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 IV 

ABSTRACT  

 

We  have studied the instant form  quantization and light front quantization 

of conformally gauge fixed polyakov D1 brane action with and without scalar 

dilation field and showed these theories when consider in the presence of 

background gauge fields such as the 2- form gauge field  Bαβ(σ,τ) or in the 

presence of  U(1)   gauge field  Aα(σ,τ)  and constant scalar axion field C(σ,τ). 

The instant form quantization is studied in the equal world sheet time 

framework on hyperplanes defined by world  σ 
o 
= τ =  constant and light front 

quantization in equal light cone world sheet time framework in hyperplane 

defined by σ 
+ 

= (τ+ σ) = constant.  

The Hamilton formulation is given by two approaches: The first is Dirac 

approach while the  second is Güler approach. The equal equations of motion 

are obtained as total differential equations in many variables. 

These equations of motion are in exact agreement with those equations that 

had been obtained using Dirac's method.  

 

 

 

 

 

 

 

 

 



 V 

 ملـــــــــــــخص

 صياغة هاممتون لمجال بيميوكوف

 

بوجمممممموت  مممممممودجين لممجممممممال     D1مجممممممال ملبميوكمممممموبب دو مل  ممممممل بب ممممممت  تممممممم تكميممممممة تكممممممميم   ممممممام مل

( , )B   (   مع وجوتU(1  وملمجال( , )A    مع وجوت( , )C   

 كممممما تممممم تكميممممة مل مممممودل ملم  ممممب ل  ممممام ملمجممممال ملبميوكمممموبب بممممب ملميممممتو  مل م ممممب مل ابمممم   ممممم 

oميتويا  مل ميا با تباك ) اب = مل       .)  

)=وتكميمممة ملميمممتويا  ملم كو يمممة بمممب ملميمممتويا  مل ميممما با تبممماك ) ابممم  )     بايمممت تمم )

ن أن ملصياغة ملهاممتو ية بايت تمم  كيقتب تيكمك وجولك لكتابة م اتلا  مل ككة لهده ملا  مة وقت تبمي

 مل كيقتين ت  يا   س مل تائج.
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction  

In 1933, Dirac made the observation that action plays a central role in classical 

mechanics [1]. He considered the Lagrangian formulation of classical mechanics to 

be more fundamental than the Hamiltonian formulation, but that it seemed to have 

no important role in quantum mechanics as it was known at that time. He speculated 

how this situation might be rectified, and he arrived at conclusion that the 

propagator in quantum mechanics "corresponds to" exp iS/ħ where S is the classical 

action evaluated along the classical path. 

In 1948, Feynman developed Dirac's suggestion, and succeeded in deriving a 

third formulation of quantum mechanics, based on the fact that the propagator can 

be written as a sum over all possible paths (not just the classical one) between the 

initial and final points. Each path contributes exp iS/ħ to the propagator [2]. 

The Hamiltonian formulation of constrained system in classical mechanics was 

initiated by Dirac in 1933 [1,2], who set up a formalism for treating singular 

systems and the constraints involved. He showed that, in the presence of 

constraints, the number of degrees of freedom of the dynamical system was 

reduced. His approach are subsequently extended to continuous systems [3]. 

Following Dirac, there is another approach for quantizing constrained systems of 

classical singular theories, which was initiated by Feynman Kernel [4,5], who first 

set up a formalism of the path integral formalism when only first-class constraints 

in the canonical gauge are present [6,7]. The generalization of the methods to 

theories with second-class constraints is given by Senjanovic [8]. Fradkin and 

Vilkovisky [9,10] rederived both results in a broader context, where they improved 

Faddeev's procedure mainly to include covariant constraints; also they extended this 

procedure to the Grossman variables. When the dynamical system possesses some 

second-class constraints there exists another method given by Batalin and Fradkin 

[11]: the BFV-BRST operator quantization method. More, Gitman and Tyutin [12] 

discussed the canonical quantization of singular theories as well as the Hamiltonian 
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formalism of gauge theories in an arbitrary gauge. An alternative approach was 

developed by Bukenhout, Sprague and Faddeev [13,14] without following Dirac 

step by step. In this formalism there is no need to distinguish between first and 

second –class or primary and secondary constraints, where the primary constraint is 

a set of relations connecting between the momenta and the coordinates. The general 

formalism is then applied to several problems, quantization of the massive Yang-

Mills field theory, Light-Cone quantization of the self interacting scalar field, and 

quantization of a local field theory of magnetic monopolies, etc.  

In 1992, Güler developed a formalism based on Hamilton Jacobi formulation of 

constrained system [15,16] which has been developed to investigate the constrained 

systems. Several constrained systems were investigated by using the Hamilton-

Jacobi approach [17-36]. The Cathodovy equivalent Lagrangian method is used to 

obtain the set of Hamilton-Jacobi Partial Differential Equations (HJPDE). In this 

approach, the distinction between the first and second-class constraints is not 

necessary. The equations of motion are written as total differential equations in 

many variables, which require the investigation of the integrability conditions. In 

other words, the integrability conditions may lead to new constraints. Moreover, it 

is shown that gauge fixing, which is an essential procedure to study singular system 

by Dirac's method, is not necessary if the Hamilton-Jacobi approach is used. 

Following Hamilton-Jacobi approach, there is another approach for quantizing 

constrained systems of classical singular theories by path integral quantization [37]. 

In the following two sections a brief review of the last two formulations will be 

given. 

 

1.2 Dirac's Method  

The standard quantization methods can't be applied directly to the singular 

Lagrangian theories. However, the basic idea of the classical treatment and the 

quantization of such systems were presented  a long time by Dirac [1,2], and is now 

widely used in investigating the theoretical models in a contemporary elementary 

particle physics and applied in high energy physics, especially in the gauge 

theories[12]. 



 3 

The presence of constraints in such theories makes one careful on applying 

Dirac's method, especially when first-class constraints arise. This is because the 

first-class constraints are generators of gauge transformation which lead to the 

gauge freedom [36]. 

  

Let us consider a system which is described by the Lagrangian  

 

( , ; ), 1, ..., . (1.1)i iL L q q i n   

 

such that the rank of the Hessian matrix is (n-r) , r  <  n.  

     
2

, , 1, ... , , (1.2)ij

i j

L
A i j n

q q


 
 

 

Since the rank of the Hessian matrix is (n – r), the momenta components will be 

functionally dependent. The first (n – r) equations of the momenta  

 

, (1.3)i

i

L
p

q





 

 

can be solved for the (n – r) components of iq  in terms of qi  as well as the first (n 

– r) components of pi and the last r components of iq . 

In other words  

 ( , , ), (1.4)a a i aq q p q  

 

1, ... , 1, ... , , 1, ... ,a n r r i n     

 

The singular system characterized by the fact that all velocities iq  are not 

uniquely determined in terms of the coordinates and momenta only. In other words, 

not all momenta are independent, and there must exist a certain set of relations 

among them, of the form:  

                                 ( , ) 0, 1,2, (1.5)m i ip q m r    
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The q's and the 'p s  are the dynamical variables of the Hamiltonian theory. They 

are connected by the relations eq.(1.5) which are called primary constraints of the 

Hamiltonian formalism. 

 Now the usual Hamiltonian H0 for any dynamical system is defined as  

 

0( , ) , (1.6)i i i iH p q p q L   

 

(Here the Einstein summation rule is used which is a convention when repeated 

indices are implicitly summed over). 

H0 will not be uniquely determined, since we may add to it any linear 

combinations of the  primary constraints 's  which are zero, so that the total 

Hamiltonian is [2,37] 

 

                                       0 , (1.7)TH H      

 

Where ( , )q p  being some unknown coefficients, they are simply Lagrange's 

undetermined multipliers. Making use of the Poisson brackets, one can write the 

total time derivative of any function ɡ(q,p) as  

                0, , , , (1.8)T

d
H H

d
  


   

g
g g g g  

 

Where Dirac's symbol (≈) for weak equality has been used in the sense that one 

can't consider 0   identically before working out the Poisson brackets. Thus the 

equations of motion can be written as 

  

     0, , , (1.9)i i T i iq q H q H q       

      0, , , (1.10)i i T i ip p H p H p       
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Subject to the so-called consistency conditions. This means that the total time 

derivative of the primary constraints should be zero; 

                
 

   0

,

, , 0, , 1, ... . (1.11)

T

d
H

d

H r



 

   


 



     


  

     

 

 

These equations may be reduced to 0 = 0, where it is identically satisfied as a 

result of primary constraints, else they will be lead to new conditions which are 

called secondary constraints. Repeating this procedure as many times as needed, 

one arrives at a final set of constraints or/and specifies some of  . Such constraints 

are classified into two types, a) First-class constraints which have vanishing 

Poission brackets with all other constraints. b) Second-class constraints which have 

non-vanishing Poisson brackets. The second-class constraints could be used to 

eliminate conjugate pairs of the p's and q's form the theory by expressing them as 

functions of the remaining p's and q's. 

 

The Poisson bracket of some arbitrary functions ( , )i iA q p , ( , )i iB q p of the 

canonical variables qi, pi is defined by 

                 [ , ] (1.12)p

i i i i

A B B A
A B

q p q p

   
 
   

 

where the repeated indices are summed. One can check that it has the following  

properties 

           

[ , ] [ , ], (1.13 )

[ , ] [ , ] [ , ] , (1.13 )

[ ,[ , ] ] [ ,[ , ] ] [ ,[ , ] ] 0, (1.13 )

p

p p p

p p p p p p

A B B A a

A BC A B C B A C b

A B C B C A C A B c

 

 

  

 

Usually, we quantize this classical system by defining the commutators of two 

function of the canonical variables by 

           [ , ] [ , ] , (1.14)pA B i A B   

However, if the canonical variables satisfy some constraints ( , ) 0n i iq p  , using 

eq.(1.14) to quantize the classical system would lead into some inconsistencies. For 

example, the constraint equations imply  , 0nA   for all n and any function 
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( , )i iA q p because we want to require the constraints being also satisfied quantum 

mechanically, but  , n p
A   is in general nonzero even if the constraint equations are 

imposed[1]. 

The constraints can be divided into two classes. A constraint is called first class if 

its Poisson bracket with all the other constraints vanishes when we impose the 

constraints 

            ,, , (1.15)m

a n a n mp
f     

 
where a runs through all the first class constraints,  and m , n runs through all the 

constraints, and ,

m

a nf  can be arbitrary functions of canonical variables. 

The remaining constraints are called second class. We will introduce a way of 

quantization when the system has no first class constraints[1,38]. In such case, the 

Poisson brackets of the constraints can be summarized into 

                 , , (1.16)m n mnp
C    

 
where  Cmn  is a nonsingular matrix, det 0C  . 

Dirac suggested a way of quantizing this  system by defining the Dirac brackets 

         1[ , ] [ , ] [ , ]( ) [ , ] , (1.17)mn

D p m n pA B A B A C B    

The Dirac bracket has the same properties (1.13) as the Poisson bracket. It further 

satisfies 

      , 0, (1.18)n D
A   

for all constraint  χ and function A. Now, it is straightforward to define the 

commutator 

               [ , ] [ , ] , (1.19)DA B i A B  
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1.3 Hamilton-Jacobi method  (Güler Method) 

Now we would like to discuss the constrained systems by Hamilton-Jacobi 

treatment [3,4], and demonstrate the fact that the gauge-fixing problem is solved 

naturally.   

This method is a completely different method to investigate singular systems. 

The system that is described by the Lagrangian ( , , )i iL q q t or L(υ, ∂υ) in field 

theory), i = 1, …, n,   is singular if  the Hess matrix eq.(1.2) has a rank (n – p) , p < 

n. in this case we have P momenta are dependent of each other. In this case, the 

generalized momenta Pi corresponding to the generalized coordinates qi are defined 

as 

        

, 1, .... , , (1.20)

, 1, .... , . (1.21)

a

a

L
P a n p

q

L
P n p n

q







  



   


 

 

Since the rank of the Hess matrix is ( n – p), one may solve (1.20) for aq  as 

 

( , , ) . (1.22)a a i b aq q q q P    

 

Substituting (1.22) into (1.21), we obtain relations in qi, Pa, q  and t in the form  

( , , , , ), 1, .... , . (1.23)

a a

i a a a

q

L
P H q q q P t n p n

q
  

 

 




      


 

 

The canonical Hamiltonian H0 is defined as  

 

0 ( , , , ) . (1.24)
H

i a a a a P
H L q q q t P q P

 
  

 


      

 

The set of Hamilton-Jacobi partial differential equations (HJPDE) is expressed as  

 

 ( ; ; ; ) 0, , 0,1, ... , , (1.25)a a

a

S S
H q q P P p

q q
  



 
 

    
 
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where  

 
0 0 0 , (1.26)

. (1.27)

H P H

H P H  

  

  
 

 

With q0 = t and S being the action. The equations of motion are obtained as total 

differential equations in many variables such as, 

  , (1.28)a

a

H
dq dt

P








 

  

     , 0,1, ... , . (1.29)r

r

H
dP dt r n

q





  


 

   ( ) . (1.30)a

a

H
dZ H P dt

P


 


  


 

where Z = S(tα,qa). These equations are integrable if and only if  

  0 0, (1.31)dH    

and 

   0, 1, ... , . (1.32)dH n p n       

 

If the conditions (1.31) and (1.32) are not satisfied identically, we consider them 

as new constraints and we examine their variations. Thus repeating this procedure, 

one may obtain a set of constraints such that all the variations vanish, taking into 

account if the system is completely (where the set of equations of motion and the 

action function is integrable) or partially (where the set of equations of motion is 

only integrable).   

 

1.4 The Bosonic String 

In string theory, D-branes are a class of extended objects upon which open strings 

can end with Dirichlet boundary conditions, after which they are named. D-branes 

were discovered by Dai, Leigh and Polchinski, and independently by Hořava in 

1989. In 1995, Polchinski identified D-branes with black p-brane solutions of 
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supergravity, a discovery that triggered the Second Superstring Revolution and led 

to both holographic and M-theory dualities [39, 40].  

D-branes are typically classified by their spatial dimension, which is indicated by 

a number written after the D. A D0-brane is a single point, a D1-brane is a line 

(sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the 

highest-dimensional space considered in bosonic string theory. There are also 

instantonic D(-1)-branes, which are localized in both space and time [39, 40]. 

We can easily generalize this construction to a string, which is a one-dimensional 

object described by a two-dimensional "worldsheet" that the string sweeps out as it 

moves in time with coordinates 

                0 1 2, , , , (1.33)nR                                                   

Where R
n 

domain within a sset 2  of real number, and 0     is the spatial 

coordinate along the string, while    describes its propagation in time. The 

string's evolution in time is described by functions     ( , ), 0,1,..., 1X d      giving 

the shape of its worldsheet in the target spacetime (Fig. 1.1). The "induced metric" 

abh  on the string worldsheet corresponding to tits embedding into space-time is 

given by the "pullback" of the flat Minkowski metric   to the surface,  

                      , (1.34)ab a bh X X 

    

where  

                            , 0,1. (1.35)a a
a




  


 

If we move from   to d    on the worldsheet, the corresponding change 

induced in the flat Mankowski spacetime through the string moves is 

aX X X d     . 

Consequently, the (distance)
2
 between two points   and d   on the 

worldsheet is given by a bd X d X      . 
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An elementary calculation shows that the invariant, infinitesimal area element 

on the worldsheet is given by 

                      2dA det( ) , (1.36)abh d    

where the determinate is taken over the indices , 0,1a b   of the 2 2  symmetric 

nondegenerate matrix ( abh )  

 

 

Fig. 1.1 The embedding ( , ) ( , )x      of a string trajectory into d-dimensional spacetime. 

As τ increases the string sweeps out its two-dimensional worldsheet in the target space, with σ 

giving the position along the string.  

 

In analogy to the point particle case, we can now write down an action whose 

variational law minimizes the total area of the string worldsheet in spacetime 

                2[ ] dA d det( ). (1.37)a bS X T T X X          

The quantity T has dimensions of mass per unit length and is the tension of the 

string. It is related to the "intrinsic length" of the s  string by  

                                    21
, . (1.38)

2
sT 


 


 

The parameter   is called the "universal Regge slope", because the string 

vibrational modes all lie on linear parallel Regge trajectories with slope  . the 

action eq.(1.37) defines a 1+1-dmenstional field theory on the string worldsheet 

with bosonic fields ( , )X    . 
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Evaluating the determinate explicitly in (1.37) leads to the form 

                             2 2[ ] d d ( ) (1.39)S X T XX X X        

where   

                    , . (1.40)
X X

X X
 

 

 

 
 

 
                                 

This is the form that the original string action appeared in and is known as the 

"Nambu-Goto action" [41]. However, the square root structure of this action is 

somewhat ackward to work with. It can, however, be eliminated by the fundamental 

observation that the Nambu-Goto action is classically equivalent to another action 

which does not have the square root 

                            

2

2

[ , ]
2

. (1.41)
2

ab

ab

ab

a b

T
S X d h

T
d X X 

   

  

  

    





 

 

Here the auxiliary rank two symmetric tensor field has a natural interpretation as 

a metric on the string worldsheet, and we have defined  

                                       1det( ), ( ) . (1.42)ab ab

ab       

The action (1.41) is called the "Polyakov action" [41]. 

 

1.4.1 Worldsheet Symmetries  

The conditions Tab=0 are often refered to as "Virasoro constraints" [42] and they are 

equivalent to two local "gauge symmetries" of the Polyakov action, namely the 

"reparametrization invariance" 

                           ( , ) ( , ) , ( , ) , (1.43)            

and the "Weyl invariance" (or "conformal invariance") 

                          
2 ( , ) , (1.44)ab abe      

where  ,    is an arbitrary function on the worldsheet. These two local 

symmetries of  [ , ]S x   allow us to select a gauge in which the three functions 
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residing in the symmetric 2 2 matrix (
ab ) are expressed in terms of just a single 

function. A particularly convenient choice is the "conformal gauge" 

           ( , ) ( , )
1 0

. (1.45)
0 1

ab abe e     
 

    
 

 

In this gauge, the metric is ab  said to be "conformally flat", because it agrees 

with the Minkowski metrix ab  of a flat worldsheet, but only up to the scaling 

function e  . Then, at the classical level, the conformal factor e  drops out of 

everything and we are left with the simple gauge-fixed action [ , ]S x e , that is the 

Polyakov action in the conformal gauge, and the constraints Tab=0. 

 

          

2 2

01 10

2 2

00 11

[ , ] d d ( ),

0,

1
( ) 0. (1.46)

2

S X e T X X

T T X X

T T X X

    

   

   


 

Note that apart from the constraints, eq.(1.46) defines a free (noninteracting) 

field theory.  

 

1.5 String Equations of Motion 

The equations of motion for the bosonic string can be derived by applying the 

variational principle to the 1+1-dimensional filed theory eq.(1.48). varying the 

Polyakov action in the conformal gauge with respect to the X   gives  

 
0

[ , ] d d ( ) d . (1.47)ab

a bS X e T X X X X
 

  

 


       




      

           

The first term in eq.(1.47) yields the usual bulk equations of motion which here 

correspond to the two-dimensional wave equation 

                                  
2 2

2 2
( , ) 0. (1.48)X   

 

  
  

  
  

The second term comes from the integration by parts required to arrive at the 

bulk differential equation, which involves a total derivative over the spatial interval 

0     of string. In order that the total variation of the action be zero, these 



 13 

boundary terms must vanish as well. The manner in which we choose them to 

vanish depends crucially on whether we are dealing with closed or open strings. The 

solutions of classical equations of motion then correspond to solutions of the wave 

equation (1.48) with the appropriate boundary conditions. 

 

Closed Strings: Here we tie the two ends of the string at σ = 0 and σ = π together 

by imposing periodic boundary conditions on the string embedding fields (Fig. 1.2): 

 

                                       
( ,0) ( , ),

( ,0) ( , ). (1.49)

X X

X X

 

 

  

  



 
 

 

 

Fig. 1.2 The worldsheet of (a) a closed string is an infinite cylinder
1S  , and of (b) an open 

string is an infinite strip
1I  . 

 

Open Strings: Here there are two canonical choices of boundary conditions. 

Neumann boundary conditions are defined by 

                                       
0,

( , ) 0. (1.50)X 

 
 


                                          

In this case the ends of the string can sit anywhere in spacetime. Dirichelt boundary 

conditions, on the other hand, are defined by 

                                
0,

( , ) 0. (1.51)X 

 
 


  
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Integrating the condition (1.51) over specifies a spacetime location on which the 

string ends, and so Dirichlet boundary conditions are equivalent to fixing the 

endpoints of the string 

                                 
0,

( , ) 0. (1.52)X 

 
  


                                       

We will see later on that this spacetime point corresponds to a physical object 

called a "D-brane". For the time being, however, we shall focus our attention on 

Neumann boundary conditions for open strings [42]. 

   

1.5.1 Mode Expansions 

To solve the equations of motion, we write the two-dimensional wave equation 

(1.48) in terms of worldsheet light-cone coordinates 

                           0 , (1.53)X 

                                      

where  

                                     , . (1.54)  




 


   


 

The general solution of (1.53) is then the sum of an analytic function of   alone, 

which we will call the "left-moving" solution, and an analytic function of   alone, 

which we call the "right-moving" solution, ( , ) ( ) ( )L RX X X        [42]. 

The precise form of the solutions now depends on the type of boundary 

conditions. 

Closes Strings: The periodic boundary conditions (1.49) accordingly restrict the 

Taylor series expansions of the analytic functions which solve (1.53), and we arrive 

at the solution [42] 

 

                   
2

0 0

0

2

0 0

0

( , ) ( ) ( ),

1
( ) ,

2 2

1
( ) . (1.55)

2 2

L R

inn
L

n

inn
R

n

X X X

X X p i e
n

x x p i e
n

  


   


   

   


  


  





 

  



  



 


  


  




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 We have appropriately normalized the terms in these Fourier-type series 

expansions, which we will refer to as "mode expansions", according to physical 

dimension. Reality of the string embedding function X   requires the integration 

constants 
0X   and 

0P   to be real, and  

                                   , . (1.56)n n n n

      
 

                                         

By integrating X   and X   over  0,   we see that 
0X   and 

0P   represent the 

center of mass position and momentum of string, respectively.  

The 
n

  and 
n

  represent the oscillatory modes of string. The mode expansions 

(1.55) correspond to those of left and right moving travelling waves circulating 

aroung the string in opposite directions.  

 

Open Strings: For open strings, the spatial worldsheet coordinate lives on a finite 

interval rather than a circle. The open string mode expansion may be obtained from 

that of the closed string through the "doubling trick", which indentifies  σ ~ - σ  on 

the circle S
1
 and thereby maps it onto the finite interval [0,π] (Fig. 1.3). The open 

string solution to the equations of motion may thereby be obtained from (1.55) by 

imposing the extra condition  ( , ) ( , )X X      . This is of course still 

compatible with the wave equation (1.48) and it immediately implies the Neumann 

boundary conditions (1.50). We therefore find  

              0 0

0

( , ) 2 2 cos( ). (1.57)inn

n

X X P i e n
n


   
     



      

The open string mode expansion has a standing wave for its solution, 

representing the left and right moving sectors reflected into one another by the 

Neumann boundary condition (1.50) [42,43]. 
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Fig. 1.3 The doubling trick identifies opposite points on the circle and maps it onto a finite 

interval.  

 

1.5.2 Mass-Shell Constraints  

The final ingredients to go into the classical solution are the physical constraints 

Tab= 0. In the light-cone coordinates (1.54), the components T and T are 

identically zero, while in the case of the closed string the remaining components are 

given by 

 

                         

 

 

2 2

2 2

1
( ) 0,

2

1
( ) 0, (1.58)

2

in

L n

n

in

R n

n

T X L e

T X L e
















 






 



   

   




 

where we have defined  

                                      
1 1

, (1.59)
2 2

n n m m n n m m

m m

L L   
 

 

 

      

with  

                                                  0 0 0 . (1.60)
2

P  
 


   

 

For open strings, we have only the constraint involving untitled quantities, and 

the definition of the zero modes (1.60) changes to 0 02 P    . 

This gives an infinite number of constraints corresponding to an infinite number 

of conserved currents of the 1+1-dimensitonal field theory. They are associated with 

the residual, local, infinite-dimensional "conformal symmetry" of the theory which 

preserves the conformal gauge condition (1.45) 
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( ),

( ), (1.61)

f

g

  

  

  

  

 

 
 

 

where  f and g are arbitrary analytic functions. Only the conformal factor ϕ in (1.45) 

is affected by such coordinate transformations, and so the entire classical theory is 

invariant under them. They are known as "conformal transformations" and they 

rescale the induced worldsheet metric while leaving preserved all angles in two-

dimensions. This "conformal invariance" of the worldsheet field theory makes it a 

"conformal field theory" [44,45], and represents one of the most powerful results 

and techniques of perturbative string theory.  

The thesis is arranged as follows: In chapter two the instant of theory will be 

discussed. In chapter three the Light Front Quantization will be presented. The 

fourth chapter is devoted to conclusion.  
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CHAPTER  TWO 

INSTANT FORM THEORY 

2.1 Recapitulation of Instant Form Theory 

We first recapitulate very briefly the instant form theory. The Polyakov D1 brane 

action in a d-dimensional curved background hαβ (with d = 10 for the fermionic and 

d = 26 for bosonic D1 brane) is defined by [1,46, 47] 

                 , ( det  2.1)
2

h h
T

L hh G

                                  

Where 

          

, (2.2)

( 1, 1,..., 1), (2.3)

, 0,1, ... , ( 1), 0,1

G X X

diag

d

 

   







  

  

   

  

    

Here ( , )   are the two parameters describing the worldsheet. The over dots 

and primes would denote the derivatives with respect to τ and σ. G is the induced 

metric on the worldsheet and ( , )X    are the maps of the worldsheet into the d –

dimensional Minkowski space and describe the strings evolution in space-time [46-

47]. hαβ are the auxiliary fields (which turn out to be proportional to the metric 

tensor ηαβ of the two-dimensional surface swept out by the string). One can think of 

S  as the action describing d massless scalar fields xμ in two dimensions moving on 

a curved background hαβ [53].  

Also because the metric components hαβ are varied in the above equation, the 2-

dimensional gravitational field hαβ is treated not as a given background field, but 

rather as an adjustable quantity coupled to the scalar fields [46-47].  
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The action S possesses the well-known three local gauge symmetries given by 

the two-dimensional worldsheet reparametrization invariance and the Weyl 

invariance [46-47]:   

          

(2 ( , ))

[ ],

[ ( )],

[ ],

[ ],

[ ] ; ( , ) . (2.4)

X X X X

X X

h h h h

h h h h

h h e

   

  



   

      

  

  

 



 



   

 

  

 

  

   

   

 

The worldsheet reparametrization invariance (WSRI) is defined by the first four 

equations in (2.4) involving the two gauge parameters  and the Weyl invariance is 

defined by the last equation and is specified by the gauge parameter Ω (or 

equivalently by ω).   

Here ( , )    is a gauge parameter corresponding to the (WSRI) and 

 2 ( , )
( , ) e

  
    is a gauge parameter corresponding to the Weyl symmetry. 

Also the above theory being a gauge-invariant theory (possessing the local gauge 

symmetries including two worldsheet reparametrization invariance and one Weyl 

invariance symmetries), could be studied under appropriate gauge-fixing the way 

one likes.      

  

2.2 Conformal Gauge Theory (Gauge Invariant Theory) 

Possessing the local gauge symmetries including two worldsheet reparametrization 

invariance and one Weyl invariance symmetries, could be studied under appropriate 

gauge-fixing the way one likes. 

However, one could also use the above three local gauge symmetries of  the 

theory to choose hαβ to be of a particular form [46-47]. 
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1 0

. (2.5)
0 1

h 
 

   
 

                 

This is called Conformal Gauge. In the Conformal Gauge we have 

     det 1. (2.6)h h                        

Now the action S in Conformal Gauge becomes 

            

2

1 1

1

, (2.7)

, (2.8)
2

S L d

T
L hh G





  


                                        

where T is the string tension. Substituting of Eq. (2.4),(2.6) into (2.8) we obtain 

     

2

2

2

2

2

2

(2.9)

T
S hh X X d

T
hh X X X X d

T
h h h X X X X d

  

  

    

  

       

     


 

   

   

    

              

                   







     2 , (2.10)
2

T
S h h h h X X d       

                          

     

       

       

     

2

T
S h h X X h X X h X X

h X X h X X

h X X h X X

h X X h X X

          

       

        

      

         

       

         

       

 

  

   

   

            


        

         

        



  

                    

  
   

   

  2 (2.11)

h X X h X X

h X X h X X

h X X h X X

h X X d

         

       

         

       

         

       

     

     

   

   

   

    

       

       

       

     

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2

00 11

0 0 1 1

2

0 0 1 1

,
2

,
2

. (2.12)
2

T
S hh X X d

T
h h X X h X X

T
X X X X d

  

 

   

   

  



     

         

        







           

Substituting from eq (2.5) and eq. (2.6) into eq. (2.12) with, , 1    , we 

obtain  

    

   

2 2

2

1

22 2

1

, (2.13)
2

. (2.14)
2

T X X
S d

T
S X X d

 


 



     
      

      

   
  





    

where:      , , 1
X X

X X h
 

 

 

 
    

 
  

In the following sections we will denote the derivation as  

, 
 

 
   

 
 

This is the Conformal Gauge Fixed Polyakov one dimension D1 Brane action. 

 

2.2.1 The Canonical Momenta Conjugate  

According to the definition (1.3), the canonical momenta conjugate to the canonical 

variables X    are 

        
1 , (2.15)

( )

L
P T X

X



 




  
 

        

Solving eq.(2.15) for the velocities, one gets 

           
1

. (2.16)X P
T

 

    
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This theory is easily seen to be an unconstrained system in the sense of Dirac [1]. It 

may be important to remark here that an unconstrained system like this represents a 

gauge noninvariant theory and is some what a kind to a gauge fixed gauge-invariant 

theory which makes it a gauge-noninvariant system[48]. 

 The Canonical Hamiltonian Density Corresponding to L1 definition in eq.(1.7)  

     
1

, (2.17)
n

C

i i

i

H p q L


           

From eq.(2.16) and eq.(2.17) we obtain  

2 2

1

2 2

( ) ( ) ( ) ,
2

( ) ( ) ,
2 2

C T
H P X X X

T T
P X X X X



 

  

   

 
       

 

     

 

 

2 2

2

2

1
( ) ( ) ,

2 2

1
( ) ,

2 2

1
( ) . (2.18)

2 2

T T
P P X X X

T

T T
P P X P P

T

T
P P X

T

  

  

 

 





    

  

 
  

 

 

The quantization of the system is trivial which are described by 

            ( , ), ( , ) ( ). (2.19)X P iS 

              

where ( )    is the one-dimensional Dirac distribution function[1,2]. 

 

2.3 Dirac Method of The Conformal Gauge Theory in Presence of  Scalar 

Dilation Field    

In presence of scalar dilation field ( , )     in d-dimension flat background reads 

as [34]  

                 2

2 2 , (2.20)S L d   
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where: 

               
2 1 , (2.21)

2

T
L e L e hh G  



  
    

 
 

Substituting from eq.(2.1), we obtain  

         

 

2

2 2

,
2

( ) ( ) . (2.22)
2

T
L e X X

T
e X X

  

 







   

  

 

The canonical momenta conjugated to ϕ and X   are respectively  

                    2 0, (2.23)
( )

L




  

 
 

                     2 , (2.24)
( )

L
P Te X

X

  






  
 

 

Solving for the velocities X   , we get 

                    
1

. (2.25)X X e P
T

   

    

The canonical Hamiltonian density corresponding to L2 is  

              2 2( ) ( ) . (2.26)
2

C T
H P X e X X  



 
     

 
 

  

Substituting from eq. (2.24) we obtain 

           

2 2

2 2

2

2

1
( ) ,

2 2

1 1
( ) ( ),

2 2

1
( ) . (2.27)

2 2

T T
H e P P e X e X

T

T T
e P P e X e e P P

T T

T
e P P e X

T

   



     

 

  





 



  

  

 
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2.3.1 The Primary and Secondary Constraints 

The Conformal gauge theory in Presence of scalar dilation field is easily seen to 

possess two constraints [48] 

       

 

1

1 1
2 1 ,

2

0, (2.28)

, ,

1 1
0. (2.29)

2 2

H H
H

e P P Te X
T



  





 
 

 



 

  
  

   

 
  

 

 

where ρ1 is a primary constraint and ρ2 is a secondary Gauss law constraint, P
μ
 

and Π here are the momenta conjugate canonically respectively to X   and ϕ . 

The matrix of the Poisson brackets of the constraints ρ1 and ρ2 is seen to be 

nonsingular implying that the set of these constraints is second-class and that the 

theory is gauge-noninvariant (which does not respect the usual string gauge 

symmetries worldsheet  and Weyl invariance). 

The Hamiltonian formulations of this theory have been studied in reference[48]. 

It may be worth mentioning here that the Instant Form theory in the absence of a 

scalar dilation field, is not a constrained system in the sence of Dirac (implying that 

theory is equivalent to a gauge-fixed gauge-invariant theory) whereas the theory in 

the presence of a scalar dilation field represents a constrained system in the sence of 

Dirac possessing a set of two second-class constraints where one constraint is 

primary and the other one is the secondary Gauss law constraint [49]. 

2.4 Hamilton Jacobi Formulation of Instant form theory in presence of 

scalar dilation field ϕ 

Now we propose the Conformed Gauge theory in the presence of scalar dilation 

field action  

 2 2 2

2 ( ) ( ) , (2.30)
2

T
S e X X d           

with Lagrangian 
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           2 2( ) ( ) . (2.31)
2

T
L e X X     

The canonical momenta defined in (1.20) and (1.21) take the forms  

   2 0 , (2.32)
( )

L
H 




    

 
 

and 

  
 

2 , (2.33)
L

p Te X Te X
X

    





 
   
 

 

According to eq.(1.22) the velocityX  can be written from eq.(2.33) as 

   
1

, (2.34)X X e p
T

   

               

The used Hamiltonian Ho is 

       2( ) , (2.35)oH P X L 

    

The Hamilton-Jacobi Partial derivative equation are 

                (2.36)o o oH P H    

        2( ) 0, (2.37)
2 2

o o

T T
H P e P P e X  



      

                 0. (2.38)H
     

The total differential equation for the characteristic read as 

              

,

1
. (2.39)

o
HH

dX d d
P P

e P d
T



 

 

 




 
 



      

         
d , (2.40)

( ) ( )

d 0, (2.41)

o
dHdH

P d d
X X

P



 



 


 
   


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 
2

d , (2.42)

1
, (2.43)

2 2

o
HH

d d

T
e P P e X d

T



  



 
 




  

 

 
  

 

       

2.5 Instant Form Quantization in presence of A2- Form Gauge Field Bαβ 

We now consider this conformed Gauge Fixed Polyakove D1-Brane action in the 

presence of a constant background antisymmetric 2-Form gauge field Bαβ [50]. 

This theory is defined by the action 

             

2 , (2.44)

, (2.45)

B B

C B

B

S L d

L L L



   


 

where           , (2.46)
2

C N B

B

T
L L X X

 
 

           
 

 

and 

                     , (2.47)
2

B T
L B


 

     
 

 

where        21 , (2.48)    

  constant,    

                  
0 1

, (2.49)
1 0


 

  
 

 

                

, (2.50)

0
, (2.51)

0

B X X B

B
B

B

 

   



  

 
  

 

 

            
01 10 (2.52)

, 0,1, , 0,1, , 2,3, ,25

B B B

i i   

  

  
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Here the 2-form gauge field Bαβ is a scalar field in the target-space whereas it is 

constant anti-symmetric tensor field in worldsheet space. 

The action reads in Instant Form Quantization 

               3 3 , (2.53)S L d d    

where  

                   2 2

3 . (2.54)
2

T
L X X TB

 
      

 
     

The canonical momenta are  

   
 

 

3

3

, (2.55)

0. (2.56)B

L
P TX

X

L

B

 

 






     


  

 

 

Here P   and B are the canonical momenta conjugate respectively to X   and B. 

The Light Form Quantization is thus seen to posses one primary constraint  

       0, (2.57)L B   

 

The canonical Hamiltonian density of this theory is 

 

3

2 2

2

( ) ( ) , (2.58)

1
, (2.59)

2

1
. (2.60)

2 2

C

BH P X B L

T
P P X X TB

T

T
P P X TB

T



  

















      

     
          

     

 
   

 

 

The total Hamiltonian density of the theory could be written as  

 
2

3

1
. (2.61)

2 2

T

B

T
H P P X TB u

T









 
     

 
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Also, the momenta canonically conjugate to u is denoted by P  , and the Hamilton's 

equations obtained from of total Hamiltonian  

                
3 3 . (2.62)T CH H d   

The Poission bracket of constraint of the theory with itself is seen to be zero 

implying that the constraints is first-class and that theory is Gauge Instant. 

It is indeed seen to posses three local gauge symmetries given by the 2-dimentional 

worldsheet reparametrization invariance and the Weyl invariance defined by eq(2.4) 

            
, (2.63)

. (2.64)

B B B B

B B

   



  



 

    

   

 

It is important to recollect here that 2-form gauge filed Bαβ in  a scalar filed in the 

target-space whereas it is constant anti-symmetric tensor filed in the world sheet 

space and consequently we have 0B   [50]. 

The matrix of the Poisson brackets of these constraints are seen to be nonsingular 

implying that the corresponding set of constraints is second-class. 

 

The Dirac quantization procedure in the Hamiltonian formulation, the nonvanishing 

equal wolrdsheet time (EWST) Commutation relations  of the theory under the 

above gauge are obtained as 

   , , ( , ) . (2.65)X P i                

 

2.6 Instant-Form Quantization in Presence of a Scalar Axion Field C and 

An U(1) Gauge Field A
μ 

In this section, we study the Instant-Form Quantization of conformal gauge form 

Polyakov D1 brane action  in the presence of a U(1) gauge field   ,A A    and 



 29 

a constant scalar axion field   ,C C    [49,50] by using the equal wolrdsheet 

time (EWST) framework, on the hyperplanes defined by the wolrdsheet time 

0    constant. The Instant-Form action reads 

    
4 4

4

, (2.66)

, (2.67)C A

S L d d

L L L

 

 


 

where     , (2.68)
2

A T
L C F


 

   
 

 

and 

            , (2.69)F A A        

       01 10 , , 0,1 , 0,1, , 2,3, ,25, (2.70)f F F i i         

     22

4 , (2.72)
2

T
L X X TCf

 
    

 
 

 

Substituting from eq(2.45), (2.48) and (2.68) from eq (2.67) 

    4 , (2.73)C AL L L   

               
22

, (2.74)
2 2

T T
X X C F






 
     

 
 

  

    
    
      

    
      

22 0 1

4 0 1

22 00 10 01 11

00 10 01 11

22

10 01 10

22

1 1

22

1 0 0 1

,
2 2

,
2 2

,
2 2

2

. (2.75)
2

T T
L X X C F F

T T
X X C F F F F

T T
X X C F F T CF T Cf

T
X X T C A A

T
X X T C A A

 

 

 


 


   







        

          

          

         

      
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Overdotes and primes denote derivatives with respect to τ and σ respectively. The 

canonical momenta obtained are 

 
4 , (2.76)

1
, (2.77)

L
P TX

X

X X P
T

 

 

 

 






     

  

   

     

 

 

 
 

4

0 4

0

1 4

1

0, (2.78)

0, (2.79)

,

, (2.80)

c

L

C

L

A

and

L
E TC

A








  

 


  

 


    

 

 

where  0 1, ,P E    and c  are the canonical momenta conjugate respectively to  

0 1, ,X A A and C. 

The theory is thus seen to possess three primary constraints  

      

0

1

2

3

0, (2.81)

0, (2.82)

0. (2.83)c

E TC

  

   

  

 

Canonical Hamiltonian density corresponding to above Lagrangian density is  

0

4 0 1 5( ) ( ) ( ) ( ) , (2.84)c

cH P X A E A C L

    
            

Substituting from eq(2.72) , (2.76) and (2.80) into eq(2.84), we obtain  

 

 

2

4 1 1 0 0 1

2

0

1 1 1
,

2 2

(2.85)

1
. (2.86)

2 2

c T T
H P P TC A X P P TC A TC A

T T T

T
P P X TCA

T

 

  





 

  





        

   
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0 0

1 1 0 1

,

. (2.87)

where A A

A A A





  

   
 

After incorporating the primary constraints of the theory in the canonical 

Hamiltonian density with the help of Lagrange multiplier fields ( , ) , ( , )u      and 

( , )w   (treated as dynamical) the total Hamiltonian density of the theory becomes 

4 4 1 2 3 , (2.88)T cH H u w          

Substituting from eq(2.85) and eqs.(2.81 – 2.83), we obtain 

   
2 0

4 0

1
. (2.89)

2 2

T

c

T
H P P X TCA u E TC w

T










 
        

 
 

Momenta canonically conjugate to u, v and w are denoted respectively by pu, pv and 

pw. Hamiltons equations obtained from the Hamiltonian 
4 4

T CH H d  , for the 

closed string with periodic conditions are 

 

4

4

1
, (2.90)

0, (2.91)

T

T

H
X P

P T

H
P

X

 













  
      


  

 

 

   

4

4
0 0 1

4
0 0

0 4

0

, (2.92 )

, (2.92 )

, (2.92 )

0, (2.92 )

T

C

T

C

T

T

H
C w a

H
T A T A A b

C

H
A u a

H
b

A



 








  




         




  




   



 

4
1

4

1

, (2.93 )

0, (2.93 )

T

T

H
A v a

E

H
E b

A






  




  


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4

04

0, (2.94 )

0, (2.94 )

T

u

T

u

H
u a

p

H
p b

u






  




    



 

 

4

4

4

4

0, (2.95 )

, (2.95 )

0, (2.96 )

0, (2.96 )

T

v

T

v

T

w

T

w C

H
v a

p

H
p E TC b

v

H
w a

p

H
p b

w










  




   




  




    



 

These are the equations of motion of the theory that preserve the constraints of 

the theory in the course of time. Demanding that the primary constraints of the 

theory be preserved in the course of time one does not get any further constraints. 

The theory is thus seen to posses only three constraints 1 2,   and 3 . 

Matrix of the Poission brackets of these constraints is seen to be singular 

implying that the constraints form a set of first-class constraints and that the theory 

gauge instant and posses three local gauge symmetries given by the 2-dimentianl 

worldsheet reparametrization invariance and the Weyl invariance defined by (2.4) 

and  

    
 , (2.97 )

, (2.97 )

C C C C a

C C b









 

  

   

 

The first order Lagrangian density of the theory is 

 
       

     

0

4 0 1

5 , (2.98)

IO

c

T

u v w

L P X A E A c

p u p v p w H



    

  

       

       

 

        
21

. (2.99)
2 2

T
P P X TCf

T









 
   

 
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The theory could be quantized under appropriate gauge-fixing. To study the 

Hamiltonian of this theory under gauge-fixing, we could choose the gauge 

             0 0, (2.100)A    

Corresponding to this choice of gauge the total set of constraints of the theory under 

which the quantization of the theory could  be studied becomes 

 

0

1 1

2 2

3 3

4 0

0, (2.101 )

0, (2.101 )

0. (2.101 )

0. (2.101 )

c

a

E TC b

c

A d







 

    

    

   

  

 

We now calculate the matrix   ,
PB

M      of the Poisson brackets of the 

constraints i  . The nonvanishing elements of the matrix are obtained as  

   14 41 23 32 , (2.102)TM TM M M T             

The matrix M   is seen to be nonsingular implying that the corresponding set of 

constraints is a set of second-class constraints. The determinant of the matrix M   is 

given by 

          
1/2

2det , (2.103)M T       
 

 

and the nonvanishing elements of the inverse of the matrix M   (i.e., the elements 

of matrix  1M


 )  are obtained as 

    
     

   

1 1 1

14 41 23

1

23

, (2.104)

. (2.105)

M M T M

T M   

  



   

   
 

  1

4 4( , ) ( , ) ( ), (2.106)M M d       


      1  
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Following the Dirac quantization procedure in the Hamiltonian formulation, the 

nonvanishing EWST CR's of the theory under the gauge 
0 0A    (with the 

arguments being suppressed) are obtained as  

      , , , . (2.107)X P i 

              

 

2.7 Hamilton-Jacobi Treatment of Instant-Form Quantization in 

Presence of a scalar Axion Field C and An U(1) Gauge Field A   

The action of Instant-Form of Conformal Gauge formulation of Polyakove D1 

Brane action in presence of an U(1) Gauge field and constant scalar axion field is 

given by 

    
 

4 4

2 2

,

( ) ( ) , (2.108)
2

S L d d

T
X X TCf d d

 


 



 
    

 




 

The Lagrangian is 

 2 2

4 ( ) ( ) , (2.109)
2

T
L X X TCf

 
    

 
  

The canonical momenta are given as  

4 4 , (2.110)
( )

L L
P TX

X X

 



 


 

  
  

  

 
 

4 0 , (2.111)C C

L
H

C


    

 
 

0

0 4 4

0 0

0 , (2.112)
( )

A

L L
H

A A

 
     

  
 

and  
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1

1 4 4

1 1

0 . (2.113)
( )

A

L L
E TC H

A A

 
        

  
 

Now the velocities  X   can be expressed in terms of the momenta  P   as  

               
1

, (2.114)X P
T

 


  

The canonical Hamiltonian H is obtained as  

           
2

0 0

1
, (2.115)

2 2

T
H P P X TCA

T








     

 

The set of  Hamilton-Jacobi deferential equations are 

 

0

0

2

0

0

1
0 (2.116)

2 2

0, (2.117)

0, (2.118)

C C

A

H P H

T
H P P P X TCA

T

H

H









  

      

   

   

  

and 

1
0. (2.119)AH E TC     

The total differential equation for characteristics read as 

0 1

0 1, (2.120)
A AC

H HHH
dX d dC dA dA

P P P P



   


  
   
   

 

1
, (2.121)dX P d

T

  


  

0 1

0 1, (2.122)

0, (2.123)

A AC
H HHH

dP d dC dA dA
X X X X



   


  
   
   


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0 1

0 1

0 1

, (2.124)

, (2.125)

A AC
C

H HHH
d d dC dA dA

C C C C

TA d TdA





   
    

   

  

 

0 1 (2.126)
A AC

C C C C

H HHH
dC d d d d d    

   
    
   

 

0 10

0 1

0 0 0 0

, (2.127)

0, (2.128)

A AC
H HHH

d d dC dA dA
A A A A


   

    
   



  

0 1 (2.129)
A AC

o

o o o o

H HHH
dA d d d d d    

   
    
   

 

0 1

0 1

1 1 1 1

, (2.130)

0. (2.131)

A AC
dH dHdHdH

dE d d dC dA dA
dA dA dA dA


 

     


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CHAPTER THREE 

LIGHT-FRONT QUANTIZATION 

3.1 Dirac Approach of Conformal Gauge in Light Front Quantization 

In Light Front Quantization we use three local gauge symmetries of the theory to 

choose hαβ to be of particular form as [53] 

           
0 1/ 2

, (3.1)
1/ 2 0

h 
 

   
 

 

          
0 2

, (3.2)
2 0

h  
 

   
 

 

  and         det( ) ( 1/ 2). (3.3)h h      

This is the so-called conformal gauge in the Light Front Quantization of the 

theory. Also, in the Light Front Quantization we use the Light-Cone variables 

defined by [47-48]: 

                       
1( )

( ) . (3.4)
2

oX X
and X    

    

where oX d , d is constant. 

1 sin( )cos( )
2

L
X    , with  L is the length of the string.  

In the instant form quantization of field theories one studies the theory on the 

hyper surfaces defined by instant form time:   τ = X
o 
= constant. 

On the other hand, in the Light Front Quantization of field theories, one studies 

the theories on the hyper surfaces of light front defined by light cone time 

1

2

oX X
X  

    constant.   

The action in the Conformal Gauge in Light Front Quantization reads [49] 
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5 5 . (3.5)S L d d     

with Lagrangian  

            

5 . (3.6)
2

, 0,1, ,

, , ,

T
L X X

i

  

   

 

  

   



  

 

Substituting from eqs. (3.1) , (3.2) and (3.3),  (3.6) becomes 

          

5 ,
2

,
2

( 2) ( 2) ,
2

( 2) ,
2

T
L X X X X

T
X X X X X X X X

T
X X X X

T
X X X X

X X
T

     

   

       

   

   

 

   

 





   

       

 

 



 

 

   

       

   

   



   

        

              

          

         

   
 ,

i i

i i

X X X X X X

X X X X

  

  

 

 

  

 

  

       

   

       
 
      

   

i i

i i

i i

i i

i i i i

i i i i

i

X X X X X X X X

X X X X X X X X

T X X X X X X X X

X X X X X X X X

X

   

   

   

   

       

           

     

           

     

           

   

           

 

          

          

           

          

 

, (3.7)

i i i

ii iiX X X  

 
 
 
 
 
 
 

    

 

               . (3.8)
2

i iT
X X X X X X   

     
           

 

We now study the Light Front Quantization of the above Polyakov (D1) brane 

action as the Hamiltonian System using Dirac's Approach. 

The canonical momenta P
+
, P

-
 and P

i
 (i=2,3, …, 25) conjugated to 

, iX X and X  respectively, can be obtained from eq.(3.7) are 
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5

5

5

, (3.9 )
( ) 2

, (3.9 )
( ) 2

, (3.9 )
( ) 2

i i

i

L T
P X a

X

L T
P X b

X

L T
P X c

X

 





 










   
 


   
 


   
 

 

The  equation (3.8), however, imply that the theory possesses twenty six primary 

constraints 

        

1

2

0, (3.10 )
2

0, (3.10 )
2

0, 2,3,...25 (3.10 )
2

i i

i

T
P X a

T
P X b

T
P X i c







 



 





 
   
 

 
   
 

 
    
 

 

 

The Canonical Hamiltonian Density Corresponding to L5 is 

 5 5

1

5( ) ( ) ( ) 0

( ) ( ) ( )

( )( ) ( )( ) ( )( ) 0, (3.11)
2

n
C

i i

i

i i

i i

i i

H P q L

P X P X P X L

P X P X P X

T
X X X X X X



   

  

   

  

   

     

 

      

     

          



 

The total Hamiltonian can be constructed from  the canonical Hamiltonian density 

3

CH  with the help of Lagrange multipliers , , iu w . 

  5 (3.12)
2 2 2

T i

i i

T T T
H u P X P X w P X   

  

     
             

     
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3.1.1 The Closed Bosnic Strings with Periodic Boundary Conditions 

We now treat , iu and w  as dynamical parameters, the total Hamiltonian is 

obtained from 

           5 5 . (3.13)T CH H d    

The equations of motion are obtained as 

    

5

5

5

5

5

5

5

, , (3.14 )

, (3.14 )

, (3.14 )

, (3.14 )

0, (3.14 )

0, (3.14 )

0. (3.14 )

i

T

T

T

T
i

ii

T

u

T

T

i

w

X X H a

H
X u b

P

H
X c

P

H
X w d

P

H
u e

P

H
f

P

H
w g

P









 



 









   


  




  




  




  




  




  



 

and 

5

5

5

5

5

5

5

, , (3.15 )

, (3.15 )
2

, (3.15 )
2

, (3.15 )
2

, (3.15 )
2

, (3.15 )
2

i

T

T

T

T

i ii

T

u

T

T
i

w

i

P P H a

H T
P b

X

H T
P u c

X

H T
P w d
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


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

 



 

 



 

 







   


    




    




    



  
       

  
       


  


, (3.15 )

2

iT
X g

 
  

 
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These are the equations of motion of the theory that preserve the constraints of 

the theory in the course of time. Demanding that the primary constraints 

1 2, , (2,3,...,25)iand i      be preserved in the course of time one does not get any 

secondary constraints. The theory is thus seen to possess only twenty six constraints 

1 2, , (2,3,...,25)iand i    . 

 

3.1.2 Lagrangian Density of The Theory  

The Lagrangian Density of light front L5 is   

    
           5 5

(3.16)

i

i T

i u w iL P X P X P X P u P P w H    

     
             
   

Substituting from eq.(3.11), we obtain  

      5 . (3.17)
2

i

i

T
L u X X w X 

  

            
 

The matrix of Poisson brackets of constrains χj , are constructed as  

                 ( , ) ( ), ( ) . (3.18)
PB

M           

The nonvanishing elements of this matrix are obtained as 

                12 21 ( ). (3.19)iiM M M T   
      

The matrix M   is seen to be nonsingular with determinant 

                    
1/2

det( ) ( ( )), (3.20)M T   
        

 and the nonvanishing elements of inverse of the matrix    1M M 

  are 

obtained as 

                          1 1 1

12 21

1
, (3.21)

2ii
M M M

T
          
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with 

                1( , ) ( , ) , (3.22)M M d               

The step function       is defined as 

                         
 

 

1 0
(3.23)

1 0

for

for

 
  

 

  
  

  

 

 

3.1.3 Commutators of The Light Front Quantization Theory 

( , ), ( , ) ( ), (3.24 )
2

( , ), ( , ) ( ), (3.24 )
2

( , ), ( , ) ( ), (3.24 )
2

( , ), ( , ) ( ), (3.24 )
2

( , ), ( , )

i

i

i i

i
X P a

i
X P b

i
X P c

i
X X d

T

X X

      

      

      

      

   

       

       

     

       

   

     

     

     

     

  ( ), (3.24 )
2

( , ), ( , ) ( ), (3.24 )
4

( , ), ( , ) ( ), (3.24 )
4

i i

i
e

T

iT
P P f

iT
P P g

  

      

      

 

       



     



 

       

       

 

 

3.2 Hamilton-Jacobi formulation of conformal Gauge  Light-Front 

Quantization (Light Front Quantization)  

In this section we use Hamilton-Jacobi method to obtain the equations of motion for 

light front problem without scalar dilation filed.  

We consider the action of the light front Quantization of Polyakov D1 brane in 

Conformal Gauge given in eq.(3.5) 
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        5 , (3.25)
2

i iT
S X X X X X X d d      

     

                
  

 with the Lagrangian density: 

        5 , (3.26)
2

i iT
L X X X X X X   

     

                
 

The canonical momenta which is defined in eqs.(1.20) and (1.21) take the forms 

   

 

 

 

5

5

5

, (3.27 )
( ) 2

, (3.27 )
( ) 2

, (3.27 )
( ) 2

i i i

i

L T
P X H a

X

L T
P X H b

X

L T
P X H c

X

  





  










     
 


     
 


     
 

 

We obtain Hamiltonian-Jacobi partial differential equation as  

  

 

 

 

0, (3.28 )
2

0, (3.28 )
2

0, (3.28 )
2

i i i i i

T
H P H P X a

T
H P H P X b

T
H P H P X c

    



    






     


     


     

 

The Hamiltonian density Ho  defined in eq. (1.24) is now 

   
0 ( ) ( ) ( )

2 2 2
, (3.29)

2

i i

i i

H P X P X P X

T
X P X P X P

T T T

   

  

   

  

     

         
           

      

 

Explicitly, Ho becomes 

           0 0,

(3.30)

i i i iH P X P X P X P X P X P X       

     
            
   

The canonical Hamiltonian may be written as: 

0 , (3.31)oH d d H     
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        0 , (3.32)i iH d d X X X X X X      

     
         
   

0 0 0 , (3.33)H P H    

     

     

0

, (3.34)

i i i

i i

H P P P P X P X P X

P X P X P X

     

  

   

  

          
 

      
 

 

According to (1.32) and (1.30), the set of Hamilton-Jacobi Partial Diferential 

Equation (3.32) leads to the following total differential equation 

 

 

 

1

1

1 1 , (3.35 )

1 1 , (3.35 )

1 1 , (3.35 )
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 
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 
 



    
    
  

    
    
  

    
    
  

 

 

 

 

0, (3.36 )

0, (3.36 )

0, (3.36 )

i
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i
i

i
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 
  

  

 
 

    
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  

    
   
  

    
   
  

 

 

3.3 Dirac approach for Light-Front Quantization in presence of scalar 

dilation field 

We now study Light-Front Quantization of this theory in the presence of scalar 

dilation field Q defined in Light-Front coordinates by the action [52,53]. 

6 6 ,S L d d     

with Lagrangian density 
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6 5 ,
2

, (3.37)
2

, , , 2,...( 1) , 2,3,...( 1)

M

i i
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L e L e X X

T
e X X X X X X

d i d
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 



 

 

    

     

 
       

 

           

     

 

where (as before) d = 10 for the fermionic string and  d=26 for the bosonic string. In 

the following we would study the Light-Front Quantization of the above action S6 

(which describes the Polyakov D1 -brane action in the Light-Front coordinates). 

The canonical momenta Π, P
+
, P

-
 and Pi conjugate respectively to ϕ, X

-
, X

+
 and 

X
i
 obtained from [46,51] are  

            6 0, (3.38)
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L




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 
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, (3.39 )
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, (3.39 )
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


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
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   
 

 

The equations (3.37) imply that the theory possesses four primary constraints: 

       

 

 

 

1

2

3

4

0, (3.40 )

0, (3.40 )
2

0, (3.40 )
2

0, (3.40 )
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
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
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





  

 
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 

 
     

 

 
     

 

 

The Canonical Hamiltonian density corresponding to L6 is 

          6 6

1

, (3.41)
n

C

i

H Pq L


   

Explicitly, 
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6 6( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) 0. (3.42)
2

C i

i

i

i

i i

H P X P X P X L

P X P X P X

T
e X X X X X X





   
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   

   

    

     

           

        

           

 

3.3.1 The Total Hamiltonian 

After including the primary constraints i in the canonical Hamiltonian density
6

CH  

with help of Lagrangian multiplier fields , ,w  and z the total Hamiltonian density 

6

TH  could be written as 

  6 1 2 3 4 6 , (3.43)T CH u w z H          

 6 6 ,
2 2 2

(3.44)

T i C

i i

T T T
H u P e X w P e X z P e X H         

  

      
                 

        

3.3.2 The Equations of Motion 

We now treat the Lagrange multiplier fields , ,u w and zi as dynamical variables. 

The Hamilton equations of motion can be obtained from the total Hamiltonian 

               6 6 , (3.45)T TH H d    

The closed bosonic strings with periodic boundary conditions are now defined as 

            6 , (3.46)
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 


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
 

  

 
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, (3.47)
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     
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           6 , (3.48)
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X w
P



 


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
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 

6

, (3.49)
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      6 , (3.50)
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     6 , (3.52)
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6 0, (3.54)
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6 0, (3.56)
TH

P



  


 

 6 , (3.57)
2

TH T
P P e X




  

 

  
       

 

6 0, (3.58)
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
 

6 , (3.59)
2

T

w

H T
P P e X

w

  

 

  
       
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6 0, (3.60)

i

T

i

z

H
z

P



  


 

6 , (3.61)
2i

T
i

z i

i

H T
P P e X

z



 

  
       

 

The Lagrangian density of the theory is 

6

6

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) (3.62)
i

i

i u w

T

z i

L P X P X P X P u P P w

P z H

    

      



              

   

 

Substituting from eq.(3.44) we obtain  

6 ( ) ( ) ( ) ( ) ( )
2

( ) ( ) , (3.63)
2 2

i

i

i

i i

T
L P X P X P X u P e X

T T
w P e X z P P e X



 

        

    

   

 

  
              

 

   
         

    

 

and from equations of motion  eqs.(3.43-58), we get 

6

( ) ( ) ( ) , (3.64)
2

i i i i

i

i

L u P P w P z u P wP z P

T
e X w X z X

   



   

  

  

       

 
        

 

 

6 ( ) ( ) ( ) (3.65)
2

i

i

T
L e X w X z X   

  

 
         

 
 

 

3.3.3 The matrix of the Poisson brackets of the constraints 

The matrix of Poisson brackets of constraints Ωi in eq. (3.40a – 3.40d) namely 

 ( , ) : ( ), ( ) (3.66)
PB

R           

is then calculated, and result is 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

(3.67)

R R R R

R R R R
R

R R R R

R R R R



 
 
 
 
  
 

 

The nonvanishing elements of matrix ( , )R    are obtained as 

 12 21 ( ), (3.68 )
2

T
R R e X a    


      

 13 31 ( ), (3.68 )
2

T
R R e X b    


      

 14 41 ( ), (3.68 )
2

iT
R R e X c   


      

 23 32 44 ( ). (3.68 )R R R Te d   


      

Here ( )    is the Dirac distribution function.   

The matrix R  is seen to be nonsingular with the determinant given by 

     
1/2

2 21
det( ) ( ) . (3.69)

2
R R T e 

   


      

 

             
2

2 2 . (3.70)iR X X X 

  
     
  

 

The nonvanishing elements of inverse of matrix R  

 

1 1 1 1

11 12 13 14

1 1 1 1

21 22 23 241

1 1 1 1

31 32 33 34

1 1 1 1

41 42 43 44

( ) , (3.71)

R R R R

R R R R
R

R R R R

R R R R



   

   



   

   

 
 
 

  
 
 
 

 

are  

    
1

11 2

4
( ) ( ), (3.72 )

2 i

R a
Te X X X

  


  

  

  
    
  
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    
1 1

12 21 2

2
( ) ( ) ( ), (3.72 )

2 i

R R X b
Te X X X

    


  

  


    

    
  

 

    
1 1

13 31 2

2
( ) ( ) ( ), (3.72 )

2 i

R R X c
Te X X X

    


  

  


    

    
  

 

    
1 1

14 41 2

2
( ) ( ) ( ), (3.72 )

2

i

i

R R X d
Te X X X

   


  

  


    

    
  

 

    
 

2
1

22 2

1
( ) ( ), (3.72 )

2 i

R X e
Te X X X

   


  

  


  

    
  

 

    

    

2

1 1
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( ) ( ) ( ), (3.72 )

2

i

i

X X X
R R f

Te X X X
  

 

  
 

  

  

    
      
    
  

 

  

    
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24 42 2
( ) ( ) ( ), (3.72 )

2 2

i

i

X X
R R g

Te X X X
  



  

  

  

  
   

    
  

 

 

    

2

1

33 2
( ) ( ), (3.72 )
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Te X X X
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  
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  

  

 
   

    
  

 

  

    
1

44 2
( ) ( ), (3.72 )

2 i

X X
R j

Te X X X
  

 

 

  

  

 
  

    
  

 

and  

      1

4 4( , ) ( , ) ( ), (3.73)R R      


      
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3.3.4 The Dirac brackets of the theory 

The nonvanishing Dirac brackets of the theory described by the Polyakov D1 bran 

action S4 in the presence of scalar dilation field ϕ are formally obtained as [1,2]: 

  2

2
, ( ), (3.74)M M

D
X X

tR
   

 
   

 
 

    12

1
, , ( ) ( ), (3.75 )

2

i

i D D
X P X P D a

R
     

   
 

 

    22

1
, , ( ) ( ), (3.75 )

2

i

i D D
X P X P D b

R
     

   
 

 

  32

1
, 1 ( ) ( ), (3.75 )i

iD
X P D c

R
  

  
    

  
 

  42

1
, ( ) ( ), (3.75 )

2D
X P D d

R
     

  
 

 

  52

1
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2D
X P D e

R
     

  
 

 

    72
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2D D
X P X P D
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        

     
  

 

  72

1
, 1 ( ) ( ), (3.76)
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 
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, ( ) ( ), (3.77 )
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i

D
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 
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  
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4
, ( ). (3.78)

D tR
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  
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1
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D
P X

R
    

 
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 
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P P D a

R
  


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(4 )
i iD

t
P P D b

R
  



 
  

 
 

  32
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Where 

  

  

  

 
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2

3

2
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, (3.81 )
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 
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 

 

 

2

5

2

6

2

7 3 6

, (3.81 )

, (3.81 )

, (3.81 )

i

D X e

D X f

D D D g







 

 

 

   

and       . (3.82)t Te                                        

 

3.4 Hamilton Jacobi Formulation of (Light Front Quantization) in 

presence of scalar dilation field ϕ: 

We studied the following Light Front Quantization in present of scalar dilation 

field by the action 

 6 , (3.83)
2

i iT
S e X X X X X X d d        

     
           

With the Lagrangian density 

6 , (3.84)
2
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     
            

The canonical momenta defined in (1.20) and (1.21) take the form 

 
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, (3.85 )
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, (3.85 )
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 The Hamiltonian density Ho is 

      6( ) 0 (3.86)i i

oH P X P X P X L    

  
          
 

 



 54 

   
     

        

( )

, (3.87)
2
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P X P X P X
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           ( ) ,

(3.88)

i i i iP X P X P X P X P X P X        

                   
 

The set of Hamilton- Jacobi Partial Differential Equation eqs.(1.26) and (1.27) are 

 
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2
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2
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   

   

 

and  

                  0, (3.90)H 
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Using (1.28) and(1.29) ,the set of Hamilton- Jacobi Partial Differential Equation 

(3.88) leads to the following total differential equation: 
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X X X X













 
  

   

 
  

   

 
 

     
    
   

     
    
   

     
    
   

 

     

     

,

,
2 2 2

. (3.92)
2

i
i

i i

i i

HH H H
d dX dX dX d

T T T
e X dX e X dX e X dX

T
e X dX X dX X dX



  




   

 
 

      

  

    

  

     
    

   

      

       
 
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1 , (3.93 )

1 , (3.93 )

1 , (3.93 )

i
i

i
i

i
i i

i i i i

HH H H
dX d d d d d a

P P P P

HH H H
dX d d d d d a

P P P P

HH H H
dX d d d d d c

P P P P

 

 

 

    

    

    

 
  

   

 
  

   

 
 

     
    
   

     
    
   

     
    
   

 

 

3.5 Dirac Method of the Light front Quantization in presence a 2-Form 

Gauge field Bαβ 

The action of the light front Quantization of the theory reads 

7 7 , (3.94)S L d d     

        7 , (2.95)
2

i iT
L X X X X X X TB

    

     

                 
 

where      
, ,

, , , 2,3, ,25

B B B

i i





      

   
 

the canonical momenta , ,B P P   and  iP  conjugate respectively to , ,B X X   and  iX  

are  

 

7

7

0, (3.96 )
( )

, (3.96 )
( ) 2

B

L
a

B

L T
P X b

X





 






  

 


   
 

 

 

 

7

7

, (3.96 )
( ) 2

, 2,3, , 25 (3.96 )
( ) 2

i

i i

L T
P X c

X

L T
P X i d

X





 










   
 


    
 

 

The equations (3.95) imply that the theory possesses the following 27 primary 

constraints  
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 

 

 

1

2

3

0, (3.97 )

0, (3.97 )
2

0, (3.97 )
2

0, (3.97 )
2

B

i

i i

a

T
P X b

T
P X c

T
P X d







 



 





  

 
     

 

 
     

 

 
     

 

 

 

The canonical Hamiltonian density corresponding to L is 

       7 7 , (3.98)C i i

BH B P X P X P X L   

   
          
 

 

The total Hamiltonian density of (LFQ) with help of Lagrangian multiplier field 

( , )S    , ( , ), ( , )u          and ( , )iw     which treat as dynamical, could be 

written as  

7 7 1 2 3 , (3.99)T C

i iH H S u w            

   

 

7
2 2

(3.101)
2

T

B

i

i i

T T
H TB S u P X P X

T
w P X

 




   

 



    
             

   

 
    

  

 

The equation of motions 

7

7

, (3.102 )

, (3.102 )

T

T

H
X u a

P

H
X b

P




 



 


  




  


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7

7

7

7

7

, (3.102 )

0 , (3.102 )

0 , (3.102 )

0 , (3.102 )

, (3.102 )

i

T
i

ii

T

u

T

T

i

w

T

i

B

H
X w c

P

H
u d

P

H
e

P

H
w f

P

H
B S d
















  




  




  




  




  



and  

7

7

, (3.103 )
2

, (3.103 )
2

T

T

H T
P a

X

H T
P u b

X








 



 


   




   



 

 

 

 

7

7

7

7

7

, (3.103 )
2

, (3.103 )
2

, (3.103 )
2

, (3.103 )
2

, (3.103 )

T
i

i

T

u

T

T
i

w i

T
T

B

H T
P w c

X

H T
P P X e

u

H T
P P X f

H T
P P X g

w

H
h

B















 

 

 

 

 

 


   



  
     

  

  
     

  

  
     

  


    



and  

 

 

   

, , , , (3.104 )
2

1
, , , (3.104 )

2

, , . (3.104 )
4

i

i

i i

i i

i
X P X P X P a

X X X P b
T

iT
P P P P c

  

  



  

   

 

 



             

        


      
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3.6 Hamilton-Jacobi of Light Front Quantization of Conformal Fixed 

Polyakov D1-Brane action in presence of 2-Form Gauge Field Bαβ 

The action of Light Front Quantization of the theory is  

7 7 ,S L d d     

The Lagrangian is  

        7 ,
2

i iT
L X X X X X X TB

    

     

                 
 

 

The canonical Momenta defined in (1.20) and (1.21) read as 

 

 

 

7

7

7

7

, (3.105 )
( ) 2

, (3.105 )
( ) 2

, (3.105 )
( ) 2

0 , (3.105 )

i i

i i

B B

L T
P X H a

X

L T
P X H b

X

L T
P X H c

X

L
H d

B







  





  










     
 


     
 


     
 


    



  

The canonical Hamiltonian is obtain as  

       

         

7 7 ,

2

, (3.106)
2

L i

B

i

B

i i

H B P X P X P X L

T
B TB P X P X P X

T
X X X X X X





    

   

    

   

   

     

          
 

          

          

 

 
2

7 , (3.107)
2

L

B

T B
H B





    
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The set of Hamilton- Jacobi Partial Differential Equations are 

    

 

 

 

0, (3.108 )
2

0, (3.108 )
2

0, (3.108 )
2

,

0, (3.108 )

i i i

B B

T
H P X a

T
H P X b

T
H P X c

and

H d







  



  





      
 

      
 

      
 

   

  

 The differential equations for characteristics read as 

0, (3.109 )

0, (3.109 )

i
i B

i
i B

HH H H
dP dX dX dX dB a

X X X X

HH H H
dP dX dX dX dB b

X X X X

 
  

   

 
  

   

     
    
   

     
    
   

  

0, (3.109 )

0, (3.109 )

i
i i B

i i i i

i
i B

B

HH H H
dP dX dX dX dB c

X X X X

HH H H
d dX dX dX dB d

B B B B

 
 

 
 

     
    
   

     
     

   

 

and  

, (3.109 )

, (3.109 )

, (3.109 )

i
i B

i
i B

i
i i iB

i i i i

B B

HH H H
dX d d d d d e

P P P P

HH H H
dX d d d d d f

P P P P

HH H H
dX d d d d d g

P P P P

H H
dB d d

    

    

    

 

 
   

   

 
   

   

 
 

 


     
    
   

     
    
   

     
    
   

  
 
 

, (3.109 )
i

B

B B

HH
d d d h   
 

  
 
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3.7 Dirac Method of Light-Front Quantization of conformal Gauge Fixed 

Polyakov D1-Brane action in presence of a scalar Axion Field C and U(1) 

Gauge Field A 
 

In Light-Front Quantization, the action of the theory reads 

8 8 , (3.110)S L d d     

        8 , (3.111)
2

i iT
L X X X X X X TCf

    

     

                 
 

The canonical momenta , , , ,i cP P P     and  conjugate respectively to 

, , , ,iX X X C A    and A   are obtained as 

8

8

8

0, (3.112 )
( )

, (3.112 )
( )

0, (3.112 )
( )

c

L
a

A

L
TC b

A

L
c

C
















  

 


   

 


  

 

 

 

 

 

8

8

8

, (3.112 )
( ) 2

, (3.112 )
( ) 2

, (3.112 )
( ) 2

2,3, , 25

i

i i

L T
P X d

X

L T
P X e

X

L T
P X f

X

i







 





 










   
 


   
 


   
 



 

The above equations however, imply that the theory possesses 29 primary 

constraints 

      
1

2

3

0, (3.113 )

0, (3.113 )

0, (3.113 )c

a

TC b

c











  

   

  
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 

 

 

4

5

0, (3.113 )
2

0, (3.113 )
2

0, (3.113 )
2

2,3, , 25

i

i i

T
P X e

T
P X f

T
P X g

i










 



 





 
    
 

 
    
 

 
    
 



 

Canonical Hamiltonian density of this theory is  

         

 

8

8

(3.114)C i

i

C

h P X P X P X A A

C L

       

    



         


   

 

        , (3.115)TC A 


   
 

 

After including the above 29 primary constraints in the canonical Hamiltonian 

density 8

CH  with the help of Lagrange multiplier fields 1 2( , ), ( , ),          

3 4 5( , ), ( , ), ( , )               and ( , )i    (which we treat as dynamical), 

the total Hamiltonian density of the theory could be written as  

  8 8 1 1 2 2 3 3 4 5 , (3.116)T c

i iH H s s s u v w               

     

   
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2 2

(3.117)
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

       
               

      

  
            

   

 

The Hamiltons equations of motion of the theory that preserve the constraints of 

theory in the course of time obtained from the total Hamiltonian 

           8 8 , (3.118)T TH h d    

e.g., for the closed strings with periodic BC's are obtained as 
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, (3.120)
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 
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, (3.121)
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

  
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8

8

0 ,

, (3.122)
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u




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, (3.123)
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, (3.124)
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
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

  
     
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 

 

8
3

8
2

,

,

. (3.125)
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T A s

C

T A A TdA





 
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 


  
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
      



     

 

where  .dA A A  

     
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8
2

8

,

0, (3.126)
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H
A s
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 



 


  
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
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8
1

8

,

0, (3.127)
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, (3.128)
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
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 
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,

, (3.129)
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
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3

3

8
3

8
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0 ,

, (3.130)
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
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
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Demanding that the primary constraints of the theory be preserved in the course of 

time one does not get any secondary constraints. The theory is thus seen to possess 

only 29 constraints: 1 2 3 4 5, , , ,      and i . Further the matrix of the Poisson 

brackets of these 29 constraints among themselves is easily seen to be singular, 

implying that the set of these 29 constraints is first-class. This in turn implies that 

the theory is a gauge invariant (GI) (and consequently gauge anomalous). The 

theory is indeed seen to possess three local gauge symmetries given by the 2D 

WorldSheet reparametrization invariant (WSRI) and the Weyl invariance (WI). The 

theory could now be quantized under appropriate gauge-fixing. 
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The first-order Lagrangian density of the theory is 

           

1 2 3

8

1 2 3 8( ) ( ) ( ) ( ) ( ) ( ) , (3.131)
i

IO i

c i

T

s s s u v w i

L C P X P X P X A A

p s p s p s p u p v p w H

       

     

     

            


             

 

       8 2 , (3.132)
2

IO i

i

T
L TC s A u X v X w X

  

   

             
 

To study the Hamiltonian and path integral formulations of the theory under gauge-

fixing, we could as example, choose the gauge: 

        0, (3.133)A    

Corresponding to this gauge choice, the total set of constraints of the theory under 

which the quantization of the theory could be studied becomes 

 
1 1

2 2

3 3

4

0, (3.134 )

0, (3.134 )

0, (3.134 )

0, (3.134 )

c

a
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c

A d

 

 

 

 







   

    

   

  

 

 

 

 

5 4

6 5

0, (3.134 )
2

0, (3.134 )
2

0, 2,3, , 25 (3.134 )
2
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T
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T
P X f
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
 


 


 

 



 





 
     

 

 
     

 

 
      

 

 

We now calculate the matrix 

       , , , (3.135)
PB

R          

of the Poisson brackets of these above 30 constraints. The nonvanishing elements of 

the matrix Rαβ are obtained as  

   56 65 , 2,3, ,25 (3.136)iiR R R T i   
        
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   14 41 23 32 (3.137)TR TR R R T             

The matrix Rαβ is seen to be nonsingular implying that the corresponding set of 

these 30 constraints is second-class. The determinant of the matrix Rαβ is given by  

       
1/2

2 13det (3.138)R T T      
         

  
 

Nonvanishing elements of the inverse of this matrix Rαβ (i.e. the elements of the 

matrix  1R


 ) are 

       1 1 1

56 65

1
, 2,3, ,25 (3.139)

2ii
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  
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         

           1 1 1 1 1

14 41 23 32
, (3.140)

ii
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with 

     1
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, , 4 , (3.142 )

, , . (3.142 )
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             

          

       

          

 

3.8 Hamilton-Jacobi Method of Light Front Quantization of Conformal 

Gauge Fixed Polyakov D1-Brane action in Presence of a Scalar Axion 

Field C and An U(1) Gauge Field A 
 

The action of Light Front Quantization  

            8 8 , (3.143)S L d d     

The Lagrangian is  
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        8 , (3.144)
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The canonical momenta defined in (1. 20) and (1. 21) as  
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and  

 8 , (3.145 )
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
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The canonical Hamilton density is obtained as 

         

 

8

8

(3.146)C i

i

C

H P X P X P X A A

C L

       

    



         


   

 

        , (3.147)TC A 


   
 

 

The set of HJPDE's are 
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CHAPTER 4 

CONCLUSION 

 

This work aimed to study of the constrained systems in instant form theory and light 

front theory using both Dirac approach and Hamilton-Jacobi approach. 

The two methods, represent the Hamiltonian treatment of the constrained systems. 

Dirac's approach hinges on introducing primary constraints, then constructing the 

total Hamiltonian by adding the primary constraints. All other constraints are 

obtained from these conditions. The equations of motion are obtained using Poisson 

brackets, are in ordinary differential equations forms. The gauge fixing conditions, 

which are not an easy task in this approach, are necessary in order to determine the 

unknown Lagrange multipliers.  

The Hamilton-Jacobi formulation of singular systems arrived to important result 

in physics, that is we first exhibit the fact that a singular system can be treated as a 

system with many independent variables. 

In other words, the equations of motion are not ordinary differential equations  

but total differential ones in many variables. In general mathematically speaking, it 

is not possible to solve the equations of motion of singular systems unless they 

satisfy the integrability conditions. If these conditions are not identically satisfied, it 

will be considered as new constraints. This process will continue until we obtain a 

complete system. The gauge fixing conditions are not necessary in the Hamilton-

Jacobi formulation since one does not need to introduce Lagrange multipliers. 

The previous two methods have been applied classically in chapter two and 

chapter three.  

Instant form theory and light front theory of this thesis are discussed  in the frame 

work of two method Dirac's and the Hamilton-Jacobi.  

The methods, represent the Hamiltonian treatment of instant form theory and 

light front theory of conformally Gauge light front Polyakov-D1 Brane action in a 
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d-dimensional curved back ground with d=10 for fermionic and d=26 for bosonic 

D1 brane. 

This theory is an unconstrained system in the sense of Dirac and presence of a 

scalar dilation field represents a canstrained system in the sense of Dirac possessing 

a set of two second class constraints where one constraint is primary and other one 

is the secondary Gauss Law constraints. 

Light front theory is discussed in chapter three, this theory is easily seen to 

possess twenty six primary constraints and does not get any secondary constraints, 

and we study LFQ of this theory in presence of scalar dilation field ϕ which 

describes the polyakov D1-brane action LF coordinates and possessing a set of 27 

primary constraints when consider in the presence of scalar dilation field. 

Also  in this thesis, Instant form theory and light front theory conformally Gauge 

light front Polyakov-D1 Brane action in the presence of a constant scalar axion field 

and a discussion of different models of Instant form theory and light front 

quantization which treated as singular system to vistigated by Hamilton-Jacobi 

Method ( or Güler approach).   

The final results of the two Methods are found the same, and the Hamilton-

Jacobi Method simpler than Dirac's Method. 
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