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Abstract 

The ultrafast dynamics of a number of molecules have been studied in the gas 

phase through the use of frequency- angle- and time-resolved photoelecron imaging. A 

particular emphasis has been applied to the behaviour of biologically relevant 

molecules following photoexcitation. The gaseous ions were produced from an 

electrospray ionisation source and interrogated by a purpose-built velocity-map 

imaging photoelectron spectrometer with a minimum temporal resolution of ~50 fs. 

Firstly, the details of a global kinetic fitting routine for a time-resolved 

photoelectron spectrum are presented. Through fitting the constituent photoelectron 

images to a kinetic fit, the photoelectron angular anisotropy of the consituent features 

of the time-resolved spectrum is preserved. Secondly, the dynamics of the green 

fluorescent protein model chromophore following UV excitation were explored, 

identifying internal conversion of the initially produced excited state population to a 

lower lying excited state before photodetachment. Thirdly, frequency- and angle-

resolved photoelectron imaging is employed to investigate the dynamics of anionic 

resonances of para-benzoquinone, that have been implicated in facilitating electron 

attachment to this moiety. Fourthly, the photoelectron spectra of a series of carboxylic 

acids are presented in order to assess the feasibility of producing anions by attaching 

carboxylic acids to neutral chromophores. Fifthly, a time-resolved photoelectron 

spectrum of the biological chromophore and carboxylic acid, all-trans-retinoic acid is 

presented. Finally, highly anisotropic photoelectron spectra of the dianion, antimony 

tartrate are presented. In order to explain the anisotropy, classical trajectories of 

electrons on the molecular electrostatic potential energy surface are calculated. From 

this, the observed anisotropy can be assigned the the shape of the molecular repulsive 

Coulomb barrier.  
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Chapter 1. Introduction 

In this chapter, a brief introduction to the motivation behind the work 

undertaken in this thesis and a short discussion of the fundamental concepts underlying 

the physical processes investigated are presented.  The principles of the production of 

an excited electronic state by absorption of a photon, the production of a wave packet 

on the excited state surface and the mechanisms by which an isolated molecule in an 

excited electronic state may decay back to the ground electronic state are discussed. 

The principles of photoelectron spectroscopy, including photodetachment, methods by 

which the detached electron might be detected and photoelectron angular distributions, 

are presented. In order to trace the evolution of a wave packet on an excited state 

surface, it is necessary to employ a time-resolved spectroscopic method. Numerous 

time-resolved spectroscopic methods are discussed, with a focus on pump-probe 

spectroscopy and hence time-resolved photoelectron spectroscopy. Finally, a short 

discussion of the recent application of photoelectron spectroscopy to the study of the 

dynamics of a variety of molecular systems is presented. 

1.1 Blink and You’ll Miss It: The Need for Observations on an Electronic 

Timescale 

The French Drop is one of the most famous and performed magic tricks in the 

world. The traditional order of the trick is as follows: 1. the magician presents a coin to 

the audience, holding it between the thumb and first two fingers of the right hand; 2. the 

magician transfers the coin to the left hand and holds it in his fist in clear view of the 

audience; 3. the magician taps their fist with their magic wand and reveals their empty 

palm to an astonished and rapturous audience. If the magician is feeling particularly 

wealthy, the coin can be retreived from the ear of, and subsequently presented to, a 

small child. An astute observer watching closely and stood both slightly behind and 
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above the performer would notice that the coin never in fact enters the left hand; as the 

magician moves to transfer the coin, the thumb is relaxed, the coin falls into the palm of 

the right hand and the left hand grasps nothing. The audience is left none the wiser, as 

the movement is both covered by the other hand and too fast for the casual observer to 

see. 

The excited state dynamics of a molecular species following photoexcitation are 

extremely fast. In the solid phase, the ground electronic state is typically recovered on 

the order of nanoseconds,1,2 with few processes such as phosphorescence occuring on 

timescales which can approach the order of 10s of seconds, although in the majority of 

cases this occurs on a millisecond timescale.1 In the gas phase, the dynamics tend to 

occur on an even faster timescale. With these timescales in mind, it is difficult to 

seriously compare molecular dynamics to the drop of a coin; the coin takes ~0.1 s to fall 

into one’s hand, ~108 orders of magnitude slower than the majority of the excited state 

processes in the gas phase, and is ~108 orders of magnitude larger than a molecular 

species. Indeed, it is considerably easier to observe the coin falling than internal 

conversion within the molecule. However, care is still requrired to observe the coin, as 

the speed at which it falls is difficult to track with the human eye – blink and you’ll 

miss it. The coin and an electronic excited state are therefore similar; without careful, 

consistent observation on an appropriate timescale, whether sleight of hand or the 

dynamics of an excited state, the observers will be sat like bemused children, wondering 

where it went. 
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1.2 Dynamics of Excited States 

1.2.1 Principles of Photoexcitation 

First, we must consider the processes involved in the absorption of a photon by 

an atom or a molecule in order to induce a non-forbidden electronic transition to 

produce an electronically excited state of that species. As a general approximation, the 

energy of the photon is absorbed by the molecule to promote an electron into a higher 

energy molecular orbital. In contrast to vibrational and rotational transitions, in which 

the photons absorbed lie in the infrared and microwave regions of the electromagnetic 

spectrum,1 higher photon energies are required to induce electronic transitions. As such, 

the photons absorbed typically lie in the ultraviolet and visible region. However, in 

order to describe the molecular processes at play, we must consider the system in terms 

of quantum mechanics. The complete description of any system can be found by solving 

the Schrödinger equation for all nuclei and electrons, which, for a one electron system, 

is given as:1-4 

 ( 1.1 ) 

where is the position of the electron,  is the position of the Nth nucleus,  is the total 

wavefunction,  is the total energy and  is the Hamiltonian of the system: 

  ( 1.2 ) 

where TN and Te are the kinetic energy of the nuclei and the electron respectively and V 

is the potential energy of the system. 

Equation ( 1.1 ) cannot be solved analytically for any system that contains more 

than one nucleus,3 hence it may not be solved for a molecule. As such, at the outset of 

any quantum mechanical treatment, we must invoke the Born-Oppenheimer (BO) 

approximation. In this, as the mass of an electron is far less than the mass of a nuclei 

(mProton/mElectron = 1836.2),2 the nuclei of a system can be assumed to be stationary on 
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the timescale of electron motion. The wavefunction of the electron may now be found in 

the static field of the nuclei and the Schrödinger equation may therefore be written as:1-4 

 

, 

( 1.3 ) 

where  gives the eigenstates of the molecule, accounting for the kinetic energy of the 

electrton and the Coulombic interactions between all particles. While equation ( 1.3 ) is 

only solvable for a single electron system, the BO approximation reduces the 

complexity of the equations governing the behaviour of many electron systems 

considerably. 

 An important concept introduced in equation ( 1.2 ) is V, the potential energy, 

which is dependent upon the nuclear geometry in the BO approximation. V can be 

described by a 3N–6 dimensional surface, where N is the number of atoms in the 

molecule, and is essential for the understanding and visualisation of molecular 

dynamics. 

 The wave-particle duality of an electron and its subsequent description as a 

wavefunction leads to an interesting and famous result. Consider Fourier’s theorem:5 

 
 

( 1.4 ) 

which states that any periodic function can be described by the sum of an infinite 

number of sine and cosine functions. As such, any function that is non-sinusoidal must 

contain contributions from a number of sinusoidal functions oscillating at different 

frequencies. In order to illustrate this effect, Figure 1.1 shows a series of summed cosine 

waves, of the form: 

 
⁡  

( 1.5 ) 
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Figure 1.1 Demonstration of  constructive and destructive interference by the sum of a number of cosine 

functions.  

As the number of frequencies in the summation increases, the function tends 

towards a series of high amplitude, highly localised peaks; as the time resolution of the 

peaks in the spectrum increases, the ‘resolution’ of the frequency decreases. Hence, a 

direct result of wave-particle duality is that one cannot define both the energy and the 

lifetime of an electron accurately and simultaneously. This can be summarised in the 

famous form: 

 , ( 1.6 ) 

which is a consequence of the uncertainty principle, as proposed by Heisenberg.6,7 This 

is an extremely important result for quantum mechanics and exists in numerous 

different forms to decribe different complementary relationships – position and 

momentum is perhaps the most well known relationship defined by the uncertainty 

principle.3 This result also has significant implications for the generation of ultrafast 

laser pulses and in fact provides the underlying principle for mode-locking,8 the method 

used to produce femtosecond pulses in titanium:sapphire lasers. In this, a number of 

lasing modes are allowed to propagate simultaneously and the interference between the 
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waves results in a train of femtosecond length pulses, by the mechanism illustrated in 

Figure 1.1. However, as previously discussed, the temporal resolution requires a broad 

range of wavelengths and hence the energetic resolution of femtosecond pulses is 

considerably worse than acheivable with longer pulsed or continuous wave lasers.8 

 We may now turn our attention back to electronic excitation. In this, by the 

interaction between the molecular electronic dipole moment, , and the incident 

electric field of a photon, , the photon may be absorbed in order to promote the 

molecule to an electronic excited state, according to the selection rules:1-4 

 ( 1.7 ) 

 ( 1.8 ) 

where  is the total angular momentum quantum number and S is the total spin 

quantum number. Following photoexcitation, V might be expected to differ significantly 

from that in the ground state if the occupancy of the bonding molecular orbitals is 

reduced and so the equilibrium geometry is expected to be vary accordingly. However, 

under the BO approximation, the nuclei are stationary and the rearrangement concerns 

only electrons. The transition is therefore said to vertical, where all coordinates bar the 

energy and the electrons remain constant, an approximation termed the Franck-Condon 

principle.9-11 

 This principle may be considered quantitatively by considering the probability 

of the transition. The transition dipole moment, , between an initial and final state, 

 and  respectively, may be written:3 

 ( 1.9 ) 

in Dirac bra-ket notation,3 where  describe the electronic and nuclear 

coordinates respectively. In this, both electronic and nuclear degrees of freedom are 

contained within . Under the BO approximation, the nuclei are stationary and the 
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transition dipole moment can be defined as the constant , the electronic transition 

dipole moment, at this geometry, allowing the separation of the electronic and nuclear 

degrees of freedom. 

 ( 1.10 ) 

We may now express  in terms of  and subsequently in terms of the wavefunction 

overlap between the initial and final states in the stationary geometry, which is typically 

denoted as the overlap integral . 1-4 

 ( 1.11 ) 

The probability of the transition is then proportional to , which may be termed 

the Franck-Condon factor.2 In short, the probability of the transition between two states 

is given by the overlap of the wavefunctions of the intial and final states in the geometry 

of the initial state. 

 As previously discussed, a necessary result of the uncertainty principle is that 

ultrafast laser pulses must have a broad energy profile. This is significant in terms of 

photoexcitation, as it will result in a range of photoexcited states being produced by 

excitation with an ultrafast laser pulse, as opposed to the single excitation that one 

might expect when utilising a single frequency. This range of vibrationally excited 

states will be defined by the shape of the excitation pulse (typically a Gaussian 

distribution) and the orbital overlap at each frequency in the static geometry. The 

superposition of excited states produced by such an excitation can be described 

mathematically as:3 

 ( 1.12 ) 
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where  is the nth vibrational wavefunction,  is the energy of the function,  is a 

weighting factor describing the shape of the excitation pulse,  and the Franck-

Condon factor at each n, and t is the evolution time of the system. This equation is 

similar to that of Fourier’s theorem, equation ( 1.4 ), and the superposition effectively 

behaves in a similar fashion; it appears as a highly localised region of high intensity 

with little to no amplitude elsewhere, a phenonemon known as a wave packet.3 

 An important variable in equation ( 1.12 ) is t, the evolution time of the system. 

As t varies, so does the position at which the frequencies constructively interfere. This 

effectively means that the wave packet can oscillate across the potential energy surface 

(PES) as a coherent feature with t. If the energy level spacings between the vibrational 

levels are unequal, as in the anharmonic oscillator model, then the wave packet may 

dephase and change shape with time, as opposed to oscillating indefinitely on evenly 

spaced energy levels.3 

1.2.2 Decay Mechanisms 

If there is no mechanism for energy loss from the photoexcited states, then the 

wave packet will remain oscillating indefinitely on the excited state PES. However, this 

is not the case and the photoexcited molecule will attempt to recover thermal eqilibrium. 

Therefore, when one attempts to determine the dynamics of an excited state, one is 

attempting to determine the evolution of the initially produced wave packet with time. 

There are numerous processes by which the molecule can redistribute or lose excess 

energy, both radiative and non-radiative, which are denoted on the Jablonski diagram 

shown in Figure 1.2. 
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Figure 1.2 Jablonski diagram illustrating the major decay mechanisms of  an electronically excited state 

along a reaction coordinate. The excited state (S2) is produced by an initial photoexcitation (Ex) of the 

electronic ground state (S0) and begins to decay by intramolecular vibrational energy relaxation (IVR). 

The S2 state decays through a conical intersection (CI) to a second excited state (S1), which may decay to 

the S0 state by fluorescence (Fl). 
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 Intra-Molecular Vibrational Energy Relaxation 1.2.2.1

In the solution and solid phases, following photoexcitation to a vibrationally-hot 

electronic excited state, the excess energy is quickly redistributed to the kinetic modes 

of the surrounding molecules via inter-molecular vibrational energy relaxation and the 

molecule falls to the Maxwell-Boltzmann distribution of vibrational states in the excited 

electronic state. In this gas phase, the molecule is isolated and therefore this pathway is 

not accessible; the initial excitation energy is conserved within the molecule. Instead, 

the energy may be redistributed through the vibrational modes of the initially excited 

molecule, in intra-molecular vibrational energy redistribution (IVR).12 When 

considering the PES of the excited state along a single reaction coordinate (for example, 

the stretch of a bond linking two chromophores or the rotation about a double bond 

following a π* ← π transition) this allows for the minimum energy geometry to be 

achieved while conserving the vibrational energy in different vibrational modes. IVR 

typically occurs on the order of tens of picoseconds.1 

This is significant when considering the fate of the wave packet. In small 

molecules, the number of vibrational modes is small enough that the originally excited 

mode may be recovered, i.e. the vibrational energy redistribution is reversible. The 

wave packet may then be recovered following dephasing. In larger molecules, however, 

the number of vibrational modes is large and the density of states results in a near-

continuum. This is an incoherent system, hence the wave packet will irreversibly 

dephase.3 

 Internal Conversion 1.2.2.2

While IVR deals with energy redistribution on an excited state surface, most 

other decay mechanisms involve the conversion of the excited state to an alternate 

electronic state. Internal conversion (IC) is the predominant mechanism for this process 
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and describes an electronic transition between two states with the same spin via the 

coupling of modes of the same energy on the initial and final states.3,12 In a reasonably 

large system, as with IVR, the density of vibrational modes can be approximated to a 

continuum of states. The rate of the transition can therefore be described by Fermi’s 

golden rule:13 

 ( 1.13 ) 

where  is the transition rate,  is the square modulus of the transition matrix 

element which describes the overlap of the wavefunctions of the vibrational modes and 

is the density of states.3 An important result of this equation is that IC is more 

efficient between close lying excited states. Finally, in order to couple the two 

electronic states, the transition must be totally symmetric. Therefore, a promoting mode 

of the correct symmetry is usually required:3 

 ( 1.14 ) 

where i and f label the initial and final states, m  is the promoting mode and  is the 

totally symmetric irreducible representation of the relevant point group. 

 As previously stated, IC is forbidden between electronic excited states with 

differing spin. However, in states  with sufficient spin-orbit coupling, this rule can break 

down and the state may be converted into a state with differing spin. This process is 

known as inter-system crossing (ISC) and, due to the dependence on spin-orbit 

coupling, is most prevelant in systems containing heavy atoms such as metal 

complexes.2 

 Conical Intersections 1.2.2.3

 This coupling between excited states is known as non-adiabatic coupling or 

vibronic coupling and describes the coupling of electronic and nuclear vibrational 

motion.14-17 A crucial consequence of this coupling is that the BO approximation does 
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not hold; one cannot consider the interaction between electronic and nuclear motion if 

the nuclei are stationary! As such, the Born-Huang (BH) or coupled electronic state 

approximation,18 which holds that TN in equation ( 1.2 ) is both non-zero and a diagonal 

matrix, is employed. Within this approximation, a non-radiative transition may occur 

between two electronic excited states via non-adiabatic coupling and is most likely to 

occur in molecular geometries where the potential energy surfaces intersect.14 

 This is not an unexpected result; from equation ( 1.13 ), it follows that the 

maximum rate occurs when ∆𝐸 = 0, or when the PES of the coupled excited states are 

degenerate. The point at which the electronic states are degenerate is known as a conical 

intersection (CI),14,16,17,19-23 so called because the shape of the PES as the reaction 

coordinate moves away from the degeneracy appears as a double cone. In order for the 

PES to be degenerate, the equation:14 

 ( 1.15 ) 

where i and f label the initial and final states, geom  is the nuclear geometry at the CI 

and  is the totally symmetric irreducible representation of the relevant point group, 

must be satisfied. As such, if the excited states have differing symmetries, then the 

condition can be trivially met to form an accidental symmetry-allowed CI. The 

transition is known as accidental as the electronic states do not need to be degenerate at 

the point of requisite symmetry. If the electronic states are symmetrically degenerate 

(both belong to a E or T representation), then a symmetry-required CI is formed.14,16,17 

The Jahn-Teller distortion is a result of the formation of a symmetry-required CI. 

However, the conditions can only be produced in an N – 2 dimensional space, where N 

is the number of degrees of freedom. In a diatomic system, N = 1 and as such, the 

electronic states may never be degenerate; this is known as the non-crossing rule. IC 

and non-adibatic dynamics occuring through CIs can be extremely fast, typically 
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occuring on sub-picosecond timescales and often limited by the vibrational period of the 

modes required to access the CI. 14,16,17 

 Radiative Transitions 1.2.2.4

Photoemission is effectively the reverse process of photoexcitation; the molecule 

converts from an excited state to the ground state by emission of a photon.1,2,12 When 

the initial and final states have the same spin, this process is known as fluorescence. If 

the initial and final states have differing spin, then the process is known as 

phosphorescence. As phosphorescence is a quantum-mechanically-forbidden process 

due to the change in spin quantum number, the lifetime of phosphorescence can be 

extremely long and exceed milliseconds,2 whereas fluorescence lifetimes are typically 

on the order of nanoseconds.12 Both lifetimes are far longer than those for IVR, hence 

radiative processes tend to occur from the lowest energy geometry of the excited state. 

This geometry is typically different from the FC geometry, hence the energy gap 

between the intial and final states is different from that in the FC region. The difference 

in energy and hence the difference between the energy of the photon that is initially 

absorbed and that which is emitted is termed the Stoke’s Shift.1,2,4 

 Photofragmentation 1.2.2.5

Finally, we consider the loss of energy via bond dissociation. It is possible for 

the molecule to decay to an alternate ground state by photodissociation.  It is sometimes 

possible for a molecule to absorb a photon to an unbound electronic state, leading to 

bond fission and the loss of a group from the molecule; dissociation.  It is also possible 

for a bound electronic state to undergo IC through an intersection on the potential 

energy surfaces into a dissociative state; this is known as predissociation.2 

Another possible pathway for the production of photofragments is excitation 

with multiple photons. If the incident radiation is insufficient to fragment the molecule, 
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then the fragmentation threshold may be reached by absorbing multiple photons over 

the timescale of the laser pulse. This is greatly assisted if the incident radiation is 

resonant with an excited electronic state that can decay to the ground electronic state 

within the timescale of the laser pulse, at which point the initial excitation becomes 

resonant once more and allows for efficient multiple absorption.24-26 

While we have predominantly considered bond dissociation as the major product 

of photofragmentation, the smallest fragment that one can produce following 

photoexcitation is an electron. This phenomenom can be exploited to investigate the 

electronic structure of the molecule by photoelectron (PE) spectroscopy. 

 

1.3 Photoelectron Spectroscopy 

1.3.1 Principles of Photoelectron Spectroscopy 

The photoelectric effect, the observation of electrons from the surface of a metal 

following irradiation with photons, was first observed by Heinrich Hertz27 in 1887, after 

observing that it was easier to generate sparks from electrodes when they were 

illuminated with ultraviolet light. The effect was the subject of much interest, as no 

electrons were liberated until the threshold frequency of the incident radiation for the 

metal in question had been reached, regardless of the intensity of the radiation. The 

phenomenon was eventually explained in 1905 by Einstein,28 in between formulating 

both his theories of heat capacities and the special theory of relativity, who based the 

explanation on the conservation of energy in a collision between an incident photon and 

an electron embedded within the metal. In order to detach an electron, the energy of the 

incident radiation must exceed the work function of the metal, Φ, explaining the 

frequency dependence of the effect, and the excess energy is conserved by the kinetic 

energy of the liberated electron, eKE. This can be summarised as: 
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 Φ, ( 1.16 ) 

where Φ is analagous to the ionisation potential of the system. In closed-shell Hartree-

Fock theory, Koopman’s theorem holds that the first ionisation potential of a system is 

equal to the negative of the orbital energy of the highest occupied molecular orbital.29 

As Hartree-Fock theory assumes that the geometries of the unionised and ionised 

molecule are identical, this is equivalent to a vertical transition leading to ionisation of 

the molecule, i.e. the photoelectric effect. Therefore, we can write: 

 ( 1.17 ) 

where I is the ionisation potential of the orbital from which the electron is detached. 

Subsequently, a photon of sufficient energy may detach an electron from each 

molecular orbital in the system, assuming that the ionisation energy of the orbital is 

surpassed. This observation is the underlying principle behind PE spectroscopy; by 

irradiating the subject system with radiation of sufficient energy and measuring the 

kinetic energy of the liberated electrons, it is possible to determine the orbital energies 

of the molecular orbitals from which the electrons were detached. 

 PE spectroscopy was developed into an analytical technique in the early 1960s30 

and can be broadly, if somewhat arbitrarily, separated into X-Ray PE spectroscopy 

(XPS) and ultraviolet PE spectroscopy (UPS). Although conceptually they vary only by 

the frequency of the radiation used to ionise the system of interest, experimentally the 

two groups vary significantly. In general, XPS probes the core orbitals of the system, 

whereas UPS ionises the valence orbitals. In this thesis, we shall focus on UPS, as the 

electronic transitions to form the excited states and their subsequent dynamics involve 

the valence orbitals. 

In UPS, the system of interest is ionised with photons of an energy between 3 

eV < hv < 10 eV, which can easily be generated by second harmonic generation and 
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sum frequency generation of the fundamental frequency of neodymium yttrium 

aluminium garnet (1064 nm, 1.165 eV), neodymium yttrium lithium fluoride (1062 nm, 

1.168 eV) and titanium sapphire lasers (800 nm, 1.55 eV). These photon energies are 

unlikely to be sufficient to ionise cations and may only ionise neutral molecules with 

unusually low binding energies (one of the lowest known ionisation energy for a neutral 

molecule is 5.95 eV for tetrakis(N,N',N'',N'''-tetramethylethylenediylidenetetraamine31). 

However, this range of energies is typically sufficient to detach electrons from most 

anions, and it is the application of UPS to anion spectroscopy that shall be the focus of 

this thesis. 

1.3.2 Environmental Considerations 

PE spectroscopy is entirely dependent upon the accurate determination of the 

kinetic energy of the detached electrons. It is therefore imperative that collisional loss of 

energy from the electrons to atmospheric molecules is minimised. As such, almost all 

PE spectroscopic studies are performed in vacuo. The systems that may be studied by 

PE spectroscopy must therefore be stable over the timescale of the measurement. The 

application of XPS and UPS to solid state substrates such as metals and surfaces has 

been well established.32-35 The application to solution phase systems has been hampered 

by the propensity of most liquids to have a low vapour pressure and hence to evaporate 

under experimental conditions. Liquid microjets have emerged as a promising 

solution.36-39 In this, the PEs are detached from within a jet of solution fired into a 

vacuum chamber and the solution phase is therefore constantly regenerated. Finally, 

XPS and UPS have been applied extensively to gas phase systems, both for isolated 

molecules40-43 and for clusters,44-46 and it is on these systems that we shall focus for the 

remainder of this thesis. 
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Molecular beams have long been used to produce gaseous molecules47-49and 

have been used extensively in PE spectroscopy.47,50,51 For the production of a molecular 

beam, a gas is expanded through a pinhole into a chamber held at lower pressure. If the 

pressure ratio exceeds a critical value (dependent on the gas), then the velocity of the 

molecules can reach supersonic speeds and hence results in a free jet expansion. This is 

characterised by a collision free ’zone of silence’ immediately in front of the pinhole, 

surrounded by a series of compression waves as the supersonic particles collide with the 

particles in the vacuum. A skimmer is placed in order to extract a small section of the 

expansion from within the zone of silence and so before the collisonal region, producing 

a beam of molecules with approximately equal velocities and very few collisions 

between particles.47,52 Typically, a carrier gas (often Ar) is flowed over the sample of 

interest, potentially while being heated, in order to produce the sample beam. This 

technique is typically used to produce neutral molecules, although it is possible to ionise 

a neutral molecular beam by laser ionisation47,50,51,53 or an electron gun47,54-57 to produce 

an ionic beam, or by seeding the carrier gas with ions produced by a single polarity ion 

source, such as a plasma source.58 

There are multiple techniques for generating gaseous ions that have been 

developed by the mass-spectrometry community, such as electron ionisation,54,59 glow 

discharge,24,60,61 inductively coupled plasma24 and matrix assisted laser 

desorption/ionisation.62  However, it was the development of electrospray ionisation 

(ESI) as a simple, soft technique for producing gaseous ions free of counter ions62-66 that 

has revolutionised ionic PE spectroscopy. In this, a high voltage is applied to a needle 

through which a solution containing the system of interest is passed. The electric field 

induced by the applied voltage forms the droplet on the end of the needle into a Taylor 

cone.62 The apex of the conical meniscus theoretically becomes infinitely small, but in 
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practice breaks into small droplets when the surface tension relaxation time becomes 

larger than the charge relaxation time. The solvent droplets then begin to evaporate and 

undergo Coulomb fission as the electrostatic repulsion between the solute molecules 

overcomes the surface tension constraining the droplet. The solute may then desorb 

from the droplet once a threshold radius is reached for this process to become feasible 

(the ion evaporation molecule, most commonly for small molecules),66,67 or the 

evaporation and fission cycle continues until only droplets containing a single solvent 

molecule remain and the solvent simply evaporates (the charge residue model, 

predominantly for larger ions).68,69 ESI is also able to produce multiply charged anions 

(MCAs), which had not previously been possible by other methods.70 The first to utilise 

this technology for anion UPS were the Wang group, who combined ESI with a 

magnetic bottle spectrometer,71 and the technique has become more widespread as the 

underlying technology advances.41,70,72-74 

1.3.3 Anion UPS 

The general description for electron detachment into the neutral continuum of 

the molecule can be written: 

 ( 1.18 ) 

where  is the ground electronic state of the anion and  is the ground state of the 

neutral radical. The ionisation threshold required for electron emission is defined by the 

molecular geometry at the point of emission.  The adiabatic ionisation energy (ADE) is 

the minimum amount of energy required to initiate electron loss.  This can be described 

as the difference in energy between the vibrational ground states of the initial and 

photodetached species.  However, the vertical detachment energy (VDE) is the 

difference between the ground vibrational state of the initial species and a vibrationally 

excited state of the ionised species which shares a molecular geometry with the initial 
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ground state, i.e. in the Franck-Condon geometry. Indirect or adiabatic electron 

detachment occurs in the geometry of the ionised species, whereas direct or vertical 

electron detachment occurs in the geometry of the unionised species.2 

 The photodetachment cross-section of an anion is dependent upon the kinetic 

energy of the detached electron in the relationship set out by Wigner,75 such that the 

cross-section at 0 eV is equal to zero. This is due to a centrifugal barrier caused by the 

interaction between the angular momentum of the PE and the photodetached species. If 

the anion is multiply charged, then the species produced following photodetachment 

will also be negatively charged. The interaction between the long range repulsion 

between the anion and the PE and the centrifugal barrier results in the presence of the 

repulsive Coulomb barrier (RCB). First observed by Wang and co-workers by UPS,76 

the presence of the RCB results in only electrons with sufficient kinetic energy to 

overcome the RCB being ejected, leading to a characteristic cut-off in the PE spectra of 

MCAs at low energy. The nature of the RCB can be conveniently probed by PE 

spectroscopy.42,43,76 

As previously discussed, the VDE of anions are lower than those observed in 

neutral and cationic molecules and is often below the energy required to access the first 

electronic excited state. It is often the case that it is possible to access an anionic 

resonance that is unbound with respect to electron detachment by UV excitation: 

 ( 1.19 ) 

where  is an anionic resonance. While this is the case for all molecules, the lower 

VDE for anionic species results in a far greater number of unbound resonances having 

been observed within the ultraviolet spectral range for anions than for neutrals and 

cations. In fact, it is often (erroneously) stated that anions do not have bound electronic 

states. Detachment from an anionic resonance produced by photoexcitation in this 
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fashion is known as autodetachment. The dynamics that subsequently occur on the 

excited state surface will be a competition between IVR, IC and other relaxation 

mechanisms as the molecule attempts to recover the ground electronic state and electron 

autodetachment: 

 ( 1.20 ) 

 ( 1.21 ) 

 ( 1.22 ) 

Crucially, as time progresses and further dynamics occur on the excited state, the kinetic 

energy of the detached electrons will vary. Careful dection of the kinetic energy of the 

detached electrons can allow for a window into the dynamics occuring on the excited 

state surface. 

 Finally, we consider thermionic emission (TE).77-79 TE is a statistical 

detachment process that results in a characteristic PE feature that appears as an 

exponential decay, peaking at an electron kinetic energy of 0 eV. As previously 

discussed, the cross section for photodetachment of an electron with 0 eV is zero,75 

hence these electrons cannot arise from a direct detachment process. As energy is 

conserved in the molecular system, the electronic ground state of a molecule produced 

PE by IC from an initially photoexcited electronic state is vibrationally hot. It is 

possible for an electron to ‘boil-off’ in an attempt to reduce the energy of the system. 

This is a ground state process that will result in a statistical range of PE kinetic energies. 

1.3.4 Photoelectron Detection 

PE spectroscopy is dependent upon the accurate determination of the eKE. In the 

early days of PE spectroscopy, numerous methods were employed in order to analyse 

the PE emission, including retarding field analysis and deflection analysis. Retarding 

field analysis involves applying a retarding potential to the emission, such that only 
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electrons with sufficient energy may reach the detector.80-82 By measuring the PE 

current and varying the retarding potential, the spectrum may be obtained.  In deflection 

analysis, multiple types of analysers exist, but rely on deflecting the PE emission onto a 

detector set off axis to the direction of the emission by the application of an external 

potential.80-82 These techniques both require scanning of potentials in order to determine 

the spectrum and may only measure a small solid angle of the emission. The techniques 

are therefore inefficient. With the advent of pulsed lasers, it was possible to measure the 

entire spectrum simultaneously by detecting the PE emission’s time-of-flight.83 The 

efficiency of this technique was greatly improved by the introduction of the ‘magnetic 

bottle’.84 

As an alternative, the technique of Velocity Map Imaging (VMI) was developed 

by Chandler and Houston85 and the design refined by Eppink and Parker.86 In this, the 

spherical cloud of electrons produced by photodetachment of a small packet of gaseous 

molecules is accelerated by an electrode held at a negative voltage onto a pair of micro-

channel plates (MCP) in a chevron arrangement to amplify the signal, and then onto a 

phosphor screen, the output of which is captured by a charge-coupled device. During 

this, the electron cloud expands according to the kinetic energy of the electrons and 

produces an image of a series of concentric spheres projected onto a 2D plane. The 

radius of the spheres is determined by the velocity of the PE s. The position of the PE 

on the detector is entirely dependent upon the velocity of the electron and independent 

of the position at which the electron was detached. The eKE may then be extracted 

through an inverse Abel transform.87 Through this, the spatial information contained 

within the electron cloud, such as the PE angular anisotropy, is preserved. 
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1.3.5 Photoelectron Anisotropy 

The conservation of the spatial information within the PE cloud by VMI allows 

for the direct observation of PE anisotropy. PE spectroscopy can be viewed as an 

electron scattering from an atomic or molecular core structure, hence the PE 

wavefunction can be expressed as the sum of a series of spherical harmonic functions:88-

90 

 ( 1.23 ) 

where  is the PE wavefunction,  is the orbital angular momentum quantum number, 

 is a laboratory frame projection quantum number,  is a coefficient containing 

radial and angular information about the state from which the electron was scattered,  

is a scattering induced phase shift and  are the spherical harmonic functions, 

which are also known as partial waves. The PE angular distribution (PAD) is given by 

the coherent square of this wavefunction:88-90 

 ⍺

( 1.24 ) 

where  is the PE intensity in three dimensional polar coordinates relative to the 

polarisation of the incident radiation,  and  are  and  in the final state, 

 and  by the vector combination of the angular momenta, and 

 is a coefficient dependent on several factors and describes the contribution of each 

partial wave to the PAD and the interference with the other partial waves. An important 

consequence of equation ( 1.24 ) is that the PAD is dependent upon the orbital from 

which the electron is scattered and hence can be described by symmetrical 

considerations.91 



23 
 

 In a gas phase experiment, the sample is an isotropic distribution of isolated 

molecules. Cooper and Zare showed through symmetrical considerations that single 

photon ionisation of such a distribution of open or closed shell molecules by linearly 

polarised light would result in a PAD constrained by the equation:92 

 ⍺ ⁡ ( 1.25 ) 

where  is the angle between the polarisation of the incident radiation, ε, and the 

ejection direction of the PE, and ⁡  is the second order Legendre polynomial. 

This results in an angular distribution that is cylindrically symmetric about the laser 

polarisation, which functions as the laboratory frame z-axis. The  parameter may vary 

between –1 and +2 and may be used to provide qualitative information about the 

molecular orbitals and resonances of the photoionised system. However, in order to 

extract the maximum amount of information about the partial waves from the PAD, it is 

necessary to prealign the molecular distribution into an anisotropic distribution, by, for 

instance, ionising a distribution that was produced by initial photoexcitation to an 

excited state.10,45 

 Sanov and co-workers have developed an elegant method for extracting 

information about the detachment process from the observed PAD of low kinetic energy 

electrons detached from anions based on symmetrical arguments – the s-p model.93-96 At 

low kinetic energies, by the Wigner threshold law, the wavefunction of the outgoing 

PEs is dominated by low angular momentum partial waves, specifically those with l = 0 

and 1 (s and p waves respectively).75 The s-p model takes the symmetry of the orbital 

from which the electron is detached, , and the molecular frame components of the 

transition dipole moment, , and , and considers the symmetry of the 

partial waves that contribute to the outgoing PE wave, , such that: 

 ( 1.26 ) 
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where i = x, y or z and  is the totally symmetric irreducible representation of the 

point group of the system. In order for equation ( 1.26 ) to hold, then: 

 ( 1.27 ) 

By inspection of the relevant point group table, it is then possible to determine the 

symmetry of the outgoing waves in the molecular frame and hence the angular 

momentum: l = 0 corresponds to an s type wave, l = 1 corresponds to a p type wave and 

momenta of l ≥ 2 are disregarded. s type waves give rise to an isotropic distribution, 

whereas p type waves give rise to an anisotropic distribution that peaks either 

perpendicular or parallel to ε, dependent on the symmetry of the wave; if the transition 

in the x axis, , gives rise to a px type wave, then the anisotropy peaks parallel to ε. 

While the s-p model has been shown to be valid for small molecules,93 the quantitative 

prediction of the PE angular distribution for large molecular systems and at higher 

electron kinetic energies remains very difficult and involves time and resource 

consuming calculations.97-99 Nevertheless, the PAD remains an extremely useful and 

sensitive insight into the dynamics of electron photodetachment. 

 

1.4 Measurements in the Time Domain 

Perhaps the first example of a time-resolved experiment is ‘Sallie Gardener at a 

Gallop’,100 a 1878 series of 24 photos of a galloping horse taken at short time intervals 

in order to establish whether a horse’s hooves all leave the ground at the same point. If 

we take the first photo in the series as the ‘time zero’ point, then each subsequent 

photograph represents a measure of the system as it evolves in time. This is the 

underlying principle of all time-resolved measurements; a perturbation is applied to a 

system and the state of the system is measured as it evolves in time. Time-domain 

measurements can be broadly divided into two groups: single excitation (where the time 
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domain measurement comes from measuring the time of emission following the initial 

perturbation) and multiple excitation (where the time domain measurement comes from 

the time delay between the two laser pulses). 

1.4.1 Single Excitation Measurements 

The quintessential single excitation experiment is time-resolved luminescence 

spectroscopy, or time-correlated single photon counting (TCSPC).1,101-103 In this, a 

single excitation pulse is used to promote a system to an excited state that may decay by 

fluorescence or phosphorescence. The emission is then typically filtered to select a 

certain wavelength and detected by, for example, a photomultiplier tube or a single-

photon avalanche diode. The current from the detector is binned in time relative to the 

initial excitation pulse, allowing for a histogram to be constructed of the decay of the 

photoemission signal. The lifetime of the emission may then be extracted from this. 

While predominantly performed in the solid or liquid phases, gas phase TCSPC studies 

are not uncommon.26,104-107 

Fluorecence lifetime imaging is a rapidly expanding field that combines 

microscopy with time-resolved fluorescence spectroscopy.108-111 A sample, such as a 

cell, is doped with a fluorescent dye and placed on the microscope. The sample is then 

illuminated with a laser pulse in order to excite the dye, and the emission is observed 

through the microscope. The emission is detected by the same principle as TCSPC, 

except that a position sensitive detector such as a CCD camera is used instead of a 

photomultiplier tube.112 Subsequently, there has been considerable effort to develop 

fluorescent probes with lifetimes that vary with the environment of the probe. Förster 

resonance energy transfer111 is a dipole-dipole interaction where the excitation energy 

can be transferred non-radiatively from one chromophore to another if the absorption 

spectrum of the latter overlaps with the emission spectrum of the former. The efficiency 
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of this mechanism is dependent on the distance between the chromophores, proportional 

to r6 where r is the distance between the chromophores. This dependency has been 

extensively employed to follow intracellular reactions as an extension of fluorescence 

lifetime imaging. The Förster resonance energy transfer acts as a competing decay 

mechanism of the excited state, hence, with increased efficiency, the observed 

fluorescence lifetime will be reduced despite the rate of fluorscence being unchanged. If 

a protein and a substrate are tagged with complementary chromophores, then, by 

following the change in the observed fluorescence lifetime, it is possible to pinpoint the 

location and frequency of protein based reactions in the cellular environment. 

An extension of PE spectroscopy is PE -photoion coincidence spectroscopy 

(PEPICO). When a neutral or cationic molecule is ionised, a PE and a cation are 

produced simultaneously. The electric fields required for VMI will repell one and 

accelerate the other, separating the disparate clouds and allowing for detection of both. 

By measuring the kinetic energy of all fragments simultaneously, a complete picture of 

energy redistribution on an excited state surface can be obtained.113-120 

1.4.2 Multiple Excitation Measurements 

Single excitation time-domain measurements are dependent upon detecting 

some particle emitted from the molecule following the initial excitation. Here, we have 

focussed on detecting photons emitted by fluorescence or phosphorescence following an 

initial photoexcitation. Other techniques on the same principle exist, notably time-

resolved electron attachment, where the lifetime of ions formed by bombardment of 

neutral molecules with variable kinetic electrons is determined.121,122 Techniques 

involving multiple excitations rely on an initial excitation to produce an excited state, 

followed by a second excitation to induce a second transition, the result of which is 

detected. The time delay between the two excitation pulses is recorded and gives the 
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time resolution of the experiment. This is known as pump-probe spectroscopy, where 

the initial excitation is known as the pump and the second excitation, where the state of 

the system is determined relative to the time delay between the two excitations, is 

known as the probe. 

An extension of fluorescence lifetime measurements is fluorescence 

upconversion,123,124 a two photon technique. In this, the system of interest is 

photoexcited by an ultrafast laser pulse. The resultant photoemission is collected and 

directed through a non-linear optical crystal. A second ultrafast laser pulse is directed 

through the crystal concurrently and the angle is adjusted to maximise the sum-

frequency generation, where the two photons effectively combine to give a single 

photon of the summed energy. The sum frequency photons are then detected and, by 

varying the time delay between the initial photoexcitation pulse and the upconversion 

pulse, it is once again possible to construct a histogram of the decay of the 

photoemission signal and therefore extract the fluorescence lifetimes. This technique 

allows for greater time resolution than TCSPC, which is dependent upon the time-

resolution of the photomultiplier tube and the data acquisition set-up. 

Transient absorption is a widely used time-resolved experiment that exemplifies 

multiple excitation techniques.1,2 In this, a sample promoted into an excited state by an 

ultrafast laser pulse. A second pulse is then introduced to produce white light with 

which the sample is irradiated. The absorbance is recorded across the range of interest 

and, by varying the time delay between the two pulses, the change in the absorption 

spectrum with time can be determined. As the absorption spectrum is necessarily tied to 

the accessible electronic transitions and energy level spacings, the changes in the 

absorption spectrum can be used to trace the evolution of the excited states. This 

technique typically requires a greater density of molecules than can be produced by 
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conventional gas phase techniques, so this transient absorption has not been widely 

employed in the gas phase.  

Numerous examples of time-resolved photofragment spectroscopy studies have 

been reported, which can be largely grouped into two categories: where the 

fragmentation is induced by the probe pulse and the fragments then detected (typically 

by mass spectrometry)125 and where the fragmentation is induced by the pump pulse and 

the probe pulse is used to detect the fragment (typically by ionisation of a neutral 

fragment, so the fragment is then charged and therefore can be detected by traditional 

methods).126-128 

1.4.3 Time-Resolved Photoelectron Spectroscopy 

It is the extension of PE spectrscopy into the time domain on which we shall 

focus for the rest of the chapter. The intrinsic principle of PE spectroscopy is to promote 

the system above the ionisation potential. In time resolved PE spectroscopy (TRPES), 

the energy required is typically provided by multiple photons. An ultrafast laser pulse is 

used to promote the species to an excited state and defines t0 of the experiment. This is 

followed by a second, probe pulse at a delay of Δt, which promotes the species over the 

detachment energy and causes electron emission to an electronic state, typically the 

ground state, of the ionised species.  From monitoring the PE spectrum over a series of 

delays, it is possible to determine the lifetime of the initial excited state and to 

determine its fate.  As such, TRPES can be described as the combination of three 

processes: the creation of a wave packet in the excited state of a species by the pump 

pulse, the evolution of this wave packet on the excited state surface for a time delay Δt 

and, finally, the detection of the wave packet by the probe pulse. An important 

advantage of this technique is the relaxed selection rules of photoionisation – the 

detached PE can take any symmetry required to satisfy equation ( 1.26 ), hence 
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ionisation is always an allowed transition. The underlying principles of TRPES are 

illustrated in Figure 1.3. 

 

Figure 1.3 Schematic diagram illustrating the fundamental processes underlying TRPES. A pump photon 

promotes an electron in an anionic species, S0, into an excited state, S1. The excited state is then probed 

by a probe photon after a delay, Δt, to promote the anion into a continuum state. The molecule may then 

decay to the ground state of the neutral molecule, D0, following emission of an electron. By recording the 

intenisty, kinetic energy and distribution of the PEs as a function of pump-probe delay, it is possible to 

track the evolution of the excited state with time. 

 

1.5 State of the Art  

Gas phase PE spectroscopy of neutrals and anions has been used to study a great 

number of systems. Ultrafast spectroscopic studies are based upon the intricate 

transition state experiments of Zewail and co-workers,129 for which Zewail was awarded 

the 1999 Nobel Prize in Chemistry. While the first TRPES studies were performed in 

the mid-1980’s,130 the first femtosecond-resolution TRPES studies were reported in the 

mid-1990’s.131-136 More recently, the first examples of femtosecond time-resolved PE 
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imaging were reported by Wang et al.137 and Davies et al.113 Over the past two decades, 

time-resolved gas phase PE spectroscopy has been used extensively to explore a variety 

of systems. Here, a brief review of recent advances in the field of PE spectroscopy used 

to investigate the ultrafast molecular dynamics of gas phase molecules is presented. 

1.5.1 Deoxyribonucleic Acid 

PE spectroscopy has been extensively employed to investigate the dynamics of 

DNA. The PE spectra, electronic structure and excited state dynamics of the DNA bases 

have been the subject of considerable interest due to the instability of the DNA strands 

to ionising radiation.138 Energy released into cells by ionising radiation is frequently 

converted into secondary electrons with kinetic energies between 1-20 eV. These 

electrons, when attached to DNA strands, induce both single and double strand 

breakages from kinetic energies as low as 3 eV.139  However, the energies involved are 

far below the estimated ionisation potentials of the nucleotides or the dissociation 

energy of the phosphate backbone.140-142 Recent theoretical studies143,144 have suggested 

that the cleavage is due to the occupation of an empty π* orbital on the nucleobase by 

the free electron. This may then undergo electron transfer onto the sugar-phosphate 

backbone, resulting in the breaking of a C-O σ bond. 

 An important factor in understanding the source of this molecular damage is the 

adiabatic ionisation energy of the nucleotides. In order to determine this energy, 

numerous computational,145,146 PE spectroscopy147-153 and electron affinity studies154-156 

have been performed on the isolated gas phase nucleotides. Yang et al.152 employed 

single photon PE spectrum to investigate isolated gas phase deprotonated nucleotides 

and oglio-nucleotides. This revealed that the PE spectrum of guanine has a considerably 

lower onset than the other nucleotides, a finding replicated by the two-photon resonance 

enhanced electron detachment technique used by Chatterley et al.153 This feature has 
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been assigned to electron detachment from a low energy π orbital in guanine, whereas 

the lowest-lying features in the spectra for the other nucleotides have been assigned to 

detachment from the negatively charged phosphate group. 

 

Figure 1.4 TRPES of the anionic adenosine nucleobase, using a 266 nm pump pulse and 400 nm probe 

pulse. Reproduced from Chatterley et al.
157

  

 The excited state dynamics of DNA nucleotides have been extensively studied in 

solution.158 Bisgaard et al. have previously presented femtosecond TRPES of the gas 

phase neutral nucleotides adenine, cytosine, thymine and uracil.159 In this and in further 

work,160 the decay channels of the excited state of adenine are assigned in detail. The 

dynamics of the nucleotides in the gas-phase have been investigated by time-resolved 

PE spectroscopy by Chatterley et al.,157,161 by initially accessing the 1ππ* excited state 

located on the nucleobase and subsequently detaching an electron with a second laser 

pulse. The TRPES exploring the dynamics of the adenosine nucleobase is presented in 

Figure 1.4. The excited states of adenine and guanine nucleotides were found to decay 

primarily by internal conversion to the ground state with no involvement of 
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intermediary electronic states and to be relatively insensitive to the environment.157,161 

The thymine nucleotide was found to exhibit similar dynamics to the isolated 

nucleobase, whereas the cytosine nucleotide was found to have considerably slower 

dynamics than the associated nucleobase.161 However, the excited state dynamics 

following electron attachment to DNA nucleotides have not yet been studied 

extensively in the gas phase. In pursuit of this goal, the Neumark group have very 

recently reported TRPEI studies of iodide–thymine and –uracil clusters.162,163 The pump 

pulse ionises the iodide ion, whereupon the detached electron may attach to the 

nucleotide. The probe pulse may then ionise the anionic nucleotide. These studies 

revealed that the anionic state decays to the neutral state biexponentially, indicating 

multiple decay channels. However, the lack of the phosphate backbone is expected to 

have a significant effect upon the excited state dynamics. 

 Investigations of the photophysics of DNA and RNA nucleotides bound to 

platinum cyanide complexes in the gas phase have been presented by Sen et al.74,164-166 

The authors supplement numerous laser action spectra and photofragmentation mass 

spectra164-166 with low-temperature PE spectra of the dianionic Pt(CN)4
2– moiety both 

isolated and complexed to uracil, thymine, cytosine and adenine.74 The spectral features 

of the Pt(CN)4
2– dianion were found to shift to higher binding energy when bound to a 

nucleobase and a broad, featureless band was observed for all nucleobases following 

excitation at 193 nm, which was assigned to delayed electron detachment. Crucially, the 

band was only oberved in two nucleobases (thymine and adenine) following excitation 

at 266 nm. This was assigned to the promotion of a long-lived excited state in these 

species following excitation at 266 nm, allowing for effective coupling to the 

photodetachment continuum.74 As such, the PE spectrum of the complex is intrinsically 
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linked to the dynamics of the complexed nucleobase and so may be viewed as a 

dynamic tag. 

1.5.2 Metal and Metal Salt Clusters 

 A major area of study in which PE spectroscopy has been invaluable is in the 

study of the electronic and physical structure of small anionic metal clusters.20,46 A vast 

range of studies have been performed on small clusters of pure metals, such as 

copper,167,168 silver,167 gold,167,169 niobium170 and mercury,171 and expanded to study 

metal atoms in anionic clusters of solvent. An excellent example of such a study is the 

work of Deng et al.,73 which seeks to probe the systems initially formed in salt 

nucleation. Electrospray ionisation produces a series of charged droplets from which 

solvent may evaporate rapidly.65,66,69 The rapid reduction in the amount of solvent in the 

droplet leads to the formation of supersaturated droplets and eventually pure ionic salt 

clusters. This process is, in theory, analagous to the nucleation of salts from solution 

and can therefore be used as a model system in which to probe the changes in the 

electronic structure as the bulk solid forms. By this process, Deng et al. were able to 

form and probe Kx(SCN)–
x+1, Ky(SCN)2–

y+2 and Kz(SCN)3–
z+3 clusters. It was observed 

that the singly charged anion clusters were super halogen clusters. The multiply charged 

clusters were found to be suppressed at high temperatures and become increasingly 

prevalent as the mass of the complex increased. Overall, the system acted as a good 

model for solute aggregation.73 

 Conversely, if one can form a series of anions solvated by an increasing number 

of solvent molecules, then, by probing the system at each cluster size, an insight in 

solvation from initial interactions to bulk solution can be obtained.44,172-177 A recent 

example is the work of Zeng et al.,177 in which the PE spectra of Li(H2O)n
– and 

Cs(H2O)n
– (n = 1-6) were reported along with supporting ab initio calculations. These 
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systems are of interest as the lithium clusters can be described as a cation and two 

solvated electrons. Therefore, this system may act as a gas phase model of two electron 

solvation and subsequently provide insight to the electron-electron interaction present in 

several biologically important reactions involving solvated electron pairs.177 Lithium 

was found to be surrounded by water molecules, whereas Caesium lies on the surface of 

the water cluster. The structure of the clusters was found to be dependent on a number 

of different factors in addition to the forces due to the excess electrons, which could 

provide significant information for the understanding of the hydration of alkali metals in 

addition to the solvated electron pair.177 

1.5.3 Photodissociation 

Investigations of the ultrafast dynamics of photodissociation have traditionally 

been limited by the availability of both tunable femtosecond pulses and dissociable 

molecules. It is necessary to be able to initiate the photodissociation by absorption of a 

photon produced by the available femtosecond systems. It is extremely preferable that 

only a single bond may be broken at that wavelength, to ease identification of the 

fragments. This is by no means a necessity, however, and the fragmentation channels 

are entirely dependent upon the system studied. As such, TRPES studies of 

photodissociation dynamics have tended to be constrained to anions and weakly bound 

clusters.127,128,170,175 

The Lineberger group have employed TRPES in order to investigate the 

dynamics and fate of the products of photodissociation in small halide and pseudo-

halide clusters. The photodissociation dynamics of ICN–, probing in this instance the 

rotational energy of the dissociated CN, have been investigated by PE spectroscopy and 

TRPES.178,179  
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Figure 1.5 The time-resolved photoelectron spectrum of IBr
–
(CO2) plotted against the pump-probe delay 

and the radial spectrum at 50 ps. The peak for Br
–
 can be seen to evolve at approximately 350 fs. 

Reproduced with permission from Sheps et al.
180

 

In addition, TRPES180-182 and computational studies176,183 have been employed 

to investigate the photodissociation dynamics of IBr–(CO2)n clusters. IBr– dissociates 

following photoexcitation at 780 nm to form predominantly I– and Br, although the 

formation of I and Br– is also an important product channel.176 An important result from 

these studies was the observation that the presence of carbon dioxide solvating the IBr–

considerably increases the proportion of Br– produced. This implies that a charge 

transfer reaction from the I– to the Br occurs during dissociation that is mediated by the 

solvent molecules.176 In order to investigate this, Sheps et al. have examined the 

evolution of Br– following the photofragmentation of the IBr–(CO2) cluster via a TRPES 

study, presented in Figure 1.5.180 In this, the initial excitation promoted the system to 

the second excited (A’) electronic state. This is a dissociative state that favours the 

production of I– and vibrationally excited Br.  
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The electron transfer between the participating atoms was found to occur at 350 

fs after the pump pulse. The distance between I and Br at this pump-probe time delay 

was calculated to be 7 Angstroms.180 Molecular dynamics simulations suggest that the 

long range charge transfer is due to participation from a CO2 bending mode, facilitating 

a shift in the localisation of the excess charge away from the iodide anion and towards 

the bromine atom. This is a notable example of solvent driven long range charge 

transfer. The Lineberger group have also recently reported a similar study in which 

photodissociation of the cluster is initiated by excitation to a higher (B) electronic state. 

This state is also dissociative, but promotes the production of Br– and vibrationally 

excited I(CO2).182 In this, the reverse solvent-mediated charge transfer was observed 

from the Br– anion to the I atom. However, a greater proportion of electron transfer 

between the species was observed compared to the I to Br charge transfer. 

1.5.4 Small Organic Molecules 

Due in part to their prevalence in nature and applicability in light harvesting 

metal complexes, there has been considerable interest in investigating the molecular 

dynamics of organic molecules that may absorb photons in the visible and ultraviolet 

range.20,184,185 Due to its aromatic nature and the wide prevalence of the phenyl sub-unit 

in nature, benzene has been the subject of considerable interest for several decades. 

While initial PE studies of benzene focussed upon the assignment and ordering of the 

molecular orbitals,186-188 the dynamics of the S1 excited state were subsequently 

investigated by picosecond189 and femtosecond190,191 TRPES. TRPES was also applied 

to investigate internal conversion from the S2 state.192 

The Fielding group have recently applied gas phase TRPES to neutral benzene 

molecules in a molecular beam in order to investigate the ultrafast dynamics at the onset 

of the channel 3 region of benzene.193 An initial pump pulse at a wavelength of 243 nm 
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promoted the molecule to the S1 excited state, which was then probed at various 

wavelengths centred between 235 and 260 nm. While it was found that a large 

proportion of the excited states rapidly internally convert to the S0 state, a significant 

proportion undergoes intersystem crossing to the T1 state on an ultrafast timescale.193 

Additionally a small proportion of molecules were found to oscillate between the S1 and 

T2 states. These results indicate that the ultrafast decay of the S1 excited state previously 

attributed to internal conversion191 is actually a result of competition between internal 

conversion and intersystem crossing. Theoretical investigations suggest that the 

unexpectedly high rate of intersystem crossing is due to the accessing of a vibrational 

mode favourable to intersystem crossing.194 The S2 excited state of benzene has recently 

been probed through TRPES by Shen et al.,195 who produced the excited state through 

two photon absorption of 400 nm and probed at 267 nm. Two lifetimes were observed: 

a sub 100-femtosecond lifetime assigned to the S1←S2 transition and a 5 picosecond 

lifetime assigned to the loss of the S1 state. The authors note that the second lifetime is 

shorter than previous observations, which is ascribed to the opening of an additional 

decay channel; intersystem crossing between the vibrationally excited S1 state and the 

T3 state.195 

In addition to their work on the excited states of benzene, the Fielding group 

have recently employed TRPES to determine the dynamics for the first two excited 

states (S1 and S2) of styrene.196  It was found that, while both excited states decay via 

internal conversion through conical intersections, the rate of internal conversion from S1 

to S0 was five times slower if it was preceded by internal conversion from an S2 state 

produced with excess vibrational energy. Nunn et al. concluded that the conical 

intersection between the S1 and S0 states did not occur on the intial geometry relaxation 

coordinate following photoexcitation and was therefore barrier activated, whereas the 
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converse was true for the S1←S2 transition.196 The internal conversion from the S2 state 

therefore produces an S1 excited state population that is geometrically ‘further’ from the 

S0←S1 conical intersection, resulting in the observed increase in lifetime. 

TRPES has been extensively employed to investigate the excited state dynamics 

of indole, which is of particular interest due to its presence in the amino acid 

tryptophan.197-200 The dynamics of the mixed Rydberg-valence 3s/πσ* state produced by 

photoexcitation at 267 nm and 258 nm have been well characterised.198 In this, it was 

found that population existed on the excited state surface at large N-H separations for 

long timescales before the excited state decays by dissociation or internal conversion. 

This was linked to the rapid evolution of the mixed Rydberg-valence excited state 

character as the along the N-H separation and indicates the importance of careful 

consideration of mixed Rydberg-valence states in the assignment of excited state 

dynamics. As the excitation energy is decreased, however, the involvement of this state 

in the excited state dynamics becomes negligible.199 

The excited state dynamics of aniline have been the subject of considerable 

interest, due to numerous studies drawing opposing conclusions. Wren et al. have 

reported the gas phase PE spectrum of the anilinide anion,201 in which the authors note 

the clear progression of a vibrational mode. Spesyvtsev et al. have observed the excited 

state dynamics of aniline in the gas phase through TRPES following excitation at 269-

238 nm.202 In this, it was concluded that the S2(3s/πσ*) excited state was produced 

following excitation at all wavelengths, which would then decay through two possible 

channels: ultrafast internal conversion to the S1(ππ*) state via a conical intersection and 

subsequent relaxation to the electronic ground state by a far slower process, and a non-

radiative channel that appeared to involve motion along the N-H stretch coordinate on 

the πσ* dissociative potential energy surface. Although the precise nature of this 
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channel was not able to be discerned by this study, the timescales recorded were 

extremely similar to lifetimes reported by Livingstone et al. in their recently reported 

TRPES investigation into the excited state dynamics of indole and 5-hydroxyindole.197 

The Townsend group assigned these lifetimes to motion on the dissociative πσ* 

potential energy surface, leading Spesyvtsev et al. to suggest that similar motion may 

occur in aniline.202 

However, these observations appear to conflict with the observations of Ashfold 

and co-workers203 and Stavros and co-workers,204 who employed H atom Rydberg 

tagging and time resolved H atom imaging, respectively. These works inferred the 

presence of  a S1(ππ*)/S2(3s/πσ*) coupling interaction and so the reverse of the non-

adiabatic coupling observed by the Fielding group. Townsend and co-workers have 

recently performed TRPES studies on aniline following photoexcitation at 250 nm, N,N- 

dimethylaniline and 3,5-dimethylaniline in order to investigate the internal molecular 

coordinates involved in the excited state coupling.205,206 In this, it was found that both 

excited states were initially excited and that the S2(3s/πσ*) population may decay by 

internal conversion to the S1(ππ*) or via a postulated dissociation mechanism along the 

N-H/Me stretch coordinate. The aromatic ring system was linked to the internal 

conversion between the S2(3s/πσ*) and S1(ππ*) excited states, as methylation of the 

aromatic ring results in only the direct dissociative mechanism being observed.190 

Time-resolved PE spectroscopy has also been exploited to investigate the ring 

opening reaction of 1,3-cyclohexadiene following UV excitation.207 Excitation of 1,3-

cyclohexadiene at 270 nm produces an excited state population on an extremely 

repulsive section of the 1B excited state surface, which induces ultrafast internal 

conversion via a conical intersection to the 2A state. This state then decays back to the 

ground 1A state via a second conical intersection. At this point, the system branches 
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into two populations: the system may undergo a ring-opening reaction to form 1,3,5-

hexatriene or return to the initial 1,3-cyclohexadiene strucutre. The branching ratio of 

this process has been the subject of some controversy, with gas and liquid phase 

experiments yielding differing branching ratios.208,209 Adachi et al. employed gas phase 

TRPES  to promote 1,3-cyclohexadiene into the excited state and subsequently probe 

the relaxation dynamics.207 The probe pulse used is a 13.6 eV (90 nm), 40 fs pulse, 

which is sufficient to ionise the molecule from the ground state and so allows for 

observation of complete ground state recovery. It was determined that 30% of the initial 

excited state population undergoes the ring opening reaction, in good accord with 

experimental observations in the liquid phase and theoretical calculations for the gas 

phase. This study is a clear example of the utility of TRPES where the ground state 

recovery may be probed to comprehensively determine the fate of an excited state 

population. 

Finally, TRPES has recently been used to explore the deactivation dynamics of 

the ππ*(V) state of ethene at sub-20 fs resolution.210 The system is promoted into the 

desried excited state by an ultrafast pump pulse at 159 nm and the photoelectron 

detached by an ultrafast probe pulse at 198 nm. The resultant TRPE spectrum is 

presented in Figure 1.6. 
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Figure 1.6 TRPES of ethene, following excitation to the ππ*(V) state. Reproduced with permission from 

Kobayashi et al.
210

 Copyright 2015 American Chemical Society 

A clear downward trend in the photoelectron kinetic energy distribution can be 

observed, occuring on a sub-20 fs timescale. This was ascribed to a combination of a 

twist around the C–C bond and a pyrimidalization motion. Through careful examination 

of the TRPES, a partial wave packet revival at 3 eV at 18 fs after the initial 

photoexcitation can be observed. This was attributed to recovery of an equivalent 

geometry to the Franck-Condon geometry through a 180o twist of the C–C bond. The 

unprecedented time-resolution of this work provides a fantastic example of the 

application of TRPES to exploring ultrafast molecular dynamics. 

 

1.6 Summary 

In this chapter, I have aimed to introduce the fundamental concepts that underly 

the work undertaken in this thesis. A brief summary of the production and evolution of 
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an excited electronic state was presented. The principles of PE spectroscopy, including 

photodetachment, methods of detection and PE angular anisotropy, were then 

summarised. Numerous methods of time-resolved spectroscopies with which to trace 

the evolution of a wave packet on an excited state surface were discussed, with a focus 

on pump-probe spectroscopy and time-resolved PE spectroscopy. Finally, a short 

discussion of the recent application of PE spectroscopy to the study of the dynamics of 

molecular systems was presented. 

The remainder of the thesis is structured as follows: a brief overview of the 

experiment is given in Chapter 2. Chapter 3 describes the development of a new global 

kinetic fitting program that fits to the total PE intensity of the PE image, as opposed to 

the PE spectrum. Chapter 4 describes the dynamics of the excited states of the anionic 

model green fluorescent protein chromophore. Chapter 5 moves on to the study of the 

radical anionic excited states produced following electron attachment to a proto-typical 

electron acceptor, where the initial states produced by electron attachment are instead 

produced by photoexcitation of the ground state of the radical anion. Chapter 6 presents 

the PE spectra of a series of phenyl carboxylic acids, π-conjugated carboxylic acids and 

amino acids. Chapter 7 then details a TRPES study of the excited state dynamics of 

isolated all-trans retinoic acid. Finally, Chapter 8 details the study of a highly 

symmetric dianion and the simulation of electron trajectories on a representative 

electrostatic excited state surface in order to simulate the dependence of the observed 

PE anisotropy on the repulsive Coulomb barrier. 
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Chapter 2. Experimental Set-Up 

In this chapter, a general overview of the experimental procedure is presented. 

First, the method of producing the pulsed ion beam is discussed; the gaseous anions are 

produced by an electrospray ionisation source and passed into a vacuum chamber, 

where they are constrained by a ring electrode trap. The anions are then pulsed into a 

Wiley-McLaren time-of-flight mass spectrometer, allowing for mass selection of the 

relevant anions. The selected ions are then irradiated with a laser pulse, detaching 

electrons which are then detected by a velocity-map imaging apparatus coupled to an 

imaging detector. The PE image is then processed by the Polar Onion Peeling 

algorithm in order to extract the PE spectrum. 

2.1 Gas-Phase Anion Photoelectron Spectroscopy 

It is our aim to study the ultrafast dynamics of molecular anions via PE VMI. 

We must therefore consider the components required for the experiment: the production 

of an anion beam in vacuum, a means of producing pulses of radiation capable of 

ionising the anions of interest, a velocity-map imaging detector to extract the electrons 

and the methodology to reconstruct the PE from the experimental images. For this 

purpose, we employ a home-built femtosecond resolution PE imaging spectrometer, the 

construction of which has previously been described in detail.1-3 The anion beam is 

produced by a time-of-flight mass spectrometer coupled to an electrospray ionisation 

source and is subsequently irradiated by pulses from either a nanosecond or 

femtosecond laser. The detached electrons are repelled onto a series of multichannel 

plates and a phosphor screen that function as a position sensitive detector. Finally, the 

experimental image is captured by a CCD camera and reconstructed by a polar-onion-

peeling image reconstruction algorithm developed by the Verlet  group. 
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2.2 Anion Beam Machine 

2.2.1 Electrospray Ionisation Source 

Electrospray ionisation (ESI) is a well-established, ‘soft’ ionisation technique 

commonly utilised in mass spectrometry for producing gaseous ions,4-6 particularly 

large and fragile ions such as MCAs and biomolecules. In this set up, a syringe filled 

with a dilute solution (~ 1 mM) of the species of interest and typically a weak proton 

acceptor, such as ammonia, in order to promote the production of anions in solution. 

The solution is then pumped steadily (~ 200 μL/hr) by a syringe pump (World Precision 

Instrument, Aladdin 100) through a needle tip held at a high voltage (~–3 kV) to 

produce a Taylor cone of solution, which breaks down to form an aerosol spray of 

micro-droplets of solution, as described in section 1.3.2.  

The needle tip is held ~ 10 mm from the tip of a steel capillary (held at ~–70 V) 

which serves as an entrance into the vacuum chamber. The high voltage on the ESI 

needle and a pinhole in the vacuum chamber (held at ~–45 V) forms a potential 

gradient, down which the anions are directed. This provides the passage for the anions 

from atmosphere to our time-of-flight mass spectrometer. 

2.2.2 Vacuum Chamber 

The schematic of the vacuum chamber is shown in Figure 2.1. The ions 

generated by ESI are passed into the vacuum chamber, which is divided into six 

differentially pumped regions. Region 1 is open to atmosphere through the steel 

capillary and serves as the entrance to the chamber. Region 2 contains the ion trap used 

to convert the continuous ESI ion source into pulsed ion packets. Region 3 contains the 

Wiley-McLaren type time-of-flight mass spectrometer electrodes,7 while regions 4 and 

5 each contain a set of x-y deflectors and an Einzel lens to guide the ion packets. The 
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final region, region 6, contains the VMI set-up and the ion detector for the mass 

spectrometer. 

 

Figure 2.1 Design schematic of the mass spectrometer region of the experiment, with the six separate 

regions identified. Arrows indicate outlets to vacuum pumps. Adapted from reference 1. 

The steel capillary (~25 cm) delivers the gaseous ions into region 1 (Pressure ≈ 

1.2 torr). The end of the capillary is held ~4 mm from a metal plate held at ~–44 V. The 

metal plate has a pinhole, 1 mm in diameter, in the centre and serves as the passage 

between regions 1 and 2 (Pressure ≈ 10–3 torr). The capillary and the pinhole are slightly 

offset. This prevents the flow of neutral atmospheric molecules directly from 

atmosphere, through the machine and into the high vacuum region. 

Attached to the opposite side of the pinhole is a radio-frequency ring-electrode 

ion trap. The trap consists of 33 steel electrodes spaced 2.5 mm apart, with a potential 

gradient applied between the first and penultimate electrodes. A radio-frequency voltage 

is also applied to the electrodes, phase-separated by a series of capacitors in order to 

prevent ions deviating from the path of travel. The final electrode is held at a higher 

voltage, creating a potential well in which the ions collect, losing kinetic energy through 

collisions with residual gas molecules. This ion trapping mechanism is based upon the 

Paul trapping phenomenon,8 although our trap only constrains ions in the planes of the 

electrodes by this mechanism. The ions are constrained longitudinally by the ‘end cap’ 

voltage on the final electrode providing a potential barrier. To release the ions, the final 

electrode is switched to a higher voltage, to allow for the trapped ions to pass into the 

time-of-flight electrodes. The timing of this pulse is set relative to the time-of flight 
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electrodes. This switch reverses the potential gradient and allows the ions to proceed 

down the new potential gradient and out of the trap. The entrance between region 2 and 

3 consists of 2 pinholes: one held at the voltage of the final electrode and one at ground. 

This arrangement forms a lens, collimating the ion packet into the time-of-flight 

electrodes. The voltages on and the timing of the trap are dependent upon the system of 

interest, but the trap is typically pulsed between 8 and 15 μs before firing the time-of-

flight electrodes. 

Regions 3-5 (~10–5-10–8 torr) comprise the majority of the time-of-flight mass 

spectrometry region of the spectrometer. Region 3 contains 3 electrodes in an on-axis 

Wiley-McLaren arrangement.7 The electrodes are steel rings and the first is held at 

ground to form the final point of the potential energy gradient from the ion trap. The 

second, the repeller, is held at –2.3 kV, 5 mm from the ground electrode. The third and 

final electrode, the accelerator, is held at –1.9 kV, 30 mm from the repeller electrode 

and with a high transmission (88 % optical transparency) steel mesh secured over the 

central hole. These electrodes are pulsed and timed to coincide with the arrival of the 

ion packet from region 2, whereupon the ions are accelerated through a pinhole to 

region 4 by the potential amplitude and gradient generated by the voltages on the 

electrodes. 

Region 4 contains a set of x-y deflectors, where the z axis is defined by the 

direction of travel of the ion beam, onto which ±50 V can be applied in order to direct 

the ion beam through the machine and correct for any drift in the beam. These are 

followed by an Einzel lens, which consists of two grounded, tubular electrodes (30 mm 

inner diameter, 20 mm long) either side of a third electrode held at ~1.5 kV (30 mm 

inner diameter, 16 mm long). This acts as an electrostatic lens, the focal length of which 

can be adjusted by varying the voltage on the central electrode. Region 5 consists of a 
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time-of-flight tube, with an additional set of x-y deflectors and an Einzel lens in the 

same arrangement as in region 4. The purpose of the Einzel lens in this region is to 

tightly focus the ion beam into the interaction region in region 6. 

The total time-of-flight length of the machine is 1.3 m. Region 4 and Region 5 

are separated by both a pinhole and a pneumatic gatevalve, which, when closed, allows 

region 5 and 6, the high vacuum regions, to be isolated from the lower vacuum regions 

for maintenance. 

Irradiation of the ion packets occurs in region 6 (~10–9 torr). Laser light enters 

the chamber through a CaF2 window with the pulses timed to interact with the ion 

packet. The pulse exits the chamber through a second CaF2 window, which is mounted 

at Brewster’s angle in order to minimise reflections back into the chamber. The 

photodetached electrons produced are detected using a VMI set-up,1,2,9 which is losely 

based upon the original design by Eppink and Parker10 and shown in Figure 2.2. In this, 

the PEs are deflected into a resistive glass tube by a series of two electrodes held at a 

negative voltage.  Both electrodes are held at the same voltage, but the bottom electrode 

is a solid plate, whereas the top electrode surrounds the resistive glass tube. This results 

in a slight gradient directed into the resistive glass tube and the spacing of the VMI 

electrodes has been chosen such that the electrons are focussed onto the micro-channel 

plates (MCP) of the detector by the electrostatic potentials. The opposite end of the 

resistive glass tube terminates with a pair of MCPs in a chevron arrangement to amplify 

the signal, and then onto a phosphor screen, the output of which is captured by a charge-

coupled device. The resistive glass tube is grounded to create a potential gradient along 

the entirety of the VMI set-up. 

In order to reduce noise in the experiment, the MCPs are pulsed and triggered to 

coincide with the irradiation of the ion packet. The main source of noise in the 
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instrument arises when the laser wavelength exceeds the work function of the steel of 

the instrument. Any scattered laser light that strikes the steel surface will then liberate a 

large number of PEs, which may be detected by the VMI set-up. 

The VMI electrodes are made of mu-metal, which has very low magnetic 

permittivity, in order to minimise the effect of external magnetic fields on the imaging. 

The voltages on the electrodes varied significantly depending on the experiment, but a 

typical operating voltage was –500 V. The MCPs were typically operated at 0.7 kV 

across each and the phosphor screen was typically operated at 4.5 kV. The VMI detector 

is mounted perpendicularly to both the ion beam and the laser beam. 

 

Figure 2.2 Schematic diagram of the VMI setup. 

Finally, the ion detection MCP is mounted horizontally behind and in the 

opposing direction to the VMI spectrometer. This MCP is held at 2.2 kV and designed 

to optimise total signal output, as opposed to the imaging MCPs which are optimised for 

spatial resolution. The ion beam is directed onto this MCP by an electrode held at ~2 
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kV. The output is then passed to an oscilloscope triggered by the pulsing of the time-of-

flight plates, which allows the mass spectrum of the ion beam to be recorded. 

 

2.3 Calibration 

The VMI set-up is calibrated by measurement of the well-known 

photodetachment spectrum of I–. I– is an atomic ion and so the peaks produced from 

photodetachment are extremely sharp and limited by the bandwidth of the detachment 

laser pulse. The detachment process can be summarised as: 

 ( 2.1 ) 

 ( 2.2 ) 

 and  represent the two spin orbit states of atomic I. Both may be produced 

following photodetachment of I– and are separated by 0.942648 eV due to spin-orbit 

splitting.11 The  is the lower energy configuration and has a vertical detachment 

energy of 3.059038 eV.11-14 Therefore, a PE spectrum taken at a wavelength of less than 

310 nm (4 eV) will yield a PE spectrum consisting of two peaks. The electron kinetic 

energy scales as R2, where R is the number of pixels from the centre of the PE spectrum. 

The spectrum can then be fitted to two Gaussian distributions separated by the spin-

orbit splitting of iodine in order to yield an energy scale of cR2, where c is a calibration 

factor. From this, the resolution of the spectrometer has been determined to be ΔE/E = 

5%. 

 

2.4 Image Reconstruction 

As the 3D electron cloud is ‘flattened’ onto the MCP plates to create 2D images, 

it is necessary to perform further analysis upon the collected images in order to extract 

the true PE momentum distribution. This is performed using the Polar Onion Peeling 
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algorithm (POP) developed by the Verlet group,15 which is based upon ‘onion-

peeling’16 and a basis-set expansion17 in polar co-ordinates.  

In our PE images, we collect the velocity vectors in the x and y plane. However, 

the PE velocities are described by vectors in the x, y and z axes. Hence at each point in 

our image we collect PEs with a certain velocity in the xy plane but are unable to 

determine the velocity in the z direction. We therefore wish to extract the xy plane of the 

PE cloud where the velocity in the z direction is zero and so the true velocity of the PE 

can be extracted from the image. The POP algorithm works on the assumption that this 

distribution is given by the outermost ring of the PE image. The image is converted into 

polar coordinates and the outermost ring is fitted to the equation: 

 
 = , 

( 2.3 ) 

where θ is the angle between the velocity vector of the outgoing PE and the polarisation 

vector of the light, ε, which is the y axis in our experimental images, is an anisotropy 

parameter which spans from +2 to –1 for a cos2θ or sin2θ distribution, respectively, and 

N is a normalisation factor. This accounts for any PE anisotropy in the xy plane 

observed in the images. This 2D distribution is then used to recover the 3D distribution 

of the PE cloud (the basis-set expansion17), which is subsequently subtracted from the 

PE image. The process is then repeated for incrementally decreasing radii for the width 

of the PE image (onion-peeling16). The intensity of the PE image at each radial distance 

from the centre of the image gives the PE spectrum. An advantage of POP is that the 

program allows for negative intensity of PEs. Obviously, this is unphysical, but can be 

exploited for data analysis of time-resolved PE studies, as it can be used to indicate PE 

intensity from one feature feeding into a second. This will be discussed further in 

Chapter 3. 
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2.5 Ultrafast Laser Pulse Generation and Wavelength Variability 

 

Figure 2.3 Schematic diagram of the Laser Table. 
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Over the course of this thesis, a variety of lasers, wavelengths and pulse 

durations were employed. A schematic diagram of our laser table, detailing the systems 

used and how the laser beam was directed into the interaction region of the anion beam 

machine, is presented in Figure 2.3. In order to investigate ultrafast dynamics on the 

femtosecond scale by PE spectroscopy, it is necessary to employ a laser system capable 

of operating on these timescales. For this purpose, we utilise a femtosecond 

Titanium:Sapphire oscillator coupled to a regenerative chirped pulse amplifier to 

generate pulses of 800 nm with a pulse width of ~35 fs duration. 

The initial pulse is generated by a mode-locked Spectra Physics “Tsunami” 

Ti:Sapphire oscillator, which is pumped by the second harmonic (532 nm) of a 5 W 

Spectra Physics “Millennia” continuous wave Nd:YAG laser. This produces ~35 fs 

pulses of the Ti:Sapphire fundamental (800 nm) at a repetition rate of ~76 MHz with a 

power of 0.5 W. This output is then used to seed a Spectra Physics “Spitfire Pro XP” 

regenerative chirped pulse amplifier; a Ti:Sapphire crystal in the amplifier is pumped by 

the second harmonic (527 nm) of a 30 W Spectra Physics “Empower” pulsed Nd:YLF 

laser. A pulse from the seed laser is selected every millisecond by a series of Pockels’ 

cells to stimulate emission from the crystal, enhancing the output power to 3W. 

The output beam of the Spitfire XP Pro is initially split by a 60:40 beam splitter. 

40% of the beam is used for one of two purposes: It may be used to pump a Light 

Conversion TOPAS-C optical parametric amplifier, which produces laser light of 

wavelengths between 1140 nm - 2600 nm. This may be achieved through non-linear 

splitting of a small percentage of the pump beam into two separate wavelengths. This 

can subsequently be used for sum frequency generation with the pump beam through 

use of a β-barium borate (BBO) crystal. Alternately, the 800 nm beam may be directed 

into the machine as a secondary harmonic generation line. The remaining 60% of the 
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output of the amplifier is passed through a second 50:50 beam splitter, where half of the 

output beam is removed for use in another experiment. This line is passed through a 

retroreflector mounted upon a Physik Instrumente delay stage, which is computer 

controlled and used to generate the various delays used in time-resolved experiments, 

and into a home-built harmonic generation stage. This stage can be used to produce 

wavelengths of 400 nm, 266 nm and 200 nm through harmonic generations in BBO 

crystals. Both lines converge on a raised stage where the beams are recombined through 

the use of dichroic mirrors. The combined pulse train is subsequently directed into 

region 6 of the anion beam machine through a CaF2 window in order to interact with the 

ion packets and liberate PEs. 

Additionally, we also employ a nanosecond system which may produce a wide 

range of wavelengths (190 nm - 2700 nm). In this, a “Continuum Surelite II” Q-

switched Nd:YAG laser  is coupled to a “Continuum Horizon” OPO. The OPO works 

on the same principle as TOPAS-C, in that part of the pump beam undergoes non-linear 

splitting to produce both a ‘signal’ and ‘idler’ beam (the sum of the two wavelengths 

will recover the wavelength of the pump beam), which can then be combined with the 

pump beam through sum-frequency generation. Through this, the system is capable of 

producing pulses of tunable wavelength of up to 50 mJ for UV wavelengths (190 nm – 

400 nm) and 130 mJ for the signal/idler wavelengths (400 nm – 2700 nm) at peak 

efficiency. The pulses produced are ~ 6 ns in length, so cannot be usefully combined or 

used with the output of the femtosecond laser. The nanosecond laser is therefore 

primarily employed for single photon experiments.  
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Figure 2.4 Typical performance of the Horizon OPO using a P800 pump laser. Reproduced from 

Continuumlasers.com.
18

 

The OPO has two ports through which the laser pulse is emitted, one for the 

signal/idler wavelengths and another for the UV wavelengths. A prism is fixed in front 

of each port to direct the beam into a periscope and subsequently into the interaction 
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region in region 6. In order to maintain a single beam path into the interaction region, 

the prism in front of the UV port (the closest to the periscope) is mounted on a 

removable magnetic stage, so as not to block the beam path from the signal/idler port. 
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Chapter 3. Extracting Dynamical Information from Raw Velocity 

Map Images through Global Kinetic Fitting 

In this chapter, an adaptaion of the global kinetic fit of a time-resolved PE 

image series to a series of first order kinetic profiles convoluted with an Gaussian 

distribution is presented. The method performs a least-squared fit to the time-resolved 

PE velocity map images using physically modelled concentration profiles to describe 

the time-behaviour. The reconstruction of the central slice of the PE cloud is then 

performed on the fitted PE images for each species. In this fashion, the anisotropy of the 

PE features is conserved, allowing for the direct observation and fitting of time-resolved 

anisotropy. In order to test the fitting regime, real and simulated datasets are fitted by 

the new program and compared to the traditional global kinetic fit of the spectra. The 

global kinetic fit of a time-resolved PE image series is found to perform far better than 

the traditional fit to the spectra when dealing with low intensity datasets with 

overlapping features with differing anisotropies. 

3.1 Introduction 

Since its inception,1,2 VMI of the charged particles produced following 

irradiation of neutrals and ions by laser pulses has become a widely employed, efficient 

and accurate tool in investigating the electronic structure of molecules. In addition to a 

near 100% efficiency and the ability to detect particles emitted with 0 eV kinetic 

energy, VMI also allows for the detection of the photo-angular distribution of the 

emitted particles, providing further information about the electronic structure of the 

molecule and has therefore become a common detection method for PE     

spectroscopy.3-20 The application of VMI to time-resolved pump-probe experiments was 

first demonstrated by Wang et al.20 and has become a widespread, if not the norm, 
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detection method for charged particle excited state dynamics experiments in the gas 

phase.3-5,13,18-21  

The data analysis procedure for recovering the dynamical information is fairly 

constant across the field: first, the central slice of the 3D cloud of charged particles 

projected onto the 2D detector is reconstructed. Numerous programs are available to 

perform this function, through either an inverse Abel transform,22 such as employed by 

pBASEX,23 or through polar onion-peeling.24 This recovers the velocity distribution of 

the detected particles with respect to the radius of the detector. The time-resolved pump-

probe signal is recovered by subtracting a background spectrum, typically a spectrum 

taken at a long negative time delay where no pump-probe signal can reasonably be 

expected, from the experimental spectra during this process. The resultant spectra are 

then analysed to extract the exponential decay lifetimes of the signal. Several methods 

of extracting these factors exist, but all depend on the assumption that the total 

integrated signal of the time-resolved spectra at any time delay can be described by a 

linear combination of a series of concentration profiles and that the contribution of each 

profile can be described by an exponential decay. Examples of such methods include 

fitting the total integrated signal to a series of exponent decays or principal component 

analysis or global kinetic fitting of the spectra, and the method chosen is strongly 

dependent upon the specific experiment. The order of this analysis, however, is the 

subject of almost no debate. 

Although widespread, this procedure exhibits some drawbacks. For instance, 

through reconstructing the central slice of the charged particle cloud through POP,24 the 

final analysis of the data considers only a fraction of the recorded hits on the detector. In 

addition, while the PE anisotropy parameters, β2, may be extracted from the time-

resolved images and fitted in a similar fashion to the PE spectra, only the overall 
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anisotropy of the image can be considered, rather than the anisotropy of the constituent 

features. It is almost impossible to extract information about the photo-angular 

distributions of the fitted concentration profiles. These issues are a result of the large 

amount of processing that the spectra must undergo before extracting the time constants. 

Most of these issues may be circumvented by simply performing the analysis on the 

VMI images before reconstruction of the central slice. It is therefore advantageous to 

develop a fitting technique that is capable of performing a global kinetic fit on a series 

of unprocessed VM images and to compare the results to a ‘traditional’ global fit of the 

extracted spectra. 

 

3.2 Methodology 

In a global kinetic fit, all points in eKE in the time-resolved spectra are 

simultaneously fitted to a series of time constants for a sum of i exponential decays: 

 ( 3.1 ) 

where  is the decay associated spectrum (DAS) corresponding to the 

exponential decay with the lifetime ,  is the position of temporal overlap between the 

pump and probe pulses and  is the Gaussian instrument response function. In our 

previous data analysis,25-28 the Levenberg-Marquardt algorithm was used to minimize 

the sum of the least squares between the experimental spectra and the fit,  in 

the MatLab optimization toolbox. It is facile to employ this algorithm in order to fit a 

series of images; one simply replaces the spectra with the experimental images. The 

difficulty arises from the size of the datasets. In order to fit a time-resolved spectrum, it 

is necessary to fit each individual lifetime to a DAS which is the length of the 

experimental spectrum. Therefore, in order to fit a series of images, it is necessary to fit 

each lifetime to a DAS with the same number of elements as the images. In our 
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experiment, the number of pixels in the images are 3 orders of magnitude larger than the 

number of elements in the spectra, resulting in the memory requirements for a nonlinear 

least-squares optimization becoming unfeasibly large due to the need to calculate a 

covarience matrix for a ~160000 parameter fit. In order to circumvent this issue, we 

removed the DAS from our fitting variables and instead only fit the time constants that 

define the decay curves. The DAS are determined through a linear least-squares 

solution of the matrix equation (equivalent to equation ( 3.1 )): 

  ( 3.2 ) 

where E is the known experimental time-resolved image series (each image compressed 

into a column), K is an unknown matrix with columns containing , and C is the 

known trial decay curves (each curve as a row), determined by the fitting parameters. 

The solution to equation ( 3.2 ) is unambigous and quickly calculated. 

In order to assess the applicability of our fitting procedure, we first compared 

the global kinetic fits on the time-resolved spectra and unprocessed images of the PE 

spectra of 2’-deoxyadenosine 5’-monophosphate (dAMP) taken using a pump 

wavelength of 4.66 eV (266 nm) and a probe wavelength of 3.10 eV (400 nm).26 We 

then generated a series of datasets which featured overlapping features with differing 

anisotropies and lifetimes in extremely low count rates in order to simulate an extreme 

experimental dataset. Both the experimental spectra and DAS from the image fitting 

were generated by the Polar onion-peeling algorithm.24 

 

3.3 Kinetic Fit of the dAMP– Dataset 

Figure 3.1 shows the results of the global kinetic fit of the time-resolved image 

series of dAMP–. The fitted integrated PE signal gives a reasonable fit to the 

experimental data and, crucially, is almost identical to the fits obtained from the global  
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Figure 3.1 The results of the global kinetic fit of the time-resolved image series of dAMP
–
. a-b) The 

normalised images associated with the decay lifetimes τ1 = 31 fs and τ2 = 296 fs respectively. c) The 

integrated time-resolved PE signal (black dots), the fit to the experimental data (black line) and the 

relative contributions from the decay lifetimes , . d) The decay associated spectra obtained from 

POP analysis of the decay associated images. e-f) The background subtracted and normalised time-

resolved PE spectrum and the obtained fit to the spectrum respectively. 

kinetic fit of the time-resolved spectrum. The values for τ1 are 28 fs and 31 fs and for τ2 

are 288 fs and 296 fs for the global fit of the time-resolved spectra and images 

respectively, and are therefore well within the estimated ~40 fs time resolution for this 



69 
 

experiment, indicating that the image fitting model works at least equivalently well as 

the spectrum fitting model. 

Of particular significance are the fitted time-resolved PE spectrum and the DAS; 

although the DAS in the global kinetic fit of the images are extracted from the decay 

associated images (DAI) by deconvolution via the POP program, the DAS are 

essentially identical to those obtained from the fit of the time-resolved spectra. This 

then allows for the reconstruction of the time-resolved PE spectrum to give a reasonable 

fit of the experimental data. This shows unequivocally that the program is able to 

resolve overlapping PE features with different lifetimes from the time-resolved images, 

which should allow us to resolve anisotropy within the DAI. 

It is important to note that the DAS for τ1 becomes negative at low eKE. We 

have previously assigned this to the population associated with τ1 feeding into the 

population associated with τ2. This means that the DAS cannot be directly assigned to 

features in the PE spectrum, as they describe concentrations at a point that can be 

reconstructed to form our fit, but which have no physical meaning. However, we can 

adjust our kinetic model to account for the consecutive dynamics: 

 

 

( 3.3 ) 

A fit to equation ( 3.3 ) should allow for the extraction of the PE features 

produced by photodetachment from the populations responsible for the observed 

lifetimes from the time-resolved PE signal. This is crucial for the efficacy of our global 

kinetic image fit of a time-resolved image series, as it allows us to directly deconstruct 

the PE images into the constituent spectra. The results of the fit are shown in Figure 3.2. 
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Figure 3.2 The results of the global kinetic fit of the time-resolved image series of dAMP
–
 assuming 

sequential dynamics. a-b) The normalised images associated with the decay lifetimes τ1 = 31 fs and τ2 = 

296 fs respectively. c) The integrated time-resolved PE signal (black dots), the fit to the experimental data 

(black line) and the relative contributions from the decay lifetimes , . d) The decay associated 

spectra obtained from POP analysis of the decay associated images. e-f) The background subtracted and 

normalised time-resolved PE spectrum and the obtained fit to the spectrum respectively. 

The DAI for τ1 has changed significantly; the DAS no longer becomes negative 

at low kinetic energy and instead shows a flat feature with approximately half the 

intensity of the peak. The contributions of the two lifetimes to the fit of the integrated 

total PE intensity have shifted so that the contribution of the τ1 lifetime has increased 
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and the contribution from τ2 has decreased and the peak of the curve has shifted slightly 

to a later time. This can be ascribed to the increase in the area of the DAS associated 

with τ1 due to the loss of the negative region and the change in the kinetic model 

respectively. However, these appear to be the only effects of the change in the kinetic 

model used in the fit. The calculated lifetimes are identical to those calculated in the 

previous fit, as are the DAI for τ2 and the fit to the time-resolved PE spectrum. This 

indicates that the results of the global kinetic fit are essentially unchanged but for the 

ability to extract physically meaningful images from the time-resolved image series. 

 

3.4 Kinetic Fit of a Simulated Dataset 

While the recovery of identical fitting parameters between the different fitting 

regimes is encouraging, the dataset is not particularly challenging to fit. In order to fully 

assess the relative efficacy of the differing regimes, we must consider a ‘worst case 

scenario’ dataset and attempt to recover the intrinsic dynamics. To this end, we have 

simulated a time-resolved PE images series with two overlapping and sequential PE 

features, each with a different lifetime and β2 parameter and an extremely low PE count. 

We then attempted to fit the dataset using our global fitting programs and extract the 

orginal parameters. 

The parameters chosen to generate the dataset are presented in Table 3.1. Two 

features, each described by a Gaussian distribution defined by the radius and σ in R 

space, are generated. The number of photoelectrons simulated for each feature is 

proportional to the amplitude, determined by the magnitude of the exponential decay 

curve at each time delay. Each simulated photoelectron hit on the detector is represented 

by a ‘spot’ of a given diameter in the simulated image.  
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Table 3.1 Parameters used in generating the simulated dataset. 

Parameter Feature 1 Feature 2 

β2 1 –0.5 

Radius /Pixels 150 150 

σ /Pixels 20 30 

Amplitude 2000 2000 

τ / fs 300 600 

Instrument Response Function 

Full Width Half Maximum /fs 

100 

Spot Diameter /Pixels 5 

 

The results of the global fit to the POP’ed time-resolved PE spectra are shown in 

Figure 3.3(a-b). The recovered lifetimes for τ1 (247 fs) and τ2 (631 fs) lie within the 

temporal resolution of the simulated lifetimes. The DAS for τ2 shows a single, positive 

peak that appears similar to a Gaussian distribution. The DAS for τ1, however, shows a 

single weak and negative feature that again can be approximated to a Gaussian 

distribution. This, as previously noted, can be ascribed to an exponential rise in this 

region of the PE spectrum. The DAS are notably noisy, which is most likely due to the 

poor quality of the dataset. Overall, the fit has recovered the simulated parameters 

reasonably well. Nevertheless, it is difficult to infer the existence of feature 1 from this 

fitting regime. 
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Figure 3.3 Results of the global kinetic fit to a-b) the time-resolved PE spectra and c-f) the time-resolved 

PE images. a) The integrated time-resolved PE signal (black circles), the fit to the simulated data (black 

line) and the relative contributions from the decay lifetimes , . b) The decay associated spectra. 

c-d) The normalised images associated with the decay lifetimes, τ1 = 247 fs and τ2 = 628 fs respectively. 

e) The integrated time-resolved PE signal (black dots), the fit to the simulated data (black line) and the 

relative contributions from the decay lifetimes. f) The decay associated spectra obtained from POP 

analysis of the decay associated images. 

The results of the global fit to the time-resolved PE images are shown in Figure 

3.3(c-f). It is clear from the DAI that we have been able to resolve two distinct features, 
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although the image associated with τ1 shows two negative regions corresponding to the 

regions of maximum PE intensity in the image associated with τ2, as we might expect to 

see from population from τ1 feeding into τ2 and reflected in the DAS as the negative 

region between 100-175 pixels. The DAS are almost identical to those extracted from 

the global kinetic fit to the POP’ed spectra. While regions of positive intenstiy are 

identifiable perpendicular to the negative regions and the laser polarisation, a clear 

positive photoelectron feature as observed in the image associated with τ2 is not 

distinguishable in the decay associated image. This is likely due to the low signal levels 

and overlapped PE features, and we expect the image to become more resolved as we 

increase the number of datapoints in the spectrum. Nevertheless, one can clearly 

observe the existence of two PE features in the spectrum as opposed to a single PE 

feature exhibiting unusual dynamics. Both the extracted and set lifetimes for τ1 (247 fs 

and 300 fs, respectively) and τ2 (628 fs and 600 fs, respectively) lie within the temporal 

resolution of each other, and are extremely similar to the parameters extracted from the 

global fit to the POP’ed spectra. This implies that the program is capable of extracting 

the correct lifetimes and that the discrepancy between the values for τ1 is a result of the 

low signal levels in the dataset and compounded by the overlapped PE features. This is 

to be expected; with so few ‘PEs’ in the images, it is likely that the experimental kinetic 

profiles will be incomplete, resulting in a noisy fit. This could be mitigated by 

smoothing the PE image series, for instance by applying a Gaussian distribution to each 

point. Despite these deficiencies, however, a global kinetic fit to a time-resolved image 

series is able to resolve overlapping features with differing time constants which cannot 

be resolved by a global kinetic fit of the time-resolved spectrum. 
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Figure 3.4 Results of the global kinetic fit to the time-resolved PE image series. a-b) The normalised 

images associated with the decay lifetimes, τ1 = 247 fs and τ2 = 628 fs respectively. c) The integrated 

time-resolved PE signal (black dots), the fit to the experimental data (black line) and the relative 

contributions from the decay lifetimes , . d) The decay associated spectra obtained from POP 

analysis of the decay associated images. 

Figure 3.4 shows the result of a global kinetic fit of the time-resolved images 

assuming sequential dynamics. As demonstrated earlier, the extracted lifetimes, the DAI 

associated with τ2, and the fit to the total integrated PE signal are identical to those 

extracted from the global kinetic fit assuming simultaneous dynamics. The DAI for τ1 is 

significantly changed, however, with the loss of the pronounced negative regions 

corresponding to the maxima in the DAI for τ2. However, these regions remain slightly 

negative and the expected positve regions corresponding to the major PE feature of the 

lifetime remain unresolved. Once again, we can ascribe this to the low signal level and 
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overlapped features. The loss of the pronounced negative regions is reflected in the 

relative contributions of the lifetimes to to fit of the total PE signal and in the DAS. 

The relative contributions of both lifetimes to the overall fit are now both 

positive. The DAS are expected to be entirely positve, as, if the assignment of the 

negative regions in the DAI to an exponential rise in that region is correct, the change in 

the kinetic model is predicted to account for population from one lifetime shifting to 

another. The extracted DAI are indeed almost entirely positive (very few pixels show 

weak negative intensity, which we may assign to noise in the fit), which suggests that 

our previous assignments are indeed correct. The fit therefore appears to directly fit the 

PE features that contribute to the full time-resolved spectrum. Overall, the global fit is 

able to extract lifetimes of overlapping PE features in a time-resolved PE images series 

with reasonable accuracy and with far greater efficacy than for the time-resolved 

spectra. 

Finally, we have generated a second simulated dataset with almost identical 

parameters to those in Table 3.1, but with the amplitude of the exponential decay for 

both features set to 100000000. The results of the global fit to the POP’ed time-resolved 

PE spectra and of a global kinetic fit of the time-resolved images assuming sequential 

dynamics are shown in Figure 3.5(a-b) and (c-f), respectively. 
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Figure 3.5 Results of the global kinetic fit to a-b) the time-resolved PE spectra and c-f) the time-resolved 

PE images assuming sequential dynamics. a) The integrated time-resolved PE signal (black dotss), the fit 

to the simulated data (black line) and the relative contributions from the decay lifetimes , . b) 

The decay associated spectra. c-d) The normalised images associated with the decay lifetimes, τ1 = 303 fs 

and τ2 = 597 fs respectively. e) The integrated time-resolved PE signal (black circles), the fit to the 

simulated data (black line) and the relative contributions from the decay lifetimes. f) The decay associated 

spectra obtained from POP analysis of the decay associated images. 

Both global fitting regimes recovered τ1 = 303 fs and τ2 = 597 fs, in excellent 

agreement with the initial parameters. This supports our assertion that the two fitting 
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regimes work equally well when extracting lifetimes from high quality datasets. 

However, the difference between the regimes can be clearly observed in the DAS and 

the overall contribution of each lifetime to the overall fit. The DAS for τ2 for both fitting 

regimes appear identical. For the fit to the POP’ed spectra, the DAS for τ1 is entirely 

negative, which we can ascribe to an exponential rise of this feature. The contributions 

of both lifetimes to the overall fit are also far greater in magnitude than the overall fit 

and each appears to be cancelling the other out. In contrast, for the fit of the images, it is 

clear from the DAI that we are able to resolve the two overlapping features and recover 

the β2 parameters. This is reflected in the DAS, in which we observe two large, mostly 

positive, Gaussian features, and in the contributions of the lifetimes to the overall fit. It 

is in this that the advantage of fitting to the images is highlighted; through a global 

kinetic fit to the images, it is possible to easily resolve overlapping photoelectron 

features with differing β2 parameters and lifetimes that may not be extracted from a 

kinetic fit to the spectra. 

 

3.5 Conclusions and Outlook 

In conclusion, we have developed a global kinetic fitting routine that is able to 

fit directly to a series of time-resolved PE images. We have demonstrated this routine to 

be at least equivalent to a global kinetic fit to a series of time-resolved PE spectra from 

a good quality dataset with the additional benefit of extracting the decay associated 

images. We have extended this approach to account for sequential dynamics, which we 

have shown to give a fit that is at least equivalent to other methods and allows for the 

direct extraction of the contributing PE features. When tested on a poor quality dataset 

exhibiting overlapped PE features with differing lifetimes and β2 parameters, the global 

fit of the time-resolved image series was found to return identical lifetimes to those 
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returned from  the fit of the time-resolved spectra. However, the image fit was able to 

resolve highly anisotropic regions of positive intensity in the DAI for τ1, whereas the fit 

of the time-resolved spectra was only able to resolve a large region of negative intensity 

in the DAS for τ1. When the kinetic model to account for consecutive dynamics was 

introduced, it was possible to resolve the photoelectron features constituting the time-

resolved spectra. The ability to retain the anisotropy in the DAI allows for the definitive 

identification of the photodetachment pathway associated with τ1 that cannot be 

determined through a fit to the spectra and clearly demonstrates the advantages 

associated with retaining the angular distributions contained within the PE images when 

fitting the time-resolved data. These conclusions were supported by subsequent testing 

of the fitting regimes on a high quality dataset. 

This method is applicable to any series of time-resolved velocity-map images 

and the challenges in the application of this method are mostly based on fitting the 

images to the correct dynamics. Although efforts have been made to ensure that the 

routine is as versatile as possible, it remains that the fitting program will need to be 

adapted for each image series presented to it. Additionally, the fitting routine cannot fit 

PE features that shift in electron kinetic energy since it violates the assumption that the 

experimental image can be expresssed as a linear combination of the images of a small 

number of species. This is a common feature of time-resoved PE spectroscopy and can 

significantly affect the results of a global kinetic fit, so accounting for shifting PE 

features can only increase the accuracy of the parameters extracted from fitting time-

resolved PE spectra. Nevertheless, global kinetic fitting of time-resolved PE images 

remains a versatile and powerful method of extracting time constants and decay 

associated images from a time-resolved PE image series. 

 



80 
 

3.6 References 

 (1) Chandler, D. W.; Houston, P. L. Journal of Chemical Physics 1987, 87, 

1445. 
 (2) Eppink, A. T. J. B.; Parker, D. H. Review of Scientific Instruments 1997, 

68, 3477. 
 (3) Chatterley, A. S.; Horke, D. A.; Verlet, J. R. R. Physical Chemistry 
Chemical Physics 2014, 16, 489. 

 (4) Wang, L.-S. Journal of Chemical Physics 2015, 143, 040901. 
 (5) Wang, X. B.; Wang, L. S. In Annual Review of Physical Chemistry; 

Annual Reviews: Palo Alto, 2009; Vol. 60, p 105. 
 (6) Horke, D. A.; Roberts, G. M.; Lecointre, J.; Verlet, J. R. R. Review of 
Scientific Instruments 2012, 83, 063101. 

 (7) Eppink, A.; Parker, D. H. Review of Scientific Instruments 1997, 68, 
3477. 

 (8) Eppink, A. T. J. B.; Parker, D. H. Journal of Chemical Physics 1999, 
110, 832. 
 (9) Hock, C.; Kim, J. B.; Weichman, M. L.; Yacovitch, T. I.; Neumark, D. 

M. Journal of Chemical Physics 2012, 137, 244201. 
 (10) Kim, J. B.; Weichman, M. L.; Neumark, D. M. Journal of the American 

Chemical Society 2014, 136, 7159. 
 (11) Liu, Z.; Xie, H.; Qin, Z.; Fan, H.; Tang, Z. Inorganic Chemistry 2014, 
53, 10909. 

 (12) Parker, D. H.; Eppink, A. T. J. B. Journal of Chemical Physics 1997, 
107, 2357. 

 (13) Ashfold, M. N. R.; Nahler, N. H.; Orr-Ewing, A. J.; Vieuxmaire, O. P. J.; 
Toomes, R. L.; Kitsopoulos, T. N.; Garcia, I. A.; Chestakov, D. A.; Wu, S. M.; Parker, 
D. H. Physical Chemistry Chemical Physics 2006, 8, 26. 

 (14) Davies, J. A.; LeClaire, J. E.; Continetti, R. E.; Hayden, C. C. Journal of 
Chemical Physics 1999, 111, 1. 

 (15) Hayden, C. C.; Davies, J. A. Abstracts of Papers of the American 
Chemical Society 1999, 218, U315. 
 (16) Kammrath, A.; Griffin, G. B.; Verlet, J. R. R.; Young, R. M.; Neumark, 

D. M. Journal of Chemical Physics 2007, 126. 
 (17) Osterwalder, A.; Nee, M. J.; Zhou, J.; Neumark, D. M. Journal of 

Chemical Physics 2004, 121, 6317. 
 (18) Suzuki, T. Annual Review of Physical Chemistry 2006, 57, 555. 
 (19) Suzuki, T.; Wang, L.; Kohguchi, H. Journal of Chemical Physics 1999, 

111, 4859. 
 (20) Wang, L.; Kohguchi, H.; Suzuki, T. Faraday Discussions 1999, 113, 37. 

 (21) Yandell, M. A.; King, S. B.; Neumark, D. M. Journal of the American 
Chemical Society 2013, 135, 2128. 
 (22) Whitaker, B. Imaging in Molecular Dynamics: Technology and 

Applications; Cambridge University Press: Cambridge, 2003. 
 (23) Garcia, G. A.; Nahon, L.; Powis, I. Review of Scientific Instruments 

2004, 75, 4989. 
 (24) Roberts, G. M.; Nixon, J. L.; Lecointre, J.; Wrede, E.; Verlet, J. R. R. 
Review of Scientific Instruments 2009, 80, 053104. 

 (25) Chatterley, A. S.; Horke, D. A.; Verlet, J. R. R. Physical Chemistry 
Chemical Physics 2012, 14, 16155. 



81 
 

 (26) Chatterley, A. S.; West, C. W.; Roberts, G. M.; Stavros, V. G.; Verlet, J. 
R. R. Journal of Physical Chemistry Letters 2014, 5, 843. 

 (27) Chatterley, A. S.; West, C. W.; Stavros, V. G.; Verlet, J. R. R. Chemical 
Science 2014, 5, 3963. 

 (28) Mooney, C. R. S.; Horke, D. A.; Chatterley, A. S.; Simperler, A.; 
Fielding, H. H.; Verlet, J. R. R. Chemical Science 2013, 4, 921. 

 



82 
 

Chapter 4. Exploring the Dynamics of the Model GFP Chromophore 

The anionic, deprotonated form of p-hydroxybenzylidene-2,3-

dimethylimidazolinone (HBDI, Figure 4.1) has been extensively employed as a model of 

the chromophore of the green fluorescence protein.  The bright S1 excited state of 

HBDI– has a measured lifetime of 1.4 ps in the gas-phase and is dominated by two non-

radiative decay mechanisms: internal conversion and autodetachment into the neutral 

continuum. Higher excited states exist, but have not been as extensively studied. 

Notably, the S2 and S3 excited states lie ~3.7 eV and ~3.8 eV above the electronic 

ground state. Here, a combined frequency-, angle-, and time-resolved PE spectroscopy 

study is used to unravel the excited state dynamics following photoexcitation. For the S1 

state, time-resolved PE spectroscopy has been used to determine the asymptotic yields 

of these two channels from which the lifetime for autodetachment was found to be ~30 

ps. This remains approximately constant over an excitation range from 2.38 eV to 2.57 

eV. Using two-photon absorption, additional evidence is provided for a decay channel 

corresponding to electron detachment from the S0 ground state. Following UV 

excitation, the optically-bright S3 state, which is populated for hv > 3.7 eV, is shown to 

decay predominantly by internal conversion to the S2 state that in turn autodetaches to 

the neutral ground state. For hv > 4.1 eV, a new and favourable autodetachment 

channel from the S2 state becomes available, which leads to the formation of the neutral 

in an excited state. The results indicate that the UV excited state dynamics of the GFP 

chromophore involve a number of strongly coupled excited states.  

This chapter is based upon ‘Communication: Autodetachment versus Internal 

Conversion from the S1 state of the isolated GFP Chromophore Anion’, C. W. West, A. 

S. Hudson, S. L. Cobb and J. R. R. Verlet, J. Chem. Phys., 139, 071104 (2013) and 

‘Excited State Dynamics of the Isolated Green Fluorescent Protein Chromophore Anion 
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Following UV Excitation’, C. W. West, J. N. Bull, A. S. Hudson, S. L. Cobb and J. R. 

R. Verlet, J. Phys. Chem. B, 119, 3982 (2015) 

4.1 Introduction 

  

Figure 4.1 Left: structure of the para-hydroxybenzilidene-2,3-dimethylimidazolinone anionic model 

chromophore. Right: structure of the green fluorescent protein, showing the position of the chromophore 

(yellow). Reproduced with permission from Yang et al.
1
 

The discovery of naturally occurring fluorescent proteins and their subsequent 

development into an in vivo biological fluorescent probe has revolutionised molecular 

biology over the past half-century. Specifically, the ability to insert the relevant allele 

into the genome of a target organism allows the organism to express the fluorescent 

probe both independently and incorporated onto another protein without impeding its 

biological function and gives rise to hitherto unparalleled locational specificity and 

sensitivity compared to traditional fluorescent probes.1-7 Although several fluorescent 

proteins covering a broad spectral range have been discovered or developed,6 the green 

fluorescent protein (GFP) was the first discovered and remains the most widely utilised. 

The impact of fluorescent proteins on the biological sciences was recognised by the 

award of the 2008 Nobel Prize in Chemistry to Shimomura, Chalfie and Tsien.8  The 

molecular structure,1 absorbance and fluorescence spectra9-11 of GFP have been 

extensively studied and the origins of the remarkable optical properties traced to a 

chromophore enclosed deep within the β-barrel of the body of the protein, as shown in 

Figure 4.1.1,12 However, due to the size of the protein shielding the chromophore 
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responsible for the fluorescent protein’s remarkable optical properties, it has not been 

possible to study the chromophore directly. In order to study the chromophore, a model 

molecule with a similar structure must be used as a representative study. 

In GFP, the chromophore is formed by an oxidative reaction between three 

amino acids, S65, Y66 and Y67, within the primary protein structure,12 which is shown 

schematically in Figure 4.2.  It is structurally similar to para-hydroxybenzylidene-2,3-

dimethylimidazolinone and anchored within the protein by connecting groups on the 

imidazole subunit.  Due to the importance of the chromophore to the properties of GFP 

and the inaccessibility of the chromophore in the protein, the photo-physical properties 

of HBDI have been investigated extensively.   

 

Figure 4.2 Proposed mechanism of the formation of the GFP chromophore within the primary protein 

structure.  Adapted with permission from Cubitt et al.
2
 

As the fluorescence of GFP has been attributed to the anionic form of the 

chromophore, formed by the deprotonation of a phenoxyl group,7,9,10 most studies have 

focussed upon the analogous deprotonated form of the model chromophore, HBDI–.  

There are some notable discrepancies between the properties of HBDI and the GFP 

chromophore; the absorption spectra of HBDI– and GFP in solution are dissimilar.13 

Additionally, in contrast to the GFP, HBDI– does not fluoresce appreciably in solution 

until cooled to below the glass transition temperature.14  However, the exclusion of most 

solvent molecules from the environment of the chromophore by the β-barrel of the 

protein provides the chromophore in GFP with a pseudo-gas phase environment.  As 

such, theoretical and experimental investigations of HBDI– have focussed upon isolated 
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ions.  Both the absorption spectra and the S1 ← S0 transition of GFP have been found to 

be extremely similar to that of gas phase HBDI–.13,15 Bochenkova and Andersen have 

recently shown that several aspects of the HBDI– gas phase absorbance spectrum map 

directly onto that for the protein,16 reaffirming the utility of HBDI– as a model 

chromophore. However, a recently obtained resonantly-enhanced multi-photon 

ionisation spectrum of the neutral form of HBDI has found that the absorption 

maximum is significantly blue-shifted by 0.5 eV.17 This implies that the protein 

environment does have a significant impact on the electronic structure of the 

chromophore and that the lack of this environment can explain discrepancies between 

observations of the chromophore in the protein environment and of the isolated model 

chromophore. 

Three groups have independently determined the vertical and adiabatic 

detachment energies (VDE and ADE, respectively) to be in the region of 2.8 eV and 2.6 

eV respectively18-20 and initially found to be higher than predicted by theoretical 

calculations.21 However, recent calculations at higher levels of theory predict 

detachment energies consistent to those determined experimentally.22 The excited state 

dynamics of HBDI– have previously been investigated by time resolved PE 

spectroscopy, yielding two lifetimes.23  The first, a timescale of 300 fs has been 

assigned, following theoretical calculations,23 to be motion on the excited state surface 

away from the Franck-Condon region and the fluorescent state geometry by a stretch 

along the central allyl bridge coordinate. The chromophore then undergoes a rotation 

about the central allyl bridge to form a twisted, non-luminescent intermediate,23 which 

is inaccessible in the protein.  This also explains the observed loss of fluorescence in 

HBDI– above the glass transition temperature.14 The excited state then decays to the 
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ground state on a timescale of 1.4 ps,23 in contrast to the long fluorescence lifetimes 

observed in the protein5 but concurring with solution phase experiments.24-26  

There are two possible pathways of decay from this excited state: PE loss to the 

D0 state of the neutral species and internal conversion to a vibrationally excited S0 state. 

Although the S1 excited state is bound with respect to electron detachment, PEs may 

nevertheless be observed through vibrational autodetachment (AD).18 In this process, a 

vibrational mode of the electronic excited allows the anion to access the geometry of the 

neutral molecule. In this orientation, the excited state becomes unbound, and the 

electron may detach and allow the molecule to form the ground state of the neutral. 

Bochenkova and Andersen have recently calculated the vibrational modes associated 

with each decay pathway and hence derived predictions of these lifetimes.16 Previously, 

it has not been possible to experimentally distinguish the lifetimes of the individual 

decay pathways. 

The decay channels by which the vibrationally excited ground electronic state 

may decay back to the ground state are a subject of some debate. Fragmentation of the 

parent ion by loss of a CH3 radical and loss of energy by internal conversion are 

commonly observed and accepted. However, Horke et al. have also suggested 

thermionic electron emission from this state as a possible decay channel due to the 

observation of extremely low kinetic energy electrons,20 although this assignment has 

been called into question.18 Notably, the PE spectra of the two groups differ in that the 0 

eV eKE, structured peak observed by Horke et al.20 was absent in the spectra recorded 

by Toker et al.18 Thermionic emission occurs on a far longer timescale than for most 

photodetachment processes (milliseconds as opposed to picoseconds),27-31 which may 

explain the discrepancy. While the absorption spectra of the gas phase model 

chromophore and GFP may be similar, the absence of luminescence from the decay of 
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the excited state of HBDI– and the remarkable photostability of GFP would indicate that 

the decay channels of the excited states in the free chromophore and in the protein are 

disparate. 

Forbes et al. have presented action spectra of HBDI– by monitoring the yield of 

both the parent ion and the product of the dominant fragmentation channel by mass 

spectrometry following excitation at various wavelengths.32,33The yield of the electron 

loss channel was inferred from the difference between the yields of the observed 

channels. This study showed that, while the PE and fragmentation yields were 

approximately equivalent for excitation wavelengths between 500 nm and 475 nm, the 

PE loss decay channel dominates at higher excitation energies. As fragmentation is 

associated with multiple photon absorption (as described in Chapter 1, page 13), this 

implies that excitation at these wavelengths produces a population of an excited state, 

from which a vibrationally hot population of the electronic ground state must be 

recovered. This is a pre-requisite for the observation of thermionic emission, supporting 

the assertions of Horke et al.20 

Whilst the S1 excited state has been the subject of the most interest, due to its 

contribution to the fluorescence of GFP, the higher lying excited states are far less well 

understood. Recently, Bochenkova et al. have calculated the positions and oscillator 

strengths of the first several excited states of HBDI– and subsequently recorded action 

spectra over the relevant spectral regions.34 Although the S2 state has an onset of ~3.7 

eV, this state is has a very low oscillator strength and is therefore inaccessible by 

photoexcitation. The next optically-accessible excited state of the anion, which is 

formally the S3 excited state, has been considered. The action spectrum of HBDI– 

suggests that the S3 ← S0 transition is almost as bright as the S1 ← S0 transition and has 

an onset of ~3.8 eV in the gas-phase.34 Bochenkova et al. also highlight the potential 
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importance of these excited states in the photo-oxidation of GFP, as the absorption band 

of the S3 state in the protein is quasi-resonant with the hydrated electron.34 In isolation, 

the S3 state is an anionic resonance and may be probed by PE spectroscopy. Mooney et 

al. have recently recorded three PE spectra with photon energies around the onset of the 

S3 state, which indicate that the PE distribution broadens with increasing photon 

energy.35 This spectral broadening was assigned to vibrational motion on the S3 excited 

state surface, followed by autodetachment to a range of co-ordinates of the neutral D0 

state.36 

In this work, we have employed frequency-, angle- and time-resolved PE 

spectroscopy in order to gain a more comprehensive understanding of the dynamics 

occurring both on the formally bound S1 excited state surface and following excitation 

to the continuum of HBDI– around the S3 state. We have been able to probe these 

dynamics in detail and hence: resolve the lifetime for electron autodetachment from the 

S1 state; show that the primary dominant decay mechanism from the S3 state is internal 

conversion to the S2; and resolve the lifetimes of the S3 and S2 excited states following 

UV excitation. 

 

4.2 Methodology 

The experiments were performed as described in Chapter 2. HBDI, synthesised 

based broadly on published methods,3 was provided by Alex Hudson and Dr Steven 

Cobb. Isolated deprotonated HDBI– anions were produced by electrospray ionisation of 

a ~1 mM solution of HBDI, reduced to pH 11 by the addition of NaOH or NH3. In the 

frequency-resolved PE imaging experiments, laser pulses of ~6 ns duration with photon 

energies ranging between 2.38 eV (520 nm) to 4.39 eV (282 nm) were generated using 

the Horizon OPO. In the time-resolved experiments on the S1 excited state, femtosecond 
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laser pulses at 2.57 eV (482 nm), 2.48 eV (500 nm) and 2.38 eV (519 nm) served as the 

pump and 1.55 eV (800 nm) femtosecond pulses probed the population from the S1 

excited state. In the time-resolved experiments on the S3 and S2 excited states, 

femtosecond pulses at 4.13 eV (300 nm) were used as the pump and 1.55 eV (800 nm) 

were used as the probe pulse. All time-resolved laser pulses were derived from a 

commercial femtosecond system. The 4.13 eV pump was generated by frequency 

doubling the 1.55 eV fundamental in a β-barium borate (BBO) crystal and combining 

this in a second BBO crystal with 1.03 eV (1200 nm) pulses produced by an optical 

parameter amplifier. 

 

4.3 Frequency- and Angle-Resolved Photoelectron Imaging 

The frequency-resolved PE spectra of HBDI– for photon energies between 2.39 

eV (520 nm) and 4.39 eV (282 nm) are normalised to a maximum intensity of unity in 

order to highlight the changes in the PE spectra as a function of photon energy, and 

presented in Figure 4.3(a). However, the photo-induced detachment cross-section varies 

significantly over the range of photon energies. In order to highlight these variations, 

the action (absorption) spectra leading to “prompt” electron loss as reported in the 

recent study of Bochenkova et al.34 is also included in Figure 4.3(a), together with their 

calculated energetics of relevant electronic states. In addition to the frequency-resolved 

PE spectra, the photoejection anisotropy parameter, β2, which quantifies the PE angular 

distribution,37 are plotted in Figure 4.3(b).  

 



90 
 

 

Figure 4.3 Frequency- and angle-resolved PE spectra of HBDI
–
. The complete set of peak-normalised PE 

spectra is shown in (a), together with the action spectrum and calculated energies, taken from reference
34

. 

The PE anisotropy parameters are shown in (b). 

 

4.4 Dynamics of the S1 Excited State 

The ADE of HBDI– has been determined by several groups to be 2.7 eV.15,19,20,33 

Despite this, PE signal was observed between 2.39 eV < hv < 2.70 eV, although signal 

levels rapidly became very weak at the lower photon energies. The PE spectra in this 

range do not exhibit a change with photon energy and appear essentially identical; they 
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consist of a peak centred at eKE ~ 0.03 eV and a feature decaying exponentially from 

eKE = 0 eV. These features remain identifiable up to hv = 3.1 eV. This observation is 

consistent with both the action spectrum of Bochenkova et al.34 and previous 

measurements of the PE spectra. The PE peak at eKE = 0.03 eV has previously been 

assigned to AD from the S1 excited state18 and the exponential tail decaying from eKE = 

0 eV has been correlated with statistical (thermionic) electron emission.20 This below-

threshold contribution is facilitated by the ~300 K temperature of the anions in our 

experiment, which corresponds to an internal energy of ~ 310 meV. This excess internal 

energy allows some population of the S1 excited state to be produced even at excitation 

energies below the onset of the S1 state. 

However, from hv = 2.8 eV, a new PE peak is observed at higher eKE that 

increases linearly with photon energy as might be expected for a direct (vertical) 

detachment process. Between 2.8 eV < hv < 3.1 eV the two processes are in competition 

and AD is dominant because the S1 state is predominantly excited. This peak is the sole 

feature of the PE spectrum between 3.1 eV < hv < 3.6 eV, as the photoexcitation energy 

moves off resonance with the S1 excited state and hence the AD channel is lost. The 

change in the dominant photodetachment channel is reflected in the β2 parameters; the 

sole PE peak between 3.2 eV < hv < 3.6 eV has β2 ~ 0 over the width of this constant 

binding energy peak, whereas at hv ~ 3 eV and between 0.1 eV < eKE < 0.2 eV, the PE 

anisotropy is β2 ~ 0.4 indicating that the PEs are produced from different 

photodetachment channels. 

In GFP, the major relaxation channel following photoexcitation is the 

eponymous fluorescence, whereas in HBDI– this channel is suppressed by a rotation 

about a central carbon bond.23,25,38 As such, once excited to the S1 state, HBDI– must 

decay to the ground state by alternative channels, primarily by internal conversion and 
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by AD. This has significant implications for dynamical studies of the S1 excited state, as 

the observed lifetime of the excited state extracted from the experiment will contain 

contributions from both of the competing channels, by the well known kinetic 

relationship: 

 kobs
 =  i

i

k , ( 4.1 ) 

where i is the number of possible competing decay mechanisms. The dynamics of the S1 

excited state have recently been probed using time-resolved PE spectroscopy,23 yielding 

an overall observed lifetime of 1.4 ps. However, it was not possible to deconvolute the 

individual contributions arising from internal conversion and autodetachment. 

Nevertheless, through careful measurements by time-resolved PE spectroscopy, it is 

possible to determine the lifetimes of both decay pathways.  

 

Figure 4.4 Time-resolved PE spectra taken with 2.48 eV (500 nm) pump and 1.55 eV (800 nm) probe 

pulses at delays of t = – 2 ps (black) and t = 0 ps (red). Inset shows the first 300 meV of a PE spectrum 

taken at 2.48 eV at low VMI voltages . 

Figure 4.4 presents the time-resolved PE spectra taken at 2.48 eV + 1.55 eV 

(500 nm + 800 nm) at delays of t = – 2 ps and t = 0 ps. As the probe pulse has 

insufficient energy to detach an electron and is not resonant with any excited states, the 

PE spectra at t = –2 ps are virtually identical to those of the pump pulse. As with the 

frequency-resolved PE spectrum, the main feature of the PE spectra at 2.57 eV, 2.48 eV 
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and 2.38 eV is an intense peak at low electron kinetic energy, which is highlighted in 

the inset of Figure 4.4, for which the VMI voltage was reduced by a factor of ~4. The 

feature centred at 2 eV can be assigned to direct detachment from two photon 

absorption of the probe pulse. 

The time-resolved PE spectrum at t = 0 shows a new feature, centred around 

eKE ~ 1.2 eV, which can be assigned to detachment by the 1.55 eV probe from the S1 

excited state. The evolution of this feature has been traced through time-resolved PE 

spectroscopy and is found to decay on a 1.4 ps timescale.23 Notably, the low energy 

feature also exhibits a small decrease, although the total integrated area of this depletion 

is far smaller than the signal arising from photodetachment from the exited state. 

As detachment from the S1 state by the probe pulse is a direct measure of the 

excited state population, the integrated pump-probe feature is proportional to the excited 

state population, [S1]. The rate of decay of [S1] is determined by competition between 

all possible decay mechanisms of the S1, although internal conversion and AD are 

expected to dominate. As such, the observed rate constant for the decay of [S1] can be 

expressed as the sum of the rate constants for all possible decay mechanisms: 

 kobs = τobs
–1 =  i

i

k  = (1.4 ps)–1. ( 4.2 ) 

The low eKE feature is primarily a measure of the S1 excited states that have undergone 

autodetachment. Therefore, the integrated depletion of the low eKE feature in Figure 

4.4, [AD], is a measure of the population fraction of [S1] that has undergone 

autodetachment. The ratio of the rate constant for autodetachment, kAD, to all other 

decay rates can be expressed as: 

 
A D

1

A D
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( 4.4 ) 

where we have only considered autodetachment and internal conversion as the decay 

paths from the S1 state. Taking [S1] as the integrated PE signal between 0.15 eV < eKE 

< 1.50 eV and [AD] as the integrated PE signal between 0 eV < eKE < 0.1 eV in Figure 

4.4,39 and using the previously determined23 kobs = (1.4 ps)–1, the lifetimes for 

autodetachment and internal conversion can be calculated. At 2.57 eV, 2.48 eV and 2.38 

eV, the autodetachment lifetime is 36 ps, 28 ps, and 33 ps, respectively. These are more 

than an order of magnitude longer than the observed lifetime so that the true internal 

conversion lifetime is only slightly longer than 1.4 ps (1.46 ps, 1.47 ps, and 1.46 ps at 

2.57 eV (482 nm), 2.48 eV (500 nm) and 2.38 eV (519 nm), respectively). We note that 

there is a relatively large error associated with the τAD and τIC
 lifetimes. This is in part 

due to the increased noise generated during image reconstruction at low eKE.40 More 

importantly, however, there is likely to be some overlap between the depleted signal and 

the [S1] signal. Finally, there are additional contributions to the low eKE feature as 

discussed below. 

Bochenkova and Andersen have recently developed a model to explain the 

excited state behaviour of HBDI–.16 This work has identified several vibrational modes 

that are strongly coupled with specific decay mechanisms: numerous low-frequency 

modes associated with torsional motion were found to be coupled to the internal 

conversion pathway, whereas totally-symmetric higher frequency modes were 

correlated with promoting photodetachment into the continuum. Although the higher-

frequency modes are the more Franck-Condon active, the interplay between the two 

modes results in a balance between the two decay mechanisms, from which the authors 
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were able to calculate statistical lifetimes for the IC and AD processes and the relative 

rates kAD:kIC.16  

At 2.48 eV (500 nm), it was found that kAD:kIC ~ 0.1. This is in reasonable 

agreement with the ratio of kAD:kIC ~ 0.03 determined here. However, at higher 

excitation energies, the model predicts that the vibrational modes promoting 

autodetachment are more readily excited, resulting in a sharp increase in the rate of 

autodetachment; For example, at 2.57 eV (482 nm), the ratio kAD:kIC was expected to 

increase by a factor of 2.5.16 Our results do not follow this trend. Within our 

experimental uncertainty, the lifetimes of all processes remains approximately the same 

over the 0.2 eV window probed here. In addition, we observe discrepancies between the 

calculated and experimentally observed lifetimes: while the calculated lifetime for IC is 

higher than the experimentally determined value and the calculated lifetime for AD is 

considerably lower than the experimentally determined value. However, the 

discrepancies in the ratios and the lifetimes can be ascribed to the small window probed 

and the inaccuracies in our experimental observations due to the small window over 

which we may observe depletion and contributions from other low eKE features. As 

such, we may state that our observations appear to be consistent with the calculations 

and that the model of Bochenkova and Andersen seems to have captured much of the 

underlying physics occurring on the S1 excited state, but more accurate measurements 

may be needed. 

We must also consider the action spectra obtained by the Jockusch group.32,33 In 

this, the ratio of electrons formed to fragmentation is ~1:1 at 2.57 eV (482 nm). 

Fragmentation is a multiple photon process that is a direct consequence of internal 

conversion. If we take the fragmentation as a measure of kIC and the electron loss 

channel as a measure of kAD, then the ratio kAD:kIC must therefore be ~ 1 at 2.57 eV (482 
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nm), which is inconsistent with both our observations and the predictions of 

Bochenkova and Andersen.16 This result could be explained by considering all electron 

detachment channels; HBDI– may undergo electron loss by both AD from the S1 excited 

state and by thermionic emission, in which electrons are lost statistically from a 

vibrationally hot S0 ground state.27,29,30 Electrons emitted via thermionic emission are 

somewhat difficult to distinguish: the spectral peak appears as an exponential decay 

from a maximum at eKE = 0 eV and overlaps with the low eKE peak correlated with 

AD. We also are only able to recover a fraction of the thermionic emission peak – 

thermionic emission occurs with a lifetime on the order of microseconds, whereas our 

acquisition time is limited to ~100 ns by the velocity-map imaging arrangement. 

Additionally, the region at eKE = 0 eV suffers the greatest from noise from the image 

reconstruction program. 

 

Figure 4.5 PE spectra taken at 3.10 eV (blue) and 1.55 eV (black). The feature at 0.3 eV is common to 

both spectra while at 3.10 eV a higher yield of thermionic emission is observed at very low kinetic 

energy. Features above 0.5 eV are due to 2-photon and 3-photon absorption at 3.10 eV and 1.55 eV, 

respectively. 

Nevertheless, the contribution of thermionic emission may be clearly observed 

in Figure 4.5. Two PE spectra are presented: the first taken at hv = 3.10 eV (400 nm) 

and the second observed using a tightly focussed and therefore higher intensity pulse at 

hv = 1.55 eV (800 nm). While both excitation schemes give a total final energy of 3.10 
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eV, excitation at 1.55 eV requires a two-photon transition as the pump energy is 

insufficient to photodetach an electron. Disregarding the features above eKE = 1 eV, 

which are due to higher-order multiple photon transitions, the spectra appear similar 

with the notable exception of the peak at eKE = 0 eV, which is suppressed in the 

spectrum taken at 1.55 eV. This observation may be explained by the preferential 

population of modes that promote AD via the two-photon transition and clearly 

demonstrates the presence of thermionic emission in the spectrum. Interestingly, these 

slow electrons were not observed in the experiments of the Andersen group.18  

The observation of this channel is significant in elucidating the dynamics of the 

S1 excited state, in that it is almost impossible to distinguish between an electron that 

has been detached from either the S1 state or the S0 state. This difficulty is most 

apparent when considering the apparent discrepancies between the observations of the 

Jockusch and co-workers and our own. The HDBI– ions in the Jockusch experiments are 

constrained in an ion trap and irradiated over a far greater time period than in the current 

experiment, resulting in the time period over which electron loss channel may be 

measured being proportionally greater. As such, the Jockusch group observe a far 

greater contribution from thermionic emission to the electron loss channel which cannot 

be distinguished from the autodetachment channel,32,33 resulting in the inflated kAD:kIC 

ratio. 

As an attempt to reduce the effect of the overlapping features in our experiment, 

we have neglected to consider the depletion in the peak at < 10 meV. Its depletion at t = 

0 is negligible compared to (and convoluted by) the depletion in the peak at 0.01 eV < 

eKE < 0.10 eV. The small depletion observed indicates that thermionic emission has a 

much longer lifetime than the vibrational autodetachment and internal conversion; as 

expected.30,41,42 Therefore, if we were able to measure the PE spectrum across a far 
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greater timescale than currently possible, we would expect to see a far greater 

contribution of the thermionic emission peak to the PE spectrum.  

 

4.5 Dynamics of Above-Threshold Resonances 

While the dynamics of the S1 excited state have been well studied, the dynamics 

of the higher lying excited states accessible through UV photoexcitation have received 

far less attention. However, these high lying excited states have been linked to redox 

pathways in the protein and a greater understanding of the intrinsic photodynamics is 

therefore desirable. Indeed, by inspection of the frequency-resolved spectrum in Figure 

4.3(a), it is clear that substantial dynamics are occurring on an excited state surface 

following UV excitation. For hv > 3.7 eV, the eKE distribution broadens with increasing 

photon energy, reaching a spectral width of eKE ~ 1 eV at hv ~ 4.1 eV. The high energy 

edge of this PE feature remains linear with photon energy but the average eKE of the 

spectrum shifts to increasingly lower energy to yield a bimodal distribution. In fact, the 

low energy side of this bimodal distribution remains approximately constant in eKE 

with increasing hv. The maximum of the low energy peak is around eKE ~ 0.6 eV. For 

hv > 4.1 eV, the progressively broadening feature abruptly collapses to a PE spectrum 

that has a feature consistent with direct detachment as well as a very broad and 

featureless distribution of electrons (0 eV < eKE < 1.3 eV). The relative intensity of this 

broad distribution is lower than the low energy peak observed for 3.7 eV < hv < 4.1 eV, 

however, their integrated PE yields are approximately the same. The broadened feature 

contributes about 60% of the total PE yield, with the other 40% arising from the 

constant binding energy PE feature at high eKE. 

The spectral broadening of the PE spectra over the 3.7 eV < hv < 4.1 eV range 

suggests that excited state dynamics are occurring in competition with autodetachment. 
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This broadening was previously assigned to vibrational motion on the S3 state.36 

However, the spectral broadening could also arise from internal conversion of the S3 

state to the lower-lying S2 state followed by autodetachment. The S2 state has a 

calculated energy that lies within 0.1 eV of the S3 state34 suggesting that pathways of 

coupling these two states may be present.  

We must also consider the PE angular distributions over the spectral feature. 

These show that there is a small but consistent difference in β2(eKE) for the peak 

correlated with a direct detachment process and the feature at lower eKE in the 3.7 eV < 

hv < 4.1 eV range. The β2 parameter is negative on the high eKE edge, becomes 0 

(indicating an isotropic image) over the centre of the feature before turning positive on 

the low eKE edge. As the anisotropy of the PE images is correlated to the symmetry of 

the excited states from which the electrons are detached, the change in β2 is indicative 

that several excited states are involved in the detachment process to produce the 

observed PE feature. 

In order to glean further insight into the decay mechanisms, the dynamics of the 

S3 state were probed using time-resolved PE spectroscopy. In these experiments, the S3 

excited state was populated using femtosecond photoexcitation at 4.1 eV (300 nm), 

which was subsequently probed at 1.55 eV (800 nm). The excitation energy was chosen 

to energetically coincide with the spectral broadening observed in the 3.7 eV < hv < 4.1 

eV region of the frequency-resolved PE spectra as well as the local maximum in PE 

yield from the action spectra. 

 Figure 4.6(a) shows two representative pump-probe PE spectra recorded with 

the probe arriving before pump pulses (Δt = –525 fs) and near the temporal overlap of 

the two pulses (Δt = 25 fs). Both spectra show two peaks centred at ~0.25 eV and ~1.3 

eV. The appearance of the PE spectrum between 0.5 eV < eKE < 1.5 eV is consistent 
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with the 4.1 eV (300 nm) PE spectrum obtained in the frequency-resolved experiments. 

The peak at eKE ~ 0.25 eV arises from a non-resonant two-photon detachment 

processes from the 1.55 eV probe; the PE spectrum at eKE < 0.5 eV is consistent with 

the PE spectrum recorded at 3.1 eV (400 nm). 

 

 Figure 4.6 (a) Time-resolved PE spectra of HBDI
–
 excited at 4.1 eV. (b) Decay dynamics of PE signal 

taken over the spectral windows shown in (a). 

 At Δt ~ 0, an additional PE feature between 1.5 eV < eKE < 3.0 eV is observed. 

This can be assigned to photodetachment from the excited state population; the PE 

spectrum of the time-dependent feature extends approximately an additional 1.55 eV 

beyond that of the pump-only PE spectrum. The breadth of the time-dependent PE 

feature suggests that it contains contributions from both excited state population leading 

to both prompt autodetachment (high eKE electrons) and delayed autodetachment 

(lower eKE).  
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To gain quantitative insight, the time-dependent PE feature can be divided into 

two spectral windows as shown in Figure 4.6(a). The 2.5 eV < eKE < 3.0 eV window 

probes population of the initially excited state and the 1.5 eV < eKE < 2.5 eV window 

probes population of the intermediate state to which the initial state has decayed. The 

time-varying integrated PE signals for each of these spectral windows are given in 

Figure 4.6(b) and were fitted to an exponential decay function;  

 f(t) = Aexp(–(t–t0)/τ) ( 4.5 ) 

convoluted with the instrument response function (FWHM = 75 fs). The amplitude (A), 

lifetime (τ), and time-zero (t0), were allowed to vary. The t0 for both spectral windows 

were less than 5 fs apart and can be assumed to be essentially identical. The lifetime of 

the initially excited state was found to be 25 fs, which is less than our temporal 

resolution and so we may only quote this as < 40 fs. The lifetime of the intermediate 

state was found to be 55 fs, which is still extremely fast, although visibly slower than 

that of the initially excited state. 

 In the higher energy window, 3.2 eV < hv < 3.7 eV, the cross-section for 

excitation to the S1 sharply decreases and the PE signal may be dominated by direct 

detachment. The photoejection anisotropy is significantly more positive around hv ~ 3.1 

eV as shown in Figure 4.3(b). This might be a consequence of the interference between 

autodetachment and direct detachment into the continuum leading to a different β2 value 

than for direct detachment only, which is dominant for 3.2 eV < hv < 3.7 eV. 

The frequency-resolved PE spectra combined with the prompt action-spectra 

from the Andersen group34 show that for hv > 3.7 eV higher-lying excited states are 

accessed, resulting in the observed broadening of the PE spectra. Using high-level 

calculations, Bochenkova et al. showed that the S2 and S3 are very close in energy at 3.7 
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eV and 3.8 eV, respectively, in the vertical Franck-Condon (FC) region (see Figure 

4.3(a)). 

 

Figure 4.7 Left: Schematic representation of the electronic configuration of HBDI
–
 showing the 

occupancy of the molecular orbitals at each excited state, as reported by Bochenkova et al.
34

 Right: 

Schematic representation of the contributions of each orbital to the central allyl bridge that connects the 

phenol (Ph) with the imidazole (Im). 

Figure 4.7 illustrates the configurations of the relevant electronic states and the 

occupancy of the molecular orbitals (MOs) of HBDI– and its neutral as calculated by 

Bochenkova et al.34 It is useful to describe the MOs by the approximate localisation of 

the orbitals on the subunits and therefore in terms of the bonding character over the allyl 

bridge. We have considered the highest occupied molecular orbital (HOMO, MO(8)), 

the lowest unoccupied molecular orbital (LUMO, MO(9)) and the preceding and 

following molecular orbitals (HOMO – 1, MO(7), and LUMO + 1, MO(10), 

respectively). The HOMO is essentially non-bonding over the allyl bridge, whereas the 
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HOMO – 1 and LUMO exhibit π and π* character, respectively. The LUMO + 1 is 

localised almost entirely upon the phenoxy group and therefore does not contribute to 

the bonding on the allyl bridge. 

 We may now consider the behaviour of the excited state population in the FC 

region based on the change in the occupied orbitals. In the S2 ← S0 transition, either π 

bonding or non-bonding orbitals are replaced for antibonding orbitals over the allyl. 

Hence, the anti-bonding character of the S2 state is increased relative to the S0 state and 

the excited state population produced in the FC region following photoexcitation is 

likely to undergo rapid wave packet motion, leading to a stretching of the allyl bridge. 

The S1 ← S0 transition is similar in that it has π* character on the allyl bridge, although 

the anti-bonding character is expected to be less pronounced than that of the S2 state, 

and initial wave packet dynamics of the allyl stretching mode on the S1 state have been 

predicted to be on the order of 10 fs.38,43 It is reasonable to assume that the wave packet 

dynamics on the S2 will be similar to or faster than those on the S1 state, due to the 

pronounced anti-bonding character. In contrast, the S3 ← S0 transition sees the 

promotion of an electron from the non-bonding MO(8) to MO(10), which is localised 

on the phenol-ring. As such, we might expect most major structural changes to be 

localised on the phenoxy sub-unit and any effects to the allyl bridge are likely to be far 

smaller than the changes observed on the S1 and S2 states. Finally, we consider the 

neutral states, D0 and D1. The ground D0 state corresponds to loss of one electron from 

the MO(8), whereas the D1 state corresponds either to the loss of an electron from 

MO(7) or the simultaneous loss of one electron from MO(8) and the promotion of one 

electron from MO(8) into MO(9). As MO(8) is essentially non-bonding on the allyl 

bridge, the structure of the allyl bridge is likely to be similar in the S0 and D0 minimum 

energy geometries. Indeed the PE feature for direct detachment is relatively sharp given 



104 
 

the molecular size of HBDI, indicating that little energy may be redistributed to 

vibrational modes in photodetachment.20,44 We can now consider the allowed transitions 

in photodetachment. The S3, S1 and S0 excited states are correlated with D0 in a one 

electron Koopmans picture; that is, it is possible to produce the D0 electronic 

configuration from these starting configurations by the detachment of a single electron. 

The S3, S1 and S0 excited states are therefore shape resonances with respect to the D0 

state, which typically have very short autodetachment lifetimes (on the order of 10s fs). 

In contrast, the S2 state requires an electronic transition in addition to photodetachment 

in order to access the electronic configuration of the D0 state and therefore does not 

correlate with the D0 state and is a Feshbach resonance with respect to this state. The S2 

is a shape resonance of the D1 excited state of the neutral and the S3, S1 and S0 excited 

states henceforth Feshbach resonances. 

The spectral broadening in the 3.7 eV < hν < 4.1 eV range suggests that, 

following excitation, wave packet motion may occur on the excited state surface before 

electron emission. The S3 ← S0 oscillator strength is significantly greater than that of 

the S2 ← S0 transition, hence, we may assume that the S3 state is initially populated in 

this range. The observed broadening in the PE spectra could arise from vibrational 

dynamics on the S3 state that precedes autodetachment, as suggested by Mooney et al.36 

Alternatively, because the S2 state is in very close proximity to the S3 state in the FC 

region, it is conceivable that there exists a strong coupling or conical intersection 

between these two states that can transfer population from S3 to S2 on a timescale faster 

than autodetachment. Such dynamics have indeed been observed in some quinone 

anions.45-47 

The latter of the two scenarios above is more consistent with the experimental 

results. Firstly, we note that the PE angular distribution across the bimodal peak is not 
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constant. The anisotropy over the high energy component is slightly negative              

(β2 ~ –0.3), changes to an isotropic distribution (β2 = 0) over the centre of the peak and 

finally rises to a positive anisotropy (β2 ~ +0.2) over the lower eKE portion. The 

observed PE angular distribution is intrinsically linked to the symmetry characteristics 

of the MO from which the electron is detached,45 hence the change in anisotropy is 

indicative of a change in electronic state. This suggests that population from the S3 state 

is indeed undergoing internal conversion to the S2 state. 

Additionally, from consideration of the occupied MOs, the S3 and D0 state 

minimum energy geometries are not expected to be dissimilar. As such, it is difficult to 

reconcile the large spectral red-shift observed with the expected range of energies 

accessible assuming vibrational motion occurring on a timescale of < 40 fs. In contrast, 

the strong π* character on the allyl bridge on the S2 state is expected to result in a 

minimum energy geometry far from the FC region. Therefore, one might expect that the 

S2 and D0 potential energy surfaces to diverge significantly along the allyl stretching 

coordinate, allowing for a greater range of detachment energies to be accessed than 

would be possible between the S3 and D0 states. Notably, the dynamics of the allyl 

stretch on the S2 state have been found to occur on an extremely short timescale (10 

fs),38,43 well within the lifetime of the excited states observed by our time-resolved 

experiments. Any dynamics on the S2 excited state surface would, by necessity, be in 

competition with autodetachment to the D0 state (in the 3.7 eV < hν < 4.1 eV range). 

However, as the S2 state is a Feshbach resonance of the D0 state, the S2 → D0 

autodetachment is a formally forbidden transition and the rate of this transition will 

therefore be slower than the S3 → D0 transition, allowing for the vibrational wave 

packet to sample a larger area of the S2 potential energy surface. This would in turn lead 

to a large spectral width in the PE emission, as observed. 
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Recent calculations by Bochenkova and Andersen may suggest that the spectral 

broadening is in fact a result of IVR.48 In this, the S3 and D0 excited states are calculated 

to have almost identical shapes. As the excitation energy increases from the onset of the 

S3 state, the number of accessible vibrational modes increases. Through conservation of 

vibrational quantum number (Δv = 0), the photoelectron spectra would take the form of 

a broad peak in which the lower eKE edge is constant in kinetic energy and the higher 

eKE edge is constant in electron binding energy (eBE). This is consistent with the 

assignment of Mooney et al.49 and the S2 state need not be involved in the excited state 

dynamics. This, however, does not explain the change in anisotropy observed over the 

peak, or the cut-off in PE intensity at the onset of the D1 excited state onset. 

The S3 → S2 internal conversion can be associated with the first, sub-40 fs 

lifetime observed in the time-resolved PE spectrum. However, as with the dynamics of 

the S1 state, the observed lifetime is a combination of the rates of internal conversion 

and autodetachment from the S3 state to the D0 state. We can gain insight into the 

dynamics occurring on the S3 excited state surface by considering the high eKE feature 

that increases linearly with excitation energy in the frequency-resolved spectrum. 

Although this peak overlaps the expected position of the direct detachment feature, the 

observed PE feature is predominantly composed of PEs from the S3 → D0 

autodetachment channel. This is evidenced by the angle-resolved spectrum, in that the 

anisotropy of the feature increases markedly as the excitation energy exceeds the onset 

of the excited states, and that direct detachment into the continuum is a minor channel 

in this energy range34 (see action spectrum in Figure 4.3(a)). By fitting the PE spectrum 

taken at hv = 3.54 eV (i.e. a purely direct detachment spectrum) to the frequency-

resolved spectra across the range 3.7 eV < hν < 4.1 eV, it is possible to estimate the 

relative contributions of S3 → D0 autodetachment to S2 → D0 autodetachment.  The 
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average PE yield due to S3 → D0 autodetachment is ~40% of the total PE yield, with the 

remaining 60% arising from autodetachment from the S2 state. Assuming that all 

population in the S2 excited state is lost through autodetachment, we can therefore 

deduce through kinetic considerations that the S3 → S2 internal conversion occurs on a 

<65 fs timescale while S3 → D0 autodetachment is slower. The true lifetimes of these 

processes are likely to be considerably faster, but our observations are limited by the 

time resolution of the experiment. The spectral broadening observed over the 3.7 eV < 

hv < 4.1 eV range can thus be assigned to vibrational dynamics on the S2 state that leads 

to a broad PE spectrum in this range. The overall decay of this S2 state feature is 

associated with the second lifetime observable in the time-resolved spectrum, 55 fs, and 

can be correlated to the S2 → D0 autodetachment.  

Perhaps the most striking feature of the frequency-resolved PE spectra is that at 

hv > 4.1 eV, the PE spectra abruptly change from the bimodal distribution (between 3.7 

eV < hv < 4.1 eV) to a very broad distribution (see Figure 4.3(a)). This change is 

suggestive of a new decay pathway becoming available at this energy, and coincides 

with the calculated location of the D1 excited state of the neutral in the FC region.34 The 

D1 state is a Feshbach resonance with respect to the S3 state, hence detachment from the 

S3 state to form the D1 state is an unfavourable process. However, the S2 state is a shape 

resonance of the D1 state in a one electron Koopmans’ interpretation (see Figure 4.7). 

Hence, we propose that, as the photon energy increases and becomes higher than the D1 

energy, autodetachment from the S2 state becomes much faster by virtue of the 

favourable S2 → D1 autodetachment channel. Indeed, it can be seen in the frequency-

resolved PE spectra that the peak around eKE ~ 0.6 eV relative to the peak arising from 

S3 → D0 autodetachment is decreasing with a concurrent rise in a new feature centred at 

lower eKE.  
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The observation of the shift in the composition of the PE spectra at the onset of 

the D0 state has significant implications for the scenario where the S2 state plays no part 

in the dynamics. In this case, all dynamics observed between 3.7 eV < hv < 4.1 eV must 

occur on the S3 excited state surface. The change in PE spectra at hv = 4.1 eV therefore 

has two possible explanations: either a conical intersection with the S2 state or the S3 → 

D1 autodetachment channel becomes available at this energy. As we have stated, the S3 

state is not correlated with the D1 state, hence, the channel is unfavourable and unlikely 

to be favourable. Additionally, in either case, one would expect that the PE yield in the 

S3 → D0 autodetachment channel (peak at highest eKE) would transfer to a lower eKE, 

as observed in para-benzoquinone and discussed in Chapter 5,45 and this is not 

experimentally observed. Instead, the contribution of the S3 → D0 autodetachment 

channel to the total PE yield does not change between hv = 3.9 eV and 4.3 eV. Rather, it 

is the feature at eKE ~ 0.6 eV, which we have associated with the excited state process 

responsible for the observed peak broadening, that donates the PE signal to form the 

feature at lower eKE. Therefore, we can state that only population that has first 

undergone internal conversion from the S3 excited state is involved in detachment 

through the new channel; hence the evidence strongly suggests that there must be a 

process for the rapid conversion of population from the S3 excited state to population on 

the S2 excited state. 

 

4.6 Summary 

In summary, we have performed frequency-, angle- and time-resolved PE 

spectroscopy on the GFP model chromophore anion, HBDI–, in an attempt to elucidate 

the dynamics of the excited state populations produced following photoexcitation. We 

have, through careful inspection of the depletion and concomitant rises in time-resolved 
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spectra taken at numerous wavelengths, been able to extract individual lifetimes for the 

relaxation mechanisms following excitation to the S1 excited state: ~ 1.45 ps for internal 

conversion to the S0 state and ~ 30 ps autodetachment to the D0. The lifetime for 

autodetachment is consistent with the calculations by Bochenkova and Andersen.50 

However, we do not observe a lifetime dependence on the pump photon energy for 

autodetachment. We have also noted the importance of thermionic emission as an 

operative electron loss channel over long timescales. 

Subsequently, we have assigned the dynamics following UV excitation to 

unbound anion resonances. Excitation with hv > 3.7 eV leads to the population of the 

bright S3 excited state that decays through a combination of autodetachment to the D0 

ground neutral state and internal conversion to the nearby S2 excited state. We note that 

the relaxation mechanisms are competitive, with internal conversion being slightly 

dominant. The S2 excited state population then undergoes rapid vibrational motion, 

which occurs in competition with autodetachment to the D0 ground state. By increasing 

the photoexcitation energy over the onset of the D1 excited neutral state, hv ≥ 4.1 eV, a 

second decay pathway, the S2 → D1 autodetachment channel, becomes available and is 

predicted to be favourable to the S2 → D0 channel based on a Koopmans’ interpretation.  
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Chapter 5. Dynamics of Electron Acceptors 

The resonant attachment of a free electron to a closed shell neutral molecule, 

and the interplay between the following electron detachment and electronic relaxation 

channels represents a fundamental but common process throughout chemical and 

biochemical systems.  Frequency- and angle-resolved PE imaging is detailed and used 

to map-out molecular excited state dynamics of gas-phase para-benzoquinone, which is 

an electron accepting moiety in all biological electron-transfer chains. Three-

dimensional spectra of excitation energy, electron kinetic energy and electron ejection 

anisotropy reveal clear fingerprints of excited and intermediate state dynamics. The 

results show that many of the excited states are strongly coupled, providing a route to 

forming the ground state radical anion, despite the fact that the electron is formally 

unbound in the excited states. The relation of our method to electron impact attachment 

studies and the key advantages, including the extension to time-resolved dynamics and 

to larger molecular systems is discussed. 

The interpretation of the PE spectra in this chapter is supported by multi-

reference calculations performed by Dr James Bull. This chapter is based upon ‘Anion 

Resonances of para-Benzoquinone Probed by Frequency-Resolved Photoelectron 

Imaging’, C. W. West, J. N. Bull, E. Antonkov and J. R. R. Verlet, J. Phys. Chem. A, 

118, 11346 (2014). 

5.1 Introduction 

Electron transfer is amongst the most fundamental chemical reactions and features 

prominently in all branches of chemistry. Quinones are often encountered as part of the 

active site in electron transfer reactions in nature;1-4 for example, plastoquinone and 

ubiquinone are key electron acceptors in the electron transport chains of photosynthesis5 
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and respiration,6 respectively. Inspired by their widespread use in nature, quinones have 

also been commonly used in synthetic electron transport chains in order to create simple 

prototypes that model the electron acceptor dynamics of these biological reaction 

centers.7 Of the various quinone derivatives, the para-benzoquinone (pBQ, Figure 5.1) 

moiety is that most common in nature. From a rudimentary perspective, electron 

transfer to a closed shell neutral molecule such as pBQ can be viewed as the electron 

attachment through resonances of its radical anion. From this point-of-view, electron 

attachment and transmission studies on pBQ have attracted considerable interest over 

the last few decades.8-14 Such studies have provided detailed insight into the available 

temporary anion resonances of pBQ, although dynamical information is typically 

difficult to extract because nascent excited state resonances can have lifetimes on a sub-

picosecond timescale. Horke et al. have recently shown that a PE spectrum of pBQ•– 

contains signatures of such ultrafast dynamics and that time-resolved PE spectroscopy 

can be used to follow these dynamics in real-time.15 These time-resolved experiments 

considered excitation dynamics at a single photon energy. 

 

Figure 5.1 Structure of para-benzoquinone. 

  Here, we present a comprehensive study of pBQ•– by frequency- and angle-

resolved PE imaging, as introduced in Chapter 4. Through this, we demonstrate that 

both the PE spectral trends and the angular distributions extracted from the PE images 

may be used to identify the location of excited state resonances, and that these show 

clear evidence for above-threshold dynamics involving several excited states of pBQ•–. 
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The experimental methodology provides complementary and new information 

concerning the analogous electron attachment processes. Moreover, frequency-resolved 

PE imaging can be readily scaled up to much larger and more complex systems through 

the use of an appropriate radical anion source, paving the way to studying the above-

threshold dynamics of a range of important molecular systems.  

The excited states of pBQ•– have been the subject of a number of gas-phase 8-

11,13-21 and computational16,21-26 studies. It is well-established that both the radical anion 

and neutral pBQ have planar D2h ground state geometries with 2B2g and 1Ag electronic 

symmetry, respectively. Anion photodetachment experiments have determined the 

adiabatic electron affinity of pBQ to be 1.860 ± 0.005 eV.16 By varying the photon 

energy, Schiedt and Weinkauf identified a number of vibrationally-resolved above-

threshold resonances of jet-cooled pBQ•–.16 Notably, a broad and intense peak at 2.50 

eV above the anionic ground state was assigned to the 2Au excited state with 

predominantly shape resonance character. A series of weaker sharp resonances were 

assigned to vibrational states of the lower lying 2B2u and 2B3g states. Both of these are 

formally optically dark Feshbach resonances with predominantly nπ* character, but they 

gain some oscillator strength due to Herzberg-Teller coupling with the 2Au state. 

Additionally, Schiedt and Weinkauf showed that the PE spectra at different excitation 

energies resonant with the 2Au state changed due to varying Franck-Condon factors 

following autodetachment. In another study, Wang and co-workers have reported PE 

spectra of pBQ•– at ~70 K using 355 nm (3.496 eV) and 266 nm (4.661 eV) photons 

identifying no apparent vibrational structure for photon energies less than 4 eV, 

however at least two sharp spectral features with vibrational structure emerge at hv ~ 

4.2 eV.21 Finally, Brauman and co-workers have reported low resolution total 

photodetachment cross sections with photon energies up to ~4.6 eV, identifying two 
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broad maxima centered at ~3.0 eV and ~4.1 eV, as well as the onset of an intense band 

starting at ~4.4 eV.26-28 

pBQ has also been the subject of a number of electron attachment and 

transmission studies, which have identified at least three resonances centered at 0.7 eV, 

1.4 eV and ~2.0 eV above the ground state of the neutral, with the latter producing 

radical anions that survive for at least several microseconds.8,12-14 Although some 

vibrational structure could be discerned in these experiments, on the whole, the bands 

are very broad and overlapping. In a number of other molecular systems, systematic 

electron attachment measurements have illustrated vibrationally-resolved two-

dimensional electron attachment, which can be considered as analogous to the 

frequency-resolved methodology presented in this work.29-31 

  The experiments of Schiedt and Weinkauf demonstrated the sensitivity of PE 

spectroscopy to investigate excited state electron detachment processes of pBQ, 

although were limited to a narrow spectral range around the 2Au resonance and only 

changes in the vibrational structure were observed in the PE spectra. For the 

experiments presented here, we trade off the energetic resolution of the excitation pulse 

for the range of wavelengths accessible. We present PE spectra obtained at a variety of 

excitation wavelengths between 2.48 eV < hv < 4.59 eV, thus probing up to 2.73 eV 

into the electron detachment continuum of pBQ•–. The use of a VMI detector allows for 

the simultaneous detction of the angle-resolved PE spectrum, which provides additional 

rich insight into resonances in the continuum. Through comparison of the frequency- 

and angle-resolved anion PE spectra with neutral electron attachment and transmission 

spectra, combined with high-level ab initio calculations on the energetics for 

appropriate geometries, a comprehensive deconvolution of electron detachment 

dynamics can be gained. 
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5.2 Methodology 

The experiments were performed as described in Chapter 2. Briefly, pBQ•– radical 

anions were produced by electrospray of ~1 mM of pBQ (97%, Sigma Aldrich) in 

methanol, and trapped in a radio frequency ring-electrode ion trap operating at ambient 

temperature. The ion trap was unloaded at a 10 Hz repetition rate. For the pBQ•– 

experiments, laser pulses of ~6 ns duration with photon energies from 2.48 eV (500 nm) 

to 4.59 eV (270 nm) in 10 nm increments were generated using the Horizon OPO. For 

the naphthoquinone experiments, laser pulses of ~6 ns duration with photon energies 

from 1.77 eV (700 nm) to 4.13 eV (300 nm) in 10 nm increments were generated using 

the Horizon OPO. PE spectra and PADs were extracted from the raw images using a 

polar onion peeling algorithm.32 The PE spectra were calibrated using the known 

spectrum of I– and have a resolution of ~5 %.  

 

5.2.1 Theoretical Methods 

Ab initio calculations were performed by Dr James Bull using the GAMESS-US 

(May 2013 release)33 and Gaussian 09 computational packages.34 All calculations used 

the aug-cc-pVTZ basis set to described the carbon and oxygen atoms, although the most 

diffuse set of f functions were omitted from this basis set.35 The hydrogen atoms were 

described using the cc-pVTZ basis set.36 The final molecular basis set should provide an 

accurate account of valence shells for shape or core-excited Feshbach resonances 

without excess diffuse mixing.37 Following Weber et al.,23 CASSCF reference wave 

functions with (16,12) and (17,12) active spaces for neutral and anion states, 

respectively, and were used for all geometrical optimizations and frequency 

calculations. All relevant zero-point energy corrections assumed harmonic values scaled 
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with factor 0.98.38 Dynamical electron correlation was added with MRMP2 theory, 

within the more general multi-state XMCQDPT framework.39 The occurrence of 

intruder states in single state multi-reference calculations was checked by inspecting the 

weight of the reference function and applying denominator level shifting. In some 

instances multistate calculations were performed to ensure level shifting was sufficient 

to remove any small intruder state contributions. Calculated ground state energetics 

(experimental values in parentheses) are AEA = 1.96 (1.86)16 eV, VEA = 1.57 (1.5 ± 

0.1)14 eV, and VDE = 2.03 (2.0 ± 0.1)21 eV, where AEA is the adiabatic electron 

affinity of pBQ, VEA is the vertical electron affinity of pBQ, and VDE is the vertical 

detachment energy of pBQ•–. For comparison, CCSD(T) theory40 considering the same 

molecular basis set gives AEA = 1.85 eV, VEA = 1.63 eV, and VDE = 1.98 eV. 

 

5.3 Frequency- and Angle-Resolved Photoelectron Spectroscopy 

Figure 5.2 shows three representative PE spectra taken at photon energies of: (a) 

2.48 eV (500 nm); (b) 3.10 eV (400 nm); and (c) 4.13 eV (300 nm). The central slices 

through the respective reconstructed images are inset, where both the experimental (left) 

and Legendre polynomial fits (from equation ( 2.3 )) are retained (right). The PE 

spectrum at 2.48 eV shows a main feature centered around an electron kinetic energy of 

0.4 eV. The maximum of this feature is consistent with that for a direct detachment 

process based on the 3.496 eV spectrum from the Wang group;21 however, at eKE = 0 

eV, an additional feature is observed that exponentially decays with increasing eKE. 

The PE spectrum at 3.10 eV is clearly more complicated. The feature centered at eKE ~ 

0.9 eV is consistent with a direct detachment feature, but an additional feature can be 

seen around eKE ~ 0.4 eV as well as a peak at eKE = 0 eV. On initial inspection, the 

additional feature at eKE ~ 0.4 eV has the appearance of the PE spectrum recorded at  
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Figure 5.2 PE spectra acquired at photon energies of (a) 2.48 eV, (b) 3.10 eV, and (c) 4.13 eV. Inset in 

each plot are the central slices through the corresponding PE velocity -map image; the left semicircle is 

the experimental data retained in polar onion peeling and the right semicircle is the fitted Legendre 

polynomials. 

2.48 eV, but does not have the expected shift in eKE commensurate with the increase in 

photon energy for direct detachment – this trend becomes obvious in the two-

dimensional spectrum. The 3.10 eV PE spectrum is essentially identical to the earlier 

spectrum acquired by Horke et al. with laser pulses of ~40 fs duration,15 implying that 

we are observing single photon processes despite the increase in the duration of the laser 
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pulse to ~6 ns. The PE spectrum at 4.13 eV shows predominantly a single PE feature at 

high eKE, which is consistent with direct detachment and the additional feature 

observed in the 3.10 eV spectrum has essentially disappeared. A small peak at eKE = 0 

eV can still be identified, although this is much weaker compared to the spectra at the 

other two photon energies. 

 

Figure 5.3 (a) Frequency-resolved PE spectra normalized to the total detachment cross section; (b) same 

as (a), although normalized to the total integrated PE signal in each spectrum; and (c) β2 anisotropy 

parameter spectra as a function of excitation energy, where the shaded areas indicate regions with a 

normalized PE intensity of less than 0.375 a. u. The dashed line indicates the maximum PE kinetic energy 

available and the right-hand side axes indicate the energy above threshold. 
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To provide a complete overview for photon energies from 2.48 eV to 4.59 eV, 

the PE spectra are plotted in Figure 5.3(a) and (b) in false-color. In Figure 5.3(a), each 

PE spectrum has been normalized to the relative total PE cross sections of Brauman and 

co-workers.27 The total integrated cross section increases rapidly for hv > 3.8 eV as 

evidenced by the prominence of the feature at high eKE in Figure 5.3(a). The cross 

section for direct detachment as a function of eKE is expected to be a smoothly 

increasing function and the sharp increase observed suggests that a resonance is 

accessed at these photon energies. At hv > 4.2 eV, a new feature emerges at low eKE 

which has been correlated with the excitation of excited states in the neutral following 

detachment.21 The high eKE feature in this range scales linearly with photon energy as 

may be expected for a direct detachment PE feature. For hv < 3.3 eV, the PE spectra 

change quite dramatically indicative of processes occurring in the detachment 

continuum and therefore again pointing to resonances at these photon energies. 

However, the cross section in this energy range is significantly smaller than at higher 

photon energies.  

To accentuate the spectral changes as a function of photon energy, in Figure 

5.3(b), each PE spectrum has been normalized to the total area of that spectrum. This 

procedure illustrates that the relative intensities of PE features vary quite dramatically 

with excitation energy and clearly shows the changes in the PE spectra for hv < 3.3 eV. 

Specifically, at eKE < 0.1 eV, a maximum is observed for hv ~ 2.9 eV, and a second 

feature is observed in the 2.5 eV < hv < 3.3 eV spectra that on first inspection seems to 

have a decreasing eKE with increasing photon energy. Finally, no resolvable vibrational 

structure was observed in any of these PE spectra. 

In addition to the spectral changes observed as a function of excitation energy, 

clear changes can be observed in the PADs. The PADs are quantified by the anisotropy 
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parameter (β2) defined by equation ( 1.25 ). The β2 spectra in Figure 5.3(c) include a 

five-point moving average. Regions for which the PE signal is below 0.375 (area 

normalized intensity units), at which level the uncertainty in determining the PADs 

becomes very large, have been shaded out. The dashed diagonal line in Figure 5.3 

indicates the maximum eKE expected based on the known adiabatic electron affinity 

(AEA) of 1.86 eV.  

 

5.4 Discussion 

The PE signal in the lowest eKE window (< 0.1 eV) can be assigned to thermionic 

emission, as described in section 1.3.3. A broad peak centered around eKE ~0.4 eV is 

observed in all spectra with photon energies 2.5 eV < hv < 3.3 eV, although a small red-

shift to eKE ~ 0.2 eV is observed around hv ~ 2.9 eV. Schiedt and Weinkauf have 

shown that at hv = 2.5 eV, the cross section to excitation of the 2Au shape resonance is 

significantly greater than direct detachment into the continuum. Hence, the feature at 

eKE ~ 0.4 eV can be assigned to autodetachment processes primarily from the 2Au 

shape resonance, with possible small contributions from the lower lying 2B2u Feshbach 

resonance. This is consistent with the observations of Stockett and Nielsen.26 The 

calculated VDEs for autodetachment from the 2Au state to the 1Ag state are 0.78 eV and 

0.56 eV, considering 2B2g (anion ground state) and 2Au geometries, respectively – 

calculated energy levels are summarized in Figure 5.4. Detachment processes to higher 

vibrationally excited 1Ag would shift these detachment distributions to lower eKE. 

However, there have been no reports of resolved vibrational structure in this PE band, 

even at 70 K.21 Additionally, the presence of a thermionic emission feature at eKE = 0 

eV suggests that the anion ground state can be recovered following excitation to the 2Au 

state. An intermediate strength conical intersection between the 2Au and the slightly  
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Figure 5.4 Calculated energy level diagram provided by Dr James Bull assuming 
1
Ag neutral (left) and 

2
B2g anion (right) geometries. Energies given as vertical values with respect to the initial ground state; for 

the PE case, the photon energy is given by adding the electron affinity. 

lower energy 2B2u state has been previously calculated,15 which provides an internal 

conversion route between the two states. The small relative PE signal in the thermionic 

emission feature compared to the autodetachment peak (see Figure 5.3(b)) suggest, 

however, that the time-scale for internal conversion is longer. This would be in line with 

the fact that the 2Au state is a shape resonance and can thus be expected to lead to very 

fast autodetachment. Nevertheless, internal conversion can clearly compete as 

evidenced by the thermionic emission. In this process, the 2B2u (and possibly the 2B3g) 

could be populated as an intermediate, which may also undergo autodetachment and 

could therefore contribute to the PE spectra around hv = 2.5 eV. The calculated VDE for 

the 2B2u state is 0.23 eV and 0.57 eV, assuming the 2B2g and 2Au geometries, 
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respectively. Interestingly, the 2B2u Feshbach resonance in its equilibrium geometry is 

bound by around 0.52 eV. In fact, the calculated ADE is also slightly negative at 0.06 

eV, although this includes zero within the estimated ± 0.1 eV error inherent in these 

calculations. 

The spectral features associated with the 2Au state persist for photon energies up 

to hv ~ 3.3 eV, which are no longer resonant with the 2Au state. Indeed, the width of the 

2Au state has previously been calculated to be 0.013 eV,25 which is consistent with the 

width of the resonant peak in the photodetachment spectrum of Schiedt and Weinkauf.16 

The width of the excitation in our experiment is expected to be larger due to the ~ 300 K 

temperature of the anions in our experiment. Nevertheless, the range over which the 

spectral features are observed remains anomalously large. However, for 2.75 eV < hv < 

3.2 eV the eKE distribution shifts towards slightly lower eKE and is accompanied with a 

relative increase in the thermionic emission peak at eKE = 0 eV. The PADs clearly 

show that a new channel opens up at hv = 2.75 eV. When hv < 2.75 eV, β2 = + 0.2 

between 0.2 eV < eKE < 0.5 eV. This abruptly changes to β2 = 0.0 between 2.75 eV < 

hv < 3.2 eV over the same eKE range, while for eKE > 0.5 eV, β2 is slightly negative. 

For a direct detachment process, gradual changes in anisotropy may be expected as 

partial waves with differing angular momentum interfere. Abrupt changes, as those 

observed here, point to sudden changes in the detachment process. At hv = 2.5 eV, the 

excitation of the 2Au state leads to an alignment of the excited state ensemble, which 

may then undergo autodetachment on a timescale much faster than molecular rotation. 

The combination of alignment and the anisotropy expected for the autodetachment from 

the 2Au defines the observed PAD. This process persists up to hv = 2.75 eV, where the 

anisotropy changes. 
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At hv = 3.1 eV (400 nm), previous experiments and CASPT2 calculations have 

shown that the (2)2B3u Feshbach resonance is excited and undergoes an internal 

conversion to the 2Au state on a ~20 fs timescale.15 This assignment is consistent with 

the spectra in Figure 5.2(a) and (b), which both show autodetachment at eKE ~ 0.4 eV. 

Hence, a large part of the PE spectrum between 2.75 eV < hv < 3.3 eV contains 

autodetachment from the 2Au state. The observation that the eKE of this autodetachment 

peak does not steadily increase with increasing photon energy suggests that the internal 

energy content of the 2Au (and 
2B2u) state is approximately conserved upon 

autodetachment into the 1Ag + e– continuum. Similar observations of non-shifting eKE 

features with hv can be seen in the vibrational autodetachment from other anions41,42 

and in polyanions.43-45 At first glance however, the abrupt change to β2 = 0.0 for 2.75 

eV < hv < 3.2 eV is not consistent with the assignment of this peak to autodetachment 

from the 2Au state, as the same process is observed for hv < 2.75 eV. However, the 

initially excited state for 2.75 eV < hv < 3.2 eV is the (2)2B3u state instead of the 2Au 

which is excited at hv < 2.75 eV. This has a direct consequence as the transition dipole 

moments for excitation from the 2B2g ground state to the (2)2B3u state and the 2Au state 

are orthogonal to each other. Hence, the initial (2)2B3u excited state ensemble is aligned 

differently and, given that the internal conversion is much faster (~20 fs) compared to 

rotation, the autodetachment from the sequential 2Au state has a different laboratory-

frame alignment. The abrupt changes in PADs around hv = 2.75 eV might therefore be 

expected. At eKE > 0.5 eV, the anisotropy is negative and points to the fact that the 

higher energy peak of the PE spectrum (Figure 5.2(b)) corresponds to a different 

electronic state ((2)2B3u) than the peak around 0.4 eV (2Au), which provides additional 

support for our assignments. 
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In Figure 5.3(b), a maximum in the relative contribution of the thermionic 

emission peak (eKE = 0 eV) can be observed at hv ~ 2.9 eV. This maximum is 

concomitant with a minimum in direct detachment and suggests that the internal 

conversion at this energy is most efficient; the thermionic peak must result from internal 

conversion to the 2B2g electronic ground state of the radical anion. This maximum also 

coincides with the first broad peak in the total relative detachment cross sections 

measured by Brauman and co-workers. The observed increase in thermionic emission 

following excitation of the (2)2B3u excited state relative to that following direct 

excitation of the 2Au state could occur through two mechanisms: (i) the (2)2B3u state 

may undergo internal conversion directly to vibrationally hot 2B2g ground state; or (ii) 

the (2)2B3u state may undergo internal conversion to a vibrationally excited 2Au, which 

in turn is able to undergo internal conversion (via the 2B2u state) to the 2B2g ground state 

more efficiently than the 2Au states produced by direct excitation. Calculations have 

identified a conical intersection that could funnel population directly into the 2B2g state. 

However, in order to access this intersection, a large out-of-plane motion is required. It 

is unlikely that this geometry could be accessed within the lifetime of the excited state 

based on the ~20 fs timescale of the internal conversion that was measured in time-

resolved PE experiments.15 The second mechanism, in which internal conversion to the 

ground state may be accelerated via internal conversion to the 2Au and 2B2u states, may 

thus be more likely. This latter mechanism would be promoted if the vibrational 

mode(s) coupling internal conversion out of the 2Au or 2B2u states are selectively excited 

following internal conversion from the (2)2B3u state through the first conical 

intersection. Our calculations indicate that the (2)2B3u geometry is more similar to the 

2B2u state, while the 2B2g geometry is more similar to the 2Au state. Indeed, the PE 

spectrum following autodetachment for the two processes shows differences in the eKE 
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distribution, as the local maximum shifts from 0.2 eV to 0.4 eV following preparation of 

the 2Au/
2B2u state by internal conversion from the (2)2B3u state or optical excitation, 

respectively (see Figure 5.3(b)). It should also be noted that an additional conical 

intersection, also involving large out-of-plane motion, was identified between the 2Au 

and the 2B2g ground state that may only be accessible when large amounts of internal 

energy in the 2Au state are available and this may also explain the enhanced re-

population of the ground state to produce the thermionic emission peak.15 Finally, we 

have also calculated a slightly lower-lying (1)2B3u state, which has predominantly shape 

resonance character but it has a negligible oscillator strength. In previous calculations, 

the ordering of these two 2B3u states was reversed because of the diffuse nature of the 

orbitals involved. As this (1)2B3u state may be close in energy to the optically prepared 

(2)2B3u state and of the same symmetry, it is not unreasonable to expect that this state 

may also play some role in the internal conversion dynamics from the excited (2)2B3u 

state.  

At 3.3 eV < hv < 4.2 eV, Figure 5.3(b) shows the relative intensity of the 

constant eKE feature compared to the higher eKE features quickly diminishes with 

increasing photon energy. The higher eKE features shift with increasing photon energy 

as might be expected from a direct detachment process. However, the increase in total 

cross section in Figure 5.3(a) for hv > 3.5 eV suggest an additional resonance in this 

energy range, which correlates with the broad shoulder centered at ~4 eV in the 

Brauman and co-workers photodetachment spectrum. The highest eKE feature does 

show evidence of a trend discontinuity at this energy, where the maximum of the peak 

has shifted to slightly lower eKE. Further, there remains a small thermionic contribution 

to the PE spectra, all implying either a broad absorption spectrum of the lowest (2)2B3u 

Feshbach resonance or the appearance of a new channels correlating with the higher 
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energy resonance. Finally, for hv ~ 3.9 eV, PE features can be discerned in Figure 5.3(a) 

with eKE < 0.5 eV that appear similar to those observed at lower excitation energy that 

were assigned to autodetachment from the 2Au state. 

The most likely candidate for the observed increase in cross section at hv > 3.5 

eV is an optically bright (3)2B3u state. No other states with appreciable oscillator 

strength are located between this state and the (2)2B3u state. The (3)2B3u state has 

predominantly shape resonance character, which suggests that autodetachment is likely 

to be fast from this state. Nevertheless, one would anticipate some changes in the 

Franck-Condon envelope to the neutral ground state, as observed by Schiedt and 

Weinkauf following 2Au autodetachment, which would account for the slight deviations 

in vertical binding energy of this peak around hv ~ 4 eV. Additionally, there is evidence 

for internal conversion to form intermediate states and the presence of thermionic 

emission at eKE = 0 eV. The relatively low yield of low energy electrons may be 

because of fast autodetachment or because internal conversion is not as efficient. The 

latter can be consolidated by the large energetic gap between the (3)2B3u and lower 

excited states. 

The PADs in the 3.5 eV < hv < 4.2 eV vary monotonically from β2 = –0.5 to –

0.6, although the negative anisotropy is already evident at hv = 3.0 eV associated with 

autodetachment from the (2)2B3u state. Given that the autodetachment is from a state of 

the same symmetry, it is not unreasonable to anticipate similar PADs for these two 

processes. Smooth variations with eKE are expected as the weighting of different partial 

waves are kinetic energy dependent.  

At hv = 4.2 eV, new channels open that lead to the formation of neutral excited 

states. A number of states that these could correspond to have been identified and 

include the lowest lying 3B1g, 
3Au and 1B1g, 

1Au states.37 Some of these states may be 
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accessed directly from the ground state or may be formed following autodetachment 

from the (3)2B3u state. In addition to the formation of excited neutral pBQ, there is 

evidence of thermionic emission reappearing for hv > 4.2 eV. However, it is difficult to 

disentangle this from the intense features at low eKE. Our PE spectra do not show clear 

evidence for peaks that would identify intermediate states in this internal conversion 

process, although again, some of this may be obscured by the emergence of PE peaks 

leading to several different neutral excited states. The presence of the high eKE peak 

diminishes for hv > 4.2 eV, relative to the lower eKE peaks suggesting that the 

excitation is no longer resonant with the (3)2B3u state at these energies. However, the 

cross section data of Brauman and co-workers indicates that an additional sharp increase 

in cross section is observed for higher photon energies. Experimentally, it becomes 

difficult to measure high-quality PE spectra for photon energies above ~5 eV (~250 nm) 

in the current set-up because laser flux from our OPO system rapidly decreases at 

shorter wavelengths and noise associated with the UV light increases.  

The frequency-resolved PE energetics and interpretations can also be compared 

with literature electron transmission and attachment spectra.46 The primary difference 

between these two techniques, aside from the two processes not complying to exactly 

the same selection rules,47,48 is that they probe different initial geometries; PE 

spectroscopy initially prepares excited states assuming the geometry of the ground state 

anion, while electron attachment probes anion resonances from the neutral geometry. 

Moreover, it is generally observed in electron attachment experiments that shape 

resonances exhibit attachment cross sections up to several-fold larger than similar 

Feshbach resonances, which might be intuitively expected within the framework of 

Koopmans’ theorem.48 Similarly, autodetachment lifetimes for shape resonances are 

typically much faster than those of Feshbach resonances. In the limit of the anion and 
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neutral geometries being similar (i.e. VEA ~VDE), the energetics produced from these 

two techniques should be comparable. For pBQ, the VEA and VDE differ by ~0.5 eV 

and our calculations indicate there are also changes in the relative energetics of several 

of the active resonances. Figure 5.4 summarises all calculated energies assuming the 1Ag 

ground state neutral and 2B2g ground state anion equilibrium geometries, respectively. 

Electron attachment spectra have indicated three low-energy resonances centred 

around 0.7 eV, 1.4 eV, and ~2.0 eV.12-14 Of particular interest are the detailed 

experiments of Allan, identifying a number of specific vibrational excitations associated 

with several of these bands.8,9 The electronic symmetry assignments of these three 

electron attachment resonances have been the subject of some controversy between 

different authors, primarily because assignments considered (erroneous) Koopmans’ 

theorem energetics. Dr Bull’s calculations indicate that the 0.7 eV band probably 

corresponds to a (1)2B3u shape resonance calculated at 0.68 eV; the 1.4 eV band to the 

2Au shape resonance calculated at 1.01 eV (and to some extent the 2B2u Feshbach 

resonance calculated at 1.03 eV); and the ~2.0 eV (weakest) band to the (2)2B3u 

Feshbach resonance calculated to lie at 1.86 eV. The latter band may also have some 

contribution from the (3)2B3u shape resonance, calculated at 2.4 eV.  

In general, the electron attachment resonances are considerably broader than 

those from photoexcitation and detachment. Energetic agreement between the second 

1.4 eV band and ab initio calculations is not ideal considering the very good agreement 

between all other calculated and experimental energies, and may indicate the 

involvement of some other processes. Of note, configuration interaction (SAC) 

calculations of Nakatsuji and co-workers,22 which have been considered as theoretical 

references in a number of experimental studies, have assignments of the (1)2B3u and 
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(2)2B3u states reversed; overall the energetics calculated in this work are in significantly 

better agreement with experiment.  

The electron attachment energetics can be compared with those for the 

associated PE experiments (Figure 5.4), with the most important change being the 

convergence of the two lowest 2B3u states within 0.2 eV of each other assuming the 

anion geometry. Optically, the (1)2B3u is not directly accessible, although its 

participation in the dynamics via internal conversion cannot be ruled out. The large 

separation in energy between the (2)2B3u and (3)2B3u states in the anion geometry is 

observed in Figure 5.3(a) as a region where direct detachment probably dominates the 

PE spectra. It is somewhat fortuitous that the PE spectra of the Wang group were 

collected at 3.496 eV and 4.661 eV, where the former lies within this gap such that the 

PE spectrum probably represents that without significant perturbations of 

autodetachment processes from resonances.  

Finally, the time-resolved electron-energy-loss spectra of Allan assuming 

electron impact energies resonant with the band at ~2.0 eV or the (2)2B3u Feshbach 

resonance, identified two detachment channels; a fast channel limited by the 

experimental resolution, and a much slower thermionic or so-called ‘non-specific’ 

vibrational excitation channel. These observations are in agreement with our earlier 

time-resolved PE measurements and the spectra recorded in this work, in that efficient 

internal conversion and energy redistribution can produce a population of ground state 

anions that statistically detaches to the neutral. The fast channel can be correlated with 

autodetachment from the excited states. Similar to our PE spectra, the thermionic signal 

was also observed by Allan when the electron energy was tuned over the lower lying 

resonances, although this apparently occurred on shorter statistical detachment 

timescales than for the higher ~2.0 eV band. Further, Allan noted strong excitation of a 
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few specific vibrations over the three resonances, which usually indicate a large change 

of equilibrium geometry. Apart from the lowest-lying (1)2B3u shape resonance, it is 

indeed the case that for the (2)2B3u Feshbach and 2Au shape resonances, the 2B2g anion 

geometry is closer to their equilibrium geometry than the 1Ag neutral equilibrium 

geometry. It may therefore be that the lack of vibrational structure in our PE spectra 

compared with the electron attachment spectra is, in part, reflective of varying Frank-

Condon factors. It is possible that the internal temperature of our anions obscures the 

vibrational structure, although we again note that vibrational structure was not observed 

in PE spectra obtained at 70 K.21 

In summary, the electron attachment spectra broadly agree with our frequency-

resolved PE spectra, although the number of accessible states, and ultrafast dynamical 

timescales mean that detailed comparisons are difficult. The primary advantage of 

frequency-resolved PE imaging presented here is that the dynamics occurring on the 

excited states can be clearly identified through changes in the PE spectra as a function 

of excitation energy. In some respects, our methodology is analogous to two-

dimensional electron impact studies, which to the best of our knowledge has only been 

demonstrated for electron attachment to N2, CO2 and C3H3N.29-31 The additional 

dimension provided by the angular distributions in frequency resolved PE imaging 

offers even greater insight. As demonstrated here, the PADs can be very sensitive to 

changes in the symmetry of the resonances involved. Currently, only a qualitative 

discussion was offered. However, it should be possible to more formally calculate the 

differential electron ejection probability. This can be done by using, for example, the 

Dyson orbital approach, which works well for resonances in which only a single 

excitation dominates.49,50 However, the calculation of PADs for more complex 

Feshbach resonance processes and autodetachment processes in general requires further 
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theoretical input. The extension of anion PE imaging to the time-domain using 

femtosecond lasers allows the dynamics of very short-lived temporary negative ions to 

be studied in real-time and, combined with high-level ab initio calculations, ultimately 

provides the most detailed understanding of the dynamics. Finally, an important 

advantage of the frequency-resolved PE imaging approach presented here is that the 

range of systems that can be studied is almost infinite. We have demonstrated that 

electrospray can be a very useful method for the generation of radical anions. As such, 

the technique can be scaled up to larger systems and subsequently used to probe the 

anionic resonances of the closed-shell neutral species.51 

 

5.5 Summary 

Frequency-dependent PE imaging to map-out resonances in the radical anion 

continuum can reveal excited state dynamics through both trends in the PE spectra and 

via anisotropies in the electron angular distributions. Changes in the PE spectra 

following the excitation of a resonance can be assigned to autodetachment from the 

prepared state that leads to changes in the Franck-Condon window to the final neutral 

states or internal conversion to lower lying states that subsequently autodetach. The 

additional information obtained through the PADs clearly identifies the involvement of 

resonances; similar changes in PADs have been observed in vibrational autodetachment 

of anions.41,42 In principle, PADs can be calculated using, for example, the relevant 

Dyson orbitals.49,50 However, when autodetachment occurs from resonances and 

interference can occur with direct detachment channels, these methods become more 

difficult to apply and additional development on the theoretical front is required to 

capture changes in the PADs. 
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The methodology presented in this chapter can, in general, be applied to any 

system with a sufficiently positive adiabatic electron affinity to electrospray in good 

yield. Such processes are comparable with inelastic electron impact experiments and 

provide complementary information that enable the identification of above-threshold 

dynamics and the appearance of resonances. Electronic structure calculations and/or 

theoretical models are necessary to fully exploit the information provided by the 

frequency-resolved PE imaging, and this is particularly the case when there is a 

significant geometrical change between the ground states of the neutral and anion. As a 

final summary, frequency-resolved PE imaging has several key advantages over 

conventional electron attachment or transmission experiments: (i) the identification of 

intermediate electronic states with higher confidence; (ii) the addition of the angular 

electron ejection information; (iii) the ability to extend to the time-domain using 

femtosecond laser sources allowing the dynamics to be probed in real-time; and (iv) 

anion preparation using electrospray can be easily applied to larger molecular systems 

that would be otherwise difficult to produce in the gas phase in abundant and stable 

number densities. 
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Chapter 6. Photoelectron Spectroscopy of Carboxylic Acids  

 In this chapter, the PE spectra of a number of carboxylic acids, concentrating 

on; phenylcarboxylic acids with varying lengths of aliphatic and conjugated carbon 

chains; systems with π-conjugation chains; and biologically relevant molecules, are 

presented. In the saturated phenyl carboxylic acids, the PE spectra at 4.13 eV appears 

similar to equivalent spectra of a simple organic aliphatic chain carboxylic acid. 

However, a PE feature at low eKE with a magnitude that increased with the length of 

the carbon chain linking the phenyl group and the carboxylic acid was observed. This 

was assigned to the interaction between the carboxylic acid group and the hydrogen in 

the para position on the phenyl, which becomes stronger as the carbon chain length 

increases. For the unsaturated carboxylic acids, the spectra were dominated by a 

statistical emission peak at low eKE. This was ascribed to initial photoexcitation of a π* 

← π transition, followed by efficient internal conversion to the ground electronic state. 

As the lifetime of the internal conversion process is likely to be considerably shorter 

than the duration of the laser pulse, the vibrationally excited electronic ground state 

produced can then lose an electron by thermionic emission, or absorb additional 

photons and decay back to the ground state, leading to thermionic emission and/or 

unimolecular dissociation. 

An anomalous sharp peak was observed in the PE spectrum of octatrienoic acid 

and assigned to photodetachment of hydride. H– ions were directly observed via 

velocity-map imaging, and the mechanism of H– loss was assigned to a statistical 

process on the ground state. The PE spectra of tryptophan and tyrosine were found to 

differ significantly, which was assigned to differences in the relative cross-section for 

direct photodetachment between the molecules.  
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The interpretation of the PE spectra in this chapter is supported by DFT 

calculations performed by Dr James Bull. 

6.1 Introduction 

The carboxylic acid is the proto-typical example of a weak acid and has been 

employed in a vast array of applications.1,2 The ready deprotonation of the carboxyl 

group to form the carboxylate anion in water and other polar solvents has led to 

widespread use of carboxylic acids in applications such as surfactants, dyes, 

flavourings1,2 and the development of large water soluable carbon nanomaterials, such 

as graphene,3,4 buckminsterfullerenes5,6 and nanotubes.7,8 In nature, examples of 

carboxylic acids are extremely widespread and, most notably, include amino acids, the 

‘building blocks’ of proteins.9 From a gas-phase spectroscopic view, however, it can 

provide an efficient and non-destructive pathway from the solution phase to the gas 

phase.10-13 

A variety of mass-spectroscopic methods have been employed in order to 

produce a number of gaseous molecules and ions for study by a variety of analytical 

techniques.10-12,14-16 PE spectroscopy is a useful gas phase technique for studying the 

electronic properties of charged particles and neutrals, which can also be easily 

extended to time-resolved PE spectroscopy. TRPES is a powerful tool for probing the 

dynamics of excited states in real time and is particularly useful in the study of anions; 

the lower ionisation potentials involved in studying anions allows for probing of the 

ground electronic state at lower photoexcitation energies. A great variety of systems 

have been studied by this method, as discussed in Chapter 1. Nevertheless, the impetus 

on the gas phase community has been to attempt to generate and study ever larger 

molecules, in particular biological molecules such as proteins. Many traditional 

techniques, such as laser ablation and heating,10 create harsh environments for the 
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molecules and often lead to fragmentation of the target molecule.10 Electrospray 

ionisation is notable for being a ‘soft’ technique, that can produce gas phase molecules 

with minimal fragmentation11-13,17 and has been extensively coupled with PE 

spectroscopy.18-20 However, the method requires an ionic species of interest. Carboxylic 

acids are therefore of interest, as they may often be fairly easily attached to a molecule 

and, particularly in biomolecules, are often an intrinsic part of the molecule itself.9,21,22 

For the addition of a carboxylic acid group to serve as an efficient labiliser for 

large, complex molecules to the gas phase, we must first ensure that the carboxyl group 

does not affect the excited state structure of the chromophore and merely serves as a 

spectator anion to lower the ionisation energy of the neutral chromophore.23 However, 

no systematic studies have been performed in order to investigate the interaction 

between a charged group and the electronic structure of a chromophore. As the size of 

the systems studied increases and particularly in systems where carboxylic acids are 

widespread (such as proteins), it is necessary to understand the influence of the 

carboxylic acid on the excited states of the molecule. In this chapter, we present a series 

of PE spectra of deprotonated carboxylic acids attached to a series of saturated and 

unsaturated carbon chains and a phenyl group to act as a chromophore. These systems 

are then compared to biologically relevant anions: the amino acids tryptophan and 

tyrosine, which both contain a CO2
– moiety and an indole group or a phenol group 

respectively, and to all-trans-retinoic acid (ATRA), which is an unsaturated carbon 

chain conjugated to a  terminal CO2
–. A TRPES study of the excited state dynamics of 

ATRA is then presented. 

A number of gas phase PE studies of carboxylic acids have been previously 

reported in the literature.24-37 As discussed, electrospray ionisation is the method of 

choice for the production of the gaseous ions, due to the ready depronation of 
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carboxylic acids in basic solution.13 By far the most comprehensive study on carboxylic 

acids was performed by the Wang group and focussed on dicarboxylic acid dianions.25-

28,30-34 In this, it was shown that the repulsive Coulomb barrier as measured by PE 

spectroscopy may be used as an intramolecular ruler,25,26 that the PE angular anisotropy 

is dependent upon the geometry of the repulsive Coulomb barrier31-33 (as shall be 

discussed in greater depth in Chapter 8) and to demonstrate the interplay between 

intramolecular charge repulsion, intramolecular strain and solvation.28 While it must be 

noted that the carboxylic acid is not a necessity to labilise species, as evidenced by 

similar PE imaging studies on sulfonate dianions,38-40 the observations of the Wang 

group were wide ranging and included measurements of several mono-carboxylic acids 

and indications of dynamics occuring following photoexcitation. 

 

6.2 Experimental Details 

The experiment was performed as described in Chapter 2. All chemicals were 

purchased from Sigma Aldrich and used without further purification. Isolated 

deprotonated anions were produced by ESI (~1 mM in MeOH, adjusted to pH ~11 by 

the addition of 2 M NH3 in MeOH). The ion packet was pulsed out of the trap at 10 Hz, 

mass selected by time-of-flight, and subsequently irradiated at the centre of a velocity-

map-imaging PE spectrometer. All PE spectra were collected via irradiation by 

nanosecond laser pulses generated by the Horizon OPO operating at 10 Hz and 

delivering ~5 ns pulses at 4.13 eV (300 nm) and 4.66 eV (266 nm). Above 4.13 eV, a 

considerable amount of PE noise is observed and so an additional PE image is collected, 

in which the laser, but not the ions, is fired through the spectrometer. The resultant 

image is then subtracted from the PE image colected with ions in order to recover the 

PE distribution. The experimental images were deconvoluted using the polar-onion 
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peeling algorithm41 in order to extract the PE spectra. The spectral resolution of the PE 

spectrometer is ~ 5% and has been calibrated using the PE spectrum of I–. 

 In addition to experiments, DFT calculations were performed by Dr James Bull 

to explore the minimum energy structures and relative energetics between isomers of 

molecules, as discussed below. For this we have employed CAM-B3LYP//aug-cc-

pVDZ level of theory using Gaussian 09.  

 

6.3 Phenyl-Carboxylic Acids 

6.3.1 Results 

Presented in the bottom panel of Figure 6.1 are the PE spectra of the range of 

phenyl-carboxylic acids of the form C6H5(CH2)nCO2
– (where n = 1 – 5, 7), varying by 

the length of the carbon chain between the carboxylic acid and the phenyl group, taken 

at photoexcitation energies of 4.13 eV (300 nm) and 4.66 eV (266 nm). The range has 

been chosen so that the carboxylic acid group is not expected to be conjugated to the π 

system located on the phenyl. For comparison, three additional PE spectra are 

presented: the 4.13 eV (300 nm) and 4.66 eV (266 nm) spectra of benzoic acid (n = 0), 

where the carboxylic acid is conjugated to the phenyl group, and the 4.13 eV spectrum 

of butyric acid, which provides an example of a PE spectrum of an organic carboxylic 

acid with no interacting groups. The PE spectra are fairly uniform across the range n = 

1-5,7, although a peak at low eKE is observed to increase with n. 



141 

 

 

Figure 6.1 Normalised PE spectra of butyric acid at 4.13 eV (300 nm) and a range of phenyl-carboxylic 

acids at 4.13 eV (300 nm) and 4.66 eV (266 nm). The number of linker CH2 groups between the phenyl 

group and the carboxylic acid group is given by n, where n = 0-5, 7. 

6.3.2 Discussion 

Figure 6.1 presents the PE spectra for butyric acid, which acts as a 

representative, isolated in terms of π-conjugation, CO2
– group in an organic molecule, 

and a series of carboxylic acids of the form C6H5(CH2)nCO2
–, where n = 0-5, 7. For n > 
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1, the PE spectral profiles at both photoexcitation wavelengths are extremely similar 

and the 4.13 eV (300 nm) spectra are broadly consistent with the spectral profile of 

butyric acid at this wavelength. The major peak in the spectra can be assigned to direct 

detachment into the continuum of an electron from the highest lying molecular orbital, 

which is localised on the CO2
– group.29 The detachment energetics are slightly shifted in 

the phenyl-carboxylic acids comparative to butyric acid; the adiabatic detachment 

energy (ADE) of C6H5(CH2)1CO2
– is determined to be 3.37  0.10 eV, whereas the 

ADE of butyric acid is measured as 3.25  0.10 eV. The ADE for butyric acid is in 

excellent agreement with the value determined for the acetoxyl radical at 3.250 ± 0.010 

eV.29 

The PE spectra at 4.66 eV (266 nm) exhibit a single peak with a bimodal 

distribution, consistent with the observations of the detachment spectra of similar 

molecules.20,21,24 The high energy peak of the bimodal distribution in the PE feature is 

consistent with photodetachment to produce the ground and first electronic excited 

states of the radical neutral molecule, which are separated by 0.17 eV in the acetoxyl 

radical. The lower energy peak corresponds to photodetachment to the second electronic 

excited state of the radical, which is calculated to lie 0.7 eV above the ground state.29 

The photoexcitation energy at 4.13 eV is insufficient for vertical detachment to the 

second excited state of the radical for the phenyl-carboxylic acids, although the second 

peak is observed in the butyric acid spectrum as the detachment energy is slightly lower. 

As such, the 4.13 eV spectra are dominated by the feature corresponding to direct 

detachment. With increasing n, the direct detachment peak in the 4.13 eV spectra 

exhibits slight broadening towards the low eKE side and a new feature, with a 

maximum at eKE = 0 eV, is observed at n > 2. This feature increases in intensity 

relative to the direct detachment peak as n increases. Neither the broadening of the 
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corresponding direct detachment peak nor the low eKE feature are observed in the 

corresponding 4.66 eV spectra. By delaying the timing of the MCP gate by tens of 

nanoseconds, hence delaying the time at which the PE image is acquired, it was 

observed that the low eKE peak completely disappears. This indicates that the low eKE 

peak is not a result of thermionic emission. 

A possible explanation for the observation of electrons at eKE = 0 eV is that we 

are accessing a resonance of the -system following photoexcitation at 4.13 eV. The 

excited state population produced may then undergo some above-threshold dynamics, 

leading to delayed emission of low eKE electrons.16,45,46 However, the onset of the π* ← 

π transition on the phenyl group accessed lies at 4.6 eV in benzene42 and at 4.5 eV in 

phenylacetic acid.43 Not only is it unlikely that these resonances are accessible at 4.13 

eV, even with the intrinsic thermal energy of the ions (~0.3 eV), but photoexcitation at 

4.66 eV is expected to be resonant with this transition. As such, if the peak at eKE = 0 

eV is a result of dynamics on the π* state, a larger effect might be expected following 

excitation at 4.66 eV than at 4.13 eV, which is not the case. 

In an attempt to quantitatively describe the trend in the low eKE peak of the 4.13 

eV spectra, we have performed a fit of the normalised spectra at all n. First, the spectra 

were fitted to two Gaussian peaks over the energy range 0.04 eV < eKE < 0.75 eV in 

order to avoid the peak at 0 eV. The fit was then expanded to include an exponential 

decay over the energy range 0 eV < eKE < 0.75 eV, keeping the parameters for the 

Gaussians constant. An example of each fitting procedure for n = 4 is shown in Figure 

6.2. The spectral profiles are recovered well by both fitting regimes within the selected 

energy ranges for all n. The fitting parameters, such as the centre and width of the 

Gaussians, are reasonably similar across the PE spectra, with two significant exceptions: 
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first, the amplitude of the low energy Gaussian and hence the relative contribution of 

this peak to the area of the overall spectrum increases with n, as shown in Figure 6.2(e).  

 

Figure 6.2 Examples of the (a) 2 Gaussian and (b) 2 Gaussian and an exponential decay fit of the 4.13 eV 

spectrum of n = 4. Total sum of (c) the integrated PE signal in the range 0 eV < eKE < 0.04 eV of the 

experimental PE spectrum less the 2 Gaussian fit and (d) the integrated area of the exponential decay 

from the second fit, as a percentage of the overall fit. (e) amplitudes of the lower energy Gaussian, (f) 

lifetimes of the exponential decay and relative contributions of each function to the overall area of the fit. 

Bottom: Minimum energy geometries of selected phenyl-carboxylic acids. 

Additionally, the exponential decay constant (EDC) of the exponential decay 

initially increase with n before reaching a stable plateau, as shown in Figure 6.2(f). This 
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reflects the increase in the size of the low energy peak with increasing n. The integrated 

area of the spectra in the range 0 eV < eKE < 0.04 eV, minus the 2 Gaussian fit and the 

contribution of the exponential function to the total fit, increase with n. This reflects the 

increase in the contribution of the low eKE peak to the spectrum with increasing n. The 

increase in the contribution of the low eKE Gaussian reflects the observed peak 

broadening with increasing n. 

By inspection of the PE spectra of butyric acid and C6H5(CH2)1CO2
–, aside from 

the shift in eBE, the CO2
– group appears to be uninfluenced by the phenyl ring. 

However, spectral broadening is observed with increasing n, implying both that the 

phenyl group and CO2
– group do in fact interact and that the magnitude of the 

interaction is dependent upon n. Given the innate ability of aliphatic hydrocarbon chains 

to rotate about the sp3 hybridised carbons,23,25 as n increases the hydrocarbon chain 

length increases and becomes increasingly flexible. This flexibility allows the CO2
– 

group to interact with the phenyl group more readily. 

In order to explore the feasibility of this mechanism, DFT calculations of the 

energy differences between the straight chain conformer of C6H5(CH2)nCO2
– and a 

conformation where the chain is bent so that the CO2
– group may interact with the 

phenyl group were performed by Dr James Bull. The minimum energy structural 

isomers are presented in Figure 6.2. Crucially, an oxygen in the CO2
– group forms a 

weak hydrogen bond with the hydrogen on the ortho position of the phenyl group even 

at n = 1. The energy differences between the two conformers and the bond distance 

between the interacting O in the CO2
– group and the phenylic hydrogen for 1 < n < 5 are 

tabulated in Table 6.1. 
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Ph(CH2)nCO2
– 

n = 1 n = 2 n = 3 n = 4 n = 5 

ΔE (eV) – –0.05 –0.11 –0.13 –0.17 

R (Å) 2.350 2.238 2.190 2.094 2.065 

Table 6.1 Energy difference between the lowest energy (bent) isomer and straight isomer for 

Ph(CH2)nCO2
–
 and distance between terminal O atom on CO2

–
 group to the phenyl H atom in the para 

position (R). Both are given as a function of chain length, n, and show a decreasing trend.  

As n increases, the energy of the bent conformer decreases relative to the 

straight chain conformer and the hydrogen bond distance clearly decreases. These trends 

are clearly consistent with the observed broadening of the major feature in the PE 

spectra at 4.13 eV, as shown in Figure 6.2(e-f). Experimentally, however, we will 

expect to sample a range of conformers as our ions are thermalized to ~300 K, and the 

number of potential conformers increases factorially with n. Despite this, it is clear that 

the probability of the molecule adopting a configuration in which the CO2
– group may 

interact with the phenyl group increases with n. We therefore assign the observed peak 

broadening to the interaction between the HOMO located on the CO2
– group with the 

phenyl group, although we note that the VDE does not exhibit any significant trend with 

n. 

Additionally, the trends are also consistent with the overall increase in the 

feature at eKE = 0 eV with increasing n, as shown in Figure 6.2(c-d), which suggests 

that this feature is also linked to the CO2
–-phenylic hydrogen interaction. We must note 

that our analysis in this region is subject to a significant error due to the processing 

method of the raw velocity map images. Nevertheless, the increase in this feature with n 

is clearly observed. As the cross-section for photodetachment at threshold (eKE = 0 eV) 

is 0 by the Wigner threshold laws,44 zero-energy PEs are not expected to be observed by 

direct photodetachment of anions;44,45 this suggests that the low energy feature arises 

from an indirect process. 

As the presence of the phenyl group appears to induce the mechanism, we must 

consider the possibility that the phenyl group acts as an electron acceptor and results in 
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a degree of charge-transfer from the CO2
– group to the phenyl ring. In this, the phenyl 

would accept an electron into a π* orbital and subsequently undergo dynamics, resulting 

in delayed autodetachment leading to the low energy electrons observed. However, this 

requires the production of PEs with kinetic energies resonant with the π* orbital; 

isolated benzene has a negative electron affinity of –1.12 eV,46 hence electrons of ~1 eV 

would in principle be required to access the necessary orbital. The emitted electrons at 

4.13 eV have eKE < 0.8 eV and are therefore outside of the requisite range. The emitted 

electrons at 4.66 eV do have sufficient energy, however, and the absence of the low 

energy peak at this photoexcitation energy provides further evidence against this 

mechanism. 

Conversely, the electron affinity of deprotonated benzene is positive at + 1.10 

eV.47 As such, the π* orbital could in principle be accessed by the PEs liberated 

following photoexcitation at 4.13 eV. In order to access this, an excited state proton 

transfer from the para position on the phenyl ring to the carboxylic acid group could 

occur, and has been postulated for the model GFP chromophore dimer anion by the 

Andersen group.48 This would also explain the absence of evidence of any indirect 

processes in the 4.66 eV spectra; the PE spectra are essentially identical with the 

exception of n = 7, which does exhibit some broadening. No low energy PEs are 

observed, despite the production of PEs with kinetic energies comparable to those 

produced by photodetachment at 4.13 eV. This suggests that the mechanism is initiated 

following excitation by a photon in a specific energy range, which in turn implies that 

the mechanism involves excitation to a specific resonance. However, the ab initio 

calculations required to confirm the plausibility of this mechanism are beyond the scope 

of this thesis and the postulated mechanism remains speculation. 
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6.4 π-Conjugated Carboxylic Acids 

6.4.1 Results 

Figure 6.3 presents the PE spectra recorded at 4.13 eV (300 nm) and 4.66 eV 

(266 nm) for 2,4-hexadienoic acid, 2,4,6-octatrienoic acid, benzoic acid and 4-

phenylbut-2-enoic acid (trans-cinnamic acid). In these, a delocalised π-system is 

conjugated to the carboxylic acid group. 2,4-Hexadienoic acid and 2,4,6-octatrienoic 

acid provide a π-system along a straight carbon chain, whereas benzoic acid and trans-

cinnamic acid provide examples where the carboxylic acid is conjugated directly to the 

phenyl group. All spectra have the general appearance of an exponential decay peaking 

at eKE = 0 eV, with additional features at higher eKE. The features below ~1 eV can be 

ascribed to direct detachment processes, whereas those with higher energy almost 

certainly arise from multiple photon transitions. In order to highlight these features, 

each PE spectrum is cut off at a intensity of 10% of the maximum PE intensity and 

presented inset to the relevant PE spectra. 
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Figure 6.3 Normalised PE spectra of (in descending order) hexadienoic acid, octatrienoic acid, benzoic 

acid and trans-cinnamic acid at 4.13 eV (300 nm) and 4.66 eV (266 nm). Inset to each spectrum is the 

lowest 10% of the spectrum in order to highlight the high energy peaks in the spectra. 
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6.4.2 Discussion 

The PE spectra of all measured π-conjugated carboxylic acids taken at both 4.13 

eV (300 nm) and 4.66 eV (266 nm) are dominated by a peak at eKE = 0 eV, as is shown 

in Figure 6.3. The observation of this low energy peak, as with the low energy peak 

observed in the phenylcarboxylic acids, implies the involvement of an indirect electron 

detachment process. It is likely that at both photoexcitation energies, the photon is 

resonant with the π* ← π transition in the extended π-system, which is expected for all 

systems except for deprotonated benzoate, as the onset of the solution phase absorption 

spectrum occurs at ~ 4.1 eV.49 No gas phase absorption spectrum is available for 

benzoate, but the assumption that the solution phase absorption spectrum is blue shifted 

from that in the gas phase is not unreasonable. In general, the spectra appear to have the 

form of an exponential decay from 0 eV with a shoulder visible at higher eKE that is 

blue-shifted as the photoexcitation energy increases. An exception is trans-cinnamic 

acid, in which the shoulder appears to red-shift with increasing photoexcitation energy. 

This is likely due to overlapping features in the PE spectrum, potentially from multiple 

photon processes, combining to produce an artificially high peak following excitation at 

4.13 eV. Indeed, the exponential feature appears more prominent at higher eKEs, which 

would blue-shift the observed shoulder. The exponential decay is consistent with the 

spectral form of statistical emission, indicating that the excited states involved in the 

detachment process are extremely short lived. This also raises the possibility that 

multiple photons are absorbed over the duration of the laser pulse. 

The additional feature observed in the spectra at higher eKE is consistent with a 

direct detachment feature, given the increase in eKE as the photoexcitation energy 

increases. However, the peaks of the direct detachment features are generally consistent 

with those observed in Figure 6.1. A notable exception to this is the detachment peak of 
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benzoate. Nevertheless, the consistency implies that the presence of a π-system does not 

exert a significant influence on the HOMO despite the conjugation of the π-system to 

the carboxylic acid, although the same does not appear to hold for a conjugated phenyl 

group. 

The observation of a direct detachment feature coupled with the involvement of 

excited states in the photoemission spectrum is significant, as both excitation energies 

exceed the vertical detachment energy (~3.5 eV) of the carboxylic acid group 

determined from the unconjugated phenyl-carboxylic acids. As such, the initially 

excited states would be able to undergo autodetachment. Fast autodetachment could 

feasibly contribute a considerable proportion of the PE intensity to the peak previously 

assigned to direct detachment. However, the size of the low energy peak relative to the 

intensity of the higher eKE feature suggests that fast internal conversion is the dominant 

decay pathway of the excited state, which has previously been observed in gas phase 

polyenes.73,74 

Presented inset to the PE spectra in Figure 6.3 are the PE curtailed in intensity to 

highlight the weak PE features above eKE ~ 1 eV, which must arise from almost 

simultaneous multiple photon absorption. These indicate that the initial photoexcitation 

energies are resonant with an excited state. No similar resonance is observed for the 

C6H5(CH2)nCO2
– systems, indicating that the resonance arises from the presence of the 

π-system. Notably, the multiple-photon peak, whilst present in all 4.13 eV spectra, is 

absent from some 4.66 eV spectra. This may be due to the increased noise present in the 

4.66 eV obscuring the signal, or the decrease in the fluence of the pulses (the 4.13 eV 

pulses are ~ 5 times more powerful than those at 4.66 eV). 
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6.5 Photodissociation of Octatrienoic Acid to yield H– 

6.5.1 Results 

In addition to the predominant electron loss channel observed in all conjugated 

carboxylic acids leading to slow electrons, octatrienoic acid exhibits another, somewhat 

unexpected relaxation mechanism. In the PE spectrum at 4.13 eV (300 nm), a weak 

feature (~1% of the height of the maximum peak in the spectrum) is observed at eKE = 

3.4 eV. Despite the small size of the peak, the feature is very sharp and the width of the 

feature is essentially limited by the resolution of the spectrometer. This is surprising for 

a molecule as large as octatrienoic acid, as features so sharp are typically observed in 

atomic anions. In contrast to the isotropic distributions observed in all of the PE images 

of the conjugated acids, the feature corresponding to this peak exhibits extremely strong 

positive anisotropy parallel to the polarisation axis (β2 ~ 2). This again is uncommon for 

molecules without a large degree of symmetry and is a typical feature of atomic anions, 

which suggests that, following photoexcitation at 4.13 eV, the octatrienoic acid is 

undergoing fragmentation to produce an atomic anion. Octatrienoic acid consists of 

only three elements, so we can readily assign the PE feature to photodetachment of H– 

at 4.13 eV.50 The electron affinity of H is 0.754195(19) eV51 and, as photodetachment 

corresponds to the loss of an s electron, the symmetry of the outgoing electron must be a 

p-wave (l = 1),52,53 which would result in a strongly anisotropic PE image as we have 

observed.  
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Figure 6.4 (a) The 4.13 eV (300 nm) PE image of deprotonated octatrienoic acid, scaled to highlight the 

anisotropic PE feature due to H
–
 photodetachment. The laser polarisation axis, ε, is indicated by an arrow. 

(b) PE spectrum obtained from (a), scaled to highlight the peak from H
–
. (c) Velocity map image obtained 

at a higher VMI voltage and a longer MCP gate in order to observe the H
–
 fragment in addition to the PE 

spectrum at 4.13 eV, where the cross marks the centre of the electron image and v is the velocity of the 

parent ion beam, whose propagation axis is shown. (d) Kinetic energy release spectrum of H
–
 derived 

from (c), where the dashed line is a simulated Boltzmann distribution as a guide to the eye. 
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6.5.2 Discussion 

Hydride loss is an unexpected channel as it is typically not thermodynamically 

favoured; that is, following photoexcitation at 4.13 eV and internal conversion to a 

vibrationally hot state, unimolecular fragmentation to produce H– is not expected to 

occur on a timescale sufficient to compete with internal vibrational energy 

redistribution, dissociation of CO2 or H  and thermionic emission. Moreover, in order to 

observe photodetachment from H–, the fragmentation process must occur on a timescale 

faster than the laser pulse duration (~ 5 ns). 

We must therefore consider the possibility that the H– loss channel is occurring 

on an excited state surface. The most compelling evidence is the fact that we do not 

observe a corresponding feature in the 4.66 eV PE spectrum, which suggests that the 

hydride loss channel is an excited state process accessed through photoexcitation to a 

resonance. However, the 4.66 eV PE spectrum is significantly noisier than that at 4.13 

eV and it is possible that the noise simply obscures the spectrum. However, should the 

dissociation occur on the ground electronic state surface, H– would most likely be 

liberated by a statistical mechanism, as internal vibrational energy redistribution 

typically occurs on a picosecond timescale. The kinetic energy available to the H– in 

this case would be expected to be small and have a Boltzmann distribution.54 

Additionally, the angular distribution of emission would be isotropic with respect to the 

laser polarisation. In contrast, should fragmentation be an excited state process, one 

might expect to see a significant release of kinetic energy to the H– in a non-Boltzmann 

distribution. The angular distribution of emission could also feasibly be anisotropic. 

This behaviour has been seen for excited state H atom dissociation.55 We must therefore 

attempt to measure the distribution of emitted H– following photoexcitation. 
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Although the experiment has not been designed to probe fragments, our 

velocity-map imaging detector can in principle detect any charged particle and is limited 

only by the voltages applied. As such, H– may be observed on the detector, offset from 

the centre of the electron image along the propagation axis of the ion beam due to the 

difference in the time-of-flight along the VMI apparatus between an electron and H–. 

In order to observe H–, it was necessary to both extend the gate on the MCP (to 

1000 ns from 200 ns for the PE images)  and increase the initial repelling voltage (to 

1500 V from 500 V for the PE images) to account for the extended time-of-flight of H– 

compared to an electron. The resultant PE image at 4.13 eV (300 nm) is presented in 

Figure 6.4(c). The PE image is similar to that obtained by using the original VMI 

settings with two new features observed in the image: a line of increased PE signal on 

the left of the PE image and a second spot to the right of the PE image. The feature to 

the left arises from thermionic emission of PEs on a timescale on the order of at least 

hundreds of nanoseconds. Our ion packet is not stationary, but moving with ~ 1.3 keV 

of kinetic energy and so passes out of the region where the velocity-map imaging 

condition is maintained approximately 100 ns following photoexcitation. The presence 

of this feature therefore confirms our observation of thermionic emission and ground 

state recovery following photoexcitation: thermionic emission typically occurs on a μs 

timescale,56,57 resulting in slow electrons being liberated from the ion packet outside of 

the region where the VMI condition holds. These electrons are then repelled backwards 

relative to the direction of propagation of the ion beam and result in the characteristic 

line observed in our image. This has also been observed in SIMION simulations of our 

VMI spectrometer. The second spot arises from H– impacting onto the MCP detector. 

The offset of the centre of the H– image from the centre of the PE image provides a 

direct calibration for the kinetic energy of the H–; the initial velocity of both H–, 
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assuming no release of kinetic energy to the fragment, is the same as the velocity of the 

ion beam, which we have determined to be 4.8  104 m s–1 for octatrienoic acid. The 

offset in pixels between the centres of the PE and H– images is therefore proportional to 

this velocity (assuming that the centre of the PE image is the true v = 0 m s–1 centre of 

the VMI apparatus) and can therefore be used to calibrate the kinetic energy release 

spectrum of H–. 

We have re-centred the image onto the centre of the H– image and performed the 

image deconvolution routine in order to extract the kinetic energy release spectrum of 

H–, which is shown in Figure 6.4(d). The spectrum is broad, devoid of fine structure and 

appears to follow a Boltzmann distribution. Given that the H– angular distribution is 

entirely isotropic, these observations suggest that H– loss is a statistical process 

occurring on the ground state. This is consistent with the observation of thermionic 

emission and ground state recovery observed in the PE spectra. Unfortunately, we 

cannot discern any information about the mechanism of H– elimination by our current 

experiment, beyond our assignment that it is a ground state process.  

  

6.6 Amino Acids: Tryptophan and Tyrosine  

Finally, in Figure 6.5, the PE spectra of two deprotonated biological 

chromophores, the amino acids tryptophan and tyrosine, at 4.13 eV (300 nm) and 4.66 

eV (266 nm) are shown. The excited state dynamics of these molecules have been of 

considerable interest, as both exhibit fluorescence following UV excitation and can 

therefore be used as an in situ fluorescent probe in order to study protein structure.58 

While both amino acids have a π-conjugated chromophore (an indole group in 

tryptophan and a phenoxy group in tyrosine), the chromophore is not conjugated to the 

carboxylic acid group in either species. Nevertheless, the PE spectrum of tryptophan is 
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remarkably similar to those of the π-conjugated acids in Figure 6.3, in particular those 

of deprotonated benzoate and trans-cinnamic acid, implying some degree of interaction 

between the carboxylic acid and the π-system on the indole group. 

 

Figure 6.5: PE spectra of Tryptophan (top row) and Tyrosine (bottom row) at 4.13 eV (left column) and 

4.66 eV (right column). 

The solution phase absorption spectrum of deprotonated tryptophan has an onset 

at ~ 4.1 eV and a maximum at 4.43 eV,21 corresponding to excitation of the π* ← π 

transitions of indole. Although the absorption and fluorescence spectra of tryptophan 

are red shifted in the gas phase,59 indicating a change in the electronic structure of the 

gaseous molecule from the solution phase, we might expect both photoexcitation 

energies used to be resonant with an excitation on the tryptophan chromophore, which, 

crucially, lies above the adiabatic electron affinity of the carboxylic acid group and is 

hence unbound with respect to electron detachment. The similarity of the spectra to the 
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conjugated carboxylic acids therefore has two possible explanations: that the carboxylic 

acid group can couple to the excited state of the indole group and subsequently undergo 

electron loss, or that the resonance on the indole group provides an efficient pathway 

through internal conversion back to the ground electronic state of the anion. The ground 

state produced would retain some energy as vibrational excitation and could absorb 

additional photons and relax down to the ground electronic, but vibrationally hot state 

numerous times until the system either undergoes dissociation or thermionic emission of 

an electron, resulting in the statistical emission feature observed in the PE spectra of 

tryptophan and in Figure 6.3. 

The spectroscopy of deprotonated tyrosine is complicated by the presence of an 

additional deprotonation site on the phenoxy group. However, the obtained PE spectra 

would seem to indicate that the carboxylic acid is deprotonated preferentially to the 

phenoxy group; the vertical binding energy (ADE) of the phenoxy anion is 2.37 eV,47 

which is considerably lower than the observed ADE of 3.48 eV from the 4.66 eV (266 

nm) PE spectrum in Figure 6.5. Indeed, no PE features corresponding to 

photodetachment from the phenoxy anion are observed in either of the PE spectra of 

tyrosine. The observed PE spectra are consistent with the previously measured spectrum 

by Tian et al.22 and are broadly consistent with the PE spectra of photodetachment of a 

carboxylate group as observed in Figure 6.1 and in Figure 6.3. The 4.13 eV spectrum 

clearly shows that the both the direct detachment peak and the low eKE peak expected 

from photodetachment from a carboxylate group, although the spectrum at 4.66 eV 

shows a considerable reduction in the contribution from the low eKE peak. Tian et al. 

determined through calculations and mass spectrometric measurements that 

deprotonated tyrosine produced via electrospray ionisation exists in a ratio of 30:70 of 

carboxylate anions to phenoxide anions.22 Assuming that our instrument produces the 
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anions in a similar ratio, the absence of phenoxide in our PE spectra indicates that the 

photodetachment cross-section of the carboxylate group is far higher than the phenoxy 

group, which is again consistent with the observations of Tian et al.22 

The PE spectra of deprotonated tryptophan and tyrosine initially appear quite 

dissimilar; the PE spectra of tryptophan resembles those where the carboxylic acid is 

conjugated to an extended π-system (Figure 6.3), whereas the spectra of tyrosine 

resemble those of the unconjugated carboxylic acids (Figure 6.1) more closely. This 

could be related to the resonant excitation of the π* ← π  transition on the indole group 

in tryptophan. However, the absorption spectrum of tyrosine has an onset of ~ 4.3 eV 

and an absorption maximum between 4.4-4.5 eV,60 corresponding to the π* ← π  

transition of phenol, hence we might expect excitation at 4.66 eV to be resonant with 

this transisiton. Despite this, the PE spectrum at 4.66 eV of tyrosine indicates that the 

predominant channel is direct detachment from the carboxylate group. Alternatively, as 

the excited state is unbound with respect to electron detachment, the resonance may 

undergo extremely fast autodetachment with very little energy redistribution on the 

excited state surface, leading to the direct detachment- like PE spectrum. 

Nevertheless, the differences between the PE spectra of the two species might be 

explained by the difference in the relative cross-section of the direct detachment 

process. Assuming that the major feature in the PE spectra of tryptophan arises from 

statistical emission, one may then fit and subtract an exponential decay to the spectrum, 

as shown in Figure 6.6. The resultant PE feature is extremely similar to the spectra of 

tyrosine and to the unsaturated phenylcarboxylic acids at both wavelengths. This 

suggests that the difference in the spectra arises from the presence of an efficient decay 

mechanism from the 1ππ* excited state located on the indole group of tryptophan to the 

ground state that is preferentially excited compared to the direct detachment channel. 
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The PE spectrum of tyrosine is dominated by direct detachment from the electronic 

ground state or possibly fast autodetchment from the excited state accesed by 

photoexcitation of the π* ← π  transition of phenol.  

 

Figure 6.6 (a) (Green) PE spectrum of tryptophan and (black) the spectrum with an exponential decay 

(shown in red) subtracted. (b) PE spectrum of tyrosine (blue) and the subtracted tryptophan spectrum 

(black). 

  

6.7 Summary 

In conclusion, we have acquired PE spectra of a number of carboxylic acids, 

concentrating on phenylcarboxylic acids with varying lengths of aliphatic and 
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conjugated carbon chains, systems with π-conjugation chains and biologically relevant 

molecules. In the phenyl carboxylic acids, the PE spectra at 4.13 eV (300 nm) appeared 

similar to equivalent spectra of a simple organic aliphatic chain carboxylic acid, with an 

increase in signal at low eKE that increased concurrently with chain length. This was 

assigned to an interaction between the carboxylic acid group and the hydrogen in the 

para- position on the phenyl, which becomes stronger as the carbon chain length of the 

phenylcarboxylic acid increases. We have postulated that excited state charge transfer 

reaction involving the transfer of a proton from the phenyl to the carboxylic acid group, 

accessed through resonant photoexcitation at 4.13 eV, is involved, although the 

calculations involved to support this mechanism are beyond the scope of this project. 

For a series of unsaturated carboxylic acids, the spectra were dominated by a 

statistical emission peak at low eKE. This was ascribed to initial photoexcitation of a π* 

← π  transition, followed by efficient internal conversion to the ground electronic state. 

The vibrationally excited electronic ground state produced can then lose an electron by 

thermionic emission, or absorb additional photons and decay back to the ground state, 

as the lifetime of the internal conversion process is likely to be considerably faster than 

the duration of the laser pulse. In the PE spectrum of octatrienoic acid, an anomalous 

sharp peak was observed and assigned to photodetachment of hydride. Through 

manipulation of the electron velocity-map imaging apparatus, we were able to directly 

observe hydride and extract the kinetic release spectrum. We have assigned the H– loss 

mechanism to a statistical process on the ground state. PE spectra of the biological 

amino acids tryptophan and tyrosine were recorded and found to differ significantly; 

while the tyrosine spectra appeared similar to the the PE spectra of the unsaturated 

phenylcarboxylic acids, the tryptophan spectra were dominated by a statistical emission 

peak at low eKE typical of the unsaturated carboxylic acids, despite the carboxylic acid 
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group not being conjugated to the indole group. This discrepancy was assigned to the 

presence of an efficient decay mechanism to the electronic ground state following 

photoexcitation to an excited state resonance located predominantly on the indole group, 

allowing for repeated photoexcitation and eventually thermionic emission of an 

electron, leading to the observed statistical emission peak. While we might expect to see 

a similar resonance in the π-system of the phenoxy group, the PE spectrum of tyrosine 

is dominated by direct detachment. 

→ 
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Chapter 7. Photoelectron Spectroscopy of All-trans-Retinoic Acid 

One photon photoelectron spectra of the isolated, anionic, biologically relevant 

chromophore all-trans-Retinoic acid are presented. From this, the ADE is determined. 

Subsequently, a time-resolved photoelectron study of the excited state energetics is 

reported. In this, the dynamics of the initially excited S3 state are traced by 

photoionisation. Two different pump-probe excitation schemes are employed in order to 

maximise the temporal resolution of the experiment and the range of internal energies 

over which the anion may be ionised by the probe pulse. A minimum of 2 sequential 

lifetimes are confidently observed. We assign the first, ultrafast lifetime to decay of the 

initially excited S3 state to the S2 and subsequently the S1 states. The second lifetime is 

then assigned to a trans-cis isomerisation through internal conversion from the S1 state 

to the S0 state. 

7.1 Introduction 

 

Figure 7.1 Structure of all-trans-retinoic acid. 

In order to attempt to explore the effect of a carboxylate group on the excited 

state dynamics of a system, we have performed a TRPES study on the biological 

chromophore ATRA. Much of the biological activity of Vitamin A (retinol), such as 

growth and embryonic development, is mediated by a metabolite of Vitamin A,1-4 
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ATRA, although the application of Vitamin A as a visual pigment requires 

retinaldehyde (retinal). The presence of retinol as a visual pigment has led to 

considerable interest in the optical activity of retinol and its derivatives. The carboxylic 

acid derivative of vitamin A, ATRA, is therefore a textbook example of a biologically 

relevant carboxylic acid that exhibits excited state dynamics. Like tryptophan and 

tyrosine, deprotonated ATRA is an example of an anionic biological chromophore. 

However, while the amino acids feature chromophores that are not conjugated to the 

carboxylic acid group, ATRA– features an extended π-system that may interact with the 

carboxylic acid group. 

Of the three major retinoid compounds, the optical properties of retinal have 

been the most extensively investigated.5-10 The first optically bright singlet excited state 

is the 1Bu
+ state, which lies above the optically dark 1Ag

–(ππ*) and 1nπ* states.8,9 

However, these three excited states are close in energy and have been shown to be 

involved in the ultrafast excited state dynamics of all-trans retinal (ATR). The relative 

ordering of the excited states and hence the quantum yields of intersystem crossing, as 

impacted by, for instance, solvent dependence, have previously been shown to have a 

great effect on the dynamics of the system.6,11 However, the energy level ordering is 

unaffected by the polarity of the solvent.10 

Similarly, investigations of ATRA in solution and bound to a TiO2 nanoparticle 

have concluded that three low-lying excited states (S3, S2 and S1) exist in the singlet 

manifold, which may be assigned as the 1Bu
+, 1nπ* and 1Ag

–(ππ*) states respectively.12-15 

The level ordering of the 1Ag
–(ππ*) and nπ* states is reversed from ATR due to the effect 

of the inclusion of the hydroxyl group. 

Additionally, a triplet state, T1, has been observed in both ATR and ATRA.8,12,15 

As intersystem crossing to the T1 state is more efficient from a nπ* state than from a ππ* 
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state,16 the relative population of the T1 state produced following photo-excitation has 

been used to assign the lowest lying singlet state: nπ* in ATR8 and ππ* in ATRA.12 The 

relative ordering of the excited states in ATR is not affected by the polarity of the 

solvent.10 

Ultrafast time-resolved spectroscopy, specifically fluorescence up-conversion 

and transient absorption measurements, has proved invaluable in elucidating the 

mechanisms of the excited state dynamics of both ATR and ATRA. The dynamics of 

ATR were initially measured in hexane by the time-resolved fluorescence up-

conversion technique,8 determining that the fluorescence decay contained three 

components: an ultrafast (λmax = 430 nm and τ = 30 ± 15 fs), a fast (λmax = 440 nm and τ 

= 370 ± 20 fs) and a slower (λmax = 560 nm and τ = 33.5 ps) component, which were 

assigned to emission from the 1Bu
+, 1Ag

–(ππ*) and 1nπ* states respectively. Further 

femtosecond time-resolved transient visible absorption measurements in cyclohexane 

identified four absorption bands, which can be assigned to the first three singlet states 

and the first triplet state.10 

ATRA has recently been studied by both transient absorption spectroscopy12 and 

the time-resolved fluorescence up-conversion technique in a number of solvents.16 

Analogous to ATR, the decay profiles observed through the transient absorption 

experiment were fitted to three exponential decays, with lifetimes of 110 fs, 2.2 ps and 

30 ps. These components were assigned to the decay of the 1Bu
+, 1nπ* and 1Ag

–(ππ*) 

states respectively.12 In the fluorescence up-conversion experiment, three lifetimes were 

again observed: in ethanol, an ultrafast (λmax = 460 nm and τ = 80 fs), an intermediate 

(λmax = 545 nm and τ = 2.2 ps) and a weak, slow (λmax = 540 and τ = 10 ps) component 

was observed.16 However, it was not possible to observe emission from the 1nπ* state. 

The ultrafast component was assigned to emission from the 1Bu
+ state, which decays by 



168 

 

an ultrafast internal conversion process to the 1nπ* and 1Ag
–(ππ*) states.  The 

intermediate and slow lifetimes were assigned to emission from the 1Ag
–(ππ*) state. The 

intermediate component was found to be strongly dependent upon the viscosity of the 

solvent and was ascribed to a trans-cis isomerisation in this state, resulting in a non-

radiative decay process to the ground electronic state. The slow lifetime was assigned to 

the forbidden transition from the 1Ag
–(ππ*) state to the ground 1Ag state. 

In the gas phase, the majority of studies on ATRA have been theoretical.17-19 

However, the gas phase PE spectrum of neutral ATRA has been observed by Jericevic 

et al.,20 and Katsumata and Ikehata.21 In both experiments, ATRA was vaporised in a 

furnace, passed into an ionisation chamber and irradiated with light from a HeI lamp. 

PE spectra were then collected by use of a hemispherical electrostatic analyser. The 

subsequent simulations by Abyar and Farrokhpour19 have revealed that the spectrum 

contains overlapping contributions from several conformers, indicating the presence of 

several stable conformers in the gas phase. Katsuma and Ikehata also observed the 

presence of peaks assigned to decomposition products of ATRA produced through the 

vaporisation process,21 indicating the need for a soft vapourisation process in obtaining 

PE spectra. 

 

7.2 Experimental Details 

The experiment was performed as described in Chapter 2. ATRA was purchased 

from Sigma Aldrich and used without further purification. Isolated deprotonated anions 

were produced by ESI (~1 mM in MeOH, adjusted to pH ~11 by the addition of 2 M 

NH3 in MeOH). The ion packet was pulsed out of the trap at 50 Hz, mass selected by 

time-of-flight, and subsequently irradiated at the centre of a velocity-map-imaging PE 

spectrometer. For one colour PE spectra, the isolated ATRA– ions were irradiated by 
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femtosecond laser pulses of 3.10 eV (400 nm) and 4.66 eV (266 nm), generated by the 

second and third harmonic respectively of a commercial femtosecond Ti:Sapphire 

oscillator coupled to a regenerative amplifier (SpectraPhysics Tsunami/Spitfire Pro). 

For time-resolved PE spectra, the ATRA– ions are promoted to the S3 excited state with 

a 3.10 eV (400 nm) femtosecond pump laser pulse. The excited state population is then 

promoted into the photodetachment continuum after a delay t using a probe pulse of 

1.55 eV (800 nm) or 2.49 eV (500 nm). Pulses at 2.49 eV are generated by sum-

frequency mixing of the fundamental with the signal output from an optical parametric 

amplifier (Light Conversion TOPAS-C). Above 4.13 eV, a considerable amount of PE 

noise is observed and so an additional PE image is collected, in which the laser, but not 

the ions, is fired through the spectrometer. The resultant image is then subtracted from 

the PE image colected with ions in order to recover the PE distribution. The 

experimental images were deconvoluted using the polar-onion peeling algorithm22 in 

order to extract the PE spectra. The spectral resolution of the PE spectrometer is ~ 5% 

and has been calibrated using the PE spectrum of I–. The temporal resolutions of the 

time-resolved experiments are on the order of 70 fs and 120 fs for the 3.10 eV + 1.55 

eV (400 nm + 800 nm) and 3.10 eV + 2.49 eV (400 nm + 500 nm) pump-probe schemes 

respectively. 

 

7.3 Electronic Structure of ATRA 

Figure 7.4 shows PE spectra of ATRA– collected at 4.66 eV and 3.10 eV. From 

the 4.66 eV spectrum, through linear extrapolation of the falling edge, we may estimate 

the ADE to be 3.5 ± 0.1 eV. At an excitation energy of 3.1 eV, we are below the 

detachment threshold and therefore do not expect to see PEs from single photon 

absorption. The PE spectrum observed at this photon energy is therefore a result of a 
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1+1 resonance-enhanced multi-photon ionisation scheme, where ATRA– is initially 

excited to the S3 excited state before absorption of the second photon. The available 

photon energy in this spectrum is therefore 6.2 eV.  In contrast to the spectrum at 4.66 

eV, we estimate the ADE from linear extrapolation of the falling edge to be 3.6 ± 0.1 

eV.  This shows good agreement with the ADE determined from the 4.66 eV spectrum. 

 

Figure 7.2 Normalised PE spectra of ATRA taken using probe photons at 4.66 eV (266nm) and 3.10 eV 

(400 nm). While the 4.66 eV photon has sufficient energy to detach an electron, the photon at 3.10 eV 

does not. Hence, the spectrum at 3.10 eV is observed due to a 1+1 resonance-enhanced multiple-photon 

ionisation scheme. As such, the available ionisation energy is 6.20 eV. 

The appearance of the PE spectra is notable for two reasons: there is a peak at 

eKE = 0 eV and the body of the spectra are almost flat over a range of approximately 

0.8 eV and 2 eV for the 4.66 eV (266 nm) and 3.10 eV (400 nm) spectra respectively, 

with no clearly discernable peaks. As previously discussed, the Wigner threshold law 

states that the photodetachment cross-section of an anion at threshold is zero,23 hence 

the peak at eKE = 0 eV cannot be observed through direct detachment processes. As 

such, the provenance of this peak is uncertain. At 3.10 eV, we are both resonant with 

the S3 ← S0 transition and observing a two-photon process. As initial electronic 

relaxation from the S3 state has been observed in ATRA on timescales of τ ≤ 80 fs when 

in solution12,16 and bound to a TiO2 nanoparticle,12 and considering our excitation pulse 

temporal width of ~60 fs, it is reasonable to assume that some population has undergone 
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electronic relaxation and that we are sampling population from excited states produced 

subsequent to the initial excitation. This ultrafast conversion of energy would indicate 

that the molecule is suitable for investigation by TRPEI. However, at 4.66 eV there is a 

local minimum in the absorption spectrum,24 so we do not expect to be resonant with an 

optically bright excited state at this energy. It is possible that, due to the conjugated 

nature of the molecule, a number of resonance structures of the neutral molecule may be 

available following photodetachment at an variety of internal energies, resulting in  a 

wide range of electron kinetic energies being observed and the ‘blurring’ of the PE 

spectrum. Nevertheless, there is still absorption at this wavelength, hence the 

appearance of the PE spectrum could be explained by motion on an electronic excited 

state surface. 

Finally, we note that the appearance of the spectra in Figure 7.4 are similar to 

those of deprotonated benzoate and trans-cinnamic acid in Figure 6.3. In addition, the 

feature that we have assigned to direct detachment in all spectra appears far more 

dominant in the ATRA– spectra. This could be explained by a change in the relative 

dominance of different detachment channels between the molecules, resulting in an 

increase in the prevalence of the direct detachment channel in ATRA. On the other 

hand, if we assume that the peak at low energy in the ATRA– spectra has the form of an 

exponential decay and arises from a similar detachment channel as those in the 

deprotonated conjugated phenylcarboxylic acids, then the difference in the forms of the 

spectra could be explained by the different excitation lasers used; the ATRA– spectra 

were obtained using a femtosecond laser as opposed to a nanosecond system. As such, 

if this channel is linked to multiple-photon absorption, the low energy peak is expected 

to be far less dominant than seen in the deprotonated conjugated phenylcarboxylic 

acids. 
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7.4 Excited State Dynamics of ATRA 

7.4.1 Results 

Time-resolved PE spectra taken using the pump-probe schemes 3.10 eV + 1.55 

eV (400 nm + 800 nm) and 3.10 eV + 2.49 eV (400 nm + 500 nm) are shown in Figure 

7.3(a) and (b), respectively. To extract only the excited state PE spectra, a spectrum 

taken at a large negative Δt (comprising only of the pump-only and probe-only PE 

spectra) has been subtracted from the pump-probe spectra. At short time delays (0 fs < 

Δt < 100 fs), a large, flat feature in the range of 0.1 eV < eKE < 0.9 eV and 0.1 eV < 

eKE < 1.7 eV for the 3.10 eV + 1.55 eV and 3.10 eV + 2.49 eV spectra, respectively, is 

observed in addition to the peak at 0 eV < eKE < 0.1 eV.  As the pump-probe delay 

increases, the intensity of the flat PE feature decreases as the location of the falling edge 

shifts to lower kinetic energy, with the intensity falling to zero within 500 fs. This is 

accompanied by a concomitant increase in the intensity of the peak at 0 eV < eKE < 0.1 

eV, which then falls to zero as Δt increases further. No pump probe signal is observed 

beyond Δt ~ 1000 fs. 

Figure 7.4 shows the PE spectrum taken at 4.66 eV (266 nm) and the 

background subtracted PE spectrum taken at 3.10 eV + 1.55 eV (400 nm + 800 nm) at 

Δt ~0 fs. The two spectra are almost identical, although the pump-probe spectrum has a 

greater contribution from the peak at 0 eV < eKE < 0.1 eV. Below 1 eV, the two spectra 

are comparable: discrepancies include an increased dominance and broadening of the 

low energy peak in the time-resolved spectrum. This suggests that the detachment 

processes leading to PE emission following excitation by the two excitation schemes are 

similar. 
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Figure 7.3 The background subtracted time-resolved PE spectrum of ATRA, acquired using a a) 3.10 eV 

pump pulse and a 1.55 eV probe pulse and b) a 3.10 eV pump pulse and a 2.49 eV probe pulse. 

 

Figure 7.4 Normalised PE spectra of ATRA taken using 4.66 eV (blue) and the background subtracted 

normalised PE spectrum taken using 3.10 eV + 1.55 eV laser pulses at a ~0 fs pump-probe delay.  

The presence and subsequent loss of the peak at 0 eV < eKE < 0.1 eV in the 

time-resolved spectrum is significant. The peak appears structurally similar to the peak 
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in the same spectral region that appears in the one photon spectra, as can be seen in 

Figure 7.4. The peak appears to be both slightly broadened and increased in relative 

spectral intensity to the higher eKE feature in the two photon spectra, which implies that 

there are two separate detachment channels leading to the features at high and low eKE 

that are accessed disproportionately by the different excitation schemes. The low eKE 

peak can be fitted to an exponential decay, which is consistent with thermionic emission 

of electrons from a vibrationally ‘hot’ ground state.25-27  However, thermionic emission 

occurs on a timescale on the order of milliseconds,27 whereas the peak observed in the 

time resolved spectra decays on the order of hundreds of femtoseconds.  The fact that 

the peak is constant in eKE with respect to excitation energy suggests that the low 

energy peak is the result of vibrational autodetachment from an excited state. Another 

possibility is that the detached electron is able to access the π* orbital of the conjugated 

π on either the ATRA molecule from which it was detached or on another molecule, 

where it may undergo rapid vibrational energy redistribution before the electron is 

detached again with a lower eKE. The calculations required to assess the plausibility of 

these mechanisms are beyond the scope of this thesis, hence the origins of the low eKE 

peak remain uncertain. 
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7.4.2 Analysis 

 

Figure 7.5 Results of the global kinetic fitting to a two lifetime model on the 3.10 eV + 1.55 eV pump-

probe experiments. Presented are; the decay associated images extracted from the fitting program for a) 

τ1, b) τ2 and c) the deconvoluted images to extract the PE distribution; d) integrated PE signal and the 

calculated fit as a function of pump-probe delay; Background subtracted TRPES data of ATRA from e) 

experiment and f) simulation, presented as a false colour plot. 

The observed dynamics were fitted by the global kinetic image fit described in Chapter 

3 and the results shown in Figure 7.5 - Figure 7.7: Figure 7.5 shows the global kinetic 

fit of the 3.10 eV + 1.55 eV (400 nm + 800 nm) time-resolved spectra assuming 

independent lifetimes and the results of the global fit assuming sequential lifetimes for 

the 3.10 eV + 1.55 eV and 3.10 eV + 2.49 eV (400 nm + 500 nm)  spectra are shown in 

Figure 7.6 and Figure 7.7, respectively. For the 3.10 eV + 1.55 eV spectra, two τi 

lifetimes were observed from both fitting procedures: τ1 = 48 fs and τ2 = 171 fs. For the 

3.10 eV + 2.49 eV spectra, two τi lifetimes were also observed: τ1 = 144 fs and τ2 = 143 

fs. The time resolutions of our experiments were 60 fs and 140 fs for 3.10 eV + 1.55 eV 

and 3.10 eV + 2.49 eV, respectively. We can confidently assert our lifetime for τ2 from 

the 3.10 eV + 1.55 eV spectra, although the lifetimes obtained for the 3.10 eV + 2.49 eV  
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Figure 7.6 Results of the global kinetic fitting to a two lifetime model, assuming population from the first 

lifetime directly feeds into the population that decays by the second lifetime, on the 3.10 eV + 1.55 eV 

pump-probe experiments. Presented are; the decay associated images extracted from the fitting program 

for a) τ1, b) τ2 and c) the deconvoluted images to extract the PE distribution; d) integrated PE signal and 

the calculated fit as a function of pump-probe delay; Background subtracted TRPES data of ATRA from 

e) experiment and f) simulation, presented as a false colour plot. 

spectra are close to the temporal resolution for the experiment. The actual lifetimes for 

the components are therefore likely to be obscured by the instrument response function. 

The decay associated image (DAI) and the decay associated spectrum (DAS) of 

τ1 for the initial fit of the 3.10 eV + 1.55 eV spectra (Figure 7.5) shows a positive and a 

negative region at 0.4 eV < eKE < 1.2 eV and 0 eV < eKE < 0.4 eV, respectively. The 

DAI and DAS of τ2 has a similar spectral profile to that of τ1, although with a larger 

amplitude and opposite sign. As negative amplitudes indicate a concurrent exponential 

rise, this implies that signal initially contributing to the higher energy feature is 

decaying into the low energy feature, hence the dynamics are sequential. 
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Figure 7.7 Results of the global kinetic fitting to a two lifetime model, assuming population from the first 

lifetime directly feeds into the population that decays  by the second lifetime, on the 3.10 eV + 2.49 eV 

pump-probe experiments. Presented are; the decay associated images extracted from the fitting program 

for a) τ1, b) τ2 and c) the deconvoluted images to extract the PE distribution; d) integrated PE signal and 

the calculated fit as a function of pump-probe delay; Background subtracted TRPES data of ATRA from 

e) experiment and f) simulation, presented as a false colour plot. 

The DAI and DAS for both lifetimes from the fit to the sequential dynamics 

kinetic model for the 3.10 eV + 1.55 eV (400 nm + 800 nm) spectra (Figure 7.6) are 

entirely positive, indicating that we have extracted realistic DAS from the TRPES. This 

confirms our previous assignment from the initial kinetic fitting model that the 

dynamics are sequential. The DAS for τ1 again shows PE intensity at high eKE and 

appears as a broad peak across the length of the spectrum, 0 eV < eKE < 1.2 eV, centred 

at eKE ~ 0.7 eV. A slight increase in intensity at eKE = 0 eV is observed. The DAS for 

τ2 appears identical to the DAS for τ2 obtained by the independent lifetime kinetic fit 

shown in Figure 7.5. 

The DAI and DAS for both lifetimes from the fit to the sequential dynamics 

kinetic model for the 3.10 eV + 2.49 eV (400 nm + 500 nm) spectra (Figure 7.7) show 

similar features. The DAS for τ1 shows PE intensity across the entire length of the 
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spectrum, 0 eV < eKE < 2 eV. The DAS does not show a similar increase in intensity at 

eKE = 0 to that observed in the DAS for τ1 in the 3.10 eV + 1.55 eV spectra. However, 

the DAS for τ1 in the 3.10 eV + 2.49 eV spectra appears as a relatively flat feature, 

hence, the discrepancy may described as the absence of the decrease in the PE intensity 

at low (~0.2) eKE. The DAS for τ2 shows a peak at eKE = 0 eV, a region of relatively 

flat PE intensity at 0.2 < eKE < 1.1 eV and a negative region of PE intensity at 1.1 eV < 

eKE < 1.8 eV. We do not expect to see negative regions in the DAI or DAS using the 

sequential dynamics kinetic fitting routine. This negative amplitude indicates an 

exponential rise in this region, which overlaps with the high eKE region of the DAS for 

τ1. 

This may be explained by considering the time resolution of the pump-probe 

scheme, 140 fs. This is extremely close to the extracted lifetimes for τ1 and τ2, 144 fs 

and 143 fs, respectively. We may therefore state that the true dynamics of the system 

are obscured by the time resolution of the experiment. Additionally, from the 3.10 eV + 

1.55 eV experiments, we expect τ1 < 60 fs, which is well within the time resolution of 

the experiment. The DAI and DAS are therefore likely to be inaccurate, reflecting the 

inaccuracy of the lifetimes that we may extract from the fit. 

As an additional exercise, the decay profiles of both time-resolved spectra and 

the simulated PE spectra from the global kinetic fit were analysed through fitting to 

three lifetimes via fitting the total PE signal and by a global kinetic fit. The values for τ2 

and τ3 obtained for each spectrum were similar and well within the time resolution of 

the experiments. This implies that the spectra have been over-fitted and that two 

lifetimes are sufficient to analyse the decay profiles. 
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Figure 7.8 (a-b) Average eKE of the spectrum taken at each pump-probe delay (blue circles) and of the 

fitted TRPES obtained from the global kinetic fit of the experimental data (black diamonds), obtained at 

photoexcitation energies of (a) 3.10 eV + 1.55 eV and (b) 3.10 eV + 2.49 eV. (c-d) As for the top figures, 

but with the low energy peak (< 0.2 eV and < 1.0 eV respectively) excluded from the calculation of the 

average kinetic energy for photoexcitation energies of (c) 3.10 eV + 1.55 eV and (d) 3.10 eV + 2.49 eV. 

(e-f) The shift in t0 of the total PE intensity of a 0.1 eV wide bin of the time-resolved spectrum fitted to a 

single exponential decay as compared to the total PE intensity of the overall time-resolved spectrum, 

obtained at (e) 3.10 eV + 1.55 eV and (f) 3.10 eV + 2.49 eV. 
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The fitting process was unduly arduous and recovers worse fits for similar PE 

intensity in the spectrum than those obtained in Chapter 3. As previously noted, a global 

kinetic fit assumes that the PE features in the time-resolved spectra are stationary in 

eKE. In order to test the validity of this assumption for this data set, we have measured 

the average kinetic energy of the spectrum obtained at each pump-probe delay in the 

time-resolved spectrum for both excitation schemes and then presented in Figure 7.8(a-

b). Additionally, we have fitted the total integrated PE intensity of the TRPES to a 

single exponential decay convoluted with a Gaussian, and subsequently repeated the 

process for the total integrated PE intensity of a 0.1 eV wide bin of the each PE 

spectrum for the width of the TRPES. The change in t0 (a measure of the onset of the 

fit) from the fit of the total spectrum is then recorded and presented in Figure 7.8(c-d). 

As shown in Figure 7.8(a-b), the average eKE decreases linearly with the pump-

probe delay for both excitation schemes. Additionally, the rate of decrease is not 

constant; both plots exhibit two clear gradients. As indicated by the global kinetic fit, 

there are at least two major spectral components with different lifetimes. The overall 

trends observed in the average eKE are consistent with two PE features, constant in 

eKE, decaying on different timescales. The changing contributions of the features to the 

overall spectrum with time, in particular the reduction of the contribution of the ultrafast 

component to zero, would cause the sudden change in gradient. However, also shown 

are the average eKEs of the fitted TRPES obtained by the global kinetic fitting model 

described in Chapter 3, which are constructed by the sum of two PE features with 

constant eKE. The contribution of each feature to the PE spectrum at a given time delay 

is described by an exponential decay convoluted with a Gaussian. The average eKE 

shows good agreement between the experimental and simulated datasets at short pump-

probe delays. Above ~ 200 fs, however, the average eKE reaches a plateau for the fitted 
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datasets and continues to decrease for the experimental dataset. This is clear evidence 

that features in the TRPES are shifting in kinetic energy with time. 

Further evidence of this shift can be seen in Figure 7.8(c-d). In each figure, the 

average eKE  has been calculated the spectral range eKE > 0.1 eV. This range has been 

selected in order to exclude the low eKE peak, hence preserving only the peak at high 

kinetic energy. As the pump-probe delay varies, the average eKE of the fit remains 

approximately constant at ~0.6 eV and ~1.45 eV. However, the average eKE of the 

experimental data shows a significant decrease as the pump-probe delay increases, 

unequivocably demonstrating that the PE feature is not constant in eKE with respect to 

time. 

A dependence of t0 on the kinetic energy of the spectrum is observed in Figure 

7.8(e-f), where the relative shifts of the t0 of the experimental and simulated TRPES in a 

spectral region 0.1 eV wide are presented. For the 3.10 eV + 1.55 eV data, the t0 of the 

fits of the binned experimental data shift to more negative values (early in time) than the 

t0 values extracted by the binned simulated data at high eKE, indicating that the high 

eKE peak is not constant with respect with eKE. This shift in t0 could indicate either that 

spectral features in the TRPES are shifting in eKE with time, or that the PE features in 

the spectrum have different onsets in time. We do not observe a similar shift in the 3.10 

eV + 2.49 eV, which appears to follow the same pattern as the simulated dataset. 

However, the fitted parameters are considerably noisier than that of the 3.10 eV + 1.55 

eV dataset, which could obscure any underlying trends. 

 

7.5 Discussion 

Previous studies of ATRA have determined that, following excitation at 3.10 eV 

(400 nm), the S3 (1Bu
+) excited state is populated.12,15,16 Time-resolved experiments 
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have concluded that this initial excited state population may then cascade sequentially 

through the S2 (nπ*) and S1 (1Ag
–(ππ*)) states, before relaxing to the ground electronic 

state.12,16 In the S1 state, the molecule may undergo a trans-cis isomerisation, which 

may then decay by a radiationless process to the ground state.16 Additionally, some 

population may undergo intersystem crossing to the T1 state.15 

Although the shifts in the eKE of the spectral features will undermine the 

accuracy of the global kinetic fit, we may still use the results of the fit as a guide to 

further discussion. Through global kinetic fitting, we are able to fit the TRPES to two 

sequential lifetimes, indicating that the population that decays on the timescale τ1 

undergoes a decay pathway that directly produces the population that decays on the 

timescale τ2. The observation of two components in the excited state decay is in 

qualitative disagreement with the observations of Zhang et al.12 and Presiado et al.16 

There are numerous explanations for the discrepancy: firstly, the ordering of the excited 

states may have changed between the solution and gas phases so that the 1Bu
+ state 

energetically lies below the nπ* state, i.e. the S3 and S2 states are reversed. This situation 

is not unfeasible (this ordering of the excited states is equivalent to that in ATR8,9) and, 

as the initially excited state is the second excited state, we might expect to observe two 

lifetimes in the dynamics. However, an alternate explanation is that the S2 ← S3 and S1 

← S2 transitions are sufficiently fast that we simply cannot differentiate the two 

lifetimes within our time resolution. Given that the observed lifetimes at both excitation 

schemes are within the time resolution of our experiment, it is unsurprising that we 

would be unable to resolve two separate lifetimes. We also note from inspection of the 

DAS of the global fits that the spectral feature associated with this lifetime spans much 

of the width of the entire spectrum, which suggests that two excited states contributing 

PE intensity to the spectral feature would not be an unreasonable suggestion. As we are 
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unable to ascertain the excited state ordering from our experiment, we therefore 

tentatively assign τ1 <60 fs to the ultrafast internal conversion of the S3 state to the S2 

state and subsequently the S1 state. 

We now turn our attention to the assignment of τ2. By process of elimination, we 

can assign this lifetime to the decay of the S1 excited state. While triplet states have 

been observed, the lifetime is too fast to consider that this decay corresponds to a 

population of triplet states. Presiado et al. observed a long lived, viscosity dependent 

lifetime (0.9-4 ps)16 which was assigned to the forbidden transition between the 1Ag
–

(ππ*) state and the ground state via a conical intersection accessible through a trans-cis 

isomerisation. In the gas phase, this transition is unencumbered by solvent steric effects 

and hence we expect the lifetime of this process to be reduced significantly. Crucially, 

previous observations of cis-trans isomerisation in retinal derivatives have shown that, 

as the geometry of the molecule changes, the energetics of the orbitals change;7,28,29 in 

our experiment, we would expect to observe this as a feature shifting in eKE with time. 

This is clearly observed in the average eKE and in the relative change in t0 of the fits of 

our binned TRPES shown in Figure 7.8(e-f). As such, we can assign the longer second 

lifetime of < 200 fs, τ2, to a trans-cis isomerisation through internal conversion from the 

S1 state to the S0 state. This is consistent with previous measurements of the cis-trans 

isomerisation in the structurally similar rhodopsin.30-33 The lifetime is, however, 

considerably shorter than previous lifetime measurements of ATRA,12,16 which we 

assign to the absence of steric hiderance from the solution phase. 

We must consider the possibility that the sub-200 fs lifetime does not describe 

the loss of the S1 state to the S0 state. Alternatively, as the molecule undergoes IVR, the 

internal energy along the reaction coordinate may drop sufficiently low that we are 

unable to observe the S0 ← S1 transition by photoionisation at the energies used in our 
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excitation schemes; the Sn – D0 gap increases to an energy greater than that of the probe 

pulse. At 3.10 eV + 2.49 eV (400 nm + 500 nm), there is a ~ 1 eV window above the S0 

in which we are unable to probe. However, this assumes that the energetics of the 

excited states are constant between the Franck-Condon geometry and the geometry 

accessed through IVR, which is unlikely to be the case, so the un-probable window 

could be considerably smaller or wider. We are unable to comment on the feasibility of 

this mechanism without high-level ab initio calculations, however. Nevertheless, we 

note that, for this mechanism to be feasible, a large geometric change might be expected 

that would be unlikely on the observed timescale34 and again stress that the lifetime of 

τ2 is consistent with the cis-trans isomerisation observed in rhodopsin.30,31 

A schematic representation of the potential dynamics following photoexcitation 

at 3.10 eV (400 nm) is presented in Figure 7.9. This assignment is in good accord with 

previous studies of the excited state dynamics of ATRA,12,13,16 although the observed 

dynamics occur on timescales that are orders of magnitude faster than previously 

observed. This implies that the solvent environment has a significant effect on the 

excited state dynamics of ATRA. Given the importance of the trans-cis isomerisation in 

the excited state decay, it is reasonable to assume that the solvent environment sterically 

hinders the isomerisation, which is consistent with the observation of a viscosity 

dependent lifetime by Presiado et al.16 As the dynamics of the S3 and S2 excited states 

are similarly affected by the solvent environment, it may therefore follow that excitation 

to these excited states is followed by a significant geometric change, although this 

might have been expected to have been observed by Presiado et al.16 The change in the 

dynamics of these states could otherwise be explained by shifting of the energetic 

positions of the electronic excited states induced by solvation. 
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Figure 7.9 Schematic energy level diagram representing the possible decay pathway of ATRA in the 3.10 

eV + 1.55 eV (400 nm + 800 nm)  time-resolved experiment. 

In apparent contradiction to numerous other observations,12,14,15 we do not 

observe formation of triplet states following photoexcitation. It has previously been 

noted that the intersystem crossing from the 1Ag
-(ππ*) state to the T1 state is inefficient16 

and the previously observed lifetimes of the 1Ag
-(ππ*) state in solution are considerably 

longer than our present observations, due to the loss of the constrictive solution-phase 

environment. It is therefore reasonable to assume that the formation of the triplet state is 

sufficiently slow compared to the loss of the 1Ag
-(ππ*) state through the trans-cis 

isomerisation that the ground electronic state is the dominant product and the triplet 

state population is essentially nil. However, we cannot rule out the possibility that we 

are simply unable to observe the T1 state under our photoexcitation schemes, as the 
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probe pulse has insufficient energy to ionise the ground state. Ideally, a pump-probe 

excitation scheme of 3.1 eV + 4.66 eV (400 nm + 266 nm)  would be used in order to 

allow us to probe ground state recovery – unfortunately, the pump-probe signal for this 

excitation scheme is effectively zero when this excitation scheme is employed using our 

current set-up. 

 

7.6 Summary 

In summary, we have identified the detachment energetics of all-trans-retinoic 

acid and probed the excited state dynamics following photoexcitation at 3.10 eV 

through time-resolved PE spectroscopy. We observe a minimum of 2 sequential 

lifetimes and note that the spectral features are not constant in eKE with time. We assign 

the first, ultrafast lifetime to decay of the initially excited S3 state to the S2 and 

subsequently the S1 states. The second lifetime is then assigned to the subsequent decay 

of the S1 excited state population to the S0 state via a conical intersection accessible via 

a trans-cis isomerisation. The lifetime of this process is consistent with previous 

measurements of the cis-trans isomerisation in rhodopsin. 
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Chapter 8. Spectroscopy of the Antimony Tartrate Dianion 

Gaseous multiply charged anions (MCAs) have been the subject of considerable 

interest due to the presence of the repulsive Coulomb barrier (RCB) and its effects on 

the electronic structure of the molecule and the corresponding photoelectron (PE) 

spectra. Here, we present a PE imaging study of a highly symmetric dianion, antimony 

tartrate, in order to investigate the effect of the geometry of the RCB on the outgoing PE 

angular distribution. We report the detachment energetics (vertical detachment energy 

= 2.5 ± 0.1 eV) and the minimum height of the RCB (0.9 ± 0.1 eV), and note that the 

spectra exhibit strong anisotropy parallel to the laser polarisation. In order to describe 

the effect of the RCB on the observed PE angular distribution, we present classical 

electron dynamical simulations and show that, overall, the anisotropy can be 

predominantly described by these simulations once the molecular and lab frames have 

been reconciled. 

The interpretation of the PE spectra in this chapter is supported by DFT 

calculations performed by Dr James Bull. This chapter is based upon ‘Photoelectron 

Imaging of the Isolated Antimony Tartrate Dianion’, C. W. West, J. N. Bull, D. A. 

Woods and J. R. R. Verlet, Chem. Phys. Lett., 645, 138 (2016) 

8.1 Introduction  

MCAs are both common and facile to produce in the solution and solid phase. In 

contrast, in the gas phase, the lack of a stabilising influence through solvation and other 

electrostatic interactions, coupled with the strong Coulomb repulsion between the 

negative charges, tends to destabilise MCAs. Nevertheless, the strong Coulomb 

repulsion also leads to dynamic stability of MCAs.1-5 Specifically, the loss of an 

electron (or anionic fragment) is inhibited by the presence of the so-called repulsive 

Coulomb barrier (RCB),6,7 which arises from the long-range repulsion between the 
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electron (fragment) and remaining anion. This dynamic stability can be sufficient to 

enable the observation of MCAs with a negative electron affinity,8 in which the ground 

state lies above that of the detachment threshold. The nature of the RCB can be 

conveniently probed by PE spectroscopy.1,4,6 Only electrons with sufficient kinetic 

energy to overcome the RCB can be ejected, leading to a characteristic cut-off in the PE 

spectra of MCAs at low energy. Additionally, because the outgoing electron is sensitive 

to the RCB at long-range, the angular distribution of PEs can be shaped to reflect the 

RCB. Because velocity-map imaging records both the electron kinetic energy and the 

PE angular distribution, PE imaging is ideally suited to studying dianion RCB 

characteristics.1,9,10 Highly symmetric molecular MCAs are of particular interest from 

the perspective since they can exhibit strong RCB-induced anisotropy. More generally, 

there has been considerable interest in studying MCAs in the gas phase,4 due to the 

absence of external influences on the molecules allowing the intrinsic electronic 

structure to be probed. Here, a PE imaging study of antimony tartrate dianion (AT2–, 

Figure 8.1) which is a text-book inorganic dianion salt with high-symmetry (D2) and a 

relatively high charge-density, is presented together with simulations of the outgoing PE 

distribution.  Additionally, the PE spectroscopy of its potassium salt anion ([AT+K]–) is 

presented. 

Antimony potassium tartrate has been employed in a variety of applications: as a 

fixing agent for dyes in the tanning and textile industries11 (although this use is 

becoming increasingly uncommon with the advent of other, safer techniques),12 in the 

production of V-Sb-O catalysts for the production of acrylonitrile,13 and as a 

colorimetric test for phosphate in water.14 However, the vast majority of historical 

applications are based around the well-documented toxicity of antimony potassium 

tartrate and medicinal use.15-17 Antimony, in a number of different complexes, has been 
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employed by physicians for millennia; the Ebers Papyrus,18 written in approximately 

1550 BCE, details several antimony-containing treatments for complaints such as eye 

infections and gonorrhoea. Despite their long history, widespread use of antimonyl 

treatments began in the late 1500s BCE due to the teachings of Paracelsus19 and the 

publication of ‘The Triumphant Chariot of Antimony’.† 20 APT, also known as tartar 

emetic, was first described by Mynsicht in 1631,21 although the compound was known 

to and used by Paracelsus.19 Although small doses (<50 mg) induce sweating and 

vomiting, and larger doses are fatal,22 antimony potassium tartrate has been used as a 

treatment for parasitic infections such as Leishmaniasis23 and Schistosomiasis,24 which 

are still in use today, although antimony containing treatments have been historically 

prescribed for a vast and wide ranging number of ailments,18,21,22 such as depression,21 

rheumatism and alcoholism.22 This last use has been remarkably persistent, with 

antimony potassium tartrate being legally sold for this purpose in the US until the 

1940s25 and reported as recently as 2010.26 

 

Figure 8.1 Top (left) and side (right) view of the structure of the Antimony Tartrate dianion (AT
2-

), which 

adopts a D2 symmetric equilibrium geometry. 

                                                 

†
 The provenance of this text is somewhat fantastical – Basilius Valentinus, a 15

th
 century alchemist and 

Canon of the Benedictine Priory of Saint Peter in Erfurt, Germany, studied the properties of Antimony 

and secreted his work in a pillar in the priory. The work was lost for years after his death, until the pillar 

was split by a bolt of lightning, the work rediscovered and subsequently published. The veracity of the 

story was called into question in the 18
th

 century, as no record of the monk existed in either Rome or 

Germany. The work has since been attributed, at least in part, to a 16
th

 century salt manufacturer, Johann 

Thölde. 
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The vast majority of scientific studies on antimony potassium tartrate have been 

concerned with its interactions with and effects on biological systems.27-29 The use of 

optical enantiomerically pure antimony potassium tartrate as a counter ion in order to 

precipitate enantiomerically pure chiral complexes from solution is also a well-

documented separation method.30,31 However, in the realms of physical chemistry and 

particularly in the gas phase, antimony potassium tartrate has attracted far less attention. 

As might be expected, almost all of studies in this area are concerned with the accurate 

determination of antimony in environmental samples.14,32-36 An extremely wide range of 

techniques have been employed to this end, both individually and coupled,31,33-35,37 

including electrospray mass spectrometry,38,39 high-performance liquid 

chromatography,38,40 capillary electrophoresis interfaced to a plasma mass 

spectrometer41 and molecular gas phase absorption spectroscopy.42-44 In this work, we 

have isolated AT2– and [AT+K]– in the gas phase and recorded their PE spectra at a 

variety of wavelengths. From these data, we have determined the electron detachment 

energetics and the effective height of the RCB in the dianion, and we present classical 

electron dynamical simulations to describe how the RCB guides the outgoing PE 

emission, which in turn provides insight into the detachment process. 

As a representative high-symmetry dianion, AT2– exhibits highly anisotropic PE 

images. We present classical electron dynamical simulations to describe how the RCB 

guides the outgoing PE emission, which in turn provides insight into the detachment 

process. Overall, our results show that the PE angular distribution can be described by 

classical dynamics provided a suitable connection between the laboratory and molecular 

reference frames. For AT2– the connection is the differential detachment cross section. 
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8.2 Methodology 

The experiment was performed as described in Chapter 2. Antimony potassium 

tartrate (Aldrich, 99+ %) was used without further purification. Isolated AT2– were 

produced by electrospray ionisation (~1 mM in MeOH), introduced into vacuum and 

trapped by a radio frequency ring-electrode ion trap. The ion packet was pulsed out of 

the trap at 10 Hz. The isolated AT2– or [AT+K]– ions were irradiated by nanosecond 

laser pulses ranging between 3.49 eV (355 nm) and 5.13 eV (240 nm), generated by the 

Horizon OPO. The experimental PE images were collected outside the vacuum by 

monitoring with a CCD camera the electron impacts on a dual multichannel-plate 

detector that was coupled to phosphor screen. Raw PE images were deconvoluted using 

the polar-onion peeling algorithm45 in order to extract the PE spectra and angular 

anisotropies. PE spectra were calibrated from the atomic I– spectrum and the resolution 

was ~5%.  

Supporting density functional theory calculations to characterise geometries and 

electron detachment energetics were performed by Dr James Bull at the M06-2X//GEN 

and M11//GEN levels of theory using the Gaussian 09 software package.46-48 Briefly, 

the GEN basis set includes the aug-cc-pVTZ basis set excluding the most diffuse f and d 

sets of functions for carbon and oxygen atoms, and excluding the most diffuse d 

functions for hydrogen atoms. Antimony was treated with the aug-cc-pVTZ-PP 

effective core potential basis set.49 Optimized geometries were confirmed to represent 

geometrical minima through computation of harmonic vibrational frequencies, which 

also provided zero-point energy corrections. 
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8.3 Photoelectron Spectra 

The minimum energy structure of the dianion has D2 point symmetry. Despite 

the deficiencies of DFT for this system, Mulliken or natural bond order (NBO) 

population analysis50 indicates that each antimony atom in the dianion equilibrium 

geometry has a charge of +0.9 or +1.9, respectively. The excess negative charge is 

distributed across the four carboxylic acid groups and hence AT2– may be treated as a 

main group ionic complex. 

 

Figure 8.2 Negative ion Time of Flight mass spectrum of potassium antimony tartrate, showing the AT
2–

 

(top) and [AT+K]
–
 (bottom) anions and the characteristic isotopic distribution of Sb. 

The time-of-flight mass spectrum, shown in Figure 8.2, contains two major 

peaks, each split into triplets with a ratio of approximately 2:3:1, centred at m/z = 268 

and 575. The isotopic distribution leading to the observed triplets arises from the natural 

abundance of Sb. For two Sb ions with 121Sb:123Sb ~ 57:43,51 the resulting distribution is 

expected to have a ratio of 1.8:2.6:1, in good agreement with experiment. The two peaks 

at m/z = 268 and 575 can thus be confidently assigned to AT2– and AT+K–, respectively.  

Figure 8.3 shows the PE spectra of the AT2– dianion collected at 3.49 eV (355 

nm), 4.25 eV (290 nm), 4.74 eV (260 nm), and 5.17 eV (240 nm). The insets show the 

reconstructed central slices of the 3D PE distribution, where the top section shows the 

experimental slice and the bottom section shows the fit to equation ( 2.3 ).52,53 The 

anisotropy can be quantified using the β2 parameter (for a single photon process), which 

spans from +2 to –1 for a cos2θ or sin2θ distribution, respectively.  



194 
 

All spectra show a single peak centred at an electron binding energy (eBE) of 

~2.5 eV, which broadens on the low kinetic energy side with increasing photon energy. 

The vertical detachment energy (VDE) can be determined to be 2.5 ± 0.1 eV. The 

adiabatic detachment energy (ADE) can be estimated by extrapolation of the low eBE 

edge towards the eBE axis to the value of ADE = 2.1 ± 0.1 eV. 

 

Figure 8.3 PE spectra recorded at 5.17 eV (240 nm), 4.74 eV (260 nm), 4.25 eV (290 nm) and 3.49 eV 

(355 nm). Inset in each plot is the central slice through the experimental (left) and simulated (right) 

velocity-map image. The position of the repulsive coulomb barrier at each binding energy is indicated by 

a vertical dashed line. 

From the DFT calculations, the VDE is calculated at 2.78 eV (M06-2X 

functional) or 3.05 eV (M11 functional), while the ADE was calculated at 2.63 eV 

(M06-2X) and 2.84 eV (M11). In both cases the computed values are above those 

determined experimentally. Several calculations varying the amount of global Hartree-

Fock exchange in the M06 suite of functionals shows the VDE to change between 2.11 
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eV and 3.91 eV, for 27% and 100% exchange, respectively. This simply reflects the 

inadequacies in DFT and functional parameterization to correctly describe systems of 

this type. Of note, M06-2X has 54% Hartree-Fock exchange, while M11 is a range-

separated functional in which there is 43% local and 100% non-local Hartree-Fock 

exchange. Despite these variations in electron affinities, population analysis of the 

charge localization showed a reasonable insensitivity to the specific functional 

parameterization. 

 

Figure 8.4 Overlaid PE spectra recorded at 290 nm (black) and 355 nm (blue dotted), and the position of 

the ends of the repulsive coulomb barrier at 355 nm (blue dashed). 

The PE spectrum at 355 nm was excluded from the determination of 

photodetachment energetics as the observed signal levels were orders of magnitude 

lower due to the close proximity to the top of the RCB.4,54 Briefly, the RCB presents a 

barrier to photodetachment of MCAs, produced through the competition between short 

range attraction of the liberated PE and the resultant AT– anion, and long range 

repulsion between the PE and the AT– anion.1,4 Classically, only PEs with sufficient 

kinetic energy to surmount the RCB can be detected using PE spectroscopy.4 Quantum 

mechanically, excitation near the top of the RCB may lead to electron tunnelling, thus 

leading to PE signal below the RCB cut-off. This contribution becomes particularly 
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pronounced if excitation accesses a dianion excited state that is situated above the 

detachment threshold but below the RCB.1,10,55-58 In AT2–, there are no excited states 

near 3.5 eV. The proximity of the RCB, however, means that the true VDE is never 

sampled in the 3.49 eV PE spectrum and therefore, this spectrum shows a spectral 

maximum that is 0.15 eV less than the spectra at higher photon energies, as is clearly 

shown in Figure 8.4. However, this spectrum does enable an accurate determination of 

the RCB height by extrapolating the falling edge at the high binding energy side of the 

peak. This yields an RCB height of 0.9 ± 0.1 eV for AT2–. The position of the RCB has 

been included in all of the relevant PE spectra in Figure 8.3. 

It is apparent from the PE images that photodetached electrons have strong 

ejection anisotropy that is predominantly parallel to the polarisation of the light, ε, as 

indicated in the inset PE images. The β2 parameters for the PE peak averaged between 

2.3 eV < eBE < 2.7 eV are +1.32, +1.16 and +0.97 at the excitation energies of 4.28 eV 

(290 nm), 4.77 eV (260 nm), and 5.17 eV (240 nm), respectively.  

 

8.4 Elucidating the Effect of the RCB on the Photoelectron Anisotropy 

For a singly-charged anion, the PE ejection anisotropy is predominantly dictated 

by the quantum interference between outgoing partial waves of the PE.52,53 While some 

qualitative insight can be gained through symmetry considerations,59 the quantitative 

prediction of the PE angular distribution for large molecular systems remains very 

difficult.60,61 In contrast, the PE emission from a dianion is dominated by the long-range 

RCB effects; inherent quantum mechanical anisotropy influences are usually less 

important.1,9,62 In accord, in a first approximation, photoemission from a dianion can be 

viewed as a classical electron moving on the RCB of the system. Within this zeroth 

order picture the observed anisotropy can be modelled using classical trajectories.  
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The classical dynamics requires knowledge of the molecular RCB surface, V(x, 

y, z), which can be calculated using ab initio electronic structure methods.63-65 However, 

given the known deficiencies of DFT for this system, we approximate V(x, y, z) as the 

repulsion between an electron and AT– defined as a series of point charges with 

magnitude as either the Mulliken or NBO charges50 of AT–. Because electron emission 

is essentially instantaneous with respect to molecular vibrations, we take AT– to be in 

the equilibrium geometry of the dianion. Mulliken or NBO populations indicates that 

each antimony atom has a charge of +0.9 or +1.9, respectively. The excess negative 

charge is predominantly distributed across the four carboxylic acid groups (see Figure 

8.1). The aim of the model here is not to achieve quantitative agreement, rather to 

determine if a simple classical picture can capture the observed dynamics and trends. 

The point-charge model will almost certainly not reproduce the true shape of the RCB 

at short-range, but should perform better at long-range. It is also important to recognise 

that the model ignores polarization of AT– by the outgoing electron. 

Figure 8.5 shows V(x, y = 0, z) and V(x = 0, y, z) on the left and right panes, 

respectively, calculated using NBO charges. The shape of V(x, y, z) has two 

characteristics that are important in determining the observed PE anisotropy. Firstly, 

there is a large repulsive barrier in the xy plane around the molecule which roughly 

coincides with the location of the tartrate subunits; and secondly, two large attractive 

wells surround the antimony atoms as these are predominantly cationic in nature. The 

antimony ions lower the potential so that the lowest RCB (maximum along the saddle 

point) lies along the z axis. Electrons will require less energy to overcome these valleys 

and therefore, we anticipate that the electron will leave along the z axis at low photon 

energies. 
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Figure 8.5 The electrostatic potential energy surface of an electron and the AT
-
 anion in the xz (left) and 

yz (right) planes. Repulsion is indicated by positive energy. Regions where the electrostatic interactions 

are greater than ±12.5
 
eV are indicated by black. The positions of the antimony cations are clearly 

identifiable by the large attractive (blue) potential wells. 

The minimum energy barrier (RCB) along the z direction was calculated to be 

1.1 eV (1.4 eV using Mulliken charges). This compares reasonably well with the 0.9 eV 

RCB determined from the experiment, given the approximations and the limitations of 

the DFT calculations. 

To more completely examine the effect of the RCB on the observed PE 

anisotropy, we have simulated the PE images using the electrostatic potential, V(x, y, z). 

In order to do this, we have invoked an approximation in which electron detachment can 

be considered equivalent to electron attachment. That is, to model the PE trajectories, 

we begin with a PE at some constant distance from the AT– and that is allowed to 

propagate towards the AT–. If the incoming PE has sufficient kinetic energy to 

overcome any part of the V(x, y, z), then there is some probability that this electron 

trajectory could have been accessed in photodetachment of AT2–. In a simple physical 
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picture, the electrons that contribute to the PE spectrum are those with trajectories that 

lead to a bound dianion – i.e. when V(x, y, z) < 0. To implement this, a series of random 

starting positions on a sphere of radius 1000 Å (Coulomb repulsion ~ 0.014 eV) from 

the centre of the molecule is chosen. From these positions, electrons with a given 

kinetic energy are directed towards the centre. The electrostatic force on the electron at 

each point was calculated and the electron progresses according to Newton’s equations 

of motion using the Verlet algorithm.66,67 A time step (proportional to the inverse square 

root of the force) was chosen to be sufficiently small (5*10–20 s at 2.4 Å from the centre 

of the molecule) to sample the dynamics accurately. The trajectories are continued until 

either the electron returns to a long distance or when the electron reaches a region at 

which V(x, y, z) < 0. We consider that the former do not contribute to the PE emission 

while the latter do. In order to fully replicate photodetachment, we have generated the 

initial molecular frame distribution by collating several runs of the simulation at a single 

kinetic energy whilst varying the point towards which we direct our electrons by up to 

±2 Å on an x, y and z raster. 

 

Figure 8.6 Plots showing the initial starting positions of the simulated electrons at various initial kinetic 

energies on a sphere with a radius of 1000 Å. The starting positions of electrons that surpass the RCB are 

shown in blue. The percentage of trajectories that surpass the RCB is also given. 
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In order to relate the simulation to the PE images, we record the initial velocities 

of the trajectories that may surpass the RCB, as the velocities are measured in VMI. In 

Figure 8.6, the initial velocities are plotted on a sphere representing those trajectories 

that contribute to the PE emission, calculated using the Mulliken point charges. Each 

panel represents a different initial kinetic energy of the electron as shown and each 

simulation consists of 15360 trajectories.  

From Figure 8.6, it is clear that the initial positions of trajectories of electrons 

that surpass the RCB are clustered about the z-axis, which is in agreement with the 

expected result based on the shape of V(x, y, z) shown in Figure 8.5. Figure 8.6 (a) 

shows the results for energies of 0.25 eV above the RCB. Only a tiny fraction (2.7%) of 

the trajectories contributes to the PE emission, which forms an almost symmetric circle 

around the z-axis. As the kinetic energy is increased, the fraction of trajectories 

increases to 22.4% for kinetic energies of 1 eV in excess of the RCB (Figure 8.6 (d)). 

As the electron kinetic energy increases, the distribution of trajectories that contribute to 

the PE emission also broadens. This broadening is caused by two factors: (i) the area 

over which the RCB can be overcome increases because the RCB is a saddle point; and 

(ii) the effect of V(x, y, z) on the trajectory of the incoming (outgoing) electron becomes 

less as the relative excess kinetic energy increases. Additionally, the anisotropy in V(x, 

y, z) becomes clearly apparent as the distribution of PE emission is no longer a 

symmetric circle around the z-axis. This is a direct effect of the geometry of the 

molecule; the distribution widens over the x axis, whereas the tartrate subunits are 

located over the y axis. The presence of the tartrate subunits results in a far higher 

repulsion of the electron from the y direction than the x axis, resulting in a lower RCB 

on the xz plane than the yz plane, as can be observed in Figure 8.6. Experimentally, of 

course, this anisotropy is not measured.  
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The anisotropy plotted in Figure 8.6 is not directly comparable with a single-

photon PE spectroscopy experiment because the simulations present a molecular-frame 

(MF) PE emission for a laboratory-frame (LF) fixed molecule. In the experiment, a LF 

distribution of the PE emission is measured from a randomly distributed ensemble of 

dianions. In order to relate the simulated distributions to the experimentally observed β2 

parameters, the random orientation of AT2– relative to ε must be accounted for. 

If the differential cross section for photodetachment relative to   was isotropic, 

then for a random initial distribution of AT2–, one would expect a perfectly isotropic PE 

distribution with β2 ≡ 0, regardless of any RCB anisotropy.1 Experimentally, a large 

positive β2 was observed, instead suggesting a differential cross section peaking along 

the molecular z-axis. To generate a laboratory-frame distribution, we convolute our 

simulated molecular-frame distribution with the differential cross section to 

photodetachment, where the angle θ is defined between   and z. Because rotation about 

the z axis does not change θ, convolution with a uniform distribution about a 2π rotation 

in the xy plane is sufficient. In contrast, rotation about the x and y axes does affect θ. 

The limiting distributions are a cos2θ or sin2θ distribution, which correspond to the 

differential cross section peaking parallel and perpendicular to the molecular z axis, 

respectively, and would therefore lead to the maximal and minimal experimental β2 

parameters, respectively. These transformations should allow direct comparisons with 

the experimental velocity-map images. For such comparisons, we consider a 1% slice of 

the initial sphere about the yz plane of the simulated distribution from which the β2 

parameters are extracted by fitting the angular intensity to equation ( 2.3 ). 

The convolution with a cos2θ distribution yields large, positive β2 parameters, as 

observed experimentally, suggesting a differential detachment cross section that is 

predominantly parallel to the laser polarisation.  We convolute the laboratory-frame PE 
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distribution with equation ( 2.3 ) where β2 now becomes the anisotropy parameter of the 

differential detachment cross section, which we label as β2
'. Using this procedure, we 

find that β2
' = 2 provides good quantitative agreement with experiment. The results of 

these simulations using both the NBO and Mulliken charges are shown in Figure 8.7 

together with the β2 parameters extracted from the experiment. To aid comparison 

between experiment and simulation, the β2 parameters are plotted as a function of the 

electron’s kinetic energy in excess of the RCB. The experimental β2 parameters are 

shown at a number of energies across the peak (where PE signal is greater than half of 

the peak – see Figure 8.3) for the four different photon energies. 

 

Figure 8.7 Comparison between β2 parameters obtained by fitting the central plane of an electron 

distribution extracted from the simulation (black line) using the Mulliken charges and their associated 

error (grey line) and the β2 parameters extracted from the PE images (circles, dashed line) taken at 3.49 

eV (red), 4.28 eV (orange), 4.77 eV (green) and 5.17 eV (blue). 
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At the lowest photon energy, the β2 data is very noisy and reflects the close 

proximity to the RCB cut-off where the signal levels were very low. Similarly, at the 

highest photon energy (5.17 eV), noise increases because of the increase in background 

electrons in our experiment.  

The simulation results for the Mulliken and NBO charges were essentially 

identical, although the simulations using the NBO charges tend to predict lower β2 

parameters. This suggests that, even though the localised partial charges vary between 

both methods, the overall shape of the Coulomb potential is very similar, although the 

absolute RCB heights differ by ~0.3 eV. Any differences in the calculated electron 

trajectories due to the differences in the point charges between the two charge models 

and the different gradients of the potential energy surfaces that result should be more 

pronounced at short-range. Thus, the similarity of the final PE angular distributions for 

both methods supports the contention that the experimental PE distributions are 

dominated by long-range Coulomb interactions. That the experimental β2 values 

decrease with increasing excess kinetic energy is reproduced in the simulations. 

Furthermore, the rate of decrease in β2 with increasing energy above the RCB is also 

reproduced reasonably well, suggesting that the simple classical model has captured the 

underlying physics. 

The model has numerous limitations and approximations, for instance the 

simplistic point charge potential. Since the charges are localised fractional point 

charges, the potential at these sites are singularities and probably have potential 

gradients that are too steep in the immediate proximity of the charge sites; lower photon 

energies are unable to create electrons that have trajectories that sample such immediate 

vicinities. In addition, polarisation of AT– by the incoming electron may have some 

influence on the charge distribution and thus gradient of β2 as a function of energy. 
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Again, polarization effects have not been considered. Finally, we have assumed a 

constant β2
' value across the energy range, although β2

' might have a modest energy 

dependence. We note that if neutral excited states were to become available with 

increasing photon energy, sudden in β2
' might be expected, although is not the case here. 

Despite these assumptions, which cannot be trivially accounted for or measured, and 

despite the simple classical dynamics approach and point-charge potential energy 

surface, there is overall good agreement between theory and experiment. 

In summary, the results support the contention that classical dynamics dominate 

the PE angular distributions of dianions by virtue of the long-range interaction of the 

outgoing electron and the remaining anion.1,9,62 Through comparison with simulations, 

we have characterized a possible differential cross section for detachment from AT2–, 

which we  emphasise is needed to connect the experimental (imaging) LF and 

simulation MF. Without a suitable transformation, experimental PE anisotropy can be 

difficult to interpret. A possible method to allow more direct comparisons would be 

molecular pre-alignment before photodetachment, for example, using resonant 

excitation if the dianion supports a bound electronic excited state.62,68 However, even in 

this case, the differential cross section for photodetachment should be taken into 

account and this is in general not known a priori. 

Finally, we consider the effect of the addition of a counter ion on the PE 

spectrum. The mass-spectrum (Figure 8.2(b)) also contained a peak distribution 

corresponding to AT2– coordinated to a potassium cation: [AT+K]–. The reduction from 

a dianion to a mono-anion is expected to have a significant effect on the PE spectrum; 

reducing the overall charge of the molecule will remove the RCB which, as we have 

previously shown, has significant influence over the distribution of detached electrons. 
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The PE spectrum taken at 300 nm is shown in Figure 8.8 and compared to the spectrum 

of AT2– at 290 nm. 

 

Figure 8.8 Normalised PE spectra of the AT
2-

 dianion, taken at 290 nm (black), and the AT-K
- 
complex 

(blue dashed), taken at 300 nm. 

Immediately apparent is the shift in binding energy. We have determined the 

VDE to be 2.8 ± 0.1 eV and the ADE to be 2.4 ± 0.1 eV; a shift of ~0.3 eV from AT2–. 

While the direction of the shift is to be expected, as mono-anions do not experience the 

Coulomb repulsion between the charges as MCAs do, the magnitude is far smaller than 

might be expected. For reference, assuming that the charges are localised each on a 

single oxygen atom in AT2– at the furthest possible distance from each other and no 

confounding influences, the Coulomb repulsion between the two charges is ~3 eV. 

Obviously this is mitigated by other factors such as shielding by the other atoms and 

orbital binding energies, but it still implies that we should expect to observe a much 

greater shift in binding energies following the loss of this intramolecular repulsion. This 

may imply that the electronic structure of the AT2– is not significantly affected by the 

addition of the K+ cation.  

The shape of the PE spectrum of [AT+K]– between 2.2 eV < eBE < 3.2 eV 

exhibits a large, asymmetric peak that exhibits broadening to the high eBE side and tails 
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off to a plateau of high binding energy electrons. This is considerably broader than the 

peak observed for AT2– and indicates that the detachment process has been altered. It is 

feasible that the addition of the K+ cation has caused a greater number of vibrational 

modes in the neutral to be accessible following photodetachment, resulting in a wider 

range of electron energies being produced and hence the peak broadening and the 

observed plateau. The most significant change in the PE spectrum, the observation of 

the low energy electrons, could be explained by the loss of the RCB and a wider range 

of vibrational modes being available following photodetachment. The ab initio 

calculations required to explore the plausibility of this mechanism are beyond the scope 

of this thesis. However, these observations do not indicate a significant shift in the 

electronic structure of the AT2– subunit, indicating again that the presence of the K+ 

cation leaves the AT2– relatively unperturbed. 

Finally, we consider the anisotropy. While the dianion exhibits strong positive 

anisotropy, the PE image of the K+ coordinated complex is completely isotropic. As the 

anisotropy in the AT2– images are a direct result of the shape of the RCB, the addition 

of K+ and the subsequent loss of the RCB, as also indicated by the observation of low 

kinetic energy electrons, has resulted in the completely isotropic observed image. This 

is expected, because there is no long range repulsion between the photoelectron and the 

neutral molecule. Therefore, the RCB and the associated anisotropy are absent. 

 

8.5 Summary 

A PE imaging study of the text-book antimony tartrate dianion ionic complex 

has been presented at a number of wavelengths. The VDE and ADE were determined to 

be 2.5 ± 0.1 and 2.1 ± 0.2  eV, respectively. The PE spectra show the expected cut-off 

due to the RCB, from which the height has been determined to be 0.9 ± 0.1 eV. All PE 
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images are highly anisotropic. DFT calculations provided the equilibrium structure of 

AT2– and partial charges on each atom in AT– as either Mulliken or NBO populations. 

The full RCB potential energy surface was then calculated using a simple model of an 

electron in the electrostatic field of AT– point charges assuming the AT2– geometry. The 

surface indicates that the RCB is highly anisotropic and would result in electron 

emission predominantly along the Sb–Sb axis (z-axis). The PE images were simulated 

using classical dynamics of an electron on the RCB surface and compared to 

experiment. This showed that good agreement was attainable assuming a differential 

cross section predominantly peaking along the z-axis. The simulations broadly 

reproduced the observed changes of PE anisotropy as a function of the electron’s kinetic 

energy. The agreement between experiment and this simple model reflects that the PE 

angular distributions of a dianion are likely dominated by the long-range Coulomb 

interaction of the outgoing electron and the remaining anion. The results also highlight 

that knowledge of the relationship between laboratory and molecular frames is essential 

to correctly characterize such effects. Finally, we have recorded PE spectra of the 

[AT+K]– complex. Due to the loss of the RCB, the PE image is isotropic. The peak in 

the spectrum is found to have shifted in binding energy and low kinetic energy electrons 

are observed, which are ascribed to the presence of the K+ cation. The magnitude of the 

shift in binding energy is far less than expected. 
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Chapter 9. Concluding Remarks 

A brief summary of the major conclusions of the Thesis is presented alongside a 

discussion of future extensions of the work described previously. 

9.1 Summary of Main Results 

The first chapter of this thesis was devoted to a general overview of the 

expansive field of gas-phase femtochemistry.  A short discussion of the fundamental 

concepts underlying the physical processes investigated preceeded a brief discussion of 

the experimental methods available to femto chemists. PE spectroscopy and its 

extension into the time domain by pump-probe spectroscopy, time-resolved PE 

spectroscopy, were discussed. Finally, a short discussion of the recent application of PE 

spectroscopy to the study of the dynamics of a variety of molecular systems was 

presented. 

The second chapter was given to describing the PE spectrometer. The details of 

the pulsed anion beam machine and the production of femtosecond pulses were 

discussed, along with the principles of electrospray ionisation. The underlying 

principles of the VMI detector were discussed. 

The third chapter presented an adaptaion of the global kinetic fit of a time-

resolved PE spectrum to a series of exponential decays convoluted with an Gaussian 

distribution. The method fits the intensity of every pixel in a range of time-resolved PE 

velocity map images to an exponential decay convoluted with a Gaussian distribution. 

This fit is applied before the reconstruction of the central slice of the PE cloud from the 

images in order to extract the PE images. In this fashion, the anisotropy of the PE 

features is conserved, allowing for the direct observation and fitting of time-resolved 

anisotropy. This fitting program was found to perform far better than the traditional 
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global kinetic fit to the spectra when dealing with low intensity datasets with 

overlapping features with differing anisotropies. 

The fourth chapter concerns the dynamics of the first three excited states of the 

isolated model chromophore of GFP, HBDI–. For the S1 state, time-resolved PE 

spectroscopy has been used to determine the relative lifetimes of internal conversion 

and electron autodetachment, from which the lifetime for autodetachment was found to 

be ~ 30 ps. This remains approximately constant over an excitation range from 2.38 eV 

to 2.57 eV. Following UV excitation, the optically-bright S3 state, which is populated 

for hv > 3.7 eV, is shown to decay predominantly by internal conversion to the S2 state 

that in turn autodetaches to the neutral ground state. For hv > 4.1 eV, a new and 

favourable autodetachment channel from the S2 state becomes available, which leads to 

the formation of the first excited state of the neutral. The results indicate that the UV 

excited state dynamics of the GFP chromophore involve a number of strongly coupled 

excited states. 

The fifth chapter details the application of anion frequency- and angle- resolved 

PE imaging in order to map-out molecular excited state dynamics of the biologically 

important moiety para-benzoquinone in the gas phase. Three-dimensional spectra of 

excitation energy, electron kinetic energy and electron ejection anisotropy were 

recorded and reveal clear fingerprints of excited and intermediate state dynamics. The 

results show that many of the excited states are strongly coupled, providing a route to 

forming the ground state radical anion, despite the fact that the electron is formally 

unbound in the excited states. The conclusions drawn here cannot be compared directly 

with electron impact attachment studies, mostly due to the differing Franck-Condon 

factors and the differences between the geometry in the neutral and anionic ground 

state. However, despite these caveats, frequency- and angle-resolved PE imaging can be 
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utilised to efficiently explore anionic resonances and can be easily extended to time-

resolved experiments and to larger molecular systems. 

The sixth chapter begins by presenting the PE spectra of a number of carboxylic 

acids, concentrating on phenylcarboxylic acids with varying lengths of aliphatic and 

conjugated carbon chains, systems with π-conjugation chains and biologically relevant 

molecules. In the saturated phenyl carboxylic acids, a PE feature at low eKE with a 

magnitude that increased with the length of the carbon chain linking the phenyl group 

and the carboxylic acid was observed. This was assigned to the interaction between the 

carboxylic acid group and the hydrogen in the para position on the phenyl, which 

becomes stronger as the carbon chain length increases. For the unsaturated carboxylic 

acids, the spectra were dominated by a statistical emission peak at low eKE, which was 

ascribed to initial photoexcitation of a π* ← π  transition, followed by efficient internal 

conversion to the ground electronic state. An anomalous sharp peak was observed in the 

PE spectrum of octatrienoic acid and assigned to photodetachment of hydride. H– ions 

were directly observed via velocity-map imaging, and the mechanism of H– loss was 

assigned to a statistical process on the ground state. This was followed by the discussion 

of the PE spectra of biologically relevant molecules. The PE spectra of tryptophan and 

tyrosine were reported and found to differ significantly, which was assigned to 

differences in the relative cross-section for direct photodetachment between the 

molecules.  

The seventh chapter presents a TRPES study of a biologically relevant 

chromophore,  all-trans-retinoic acid. The adiabatic detachment energy and excited state 

energetics of are reported. Following photoexcitation to the S3 state, a minimum of two 

sequential lifetimes are confidently observed. We assign the first, ultrafast lifetime to 

decay of the initially excited S3 state to the S2 and subsequently the S1 states. The 
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second lifetime is then assigned to a trans-cis isomerisation on the S1 excited state and 

the subsequent decay of the S1 excited state population to the S0 state via a conical 

intersection accessible in the cis state geometry. 

Finally, the eighth chapter was devoted to a PE imaging study of a highly 

symmetric dianion, antimony tartrate, in order to investigate the effect of the geometry 

of the RCB on the outgoing PE angular distribution. We report the detachment 

energetics and the minimum height of the RCB. The spectra exhibit strong anisotropy 

parallel to the laser polarisation, which is a result of the geometry of the RCB potential 

energy surface. In order to describe this effect, we present classical electron dynamical 

simulations and show that, overall, the anisotropy can be predominantly described by 

these simulations once the molecular and lab frames have been reconciled. 

 

9.2  Research Outlook 

Some major themes in the work of this laboratory are the study of biologically 

relevant systems and ‘building up’ to larger and more complex molecular systems. 

Often, these goals are intertwined, as with a recent study of adenosine mononucleotide, 

dinucleotide and trinucleotide.1 The monoanion of adenosine  has an m/z of almost 1000 

and has been shown to form a long-lived π-stacked excimer in the solution phase 

following photoexcitation.2-6 However, this was not observed in our work. We assigned 

this observation to the excimer being more stable in the solution phase than the gas 

phase; indeed, the Bowers group showed that only 65% of d(A)2
– was in the π-stacked 

conformation in the gas phase at 80 K.7 We estimate the temperature of the ions in the 

ion trap to be approximately 300 K, which would explain the absence of excimers in our 

spectra. If it were possible to cool the ions by use of a cryogenic ion trap, then we might 

expect to observe π-stacking. In addition, obtaining PE spectra of vibrationally cold 
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molecules allows for the resolution of vibrational bands, that are often smeared out in 

room temperature PE spectra.8 

To this end, a new cryogenic ion trap is being installed on the machine at the 

time of writing.9 The ability to generate cryogenically cooled molecules and solvent 

clusters of systems of interest cannot be understated. It is not unreasonable to suggest 

that we might wish to repeat almost every experiment that we have reported over the 

past several years. As cryogenic cooling ‘locks’ the molecule in a conformer, it is 

desireable to repeat experiments where we have observed changes in geometry; namely, 

excitation to the S1 state of HBDI–,10 short chain DNA oligomers1 and the excited state 

decay of ATRA (Chapter 7). It is also desireable to produce solvent clusters of our 

previously studied biologically relevant molecules such as HBDI–,10-13 DNA1,14,15 and 

electron acceptors.16-19 

The PE spectra of HBDI– could potentially provide a wealth of insight into the 

excited state dynamics. First and foremost, the ability to obtain vibrationally resolved 

PE spectra from cold anions is a great advantage when considering vibrational 

autodetachment from the S1 excited state. Bochenkova and Andersen have calculated20 

that two high lying vibrational modes are responsible for mapping the geometry of the 

anion onto the geometry of the neutral, which is integral to the observation of below 

threshold threshold PEs through vibration autodetachment. If we are able to obtain a 

vibrationally resolved PE spectrum, it may be possible to experimentally identify these 

vibrational modes. 

Additionally, isolated HBDI– does not exhibit fluorescence. However, when 

constrained in a matrix that is below the glass transition temperature, it is possible to 

observe the fluorescence.21,22 This observation has previously been assigned to a 

rotation about the central allyl bridge following photoexcitation, resulting in a twisted 
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geometry that is unable to fluoresce.10 When the molecule is constrained by a matrix, 

this geometry is inaccessible, hence the molecule may fluoresce. It may be possible to 

identify the prescence or absence of a barrier to rotation on the excited state surface 

through the use of careful TRPES measurements; by varying the pump pulse energy, we 

necessarily vary the initial vibrational energy on the S1 excited state. If there is 

sufficient energy to surpass a barrier to rotation, then the observed dynamics will be 

identical to the observations of Mooney et al.10 If there is insufficient energy, then the 

molecule will be ‘trapped’ in the fluorescent geometry. The excited state decay is then 

expected to be orders of magnitude slower. Therefore, by measuring the lifetime of the 

isolated anion, it should be possible to identify both the existence and height of a barrier 

to rotation. 

Moving forward, we wish to expand our work on the methodology of FAT-PI, in 

particular for the application of this methodology to explore the resonances of electron 

acceptors. We have recently expanded the work detailed in Chapter 4 to a number of 

quinone systems. There are a variety of molecules that are suitable for study by FAT-PI. 

We have also begun to explore the excited state structure and dynamics of molecules 

found in the interstellar medium, such as polyaromatic hydrocarbons and C2nH–. 

However, an aim of the group for a number of years has been to study 

buckminsterfullerene, C60. The ability of C60 to act as an electron acceptor has attracted 

significant interest and considerable effort has been applied in order to understand the 

anionic excited state structure, through electron attachment23-29 and absorption30 

experiments and theoretical investigations.31-35 The electron attachment spectrum 

recorded by Elhamidi et al. is extremely broad, with C60
– produced at incident electron 

energies of at least 10 eV, highlighting C60’s exceptional ability as an electron acceptor.  

Also present are a series of resonances, indicating the presence of above-threshold 
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anionic excited states and again suggesting that the Buckminsterfullerene anion is a 

suitable candidate for FAT-PI. 

 

Figure 9.1 Area-normalised frequency resolved spectra of C60
–
. 

Preliminary spectra for C60, which have been obtained at excitation photon 

wavelengths of 310 nm - 355 nm in increments of 5 nm and are normalised to the area 

of the spectrum, are presented in Figure 9.1. There are two major peaks in the spectrum: 

an peak at low kinetic energy which has the appearance of an exponential decay and a 

peak at higher kinetic energy from direct detachment. The relative intensities of these 

peaks vary sharply between the spectra and several are dominated by the low energy 

peak. This is most likely due to multiple photon cycling; the molecule absorbs the 

excitation radiation to form an excited state, which subsequently decays to produce a 

vibrationally excited ground electronic state. This state can again absorb the incident 

radiation and relax, accumulating energy until an electron is lost through thermionic 

emission, giving rise to the low energy peak observed in the spectra. This peak may 

then obscure the spectral features from single photon processes, hindering assignment. 

Nevertheless, the presence of optically accessible resonances in the frequency-resolved 

spectrum can be clearly observed. We therefore plan to repeat the experiment over a 

much broader range of wavelengths, using far smaller increments in excitation energy 

and carefully selecting the detection settings in order to minimise the detection of 
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electrons detached from multiple photon processes in order to fully map the anionic 

excited states of the C60
 anion. 

The ordering and number of the bound anionic states of C60 are also uncertain.31-

36 Of particular interest is a correlation-bound s-type state, which is bound by 120 meV 

and has 91% of the charge density located outside of the C60 cage.32,33 We wish to 

attempt to locate these excited states through photoelectron spectroscopy, although this 

is no longer straightforward; C60
– has a vertical electron affinity of 2.689 eV8, yet the 

first excited state is predicted to lie at 1.33 eV above the ground state.31 We therefore 

have two options open to us: we can focus the nanosecond laser pulse into the chamber 

and attempt two-photon ionisation, or we can combine the nanosecond pulse with our 

femtosecond system and employ a pump-probe scheme. 

Finally, we wish to perform time-resolved experiments to determine the 

dynamics of the excited state decay mechanisms of the determined excited states.  

Through this work, we aim to increase the understanding of both the anionic excited 

state structure and the mechanisms of electron attachment to C60. 
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Chapter 10. Appendices 

10.1  Global Kinetic Fit to a Time-Resolved Images Series 

function [Input,Control,Output] = Global_Image_Fit(Input,Control) 

%%        ~~Global Image Fit to a Kinetic Model~~ 

% 

% This code fits a series of velocity map images to a series of exponential 

% decays. To begin, enter 'Global_Image_Fit;' into the Command Window. You 

% will then be asked to define a number of variables required for the 

% fitting program. 

% 

% Starting in this fashion will fit the time resolved data to a series of 

% independent exponential decays convoluted by a Gaussian (the Instrument 

% Response Function), in addition to a constant background image. The 

% program will then plot the decay associated images, the experimental and 

% fitted decay curves, the POP'ed background and decay associated spectra 

% and, finally, the time-resolved experimental data and fit. 

% 

% After your first fit, we recommend that you subsequently enter 

% '[Output,Control,Input] = Global_Image_Fit(Input,Control);' to avoid 

% re-entering values and to give you greater control of the output of the 

% program and the schemes that the data is fitted to. In particular, the 

% program is able to fit to decay curves assuming 2 and 3 sequential 

% lifetimes (Population 1 flows into population 2, and so on). The beta 

% parameters of the decay associated images and the time-resolved data may 

% also be extracted. 
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% 

% Good luck! 

% CWW, ASC, DAW 

 

%%                ~~INPUTS~~ 

% 

%   Input = Structured matrix containing all inputs. 

%      Input.directory = Base directory of image files. 

%      Input.tau = Row vector of initial lifetime estimates. Number of 

%            inputs defines number of lifetimes in the fit. 

%                (Default = 1, 2 and 3 lifetimes dependent 

%                upon fitting regime used) 

%      Input.IRF = Estimate of instrument response function. 

%                (Default = 100 fs) 

%      Input.ImCentre = Input for cropping images. [xcentre, ycentre, 

%              radius] - When finding the image centre, 

%              column number gives x. 

%                (Default = [250 250 200]) 

%      Input.eKE = Calibration factor. 

%                (Default = 1) 

%      Input.t0 = t0 

%                (Default = 0) 

%      Input.Limits = Sets eKE and time limits. 

%             [eKEmin eKEmax; tMin tMax] 

%                (Default = [0 0; 0 0]) 
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%                If eKEmin = eKEmax, limits are set to 

%                minimum and maximum of the working scales 

%  Control = Controls functionality of code. Input blank variable for 

%       default settings. 

%      Fitting Controls 

%        Control.Fitting_Proc = Controls fitting procedure. 

%          1 = Runs fitting loop 

%          0 = Skips to output 

%              (Default = 1) 

%        Control.Decay_Curves = Controls decay curves used. 

%          1 = Assumes all lifetimes are independent. 

%          2 = Assumes two lifetimes, with population from Tau(1) 

%            feeding into population for Tau(2). 

%          3 = Assumes three lifetimes, with population from 

%            Tau(1) cascading into population for all other 

%            lifetimes. 

%              (Default = 1) 

%      Plotting Controls 

%          1 = On 

%          0 = Off 

%        Control.Plot_DAI = Plot DAI. 

%                      (Default = 1) 

%        Control.Plot_Decay_Curves = Plot Decay Curves and 

%                      Integrals. 

%                      (Default = 1) 
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%        Control.POP_Output = POP output experimental and fit 

%                  data. 

%                      (Default = 1) 

%        Control.Plot_DAS = Plot Background and DAS. 

%                      (Default = 1) 

%        Control.TR_Data = Plot all Time Resolved Data. 

%                      (Default = 1) 

%        Control.TR_Beta = Plot Time Resolved Beta(2) 

%                 Parameters. 

%                      (Default = 0) 

%        Control.Figures = Plotting for Figures. 

%                      (Default = 0) 

 

%%               ~~OUTPUTS~~ 

% 

%  Output = Structured matrix containing all inputs 

%    Output.tau = Row vector of final lifetimes. 

%    Output.IRF = Fit of instrument response function. 

%    Output.eKE = eKE Vector used. 

%              (Set POP_Output On) 

%    Output.t0 = t0 

%    Output.Limits = Outputs the eKE and time lits used. 

%              (Set POP_Output On) 

%    Output.DAI = Matrix of decay associated images. 1st column is the 

%          background image, 2nd:end columns are the images 
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%          associated with Tau(1:end). 

%    Output.delay_curves = Exponential decays that the TRPEI is fitted 

%               to. 

%    Output.shape = Original shape of the input images - use with  

%           reshape to manually extract the decay associated 

%           images from DAI. 

%    Output.TR_Int = Row vector of the total intensity of the input 

%            images at each time delay. 

%              (Set Plot_Decay_Curves On) 

%    Output.DAI_Int = Matrix of the total intensity of the decay 

%            associated images at each time delay convoluted 

%            with the associated delay curve - essentially the 

%            contribution of each decay associated image to the 

%            image at each time delay. 

%            DAI_Int(1,:) = Background image 

%            DAI_Int(2:end-1,:) = image associated with  

%                      Tau(1:end-1) 

%            DAI_Int(end,:) = Sum of Lifetime contributions 

%              (Set Plot_Decay_Curves On) 

%    Output.TD = Time delays used in the experiment adjusted for t0. 

%    Output.POPcomponents = Deconvoluted radial spectra of the decay 

%               associated images extracted through POP. 

%              (Set POP_Output On) 

%    Output.DAIBeta2 = Beta(2) parameters of the decay associated images 

%             extracted through POP. 
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%              (Set POP_Output On) 

%    Output.DAIBeta4 = Beta(4) parameters of the decay associated images 

%             extracted through POP. 

%              (Set POP_Output On) 

%    Output.ExTRPES = Experimental TR photoelectron spectrum. 

%              (Set POP_Output On) 

%    Output.TRBeta2 = Beta(2) parameters of the decay associated images 

%            extracted through POP. 

%              (Set POP_Output On) 

%    Output.TRBeta4 = Beta(4) parameters of the decay associated images 

%            extracted through POP. 

%              (Set POP_Output On) 

%    Output.FitTRPES = TR photoelectron spectrum from the fit. 

%              (Set POP_Output On) 

%    Output.BKGSubEx = Background subtracted Experimental TR 

%             photoelectron spectrum. 

%              (Set POP_Output On) 

%    Output.BKGSubFit = Background subtracted fitted TR photoelectron 

%             spectrum. 

%              (Set POP_Output On) 

%  Control = Control Matrix. 

%  Input = Input Matrix. 

 

%%             ~~TROUBLESHOOTING~~ 

% 
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% Q: The program is not extracting the time delays from the file names. 

%    A: This program was designed for use on our anion photoelectron 

%    spectrometer, which gives file names of the type 

%    '1_~1000_RA_400+800nm_200V_TR_r2.asc'. The program splits the 

%    filename into segments indicated by '_' and constructs the time 

%    delay vector by taking the 2nd part of the file name. You may 

%    either construct your filenames in a similar fashion or adjust the 

%    program - Go to the Extract_Images function and change the 

%    indicated value on line 506. 

% Q: What is POP and why doesn't the code run without it? 

%    A: The program uses the Polar Onion Peeling algorithm to analyse 

%    the input images. The Matlab code was produced by Adi Natan and can 

%    be found at http://uk.mathworks.com/matlabcentral/fileexchange/41064-

polar-onion-peeling 

% Q: The program ends before a reasonable fit is found. 

%    A: Increase the 'MaxFunEvals' (FC1, line 697) or the 'MaxIter' 

%    (FC2, line 698) values. 

% Q: The program gives an insufficiently accurate fit. 

%    A: Reduce the 'TolFun' (FC3, line 699) and 'TolX' (FC4, line 700) 

%    values. 

% Q: My supervisor dislikes the colours of the line plots. 

%    A: You can adjust the colour scheme used to plot the decay curves 

%    and decay associated spectra by adjusting the 'Colours' colourmap 

%    on line 908. The other half of the issue, I can't help with. 
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%%               ~~THE CODE~~ 

 

%%               ~~CONTENTS~~ 

% 

% Check Control and Input Matricies - 221 

%  Check Input Variables - 222 

%  Check Control structure exists - 239 

%  Check Input structure exists - 277 

%  Check Inputs - 364 

%  Check Control Inputs - 412 

% Function to extract images from Base Directory - 548 

% Extract TRPES from Base Directory - 603 

% Generate Inputs - 616 

% Fitting Functions - 631 

%  Fitting to Independent Lifetimes - 633 

%  Fitting to 2 Sequential Lifetimes - 664 

%  Fitting to 3 Sequential Lifetimes - 700 

%  Fitting to 2 Sequential Lifetimes and  

%   additional independent lifetimes - 757 

%  Fitting to 3 Lifetimes, 2 lifetimes simultaneously and sequentially  

%   following from the first - 802 

%  Fitting to 3 Sequential Lifetimes and 

%   additional independent lifetimes - 848 

% Analysis - 912 
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%  Fitting Controls - 914 

%  Fitting Program - 920 

%  Construct Output matrix - 1043 

%  Extract Data - 1053 

%    POP Output - 1074 

%    Define Colour palette for plotting - 1181 

%    Output fitting parameters - 1189 

% Plot Results - 1215 

%  Extract DAI and residuals - 1217 

%  Plot Decay Curves and Integrals - 1249 

%  Plot Background and DAS - 1364 

%  Plot all Time Resolved Data - 1420 

%  Plot Time Resolved Beta(2) and Beta(4) Parameters - 1475 

%  Plotting for figures - 1576 

 

%% Check Control and Input Matricies 

% Check Input Variables 

if ~exist('Input','var') || isempty(Input) 

  Input = 0; 

end 

 

if isfield(Input,'Working_Directory') 

  directory = Input.Working_Directory; 

else 

  disp('Please define the directory where your data is stored') 
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  directory = uigetdir('C:\'); 

  Input.Working_Directory = directory; 

end 

 

if ~exist('Control','var') || isempty(Control) 

  Control = 0; 

end 

 

% Check Control structure exists 

if ~isfield(Control,'Fitting_Proc') 

  Control.Fitting_Proc = 1; 

end 

if ~isfield(Control,'Decay_Curves') 

  disp('1 = Independent Lifetimes') 

  disp('2 = 2 Sequential Lifetimes') 

  disp('3 = 3 Sequential Lifetimes') 

  disp('4 = 2 Sequential Lifetimes and additional independent lifetimes') 

  disp('5 = 3 Lifetime Fit, 2 lifetimes simultaneously and sequentially') 

  disp('  following from the first.') 

  disp('6 = 3 Sequential Lifetimes and additional independent lifetimes') 

  prompt = 'Which fitting proceedure would you like to use?  '; 

  x = input(prompt); 

  Control.Decay_Curves = x; 

end 

if ~isfield(Control,'POP_Output') 
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  Control.POP_Output = 1; 

end 

if ~isfield(Control,'Plot_DAI') 

  Control.Plot_DAI = 1; 

end 

if ~isfield(Control,'Plot_Decay_Curves') 

  Control.Plot_Decay_Curves = 1; 

end 

if ~isfield(Control,'Plot_DAS') 

  Control.Plot_DAS = 1; 

end 

if ~isfield(Control,'TR_Data') 

  Control.TR_Data = 1; 

end 

if ~isfield(Control,'TR_Beta') 

  Control.TR_Beta = 0; 

end 

if ~isfield(Control,'Figures') 

  Control.Figures = 0; 

end 

 

% Check Input structure exists 

if ~isfield(Input,'tau') 

  if isfield(Control,'Plot_Decay_Curves') 

    switch Control.Decay_Curves 
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      case 1 

        prompt = 'How many lifetimes would you like to fit to?  '; 

        x = input(prompt); 

        if x < 1 

          prompt = 'How many lifetimes would you like to fit to?  '; 

          disp('Please enter a positive integer') 

          x = input(prompt); 

        end 

        Input.tau = ones(1,x)*500; 

      case 2 

        Input.tau = [100 500]; 

      case 3 

        Input.tau = [100 500 1000]; 

      case 4 

        disp('This fitting proceedure fits to two seqential') 

        disp('lifetimes and a number of additional lifetimes.') 

        prompt = 'How many additional lifetimes would you like to fit to?  '; 

        x = input(prompt); 

        if x < 1 

          prompt = 'How many lifetimes would you like to fit to?  '; 

          disp('Please enter a positive integer') 

          x = input(prompt); 

        end 

        Input.tau = ones(1,(x+2))*500; 

      case 5 
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        Input.tau = [100 250 500]; 

      case 6 

        disp('This fitting proceedure fits to three seqential') 

        disp('lifetimes and a number of additional lifetimes.') 

        prompt = 'How many additional lifetimes would you like to fit to?  '; 

        x = input(prompt); 

        if x < 1 

          prompt = 'How many lifetimes would you like to fit to?  '; 

          disp('Please enter a positive integer') 

          x = input(prompt); 

        end 

        Input.tau = ones(1,(x+3))*500; 

    end 

  end 

end 

if ~isfield(Input,'IRF') 

  Input.IRF = 100; 

end 

if ~isfield(Input,'ImCentre') 

  prompt = 'Do you know the image centre? Y/N  '; 

  str = input(prompt,'s'); 

  if str == 'Y' || str == 'y' 

    prompt = 'What is x (the column number)?  '; 

    x = input(prompt); 

    prompt = 'What is y (the row number)?  '; 
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    y = input(prompt); 

    prompt = 'What radius would you like to use?  '; 

    r = input(prompt); 

    Input.ImCentre = [x y r]; 

  elseif str == 'N' || str == 'n' 

    disp('The centre is set to default') 

    disp('POP_Output has been supressed') 

    Input.ImCentre = [250 250 200]; 

    Control.POP_Output = 0; 

  end 

end 

 

if ~isfield(Input,'eKE') 

  prompt = 'Do you know the eKE scale? Y/N  '; 

  str = input(prompt,'s'); 

  if str == 'Y' || str == 'y' 

    prompt = 'What is the Calibration factor?  '; 

    x = input(prompt); 

    Input.eKE = x; 

  elseif str == 'N' || str == 'n' 

  disp('The eKE scale has been set to default') 

  Input.eKE = 1; 

  end 

end 
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if ~isfield(Input,'t0') 

  Input.t0 = 0; 

end 

 

if ~isfield(Input,'Limits') 

  Input.Limits = [0 0; 0 0]; 

end 

 

% Check Inputs 

if length(Input.ImCentre) ~= 3; 

  disp('Overwriting ImCentre - Check Input') 

  Input.ImCentre = [250 250 200]; 

end 

 

tauDim = size(Input.tau); 

if tauDim(1) ~= 1 

  if tauDim(2) == 1 

    Input.tau = Input.tau'; 

  else 

    msg = 'Input.tau must be a row vector'; 

    error(msg); 

  end 

end 

 

if size(Input.IRF) ~= 1 
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  disp('Input.IRF must be a 1x1 matrix - overwritten') 

  Input.IRF = 100; 

end 

if size(Input.eKE) ~= 1 

  eKEtest = size(Input.eKE); 

  if eKEtest(1)*eKEtest(2) == eKEtest(1) && Input.eKE(1) == 0 

    disp('Assuming eKE input is a full scale') 

    disp('Input.eKE must be the calibration factor') 

    disp('Taking 2nd value as calibration factor') 

    Input.eKE = Input.eKE(2); 

  elseif eKEtest(1)*eKEtest(2) == eKEtest(2) && Input.eKE(1) == 0 

    disp('Assuming eKE input is a full scale') 

    disp('Input.eKE must be the calibration factor') 

    disp('Taking 2nd value as calibration factor') 

    Input.eKE = Input.eKE(2); 

  end 

  msg = 'Input.eKE must be a 1x1 matrix'; 

  error(msg); 

end 

if size(Input.t0) ~= 1 

  disp('Input.t0 must be a 1x1 matrix - overwritten') 

  Input.t0 = 0; 

end 

if size(Input.Limits) ~= [2 2] 

  disp('Input.Limits must be a 2x2 matrix - overwritten') 
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  Input.Limits = [0 0; 0 0]; 

end 

 

% Clear Output File 

Output = 0; 

 

% Check Control Inputs 

if Control.Fitting_Proc == 0 

  disp('Extracting Fit at Input Values') 

elseif Control.Fitting_Proc == 1 

  disp('Beginning Fitting Proceedure') 

else 

  msg = 'Check Fitting_Proc'; 

  error(msg); 

end 

 

if Control.Decay_Curves == 1 

  fprintf('Assuming %0.0f Independent Lifetimes\n',length(Input.tau)) 

elseif Control.Decay_Curves == 2 

  if length(Input.tau) == 2 

    disp('Assuming 2 Consecutive Lifetimes') 

  else 

    disp('This Fitting Proceedure fits to 2 lifetimes') 

    if length(Input.tau) == 1 

      disp('Another Lifetime is required') 
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    elseif length(Input.tau) == 3 

      disp('One less Lifetime is required') 

    elseif length(Input.tau) > 3 

      disp('Please reduce the number of lifetimes') 

    end 

    msg = 'Check length of tau'; 

    error(msg); 

  end 

elseif Control.Decay_Curves == 3 

  if length(Input.tau) == 3 

    disp('Assuming 3 Consecutive Lifetimes') 

  else 

    disp('This Fitting Proceedure fits to 3 lifetimes') 

    if length(Input.tau) == 2 

      disp('Another Lifetime is required') 

    elseif length(Input.tau) == 1 

      disp('More Lifetimes are required') 

    elseif length(Input.tau) == 4 

      disp('One fewer Lifetime is required') 

    elseif length(Input.tau) > 4 

      disp('Please reduce the number of lifetimes') 

      disp(' ') 

      disp('There''s a fine, fine line') 

      disp('Between together and not.') 

      disp('And there''s a fine, fine line') 
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      disp('Between what you wanted and what you got.') 

      disp('You''ve got to go after the things you want') 

      disp('While you''re still in your prime') 

      disp('But there''s a fine, fine line') 

      disp('Between a reasonable fit') 

      disp('And a waste of your time') 

    end 

    msg = 'Check length of tau'; 

    error(msg); 

  end 

elseif Control.Decay_Curves == 4 

  if length(Input.tau) > 2 

    disp('Assuming 2 Consecutive Lifetimes, with additional lifetimes') 

  else 

    disp('More lifetimes are required') 

    msg = 'Check length of tau'; 

    error(msg); 

  end 

elseif Control.Decay_Curves == 5 

  if length(Input.tau) == 3 

    disp('Assuming 3 Lifetimes, 2 consecutive to the first') 

  else 

    disp('Fewer lifetimes are required') 

    msg = 'Check length of tau'; 

    error(msg); 
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  end 

elseif Control.Decay_Curves == 6 

  if length(Input.tau) < 4 

    disp('Assuming 3 Consecutive Lifetimes, with additional lifetimes') 

  else 

    disp('More lifetimes are required') 

    msg = 'Check length of tau'; 

    error(msg); 

  end  

else 

  msg = 'Check Decay_Curves'; 

  error(msg); 

end 

 

if Control.POP_Output == 1 

elseif Control.POP_Output == 0 

  if Control.Plot_DAS == 1; 

    Control.Plot_DAS = 0; 

    disp('Outputs Suppressed - Check POP_Output') 

  end 

  if Control.TR_Data == 1; 

    Control.TR_Data = 0; 

    disp('Outputs Suppressed - Check POP_Output') 

  end 

  if Control.TR_Beta == 1; 
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    Control.TR_Beta = 0; 

    disp('Outputs Suppressed - Check POP_Output') 

  end 

  if Control.Figures == 1; 

    Control.Figures = 0; 

    disp('Outputs Suppressed - Check POP_Output') 

  end 

else 

  msg = 'Check POP_Output'; 

  error(msg); 

end 

 

if Control.Plot_DAI ~= 0 && Control.Plot_DAI ~= 1  

  msg = 'Check Plot_DAI'; 

  error(msg); 

end 

 

if Control.Plot_Decay_Curves ~= 0 && Control.Plot_Decay_Curves ~= 1  

  msg = 'Check Plot_Decay_Curves'; 

  error(msg); 

end 

 

if Control.Plot_DAS ~= 0 && Control.Plot_DAS ~= 1 

  msg = 'Check Plot_DAS'; 

  error(msg); 
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end 

 

if Control.TR_Data ~= 0 && Control.TR_Data ~= 1  

  msg = 'Check TR_Data'; 

  error(msg); 

end 

 

if Control.TR_Beta ~= 0 && Control.TR_Beta ~= 1  

  msg = 'Check TR_Beta'; 

  error(msg); 

end 

 

if Control.Figures ~= 0 && Control.Figures ~= 1  

  msg = 'Check Figures'; 

  error(msg); 

end 

 

%% Function to extract images from Base Directory 

 

function [times,specs,shape] = Extract_Images(base_dir,AoI) 

%   times = Experimental time delays 

%   specs = Matrix of experimental images. Each image is returned as a 

%       column in the matrix. 

% ion_counts = If experiment has been performed using ion normalisation, 

%       the ion count is extracted from the image and returned here 
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%   shape = Shape of the original image file 

 

  if ~exist('base_dir','var') && isempty(base_dir) 

    base_dir = uigetdir(); 

  end 

  files_list = dir(base_dir); 

  times = []; 

  specs = cell(1,0); 

  for f=files_list.' 

    if ~f.isdir && ~isempty(regexp(f.name,'[.]asc$','ignorecase')) 

      disp(f.name) 

      % Read the time from the filename 

      time = strsplit(f.name,'_'); 

        try 

          time = time(2); %<<--- <<--- <<--- 

          % This value determines which part of the file name is read 

          % to construct the time delays matrix. The file name is 

          % split by the underscores. 

          % For example: 1_~1000_RA_400+800nm_200V_TR_r2.asc 

          %       1  2  3   4   5  6 7 

        catch 

          time = time(1); 

          time = strsplit(time,'.'); 

          time = time(1); 

        end 
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      time = strrep(time,'~','-'); 

      time = str2double(time); 

      image_array = dlmread([base_dir,' \',f.name]); 

      image_array(335,416) = 0; 

      image_array(354,425) = 0; 

      image_array(75,304) = 0; 

      % These identify dead pixels in our photoelectron spectrometer. 

      % Please feel free to remove and add to them as needed. 

      Crop_IR = image_array(AoI(2,2):AoI(1,2), AoI(2,1):AoI(1,1)); 

      shape = size(Crop_IR); 

      Crop_IR = reshape(Crop_IR,prod(shape),1); 

      times = [times,time]; 

      specs = [specs,Crop_IR]; 

    end 

  end 

  [times,idxs] = sort(times); 

  specs = specs(idxs); 

  specs = cell2mat(specs); 

  clear image_array 

end 

 

 

%% Extract TRPES from Base Directory 

% Set area of image to extract from files 

AoI = [(Input.ImCentre(1) + Input.ImCentre(3))... 
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   (Input.ImCentre(2) + Input.ImCentre(3));... 

   (Input.ImCentre(1) - Input.ImCentre(3))... 

   (Input.ImCentre(2) - Input.ImCentre(3))]; 

 

% Extracts images from the home directory 

[delays,TRPEI,shape] = Extract_Images(directory,AoI); 

%   delays = Experimental time delays 

%   TRPEI = Matrix of experimental images. Each image is returned as a 

%       column in the matrix. 

% delays = -delays; 

%% Generate Inputs 

sigma = Input.IRF/2.35; 

 

% Generate input matrix 

InMat = ones(2+length(Input.tau),1); 

InMat(1) = Input.t0;       % t0 

InMat(2) = sigma;         % IRF 

InMat(3:end) = Input.tau;     % Lifetimes 

 

% Generate eKE matrix 

eKE = ones(shape(1),1); 

for a = 1:length(eKE) 

  eKE(a) = ((a-1)^2)*Input.eKE; 

end 
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%% Various fitting functions, dependent on mode chosen 

 

%% Fitting to Independent Lifetimes 

% Function to generate the decay curves 

function [delay_curve,TD] = 

IndLife_Decay_Curves(Time_Delays,Tau,t0,Sigma) 

  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

   

  % Background 

  % Constant amplitude set to 1 

  for b = 1 

    delay_curve(:,b) = ones(length(Time_Delays),1); 

  end 

   

  % Lifetimes 

  for b=(2:(length(Tau)+1)) 

    B = (Sigma^2/(2*Tau(b-1)^2)) - (TD)/Tau(b-1); 

    C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(b-1))); 

    delay_curve(:,b) = exp(B).*C; 

  end 

end 

 

% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = IndLife_Fitting_Function(x) 
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  [delay_curves,TD] = IndLife_Decay_Curves(delays,x(3:end),x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 

  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Fitting to 2 Sequential Lifetimes 

% Function to generate the decay curves 

function [delay_curve,TD] = 

SeqLife2_Decay_Curves(Time_Delays,Tau,t0,Sigma) 

  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

   

  % Background 

  delay_curve(:,1) = ones(length(Time_Delays),1); 

   

  % First Independent Lifetime 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,2) = exp(B).*C; 
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  % Second lifetime, population dependent upon Tau(1) 

  % [B] = (k1/(k2-k1))*(exp^(-k1t)-exp^(-k2t)) 

  B = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,3) = ... 

    (Tau(2)/(Tau(1)-Tau(2)))*(exp(D).*E - exp(B).*C); 

end 

 

% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = SeqLife2_Fitting_Function(x) 

  [delay_curves,TD] = SeqLife2_Decay_Curves(delays,x(3:end),x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 

  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Fitting to 3 Sequential Lifetimes 

% Function to generate the decay curves 

function [delay_curve,TD] = 

SeqLife3_Decay_Curves(Time_Delays,Tau,t0,Sigma) 
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  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

 

  % Background 

  delay_curve(:,1) = ones(length(Time_Delays),1); 

   

  % First Independent Lifetime 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,2) = exp(B).*C; 

  

  % Second lifetime, population dependent upon Tau(1) 

  B = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,3) = ... 

    (Tau(2)/(Tau(1)-Tau(2)))*(exp(D).*E - exp(B).*C); 

   

  % Third lifetime, population dependent upon Tau(2) and hence Tau(1) 

  % ((k1/((k1-k2)(k1-k3)))*(exp^(-k1t)-exp^(-k3t))) 

  % +((k1/((k1-k2)(k3-k2)))*(exp^(-k2t)-exp^(-k3t))) 

 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); %Tau(1) 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); %(exp(B).*C) 
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  k1 = 1/Tau(1); 

  D = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); %Tau(2) 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); %(exp(D).*E) 

  k2 = 1/Tau(2); 

  F = (Sigma^2/(2*Tau(3)^2)) - (TD)/Tau(3); %Tau(3) 

  G = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(3))); %(exp(F).*G) 

  k3 = 1/Tau(3); 

  H = (k1*((exp(D).*E).*(exp(F).*G))); 

  I = (k2-k3)*((exp(B).*C).*(exp(D).*E)).*(exp(F).*G); 

  J = ((k1-k2)*(exp(D).*E)); 

  K = (k3-k1)*(exp(F).*G); 

  L = (k1-k2)*(k1-k3)*(k2-k3); 

  M = I + J + K; 

  N = H.*M; 

  O = N/L; 

  delay_curve(:,4) = O; 

end 

 

% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = SeqLife3_fitting_function(x) 

  [delay_curves,TD] = SeqLife3_Decay_Curves(delays,x(3:end),x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 
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  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Fitting to 2 Sequential Lifetimes and additional independent lifetimes 

% Function to generate the decay curves 

function [delay_curve,TD] = SeqLife2_Ind_Decay_Curves(Time_Delays,... 

    Tau,t0,Sigma) 

  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

   

  % Background 

  delay_curve(:,1) = ones(length(Time_Delays),1); 

   

  % First Independent Lifetime 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,2) = exp(B).*C; 

 

   

  % Second lifetime, population dependent upon Tau(1) 

  % [B] = (k1/(k2-k1))*(exp^(-k1t)-exp^(-k2t)) 

  B = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 
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  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,3) = ... 

    (Tau(2)/(Tau(1)-Tau(2)))*(exp(D).*E - exp(B).*C); 

   

  % Independent Lifetimes 

  for b=(4:(length(Tau)+1)) 

    B = (Sigma^2/(2*Tau(b-1)^2)) - (TD - t0)/Tau(b-1); 

    C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(b-1))); 

    delay_curve(:,b) = exp(B).*C; 

  end 

end 

 

% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = SeqLife2_Ind_Fitting_Function(x) 

  [delay_curves,TD] = SeqLife2_Ind_Decay_Curves(delays,x(3:end),... 

    x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 

  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Fitting to 3 Lifetimes, 2 lifetimes simultaneously and sequentially  
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% following from the first 

% Function to generate the decay curves 

function [delay_curve,TD] = 

Three2Seq_Decay_Curves(Time_Delays,Tau,t0,Sigma) 

  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

   

  % Background 

  delay_curve(:,1) = ones(length(Time_Delays),1); 

   

  % First Independent Lifetime 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,2) = exp(B).*C; 

 

   

  % Second lifetime, population dependent upon Tau(1) 

  % [B] = (k1/(k2-k1))*(exp^(-k1t)-exp^(-k2t)) 

  B = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,3) = ... 

    (Tau(2)/(Tau(1)-Tau(2)))*(exp(D).*E - exp(B).*C); 
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  % Third lifetime, population dependent upon Tau(1) 

  % [B] = (k1/(k2-k1))*(exp^(-k1t)-exp^(-k2t)) 

  B = (Sigma^2/(2*Tau(3)^2)) - (TD)/Tau(3); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(3))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,4) = ... 

    (Tau(3)/(Tau(1)-Tau(3)))*(exp(D).*E - exp(B).*C); 

end 

 

% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = Three2Seq_Fitting_Function(x) 

  [delay_curves,TD] = Three2Seq_Decay_Curves(delays,x(3:end),x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 

  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Fitting to 3 Sequential Lifetimes and additional independent lifetimes 

% Function to generate the decay curves 

function [delay_curve,TD] = 

SeqLife3_Ind_Decay_Curves(Time_Delays,Tau,t0,Sigma) 
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  delay_curve = zeros(length(Time_Delays),(length(Tau)+1)); 

  TD = Time_Delays - t0; 

 

  % Background 

  delay_curve(:,1) = ones(length(Time_Delays),1); 

   

  % First Independent Lifetime 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,2) = exp(B).*C; 

  

  % Second lifetime, population dependent upon Tau(1) 

  B = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); 

  D = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); 

  delay_curve(:,3) = ... 

    (Tau(2)/(Tau(1)-Tau(2)))*(exp(D).*E - exp(B).*C); 

   

  % Third lifetime, population dependent upon Tau(2) and hence Tau(1) 

  % ((k1/((k1-k2)(k1-k3)))*(exp^(-k1*t)-exp^(-k3*t))) 

  % +((k1/((k1-k2)(k3-k2)))*(exp^(-k2*t)-exp^(-k3*t))) 

 

  B = (Sigma^2/(2*Tau(1)^2)) - (TD)/Tau(1); %Tau(1) 

  C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(1))); %(exp(B).*C) 
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  k1 = 1/Tau(1); 

  D = (Sigma^2/(2*Tau(2)^2)) - (TD)/Tau(2); %Tau(2) 

  E = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(2))); %(exp(D).*E) 

  k2 = 1/Tau(2); 

  F = (Sigma^2/(2*Tau(3)^2)) - (TD)/Tau(3); %Tau(3) 

  G = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(3))); %(exp(F).*G) 

  k3 = 1/Tau(3); 

  H = (k1*((exp(D).*E).*(exp(F).*G))); 

  I = (k2-k3)*((exp(B).*C).*(exp(D).*E)).*(exp(F).*G); 

  J = ((k1-k2)*(exp(D).*E)); 

  K = (k3-k1)*(exp(F).*G); 

  L = (k1-k2)*(k1-k3)*(k2-k3); 

  M = I + J + K; 

  N = H.*M; 

  O = N/L; 

  delay_curve(:,4) = O; 

   

  % Independent Lifetimes 

  for b=(5:(length(Tau)+1)) 

    B = (Sigma^2/(2*Tau(b-1)^2)) - (TD - t0)/Tau(b-1); 

    C = erfc((-1/sqrt(2)).*((TD)/Sigma - Sigma/Tau(b-1))); 

    delay_curve(:,b) = exp(B).*C; 

  end 

end 
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% Function to generate the decay associated images 

function [error,delay_curves,DAI,TD] = SeqLife3_Ind_fitting_function(x) 

  [delay_curves,TD] = SeqLife3_Ind_Decay_Curves(delays,x(3:end),x(1),x(2)); 

  % DAS, TRPEI, delay_curves are matricies 

  % TRPEI = DAS*delay_curves 

  % solve for DAS 

  DAI = TRPEI/delay_curves.'; 

  error = TRPEI - DAI*delay_curves.'; 

end 

 

 

%% Analysis 

 

% Fitting Controls 

FC1 = 20000; % 'MaxFunEvals' 

FC2 = 20000; % 'MaxIter' 

FC3 = 1e-10; % 'TolFun' 

FC4 = 1e-10; % 'TolX' 

 

% Fitting Program 

if Control.Fitting_Proc == 1 

  switch Control.Decay_Curves 

    case 1 

      % Start with the default options 

      options = optimset; 
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      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 

                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 

        lsqnonlin(@IndLife_Fitting_Function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = IndLife_Fitting_Function(OutMat); 

       

    case 2 

      % Start with the default options 

      options = optimset; 

      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 

                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 
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        lsqnonlin(@SeqLife2_Fitting_Function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = SeqLife2_Fitting_Function(OutMat); 

   

    case 3 

      % Start with the default options 

      options = optimset; 

      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 

                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 

        lsqnonlin(@SeqLife3_fitting_function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = SeqLife3_fitting_function(OutMat); 

    case 4 

      % Start with the default options 

      options = optimset; 

      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 
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                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 

        lsqnonlin(@SeqLife2_Ind_Fitting_Function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = SeqLife2_Ind_Fitting_Function(OutMat); 

    case 5 

      % Start with the default options 

      options = optimset; 

      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 

                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 

        lsqnonlin(@Three2Seq_Fitting_Function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = Three2Seq_Fitting_Function(OutMat); 

    case 6 
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      % Start with the default options 

      options = optimset; 

      % Modify options setting 

      options = optimset(options,'Display', 'iter-detailed',... 

                    'ScaleProblem', 'Jacobian',... 

                    'MaxFunEvals',FC1,... 

                    'MaxIter',FC2,... 

                    'TolFun', FC3,... 

                    'TolX',FC4); 

      % Fitting 

      [OutMat,~,~,~,~,~,~] = ... 

        lsqnonlin(@SeqLife3_Ind_fitting_function, InMat,[],[],options); 

 

      [~,delay_curves,DAI,TD] = SeqLife3_Ind_fitting_function(OutMat); 

  end 

   

  % Extracting results from raw input 

elseif Control.Fitting_Proc == 0 

  switch Control.Decay_Curves 

    case 1 

      [~,delay_curves,DAI,TD] = IndLife_Fitting_Function(InMat); 

      OutMat = InMat; 

     

    case 2 

      [~,delay_curves,DAI,TD] = SeqLife2_Fitting_Function(InMat); 
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      OutMat = InMat; 

   

    case 3 

      [~,delay_curves,DAI,TD] = SeqLife3_fitting_function(InMat); 

      OutMat = InMat; 

    case 4 

      [~,delay_curves,DAI,TD] = SeqLife2_Ind_Fitting_Function(InMat); 

      OutMat = InMat; 

    case 5 

      [~,delay_curves,DAI,TD] = Three2Seq_Fitting_Function(InMat); 

      OutMat = InMat; 

    case 6 

      [~,delay_curves,DAI,TD] = SeqLife3_Ind_fitting_function(InMat); 

      OutMat = InMat; 

  end 

end 

 

% Construct Output matrix 

Output.tau = OutMat(3:end)'; 

Output.IRF = OutMat(2)*2.35; 

Output.t0 = OutMat(1); 

Output.DAI = DAI; 

Output.TD = TD; 

Output.shape = shape; 

Output.delay_curves = delay_curves; 
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%% Extract Data 

 

% Background subtraction loop 

function [BKGSubSpec]=BKGSubtraction(input_TR_spectrum,delays) 

  BKGIm = input_TR_spectrum(1,:); 

  BKGSubSpec = ones(size(input_TR_spectrum)); 

  for c = 1:length(delays); 

    BKGSubSpec(c,:) = input_TR_spectrum(c,:) - BKGIm; 

  end 

end 

 

 

% Generate Time limits 

if Input.Limits(2,1) == Input.Limits(2,2) 

  Tlim(1,1) = min(TD); 

  Tlim(1,2) = max(TD); 

else 

  Tlim(1,1) = Input.Limits(2,1); 

  Tlim(1,2) = Input.Limits(2,2); 

end 

 

% POP Output 

if Control.POP_Output == 1 
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  % Output experimental TRPES and Betas 

  for n = 1:length(delays); 

    if n == 1; 

      ExIm = reshape(TRPEI(:,1),shape); 

      ExImPOP = POP(ExIm,[2 4],[1 2 3 4],0); 

      ExTRPES = ones(length(delays),length(ExImPOP.PESId)); 

      ExPOPBeta2 = ones(length(delays), length(ExImPOP.Betas)); 

      ExPOPBeta4 = ones(length(delays),length(ExImPOP.Betas)); 

      ExTRPES(n,:) = ExImPOP.PESId./(0:length(ExImPOP.PESId)-1); 

      ExPOPBeta2(n,:) = ExImPOP.Betas(1,:); 

      ExPOPBeta4(n,:) = ExImPOP.Betas(2,:); 

    else 

      ExIm = reshape(TRPEI(:,n),shape); 

      ExImPOP = POP(ExIm,[2 4],[1 2 3 4],0); 

      ExTRPES(n,:) = (ExImPOP.PESId)./(0:length(ExImPOP.PESId)-1); 

      ExPOPBeta2(n,:) = ExImPOP.Betas(1,:); 

      ExPOPBeta4(n,:) = ExImPOP.Betas(2,:); 

    end 

  end 

  ExTRPES(:,1) = 0; 

  TRBeta2 = ExPOPBeta2; 

  TRBeta2(ExPOPBeta2<-1) = -1; 

  TRBeta2(ExPOPBeta2>2) = 2; 

  TRBeta4 = ExPOPBeta4; 

  TRBeta4(ExPOPBeta4<-1) = -1; 
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  TRBeta4(ExPOPBeta4>2) = 2; 

 

  % Output POPped spectral components 

  for n = 1:length(Input.tau)+1; 

    if n == 1; 

      image = reshape(DAI(:,n),shape); 

      s = POP(image,[2 4],[1 2 3 4],0); 

      POPcomponents = ones(length(Input.tau)+1,length(s.PESId)); 

      POPBeta2 = ones(length(Input.tau)+1,length(s.Betas)); 

      POPBeta4 = ones(length(Input.tau)+1,length(s.Betas)); 

      POPcomponents(n,:) = s.PESId./(0:length(s.PESId)-1); 

      POPBeta2(n,:) = s.Betas(1,:); 

      POPBeta4(n,:) = s.Betas(2,:); 

    else 

      image = reshape(DAI(:,n),shape); 

      s = POP(image,[2 4],[1 2 3 4],0); 

      POPcomponents(n,:) = s.PESId./(0:length(s.PESId)-1); 

      POPBeta2(n,:) = s.Betas(1,:); 

      POPBeta4(n,:) = s.Betas(2,:); 

    end 

  end 

   

  POPcomponents(:,1) = 0; 

  POPBeta2(:,1) = 0; 

  DAIBeta2 = POPBeta2; 
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  DAIBeta2(POPBeta2<-1) = -1; 

  DAIBeta2(POPBeta2>2) = 2; 

   

  POPBeta4(:,1) = 0; 

  DAIBeta4 = POPBeta4; 

  DAIBeta4(POPBeta4<-1) = -1; 

  DAIBeta4(POPBeta4>2) = 2; 

 

  % Producing all worked up spectra 

  FitTRPES = POPcomponents'*delay_curves.'; 

  [BKGSubEx] = BKGSubtraction(ExTRPES,delays); 

  [BKGSubFit] = BKGSubtraction(FitTRPES',delays); 

   

  % Residuals 

  TRRes = BKGSubEx - BKGSubFit; 

   

  % Extract eKE vectors 

  PCeKE = eKE(1:length(POPcomponents)); 

  EXeKE = eKE(1:length(ExTRPES)); 

   

  % Generate eKE Limits 

  if Input.Limits(1,1) == Input.Limits(1,2) 

    KElim(1,1) = Input.Limits(1,1); 

    KElim(1,2) = max(EXeKE); 

  else 
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    KElim(1,1) = Input.Limits(1,1); 

    KElim(1,2) = Input.Limits(1,2); 

  end 

   

  % Report to Output 

  Output.eKE = EXeKE; 

  Output.Limits(1,1:2) = KElim; 

  Output.Limits(2,1:2) = Tlim; 

  Output.POPcomponents = POPcomponents; 

  Output.DAIBeta2 = DAIBeta2; 

  Output.DAIBeta4 = DAIBeta4; 

  Output.ExTRPES = ExTRPES; 

  Output.TRBeta2 = TRBeta2; 

  Output.TRBeta4 = TRBeta4; 

  Output.FitTRPES = FitTRPES; 

  Output.BKGSubEx = BKGSubEx; 

  Output.BKGSubFit = BKGSubFit; 

   

elseif Control.POP_Output == 0 

  Output.POPcomponents = 'Not Available - Set POP_Output On'; 

  Output.DAIBeta2 = 'Not Available - Set POP_Output On'; 

  Output.DAIBeta4 = 'Not Available - Set POP_Output On'; 

  Output.ExTRPES = 'Not Available - Set POP_Output On'; 

  Output.TRBeta2 = 'Not Available - Set POP_Output On'; 

  Output.TRBeta4 = 'Not Available - Set POP_Output On'; 
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  Output.FitTRPES = 'Not Available - Set POP_Output On'; 

  Output.BKGSubEx = 'Not Available - Set POP_Output On'; 

  Output.BKGSubFit = 'Not Available - Set POP_Output On'; 

end 

 

% Define Colour palette for plotting 

if length(Input.tau) <= 12 

  Colours = [0 0 1; 0 0.4 0; 1 0 0; 1 0 1; 0 0 1; 0.5 0.5 0.5;... 

    0.5 0 0.5; 0 0.5 0.5; 0.5 0.5 0; 0.5 0 0; 0 0.5 0; 0 0 0.5]; 

else 

  Colours = colormap(jet(length(Input.tau))); 

end 

 

% Output fitting parameters 

if Control.Fitting_Proc == 1 

  if Control.Decay_Curves == 1 

    fprintf('Fit for %0.0f independent lifetimes\n',length(Input.tau)) 

    for n = 1:length(Input.tau); 

      fprintf('Tau %0.0f = %0.0f fs\n',(n),OutMat(n+2)) 

    end 

    fprintf('The IRFFWHM is %0.0f fs\n',(OutMat(2)*2.35)) 

   

  elseif Control.Decay_Curves == 2 

    disp('Fit for 2 consecutive lifetimes') 

    for n = 1:length(Input.tau); 
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      fprintf('Tau %0.0f = %0.0f fs\n',(n),OutMat(n+2)) 

    end 

    fprintf('The IRFFWHM is %0.0f fs\n',(OutMat(2)*2.35)) 

   

  elseif Control.Decay_Curves == 2 

    disp('Fit for 3 consecutive lifetimes') 

    for n = 1:length(Input.tau); 

      fprintf('Tau %0.0f = %0.0f fs\n',(n),OutMat(n+2)) 

    end 

    fprintf('The IRFFWHM is %0.0f fs\n',(OutMat(2)*2.35)) 

  end 

end 

 

 

%% Plot Results 

 

% Extract DAI and residuals 

if Control.Plot_DAI == 1 

   

  % Extract the Decay associated images 

  for n=1:length(Input.tau)+1; 

    figure; 

    Image = reshape(DAI(:,n),shape); 

    A1 = 1:length(Input.tau)+1; 

    Im_Title = 'Tau %d, %0.0f fs'; 
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    contourf(Image,150); 

    set(gca,'PlotBoxAspectRatio',[1.0,1.0,1.0],... 

        'PlotBoxAspectRatioMode','manual'); 

    if n == 1; 

      title('Background','FontSize',12); 

    else 

      str = sprintf(Im_Title,A1(n-1),OutMat(n+1)); 

      title(str,'FontSize',12); 

    end 

    shading flat; 

    colorbar('EastOutside'); 

  end 

   

  % Plot residuals 

  residuals = TRPEI - DAI*delay_curves.'; 

  residuals = sum(residuals.^2,2); 

  figure; 

  contourf(reshape(residuals,shape)); 

  shading flat; 

  set(gca,'PlotBoxAspectRatio',[1.0,1.0,1.0],... 

      'PlotBoxAspectRatioMode','manual'); 

end 

 

% Plot Decay Curves and Integrals 

if Control.Plot_Decay_Curves == 1 
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  % Decay Curves 

  figure; 

  subplot(2,1,1); 

  plot(TD,delay_curves'); 

  title('Fitted Exponential Decay Amplitudes','FontSize',12); 

  ylabel('Intensity'); 

  xlabel('Delay (fs)'); 

   

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Background','Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Background','Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Background','Tau(1)','Tau(2)','Tau(3)'); 

    elseif length(Input.tau) == 4 

      legend('Background','Tau(1)','Tau(2)','Tau(3)','Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Background','Tau(1)','Tau(2)','Tau(3)','Tau(4)',... 

          'Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Background','Tau(1)','Tau(2)','Tau(3)','Tau(4)',... 

          'Tau(5)','Tau(6)'); 

    else 
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      disp('Plot Decay Curves') 

      disp('Legend unsupported for this many lifetimes') 

      disp(' ') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('BackGround','Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('BackGround','Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

 

  % Integrals 

  TR_Int = sum(TRPEI); 

  DAI_Int = ones(length(Input.tau)+2,length(TD)); 

  for d = 1:(length(Input.tau)+1); 

    Int = sum((DAI(:,(d))*delay_curves(:,(d)).')); 

    DAI_Int(d,:) = Int; 

  end 

  for d = length(Input.tau)+2; 
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    if length(Input.tau) == 1; 

      DAI_Int(d,:) = sum(DAI_Int(2,:),1); 

    else 

      DAI_Int(d,:) = sum(DAI_Int(2:(length(Input.tau)+1),:)); 

    end 

  end 

   

  TR_Int = TR_Int - DAI_Int(1,:); 

   

  % Report to Output 

  Output.TR_Int = TR_Int; 

  Output.DAI_Int = DAI_Int; 

   

  subplot(2,1,2); 

  plot(TD,TR_Int,'ko'); 

  hold on; 

  plot(TD,DAI_Int((length(Input.tau)+2),:),'k'); 

  for m = 2:length(Input.tau)+1; 

    plot(TD,DAI_Int(m,:),'color',Colours((m-1),:)); 

    hold on; 

  end 

  title('Overall Decay','FontSize',12); 

  ylabel('Intensity'); 

  xlabel('Delay (fs)'); 
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  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Experimental Data','Fit','Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)'); 

    elseif length(Input.tau) == 4 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp(... 

        'Legend is still unsupported for this number of lifetimes') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Experimental Data','Fit','Tau(1)','Tau(2)'); 
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    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

   

elseif Control.Plot_Decay_Curves == 0 

  Output.TR_Int = 'Not Available - Set Plot_Decay_Curves On'; 

  Output.DAI_Int = 'Not Available - Set Plot_Decay_Curves On'; 

end 

 

% Plot Background and DAS 

if Control.Plot_DAS == 1 

 

  % Plot Background 

  figure; 

  subplot(2,1,1); 

  plot(PCeKE,POPcomponents(1,:)); 

  title('Background','FontSize',12); 

  xlabel('Electron Kinetic Energy (eV)'); 

  xlim(KElim); 

   

  % Plot DAS 
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  subplot(2,1,2); 

  title('Decay Associated Spectra','FontSize',12); 

  xlabel('Electron Kinetic Energy (eV)'); 

  for n = 1:length(Input.tau); 

    plot(PCeKE,POPcomponents(n+1,:),'color',Colours((n),:)); 

    hold on; 

  end 

  Zero_Line = zeros(1,length(PCeKE)); 

  plot(PCeKE,Zero_Line,'k--'); 

  title('Decay Associated Spectra','FontSize',12); 

  xlabel('Electron Kinetic Energy (eV)'); 

  xlim(KElim); 

   

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Tau(1)','Tau(2)','Tau(3)'); 

    elseif length(Input.tau) == 4 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 
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      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp('Plot DAS') 

      disp('Legend unsupported for this many lifetimes') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

end 

 

% Plot all Time Resolved Data 

if Control.TR_Data == 1 

  figure; 

   

  % Experimental Data 

  subplot(3,2,1); 
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  contourf(TD,EXeKE,ExTRPES',200); 

  shading flat; 

  title('Experimental Data','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % Fitted Data 

  subplot(3,2,2); 

  contourf(TD,PCeKE,FitTRPES,200); 

  shading flat; 

  title('Fit','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % Background Subtracted Experimental Data 

  subplot(3,2,3); 

  contourf(TD,EXeKE,BKGSubEx',200); 

  shading flat; 

  title('BKG-Sub Experimental Data','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 



279 
 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % Background Subtracted Fitted Data 

  subplot(3,2,4); 

  contourf(TD,PCeKE,BKGSubFit',200); 

  shading flat; 

  title('BKG-Sub Fit','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % Residuals 

  subplot(3,2,[5 6]); 

  contourf(TD,PCeKE,TRRes',200); 

  shading flat; 

  title('Residuals','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

end 

 

% Plot Time Resolved Beta(2) Parameters 
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if Control.TR_Beta == 1 

  % Time Resolved Experimental Data 

  figure; 

  contourf(TD,EXeKE,TRBeta2',200); 

  shading flat; 

  title('Beta2','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % DAS Beta(2) Components 

  figure; 

  for n = 1:length(Input.tau); 

    plot(PCeKE,DAIBeta2(n+1,:),'color',Colours((n),:)); 

    hold on; 

  end 

  title('DAI Beta2','FontSize',12); 

   

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 
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      legend('Tau(1)','Tau(2)','Tau(3)'); 

    elseif length(Input.tau) == 4 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp('Plot Beta2 Components') 

      disp('Legend unsupported for this many lifetimes') 

      disp(' ') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 
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  % Time Resolved Experimental Data 

  figure; 

  contourf(TD,EXeKE,TRBeta4',200); 

  shading flat; 

  title('Beta4','FontSize',12); 

  xlabel('Time Delay (fs)'); 

  ylabel('Electron Kinetic Energy (eV)'); 

  colorbar('EastOutside'); 

  ylim(KElim); 

   

  % DAS Beta(4) Components 

  figure; 

  for n = 1:length(Input.tau); 

    plot(PCeKE,DAIBeta4(n+1,:),'color',Colours((n),:)); 

    hold on; 

  end 

  title('DAI Beta4','FontSize',12); 

   

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Tau(1)','Tau(2)','Tau(3)'); 
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    elseif length(Input.tau) == 4 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp('Plot Beta4 components') 

      disp(... 

        'Legend still unsupported for this many lifetimes') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

end 
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% Plotting for figures 

if Control.Figures == 1 

  fs = 30; 

   

  % DAS 

  figure; 

  for n = 1:length(Input.tau); 

    plot(PCeKE,POPcomponents(n+1,:),'color',... 

      Colours((n),:),'linewidth',4); 

    hold on; 

  end 

  Zero_Line = zeros(1,length(PCeKE)); 

  plot(PCeKE,Zero_Line,'k--','linewidth',4); 

  xlim(KElim); 

  title('Decay Associated Spectra','FontSize',fs); 

  xlabel('Electron Kinetic Energy (eV)','FontSize',fs); 

  set(gca,'FontSize',fs,'linewidth',4); 

   

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Tau(1)','Tau(2)','Tau(3)'); 
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    elseif length(Input.tau) == 4 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)'); 

    elseif length(Input.tau) == 5 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Tau(1)','Tau(2)','Tau(3)','Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp('Figures DAS') 

      disp('Legend unsupported for this many lifetimes') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

   

 

  % Integrals 
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  figure; 

  plot(TD,TR_Int,'ko','linewidth',4); 

  hold on; 

  plot(TD,DAI_Int((length(Input.tau)+2),:),'k','linewidth',4); 

  Colours = [0 0 1; 0 0.4 0; 1 0 0; 1 0 1; 0 0 1]; 

  for m = 2:length(Input.tau)+1; 

    plot(TD,DAI_Int(m,:),'color',Colours((m-1),:),'linewidth',4); 

    hold on; 

  end 

  title('Overall Decay','FontSize',fs); 

  ylabel('Intensity','FontSize',fs); 

  xlabel('Delay (fs)','FontSize',fs); 

  xlim(Tlim); 

  set(gca,'FontSize',fs,'linewidth',4); 

  if Control.Decay_Curves == 1 

    if length(Input.tau) == 1 

      legend('Experimental Data','Fit','Tau(1)'); 

    elseif length(Input.tau) == 2 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)'); 

    elseif length(Input.tau) == 3 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)'); 

    elseif length(Input.tau) == 4 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)'); 

    elseif length(Input.tau) == 5 
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      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)','Tau(5)'); 

    elseif length(Input.tau) == 6 

      legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)',... 

          'Tau(4)','Tau(5)','Tau(6)'); 

    else 

      disp('Figures Decay Curves') 

      disp(... 

        'Legend is still unsupported for this number of lifetimes') 

    end 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 2 

    legend('Experimental Data','Fit','Tau(1)','Tau(2)'); 

    legend('boxoff'); 

  end 

   

  if Control.Decay_Curves == 3 

    legend('Experimental Data','Fit','Tau(1)','Tau(2)','Tau(3)'); 

    legend('boxoff'); 

  end 

 

  % Background Subtracted Time Resolved Experimental Data 

  figure; 
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  contourf(TD,EXeKE,BKGSubEx',200); 

  shading flat; 

  title('BKG-Sub Experimental Data','FontSize',fs); 

  xlabel('Time Delay (fs)','FontSize',fs); 

  ylabel('Electron Kinetic Energy (eV)','FontSize',fs); 

  colorbar('EastOutside'); 

  ylim(KElim); 

  xlim(Tlim); 

  set(gca,'FontSize',fs,'linewidth',4); 

 

  % Background Subtracted Time Resolved Fitted Data 

  figure; 

  contourf(TD,PCeKE,BKGSubFit',200); 

  shading flat; 

  title('BKG-Sub Fit','FontSize',fs); 

  xlabel('Time Delay (fs)','FontSize',fs); 

  ylabel('Electron Kinetic Energy (eV)','FontSize',fs); 

  colorbar('EastOutside'); 

  ylim(KElim); 

  xlim(Tlim); 

  set(gca,'FontSize',fs,'linewidth',4); 

end 

 

end 
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%  Comments and improvements are welcomed and should be sent to 

%  c.w.west@durham.ac.uk 
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10.2  Simulation of the Electrostatic Potential Energy Surface of the Antimony 

Tartrate Dianion 

 

Generation of the photoelectron distribution that may surpass the RCB 

function [Output] = Diff_Cross2(eKE) 

% Function to generate the initial photoelectron distribution that can 

% surpass the RCB. Generates a 3D raster of points at which to direct the 

% initial photoelectrons, which are then used to run the trajectory 

% simulation. 

 

% eKE = Initial kinetic energy of the photoelectrons 

Output = 0; 

Output.x = 0; 

Output.y = 0; 

Output.z = 0; 

Output.xt = 0; 

Output.yt = 0; 

Output.zt = 0; 

Shift = [-2 0 0]; 

for n = 1:8 

    for nn = 1:8 

        for nnn = 1:8 

            Shift(end+1,:) = [(-2+(n-1)*0.5) (-2+(nn-1)*0.5) (-2+(nnn-1)*0.5)]; 

        end 

    end 
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end 

Shift = Shift(2:end,:); 

for n = 1:length(Shift) 

    [Out] = Sim3D_Move_Charge_17(eKE,Shift(n,:)); 

    for nn = 1:30 

        if Out.Repul(nn,11000) < 0 

            if Output.x == 0 

                Output.x = Out.x(nn,1); 

            else 

                Output.x(end+1,:) = Out.x(nn,1); 

            end; 

        end 

        if Out.Repul(nn,11000) < 0 

            if Output.y == 0 

                Output.y = Out.y(nn,1); 

            else 

                Output.y(end+1,:) = Out.y(nn,1); 

            end; 

        end 

        if Out.Repul(nn,11000) < 0 

            if Output.z == 0 

                Output.z = Out.z(nn,1); 

            else 

                Output.z(end+1,:) = Out.z(nn,1); 

            end; 
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        end 

        if Out.Repul(nn,11000) < 0 

            if Output.xt == 0 

                Output.xt = Out.xt(nn,1); 

            else 

                Output.xt(end+1,:) = Out.xt(nn,1); 

            end; 

        end 

        if Out.Repul(nn,11000) < 0 

            if Output.yt == 0 

                Output.yt = Out.yt(nn,1); 

            else 

                Output.yt(end+1,:) = Out.yt(nn,1); 

            end; 

        end 

        if Out.Repul(nn,11000) < 0 

            if Output.zt == 0 

                Output.zt = Out.zt(nn,1); 

            else 

                Output.zt(end+1,:) = Out.zt(nn,1); 

            end; 

        end 

    end 

    save('Outputmat','Output'); 

end 
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end 

Calculation of the trajectories of electrons on the electrostatic potential energy 

surface and whether the electrons become bound. 

function [Out] = Sim3D_Move_Charge_17(eKE,Shift) 

% Classical electron trajectory simulation on the electrostatic potential 

% energy surface of the antimony tartrate monoanion. 

 

% eKE - Initial kinetic energy of the photoelectrons (eV, minimum value 1.4 

% eV) 

% Shift - Point at which the electrons are initially directed 

%% Definitions 

Perm = 1.11265*10^-10; % Vacuum Permittivity, 4PiE0, C^2/ J m 

ec = 1.602176*10^-19; % Elementary Charge, C 

Me = 9.10938*10^-31; % Mass of an Electron, kg 

eVJ = 1.602176*10^-19; % 1 eV = 1.602*10^-19 J 

% Define poisitions of atoms 

ATPos = [0. 0. 2.4632480534;... 

    0. 0. -2.4632480534;... 

    -1.6528628965 1.3185836011 2.0732613868;... 

    1.6528628965 -1.3185836011 2.0732613868;... 

    1.6528628965 1.3185836011 -2.0732613868;... 

    -1.6528628965 -1.3185836011 -2.0732613868;... 

    0.8349925512 1.2745995862 1.211292942;... 

    -0.8349925512 -1.2745995862 1.211292942;... 

    -0.8349925512 1.2745995862 -1.211292942;... 
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    0.8349925512 -1.2745995862 -1.211292942;... 

    0.0573912119 2.3538174664 0.764159112;... 

    0.5362450874 3.3005612155 1.0434734001;... 

    -0.0573912119 2.3538174664 -0.764159112;... 

    -0.5362450874 3.3005612155 -1.0434734001;... 

    0.0573912119 -2.3538174664 -0.764159112;... 

    0.5362450874 -3.3005612155 -1.0434734001;... 

    -0.0573912119 -2.3538174664 0.764159112;... 

    -0.5362450874 -3.3005612155 1.0434734001;... 

    1.3668559184 2.3590875494 -1.3547475296;... 

    -1.3668559184 2.3590875494 1.3547475296;... 

    -1.3668559184 -2.3590875494 -1.3547475296;... 

    1.3668559184 -2.3590875494 1.3547475296;... 

    -2.1044815908 -3.3074908875 -1.1496233225;... 

    2.1044815908 3.3074908875 -1.1496233225;... 

    2.1044815908 -3.3074908875 1.1496233225;... 

    -2.1044815908 3.3074908875 1.1496233225]; 

% Define positions of charges 

% Mulliken Charges 

ATChg = [0.943641;... 

    0.943641;... 

    -0.483333;... 

    -0.483333;... 

    -0.483333;... 

    -0.483333;... 
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    -0.446774;... 

    -0.446774;... 

    -0.446774;... 

    -0.446774;... 

    0.079815;... 

    0.103839;... 

    0.079815;... 

    0.103839;... 

    0.079815;... 

    0.103839;... 

    0.079815;... 

    0.103839;... 

    0.470939;... 

    0.470939;... 

    0.470939;... 

    0.470939;... 

    -0.446307;... 

    -0.446307;... 

    -0.446307;... 

    -0.446307]; 

ts = 0.00005; % Time step factor 

NoInc = 30; % Number of electrons in model 

Init_Dist = 1000; % Initial distance 

%% Generating starting positions 

Init_Pos = ones(NoInc,3); 
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for n = 1:NoInc 

    theta = 2*pi()*rand(1,1); 

    Init_Pos(n,3) = rand(1,1); 

    Init_Pos(n,1) = sqrt(1-Init_Pos(n,3)^2)*cos(theta); 

    Init_Pos(n,2) = sqrt(1-Init_Pos(n,3)^2)*sin(theta); 

    if mod(n,2) == 0 

        Init_Pos(n,3) = Init_Pos(n,3)*-1; 

    end 

end 

Init_Pos = Init_Pos.*(ones(NoInc,3)*Init_Dist); 

a = ones(NoInc,3); 

a(:,1) = a(:,1).*Shift(1); 

a(:,2) = a(:,2).*Shift(2); 

a(:,3) = a(:,3).*Shift(3); 

NoIter = 11000; % Number of iterations in each run 

% Define output matrix 

Out.x = zeros(length(Init_Pos),NoIter); 

Out.xt = zeros(length(Init_Pos),NoIter); 

Out.y = zeros(length(Init_Pos),NoIter); 

Out.yt = zeros(length(Init_Pos),NoIter); 

Out.z = zeros(length(Init_Pos),NoIter); 

Out.zt = zeros(length(Init_Pos),NoIter); 

% Set initial positions 

Out.x(:,1) = Init_Pos(:,1); 

Out.y(:,1) = Init_Pos(:,2); 
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Out.z(:,1) = Init_Pos(:,3); 

% Determine initial repulsion 

PESStart = zeros(NoInc,1); 

for n = 1:NoInc 

    DistancesS(:,1) = Out.x(n,1) - ATPos(:,1); 

    DistancesS(:,2) = Out.y(n,1) - ATPos(:,2); 

    DistancesS(:,3) = Out.z(n,1) - ATPos(:,3); 

    DistancesS(:,4) = sqrt(sum(DistancesS(:,1:3).^2,2)); 

    EStart = bsxfun(@rdivide,ATChg*-1*ec^2,(Perm*abs(DistancesS(:,4)*1e-

10))); 

    PESStart(n) = sum(EStart); 

end 

% Determine initial kinetic energy 

eKE = ones(NoInc,1).*eKE - PESStart; 

Velocity = sqrt((2*eKE*eVJ)/Me); % m/s 

Vel_Corr = ones(length(Init_Pos),3); 

Vel_Corr_2 = ones(length(Init_Pos),3); 

Vel_Corr(Init_Pos<0) = Vel_Corr(Init_Pos<0)*-1; 

Vel_Corr_2(Init_Pos>0) = Vel_Corr_2(Init_Pos>0)*-1; 

Init_Pos = Init_Pos.*Vel_Corr; 

% Determine initial speed in each direction 

Out.xt(:,1) = sqrt(((Velocity(:,1).^2).*((Init_Pos(:,1)-a(:,1)).^2)./((Init_Pos(:,1)-

a(:,1)).^2+(Init_Pos(:,2)-a(:,2)).^2+(Init_Pos(:,3)-a(:,3)).^2))).*Vel_Corr_2(:,1); 

Out.yt(:,1) = sqrt(((Velocity(:,1).^2).*((Init_Pos(:,2)-a(:,2)).^2)./((Init_Pos(:,1)-

a(:,1)).^2+(Init_Pos(:,2)-a(:,2)).^2+(Init_Pos(:,3)-a(:,3)).^2))).*Vel_Corr_2(:,2); 
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Out.zt(:,1) = sqrt(((Velocity(:,1).^2).*((Init_Pos(:,3)-a(:,3)).^2)./((Init_Pos(:,1)-

a(:,1)).^2+(Init_Pos(:,2)-a(:,2)).^2+(Init_Pos(:,3)-a(:,3)).^2))).*Vel_Corr_2(:,3); 

% Out.ts = ones(NoInc,NoIter); 

% Out.eKE = eKE; 

% Out.Velocity = Velocity; 

Out.Repul = zeros(length(Init_Pos),NoIter); 

% Iteration of the trajectories 

for n = 1:length(Init_Pos) % Particle idx 

    for nn = 1:NoIter % Iteration 

        if sqrt(Out.x(n,nn)^2 + Out.y(n,nn)^2 + Out.z(n,nn)^2)... 

                < (Init_Dist + 0.1) % Repelled particle end condition 

            DistancesS = zeros(length(ATChg),4); 

            DistancesS(:,1) = Out.x(n,nn) - ATPos(:,1); 

            DistancesS(:,2) = Out.y(n,nn) - ATPos(:,2); 

            DistancesS(:,3) = Out.z(n,nn) - ATPos(:,3); 

            DistancesS(:,4) = sqrt(sum(DistancesS(:,1:3).^2,2)); 

            % End condition for crossing the barrier 

            RepulE = bsxfun(@rdivide,... 

                            ATChg*-1*ec^2,... 

                            (Perm*abs(DistancesS(:,4)*1e-10))); 

            Out.Repul(n,nn) = sum(RepulE); 

            if sum(RepulE) < 0 

                Out.xt(n,nn+1:end) = Out.xt(n,nn); 

                Out.x(n,nn+1:end) = Out.x(n,nn); 

                Out.yt(n,nn+1:end) = Out.yt(n,nn); 
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                Out.y(n,nn+1:end) = Out.y(n,nn); 

                Out.zt(n,nn+1:end) = Out.zt(n,nn); 

                Out.z(n,nn+1:end) = Out.z(n,nn); 

                Out.Repul(n,nn+1:end) = sum(RepulE); 

                break 

            end 

            % Determine force acting on the particle in each dimension 

            RepulS = bsxfun(@rdivide,... 

                            bsxfun(@times,(DistancesS(:,1:3)*1e-10),... 

                            ATChg)*-1*ec^2,... 

                            (Perm*abs(DistancesS(:,4)*1e-10).^3)); 

            Force = sum(RepulS,1); 

            % Determine acceleration in each dimension 

            Accel = Force./Me; 

            % Determine time step 

            Out.ts(n,nn) = ts*(Out.x(n,nn)^2 + Out.y(n,nn)^2 +... 

                Out.z(n,nn)^2)/(2.4^2); 

            % Verlet integration 

            Out.xt(n,nn+1) = (Out.xt(n,nn) +... 

                Accel(1)*(Out.ts(n,nn)*10^-15)); 

            Out.x(n,nn+1) = Out.x(n,nn) +... 

                (Out.xt(n,nn)*Out.ts(n,nn)*10^-15 +... 

                0.5*Accel(1)*(Out.ts(n,nn)*10^-15)^2)*10^10; 

            Out.yt(n,nn+1) = (Out.yt(n,nn) +... 

                Accel(2)*(Out.ts(n,nn)*10^-15)); 
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            Out.y(n,nn+1) = Out.y(n,nn) +... 

                (Out.yt(n,nn)*Out.ts(n,nn)*10^-15 +... 

                0.5*Accel(2)*(Out.ts(n,nn)*10^-15)^2)*10^10; 

            Out.zt(n,nn+1) = (Out.zt(n,nn) +... 

                Accel(3)*(Out.ts(n,nn)*10^-15)); 

            Out.z(n,nn+1) = Out.z(n,nn) +... 

                (Out.zt(n,nn)*Out.ts(n,nn)*10^-15 +... 

                0.5*Accel(3)*(Out.ts(n,nn)*10^-15)^2)*10^10; 

        else % When repelled particle end condition met, exits loop 

            Out.xt(n,nn+1:end) = Out.xt(n,nn); 

            Out.x(n,nn+1:end) = Out.x(n,nn); 

            Out.yt(n,nn+1:end) = Out.yt(n,nn); 

            Out.y(n,nn+1:end) = Out.y(n,nn); 

            Out.zt(n,nn+1:end) = Out.zt(n,nn); 

            Out.z(n,nn+1:end) = Out.z(n,nn); 

            % Crude method to track progress of simulation 

            n 

            break 

        end 

    end 

end 

end 

 

Convolution to simulate the photoelectron images 

function [Convoluted_Dist,bins,h] = CartesianToPolar12(Output,dist) 
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%% Generate bound distribution  

Theta = 0; 

% Extract angle from z axis if repulsion becomes negative 

for n = 1:length(Output.x) 

        Theta(end+1) = 

acos(Output.zt(n)/sqrt((Output.xt(n))^2+(Output.yt(n))^2+(Output.zt(n))^2)); 

end 

Theta = Theta(2:end); 

% Account for C(infinity) symmetry about z axis of transt dipole moment 

Phi = zeros(1,1440); 

for n = 1:1440 

    Phi(n) = -pi()+((n-1)*pi())/720; 

end 

x = zeros(length(Theta),length(Phi)); 

y = zeros(length(Theta),length(Phi)); 

z = zeros(length(Theta),length(Phi)); 

for n = 1:length(Theta) 

    for nn = 1:length(Phi) 

        x(n,nn) = 100*sin(Theta(n))*cos(Phi(nn)); 

        y(n,nn) = 100*sin(Theta(n))*sin(Phi(nn)); 

        z(n,nn) = 100*cos(Theta(n)); 

    end 

end 

% Extract out outer ring of distribution in yz plane 

OuterRing.x = 0; 
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OuterRing.y = 0; 

OuterRing.z = 0; 

% ThetaSin = (1+(0*(3*cos(Theta).*cos(Theta)-1))/2); 

for n = 1:length(Theta) 

    for nn = 1:length(Phi) 

        if -1 < x(n,nn) && x(n,nn) < 1 

            OuterRing.x(end+1) = x(n,nn); 

            OuterRing.y(end+1) = y(n,nn); 

            OuterRing.z(end+1) = z(n,nn); 

        end 

    end 

end 

OuterRing.x = OuterRing.x(2:end); 

OuterRing.y = OuterRing.y(2:end); 

OuterRing.z = OuterRing.z(2:end); 

% Extract angle relative to z axis 

OuterRing.Theta = atan2(OuterRing.y,OuterRing.z); 

% Bin the distribution into 1 degree bins 

[h,bins]=hist(OuterRing.Theta,500); 

h = h./dist; 

Convoluted_Dist = zeros(1,length(h)); 

% Convolute with cos^2(Theta) distribution 

for n = 1:500 

    Convoluted_Dist = Convoluted_Dist + ((ones(1,length(h))*h(n))).*... 

        (1+((2*((3*cos(bins-bins(n)).*cos(bins-bins(n)))-1))/2)); 
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end 


