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ABSTRACT 

RETINAL SYNAPTIC FUNCTION IN THE ABSENCE OF THE ON PATHWAY 

Kathryn Marie Heath Fransen 

December 18, 2014 
 

Complete Congenital Stationary Night Blindness (cCSNB) is a rare 

hereditary retinal disorder characterized by abnormal night vision. cCSNB is 

caused by postsynaptic defects in On bipolar cells (BCs) and is identified by the 

presence of an electroretinogram (ERG) with a normal a-wave, corresponding to 

photoreceptor function, and the absence of a b-wave, corresponding to a failure 

of On BC function. Through the study of genetic mutations in mouse that result in 

no b-wave ERG phenotypes, several proteins have been identified that play 

crucial roles in On BC signal transmission.  

I focused on four mouse models of cCSNB; Nyxnob (Nyctalopin mutant), mGluR6-

/- (mGluR6 knockout), Gpr179nob5 (GPR179 mutant), and Lrit3-/- (LRIT3 knockout). 

These mutations effect proteins expressed by On BCs (rod and On Cone BCs). 

While all models of cCSNB share a no b-wave ERG phenotype I have discovered 

that several models differ. The differences between cCSNB animal models 

provide important clues into the functional roles of the proteins effected by the 
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mutations. Specifically, Nyxnob retinal ganglion cells (RGCs), the output neurons 

of the retina, exhibit robust 3-5 Hz rhythmic spiking while mGluR6-/- RGCs rarely 

do. I explored potential mechanisms which underlie this phenomenon, not only 

by examining RGC activity, but also the properties of the upstream rod BCs 

which provide excitatory input to RGCs. I found that differences in the resting 

state of Nyxnob and mGluR6-/- rod BCs correlate with the differences in RGC 

rhythmic spiking activity. Also, I discovered that nyctalopin is required for normal 

potassium conductance in rod BCs. 

Additionally, I examined the role of two recently identified proteins 

expressed in On BCs, GPR179 (Peachey et al., 2012; Ray et al., 2014) and 

LRIT3 (Zeitz et al., 2013; Neuille et al., 2014). I discovered that GPR179 sets the 

sensitivity of the TRPM1 channel and is critical for a normal light-evoked 

response in rod BCs. I also discovered that LRIT3 is critical for the modulation 

and expression of TRPM1 channels in rod BC dendritic tips. My data not only 

add to the literature on animal models of cCSNB, but to the understanding of 

retinal circuitry in the normal retina.
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CHAPTER I 

INTRODUCTION TO RETINAL STRUCTURE AND 

FUNCTION 

 

Retinal Structure 

The neural retina is a laminated structure at the back of the eye which 

encodes light information from the world around us. The retina transduces 

photons into electrical signals producing a neural code, transfers the information 

to higher visual structures in the brain and creates the foundation of visual 

perception. The retina consists of three nuclear layers and two synaptic layers 

and is populated by five major cell classes (Figure 1). Its outer nuclear layer 

(ONL) contains two types of photoreceptors (PRs), rods and cones. The PRs 

synapse with the dendrites of bipolar cells (BCs) and horizontal cells (HCs) in the 

outer plexiform layer (OPL). The somas of the BC, HC, and amacrine cells (AC) 

are located in the inner nuclear layer (INL). The BCs and ACs synapse with each 

other and with ganglion cell (RGC) dendrites in the inner plexiform layer (IPL). 

The RGC somas compose the final nuclear layer, the ganglion cell layer (GCL) 

and their axons form the optic nerve which transmits the retinal signal to higher 

visual structures in the brain.
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Figure 1. Diagram of retina.  The outer nuclear layer contains the rod and cone 

photoreceptors. The photoreceptors synapse onto the bipolar cells and horizontal 

cells located in the inner nuclear layer. The amacrine cells also reside in the 

inner nuclear layer. The bipolar cells and amacrine cells synapse onto the 

ganglion cells located in the ganglion cell layer. From Wong et al., 2006.  

 

 

PR outer segments are packed with opsin molecules, which change 

conformation when they absorb a photon of light. This absorption initiates a G-
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protein coupled cascade which culminates in the hyperpolarization of the PR and 

a decrease in its glutamate release onto its postsynaptic partners, the BCs and 

HCs. During light stimulation PRs cease glutamate release. HCs respond with 

graded potential changes and provide modulatory feedback to PRs to provide 

gain control and create the first level of surround input to BCs. Cone PR 

responses to light increments lead to graded responses in BCs; namely 

hyperpolarization in Off cone BCs and depolarization in On cone BCs. The cone 

BCs then transmit graded potentials to RGCs. Rod PR responses to light 

increments lead to depolarization of rod BCs. Rod BCs use the AII AC 

interneuron to piggy-back onto the On cone BCs to transfer the rod BC signal to 

RGCs (Famiglietti & Kolb, 1974). The processes of ACs ramify within the IPL. 

ACs respond with either graded or action potentials and modulate feedback 

inhibition to BCs and feed-forward inhibition to RGCs. The axons of BCs and 

ACs ramify in specific laminae of the IPL based on their functional light 

responses. Off cone BC axons ramify in the Off sublamina, located near the INL, 

while rod BCs and On cone BCs ramify in the On sublamina (Figure 2), near the 

GCL. This distinct lamination pattern is matched by the ramification of RGC 

dendrites that also correspond to their functional light response. On RGCs 

produce action potentials to increments of light and their dendrites ramify in the 

On sublamina, whereas Off RGCs respond with action potentials to decrements 

of light and their dendrites ramify in the Off sublamina. Bistratified RGC dendrites 

ramify in both substratum and either depolarize to both the onset and offset of 

light, or onset only. 
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Figure 2. Basic functional pathways of the retina. Cone PRs synapse with On 

and Off cone BCs which synapse with On and Off RGCs, respectively. The rod 

PRs synapse with rod BCs, which synapse with AII ACs, providing excitatory rod 

input to the On cone pathway and inhibitory input to the Off pathway. 

 

Retinal Pathways 

Introduction 

The visual signal is transferred through the excitatory pathway from PRs 

to BCs and from BCs to RGCs. These excitatory signals are modulated by lateral 

inhibitory inputs from HCs in the outer retina and ACs in the inner retina. These 

inputs create center/surround organization in BCs, ACs, and RGCs and produce 
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contrast gain, temporal and spatial frequency selectivity, as well as selectivity to 

the direction of motion. Within the retina these neural elements also segregate 

and form the parallel rod/cone as well as the On/Off pathways which are 

described in detail below. 

Cone Pathway 

Cone PRs are responsible for photopic vision, high visual acuity and color 

vision. There are 180,000 cones spread evenly across the mouse retina (Jeon et 

al., 1998). There are two types of murine cone PRs, one sensitive to ultraviolet 

light (peak sensitivity 360 nm) and another to medium wavelength light (peak 

sensitivity 508 nm; Nikonov et al., 2006). Cones release glutamate at their 

synaptic terminal, the cone pedicle. HC and On cone BC dendrites invaginate the 

cone pedicle, while Off cone BCs make their contacts at its base. Approximately 

eight BCs innervate the pedicle of one cone PR, allowing for multiple pathways to 

originate at this first synapse (Wassle, 2004).  

On and Off Pathways 

The cone pathway subdivides into the On and Off pathways, which are 

initiated at the PR to BC synapse based on the expression of either a 

metabotropic or ionotropic glutamate receptor on the BC dendrities. On BCs 

express mGluR6 receptors, while Off BCs express ionotropic glutamate 

receptors. As a result of this differential glutamate receptor expression, On BCs 

depolarize to light onset, while Off BCs depolarize to light offset.  
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On and Off Bipolar Cell Classes 

In the mouse, Off BCs, or hyperpolarizing BCs, express the ionotropic 

glutamate receptor kainate on their dendritic tips (Borghuis et al., 2014), although 

it was previously reported that they also express AMPA (Puller et al., 2013). Off 

BCs have a sign-conserving synapse which results in a depolarization to PR 

glutamate release by the binding of glutamate to the ionotropic receptors. The 

second-order BCs are the first cell class in the visual process to exhibit different 

temporal response properties. In ground squirrel, glutamate bound to Off BC 

AMPA receptors mediate transient signals while glutamate bound to kainate 

receptors mediate sustained signals resulting in temporally distinct signals within 

the Off Pathway (DeVries, 2000). In the mouse and primate, kainate receptors 

mediate both sustained and transient signals (Borghuis et al., 2014; Taylor, 

2014). 

On BCs, or depolarizing BCs, express the metabotropic glutamate 

receptor mGluR6 on their dendritic tips. On BCs have a sign-inverting synapse. 

When the concentration of glutamate in the synapse decreases, the absence of 

glutamate bound to the mGluR6 receptor opens a non-specific cation channel, 

TRPM1, and depolarizes the cell. In the mouse, transient On BCs possess 

voltage-gated sodium channels on their dendrites or somas, which enhance 

transmission to transient RGCs (Ichinose et al., 2005). Sustained On BCs do not 

possess these voltage-gated sodium channels (Ichinose et al., 2005). The 

sodium channels in transient On BCs contribute to the temporal segregation of 
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transient and sustained signals by the selective enhancement of the responses 

of On transient RGCs to light (Ichinose et al., 2005). Transient On and Off BC 

axons terminate toward the center of the IPL while more sustained On and Off 

BCs terminate within the outer portions of the IPL (Awatramani & Slaughter, 

2000; Wu et al., 2000; Borghuis et al., 2013). This creates yet another parallel 

channel system within the retina. 

BCs can also be characterized by their morphology. BC structure and 

physiological response follow a typical distribution where Off BCs ramify within 

the OFF sublamina (1-2) of the IPL while the On BCs ramify within the ON 

sublamina (3-5; Euler et al., 1996; Ghosh et al., 2004; Figure 3). In the mouse 

retina, there are four morphological Off BC types, five On cone BCs, and one 

type of rod BC (Figure 3A; Ghosh et al., 2004). Utilizing molecular markers there 

are five Off BC types, six On cone BCs, and one type of rod BC (Figure 3B; 

Wassle et al., 2009). 
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Figure 3. Bipolar cell classes. A. Morphological classes: There are four Off BCs, 

five On cone BCs and one type of rod BC. Modified from Ghosh et al., 2004. B. 

Molecular marker identified classes: There are five Off BCs, six On cone BCs, 

and one type of rod BC. Modified from Wassle et al., 2009. 

 

 

BCs utilize graded potentials to transmit the visual signal. Rod BCs 

release glutamate via calcium-dependent exocytosis at ribbon-style active zones 

(Dowling & Boycott, 1966). Glutamate filled vesicles are tethered to ribbons, 
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which are closely located to the voltage-gated calcium channels at the 

presynaptic membrane. The ribbon synapse facilitates a fast release of vesicles 

from the readily releasable pool while vesicles tethered further up the ribbon 

contribute to a second more sustained component of release (Wan & 

Heidelberger, 2011). Rod BC depolarization from a holding potential of -60 mV to 

-10 mV for 25 msec will release the readily releasable pool of glutamate at the 

axon terminal (Mennerick & Matthews, 1996; Palmer, 2010). The faster the BC 

membrane is depolarized, the more pronounced the transient component of the 

excitatory postsynaptic current (EPSC) measured in downstream RGCs, while 

slower rates of depolarization lead to more sustained release of glutamate and 

sustained EPSCs (Snellman et al., 2009). Therefore, the intrinsic membrane 

properties of BCs are crucial for the release of glutamate and the shape and 

characteristics of EPSCs recorded in the postsynaptic cell.   

Rod Pathways 

The rod pathway is responsible for low light, or scotopic vision. Rods can 

detect a single photon of light (Rieke & Baylor, 1998). There are 6.4 million rods 

in the mouse retina (Jeon et al., 1998). The rod PR terminal, termed the rod 

spherule, is invaginated by HCs and rod BCs. One to three rod BC dendrites 

invaginate one rod spherule. One rod BC contacts 20-80 rods (Wassle, 2004). 

Since rod PRs are sensitive to one photon of light and rod BCs converge the 

signal of several rods, the rod pathway is sensitive to very low light levels. Rod 

input to rod BCs exhibit slower temporal signals than cones to cone BCs 
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(Ashmore & Copenhagen, 1980; Cadetti et al., 2005). The rod BC expresses the 

same mGluR6 receptor as On cone BCs and communicates with RGCs via the 

AII AC. Thus, the rod pathway functions as part of the On and Off pathways. 

There are three different pathways for the rod system and they appear to 

be segregated according to their sensitivity to light. The primary rod pathway is 

the most sensitive and transmits rod signals to rod BCs and to the On and Off 

cone pathway via the AII AC (Figure 4; Kolb & Famiglietti, 1974). The On 

response of rod BCs is transmitted through an excitatory synapse with the AII 

AC, resulting in AII depolarization. The AII is electrically coupled through gap 

junctions to On cone BCs, which create a sign-conserving signal to the On cone 

pathway. The AII also has a sign-inverting glycinergic inhibitory synapse with Off 

cone BCs resulting in hyperpolarization of Off cone BCs. The On and Off cone 

BCs then transmit the signal to their corresponding On and Off RGCs (Kolb & 

Famiglietti, 1974).  

The secondary rod pathway with intermediate sensitivity transmits the PR 

rod signal to cone PRs via gap junctions. The rod signal is then carried through 

On and Off cone BCs to RGCs (Figure 4; Volgyi et al., 2004). The tertiary rod 

pathway, the least sensitive, transmits the rod signal directly through a chemical 

synapse with Off cone BCs (Volgi et al., 2004)  and type 7 On cone BCs 

(Tsukamoto et al., 2007). This final pathway provides another route for rod 

signals to reach the Off and On cone pathways (Figure 4; Volgyi et al., 2004; 

Tsukamoto et al., 2007). The primary pathway mediates slow low threshold 
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signaling, the secondary pathway mediates faster high threshold signals (Volgyi 

et al., 2004), and the tertiary pathway likely mediates intensity changes at the 

interface of scotopic-mesopic vision, optimizing detection at dusk and dawn 

(Volgyi et al., 2004; Tsukamoto et al., 2007). The three rod pathways extend the 

rod system operating range as RGCs receive either separate or convergent 

inputs from one or more of the pathways (Volgyi et al., 2004; Tsukamoto et al., 

2007).  

 

Figure 4. The three rod pathways. Ai. The primary rod pathway signals from rod 

PRs to rod BCs to AII ACs. Aii. The secondary pathway signals from rod PRs to 

cones through gap junctions and then to On and Off cone BCs. Aiii. The tertiary 
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pathway signals from rod PRs to a class of Off cone BCs and type 7 On cone 

BCs (Tsukamoto et al., 2007). From van Genderen et al., 2009. 

 

 

Retinal Ganglion Cells  

Retinal Ganglion Cell Classes 

RGCs integrate the graded inputs from second order neurons and convert 

them into action potentials, which are used to transmit the retinal signal to higher 

brain structures. There are approximately 20 morphological types of RGCs in the 

retina (Sun et al., 2002). RGCs are characterized based on dendritic ramification 

in the IPL, dendritic and soma diameters and dendritic arborization (Sun et al., 

2002). RGCs can be further classified based on their excitatory response to 

either the onset, offset, or onset and offset of light stimuli (Hartline, 1948). Also, 

RGCs have been classified based on the spatial linearity of their receptive field 

response. “X-cells” exhibit linear responses, while “Y-cells” are non-linear 

(Enroth-Cugell & Robson, 1966). There also are classes of RGCs which encode 

direction of motion, edges and color. 

On and Off RGCs exhibit different intrinsic mechanisms. Tonic excitatory 

input to On RGCs generate maintained spontaneous activity (action potentials), 

whereas spontaneous activity in Off RGCs is present without excitatory input, 

although it is modulated by input (Margolis & Detwiler, 2007). Consistent with this 
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view, Off RGCs exhibit other intrinsic properties similar to pacemaker neurons; 

sub-threshold oscillations, burst firing and rebound excitation, while On RGCs do 

not (Margolis & Detwiler, 2007). Differences in conductance may account for the 

difference in the spontaneous activity of On and Off RGCs. Specifically, Off and 

On RGCs exhibit different conductance of persistent Na+, hyperpolarization-

activated K+ and Na+ channels, and low voltage activated Ca2+ currents 

(Kameneva et al., 2011). At this point nothing is known about the dependence of 

Bistratified RGCs on synaptic input for their spontaneous spiking activity or 

whether they are more similar to On or Off RGCs. 

One morphological class of RGCs, the Alpha cell (referred to functionally 

as Y-cells), have large somas, thick axons and widely radiate dendrites. 

Functionally the Alpha RGCs have large concentric center-surround receptive 

fields. There are two subclasses of Alpha RGCs. On Alpha RGCs have dendrites 

that ramify in the On sublamina of the IPL and respond to light increments, while 

Off Alpha RGCs have dendrites that ramify in the Off sublamina of the IPL and 

respond to light decrements (Enroth-Cugell & Robson, 1966). In the mouse, 

Alpha-like cells also are called A-type RGCs. They have been divided into three 

subclasses. The Off morphology A-type RGCs can be divided into two functional 

groups: Off transient (Off-T) and Off sustained (Off-S). Off-T cells are quiet in 

darkness and exhibit transient spikes at a decrease in illumination, while Off-S 

cells exhibit spontaneous spikes in darkness and respond with a sustained 

response to a dark stimulus (Pang et al., 2003; Murphy & Rieke 2006). On A-type 
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RGCs respond with a sustained response (On-S) to an increase in illumination. 

On-S, Off-S, and Off-T light responses are generated by different mechanisms. 

On-S RGCs are driven by the modulation of tonic excitation through the On 

pathway. Off-S RGC light responses are driven by the modulation of direct 

glycinergic input from AII ACs, either through the rod BC or On cone BC 

synapses (Van Wyk et al., 2009). Off-T RGCs have strong drive from both the On 

and Off pathways, while the On and Off sustained cells are driven mainly through 

the On pathway (Van Wyk et al., 2009).  

Retinal Ganglion Cell Excitatory Receptors 

The spontaneous EPSCs (sEPSCs) of RGCs are mediated by synaptically 

located glutamate receptors, while their light-evoked responses also recruit 

perisynaptic glutamate receptors (Sagdullaev et al., 2006). In mouse, On 

morphology RGC sEPSCs are mediated exclusively by AMPA receptors, while 

Off morphology RGC sEPSCs are mediated by both AMPA and NMDA receptors 

(Sagdullaev et al., 2006; Zhang & Diamond, 2009). Currently it is unknown what 

glutamate receptor(s) mediate sEPSCs in Bistratified RGCs in any species.   

Receptive Field Organization 

Most BC, ACs, and RGCs have concentric receptive field organization. 

Receptive field centers are excitatory in response to a stimulus and are 

encompassed by a larger, antagonistic surround (Kuffler, 1953; Rodieck & Stone, 

1965a). The receptive field center correlates with the region of space where the 
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preferred stimulus will elicit an increased rate of firing with stimulation (Rodieck & 

Stone, 1965b).  The receptive field surround correlates with the region of space 

where a stimulus larger than the receptive field center will decrease rate of firing 

(Rodieck & Stone, 1965b). As a larger region of the center is stimulated there is 

an increase in firing until the peak firing occurs and the entire center component 

is stimulated. Once the stimulus increases to include the surround, the center 

response will decrease as inhibition from the surround is recruited. The center 

excitation and surround inhibition are summed in a linear or non-linear fashion 

which generates spatial tuning (Rodieck & Stone, 1965a; Enroth-Cugell & 

Robson, 1966; Cook & McReynolds, 1998a). 

Receptive fields are classified by their excitatory center response to light 

stimulation – On, Off, or On-Off (Hartline, 1948). On center cells have an Off 

antagonistic surround, and Off center cells have an On antagonistic surround. 

There are also more complex receptive fields such as direction selective 

receptive fields and, in primates, there are chromatically opponent center-

surround receptive fields (Dacey & Packer, 2003; Wassle, 2004).  

BCs exhibit a center-surround receptive field. Direct inputs from PRs 

contribute to the center response, while HCs feedback inhibition to the cones as 

well to BCs (Dowling, 1970; Fisher & Boycott, 1974; Kolb & Jones, 1984). The 

BC surround is thought to be passed along to the ACs although it is possible that 

AC-AC interactions also make a contribution. ACs modulate the BC and RGC 

surrounds via inhibitory synapses in the IPL. 
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Inhibitory Retinal Circuitry 

Inhibition shapes retinal responses based on inhibitory neurotransmitter 

released, the characteristics of release (tonic or phasic), the type of postsynaptic 

receptors and network interactions that create different types of inhibition; 

feedforward, feedback, or serial (Eggers & Lukasiewicz, 2011). The inhibitory 

neurotransmitters of the retina are gamma amino butyric acid (GABA) and 

glycine. 

Types of Inhibitory Circuitry 

In feedforward inhibition, the presynaptic cell releases inhibitory 

neurotransmitter directly onto its postsynaptic partner. An example of 

feedforward inhibition occurs when an AC provides input to a postsynaptic 

receptor on a RGC (Figure 5B). In feedback inhibition, the presynaptic cell 

releases excitatory neurotransmitter directly onto its postsynaptic partner, which 

is an inhibitory neuron. The inhibitory neuron releases neurotransmitter back onto 

its presynaptic partner modulating its excitatory neurotransmitter release. The 

A17 AC/rod BC circuit is a classic example of feedback inhibition. Glutamate 

release from the rod BC axon terminals excite the A17 that releases GABA onto 

the rod BC and activates GABAC receptors to reduce rod BC output (Figure 5A; 

Sagdullaev et al., 2006; Chavez et al., 2010).  

In serial inhibition, the presynaptic cell releases inhibitory neurotransmitter 

onto its postsynaptic partner, which is an inhibitory neuron. The inhibitory neuron 
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then decreases its release of inhibitory neurotransmitter onto another 

postsynaptic cell. Therefore, serial inhibition from one cell acts to shape inhibitory 

inputs to cells downstream of its direct postsynaptic partner (Figure 5C). Serial 

inhibition is a mechanism of control for feedback and feedforward gain and 

regulation of temporal characteristics of inhibition (Zhang et al., 1997). Serial 

inhibition can also be a form of dis-inhibition if the connection involves an even 

number of synapses, which will result in a decrease of inhibition (inhibition of an 

inhibitory cell). Serial connections are important for spatial tuning (Eggers & 

Lukasiewicz, 2010). Crossover inhibition is the inhibition of one pathway via 

excitation of another parallel pathway (Figure 5D). Crossover inhibition works 

with excitation to linearize signaling in some pathways (Werblin, 2010). The most 

well studied form of crossover inhibition is the excitation of the AII AC by the On 

pathway which leads to inhibition of the Off pathway (Manookin et al., 2008).  
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Figure 5. Four major types of inhibition. A. Feedback inhibition modulates the 

release of glutamate from BCs to RGCs. B. Feedforward inhibition provides 

direct inhibition to BCs or RGCs. C. Serial inhibition shapes other inhibitory 

inputs. D. Crossover inhibition enables reinforcement of signals by crosstalk 

between On and Off pathways. 

 

 

 



19 
 

GABAergic Inhibition 

GABA is the major inhibitory neurotransmitter in the central nervous 

system. GABA is released by HCs and ACs (Wu, 1991; Marc et al., 1995). 

Mouse BC, AC, and RGC processes express GABA receptors (Zhang et al., 

1997; Eggers & Lukasiewicz 2006a). Wide-field GABAergic ACs mediate large 

regions of surround inhibition and carry signals laterally within a single layer of 

the IPL (Pourcho & Goebel, 1983; Vaney, 1991). GABAergic inhibition has been 

shown to shape most aspects of visual signaling; for example GABAergic 

inhibition is important for spatial tuning (Cook & McReynolds, 1998; Eggers & 

Lukasiewicz, 2011) and temporal signaling (Dong & Werblin, 1998; Dong & Hare, 

2003; Singer & Diamond, 2003; Chavez et al., 2006; Sagdullaev et al., 2006).   

Both GABAA and GABAC receptors are ionotropic and permeable to 

chloride ions (Bormann & Feigenspan 1995). In the mouse retina, GABAC 

receptors are only expressed on BCs (Feigenspan et al., 1993; Koulen et al., 

1997; Eggers & Lukasiewicz, 2006; Sagdullaev et al., 2006). The GABAC 

receptor appears to primarily mediate feedfoward inhibition in the OPL and 

feedback inhibition in the IPL. Rod BC inhibition is mostly mediated by GABAC 

receptors. On cone BC inhibition is mostly mediated by GABAC receptors, but 

with a larger amount of GABAA receptor contribution compared with rod BCs. Off 

cone BC inhibition is mediated by equal contributions of GABAA and GABAC 

receptors (Eggers et al., 2007). 
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GABAA receptors are much more widespread and are expressed on HC, 

BCs, ACs, and RGCs (Tian et al., 1998; Feigenspan and Weiler, 2004; Eggers 

and Lukasiewicz, 2011). They are known to mediate feedforward, feedback, and 

serial inhibition. For example, BCs receive inhibition from ACs mediated by 

GABAA receptors (Zhang et al., 1997; Eggers & Lukasiewicz 2006a; 2010). Serial 

inhibition limits direct GABAergic inhibition to BCs and affects the kinetics of 

transmission between BCs and RGCs (Zhang et al., 1997; Roska et al., 1998). 

Glycinergic Inhibition  

Glycine is present in 40-50% of ACs (Pourcho, 1996). Glycinergic ACs 

mediate excitation from BCs, AC, and RGCs in a narrow spatial field and transmit 

signals vertically between layers of the IPL (MacNeil & Masland, 1998; Menger et 

al., 1998). There are four types of glycine receptor subunits expressed in the 

retina. They are found on certain BC axons, ACs and RGC dendrites (Grunert & 

Wassle, 1993; Wassle et al., 2009). Half of all RGCs receive spontaneous 

inhibition via glycine receptors (Tian et al., 1998). 

Consistent with their processes extending through the IPL sublamina, 

glycinergic ACs mediate crossover inhibition between On and Off layers of the 

IPL (Roska et al., 2006; Chavez & Diamond, 2008; Manookin et al., 2008; Molnar 

et al., 2009). For example, AII ACs mediate glycinergic crossover inhibition, as 

they receive excitatory input from the On pathway and transmit inhibitory outputs 

to the Off pathway (Manookin et al., 2008). Off BCs receive the most glycinergic 
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input (Eggers et al., 2007), On BCs do not receive any light-evoked glycine input 

(Ivanova et al., 2006; Eggers et al., 2007), and rod BCs receive only a small 

amount of glycinergic inhibition (Eggers et al., 2007). 

Circuits that challenge the dogma of separate parallel pathways  

AII Amacrine Cell  

The AII AC is one of the most widely studied ACs (Famiglietti & Kolb, 

1974; Strettoi et al., 1992). As mentioned previously, the AII is a glycinergic 

narrow-field bistratified AC that participates in crossover inhibition from the On 

pathway to the Off pathway (Manookin et al., 2008). In addition, the AII AC 

provides crosstalk between the rod and cone pathways. This is evident as AII 

ACs respond over a wider range of light levels than rods and rod BCs (Xin & 

Bloomfield, 1999; Pang et al., 2004), suggesting the AII not only mediates rod 

signals but also cone signals (Pang et al., 2007). The AII AC has been shown to 

transmit cone signals through On cone BC-AII AC bidirectional electrical 

synapses (Strettoi et al., 1992; Veruki & Hartveit, 2002b; Pang et al., 2007). 

Thus, the AII AC can integrate rod and cone signals, which provide a wide range 

of outputs to RGCs (Pang et al., 2003). Under photopic light conditions inputs 

from On cone BCs depolarize the AII AC, which provides glycinergic inhibition to 

Off cone BCs and RGCs (Muller et al., 1988). In this way the Off pathway is 

inhibited not only under scotopic illumination but while cone signals dominate the 

AII circuitry. Most recently the AII AC-cone BC network has been the focus of 
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work exploring the network that generates rhythmic activity in the retina of mouse 

models of PR degeneration (Borowska et al., 2011). 

Excitatory Crosstalk 

Several publications have suggested the presence of masked responses 

of opposite polarity, e.g., On response from OFF morphology RGC or vice versa 

(Ariel & Daw, 1982; Nirenberg & Meister, 1997; Roska & Werblin, 2001; Renteria 

et al., 2006; Ackert et al., 2009). Although initially considered an artifact, further 

evidence challenged the dogma of On and Off pathway segregation. For 

example, over one-third of RGCs in the mouse and rabbit retina with On or Off 

responses also exhibit opposite polarity responses when GABAergic inhibition is 

blocked (Farajian et al., 2011). As further evidence for crosstalk between 

pathways, Off RGCs can alter their response sign to On-Off or On, in response to 

a change in size or intensity of light stimulus (Sagdullaev & McCall, 2005). The 

above circuits demonstrate crosstalk between pathways, which have been 

characteristically viewed as separate.  

In addition, the AII AC-On cone BC circuit has been implicated in the 

generation of rhythmic oscillations in all morphological classes of RGCs in the 

mouse models of retinitis pigmentosa, rd1 and rd10 (Margolis et al., 2008; 

Borowska et al., 2011; Stasheff et al., 2011; Trenholm et al., 2012). In rd PR 

degeneration eliminates visual signaling through the retina and alters the circuit 

such that either the network of AII-On cone BC coupling or AIIs alone drive 
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oscillations across all classes of RGCs. These oscillations are not found in the 

WT retina, because the PR input and interaction between retinal pathways 

maintain the absence of oscillations.  

In conclusion, there is growing evidence which challenges the dogma of 

separate and parallel pathways. The current thought is that there are interactions 

between excitatory On and Off signals in the inner retina, but inhibitory synaptic 

circuitry masks crosstalk between pathways to maintain the fidelity of the 

receptive field center response and the dendritic lamination pattern. 

On Bipolar Cells 

On BCs consist of one morphological class of rod BC and five On cone 

BCs (Figure 6; Ghosh et al., 2004; Pignatelli & Strettoi, 2004). Different BC 

response kinetics have been correlated with morphological classes (Awatramani 

& Slaughter 2000; DeVries et al., 2000). Rod BC light responses have a robust 

sustained depolarization at light onset, followed by a small hyperpolarization at 

light offset (Euler & Masland, 2000). On cone BCs exhibit either transient or 

sustained On responses (Euler & Masland, 2000). Different temporal response 

properties are likely shaped by a varied distribution of inhibitory receptors with 

different subunit compositions on different BC types (Ivanova & Muller 2006; 

Eggers & Lukasiewicz, 2011). Different morphological types of BCs segregate 

specific aspects of the light signal in order to maintain parallel processing of 

visual information (Awatramani & Slaughter, 2000). 
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Figure 6. Morphological classes of On bipolar cells. Types 5-9 are On cone BCs. 

There is one type of rod BC. Modified from Ghosh et al., 2004. 

 

 

The mGluR6 G-Protein Cascade and Its Associated Proteins mediate 

signaling in On BCs  

Photoreceptors are continuously depolarized in the dark. Light produces a 

graded hyperpolarization whose amplitude and duration vary with light intensity. 

This translates into a graded decrease in glutamate release (Trifonov, 1968). At 

light onset, the depolarization in On BCs results from a mGluR6 mediated 

mechanism. At light offset (in the dark), glutamate is bound to the mGluR6 

receptor and a sequence of cascade events occur which culminate in the 

opening of the TRPM1 channel and depolarization of the On BC. The On BC 

response cascade is described in detail below in Figure 7. 

 

ON 

Sublamina 

OFF 

Sublamina 
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Figure 7. On BC response. A. In the dark glutamate is released from rods and 

binds mGluR6. mGluR6 activates a trimeric G-protein complex, G0 (Vardi et al., 

1993; Nawy 1999; Dhingra et al., 2000). The trimeric G-proteins are activated 

when GDP is exchanged for GTP on Gα0, which dissociates into Gα0-GTP (Vardi 

et al., 1993; Nawy 1999; Dhingra et al., 2000) and the dimer Gβ3/Gγ13 (Dhingra 

et al., 2012; Huang et al., 2003). The activated G-protein complex leads to the 

closure of the non-selective cation channel, TRPM1, and relative 

hyperpolarization of the rod BC, either through interaction with Gα0-GTP and/or 

Gβ3/Gγ13 or another intermediate effector not yet identified. B. In the light 

glutamate release is decreased and no longer binds mGluR6. Hydrolysis of GTP 

into guanine dinucleotide (GDP) forms the inactive state of Gα0 (Gα0-GDP; 

Hooks et al., 2003) which recombines with Gβ3 and Gγ13 to form the trimeric G-

A B 
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protein complex. RGS7 and RGS11, regulator of G-protein signaling (RGS) 

proteins (Cao et al., 2012; Shim et al., 2012), form heterodimers with Gβ5 (Rao 

et al., 2007). These heterodimers are GTPase-activating protein (GAP) 

complexes, which accelerate the hydrolysis of GTP to GDP by Gα0, (Hooks et al., 

2003; Rao et al., 2007), resulting in accelerated deactivation of the G-protein and 

culminates in the opening of TRPM1 and depolarization of the BC (Audo et al., 

2009; Li et al., 2009; Morgans et al., 2009, 2010; Shen et al., 2009; Koike et al., 

2010; Peachey et al., 2012a). R9AP is a membrane anchor protein for RGS11 

and critical for its proper localization in the membrane at the dendritic tips (Jeffrey 

et al., 2010); nyctalopin, a leucine-rich repeat protein is critical for proper 

trafficking or localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011); 

GPR179 is required for proper dendritic tip localization of RGS7 and RGS11 

(Orlandi et al., 2012) and LRIT3 is critical for rod BC light-mediated response 

(Zeitz et al., 2013; Neuille et al., 2014). 

mGluR6 Receptor  

mGluR6 (Nakajima et al., 1993; Nomura et al.,1994) is one of several 

metabotropic receptors that have a G-protein coupled cascade and utilize second 

messengers to produce cell responses. Three classes of mGluRs are defined on 

the basis of amino acid sequence, transduction mechanisms, and 

pharmacological sensitivity. Group I receptors, mGluR1 and mGluR5, are 

coupled to the stimulation of phospholipase C, while Groups II, mGluR2 and 3, 

and Group III, mGluR4, 6, 7, and 8 are coupled to the inhibition of the cyclic 
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adenosine monophosphate (cAMP) cascade. Group III receptors are distinct due 

to their sensitivity to 2-Amino-4-Phosphonobutyric Acid (APB; Slaughter & Miller 

1981; Quraishi et al., 2007). All mGluRs contain a large (500-600 residues) N-

terminal extracellular domain, which contains the glutamate binding site that is 

linked to a G-protein coupled receptor seven-transmembrane domain that 

mediates G-protein activation (Bhave et al., 2003; Pin et al., 2003). mGluRs likely 

form dimers (Pin & Acher, 2002). mGluRs are bi-lobed with a large cleft between 

the lobes in the absence of a ligand. The glutamate binding mechanism is called 

the “Venus flytrap” module as the ligand binding changes the protein 

conformation with the ligand trapped between the two lobes, similar to a Venus 

flytrap’s mechanism to trap insects (Pin & Acher, 2002). Slaughter and Miller 

(1981) discovered that APB selectively blocked the On pathway in the retina, 

while the Off pathway remained intact at the BC level. 

TRPM1 Channel 

TRPM1, also known as Melastatin 1, is a member of the transient receptor 

potential (TRP) channel family and consists of six transmembrane domains 

(Koike et al., 2010). The TRPM1 channel mediates the non-selective cation 

current that depolarizes On BCs (Bellone et al., 2008; Morgans et al., 2009; Shen 

et al., 2009; Koike et al, 2010). The activation/inactivation of the trimeric G-

protein Go is linked to the opening/closing of the TRPM1 channel (Vardi 1998; 

Nawy 1999; Dhingra et al., 2002), but the mechanism remains undetermined, 
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although two possible candidates are Goα (Dhingra et al., 2000) and Gγ13/Gβ3 

(Dhingra et al., 2012). 

Nyctalopin 

Nyctalopin is a member of the small leucine-rich repeat family (LRR) of 

proteins. LRR proteins facilitate protein-protein interactions and are involved in 

signal transduction, cellular trafficking, cell adhesion, and tissue organization 

(Poopalasundaram et al., 2005). Nyctalopin interacts with TRPM1 and plays a 

critical role in its localization to the On BC dendritic tips (Pearring et al., 2011). 

The exact role of nyctalopin in the mGluR6 cascade or the assembly of the entire 

signaling complex remains unknown (Pearring et al., 2011).   

GPR179 

Like mGluR6, the G-protein coupled receptor 179 (GPR179) is a seven 

transmembrane G-protein coupled receptor. GPR179 also is localized to the 

dendritic tips of the On BCs in the mouse retina (Peachey et al., 2012b), where it 

co-localizes with mGluR6 and TRPM1.  

LRIT3 

The recently identified gene, LRIT3, encodes another LRR protein, with 

immunoglobulin-like, and transmembrane-domain 3 moieties (Zeitz et al., 2013). 

The loss of LRIT3 protein causes the loss of nyctalopin and TRPM1 channels 

from the dendritic tips of rod BCs.  
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On BC Mutations Result in No b-wave ERG Phenotype 

mGluR6 

GRM6 is the gene that encodes the mGluR6 receptor. The mGluR6-/- 

mouse exhibits a no b-wave ERG phenotype (Masu et al., 1995; Figure 8) and 

therefore lacks proper function of On BCs. The mGluR6-/- mouse does not differ 

from WT in a shuttle box avoidance task, which demonstrates a level of visual 

signal preservation (at dim illumination of 1.2 cd/m2; Masu et al., 1995). The 

mGluR6-/- mouse Superior Colliculus exhibits delayed On responses (dOn; Masu 

et al., 1995; Sugihara et al., 1997). The mGluR6-/- mouse exhibits a decrease in 

the percent of cells with On responses in the visual cortex (WT= 100%, mGluR6-/- 

= 79%) and RGCs (WT = 79%, mGluR6-/- = 43%) compared to WT (Renteria et 

al., 2006). In addition, only Off and dOn responses were found in the visual 

cortex and RGCs (Renteria et al., 2006).  

                                  

Figure 8. Electroretinogram from WT and mGluR6-/- mouse. The positive going b-

wave is absent in the mGluR6-/- mouse. All nob mutants exhibit a no b-wave 

phenotype. Modified from Masu et al., 1995. 

mGluR6
-/-

 

WT 
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In the WT mouse retina, a dOn response, similar to that found in the 

mGluR6-/-, can be unmasked by block of the On pathway with the mGluR6 

agonist APB (Renteria et al., 2006).  The abnormal On response is likely 

produced by the Off pathway (Renteria et al., 2006; Farajian et al., 2011). As 

described earlier, the On pathway has inhibitory input to the Off pathway (Cohen, 

1998; Zaghloul et al., 2003). Under normal conditions, the dOn response from 

the Off Pathway would be suppressed by inhibitory ACs driven by the On 

pathway (Renteria et al., 2006). In WT retina the normal interaction between On 

and Off pathways results in correctly timed responses to the onset and offset of a 

stimulus (Renteria et al., 2006). 

TRPM1 

A TRPM1 mutation was first identified in the Appaloosa horse (Bellone et 

al., 2008). Mutations in TRPM1 result in a no b-wave ERG in both animal models 

and humans. Human individuals with TRPM1 mutations have 15 Hz flicker cone 

ERGs but no response through the primary rod pathway (van Genderen et al., 

2009). In Trpm1-/- mice optokinetic responses, used to measure spatial frequency 

and contrast sensitivity thresholds, reveal a 10% reduction of spatial frequency 

threshold, as well as a three-fold decrease in contrast sensitivity compared to WT 

(Morgans et al., 2009). 

Trpm1-/- rod BCs lack a response to exogenous application of the mGluR6 

antagonists CPPG (Morgans et al., 2009) or LY341495 (Pearring et al., 2011). All 
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WT On cone BCs respond with sustained currents to CPPG (Morgans et al., 

2009), while half of Trpm1-/- On cone BCs exhibit no response. Unexpectedly, the 

remaining Trpm1-/- On cone BCs exhibit a small transient current (Figure 9; 

Morgans et al., 2009). This suggests that a subset of On cone BCs possess 

additional receptors/channels that are modulated by CPPG.  

In contrast to Morgans et al., (2009), Koike et al. (2010) measured Trpm1-

/- On BC light responses instead of pharmacologically-stimulated responses. 

Koike et al. found that neither Trpm1-/- rod BCs nor On cone BCs exhibited light-

evoked responses (Figure 10; 2010). Also, in the dark, Trpm1-/- On BC 

membrane current fluctuations are smaller than in WT, which suggests no 

functional transduction channel in the Trpm1-/- mice (Koike et al., 2010). As Koike 

et al. (2010) explained, the conflicting results with Morgans et al. (2009) may be 

explained by Morgans et al.’s use of pharmacological stimulation, as L-AP4 also 

affects cone PRs and there is no conclusive evidence that CPPG affects only On 

BCs in the retina (Hosoi et al., 2005) or that the mGluR6/TRPM1 cascade is the 

only effector of CPPG in On BCs. Ray et al. (2014)  also reported a residual 

current in Trpm1-/- rod BCs that is not mediated by capsaicin, a non-selective 

TRP channel agonist, providing further evidence of a small unidentified current in 

rod BCs. Thus, light stimulation versus pharmacological stimulation may yield 

different results. 

Capsaicin gates TRPM1 in rod BCs (Shen et al., 2009). Trpm1-/- rod BCs 

do not respond to capsaicin (Pearring et al., 2011), however, small capsaicin-
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activated current is present in at least some Trpm1-/- On BCs (Morgans et al., 

2009). Morgans et al. (2009) speculated that in addition to TRPM1, there is 

another type of channel which is sensitive to capsaicin. Therefore, it is possible 

that capsaicin does not act on the TRPM1 channel in isolation in rod or On cone 

BCs. 

 

   

 

Figure 9. WT and Trpm1-/- BC pharmacological responses. A. WT rod BCs 

respond to CPPG and Trpm1-/- rod BCs do not. B. WT On cone BCs respond to 

CPPG and a population of Trpm1-/- On cone BCs maintain a small transient 

response. From Morgans et al., 2009.  
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Figure 10. WT and Trpm1-/- BC light responses. A. WT On BC response to light 

B. Trpm1-/- On BCs are non-responsive to light. C. WT Off BC response to light. 

D. Trpm1-/- Off BCs maintain outward current in response to light. From Koike et 

al., 2010.  

 

 

Nyctalopin  

The Nyxnob mouse, a mouse with a mutation in the nyctalopin gene, was 

the first no b-wave ERG animal mutant to be identified (Pardue et al., 1998). An 

active avoidance behavioral paradigm demonstrated that Nyxnob mice have 

decreased sensitivity to light (Gregg et al., 2003). Nyxnob RGCs exhibit abnormal 

A 
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periodic bursting that arises around postnatal day (P) 15, after a period of 

relatively normal development, as well as persistence of waves past normal 

developmental stages (Demas et al., 2006). Nyxnob RGCs have a common 

fundamental frequency of bursting activity (3-5 Hz; Demas et al., 2006), although 

the cells do not burst in unison. Due to abnormal spontaneous activity of RGCs, 

the Nyxnob dorsal lateral geniculate nucleus exhibits desegregation of RGC axons 

in mice up to age P22 (Demas et al., 2006). Nyxnob On BCs do not respond to 

exogenous glutamate puffs (Gregg et al., 2007), the mGluR6 antagonist 

LY341495, or to the TRP agonist capsaicin (Pearring et al., 2011). The TRPM1 

channel is absent in Nyxnob On BC dendritic tips (Gregg et al. 2007; Pearring et 

al., 2011).  

Gpr179 

The Gpr179nob5 mouse has a severely decreased ERG b-wave amplitude 

(Ray et al., 2014). When GPR179 is absent, expression of two regulator of G-

protein signaling (RGS) proteins, RGS7 and RGS11, which accelerate the 

opening of the TRPM1 channel, also are absent in rod BC dendritic tips (Orlandi  

et al., 2012). My experiments further examine the role of GPR179 in Chapter V. 

LRIT3 

The Lrit3-/- mouse has a no b-wave ERG phenotype (Neuille et al., 2014; 

McCall/Gregg lab, unpublished observation), similar to a certain population of 
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human patients diagnosed with cCSNB (Zeitz et al., 2013). My experiments in 

Chapter VI will help elucidate the role of LRIT3 in rod BC signaling. 

Phenotypic differences across no b-wave mutants 

When no b-wave mutants are compared, some unexpected differences in 

RGC functional responses have been observed (Pinto et al., 2007; Maddox et al., 

2008). Two variants of the mGluR6 gene (mGluR6nob3 and mGluR6nob4) result in 

different distributions of RGC functional classes, which are defined by the RGC 

response to light stimuli (Pinto et al., 2007; Maddox et al., 2008). There are also 

significant differences in mGluR6nob3 and mGluR6-/- in regards to their excitatory 

and inhibitory input to RGCs (Heath, unpublished data). In addition, Nyxnob, 

Trpm1-/- and Lrit3-/- generate rhythmic bursting activity (Demas et al., 2006; 

McCall lab observation), while mGluR6-/- does not exhibit this phenotype 

(Renteria et al., 2006). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 



36 
 

CHAPTER II 

GENERAL MATERIALS AND METHODS 

Animals 

In experiments that examined BC function, three-to-six week old male and 

female mice of various genotypes were used. In experiments that examined RGC 

function, two to six month old male and female mice were used. The genotypes 

of all mice used are shown in Table 1. 

All mice were housed in a 12h/12h light/dark cycle. Animals had access to 

food and water ad libitum. All procedures were performed in accordance with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and 

approved by the University of Louisville Institutional Animal Care and Use 

Committee.

 

Table 1. All of the mouse lines used in the following experiments.  
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Dark and Light Adaptation 

When mice were used in dark-adapted experiments, they were placed in 

their home cage overnight in a completely dark room. Using a dim red light, the 

mice were anesthetized in the dark room. When mice were used in light-adapted 

experiments, they were kept in their home cage under normal room illumination 

and were anesthetized under normal room light. 

General Preparation for Retinal Recordings  

Mice were anesthetized with an intraperitoneal injection of 

xylazine/ketamine (127 and 12 mg/kg concentration, respectively) diluted in 

Ringer’s solution. Once the animal was deeply anesthetized, a cervical 

dislocation was performed and the eyes enucleated. For dark-adapted 

experiments the eyes were enucleated under dim red light and dissected under 

infrared (IR) illumination to prevent bleaching the photoreceptors. In light-adapted 

experiments, the eyes were enucleated under normal room light and dissected 

under dim light. Oxygenated (95/5%-oxygen/carbon dioxide) Ames medium 

(Sigma-Aldrich) with 1.9g/l sodium bicarbonate buffer was used as the 

extracellular solution for BC experiments. Oxygenated (95/5%-oxygen/carbon 

dioxide) bicarbonate buffered Ringer’s solution (containing in mM: 125 NaCl, 2.5 

KCl, 1 MgCl2, 1.25 NaH2PO4, 20 glucose, 26 NaHCO3 and 2 CaCl2, at pH 7.2) 

was used as the extracellular solution for RGC experiments. The cornea and lens 



38 
 

were removed. The retina was separated from the sclera and the vitreous was 

manually removed from the retina with forceps.  

Retinal Slice Preparation for BC Recordings 

The dissected whole mount retina was placed onto nitrocellulose paper 

(Millipore) photoreceptor side up, which was adhered to a cover slip with vacuum 

grease. The tissue and paper were placed into a custom made tissue slicer and 

150 µm sections were cut using a razor blade. Each slice was oriented 

perpendicular to the cutting plane so that each retinal layer was visible and its 

position was stabilized between two vacuum grease tracks. Retinal slices were 

stored in a dark oxygenated bath chamber until needed. 

Retinal Whole Mount Preparation for RGC Recordings 

Retinas were dissected under IR illumination in order to preserve 

photoreceptor driven responses to light stimuli. The whole mount retina was cut 

into four quarters and placed on a cover slip. Stainless steel harps lined with 

nylon stabilized the retina against the cover slip. Only one RGC was recorded 

from each quarter to prevent the loss of light-evoked responses in subsequent 

RGCs resulting from bleaching of the photoreceptors. Retinal quarters were 

stored in a dark oxygenated bath chamber until needed.  
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BC and RGC Whole Cell Patch Clamp Recording  

The extracellular solution in the recording chamber was maintained at 34-

35 ºC. For BC experiments dark and light-adapted conditions were used. For 

light-adapted preparations the recorded retinal slice was exposed to light 

throughout the preparation and recording. For the dark-adapted preparations the 

retinal slice was illuminated by IR and viewed by an IR camera. For all RGC 

experiments, the IR camera was used to visualize the retinal tissue for recording. 

The BC soma was targeted in retinal slices. A blunt pipette was used to scrape 

off a small portion of inner limiting membrane to expose the targeted RGC soma 

in retinal whole mounts.  

Recording electrodes were pulled from borosilicate glass (FHC, Inc., 

Bowdoin, ME) on a P-97 Flaming/Brown Micropipette Puller (Sutter Instruments 

Co., Novato, CA). For BC recordings, glass electrodes were filled with an 

intracellular solution of either K-gluconate (containing in mM: 120 K-gluconate, 1 

CaCl2, 1 MgCl2, 10 Na-HEPES, 11 EGTA, 4 ATP, 1 GTP and 1% 

sulforhodamine) to maintain normal ion concentrations within the cell or Cs-

gluconate-TEA (containing in mM: 20 CsCl, 107 CsOH, 107 D-Gluconic Acid, 10 

Na+ HEPES, 10 BAPTA, 10 TEA and 1% sulforhodamine) to block potassium 

currents in the cell. For RGC recordings, K-gluconate with 1% lucifer yellow 

instead of sulforhodamine was used.  
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For BC recordings, electrodes with resistance between 6-9 MΩ were 

used. For RGC recordings, electrodes with resistance between 3-6 MΩ were 

used. As the pipette was lowered into the chamber holding the tissue, positive 

pressure was applied in order to keep the electrode tip clear of debris. The 

electrode was lowered to the retina and toward the cell until the electrode created 

a visible dimple in its soma. The positive pressure was released and slight 

suction applied. This created a GΩ seal between the electrode and BC or RGC 

(~2-4 or 1 GΩ, respectively). Suction was reapplied to break into the cell 

membrane. BCs were recorded if their input resistance was ~1 GΩ and access 

resistance <25 MΩ. RGCs were recorded if their input resistance was <100 MΩ. 

BC and RGC current and voltage responses were recorded via a Multiclamp 

700A amplifier with a Digidata 1440A digitizer (MDS Analytical Technologies, 

Union City, CA) and filtered at 2.4 kHz with a four-pole Bessel low pass filter, 

sampled at 10 kHz. Clampex 10.2 software was used to generate command 

outputs, trigger the light stimulus and acquire and analyze analog whole cell 

voltage and current.  

Light Stimulus 

RGC light-evoked responses were elicited by full-field application of white 

light from a light emitting diode with the intensity of 2140 cd/m2. 
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Morphological Identification of BCs 

In the retinal slice, rod BC somas were identified and targeted for 

recording based on size, shape, and location of their somas in the INL (Ghosh et 

al., 2004). To verify their morphology, BCs were filled with intracellular solution 

containing 1% sulforhodamine, a red fluorescent dye. Their morphology was 

verified by fluorescence microscopy, and cells divided into rod, On cone, or Off 

cone BCs (Ghosh et al., 2004). Rod BC somas are found at the top of the INL 

and their axon terminals have very distinct lobular terminals that ramify within the 

deepest layer of the IPL. On and Off cone BC somas were found in the 

middle/upper-middle INL while On cone axon terminals ramify within the lower 

half of the IPL closest to the RGC layer and Off BCs axon terminals ramify within 

the upper half of the IPL. 

Morphological Identification of Recorded RGCs by 

Immunohistochemistry  

In retinal whole mount recordings, RGCs were filled with intracellular 

solution containing 1% Lucifer Yellow, a fluorescent dye. At the end of each 

recording, the retinal whole mount quarter containing the characterized RGC was 

fixed in 4% paraformaldehyde in phosphate buffer (pH 7.4) (30 min), rinsed in 0.1 

M phosphate buffered saline (PBS, 3X; 20 min) and stored at 4oC. The tissue 

was incubated in PBS with 0.5% triton-X (PBX) for 1hr, followed by blocking in 

5% normal donkey serum in PBX for 1hr. Retinas were reacted with anti-lucifer 
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yellow antibody (rabbit, 1:1000, Molecular Probes, Eugene, OR) overnight. 

Tissue was washed in PBS (3X; 5-10 min), incubated in 5% normal donkey 

serum in PBX for 1hr, and then incubated in Alexa Fluor 488 secondary antibody 

(donkey anti-rabbit, 1:1000, Molecular Probes, Eugene, OR) in 5% normal 

donkey serum overnight at 4oC. Retinas were then washed in PBS (3X) and 

incubated in TO-PRO-3, a nuclear stain, (1:1000 in PBS, Molecular Probes, 

Eugene, OR) for 20 min. Finally, retinas were washed in PBS twice, mounted in 

Gelmount, cover-slipped and imaged on an Olympus FV300 confocal 

microscope. Confocal stacks were taken at 0.4 micron intervals.  

The dendritic arbor of each RGC was reconstructed using FluoView 4.0 

software (Olympus, Center Valley, PA). The stratification pattern within the IPL 

was determined by rotating the image stack 90o and the lamination of the RGC 

dendrites relative to the TO-PRO-3 stain of the INL and ganglion cell layer were 

compared. RGCs with dendrites that stratified in the On sublamina (the three 

sub-layers of the IPL located most closely to the ganglion cell layer) were defined 

as On morphology, dendrites in Off sublamina (the two sub-layers of the IPL 

located most closely to the INL) were defined as Off morphology and those with 

dendrites in both sublamina were defined as Bistratified. 

Analysis and Statistics 

Clampfit 10.2 software was used to measure BC and RGC responses in 

offline analysis. Prism 5.04 software (Graphpad Software, Inc., La Jolla, CA) was 
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used for statistical analyses. A D’Agostino and Pearson omnibus test was used 

to determine if data were derived from a normal distribution. For data with a 

normal distribution a two-tailed Student’s t-test, one-way ANOVA with Bonferroni 

post hoc, or two-way ANOVA with Bonferroni post hoc were used to determine 

statistically significant differences. For data with a non-normal distribution a 

Mann-Whitney or Kruskal-Wallis with Dunns post-hoc were used to determine 

statistically significant differences. Significance was defined as P < 0.05. The 

post hoc P value is reported in the text. All data were reported as mean ± 

standard error of the mean. 
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CHAPTER III 

COMPARISON OF Nyxnob AND mGluR6-/- RGCS 

 

Introduction 

Spontaneous bursts of action potentials that propagate across the retina 

(retinal waves) are a part of normal retinal development (Meister et al., 1991; 

Wong et al., 1993; Wong & Oakley, 1996). In the mouse retina, these waves 

occur prior to PR differentiation, expression of rhodopsin and thus, before the 

onset of visual signaling (Galli & Maffei, 1988; Shatz et al., 1988; Wong et al., 

1993). Retinal waves are critical for segregation of ON-OFF RGC axon terminals 

as well as the formation and maintenance of eye-specific regions in the dorsal 

lateral geniculate nucleus (dLGN; Wong & Oakley, 1996; Eglen, 1999; Demas et 

al., 2003). In normal mouse retina, three wave phases have been defined by the 

neurotransmitter source of the activity: stage I (E16 to P0): acetylcholinergic, 

mediated by nicotinic acetylcholine receptors in combination with a non-nicotinic 

receptor mechanism, which may be either gap junction or neurotransmitter 

mediated (Bansal et al., 2000; Catsica et al., 1998), stage II (0 to P11): 

acetylcholinergic, mediated by nicotinic acetylcholine receptors (Bansal et al., 

2000), stage III (P11 to P14): glutamatergic, mediated by ionotropic glutamate 
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receptors (Bansal et al., 2000; Wong, 1999; Torborg & Feller, 2005). Stage III 

glutamatergic waves end shortly after eye-opening, at about the time that the 

retina becomes responsive to light (Demas et al., 2003).  

Complete congenital stationary night-blindness (cCSNB) is a disease of 

heterogeneous etiology. Most patients and animal models of cCSNB have been 

identified in screens of retinal function using the ERG. The cCSNB ERG has a 

normal a-wave, which indicates intact photoreceptor function but lacks a b-wave, 

reflecting a lack of signaling in On BCs. The nyctalopin mutant (Nyxnob) and 

metabotropic glutamate receptor 6 knockout (mGluR6-/-) mice have similar no b-

wave ERG phenotypes (Masu et al., 1995; Pardue et al., 1998) and are models 

of cCSNB.  

During development, Nyxnob retinas exhibit normal stage I and II waves, 

but stage III glutamatergic waves persist through at least early adulthood (P28; 

Demas et al., 2006). These abnormal waves increase in frequency and by P28 

transition into high frequency rhythmic action potentials (Demas et al., 2006). 

Approximately 80% of Nyxnob RGCs develop abnormal rhythmic spontaneous 

bursts when recorded in vitro and their fundamental frequency is between 3-5 Hz 

at P28 (Demas et al., 2006). The extended period of glutamatergic waves and/or 

the rhythmic bursting of the RGCs are correlated with desegregation of eye-

specific RGC axon projections in the Nyxnob dLGN (Demas et al., 2006). Waves 

in mGluR6-/- or other cCSNB mouse models have not been examined, and the 

question remains whether their waves persist.  
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A rhythmic component in the spontaneous spiking activity of RGCs also 

has been reported in two mouse models of retinitis pigmentosa, rd1 and rd10, 

where rods and then cone photoreceptors degenerate (Blanks et al., 1974; 

Carter-Dawson et al., 1978; Marc et al., 2007; Ye & Goo 2007 (rd1); Margolis et 

al., 2008 (rd1); Stasheff, 2008 (rd1); Borowska et al., 2011(rd1); Stasheff et al., 

2011 (rd1 & rd10); Menzler & Zeck, 2011 (rd1); Trenholm et al., 2012 (rd1); 

Menzler et al., 2014 (rd1 & rd10)). In the rd retina, two mechanisms have been 

proposed to account for the oscillations: 1) The network of gap junction-coupled 

AII ACs and On cone BCs are the synaptic drive which underlies the RGC 

bursting (Borowska et al., 2011; Menzler & Zeck, 2011; Trenholm et al., 2012) 

and 2) Oscillations in the rd1 retina reflect intrinsic bursting of AIIs that are 

directly relayed to the RGCs rather than emerging from the gap-junction-coupled 

network (Choi et al., 2014). This intrinsic rhythmic property of AII ACs is 

unmasked by hyperpolarization of rd1 AII ACs when synaptic input is reduced 

due to photoreceptor degeneration (Choi et al., 2014).  

There are differences between rd and cCSNB animal models and the 

oscillations in their RGCs: rd RGCs are reported to oscillate at ~10 Hz (Yee & 

Goo, 2007; Borowska et al., 2011(rd1)), ~6.8 Hz (Yee et al., 2012 (rd1) or ~3-12 

Hz (Toychiev et al., 2013 (rd10), while Nyxnob RGCs oscillate at ~3-5 Hz (Demas 

et al., 2006). Approximately half of all rd RGC morphological classes oscillate 

(Borowska et al., 2011), while almost all Nyxnob RGCs oscillate (Demas et al., 

2006). In cCSNB, the rod and On cone BCs never respond to glutamate (Gregg 
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et al., 2007) or light stimulation (Xu et al., 2011) regardless of whether they are 

recorded in vivo, in vitro, as spiking or membrane potentials, while their Off cone 

BCs have normal glutamate responses (Gregg et al., 2007). In rd, signaling is 

present early in postnatal development, then rod followed by cone PRs 

degenerate, which alters the ability of all RGCs to respond to light. However, at 

an early stage of degeneration in rd1 mouse ON responses diminish before OFF 

responses (Stasheff, 2008). While there are differences between these two 

disease models, it is possible they share similar underlying mechanisms, which 

result in RGC oscillations.    

In WT retina, although a small proportion of RGCs show some high 

frequency rhythmicity (Freeman et al., 2008), most RGCs exhibit spontaneous 

spiking activity with no temporal correlation. A correlation of RGC class with the 

presence of rhythmicity has not been reported (Freeman et al., 2008). The 

spontaneous activity of WT ON-sustained RGCs require excitatory synaptic 

input, whereas spontaneous activity of WT OFF-sustained and transient RGCs 

are set intrinsically and modulated by synaptic input (Margolis & Detwiler, 2007). 

Bistratified RGCs spontaneous activity has not been examined, but is likely to at 

least reflect excitatory input from the On pathway. 

Like the Nyxnob mouse, the mGluR6-/- mouse lacks signaling through On 

BCs and thus through the On retinal pathway. Even so, delayed ON (dON) 

responses (responses whose onset is ≥ 400 msec) have been documented in the 

RGCs (Renteria et al., 2006) and superior colliculus (Sugihara et al., 1997) of the 
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mGluR6-/- mouse. dON and dON/OFF responses also are found in Nyxnob RGCs 

along with OFF responses (McCall lab, unpublished observation). In contrast, 

WT RGCs do not exhibit dON responses, although they can be induced in OFF-

center RGCs (Renteria et al., 2006) or RGCs with OFF morphology (Farajian et 

al., 2011) when the ON pathway is blocked with APB or when GABAergic 

inhibition is blocked (Renteria et al., 2006; Farajian et al., 2011). Furthermore, 

under these pharmacological manipulations, over one-third of WT OFF 

morphology RGCs exhibit these masked ON responses (Farajian et al., 2011). 

This result demonstrates that ON responses are generated by or carried through 

the OFF pathway and are normally masked by crossover inhibition initiated in the 

ON pathway (Renteria et al., 2006; Farajian et al., 2011).  

Using extracellular recordings, all mGluR6-/- (Renteria et al., 2006) and 

Nyxnob RGCs show spontaneous spiking, but only Nyxnob RGCs have been 

reported to spike rhythmically (Demas et al., 2006). Rhythmicity is not an artifact 

induced by recording in vitro, as extracellular in vivo recordings from single 

Nyxnob RGC axons in the optic nerve also show similar rhythmic spiking (3-5 Hz; 

Demas et al., 2006). Using a whole cell patch clamp approach, I found that most 

Nyxnob RGCs have rhythmic membrane oscillations (96%) and many of these 

RGCs spike rhythmically (61%). In contrast, many mGluR6-/- RGCs (40%) have 

rhythmic membrane oscillations but few have rhythmic spiking (12.5%). This 

dichotomy in Nyxnob and mGluR6-/- RGCs rhythmic spiking is unexpected, since 

the retinas of both mutants show no signs of remodeling, share a similar no b-
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wave ERG phenotype (Masu et al., 1995; Pardue et al., 1998) and lack 

expression of TRPM1, the non-selective cation channel that is responsible for 

signaling in On BCs (Cao et al., 2011; Pearring et al., 2011; Xu et al., 2011).  

This suggests that there are differences between Nyxnob and mGluR6-/- 

retinas that occur at or after the On BC output to the rest of the inner retinal 

circuit. To characterize the differences in this circuity in Nyxnob and mGluR6-/- 

mutants, I recorded and compared both the intrinsic properties and synaptic 

inputs to Nyxnob and mGluR6-/- RGCs using in vitro whole cell patch clamp 

recordings so that I could correlate functional changes with RGC morphology. 

Materials and Methods 

RGC Whole Cell Patch Clamp Protocol 

Current Clamp Protocols 

Membrane Oscillations  

K-Gluconate intracellular solution (containing in mM: 120 K-gluconate, 1 

CaCl2, 1 MgCl2, 10 Na-HEPES, 11 EGTA, 4 ATP, 1 GTP and 1% 

sulforhodamine) was used for RGC recordings. To evaluate the presence of a 

rhythmic component in RGC spontaneous membrane potential activity (includes 

action potentials and sub-threshold membrane oscillations), I performed a Fast 

Fourier transform (FFT) analysis over 85 seconds of a 0 pA current clamp 

recording (Clampfit 10.2; Figure 11). Raw RGC current clamp recordings display 
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voltage change across time, while a FFT allows me to see what components are 

present within the raw recorded signal. Specifically, a FFT presents the RGC 

signal as the voltage amplitudes that are present at each frequency (Hz). A 

Fourier analysis coverts time to frequency and the FFT is an algorithm which 

computes the Fourier transform, which is plotted on a graph (example in Figure 

11).  

RGCs were classified as ‘rhythmic’ if there was a peak present in their 

FFT. The criterion to classify a cell as rhythmic was employed if the peak of the 

FFT had low power (low Y-axis value at the peak) or was surrounded by high 

baseline/noise power (high Y-axis values to the left and/or right of the peak), in 

which case I used the following metric: A cursor was placed following the DC 

component of the power spectrum and another cursor was placed at 10 Hz to 

encompass the peak of the FFT (Figure 11). The following equation was utilized: 

mean across the selected cursor region + 3 x standard deviation. If the calculated 

value was larger than the power of the FFT peak (Y-axis value at the peak), then 

the RGC was classified as ‘non-rhythmic’. If the calculated value was smaller 

than the power of the FFT peak, then the RGC was classified as ‘rhythmic’. The 

principle behind the equation was to determine if the peak of the FFT was large 

and narrow enough to be considered a reliable measure of rhythmic frequency 

above noise. The rhythmic frequency was classified as the frequency (Hz) of the 

FFT peak (the X-axis value at the peak of the FFT).  
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Figure 11. RGC Fast Fourier Transform. RGCs were classified as ‘oscillatory’ if 

they exhibited a strong peak in the FFT. Specifically, a cursor was placed 

following the DC component of the power spectrum and another cursor was 

placed at 10 Hz to encompass the peak of the FFT. If the calculated mean 

across the selected cursor region + 3 x standard deviation was larger than the 

power of the FFT peak (Y-axis value at the peak), then the RGC was classified 

as ‘non-oscillatory’. If the calculated value was smaller than the power of the FFT 

peak, then the RGC was classified as ‘oscillatory’. The oscillatory frequency is 

the frequency (Hz) of the FFT peak (the X-axis value at the peak of the FFT). 
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Resting Membrane Potential (Vrest) 

The mean Vrest was calculated by subtracting the peak of the membrane 

potential from the trough of the membrane potential across eight consecutive ten 

second intervals, which were averaged to calculated the mean Vrest (Clampfit 

10.2). If action potentials were present on top of the baseline membrane 

potential, the action potential deflection from baseline was eliminated from the 

peak measurement. Action potentials were ignored in order to compare baseline 

membrane potentials across all cells, whether or not they exhibited action 

potentials.  

Rhythmic Spiking 

To evaluate the presence of rhythmic spiking activity in isolation of any 

sub-threshold membrane oscillation I used Spike2 7.02 to filter only the action 

potentials in each 85 second current clamp recording. Then I performed the 

same FFT described above, utilizing the same specified criterion to classify a cell 

as ‘non-rhythmic spiking’ or ‘rhythmic spiking’.  

Spontaneous Activity 

Spontaneous spiking activity was calculated by setting a threshold in 

which Clampfit 10.2 counted all spikes which crossed a cursor in the positive 

direction. The threshold was set individually for each recording to ensure all spike 

events were included in the analysis. Spikes from each RGC were counted 

across 85 seconds and the average number of spikes/second was calculated. 
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Light Response Class  

RGCs were categorized as responsive when they had action potentials or 

depolarized to light onset or offset in ≥ 50% of the stimuli trials. The time-to-peak 

of the response was measured in Clampfit 10.2 and the response was then 

classified as either ON, ON/OFF, OFF, delayed ON (dON), or dON/OFF. 

Statistical Analysis 

One-way ANOVA with Bonferroni post hoc, Kruskal-Wallis with Dunns 

post hoc, Chi Square, Mann-Whitney or unpaired t-tests with Welch’s correction 

were used as the statistical analyses. Post hoc P values are reported. Analyses 

were performed in Prism 5.04. 

Terminology 

Membrane oscillations: All membrane potential data, including spikes and 

sub-threshold membrane oscillations. 

Rhythmic spiking: The rhythmic spikes have been isolated from sub-threshold 

membrane oscillations. 

Results 

In my in vitro whole-mount preparation, all WT RGCs (n = 34), regardless 

of dendritic morphology, had spontaneous and/or light-evoked spiking activity. I 

confined my analysis to Nyxnob and mGluR6-/- RGCs with spiking activity. Similar 
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to previous reports (Freeman et al., 2008), I found a small number of WT (3/33) 

and mGluR6-/- (1/42) RGCs with rhythmic activity at frequencies >14 Hz (either 

ON or OFF morphology RGCs). Since this high frequency rhythmicity is a WT 

phenotype, I eliminated any RGC with oscillations > 14 Hz from my analysis.  

Most Nyxnob and few mGluR6-/- RGCs have rhythmic spiking 

Among spiking RGCs, 61% (33/54) of Nyxnob RGCs (Figure 12A, B), but 

only 12.5% (5/40) of mGluR6-/- RGCs exhibited rhythmic spiking activity. In the 

rd1 retina, 50% of RGCs exhibit rhythmic spiking (; et al., 2011), suggesting the 

Nyxnob retina may more closely resembles the rd retina. The distribution of 

fundamental frequency of Nyxnob and mGluR6-/- RGCs were between 2-5 Hz 

(Figure 12C) and their means were similar (Nyxnob RGCs: 3.64 Hz ± 0.16; 

mGluR6-/- RGCs: 3.03 Hz ± 0.35; t-test: P = 0.14). 
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Figure 12. Among RGCs that exhibit spiking activity, most Nyxnob but only a few 

mGluR6-/- RGCs exhibit rhythmic spiking activity. A. Recordings from WT, Nyxnob 

and mGluR6-/- RGCs, demonstrate the absence of rhythmic spiking in WT RGCs 

and its presence in Nyxnob and mGluR6-/- RGCs. B. Histogram shows the 

frequency distribution of Nyxnob and mGluR6-/- RGCs that spike rhythmically. C. 

Histogram shows the distribution of fundamental frequency of Nyxnob and 

mGluR6-/- RGCs with rhythmic spiking.  
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Almost all Nyxnob but less than half of mGluR6-/- RGCs have rhythmic membrane 

oscillations 

Given the difference in the proportions of Nyxnob and mGluR6-/- RGCs that 

exhibit rhythmic spiking, I characterized rhythmicity in their membrane potentials. 

An additional 35% of Nyxnob RGCs (19 RGCs) and 27.5% of mGluR6-/- RGCs (11 

RGCs) exhibit only membrane oscillations. Taken together, 96% of Nyxnob 

(52/54) and 40% of mGluR6-/- (16/40) RGCs show some rhythmic activity (Figure 

13B). Again, the distribution of Nyxnob and mGluR6-/- RGC fundamental 

frequencies were between 2-5 Hz (Figure 13C) and their means were similar 

(Nyxnob RGCs: 3.53 Hz ± 0.10; mGluR6-/- RGCs: 3.11 Hz ± 0.19; t-test: P = 0.06). 

These data indicate that rhythmic membrane oscillations in both Nyxnob and 

mGluR6-/- RGCs do not always transfer into rhythmic spiking (example of this in 

Figure 3A), although Nyxnob RGCs are much more likely to show rhythmicity. This 

finding may result from RGCs with altered Vrest, therefore hindering their spiking 

ability, but maintaining their membrane oscillations. In addition, this finding may 

indicate that excitatory inputs, which cause RGC rhythmic activity, are insufficient 

to bring them to spike threshold, due to altered spontaneous activity. The initial 

results suggest a fundamental difference in the inner retinal circuits of these two 

models of cCSNB.  
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Figure 13. Almost all of Nyxnob and slightly less than half of mGluR6-/- RGCs 

exhibit rhythmic membrane oscillations. A. Recording from mGluR6-/- RGC 

demonstrates the presence of rhythmic membrane oscillations without rhythmic 

spiking. B. Histogram shows the frequency distribution of Nyxnob and mGluR6-/- 

RGCs that have rhythmic membrane oscillations. C. Histogram shows the 

distribution of fundamental frequency of Nyxnob and mGluR6-/- RGCs with 

rhythmic membrane oscillations. 
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Nyxnob and mGluR6-/- RGC morphological and light response classes were 

evenly sampled 

To determine if all morphological and light response classes were 

sampled evenly between Nyxnob and mGluR6-/- RGCs, I plotted the percent of 

RGCs recorded for all morphological classes (ON, OFF, Bistratified; Figure 4Ai) 

and light response classes (OFF, dON, dON/OFF, NR; Figure 14Bi). The RGCs 

recorded in both Nyxnob and mGluR6-/- were sampled evenly across 

morphological and light response classes (Figure 14Ai, Bi). 

All Nyxnob RGC classes but only non-responsive (NR) mGluR6-/- RGCs exhibit 

rhythmic spiking 

Next, I determined whether specific morphological or light response 

classes corresponded to RGCs with rhythmic spiking or membrane oscillations. I 

compared the distribution of Nyxnob and mGluR6-/- RGCs with rhythmic spiking as 

a function of their dendritic morphology (Figure 14Aii) or light response class 

(Figure 14Bii). Rhythmic spiking was found in similar proportions in all Nyxnob and 

mGluR6-/- RGC morphological classes (Figure 14Aii; Chi Square: P = 0.53), 

demonstrating no correlation between RGC morphological class and the 

presence/absence of rhythmic spiking. Nyxnob and mGluR6-/- are similar to the 

rd1 retina, where all morphological classes exhibit rhythmic spiking (Borowska et 

al., 2011). Among Nyxnob RGCs, rhythmic spiking was found across all light 

response classes (OFF, dON/OFF, NR; Figure 4Bii). In contrast, only NR 
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mGluR6-/- RGCs have rhythmic spiking (Figure 4Bii) and this is not related to 

their dendritic morphology (Figure 4Aii).  

RGCs with rhythmic membrane oscillations are found at similar 

proportions in all Nyxnob and mGluR6-/- RGC morphological and light response 

classes (data not shown; morphological classes: Chi Square: P = 0.39; light-

response classes; Chi Square: 0.12), demonstrating no correlation in RGC class 

and the presence/absence of membrane oscillations.  

Figure 14. The distribution of recorded Nyxnob and mGluR6-/- RGCs and 

distribution of rhythmic spiking based on morphology and light response class. 

Ai. Histogram of morphological classes of all Nyxnob and mGluR6-/- RGCs 



60 
 

recorded. Aii. Histogram shows the percent of morphological classes with 2-5 Hz 

rhythmic spikes in Nyxnob and mGluR6-/- RGCs. All Nyxnob and mGluR6-/- 

morphological classes (ON, OFF, Bistratified) exhibit RGCs with rhythmic 

spiking. Bi. Histogram of light response classes of all Nyxnob and mGluR6-/- RGCs 

recorded. Bii. Histogram shows the percent of light-response classes with 2-5 Hz 

rhythmic spikes in Nyxnob and mGluR6-/- RGCs. Almost all Nyxnob light-response 

classes (OFF, dON/OFF, NR) exhibit RGCs with rhythmic spiking. Only NR 

mGluR6-/- RGCs exhibit rhythmic spiking.  

 

 

Nyxnob and mGluR6-/- RGCs have similar Vrest although both are more 

hyperpolarized than WT 

The Vrest of neurons is a function of both intrinsic properties and tonic 

synaptic inputs. Therefore, I examined whether a difference in Vrest could be 

correlated with the difference between Nyxnob and mGluR6-/- RGC rhythmic 

spiking. Including all RGC types, WT, mGluR6-/- and Nyxnob RGC Vrest were 

similar (one-way ANOVA with Bonferroni post hoc: P > 0.05; data not shown). 

However, the mechanism of maintained activity is known to differ in ON and OFF 

morphology RGCs (Margolis & Detwiler, 2007), so I next compared Vrest within 

RGC morphological classes (Figure 15). Vrest was similar across OFF and 

Bistratified RGCs in WT, mGluR6-/- and Nyxnob RGCs (Kruskal-Wallis with Dunns 

post hoc: P > 0.05; Figure 15B, C). Within ON morphology RGCs, mGluR6-/- and 
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Nyxnob Vrest were more hyperpolarized compared to WT RGCs (Kruskal-Wallis 

with Dunns post hoc: WT v. mGluR6-/-: P < 0.01; WT v. Nyxnob: P < 0.001; Figure 

15A), although Vrest of ON morphology mGluR6-/- and Nyxnob RGCs were similar 

(Kruskal-Wallis with Dunns post hoc: P > 0.05; Figure 15A). Thus, mGluR6-/- and 

Nyxnob RGCs with ON morphology share a more hyperpolarized phenotype, likely 

due to the shared alteration of On BC input to both of these genotypes. 

 

Figure 15. WT, mGluR6-/- and Nyxnob RGC Vrest. A. ON morphology mGluR6-/- 

and Nyxnob RGC Vrest are more hyperpolarized compared to WT RGCs although 

mGluR6-/- and Nyxnob ON morphology Vrest are similar (Dunns post hoc: ** P < 

0.01; *** P < 0.001). B. OFF morphology mGluR6-/-, Nyxnob and WT RGC Vrest are 

similar. C. Bistratified morphology mGluR6-/-, Nyxnob and WT RGC Vrest are 

similar. 
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mGluR6-/- ON morphology RGC spontaneous activity is lower than Nyxnob 

The spontaneous activity of neurons is a function of both intrinsic 

properties and tonic synaptic inputs. Therefore, I examined whether mGluR6-/- 

RGCs are generally less excitable than Nyxnob RGCs. Including all RGC types, 

WT, mGluR6-/- and Nyxnob RGC spontaneous activity levels were similar (One-

way ANOVA: P > 0.05; data not shown). However, the mechanism of 

spontaneous activity is known to differ in ON and OFF morphology RGCs 

(Margolis & Detwiler, 2007), so I next compared spontaneous activity within RGC 

morphological classes. Within OFF and Bistratified morphology RGCs, 

spontaneous activity was similar across WT, mGluR6-/- and Nyxnob RGCs 

(Kruskal-Wallis with Dunns post hoc: P > 0.05; Figure 16B, C). In contrast, the 

spontaneous activity of mGluR6-/- ON morphology RGCs was significantly lower 

compared to Nyxnob RGCs (Kruskal-Wallis with Dunns post hoc: P < 0.05; Figure 

16A) and in fact, the majority of mGluR6-/- ON morphology RGCs had little or no 

spontaneous activity, although both mGluR6-/- and Nyxnob were statistically 

similar to WT RGCs (Figure 16A; Kruskal-Wallis with Dunns post hoc: P > 0.05). 

The results suggest that the general excitatory input to ON morphology mGluR6-/- 

RGCs is significantly lower than Nyxnob. 
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Figure 16. WT, mGluR6-/- and Nyxnob RGC spontaneous activity. ON morphology 

mGluR6-/- RGC spontaneous activity was significantly decreased compared to 

Nyxnob RGCs while mGluR6-/- and Nyxnob are similar to WT RGCs (Kruskal-Wallis 

with Dunns post hoc: * P < 0.05). B. OFF morphology mGluR6-/-, Nyxnob and WT 

RGC spontaneous activity are similar. C. Bistratified morphology mGluR6-/-, 

Nyxnob and WT RGC spontaneous activity are similar. 

 

 

Neither mGluR6-/- nor Nyxnob RGCs have a correlation between Vrest and the 

presence or absence of rhythmic spiking activity 

If the excitatory input is different between Nyxnob and mGluR6-/- RGCs, it 

also could be reflected in the Vrest of the RGCs. I compared the relationship 

between the presence/absence of rhythmic spiking or membrane oscillations and 

Vrest within Nyxnob and mGluR6-/- RGCs in specific morphological classes. A more 

hyperpolarized Vrest in RGCs that do not have rhythmic spiking would indicate 

that for the same presynaptic input it is more difficult to achieve spike threshold.  
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Only 4% of Nyxnob RGCs lack any type of rhythmicity, either spiking or 

membrane oscillations (Figure 13B). There were so few non-rhythmic RGCs 

across all Nyxnob morphological classes, that all classes were combined for 

comparison of Vrest. Nyxnob non-rhythmic RGC Vrest was similar to Nyxnob rhythmic 

RGCs (t-test: P = 0.65; data not shown). Of the 96% of Nyxnob RGCs with 

rhythmicity, Vrest was similar between RGCs with rhythmic spiking and RGCs with 

only membrane oscillations across all morphological classes (t-test: OFF 

morphology P = 0.95; Bistratified morphology P = 0.16; data not shown). Nyxnob 

ON morphology class could not be analyzed because the number of values 

within each group was too low (n=1). 

Sixty percent of mGluR6-/- RGCs lack any type of rhythmicity, either 

spiking or membrane oscillations (Figure 13B). mGluR6-/- non-rhythmic RGC Vrest 

was similar to mGluR6-/- rhythmic RGCs across all morphological classes (t-test: 

OFF morphology P = 0.1.0; Bistratified morphology P = 0.21; ON morphology P = 

0.33; data not shown). There were so few mGluR6-/- RGCs with rhythmic spiking 

or only membrane oscillations, that all morphological classes were combined for 

the following comparison. Of the 40% of mGluR6-/- RGCs with rhythmicity, Vrest 

was similar between RGCs with rhythmic spiking and RGCs with only membrane 

oscillations (t-test: P = 0.17; data not shown). These results indicate that the 

presence or absence of rhythmic spiking activity in Nyxnob and mGluR6-/- RGCs is 

independent of Vrest. 
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A decrease in spontaneous activity can account for Nyxnob RGCs that do not 

exhibit rhythmic spiking, but not for mGluR6-/- RGCs 

I examined the relationship between the presence/absence of rhythmic 

spiking or membrane oscillations and spontaneous activity within Nyxnob and 

mGluR6-/- RGCs in specific morphological classes (Figure 17). Different intrinsic 

mechanisms (in OFF morphology RGCs) or different synaptic inputs (in either 

ON or OFF morphology RGCs) could alter RGC spontaneous activity. For 

example, if RGCs that do not spike rhythmically have decreased spontaneous 

activity compared to RGCs that do spike rhythmically, one could presume that 

the non-rhythmic spiking RGCs cannot exhibit sufficient spiking activity to result 

in rhythmic spiking, but could maintain membrane oscillations. Therefore, 

differences in spontaneous activity between rhythmic spiking and membrane 

oscillatory RGCs could account for the dichotomy between rhythmic spiking/non-

rhythmic spiking Nyxnob and mGluR6-/- RGCs. 

Of the 96% of Nyxnob RGCs with rhythmicity, OFF and Bistratified 

morphology Nyxnob RGCs with only membrane oscillations exhibited lower 

spontaneous activity compared to OFF and Bistratified morphology Nyxnob RGCs 

with rhythmic spiking (Figure 17Aii, 7Aiii; Mann-Whitney: OFF morphology Nyxnob 

rhythmic vs. non-rhythmic: P = 0.0001; Bistratified morphology Nyxnob rhythmic 

vs. non-rhythmic: P = 0.02). The horizontal black lines on the graphs in Figure 17 

represent the minimum spontaneous activity level where RGCs exhibited 
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rhythmic spiking; none of the RGCs below this line exhibited rhythmic spiking, 

though some exhibited rhythmic membrane oscillations. All Nyxnob ON 

morphology RGCs with rhythmicity exhibited rhythmic spiking activity and have 

spontaneous activity levels above rhythmic spike threshold (black line; Figure 

17Ai). These results suggest that the population of Nyxnob RGCs that exhibit 

membrane oscillations but do not spike rhythmically, lack the rhythmic spiking 

because their spontaneous activity level is too low (Figure 17A).  

Sixty percent of mGluR6-/- RGCs lack any type of rhythmicity, either 

spiking or membrane oscillations (Figure 13B). The spontaneous activity of all 

morphological classes of mGluR6-/- RGCs without rhythmicity was similar to 

those with rhythmicity (Mann-Whitney: not rhythmic v. rhythmic: ON morphology 

mGluR6-/-: P = 0.23; OFF morphology mGluR6-/-: P = 0.09; Bistratified 

morphology mGluR6-/-: P = 0.93). This demonstrates that in mGluR6-/- RGCs the 

presence or absence of rhythmicity does not depend on spontaneous activity. 

There were so few mGluR6-/- RGCs with rhythmic spiking or only membrane 

oscillations, that all morphological classes were combined for the following 

comparison. Of the 40% of mGluR6-/- RGCs with some type of rhythmicity (Figure 

13B), mGluR6-/- RGC spontaneous activity was similar between RGCs with 

rhythmic spiking and RGCs with only membrane oscillations (t-test: P = 0.14). In 

summary, these results suggest that Nyxnob RGCs with lower spontaneous 

activity can account for the RGCs that exhibit only membrane oscillations versus 

rhythmic spiking (Figure 17A). However, mGluR6-/- RGC spontaneous activity 
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cannot account for the difference in RGCs that exhibit rhythmic activity versus no 

rhythmic activity or the difference in RGCs that exhibit only membrane 

oscillations versus rhythmic spiking (Figure 17B).  

  

Figure 17. Nyxnob RGC spontaneous activity is decreased in membrane 

oscillation only RGCs compared to rhythmic spiking RGCs. There is no 

correlation in spontaneous activity and rhythmicity in mGluR6-/- RGCs Ai. 

Scatterplot of Nyxnob ON morphology RGCs without rhythmicity and with 
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rhythmicity. Aii. Scatterplot of Nyxnob OFF morphology RGCs without rhythmicity 

and with rhythmicity. Rhythmic membrane oscillatory RGCs exhibit decreased 

spontaneous activity compared to rhythmic spiking RGCs. Aiii. Scatterplot of 

Nyxnob Bistratified morphology RGCs without rhythmicity and with rhythmicity. 

Rhythmic membrane oscillatory RGCs exhibit decreased spontaneous activity 

compared to rhythmic spiking RGCs. Bi. Scatterplot of mGluR6-/- ON morphology 

RGCs without rhythmicity and with rhythmicity. There is no difference in 

spontaneous activity. Bii. Scatterplot of mGluR6-/- OFF morphology RGCs without 

rhythmicity and with rhythmicity. There is no difference in spontaneous activity. 

Biii. Scatterplot of mGluR6-/- Bistratified morphology RGCs without rhythmicity 

and with rhythmicity. There is no difference in spontaneous activity. Horizontal 

line denotes spontaneous activity rate where rhythmic spiking activity can be 

accurately measured via a FFT analysis. Data points below horizontal line exhibit 

too few spikes to exhibit rhythmic spiking via FFT analysis. (Mann-Whitney: * P < 

0.05; *** P < 0.001).  

 

 

Discussion 

All morphological and functional light-response classes of Nyxnob RGCs 

(Off, dOn/Off and NR) have 2-5 Hz rhythmic spiking. In contrast, only NR 

mGluR6-/- RGCs have rhythmic spiking (Figure 14Bii; Figure 18). Within the 

mGluR6-/- NR RGCs, rhythmic spiking is not related to morphological class as 
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ON, OFF, and Bistratified RGCs exhibit NR light-responses (Figure 14Aii; Figure 

18). This demonstrates that the rhythmic spiking in mGluR6-/- RGCs is related to 

an absence of visual function within the On pathway, but is not confined by it as 

only 5/11 NR RGCs had rhythmic spiking. This suggests that in mGluR6-/- RGCs, 

the absence of both On and Off pathway-mediated light responses are necessary 

for a RGC to spike rhythmically, since mGluR6-/- RGCs that maintained Off 

pathway-mediated light inputs (Off, dON, dON/OFF light responses) did not 

exhibit rhythmic spiking. Nyxnob RGC rhythmic spiking is not unique to the same 

pathway as mGluR6-/- RGCs, as Nyxnob rhythmic spiking is found in all 

morphological and functional light response classes. These data show that On 

BC defects affect downstream visual function across all morphological classes. 

 

Figure 18. Summary schematic of rhythmic RGCs in mGluR6-/- and Nyxnob. Text 

boxes show the presence and absence of rod BC proteins in each of the 

mutants. The red waveforms on the RGCs represent cells with rhythmic activity. 



70 
 

For simplicity, only ON and OFF morphology RGCs are shown. A. In mGluR6-/- 

retina, all morphological classes exhibit a population of RGCs with rhythmicity, 

either rhythmic spiking or rhythmic membrane oscillations. However, only 

mGluR6-/- RGCs non-responsive to light exhibit rhythmicity. There is no 

relationship between mGluR6-/- RGC Vrest or spontaneous activity rate and the 

presence/absence of rhythmicity. B. In Nyxnob retina, all morphological classes 

exhibit a population of RGCs with rhythmicity, either rhythmic spiking or rhythmic 

membrane oscillations. In contrast to mGluR6-/- RGCs, all Nyxnob RGC light 

response classes exhibit cells with rhythmicity. There is no relationship between 

Nyxnob RGC Vrest and the presence/absence of rhythmicity. However, Nyxnob 

RGCs with lower spontaneous activity account for the RGCs that exhibit only 

membrane oscillations versus rhythmic spiking. 

 

 

I examined whether membrane properties of mGluR6-/- and Nyxnob RGCs 

were or were not responsible for the general difference in mGluR6-/- and Nyxnob 

RGCs rhythmic/non-rhythmic spiking. Vrest was similar between Nyxnob and 

mGluR6-/- RGCs within all morphological classes. This suggests a similarity in the 

intrinsic properties of the RGCs in that the leak channels that maintain Vrest of 

mGluR6-/- or Nyxnob RGCs are retained. It also suggests that both Nyxnob and 

mGluR6-/- RGCs were at similar resting states relative to their spike threshold, so 

neither genotype would elicit a spike more or less easily than the other based on 
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changes in Vrest. However, Vrest of both mGluR6-/- and Nyxnob ON morphology 

RGCs were more hyperpolarized compared to WT ON morphology RGCs. This 

was likely due to the shared lack of excitatory tonic input from the On pathway in 

mGluR6-/- and Nyxnob retinas. 

Even though Vrest was similar in Nyxnob and mGluR6-/- RGCs, it is possible 

that spontaneous activity was altered. A difference in spontaneous activity could 

result from alterations in intrinsic mechanisms of Nyxnob and mGluR6-/- RGCs (for 

OFF morphology RGCs) or excitatory synaptic inputs (for ON and OFF 

morphology RGCs). I found that ON morphology mGluR6-/- RGC spontaneous 

activity was decreased compared to Nyxnob. Therefore, it is possible that a 

decrease in mGluR6-/- ON morphology spontaneous activity could account for the 

general trend for ON morphology Nyxnob RGCs to exhibit rhythmic spiking and 

mGluR6-/- RGCs to lack rhythmic spiking. However, spontaneous activity rate 

could not account for the difference in rhythmic spiking in mGluR6-/- and Nyxnob 

OFF or Bistratified RGCs.  

The difference in spontaneous activity between Nyxnob and mGluR6-/- ON 

morphology RGCs indicates one of two situations: 1) an increase in Nyxnob ON 

morphology RGCs tonic excitatory input (or alternatively a decrease in tonic 

inhibitory input) or 2) a decrease in mGluR6-/- ON morphology RGCs tonic 

excitatory input (or alternatively an increase in tonic inhibitory input).  An 

alteration in signaling within the On pathway is not surprising because of the 

absence of signaling within the On BCs. However, an alteration of inputs to only 
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one of the mutants’ RGCs is initially surprising, given that BCs in both mutants 

fail to signal. However, recordings from Nyxnob and mGluR6-/- rod BCs in Chapter 

IV will elucidate some unexpected differences between these genotypes. In 

addition, it is interesting that the spontaneous activity of Nyxnob and mGluR6-/- 

Bistratified RGCs do not show a similar phenotype to ON morphology RGCs 

since they should receive similar inputs from the On pathway. This suggests that 

the inputs/intrinsic mechanisms of OFF sublamina RGCs heavily influence 

Bistratified RGCs spontaneous activity.   

To determine if an association was present between rhythmic spiking, 

rhythmic membrane oscillations and non-rhythmic RGCs, I compared Vrest and 

spontaneous activity of RGCs within each genotype and morphological class. 

Vrest in rhythmic spiking and non-rhythmic spiking RGCs were similar in both 

mGluR6-/- and Nyxnob RGCs. Therefore, alterations in Vrest could not account for 

the difference in rhythmic spiking and non-rhythmic spiking RGCs.  

Spontaneous activity was lower in Nyxnob RGCs which exhibit only 

membrane oscillations than those that spike rhythmically, suggesting that the few 

Nyxnob RGCs that only exhibit rhythmic membrane oscillations do so because 

they have very low spontaneous activity. In contrast, in mGluR6-/- RGCs, the 

presence/absence of rhythmicity or rhythmic spiking versus membrane 

oscillations do not depend on spontaneous activity level. It remains unclear why 

mGluR6-/- RGCs exhibit rhythmic spiking as opposed to membrane oscillations 

and further experiments are needed to elucidate this. 
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Forty percent of mGluR6-/- RGCs have 2-5 Hz oscillations. There were no 

prior reports of mGluR6-/- RGCs with rhythmic spiking nor membrane oscillations 

(Renteria et al., 2006). While previous publications have not reported rhythmic 

spiking in mGluR6-/- RGCs, they measured extracellular RGC spikes with a MEA, 

which records tens to hundreds of RGCs at the same time (Renteria et al., 2006). 

Since the proportion of mGluR6-/- RGCs with rhythmic spikes was very low 

(12.5%) it is plausible that the rhythmic spiking RGCs were not noticed or not 

included in the previously reported data sets (Renteria et al., 2006). In addition, I 

report fewer Nyxnob RGCs with rhythmic spiking (61%) than the 80% reported 

previously in MEA recordings (Demas et al., 2006). My data are the first in vitro 

whole-cell patch clamp recordings from mGluR6-/- and Nyxnob RGCs and 

therefore, the discrepancy between my data and previous publications may be 

due to the difference in recording techniques.  

The mGluR6-/- RGC population increased 3-fold in rhythmicity from 12.5 to 

40% when measuring rhythmic spiking compared to membrane oscillations, while 

the Nyxnob RGC population increased 4-fold in rhythmicity from 61% to 96%. This 

means that Nyxnob RGCs increased in the number of RGCs with rhythmicity even 

more than mGluR6-/- when comparing rhythmic spiking to membrane oscillations. 

My results demonstrate that the increase in Nyxnob RGC rhythmic spiking 

compared to membrane oscillations was due to the individual RGCs 

spontaneous activity rate. However, spontaneous activity rate could not account 

for the difference in rhythmic spiking/non-rhythmic spiking of mGluR6-/- RGCs.  
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Since none of the properties I have examined in mGluR6-/- RGCs appear 

to explain the difference in rhythmic spiking and non-rhythmic spiking RGCs 

across all RGC classes, there must be another source of the alteration. In the 

next chapter, I explore the possibility that these phenotypic differences result 

from differential alterations in the upstream rod BCs. Rod BCs provide input into 

both On and Off pathways and therefore could be responsible for the 

downstream effects seen in all RGC classes. 
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CHAPTER IV 

COMPARISON OF Nyxnob AND mGluR6-/- ROD BCS 

 

Introduction 

The complete mGluR6 G-protein coupled cascade is not yet determined, 

however the current hypothesis is that in the dark glutamate binds mGluR6, 

which activates a trimeric G-protein complex (Vardi et al., 1993; Nawy 1999; 

Dhingra et al., 2000) leading to the closure of the TRPM1 channel (Replication of 

Figure 7 below). Nyctalopin, a leucine rich repeat protein, is critical for the proper 

trafficking or localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011). 
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Replication of Figure 7. A. In the dark glutamate is released from rods and binds 

mGluR6. mGluR6 activates a trimeric G-protein complex, G0 (Vardi et al., 1993; 

Nawy 1999; Dhingra et al., 2000). The trimeric G-proteins are activated when 

GDP is exchanged for GTP on Gα0, which dissociates into Gα0-GTP (Vardi et al., 

1993; Nawy 1999; Dhingra et al., 2000) and the dimer Gβ3/Gγ13 (Dhingra et al., 

2012; Huang et al., 2003). The activated G-protein complex leads to the closure 

of the non-selective cation channel, TRPM1, and relative hyperpolarization of the 

rod BC, either through interaction with Gα0-GTP and/or Gβ3/Gγ13 or another 

intermediate effector not yet identified. B. In the light glutamate release is 

decreased and no longer binds mGluR6. Hydrolysis of GTP into guanine 

dinucleotide (GDP) forms the inactive state of Gα0 (Gα0-GDP; Hooks et al., 2003) 

A B 
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which recombines with Gβ3 and Gγ13 to form the trimeric G-protein complex. 

RGS7 and RGS11, regulator of G-protein signaling (RGS) proteins (Cao et al., 

2012; Shim et al., 2012), form heterodimers with Gβ5 (Rao et al., 2007). These 

heterodimers are GTPase-activating protein (GAP) complexes, which accelerate 

the hydrolysis of GTP to GDP by Gα0, (Hooks et al., 2003; Rao et al., 2007), 

resulting in accelerated deactivation of the G-protein and culminates in the 

opening of TRPM1 and depolarization of the BC (Audo et al., 2009; Li et al., 

2009; Morgans et al., 2009, 2010; Shen et al., 2009; Koike et al., 2010; Peachey 

et al., 2012a). R9AP is a membrane anchor protein for RGS11 and critical for its 

proper localization in the membrane at the dendritic tips (Jeffrey et al., 2010); 

nyctalopin, a leucine-rich repeat protein is critical for proper trafficking or 

localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011); GPR179 is 

required for proper dendritic tip localization of RGS7 and RGS11 (Orlandi et al., 

2012) and LRIT3 is critical for rod BC light-mediated response (Zeitz et al., 2013; 

Neuille et al., 2014).  

 

 

In all identified cCSNB mutants, the no b-wave (nob) ERG phenotype is 

associated with mutations in the mGluR6 receptor, elements of the G-protein 

cascade (Gα0, Gβ5, RGS7/RGS11), nyctalopin or TRPM1. There are currently 

twelve no b-wave mutants that have been identified (Pardue & Peachey, 2014; 

Zeitz et al., 2013).  
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Among them Nyxnob and mGluR6-/- mice have similar no b-wave ERG 

phenotypes (Masu et al., 1995; Pardue et al., 1998), however they differ in the 

downstream signaling within their RGCs. Namely, almost all Nyxnob RGCs exhibit 

unique 2-5 Hz rhythmic spiking in their spontaneous activity (Demas et al., 2006; 

Chapter III). In contrast, mGluR6-/- RGCs have spontaneous activity, but rarely 

have rhythmic spiking (Renteria et al., 2006; Chapter III). While the observation is 

robust, the mechanism that results in the presence or absence of oscillations in 

these two mutants is unclear.  

There are additional differences between Nyxnob and mGluR6-/-. 

Specifically, mGluR6-/- On cone BCs have ectopic expression of mGluR7 at their 

dendritic tips (Tagawa et al., 1999; Tsukamoto et al., 2007), while this has not 

been explored in Nyxnob On cone BCs (Pardue et al., 1998; Pardue et al., 2001; 

Ball et al., 2003). In the mGluR6-/- mGluR6 expression is eliminated. This also 

leads to the absence of TRPM1 expression as well as a few other mGluR6 G-

protein cascade-mediating proteins (Table 2). In the Nyxnob retina, where 

nyctalopin expression is absent, TRPM1 channel expression is absent on the 

dendritic tips (Table 2). One similarity between mGluR6-/- and Nyxnob rod BCs is 

that they lack expression of TRPM1 channels on their dendritic tips (Table 2; Cao 

et al., 2011; Pearring et al., 2011; Xu et al., 2011). 
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Table 2. Presence or absence of properly localized proteins in Nyxnob and 

mGluR6-/- rod BCs (Ball et al., 2003; Cao et al., 2011; Xu et al., 2011; Pearring et 

al., 2011; Gregg lab, unpublished observations). 

 

 

Two mouse models of retinitis pigmentosa, rd1 and rd10, where rods and 

then cones degenerate, exhibit rhythmic spontaneous spiking activity of RGCs 

(Blanks et al., 1974; Carter-Dawson et al., 1978; Marc et al., 2007; Ye & Goo 

2007 (rd1); Margolis et al., 2008 (rd1); Stasheff, 2008 (rd1); Borowska et al., 

2011(rd1); Stasheff et al., 2011 (rd1 & rd10); Menzler & Zeck, 2011 (rd1); 

Trenholm et al., 2012 (rd1); Menzler et al., 2014 (rd1 & rd10)). In the rd retina, 

the following two mechanisms have been proposed to account for the 

oscillations: 1) The network of gap junction-coupled AII ACs and On cone BCs 

are the synaptic drive which underlies the RGC bursting (Borowska et al., 2011; 

Menzler & Zeck, 2011; Trenholm et al., 2012) and 2) Oscillations in the rd1 retina 

reflect intrinsic bursting of AIIs that are directly relayed to the RGCs rather than 

emerging from the gap-junction-coupled network (Choi et al., 2014). This intrinsic 

rhythmic property of AII ACs is unmasked by hyperpolarization of rd1 AII ACs 

when synaptic input is reduced due to photoreceptor degeneration (Choi et al., 

2014). While there are differences between rd and cCSNB models, which were 
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reported in Chapter III, it is possible that they share similar underlying 

mechanisms, which result in RGC oscillations.    

Spontaneous activity in RGCs is influenced by synaptic input from the rod 

BC pathway. The RGC oscillations occur in the spontaneous activity of all Nyxnob 

RGC classes. The only common element in the RGCs upstream input are rod 

BCs, via AII ACs. The question is why the AII AC becomes hyperpolarized in rd1 

and most likely in Nyxnob. My hypothesis is that there is a change in the resting 

output of the Nyxnob rod BCs. Since rod BCs provide excitatory synaptic inputs to 

AII ACs (Famiglietti & Kolb, 1975; Dacheux & Raviola, 1986), a difference in the 

rod BC membrane properties (between mGluR6-/- and Nyxnob) could alter their 

glutamate release and produce a change in the resting membrane potential of 

the AII and a difference in the AII AC output to the rest of the retinal circuit. To 

test this hypothesis, I compared the resting membrane properties of Nyxnob to 

mGluR6-/- rod BCs, which share an absence of light-evoked responses, but do 

not share RGC oscillatory responses (Chapter III). 

I examined basic membrane properties of rod BCs in WT, Nyxnob and 

mGluR6-/- mice to determine if there were correlations between the intrinsic 

properties of Nyxnob and mGluR6-/- rod BCs and the downstream differences in 

rhythmic RGC spontaneous activity. In most neurons I measured Vrest, as well as 

the characteristics of different types of potassium currents in WT, Nyxnob and 

mGluR6-/- rod BCs. I also measured the input conductance of rod BCs in the 

three mouse strains, because input conductance can be used as a relative 
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estimate of the number of open channels. In rod BCs at rest and when glutamate 

occupancy is high (in the dark) the leak channels, which are potassium channels 

that maintain Vrest, are open. Therefore, changes in input conductance directly 

evaluate this property of the cell’s membrane.  

I focused on voltage dependent potassium channels (Kv) because 

potassium channels generate the leak currents that provide hyperpolarizing 

contributions to the resting membrane potential in many neurons (Vrest; Hodgkin 

& Horowicz, 1959), although contributions from tonic excitatory and inhibitory 

inputs also play a role (Kuffler, et al., 1957; Frishman & Levine, 1983; Margolis & 

Detwiler, 2007). Also, I focused on voltage dependent potassium channels (Kv) 

because of the known expression of Kv1.1, 1.2, 1.3 and 11.1 in rod BCs (Kaneko 

et al., 1989; Karschin and Wassle 1990; Klumpp et al., 1995a; Pinto & Klumpp, 

1998; Hu & Pan, 2002; Cordeiro et al., 2011; Larsen et al., 2010). My results 

show that Vrest in Nyxnob rod BCs is more depolarized relative to WT and mGluR6-

/- rod BCs. The Nyxnob rod BCs also have a smaller potassium conductance 

compared to mGluR6-/- and WT rod BCs.  
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Materials and Methods 

Rod BC Whole Cell Patch Clamp Protocols 

Current Clamp 

The resting membrane potential (Vrest) for each rod BC was measured in 

whole cell patch clamp current clamp mode using glass pipettes filled with K-

gluconate intracellular solution (containing in mM: 120 K-gluconate, 1 CaCl2, 1 

MgCl2, 10 Na-HEPES, 11 EGTA, 4 ATP, 1 GTP and 1% sulforhodamine). Rod 

BC Vrest was recorded with a holding current of 0 pA and the mean potential was 

taken across the first second of recording. Vrest was measured under dark- and 

light-adapted conditions. 

Capsaicin Pressure Application 

The TRPM1 channel agonist, Capsaicin (10uM), was applied by pressure 

application using a Picospritzer II (Parker Instrumentation) onto the center of the 

recorded rod BC soma followed by the rod BC dendritic tips. Puffs were applied 

with the following durations (in order): 25 msec, 50 msec, 100 msec, and 200 

msec at both the cell soma and dendritic tips. Capsaicin was purchased from 

Tocris Bioscience.  
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Voltage Clamp Protocols 

Current/Voltage (I/V) 

For each rod BC, an I/V protocol was recorded in voltage clamp mode 

under light-adapted conditions using K-gluconate intracellular solution (described 

above) to maintain normal ion concentrations within the cell. Alternatively, a Cs-

gluconate-TEA intracellular solution (containing in mM: 20 CsCl, 107 CsOH, 107 

D-Gluconic Acid, 10 Na+ HEPES, 10 BAPTA, 10 TEA and 1% sulforhodamine) 

was used to block potassium currents in the cell. The membrane potential of 

each rod BC was held at either -85mV or -55mV and voltage steps were applied 

from -115 to +35 mV in 10mV increments. Depolarizing voltage steps from very 

negative holding potentials (-85mV) activate both transient and delayed-rectifying 

potassium currents, while voltage steps from more positive holding potentials (-

55mV) completely inactivate all transient channels while leaving delayed-

rectifying currents intact (Walz, 2000). Each step lasted four seconds and the 

membrane potential was returned to the starting potential, either -85mV or -

55mV. The response to the voltage step was analyzed at: its peak amplitude, at 

the beginning of each step (defined as the peak between the capacitive artifact 

and .3 seconds) and at the steady-state mean amplitude, at the end of each step 

(defined as the mean between time 3.9 and 4 seconds; Clampfit 10.2 software). 

The responses were plotted as I/V curves, which were compared across 

genotypes for responses with the different intracellular solutions to isolate Cs-
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TEA-sensitive K+ currents and for responses at the two holding potentials (-55mV 

and -85mV) to isolate transient K+ currents (Walz, 2000; Prism 5.04 software). 

Input Conductance 

Rod BC input conductance was measured under dark-adapted conditions 

and evaluated by calculating the slope conductance from the steady-state K-

Gluconate I/V protocols between the two data points which incorporate Vrest of 

the rod BCs (-55mV and -35mV). The slopes were compared between WT and 

Nyxnob and WT and mGluR6-/-. A significant difference in slope measured by a 

linear regression (P < 0.05) indicates a significant difference in input 

conductance. 

Statistical Analysis 

One-way ANOVA with Bonferroni post hoc, Kruskal-Wallis with Dunns 

post hoc, Two-way ANOVA with Bonferroni post hoc, Mann-Whitney or unpaired 

t-tests were used as the statistical analyses. Post hoc P values are reported. 

Analyses were performed in Prism 5.04. 
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Results 

Nyxnob Rod BC Resting Membrane Potential Is Depolarized Compared to WT 

and mGluR6-/- 

Within each genotype the Vrest of Nyxnob, mGluR6-/- and WT rod BCs under 

light- and dark-adapted conditions were the same (Figure 19; Two-way ANOVA 

with Bonferroni post hoc: dark v light: WT; Nyxnob; mGluR6-/-: P > 0.05 for all). As 

expected this result suggests that adaptation level does not influence Vrest. My 

WT rod BC V rest mean of -49.82mV was very similar to a previous report of -

49.5mV (Borowska et al., 2011). The mean Vrest of Nyxnob rod BCs in the light-

adapted retinal slice was significantly more depolarized compared to WT and 

mGluR6-/- rod BCs (Figure 19A; Nyxnob -46.27mV ± 1.16; WT -49.82mV ±1.55; 

mGluR6-/- -53.13mV ± 1.48; Kruskal-Wallis with Dunns post hoc: WT v. Nyxnob: P 

< 0.05; Nyxnob v. mGluR6-/-:P < 0.001). In contrast, the mean Vrest of WT and 

mGluR6-/- rod BC were similar (Kruskal-Wallis with Dunns post hoc: WT v. 

mGluR6-/-: P >0.05). I found the same results under dark-adapted conditions. 

Again, mean Vrest of Nyxnob rod BCs was significantly more depolarized than WT 

and mGluR6-/- rod BCs (Figure 19B; Nyxnob -43.20mV ± 1.36; WT -50.82mV 

±1.24; mGluR6-/- -51.43mV ± 0.92; Kruskal-Wallis with Dunns post hoc: WT v. 

Nyxnob P < 0.001; Nyxnob v. mGluR6-/-: P < 0.001) and WT and mGluR6-/- rod BCs 

were similar (Kruskal-Wallis with Dunns post hoc: WT v. mGluR6-/-: P >0.05). 
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This difference in Vrest between Nyxnob and mGluR6-/- suggests a change in the 

mechanism that sets the resting membrane potential in Nyxnob rod BCs.  

 

Figure 19. Nyxnob rod BC Vrest is more depolarized than WT and mGluR6-/-. A. 

Histogram compares the average Vrest (±SEM) of WT, Nyxnob, and mGluR6-/-rod 

BCs under light-adapted conditions. Nyxnob rod BC Vrest is significantly more 

depolarized than WT or mGluR6-/- rod BCs. Vrest from WT and mGluR6-/- rod BCs 

are the same. B. Histogram compares the average Vrest (±SEM) of WT, Nyxnob, 

and mGluR6-/-rod BCs under dark-adapted conditions. Nyxnob rod BC Vrest is 

significantly more depolarized than WT or mGluR6-/-rod BCs. Vrest from WT and 

mGluR6-/-rod BCs are the same. There are no significant differences for any of 

the genotypes between light and dark-adapted conditions. The number of rod 

BCs in each experimental group is shown within each bar of the histograms 

(Kruskal-Wallis with Dunns post hoc; * P < 0.05; *** P < 0.001).  
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Nyxnob Rod BCs Do Not Exhibit Functional TRPM1 Channels 

A more depolarized Vrest in Nyxnob rod BCs could result from a difference 

in tonic input (opened TRPM1 channels) or in constitutively closed potassium 

channels. A contribution from TRPM1 channels is unlikely given its 

mislocalization to the soma of the Nyxnob rod BCs and that TRPM1 is likely 

confined within an intracellular compartment (Pearring et al., 2011). To be certain 

the Nyxnob mislocalized TRPM1 cannot mediate current, I examined whether the 

TRPM1 channels could be gated by stimulation at either the dendrites or somata 

in Nyxnob compared to WT rod BCs. I tried to directly gate the TRPM1 channel 

using exogenous application (puffs) of the TRPM1 channel agonist, capsaicin 

(10µM). In WT rod BCs, dendritic focused capsaicin puffs elicited robust 

responses at all puff durations tested (Figure 20 Ai). In Nyxnob rod BCs, dendritic 

focused capsaicin puffs only elicited very small current responses to long 

duration puffs. I have reported previously that these responses are likely 

mediated via an unknown capsaicin-mediated channel that I also have recorded 

in Trpm1-/- rod BCs (Ray et al., 2014; Chapter V, Figure 26). In WT rod BCs, 

soma focused capsaicin puffs elicited responses only with long duration puffs 

(200msec; Figure 20Bi). The WT soma focused puffs resulted in an increased 

time-to-peak of response compared to dendritic focused puffs (t-test: 50msec 

puffs: soma v. dendrite: P = 0.03; soma TTP: 0.56 ± 0.09; dendrite TTP: 0.30 ± 

0.05; all other puff durations follow the same trend; data not shown). This 

increase in response time-to-peak likely represents diffusion of the agonist to 
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TRPM1 channels located at the dendritic tips. In Nyxnob rod BCs, soma focused 

capsaicin puffs only elicited very small currents at all puff durations, similar to the 

small currents seen with Nyxnob and Trpm1-/- dendritic focused puffs (Chapter IV, 

Figure 26), which are likely mediated by an unknown channel (Ray et al., 2014). 

These results demonstrate that mislocalized TRPM1 protein found in Nyxnob rod 

BCs is not expressed in the membrane and support the idea that these TRPM1 

channels are not functional (Pearring et al., 2011). Most importantly, these 

results eliminate a role for constitutively open TRPM1 channels in the 

depolarized Vrest in Nyxnob rod BCs. 
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Figure 20. Nyxnob rod BCs do not exhibit TRPM1-mediated currents at dendritic 

tips nor soma. Ai. Dendritic focused Capsaicin evoked robust TRPM1-mediated 

currents in WT rod BCs with all puff durations (25 msec, 50msec, 100msec, and 

200msec). Aii. Dendritic focused Capsaicin did not evoke TRPM1-mediated 

currents in Nyxnob rod BCs at any puff duration. Bi. Soma focused Capsaicin 

evoked TRPM1-mediated currents in WT rod BCs with longer 200msec puffs, but 

not with short 25 msec puffs (Mann-Whitney: * P < 0.05). This response to long 

duration puff is likely due to diffusion of the capsaicin from the soma to the 
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dendrites. Bii. Soma focused Capsaicin did not evoke TRPM1-mediated currents 

in Nyxnob rod BCs at any puff duration.  

 

 

Nyxnob Rod BCs Have Smaller Potassium Currents than WT and mGluR6-/- 

Closure or elimination of potassium channels that represent the leak 

current in rod BCs could cause a more depolarized Vrest in Nyxnob rod BCs. To 

characterize potassium channels in rod BCs, I measured the current/voltage (I/V) 

relationship under control conditions with the potassium conductance intact and 

compared them to when intracellular Cs/TEA blocked potassium conductance 

across the three genotypes. 

With the potassium conductance intact, the I/V curves of WT mGluR6-/-, 

and Nyxnob rod BCs were outwardly rectifying (Figure 21Ai). Outwardly rectifying 

currents are characteristic of voltage-gated potassium currents and are defined 

by the characteristic in which more current passes out of the cell than into the cell 

(Klumpp et al., 1995a; Walz et al., 2002; Hu & Pan, 2002). For rod BCs across 

genotype, each voltage step evoked a current response that had a transient peak 

as well as a steady-state component (Figure 21Ai). The peak outward current of 

Nyxnob rod BCs was significantly smaller than WT or mGluR6-/- rod BCs at 

positive step potentials above -5mV (Figure 21Aiii; Two-way ANOVA with 

Bonferroni post hoc: P < 0.001; all values ≥ -5mV are P < 0.05). As a 

consequence, the slope of the linear region of the I/V curve for Nyxnob rod BCs 
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was significantly smaller than WT or mGluR6-/-, while WT and mGluR6-/- slopes 

did not differ (linear regression-comparison of slopes: Nyxnob v. WT: P = 0.005; 

Nyxnob v. mGluR6-/-: P = 0.00002; WT v. mGluR6-/-: P > 0.05).  

Similarly, the steady-state component of Nyxnob rod BC response was 

significantly smaller than WT and mGluR6-/- rod BCs at positive step potentials 

above -5mV (Figure 21Aiiii; Two-way ANOVA with Bonferroni post hoc: P < 

0.0001; ≥ -5mV, P < 0.05). The slope of the linear region of the steady-state 

measure of Nyxnob rod BCs I/V curve also differed significantly from WT and 

mGluR6-/- (linear regression-comparison of slopes: Nyxnob v. WT: P = 0.0137; 

Nyxnob v. mGluR6-/-: P < 0.0001). Both the peak and the steady-state I/V curves 

of mGluR6-/- and WT rod BC overlapped (Figure 21Aiii, 21Aiiii). The smaller 

transient peak and steady-state potassium channel conductance in Nyxnob rod 

BCs, compared to mGluR6-/- and WT indicates a smaller potassium conductance, 

consistent with a more depolarized Vrest in Nyxnob rod BCs. 
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Figure 21. Transient peak and steady-state potassium current components were 

decreased in amplitude in Nyxnob rod BCs compared to WT or mGluR6-/-. Ai. 

Representative current responses evoked by voltage steps in a WT rod BC. 

Green dotted lines represent the two regions of the response used to measure 

peak amplitude and steady-state currents. The upper right corner displays the 

voltage steps that evoked the responses. Aii. Representative responses from I/V 

protocol recordings at +35mV step for WT, Nyxnob, and mGluR6-/- rod BCs. Aiii. 

Mean population data (±SEM) of peak amplitude plotted as a function of voltage 

step for WT, Nyxnob, and mGluR6-/- rod BCs. The peak outward current of Nyxnob 
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rod BCs was significantly smaller than WT and mGluR6-/- rod BCs at positive 

step potentials above -5mV (Two-way ANOVA with Bonferroni post hoc: P < 

.001; all values ≥ -5mV are P < 0.05). WT and mGluR6-/- rod BC I/Vs were 

similar. Aiiii. Mean population data (±SEM) of steady-state current plotted as a 

function of step potential for WT, Nyxnob, and mGluR6-/-rod BCs. The steady-state 

component of Nyxnob rod BCs was significantly smaller than WT and mGluR6-/- 

rod BCs at positive step potentials above -5mV (Two-way ANOVA with 

Bonferroni post hoc: P < .0001; all values ≥ -5mV are P < 0.05). WT and 

mGluR6-/- rod BC I/Vs were similar (*P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 

0.0001). 

 

 

To confirm that these changes in the current were the result of potassium 

channels, I intracellularly blocked both Cesium (Cs) and TEA-sensitive potassium 

conductances. In rod BCs across all genotypes the elimination of Cs/TEA-

sensitive potassium conductance significantly reduced the outward peak and 

steady-state currents at positive holding potentials (Figure 22; Table 3; CS/TEA 

vs. K peak: Two-way ANOVA with Bonferroni post hoc: Table 3; CS/TEA vs. K 

steady-state: Two-way ANOVA with Bonferroni post hoc: Table 3). Since calcium 

channels are intact, a small transient inward calcium current can be seen as a 

dip in the I/V curve between -55mV and -35mV (Figure 22Aii). The elimination of 

the Cs/TEA-sensitive potassium channel mediated response resulted in similar 
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peak and steady-state rod BC responses across genotypes (Figure 22Aiii, Aiiii; 

Two-way ANOVA with Bonferroni post hoc: all comparisons P > 0.05). These 

results demonstrate that Nyxnob rod BCs have a smaller Cs/TEA-sensitive 

potassium conductance compared to WT and mGluR6-/- rod BCs.  
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Figure 22. Transient peak and steady-state components of the Cs/TEA-

insensitive currents were similar in WT, Nyxnob and mGluR6-/- rod BCs. Ai. A 

representative I/V protocol recording from a WT rod BC. Green dotted lines 

represent the two regions of recordings used to measure peak amplitude and 

steady-state currents. The upper right corner displays the voltage stimulus 

provided to the rod BCs. Aii. Representative traces from I/V protocol recordings 

at +35mV sweep for WT, Nyxnob, and mGluR6-/- rod BCs. Aiii. Mean population 

data (±SEM) of peak amplitude plotted as a function of step potential for WT, 
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Nyxnob, and mGluR6-/- rod BCs. The peak outward current of WT, Nyxnob and 

mGluR6-/- rod BCs were similar at all step potentials (Two-way ANOVA with 

Bonferroni post hoc: all comparisons P > .05). Aiiii. Mean population data (±SEM) 

of steady-state current plotted as a function of step potential for WT, Nyxnob, and 

mGluR6-/- rod BCs. The steady-state current of WT, Nyxnob and mGluR6-/- rod 

BCs were similar at all step potentials (Two-way ANOVA with Bonferroni post 

hoc: all comparisons P > .05). Note the difference in Y-axis scale for Figure 

14Aiii, Aiiii and Figure 13Aiii,Aiiii.  
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Table 3. In rod BCs of all genotypes the elimination of Cs/TEA-sensitive 

potassium conductance significantly reduced the outward current in the I/V 

curves across all peak and steady-state responses at more positive holding 

potentials. The P values for every statistical comparison is presented. (CS/TEA 

vs. K peak: Two-way ANOVA with Bonferroni post hoc; CS/TEA vs. K steady-

state: Two-way ANOVA with Bonferroni post hoc).   

 

 

Nyxnob Rod BCs have Smaller Transient Potassium Currents Compared to WT or 

mGluR6-/- 

There are several classes of Cs and TEA-sensitive potassium channels. 

The shape of the I/V evoked currents in WT rod BCs appears to be a 
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combination of transient and persistent potassium currents, which likely 

correspond to two different potassium channel classes.  Depolarizing voltage 

steps from very negative holding potentials (-85mV) activate both transient and 

delayed-rectifying potassium currents (Walz, 2000), while voltage steps from 

more positive holding potentials (-55mV) completely inactivate all transient 

channels, leaving delayed-rectifying currents intact (Walz, 2000). To examine 

whether one or both of these types of currents were altered in Nyxnob rod BCs, I 

applied depolarizing voltage steps from positive holding potentials (-55mV 

holding) to inactivate transient type channels and isolate the delayed-rectifier 

current (persistent currents; Walz et al., 2002). The persistent potassium 

currents, measured at the steady-state component of the response, were similar 

across all genotypes (Figure 23Ai, Aii; Two-way ANOVA with Bonferroni post 

hoc: all comparisons: P > 0.05), suggesting that they are unlikely to be related to 

the difference in Vrest.  

To isolate the transient component of the current I subtracted the current 

evoked with Vhold = -55mV (when the transient channel was inactivated and only 

the steady-state remained) from the current evoked with Vhold = -85mV (Figure 

23Bi, Bii; Walz et al., 2002). The peak of the transient type potassium current 

was significantly smaller in Nyxnob rod BCs compared to WT and mGluR6-/- 

(Figure 23Bi, Bii; Two-way ANOVA with Bonferroni post hoc: Nyxnob vs. WT: -

5mV: P < 0.05; 5mV: P < 0.01; 15mV: P < 0.001; 35mV: P < 0.05; Nyxnob vs. 

mGluR6-/-: 15mV and 25mV: P < 0.05; 35mV: P < 0.001). In contrast, the 



99 
 

transient type potassium current was similar in WT and mGluR6-/- rod BCs (Two-

way ANOVA with Bonferroni post hoc: WT v. mGluR6-/-: P > 0.05). In conclusion, 

differences in both the Vrest and I/V curves of Nyxnob rod BC compared to WT and 

mGluR6-/- are consistent and suggest that transient type potassium channels are 

either decreased in number or in their open probability. Both would lead to a 

more depolarized Vrest in Nyxnob rod BCs.  
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Figure 23. Transient but not persistent currents were decreased in Nyxnob rod 

BCs compared to WT and mGluR6-/-. Ai. Representative traces from I/V protocol 

recordings that isolate persistent currents at +35mV sweeps for WT, Nyxnob, and 

mGluR6-/- rod BCs. Bi. Representative traces from I/V protocol recordings that 

isolate transient currents at +35mV sweeps for WT, Nyxnob, and mGluR6-/- rod 

BCs. Aii. Mean population data (±SEM) of steady-state current plotted as a 

function of step potential for WT, Nyxnob, and mGluR6-/- rod BCs. The steady-

state current of WT, Nyxnob and mGluR6-/- rod BCs were similar at all step 

potentials (Two-way ANOVA with Bonferroni post hoc: all comparisons P > .05). 
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Bii. Mean population data (±SEM) of peak current plotted as a function of step 

potential for WT, Nyxnob, and mGluR6-/- rod BCs. The peak current in Nyxnob was 

significantly smaller compared to WT and mGluR6-/- rod BCs (Two-way ANOVA 

with Bonferroni post hoc: Nyxnob vs. WT: -5mV: P < .05; 5mV: P < .01; 15mV: P < 

.001; 35mV: P < .05; Nyxnob vs. mGluR6-/-: 15mV and 25mV: P < .05; 35mV: P < 

.001). The peak current was similar in WT and mGluR6-/- (Two-way ANOVA with 

Bonferroni post hoc: WT v. mGluR6-/-: P > .05; * P < 0.05; ** P < 0.01; *** P < 

0.001). 

 

 

Nyxnob, mGluR6-/- and WT Rod BCs Input Conductance are Similar 

Input conductance can be used as a relative estimate of the number of 

open channels in a cell’s membrane. I examined the input conductance by 

comparing the slope conductance close to Vrest (between -55mV and -35mV data 

points) from I/V curves recorded with K-Gluconate intracellular solution under 

dark-adapted conditions (Figure 24). I measured input conductance near Vrest in 

order to examine the resting state of rod BCs. I hypothesized that the input 

conductance of Nyxnob rod BCs would be smaller than WT and mGluR6-/- rod 

BCs, as a reflection of fewer open channels in Nyxnob rod BC membrane. 

However, the input conductance of Nyxnob rod BCs was similar to WT and 

mGluR6-/- rod BCs, suggesting a similar number of open channels in the 

membrane (slope conductance: WT: 1.837 nS ± 0.2375; Nyxnob: 1.136 nS ± 
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0.2639; mGluR6-/-: 1.567 nS ± 0.1604; WT vs Nyxnob P = 0.076; Nyxnob vs 

mGluR6-/-: P = 0.162; Figure 24). This result is inconsistent with the Vrest and I/V 

data and the differences between Nyxnob and WT or mGluR6-/- rod BCs. Future 

experiments are needed to address this discrepancy. 
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Figure 24. The input conductance of Nyxnob rod BCs was similar to WT and 

mGluR6-/-rod BCs. A. WT, mGluR6-/-, and Nyxnob rod BC recordings from holding 

potential of -85mV to voltage steps of -55mV and -35mV. B. Mean population 

data (±SEM) of steady-state current plotted as a function of step potential for WT, 

Nyxnob, and mGluR6-/- rod BCs recorded with K current intact (K-Gluconate 

intracellular solution). The input conductance was examined by comparison of 

the slope conductance close to Vrest (slope between -55mV and -35mV) across 

WT, Nyxnob and mGluR6-/- rod BCs. The input conductance of Nyxnob rod BCs 

were similar to WT and mGluR6-/- rod BCs (slope: WT: 1.837 nS ± 0.2375; 
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Nyxnob: 1.136 nS ± 0.2639; mGluR6-/-: 1.567 nS ± 0.1604; WT vs Nyxnob: P = 

.0275; Nyxnob vs mGluR6-/-: P = 0.3626). 

 

 

Discussion 

Nyxnob rod BC Vrest was significantly more depolarized than WT and 

mGluR6-/- rod BCs. The depolarization could result from either the opening of 

TRPM1 channels or the closure of potassium channels. The TRPM1 agonist, 

capsaicin, did not elicit responses when puffed onto the dendrites nor somata of 

Nyxnob rod BCs, demonstrating that the depolarization is not due to opening of 

TRPM1 channels in the Nyxnob rod BCs (Figure 20). 

The voltage clamp recordings demonstrated a difference in an outward 

rectifying conductance in Nyxnob rod BCs compared to WT and mGluR6-/- rod BCs 

(Figure 21). Based on the pharmacological block of Cs/TEA-sensitive potassium 

currents, the results suggest Nyxnob rod BCs exhibit altered potassium 

conductance (Figures 21, 22). Experiments to isolate candidate outward 

rectifying potassium channels suggest that transient-type potassium channels 

are altered in Nyxnob rod BCs (Figure 23; Walz et al., 2002). Therefore, the 

depolarized Vrest of Nyxnob rod BCs is not due to a change in TRPM1 channel 

modulation, but to smaller potassium channel conductance, which includes 

transient-type potassium channels. 



105 
 

Given Nyxnob rod BCs have a Vrest that is more depolarized and have 

smaller potassium currents than WT and mGluR6-/-, I anticipated a smaller Nyxnob 

rod BC input conductance compared to WT and mGluR6-/-. However, my data 

were not consistent with this hypothesis since their input conductances were 

statistically similar across genotypes. While there may be a trend for Nyxnob rod 

BCs to have a smaller input conductance compared to WT and mGluR6-/- rod 

BCs (Figure 24), the P value did not reach significance. There could be a 

technical reason that underlies this unexpected result related to the order and 

duration of the recordings. I measured Vrest immediately after initial whole cell 

break-in of the membrane, whereas the I/V protocol was performed 

approximately three minutes later. During this time the intracellular solution 

dialyzes the cell and can alter the cell’s ion concentration thereby altering the 

inherent steady-state properties, which are influenced by the composition and 

concentration of ions. In future experiments, I will measure input conductance 

promptly following initial whole cell break-in of the rod BC membrane to 

determine if this could be the cause of the discrepancy in my results. I anticipate 

that future experiments will demonstrate a significantly smaller Nyxnob rod BC 

input conductance compared to WT and mGluR6-/-.  

Nyxnob rod BCs lack expression of the nyctalopin protein, which is critical 

for TRPM1 membrane localization (Pearring et al., 2011). Given the previously 

documented role of nyctalopin it was unexpected to find that nyctalopin would 

also affect potassium conductance. However, it has been reported that cCSNB 
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mice have decreased expression of other proteins in On BC dendritic tips, 

specifically the response-modulating proteins Gβ5, RGS7, RGS11, R9AP, and 

GPR179 (Cao et al., 2009; Morgans et al., 2007; Xu et al., 2011; Ray et al., 

2014). It is possible that the lack of nyctalopin or other cascade related proteins 

in Nyxnob rod BCs lead to a down-regulation not only of cascade specific proteins, 

but others located at rod BC dendritic tips, such as potassium channels. In the 

absence of neuronal activity, channels such as A-type potassium channels, 

(Hoffman & Johnston, 1998), Kv4.2 (Shah et al., 2010), KCa2.2, and HCN (Wang 

et al., 2007) have been shown to be down-regulated (Shah et al., 2010). Activity-

dependent regulation of channels is commonly found in neurons (Shah et al., 

2010) and one of these mechanism may be at play in Nyxnob rod BCs. 

Some potassium channels have genetic sequences that cause them to 

associate with scaffolding proteins that have protein-interaction sequences, such 

as PDZ domains, which help cluster complexes together (Miller et al., 2000). This 

provides a mechanism to localize potassium channels to specific regions of the 

cell. It is possible that specific potassium channels bind to either nyctalopin or 

another associated scaffolding protein that is absent in Nyxnob rod BCs. However, 

the Nyxnob transient-type potassium current is smaller than WT, but not absent, 

suggesting that nyctalopin is not the only protein required for localization of 

transient-type potassium channels.  

It is of interest to note that none of the genotypes, including WT differed in 

Vrest between light- and dark-adapted states. At first glance this may seem 
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surprising, however the result is consistent with the effects of adaptation in the 

retina. Adaptation helps maintain a cell’s steady-state activity within the center of 

the cell’s dynamic range, so that the cell can continue to signal increments or 

decrements in illumination across a working range of background luminance. 

Given the known process of adaptation in retinal neurons, it is expected that rod 

BCs would maintain a similar resting membrane state regardless of the adapted 

background luminance level. 

In the current study mGluR6-/- rod BCs did not differ from WT in any of the 

measures of membrane property. In contrast, Xu et al. (2011) claimed that 

mGluR6-/- rod BCs were more hyperpolarized due to a lack of TRPM1 channels in 

rod BC membrane in a dark-adapted preparation. My dark-adapted results are 

similar to my light-adapted results and regardless of the adaptation state I found 

that mGluR6-/- rod BCs do not differ from WT. While it is hard to reconcile the 

difference between the two reports, it is possible that the discrepancy is due to 

genetic drift between the mGluR6-/- or WT colonies. Breeding for more than 

twenty generations within one or both of the colonies or an undetected 

spontaneous mutant which became fixed in the colony are possible sources of 

genetic drift in either of the two laboratory colonies. Given the methodological 

similarities between the two experiments, it is more likely that the discrepancy in 

the results is due to genetic drift. 

While my data demonstrate that Vrest is more depolarized in Nyxnob rod 

BCs and has smaller voltage-gated potassium conductance compared to WT, 
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there is an inconsistency in the data that remains. The potassium I/V curve 

(Figure 21) demonstrates a significantly smaller conductance at the more 

depolarized holding potentials (≥ -5mV), but not at holding potentials close to Vrest 

(-55mV to -35mV). This suggests a voltage mismatch between the control of Vrest 

and the voltage-gated potassium currents examined in the I/V curves (Figure 21). 

This could be an artifact of scale, as the I/V sweeps that are recorded close to 

Vrest do not drive much outward current and therefore small but real changes in 

potassium conductance may be present but not statistically significant. It is also 

possible that two different mechanisms underlie the two effects.  

In order to determine if the two results are due to different mechanisms, I 

plan to record activation and inactivation protocols to get a more defined voltage 

range of potassium activation/inactivation. I also plan to record rod BC currents 

with pharmacological antagonists/agonists of potassium channels in the bath and 

compare the currents to recordings without pharmacological manipulation. Kv1.1, 

1.2, and 11.1 are known to be present in rod BCs, while Kv4 currents have not 

been identified in rod BCs, but exhibit similar kinetics as the currents recorded 

here (Kaneko et al., 1989; Karschin and Wassle 1990; Klumpp et al., 1995a; 

Pinto & Klumpp, 1998; Hu & Pan, 2002; Cordeiro et al., 2011; Larsen et al., 

2010; Bogin, 2004). The Kv1.1 potassium channel, known to be expressed in rod 

BCs, exhibits the most similar kinetics to the currents I recorded. However, I plan 

to utilize dendrotoxin, which blocks Kv1.1 and Kv1.2 channels, heterpodatoxin or 

stromatoxin which blocks Kv4 channels, and clozapine which gates Kv11 
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channels at potentials near Vrest and at more depolarized potentials to determine 

if a specific class or classes of potassium channel are responsible for the 

difference at Vrest and/or the difference in voltage-gated potassium conductance.  

I examined basic properties of mGluR6-/- and Nyxnob rod BCs in 

anticipation that altered rod BC properties may correlate with downstream 

differences in mGluR6-/- and Nyxnob RGC rhythmic spiking. I discovered that 

Nyxnob rod BCs have a Vrest that is more depolarized due to smaller potassium 

conductance compared to WT and mGluR6-/-. It has been demonstrated in rd1 

and WT retina that oscillations in AII ACs result from a more hyperpolarized AII 

AC Vrest compared to normal AII AC Vrest (Choi et al., 2014). Therefore, I propose 

that the alterations in Nyxnob rod BCs result in the cessation of glutamate release 

(possibly due to a compensatory mechanism to keep the perpetually depolarized 

cell from constantly releasing glutamate) and subsequent hyperpolarization of AII 

ACs downstream, unmasking the AII ACs oscillatory properties, which have been 

shown to drive the oscillations in rd RGCs (Choi et al., 2014).  

The difference in Nyxnob and mGluR6-/- RGC oscillations could be related 

to the absence of different elements of the G-protein cascade. Specifically, more 

mGluR6 G-protein cascade elements are absent in mGluR6-/- than Nyxnob rod 

BCs (RGS7: Gregg lab, unpublished observation; RGS11: Cao et al., 2012; Shim 

et al., 2012; Gβ5: Rao et al., 2007). However, it is unclear how elements of the 

G-protein cascade would affect Vrest. This difference cannot be related to the 

TRPM1 channel, because it is absent in both Nyxnob and mGluR6-/- rod BCs. 
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Future experiments will examine whether RGC oscillations might be driven by 

these changes in potassium conductance and whether there is altered glutamate 

release from BCs and/or altered membrane properties in AII ACs, which could 

influence the stability of the downstream circuit and possibly permit network 

oscillations.  

The AII AC and RGC oscillations in rd retina range from 3-15 Hz 

oscillations (Borowska et al., 2011; Margolis & Detwiler 2011; Menzler & Zeck 

2011; Trenholm et al., 2012; Yee et al. 2012; Margolis et al., 2014), and I 

propose a similar mechanism is responsible for the 3-5 Hz oscillations found in 

Nyxnob RGCs (Demas et al., 2006). Choi et al. (2014) showed that modification of 

AII AC’s Vrest altered the oscillatory frequency (the more hyperpolarized Vrest (ex. 

-56mV), the lower the oscillatory frequency (3.5-4Hz), while the more depolarized 

Vrest (ex. -48mV), the higher the oscillatory frequency (~6 Hz). Therefore, it is 

possible that rd and Nyxnob utilize the same oscillatory mechanism, but that the 

Vrest of Nyxnob AII ACs is shifted slightly more hyperpolarized than rd AII ACs 

resulting in the range of oscillatory potentials found across Nyxnob and rd RGCs. 
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CHAPTER V 

CRITICAL ROLE OF GPR179 IN ROD BC RESPONSE 

Introduction 

 

The mGluR6-mediated modulation of TRPM1 is known to require GPR179 

(Audo et al., 2012; Peachey et al., 2012b). GPR179 is a seven transmembrane 

G-protein coupled receptor whose expression is eliminated in the Gpr179nob5 

mouse mutant because of a transposable element insertion into the Gpr179 

gene. This mouse mutant and mutations in the human gene are inherited in an 

autosomal recessive manner and cause a no b-wave ERG phenotype (Peachey 

et al., 2012b). GPR179 interacts with and is required for RGS7 and RGS11 

localization to the On BC dendritic tips (Orlandi et al., 2012; Replication of Figure 

7 below). Since Gpr179nob5 not only lacks expression of GPR179, but also the 

proper localization of RGS7 and RGS11, I compared properties of rod BCs from 

Gpr179nob5 to RGS7-/-/RGS11-/- mice, which have normal GPR179 expression, in 

order to determine the role of GPR179 in isolation from RGS7/RGS11 (Ray et al., 

2014). Ray et al. (2014) showed that mGluR6, nyctalopin and TRPM1 protein 
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expression and outer plexiform layer (OPL) localization are independent of 

GPR179 expression and that GPR179 and TRPM1 proteins interact.  

 
 
 

 
 

Replication of Figure 7. A. In the dark glutamate is released from rods and binds 

mGluR6. mGluR6 activates a trimeric G-protein complex, G0 (Vardi et al., 1993; 

Nawy 1999; Dhingra et al., 2000). The trimeric G-proteins are activated when 

GDP is exchanged for GTP on Gα0, which dissociates into Gα0-GTP (Vardi et al., 

1993; Nawy 1999; Dhingra et al., 2000) and the dimer Gβ3/Gγ13 (Dhingra et al., 

2012; Huang et al., 2003). The activated G-protein complex leads to the closure 

of the non-selective cation channel, TRPM1, and relative hyperpolarization of the 

rod BC, either through interaction with Gα0-GTP and/or Gβ3/Gγ13 or another 

A B 
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intermediate effector not yet identified. B. In the light glutamate release is 

decreased and no longer binds mGluR6. Hydrolysis of GTP into guanine 

dinucleotide (GDP) forms the inactive state of Gα0 (Gα0-GDP; Hooks et al., 2003) 

which recombines with Gβ3 and Gγ13 to form the trimeric G-protein complex. 

RGS7 and RGS11, regulator of G-protein signaling (RGS) proteins (Cao et al., 

2012; Shim et al., 2012), form heterodimers with Gβ5 (Rao et al., 2007). These 

heterodimers are GTPase-activating protein (GAP) complexes, which accelerate 

the hydrolysis of GTP to GDP by Gα0, (Hooks et al., 2003; Rao et al., 2007), 

resulting in accelerated deactivation of the G-protein and culminates in the 

opening of TRPM1 and depolarization of the BC (Audo et al., 2009; Li et al., 

2009; Morgans et al., 2009, 2010; Shen et al., 2009; Koike et al., 2010; Peachey 

et al., 2012a). R9AP is a membrane anchor protein for RGS11 and critical for its 

proper localization in the membrane at the dendritic tips (Jeffrey et al., 2010); 

nyctalopin, a leucine-rich repeat protein is critical for proper trafficking or 

localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011); GPR179 is 

required for proper dendritic tip localization of RGS7 and RGS11 (Orlandi et al., 

2012) and LRIT3 is critical for rod BC light-mediated response (Zeitz et al., 2013; 

Neuille et al., 2014). 

 

 

Initial comparisons of the ERG responses of WT and Gpr179nob5 showed a 

significant reduction in the Gpr179nob5 b-wave and as a result Gpr179nob5 was 
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defined as a no b-wave phenotype (Peachey et al., 2012b). RGS7-/-/RGS11-/-

mice also show a no b-wave phenotype to short light flashes (10msec), but a 

small light-evoked response can be evoked from a longer ERG stimulus duration 

(20sec), as well as from individual rod BCs, when a sustained stimulus is used 

(Cao et al., 2012). Given the differential responses of RGS7-/-/RGS11-/- mice in 

ERG and in vitro rod BC recordings I compared Gpr179nob5, RGS7-/-/RGS11-/-, 

Trpm1-/- and WT mice via in vitro rod BC recordings to gain further insight into the 

role of GPR179 in the rod BC light response.  

 

Materials and Methods 

Whole-cell patch-clamp recording 

To block inhibitory inputs, Ames solution in the bath was supplemented 

with the following: 1 µM strychnine, 100 µM picrotoxin, and 50 µM 6-

tetrahydropyridin-4-yl methylphosphinic acid (TPMPA). L-AP4 (4 µM) was added 

to the bath solution to saturate mGluR6 receptors. The mGluR6 receptor 

antagonist α-cyclopropyl-4-phosphonophenylglycine (CPPG) was dissolved in 

Ames medium to a working concentration of 0.6 mM or 3mM. CPPG was applied 

by pressure application using a Picospritzer II (Parker Instrumentation) onto the 

rod BC dendritic tips in the OPL. In separate experiments, capsaicin (10 µM), a 

TRPM1 agonist, was puffed onto the rod BC dendrites to gate the opening of the 
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TRPM1 channel. Reagents were purchased from Sigma-Aldrich, except for L-

AP4, CPPG, and capsaicin, which were purchased from Tocris Bioscience. 

Voltage-clamp protocols 

Rod BCs were voltage clamped at +50mV (Nawy, 2004; Shen et al., 

2009). CPPG was puffed at rod BC dendrites for 200 ms and 1 s. For capsaicin 

experiments 1 s puffs were applied. Three to five responses were recorded from 

each cell and then averaged. Off-line, a 20 Hz eight-pole Bessel low-pass filter 

was applied to the data. Variance and standing current were measured across 

the first 1.5 s of the recording for each rod BC. Off-line analyses of data were 

performed using Clampfit 10.2. 

Statistical Analysis 

Prism 5.04 software (GraphPad Software) was used to perform two-way 

repeated-measures ANOVAs with Bonferroni post hoc, two-way ANOVAs with 

Bonferroni post hoc, one-way ANOVAs with Bonferroni post hoc, Kruskal-Wallis 

with Dunns post hoc, Mann-Whitney, or unpaired t-tests as suited for the 

necessary comparison. Post hoc P values are reported. Statistical significance = 

P < 0.05. 

Results 

Both mGluR6 and TRPM1 proteins are expressed in the OPL of 

Gpr179nob5 (Ray et al., 2014) and RGS7-/-/RGS11-/- retina (Cao et al., 2012). To 
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examine the capacity of the cascade to gate the channel, I used a 

pharmacological manipulation in which all synaptic inputs are blocked and retinal 

slices are bathed in 4 µM L-AP4 to maximally activate the mGluR6 cascade and 

close TRPM1 channels (Nawy, 2004). To examine the properties of the mGluR6 

cascade and its ability to open TRPM1 channels, CPPG, an mGluR6 antagonist 

was exogenously applied (puffed) onto the rod BC dendrites. Its effect is to 

deactivate mGluR6, similar to the reduction in glutamate occupancy resulting 

from light onset. To examine the ability of the TRPM1 channel to be directly 

gated, capsaicin, a TRPM1 channel agonist, was exogenously applied. Because 

rod BCs were held at +50mV to minimize rundown, both CPPG and capsaicin 

puffs evoked outward currents (Figures 25, 26).  

Small mGluR6-mediated responses can be elicited in rod BCs in the absence of 

GPR179 and increased stimulation increases response amplitude 

Puffs of CPPG (0.6 mM) onto the dendritic terminals of WT rod BCs 

evoked a robust response whose amplitude was similar regardless of puff 

duration (200 ms or 1 s duration; Figure 25A; two-way ANOVA with Bonferroni 

post hoc: P > 0.05). As a result, WT responses were combined (Figure 25B). The 

responses of Gpr179nob5 and RGS7-/-/RGS11-/- rod BCs to 200 ms CPPG puffs 

were similar but significantly smaller than WT (Figure 25B; two-way ANOVA with 

Bonferroni post hoc: Gpr179nob5 vs RGS7-/-/RGS11-/-, P > 0.05; Gpr179nob5 vs 

WT, P < 0.001; RGS7-/-/RGS11-/- vs WT, P < 0.001). In contrast to WT, 

increasing puff duration to 1 s produced significant increases in both 
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Gpr179nob5and RGS7-/-/RGS11-/- rod BC responses (Figure 25A,B; two-way 

ANOVA with Bonferroni post hoc: P < 0.001 for both comparisons), although 

again amplitudes were significantly smaller than WT (Figure 25A,B; two-way 

ANOVA with Bonferroni post hoc: P < 0.001 for both comparisons). Increasing 

the concentration of CPPG to 3 mM had minimal impact on the WT response 

(Figure 25C,D), indicating that the mGluR6 cascade is maximally activated by 0.6 

mM puffs for 200 ms. Increasing CPPG concentration to 3 mM evoked similar 

responses in Gpr179nob5 and RGS7-/-/RGS11-/- rod BCs independent of puff 

duration, although responses were always significantly smaller than WT (Figure 

25C,D; two-way ANOVA with Bonferroni post hoc: Gpr179nob5 vs RGS7-/-/RGS11-

/- 200 ms and 1 s, P > 0.05; Gpr179nob5 vs WT 200 ms and 1 s, P < 0.001; RGS7-

/-/RGS11-/- vs WT 200 ms and 1 s, P < 0.001). Together these results suggest 

that in rod BCs TRPM1 can be gated via mGluR6 even when GPR179 

expression is absent. The specific role of GPR179 cannot be determined with the 

reagents at hand, because the effects on cascade sensitivity could be because of 

its close interaction with TRPM1. However, the fact that it also is required for 

localization of the RGS complex confounds a simple conclusion.  
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Figure 25. A small amplitude, concentration-dependent CPPG response in 

Gpr179nob5 and RGS7-/-/RGS11-/- rod BCs. A. Representative voltage-clamp 

responses of WT, Gpr179nob5, and RGS7-/-/RGS11-/- rod BCs evoked by puff 

application of the mGLuR6 antagonist, CPPG (0.6mM for 200 ms or 1 s). B. 

Histogram compares the average peak response amplitudes (± SEM) of WT, 

Gpr179nob5, and RGS7-/-/RGS11-/- rod BCs. WT responses to 200 ms and 1 s 

puffs did not differ and were combined. Regardless of duration Gpr179nob5 and 

RGS7-/-/RGS11-/- response amplitudes were significantly smaller than WT, 

although response amplitudes of rod BCs from both mutants significantly 

increase when puff duration increased from 200 ms to 1 s. C. Representative 

voltage-clamp responses of WT, Gpr179nob5, and RGS7-/-/RGS11-/- rod BCs 

evoked by puff application of 3mM CPPG for either 200 ms or 1 s. D. Histogram 
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compares the average peak response  (± SEM) amplitudes of WT, Gpr179nob5, 

and RGS7-/-/RGS11-/- rod BCs. WT responses did not change with increased 

concentration or puff duration of CPPG (200ms to 1 s). Regardless of duration 

Gpr179nob5 and RGS7-/-/RGS11-/- response amplitudes were significantly smaller 

than WT. The increased puff duration did not produce larger response 

amplitudes in either Gpr179nob5 or RGS7-/-/RGS11-/- rod BCs, suggesting that 

they were saturated under these conditions (two-wav ANOVA with Bonferroni 

post hoc; *** P < 0.001). 

 

 

GPR179 is required for normal TRPM1 channel sensitivity in rod BCs 

Because TRPM1 is expressed in both Gpr179nob5 and RGS7-/-/RGS11-/- 

rod BCs, one can assume that the capsaicin-evoked current would be mediated 

by TRPM1. To test this idea, I compared direct activation of the TRPM1 channel 

using capsaicin in WT, RGS7-/-/RGS11-/-, Gpr179nob5, and Trpm1-/- rod BCs 

(Figure 26). As observed previously (Shen et al., 2009), capsaicin-evokes robust 

responses in WT rod BCs (Figure 26A,B) and the capsaicin-evoked current in 

RGS7-/-/RGS11-/- and WT rod BCs were not significantly different (one-way 

ANOVA with Bonferroni post hoc: WT vs RGS7-/-/RGS11-/-, P > 0.05). In contrast, 

the capsaicin-evoked current in Gpr179nob5 rod BCs was significantly smaller than 

either WT or RGS7-/-/RGS11-/- rod BCs (one-way ANOVA with Bonferroni post 

hoc: 1 s, Gpr179nob5 vs WT, P < 0.001; Gpr179nob5 vs RGS7-/-/RGS11-/-, P < 
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0.05). This response also was significantly larger than the capsaicin-evoked 

current in Trpm1-/- rod BCs, which are barely measurable above background 

noise (one-way ANOVA with Bonferroni post hoc: Gpr179nob5 vs Trpm1-/-, P < 

0.05). A similar small residual Trpm1-/- current of unknown identity has been 

noted previously (Morgans et al., 2009). These results indicate that it is the 

presence of GPR179 in both WT and RGS7-/-/RGS11-/- On BCs that allows the 

TRPM1 channel to be efficiently gated by capsaicin, whereas its absence leads 

to a TRPM1 channel whose sensitivity to direct gating is significantly reduced.  

 
 

 

Figure 26. Capsaicin-evoked TRPM1 responses are normal in RGS7-/-/RGS11-/-

and decreased in Gpr179nob5rod BCs. A. Representative voltage-clamp 

responses of WT, RGS7-/-/RGS11-/-, Gpr179nob5, and Trpm1-/- rod BCs evoked by 

a 1 s puff of the TRPM1 channel agonist, capsaicin (10µM). B. Histogram 

compares the average peak response amplitudes (±SEM) of WT, RGS7-/-

/RGS11-/-, Gpr179nob5, and Trpm1-/- rod BCs. Gpr179nob5 response amplitudes are 

significantly larger than Trpm1-/-, although significantly smaller than either WT or 

RGS7-/-/RGS11-/-rod BCs. The responses from RGS7-/-/RGS11-/-rod BCs are the 
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same as WT. The number of rod BCs in each experimental group is shown within 

each bar of the histograms (one-way ANOVA with Bonferroni post hoc, * P < 

0.05; *** P < 0.001). 

 

 

GPR179 is important for normal TRPM1 channel modulation 

Given this result, I examined the open probability of TRPM1 channels and 

compared the magnitude of the standing outward current and its variance in WT, 

Gpr179nob5, and RGS7-/-/RGS11-/- rod BCs. I compared them to Trpm1-/- rod BCs, 

where the channel is absent. Both the standing outward current and current 

variance of Gpr179nob5, RGS7-/-/RGS11-/-, and Trpm1-/- rod BCs were similar 

(Figure 27B,C; one-way ANOVA with Bonferroni post hoc: P > 0.05) and all were 

significantly lower than WT (one-way ANOVA with Bonferroni post hoc: standing 

current: WT vs Gpr179nob5, P < 0.001; WT vs RGS7-/-/RGS11-/-, P < 0.001; WT vs 

Trpm1-/-, P < 0.001; variance: WT vs Gpr179nob5, P < 0.01; WT vs RGS7-/-

/RGS11-/-, P < 0.05; WT vs Trpm1-/- P < 0.01). These data indicate that even 

though the TRPM1 channel is expressed in Gpr179nob5and RGS7-/-/RGS11-/- rod 

BCs it has an extremely low (near 0) open probability, similar to when the 

TRPM1 channel is absent. These data suggest that GPR179 clusters RGS7 and 

RGS11 close to the TRPM1 channel and also interacts with TRPM1 to alter the 

ability of the channel to be gated directly by capsaicin.  
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Figure 27. Gpr179nob5, Trpm1-/-, and RGS7-/-/RGS11-/-rod BCs have decreased 

standing currents and channel open probability. A. Representative traces of 

spontaneous currents from WT, Gpr179nob5, Trpm1-/-, and RGS7-/-/RGS11-/-rod 

BCs. Rod BCs were held at +50 mV and 1.5 s sections of each recording were 

analyzed to yield the data in B and C. Histograms compare average (±SEM) (B) 

standing current and (C) current variance for WT, Gpr179nob5, Trpm1-/-, and 

RGS7-/-/RGS11-/-rod BCs. Rod BCs from Gpr179nob5, Trpm1-/-, and RGS7-/-

/RGS11-/- have similar standing currents (B) and current variance (C) and all are 

significantly lower than WT (one-way ANOVA with Bonferroni post hoc, * P < 

0.05; ** P < 0.01, *** P < 0.001). Combined these data indicate that a channel 

that remains in Gpr179nob5 and RGS7-/-/RGS11-/-rod BCs has an open probability 

that is similar to rod BCs where the TRPM1 channel is absent (Trpm1-/-). The 

number of rod BCs in each experimental group is shown within each bar of the 

histograms. 
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Discussion 

Scotopic visual depends on the modulation of mGluR6, which gates the 

TRPM1 channel in rod BCs. Critical elements of the mGluR6 G-protein cascade, 

all expressed on the tips of WT rod BCs, have been identified because they have 

been found to reduce or eliminate the signaling pathway. While the complete 

cascade is not yet determined, the current hypothesis is that glutamate binding to 

mGluR6 (which occurs in the dark) activates a trimeric G-protein complex, G0 

(Vardi et al., 1993; Nawy 1999; Dhingra et al., 2000), which breaks down into the 

dimer composed of Gβ3 and Gγ13 subunits (Dhingra et al., 2012; Huang et al., 

2003) and the Gα subunit (Dhingra et al., 2000). This G-protein complex 

activation leads to closure of the TRPM1 channel. Gα0 is bound to guanine 

trinucleotide (GTP) (Gα0-GTP) in its active state and hydrolysis of GTP into 

guanine dinucleotide (GDP) forms the inactive state of Gα0 (Gα0-GDP; Hooks et 

al., 2003). Other critical elements of the cascade include RGS7 and RGS11, 

regulator of G-protein signaling (RGS) proteins (Cao et al., 2012; Shim et al., 

2012), which form heterodimers with Gβ5 (Rao et al., 2007). These heterodimers 

are GTPase-activating protein (GAP) complexes, which accelerate the hydrolysis 

of GTP to GDP by Gα0, (Hooks et al., 2003; Rao et al., 2007), resulting in 

accelerated deactivation of the G-protein and subsequent TRPM1 channel 

opening. R9AP is a membrane anchor protein for RGS11 and critical for its 

proper localization in the membrane at the dendritic tips (Jeffrey et al., 2010); 

nyctalopin, a leucine-rich repeat protein that is critical for the proper trafficking or 
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localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011); GPR179, a 

seven transmembrane domain protein that is required for proper dendritic tip 

localization of RGS7 and RGS11; and LRIT3, a leucine-rich repeat protein of 

unknown function (Zeitz et al., 2013).  

Small responses from Gpr179nob5 rod BCs were elicited using the same 

pharmacological concentration and duration of CPPG as used by Nawy, 2004. 

While WT rod BC responses were saturated at this level of pharmacological 

stimulation, increased concentration and duration of pharmacological application 

increased the response amplitudes from Gpr179nob5 rod BCs, though never 

reaching WT amplitudes (Figure 25). The increased concentration and duration 

of pharmacological activation of mGluR6 in Gpr179nob5 rod BCs produce a similar 

response to RGS7-/-/RGS11-/- rod BCs. Although the positive polarity b-wave of 

the ERG responses from Gpr179nob5 was previously reported to be missing 

(Peachey et al., 2012), my in vitro rod BC responses prompted a closer 

examination of the ERG responses. Ray et al. (2014) found a b-wave-like 

response, albeit small (~15–20µV), to low luminance flashes (-3.6,-2.4 log cd 

s/m2) that was increased with longer flash duration in Gpr179nob5 but was absent 

in Trpm1-/- mice. The presence of a small ERG b-wave in these mice suggests 

that mGluR6 and its cascade maintain some capacity to gate the TRPM1 

channel, although the sensitivity is significantly reduced. These results are 

consistent with the no b-wave ERG phenotype in RGS7-/-/RGS11-/- mice to short 
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flash stimuli (Cao et al., 2012), but a small light-evoked response from their rod 

BCs, to sustained light stimuli.  

My current measures do not discriminate between the roles of GPR179 

and the RGS complex in gating the TRPM1 channel through the mGluR6 

cascade because the RGS complex is mislocalized in the absence of GPR179. 

However, the presence of GPR179 is required to maximize direct TRPM1 

channel gating via capsaicin application, which does not involve the cascade. 

Capsaicin-mediated gating is altered in Gpr179nob5rod BCs, but is retained in 

RGS7-/-/RGS11-/- rod BCs in which GPR179 is expressed normally (Figure 26). 

This suggests a unique function of GPR179, related to its direct protein:protein 

interactions with TRPM1 (Ray et al., 2014). Together these electrophysiological, 

immunohistochemical and biochemical results contribute new information to the 

ongoing construction of the mGluR6 G-protein cascade that is critical to night 

vision.  

When glutamate binds mGluR6, its trimeric G-proteins are activated and 

GDP is exchanged for GTP on Gα0, producing activated Gα0-GTP and Gβγ, 

which become disassociated. Both components are membrane bound and likely 

in close proximity to TRPM1. This means that one or possibly both can interact 

with TRPM1 and are instrumental in channel closure, either directly or via 

another intermediate effector. Regardless of the identity of this component, the 

interaction must be transient in nature because even when mGluR6 is maximally 

activated, either under dark-adapted conditions (Sampath & Rieke, 2004) or in 
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the presence of L-AP4 (Figure 27), there remains a standing current and nonzero 

channel open probability referred to as the dark current.  

Manipulations that increase the level of the activated Gα0 (Gα0-GTP) all 

decrease either the light response or response to mGluR6 antagonists. These 

manipulations have included: adding GTP-γ-S to the patch pipette (Sampath and 

Rieke, 2004; Zhang et al., 2010). GTP-γ-S is a nonhydrolyzable GTP analog that 

increases the lifetime of the G protein ≥ 100-fold, thereby leading to a quick 

decay of the light response due to the additional G-protein activity (Sampath and 

Rieke, 2004; Zhang et al., 2010); deleting the RGS7/RGS11 complex (Zhang et 

al., 2010; Cao et al., 2012; Shim et al., 2012), which leads to a decreased 

amplitude and delay in rod BC depolarizing response, suggesting these 

complexes play a critical role in accelerating deactivation of the G-protein (GTP 

hydrolysis) and subsequent TRPM1 channel opening (Zhang et al., 2010; Cao et 

al., 2012; Shim et al., 2012). However, Shen et al. (2012) found that introduction 

of active Gβγ but not Gα0 blocked the light response, and suggested Gβγ as the 

active component in TRPM1 channel closure.  However, these manipulations 

cannot distinguish between the Gα0-GTP and Gβγ models because decreasing 

Gα0-GDP concentrations necessarily increases free Gβγ. This is because these 

proteins form trimeric heterodimers and when Gα0 is no longer bound to Gβγ, 

Gβγ is free in the cell and can influence downstream, making it difficult to 

separate the effects of Gα0-GTP and Gβγ on the TRPM1 channel. Therefore, it 
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remains undetermined whether Gα0-GTP or Gβγ are the critical component for 

TRMP1 channel closure.  

My results show that the RGS complex is not required for cascade 

function, because in its absence the TRPM1 channel can be gated by strong 

mGluR6 cascade stimulation. Rod BCs from both Gpr179nob5 and RGS7-/-

/RGS11-/- mice had standing currents and variance that were similar to Trpm1-/- 

rod BCs, indicating the presence of a remaining current of unknown identity, 

which has been noted previously (Morgans et al., 2009). Further, my results 

show that in the absence of localized RGS proteins the standing current and 

channel open probability decrease to background levels, in contrast to what is 

seen when the cascade is maximally activated (Figure 27). I propose this occurs 

in Gpr179nob5 and RGS7-/-/RGS11-/- rod BCs because of increased 

concentrations of both Gα0-GTP and free Gβγ, which arise because of the loss of 

the RGS complex, resulting in complete TRPM1 closure.  

In conclusion, a critical function of GPR179 is to set the state of the 

TRPM1 channel, allowing it to respond optimally to deactivation of the mGluR6 

cascade. Understanding the various states of TRPM1, which I in collaboration 

with Ray et al. (2014) show are dependent on at least GPR179, at the molecular 

level may provide important clues as to how TRPM1 is gated by the mGluR6 

cascade. 
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CHAPTER VI 

CRITICAL ROLE OF LRIT3 IN ROD BC RESPONSE 

Introduction 

In the dark glutamate binds mGluR6, which activates a trimeric G-protein 

complex (Vardi et al., 1993; Nawy 1999; Dhingra et al., 2000) leading to the 

closure of the TRPM1 channel (Replication of Figure 7 below).  
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Replication of Figure 7. A. In the dark glutamate is released from rods and binds 

mGluR6. mGluR6 activates a trimeric G-protein complex, G0 (Vardi et al., 1993; 

Nawy 1999; Dhingra et al., 2000). The trimeric G-proteins are activated when 

GDP is exchanged for GTP on Gα0, which dissociates into Gα0-GTP (Vardi et al., 

1993; Nawy 1999; Dhingra et al., 2000) and the dimer Gβ3/Gγ13 (Dhingra et al., 

2012; Huang et al., 2003). The activated G-protein complex leads to the closure 

of the non-selective cation channel, TRPM1, and relative hyperpolarization of the 

rod BC, either through interaction with Gα0-GTP and/or Gβ3/Gγ13 or another 

intermediate effector not yet identified. B. In the light glutamate release is 

decreased and no longer binds mGluR6. Hydrolysis of GTP into guanine 

dinucleotide (GDP) forms the inactive state of Gα0 (Gα0-GDP; Hooks et al., 2003) 

A B 
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which recombines with Gβ3 and Gγ13 to form the trimeric G-protein complex. 

RGS7 and RGS11, regulator of G-protein signaling (RGS) proteins (Cao et al., 

2012; Shim et al., 2012), form heterodimers with Gβ5 (Rao et al., 2007). These 

heterodimers are GTPase-activating protein (GAP) complexes, which accelerate 

the hydrolysis of GTP to GDP by Gα0, (Hooks et al., 2003; Rao et al., 2007), 

resulting in accelerated deactivation of the G-protein and culminates in the 

opening of TRPM1 and depolarization of the BC (Audo et al., 2009; Li et al., 

2009; Morgans et al., 2009, 2010; Shen et al., 2009; Koike et al., 2010; Peachey 

et al., 2012a). R9AP is a membrane anchor protein for RGS11 and critical for its 

proper localization in the membrane at the dendritic tips (Jeffrey et al., 2010); 

nyctalopin, a leucine-rich repeat protein is critical for proper trafficking or 

localization of TRPM1 (Gregg et al., 2003; Pearring et al., 2011); GPR179 is 

required for normal TRPM1 channel sensitivity and proper dendritic tip 

localization of RGS7 and RGS11 (Orlandi et al., 2012; Chapter V) and LRIT3 is 

critical for rod BC light-mediated response (Zeitz et al., 2013; Neuille et al., 

2014).  

 

 

Recently, cCSNB patients have been identified with mutations in the 

LRIT3 gene (Zeitz et al., 2013). LRIT3 encodes leucine-rich-repeat (LRR), 

immunoglobulin-like, and transmembrane-domain 3 and is expressed in the brain 

and eye (Zeitz et al., 2013). Human patients with LRIT3 mutations exhibit ERG 

phenotypes consistent with cCSNB (Zeitz et al., 2013). Similar to the ERG 
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responses of other no b-wave cCSNB mouse models (Masu et al., 1995; Gregg 

et al., 2003; Shen et al., 2009) Lrit3nob6 /nob6 (Neuille et al., 2014) and Lrit3-/- mice 

(Figure 28) have a normal a-wave but lack a b-wave at all luminance levels, 

suggesting an absence of rod and On cone BC signaling. Lrit3nob6 /nob6 mice 

exhibit decreased optomotor responses under scotopic conditions, but have 

normal fundus autofluorescence and histological structure (Neuille et al., 2014). 

Unlike other no b-wave mouse mutants, Lrit3nob6 /nob6 mice are reported to have 

thinned inner nuclear layers, inner plexiform layers, ganglion cell layers and 

nerve fiber layers (Neuille et al., 2014).  

                 

 
 

Figure 28. Lrit3-/- ERG recordings exhibit the classic cCSNB no b-wave 

phenotype under dark and light-adapted conditions. Ai, Bi. Representative WT 

littermate control and Lrit3-/- ERG recordings are presented at a variety of flash 

Ai Aii 

Bi Bii 
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luminances. Aii, Bii. Response amplitude for a and b-wave plotted as a function 

of flash luminance for WT littermate control and Lrit3-/- ERGs.  Lrit3-/- a-waves 

have normal response amplitudes, while Lrit3-/- lacks b-waves under both dark 

(Aii) and light-adapted (Bii) conditions. J. Noel, M.A. McCall, & R.G. Gregg, 

unpublished observations. 

 

 

Consistent with a lack of an ERG b-wave, immunohistochemical and 

confocal microscropy show that the TRPM1 channel is mislocalized to the cell 

body and absent from the rod BC dendritic tips (Figure 29B). In contrast, mGluR6 

remains properly localized in the OPL and presumably on the rod BC dendritic 

tips (Figure 29C).  
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Figure 29. Lrit3-/- rod BCs lack expression of nyctalopin, have mislocalized 

TRPM1, and normal expression of mGluR6. Confocal microscopy images from 

retinal slices of Lrit3+/-/TgNyc and Lrit3-/-/TgNyc mice. Antibodies were used to 

label GFP (nyctalopin), TRPM1, and mGluR6. A. Nyctalopin expression is absent 

in Lrit3-/-/TgNyc mice. B. TRPM1 expression is localized only to the cell body and 

is not present in the dendritic tips in Lrit3-/-/TgNyc mice. C. mGluR6 expression is 

normal in Lrit3-/-/TgNyc mice. J. Noel, M.A. McCall, & R.G. Gregg, unpublished 

observations. 

 
 

A B C 
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In addition, nyctalopin expression is absent in the Lrit3-/- rod BCs (Figure 

29A). Expression of the RGS complex components Gβ5, RGS7, RGS11 and 

R9AP localize properly to the dendritic tips of Lrit3-/- rod BCs (Figure 30A). In 

addition, GPR179, which is important for proper TRPM1 channel sensitivity, is 

expressed normally in Lrit3-/- rod BC dendritic tips (Figure 30B).  

 
 
 

Figure 30. Lrit3-/- rod BCs have normal expression of RGS complex proteins and 

GPR179 in rod BCs. Confocal microscopy images from retinal slices of WT 

littermate controls and Lrit3-/- mice. A. Antibodies were used to label Gβ5, RGS7, 

RGS11, and R9AP. Lrit3-/- rod BCs have normal expression of Gβ5, RGS7, 

RGS11, and R9AP. B. Antibodies were used to label GPR179. Lrit3-/- rod BCs 
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have normal expression of GPR179. T. Ray & R.G. Gregg, unpublished 

observations. 

 

 

Given that the mGluR6 receptor is normally expressed, I performed whole 

cell patch clamp recordings from Lrit3-/- rod BCs to determine whether they 

exhibit mGluR6-mediated cascade activation or if the TRPM1 channels could be 

gated directly. Finally, to determine the whether the TRPM1 channels are 

open/closed or fluctuating in the membrane, I examined Lrit3-/- rod BC channel 

noise and standing current and compared them to WT or Trpm1-/- rod BCs.  

 

Materials and Methods 

Generation of Lrit3-/- mice 

Lrit3-/- mice were created utilizing zinc finger nucleotides (Blackburn et al., 

2013; Gaj et al., 2013) to target a region of LRIT3 exon 2 that encodes a peptide 

corresponding to the second leucine-rich-repeat domain that is highly conserved 

across species. Fifteen Lrit3 lines were created and line G47 was used because 

it had a 40 bp deletion that introduced a frameshift mutation resulting in a null 

allele.  
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Retinal slice preparation and whole-cell, patch-clamp recording 

Statistical Analysis 

Prism 5.04 software (GraphPad Software) was used to perform two-way 

repeated-measures ANOVAs with Bonferroni post hoc, two-way ANOVAs with 

Bonferroni post hoc, one-way ANOVAs with Bonferroni post hoc, Kruskal-Wallis 

with Dunns post hoc, Mann-Whitney, or unpaired t-tests as suited for the 

necessary comparison. Post hoc P values are reported. Statistical significance = 

P < 0.05. The rest of the methods are the same as Chapter V. 

 

Results 

To examine whether mGluR6 and its cascade elements, most of which 

remain expressed, could gate the TRPM1 channel, I pharmacologically activated 

the mGluR6 cascade with bath application of L-AP4 (4 µM) and blocked all 

synaptic input (Nawy, 2004; Ray et al., 2014; Chapter V). CPPG, an mGluR6 

antagonist, was exogenously applied (puffed) onto the rod BC dendrites. This 

approach mimics the reduction of glutamate in the synapse at light onset. WT 

littermates were used as controls and Trpm1-/- mice were used as a negative 

control because their rod BCs lack the TRPM1 channel. In the figures that follow, 

CPPG and capsaicin evoked outward currents because the rod BCs were held at 

+50mV to minimize rundown (Figures 31, 32). 
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LRIT3 is required for mGluR6-mediated responses in rod BCs 

As I have shown previously, (Ray et al., 2014; Chapter V), 200 msec 

CPPG puffs onto WT control rod BC dendritic tips evoked large amplitude 

responses (Figure 31A, B). Lrit3-/- and Trpm1-/- rod BC responses to 200 msec 

CPPG puffs were similar to each other and significantly smaller than WT 

littermate controls (Figure 31A, B; one-way ANOVA with Bonferroni post hoc: 

Lrit3-/- v. Trpm1-/-: P > 0.05; Lrit3-/- v. WT & Trpm1-/- v. WT: P < 0.001). To 

determine if Lrit3-/- rod BCs could be driven harder to elicit increased response 

amplitudes, I increased the CPPG puff duration to 1 sec. As expected from the 

absence of correctly localized TRPM1 channels, Lrit3-/- and Trpm1-/- rod BC 

responses to 1 sec CPPG puffs remained significantly smaller than WT littermate 

controls and similar to each other (Figure 31A, B; one-way ANOVA with 

Bonferroni post hoc: Lrit3-/- v. WT & Trpm1-/- v. WT: P < 0.001). Finally, the 

increase in puff duration, from 200 msec to 1 sec, did not increase the response 

amplitude in Lrit3-/- or Trpm1-/- rod BCs (Lrit3-/- 200 msec v. 1 sec: P < 0.05; 

Trpm1-/- 200 msec v. 1 sec:  P > 0.05) indicating that whatever mechanism 

generates this current, it is already saturated at the short puff duration. Together 

my results show that Lrit3-/- rod BCs exhibit responses that are not mediated 

through mislocalized TRPM1 channels similar to my findings in Chapter IV 

(Figure 20).  
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Figure 31. Lrit3-/- rod BCs lack a CPPG mediated response at short and long 

duration stimulation. A. Representative voltage-clamp responses of WT littermate 

control, Lrit3-/-, and Trpm1-/- rod BCs evoked by puff application of the mGluR6 

antagonist, CPPG for either 200 msec or 1 sec durations. B. Histogram 

compares the average peak response amplitudes (± SEM) of WT littermate 

control, Lrit3-/-, and Trpm1-/- rod BCs with 200 msec and 1 sec puff durations. 

Regardless of duration Lrit3-/- and Trpm1-/- response amplitudes were significantly 
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smaller than WT. None of the response amplitudes significantly increase when 

puff duration increased from 200 msec to 1 sec. (two-way ANOVA with 

Bonferroni post hoc *** P < 0.001). 

 

 

LRIT3 is required for direct TRPM1 channel modulation in rod BCs 

To examine the ability of the TRPM1 channel to be directly gated, I 

exogenously applied capsaicin, a TRPM1 channel agonist, onto the rod BC 

dendrites; an approach I described previously (Ray et al., 2014; Chapter V). 

Since in the LRIT3 mouse mGluR6 and most of the downstream cascade 

mediating proteins are expressed, this experiment was designed to determine 

whether the lack of response was due to the absence of functional TRPM1 

channels. Lrit3-/- and Trpm1-/- rod BC responses to 200 msec capsaicin puffs 

were similar to each other and significantly smaller than WT littermate controls 

(Figure 32; one-way ANOVA with Bonferroni post hoc: Lrit3-/- v. WT & Trpm1-/- v. 

WT: P < 0.001) demonstrating that LRIT3 is critical for TRPM1 channel 

modulation. These data combined with the immunohistochemical analysis of rod 

BC protein expression (Figure 29) demonstrate that LRIT3 expression is critical 

for nyctalopin expression and functional TRPM1 channel localization to the 

dendritic tips. 
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Figure 32. Capsaicin-evoked TRPM1 responses are absent in Lrit3-/- rod BCs. A. 

Representative voltage-clamp responses of WT littermate control, Lrit3-/-, and 

Trpm1-/- rod BCs evoked by a 200 msec puff of the TRPM1 channel agonist, 

capsaicin. B. Histogram compares the average peak response amplitudes 

(±SEM) of WT littermate control, Lrit3-/-, and Trpm1-/- rod BCs. Lrit3-/- response 

amplitudes are similar to Trpm1-/- rod BCs, while both Lrit3-/- and Trpm1-/- rod BC 

amplitudes are significantly smaller than WT rod BCs. The number of rod BCs in 

each experimental group is shown within each bar of the histograms (one-way 

ANOVA with Bonferroni post hoc, *** P < 0.001). 

 



141 
 

In the absence of LRIT3, TRPM1 channels are either constitutively closed or 

absent in rod BCs 

In order to determine whether the lack of TRPM1 gating by capsaicin was 

due to a change in the open probability of TRPM1 channels or the absence of 

TRPM1 channels, I examined the magnitude of the standing outward current and 

its variance in WT littermate controls, Lrit3-/- and Trpm1-/- rod BCs. Both the 

standing outward current and current variance of Lrit3-/- and Trpm1-/- rod BCs 

were similar (Figure 33; one-way ANOVA with Bonferroni post hoc: standing 

outward current: P > 0.05; variance: P > 0.05) and both Lrit3-/- and Trpm1-/-  

standing outward current and current variance were significantly smaller than WT 

littermate controls (one-way ANOVA with Bonferroni post hoc: standing current: 

WT vs Lrit3-/-, P < 0.001; WT vs Trpm1-/-, P < 0.05; variance: WT vs Lrit3-/-, P < 

0.01; WT vs Trpm1-/-, P < 0.05). These data further support my previous results 

which suggest that although TRPM1 is expressed in Lrit3-/- rod BCs, the 

mislocalized TRPM1 channels are not functional. Also, these results are 

consistent with my data presented in Chapter IV Figure 20, which show that 

direct soma capsaicin puffs could not gate mislocalized TRPM1 channels in 

Nyxnob rod BCs. I would anticipate the same results in soma recordings from 

Lrit3-/- rod BCs.  
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Figure 33. Lrit3-/- and Trpm1-/- rod BCs have decreased standing currents and 

channel open probability. A. Representative traces of spontaneous currents from 

WT littermate controls, Lrit3-/- and Trpm1-/- rod BCs. Rod BCs were held at +50 

mV and 1.5 sec sections of each recording were analyzed to yield the data in B 

and C. Histograms compare average (±SEM) (B) standing current and (C) 

current variance for WT, Lrit3-/- and Trpm1-/- rod BCs. Lrit3-/- and Trpm1 -/- rod BCs 

have similar standing currents (B) and current variance (C) and all are 

significantly lower than WT (one-way ANOVA with Bonferroni post hoc, * P < 

0.05; ** P < 0.01, *** P < 0.001). Combined these data indicate that Lrit3-/- rod 

BCs have an open channel probability that is similar to rod BCs where the 

TRPM1 channel is absent (Trpm1-/-). The number of rod BCs in each 

experimental group is shown within each bar of the histograms. 
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Discussion 

My results demonstrate that LRIT3 is a new, critical component of the rod 

BC signaling cascade. In the absence of LRIT3 expression, the mGluR6-

mediated cascade, although expressed and properly localized, cannot gate the 

TRPM1 channel, because the channel cannot be gated, even directly (Figures 31 

& 32). In fact, the standing current and noise variance of Lrit3-/- rod BCs was 

similar to Trpm1-/- rod BCs suggesting that TRPM1 channels are not present in 

Lrit3-/- rod BC dendritic tips and non-functional at the cell body (Figure 33).  

My results in conjunction with the data presented in Figure 29 suggest that 

LRIT3 is critical for the proper localization and function of rod BC TRPM1 

channels. The localization of membrane proteins to the synapse involves 

cytoskeletal scaffolding proteins, many containing PDZ domains (Feng & Zhang, 

2009). Consistent with this idea, the C-terminal region of LRIT3 is highly 

conserved and may exhibit a PDZ-binding motif (Zeitz et al., 2013). The Neuille 

et al. (2014) Lrit3nob6 /nob6 mouse had exons 3 and 4 deleted as well as a 

truncation, leading to the absence of the transmembrane domain and PDZ-

binding motif, likely critical for LRIT3 function (Neuille et al., 2014; Zeitz et al., 

2013). Several human patients with cCSNB have been found with mutations 

expected to affect similar regions of the LRIT3 gene (Zeitz et al., 2013). Several 

human patients with cCSNB have been identified with mutations in exon 4, which 

is predicted to lead to truncation of the protein and lack of the transmembrane 
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domain and PDZ-binding motif (Neuille et al., 2014; Zeitz et al., 2013). The Lrit3-/- 

mouse that I used targeted a highly conserved region of exon 2, resulting in a 

frameshift mutation and a null allele. 

Pearring et al. (2011) demonstrated that nyctalopin is necessary for proper 

localization of TRPM1 channels to the rod BC dendritic tips, but noted that since 

nyctalopin is an extracellular protein it is likely to require another ancillary 

transmembrane protein to anchor the TRPM1 channel in the rod BC synapse. 

Figure 29 demonstrates that in the absence of LRIT3, nyctalopin also is absent. 

Because we lack an antibody to LRIT3 we do not know if LRIT3 is present in the 

Nyxnob mouse. Therefore, my results in combination with the 

immunohistochemistry presented in Figure 29 suggest that LRIT3 may be the 

ancillary transmembrane protein which is critical for the expression of nyctalopin 

and in combination, both nyctalopin and LRIT3 properly localize TRPM1 to the 

rod BC dendritic tips. 
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CHAPTER VII 

SUMMARY AND FUTURE DIRECTIONS 

The BC is the sole conduit for information flow between the outer retina, 

where the visual signal is initiated, and the RGCs response, which is the 

foundation of all higher order visual processing. My dissertation focused on 

changes in RGCs and rod BCs in a mouse model of the human disease, cCSNB.  

The experiments and results presented in Chapter III describe differences 

between the RGC properties of two models of cCSNB. The mGluR6-/- mouse 

lacks the glutamate receptor that initiates the transduction cascade, which leads 

to the rod BC signal. The Nyxnob mouse lacks the protein nyctalopin, which is 

required for trafficking or anchoring of the TRPM1 channel, which produces the 

depolarizing response in the rod BC.   

In summary, Chapter III reveals the following conclusions: 

1. Almost all Nyxnob RGCs exhibited rhythmic spiking while only a few 

mGluR6-/- RGCs exhibit rhythmic spiking. 

2. All classes of Nyxnob RGCs exhibited rhythmic spiking, while only non-

responsive mGluR6-/- RGCs exhibit rhythmic spiking. 
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3. There were no alterations in Vrest to account for the differences in Nyxnob 

and mGluR6-/- RGCs or in rhythmic and non-rhythmic RGCs within 

genotypes. 

4. A decrease in spontaneous activity level can account for the Nyxnob RGCs 

that lack rhythmic spiking, however spontaneous activity level could not 

account for the lack of rhythmic spiking in mGluR6-/- RGCs.  

Further experiments are needed to elucidate the mechanism of rhythmic 

spiking or lack of rhythmic spiking in mGluR6-/- RGCs, as well as the difference in 

Nyxnob and mGluR6-/- retinal circuitry that account for the genotypic differences in 

rhythmicity. 

 

The experiments and results presented in Chapter IV describe differences 

between the rod BC properties of two mouse models of cCSNB, mGluR6-/- and 

Nyxnob. 

In summary, Chapter IV revealed the following conclusions: 

1.  Nyxnob rod BC resting membrane potential was depolarized compared to 

WT and mGluR6-/-. 

2. Nyxnob rod BCs had smaller transient potassium currents than WT and 

mGluR6-/- rod BCs. 

My data surprisingly suggest a possible role for nyctalopin or TRPM1 

channels in potassium channel conductance and/or localization. It is possible that 

specific potassium channels bind to either nyctalopin, TRPM1 or another 
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associated scaffolding protein that is absent in Nyxnob rod BCs. However, further 

studies are needed to elucidate the connection between nyctalopin and 

potassium channels. 

In future experiments, I will identify the altered rod BC potassium channel. I 

will use pharmacological agonists/antagonists specific to potassium channels 

and determine if Kv1.1, Kv1.2, Kv11.1, or Kv4 is the potassium channel 

responsible for the decrease in Nyxnob potassium current compared to WT and 

mGluR6-/- rod BCs. An immunohistochemical analysis will follow to validate that 

there is a decrease in expression of that specific channel in the OPL. 

 

The experiments and results presented in Chapter V describe the rod BCs in 

the Gpr179nob5 mouse model of cCSNB. The Gpr179nob5 mouse lacks the G-

protein GPR179. In summary, Chapter V describes the critical role of GPR179 in 

rod BC signaling with the following conclusions: 

1. In the absence of GPR179 a small mGluR6-mediated responses can be 

elicited in rod BCs and the response can be increased with increased 

stimulation. 

2. GPR179 is required for direct TRPM1 channel modulation in rod BCs. 

3. GPR179 sets the sensitivity of the mGluR6 cascade that modulates 

TRPM1. 

A critical function of GPR179 is to set the state of the TRPM1 channel, 

allowing it to optimally respond to deactivation of the mGluR6 cascade. Future 
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study at the molecular level may help to elucidate the various states of the 

TRPM1 channel and clarify how GPR179 modulates the gating of TRPM1.  

 

The experiments and results presented in Chapter VI describe the rod BCs in 

the Lrit3-/- mouse model of cCSNB. The Lrit3-/- mouse lacks leucine-rich-repeat, 

immunoglobulin-like, and transmembrane-domain 3 protein (LRIT3). In summary, 

Chapter VI describes the critical role of LRIT3 in rod BCs with the following 

conclusions: 

1. LRIT3 is required for mGluR6-mediated responses in rod BCs. 

2. LRIT3 is required for direct TRPM1 channel modulation in rod BCs. 

3. In the absence of LRIT3 TRPM1 channels are either constitutively closed 

or absent in rod BCs. 

4. LRIT3 is critical for the expression of nyctalopin and TRPM1 channel 

proteins in rod BCs. 

My results in conjunction with the immunohistochemical data presented in 

Figure 29 suggest that LRIT3 is critical for the proper localization and function of 

rod BC TRPM1 channels. The C-terminal region of LRIT3 is highly conserved 

and may exhibit a PDZ-binding motif (Zeitz et al., 2013). PDZ domains are 

involved in the localization of membrane proteins to the synapse (Feng & Zhang, 

2009). I hypothesize that LRIT3 may be the ancillary transmembrane protein 

which is critical for the expression of nyctalopin and both nyctalopin and LRIT3 

properly localize TRPM1 to the rod BC dendritic tips. However, this hypothesis 
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has not been tested. Future experiments examining protein interactions at the 

molecular level are needed to determine if my hypothesis is correct. 

 

Implications of my research 

My research has increased our understanding of the effects of the disease 

cCSNB. Not only has my research elucidated cellular effects of cCSNB, but 

cCSNB mouse models have allowed me to examine the function of specific 

proteins in retinal neurons and elucidate their function in the normal healthy 

retina. I have utilized electrophysiological recording techniques to examine 

functional characteristics of both rod BCs and RGCs. I have also used 

fluorescent dyes to label these cells and immunohistochemistry and confocal 

microscopy to recovery their morphology. The combination of these techniques 

result in an increased understanding of how identified cell classes function in the 

diseased and healthy retina.  

cCSNB has been thought to occur due to a plethora of different mutations 

which result in the same phenotype. However, my dissertation project has shown 

profound functional differences in the retinas of several cCSNB mouse models, 

Nyxnob, mGluR6-/-, Gpr179nob5 and Lrit3-/-. Potential treatment of cCSNB depends 

on foundational understanding of the disease mechanism and my dissertation 

research adds to this important literature. 
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Several retinal diseases such as retinitis pigmentosa and cCSNB have 

promising treatments in development utilizing gene therapy and retinal 

prosthetics. In order for many of these treatment techniques to be applied, an 

understanding of the healthy retinal circuit is critical. The ideal treatment would 

return the diseased retinal circuitry to the healthy circuitry state. Therefore, one 

must understand how healthy retinal circuitry functions. By examining models of 

cCSNB which lack specific proteins in a class of retinal neuron (rod BC) I have 

gained an understanding of the function these proteins in the healthy neuron. 

Therefore, my research has added to the greater understanding of how healthy 

retinal neurons process information, and how the rescue of these proteins may 

be important for future disease treatment.  
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