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Abstract 

Plasmachemical functionalisation offers a versatile route to surface 

functionalisation, allowing a wide variety of functional groups to be deposited 

in a substrate independent process. This thesis presents the application of 

pulsed plasmachemical functionalisation in two areas.  

Firstly, the construction of covalently tethered DNA or protein arrays is 

examined, and novel routes are presented based on the introduction of 

aldehyde and bromine functions onto substrates such as glass, silicon, 

polystyrene beads and carbon nanotubes.  

Secondly, the use of plasmachemical layers for the tethering of metal 

centres is also presented, with aldehyde and vinylpyridine functional 

surfaces presented, and their use in the metallization of substrates such as 

carbon nanotubes demonstrated. The functionalisation and reaction of 

plasmachemical surfaces is monitored by a variety of surface sensitive 

methods including XPS, FT-IR, contact angles, and reflectometry. 
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Overview 
 

In order to put the experimental chapters into some context, chapter one 

contains a brief overview of plasmachemical functionalisation and plasmas, 

and a general literature survey on the subject of DNA microarray technology, 

and acts as an introduction to the three chapters dealing with biological 

molecule interactions with plasmachemical surfaces. As discussed in more 

depth in the chapters themselves, plasmachemical technology offers a 

promising route to circumvent the often complex chemistries used in DNA 

microarrays with a single, substrate-independent functionalisation. This is 

followed by an overview of typical surface analysis techniques such as XPS, 

FT-IR, contact angle analysis and reflectometry in chapter two. 

Chapter three describes the use of undec-1-enal to introduce aldehyde 

functions onto the substrate surface, and the use of this aldehyde surface to 

tether DNA onto via the well known reductive amination route. Chapter four 

follows a similar route, using the 3-vinylbenzaldehyde monomer to introduce 

the aldehyde surface functions, and extending the repertoire of biological 

molecules to include proteins and dextrans. Both of these approaches 

allowed the formation of DNA microarrays, showing the potential of pulsed 

plasmachemical technology in the manufacture of biological systems. 

Chapter five describes a novel approach using 2-bromoethyl acrylate as a 

precursor to generate bromine functionalised surfaces, which are then 

suitable for reaction with thiol-terminated oligonucleotides. Chapter 

sixincludes some initial results based on the surface immobilisation of a 

biologically derived chloromethyl ketone 

The work on metallization of SWCNT’s follows on from chapters three and 

four, where silver deposition onto the aldehyde surfaces showed promise, 

and was extended to the use of vinylpyridine surfaces, both for metallization 

(chapter seven) and tethering of the methyl rhenium trioxide catalyst, where 

preliminary results are presented in the appendix. 
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1. An introduction to plasmas and DNA microarray technology. 

1.1 What is a plasma? 

Plasma is the fourth state of matter alongside the solid, liquid and gas states. 

A plasma is defined as a quasi-neutral gas of both neutral and ionised 

particles, displaying a collective behaviour1. The ions in this gas consist 

mainly of positively charged atoms or molecules, with negatively charged 

electrons.   

Plasmas are classified into one of three types: 

1) Complete Thermal Equilibrium (CTE) Plasmas. The plasma is in total 

thermal equilibrium, so that the temperatures of electrons (Te) and all of the 

temperatures associated with heavier species (e.g. translational energy, Tg) 

are equal. Stars contain CTE plasmas, but they do not exist in controlled 

laboratory conditions.  

2) Local Thermodynamic Equilibrium (LTE) Plasmas, also known as 

“thermal” or “equilibrium” plasmas. These plasmas are formed when heavy 

particles within the plasma are particularly energetic. Te and the 

temperatures of heavy particles are equal. Electric arcs and plasma torches 

are an example of LTE plasmas. They exist at temperatures <6000K. 

3) Non-local thermodynamic equilibrium plasmas (non-LTE), also known as 

“cold” or “non-equilibrium” plasmas. In a cold plasma Te is much greater than 

that of the ions, and the temperature of the overall gas (Tg) is lower still. 

These cold plasmas have found much use in chemistry2,3. 

1.2 Interactions in plasmas 

Plasmas contain a variety of particles. Before the plasma is ignited, a small 

amount of initial free electrons are present in the system, arising from 

ionisation of gaseous molecules by naturally occurring radioactivity or 

cosmic rays4. Electrons are the lightest particles in the plasma; they are 

easily accelerated and absorb the largest amount of energy from any 
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external source. When an electric field is initially applied to a gas, it is the 

acceleration of electrons and the resultant ionisation events that result in the 

plasma.  

Electrons and large particles will undergo many interactions, with kinetic 

energy being lost by ionisation, excitation in inelastic collisions. Collisions 

involving no change in excitation are described as elastic. Some of the more 

common interactions are outlined below. 

Elastic electron-large particle energy transfer: As energy is conserved, the 

energy transfer, WTr is simply determined by the mass ratio of the particles1: 

W
M

m
W e

Tr

2
=  

Where M is the mass of the heavy particle, W is the energy of the electron 

and me is the mass of the electron. The mass of the electron is so small 

however, that the target heavy particle will be virtually unaffected by the 

collision. 

For inelastic collision, the fraction of energy transferred is given by1  

Mm

M

W

W

in

Tr

+

=  

where min is the mass of the particle losing energy.  

Excitation: An electron impact promotes an electron from the target into a 

higher energy level in an atom. 

Relaxation: Excited atoms and molecules relax back into their ground states 

and as they do so, they release photons of energy. This process causes 

plasmas to glow distinctively, and photons are emitted from the deep UV to 

the visible spectrum to the far infrared region5. 

Dissociation is the breaking apart of a molecule by electron impact, often 

leaving highly reactive radical species: 
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Electron Attachment can also result in the generation of radicals. Halogen 

atoms in particular will easily form radicals: 

Other processes include charge transfers and collisions involving excited 

molecules6. 

Ionisation: Electron impact ionisation results from an electron collision that 

also ionises an atom, to produce a positive ion and two electrons5.  

e- + Ar → 2e- + Ar+ 

Electron impact ionisation is the most common ionisation within the plasma. 

The electrons are accelerated to velocities that can induce ionisation by the 

external electric field. The reverse process of recombination also takes place.  

e- + CF4 → e- + •CF3 + •F (dissociation) 

e- + CF4 → 2e- + +CF3 + •F (dissociative ionisation) 

 SF6 + e- → SF5
- + •F 

Thus, plasmas contain a ready sea of radical species that can initiate 

polymerisation by reaction with molecules within the plasma.  

1.3 Cold Plasmas for Chemical Modification 

The functionalisation of surfaces with polymeric species occurs when 

suitable organic precursors are introduced into the cold plasma. The collision 

mechanisms described above result in the generation of active species both 

in the plasma itself and on the surface of any local substrate, which can then 

react to form an organic film.  

Plasma polymerisation allows tailoring of surface properties such as surface 

energy or wear resistance, or the introduction of new chemical functionality. 

The plasmachemical layers are also transparent and can act as barrier 

layers7. 
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Plasma polymerisation differs markedly from conventional polymerisation. In 

a conventional polymerisation there is very little molecular rearrangement 

and the polymers consist of orderly repeat units. In plasma there is an 

abundance of reactive species such as radicals and ions which leads to 

highly branched, cross-linked species. Plasma polymerisation is 

characterised by several features1: 

1) A lack of distinct repeat units such as those in conventional polymers. 

2) Properties of a given plasma polymer can vary depending on the plasma 

conditions. 

3) Functional groups such as double bonds are not essential for 

polymerisation to occur. 

Considering plasma polymerisation as consisting of a series of steps, 

initiation, propagation and termination, we see in the initiation phase bonds 

are opened and free radicals formed by the processes already discussed 

above. Where molecules and radicals are adsorbed onto the surface 

formation of the polymer film can begin (Figure 1.1, reaction 1). The 

propagation of the reaction can continue both in the plasma itself and on the 

surface by reaction of radicals with species in the plasma (Reactions 2 & 3). 

Termination occurs when radical species react together to give a neutral 

species (Reactions 4, 5 & 6). However, plasmas can generate new radicals 

which will re-initiate polymerisation. 
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Figure 1.1. Interactions in a plasma1
 

1.4 Pulsed Plasma Polymerisation 

Pulsed plasma polymerisation is a technique that is becoming widely used. 

The pulsing of the power input to the plasma has several advantages8:  

The overall efficiency of the plasma polymerisation process is increased. 

The average power <P> delivered to the system during pulsing can be 

calculated9 

)(

offon

on
P

tt

t
PP

+

>=<  

Where variables include the peak power (PP) delivered to the glow discharge, 

on time (ton) and off time (toff). 

It has also been found that structural retention can be improved by carefully 

tailoring these parameters for a given monomer. During the pulse on-time, 

plasma polymerisation occurs and radical populations increase. In the off-

period radical initiated chain growth takes place10. This reduces the time 
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during which the monomer is exposed to destructive dissociation reactions, 

whilst still applying enough energy to maintain the plasma itself. 

1.5 Introduction to DNA microarrays 

DNA microarrays have found application in many fields, as diverse as 

computing11,12 drug discovery13, cancer research14, and the elucidation of the 

human genome15. In particular, they allow simultaneous screening of large 

numbers of oligonucleotides, thereby reducing both the time and expense for 

DNA based diagnostics16. Typically, the oligonucleotides are assembled onto 

a solid surface either by in situ synthesis17,18 or mechanical spotting16. 

Surface functionality plays a key role during microarray fabrication19, and has 

in the past been limited to specific substrate materials and geometries, e.g. 

self-assembled monolayers (SAMs on glass20,21,22, silicon23, or gold24,25,26), 

Schiff-base derivatisation of aminated PMMA polymer27, and alcoholysis of 

surface-generated acyl halides on diamond28. 

In the following chapters a route for constructing DNA chips is presented in 

which a substrate is plasmachemically functionalized by utilizing undec-1-

enal, 3-vinylbenzaldehyde, and 2-bromoethylacrylate precursors. The 

obtained surface functionalities are shown to be suitable for the 

immobilization and hybridization of 15-base oligonucleotides, and the 

readout of hybridization via microarray fabrication.  

1.6 DNA 

Deoxyribose nucleic acid (DNA) is a powerful information encoder which 

forms the basis of life. 

 

Figure 1.2. DNA sugar-phosphate backbone 
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The DNA molecule itself is formed from a polymeric backbone comprising of 

a chain of 2-deoxyribose sugars linked by phosphodiester linkages between 

the 5’ and 3’ carbons on adjacent 2-deoxyribose sugars (Figure 1.2). 

Attached to the 1’ carbon of the deoxyribose unit is one of four bases: the 

purines Adenine (A) and Guanine (G), or pyrimidines Cytosine (C) and 

Thymine (T). The order of these bases along the DNA strand is known as 

the primary structure, which forms the information encoding for life in the 

form of genes29,30,19. 
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Figure 1.3. Base Pairing in DNA 

Part of the versatility of DNA as an information storage medium is the ability 

of a single strand of DNA to selectively couple, or hybridise, with another 

complimentary strand of DNA. Two DNA strands hybridise such that the 

bases pair together via hydrogen bonding to form the well-known double 

helical structure31, A-T via two hydrogen bonds and C-G via three32 (Figure 

1.3). This helix can be opened and each strand copied for cell mitosis, 

coupled with Ribose Nucleic Acid (RNA, a macromolecule similar in primary 

structure to DNA but containing a hydroxyl group at the 2’ position30, used as 

an information transfer vector in protein synthesis) for reading the DNA in a 

process called transcription.
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1.7 DNA microarrays and their application 

A DNA chip or microarray1633 is a flat substrate on which a large number of 

single-stranded DNA oligonucleotide strands are immobilised at specific 

points to form a regular array of well defined spots. Each spot contains an 

oligonucleotide with a specific base sequence such that by passing an 

oligonucleotide target probe of over the array and studying both the extent 

and location of hybridisation, the structure of the probe may be elucidated. 

Probes are typically labelled with fluorescent markers to allow swift detection 

of hybridization.  

Such high interest and usage stems directly from the highly parallel nature of 

such DNA chips and the consequent savings in time and expense34. 

Microarrays can contain thousands of individual spots of a size <500µm19 

meaning that many experiments can be carried out on one chip and at one 

time, with spot size limiting the number of different base sequences that can 

be accommodated onto the chip35. This highly parallel approach has been 

used widely in gene mapping36, gene expression monitoring16, identifying 

SNPs (single nucleotide polymorphisms)37, cancer research14, drug 

discovery1338, and computing11,12,39 

1.8 Design of DNA microarrays 

1.8.1 Substrate choice and surface functionalisation 

The microarray substrate must fulfil a range of criteria such as stability to 

commonly used reagents, low background fluorescence, smooth surface, 

chemical homogeneity and low cost40. 

DNA hybridisation experiments involving various membrane systems such 

as nitrocellulose or nylon filters have traditionally been used for macroscopic 

parallel analysis, such as Southern blotting of gel electrophoresis 

products41,42. The porous nature, and resultant large surface area of the 

substrate, allows immobilisation of large amounts of DNA with relative ease43 

which gave good, strong signals. However, the porous nature of the filter and 
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membrane hybridisation substrates makes it a difficult substrate to 

miniaturise as internal diffusion along the nylon membrane has been 

reported29. 

Glass substrates are widely used where high temperatures are needed20 and 

do not suffer from the problem of internal diffusion44. Glass is transparent, 

with a relatively smooth surface and has a low intrinsic fluorescence16,17,18, 

which allows study of reactions in which the active surface is in solution by 

fluorescence spectroscopy and by microscopy. Like glass, silicon is resistant 

to temperature and diffusion but is also a semiconducting substrate that is 

well known for its use in microtechnology, and its relatively smooth surface 

improves reproducibility45. For glass or silicon, by far the most common 

surface functionalisation method involves the use of silane 

SAMs20,46,47,48,49,50,51,52,53,54,55,56,57. Glass is also a low cost substrate. 

Gold is widely used for immobilizations due to the ready formation of self 

assembled monolayers (SAMs) by thiolated compounds24,46 58,59,60,61,62. The 

use of long chained ‘dilution thiols’ to form SAMs with hydroxyl-terminated 

thiols has also been explored63. Thiol-terminated oligonucleotides can also 

be immobilized directly to the surface64. A gold substrate is also useful in 

techniques such as surface plasmon resonance65,66. 

1.8.2 Immobilisation chemistry 

The immobilisation chemistry must result in a minimum of ‘noise’ in the form 

of non-reproducible immobilisations, and strong (preferably covalent) 

bonding to allow repeated use of the immobilised probes without array 

deterioration over time42,67. 

Avidin-biotin complexations are commonly used in immobilisation of DNA68. 

Avidin is a large biomolecule with four identical binding sites. The smaller 

molecule biotin attaches to the binding sites of avidin or streptavidin with an 

affinity which approaches that of a covalent bond. These methods use a 

surface bound avidin molecule to couple a biotinylated oligonucleotide. 

These biological molecules are stable in aqueous solutions and thus are 
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easy to handle. However, the thick molecular layers that are formed contain 

a large number of sites for non-specific binding which may result in some 

loss of sensitivity and selectivity69. 

The exact methodology used for covalent immobilisations varies depending 

on the terminal chemistry of the linker arm. In the case of amine or hydroxyl 

termination, formation of a phosphoramidate bond between the arm and 5’-

phospate group has been reported49,70 and bromoacetamide surfaces can be 

reacted with 5’-phopsphorthioate DNA57. Other methods include amide bond 

formation71 by use of succinimide esters51,63, amine reaction with 

isothiocyanates56, conversion of amines to diazonium salts and subsequent 

reaction48, formation of disulphide bonds52,53,54,55,60, thiolated DNA attack of 

malimides47.72. 

More exotic methods include use of phosphoramidite chemistry73 to form 

linkers of various lengths on aminated polypropylene surfaces. Titanium 

oxide layers have been used to bind the phosphate groups in the DNA 

backbone67. Polypyrrole has been electropolymerised onto platinum 

electrodes and aminated DNA bound to the polymer, via amide bond 

formation71. Diamond has been functionalised to give acid chloride surfaces 

to which DNA has been directly attached28. 

1.8.3 Linkers 

The ability of the surface immobilised probes to hybridise is improved with 

the addition of a flexible linker74. This usually takes the form of a 

hydrocarbon chain that is engineered between the probe and surface. The 

additional flexibility offered by chains of 28Ǻ length have been reported to 

increase hybridisation yields four-fold48, with longer linkers (>40atoms) 

yielding 150-fold improvement49,73. This has encouraged the use of flexible 

molecules such as dendrimers to form a surface-immobilised layer for 

hybridisation21.   
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1.9 Delivery of oligonucleotide probes  

1.9.1 In-situ synthesis by photolithography 

This technique, originally pioneered by Affymetrix18,75, is capable of forming 

arrays with feature down to 50µm in size42 and is favourable for high density 

microarrays. It builds on standard DNA syntheses, such as those used in 

porous glass columns in current commercial oligonucleotide synthesis 

utilising phosphoramidite chemistry19, but utilises a photosensitive protecting 

group. The deprotection is only effective where light is directed onto the 

molecule. Precise masking allows each area for reaction to be carefully 

selected (Figure 1.4).  

Figure 1.4. Steps involved in photolithography76. 

By sequential protection, deprotection and oligomer extension, thousands of 

oligomers can be built on a surface. For instance, in 32 cycles, 65,536 8-mer 

DNA strands can be synthesised. However, incomplete reactions limit the 

maximum sequence length and the accuracy of results as they leave 

incomplete DNA strands on the surface. Such high density arrays are 

excellent for high through-put screening to identify sequences of interest, but 

detailed study may require longer oligomers and custom microarrays. 

1.9.2 Mechanical microspotting of pre-synthesised Oligonucleotides 

Mechanical microspotting allows pre-synthesised oligomer strands to be 

delivered to different areas of a surface. The pre-synthesised oligomers can 

be rigorously purified prior to use and hence longer oligomer strands are 

possible30. Commonly, a robot will dispense nanovolumes of reagents in a 

prearranged pattern onto the substrate surface, using a variety of methods 
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such as drop-touch systems16, automatic nano-pipetteing, microvalves or 

piezoelectric injection devices (developed from ink-jet processes)77,78. 
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2 Plasmachemical and surface analysis methods 

2.1 The plasma reactor 

Several types of reactors have been used in plasma polymerisation, and 

these can be summarised into three broad categories1: 

1) electrodeless microwave (MW) or high frequency (HF) reactors which 

make use of a resonant cavity to create the plasma. 

2) internal electrodes, parallel plates: containing an RF driven electrode 

and a grounded electrode between which is placed the substrate. 

3) external electrodes, tubular reactors. Power is passed into a coil that 

is wrapped around the reactor and the plasma created by inductive coupling 

of the energy from the coils.  

A reactor of type 3 is used in this work (Figure 2.1). The simplicity of the 

setup and plasma generation is advantageous, especially as the electrodes 

do not require removal of deposited polymer. It allows the maintenance of a 

pressure of <0.2mbar by use of a vacuum pump and monomer can be 

introduced via a Youngs tap. The sample is easily accessible as the reactor 

can be easily opened when not under vacuum.  

 

 

Figure 2.1. A typical external electrode reactor, such as the one used in this 

work. 
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Plasma polymerization of precursors in this work was carried out in an 

electrodeless cylindrical glass reactor2
 (5 cm diameter, 520 cm3

 volume, 

base pressure = 3 x 10-2 mbar, leak rate = 1 x 10-9
 mol s-1)3

 enclosed in a 

Faraday cage. The chamber was fitted with a gas inlet, a thermocouple 

pressure gauge, and a 30 L min-1
 two-stage rotary pump connected to a 

liquid nitrogen cold trap. All joints were grease free. An externally wound 4 

mm diameter copper coil spanned 8 – 15 cm from the gas inlet with 9 turns. 

The output impedance of a 13.56 MHz RF power supply was matched to the 

partially ionized gas load using an L-C matching network. In the case of 

pulsed plasma deposition, the RF source was triggered from an external 

signal generator, and the pulse shape monitored with a cathode ray 

oscilloscope. Prior to each deposition, the reactor was scrubbed with 

detergent, rinsed in water followed by propan-2-ol, and finally dried in an 

oven. Further cleaning entailed running a 0.2 mbar pressure air plasma 

operating at 40 W for a period of 30 min.  

Each substrate was ultrasonically cleaned in a 50:50 mixture of cyclohexane 

and propan-2-ol for 10 min and then placed onto a flat glass plate located in 

the center of the reactor. Substrates used in this work include silicon wafer, 

borosilicate glass microscope slides and coverslips, single walled carbon 

nanotubes as outlined in experimental chapters. This was followed by 

evacuation to base pressure and introduction of precursors at a pressure of 

0.20 mbar and a flow rate of 4.1 x 10-7
 mol s-1

 for 5 min. Precursors were 

purified by several freeze-pump-thaw cycles prior to use. Upon extinction of 

the electrical discharge, the precursor was allowed to continue to pass 

through the apparatus for a further 5 min prior to venting to atmosphere, to 

allow quenching of any remaining active sites. 

2.2 X-Ray Photoelectron Spectroscopy (XPS) 

XPS is a quantitative ultrahigh vacuum technique for investigation and 

characterisation of the composition of solid surfaces4,5. The surface is 

irradiated with X-Ray photons which causes ejection of core electrons from 

the surface, where the kinetic energy, KE, of the electron can be described 

as6  
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KE = hv - BE - φf - φs  

where BE is the binding energy of the ejected electron. φf is the work 

function of the spectrometer, a term which takes corrects the KE for extra 

energy gained in the vacuum/detector interface which can be measured 

experimentally and is characteristic of the spectrometer. φs is a correction 

term for surface charging, to take into account the loss in KE when photo-

electrons are ejected from a charge surface. φf and φs can be considered 

constant for a given sample. Only electrons that leave the sample without 

inelastic collisions give recognisable peaks, meaning that the effective 

sampling depth of XPS is 3-10nm, as defined by the mean-free path of the 

electron. 

As no two elements have the same set of binding energies7, it is possible to 

differentiate between different elements using XPS. Moreover, variation in 

chemical environment can also be examined with XPS as the binding energy 

of a given level will vary with oxidation state, giving a chemical shift. XPS 

allows quantitative analysis as the intensity of photoelectron emission is 

directly proportional to the atomic distribution of emitting atoms.  

The holes left in the core levels by photoelectron emission give rise to two 

de-excitation mechanisms, X-Ray fluorescence and Auger emission (Figure 

2.2). In the case of fluorescence an outer shell electron fills the core electron 

hole and excess energy is released in the form of an X-Ray photon. Auger 

emission occurs when the excess energy is imparted to another electron, 

which then leaves the atom. Auger emission energy is thus independent of 

source as it is governed not by the energy of the incident radiation, but by 

the energy levels of the atom itself.  
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Figure 2.2. Emission processes in XPS 

Typical spectra then show sharp peaks based on photoelectron emission, 

with a series of source-independent edges based on Auger emissions. 

The two commonly used X-ray sources are Mg and Al, which fit the two main 

requirements of an XPS soft X-ray source. In order to minimise the signal to 

noise ratio, to produce clear spectra, the source must have a low emission 

width as the width of any peak in a spectrum will be related to the width of 

the X-ray emission. The energy of the emission must also be sufficient to 

eject photoelectrons from the sample in the first place7.  

The specimen is excited by unmonochromatised Kα1,2 lines from the Al or 

Mg source8, giving a spectrum of characteristic X-ray lines superimposed 

over bremsstrahlung radiation (caused by the deceleration of electrons 

impinging on the anode of the X-ray gun). This broad background and 

satellite peaks in the x-ray emission, such as the Kα3,4 and Kβ will cause the 

appearance of satellite peaks in the XPS spectrum. Where resolution is 

paramount, the x-rays can be passed through a monochromator, such as a 

quartz crystal, which can separate the desired Kα1,2 line, but this will result in 

a loss of signal intensity.  
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Emitted electrons are collected, retarded and analyzed as a function of their 

kinetic energy. The concentric hemispherical analyser (Figure 2.3) is widely 

used in XPS. It consists of two hemispherical surfaces positioned 

concentrically. The plates are charged electrostatically so that the negative 

potential V2 (outer) is greater than V1 (inner). Electrons entering the 

analyser with the correct energy and at the right angle follow the hemisphere 

and are focused into a channeltron device.  

 

Figure 2.3. The concentric hemispherical analyser. 

The absolute resolution of the analyser is defined as  

R=∆E/E0 

where R is the absolute resolution, ∆E is the full width at half maximum 

(FWHM) of the peak and E0 is the energy of the peak. In order to maintain a 

constant resolution for any peak in the XPS spectrum, an electrostatic lens 

at the entrance to the analyser is used to retard incoming photoelectrons. 

There are two commonly used modes CAE: Constant Analyser Energy, in 

which electrons are retarded by a constant amount, and CRR: Constant 

Retard Ratio, in which electrons are retarded proportionally to their energy. 

The channeltron device acts as both a detector and an amplifier of the 

incoming electron current, which is extremely small. A small spiral glass tube 

is coated on the inside with a high resistance material and a potential of 3kV 

applied to the ends. Incoming electrons collide with the walls and emission of 
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a number of secondary electrons. Multiple collisions result in a cascade 

effect and results in gains of >107. 

For this work XPS analysis of the functionalized surfaces was performed 

using a VG ESCALAB I spectrometer equipped with an unmonochromated 

Mg Kα1,2 X-ray source (1253.6 eV) and a concentric hemispherical analyzer 

(operating in constant analyzer energy (CAE) mode with a pass energy of 20 

eV, and set to a take-off angle of 30° to the substrate normal). To account for 

any sample charging, a constant offset was applied to each peak based on 

the deviation of the CxHy signal from the defined 285 eV. Instrument 

sensitivity (multiplication) factors were derived using chemical standards. 

Peak areas were determined after subtraction of a linear background from 

high resolution spectra of the envelope, with fitting performed using 

Marquardt minimisation computer software. High resolution envelopes were 

fitted with a minimum number of Gaussian peaks, wherever possible limited 

to one. Where more peaks were judged necessary to provide a satisfactory 

fit, all FWHM were constrained to be equal, and additional gaussian peaks 

only added where the chemical shift corresponds to a chemically plausible 

species, based on the precursor structure. The absence of any Si(2p) signal 

from the underlying silicon substrate was indicative of a pinhole free film9, 

whilst the disappearance of Na(1s) and Cl(2p) peaks corresponded to the 

complete removal of buffer salts from the surface during washing.  

2.3 Fourier Transform Infrared (FT-IR) spectroscopy 

IR spectroscopy is a method of studying the vibrations of the various 

functional groups within a molecule that contain dipole moments. Many 

chemical groups have distinctive vibrational modes whose frequency is 

equivalent to an infrared photon (wavelength in µm). Thus irradiation of a 

sample with infrared radiation (typically in the region of 4000 – 200cm-1) 

achieves vibrational excitation as the molecule absorbs the infrared energy. 

By comparing the incident IR beam with the transmitted IR beam it is then 

possible to plot the relative transmission (T) at a given wavenumber.  

    T=I / I0 
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Where I is the intensity of transmitted radiation and I0 is the intensity of the 

incident radiation. 

Vibrational modes are active only if there is a change in the molecular dipole 

moment during the vibration, so that antisymmetric vibrations and vibrations 

involving polar groups (such as carbonyls) are more likely to produce strong 

IR absorption bands10. 

The FT-IR method has several advantages over normal infra-red 

spectroscopy.  

1) The whole spectrum is scanned at once, so the time taken to acquire 

a spectrum with identical S/N ratio to a conventional IR spectrometer is 

drastically reduced in comparison to slowly scanning through the entire 

wavenumber range and collection of data is rapid. 

2) There are no slits required in the optics of the spectrometer which 

results in a much higher radiation throughput.  

3) Resolving power in an FT-IR instrument is constant and does not vary 

with wavenumber. 

FT-IR can be combined with the optical phenomenon of total internal 

reflection to study thin films (Figure 2.4). The IR beam is capable of passing 

through the polymer film and will reflect from the dense substrate media 

(gold, silicon, glass).  

 

Figure 2.4. Grazing Angle Reflection in FT-IR 
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Fig 2.5. A beam of light at an interface11 

Snells law11 states that  
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However, when the grazing angle reaches a certain level Snells law fails and 

none of the incident energy propagates into the lower layer. The angle at 

which Snells law fails is known as the critical angle θcrit, and using this angle 

in FT-IR guarantees total external reflection. 

θcrit =cos-1(
2

1

c

c
) 

An FT-IR spectrometer usually consists of a source of infrared radiation and 

a Michelson interferometer before the sample and a detector to examine the 

intensity of the IR beam after is has passed through the sample. 

The Nernst Glower (composed mainly of rare earth oxides) and the Globar 

(a silicon carbide rod) have been used as IR sources in the past due to their 

near-black body emission12. Generally sources such as these are placed at 
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the focal point of a parabolic mirror so that the reflected light produces a 

parallel beam. 

The Michelson interferometer (Figure 2.6) consists of a beam splitter, a fixed 

mirror and a mirror free to move backwards and forwards. The beam splitter 

transmits half of the radiation striking it and reflects the other half. One beam 

is transmitted onto the stationary mirror; the other is reflected onto the 

moving mirror. Both beams then reflect back to the beamsplitter, which again 

transmits half and reflects half, which results in one beam returning to the 

source and the other beam passes through the sample and onto the 

detector.  

 

Figure 2.6. The Michelson Interferometer 

This second beam now consists of a combination of the two separate 

beams, but the introduction of a varying path difference by the moving mirror 

means that the two beams are no longer in phase at all times. This phase 

difference results in constructive or destructive interference, giving peaks or 

troughs in the beam signal at the detector to give an interferogram. By 

application of a Fourier transform procedure and reference to an 

interferogram in which there is no sample present (a background), it is 

possible to separate this total signal into its components. 

There are two types of detectors commonly employed in FT-IR instruments, 

thermal detectors and quantum or photon detectors. Thermal detectors such 

as TGS (triglycine sulphate) have good responses over a wide range of IR 

frequencies and are relatively cheap in terms of cost. The MCT (mercury 
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cadmium telluride) detector is a quantum detector that has much better 

sensitivity and response, but over a smaller range and is cooled with liquid 

nitrogen to improve he signal/noise ratio12. 

Infrared analysis was carried out using a Fourier Transform spectrometer 

(Perkin Elmer Spectrum One) fitted with a liquid nitrogen-cooled MCT 

detector and a total external reflection accessory (SPECAC). Coated silicon 

wafers were examined at a reflection angle of 66°, with spectra averaged 

over 256 scans at a resolution of 4 cm-1
 and baseline corrected. 

2.4 Sessile drop  contact angle 

 

 

Figure 2.7. The contact angle of a sessile drop. 

Measurement of contact angles is an extremely surface sensitive technique, 

sampling the first 5-10 Å of a surface13. A droplet of a liquid such as water is 

placed in the surface and the contact angle measured (Figure 2.7). The 

contact angle on the surface is related to the surface energy, or interfacial 

tension of the surface, and the relationship between the different surface 

tensions is based on Youngs equation14: 

γSV = γLV cosθe+ γSL 

γSV is the surface-vapour interfacial tension, γLV is the liquid-vapour 

interfacial tension, γSL is the surface-liquid interfacial tension and θe is the 

contact angle. Youngs equation can be related to a spreading coefficient, 

S14. 
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S = γSV - γSL - γLV 

This is essentially the difference between the completely dry solid-vapour 

interface and the moist surface covered in a macroscopic film of fluid 

(positive S), to give partial coverage (negative S). So, the greater the 

attraction between the surface and the liquid, the lower γSL will be, therefore 

there is a greater spreading tendency and the contact angle will increase.   

Sessile drop contact angle measurements in this work were performed with 

2 µL droplets of high-purity water (B.S. 5978 Grade 1) using video capture 

apparatus (A.S.T. Products VCA2500XE). 

2.5 Spectrophotometry 

The technique of spectrophotometry involves measurement of the changes 

in reflection and/or transmission of the sample thin film over a range of 

wavelengths of light. By examining the changes in reflection and/or 

transmission it is possible to elucidate the thickness of a film. 

 

Figure 2.8. Reflections from a thin film on a substrate. 

Incident light can be reflected by the air/film interface (blue/red), the 

film/substrate interface (red/green) or transmitted. Different wavelengths of 

light will give constructive/destructive interference depending on the film 

thickness, d15. 

The reflectivity, R, at the air-sample interface is defined as16  

R = [(n-1) / (n+1)]2 
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Where n is the refractive index of the sample, and the sample is non-

absorbing. 

The light that is has passed through the sample will now be out of phase with 

the light reflected directly from the sample surface as is has travelled an 

extra distance, d, through the sample. Taking into account the differing 

refractive index of air and sample we can define the beams optical path [d]  

    [d] = nd 
 
And the optical path difference, [p] between the two beams as  

    [p] = 2[d] = 2nd 

Where the path difference of the beams is equal to an integer (m=1, 2, 3 …) 

the two beams are exactly out of phase, giving destructive interference 

    [p] = mλ 
 
Where the path difference is equal to a half-integer then constructive 

interference occurs. 

    [p] = (m+1/2)λ 

As the path difference varies with the angle of the incident light, θ, the path 

difference can be written as  

    [p] = 2nd cosθ 

The situation is complicated somewhat by the assumption that the film does 

not absorb light. Where light is absorbed, the complex refractive index is 

used 

    N = n + ik 
 
However, where the Cauchy method for modelling n(λ) is used, k(λ) is 

assumed to be zero15 

    n(λ) = A + B/λ2 + C/λ4 
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Leaving three variables to model the reflectivity. 

In general, the amplitude of the oscillations is related to the refractive index 

difference between film and substrate. The period of oscillations with is 

connected to the thickness of the film and vertical positioning of the curves 

gives us information about the absorption in the film and substrate. The 

model can then be refined to present a truer example of the film parameters. 

Typically, reflectometry can measure minimum film thicknesses in the 10-

300Å range, depending on the film in question, although this is increased 

significantly where optical measurements are needed also. 

For thinner layers, ellipsometry should be used. Ellipsometry works is the 

measurement of the change in polarisation of a beam of light on reflection 

from a surface. Ellipsometry measures the reflectance at much lower angles 

and is thus more sensitive to thin layers (e.g. 75° from the normal). 

A spectrophotometer was used for film thickness measurements (nkd-6000 

Aquila Instruments Ltd). Transmittance-reflectance curves over the 350-1000 

nm wavelength range were fitted to a Cauchy material model using a 

modified Levenburg-Marquardt method17. 

2.6 Fluorescence Microscopy 

Fluorescence microscopy operates on the principle that molecules, excited 

by irradiation with light of a specific excitation wavelength, may emit energy 

detectable as visible light upon relaxation back to their ground state.  

Sources such as lasers are used to excite fluorescent materials, and the 

intensity of the resultant fluorescent light is recorded. 

The principle components of a fluorescence microscope are a light source, 

optics, filters and a detector. Filters are present to give a monochrome 

excitation source function to monochromise the excitation light, and to filter 

any excitation light back scattered from the sample surface, which would 

otherwise swamp the fluorescent emission signal.   
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A photomultiplier detector is used to count the emitted fluorescent photons 

and amplify the generated signal.  The emitted photons collected by the 

detector are transformed into a series of electrical signals, which can then be 

digitally recorded and displayed on a computer interfaced to the microscope. 

Additionally, the microscope includes a precise xy stage to allow rastering 

across a sample surface and hence the formation of a three dimensional 

map. 

Fluorescent labelled oligonucleotides or antibodies attached to solid surfaces 

were identified using a Raman microscope system (LABRAM, Jobin Yvon 

Ltd) fitted with a 10x lens and a 20 mW HeNe laser (632.817 nm 

wavelength) which corresponds to the excitation range of the Cy5 

fluorophore. A polarization of 500:1 was employed, and the laser beam 

passed through a diffraction grating of 1800 lines mm-1; a filter permitting 1% 

laser energy transmission was used for all experiments, except for those 

found in Figure 7 where a 10% transmission was used. In the case of glass 

slides, a low-level fluorescence background was noted, with a broad shallow 

peak at approximately 2800 cm-1. In all cases, the signals are normalized to 

the typical glass background signal of 225 counts recorded with untreated 

slides.  

In typical mapping experiments, the sample on a motorized stage is rastered 

under the beam over a 500 µm by 500 µm area, recording a 50 x 50 lattice of 

points. Composite images were examined using LabSpec Pro software. 

Both the DNA and protein microarrays were screened using a Genomic 

Solutions Gene Tac LS IV Microarray Scanner. 

2.7 Estimation of errors 

The main expected source of errors in the data was expected to be in 

sample variability due to potential uncontrolled environmental variables 

during sample preparation. The results presented are the mean averages of 

a given data set, with errors reported as one standard deviation of the data. 

Errors presented for XPS peak fitting and growth rate of layers by 
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reflectometry are based on a minimum data set of three separately 

generated samples. For sessile drop contact angle and fluorescence 

microscopy errors are estimated based on ten separate readings for each 

sample, with the presented error being one standard deviation of the data. 
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3. A substrate independent route for DNA microarray manufacture 

using undec-1-enal 

3.1 Precursor choice and immobilisation chemistry 

Imine formation is known to produce relatively stable bonds. It proceeds via 

an addition-elimination mechanism, with the amine adding to the carbonyl 

followed by the elimination of water. The reaction is acid catalysed, with the 

amine addition to the carbonyl usually being rate determining. Note that the 

reverse reaction is also acid catalysed and that excess acid can reverse the 

reaction (Figure 3.1). 

 

Figure 3.1. Mechanism of imine formation. 

It is also known that aldehydes can be used to form imines for the 

immobilization of amine terminated DNA29. This particular methodology 

requires pre-synthesis of Cl3Si(CH2)10COOCH2CF3 (TETU) in a reaction 

scheme involving ice-cooled reactions under an argon atmosphere in a 

many step process. TETU is then grafted onto glass and reduced to an 

alcohol by LiAlH4 and finally oxidised to an aldehyde. In all, five separate 

reactive steps are required. In this section it will be demonstrated that simple 

imine chemistry can be utilised in combination with the plasma 

polymerisation of a suitable monomer such as undecenal (Figure 3.2).  

Undecenal presents the precursor which combined a commercially available 

molecule with long and flexible aliphatic chain, a classically polymerisable 

bond in the terminal alkene function, and yet remained volatile enough to 

generate a vapour within the plasma reactor. Thus it was desirable to 

combine functionality in availability and deposition with the maximum chance 

of generating a flexible layer on the substrate. 
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Figure 3.2. Radical chain growth polymerization mechanism of an undecenal precursor to 

yield an aldehyde plasmachemical functionalized surface. 

A plasmachemical surface provides many of the important factors for DNA 

hybridisation. An undecenal modified surface offers a flexible linkage to the 

surface due to its long chain. The long carbon chains and relative lack of 

polar groups will offer a high contact angle – preventing spreading of 

droplets during the microarraying process.  

3.2 Experimental 

Plasma polymerization of undec-1-enal (Aldrich, +99%, H2C=CH(CH2)8CHO, 

purified by several freeze-pump-thaw cycles) was carried out in an 

electrodeless cylindrical glass reactor as described in Chapter 2.  

Substrates included borosilicate glass cover slips (BDH), glass slides (VWR 

International, SuperFrost), polished silicon wafer (MEMC Electronics 

Materials).  

Optimum plasmachemical pulsing conditions were established by varying ton 

(between 5 and 50 µs) and toff (between 0.5 and 50 ms), with typical 

O

H
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deposition times varying between 10 – 70 minutes. Upon extinction of the 

electrical discharge, the precursor was allowed to continue to pass through 

the apparatus for a further 5 min prior to venting to atmosphere. Based on 

the results presented later in this chapter, the optimum deposition 

corresponded to a pulsed plasma duty cycle of ton = 15 µs, toff = 20 ms, and a 

peak power of 40 W. All subsequent immobilization experiments used 

undec-1-enal substrates modified using this duty cycle. 

3.2.1 DNA immobilization and hybridization 

DNA immobilization entailed immersing the poly(3-vinylbenzaldehyde) 

plasma polymer surfaces into 1.0 µmol dm-3
 of fluorescently tagged 

oligonucleotide (Sigma-Genosys Ltd, oligonucleotide sequence: 5’-3’ 

AACGATGCACGAGCA, desalted, reverse phase purified, with 3’ terminal 

primary amine and 5’ terminal Cy5 fluorophore) at 42 °C for 16 h in saline 

sodium citrate buffer at pH4.5 (citric acid 99%, Aldrich; NaCl 99.9%, Sigma). 

Subsequently, 3.5 mg ml-1 NaCN(BH3) (Aldrich, 99%) was added, and the 

solution gently stirred for 3 h. Any excess physisorbed oligonucleotides were 

removed by sequential washing in high purity water, saline sodium citrate 

buffer (SSC, 0.3M sodium citrate, 3M NaCl, pH7, Sigma) containing 1% 

(w/v) sodium dodecyl sulphate (Sigma, 10% solution), high purity water, a 

solution of 10% (v/v) stock SSC buffer in high purity water with 0.1% (w/v) 

sodium dodecyl sulphate, high purity water, 5% (v/v) stock SSC buffer in 

high purity water, and finally high purity water.  

For the hybridization studies, oligonucleotide (sequence: 5’-3’ 

GCTTATCGAGCTTTC with 5’ terminal primary amine, desalted, reverse 

phase purified, Sigma-Genosys Ltd) was attached onto the poly(3-

vinylbenzaldehyde) plasma polymer surfaces as described above. These 

surfaces were then immersed in a solution of 50% (v/v) pre-hybridization 

solution (Sigma, from 2x concentrate) and 50% (v/v) formamide (Sigma, 

molecular biology grade) for 1 h. Subsequent removal from solution was 

followed by rinsing in high purity H2O, immersion in a 50% (v/v) high purity 

H2O/50% (v/v) hybridization solution (Sigma, from 2x concentrate) containing 

200 nM oligonucletide (sequence: 5’-3’ GAAAGCTCGATAAGC, desalted, 
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reverse phase purified with 5’ terminal Cy5 fluorophore, Sigma-Genosys Ltd) 

at 20 °C for 1 h. Final washing of these hybridized surfaces was carried out 

sequentially as outlined previously. 

Undecenal plasmachemically functionalized slides were compared to 

commercially available aldehyde functionalized substrates (ALS-25, batch 

03154, CEL Associates Inc., Pearland, Texas). 

3.2.2 Microarray fabrication 

Amine terminated oligonucleotides were microarrayed onto pulsed plasma 

poly(undec-1-enal) coated glass microscope slides using a robotic spotter 

(Genepak). The respective probe solutions were placed into a 384-well plate 

and spotted onto the functionalized slides using a stainless steel pin. 

Typically, four identical 500 µm print pitch arrays were constructed onto each 

slide, using a pin pick-up time of 1 s and a 0.01 s dwell time. The spotted 

arrays were incubated in an oven at 42 °C over a saturated solution of 

K2SO4 (96% relative humidity to keep spotted samples solvated over the 

period of the experiment) for 16 h followed by cleaning as described above 

in order to dislodge any noncovalently-bound material. 

3.3 Results 

3.3.1 Optimisation of duty cycle 

The continuous wave functionalisation (5W) of undec-1-enal yields a surface 

that is oxygen poor in comparison to the theoretical surface based on the 

monomer structure (Figure 3.3). Pulsed plasmachemical functionalisation at 

15 µs ton, 20 ms toff, 40W PP, yields a surface composition that corresponds 

with that expected from the monomer structure (Table 3.1). Additional 

oxygen observed in the case of some pulsed plasmachemical layers is 

attributed to the incorporation of atmospheric oxygen into the coating either 

via minor leaks in the reactor, or via reaction with atmospheric oxygen when 

the reactor is brought up to atmosphere.  
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Figure 3.3. Theoretical surface polymer structure indicating the three 

expected carbon environments 1) CyHx 2) C-C=O 3) C=O 

 

C(1s) 

% 

O(1s) 

% 

Continuous Wave (5 W) 93 ± 1 6.9 ± 1 

Pulsed (15 µs ton, 20 ms toff, 40 

W PP) 91 ± 1 9.1 ± 1 

Theoretical 91.7 8.3 

Table 3.1. XPS atomic composition of plasma polymerised undec-1-enal 

surfaces. 

Examination of the C(1s) envelopes of the continuous wave and pulsed 

plasma polymer of undec-1-enal both consist primarily of CyHx (285.00 eV), 

with a theoretical contribution from C-C=O (285.40 eV) that is not resolved in 

practice  (Figure 3.4). The C=O band is more pronounced (287.80 eV) in the 

pulsed plasma polymer (8.8 ± 0.7 % of the C(1s) envelope area), being 

somewhat obscured in the broader tail on the continuous wave envelope 

(6.7 ± 0.6 % of the C(1s) envelope area)18,19. Similar examination of the 

O(1s) envelope (Figure 3.5) confirms a similar oxygen chemical environment 

in both the pulsed plasmchemical and continuous wave layers. The only 

resolvable peak in each spectrum is a single signal at 532.6 eV which is 

consistent with C=O functions20. However, instrumental resolution may not 

be enough to identify any peaks associated with C-OH (531.7 eV) or COOH 

(~534.0 eV), especially if these signals of low intensity. 
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Figure 3.4. C(1s) Envelopes on by XPS for (a) continuous wave (5 W), (b) 

pulsed plasma (15 µs ton, 20 ms toff, 40W PP) and (c) theoretical poly(undec-

1-enal) on Si wafers. 
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Figure 3.5. O(1s) Envelopes on by XPS for (a) continuous wave (5 W), (b) 

pulsed plasma (15 µs ton, 20 ms toff, 40W PP) poly(undec-1-enal) on Si 

wafers. Peak highlighted is at 532.6 eV.
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Figure 3.6 Variation of the C(1s) envelope with varied pulse on time. 
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The effect of variation in duty cycle was monitored by XPS. Variation of 

pulse ton was shown to have a considerable effect on the composition of 

plasmachemically functionalised surfaces (Figs 3.6, 3.7 and Table 3.2). 

Longer ton durations show increased oxygen content at the surface, with 

larger oxygenated tails observed in the C(1s) envelope.  The theoretical 

polymer oxygen content of 8.3 atomic % corresponds most closely to a ton of 

10 or 15 µs. Additionally, fitting the high-resolution C(1s) envelopes with the 

three expected carbon environments (Fig 3.6, Table 3.2), shows a similar 

trend, with a larger C=O signal at 287.8 eV relative to the total carbon signal.  
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Figure 3.7 Variation in the surface atomic oxygen content (Atomic %) and 

the intensity of the C=O signal (% of the total carbon signal), with varied 

pulse on time. 
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Time on / 
µs 

Time off / 
ms C % O % 

5 20 89.3 10.7 
10 20 92.0 8.0 
15 20 90.9 9.1 
20 20 90.3 9.7 
35 20 83.2 16.8 
50 20 84.8 15.6 

Theoretical   91.7 8.3 
Table 3.2 Variation in the surface atomic oxygen content (Atomic %) and the 

intensity of the C=O signal (% of the total carbon signal), with varied pulse 

on time. 

The effect of pulse off time was similarly monitored by XPS with the surface 

elemental compositions shown in Figure 3.8 and Table 3.3. The extremely 

long and extremely short pulse off-time durations again show increased 

oxygen content, with oxygen signals significantly higher than those predicted 

based on the undec-1-enal structure. The intensity of the C=O peak in the 

carbon 1s envelope follows the same trend (Figure 3.9). In practice, the toff of 

20 ms, was observed to give a relatively strong structural retention. 
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Figure 3.8 Variation of the C(1s) envelope with varied pulse off time. 

 



43 

43 

0 10 20 30 40 50

6

8

10

12

14

16

18

 

 Carbonyl Groups by XPS

Off-time (ms)

P
la

sm
a 

P
ol

ym
er

 C
ar

bo
ny

l G
ro

up
s

(%
 o

f t
ot

al
 c

ar
bo

n 
1s

 a
re

a)

6

8

10

12

14

16

18 Total Oxygen Content by XPS

P
lasm

a P
olym

er O
xygen C

ontent
(%

)

 Figure 3.9 Variation in the surface atomic oxygen content (Atomic %) and 

the intensity of the C=O signal (% of the total carbon signal) with pulse off 

time. 

Time on / 
µs 

Time off / 
ms C % O % 

15 0.5 82.8 17.2 
15 20 90.9 9.1 
15 35 91.4 8.6 
15 50 83.6 16.4 

Theoretical   91.7 8.3 
Table 3.3 Variation in the surface atomic oxygen content (Atomic %) and the 

intensity of the C=O signal (% of the total carbon signal) with pulse off time. 

A comparison of the functionalized surfaces with the undec-1-enal monomer 

by grazing angle FT-IR shows that functionalisation results in the complete 

disappearance of the monomer vinyl C=C stretch at 1637 cm-1 in the case of 

the pulsed plasmachemical layer. Otherwise, the pulsed plasmachemical 

undec-1-enal surface retains the same general profile as the monomer, in 

particular the aldehyde C=O carbonyl band at 1709 cm-1, and the aldehyde 

CHO rock bands at 2810 cm-1 and 2715 cm-1.  
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Continuous wave plasmachemical functionalisation results in significant peak 

broadening and the total loss of the aldehyde CHO rock bands. The broad 

C=O stretching mode may also include some retained vinyl C=C stretch at 

1637 cm-1 (Figure 3.10).  
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Figure 3.10. FT-IR of (a) continuous wave plasmachemical functionalised 

surface (5 W), (b) pulsed plasmachemical functionalised surface (15 µs ton, 

20 ms toff, 40W PP) and (c) undec-1-enal monomer. Highlighted bands are (i) 

& (ii) aldehyde CH stretches (2810 & 2715 cm-1); (iii) carbonyl C=O stretch 

(1717 cm-1)’; (iv) vinyl C=C stretch (1637 cm-1).  
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Figure 3.11 Variation of FTIR spectra of plasmachemical layers with varied 

pulse on time. 
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The effect of the pulse duty cycle was also monitored by grazing angle FT-IR 

of plasmachemical surfaces on silicon wafers. At longer on-times the 

carbonyl shifts to the 1680cm-1 region (Figure 3.11), probably due to 

incorporation of extra oxygen to give carboxylic acid groups. Note also the 

inclusion of extra bands in the C-H stretch region in higher on-time samples. 

There is also a general broadening of all bands within the spectra at on-

times greater than 15µs. Simultaneously, the carbonyl stretching region is 

increased with respect to the C-H stretch region (Table 3.4). 

Time on Time off 
Ratio of C-
H:C=O areas 

5 20 1.5 
10 20 3.1 
15 20 4.1 
20 20 2.0 
35 20 0.4 
50 20 0.3 

CW 6.8 
monomer 2.2 

Table 3.4. A comparison of the area of C-H stretching bands and carbonyl 

bands (1680cm-1 to 1717cm-1) in undec-1-enal polymers, with varied pulse 

on time. 

The FT-IR data (Figure 3.11) correspond closely with the XPS data. The 

oxygenation in several samples is clearly demonstrated by the large 

carbonyl bands in the 1700cm-1 region (Figure 3.11). The broad peak in the 

3230cm-1 region is suggestive of hydrogen bonded C-O-H on the surface. 

Examination of the C-H stretch and C=O stretching envelopes corroborates 

this, and at 20-35 ms off-time suggests only a slight increase in the number 

of carbonyl units present. The relatively sharp IR spectra at 20ms off 

suggests that this off time offers good structural retention. The broad bands 

at 1576cm-1 and 1340cm-1 are suggestive of R-CO2- formation. 
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Time on Time off 
Ratio: C-
H:C=O areas 

15 50 1.4 
15 35 2.1 
15 20 4.1 
15 0.5 0.4 

CW 6.8 
monomer 2.2 

Table 3.5. A comparison of the area of C-H stretching bands and carbonyl 

bands (1680cm-1 to 1717cm-1) in undec-1-enal polymers, with varied pulse 

off time.  

The sessile drop contact angle of the continuous wave surface is 88 ± 2 ° 

and the deposition rate observed by reflectometry is 36 ± 2 nm min-1. Pulsed 

plasmachemical functionalisation yields a contact angle of 87 ± 3° and a 

deposition rate of 1.5 ± 0.6 nm min-1. From a practical perspective, both 

surfaces are at the cusp of wetting – non-wetting. It is advantageous that 

surfaces are not too wetting as this can result in downstream processing 

problems when spotted aqueous solutions can spread, particularly under 

humid conditions. Conversely interactions of aqueous reaction solutions with 

excessively hydrophobic surfaces could be expected to produce poor 

reactions with small spot contact areas. 

Tagging of the surface aldehyde functions for further XPS quantification of 

functional group retention proved inconclusive. Reaction with aqueous 

ammonium hydroxide (pH 9.04) or propylamine (0.25 M, pH 9.12) caused 

complete film destruction. Whilst plasma polymer films are generally stable 

in aqueous solutions, the chemistry of the polymer and the strength of the 

plasma polymer – substrate interface will dictate stability. Higher cross-

linking is commonly used to stabilise acrylic acid plasma polymers for 

instance. For undec-1-enal coatings, such an approach was undesirable as it 

also results in increased fragmentation of functional groups. 

 Exposure of the substrate to TFA vapour in a sealed plasma deposition rig 

produced no change by XPS, presumably as any imines formed are 

destabilised by the subsequent vacuum used to clear the reactor of acid. 
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However, exposure of the substrates to a concentrated cresyl violet 

perchlorate (C12ON3ClO4, Figure 3.12) solution for 24h at room temperature 

did result in the appearance of nitrogen signals in the XPS survey scans, 

which were 69% higher for the pulsed plasma polymer (Table 3.6). Cresyl 

violet can interact with the surface aldehyde groups via the two amine 

functions.  

  Surface Elemental Composition (Atomic %) 
  C (1s) O (1s) N (1s) 
CW Before 94.6 5.4 - 
  After 81.4 17 1.6 
Pulsed Before 89.5 10.5 - 
  After 81.8 15.5 2.7 

Table 3.6. Exposure of continuous wave (CW, 5 W) and pulsed (15 µs ton, 20 

ms toff, 40 W PP) plasmachemical layers to a cresyl violet solution. 

 

 

Figure 3.12. Cresyl violet perchlorate.
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3.3.2 Immobilization of oligonucleotides to undec-1-enal functionalised 

surfaces 

The extent of immobilization of the 5’ Cy5 tagged, 3’ primary amine 

oligonucleotide AM1 (see Table 3.7 for oligonucleotide structures) with 

undec-1-enal functionalized surfaces was examined by fluorescence 

spectroscopy. The effect of temperature on fluorescence intensity was 

examined, showing that 42°C was the optimal temperature for AM1 probe 

immobilization (Figure 3.13). The intensity of the observed fluorescence 

signal was also shown to vary strongly with pH, with the signal remaining low 

at most pH values but showing a marked increase at pH 4.50 and 5.03 

(Figure 1.14).   

  

5' 

Modification 5'-3' Base Sequence 

3' 

Modification 

AM1 Cy5 AACGATGCACGAGCA C13 Amine 

AM2 C13 Amine GCTTATCGAGCTTTC - 

AM3 Cy5 GAAGCTCGATAAGC - 

Table 3.7. Oligonucleotide Probe Structures 



51 

51 

-20 0 20 40 60

500

1000

1500

2000

2500

3000

3500

F
lu

or
es

ce
nc

e 
In

te
ns

ity
 (

A
rb

itr
ar

y 
U

ni
ts

)

Incubation Temperature (°C)

Figure 3.13. Fluorescence intensity as a function of temperature for Cy5 

tagged oligonucleotide reaction with pulsed plasmachemical undec-1-enal 

surfaces (15 µs ton, 20 ms toff, 40W PP). Probe concentration 1.04 µmol dm-3, 

incubation time 24 hours, pH 4.47. 
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Figure 3.14. Fluorescence intensity as a function of pH for Cy5 tagged 

oligonucleotide reaction with pulsed plasmachemical undec-1-enal surfaces 

(15 µs ton, 20 ms toff, 40W PP). Probe concentration 1.04 µmol dm-3, 

incubation time 24 hours, incubation temperature 42°C. 

An increase in AM1 probe concentration yields increased fluorescence 

intensity only above 500 n mol dm-3. The intensity plateaus after 1 µmoldm-3, 

with addition of extra AM1 probe showing no significant increase in signal 

(Figure 3.15). The immobilization reaction was demonstrated to be largely 

complete after about 4 hours (Figure 3.16). 
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Figure 3.15. Fluorescence intensity as a function of probe concentration for 

Cy5 tagged oligonucleotide reaction with pulsed plasmachemical undec-1-

enal surfaces (15 µs ton, 20 ms toff, 40W PP). pH 4.47, incubation time 24 

hours, incubation temperature 42°C. 
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Figure 3.16. Fluorescence intensity as a function of time for Cy5 tagged 

oligonucleotide reaction with pulsed plasmachemical undec-1-enal surfaces 

(15 µs ton, 20 ms toff, 40W PP). Probe concentration 1.04 µmol dm-3, 

incubation temperature 24 hours, pH 4.55. 

Immobilization of AM1 probe to the surface aldehyde functions using optimal 

conditions (temperature 42°C, pH 4.50, probe concentration 1 µmoldm-3, 

time > 4h) was followed by XPS (Figure 3.17). On reaction with an 

oligonucleotide probe containing a primary amine function, AM1, a small 

N(1s) band is observed in the survey scan at 398 eV. This band is not 

observed when control oligonucleotide AM3 that lacks the primary amine is 

used under otherwise identical immobilization conditions, indicating minimal 

non-specific adsorption. The O(1s) band at 533 eV is also observed to 

increase relative to the C(1s) envelope at 285 eV. Occasional trace Na(1s) 

and Cl(2p) bands were also observed (Table 3.8). 
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Figure 3.17. XPS surveys of DNA interaction with aldehyde plasmachemical 

surfaces (a) Surface after treatment with 1.04 µmoldm-3 probe. (b) Surface 

after reaction with 1.04 µmoldm-3 probe containing carbon linker to a primary 

amine. (c) As produced plasmachemical functionalised surface. The dashed 

lines highlight (i) O(1s); (ii) N(1s); (iii) C(1s); (iv) Cl(2s); (v) Cl(2p) 
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Atom Amount (%) 

C (1s) 82 ± 4.0 

N (1s) 2.4 ± 1.3 

O (1s) 15 ± 4.1 

Na 

(1s) 

0.086 ± 

0.086 

Cl (2p) 0.40 ± 0.22 

Table 3.8  Observed XPS bands of AM1 oligonucleotide immobilized (1.04 

µmol dm-3 concentration in pH4.5 SSC at 42ºC) onto functionalised undec-1-

enal surfaces (15 µs ton, 20 ms toff, 40W PP)   

The reaction was also followed using FT-IR. Again, reaction with 

oligonucleotide probe is not observed unless the terminal primary amine 

group is present (Figure 3.18). In the case where a terminal amine group is 

present, AM1, a strong change is observed in the spectrum of the surface 

(Figure 3.18b). In particular, a strong broad band is observed due to primary 

amine stretching in the 3250 cm-1 and amide stretching21 at 3400 cm-1. The 

observed aldehyde CHO shoulder (2815, 2710 cm-1) on the C-H region is 

absent although a strong, broad carbonyl C=O peak is retained at 1722cm-1. 

A strong, broad band is also observed at 1509 cm-1 is attributed to a mix of 

C-N-H in-plane deformation and C-N stretches. Finally, the strong peak at 

1254 cm-1 is attributed to the amide III band22,23. 
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Figure 3.18. FT-IR of chemically immobilised DNA probes on 

plasmachemically functionalised undec-1-enal surfaces (15 µs ton, 20 ms toff, 

40W PP): (a) Surface after treatment with 1.04 µmol dm-3 probe. (b) Surface 

after reaction with 1.04 µmol dm-3 probe containing carbon linker to a 

primary amine. (c) As produced plasmachemical functionalised surface. 

Highlighted bands are (i) amide stretching bands, 3200-3400 cm-1; (ii) 

aldehyde CHO stretch, 2815cm-1; (iii) aldehyde CHO stretch, 2710 cm-1; (iv) 

carbonyl C=O, 1722 cm-1; (v) C-N-H & C-N stretches, 1509 cm-1; (vi) amide 

III band, 1254 cm-1 
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3.3.3. Hybridization of oligonucleotides on undec-1-enal functionalized 

surfaces 

The hybridization of probe AM3 to surface immobilized probe AM2 was 

monitored by fluorescence spectroscopy as a function of probe 

concentration (Figure 4.19). Hybridization was observed with as little as 200 

nmoldm-3 probe in a pH7.5 SSC buffer. Addition of probe up to 1 µmoldm-3 

resulted in a small increase in the overall fluorescence signal. 
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Figure 3.19. Fluorescence intensity as a function of probe concentration for 

Cy5 tagged oligonucleotide hybridisation with a complimentary partner 

surface immobilised on pulsed plasmachemical undec-1-enal surfaces (15 

µs ton, 20 ms toff, 40W PP). Hybridisation in pH 7.50 SSC buffer at room 

temperature for 1 hour. 
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The optimal conditions for constructing an oligonucleotide surface for 

hybridization studies were then used in the fabrication of a DNA array of 

AM2 probe onto the aldehyde functionalized surface (Figure 3.20). Clearly 

defined and regularly spaced fluorescent spots are observed after 

hybridization with AM3, with signals due to non-specific adsorption of the 

Cy5-tagged oligonucleotide minimized to minor background noise. 

Otherwise, the fluorescent spots display strong contrast when compared to 

the low signal from the background. In several cases a ‘coffee ring’ effect is 

observed wherein the outer edges of the spot record a higher fluorescence 

signal than observed in the centre. 

 

Figure 3.20. An array of Cy5 modified oligonucleotides immobilised onto an 

undec-1-enal pulsed plasma polymer surface (15 µs ton, 20 ms toff, 40W PP). 
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3.4. Discussion 

3.4.1. Plasmachemical functionalisation with undec-1-enal 

The introduction of aldehyde functions to surfaces via plasmachemical 

functionalisation of undec-1-enal has been demonstrated. Pulsed 

plasmachemical technology in particular offered several beneficial features 

over continuous wave methods.  

Although there have been previous attempts at plasma depositing aldehyde 

groups from precursors such as acrolein24,25,26, acetaldehyde27, or 

benzaldehyde28, they have all suffered from poor aldehyde group 

incorporation due to either extensive fragmentation of the monomer or the 

absence of a polymerizable carbon-carbon double bond. Silane SAM 

technology for generation of aldehyde functions is not widely used although 

some examples have been generated. The highly-reactive trichlorosilane 

SAM precursors tend to be unstable with aldehydes and some common 

precursors such as alcohols. A typical strategy to overcome this problem is 

to surface immobilize a suitable SAM and subsequently generate an 

aldehyde function on the surface with a second reaction step29,30,31, detection 

limits for DNA are reported by fluorescence microscopy are in sub nM levels. 

The ozonolysis of terminal vinyl groups, resulting in 36% of available surface 

vinyl groups reacting to give surface aldehyde functions32. Deposition of thiol 

SAMs for aldehyde functions is reported, although here the need for a gold 

or thiol substrate surface has limited application for DNA chips. However, 

where the substrate is gold or thiol, the availability of molecules such as di-

(10-decanal)-disulfide allow the direct introduction of aldhehyde functions, 

including also a suitable flexible linker 33,34,35. 

Using the analogy with classical polymerisation, the pulse on time is the 

period in which the free radicals that initiate chain growth are generated. 

Long on-time periods allow for greater radical generation, increasing the rate 

of polymerisation, but also increasing the likelihood that extensive cross-

linking of the polymer chains can take place and that the carbonyl double 

bond will be attacked by radical species.  
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The off-time is the period in which radical initiated chain growth takes place, 

but an increase in off-times allows more time for termination reactions and 

inefficient polymerisation as radical populations decrease. Equally, if the off-

time is too short then the concentration of radicals present will be high 

leading to fast reactions, but possibly less selective polymerisations. 

The complete disappearance of the alkene functionalities in FT-IR and the 

retention of the carbonyl functions in the pulsed polymer strongly suggests 

that polymerisation has proceeded predominantly via the alkene, although 

there is a noticeable increase in oxygenation, as witnessed both in XPS and 

FT-IR with increasing on time. The increasing ether C-O stretch in the IR and 

the presence of a C-O contribution in the XPS indicate that the plasma 

conditions are opening some of the carbonyl bonds leading to an overall loss 

in aldehyde groups. The shifting of the carbonyl in the polymer from 

~1720cm-1 to ~1680cm-1 is also indicative of increased oxygenation and is 

attributed to increased hydrogen bonding and even some CO2- formation on 

the surface. Again, this is most noticeable at high on-times. Both 15µs and 

10µs on-times produce relatively sharp IR spectra and XPS spectra suggest 

their composition is close to that of a theoretical undecenal polymer. The 

increase in oxygenation at on-times >20µs and the good retention of 

carbonyl groups by the 15µs, as well as the clear presence of aldehyde C-H 

stretch in the IR spectrum were taken to indicate that 15µs on offered the 

best retention of aldehydes and, unless otherwise stated, 15µs on has been 

used for the DNA immobilisations.  

With off time variation, the degree of oxygenation proved to be problematic, 

with excessive broadening of the carbonyl group and appearance of extra 

bands suggesting poor retention of monomer structure. Both 20ms and 

35ms off-times showed excellent XPS data, both approaching the theoretical 

monomer composition. However IR showed that the carbonyl in 35ms off is 

noticeably broadened and contains a broad side peak. 20ms off-times 

therefore offered the best retention of carbonyl functionality and were 

retained as optimum. 
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In the case of 15 µs ton, 20 ms toff, 40W PP, composition of the pulsed 

plasmachemical surface by XPS remained close to that of the monomer 

indicating that the structure of the monomer is retained. Continuous wave 

functionalisation resulted in a significant reduction in the O(1s) band and 

reduction in the carbonyl C=O contribution to the C(1s) envelope, indicating 

that the monomer undergoes some fragmentation under these conditions 

(Figure 3.4 and Table 3.1)36.  

The superior structural retention using pulsed technology was also 

discernable in the FT-IR spectrum. Crucially, not only is the carbonyl 

retained, but the bands at 2815 and 2710 cm-1 indicate that the aldehyde 

function is retained. The total loss of these functions in the continuous wave 

functionalisation is accompanied by significant broadening of the remaining 

bands in the spectra, indicating again that fragmentation and crosslinking 

have occurred. The broadening of the carbonyl band itself is indicative of the 

generation of multiple, similarly structured, carbonyl environments.  

This loss of structure in the continuous wave functionalisation is due to the 

relatively strong power input <P>=5W, which compared to that calculated by 

equation (1) as <P>=0.03W 

(1) offon

onP

tt

tP

+

>=< P
 

Where PP is the peak power, ton is the pulse on-time and toff is the pulse off-

time. 

The relative efficiency of the pulsed technology is demonstrated by the 

deposition rate of 50 ± 2 nm min-1 W-1 compared to that of the continuous 

wave method of 7.2 ± 0.4 nm min-1 W-1.
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3.4.2. Immobilization of oligonucleotides to undec-1-enal functionalised 

surfaces 

Reductive amination via imine intermediates is a well characterized synthetic 

route in classic organic chemistry (Figure 3.1). It is also widely used in the 

construction of biomolecule chips37. The use of a reducing agent is 

effectively traps the imine product, and the use of sodium cyanoborohydride 

is well known from classical chemistry38. The optimal conditions obtained for 

the immobilization of oligonucleotide probe AM1 on to plasmachemically 

deposited aldehyde function correspond to those of the Schiff-Base reaction 

(Figures 3.13-3.16), confirming that imine formation is the mechanism of 

immobilization. The temperature dependence is typical of that observed for 

the Schiff-base reaction39. The acid catalysis of imine formation is well 

known (Figure 3.1). The peak at relatively mild pH values (Figure 3.14) 

stems from the reaction kinetics of the protonated tetrahedral intermediate. 

Increasing proton concentration increases the formation of the intermediate 

in the first place, but an excess of protons will act to stabilise this 

intermediate, reducing the formation of the carbinolamine intermediate40.  

The optimal concentration of probe was observed to be at 1000 nmoldm-3. 

The time dependence of the immobilisation is in agreement with literature 

observations and methodology where reaction protocols tend to be in the 

order of hours41.  

Covalent immobilizations are favoured over physisorption methods as the 

non-specific nature of DNA adsorption can cause poor hybridisation 

efficiency, and there is a tendency for the DNA to desorb under hybridisation 

conditions42,43,44.  

The observed hybridisation of surface immobilised AM2 to its complimentary 

oligonucleotide AM3 is also a strong confirmation that the immobilization 

proceeds primarily through the terminal amine and via amine functions in the 

DNA base-pairs. Immobilization via the base pairs would result in extremely 

poor hybridisation efficiency in the case of the 15-base oligonucleotides used 

in this study, as Tm for the AM2 – AM3 pair would drop below room 
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temperature if even one base was inaccessible. Crucially, the as-prepared 

plasmachemical layer also demonstrated minor non-specific adsorption of 

the control probe AM3, thus confirming that the terminal primary amine was 

necessary for efficient immobilization.  

Low non-specific adsorption of probe AM3 was also essential for the 

excellent contrast observed in the final AM2-AM3 arrays (Figure 3.20). The 

inhomogeneity observed in the array spots (‘coffee ring’ effect) is a 

commonly observed feature of arrays caused by drying of the liquid droplet 

on the substrate surface, which causes preferential immobilization at the 

outer ring of the droplet45. A plasmachemical layer utilising a lower contact 

angle was demonstrated to reduce occurrence of this artefact as will be 

discussed in Chapter 4. 

A comparison of fluorescence intensities between plasmachemically 

functionalised aldehyde surfaces and commercially available aldehyde 

functionalised slides showed that, after hybridisation, plasmachemical slides 

yielded 700 ± 70 arbitrary units, whilst commercially available slides yielded 

70 ± 11 arbitrary units. This improvement is attributed to strong functional 

group retention and the ability of the plasmachemical layers to re-arrange to 

allow the oligonucleotides suitable orientation for hybridisation. This relative 

flexibility of plasmachemical layers is a further desirable feature in the design 

of the plasmachemical-based biochip. It has been shown that whilst the 13 

carbon linkers such as those employed in this study can improve 

hybridisation four-fold, the introduction of a more flexible linker ( >40 atoms) 

can increase efficiency 150-fold46. That an identical chemical approach can 

be applied to varying substrate compositions and geometries (e.g. beads, 

wires or well plates) is also advantageous.  

3.5. Conclusion 

Pulsed plasmachemical functionalisation can be used to prepare aldehyde 

functionalised surfaces utilizing an undecenal precursor. The pulsed 

plasmachemical functionalisation of undec-1en-al had been demonstrated, 

and the deposition duty cycle optimised to 15 µs ton, 20 ms toff, 40W PP. 
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These aldehyde functions have been optimised to immobilize and 

subsequently hybridise oligonucleotide DNA strands via the Schiff base 

reaction. The surfaces were also suitable for the generation of DNA 

microarrays, with limited non-specific adsorption and spatial resolution of 

immobilised DNA functions. 
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4. A Substrate Independent Route for DNA Microarray Manufacture 

using 3-vinylbenzaldehyde 

In this section a substrate-independent methodology for covalent 

immobilization of single-strand oligonucleotides onto solid surfaces is 

presented (Scheme 4.1). This entails the immobilization of DNA molecules 

onto pulsed plasma deposited poly(3-vinylbenzaldehyde) surfaces via the 

Schiff-base reaction. The substrate independence of this methodology is 

demonstrated by the functionalisation of substrates including glass, silicon, 

SWCNT’s, polystyrene microspheres. The methodology also allows the 

formation of microwells on the surface of a flat substrate. 

The use of the surface aldehyde functions is also extended to similar 

biological systems. Protein-protein screening chips are demonstrated by the 

use of the IgG – protein G interaction as a model system10. Similarly the use 

of the plasmachemical layer as a substrate for sugar immobilization is 

demonstrated with the model system of amino dextran1. Whilst the strict 

function of DNA molecules is widely understood, and the main interest is in 

identifying the order of the base pairs, for the case of other biomolecules the 

critical interest is in the function of the molecules themselves. By surface 

immobilization of appropriate biomolecules and the study of their interactions 

it is possible to elucidate details about the mechanism of biological 

processes, such as enzymatic activity, immune system interactions. 
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Scheme 4.1. DNA hybridization onto aldehyde functionalized surfaces 
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4.1 Precursor Choice and Immobilisation Chemistry 

The success in functionalising surfaces with an undecenal precursor 

(Chapter 3) demonstrated the applicability of aldehyde precursors for pulsed 

plasmachemical functionalisation and subsequent use in DNA array 

manufacture. Another aldehyde containing precursor is 3-vinylbenzaldehyde 

which offers identical surface functionalisation and DNA immobilisation 

chemistry (Scheme 4.1).  

The use of conjugated double bonded structures such as acrylic acids or 

styrenes potentially offer several benefits over the simple vinyl group present 

in undec-1-enal. Firstly, the delocalisation of radical species potentially gives 

a more stable active species, allowing greater radical generation for a given 

power input, and more efficient, faster deposition. Additionally it is 

speculated that the stability of the aromatic structure will offer some 

protection to the aldehydye carbonyl, to give superior structural retention. An 

ideal case would give an aldehyde functional group independent of the 

conjugated structure of the polymerisable bond, but no such precursor was 

identified. 

The use of the relatively inflexible aromatic group in the precursor will be 

expected to reduce the flexibility of the resultant plasmachemical layer. 

Limiting the degree of cross-linking in the plasmachemical layer will therefore 

be critical in retaining flexibility and thus immobilisation and hybridisation 

efficiency of DNA reactions. 

The ability of plasma functionalisation to functionalise three-dimensional 

substrates such as beads and carbon nanotubes is also demonstrated. 

4.2 Experimental 

Unless otherwise stated, reaction conditions and surface characterisation 

were as outlined in Chapter 2. Identical DNA oligonucleotides and 

associated chemistry were utilised to those in Chapter 3. 
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Plasma polymerization of 3-vinylbenzaldehyde (Aldrich, 97%, 

H2C=CH(C6H4)CHO, purified by several freeze-pump-thaw cycles) was 

carried out in an electrodeless cylindrical glass reactor as described in 

chapter 2. 3-vinylbenzaldehyde was introduced into the reactor at a pressure 

of 0.15 mbar and a flow rate of 7.5 x 10-8 mol s-1 for 5 min prior to reaction. 

Substrates included borosilicate glass cover slips, glass slides, polished 

silicon wafer, SWNT (singlewalled carbon nanotubes +92%, 

MicroTechNano), and polystyrene microspheres (Biosearch Technologies, 

Inc., macroporous, 50 µm). 

Optimum aldehyde functionality incorporation corresponded to a pulsed 

plasma duty cycle of ton = 50 µs, toff = 4 ms, and a peak power of 40 W.  

DNA immobilization, hybridization and microarray construction were carried 

out as outlined in Chapter 3. As well as 3-vinylbenzaldehyde functionalized 

surfaces, commercially available aldehyde functionalized slides were 

examined (ALS-25, batch 03154, CEL Associates Inc., Pearland, Texas). 

4.2.1 Protein immobilization and interaction 

The immobilization of protein G to a commercially available aldehyde-silane 

SAM surface and its subsequent interaction with antibody IgG has been 

described previously10. In this study, a solution of 100 µg ml-1 purified 

recomb protein G (Pierce) in 60% (v/v) SSC/40% (w/v) glycerol was arrayed 

onto the aldehyde pulsed plasma polymer surface and incubated at room 

temperature for 2 h. The surface was then inverted into a solution of pH7 

SSC and 1% (w/v) BSA (bovine serum albumin, fraction V + 96%, Sigma) for 

1 min, flipped face up and left for 1 h, followed by rinsing in fresh buffer. 

The interaction of these arrayed surfaces with antibody IgG entailed 

immersion into a 0.5mgml-1 solution of Alexa Fluor 633 goat anti-mouse IgG 

(Molecular Probes) in combination with 0.1% (w/v) Tween-20 (Aldrich) in 

pH7 SSC for 1 h, and finally washing three times in pH7 SSC, 0.1% (w/v) 

Tween-20. 
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4.2.2 Immobilization of amino-dextran sugar 

Amino-dextran (MW = 70,000 gmol-1, Molecular Probes) has been 

successfully attached to SAM aldehyde functionalized surfaces in the past2. 

For the pulsed plasma polymer surface, the aldehyde functionalized 

substrate was immersed in a solution comprising 0.05g amino-dextran, 10ml 

of high purity water, and 0.15g Na(CN)BH3 for 24 h. The dextran 

functionalized surfaces were then washed thoroughly in H2O for 16 h. 
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4.2.3 Surface characterization 

Surface characterisation by XPS, FT-IR, sessile-drop contact angle, 

reflectometry and fluorescence microscopy is as described in Chapter 2.  

The hybridized DNA polymer microbeads were imaged using the Raman 

microscope system, which was fitted with a 10x lens and a 20 mW HeNe 

laser (632.817 nm wavelength), which corresponds to the excitation range of 

the Cy5 fluorophore. A polarization of 500:1 was employed, and the laser 

beam passed through a diffraction grating of 1800 lines mm-1; a filter 

permitting 1% laser energy transmission was used unless otherwise stated.  

4.2.4 Microwell formation 

A robotic microarray spotter (Genepak) was used to manufacture microwells.  A 

stainless steel pin was utilized and wells printed at a pitch of 350 µm. The pin head 

dwell time was restricted to 1 ms. The 384-well sample plate was loaded with a 

Cy5-fluorophore tagged oligonucleotide (Sigma-Genosys Ltd., oligonucleotide 

sequence: 5’-3’ AACGATGCACGAGCA, desalted, reverse phase purified with 3’ 

terminal primary amine and 5’ terminal Cy5 fluorophore). Imine formation took 

place at 42 °C for 16 h in saline sodium citrate buffer at pH4.5 (citric acid 99%, 

Aldrich; NaCl 99.9%, Sigma).  Subsequently 3.5 mg ml-1 NaCN(BH3) (Aldrich, 

99%) was added and the solution gently stirred for 3 h.  Excess physisorbed probe 

oligonucleotides were removed by sequential washing in high purity water; saline 

sodium citrate buffer (SSC, 0.3M Sodium Citrate, 3M NaCl, pH7, Sigma) with 1% 

sodium dodecyl sulphate (Sigma, 10% solution); high purity water; solution of 10% 

stock SSC buffer in high purity water with 0.1% (w/v) sodium dodecyl sulphate; 

and finally, high purity water; 5% stock SSC buffer in high purity water; high purity 

water. 

Fluorescently labeled oligonucleotides attached to the surface were 

identified using a fluorescence microscope as described in Chapter 2 
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4.3 Results 

4.3.1 Pulsed Plasma Polymerization of 3-Vinylbenzaldehyde 

The deposition of 3-vinylbanzaldehyde was optimised for DNA 

immobilisation (see following sections). XPS elemental surface analysis of 

the optimum 3-vinylbenzaldehyde pulsed plasma polymer for DNA 

immobilisation (ton = 50 µs, toff = 4 ms, and Pp = 40 W) was measured to be 

89 ± 2% carbon and 11 ± 2% oxygen. This was found to be in good 

agreement with the predicted theoretical composition of 90% carbon and 

10% oxygen derived from the monomer structure. The accompanying 

deposition rate was measured to be 70 nm min-1. 

The 3-vinylbenzaldehyde precursor proved to be robust to the plasma 

deposition process. Even 5W continuous wave plasma deposited layers 

showed good structural retention by XPS, with 91 ± 2% carbon and 9 ± 2% 

oxygen. This is also apparent in the high resolution C1s envelopes where 

differences observed were minimal (Figure 4.1). Modelling the C1s 

envelopes also showed very little variation in the structure of the 

plasmachemical layers (Table 4.1). 
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Figure 4.1. 3-Vinylbenzaldehyde Plasma Polymer Carbon XPS Envelopes. 
(a) 50µs-on, 4ms-off Pulsed Plasma Polymer. (b) 5W Continuous Wave 
Plasma Polymer. 
 
Binding Energy (eV) 285 284.8 287.5 
Assignment CyHx Aromatic C Ar-C=O 
Theoretical (%) 22 67 11 
5W Continuous Wave (%) 22 ± 1 67 ± 1 10 ± 1 

 
Table 4.1. Peak fitting of C1s envelopes. 
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A comparison of the infrared spectra obtained for the optimum pulsed 

plasma deposited films with the 3-vinylbenzylaldehyde precursor shows that 

the characteristic aldehyde CHO stretches (2815 cm-1 and 2723 cm-1) and 

the aldehyde C=O stretch (1695 cm-1) are retained relative to the C-H stretch 

region (2836-3030 cm-1), Figures 4.2, 4.3 and Table 4.2. Further 

confirmation of good structural retention is evident from the resolved meta-

substituted phenyl ring bands which include semicircle stretches (1446 cm-1 

and 1478 cm-1) and quadrant stretches (1581 cm-1 and 1595 cm-1). The 

alkene C=C stretch at 1650 cm-1 is absent in both plasma deposited films. 

Note that the resolution of the spectra of the precursor is superior as both 

plasmachemical layers are comparatively thin at 100 nm, compared to a bulk 

droplet of the precursor. There is also considerable loss of resolution in the 

fingerprint region (less than 1600 cm-1), which is particularly pronounced in 

the case of the continuous wave plasma polymer layer. A strong degradation 

here is attributed to the increased fragmentation and cross-linking occurring 

in the plasma, and is expected to be more pronounced in the case of 

continuous wave plasma polymers, with their relatively high power input. 

More variation is visible in FTIR than XPS, although effects are still subtle. 

With varied ton, it can be seen that the intensity of the aldehyde CHO 

stretches at 2815 cm-1 and 2723 cm-1 is highest at ton between 50 µs and 

100 µs. This indicates that whilst carbonyl function and the aromatic 

structure are largely retained irrespective of duty cycle, the aldehyde function 

itself is vulnerable. This is presumably due to loss of the aldehyde hydrogen 

which would not be observable with XPS. 
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Figure 4.2. FT-IR spectra of: (a) 3-vinylbenzaldehyde monomer; (b) 3-

vinylbenzaldehyde 50 µs-on, 4 ms-off pulsed plasma polymer; and (c) 5W 

continuous wave 3-vinylbenzaldehyde plasma polymer. ٭ denotes aldehyde 

absorbances; and ● denotes polymerizable alkene C=C band. 

1650 cm-1 seen for the 3-vinylbenzaldehyde monomer is absent due to 

polymerization. 
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Wavenumber (cm-1) Assignment
2836-3030 C-H stretches

2815 CHO stretch *
2723 CHO stretch *
1695 C=O stretch *
1650 C=C stretch �
1595 Di-substituted benzene quadrant stretch
1581 Di-substituted benzene quadrant stretch
1478 Meta-substituted benzene semicircle stretch
1446 Meta-substituted benzene semicircle stretch
1410 C=CH2 scissors deformation

1386 Aldehyde CH rock
1309 C=CH rock
1145 Meta ring stretch
992 Meta in-phase CH wag
908 Meta single CH wag  

Table 4.2. Assignment of 3-vinylbenzaldehyde infrared absorbances34. (* 

Denotes aldehyde absorbances, and ● denotes polymerizable alkene C=C 

band in Figure 4.2). 
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Figure 4.3 FTIR of plasmachemical films with varied pulse ton. The aldehyde 

CHO stretch is again highlighted. 
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4.3.2 DNA immobilization 

Pulsed plasma deposition conditions corresponding to a duty cycle of ton = 

50 µs, toff = 4 ms, and Pp = 40 W were shown by fluorescence intensity 

measurements to be optimum for both oligonucleotide immobilization and 

subsequent hybridization, Figure 4.4. The viability of these aldehyde group 

functionalized films for microarrays was tested by microspotting DNA. 

Examination of these spots by fluorescence microscopy shows good 

homogeneity and sharp contrast between the plasma polymer background 

and the spots of hybridized DNA, Figure 4.5.  
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Figure 4.4. Fluorescence intensity variation with pulse on-time (ton) for: (a) 

immobilization of Cy5 tagged DNA onto 3-vinylbenzaldehyde plasma 

polymer surfaces (1% excitation laser intensity); and (b) hybridization of Cy5 

tagged DNA to surface immobilized DNA (10% excitation laser intensity). Pp 

= 40 W and toff = 4 ms. 
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Figure 4.5. (a) Cy5 Tagged DNA, AMIPROBEIII, hybridized to spots of 

UAPROBEII DNA on 3-vinylbenzaldehyde pulsed plasma polymer surfaces 

(50 µs ton, 4 ms toff, 40 W Pp); and (b) alternate spots of non-

complementary immobilized ssDNA show no hybridization. 

Comparison of fluorescence intensities between plasmachemically 

functionalised aldehyde surfaces and commercially available slides aldehyde 

functionalised slides showed that, after hybridisation, plasmachemical slides 

yielded 500 ± 140 counts, whilst commercially available slides yielded 70 ± 

11 counts. This difference is attributed to two factors. Firstly, the 

plasmachemical functionalisation in this case has been tailored towards 

reducing the cross-linking of the polymer units and thus also minimise cross-

linking to generate a flexible film – both in the repeat units and the polymer 

backbone itself. Commercial slides utilise a glass-SAM system, which tends 

to restrict flexibility to that offered by individual molecules only. Secondly, a 

SAM is by definition a monolayer. Plasmachemical layers used in this work 

have a thickness in the order of 100 nm. This offers a potential reservoir of 

reactive groups lying just below the surface. Assuming that flexibility and 

reaction conditions allow reactants to reach these, then the use of 

plasmachemical layers potentially gives a thin three-dimensional sponge. 
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Functionalisation of single walled carbon nanotubes was monitored by 

Raman spectroscopy. Surface immobilized ssDNA and the 3-

vinylbenzaldehyde pulsed plasma polymer were found to be invisible, and 

only the single walled carbon nanotube powder was Raman active (1322cm-

1 and 1563cm-1 corresponding to single walled carbon nanotube D-band 

and G-bands5), Figure 4.6. On hybridization with complementary ssDNA 

strands, a sharp increase in counts is observed due to the fluorescent Cy5 

tag, which drowns the single walled carbon nanotube bands, Figure 4.6. 

Exposure of single walled carbon nanotubes or aldehyde functionalized 

single walled carbon  
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Figure 4.6. Raman spectra of 3-vinylbenzaldehyde pulsed plasma polymer 

modified carbon nanotubes (20 mW HeNe laser, 632.817 nm wavelength, 

1% power): (a) untreated CNT on a glass slide; (b) as deposited; (c) control-

exposed to 1 µm Cy5-tagged ssDNA; (d) following immobilization of 

untagged ssDNA; and (e) after immobilization of ssDNA and hybridization 

with Cy5-tagged ssDNA. 
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Figure 4.7 Absorption and Emission spectra of Cy5 dye in pH 7.2 buffer.6
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nanotubes to the complementary fluorescently tagged ssDNA, without prior 

surface immobilization of probe ssDNA, resulted in no observed increase in 

counts, indicating that the increase is due solely to DNA hybridization rather 

than physisorption onto the single walled carbon nanotube or aldehyde 

functionalized single walled carbon nanotube surfaces.  

Pulsed plasmachemical functionalized polymer microspheres were also 

found to be suitable for ssDNA immobilization and subsequent hybridization, 

Figure 4.8. The mircrotomed (cross sectioned) porous beads clearly show 

both immobilisation and hybridisation of Cy5 tagged DNA molecules onto the 

surface. There also appears to be a more intense signal in the outer layers 

of the beads, to approximately 10 µm. Other substrate materials 

functionalized using this approach included copper wire and non-woven 

polypropylene. The Cy5 fluorescent group has an adsorption maximum at 

643 nm, with its emission peak at 667 nm (Figure 4.7).  
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Figure 4.8. Cy5-tagged ssDNA immobilization (LHS) and hybridisation to 

complementary ssDNA (RHS) for 3-vinylbenzaldehyde pulsed plasma 

polymer functionalized polystyrene beads: (a) visible; and (b) fluorescence 

microscopy. 

4.3.3 Protein-protein interactions 

Interaction of antibody IgG with the robotically spotted protein G surface 

produced clear fluorescent spots with a sharp contrast between the 

background and surface immobilized IgG regions, Figure 4.9. 
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Figure 4.9. Fluorescently tagged IgG binds preferentially with robotically 

spotted Protein G immobilized on pulsed plasma polymerized 3-

vinylbenzaldehyde surfaces. 

4.3.4 Dextran immobilization 

The presence of nitrogen on the dextran treated plasma polymer surface 

was taken to indicate the immobilization of aminodextran. The surface 

elemental composition was determined to be 71 ± 4 : 25 ± 4 : 4 ± 1 for C : O 

: N. A sharp drop in the sessile drop water contact angle was observed from 

76 ± 2° for the plasma polymer to 53 ± 6° for the dextran functionalized 

surface. 

4.3.5 Microwell Formation 

Microwell formation takes place when the microarray pin comes into direct 

contact with a suitable substrate, leaving a physical three dimensional structure. It 

is a different process to classic microarray printing such as that observed in 

Chapter x, in which the objective is simple deposition of a liquid droplet, leaving 

substrate topography unchanged. 

Microwell manufacture takes place in two steps. Firstly, a suitable polymer film is 

deposited onto the substrate by plasma polymerisation. In this case a hard 

borosilicate glass microscope slide was the substrate, with a relatively thick 3-

vinylbenzaldehyde plasmachemical layer. The thickness of this coating was 

measured by reflectometry as 205 nm. Secondly, wells are printed into the 

polymer surface using a robot (Figure 4.10). As the robot uses a split pin to 
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deliver the liquid droplets, the produced microwells show a distinctive pairing of 

two adjacent wells. It is not expected that a split pin is required to form the 

microwells; it is simply the smallest pin head that was available at the time of 

manufacture. Examination of derivatized microwells by fluorescence microscopy 

showed a regular array of microwells, with each point containing the expected two 

wells formed by the split pin (Figure 4.11). 

Examination of the surface by AFM shows the dual microwell structure clearly 

(Figure 4.12). Section analysis of the height image showed that the wells are 178 

nm deep and surrounded by a rim of 0.3-3.0 µm height (Figures 4.13 and 4.14). 

This well depth also corresponds closely to the plasmachemical layer thickness.  
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Figure 4.10. Manufacturing microwell arrays. The substrate is first treated 

with a plasma polymer, a robot is then used to drop a steel pin onto the 

surface. Repeated punching with the pin results in array formation  
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Figure 4.11. Fluorescent microscopy map of derivatized microwell array on a 

3-vinylbenzaldehyde surface. The print pitch of the array is 350 µm. The dual 

punctures at each point correspond to the split in the pin used during 

manufacture. 
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Figure 4.12. AFM height study of a microwell pair formed by the split-pin.  
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Figure 4.13. AFM section analysis of a microwell pair formed on 3-
vinylbenzaldehyde plasma polymers. The height difference between the two 
arrows is 178 nm. 
 
4.4. Discussion 

Introduction of aldehyde functions to surfaces was again demonstrated, 

albeit via the styrene-like precursor 3-vinylbenzaldehyde. The precursor itself 

appears more robust than the previously utilised undecen-1-enal, with the 

optimum duty cycle utilising a longer pulse on time of 50 µs. Even using a 

5W continuous wave plasmachemical layer very little variability in chemical 

composition is observed by XPS. Examination by FTIR also showed a strong 

preservation of the aldehyde functions in the precursor at the 50-100 µs, with 

very little change in the C-H fingerprint region (below about 1600 cm-1). 

Given the subtle differences observed, it was decided to pick the optimum 



95 

95 

deposition conditions based on the immobilisation and hybridisation of 

oligonucleotides onto the surface (Figure 4.4). The pulse ton of 50 µs shows 

a marginal peak in immobilization intensity, although the errors (one 

standard deviation of the data) are large enough to suggest that 75 µs would 

also be applicable for DNA immobilization. 

A similar trend is also observed for the hybridisation of complimentary DNA 

onto surface immobilized DNA strands. Again the relatively wide errors 

observed do not preclude the use of 75 µs as ton. In many respects Figure 

5.xb represents the critical measure of the substrate performance for use in 

DNA chips, as the ability of the immobilized DNA to hybridize with the 

unknown probe is the critical function of a DNA chip. This maxima observed 

in both the case of immobilisation and hybridisation of DNA was sufficient to 

justify this duty cycle as the optimum for DNA immobilization and 

hybridisation. 

Previous attempts to form plasmachemical layers with aldehyde functions 

have had only limited success as discussed previously. The closest 

analogous precursor benzaldehyde7, suffered particularly in that the optimum 

route for aldehyde retention requires disruption of the benzene ring to initiate 

cross-linking and polymerisation. Thus deposition conditions cause 

extensive fragmentation of the molecule structure and loss of aldehyde 

function. It is believed that the loss of aldehyde groups observed in the 

current work at longer pulse ton were due to mild fragmentation of the CHO 

group, presumably with the loss of the aldehyde hydrogen. An interesting 

future experiment would be to produce thick enough plasmachemical layers 

to allow recovery for NMR experiments. 1H NMR would provide a potential 

tool to predict the potential efficiency of the plasmachemical layer for DNA 

immobilisation, by identifying the number of aldehyde functions.  

The use of 3-vinylbenxaldehyde for functionalisation of porous beads was 

also examined (Figure 4.8). Again strong signals are clearly observed for 

both immobilization and hybridization. Interestingly the intensity is noticeably 

higher in the outer layers to approximately 10 µm depth into the beads. This 

difference could be due to two reasons, both due to penetration into the 
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bead bulk structure. Firstly, the depth of plasmachemical functionalisation 

with the precursor may be limited by the rate of diffusion into the beads 

whilst the precursor is simultaneously reacting. Secondly, the ability of large 

molecules such as oligonucleotides to diffuse deep into the beads 

themselves may be limiting. If the first case is limiting then using milder duty 

cycles would be expected to result in deeper penetration of the aldehyde 

function. 

Reductive amination via imines is a widely-used route to yield amines from 

aldehydes and ketones8. As well as its wide use in classic synthetic 

chemistry, Schiff-base chemistry has been utilized extensively in the 

immobilization of biomolecules such as DNA9 or proteins10 to aldehyde 

functionalized surfaces. One interest in the current Chapter was whether the 

very specific chemistry generated for the use of immobilising single-stranded 

DNA onto plasmachemical DNA chips could be extended to other commonly 

used biological systems. Hence the use for protein-protein interactions in 

which the IgG and protein G interaction acted as a model reaction. Figure 

5.6 shows clearly that the Cy5 tagged IgG react preferably with the surface 

immobilised protein G. Again, this reaction is spatially resolved. This 

demonstrates that the plasmachemical substrate is applicable to other chip 

types and that the optimal substrate is applicable for use in other non-DNA 

based systems. 

Dextran surfaces have been widely reported as being protein-repellent, and 

thus are of major interest in anti-fouling coatings – where prevention of non-

specific adsorption of proteins from biological media is a key step in 

preventing colonization by cells11121314. These include SPR chips and low-

protein binding substrates for column chromatography15. 

Interaction of even 3% of bases contained in a DNA strand with the surface 

has been previously shown to make DNA inaccessible to hybridization1617. 

The hybridization of surface immobilized ssDNA verifies that the Schiff-base 

reaction proceeds predominantly through the terminal amine of the 

oligonucleotide strand. Figure 4.5b shows that the spotted DNA chip is 

capable of differentiating between different DNA strands immobilised on the 
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surface. The deposition technology thus gives a functional DNA chip, with 

relatively simple manufacturing methodology, that is widely applicable to a 

range of substrates.   

Carbon nanotubes are of particular interest due to their unique physical and 

chemical properties, including exceptional mechanical properties18, and 

electrical19 and thermal conductivity20. The introduction of ssDNA onto 

SWCNTs has already been shown to enhance CNT dispersion in aqueous 

media for nanodevice fabrication21, and opens the door to precise patterning 

of CNT layers. Indeed, the use of DNA as a template for molecular electronic 

devices22 DNA functionalized beads have potential use in the field of 

combinatorial chemistry23. Unfortunately, CNTs are difficult to functionalise, 

and this route allows simple introduction of aldehyde functions. Given the 

nature of plasmachemical functionalisation this also allows any 

plasmachemical function to be introduced onto the CNTs with analogous 

methodology, without any complex chemistry. Further, the use of such a 

plasmachemical layer is applicable to either powders or bulk materials 

containing CNTs, such as electrodes.  

The flexibility of plasmachemical functionalized layers is an advantageous 

factor. Biologists have recognised the need for flexible linker layers to 

improve hybridization efficiency, showing that even linkers of <28Å can 

increase hybridization four fold24, whilst linkers >40Å offer a 150-fold 

increase in hybridization efficiency25. This superior flexibility leads to 

improved hybridisation efficiency observed in comparison with commercial 

silane-based slides. The efficiency of the current methodology is 

demonstrated by the formation of arrays that are capable of immobilising 

DNA, and critically, hybridising tagged DNA. Interestingly, the flexibility of the 

plasmachemical layer can also be exploited to yield three dimensional 

structures on the substrate surface. 

Suitably thick aldehyde films from a 3-vinylbenzaldehyde precursor can also be 

punched to form 3-dimensional structures on the substrate surface. In this case 

an arraying pin is utilized to punch a 350 µm pitched array of wells into a glass 

substrate. The as-produced wells are 10 x 25 µm, with a depth of 178 nm, and 
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are functionalized with the oligonucleotides present on the pin. The formation of 

such three dimensional structures with such a simple methodology would be 

expected to be applicable to other similar plasmachemical layers. Indeed, it can 

be speculated that multiple plasmachemical layers could be deposited onto one 

substrate, with subsequent microwell formation allowing multiple chemistries to 

be presented at once, with controlled spatial resolution. For instance it might be 

desirable to utilize a surface hydrophobic layer26 over the 3-vinylbenzaldehyde in 

order to prevent spot spreading during hybridization, and to reduce the non-

specific adsorption of molecules onto the bulk DNA chip surface. Critically, 

plasmachemical fictionalization allows excellent control of layer chemistry and 

thickness, whilst the combination with robotic spotting allows this to be combined 

with precise spatial resolution. 
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Figure 4.14. 3D AFM image of a microwell which emphasizes the height of the 

continuous rim formed around the well. 

4.5. Conclusions 

Aldehyde functionalized surfaces can be prepared by pulsed 

plasmachemical deposition using 3-vinylbenzaldehyde precursor. The duty 

cycle was optimised to produce surfaces suitable for both DNA 

immobilization and hybridisation. Subsequent Schiff-base chemistry leads to 

the efficient surface immobilization of oligonucleotides, proteins, and sugars 

onto a range of substrates which includes glass, silicon, polymer 

microspheres, and carbon nanotubes. The formation and functionalisation of 

microwells on the plasma polymer surface is also demonstrated.
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5. A Substrate independent route for DNA surface hybridisation using 2-

bromoethylacrylate 

5.1 Precursor choice and immobilization chemistry 

The use of surface immobilised bromine groups for DNA microarray 

construction is relatively rare, with few previous reports of such systems in 

use14,1,2. Bromine is a widely used leaving group in organic chemistry, so the 

introduction of bromine onto a surface should allow a nucleophile, such as the 

commonly available thiol-modification on oligonucleotides to covalently 

immobilise onto the functionalised surface (Scheme 5.1, Figure 5.1).  

 

Scheme 5.1. Construction of DNA chips via plasmachemical functionalisation 

with 2-bromoethyl acrylate. 
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Figure 5.1. Acid/base catalysed reaction of a thiol with a C-Br bond 

Pulsed plasmachemical functionalisation offers a simple potential route to 

brominated surfaces with good structural retention. 2-bromoethyl acrylate was 

selected as a suitable precursor – the acrylate group being particularly suitable 

for plasma functionalisation. The acrylate group has been used successfully in 

a number of plasmachemical functionalisations3,4,5,6,7, and it is hoped that the 

presence of the classically polymerisable acrylate function will help to protect 

the C-Br functional group. 

With regards to the choice of reaction chemistry, it should be noted that a 

thiolated substrate surface presents an attractive choice for thiolated DNA 

immobilisation, but that this chemistry has already been accomplished via the 

plasmachemical route8. 

In a more general sense, bromination of a polymer surface is known to improve 

properties such as adhesion9 or wettability10 when applied to a polymeric 

substrate. As such there has been considerable interest in bromination 

reactions, although the survival of the relatively weak C-Br bond (~366 KJ mol-

1) through multiple reaction steps (or generation in situ) is problematic. UV and 

thermal activated grafting of bromine gas to polyethylene11, has allowed a 

bromine loading of 4.6-6.6 bromine atoms per 50 monomer units is reported. 
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Bromine-containing molecules have also been tethered directly to cellulose 

substrates by esterification of the cellulose –OH groups12,13 

In the biological field, self-assembled monolayers of brominated silanes have 

been utilised to surface tether thiolated oligonucleotides14 or proteins via the 

thiolated side chains naturally present on the cysteine amino acid15,16,17. 

However, as the immobilization chemistry is based on the formation of a silane 

network, this technology is only applicable to glass substrates. Surface bromine 

loading levels are typically not reported, but assuming complete 

functionalisation would amount to 7 atomic%17. 

Finally pulsed plasma polymerisation of species such as bromoform (HCBr3) 

allows the introduction of C-Br bonds directly to the polymer surface, where up 

to 40 C-Br functions are present per 100 C atoms. However, this is typically 

reduced to about 20 C-Br (or ~17 At% bromine) functions after immersion in 

solvent removes weakly bound small molecular fragments18. This process 

produces multiple reaction pathways as the weak C-Br bond breaks, leaving a 

structure of (CBrx)n (x = 0, 1, 2, 3; crosslinking and hydrogen atoms forming the 

remaining bonds). A more ideal case would be the use of a carefully tailored 

pulsed plasma polymer containing a readily polymerisable function to 

encourage structural retention. 

5.2 Experimental 

Pulsed plasma polymerisation of 2-bromoethyl acrylate, (Aldrich +99%), was 

carried out in an electrodeless cylindrical glass reactor as described in Chapter 

2. 2-bromoethyl acrylate monomer vapour was introduced into the reactor at a 

pressure of 0.30 mbar and 5.2 x 10-9 mol s-1 flow rate for 5 minutes prior to 

reaction.  

The immobilisation of DNA and subsequent hybridisation follow the method 

outlined in Chapter 2, except that oligonucleotide strands were modified with 3’-
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terminal thiol modifications. Arrays were incubated at 60°C, pH9.0 unless 

otherwise stated.  

Surface characterization techniques are outlined in Chapter 2. 

5.3. Results 

5.3.1. Plasmachemical Functionalisation with 2-Bromoethyl Acrylate 

XPS analysis of plasmachemical functionalised 2-bromoethylacrylate surfaces 

deposited onto borosilicate glass coverslips showed excellent retention of the 

precursor structure. Bands corresponding to Br (3d) (71 eV), Br (3p) (184 eV), 

C (1s) (285 eV), and O (1s) (533 eV) were observed in survey spectra (Figure 

5.2)19. Plasmachemical functionalisation yielded surface compositions that 

closely correspond to that of the theoretical polymer, although with a small 

increase in bromine content at the surface (Table 5.1).  

 
Surface Concentration 

(Atomic %) 

 C (1s) O (1s) Br (3d) 

ton = 20 µs, toff = 
10 ms, 40W PP 

60 ± 3 23 ± 4 17 ± 4 

ton = 30 µs, toff = 
10 ms, 40W PP 

61 ± 2 23 ± 3 16 ± 5 

Continuous Wave 
(10W) 

60 ± 1 23 ± 3 18 ± 3 

Theoretical 62.5 25 12.5 

Table 5.1.  Surface atomic composition of plasmachemical functionalised 2-

bromoethyl acrylate surfaces on silicon wafers. 
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Figure 5.2.  XPS survey scans of bromoethyl acrylate plasmachemical surfaces 

under various deposition regimes (a) Pulsed deposition (ton = 30 µs), (b) Pulsed 

deposition (ton = 20 µs), (c) 10 W continuous wave deposition. Bands 

corresponding to Br (3d) (71 eV), Br (3p) (184 eV), C (1s) (285 eV), and O (1s) 

(533 eV) are highlighted. 
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High resolution C (1s) envelope scans of the functionalised surfaces confirmed 

the superior structural retention of the pulsed plasmachemical systems when 

compared to the continuous wave system (Figure 5.4). In particular, the side 

band in the C (1s) envelope at 288.5 eV (O-C=O) is pronounced in the pulsed 

systems but largely absent in the oxygenated tail due by precursor 

fragmentation in the continuous wave plasma. The remainder of the envelope is 

attributed to the five carbon environments below: CxHy (285.0 eV), C-C=O 

(285.6 eV), C-O (286.4 eV), C-Br (286.0eV) (Figure 5.3)20. 

Examination of the high resolution Br (3d) envelope shows a single peak at 

69.4 eV (Figure 5.5)21. This is consistent with ionic Br- rather than C-Br, 

suggesting that significant loss of C-Br function has taken place at the 

plasmachemical layer surface. 

 

Figure 5.3. C(1s) environments present in the theoretical polymer 
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Figure 5.4.  C(1s) envelopes by XPS of plasmachemical functionalised bromine 

surfaces (a) pulsed (ton = 30 µs), (b) pulsed (ton = 20 µs), (c) 5 W continuous 

wave, (d) theoretical C(1s) envelope assuming no monomer fragmentation. 
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Figure 5.5 Br (3d) envelope of pulsed plasmachemical functionalised bromine 

surface (ton = 30 µs). 

FT-IR analysis of the plasmachemically functionalised surfaces also indicated 

superior structural retention in the pulsed systems. The pulsed systems give 

sharp, strong signals with bands closely corresponding to those observed in the 

monomer (Figure 5.6). In particular the C-Br stretch (570 cm-1) and bands 

corresponding to the ester group (C=O stretch, 1728 cm-1; C-O stretch, 1180 

cm-1) are retained in the pulsed system. Bands observed in the monomer from 

the alkene (e.g. C=C stretch, 1620 cm-1 & 1636 cm-1; CH deformation, 1409 cm-

1; trans =CH rock, 1297 cm-1; cis =CH rock, 1267 cm-1; =CH2 rock, 1079 cm-1) 

are absent in the functionalised surfaces, indicating loss of the alkene 

functional group.  



110 

110 

By contrast, the continuous wave system shows significant loss of bands and 

broadening in the spectrum. A significant band is observed in the –OH region 

(3400 cm-1) suggests the creation of significant alcohol functionality in the 

surface polymer. Although broadened, the C=C bands at 1620 & 1633 cm-1 are 

retained, indicating that the continuous wave conditions were not conducive to 

reaction through the double bond. 

Examination of the surfaces by sessile drop contact angle showed a marked 

difference between the pulsed and continuous wave systems, with the 10W 

continuous wave system giving a contact angle of 73 ± 1° and the pulsed 61 ± 

3° (ton=30 µs). Deposition rates as measured by reflectometry were 30 ± 3.3 nm 

min-1 for the continuous system (10W), with pulsed functionalisation proceeding 

markedly slower – 1.4 ± 0.3 nm min-1 at ton=20 µs, and 7.5 ± 1.0 nm min-1 at 

ton=30 µs. 
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 Figure 5.6.  Infrared spectra of (a.) 2-bromoethylacrylate monomer, (b.) 10 W 

continuous wave plasma polymer, (c.) pulsed plasma polymer (time on = 20 µs, 

time off = 10 ms, peak power = 40 W), and (d.) pulsed plasma polymer (time on 

= 20 µs, time off = 10 ms, peak power = 40 W) 22,23. 
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5.3.2 DNA immobilization 

The effect of various reaction parameters on immobilisation efficiency of the 

thiol modified probe TH1 (for probe structures see Table 5.2) was followed by 

fluorescence spectroscopy of the Cy5 tag. The intensity of immobilised 

oligonucleotides were highest at increased temperature (60°C), although a 

significant rise in immobilised DNA was also observed below freezing (-18°C, 

Figure 5.7). pH also had a marked effect upon the intensity of the observed 

fluorescence signal, with a strong peak at pH 9.00, with immobilisation 

particularly poor at neutral pH (Figure 5.8). The reaction was observed to reach 

completion after 5 hours (Figure 5.9).  

        

  

5' 

Modification 5'-3' Base Sequence 

3' 

Modification 

TH1 Cy5 AACGATGCACGAGCA C13 Thiol 

TH2 C13 Thiol GCTTATCGAGCTTTC - 

TH3 Cy5 GAAGCTCGATAAGC - 

Table 5.2. Oligonucleotide Probe Structures 
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Figure 5.7. Fluorescence intensity as a function of temperature for Cy5 tagged 

oligonucleotide reaction with pulsed plasmachemical 2-bromoethyl acrylate 

surfaces (20 µs ton, 10 ms toff, 40W PP). Probe concentration 200 nmol dm-3, 

incubation time 24 hours, pH 9.33. 
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Figure 5.8. Fluorescence intensity as a function of pH for Cy5 tagged 

oligonucleotide reaction with pulsed plasmachemical 2-bromoethyl acrylate 

surfaces (20 µs ton, 10 ms toff, 40W PP). Probe concentration 200 nmol dm-3, 

incubation time 24 hours, incubation temperature 60°C. 
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Figure 5.9. Fluorescence intensity as a function of time for Cy5 tagged 

oligonucleotide reaction with pulsed plasmachemical 2-bromoethyl acrylate 

surfaces (20 µs ton, 10 ms toff, 40W PP). Probe concentration 200 nmol dm-3, 

incubation temperature 60°C, pH 9.33. 
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Figure 5.10. Fluorescence intensity as a function of probe concentration for Cy5 

tagged oligonucleotide reaction with pulsed plasmachemical 2-bromoethyl 

acrylate surfaces (20 µs ton, 10 ms toff, 40W PP). pH 9.33, incubation time 24 

hours, incubation temperature 60°C. 

200 nmol dm-3 of probe allowed the reaction to reach completion (Figure 5.10). 

5.3.3 DNA hybridisation on bromine functionalised surfaces 

The probe TH2 was immobilised onto the 2-bromoethyl acrylate functionalised 

surfaces for the hybridisation of the complimentary TH3 target. This reaction 

was followed by fluorescence microscopy and yielded 14,000 ± 8000 counts 

(85 % of the peak immobilisation signal at pH 9.0) indicating that the surface 

immobilised TH2 is suitable for hybridisation reactions. 
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The optimal conditions yielded above were then applied to production of an 

array of TH2 on a 2-bromoethyl acrylate functionalized surface. Arrays formed 

using this system proved to be difficult to image, with high background signals 

being observed across the whole substrate surface and very poor definition of 

individual spots. Close examination of the surface shows a distinctive mottled 

texture across the whole surface, with the hybridised probe showing as more 

intense signals on the mottled background (Figure 5.11). No signal was 

observed from control surfaces of 2-bromoethyl acrylate lacking surface 

immobilised TH2 oligonucleotides. 
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Figure 5.11. Typical fluorescent image of an arrays on the 2-bromoethyl 

acrylate surfaces (20 µs ton,10 ms toff, 40W PP). Surface tethered probe 

concentration 200 nmol dm-3, incubation time 24 hours, incubation temperature 

60°C, pH 9.27, 100 µm diameter head pin used. Hybridisation under conditions 

outlined in Chapter 3. (a) High resolution image of an array, (b) large detail of 

an array on a microscope slide, showing the mottled appearance of the 

background. Scale bars 750 µm. 
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5.4. Discussion 

5.4.1 Bromoethyl acrylate functionalization 

Production of bromine functionalised surfaces by pulsed plasmachemical 

functionalisation yielded good structural retention when compared to the 

continuous wave system. The improved structural retention of the pulsed 

system is a significant improvement over previous continuous wave 

functionalisations of precursors, with polymerisation primarily taking place 

through the C=C group. However, the relatively weak C-Br bond is not retained 

on the functionalised surface, with bromine content observed to be higher than 

expected from the theoretical monomer structure. This observation is consistent 

with previous plasmachemical functionalisation methods used to produce 

bromine-containing surfaces, especially at low duty cycles24. The significantly 

higher contact angle for the continuous wave system also indicates structural 

damage and a more cross-linked polymer layer. 

There is something of a contrast between the XPS data, particularly the Br (3d) 

envelope, and the bulk FT-IR data. The Br (3d) envelope suggests an almost 

complete loss of the C-Br function, with only a single peak corresponding to 

bromine salts or ionic bromine at 69.4 eV, rather than the C-Br peak expected 

at 76-77 eV (Figure 5.5). Conversely, the FT-IR shows retention of the C-Br 

band at 570cm-1, albeit with a possible reduction in intensity compared with the 

precursor (Figure 5.6). These results would suggest that whilst C-Br functions 

are retained in the bulk, there is little retention within the outer 10 nm of the 

plasmachemical layer. However, the flexible nature of plasmachemical layers 

has already been discussed in previous chapters, which might still allow access 

of the thiolated DNA to the functional groups deeper into the bulk of the 

plasmachemical layer. Secondly, with reference to Figure 5.1, an ionic Br 

function might also leave reactive groups present on the substrate surface. In 

retrospect, a washing experiment might also have helped to highlight any 
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presence of loose fragments on the substrate surface such as H-Br or ionic 

species. 

The pulsed plasma polymerisation of 2-bromoethylacrylate presents a relatively 

attractive method when compared to others in the literature (Table 5.3). Pulsing 

is crucial for structural retention, as is the monomer choice –the polymerisable 

acrylate group allows improved structure retention, as opposed to H3CBr18, 

dibromomethane (CH2Br2)
24, or allyl bromide24. The relatively high Br loading 

compares favourably with other methodologies, and the pulsed plasma 

technology is more generally applicable than many of the alternatives which 

require specific substrate surfaces. 
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Br Reported 

(Atomic %) 

Br Estimateda 

(Atomic %) 

Method Reference 

7.00 N/A Esterification of cellulose 12 

N/A 6.19 UV/thermal graft to polyethylene 11 

N/A 3.3 UV/thermal graft to polyaminonitrile 25 

N/A 10 UV bromination of silane SAM 26 

N/A 6.25 Silane SAM 27 

6.69 N/A Thermal graft on carbon black 28 

N/A 10 Vapour adsorption to 

poly[1(trimethylsilyl)-1-propyne 

29 

42 N/A Pulsed plasma polymerisation 14 

16 ± 5 N/A Pulsed plasma polymerisation Present 

Table 5.3. Typical bromine loadings by various techniques. a) As % Br is often 

not reported, this estimated value is based on the maximum reported Br loading 

in each case. 

Equation (1) was again applied in order to establish the power applied during 

the deposition. The continuous wave system of <P> = 5W, compares to <P> = 

0.08W (ton = 20 µs) or 0.12W (ton = 30 µs). The relatively gentle power input of 

the pulsed systems results in a lower degree of fragmentation and a better 

structural retention in the plasmachemical surface. The corresponding 

deposition efficiencies of 6 ± 0.7 nm min-1 W-1 (5W CW), 173 ± 4 nm min-1 W-1 

(ton = 20 µs) and 63 ± 9 nm min-1 W-1 (ton = 20 µs) illustrate the superior 

efficiency of the pulsed plasmachemical technology. 

5.4.2 DNA immobilization 

Whilst the increase in immobilisation intensity at higher temperatures can be 

attributed to improved reaction due to the extra energy, this explanation is 

insufficient at lower temperatures where the intensity would be expected to be 
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lower still. The increase in observed immobilisation of thiol (and 

phosphorthioate) modified oligonucleotides to brominated surfaces at low 

temperatures has been observed previously - this is attributed the reagents 

being forced into intimate contact as the lattice of ice forms, resulting in an 

increase in signal14,1. The use of sub-zero temperatures also resulted in film 

surface damage, with consequent reproducibility problems. 

The influence of pH – which results in reaction maxima in both acidic (pH = 

3.95) and basic (pH = 9.33) conditions, with very little reaction at neutral pH. At 

basic pH deprotonation of the thiol –SH occurs to allow nucleophilic attack, with 

bromine acting as a leaving group. Similarly at acidic pH, protonation of the Br 

atom can occur, which weakens the C-Br bond and again allows nucleophilic 

attack by lone pairs on the sulphur. 

Extreme pH values (<3.96 , >9.33) were observed to result in damage to the 

plasmachemical layer, and were therefore not suitable for microarray the 

immobilisation reaction. However, these pH ranges lie significantly outside the 

range expected in the working life of microarray systems which typically 

operate at neutral pH to simulate biological processes. 

Array manufacture proved to be extremely difficult with the 2-

bromoethylacrylate system. The poor resolution and apparent spreading of the 

oligonulcleotides to cover the entire surface could be attributable to several 

factors. The most common cause of noise in microarray systems is non-specific 

adsorption of tagged oligonucleotides onto the surface, but control experiments 

in which the plasmachemical layer is exposed to TH3 resulted in no signal 

indicating that this is unlikely to be the cause. The (relatively) high contact 

angle of the plasmachemical layer suggests that complete wetting of the 

surface as drops are applied should not be an issue. Spot spreading and 

surface wetting due to excess humidity would not result in the observed 

mottling on the surface. Another possibility is that the heating cycle employed 

during oligonucleotide immobilisation results in rearrangement of the 
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plasmachemical layer, either by chemical reaction and crosslinking, or physical 

segregation into regions.  

An interesting avenue of future research might be to investigate the effect of 

plasma crosslinking on the spot formation in the arrays. If the heating cycle is 

causing rearrangements in the plasma functionalised layer, then the 

introduction of additional deliberate cross-linking should reduce or eliminate the 

problem, although with the sacrifice of structural retention.  

5.5. Conclusions  

The plasmachemical functionalisation of surfaces with 2-bromoethyl acrylate is 

demonstrated, but with evidence that significant C-Br loss may have taken 

pleace, albeit to leave other bromine functions on the surface. In spite of this, 

the plasmachemical layer is suitable for the immobilisation and hybridisation of 

thiol-terminated oligonucleotide strands. The immbolisation of DNA to the 

plasmachemical surface was optimised, bur clear array reading is inhibited by 

deterioration of the plasmachemical surface under the immobilisation 

conditions.  
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5.6. Discussion – comparison of systems 

All three systems were found to be suitable for DNA immobilization and 

hybridisation. 3-vinylbenzaldehyde functionalisation allowed a maximum 

hybridisation of 500 ± 140 counts, with an excellent deposition rate and 

structural retention (see section 3). This corresponds to a significantly larger 

than that hybridisation intensity observed on commercially available aldehyde 

functionalised DNA chips (see Table 5.4).  

Surface 

Function 
Precursor 

Immobilsation 

Counts 

Hybridisation 

Counts 
Fluorophore 

Aldehyde 3-vinylbenzaldehyde 14000 ± 1000 500 ± 140 Cy5 

Aldehyde Undec-1-enal 9000 ± 1500 700 ± 70 Cy5 

Aldehyde ALS-25  70 ± 11 Cy5 

Bromine 2-bromoethylacrlate 17000 ± 1500 14000 ± 

8000 

Cy5 

Table 5.4 Comparison of different surface functionalisations: immobilisations 

and hybridisations. 

Undec-1-enal was also suitable for DNA chips, although the observed 

hybridisation was as intense in this system at 700 ± 70 counts. Although the 

undec-1-enal surface also retains much of precursor structure, aldehyde 

intensity is notably reduced in the FT-IR (Chapter 3). Undec-1-enal also suffers 

from a relatively slow deposition rate when compared to the other monomers. 

Both the aldehyde functionalised surfaces show relatively low hybridisation 

counts compared to the level of immobilisation. There are several factors that 

can reduce hybridisation efficiency. Firstly, high immobilisation efficiencies do 

not translate directly into superior hybridisation as too tightly packed a network 

of oligonucleotides on the surface can inhibit the hybridisation reaction. Further, 

flexible polymer layers also give improved hybridisation, It can be speculated 

that the slightly higher efficiency observed for the undec-1-enal is due to the 
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long flexible carbon chain as opposed the rigid aromatic structure of the 3-

vinylbenzaldehyde. The commercial slide shows even poorer results, 

presumably as the surface is a SAM, which lacks the flexibility of a pulsed 

plasma polymer. 

Bromine functionalised surfaces offer the superior surface for DNA 

immobilisation, which is attributed to several factors. Firstly there is a relatively 

high Br concentration on the pulsed plasmachemical surface when compared to 

the aldehyde loading of either 3-vinylbenzaldehyde or undece-1-enal. Secondly 

the polymer is observed to be slightly soft & sticky, which suggest a highly 

flexible substrate that allows rearrangement and/or solvation of the surface 

bound structures (see Chapter 5).  

Whilst plasmachemical functionalised 2-bromoethyl acrylate also allows good 

hybridisation, fluorescence intensity 14000 + 8000 counts, there are several 

drawbacks to this technology in comparison to the aldehyde functionalisations. 

The major problem is the difficulty in producing clear, crisp microarrays and the 

distinctive mottling of the surface that occurs on heating which render this 

particular plasmachemical layer unsuitable for microarray manufacture, with 

only weak differentiation between hybridisation and non-specific adsorbtion of 

the target (Chapter 5). 

Unfortunately, direct comparison between different methods present in the 

literature is extremely difficult due to the wide array of tags (fluorophores & 

radioactive labels), substrates, excitation methods.  Even where fluorophores 

are identical, it is usual for results to be normalised30 The short 15-base 

oligonucleotides chosen in the present study also represent the most difficult 

hybridisation conditions – with very unstable duplexes being formed, any 

binding through the DNA side chains will result in hybridisation failure. Using 

longer oligonucleotides or DNA strands for the array (commonly observed in 

the literature) will result in improved signals. However, on a qualitative level, 

these results do compare favourably with those mentioned in the introduction.  
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6. A plasmachemical route to smart wound dressings – some initial 

results. 

6.1 Introduction 

Wound healing is a complex process. To compliment the complexity of 

wound healing, a wide range of commercial wound dressing products are 

available which act to improve the wound healing process, particularly in 

chronic wounds such as ulcers or burns1. Typically these wound dressings 

either act as a replacement skin layer, or contain biologically derived 

chemicals that promote accelerated wound healing2,3, or allow the targeted 

delivery of drugs or scaffolds for tissue growth4,5, although a wide range of 

products are available6. Another approach is to surface tether other 

biologically active molecules such as antibiotics7. Ultimately wound infection 

& complications even with commonly available graft materials such as 

muscle tissue8, animal tissue9, polytetrafluoroethylene10,11, or Dacron (a 

trade name for polyethylene12 terephtalate) can result in the need for extra 

treatment, loss of limbs, or even patient mortality. 

Enzymes are complex proteins that act to catalyse specific reactions in 

biological systems. The specificity of enzyme action is well-reported, and is 

described by the lock-and-key model – the active site of the enzyme is 

geometrically structured to accept the desired substrate. A simple generic 

reaction scheme is then that the substrate and enzyme bind, a reaction 

takes place, and the product(s) are then released. However, the enzyme 

itself is a large, flexible system and the induced-fit model factors this 

flexibility into the traditional lock-and-key model by allowing for changes in 

the geometry of the enzyme active site that will promote reaction of the 

substrate13. 

One enzyme known to cause problems in wound healing is elastase, which 

has been shown to attack the bio-molecules that promote wound healing 

such as elastin, coagulation factors, cytokine growth factors, or fibronectin 

can be degraded in the presence of excess elastase. The elastase family 

acts by hydrolysing the amide bonds that form the backbones of any protein-
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based molecule (Figure 6.1). Introduction of elastase recognition sites on 

cotton was one tactic adopted for the inhibition of elastase activity by 

inducing enzymatic binding to the fabric14. Another novel approach to the 

construction of smart wound dressings involves the surface tethering of an 

elastase inhibitor to hydroxyl groups in cotton15.  

Enzyme inhibitors are molecules that act to prevent the catalytic process 

reducing or totally preventing the binding of the substrate to the enzyme 

active site. There are four main types of inhibitors: 1) Competitive inhibitors 

that compete directly with substrate molecules by binding in the enzyme’s 

active site, and often have a similar physical structure to the substrate; 2) 

Uncompetitive inhibitors which bind to the enzyme-substrate complex to form 

an inactive enzyme-substrate-inhibitor complex; 3) Non-competitive 

inhibitors can bind either to the enzyme or enzyme-substrate complex, but 

never compete with the substrate as they do not bind directly to the enzyme 

active site; 4) Mixed inhibitors typically form enzyme-substrate-inhibitor 

complexes in the same manner as non-competitive inhibitors, but this 

complex retains at least some of its catalytic properties. Inhibitors that form a 

strong covalent bond with the enzyme are known as irreversible inhibitors. 

In the case of the elastase family of proteins, one group of irreversible 

inhibitors that has proven effective in reducing catalytic activity are the chloro 

methyl ketones (CMKs)16, which bind directly to the elastase active site as a 

competitive inhibitor17. Studies have suggested that CMKs, and other 

electrophilic ketones, act to produce a bridge between two amino acids 

present at the enzymes active site, whilst the small peptide chain acts as a 

recognition unit (Figure 6.1)18,19,20,21. 
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Figure 6.1. Inhibition of human neutrophil elastase by an electrophilic 

ketone22. 

In this work, initial results suggesting the feasibility of using plasmachemical 

technology for wound dressings are presented. A plasmachemical hydroxyl 

surface is generated from the pulsed plasmachemical functionalisation of 2-

hydroxyethylacrylate23. The peptide chloromethylketone (CMK) is then 

surface tethered under acidic conditions, which drives the formation of a 

hemi-acetal (Figure 6.2), with hydrogen bonding between hydroxyl groups on 

the surface and the peptide carbonyls contributing to the surface tethering. 

This binding is weak, so that the surface-bound CMK can then be introduced 

into neutral solution where it will be released. The CMK then permanently 

inhibits any elastase present by binding with the active site of the enzyme.  

 

Figure 6.2. Tethering of CMK to a plasmachemically modified surface. 

The CMK inhibition can be demonstrated by monitoring the decomposition of 

a suitable substrate. One method adopted for monitoring the catalytic effects 

of the porcine pancreatic elastase is to monitor the release of p-nitroaniline 

from the hydrolysis of a suitably modified peptide substrate15. The small 

peptide chain allows recognition of the molecule as a substrate by the 
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porcine pancreatic elastase, which then acts to hydrolise the peptide link 

between the peptide chain and the aromatic anilide, to release p-nitroaniline 

in an identical manner to the hydrolysis of peptide bonds in a protein chain 

(Figures 6.1 & 6.3). The p-nitroaniline is a yellow-coloured compound that 

can then be monitored through UV-Vis spectrometry to assess the level of 

porcine pancreatic elastase activity. 

 

Figure 6.3. Hydrolysis of the peptide link between the peptide side chain (R) 

and the p-nitroanilide group. 
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6.2 Experimental 

Plasma polymerization of 2-hydroxyethylmethacrylate (Aldrich, 95%) was 

carried out in an electrodeless cylindrical glass reactor as described 

previously23. Substrates included borosilicate glass cover slips and polished 

silicon. Substrates were subjected to an additional 5 minute continuous wave 

air plasma at 40W power prior to HEMA deposition in order to improve 

adhesion of the plasmachemical layer to the substrate. 

The surface tethering method of CMK onto the hydroxyl surface was 

modified from that used previously15. HEMA-modified surfaces were 

immersed in pH 4.5 SSC for 1 h. For borosilicate glass coverslips, 10 µL of 

1.2 mgml-1 CMK in acetonitrile was dropped onto the coverslip surface, with 

a second coverslip used to cover the first (like a sandwich). The second 

coverslip was removed after 1 or 24 h by brief (30s) immersion of the 

sandwich in acetonitrile.  

Porcine pancreatic elastase was obtained as an affinity chromatography 

purified, lyophilized powder possessing 3–6 units per mg protein (Sigma). 

Stock buffer consisted of 0.1M sodium phosphate, 0.5 M NaCl, 3.3% (v/v) 

DMSO, pH7.6. In a typical experiment 72 µM of substrate (MeOSuc-Ala-Ala-

Pro-Val-p-nitroanilide) in 1250 µL buffer was combined with 250 µL enzyme 

solution. Surface tethered CMK was introduced on glass substrates by 

immersion in the substrate solution immediately prior to mixing.  

Surface characterisation by XPS, FT-IR, sessile drop contact angle and 

reflectometry is described in previous chapters. 

UV-vis measurements were taken on an ATI Unicam UV/Vis 

Spectrophotometer UV2-100 with Unicam Vision version 3.41 software in 

fixed λ mode at 410 nm. Buffer solution was used as a reference for each 

experiment. Readings were taken once every 5s for 15 min. Surface 

tethered CMK on glass coverslip substrates were weighed and then 

introduced directly into the reaction cell. 
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6.3 Results and Discussion 

XPS of plasmachemically functionalised hydroxyl surfaces correspond 

closely to those observed previously23 (Table 6.1, Figure 6.5a). The C(1s) 

envelope of the pulsed plasmachemical layer (ton = 20 µs, toff = 20 ms, 40 W) 

showed a strong correspondence to the theoretical spectra based on the 

precursor structure (Figure 6.6a and b). Four peaks were used to create the 

theoretical model: (1) CxHy (285.0 eV), (2) C-C=O (285.6 eV), (3) C-O (286.4 

eV), (4) O-C=O (288.5 eV)24, as suggested based on the theoretical polymer 

structure (Figure x.x). 

 

Figure 6.4 Carbon environments in the theoretical poly-HEMA 

The continuous wave hydroxyl film was deposited at a rate of 20 ± 2 nm, 

whilst the pulsed hydroxyl layer (ton = 20 µs, toff = 20 ms, 40 W) was 

deposited at a rate of 8 ± 6 nm. FT-IR spectra also corresponds to those 

observed previously, with bands corresponding to O-H stretches (3500 cm-1), 

C-H stretching (3000-2800 cm-1), C=O stretching (1728 cm-1). As observed 

previously, the peaks for the pulsed film are sharper than those observed for 

the continuous wave film (Figure 6.7). The observed contact angle for the 

continuous wave film was 57.8 ± 0.8°, whilst the less cross-linked pulsed film 

was 41.0 ± 0.7°. These results indicate good retention of structure and 

correspond well with those previously observed. 

Polymer %C %O 

Theoretical 66.6 33.3 

Pulsed 
67 ± 

1 33 ± 1 

CW 
73 ± 

1 27 ± 1 

Table 6.1. XPS Atomic Composition for 2-hydroxyethylmethacrylate. 
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Reaction of the HEMA substrates with the CMK was monitored by XPS 

(Table 6.2). Bands corresponding to the Cl(1s) and N(1s) appear on XPS 

survey spectra when treated with CMK. Minimal Na(1s) bands are observed 

from the buffer salt solutions (Figure 6.5). After 24h exposure to the reaction 

solution, the 2.2% N is observed is 18% of the theoretical CMK structure. 

The lack of Si(2p) signal from the substrate was taken to indicate survival of 

the hydroxyl film under the reaction conditions. There is no visible change in 

the C(1s) envelope (Figure 6.6). 

 %Cl %C %N %O 

Untreated PPP 
HEMA 0 76 0 24 

1h Exposure to 
CMK 0.34 76 1.3 22 

24hExposure to 
CMK 0.63 77 2.2 20 

Theoretical CMK 2.1 65 12 21 

Table 6.2. XPS elemental atomic composition of HEMA surfaces treated with 

CMK. 
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Figure 6.5 XPS wide scans of (a) Pulsed Plasmachemical Film (time on = 20 

µs, time off = 20 ms, peak power = 40 W) on glass coverslip; (b) The same 

film following CMK immobilisation. 
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 Figure 6.6.  C(1s) envelopes by XPS of plasmachemical functionalised 

bromine surfaces (a) theoretical C(1s) envelope assuming no monomer 

fragmentation, (b) Pulsed Plasmachemical Film (time on = 20 µs, time off = 

20 ms, peak power = 40 W) on glass coverslip; (c) The same film following 

CMK 

immobilisation.
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Figure 6.7. Infrared Spectra of (a) Pulsed Plasmachemical Film (time on = 20 

µs, time off = 20 ms, peak power = 40 W), (b) 5 W Continuous Wave Film. 

In order to confirm the presence and release of the CMK from the surface, 

samples of HEMA-treated borosilicate glass slides were treated with CMK 

and exposed to a solution containing porcine pancreatic elastase. The 

inhibitive effect of the CMK was monitored by following the hydrolysis of a 

peptide substrate. The hydrolysis reaction resulted in the production of UV-

vis active p-nitroaniline, which allowed the progress of the reaction to be 

followed. 

The introduction of CMK treated HEMA glass slides clearly reduces the 

formation of p-nitroaniline compared to untreated control glass coverslips. 

This inhibitive effect is increased as the mass of CMK modified HEMA glass 

substrate increases, and hence as the surface area of plasmachemical 

hydroxyl functions and associated CMK on the surface is increased. This 
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greater surface area of CMK with all other experimental conditions being 

equal results in a further reduction of enzyme activity (Figure 6.8).  

 

Figure 6.8. UV-Vis absorbance against time for inhibition of p-nitroaniline 

formation for various masses of CMK-HEMA treated glass cover slips of 

various weights introduced directly into the reaction cell. The control sample 

contains no CMK-glass inhibitor. 

Pulsed functionalisation shows a greater inhibitive effect than the equivalent 

continuous wave system (Figure 6.9). This increase in enzyme inhibition 

probably stems from the superior structural retention offered by pulsed 

plasmachemical functionalisation, with a high density of hydroxyl groups and 

chain flexibility retained due to the relative lack of cross-linking23. This allows 

for more efficient binding and release of the CMK species in the first 

instance. Table 6.3 shows the initial change in absorbance as a function of 

time, which shows the large reduction in the initial reaction rate for both 
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plasmachemical routes, with a larger increase for the pulsed 

plasmachemical system. 

 

 

Figure 6.9. UV-Vis absorbance against time for inhibition of p-nitroaniline 

formation, a comparison of continuous wave (CWP, 5W power) and pulsed 

plasma (PPP, time on = 20 µs, time off = 20 ms, peak power = 40 W) HEMA 

layers. 

 
Initial Gradient 

(∆abs.s-1) 
Control 1284.7 
5W CW 725.95 

PPP ton = 20 µs, toff = 20 ms, Pp = 
40 W 518.53 

Table 6.3. Initial reaction gradients for porcine pancreatic elastase inhibition 

various CMK modified substrates 
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Whilst these initial results show the promise of the suggested synthetic 

route, there remains much work to be done to prove and to understand the 

binding of CMK to the hydroxyl modified surfaces. In particular the kinetics of 

the reaction need to be established, by a more in depth study relating 

absorbance to both CMK and p-nitroaniline concentrations. Hence the effect 

of important reaction parameters such as time, CMK concentration, and pH 

on the amount of CMK bound to the hydroxyl substrate could be fully 

studied. These parameters could then also be related to the release of CMK 

into a model system such as the porcine pancreatic elastase system used in 

this work. Studying the effect of CMK loading on the modified surface, and 

the amount of CMK-substrate present in the reaction system, on the 

inhibition of the elastase would also be desirable. Finally, once control of the 

CMK loading and understanding of its relation to inhibition is established, 

trials on actual wound fluids could be arranged to verify the activity of the 

smart dressing on actual patients. 

A further approach might be to develop a more acidic hydroxyl surface to 

facilitate CMK attachment. A suitable precursor might include 4-vinylphenol, 

which should be readily polymerisable under pulsed conditions.  

6.4 Conclusion 

Initial results for the surface tethering of a CMK onto a plasmachemical 

hydroxyl layer confirm the promise of the proposed synthetic route for smart 

wound dressings. Further work is required to quantify the reactions kinetics, 

optimise the system and provide more control over construction.  
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7. Plasmachemical functionalisation of single walled carbon nanotubes 

Carbon nanotubes are attracting much interest due to their excellent 

mechanical and electrical properties, however a major difficulty with carbon 

nanotube systems is the introduction of chemical functionality onto the 

nanotube surface. Pulsed plasmachemical functionalisation is an ideal 

methodology for the modification of three dimensional structures such as 

carbon nanotubes. This use of plasmachemical technology is demonstrated 

by the electroless deposition of copper onto surface tethered pyridine 

functions and silver onto surface tethered aldehyde functions.  

7.1. Introduction 

Carbon nanotubes (CNTs) are part of the fullerene family of chemicals: long, 

thin, tube-like structures formed from a continuous sheet of hexagonal 

carbon atoms; essentially a simple sheet of graphite rolled to form a tube. 

CNTs can be found as single-walled structures (SWCNTs) or multi-walled 

structures (MWCNTs) formed when multiple concentric SWCNTs are held 

together by van der Waals interactions. The complexity of MWCNTs, 

particularly for modelling, has meant that research often focuses on the more 

simple SWCNTs.  

CNTs are of great interest at the current time due to the many unique 

properties that they offer. They offer both a large surface area and superior 

mechanical strength. Their elastic modulus is equivalent to that of diamond 

and the strength of CNTs far surpasses that of materials such as steel1. 

Thus CNTs are attractive as scaffolds for nanodevice construction, and 

additives in composite materials2. The strength of CNTs is also combined 

with surprising flexibility3 that allows bends of 110°. 

As well as their mechanical properties, CNTs are excellent electrical 

conductors4, with current capacity reported to be 1000 times that of copper5, 

and thermal stability up to 2800°C. In short, CNTs offer a fertile ground for 

research6,7,8, particularly for novel devices with the drive for miniaturisation9. 
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However, chemical modification and processing of such inert structures is 

difficult. Consequently, treatment conditions are extremely difficult and 

typically include refluxing in acids10, use of high temperatures11, or the use of 

extremely reactive species12. 

In this section we deal with the potential benefits of plasmachemical 

functionalisaton for SWCNT modification. Pyridine and aldehyde functions 

are introduced onto SWCNTs in order to allow metallization with copper and 

silver respectively. By functionalising the surface of CNTs with metal it is 

suggested that wetting properties can be improved during composites 

manufacture, and the introduction of metals to the surface could allow 

construction of nanodevices. 

The effect of plasmachemical modification on bulk carbon fibres has been 

examined previously and shown viable13. Similarly, the plasmachemical 

route to modifying surfaces for copper electroless deposition has already 

been examined in the case of continuous wave glycidyl methacrylate 

deposition onto PTFE14. Continuous wave methods have also been applied 

to as produced carbon nanotubes for the introduction of organic molecules15.  

Electroless deposition techniques have allowed functionalisation of CNTs 

with cobalt, nickel16, gold17, and encased in copper matrices18. Previous 

methods for the electroless deposition of copper have typically required 

extremely vigorous activation by refluxing in acid19. The root of the problem 

is that the substrates typically require an activation step to generate 

particulate Pd0 on the substrate surface, which both acts as an initial 

nucleation point and also catalyses the formation of the electroless metal 

layer. The use of suitable ligands, such as the surface tethered pyridine 

ligand generated in this work, allow relatively mild conditions to be 

employed20. The electroless deposition of copper in a basic medium can 

then take place: 

Cu2+ + 2HCHO + 4HO- → Cu + 2HCOO- + 2H2O + H2 
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The Tollens silver mirror test is an old and widely used test for aldehyde 

functions in which 5% aqueous silver nitrate solution is used to form the 

Tollens reagent, which forms a silver mirror on the introduction of aldehyde 

functions21: 

R-CHO + 2Ag(NH3)2
+ + H2O → R-COOH + 2Ag + 2NH4

+ 
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7.2 Experimental 

Unless otherwise stated functionalisations and reactions are as outlined in 

previous chapters. 

7.2.1 Metallization via 4-vinylpyridine functionalisation 

Plasma polymerization of 4-vinylpyridine (Aldrich, 95%, H2C=CH(C5H4N), 

purified by several freeze-pump-thaw cycles) was carried out in an 

electrodeless cylindrical glass reactor as described in Chapter 2.  

4-vinylpyridine was introduced into the reactor at a pressure of 0.22 mbar 

and a flow rate of 9.3 x 10-8 mol s-1 for 15 min prior to reaction. Deposition 

took place over 60 min in a ton = 100 µs, toff = 4 ms pulsing regime and a 

peak power of 40 W. Subsequent to reaction the chamber was flushed with 

monomer for 15 min. Substrates included borosilicate glass cover slips, 

polished silicon wafers and SWCNTs. In order to ensure uniformity of 

coating, only small masses of SWCNTs (<0.03g) were used in each 

deposition, spread thinly and evenly across the reactor plate. 

0.0100 g of functionalised SWCNTs were immersed in a 0.1 % (w/v) solution 

of PdCl2 in pH 4.5 SSC for 16 h, then filtered and washed with high purity 

water. SWCNTs were then immersed in 1.5% (w/v) CuSO4.5H2O, 7% (w/v) 

K/Na tartrate, 1% (w/v) NaOH, 50% (v/v) formaldehyde (aq. 37% 

concentration), 40.5% H2O for 60min. SWCNTs were again filtered and 

excess reaction solution removed by copious washing with high purity water. 

7.2.2 Metallization via 3-vinylbenzaldehyde functionalisation 

Deposition of aldehyde functions from 3-vinylbenzaldehyde precursors is 

described in Chapter 4. 

0.0100g of functionalised SWCNTs were immersed in a solution containing 

4.532 ml H2O, 0.468 ml NH4OH (Aldrich, 25% - in H2O), 0.0850 g AgNO3 

(Apollo 97%) for 16 h. SWCNTs were filtered and washed in excess high 

purity water. 
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7.2.3 Surface Analysis 

The surface analysis conditions used for XPS, FT-IR, and reflectometry were 

as outlined in previous chapters.  

7.3. Results 

7.3.1 Metallization via 4-vinylpyridine functionalisation 

The plasmachemical functionalisation of surfaces with 4-vinylpyridine (ton = 

100 µs, toff = 4ms, PP = 40 W) was followed by XPS, which showed good 

correspondence with the expected surface atomic composition (77% C, 

12%N, 10%O), with the C(1s) envelope lacking any major oxygenated 

components (Figure 7.1, FWHM 2.4). Separate peaks relating to the 

aromatic carbons (284.6 eV), CxHy (285.0 eV), and aromatic CN (286.4 eV) 

are not resolved. In each case a simple Gaussian was used to model the 

observed spectra. The N(1s) peak at 398.8 eV (FWHM 2.3) in consistent 

with aromatic nitrogen. The O(1s) signal peaks at 532.0 eV (FWHM 1.7) 22,23. 

A corresponding deposition rate of 8 ± 1 nm min-1 was observed.  

Analysis of the as-deposited films by FT-IR confirmed deposition of 4-

vinylpyridine with good structural retention (Figure 7.2), with the major bands 

from the monomer retained and only minor line broadening. In particular, 

bands from the aromatic pyridine function are retained at 1600 and 1410 cm-

1. Both monomer and functionalised layer show broad bands in the 3000-

3500 cm-1 region, which are attributed to adsorbed water on the hydrophilic 

surface. 
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Figure 7.1 High resolution XPS spectra of plasmachemical pyridine 

elemental envelopes. (a) C1s; (b) O1s; (c) N1s. Data fitting in each case is a 

single Gaussian peak.  
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Figure 7.2. FT-IR of 4-vinylpyridine (a) as deposited on SWCNT, (b) as 

deposited on silicon wafer, and (c) 4-vinylpyridine precursor. Highlighted are 

the characteristic pyridine ring stretches at 1600 cm-1 and 1410 cm-1. 
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System 
C (1s) 

% 
N (1s) 

% 

O 
(1s) 
% 

Cu 
(2p3/2) 

% 

Unmodified SWCNT 100 0 0 0 
SWCNT with 

plasmachemical 
vinylpyridine layer 

77 ± 
8 

12 ± 
7  

10.2 
± 0.2 

0 

SWCNT, pyridine 
functionalised, exposed 
to metallization solution 

76 ± 
8 

0 
21 ± 

8 
2.6 ± 0.5 

Table 7.1. Surface atomic composition of SWCNT powders.  

The metallization reaction resulted in visible changes. Copper mirrors were 

observed for Si substrates modified with vinyl pyridine and PdCl2 and flecks 

of copper were observed in the resulting CNT powder. Exposure of as-

produced vinyl pyridine and unmodified control surfaces to the reaction 

solution did not result in a visible change. 

The metallization reaction was also followed by XPS. Flat silicon substrates 

confirmed the deposition of copper, showing only carbon (84 %) and copper 

(16%). XPS of plasmachemical functionalised SWCNTs themselves also 

showed copper (3%), carbon (76%) and oxygen (21%) (Table 7.1). High 

resolution examination of the Cu (2p3/2) envelope shows a noisy peak at 

933.0 eV (Figure 7.3).  
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Figure 7.3  Cu (2p3/2) envelope of metalized CNTs. 

The functionalisation was also monitored by SEM and backscattered 

electron imaging. SEM imaging of the unmodified SWCNT showed both 

individual SWCNTs and regions of bulk carbon (Figure 7.4a), the SWCNTs 

were from the same batch as those used in Chapter x, and the bulky 

features are attributed to amorphous carbon. BEI showed no presence of 

heavy elements, with only the cloudy background of the bulk carbon visible. 

Plasmachemical functionalisation with 4-vinylpyridine shows no discernable 

difference from the unmodified SWCNTs by either SEM or BEI imaging 

(Figure 7.5). The surface appearance of the metallized SWCNT’s differs 

markedly from both the untreated SWCNT substrate and plasmachemically 

functionalised SWCNT’s. A bulbous texture is observed and individual 

bundles are coated to tens of nanometers thickness. This bulbous 

appearance is attributed to the merging of individual copper 

nucleation/growth sites along the functionalized SWCNT surface. The BEI is 
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clearly resolved, with intense signals corresponding to the thick coating 

(Figures 7.6 and 7.7) 
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Figure 7.4. a) SEM of unmodified SWCNT powder shows both individual 
bundles and bulky carbon deposits. b) Resolution by BEI shows few 
features, with only the bulk substrate weakly visible. 



153 

153 

  
Figure 7.5. Plasmachemical functionalisation of SWCNT substrate. No 

significant change is visible either by a) SEM imaging or b) BEI imaging. 
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Figure 7.6. Metallization of vinylpyridine plasmachemical functionalised 

SWCNT substrate. a) SEM image showing deposits (green arrows showing 

uncoated, and orange arrows coated carbon nanotubes). b) The 

corresponding BEI showing an intense response from regions in which 

bulbous deposition is observed. 
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Figure 7.7. High resolution detail of vinylpyridine plasmachemical 

functionalised SWCNT. a) SEM image showing metal coated bundles. b) 

Corresponding BEI image showing signal only from metal layer, with the 

SWCNT ‘core’ clearly visible. 
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7.3.2 Metallization via 3-vinylbenzaldehyde functionalisation 

The plasmachemical functionalisation of SWCNTs with 3-vinylbenzaldehyde 

(ton = 50 µs, toff = 4ms, PP = 40 W) was monitored by XPS and showed 

excellent correspondence with the expected polymer structure (C = 90%, O 

= 10%), with the well resolved C(1s) envelope previously observed on flat 

substrates retained24 (Figure 7.8). The functionalisation was also followed by 

FT-IR which also confirmed excellent structural retention (Figure 7.9). The 

vinyl stretch at 1650 cm-1 in the monomer is not present on in the SWCNT 

powder, although bands corresponding to the aldehyde CHO function at 

2815 cm-1 and 2723 cm-1 are retained, as is the carbonyl band at 1695 cm-1.  
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Figure 7.8. C(1s) envelopes of (a) pulsed plasmachemical 3-

vinylbenzaldehyde on borosilicate glass substrate. (b) pulsed 

plasmachemical 3-vinylbenzaldehyde on CNTs. 
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The metallization of SWCNT was monitored by XPS. Silver is clearly 

observed on all SWCNT samples (Table 7.2). The high resolution Ag (3d) 

envelope shows two peaks corresponding to metallic Ag; Ag 3d5/2 at 369.2 

eV and Ag 3d3/2 at 375.2 eV (Figure 7.10). The metallization was also 

monitored by SEM and BEI. Plasmachemical functionalisation of the 

SWCNTs produced no apparent change in their appearance by SEM, and 

the BEI retained its cloudy appearance (Figure 7.11). The metallization 

reaction produces a strong change in physical appearance, with several 

apparently cubic features now present, although the bulk is unmodified. 

Examination of the same region by BEI highlights these same features 

strongly, indicating the presence of a heavy element. The bulk retains the 

cloudy, indistinct appearance, showing no observable change (Figure 7.12).  

System 
C (1s) 

% 

O 
(1s) 
% 

Ag 
(p3/2) % 

Unmodified SWCNT 100 0 0 
SWCNT with 

plasmachemical 3-
vinylbenzaldehyde layer 

90 ± 
2 

10 ± 
2 

0 

Silver metalized with 
0.25 M silver nitrate 

solution 

68 ± 
5 

28 ± 
4 

4 ± 2 

Silver metalized with 1.0 
M silver nitrate solution 

77 ± 
7 

20 ± 
5 

3 ± 2 

Silver metalized with 1.5 
M silver nitrate solution 

76 ± 
3 

23 ± 
3 

1 ± 1 

 
Table 7.2. Surface atomic composition of SWCNT powders obtained during 

metallization with silver nitrate. 
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Figure 7.9. FT-IR of 3-vinylbenzaldehyde (a) as deposited on SWCNT, (b) as 
deposited on silicon wafer, and (c) 3-vinylbezaldehyde precursor. 
Highlighted are the aldehyde CHO stretches at 2815 and 2723 cm-1, and the 
carbonyl stretch at 1695 cm-1. Also highlighted is the C=C bond (1650 cm-1) 
present in the monomer which is lost in the polymers. 
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Figure 7.10 High resolution Ag (3d) envelope of silver deposited on CNTs via 
Tollens reaction with suface immobilised 3-vinylbenzaldehyde. 
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Figure 7.11. Plasmachemical functionalisation of SWCNTS with 3-

vinylbenzaldehyde as observed by a) SEM and b) BEI 
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Figure 7.12. Silver metallization of aldehyde functionalised SWCNT’s as 
observed a) SEM and b) BEI 
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7.4. Discussion 

Plasmachemical functionalisation is not applicable only to a range of surface 

chemistries, but as modification takes place using monomer vapour, is also 

suitable for the modification of varied substrate architectures. Substrates 

such as SWCNT’s with high surface area and unique physical properties are 

one novel architecture that is attracting much interest. 

Plasmachemical functionalisation of SWCNTs with monomers such as 4-

vinylpyridine and 3-vinylbenzaldehyde demonstrate the applicability of this 

technique to introduce chemical functionality onto SWCNT surfaces. The 

introduction of plasmachemical functionalised layers onto the SWCNT 

substrate was confirmed both by both XPS and FT-IR, with the monomer 

structures largely retained, except for the alkene C=C which is lost as the 

polymerisation reaction proceeds. 

The metallization of the pyridine functionalised SWCNT surface was 

confirmed by both XPS and SEM. The coating of the SWCNTs is observed 

in the SEM images (Figure 7.7) where the bulbous sheath on the SWCNTs 

is attributed to surface immobilised copper. The high resolution images of 

the bundles show that the coating is tens of nanometres in diameter, leaving 

the uncoated SWCNT cores and the amorphous carbon deposits visible by 

XPS, resulting in a low observed copper signal. As part of any future work it 

would be desirable to establish if increased, or repeated, treatment resulted 

in superior surface coverage, particularly given the large surface area of the 

SWCNTs in comparison to flat substrates. 

The uniform surface appearance is marred only by the bulbous appearance 

of the coating that is attributed to the coalescing of individual nucleation sites 

during the metallization reaction. For application of this process to, for 

instance, the construction of copper molecular wires via plasmachemical 

functionalisation an annealing step might be required to produce a wholly 

uniform surface. Also, a minority of the CNT bundles are not treated – the 

large surface area of the CNTs probably requires a slightly higher 

metallization solution to SWCNT ratio. The largely complete, largely uniform 
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appearance indicates the benefits of introducing a suitable chemical function 

to the surface of substrates such as SWCNTs for the controlled construction 

of nano-scale devices. The plasmachemical route compares favourably with 

traditional electroless methods, where coatings are also polycrystalline25, 

and of varied thicknesses of 40 – 300 nm2627. The coating thickness is also 

comparable to that reported previously for Ni-P coatings of 70-90 nm with 

comparable uniformity18.  

This route would be worth exploring in more depth as the vigorous activation 

steps utilised for nanotube activation in other methods19 are avoided by the 

plasmachemcial route. The loading of CNT’s and the composition  of the 

reaction solution could be varied to produce wires with differing copper 

thickness, and the effect of an annealing step examined.   

Metallization with silver via a 3-vinylbenzaldehyde plasmachemically 

modified substrate provided a less uniform result. Although the 

functionalisation is confirmed again by XPS and FT-IR, the metallization 

reaction does not result in surface coverage of the modified SWCNT 

substrates. Rather than the desired metal deposition along the substrate, the 

silver forms distinctive particles that do not appear to be associated with any 

particular surface feature such as the nanotube bundles. Electroless 

deposition of conducting materials onto insulating substrates tends to 

proceed via an island growth mechanism whereby the rate of growth of 

crystal nuclei is faster than the rate of nucleation onto the surface28. The 

observed particles of silver on the SEM images are consistent with this 

preferential growth. 

Whilst the introduction of silver particles onto the surface in such a manner is 

less applicable to nanodevice construction, it does offer some potential use 

for antibacterial surfaces where the release of silver is a key requirement. 

The use of this synthetic route to produce antibacterial surfaces, such as 

smart wound dressings as highlighted in Chapter 6, should be considered for 

the future as it would require little modification of the current method. 

Optimisation of the reaction on fabric surfaces would probably be required, 

followed by testing on bacteria cultures. 
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7.5. Conclusions 

The applicability of the plasmachemical functionalisation technology to 

SWCNT’s has been demonstrated by the metallization of pyridine modified 

SWCNTs with copper to form wire like structures, and by the introduction of 

silver particles onto the nanotube surface. The copper was demonstrated to 

be in metallic form and form a sheath like structure around the SWCNT to 

give a wire like structure. The metallization with silver also resulted in 

metallic silver deposition but this was not resolved as being specifically 

bound to the SWCNTs but is present as particles within the SWCNT powder. 
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8. Conclusions and Future Work 

8.1 Plasmachemical Functionalisation 

The preceding experimental chapters outline the key strengths of 

plasmachemical functionalisation. As well as the ability to introduce specific 

chemistries onto a surface, the various plasma parameters can be adjusted 

in order to tailor material response to specific tasks. For instance, the ability 

to introduce a degree of cross-linking to the plasmachemical layer would 

allow more robust layers where exposure to damaging environments was of 

concern, albeit with some sacrifice to structural retention. Additionally, the 

plasmachemical route has several key strengths such as substrate material 

independence and ability to treat three dimensional features. 

The choice of precursor is one of the critical factors, both for plasmachemical 

functionalisation, and for chemical vapour deposition techniques in general. 

Continuous wave plasma has tended to small, saturated organic molecules, 

with high volatility. The use of such molecules is convenient when the 

incident energy will largely, or completely, fragment the molecule anyway. 

The relatively mild energy input of the pulsed plasma polymerisation allows a 

broad range of organic precursors to be used. Critically, it also introduces a 

strong degree of control on the subsequent surface. The use of molecules 

based around acrylate and styrene functionalities, with multiple double 

bonds and delocalisation of electrons, allows polymerisation reactions with 

chain growth via radical chain growth. Compare for instance the relatively 

slow deposition of undecenal (Chapter 4) and the fast growth of 3-

vinylbenzaldehyde (Chapter 5). The structural retention is sufficient that 3- 

vinylbenzaldehyde was even observed to fluoresce under laser illumination. 

The extensive range of coated substrates presented in the work includes 

silicon, glass, carbon nanotubes, polystyrene beads, but is essentially only 

limited by the imagination of the author and reactor size. The ability to use 

exactly the same deposition route on multiple substrate architectures and 

materials is obviously an extremely desirable feature for potential use of any 

technology on an industrial scale. 
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Of course, pulsed plasmachemical functionalisation does have limitations. 

The relatively mild power input, that allows structural retention and use of 

fairly complex organic precursors, also means that some areas suffer. 

Production of robust layers, and the adhesion of the layers to a substrate are 

potentially weakened. There are routes to reduce or eliminate these 

problems, but only at the cost of decreased structural retention or extra 

process steps.  Use of the technology for deposition of layers requiring 

extensive molecular rearrangement, such as the deposition of inorganic 

layers from organometallic precursors would be extremely challenging if not 

impossible. Also, whilst more complex precursors are of great interest to the 

pulsed plasma chemist, there is also the need to deliver a suitable vapour of 

a precursor into the reactor. 

8.2 Key Findings 

The use of plasmachemical functionalisation for the manufacture of DNA 

microarrays was demonstrated. This route relies on the use of the 

precursors undecenal (Chapter 4), 3-vinylbenzaldehyde (Chapter 5) and 2-

bromoethyl acrylate. The previous plasmachemical routes towards either 

aldehyde or bromine functionalised surfaces have suffered from relatively 

poor structural retention, either through the use of continuous wave plasmas 

or the introduction of precursors that lack the polymerisable carbon-carbon 

double bond of the precursors used in this work.  

The generation of functional surfaces with high structural retention and low 

crosslinking are key in generating suitable substrates of DNA immobilisation 

and hybridisation. For this reason the particularly challenging situation of 15-

base oligonucleotides was chosen for the current work. The base pairing 

between two oligonucloetide strands relies on two or three hydrogen bonds 

between each base pair, so is relatively weak for such small oligonucleotide 

chains. So, the observation of hybridisation in this case gives strong 

confidence that the majority of oligonucleotides are bonded through the 

linker, rather than non-specifically adsorbed onto the surface, and so are 

suitable for use in even the more challenging screening experiments. 

Critically, for the aldehyde surfaces, a relatively low level of non-specific 



 169 

169 

adsorption to the surface was also observed. Without this, there would be 

little chance of achieving a suitable spatial resolution to allow the observation 

of hybridisation on the surface. The adhesion of proteins and dextrans to the 

surface was also demonstrated, and shows the versatility of the surface. 

Whilst this work concentrated on this tough scenario, an interesting piece of 

further work would be to specifically tailor a surface for non-specific 

adsorption of larger DNA strands, which allows experimentally simpler 

screening. Another interesting route that might result in higher hybridisation 

densities would be to co-polymerise two molecules together. For instance 

the co-polymerisation of styrene and 3-vinyl benzaldehyde could potentially 

allow a reduction in the density of DNA immobilisation – however this might 

then result in more hybridisation overall.  

Initial results for the use of plasmachemical functions for the reversible 

immobilisation of chloromethyl ketone (CMK) enzyme inhibitors to 2-

hydroxyethyl methacrylate (HEMA) surfaces also demonstrates the potential 

of plasmachemical technologies for wound recovery. Although these initial 

results were obtained on glass and silicon rather than the gauzes and fabrics 

commonly used in wound dressings, the inhibitive effect of the CMK’s on the 

activity of elastase has been demonstrated. A priority for any further work 

would be to establish the kinetics of the inhibition and, to relate this back to 

surface loading of CMK.  

Understanding how factors such as substrate surface area, the parameters 

used in the plasmachemical deposition of HEMA, would allow this approach 

to be extended to actual dressing materials. As discussed above the move 

from a glass or silicon substrate to a fabric or fabric-like substrate should be 

relatively simple, although a fabric would be expected to have a much larger 

surface area than a flat piece of silicon or glass. This would need to be 

factored into both the plasmachemical functionalisation with HEMA and the 

subsequent loading of the substrate with CMK.  

Further, the stability of the plasmachemical layer to long term liquid exposure 

in a wound environment will be critical. The hydroxyl layer produced by 
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plasmachemical functionalsation is hydrophilic, presenting two potential 

problems. The plasmachemical layer itself might act as a sponge and 

contribute to wound drying, or be preloaded with aqueous solution to 

maintain a moist wound environment. Also there is potential for any small 

fragments of poorly cross-linked material to desorb from the bulk 

plasmachemical layer into the wound itself, with the hydroxyl tail helping to 

solvate the small fragments.  

Also presented are initial results which utilise plasmachemically 

functionalised layers as centres for the immobilisation of metals. These 

originally span out of the work presented in Chapters 3 and 4 on the 

deposition of aldehyde surfaces and the Tollens silver mirror test for an 

aldehyde. The metallization of CNT’s via the silver route was not particularly 

successful, leaving only crystals with no discernable relationship to the 

plasmachemically modified CNT substrate. The electroless copper 

deposition via the vinyl pyridine proved to be extremely successful leaving 

copper deposited along the length of individual CNT bundles.  

These initial promising results should be presented of course with the caveat 

that very little optimisation of the metallisation wet chemistry was performed. 

CNT’s are a substrate with massive surface areas so driving reactions to 

completion on a whole batch of CNT’s may be challenging even with 

relatively small masses. In particular, the relatively low loading of Cu seen by 

XPS suggest that there is significant room for improvement, and that the Cu 

loading could be significantly increased. However, it should be remembered 

that in spite of the many exciting suggestions for the potential use of CNTs, 

processability remains a major hurdle. This work has highlighted one simple 

approach to treating CNTs, which should be easily applicable to the 

introduction of any functional group available in the plasmachemical library. 

The use of the plasmachemical route also offers a potential route to bulk 

CNT-organic composites. Combination of CNT’s with a relatively long 

deposition of a plasmachemical layer with a high deposition rate, such as 3-

vinylbenzaldehyde, could potentially allow for the cross-linking of a CNT 
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powder and the formation of such a composite layer measuring depths of 

hundreds of nanometres, or even microns.  

Further, the relatively mild conditions offered by the pulsed plasmachemical 

route offer one of very few vapour deposition routes to the functionalisation 

with relatively complex molecules. Another extension of this work would be 

to identify relatively volatile organo-metallics which could be introduced into 

the plasma to form a suitable layer. Ferrocene is one such molecule that is 

volatile, subliming at relatively low temperature. However, care would need 

to be taken to introduce a suitable polymerisable function to the organic 

ligands to allow the classical polymerisation reactions to occur without major 

fragmentation of the molecule. 

Overall a broad range of applications have been studied, springing both from 

targeted precursor selection of the aldehyde, bromine or hydroxyl groups, 

based on the already existing body of work in the scientific literature. There 

is also an extension of the function of such layers, which sprang originally 

from the Tollens test for aldehydes, but extended to the immobilisation of 

other metals to the plasmachemical layers.  



172 

172 

Appendix 1. Some initial results demonstrating heterogeneous catalysis 

using methylrheniumtrioxide co-ordinated to plasma polymerised 4-

vinylpyridine 

1. Introduction 

A technology is presented in which a plasmachemical pyridine surface is 

utilised as a substrate for methyl rhenium trioxide (MTO) immobilisation onto a 

substrate of interest. The reactions are characterised by XPS, FT-IR, sessile 

drop contact angle and PIXE analysis, and the generated surfaces proved 

suitable for catalysis of the styrene vinyl group to the epoxy and diol products. 

1.1 MTO Catalysis 

MTO ((CH3)ReO3) is a well known transition metal catalyst that has been 

demonstrated to catalyse numerous organic transformations, with particular 

use in catalytic oxidations (see Abu-Omar et al for a review1). Recent 

applications include in epoxidation of glycals2; the Bayer-Villiger reaction 

(oxidation of cyclic ketones to cyclic esters) in ionic liquid3, selective oxidation 

of terminal alcohols4; oxidation of arenes to p-benzoquinones5. 

As well as the extensive use of MTO in oxidative reactions, MTO is has 

proven versatile enough to catalyse the reduction of epoxides in the presence 

of triphenylphosphine for Vitamin E synthesis6,7. 

1.2. MTO on Surfaces for Heterogeneous Catalysis. 

Heterogenization of the MTO catalytic process presents potential benefits in 

recovery of catalyst and improved reactivity. 

1.2.1 Polymeric Substrates 

Saladino and co-workers have carried out extensive work based on 

incorporating MTO catalysts into polymeric substrates. These heterogeneous 

catalysts are manufactured using commercially available pVP 

(polyvinylpyridine) cross-linked with 2% / 25% divinylbenzene, pVPN (poly(4-
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vinylpyridine-N-oxide) (2% crosslinked)), pS (polystyrene (2% crosslinked)).  

These polymer based heterogeneous catalysts are suitable for a variety of 

reactions, including C-H insertion reactions8,9; oxidation of cardanol 

derivatives10; epoxidation of terpenes11; epoxidation and ring opening of 

glycals12; epoxidation of olefins13; oxidation of phenols and anisoles to 

quinones14.  

The efficiency of these reactions is high. In the case of epoxidation of olefins 

the reaction will proceed slowly in the absence of MTO, with <2% conversion 

of substrates. Introduction of heterogeneous MTO under identical conditions 

results in >98% conversion, with high selectivity of the epoxide over the diol 

(>98% preference in the case of styrene, cis-cyclooctene, α-methylstyrene, 

and trans-stilbene in the presence of 25% cross linked pVP-MTO)13. Crucially, 

the catalyst retained stability over successive oxidations. 

Via Pyridine (and pyridine-N-oxide)  Ligands 

The chemistry utilised in the preparation pVP/pVPN-MTO catalysts systems is 

simple (Figure 1). 

 

Figure 1. Immobilisation of MTO via Pyridine Ligands
13

. 

In the first step the pVP/pVPN is suspended in ethanol at room temperature 

and powdered MTO added to the reaction mixture, which is then stirred for 1h. 

Typically, a loading factor (mmol MTO per gram of support) of 0.5-1.0 was 

used. The reaction was then cooled to 0°C and the polymers were observed 

to change from colourless to bright yellow (only weak colour for pVPN). 

pVP/pVPN-MTO catalysts were recovered by filtration, washed with ethyl 
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acetate several times, and used without further purification. No trace of MTO 

was recovered with the organic solvent. 

Via Polystyrene Encapsulation 

Again, simple preparation of the heterogeneous catalyst is presented (Figure 

2).  

 

Figure 2. MTO Encapsulation in pS or pS/pVP Mixtures
13

  

The substrate was suspended in THF at room temperature, causing the 

polystyrene to swell, powdered MTO was added to the suspension under a 

nitrogen atmosphere. On addition of hexane and stirring for 1 hour, polymers 

were observed to change from colourless to bright blue. No trace of MTO was 

recovered in the organic phase.  

1.2.2 Zeolite Supported Re Catalysts 

MTO can be physisorbed onto zeolites by CVD15. MTO heated to 333 K at 10-

3 Pa sublimes and is allowed to enter a reaction chamber in which zeolite is 

present (pretreated at 673 K for 4 h at 10-3 Pa). Deposition takes place over a 

period of 14 h at RT and samples are evacuated to remove undeposited MTO. 

These are subsequently used in oxidation of propene to acrolein at 673 K. 

Note that although the major CVD product is MTO co-ordinated to the surface, 
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subsequent treatments yield tetrahedral ReO4 that is chemically bound to the 

surface. 

1.2.3 Niobia Substrates 

Catalytic activity of MTO on niobia (Nb2O5) has been reported16. The niobia 

acts as a Lewis base in an analogous manner to the pyridine ligands, 

producing similar fast reactions and high (100%) conversions as pVP 

systems17.  

1.3. Potential Benefits of Pulsed Plasmachemical Route to Surface 

Tethered MTO. 

The excellent structural retention in, and wide the variety of functional groups 

available for, pulsed plasmachemical functionalisation make this technology a 

strong candidate for use in catalytic systems such as the vp-MTO system. 

The substrate independence of pulsed plasmachemical functionalisation 

allows a wide range of potential substrate architecture and chemistry whilst 

retaining identical MTO immobilisation chemistry and catalysis conditions to 

those available in the literature. Candidate substrates in the field of catalysis 

could include any high surface area architectures such as beads, carbon 

nanotubes, or more macroscopic structures such as the surface of standard 

reaction glassware.  

Alongside the massive potential of plasmachemical technology for use with 

any substrate, the proven structural retention in films formed from precursors 

such as 4-vinylpyridene allows high yields. Further, there is potential to ‘tune’ 

the environment in which a catalyst such as MTO operates by adjusting 

parameters of the deposition, with a view to improving reaction efficiency or 

selectivity. 

In this chapter results for the surface immobilisation of MTO onto 4-

vinylpyridene and subsequent catalytic action of the prepared surfaces are 

presented. Substrates include glass, silicon, polystyrene beads. 
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2. Experimental 

 

Scheme 1. 1) Pulsed plasmachemical functionalisation of substrates to create 

pyridine groups on the surface. 2) Attachment of MTO via nitrogen lone pair. 3) 

Surface bound catalyst is then suitable for epoxidation of olefins such as 

styrene to give phenol oxirane or phenyl ethanediol. 

Reaction 1. 

Plasma polymerization of 4-vinylpyridine (Aldrich, 95%, H2C=CH(C5H4N), 

purified by several freeze-pump-thaw cycles) was carried out in an 

electrodeless cylindrical glass reactor as described in Chapter 2.  

4-vinylpyridine was introduced into the reactor at a pressure of 0.22 mbar and 

a flow rate of 9.3 x 10-8 mol s-1 for 15 min prior to reaction. Deposition took 

place over 60 min in a ton = 100 µs, toff = 4 ms pulsing regime and a peak 

power of 40 W. Subsequent to reaction the chamber was flushed with 

monomer for 15 min. Substrates included borosilicate glass cover slips, 

polished silicon wafers and SWCNTs. 

Reaction 2. 

Previously described loading of pVP was be repeated13. 369.8 mg of resin 

was suspended in 4 mL methanol. To this was added 140 mg of MTO and the 
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mixture stirred for 1h using a magnetic stirrer and then slowly cooled to 0 °C. 

Solvent was removed by filtration and the solid residue washed five times with 

20 mL ethanol and dried under high vacuum. A yellow coloured powder 

remained and was used without further purification. 

Reaction 3. 

Previous heterogeneous catalysis with MTO was repeated13. 1 mmol of 

styrene in 2 mmol of H2O2 (30% aqueous solution), to 5.0 ml CH2Cl2 / CH3CN 

(1:1 v/v) in which 120mg of the MTO catalyst was suspended. After reaction, 

the catalyst was recovered by filtration, and washed 5 times in 10 ml ethanol. 

The filtrate was treated with a small amount of manganese dioxide (MnO2) at 

25 °C and filtered. The solvent was dried with Na2SO4 after removal of the 

solvent the crude product was analysed by GC-MS. 

Surface Analysis 

Surface analysis by XPS, FT-IR, sessile drop contact angle and reflectometry 

is described in previous chapters. 

3. Results 

3.1. Plasmachemical Functionalisation of Surfaces with 4-Vinylpyridene 

The plasmachemical functionalisation of surfaces with 4-vinylpyridene (ton = 

100 µs, toff = 4ms, PP = 40 W) was followed by XPS, which shows good 

correspondence with the expected surface atomic composition (Table 1), with 

the C(1s) envelope lacking any major oxygenated components. A 

corresponding deposition rate of 8 ± 1 nm min-1 was observed.  
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 C(1s) N(1s) O(1s) 
 (%) (%) (%) 

Theoretical 88 13 0 
100 µs ton, 4 ms toff 
Plasmachemical 
Functionalisation 

83 ± 2 11 ± 1 5 ± 1 

Table 1. Surface composition of plasmachemically functionalised pyridine 

surfaces. 

Analysis of the as-deposited films by FT-IR confirms deposition of 4-

vinylpyridene with good structural retention (Figure 3), with the major bands 

from the monomer retained and only minor line broadening. In particular, 

bands from the aromatic pyridine function are retained. Both monomer and 

functionalised layer show broad bands in the 3000-3500 cm-1 region, which 

are attributed to adsorbed water on the hydrophilic surface.  

As deposited pyridine surfaces gave a contact angle of 27 ± 1°. 

3.2. Complexation of Methyl Rhenium Trioxide. 

The reaction of pyridine functionalised surfaces with MTO was monitored by 

XPS which showed inclusion of 0.5 ± 0.2 % Re on the surface and a marked 

increase in oxygen content (Table 2). Particle induced X-ray emission 

analysis also confirmed the presence of Re at 41,371 ppm ± 3.17 % (or an 

contribution of 4.1 ± 0.1 wt%). 

The reaction was also followed by FT-IR (Figure 4) which showed a marked 

reduction of the pyridine ring stretch at 1600 cm-1 and the introduction of a 

band at 1640 cm-1 corresponding to the coordinated ring. The strong band at 

912 cm-1 is attributed to Re=O asymmetric stretching. 
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 Figure 3. FT-IR spectra of vinyl pyridine (ton = 100 µs, toff = 4ms, PP = 40 W). 

(a) Plasmachemical functionalised pyridine surface. (b) 4-vinyl pyridine 

monomer. 

 C(1s) N(1s) O(1s) Re 
 (%) (%) (%) (%) 

Theoretical 62 8 23 8 
Observed 65 ± 6 12.2 ± 0.1 22 ± 6 0.5 ± 0.2 

Table 2. Surface composition of plasmachemically functionalised pyridine 

surfaces after reaction with MTO. 
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 Figure 4. FT-IR spectra of vinyl pyridine (ton = 100 µs, toff = 4ms, PP = 40 W). 

(a) After reaction with MTO. (b) As produced plasmachemical functionalised 

pyridine surface. 
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 Product (%) 
 Run1 Run2 Error 

Styrene 22 49 1 
Phenol Oxirane 37.2 34.3 0.5 

Phenyl ethanediol 40.7 16.6 0.7 

Table 3. Catalysis products of styrene oxidation with MTO surface 

immobilised to plasmachemical pyridine functions. 

After reaction, substrates were observed to change colour to a rich yellow-

orange, and the contact angle on flat substrates was observed to increase to 

46 ± 2° for the MTO treated plasmachemical surface. Elemental analysis of 

washings suggested reaction of 96.06 % MTO to give an average loading of 

2.13 mg cm-2. 

3.3. Heterogeneous Catalysis of Styrene with Surface Immobilised MTO 

The epoxidation of styrene was followed by GC-MS (Figure 5). The resultant 

product mixture was observed to contain three major regions at 6.5 min, 10.5 

min and 12 min. The region at 6.3 min corresponded to the styrene control, 

and MS of this peak confirmed fragments at m/z 105 (C6H7, styrene), 78 

(C6H6), 77 (C6H7), and 52 (C4H4) (Figure 6). The band at 10.7 min returned 

fragments at 121 (C8H9O, Phenol oxirane-H+) (Figure 7) and the band at 12 

min returned the molecular ion at 138 (C8H10O2, phenylethanediol), 91 (C7H6), 

and 77 (Figure 8). 

Re-running the catalysis with the same MTO-substrate showed a 20% 

decrease in the converted styrene %, and a marked increase in the selectivity 

of epoxide from 1:1 epoxide:diol to 2:1.  



182 

182 

 

Figure 5. GC-MS of reaction products from heterogeneous catalysis of 

styrene. 
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Figure 6. MS of reaction products from heterogeneous catalysis of styrene in 

the 6.3 min region. 
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Figure 7. MS of reaction products from heterogeneous catalysis of styrene in 

the 10.7 min region. 
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Figure 8. MS of reaction products from heterogeneous catalysis of styrene in 

the 12 min region. 
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4. Discussion 

The deposition of 4-vinylpyridene proceeds with excellent structural retention. 

Crucially, FT-IR confirms that the aromatic pyridine structure is retained, with 

XPS identifying only minor oxygen incorporation. The pyridine functions give 

the surface a distinctive hydrophilicity as identified both by sessile drop 

contact angle and from large water bands observed in the FT-IR. This 

hydophilicity is compromised by the subsequent complexation of the catalyst 

MTO onto the surface via the electron lone pair on the nitrogen group, and 

results in the observed increase in the sessile drop contact angle in the 

immobilisation reaction. 

 XPS analysis of the prepared MTO-pyridine surfaces suggests a surprisingly 

small amount of MTO on the surface, a meagre 6 % of the theoretical Re 

present on the surface. However, PIXE analysis suggests that 4% Re is 

present (50% of the theoretical surface). This discrepancy is probably due to 

the UHV conditions employed by XPS analysis – and the relatively long time 

the substrate is retained at UHV. The known volatility of MTO suggests that it 

could be stripped from the substrate surface. PIXE also has a greater 

penetration depth than XPS, so can sample deeper into the substrate.  

The presence of a sizable amount of MTO is further confirmed by FT-IR, 

where the appearance of the MTO band at 912 cm-1 is accompanied by a 

marked reduction of the pyridine ring stretch at 1600 cm-1. The disruption of 

the aromaticity of the pyridine ring when complexation occurs causes a shift to 

1640 cm-1 which strongly confirms the reaction has proceeded.  

The observed loading of MTO onto the substrate compares favourably to 

those observed previously (0.5 or 1.0 mmol MTO for each 1g of support) and 

suggest that enough MTO is present to initiate catalysis – the strong colour 

change in the treated substrate is also a good indication that complexation 

has occurred.  
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The catalysis of styrene epoxidation does not result in the yield or selectivity 

that would be required to utilise the plasmachemical system in the laboratory 

for catalysis. Desired conversion and selectivity are in the region of 99%. 

However, one of the advantages of the plasmachemical technology is the 

ability to tailor surfaces via optimising pulsing parameters. Whilst the 

plasmachemical pyridine surface in this work was optimised for structural 

retention a promising line of future inquiry is likely to be how the pulsing 

parameters of the deposition modify the ultimate yield and conversion of the 

catalysis. In particular, the degree of crosslinking in the substrate has a 

demonstrable effect on the catalysis and switching to more rigorous 

deposition conditions (longer ton, shorter toff, greater power, or even 

continuous wave deposition) would allow the degree of crosslinking to be 

increased. 

Increasing crosslinking density might also be a solution to the reduction in 

catalytic activity observed when the substrate is re-used a second time. The 

relatively destructive conditions used in the epoxidation reaction might have 

caused some surface damage, and crosslinking would minimise this. However, 

the reaction does still proceed and surprisingly becomes more selective for 

the epoxide. The decrease in styrene conversion also matches the reduction 

in observed diol yield, suggesting that either some of the catalyst 

(corresponding to the diol conversion) is lost or that rearrangements in the 

surface structure, such as swelling in solvent, are changing the chemical 

environment around the catalyst. 

Exploring the effect of cross-linking by varying deposition parameters would 

provide a good starting point for future work. Also of interest would be the 

effects of the catalyst on other alkenes, as previous literature indicates that 

the extent and selectivity of conversion can depending on the substrate 

structure. 

5. Conclusion 

The applicability of pulsed plasmachemical technology to heterogeneous 

catalysis has been demonstrated. The use of a plasmachemical film to 
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provide a ligand for the surface immobilisation of a transition metal catalyst 

such as MTO and its subsequent catalytic action were demonstrated. 



189 

189 

 

                                                 

1  Owens, G. S.; Arias, J.; Abu-Omar, M. M. Catalysis Today, 2000, 55, 
317 

2  Soldaini, G.; Cardona, F.; Goti, A. Tetrahedron Letters 2003, 44, 5589 
3  Bernini, R.; Coratti, A.; Fabrizi, G.; Goggiamani, A. Tetrahedron Letters 

2003, 44, 8991 
4  Herrmann, W. A.; Zoller, J. P.; Fischer, R. W. J. Organometallic 

Chemistry 1999, 579, 404 
5  Jacob, J.; Espenson, J. H. Inorganica Chimica Acta 1998, 270, 55 

6 Hyatt, J. A.; Kottas, G. S.; Effler, J. Organic Process Research and 
Development 2002, 6, 782 

7  Hyatt, J. A.; US6156913, WO0001649 
8  Bianchini, G.; Crucianelli, M.; De Angelis, A.; Neri, V.; Saladino, R. 

Tetrahedron Letters 2005, 46, 2427 
9  Bianchini, G.; Crucianelli, M.; De Angelis, A.; Neri, V.; Saladino, R. 

Tetrahedron Letters 2004, 45, 2351 
10  Saladino, R.; Mincione, E.; Attanasi, O. A.; Filippone, P. Pure Appl. 

Chem. 2003, 75, 265 
11  Saladino, R.; Neri, V.; Pelliccia, A. R.; Mincione, E; Tetrahedron 2003, 

59, 7403 
12  Saladino, R.; Cardona, F.; Goti, A. Tetrahedron Letters 2003, 44, 5589 
13  Saladino, R.; Neri, V.; Pelliccia, A. R.; Caminiti, R.; Sadun, C. J. Org. 

Chem. 2002, 67, 1323 
14  Saladino, R.; Neri, V.; Mincione, E.;  Filippone, P. Tetrahedron 2002, 

58, 8493 
15  Viswanadham, N.; Shido, T.; Sasaki, T.; Iwasawa, Y. J. Phys. Chem. B 

2002, 106, 10955 
16  Li, M.; Espenson, J. H. J. Molecular Catalysis A: Chemical 2004, 208, 

123 
17  Bouh, A. O.; Espenson, J. H. J. Molecular Catalysis A : Chemical 2003, 

200, 43 


