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ABSTRACT 

 

Graphene material is inherent  from carbon, its two-dimensional hexagonal 
lattice structure (also called honeycomb), which is the thinnest known at all 
material so far, equivalent to a thickness of one carbon atom only. Although  it 
is considered one of the strongest (stronger) materials known. Developed by 
Russian Andrei Geim and Konstantin Novoselov in 2004, and both won Nobel 
Prize in Physics in 2010. 

The properties of graphene have attracted the attention of many disciplines. 
Also the results of several studies in the field of thermodynamics for graphene 
led to the growing interest for the study of graphene in the areas of optics and 
photonics to be used in a variety of applications. On the other hand, 
macroscopic systems that can be analyzed using Maxwell's equations, the 
study of waves guided by the existing structures on the graphene allow them 
to better understanding to the incorporated into electromagnetic devices. 

 
In this study,  the dispersion relations for two sheets of parallel graphene in 

over Gigahertz and Terahertz  ranges  for two ships of polarization of the 
electromagnetic field are the magnetic field (TM-Modes), and field 
electrophoresis (TE -Modes) has been investigated.   

The behavior of electromagnetic waves in the presence of a layer of the left-
handed material between two sheets of parallel graphene has been studied. The 
total power flow through the structure has been obtained. 

 
In addition, this article discusses the use of guides waves as sensor  by the 

existence of two layers parallel of graphene with the installation of variables 
for remote sensing applications. 

 
The sensitivity of the sensing of the variables of electric permittivity and 

the magnetic permeability of the Left-Handed material has been presented. 
Moreover, the comparison between the layers that contain the Left-handed 
materials with layers containing insulating material. 

 
It can be concluded that the presence of a layer of left-handed materials 

between two layers of graphene gives better results for increased the 
sensitivity, which may be useful in optoelectronics and electromagnetic 
applications, such as the design of some of optoelectronic devices based on the 
scope of a private graphene sensors. 

 

 



 
V

 الملخص

وتــسمى (، ثنائیــة الأبعــاد بنیتهــا البلوریــة سداســیة الكربــون  مــن ومــشتقةمتأصــلةمــادة الجــرافین 

ربون  وهي أرفع مادة معروفة على الإطلاق حتى الآن، یعادل سمكها ذرة ك،)أیضا قرص العسل

طورهــا العــالمیین الروســیین . المــواد المعروفــة) أمــتن(ورغــم ذلــك تعتبــر إحــدى أقــوى  واحــدة فقــط،

جـــــائزة نوبـــــل فـــــي  وحـــــاز كلاهمـــــا علـــــى، 2004 عـــــام وكونـــــستانتین نوفوســـــیلوف أندریـــــه غیـــــیم

  . 2010سنة  الفیزیاء

كمـا أدى نتـائج دراسـات . اهتمـام العدیـد مـن التخصـصات الجـرافینلقد جذبت خـصائص مـادة 

 فــي مجــال الــدینامیكا الحراریــة للجــرافین إلــى اهتمــام متزایــد لدراســة الجــرافین فــي مجــالات عدیــدة

التـي  العینیـة للأنظمـة أخـرى، مـن جهـة. البصریات والضوئیات لاستخدامها في تطبیقات متنوعـة

 القائمة على الهیاكل تسترشد في موجات دراسة ماكسویل، فإن باستخدام معادلات یمكن تحلیلها

  .الكهرومغناطیسیة في الأجهزة دمجها لفهم أفضل لكیفیة تسمح لهم ینالجراف

فــــي مـــــدى للــــوحین متــــوازین مــــن الجــــرافین  فــــي هــــذه الأطروحــــة تــــم دراســــة علاقــــة التـــــشتت

الجیجــاهیرتز والتیراهیرتــز لحــالتین مــن حــالات اســتقطاب المجــال الكهرومغناطیــسي همــا المجــال 

.   )TE-Modes(ل الكهربــــي المــــستعرض ، والمجــــا)TM-Modes(المغناطیــــسي المــــستعرض 

كما تم دراسة سلوك الموجـات الكهرومغناطیـسیة فـي وجـود طبقـة مـن المـواد الیـساریة بـین لـوحین 

  .متوازیین من الجرافین

 استخدام مرشدات الموجات كمجس بوجود طبقتین متوازیتین من وفي هذه الأطروحة أیضاً تم

تــم أیــضاً اســتعراض حــساسیة و  ، الاستــشعار عــن بعــدالجــرافین مــع تثبیــت المتغیــرات لتطبیقــات 

وعـلاوة . الاستشعار عن بعد لمتغیـري الـسماحیة الكهربائیـة والنفاذیـة المغناطیـسیة للمـواد الیـساریة

على ذلك، تم المقارنة بین الطبقات التي تحتوي على مواد یساریة مع الطبقات التي تحتوي على 

  .مادة عازلة

جـود طبقـة مـن المـادة الیـساریة بـین طبقتـین مـن الجـرافین أعطـت أظهرت هذه الأطروحة أن و 

نتــائج أفــضل لزیــادة الحــساسیة، والتــي قــد تكــون ذات فائــدة فــي التطبیقــات الإلكترونیــة الــضوئیة 

  الأجهــــزة البــــصریة الالكترونیـــة القائمــــة علــــى الجــــرافینبعـــض، مثــــل تــــصمیم ةوالكهرومغناطیـــسی

  .خاصة في نطاق المجسات
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CHAPTER ONE  

GRAPHENE AND METMATERIALS CONCEPTS 

 

This chapter is intended to present introduction about graphene, When 

discovered, the distinctive characteristics, Optical conductivity of Graphene, 

and the application of graphene. Its also discussed the Metmaterials and 

optical sensing: there concepts, brief history, and applications.  

 
1.1 Introduction: 

Graphene is a rapidly rising star on the horizon of materials science and 

condensed matter physics. This strictly two-dimensional material exhibits 

exceptionally high crystal and electronic quality and despite its short history, 

has already revealed abundance of new physics and potential applications [1-

2].Graphene, a single-atom thick layer of covalently bonded carbon atoms, has 

recently emerged as an alternative for conducting materials in optical systems. 

Graphene derives its unusual current transport properties from the Dirac cones 

in its band structure at the six corners of the first Brillouin zone, which can be 

directly related to the arrangement of the carbon atoms in a two-dimensional 

honeycomb structure. Having a linear dispersion relation at energies close to 

the cone's apex, the charge carriers are relativistic quasi-partials (also called 

Dirac fermions), resulting in superior low-frequency electronic and 

mechanical properties for a sheet only a single atom thick.  

Owing to its unusual electronic spectrum, graphene has led to the 

emergence of a new paradigm of “relativistic” condensed matter physics, 

where quantum relativistic phenomena, some of which are unobservable in 

high energy physics, can now be mimicked and tested in table-top 
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experiments. More generally, graphene represents a conceptually new class of 

materials that are only one atom thick and, on this basis, offers new inroads 

into low-dimensional physics that has never ceased to surprise and continues 

to provide a fertile ground for applications[1]. 

Graphene has also been advertised as a versatile material for opto-

electronics and terahertz technology, e.g. in solar cells, light-emitting devices, 

display technology, and ultrafast Photodetectors.  

Recently, we got interested in the use of graphene with Metmaterials. 

Metamaterials are artificially structured materials in which small, 

subwavelength electric circuits replace atoms as the basic unit of interaction 

with electromagnetic radiation. The design of appropriate constituents, such as 

split-ring resonators (SRR), cut wires, and fishnets, allows for effectively 

homogeneous media with exotic material response, e.g., magnetism at 

terahertz and optical frequencies, simultaneous negative permittivity and 

negative permeability (the so-called left-handed materials) [3], giant chirality 

[4], and slow-light media. They may enable lenses with subwavelength 

resolution [5], optical systems going beyond the diffraction limit, and 

reflectionless photonic devices[6].  

1.2 Graphene   

Graphene is the name given to a flat monolayer of carbon atoms tightly 

packed into a two-dimensional (2D) honeycomb lattice, and is a basic building 

block for graphitic materials of all other dimensionalities (Figure1.1)[7].  

The discovery of the 2-D graphene sheet has been a surprise to the scientific 

community because a 2-D crystal was predicted to be thermodynamically 

unstable. A 2-D crystal is in general hard to grow because as the lateral size of 

the crystal grows, the thermal vibration also rapidly grows and diverges on a 
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macroscopic scale, which forces the 2-D crystallites to morph into a stable 3-D 

structure[8].  

Theoretically, graphene (or “2D graphite”) has been studied for sixty 

years[9-11]  and widely used for describing properties of various carbon-based 

materials. On the other hand, although known as integral part of 3D materials, 

graphene was presumed not to exist in the free state, being described as an 

“academic” material and believed to be unstable with respect to the formation 

of curved structures such as soot, fullerenes and nanotubes. All of a sudden, 

the vintage model turned into reality, when free-standing graphene was 

unexpectedly found three years ago and, especially, when the follow-up 

experiments confirmed that its charge carriers were indeed massless Dirac 

fermions. So, the graphene “gold rush” has begun [1-2]. 

 

 

Figure 1.1 Mother of all graphitic forms. Graphene is a 2D building material for 
carbon materials of all other dimensionalities. It can be wrapped up into 0D Bucky 
balls, rolled into 1D nanotubes or stacked into 3D graphite[1]. 
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1.2.1 Brief history of graphene 

Carbon demonstrates unusually complicated behavior, forming a number of 

very different structures. As well as diamond and graphite, which have been 

known since ancient times, recently discovered fullerenes[12-13] and 

nanotubes are currently a focus of attention for many physicists and chemists. 

Thus, only 3-dimensional (diamond, graphite), 1- dimensional (nanotubes), 

and 0- dimensional (fullerenes) allotropes of carbon were known. The two-

dimensional form was conspicuously missing, resisting any attempt at 

experimental observation – until recently[14].   

The term graphene first appeared in 1987 to describe single sheets of 

graphite as one of the constituents of graphite intercalation compounds (GICs) 

[12-13]. Larger graphene molecules or sheets (so that they can be considered 

as true isolated 2D crystals) cannot be grown even in principle. In the 1930s, 

Landau and Peierls (and Mermin, later) showed thermodynamics prevented 2d 

crystals in free state [15-17]. 

In 2004: Andre Geim and Kostya Novoselov at Manchester University 

managed to extract single-atom-thick crystallites (graphene) from bulk 

graphite[14]: Pulled out graphene layers from graphite and transferred them 

into thin silicon dioxide on a silicon wafer in a process sometimes called 

micromechanical cleavage or, simply, the Scotch tape technique. Since 2004, 

an explosion in the investigation of graphene in term of synthesis, 

characterization, properties as well as specifically potential application were 

reported [15]. 

1.2.2 Properties of Graphene 

Graphene is, basically, a single atomic layer of graphite; an abundant 

mineral which is an allotrope of carbon that is made up of very tightly bonded 
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carbon atoms organised into a hexagonal lattice. What makes graphene so 

special is its sp2 hybridisation and very thin atomic thickness (of 0.345 

nm)[18]. These properties are what enable graphene to break so many records 

in terms of strength, electricity and heat conduction (as well as many others). 

Graphene has many outstanding properties. Its electrical properties include its 

high carrier mobility, which is measured in various devices as 8000-10000 

cm2V-1 s-1 and could reach 200000 cm2V-1 s-1 in suspended graphene[19-20]. 

The one-atom-thick graphene is also found to be impermeable to gases, which 

could be of interest in bio-molecular and ion transport research[20]. 

Table 1.1 Summarizes the main properties of graphene. 

Parameter Value and Units 

Thermal Conductivity  5000 W/mK 

Young's Modulus  1.0 TPa 

Mobility (maximum) 200000 cm2V-1 s-1 

Saturation Veleocity  4-5 ×  107 cm/Sec 

Table 1.1: Graphene's main properties[19, 21]. 

 
1.2.3  Optical Properties 

Graphene’s ability to absorb a rather large 2.3% of white light is also a 

unique and interesting property, especially considering that it is only 1 atom 

thick. This is due to its aforementioned electronic properties; the electrons 

acting like massless charge carriers with very high mobility. A few years ago, 

it was proved that the amount of white light absorbed is based on the Fine 

Structure Constant, rather than being dictated by material specifics. Adding 

another layer of graphene increases the amount of white light absorbed by 

approximately the same value (2.3%). Graphene’s opacity of πα ≈ 2.3% 
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equates to a universal dynamic conductivity value of G=e2/4π (±2-3%) over 

the visible frequency range[18]. 

1.2.4   Optical conductivity of Graphene: 

The dynamic optical conductivity of graphene σ can be determined from the 

Kubo formalism[22-23], and an explicit expression for it's  conductance: 
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Where ω is radian frequency, ξ  is energy, μc is chemical potential, τ is a 

phenomenological electron relaxation time (τ-1 is the scattering rate) that is 

assumed to be independent of energy, e is the charge of an electron,  ħ is the 

reduced Planck's constant, and   1/)( 1),,(
  Tk

cd
BceTf   is the Fermi-Dirac 

distribution, where kB is Boltzmann's constant and T is temperature.    

The first term in Eq.(1.1) is due to intraband contributions, and the second 

term is due to interband contributions. The intraband term can be evaluated as:  
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With i     , it can be seen that int 0ra     and int 0ra   , the imaginary 

part of conductivity plays an important role in the propagation of surface 

waves guided by the graphene sheet. 
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For the Fermi-Dirac statistics [24], / 1c Bk T  , the intraband conductivity 

takes the form[24]:  
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The interband conductivity can be approximated for / 1c Bk T    as[25]: 
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Such that for 1 0    and 2 c     ,  int inter eri    with int 0er   . 

 For 1 0    and 2 c   , inter   is complex-valued, with[26]:  
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1.2.5 Application of Graphene: 

1.2.5.1  Graphene Energy Stores Application  

Energy production and storage are both critical research domains where 

increasing demands for the improved performance of energy devices and the 

requirement for greener energy resources constitute immense research interest.  

Graphene has incurred intense interest since its freestanding form was 

isolated in 2004, and with the vast array of unique and highly desirable 

electrochemical properties it offers, comes the most promising prospects when 

implementation within areas of energy research is sought[27]. 
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1. Supercapacitors 

Supercapacitors attracted considerable attention as energy storage devices; 

they offer high power density, fast charge-discharge processes and excellent 

cyclic stability[28]. Generally Supercapacitors were classified into two main 

types, namely electrical double-layer capacitors and pseudocapacitors. Carbon 

based materials are widely used as electrode materials in double-layer 

capacitors owing to their excellent physic-chemical properties[29]. Likewise, 

graphene based composite materials were had extensive applications in 

supercapacitors research filed.  

Graphene based nancomposites with conduction polymers and metal oxides 

have been utilized for the applications in pseudocapacitors[30].  

2. Batteries  

Batteries are extensively used in automobiles (cars and bikes), aircrafts, 

boats, ships and electronic equipments[31-32]. In this connection, energy 

demands were considerably increasing every year and hence electrical storage 

devices having long life, good stability and safety are wanted to fulfill the 

energy demands[4]. Lithium-ion batteries are  one of the promising energy 

storage devices which can be used in portable electronic applications. 

Recently, graphene and its composite materials were employed as novel 

electrode materials for the lithium-ion battery applications. The excellent 

properties of graphene and ease of fabrication towards preparation of graphene 

based composites with metal, metal oxides and polymers make them 

extraordinary materials in the field of batteries[30].  

3. Fuel Cell 

During the last two decades, carbon nanotubes were evolved as one of the 

most important nonmaterial towards fuel cell applications[33-34]. Fuel cell are 
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a kind of energy storage device, which converts chemical energy from a fuel 

into electrical energy by using oxygen and methanol. After the discovery of 

graphene, it finds widespread applications in fuel cells, where it can be used as 

an excellent electrode material ascribed to its excellent physicochemical 

properties.  

4. Solar Cells 

Solar Cells (polymer, bulk heterojunction and dye-sensitized) are most 

important promising devices for the conversion of sun light into electrical 

energy, offer the advantages of low cost and large scale production.  Platinum 

is widely used as cathode electrode dye-sensitized solar cells (DSSC) 

applications. Though Platinum has the advantage of having excellent 

electrocatalytic properties, it is highly expensive. Therefore, researchers have 

focused on alternative electrode materials example, inexpensive materials to 

facilitate the similar properties of platinum. Electrode materials based on 

carbon based materials such as, carbon nanotubes, activated carbon and 

graphene sheets have high electrocatalytic properties  and they could replace 

the expensive Pt electrode in DSSC applications[30, 35].  

1.2.5.2   Graphene Sensors Application  

Sensors are widely used in our daily life and its applications becoming 

increasing in electrochemical, biological and environmental detectives. 

Sensors studies have been widely used in many fields, such as industry 

(pollutant), research institute (radiation measurements) and clinical 

diagnosis[30].  

1. Electrochemical Sensors 

Electrochemical sensors offer selectivity and sensitivity with very low 

detection limits ranging from nanomolar to picomolar. A number of 
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electrochemical techniques including cyclic voltammetry, differential pulse 

voltammetry and chronoamperometry were employed to study the 

electrochemical sensors. Graphene based materials have considerable attention 

for the fabrication of non-enzymatic sensors due to their low cost, high 

catalytic ability and good stability[5, 30, 37]. 

2. Biosensors 

Biosensors are one of the most important section of sensors, which use 

biological components to detect the analytes[38]. Electrochemical biosensors 

developed based on graphene and carbon nanotubes were extensively 

studied[39-40]. On the other hand, rapid analysis of  enzyme based biosensors 

were widely used biological species in vivo and in vitro. Graphene based 

biosensors were extensively studied owing to the large specific area, good 

electrical, thermal and bio-compatibility properties of graphene[3, 30].  

3. Pesticide Sensors 

Pesticide sensors were broadly used in the field of agriculture production 

and control of pests and insecticide. Organphosphorous pesticides pollute the 

environment[41], ground water and affect directly or indirectly through the 

food process and drinking water. It can cause short and long time health 

problems leading to death and therefore development of sensitive and selective 

pesticide sensors are very important[42].  

In the past years, different electrodes were demonstrated such as, multi-

walled carbon nanotubes, metal oxide composites and polymer nancomposites 

for the determination of  pesticides.  

Recently, graphene based composite materials find widespread fame among 

other carbon materials for the detection of pesticides[30, 43].  
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1.3  Metmaterials 

In the last few years, there has been an increased interest in the scientific 

community in the study of metamaterials. Metamaterials are a class of 

composite materials artificially constructed to exhibit exceptional properties 

not readily found in nature. In particular, there has been high level interset in 

studying materials which can be characterized by simultaneously negative 

permittivity and permeability over a certain frequency band[44].  

In electromagnetism (EM), electric permittivity (ε), and magnetic 

permeability (μ) are the two fundamental parameters characterizing the EM 

property of a medium. Physically, permittivity (permeability) describes how 

an electric (magnetic) field affects, and is affected by a medium, which is 

determined by the ability of a material to polarize in response to the electric 

(magnetic) field. We use the ‘‘material  parameter space’’ as shown in Fig. 1.2  

to represent all materials, as far as EM properties are concerned[45]. 

 

Figure 1.2 Material parametr space characterized by electric permitivity(ε) and 
magnetic permeablity (μ)[46]. 
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In 1968, V. G. Veselago [47] theoretically investigated the electrodynamics 

of so-called left-handed, or doubly-negative substances. These materials are 

defined by simultaneous negative values for the electric permittivity ε and the 

magnetic permeability μ. He predicted that the wave vector k of a wave 

propagating through a left-handed substance is antiparallel to its Poynting-

vector S, as pictured in Fig.1.3 This remarkable property has far-reaching 

consequences[47]. 

 

 

Fig.1.3: Schemmatiac of negative refreaction at the interface between a 
postitive-index material and a negaive-index material. Note in the negative-
index material, the wave vector k Poynting vector S are antiparallel; while in 
the positive-index material, they are parallel[45]. 

 

The prefix "meta" (μετα Greek) means "beyond", and in this sense the name 

"metamaterials" signifies sytems that are beyond conventional materials. The 

word "metamaterial" first apeared in literature in 2000 when Smith et al. 

published their seminal paper on a strucutred material with simultaneously 

negative permeability and permittivity at microwave frequencies[48]. 
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1.3.1  Negative Refractive index:  

Due to its peculiarity in its double negative materilas  (DNG) values, where 

the  permittivity  and a magnetic permeability  are bouth negative, many 

other properites of this material are altered altogehter. The most obvious 

alteration is the refractive index where it takes on a negative value as given by 

the formula [49-50].  

                   (1.6)n    

 

Figure 1.4: Refracted Ray in ε-μ Diagram. 

 

Here, the positive sign is used for the usual case, whereas the negative sign 

is used when 0   and 0   . At n   the LHMs are referred to as 

negative index materials (NIMs).  
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The metamaterials with negative refraction index have interesting phenomena 

that do not appear in natural media can be observed. Among them there are 

some of unusual properties of waves in LHMs with negative n [50, 53]: 

 Snell's law ( 1 1 2 2sin sinn n  ) still applies, but as n2 is negative, the rays 

will be refracted on the same side of the normal on entering the material. 

 The Doppler shift is reversed: that is, a light source moving toward an 

observer appears to reduce its frequency.  

 Cherenkov radiation points the other way. 

For plane waves propagating in such metamaterials, the electric filed, 

magnetic filed and Poynting vector (or group velocity) follow a left- hand rule. 

  

1.3.2  A brief Historical Review:  

Since Victor Vesalago (1968) [47], a Russian physicist made a theoretical 

speculation on the existence of substances with simultaneously negative μ and 

ε, which serves as the origin of all research on LHM.  

However, there was not much progress until year 1999 when Prof J. B 

Pendry [54] proposed his design of Thin-Wire (TW) structure that exhibits the 

negative value of permittivity and the Split Ring Resonator (SRR) with a 

negative permeability μ value.  

Following this interesting discovery, Dr. Smith (2000) [55] from Duke 

University combined the two structures and became the first to fabricate the 

LHM in his lab. 

Kong (2002) [56] investigated the electromagnetic wave interaction with 

stratified media and then specialize to slabs of negative isotropic media. He 
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investigated field solution of guided waves, the transmission and reflection 

beams, and linear and dipole antennas in stratified structure of LHMs.  

In 2003, Engheta [57] provided the salient electromagnetic features of 

LHMs, potential future applications, physical remarks, and intuitive 

justification.  

Chew in 2005 [58] studied the energy conservation property and loss 

condition of a LHM and solve the realistic Sommerfeld problem of a point 

source over a LHM half space and a LHM slab. 

In 2007 Sabah et al. [59] presented the electromagnetic wave propagation 

through frequency-dispersive and lossy double-negative slab embedded 

between two different semi-infinite media. 

Subsequently, with the paths paved by the pioneers, more and more 

researchers emerged to study this peculiar material in many fields, for instance 

.. in filters, absorbers, lens, microwave components, and antenna. 

After the experiment demonstration of such materials, the properties and 

possible applications of various metamaterials with negative index of 

refraction gained a rapidly increasing interest. 

  
1.3.3   Applications of Metamaterials  

There are many applications for found Metamaterials, due to the exciting 

and unusual properties.  

1- Lenses:  

The most exciting possible application is the perfect lens. Compared to a 

conventional convex lens, the LHM lens looks quite exotic in that it does not 
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have any axis or curvature, nor does it focus parallel rays or magnify small 

objects. A perfect lens can be used in medical imaging, optical imaging and 

nondestructive detections [47]. 

2- Electromagnetic cloaking devices 

LHMs also played a pivotal role in the practical realization of an invisibility 

cloak. The cloak is designed for operation over a narrow band of microwave 

frequencies and substantially decreases forward and backward scattering from 

the object[60]. 

3- Super lenses 

A superlens uses metamaterials to achieve resolution beyond the diffraction 

limit. The diffraction limit is inherent in conventional optical devices or 

lenses. The first superlens in the microwave regime was realized in 2004[61], 

which demonstrated resolution three times better than the diffraction limit. 

 The LHMs can be used in other application areas such as filters, absorber, 

leak wave antenna, coupler.  

 

1.4  Optical Sensing 

Optical Sensors utilize the modification of measured to optical properties 

such as intensity, phase, and polarization of an input optical signal. Optical 

sensors have attracted considerable attention, and have excellent advantages 

such as good compactness and robustness, immunity to electromagnetic 

interface, high sensitivity, shorter response time, low cost, and high 

compatibility with optical waveguide sensors [62]. Optical sensors are used 

for optical communication and made of transparent dielectrics whose function 

is to guide visible and infrared light over long distance. Sensors based on the 

design and fabrication of a physical transducer that can transform the chemical 
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or biological reaction into a measurable signal.  Sensing is performed by the 

evanescent penetration of the field in the cover medium, and is proportional to 

the fraction of evanescent power flow in the cover. Due to their impotence in 

bio-sensing application, various optical sensors based on evanescent wave 

concept have been developed[63].  

Optical Sensing is mainly used in monitoring, measuring traces of 

chemicals and studying all physical and chemical properties that change in 

accordance with changes in refractive index which depends on film thickness 

and refractive indices of both film and surroundings.  

 

1.4.1  Sensors process of the Planer Waveguide:  

The sensing process of the planar waveguide sensors is performed by the 

evanescent tail of the modal field in the cover medium[64]. The 

electromagnetic field guided of the waveguide mode extends as an evanescent 

field into the substrate and cladding media and senses an effective refractive 

index of the guided mode[65]. The effective refractive index of a waveguide 

structure depends on the guided layer thickness, dielectric permittivity and 

magnetic permeability of the media constituting the waveguide[64]. So, any 

change in the refractive index of the covering medium leads to a change in the 

effective refractive index of the guiding mode. The sensing principle of the 

planar waveguide sensor is to determine the change in the effective refractive 

index of the covering medium[66]. 

Many theoretical and experimental studies have been conducted to improve 

the sensitivity of planar waveguide sensors. Parriaux and Velduis [64] 

presented and extensive theoretical analysis for the design of evanescent linear 

waveguide sensors and derived the conditions for the maximum achievable 
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sensitivity for both TE and TM polarizations. Shabat et al. [67-71] proposed 

optical waveguide sensors in which one or both of the surrounding media have 

an intensity dependent refractive index. It is found that utilizing nonlinear 

media can enhance the sensitivity of slab waveguide sensors. Taya at al. 

proposed optical waveguide sensors by using Left-handed materials[72]. 

Another class of optical waveguide sensor has been proposed with the so-

called reverse symmetry design[73].   

1.4.2   Surface Sensing 

The normalized analysis depends on the distribution of the cover medium, 

if the cover contains  a thin layer, known as  an adlayer (or in some literature  

affinity layer), at the surface of the sensor, then the sensing operation is called 

the surface sensing.  Fig. 1.5, here sensitivity is defined as the change of the 

effective refractive index with respect to change in adlayer width  or the 

refractive index of the adlayer   , such as[64] : 

                    , . (1.7)
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Fig. 1.5. Schematic representation of planar waveguide surface sensor[64]. 
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1.4.3  Homogeneous Sensing 

If the cover medium is homogeneously distributed, the process is called 

homogeneous sensing.  Fig. 1.6, the cover sensitivity is defined as the change 

of the effective refractive index with respect to the change of the cover 

index[64]: 

                      . (1.8)
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Fig.1.6. Schematic representation of planar waveguide homogeneous sensor[64] 

 

The sensitivity to changes in the cover can be found by [74]: 

1
2 . (1.9)

1 1 1c

c c c
n

c T c

p l lN X
S p

n P X X

 



   
    
    

 

where ( /c Tp P )is the fraction of modal power located in the cover layer. 

 p = 0 for TE and p =1 for TM mode. 

And    

2 2

1 , 1 . (1.10)c
c

f f

n N
X

n n


   
      

   
 



 20

and p number of mode order. 

It can observe from equation (1.9): 

- If  ( ,s c X      ), then 0.5c

T

p
S

P
  , 

- If ,C s cX    , then 1c

T

p
S

P
  , 

- And finally,  for ,s c sX     it turns out that 0S   since in that 

case 0c

T

p

P
 . 

 

1.4.4 Uses and applications 

In recent years several planer optical waveguide sensors have been 

suggested for biological applications. The detection of pathogenic bacteria 

have received renewed interest, especially within the fields of food safety, 

medical diagnostics, and biological warfare. Typically, optical waveguide 

sensors are used for measuring the refractive index of liquids or various 

aqueous solutions of biological substances, such as mammalian cells, bacterial 

cells, and proteins[65, 73].  

There are another application for optical waveguide sensors that can be 

used for  detecting and measuring the thickness of layers such as metals, metal 

compounds, organic, bio-organic, enzymes, antibodies and microbes[75]. 

They are also used in radiation dosimeters and protective masks or clothing 

when they can readily identify and five scanning data about any change in 

exposure or lack in protection.  
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CHAPTER TWO 

FOUNDATIONS OF WAVEGUIDES 

 
This chapter presents the fundamental concepts of electromagnetic theory, 

and boundary conditions. Wave phenomena are of essential importance for our 

work. Plane waves are the simplest form of electromagnetic waves and so 

serve to illustrate a number of basic properties associated with wave 

propagation. We start this chapter with Maxell's equations, which can be 

simplified to the geometrical optics regime, and optical systems can be 

designed with the theory of geometrical optics. Such techniques are sometimes 

applicable to millimeter wave systems, where they are referred to as quasi-

optical.   

  
2.1 Maxwell's equations: 

Classical macroscopic electromagnetic phenomena are governed by a set of 

vector equations known collectively as Maxell's equations [76]. 

We will start having a look at the Maxwell equations in the SI system of 

units for matter with σ ≠  0.  The Maxwell's equations read: 
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Where D, E, B, H, J , and ρ the electric displacement, the electric field 

intensity, the magnetic flux density, the magnetic field intensity, the current 
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density (current per unit area), and the free charge density (charge per unit 

volume), respectively. 

Consider isotropic, linear and non-dispersive media, the constitutive 

relations can be written as 

, (2.5)

. (2.6)
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Where   is the relative dielectric permittivity, and   is the magnetic 

permeability,  which can be defined as  
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0  and 0  are  the vacuum dielectric and magnetic permeability, r  and  are 

the relative permittivity and permeability of the medium. 

Denoting the velocity of light in a vacuum as 0c  , we obtain: 
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The current density J (in amperes per square meter) in a conductive material 

is given by 

            . (2.11)J E  

In an isotopic medium, the wave propagation without free charges and 

conduction current are most relevant i.e. ρ = 0, and J = 0. 

So, the Eqs. (2.1), (2.2), (2.3) and (2.4) can be written as:  



 23

             

0 , (2.12)

, (2.13)

0, (2.14)

, (2.15)

t

t

 


  



 


 



D

B
E

B

D
H

 

By using eqs. (2.5) and (2.6) , the above equations also can be written  
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2.2 Wave Equations:  

Assume that an electromagnetic filed oscillates at a single angular 

frequency (in radians per meter). Vector A , which designates an 

electromagnetic filed, is expressed as[77]  

                        Re ( )exp( ) . (2.20)r i tA A  

So, can be write the following phasor expressions (same as the above)  for 

the electric filed E , the magnetic filed H , the electric flux density D , and 

the magnetic flux Density B are as:  
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For simplicity, the , ,E H D  and B  in the phasor  representation can be 

denote as E, H, D and B. Using these expressions, which can be written Eqs. 

(2.1) to (2.4) as:  

               0
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i i
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Where it is assumed that   1r    and 0.     

Eqs. (2.25) to (2.28) represent Maxwell's equations for time harmonic fields 

in free charge lossless media. 

 
2.2.1 Wave Equation for Electric Field E: 

Applying a vectorial rotation operator    to Eq. (2.26), we get  

                 0i           

Using the Vectorial formula  

                2             

Then, the Left-hand side of Eq. (2.29) can be written as: 

                 2       

The symbol  2  is a Laplacian, given in Cartesian coordinates by: 
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Since Eq.(2.25) can be rewritten as: 

                0,r r r E            E  

Then can be rewrite as: 
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Thus, the left-hand side of Eq. (2. 29) becomes 
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On the other hand, using Eq. (2.28), we get the right-had side of Eq. (2.29) 
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0 , (2.36)rk  E  

Where 0k  is the wave number in a vacuum and is expressed as 
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Thus, for a medium with the relative permittivity r , the vectorial wave 

equation for the electric filed E is  

         2 2
0 0. (2.38)r

r

r

k





 
     

 
E E E


                            

And using the wave number k in that medium, given by 
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Eq. (2.38) can be rewritten as:  

        2 2 0. (2.40)r
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When the relative permittivity r  is constant in the medium, this vectorial 

wave equation can be reduced to the Helmholtz equation as: 

                2 2 0. (2.41)k  E E  

 
2.2.2 Wave Equation for Magnetic Field M: 

Similarly the same steps of Wave Equation for Electric Field E, applying a 

vectorial rotation operator    to Eq. (2.28), we get : 
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Using eq. (2.28), which can be write as: 

  
0

1 1
. (2.44)
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Where  0 r    as mention before.  

Now by substitute from Eq. (2.44) to Eq. (2.40), we can obtain the vectorial 

wave equation for the magnetic filed H:  
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          2 2 0. (2.45)r
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When the relative permittivity r  is constant in the medium, this vectorial 

wave equation can be reduced to the Helmholtz equation as: 

              2 2 0. (2.46)k  H H  

 

2.3  Power Consideration (Poynting Vectors):  

In this section, the time-dependent electric and magnetic fields are 

expressed as E(r,t) and H(r,t), and the time-independent electric and magnetic 

fields are expressed [77-78] as  ( , ) ( , )t and tE r H r . 

Applying a divergence operator  to E H  , we get: 

                  . (2.47)         E H H E E H  

Substituting Maxwell's equations (2.2) and (2.4) into Eq. (2.47), we get: 

       

  2

2 2 21 1
. (2.48)

2 2

t t

t

  

  

 
      

 

  
   

  

 
H E

E H H E E

E H E

 

When Eq.(2.48) is integrated over a volume  V,  and using Gauss's Law, we 

get:  

    

   

2 2 21 1
. (2.49)

2 2

n
V S

V V

dV dS

dV dV
t

  

   

  
    

  

 

 

 E H E H

E H E
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Where n designates a component normal to the surface S of volume V.  

The first two terms of the last equation correspond to the rate of the 

reduction of the stored energy in Volume V per unit time, while the third term 

corresponds to the rate of reduction of the energy due to Joule heating in 

volume V  per unit time. 

Thus, the term  
n

S

dS E H  is considered to be the rate of energy loss 

through the surface. Thus,  

           . (2.50)S = E× H  

Which this equation is expressed the energy that passes through a unit area 

per unit time. Eq. (2.50) is called a Poynting vector.  

   

 

 

( ) ( )

( ) * ( ) ( ) * ( )

* * (2 ) * * ( 2 )

*

=

( ) ( )

( ) ( ) ( ) ( )

2 2

1

4

1
. (2.51)

2

i t i t

i t i t i t i t

i t i t

r e r e

r e r e r e r e

e e

 

   

 

 



  

 
 

       

  

S E× H

E H

E E H H

E H E H E H E H

E H

 

Thus, for an electromagnetic wave oscillating at a single angular frequency, 

the quantity: 

                     *1
. (2.52)

2
 S E H  

                              
S defined as a complex Poynting vector and the energy actually propagating 

is considered to be the real part of it.  
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To find the total electromagnetic power, we integrate the Poynting vector as 

surface integral over the entire area bounding the volume. 

Thus, for TE modes , we get: 

                2 ˆ . (2.53)
2

k



S E  

                              
Similar manner for TM modes: 

                    2 ˆ . (2.54)
2

k



S H  

For a multilayer waveguide, the power flowing through the structure can be 

evaluated using: 

For TE mode:  

                 

2
( )

; (2.55)
2 ( )

y

total

E x
P dx

x



 





   

and for TM mode: 

                 

2
( )

; (2.56)
2 ( )

y

total

H x
P dx

x



 





   

 

 

 

 

 



 30

2.4 Boundary Conditions for Electromagnetic Fields:  

The boundary conditions required for the electromagnetic fields are 

summarized as follows[78]: 

 

Figure 2.1: Tangential and perpendicular fields at an interface.[79]. 

(a) Tangential components of the electric fields are continues such that: 

             1 2

1 2

ˆ ˆ 0,

ˆ ˆ . (2.57)

t t

t t

n n

n n

   

  

E E

E E
 

(b) When no current flows on the surface, tangential components of the 

magnetic fields are continues such that 

         1 2

1 2

ˆ ˆ 0,

ˆ ˆ . (2.58)

t t

t t

n n

n n

   

  

H H

H H
 

When a current flows on the surface, the magnetic fields are discontinuous 

and are related to the current density Js as follows: 

                      1 2
ˆ . (2.59)t t sn   H H J  

Where the magnetic field and the current are perpendicular to each other. 

(c) When there is no charge on the surface, the normal components of the 

electric flux densities are continuous such that 
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                       1 2

1 2

ˆ ˆ 0,

. (2.60)n n

n n

D D

   



D D
 

When there are charges on the surface, the electric flux densities are 

discontinuous and are related to the charge density ρS are follow:  

            
 1 2

1 2

ˆ ,

. (2.61)

s

n n s

n

D D





  

 

D D
 

(d) Normal components of the magnetic flux densities are continuous such 

that  

                    1 2

1 2

ˆ ˆ 0,

. (2.62)n n

n n

B B

   



B B
 

Note:  

1- n̂  the unit vector normal to the plane surface and indices 1(2) refer to 

the first (second) medium.  

2- The  subscripts  n and t in these equations are respectively unit normal 

and tangential components  at the boundary.  

 

2.5  Maxwell's Equations for a plane wave: 

By using a Maxwell's equations, we can specify the features of a plane 

wave propagating in a homogenous nonconductive medium[78]. 

Consider an electromagnetic wave provided to the optical slab waveguide 

and propagates in the z-direction, (shown in Fig. 2.2) .  
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Figure 2.2: Propagation of an electromagnetic field[78]. 

 

The electric and magnetic fields are supposed to have the sinusoidal form: 

          
( )

0

( )
0

( , ) , (2.63)

( , ) , (2.64)

i t z

i t z

E x y e

H x y e

 

 









E

H
 

Where ω is the frequency of the field and β represents the longitudinal 

component of the wave vector, and E0 and H0 define the amplitude and the 

direction of the vectors E and H, respectively, . 

So, by substitute form eq. (2.63) and eq. (2.64) into eq. (2.26) and eq. (2.28) 

we get : 
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0

0

0

, (2.68)

, (2.69)

, (2.70)
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Since the electric and magnetic fields of the plane wave don’t depend on the 

x and y-coordinates but on the z-coordinate, that means the derivatives with 

respect to the coordinates for directions other than the propagation direction 

are zero. That is, ∂⁄∂x = 0 and ∂ ⁄ ∂y =0  .  

The Eqs. (2. 65) – (2.70) becomes  

            
0

0

, (2.71)

, (2.72)

y

x

x
y

E
i H

z

E
i H

z











 



 

           
0

0

, (2.73)

, (2.74)

y

r x

x
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z

H
i E
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Equations (2.71) – (2.74) are categorized into two sets: 

Set 1:  

    

0

0

, (2.75 )

, (2.75 )

x
y

y

r y

E
i H a

z

and

H
i E b

z
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Set 2:  

       

0

0

, (2.76 )

, (2.76 )

y

x

x
r y

E
i H a

z

and

H
i E b

z



 











 

The equations of set 1 can be reduced to:  

 
2 2

2 2

2 2
0 , 0. (2.77)x yk E and k H

z z

    
      

    
 

and the equations of set 2 can be reduced to:  

  
2 2

2 2

2 2
0, 0. (2.78)y xk E and k H

z z

    
      

    
 

Where  0

2 2 2
0 0 .r rk k       

At this section we discuss a plane wave propagating in the z-direction. 

The features of the plane wave are summarized as follows [78[:  

1- The electric and magnetic fields are uniform in directions perpendicular 

to the propagation direction, that is , ∂ ⁄ ∂x = 0 and ∂ ⁄ ∂y =0; 

2- The fields have no component in the propagation direction, that is, Hz = 

Ez=0; 

3- The electric field and the magnetic field components are perpendicular 

to each other; 

4- The propagation direction is the direction in which a screw being turned 

to the right, as if the eclectic field component is being turned toward the 

magnetic field component, advances. 
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2.6  Optical Waveguide Modes: 

The optical waveguide is the fundamental element that interconnects the 

various devices of optical integrated circuits, just as a metallic strip does in an 

electrical integrated circuit. However, unlike electrical current that flows 

through a metal strip according to Ohm's law, optical waves travel in the 

waveguide in distinct optical modes. A mode, in this sense, is a spatial 

distribution of optical energy in one or more dimensions that remains constant 

in time[80-81].  

2.6.1 Modes in  Waveguide: 

The propagating modes along the waveguide may be classified according to 

which field components are present or not present in the wave. The field 

components in the direction of wave propagation are defined as longitudinal 

components while those perpendicular to the direction of propagation are 

defined as transverse components.  

Assuming the waveguide is oriented with its axis along z-axis (direction 

of wave propagation), the modes may be classified as[82]:  

i- Transverse Electromagnetic (TEM) modes: The electric and 

magnetic fields are transverse to the direction of wave propagation with 

no longitudinal components [Ez  = Hz  =  0]. 

- TEM modes cannot exist on single conductor guiding structures. Plane 

waves can also be classified as TEM modes (as we see before). 

- Quasi-TEM Modes – modes which approximate true TEM modes 

when the frequency is sufficiently small.  

0 0

0lim lim
f f

z zE H
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ii- Transverse Electric (TE) modes: The electric field is transverse to the 

direction of propagation (no longitudinal electric field component) 

while the magnetic field has both transverse and longitudinal 

components [Ez  = 0, Hz  ≠  0]. 

iii- Transverse Magnetic (TM) modes: The magnetic field is transverse 

to the direction of propagation (no longitudinal magnetic field 

component) while the electric field has both transverse and longitudinal 

components  [Hz  = 0, Ez ≠  0]. 

iv- Hybrid Modes (EH or HE modes):  Both the electric and magnetic 

fields have longitudinal components [Ez  ≠ Hz  ≠  0]. The longitudinal 

electric filed is dominant in the EH mode while the longitudinal 

magnetic field is dominant in the HE mode.  

 
2.7 Parallel Plate Waveguide Structure (PPWG):  

Waveguides have many different forms that depend on the purpose of the 

guide, and on the frequency of the waves to be transmitted. The parallel plate 

waveguide is the simplest type of guide that can support TM and TE modes. 

This type of the waveguide it can also support a TEM mode since it is formed 

from two flat conducting plates, or strips, as shown in Figure 2.4. Although it 

is an idealization, understating the parallel plate guide can be useful because 

its operation is similar to that of many other waveguides. The parallel plate 

guide can also be useful for modeling the propagation of higher order modes 

in stripline[83]. 

The following assumptions are made in the determination of the 

various modes on the parallel plate waveguide: 

1- The waveguide is infinite in length (no reflection). 
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2- The waveguide conductors are Perfect electric conductor (PEC's) and 

the dielectric is lossless. 

3- The plate width is much larger than the plate separation (w >> d) so that 

the variation of the fields with respect to z may  be neglected.  

A material with permittivity ε and permeability μ is assumed to fill the 

region between the two plates[83].  

 

 

  

 

 
 
 

Figure 2.3 : Geometry of a parallel plate waveguide[84]. 
 
 
 

2.7.1 General waveguides solutions for modes in PPWG:  

Now, we discuss an optical waveguide whose structure is a linear, isotropic 

and homogeneous region, with an i ze  z dependence, the six Maxwell's 

equations (2.65) – (2.70)  can be written as[84]:  
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, (2.82)

, (2.83)

, (2.84)
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Where β is the propagation constant and is the z-directed component of the 

wave number k. The ratio of the propagation constant in the medium, β, to the 

wave number in a vacuum, k0, is called the effective index:  

          
0

, (2.85)effN
k


  

We can summarize the Helmholtz equation for the electric field E in eq 

(2.41) as:  

2 2 2

2 2

( 0, (2.86)

0, (2.87)

j

j

k

or





  

  

E - )E

E E

 

Similarity the Helmholtz equation for the Magnetic field H in eq. (2.45) is 

as: 

2 2 2

2 2

( 0 , (2.88)

0, (2.89)

j

j

k

or





  

  

H - )H

H H

 

Where   

 2 2 2. (2.90)j jk    
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2
j : is defined as the cutoff wave number, where 0 , 1, 2 ,3j j jk k j    is the 

wavenumber in region j, and 0 0 0 /k c      is the free-space 

wavenumber, and 0 0,j j       , j and j are the relative permittivity and 

permeability of the region  j .    

 
2.7.2   Parallel Plate Waveguide Structure (PPWG) for Transversal 

Electric mode (TE Mode):  

In the TE mode, the electric field is not in the longitudinal direction 

 but in the transverse direction . Only three components 

exist for TE mode , , and . The two magnetic field components  and 

 can be expressed in terms of the electric field component  by: 

0

0

( ) ( ), (2.91)

( ) ( ). (2.92)

x y

z y

H x E x

i d
H x E x

dx







 

 

 

Substituting from Eqs. (2.91) and (2.929) into Eq. (2.83) gives the wave 

equation, Helmholtz equation 

          
2

2 2

2
( ) ( ) ( ) 0. (2.93)y j y

d
E x k E x

dx
    

The TE wave impedance can be found as: 

             . (2.94)yx
TE

y x

EE
Z

H H

 


 
       

TE waves can be supported inside closed conductors as well as between two or 

more conductors.  



 40

2.7.3  Parallel Plate Waveguide Structure (PPWG) for Transversal 

Magnetic mode(TM Mode) 

In the TM mode, the magnetic field component is not in the longitudinal 

direction  but in the transverse direction . Only three 

components exist for TM mode , , and . The two electric field 

components  and  can be expressed as[86]: 

0

0

( ) ( ), (2.95)

( ) ( ). (2.96)

y y

z y

r

E x H x

i d
E x H x

dx





 



 

 

Substituting from Eqs.(2.95) and (2.96) into Eq. (2.80) gives the wave 

equation, Helmholtz equation: 

             
2

2 2

2
( ) ( ) ( ) 0. (2.97)y j y

d
H x k H x

dx
    

The fields and propagation constant of the TM mode can be gained by 

solving for  in above equation. 

The TM wave impedance can be found as: 

        . (2.98)yx
TM

y x

EE
Z

H H

 


 
       

As for TE waves, TM waves can be supported inside closed conductors as 

well as between two or more conductors 
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CHAPTER THREE 

Electromagnetic Waves At Graphene Parallel-Plate Waveguide 

(TM-Mode) 

This section is based on the paper "Quasi-transverse electromagnetic modes 

supported by a graphene parallel-plate waveguides" by Pro. George W. 

Hanson [87] .  

Hanson has developed a modal of parallel-plate waveguide containing 

graphene. He has represented the graphene as an infinitesimally thin layers. 

The local two-sided surface characterized by a surface conductivity obtained 

from the Kubo formula. He used Maxell's equations to solved the model fields 

guided by graphene layers. He shown that despite the extreme thinness of its 

walls, a graphene parallel-plate waveguide can guide quasi-transverse 

electromagnetic modes. 

He  depicts two laterally infinite graphene sheets spaced a distance d apart 

and immersed in a layered medium, where all material parameters may have 

complex values.  

Hanson concluded that the graphene is given by the conductivity σ , which 

can be written as[87]: 

  
2 1

/( )
2 ln 1 (3.1)c Bk TC

B

je j
e

K T
 





 

     
 

 

Where ω is radian frequency, μc is chemical potential, τ is a 

phenomenological electron relaxation time (τ-1 is the scattering rate) that is 

assumed to be independent of energy, e is the charge of an electron, ħ is the 

reduced Planck's,  kB is Boltzmann's constant and T is temperature.     
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3.1 Structure Analysis 

We consider a structure consisting infinite graphene sheets spaced a distance 

d, apart and immersed a layered medium, occupying the planes x = -d/2 and x 

= d/2 and infinite in y and z directions. We assume that the electromagnetic 

wave propagates in the z-direction. So the electric and magnetic field of the 

propagating waveguide mode will be:  

( )

( )

( , t) ( ) , (3. 2 )

( , t) ( ) , (3. 2 )

i t z
y

i t z
y

x e a

x e b

 

 









r

r

E E

H H
 

 

 

 

 

 

Figure 3.1: Graphene PPWG (Side view) formed by two graphene sheets, each 
characterized by surface conductance σa,b. 

 

In this geometry, two types of waveguide modes can propagate: The TM (p-

polarized) modes, and the TE (s-polarized) modes. In the following  section 

the TM mode and is analyzed and discussed. 
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3.2 The Dispersion Relation:  

We consider the TM wave with the magnetic filed perpendicular to the 

plane of incidence (xz), possesses the electromagnetic field components E = 

{Ex, 0, Ez}, H= {0, Hy, 0}. 

Maxwell's equations require that in the Hy(x) introduced in eqs. (3.1) 

satisfies:  

                      
2

2 2

2
( ) ( ) ( ) 0. (3.3)y j y

d
H x k H x

dx
    

Where kj= , 1,2,3j j ok k j   is the wavenumber  in region, j, εj is the 

relative permittivity of region j, and o o ok c      is the free-space 

wavenumber (c is the speed of light in vacuum). 

The boundary conditions to be enforced at material interfaces are:  

          

 

 

ˆ (3.4)

ˆ 0, (3.5)

lim 0, (3.6)
x









s
+ -

+ -

x× H - H = J = E,

x× E - E

E, H

 

Where Js(A/m) is an electric surface current on the boundary, E+ and H+ are 

the fields on the upper side of the interface, E- and H- are the corresponding 

fields on the lower side of the interface, and  σ is the interface conductivity 

(units of SI), x̂  is the normal unit vector to the interface surfaces.  

The waveguiding axis is chosen as the z-axis, and from source- free 

Maxell's equations for the TMz fields in each region are: 
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Modal fields are:  
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Where A, B, C and D are constants with respect to position. 

     

By applied Boundary Conditions (3.5 -3.6):  

(1)  At x = d/2, 
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From eq.(3.10) and eq.(3.11) we have get: 
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(2)  At x = -d/2, 
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From eq.(3.14) and eq.(3.15) we have get: 

2 2

2 2

sin( / 2) cos( / 2)
, (3.16)
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By solving eq. (3.12) with eq.(3.16) and using Applications of 

Trigonometric, we have the dispersion equation for the guided modes:  

         2 2cos 1 sin 0, (3.18)a b a bc c d c c i d      

where   2 2 2.j jk    

Eq, (3.18) can be written as: 

2tan . (3.19)
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a b
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3.3   Approximation Solution 

Hanson assumed that the graphene PPWG is a perturbation of a perfectly 

conducting PPWG, and approximation solution had been found as[87]: 
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Appling the mentioned approximation in the dispersion relation, we obtain : 
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For the simple case of  2 1 a band      , the eq. (3.20) lead to 
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3.4 Power Flowing Within The PPWG Graphene (TM Mode) 

The power flow in the structure is defined as mentioned in chapter 2:  
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Substituting for Hy(x) form Eq. (3.6) into Eq. (3.14), we get: 
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Then  
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The coefficients A, B, C and D are related to each other through the 

equations:  
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For sensing applications, the most important parameter for optical 

waveguide sensor  is the fraction of total power flowing in the upper [88]:  
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3.5 Numerical Results 

The following results are for the TM mode of a graphene PPWG.  For 

simplicity, suspended graphene sheets will be assumed (ε1 = ε2 = ε3 = 1) to 

avoid any influence of a dielectric substrate (remote phonon scattering , 

opening of a band gap, etc.), the chemical potential is μc= 0.5eV, which leads 

to a large charge density n= 2×1013 cm-2. Since μc/kBT >>1 thought at least 500 

K, for all temperatures of interest the conductivity is  

          
2

1
. (3.32)

( )
ce

i
i




   






 

Therefore, the following results are only dependent on temperature via the 

relaxation time τ. The relaxation time depends on a variety of other factors, 

including the presence of impurities, and for simplicity here we use a constant 

value of τ =5 × 10-13 s (Note: the values of μ and τ are in the range of values 

considered in Ref. 65). 

Furthermore, assuming that  μc/kBT >> 1, at higher frequencies (ω >> τ-1) 

the only control over the conductivity is via the chemical potential.  

For lower frequencies(ω <<τ-1),     

           
2

. (3.33)ce  






 

and the conductivity is controlled by the product μcτ.  
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Fig (3.2) shows the complex effective index β/k0 from eq. (3.18) of the 

graphene PPWG with plate separation d=100 nm, for frequencies in the 

GHz/far-infrared range. The upper and lower dash curves are for dispersion 

relation eq. (3.18), the dash dot curves are the approximation one, showing 

excellent agreement with the numerical solution of Eq. (3.21).  

The conductivity curves are marked by solid and dot lines. It can be seen 

that throughout most of the considered frequency range, the TM mode is 

relatively nondispersive, even though the conductivity itself is moderately 

dispersive. 

 

Fig. 3.2. The dash line is effective index β/k0 from Eq. (3.18) for a graphene PPWG with 
d=100nm. The approximation Eq. (3.21) is shown as blue dash dot lines. The 

conductivity is normalized by σmin = πe2/2h [87]. 
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Fig (3.3) shows effective index β/k0 of the graphene PPWG versus the 

frequencies of the dielectric layer for different values of the thickness. As the 

thickness of dielectric layer increases, the real part of the normalized phase 

constant β/k0 is decreasing. Additionally, with increasing the frequency, the 

real part of the effective index β/k0  decreases; this because the real part of 

graphene conductivity decreases with the frequency, as shown in the figure 

(3.2). While the imaginary part of effective index β/k0 increases with 

increasing the operating frequency; because the imaginary part of conductivity 

increases with the frequency as shown in the same figure (3.2).  

 

 

Fig. 3.3. The effective index β/k0 versus the frequencies of the dielectric layer for 
different values of the thickness. 
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Fig (3.4) shows the effective index β/k0 of the graphene PPWG with versus 

the thickness of the dielectric layer for different values of the frequency. As 

the frequency of dielectric layer increases, the real part of the effective index  

β/k0 is decreasing. Additionally, with increasing the thickness, the real part of 

the normalized phase constant β/k0  decreases; this because the real part of 

graphene conductivity decreases with the frequency, as shown in the figure 

(3.2). While the imaginary part of effective index β/k0 increase with increasing 

thickness; because the imaginary part of conductivity increases with the 

frequency as shown in the same figure (3.2).  

 

 

Fig. 3.4. The effective index β/k0 versus the thickness of the dielectric layer for different 
values of the frequencies. 
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Figure 3.5 and 3.6 show the variation of the real and imaginary parts of the 

sensitivity of the proposed sensor with the thickness dielectric guiding layer 

for different values of frequencies. It  can be seen from the figure 3.5, the 

sensitivity is positive, but in figure 3.6, the sensitivity is negative. The 

absolute values of the real and imaginary parts of the sensitivity increases as f 

increases. 

 

 

Fig.3.5.The real part of the sensitivity of the proposed sensor versus the thickness of the 
dielectric layer for different values of the frequencies.  
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Fig.3.6. The imaginary part of the sensitivity of the proposed sensor versus the 
thickness of the dielectric layer for different values of the frequencies. 

 

 

Figure 3.7 and 3.8 show the variation of the real and imaginary parts of the 

sensitivity of the proposed sensor with the frequency dielectric guiding layer 

for different values of thickness. It  can be seen from the figures the sensitivity 

is positive. 
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Fig. 3.7. The real part of the sensitivity of the proposed sensor versus the frequency 
operating of the dielectric layer for different values of the Thickness. 

 

Fig. 3.8. The imaginary part of the sensitivity of the proposed sensor versus the 
frequency operating of the dielectric layer for different values of the Thickness. 
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CHAPTER FOUR 

Electromagnetic Waves at Graphene Parallel-Plate waveguide  

(TE-Mode) 

In this chapter, we examine the electromagnetic waves at graphene parallel-

plate of TE polarized wave, found the dispersion relation, applied G. Hansson 

approximation, calculate the total power flow through Graphene-PPWG, and 

the sensitivity of the proposed sensor will be presented. 

4.1  Structure Analysis 

In Fig. 3.1 a schematic of the graphene Parallel-plate is presented.  In this 

section we will discuss the TE  (s-polarized) mode. 

 
4.2  The Dispersion Relation  

We consider the TE wave with the magnetic filed perpendicular to the plane of 

incidence (xz), possesses the electromagnetic field components E = {0, Ey, 0}, 

H= {Hx, 0, Hz}. 

Maxwell's equations require that in the Ey(x) introduced in eq. (3.1) 

satisfies:  

     
2

2 2

2
( ) ( ) ( ) 0. (4.1)y j yE x k E x

x



  


 

Where kj= , 1,2,3j j ok k j   is the wavenumber  in region, j, εj is the 

relative permittivity of region j, and o o ok c      is the free-space 

wavenumber (c is the speed of light in vacuum).  
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The waveguiding axis is chosen as the z-axis, and from source- free 

Maxell's equations the TEz fields in each region are: 
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Where A, B,C and D are constants with respect to position. 

By applied Boundary Conditions (3.5 -3.6):  

(1)  At x = d/2, 
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From eq.(4.5) and eq.(4.6) we have get: 
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From eq.(4.9) and eq.(4.10) we have get: 
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Where 

1
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2 3 3

1 , (4.12)b
bc

    

  


  

   
  

 

By solving eq. (4.7) with eq.(4.11) and using Applications of 

Trigonometric, we have the dispersion equation for the guided modes:  

       2 2cos 1 sin 0, (4.13)a b a bc c d i c c d      

and   2 2 2
j jk    

Eq. (4.13) can be write as: 

    
 
 2tan . (4.14)
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4.3   Approximation Solution 

Hanson  assumed the approximation at TM mode case, similarly we apply 

the Hanson approximation to found out the approximation solution[87].  

The  approximation is:  

           2 2
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When we applied this approximation at eq. (4.6), we obtain  
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For the simple case of  2 1 a band      , the eq. (4.8) lead to [ 89-91]: 
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4.4  Power Flowing Within The PPWG Graphene (TM Mode) 

The power flow in the structure is defined as in Chapter 2 :  

2
( )

; (4.18)
2 ( )

y

total

E x
P dx

x



 





   

               1 2 3 . (4.19)TEtotalP P P P    

Substituting for Ey(x) form Eq. (4.12) into Eq. (3.13), we get: 
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The coefficients A, B, C and D are related to each other through the 

equations:  

1 /201
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The sensitivity is:  
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4.5   Numerical Results  

Fig (4.1) shows the effective index constant β/k0 from eq. (4.13) of the 

graphene PPWG with plate separation d=100 μm, for the operating frequency 

in the GHz/far-infrared range. The upper and lower dash curves are for 

dispersion relation eq. (4.13), the dash dot curves are the approximation one, 

showing excellent agreement with the numerical solution of Eq. (4.16). The 

conductivity curves are marked by solid and dot red lines.  

 

  

Fig. 4.1. The dash line is effective index β/k0 from Eq. (4.13) for a graphene PPWG with 

d=100µm. The approximation Eq. (4.16) is shown as blue dash dot lines. The 

conductivity is normalized by σmin = πe2/2h. 
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Fig (4.2) shows  the effective index  β/k0 of the graphene PPWG versus the 

frequencies for different values of the thickness. As the thickness of dielectric 

layer increases, the real part of the effective index β/k0 decreases. 

Additionally, with increasing frequency, the real part of the effective index 

β/k0 decreases; this because the real part of graphene conductivity decreases 

with the frequency, as shown in the figure (4.1). While the imaginary part of  

the effective index β/k0 increases with increasing frequency.  

 

  

Fig. 4.2.  The effective index β/k0 versus the frequencies of the dielectric layer for 

different values of the thickness. 
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Fig (4.3) shows the effective index β/k0 of the graphene PPWG versus the 

thickness for different values of the frequency. As the frequency of dielectric 

layer increases, the effective index β/k0 decreases. Additionally, with 

increasing thickness, the real part of the effective index β/k0 decreases. While 

the imaginary part of the effective index β/k0 increases with increasing 

thickness.  

 

 

Fig. 4.3. The effective index β/k0 versus the thickness of the dielectric layer for different 

values of the frequencies. 
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Figure 4.4 and 4.5 show the variation of the real and imaginary parts of the 

sensitivity of the proposed sensor with the thickness dielectric guiding layer 

for different values of frequencies. It can be seen from the figure 4.4, the 

sensitivity is positive, but in figure 4.5, the sensitivity is negative. The first 

peak appear when the thickness d=158μm at frequency f=770GHz.  

Additionally the absolute values of the real and imaginary parts of the 

sensitivity decrease as  the frequency increases.  
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Fig. 4.4. The real part of the sensitivity of the proposed sensor versus the thickness of  
the dielectric layer for different values of the frequencies.  
 

 

Fig. 4.5. The imaginary part of the sensitivity of the proposed sensor versus the 
thickness of the dielectric layer for different values of the frequencies. 
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Figure 4.6 and 4.7 show the variation of the real and imaginary parts of the 

sensitivity of the proposed sensor with the frequency dielectric guiding layer 

for different values of thickness. 

 Figure 4.6, shows many behaviour of sensitivity with a difference value of 

thickness. At the first value of thickness (d = 100µm) the sensitivity is start 

from the origin, then decreasing with increase values of frequency f. When 

d=150µm the sensitivity increases and becomes positive, it has peak at a 

specific value of frequency(f = 818 GHz) and is decreasing again. when d 

=200 µm the sensitivity is very weak and stable. Figure 4.7 shows the 

sensitivity is negative at all values of d. 
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Fig. 4.6. The real part of the sensitivity of the proposed sensor versus the frequencies of 

the dielectric layer for different values of the Thickness. 

 

Fig. 4.7. The imaginary part of the sensitivity of the proposed sensor versus the 

frequencies of the dielectric layer for different values of the Thickness. 
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CHAPTER FIVE 

Sensitivity at Graphene Left-hand-Martial  Waveguide 

Structure: (TM Case) 

In this chapter, a three-layer planar waveguide consisting of  parallel plate 

of graphene, a thin left handed material medium layer is under consideration. 

We examine the electromagnetic waves at (graphene – LHM) of TM mode, 

and find out  the dispersion relation, sensitivity of Graphene-LHM-Graphene 

Structure. Moreover, the total power flowing for each layers will be presented 

and will be compared to Right handed material waveguide sensor. 

5.1  Structure Analysis 

In this section, we consider a LHM thin film of thickness d occupying the 

region x = -d/2  and x = d/2 and infinite in y and z directions, which is 

characterized by an electric permittivity ε2 and magnetic permeability μ2. This 

film is sandwiched between two semi-infinite graphene layers occupying the 

regions x < -d/2  and x > d/2 and having parameters (ε1 , μ1) and (ε3 , μ3), 

respectively.  

 

 

 

 

 

Figure 5.1: Left-Handed Material Layer sandwiched between two Graphene Sheets. 

 

 
ε3,  μ3            Graphene σb  

 

 

ε2,  μ2                  LHM  
 

 

ε1,  μ1                  Graphene σa  

z  

x
z 

d  
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5.2 The Dispersion Relation of Graphene –LHM (TM-Mode): 

The magnetic profiles in the structure region  are:  
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The dispersion equation is obtained in similar way as mentioned in the Ch. (3): 
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5.3  Power flowing within the PPWG graphene (TM mode): 

The power flow in the structure is:  
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The coefficients A, B, C and D are related to each other through the 

equations:       
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The sensitivity is:  
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5.4 Numerical results  

In our analysis, we have considered two laterally infinite graphene sheets 

spaced a distance d apart with ε1 = ε3 =1 and μ1 = μ3 =1. The LHM layer is 

sandwiched between a graphene sheets occupies the region x > d/2 with ε1 = μ1 

=1, and the region x < -d/2 with ε3 = μ3 =1. 

Also, in this section, we graph the Right Handed Materials (RHM), which is  

a material ε2 and μ2 have a positive values.  

Fig 5.2 and 5.3 show the real and the imaginary parts of  the effective index  

(neff = β/k0)  from eq. (5.5) of LHM layer with plate separation d=100 nm, for 

frequencies in the THz frequency. Its clear the product of ε2 and μ2 = 4.0. 

We noted when ε2 = -4 , μ2= -1, the effective index has a highest value (neff 

= 4.4), when ε2 = -1 , μ2= -4, the effective index has a lowest value (neff = 2.6), 

when ε2 = μ2= -2, we have the a value (neff = 3.3). 



 73

At the same curve, we plot the RHM at THz region. In Figs. 5.2, we 

assumed a RHM film ε2 = 1 , μ2= 1.  

As we see, the effective index  neff  of RHM layer is less than that of a LHM 

layer. This behavior of the effective refractive index can be attributed to 

following argument. The effective refractive index of a propagating mode is 

determined by the thickness of the guiding layer and constitutive parameters 

of the materials constituting the waveguide. For a constant guiding layer 

thickness, it depends solely on the graphene permittivity and magnetic 

permeability of the media constituting the waveguide, but these values are 

equals for LHM and RHM materials.  

On other hand, the effective index  neff  decreases as the frequency increases 

as shown in Fig. 5.2, and 5.3 for LHM, but for RHM the real part has the same 

behavior, but the imaginary part of the neff increases as the frequency as shown 

in Fig. 5.3. 
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Fig. 5.2. The  real part of the effective index neff  from Eq. from Eq. (5.2) versus the 
frequency of the guiding layer for different values of the core permittivity and 
permeability for LHM and RHM with d=100nm. The conductivity is normalized by σmin 

= πe2/2h. 

 

 

Fig. 5.3 The imaginary part of neff from Eq. (5.2) versus the frequency of the guiding 
layer for different values of the core permittivity and permeability for LHM and RHM 
with d=100nm . The conductivity is normalized by σmin = πe2/2h. 
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Figure 5.4 and 5.5 show the real and the imaginary parts of  neff versus the 

thickness of the guiding layer for different values of the film permittivity and 

permeability, it is clear the product ε2, μ2 = 4.0. 

We noted when ε2 = -4, μ2= -1, the effective index neff  has a highest value 

(neff = 3.7), when ε2 = -1, μ2= -4, the effective index have a lowest value (neff = 

2.35), when ε2 = μ2= -2, we have the  value (neff = 2.87). 

At the same curve, we plot the RHM at THz region. In Figs. (5.4-5.5), we 

assumed a RHM film ε2 = 1, μ2= 1.  

We noticed that the effective refractive index neff of RHM film is less than 

that of a LHM film. This behavior of the neff can be attributed to following 

argument. The neff of a propagating mode is determined by the thickness of the 

guiding layer and constitutive parameters of the materials constituting the 

waveguide. For a constant guiding layer thickness it depends solely on the 

graphene conductivity of  the waveguide.  
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Fig. 5.4 The real part of the effective refractive index (neff) of the propagating mode 
versus the thickness of the guiding layer for different values of the core permittivity 
and permeability for LHM and RHM with d=100nm. The conductivity is normalized 
by σ = e2μcτ /πh, for µc = 0.5 eV, and τ = 5× 10-13. 

 

 
Fig. 5.5 The imaginary part of the effective refractive index (neff) of the propagating 
mode versus the thickness of the guiding layer for different values of the core 
permittivity and permeability for LHM and RHM with d=100nm . The conductivity is 
normalized by σ = e2μcτ /πh, for µc = 0.5 eV, and τ = 5× 10-13. 
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Fig 5.6 and 5.7 show the real and imaginary parts of the sensitivity of the 

waveguide sensor as a function of the guiding layer thickness d with four 

different values of ε2 and μ2. The two figures show a positive sensitivity which 

means that the dependence of the effective refractive index on the upper layer 

has a positive gradient.  The real part of the effective refractive index is much 

more sensitive to variations of the upper layer than the imaginary part. 

 It can be seen from Fig. 5.6 that when ε2 = -4, μ2 = -1, are optimized for 

the highest sensitivity. On other hand, for different values of ε2 and μ2 at LHM 

are increasing as the thickness increases.   

Moreover,  Figs 5.6 and 5.7 show a comparison between the sensitivity of 

the proposed sensor with the left-handed medium and the sensitivity of right-

handed medium.  RHM as can be seen  in Fig. 5.6, the sensitivity is positive 

and has a peak at a specific value of the guiding layer thickness d (d =40nm), 

then be decaying rapidly when increases of thickness, but at LHM case shows 

different peaks with the of thickness d, and becomes more stability.  

 In Fig. 5.6 the sensitivity has more stability at different values of ε2 and μ2, 

this due to the presence of the LHM which can significantly increases the 

sensitivity of sensor. 

At imaginary part case which is shown in Fig. 5.7, the values of ε2 and μ2 

have different peak values. We can see, that when (ε2 = -2 (-1) and μ2 = -2 (-

4)) the sensitivity started from negative values, then increasing until reaches to 

positive value, but when ε2 = -4 and μ2 = -1 the sensitivity started from 

positive values then decreasing until reach to negative values. But for right 

hand case the curve starts from negative then increasing until reaches to 

positive value. 
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Fig. 5.6 The real part of the sensitivity as a function of the thickness of the LHM layer 
and RHM layer for different values of ε2 and μ2. conductivity is normalized by σ = e2μcτ 
/πh, for f = 500 THz,  µc = 0.5 eV, and τ = 5× 10-13 . 

 

Fig. 5.7 The imaginary part of the sensitivity as a function of the thickness of the LHM 
layer and RHM layer for different values of ε2 and μ2. conductivity is normalized by σ = 
e2μcτ /πh, for f = 500 THz,  µc = 0.5 eV, and τ = 5× 10-13 . 
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Fig 5.8 and 5.9 show The real and imaginary parts of the sensitivity of the 

waveguide sensor as a function of the frequency f  with four different values of  

ε2 and μ2. It can be seen from Fig. 5.8 that when ε2 = -4, μ2 = -1,  are optimized 

for the highest sensitivity. On other hand, for different values of ε2 and μ2 at 

LHM are increasing with frequency increases. 

Moreover, Figs 5.8 and 5.9 show a comparison between the sensitivity of 

the proposed sensor with the left-handed medium and the sensitivity of right-

handed medium. As can be seen  in Fig. 5.8, the sensitivity in RHM is positive 

and has a peak at a specific value of  frequency (f =200THz), then be decaying 

rapidly when increases of frequency f, but at LHM case the sensitivity 

increases with increasing frequency f, and becomes more stability.  

 In Fig. 5.8 the sensitivity has more stability at different values of ε2 and μ2, 

this due to the presence of the LHM which can significantly increase the 

sensitivity of sensor. 

Fig 5.9, shows the comparison between the sensitivity of the proposed 

sensor with the left-handed medium and the sensitivity of right-handed 

medium at imaginary part. It can be seen that, the sensitivity in RHM is 

positive and has a peak at a specific value of frequency (f =400THz), then be 

decaying rapidly when increases of frequency f, also at LHM case the 

sensitivity decaying rapidly with increasing frequency f. 
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Fig. 5.8 The real part of the sensitivity as a function of the frequency of the LHM layer 
and RHM layer for different values of ε2 and μ2. conductivity is normalized by σ = e2μcτ 
/πh, for d = 100 nm,  µc = 0.5 eV, and τ = 5× 10-13 . 

 

Fig. 5.9 The imaginary part of the sensitivity as a function of the frequency of the LHM 
layer  and RHM layer for different values of ε2 and μ2. conductivity is normalized by σ 

= e2μcτ /πh, for d = 100 nm,  µc = 0.5 eV, and τ = 5× 10-13 . 
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Chapter Six 

Sensitivity at Graphene Left-Hand-Martial  Waveguide 

Structure: (TE Case) 

In this chapter,  we assume a three-layer planar waveguide consisting of  

thin left handed material as a guiding  layer is investigated for sensing 

applications. The dispersion relation of  TE mode for the proposed waveguide 

will be derived, the power flowing within each layer will be presented and will 

be compared to Right-handed material waveguide sensor.   

6.1 Structure Analysis 

In Fig.5.1 a schematic of the graphene Parallel-plate with LHM is 

presented.  In this section we will discuss the TE  (s-polarized) mode.  

 
6.2 The Dispersion Relation of Graphene –LHM (TM-Mode): 

The magnetic profiles in the structure region  are  
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The dispersion equation is obtained in similar way as mentioned in the Ch. (5): 
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where 
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 Taking into account some differences in the new notations kj  

( 0 , 1, 2,3j j jk k i   ), where μi  have a value (not equal 1).  

Eq, (6.2) can be write as: 
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6.3  Power flowing within the PPWG graphene (TE mode) 

The power flow in the structure is:  
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Substituting for Hy(x) form Eq. (6.1) into Eq. (6.6), we get: 
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The coefficients A, B, C and D are related to each other through the equations:  
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The Sensitivity is given by: 
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6.4  Numerical results  

We have considered two laterally infinite graphene sheets spaced a distance 

d apart with ε1 = ε3 =1 and μ1 = μ3 =1. The LHM layer is sandwiched between 

a graphene sheet . 

Fig 6.1 and 6.2 show the real and the imaginary parts of  the of  neff from eq. 

(6.5) of LHM layer with plate separation d=100 µm, for frequencies in the 

THz frequency for different values of ε2  and  μ2 .  

We noted that when ε2 = -4 , μ2= -1, the effective index has a highest value 

(neff = 0.9), when ε2 = -1 , μ2= -4, the effective index has a lowest value (neff = 

0.4), when ε2 = μ2= -2, we have the value (neff = 0.4). 

Additionally, when frequency is increasing, the three curves converge at 

specific value (neff =1.4). 

Moreover, the  effective index  neff  increases as the frequency increases as 

shown in Fig. 6.1, for LHM, but for RHM the real part is decreasing.  

Fig 6.2 shows the imaginary part of the neff decreases with increasing 

frequency, but for RHM is increasing.  
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Fig. 6.1. The real part of the effective index neff  from Eq. (6.5) versus the frequency of 
the guiding layer for different values of the core permittivity and permeability for 
LHM and RHM with d=100μm. The conductivity is normalized by σ = e2μcτ /πh, for µc 
= 0.5 eV, and 
 τ = 5× 10-13. 
 

                       

Fig. 6.2. The imaginary part of neff  from Eq. (6.5) versus the frequency of the guiding 
layer for different values of the core permittivity and permeability for LHM and RHM 
with d=100μm . The conductivity is normalized by σ = e2μcτ /πh, for µc = 0.5 eV, and  
τ = 5× 10-13

. 
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Fig 6.3 and 6.4 show that, the real and the imaginary parts of  the effective 

index neff  from eq. (6.5) of LHM layer with plate separation f =8.5 THz.   

In Fig 6.3 we noted when ε2 = -4 , μ2= -1, the effective index have a highest 

value (neff = 1.57), when ε2 = -1 , μ2= -4, the effective index have a lowest 

value (neff  = 0.968), when ε2 = μ2= -2, we have the a value (neff = 0.941). 

Additionally, when thickness increasing the three curves converge at 

specific value (neff =1.4). At the same curve, we graph the RHM at THz 

region, where assumed a RHM layer ε2 = 1 , μ2= 1.   

 Fig 6.4 shows the imaginary part of the effective index neff decreases with 

increasing frequency, but for RHM is increasing. 
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Fig. 6.3. The real part of the effective index neff  from Eq. (6.5) versus the thickness of the 
guiding layer for different values of the core permittivity and permeability for LHM and 
RHM with  f =8.5 THz . The conductivity is normalized by σ = e2μcτ /πh, for µc = 0.5 eV, 
and τ = 5× 10-13. 

                      
Fig. 6.4. The imaginary part of the effective index neff from Eq. (6.5) versus the 
thickness of the guiding layer for different values of the core permittivity and 
permeability for LHM and RHM with f =8.5 THz . The conductivity is normalized by 
 σ = e2μcτ /πh, for µc = 0.5 eV, and τ = 5× 10-13. 
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Fig 6.5 and 6.6 show the real and imaginary parts of the sensitivity of the 

waveguide sensor as a function of the guiding layer thickness d with four 

different values of  ε2 and μ2. The two figures show a positive sensitivity.  The 

real part of the effective refractive index is much more sensitive to variations 

of the upper layer than the imaginary part. 

 It can be seen from Fig. 6.5 that when ε2 = -1, μ2 = -4,  are optimized for 

the highest sensitivity. On other hand, for different values of ε2 and μ2 at LHM 

are increasing with the film thickness increasing. Moreover,  Figs 6.5 and 6.6 

show a comparison between the sensitivity of the proposed sensor with the 

left-handed medium and the sensitivity of right-handed medium.  

As can be seen in Fig. 6.5, the sensitivity in RHM is positive and has a 

peak at a specific value of  the guiding layer thickness d (d =170μm), then be 

decaying rapidly when increases of thickness, but at LHM case the sensitivity 

increases with increasing the guiding layer thickness d, and becomes more 

stable for RHM. We found the sensitivity has more stability at different values 

of ε2 and μ2, this due to the presence of the LHM, can significantly increases 

the sensitivity of sensor.  

At imaginary part case which is shown in Fig. 6.6, the values of ε2 and μ2 

have a differed behaviour. We can see that, when (ε2 = -2 (-4) and μ2 = -2 (-1)) 

the sensitivity deceasing, but when ε2 = -1 and μ2 = -4 the sensitivity is 

increasing. Moreover, we are comparing between the sensitivity of the 

proposed sensor with the left-handed medium and the sensitivity of right-

handed medium. It can be seen, the sensitivity in RHM is negative and has a 

peak at a specific value of  the guiding layer thickness d (d=170μm), then 

decaying rapidly when the thickness are increased, also at LHM case the 

sensitivity is decreasing with increasing thickness d. 
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Fig. 6.5 The real part of the sensitivity as a function of the thickness of the LHM layer 
and RHM layer for different values of ε2 and μ2. Conductivity is normalized by  
σ = e2μcτ /πh, for f = 8.5 THz,  µc = 0.5 eV, and τ = 5× 10-13.  
 

 
 
Fig. 6.6 The imaginary part of the sensitivity as a function of the thickness of the LHM 
layer and RHM layer for different values of ε2 and μ2. conductivity is normalized by 
 σ = e2μcτ /πh, for f = 8.5 THz,  µc = 0.5 eV, and τ = 5× 10-13 .  
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Fig 6.7 and 6.8 show The real and imaginary parts of the sensitivity of the 

waveguide sensor as a function of the frequency f with four different values of  

ε2 and μ2. 

 It can be seen from fig. 6.7 that when ε2 = -1, μ2 = -4,  are optimized for 

the highest sensitivity. On other hand, for different values of ε2 and μ2 of LHM 

the sensitivity is increasing with the frequency increases.  

Moreover, figs 6.7 and 6.8 show a comparison between the sensitivity of 

the proposed sensor with the left-handed medium and the sensitivity of right-

handed medium. As shown in Fig. 6.7, the sensitivity in RHM is positive and 

has a peak at a specific value of  frequency (f =10THz), then decaying rapidly 

when increases of frequency f, but at LHM case the sensitivity increases with 

increasing the frequency f, and becomes more stable. The sensitivity has more 

stability at different values of ε2 and μ2, this due to the presence of the LHM, 

which can significantly increases the sensitivity of sensor. 

In fig 6.8, show the comparison between the sensitivity of the proposed 

sensor with the left-handed medium and the sensitivity of right-handed 

medium at imaginary part. It can be seen, the sensitivity in RHM is negative 

and has a peak at a specific value of frequency (f =10THz), then be decaying 

rapidly when increases of frequency f, also at LHM case the sensitivity 

decreasing as increasing of the frequency f. 
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Fig. 6.7 The real part of the sensitivity as a function of the frequency of the LHM layer 
and RHM layer for different values of ε2 and μ2. conductivity is normalized by  
σ = e2μcτ /πh, for d = 150 µm,  µc = 0.5 eV, and τ = 5× 10-13. 
 
 

 
 
Fig. 6.8 The imaginary part of the sensitivity as a function of the frequency of the LHM 
layer  and RHM layer for different values of ε2 and μ2. conductivity is normalized by  
σ = e2μcτ /πh, for d = 150 µm,  µc = 0.5 eV, and τ = 5× 10-13. 
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Results : 

1- Dispersion relation: 

 We have demonstrated that TE and TM modes existing in the 

Gega/Terahertz frequency ranges.  

 The characteristics of guided modes in waveguide structure with two 

graphene layers have been compared to those of modes in dielectric  Left-

handed materials nanostructures/microstructures. 

  We note that the TE mode has almost linear dispersion and small losses. 

This is a consequence of the small degree of localization of this mode and 

indicates that it is nearly equivalent to a plane wave propagating in free 

space. 

 In contrast, TM polarized modes are strongly localized as a consequence, 

which are characterized by small propagation lengths and strong 

dispersion. This differs markedly from that of a plane electromagnetic 

wave in free space. 

 

2-  Sensitivity 

At PPWG- dielectric (TM- Case): 

 The real part of the sensitivity of the proposed sensor versus the thickness 

of the dielectric layer for different values of the frequencies is positive and 

increasing with increasing the thickness and the value of frequency. 

 The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of the dielectric layer for different values of the frequencies is 

negative. 
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 The Re(S) and Im(S) of the proposed sensor versus the frequencies of the 

dielectric layer for different values of the Thickness are positive and 

increases with increasing frequency and values of  thickness.   

At PPWG- dielectric (TE- Case): 

 The real part of the sensitivity of the proposed sensor versus the thickness 

for different values of the frequencies is positive and decreases with 

increasing thickness. Also the sensitivity decreases with increasing the 

value of frequency. 

 The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of  the dielectric layer for different values of the frequencies is 

negative. 

 The real part of the sensitivity of the proposed sensor versus the 

frequencies of the dielectric layer for different values of the thickness 

exhibit different behaviors with d.  

 The Re(S) at (d = 150 μm ) is positive and has a peak at specific value of 

the frequency then decreasing with increasing frequency.  

 The imaginary part of the sensitivity of the proposed sensor versus the 

frequencies of the dielectric layer for different values of the thickness 

exhibit different behaviors with d. 

 The Im(S) at (d = 150 μm ) is positive and has a peak at specific value of 

the frequency then decreasing with decreasing the operating frequency.  
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At PPWG- LHM (TM- Case): 

 The real part of the sensitivity versus the thickness of the LHM layer and 

RHM layer for different values of ε2 and  μ2 are positive. 

 The imaginary part of the sensitivity versus the thickness of the LHM layer 

for different values of ε2 and  μ2 exhibit different behaviors with d. 

 The real part of the sensitivity versus the frequency of the LHM layer and 

RHM layer for different values of ε2 and  μ2 are positive. 

 The imaginary part of the sensitivity versus the frequency of the LHM 

layer  and RHM layer for different values of ε2 and  μ2 exhibit different 

behaviors with f . 

 

At PPWG- LHM (TE- Case): 

 The real part of the sensitivity versus the thickness of the LHM layer for 

different values of ε2 and  μ2 are positive. 

 The imaginary part of the sensitivity versus the thickness of the LHM layer 

and RHM layer for different values of ε2 and  μ2 exhibit different behaviors 

with d. 

 The real part of the sensitivity versus the frequency of the LHM layer for 

different values of ε2 and  μ2 are positive. 

 The imaginary part of the sensitivity versus the frequency of the LHM 

layer  and RHM layer for different values of ε2 and  μ2 exhibit different 

behaviors with f . The LHM is positive but RHM is negative 
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Conclusion 

 Our study of guided waves in graphene-based structures will allow the 

better understanding of how to incorporate them in electromagnetic 

devices.  

 The comparing between  the structure with dielectric layer and structure 

contain Left-hand-material will be presented. Also, the sensitivity of 

the sensor to changes of the permittivity and magnetic permeability for 

LHM will be presented.  

 Our results are important for a better understanding of Graphene 

Parallel Plate Waveguide with Left-handed Material which are useful to 

design the various graphene-bases optoelectronic devices.  
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