1–3 µm min-1 which

represented a large increase over the 3–6 nm min-1 rates for conventional pulsed plasmachemical

deposition in chapters 3–4. The atomized spray plasma deposition was further used for the

deposition of nanocomposite polymer-silica layers, the silica nanoparticles serving to improve

mechanical properties. Both higher depsition rate and the ability to deposite nanocomposite

coatings from a premixed precursor would be desirable for the plasmachemical deposition of fuel

cell layers.

Finally in chapter 9, the atomized spray process is used in combination with oxidant vapour

(rather than plasma excitation) in order to fabricate conducting polymer coatings. These coatings

show enough electrical conductivity to be used as electrochemical device electrodes (e.g. for fuel

cell cathode and anode).

Overall, vapour-phase deposition processes (especially those that are plasma-initiated) have

proved an effective means for fabricating parts of proton exchange membranes, including the

proton exchange membrane, the catalytic layers and the electrodes. Use of an atomized precursor

spray in conjunction provides greater scope for advancement of these techniques (as shown by

the proof-of-concept coatings of chapters 7–8).

10.2 Further Work

Fuel cells represent harsh environments for polymer layers to survive with acidic conditions, high

temperatures, strong reductants/oxidants and mechanical stress from swelling and contracting due

to water uptake and loss. For proton exchange membrane fuel cells to become viable alternatives

to current technology for portable applications (i.e. the combustion engine for vehicles and the

lithium-ion battery for portable electronics) the proton exchange membranes themselves need to be

cheap to manufacture, highly proton conducting and robust (that is, having long lifetimes). The

most obvious future work arising out of chapters 3–4, therefore, is the testing of the anhdyride-

containing polymer coatings in a fuel cell. Even if the results of such tests were negative, however,

there are other applications for acid-containing polymer coatings, such as for humidity sensors

or ion exchange materials (indeed, not included within this thesis, a study into the ion exchange
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properties of the anhydride coatings was carried out with the suprising result of the coatings

absorbing heavy metals such as cadmium and zinc selectively over the alkali and alkaline earth

metals).

Further work is warranted into the poly(ionic liquid)s (chapter 5), which showed high ionic

conductivity. Rather than changing the monomer (which was done with no further success), a

study into the quaternization agents (e.g. the effect of alkyl chain length with different bromoalka-

nes on ionic conductivity) as well as investigation into how the degree of quaternization would

affect ionic conductivity (one would expect an optimum level significantly below 100% which

would unduly increase the chances of ion-ion pairs forming).

The work in chapter 6 on metal-containing nanocomposite layers represents an exciting new

area to be developed. The only previous metal-containing nanocomposite layers formed by this

method were zinc oxide nanoparticles in an organic matrix that disintegrated in water. By contrast

the chemical functionality of the organic matrix in this thesis was an important boon to the

usefulness of the nanocomposites. Platinum precursors, however, are expensive (platinum(II)

hexafluoroacetylacetonate was bought at a cost of greater than £300 per gram). Therefore,

cheaper precursors need to be investigated, or perhaps the mixing of precursor vapours in order

to create core-shell nanoparticles.

The greatest scope for advancement of vapour-phase deposition of functional coatings lies

in the atomized spray plasma deposition setup. From the examples presented in this thesis we

can separate out five main areas of research. They comprise (i) the use of pure monomer (e.g.

poly(N-acryloylsarcosine methyl ester) in chapter 7); (ii) the use of premixed monomers to form

copolymers (e.g. poly(octadecyl-co-dodecyl acrylate) in chapter 7); (iii) the suspension of premade

nanoparticles in a monomer to form an polymer-inorganic nanocomposite coating (e.g. the silica

particles in chapter 8); (iv) the dissolution of salts in the monomer to form a dissolved salt–

polymer composite (e.g. lithium perchlorate in chapter 8); (v) the concurrent introduction of

co-reactant vapour (e.g. triflic anhydride in chapter 9). Potential applications could include the

increased throughput of superhydrophobic plasma polymer perfluorinated coatings ( conventional

plasma polymerization’s flagship application) or the use of dissolved salts in acrylic acid to form

super-absorbent polymer coatings (e.g. sodium polyacrylate).

With all the methods presented within this thesis there is scope for going beyond fuel cell based

applications into a wider plethora of coating uses. This is hinted at with the proof of concept

studies in chapters 7 and 8. So in conclusion vapour-phase deposition provides a versatile range

of techniques for the fabrication of functional coatings for use in proton exchange membrane fuel

cells and a variety of other applications (including batteries, adhesives and bioactive surfaces).
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