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ABSTRACT 

MOTOR OBSERVATION, MOTOR PERFORMANCE, AND MOTOR IMAGERY: 

AN ERP STUDY 

Eric Brian 

April ih, 2011 

Two major theoretical models, Direct Mapping and Functional 

Equivalence, suggest that the observation of action and imagery of action, 

respectively, involve activation of similar motor related areas. Despite the wealth 

of evidence that supports these two perspectives, the degree to which these 

motor-related actions overlap is still only vaguely defined. The present 

investigation sought to assess both the spatial and temporal characteristics of the 

brain activity involved in these motor related conditions. Specifically, the present 

study used ERP technology to assess the neural substrates of Motor 

Observation, Motor Performance, and Motor Imagery. Participants viewed 

images depicting two human grasping motions, whole hand grasping or precision 

finger-to-thumb grasping. Participants were to report, perform, or imagine 

performing the observed action depicted in the target image. Ongoing EEG was 

time-locked to the presentation of the target image. The EEG data were filtered, 

segmented, submitted to a series of artifact correction procedures, then 

averaged. Subsequently, the averaged data were subject a two-step sequential 

principal component analysis. These were then subjected to repeated measures 
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ANOVAs. Additional analyses included amplitude and latency measures, 

obtained from selected regions across different conditions. These measures 

were compared and examined for group differences. In addition, Low Resolution 

Brain Electromagnetic Tomography was used to elucidate the underlying neural 

activity. Specifically, all three of the motor related experimental conditions were 

expected to show increased activation of motor related areas on the contralateral 

hemisphere (left hemisphere) to the instructed action, particularly in the Primary 

Motor Cortex and Primary Somatosensory Cortex, and increased activation in the 

Supplementary Motor Area, relative to a nonmotor control condition. However, 

the statistical analyses failed to support these hypotheses. In the end, a greater 

understanding of these processes through scientific advances further develops 

and improves both interventions and treatments aimed at bettering the lives of 

those suffering from a myriad of psychological, physical and psychophysical 

disorders resulting from many psychobiological causes including stroke, 

dismemberment, physical injury, and cognitive dysfunction. While the present 

study failed to further elucidate these neural mechanisms, this area of study is 

increasingly important and beneficial to wide ranging areas of medicine, 

neuroscience, and cognitive and sports psychology. 
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I. INTRODUCTION 

Since the discovery of the mirror neuron system (di Pellegrino, Fadiga, 

Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 

1996; Giacomo Rizzolatti, Fadiga, Gallese, & Fogassi, 1996), there has been 

heightened interest in the neural correlates of human imitation and motor 

observation. With the advancement in brain imaging technology, there is also a 

parallel and growing interest in the neural basis of mental imagery and the 

relative impact of motor imagery on motor performance. Together, these 

approaches provide an opportunity to examine the roles of observation and 

imagery on motor control from two different perspectives. Both areas attempt to 

elucidate the common neural substrates involved in imagining or observing motor 

actions, and the planning and execution of similar motor movements. 

Unfortunately, each line of work has progressed largely independent of the other, 

leaving a gap in the literature. Furthermore, the studies of motor imagery are 

less conclusive, leaving many remaining questions. However, a close inspection 

of the literature from these two fields of study reveals a number of commonalities. 

These points of convergence, and a common set of questions surrounding 

motor imagery, provide a unique opportunity for a fresh perspective on this 

important topic. The overall goals of the present project are to further investigate 

the neural substrates of motor performance, motor imagery, and motor 

observation collectively. Specifically, both the spatial and temporal 



characteristics of these processes will be examined using Event-Related 

Potentials. Briefly, a range of behavioral studies investigating short-term visuo­

motor interaction, observational learning and stimulus-response compatibility, 

along with neuroimaging studies and the work on mirror neurons in non-human 

primates suggest that a matching system such as a Mirror Neuron System may 

exist in humans. This view proposes that there is a direct relationship between 

the perception of action and motor performance and that they share common 

neural substrates. This common neural basis between observation of motor 

movements and motor action may account for action understanding and human 

imitation. In addition, comparisons of motor performance and motor imagery 

suggest that they also share common neural pathways. This Functional 

Equivalence Model of motor imagery suggests that motor imagery and motor 

action are functionally and neurologically similar. Investigations of motor imagery 

involved a range of behavioral, electrophysiological and neuroimaging studies. 

As will be stated in the following sections, however, there are many remaining 

questions regarding these neurological similarities. These questions will be 

brought to the forefront of this discussion. 
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II. DIRECT MAPPING VIEW OF ACTION UNDERSTANDING 

People learn by watching others in a variety of contexts including learning 

how to behave. This has been referred to as observational learning, modeling, 

emulating, and imitation (Hodges, Williams, Hayes, & Breslin, 2007). Loosely 

defined as a process by which we see an action or gesture performed by others 

and then (attempt to) duplicate that action, imitation is, suggested by some, to be 

present in humans as early as a few weeks of age (Meltzoff & Moore, 1977, 

1983). Meltzoff and Moore (1977) reported that infants as young as 12 to 21 

days of age are capable of imitating facial gestures such as tongue protrusion, 

mouth opening and lip protrusion. Subsequent work replicated and extended 

these findings to head movements and manual gestures (Meltzoff, 1995; Meltzoff 

& Moore, 1983, 1989). Others refuted these conclusions raising questions 

concerning both methodology and analyses (Anisfeld, 1979, 1991, 1996). While 

much attention was devoted to determining if infants were engaged in imitation or 

not, Meltzoff and Moore (Meltzoff, 2002; Meltzoff & Moore, 1977) were among 

the first to posit that a matching process may account for human imitation. They 

proposed that the infant brain might house a "supramodal" representation 

system. According to this view, visual information, proprioceptive information 

and, perhaps, motor information could all be loaded onto a non-modality specific 

representation through a "matching process." The notion of a matching process 

of human imitation has since received much attention. Prinz (1997) proposed a 
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framework for the relationship between perception and action planning. Similar 

to a supramodal representation system, Prinz's Common Coding Approach 

contends that planned actions and perceived motor events share a common 

representational domain. According to this view, incoming sensory patterns and 

outgoing action programs share some common coding within central processing. 

In other words, event codes and action codes share a representational domain. 

This is often closely associated with stimulus-response compatibility, which is a 

topic we will return to later. Others still proposed that the human neural system 

matches action observation and execution (Fadiga, Fogassi, Pavesi, & Rizzolatti, 

1995). Later, Rizzolatti and colleagues (Giacomo Rizzolatti, Fadiga, Fogassi, & 

Gallese, 1999) explicitly defined this matching system as it pertained to imitation. 

The authors suggested a similar explanation of human imitation referring to 

imitation as "resonance behaviors." According to this view, "in resonance 

behavior a neural activity that is spontaneously generated during movements, 

gestures, or actions is also elicited when the individual observes another 

individual making similar movements, gestures and actions (Giacomo Rizzolatti, 

et aI., 1999, p. 91 )." 

While a direct matching view gained popularity and fueled a range of 

investigative studies, an alternative, goal-oriented view garnered support as well 

(Bekkering, Wohlschlager, & Gattis, 2000; Erlhagen, Mukovskiy, & Bicho, 2006; 

Heyes, 2001; Hodges, et aI., 2007). Some argued that human imitation in 

children is specific to goal-directed action, that the imitative behaviors of the 

participants were intended to achieve the same goals rather than simply mirror 
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motor movements. Although a proponent of a direct matching perspective, 

Meltzoff (2002) suggested that as children grow older, this mapping process is 

less direct and instead is based on understanding of the model's intentions. This 

was followed by others suggesting that infant imitation is not without some a 

priori rationalization as the reasons for the action (Chaminade, Meltzoff, & 

Decety, 2002; Gergely, Bekkering, & Kiraly, 2002). 

The evidence supporting a Goal-Oriented approach defended by Hodges 

and colleagues (2007) is not necessarily in conflict with direct matching when 

direct matching is relaxed (i.e. less direct and less well-matched). Indeed, Vogt 

and Thomaschke (2007) stated that direct matching is "neither as direct nor as 

well-matched as the name might suggest (pg. 498}." As we will see, mirror 

neurons show a large degree of generalization (Giacomo Rizzolatti & Craighero, 

2004). Further, previous accounts of direct matching were applied only to 

imitation, often specifically to human imitation, whereas the contemporary view of 

direct matching may apply to both imitation and action understanding. The direct 

matching view of action understanding, a.k.a. Direct Mapping, suggests that we 

understand the actions of others, and subsequently reproduce them, by mapping 

the visual representation of an observed action onto an existing, internal motor 

representation of our own for a similar action (Giacomo Rizzolatti, Fogassi, & 

Gallese, 2001). This perspective relates to action understanding, rather than 

mere imitation, and that action understanding involves recognizing the purpose of 

the action. The Direct Mapping view predicts that action observation and action 
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execution activate a common set of neurons. Such a system is evidenced by the 

existence of Mirror Neurons in non-human primates. 

In support of this Direct Mapping perspective, the characteristics and 

properties of mirror neurons will be discussed next. The following sections 

review 3 areas of research that support a Direct Mapping view of action 

understanding: Studies of Mirror Neurons; Behavioral work; and Neuro-Imaging 

Studies. The converging evidence from these areas strongly supports Direct 

Mapping and the existence of a Mirror Neuron System in humans. 

a. Mirror Neurons 

Although several researchers proposed matching systems to account for 

human imitation (Meltzoff & Moore, 1977; Prinz, 1997; Giacomo Rizzolatti, et aI., 

1999), some of these theories were largely based on behavioral data. The 

location where such a system may reside in the human brain remained elusive. 

However, in the late 1980s, the functional properties of the frontal agranular 

cortex of the Macaque monkey were intensely investigated (Gentilucci, et aI., 

1988; Okano & Tanji, 1987; Giacomo Rizzolatti, et aI., 1988; Giacomo Rizzolatti, 

Scandolara, Matelli, & Gentilucci, 1981a, 1981b). This rostral part of the inferior 

area 6 is known as area F5 (Matelli, Luppino, & Rizzolatti, 1985). As a result of 

these investigations, it was reported that area F5 housed motor representations 

for hand and mouth actions. Specifically, the dorsal portion of F5 is associated 

with hand movements while the ventral portion is associated with mouth actions. 

More specifically, the motor representation of these neurons is quite specific, 

almost exclusively involved in object-oriented actions using fine motor 
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movements of the fingers and hand such as grasping, manipulating, and tearing 

(Giacomo Rizzolatti, et aI., 1988; Giacomo Rizzolatti, et aI., 1981a, 1981b). It 

was later reported that a small percentage of F5 neurons were also responsive to 

visual stimuli (di Pellegrino, et aI., 1992; Murata, et aI., 1997). While investigating 

the motor properties of the neurons located in the dorsal area of F5, di Pellegrino 

and colleagues (1992) unexpectedly discovered that some of these neurons also 

responded to the observation of specific hand actions performed by the 

experimenters. Put simply, di Pellegrino and associates (1992) discovered a 

subset of F5 neurons that are responsive to both executed movements and the 

observation of the same or similar movements performed by the experimenters. 

This demonstrates that "gesture perception" and motor execution for grasping 

movements may share common neural circuits that many motor theories of 

perception, such as Direct Mapping predict. The discovery that F5 neurons are 

responsive to both executed movements and the observation of similar motor 

movements fueled extensive investigations of the visual and motor properties of 

these Mirror Neurons (Gallese, et aI., 1996; Giacomo Rizzolatti, Fadiga, Gallese, 

et aI., 1996). Activity from single neurons was recorded while monkeys observed 

objects, while manipulating objects and while observing either an experimenter or 

conspecific perform a range of motor actions. Objects alone, faces, emotional 

gestures, non-object related movements and actions using tools were not 

effective in activating these mirror neurons. See Table 1. 
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Table 1. List of observed actions investigated by de Pellegrino, et aI., 1992; 

Gallese, et aI., 1996; and Rizzolatti, et aI., 1996 

Action T~ees Observed Exameles 

Food Grasping Presenting food to the monkey 
Placing food or item on a surface 
Grasping Food 
Giving food to another experimenter 
Taking it away from another 
experimenter 

Manipulating Breaking, Tearing, Folding, Holding 
items 

Intransitive Gestures Threatening gestures 
(non-object related) Lifting arms 

Waving Hands 
Hand - Object movements Grasping Motion in absence of object 
w/o interaction Grasping objects with tool (e.g. 

forceps) 
. Simultaneous movement of hand and 
food, but spatially separated from one 
another 

Conspecific Actions Food grasping action performed by 
another monkey 

The actions that most frequently visually activated the mirror neurons were 

grasping, placing and manipulating. Further, Mirror Neurons are better defined by 

the relationship between the effective observed action and the motor response 

they code. This relationship is referred to as visuo-motor congruence (Gallese, 

et aI., 1996; Giacomo Rizzolatti, Fadiga, Gallese, et aI., 1996). F5 neurons 

selectively respond during goal-directed motor movements involving hand and 

mouth action. Similarly, F5 mirror neurons respond to the observation of the 

same or similar motor actions. 

The degree to which the executed and observed actions are related 

varies. Thus, Mirror Neurons are classified based on this variation into three 
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categories: Strictly Congruent; Broadly Congruent; and Non-Congruent (Gallese, 

et aI., 1996). Strictly Congruent mirror neurons are those "in which the effective 

observed [actions] and the [effective] executed actions correspond' in both the 

"general action (e.g. grasping) and in terms of the way in which the action was 

executed (e.g. precision grip; Gallese, et aI., 1996, p. 601)." Less than one-third 

of Mirror Neurons are classified as Strictly Congruent. 

Nearly two-thirds of Mirror Neurons are Broadly Congruent Mirror 

Neurons. Broadly Congruent Mirror Neurons allow for some variability in the 

effective observed action compared to the effective executed action. Take 

another grasping neuron for example for which the effective executed action is 

precision grip. For this neuron to discharge during executed actions, the monkey 

must perform a precision grip, whereas a whole-hand grip will not activate this 

neuron. On the other hand, the effective observed actions include either 

precision grip or whole-hand prehension. Here, the grasping neuron discharges 

during precision grip and also responds to observed actions that are functionally 

similar. The flexible nature of the broadly congruent neurons allows for some 

variability in the effective observed action. This variability provides the possibility 

that a range of observed actions can elicit a neural response for a motor 

representation corresponding to the observed action. See Figure 1. 
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Figure 1. An example of a Broadly Congruent Mirror Neuron - taken from 

Gallese, Fadiga, Fogassi, & Rizzolatti (1996). Neural discharges (A) while an 

experimenter uses a precision grip to take hold of a piece of food ; (B) while the 

experimenter uses whole-hand prehension ; (C) the monkey grasps the food with 

precision grip; and (0) the monkey using whole-hand prehension. While the 

effective executed movement is specific to precision grip, the effective observed 

actions include both precision grip and whole hand precision. 

Lastly, Non-Congruent mirror neurons are those that show no clear 

relationship between the executed and observed action that elicit a response. 

Visuo-motor congruence has also been reported in neurons located in the Inferior 

Parietal Lobule shown to exhibit mirror properties (Fogassi, et aI. , 2005). The 
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visuo-motor congruence for neurons in this area is consistent with previous 

findings in that the neurons showed the same specificity for the effective 

observed action as for the executed actions. Thus, the majority of neurons tested 

within the inferior parietal lobule were differentially activated depending on the 

nature of the observed action. This difference in activation was consistent with 

differences in activation for executed actions. 

Additional observations of mirror neuron activity by others have led to 

some interesting conclusions. Mirror Neurons will respond even when hand­

object interactions are inferred rather than seen directly (Kohler, et aI., 2002; 

Umilta, et aI., 2001). F5 Mirror Neurons were examined while observing partially 

occluded actions and mimed actions (Umilta, et aI., 2001). Specifically, actions 

were performed in either full view or in partial occlusion and with or without an 

object present. Nearly half of the mirror neurons showed active neural 

responses during both the grasping conditions (hidden and full view). This 

activity was nearly absent in both miming conditions. The authors note that two 

conditions must be met in order to elicit activity during hidden grasping. The 

monkey must (1) know the object exists behind the occlusion and (2) must see 

the hand of the experimenter moving behind the occlusion. This demonstrated 

that mirror neurons respond to action observation even when the action must be 

inferred because the hand-object interaction cannot be seen. Kohler's group 

(Kohler, et aI., 2002) examined a small percentage (-13%) of neurons identified 

with mirror properties. These particular mirror neurons discharged in response to 

an action related sound as well as the visually observed action. While a variety 
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of action related and non-action related sounds were used, only those associated 

with a specific object related action (e.g. tearing paper) were effective in eliciting 

a neural response. Of the 33 neurons examined, 29 showed auditory selectivity 

for specific sounds. Of those 29, 22 required a congruency between the visual 

and auditory stimuli (Le. visual selectivity for the same auditory action). These 

lines of work further supported that Direct Mapping involves action understanding 

rather than mere action observation and imitation. 

In short, Mirror Neurons have been identified in two areas of the brain 

including the rostral area of the ventral premotor cortex, known as F5, and the 

rostral portion of the inferior parietal lobule, or PF. These neurons discharge 

during the execution of object-related hand and mouth actions as well as the 

observation (visual and auditory) of similar motor actions performed by an 

experimenter or another monkey. Non-object related actions, with and without 

emotional significance, are ineffective in activating the neurons. The types of 

objects also do not seem to greatly affect the neural response - actions involving 

food items or small geometric solids do not produce obviously different neural 

responses. However, the relationship between observed and executed actions 

has been associated with different neural activity. Mirror neurons have been 

classified as highly congruent, broadly congruent or non-congruent. The 

relationship between the effective executed actions and effective observed 

actions is much less strict for broadly congruent neurons. This differential 

activation is present for actions that are seen directly, inferred from partially 

occluded actions, or heard. The existence of the Mirror Neuron System (MNS) in 
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non-human primates provides much support for theories proposing that such a 

matching system exists in humans. In fact, many researchers believe that a 

MNS may exist in humans (di Pellegrino, et aI., 1992; Jeannerod, Arbib, 

Rizzolatti, & Sakata, 1995), perhaps present in early childhood and infancy 

(Lepage & Theoret, 2006, 2007). 

b. Developmental/Behavioral Work 

The existence of the MNS in monkeys provides clear evidence that a 

similar matching system may exist in humans. The MNS system has been 

extensively researched using single cell recording techniques. However, such 

techniques cannot be used on human participants. As a result, unfortunately, 

proof that a MNS exists in humans is still lacking. Nevertheless, researchers 

have relied on a wealth of behavioral and neurophysiological evidence to support 

such a claim. The premise is that if there are in fact common neural correlates 

for action and perception, then action should directly influence perception and, 

conversely, perception should directly influence action and that this bi-directional 

relationship is instantaneous and automatic. A range of behavioral data on 

stimulus-response compatibility, observational learning, and short-term visuo­

motor interaction exists that supports this hypothesis. These methods have been 

used to obtain observable information that indicates an automatic and bi­

directional relationship between visual and motor interaction. 

i. Automaticity 

A range of behavioral studies has demonstrated that action and 

perception may be intimately tied to one another. A commonly used paradigm 
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involves a Serial Reaction Time (SRT) task originally used to examine implicit 

sequence learning (Nissen & Bullemer, 1987). Briefly, the task required 

participants to observe a series of asterisks presented in rapid succession on a 

computer screen and respond to the location of the asterisk with corresponding 

buttons. Embedded within the apparent random presentations were repeating 

sequences to which the participants would implicitly develop faster reaction 

times. Howard, Mutter, and Howard (1992) extended this work to observational 

learning and addressed an increasingly difficult question of whether performance 

on SRT tasks was perceptually-based or response-based learning. The 

response learning view holds that responses are necessary for learning, whereas 

the perceptually based view does not. Howard and colleagues assigned 

participants to two groups: a control group and a limited response group. The 

control group experienced a normal SRT task condition while the limited 

response group viewed the SRT task, but limited their responding. While the 

authors note that the observation group made significantly fewer errors, the 

reaction times for both groups increased significantly during the random block 

compared to the patterned blocks and were not significantly different from each 

other. Heyes and Foster (2002) found similar results when they asked 

participants to observe the key presses of another individual during an 

acquisition phase of a similar SRT task. In both cases, observation alone during 

an acquisition or practice phase can dramatically change response 

characteristics. In other words, pure observation can facilitate motor 

performance. Flanagan and Johnson (2003) extended these findings to visually 
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guided actions. They hypothesized that the characteristics of hand-eye 

coordination would be similar for both observation of and performance on a 

block-stacking task. Participants were asked to perform and observe a simple 

block-stacking task. The spatiotemporal relationships between eye gaze and 

hand movements were analyzed. The results showed that subject gaze was 

directed at contact points rather than on either the moving blocks or the hands. 

For both observation and execution, the fixations were directed towards the 

grasping site when picked up and landing site when placed. Specifically, 

participants fixated on each grasping and landing site shortly before the fingers 

grasped the block and before the block was placed, respectively. This pattern 

held for both the performance and observation conditions. This pattern of 

fixations illustrated predictive rather than reactive behavior. Given the same 

pattern occurs for both performance and observation, these results support a 

direct relationship for visuo-motor interaction predicted by Direct Mapping. 

Further, additional work on effector-dependent learning provided supplementary 

evidence in favor of Direct Mapping (Bird & Heyes, 2005; Bird, Osman, 

Saggerson, & Heyes, 2005; Osman, Bird, & Heyes, 2005). Effector-dependant 

learning is a form of motor learning in which the training of one set of muscles 

does not transfer or generalize to another set of muscles. This line of work 

stemmed from Heyes and Ray's associative learning theory (Heyes, 2001; Heyes 

& Ray, 2000). This model, consistent with Direct Mapping, suggests that visual 

information from a model can directly activate motor representations of the 

observer. Others have demonstrated that observational learning of motor 
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behavior is effector-dependent (Osman, et aI., 2005). This line of work provides a 

strong indication that observational learning of motor movements is effector­

dependent and that the action observation, rather than the sequence 

observation, is necessary for this type of learning. Taken together, these studies 

demonstrating an immediate and automatic relationship of visuo-motor 

interaction consistent with Direct Mapping. 

ii. Bi-Directionality 

Short-term interactions between perception and action have also received 

a fair amount of attention as a result of Prinz's Common Coding Approach (Prinz, 

1997; Vogt & Thomaschke, 2007). The premise is that visuo-motor interaction 

should occur in both intentional and unintentional actions. This is often illustrated 

via Stimulus-Response Compatibility (Hommel & Prinz, 1997). Generally, 

specific characteristics of a visual display or model interrupt or interfere with 

motor characteristics of response execution. A common example of this kind of 

interference is seen in the classic Stroop Effect (Stroop, 1935). Here, 

participants respond to the color of ink in which color words are printed (e.g. the 

word "blue" printed in red ink). The semantic information of the word interferes 

with the participants' ability to respond leading to increased reaction times and 

more mistakes. 

A more relevant example comes from Eidelberg (See Vogt & 

Thomaschke, 2007). Participants performed an action specified by a verbal 

command. Participants were given this verbal command while simultaneously 

shown a manual gesture by a model. The gesture performed by the model was 
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either consistent or inconsistent with the verbal command. When the observed 

gesture was not the same as the verbal command, participants could not avoid 

making mistakes even when specifically instructed to perform the verbal 

command. Subsequent studies investigated the motor aspect of stimulus­

response compatibility. For example, Kornblum and Lee (1995) presented 

participants with an outline drawing of the left and right hands with the middle 

and index fingers extended. On each trial, a letter was presented on the tip of a 

finger on the image. The participants were responsible for responding to the 

letter by pressing a key that corresponded to each letter, regardless of the finger 

on which the letter appeared. When the cue and response dimensions were 

congruent, reaction times were faster than when they were incongruent. This 

form of visuo-motor priming was subsequently extended by Brass and colleagues 

(2000). The paradigm was tailored to use a video display depicting finger 

movements of the right and left index and middle fingers. Thus, the finger 

movements were the same as those used previously by Kornblum and Lee, but 

used a video model of the finger movements rather than an outline drawing. 

Again, average reaction times were faster when the observed movements were 

congruent with the corresponding subject response, replicating and extending the 

findings of Kornblum and Lee. Subsequent work extended stimulus-response 

compatibility to action imitation (2000). Participants were shown a video of a 

model's right hand either spreading or grasping. Simultaneous with the action of 

the model, the color scheme of the video was altered, modifying the hand color 

from the normal skin tone to either red or blue. Participants were instructed to 
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respond to the color change by either spreading or grasping their own right hand, 

ignoring the action of the model. EMG recordings were used to collect subject 

responses and to determine response onset. The relevant stimulus (color) was 

paired with an irrelevant stimulus (grasping or spreading). Note that the subject 

responses are functionally equivalent to the irrelevant dimension. Thus, on half 

the trials the displayed gesture was the same as, or congruent with the required 

subject response. The displayed gestures and required response were 

incongruent on the other 50% of trials. When the gesture corresponded with the 

response, reaction times were significantly shorter than when they did not 

correspond. This indicates that the type of hand gesture modeled on the video 

influenced the speed of the subject's response. To explore whether movement 

was necessary for this effect, the authors also explored end-state posture. 

Instead of the movement of grasping or spreading, participants were shown still 

images of the end-state of each action (a hand grasped, or spread). Again, only 

color was the relevant dimension. Similar modulation of reaction times resulted. 

Participants responded faster when the postured gesture was congruent with the 

appropriate response than when it was incongruent despite it not being the 

relevant dimension. This demonstrates that both movement and postures of 

motor execution can impact a viewer's subsequent motor action. While scant 

evidence exists that visuo-motor priming does not occur in visually guided 

actions (Cant, Westwood, Valyear, & Goodale, 2005), others have shown that 

these visuo-motor priming effects extend to object-oriented prehension actions 
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and may be restricted to biological motion (e.g. moving hand) as opposed to 

robotic maneuvers (Castiello, Lusher, Mari, Edwards, & Humphreys, 2002). 

Others have also reported reliable results demonstrating motor-visual 

priming (Craighero, Bello, Fadiga, & Rizzolatti, 2002; Craighero, Fadiga, 

Rizzolatti, & Umilta, 1998, 1999). Craighero and associates (1998) presented 

participants with a white fixation followed by a 'go' signal (red fixation). The go 

signal prompted the subject to reach for a small bar that was directly in front of 

them. Simply, the subject would be made aware of the orientation of a 

rectangular bar before the trial began. Accordingly, the participants were 

instructed to prepare the related motor movement necessary to grasp the object. 

A subsequent visual prime (an image of a rectangle) would either be congruent 

or incongruent with the orientation of the prepared motor act. This design was 

intended to determine if the visual prime would impact the prepared motor 

movement. Reaction times were faster on congruent that incongruent trials when 

the prime was presented 100 ms prior to the "go" Signal. The only explanation 

for this difference in reaction time is that the congruent prime is reinforcing the 

motor response whereas the incongruent prime is interfering with the motor 

response. Similar results were reported when extending this design using 

additional degrees of rotation and mirror images of a hand grasping the bar 

rather than rectangles for the prime (Craighero, et aI., 2002; Vogt, Taylor, & 

Hopkins, 2003). 

Several studies using SRT tasks and effector-dependent learning 

demonstrated that visuo-motor interaction is immediate and automatic. In 
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addition Stimulus-Response Compatibility paradigms investigating short-term 

visuo-motor interaction provided strong evidence that visual perception can both 

interfere and facilitate motor performance. Similar results have provided a strong 

indication that motor preparation interferes with the subsequent reaction to a 

visual signal. Collectively, this automatic and bi-directional relationship for visuo­

motor interaction is a strong indication that common neural substrates may exist 

between action and observation. Recently, neuroimaging and neurophysiological 

studies, complimentary to the work on Mirror Neurons, have sought to 

understand the neural basis of these mechanisms. 

c. Electrophysiology and Neuroimaging 

Mirror neurons were first discovered by happenstance in the early 1990s 

(di Pellegrino, et aI., 1992). Prior to the subsequent reporting of these mirror 

properties (Gallese, et aI., 1996; Giacomo Rizzolatti, Fadiga, Gallese, et aI., 

1996), those same researchers made an attempt to identify a similar matching 

system in humans (Fadiga, et aI., 1995). Since that time, much attention has 

been devoted to discovering a MNS in the human brain (Buccino, et aI., 2001; 

Buccino, Binkofski, & Riggio, 2004; Buccino, Lui, et aI., 2004; Buccino & Riggio, 

2006; Buccino, Solodkin, & Small, 2006; Buccino, Vogt, et aI., 2004; Kilner, Neal, 

Weiskopf, Friston, & Frith, 2009; Giacomo Rizzolatti & Craighero, 2004; Giacomo 

Rizzolatti, Craighero, & Fadiga, 2002; Giacomo Rizzolatti, et aI., 2001; Giacomo 

Rizzolatti, Fogassi, & Gallese, 2008; Vogt & Thomaschke, 2007; Wilson & 

Knoblich, 2005). A number of researchers have used a range of 

electrophysiological and neuroimaging techniques including EEG, PET, fMRI, 

20 



Magneto encephalography (MEG), and Transcranial Magnetic Stimulation (TMS). 

Fadiga, et al. (1995) used TMS and measured motor potentials at the wrist and 

fingers. The experiment was based on the idea that if observation of motor 

activity activates similar premotor areas in the human brain, then this should 

augment the motor evoked potentials elected by the TMS. Specifically, the 

activity of the targeted motor areas was enhanced by the observation of motor 

movements. More specifically, the pattern of activation during observation was 

remarkably similar to the pattern of muscle activity during the execution of those 

same actions. This line of work was replicated by Strafell and Paus (2000) and 

extended by Gangitano, Mottaghy, and Pascual-Leon (2001). Strafella and 

Paus (2000) used a double-pulse technique to stimulate the left motor cortex. 

They reported that the activation of the motor areas is significantly modified by 

the observation of action performed by others. Gangitano, Mottaghy, and 

Pascual-Leone (2001), using a model performing a finger-to-thumb grasping 

motion as stimuli, reported that the amplitude of the motor potentials elicited by 

TMS were modulated by the gap between the finger and thumb across time. 

Another early indication that motor observation may share common neural 

networks with motor execution comes from a few studies that investigated mu 

suppression (Cochin, Barthelemy, Roux, & Martineau, 1999; Gastaut & Bert, 

1954). The mu rhythm is an EEG rhythm encompassed in the alpha range (8-12 

Hz). It is recorded from the scalp over the primary motor cortex with maximal 

amplitude during rest. It is strongly suppressed during the execution of motor 

actions and is thought to reflect the synchronized discharge of cortical neurons of 
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the motor cortex and may reflect processes involved in visuomotor integration 

(Pineda,2005). Gastaut and Bert (1954) reported a suppression of the mu 

rhythm in participants when the they watched a video depicting human motor 

actions (e.g. cycling, boxing). They reported that this rhythm was blocked when 

a subject would change his or her posture and, more interestingly, "it also 

disappeared when the subject identifies himself with an active person 

represented on the screen" even when there is no observable change in posture 

(pg.439). This work was supported by more recent work using modern 

technology (Cochin, et aI., 1999). 

More recent investigations have used MEG (Hari, et aI., 1998; Nishitani & 

Hari, 2000), PET (Decety, Chaminade, Grezes, & Meltzoff, 2002; Decety, et aI., 

1997; Giacomo Rizzolatti, Fadiga, Matelli, et aI., 1996), and fMRI (Buccino, et aI., 

2001; Chong, Cunnington, Williams, Kanwisher, & Mattingley, 2008; lacoboni, et 

aI., 1999; Kilner, et aI., 2009). These methods were used to localize the areas 

involved in motor observation and execution. Specifically, brain regions were 

mapped using PET during different grasping, observation, and control conditions 

(Giacomo Rizzolatti, Fadiga, Matelli, et aI., 1996). Analyses revealed significant 

differences between these conditions. Specifically, there was an increased level 

of activation for the grasping observation group compared to the group observing 

the objects alone. The regions showing this increased activation included the left 

inferotemporal cortex, and the caudal portion of the left inferior frontal gyrus. 

These results demonstrate that the left inferotemporal cortex and the left inferior 
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frontal gyrus might be the functional homologues of the monkey superior 

temporal sulcus and F5, respectively. 

In another PET study, participants watched different action related videos 

depicting either pantomime actions (e.g. opening a bottle, hammering a nail) or 

physically related, but meaningless actions (Decety, et aI., 1997). They 

instructed participants to either observe the video with the intent to imitate the 

action or to observe only with the intent to recognize the action later. The 

authors reported that the pattern of activation was dependent on both the nature 

of processing and the characteristics of the actions. Observing actions with the 

intent to recognize led to increased activation in memory related structures (i.e. 

right parahippocampal gyrus) while observing meaningful action with the intent to 

imitate activated structures involved in motor planning (i.e. supplementary motor 

area), voluntary action, and word generation (i.e. dorsolateral prefrontal cortex). 

Others, using fMRI, examined strict observation versus imitation of a 

motor act (Iacoboni, et aI., 1999). Half the participants were instructed to observe 

only, while the other half were instructed to imitate the observed action. The 

imitation trials showed significantly higher signal intensity. The authors reported 

this effect in the frontal operculum, parietal operculum and anterior parietal 

region. It should be noted that the left frontal operculum corresponds to Broca's 

area (BA 44), a homologous area to F5. Nishanti and Hari (2000) replicated 

these findings using MEG, and also reported similar activation in Brodman area 

44. This provides a strong indication that homologous areas of the human brain 

to that of the primate MNS may be active during action observation. 
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Taken together, the presented evidence suggests the observation of 

action is directly related to the execution of action. A number of researchers 

employing a wide range of electrophysiological methods have demonstrated a 

strong connection between action observation and motor execution. These 

actions have ranged from object and non-object related actions using hands, 

arms, feet, and mouth. While many of these researchers endeavored to prove 

the existence of a human MNS, most simply confirmed the possibility that it 

exists in humans. These studies provide a strong indication that there may in 

fact be a human homolog of the MNS described in non-human primates. 

Unfortunately, definitive proof is still lacking. While several electrophysiological 

and brain imaging studies clearly indicate that common areas of the brain are 

involved in both action and observation of action, there is no definitive evidence 

that individual neurons located in these areas are endowed with mirror 

properties. 

d. Section Summary 

Prior to the identification of the MNS in non-human primates, a number of 

researchers proposed matching systems to account for human imitation and 

action understanding. A preeminent theory of action understanding, Direct 

Mapping, suggests that we understand the actions of others by mapping the 

visual representation of an observed action onto an existing motor representation 

of our own. In other words, action observation and motor execution share 

common neural substrates and that these commonalties are directly related to 

the degree to which these observed and executed action are similar. The 
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discovery of a subset of motor neurons in non-human primates that respond to 

the observation of similar hand and mouth motor action provided the earliest 

physiological evidence that such a system exists. While the existence of mirror 

neurons in non-human primates has been proven via single-cell recordings, their 

existence in humans is not yet definitive. A wealth of behavioral data 

demonstrated the visuomotor interactions were automatic and bi-directional. 

This gave additional support that common neural pathways exist between action 

observation and motor execution. With the advent of neuroimaging techniques, 

researchers explored new ways to investigate this issue. Using a range of 

methods, several researchers showed that observation of hand actions activate 

areas of the human brain corresponding to, or directly related to SA 44, the 

human homolog of area F5, and the supplementary motor area. These findings 

strongly suggest that in the absence of movement or motor preparation, the mere 

observation of motor action elicits neural responses in areas of the human brain 

that are homologous to the MNS described in primates. Researchers have 

directly assessed the merits of a Direct Mapping view of action understanding 

and the possible existence of a MNS in humans. While the evidence is 

compelling, it is not conclusive. As yet, there is no definitive proof that these 

areas contain legitimate mirror neurons. 
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III. MOTOR IMAGERY 

Over the last 60 years, athletes, coaches and sport psychologists have 

used mental imagery to improve performance in hopes of attaining an advantage 

over competitors (Moran, 2002). Although the underlying mechanisms remained 

unclear, researchers using behavioral and physiological measures reported that 

task performance can be improved via mental imagery (Feltz & Landers, 1983). 

Until recently, the impact of mental imagery on task performance was a 

psychological phenomenon. One of the earliest empirical tests of mental 

imagery was an investigation of the connection between mental activities and the 

nervous and muscular systems (Jacobson, 1932). Since that time, more specific 

examinations of mental imagery have been carried out. 

Specifically, researchers have been increasingly interested in determining 

if cognitive experiences and mental activities share properties of perceptual 

experiences and, more specifically, if these processes potentially share common 

neural correlates. More specifically, recent work in mental imagery demonstrates 

distinct dissociations between visual imagery, motor imagery, auditory imagery 

and olfactory imagery (Jeannerod, 1994, 1995; Jeannerod, et aI., 1995; Kosslyn, 

Ganis, & Thompson, 2001; Kosslyn, et aI., 1999; Kosslyn, Thompson, & Alpert, 

1997; O'Craven & Kanwisher, 2000). Indeed, neuropsychological studies have 

demonstrated that visual imagery shares common neural correlates with visual 

perception 
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(Farah, 1988; Farah, Hammond, Levine, & Calvanio, 1988; Kosslyn, et aL, 1999; 

Kosslyn, et aI., 1997; O'Craven & Kanwisher, 2000). Others have demonstrated 

that auditory perception shares the same neural substrates as musical imagery 

(Kraemer, Macrae, Green, & Kelley, 2005; Tinti, Cornoldi, & Marschark, 1997; 

Zatorre, Halpern, Perry, Meyer, & Evans, 1996). Similar results have been 

reported for Olfactory Imagery (Bensafi, et aL, 2003; Bensafi, Sobel, & Khan, 

2007; Kosslyn, 2003; Stevenson & Case, 2005), and Tactile Imagery (Yoo, 

Freeman, McCarthy, & Jolesz, 2003). Reports on gustatory imagery are similar 

but inconclusive due to the extensive and interconnected nature of gustatory 

processing (Jones, Fontanini, & Katz, 2006; Kobayashi, et aL, 2004). 

Similarly, Johnson (1982) outlined a Functional Equivalence view that 

such a mechanism exists between motor imagery and movement. This view 

asserts that imagery and motor movement are functionally equivalent. This also 

predicts that, aside from muscle contraction, they are neurologically equivalent. 

While Johnson does not make a strict distinction between visual imagery and 

motor imagery, a Functional Equivalence view of motor imagery and movement 

still has merit and the model has received support elsewhere (Jeannerod, et aL, 

1995; Jeannerod & Frak, 1999; Kosslyn, et aL, 2001). The following sections will 

introduce and discuss different lines of research that support the view that motor 

imagery and movement are functionally, and, with the exception of muscular 

activation, neurologically equivalent. These areas include behavioral measures, 

electrophysiological studies, and neuroimaging studies. 
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a. Behavioral Work 

Sport Psychology abounds with anecdotal and empirical evidence of the 

facilitative effect of mental practice on task performance. As early as the 1980s, 

hundreds of studies investigated the impact of mental practice on athletic 

performance (Feltz & Landers, 1983). Although they do not propose that mental 

practice directly involves motor elements, the use of imagery to enhance athletic 

performance was still intensively investigated (Callow & Hardy, 2004; Cooper, 

Tindall-Ford, Chandler, & Sweller, 2001; Cumming & Hall, 2002; Cumming, Hall, 

Harwood, & Gammage, 2002; Driskell, Copper, & Moran, 1994; Moran, 2002; 

Ram, Riggs, Skaling, Landers, & McCullagh, 2007; Short, Tenute, & Feltz, 2005; 

Taylor & Shaw, 2002). The vast majority of evidence demonstrated that mental 

practice and imagery facilitate task performance. The earliest indication that 

imagery and motor execution may share common neural mechanism came from 

evidence that EMG activity during imagery was similar to the actual muscle 

activity during certain actions (Jacobson, 1932; Wehner, Vogt, & Stadler, 1984) & 

Berger and Hadley (1975). Despite these indications, sport psychologists often 

ignored the neural mechanisms underlying the effects of mental practice and 

mental imagery. 

Others related the similarities of the timing of real and mentally 

represented actions (Decety, Jeannerod, & Prablanc, 1989; Kosslyn, Ball, & 

Reiser, 1978; Shepard & Metzler, 1971). Such investigations have included 

mental scanning (Kosslyn, et aI., 1978) and mental rotation of 3-D objects 

(Shepard & Metzler, 1971). In these cases, the time it takes to mentally scan a 
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scene, or mentally rotate an object is remarkably similar to the time it takes to 

actually perform those actions. However, these researchers were not drawing a 

distinction between visual imagery and motor imagery. Mentally scanning a 

scene and mentally rotating an object do not necessarily involve imagined motor 

action. It has been proposed that visual imagery and motor imagery are neurally 

dissociable processes (Jeannerod, 1994; Jeannerod & Frak, 1999; Sirigu & 

Duhamel, 2001). 

Some have explicitly defined a distinction between traditional visual 

imagery and motor imagery as well as a distinction between first-person motor 

imagery and third-person mental imagery (Sirigu & Duhamel, 2001). Mentally 

represented walking is an example of first-person motor imagery (Decety, et aI., 

1989). Here, participants walked or imagined walking from a starting point to a 

target at various distances (5, 10, and 15 m). Time taken to imagine walking was 

nearly identical to actual walking time. Contemporary views of motor imagery are 

also referred to as motor ideation, motor simulation, or kinesthetic imagery. 

Akin to the work in sport psychology, Mulder and colleagues (Theo 

Mulder, Zijlstra, Zijlstra, & Hochstenbach, 2004) examined the impact of motor 

imagery on improving task performance on a simple toe abduction movement. 

Participants were tested on their ability to abduct their big toe on their dominant 

foot. Participants were then characterized as those with 'zero' ability to perform 

the target action or those who could already perform the movement. Half of each 

group practiced the skill physically while the other half of each group practiced 

only mentally. Those who began the study with the ability to abduct their big toe 
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showed significant improvement from either physical or mental practice. The 

participants with no ability at the beginning only showed improvement from 

physical practice. This indicated that mental practice may be activating a motor 

representation for the target action, leading to better performance. The 

participants without an existing motor repertoire for the given action could not 

learn one via mental activation. Therefore, there could be no direct connection 

between motor imagery and a motor program. Thus, the behavioral work on 

motor imagery has led to a gradual redefinition of motor imagery, ultimately 

facilitating better research ultimately giving better credence to the possibility that 

motor imagery involves the same neural mechanisms as motor execution. 

b. Motor Potentials and Motor Evoked Potentials 

The term Motor Evoked Potential refers to two different electro­

physiological components. The first involves recording electromyographic 

activity coupled with Transcranial Magnetic Stimulation. A number of studies 

using this technology have been discussed previously. The evoked muscular 

responses are referred to as "motor potentials" or "motor evoked potentials" 

because the muscle activity is elicited (or at least augmented) by the TMS. 

These motor evoked potentials are not to be confused with evoked potentials 

recorded from the scalp during motor movements. The latter are EEG 

components time-locked to repeated muscular contractions. Henceforth, the 

term Motor Evoked Potential wi" refer to the electromyographic activity elicited by 

TMS and Motor Potential wi" refer to the event-related potential recorded from 

the scalp. 
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Motor Potentials have been used since the 1960s to investigate motor 

activity and a contingent negative variation (Walter, Cooper, Aldridge, McCallum, 

& Winter, 1964) associated with motor planning and motor preparation (Deecke, 

Scheid, & Kornhuber, 1969; Gilden, Vaughan, & Costa, 1966; Kornhuber & 

Deecke, 1965; Vaughan, Costa, & Ritter, 1968). Recent work investigated the 

similarity of the Motor Potentials and motor evoked potentials elicited by motor 

execution, motor imagery, and motor suppression. 

The speculation that common neural pathways may mediate both motor 

imagery and motor execution raised intriguing questions. Does the pattern of 

activity differ between execution and imagery, with particular interest in 

hemispheric differences due to the laterality of motor control? Does this laterality 

exist in imagery as well? Are the somatosensory and/or premotor cortices 

involved in motor imagery, in addition to the primary motor areas, as it is in motor 

execution? A number of researchers employing electrophysological measures 

endeavored to answer these questions. Beisteiner and associates (Beisteiner, 

Hollinger, Lindinger, Lang, & Berthoz, 1995) required participants to either 

imagine or execute sequenced hand movements in response to different visual 

cues. The pattern of activity was remarkably similar between imagined and 

executed trials. Specifically, the authors reported that the unilateral trials led to 

similar contralateral changes in activation for both imagined and executed 

movements. To address the previous questions, it appears that neural activation 

during imagery is very similar to motor activation and as such is also largely 

lateralized. Subsequent studies would be necessary to determine if 
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somatosensory areas are involved during motor imagery. 

While this line of work demonstrated that motor imagery may be 

neurologically similar to motor execution, this does not explain why the motor 

activity is not being initiated. Motor planning and motor inhibition also activate 

motor representations of movements but, like imagery, are not executed 

movements. It could be argued that motor imagery may be more similar to motor 

preparation or motor suppression than motor execution. The use of 'Go-NoGo' 

paradigms employed by a number of researchers demonstrated that execution 

and inhibition of motor responses to visual stimuli involve different components, 

therefore indicating that response inhibition differs neuronally from motor 

execution (Gemba & Sasaki, 1989, 1990; Jackson, Jackson, & Roberts, 1999; 

Nativ, Lazarus, Nativ, & Joseph, 1992). Further, Naito and Matsumura (1994) 

also used a Go-NoGo paradigm to compare motor execution to both motor 

imagery and motor suppression. The peak latency of a negative deflection 

observed on imagery trials was similar to movement trials (- 260 ms) and 

distinctly different than NoGo trials (-215 ms). In addition, the peak amplitude 

was smaller for imagery trials (4.7 +/- 1.8 IJV) than NoGo trials (5.5 +/- 1.5 IJV) 

and corresponded with the amplitude of movement trials (4.4 +/- 1.7 IJV). Thus, 

the Motor Potentials of imagery trials are more characteristic of movement trials 

than NoGo trials. This indicates that motor imagery is neurologically similar to 

motor execution and distinctly different than motor suppression. 

Kasai and colleagues (Kasai, Kawai, Kawanishi, & Yahagi, 1997) used 

motor evoked potentials to further investigate the differences between motor 

32 



imagery and motor suppression. In addition to the TMS, Kasai and colleagues 

also recorded the H-reflex. The H-reflex is an electrically induced muscle reflex 

similar to the mechanical stretch reflex (e.g. knee-jerk reflex). Together, these 

methods were used to investigate the role of the primary motor cortex and the 

spinal chord in motor imagery. While minor EMG activity was recorded during 

imagery trials, no difference in the H-reflex was found between rest and imagery 

conditions. This suggests that that absence of overt motor movements during 

imagery is likely mediated by the primary motor cortex rather than inhibitory 

signals mediated by the spinal chord. 

c. Neuroimaging Studies 

As seen with the work on Mirror Neurons, modern neuroimaging 

technology, predominantly fMRl, has provided considerable contribution to the 

understanding of the neural basis of motor imagery. While the previous two 

sections provided some evidence that motor execution and motor imagery may 

be functionally and neurologically similar, there is little hard evidence. It should 

be noted that modern views of motor imagery hold that overt motor movements, 

often measured by EMG activity, are absent during motor imagery trials. This is 

thought to control for any neural activation responsible for inadvertent muscle 

activation. Regrettably, completely eliminating EMG during imagery is quite 

difficult and nearly impossible for some participants. To circumvent this obstacle, 

many studies provide short training trials to ensure participants understand and 

are able to execute imagery trials with very little EMG activity and without motor 

movements. In some, but not all of these cases, trial-by-trial feedback is often 
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provided to the subject. 

The earliest investigation using neuroimaging technology took measures 

of regional cerebral blood flow using PET (Ingvar & Philipson, 1977). Measures 

were taken during rest, motor imagery, and motor movements. Real and 

imagined movements involved the rhythmic opening and clinching of the right 

hand. While the present investigators did not control for overt movements during 

imagery, the results nevertheless suggested that different areas of the brain, 

rather than common areas, are involved in motor imagery and actual execution. 

This indicated that two separable mechanisms for motor execution and motor 

ideation. They reported that increases in blood flow during action were seen in 

the Rolandic areas, whereas increases during ideation were seen in frontal and 

temporal areas. This would seem to indicate that the mechanisms involved in 

motor ideation differ from those involved in motor movement. 

However, a subsequent follow-up of this work suggested otherwise 

(Roland, Larsen, Lassen, & Skinhoj, 1980). Here, regional cerebral blood flow 

was measured during the same types of conditions: rest; motor planning; and 

motor execution. There were increases in blood flow in the contralateral primary 

motor area only during execution. In contrast, bilateral activation of the 

supplementary motor area was found for both motor planning and motor 

execution. Contrary to Ingvar and Philipson (1977), the supplementary motor 

area was shown to be involved in both motor execution and motor planning. 

In more recent investigations, brain imaging has employed the use of 

event-related and time-resolved fMRI (Cunnington, Windischberger, & Moser, 
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2005; Leonardo, et aL, 1995; Lotze, et aL, 1999; Porro, Cettolo, Francescato, & 

Baraldi, 2000; Porro, et aL, 1996; Rao, et aL, 1993; Roth, et aL, 1996; Sabbah, et 

aI., 1995). Leonardo and colleagues (Leonardo, et aL, 1995) tested participants 

with alternating periods of rest and rehearsal of a finger-to-thumb sequence. 

Rehearsal of this sequence was either real or imagined movement. This was 

one of the first studies that made an attempt to control EMG activity during 

imagery trials. The authors identified several regions of interest. These regions 

were defined as primary sensorimotor cortex (,sensorimotor' is an ambiguous 

descriptor for both the precentral and postcentral gyri), posterior parietal cortex, 

inferior parietal lobe, primary motor cortex, and premotor cortex. These areas 

were directly compared across the different conditions. Areas showing 

significant signal intensities from motor movements included the sensory/motor 

areas, posterior parietal areas and premotor cortex. Similar regions were 

activated by motor ideation including sensorimotor cortex and premotor cortex. 

These results replicated findings from previous work (Rao, et aL, 1993). 

While this is a strong indication that both motor movement and motor 

imagery are activating common motor areas, it leaves the question why the 

primary motor area was not showing increased activity, particularly during motor 

movements. Subsequent work, on the other hand, did find activation in the 

contralateral primary motor cortex (Roth, et aI., 1996). Motor execution led to 

Significant activation of the contralateral primary motor cortex, primary 

sensorimotor cortex and premotor cortex. Mental simulation of this movement 

also led to a significant activation of the contralateral primary motor cortex and 
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premotor cortex, but to a lesser extent than during movement trials. Activation of 

the sensorimotor cortex during the movement condition was not shown in 

imagery. This was also the first indication that the primary motor cortex, often 

associated with movement conditions, was also activated by imagery conditions. 

Subsequent work has replicated these findings (Lotze, et aL, 1999; Porro, 

et aI., 2000; Porro, et aL, 1996), namely, the activation of the contralateral 

primary motor cortex during imagery. A critical difference between this and prior 

work was the direct comparison to visual imagery. Visual imagery was 

considered a control condition to tease apart any activation during motor imagery 

that is characteristic of the imagery component rather than the motor component 

of the mental activity. The visual imagery condition required participants to 

mentally represent a familiar landscape. The experimenters gave specific 

instructions not to imagine themselves moving any part of the body, but to scan 

the scene and focus on particular objects within it. Similar movement and motor 

imagery conditions were used, each of which included real or imagined 

sequential finger-to-thumb opposition movements. Different regions of interest 

were compared across conditions. The regions of interested included anterior 

and posterior portions of the precentral gyrus, and the postcentral gyrus (Porro, 

et aL, 1996). Movement trials showed significant increases in activation in all 

areas compared to both motor imagery and visual imagery. Similarly, motor 

imagery, compared to visual imagery, also showed significant increases in mean 

activation levels in the anterior and posterior precentral gyrus, and postcentral 

gyrus. Follow up work also identified increased activity in the contralateral 
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premotor cortex and supplementary motor area, but to a lesser extent during the 

imagery trials (Porro, et aI., 2000). 

Lotze, and associates (1999) using a full brain scan rather than specific 

regions found comparable results. The contralateral primary motor and 

somatosensory cortices were found to be significantly activated along with 

weaker bilateral activation of the supplementary motor area during movement 

conditions. In addition, ipsilateral activation of the cerebellum was also 

significant. Imagery trials showed a stronger bilateral activation of the 

supplementary motor area, but weaker activation of the primary motor and 

somatosensory cortices. 

While even the most recent work admits that the degree to which the 

neural substrates of motor imagery and motor performance overlap remains 

unclear (Hanakawa, Dimyan, & Hallett, 2008), there still exists strong evidence to 

suggest that imagined and executed movement activate similar motor areas, 

particularly the contralateral primary motor cortex (Lotze, et aI., 1999; Porro, et 

aI., 2000; Porro, et aI., 1996; Roth, et aI., 1996; Sabbah, et aI., 1995) and 

premotor areas (Leonardo, et aI., 1995; Rao, et aI., 1993; Roth, et aI., 1996). 

While these areas were commonly activated by motor imagery and motor 

execution, it is also quite clear the signal intensities were weaker for motor 

imagery than motor execution. This provides good groundwork for future 

research. Specifically, the evidence suggesting that the supplementary motor 

area, or the somatosensory cortex is involved in motor imagery is mixed. 
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d. Section Summary 

The impact of mental imagery is well established and has been intensively 

investigated since the 1960s (Feltz & Landers, 1983; Richardson, 1967). Sport 

psychologists, coaches and athletes regularly used mental activities to improve 

performance. These activities included but are not limited to psychological 

preparation (Le. getting psyched up), visual imagery and motor imagery. These 

activities were thought to physically and mentally prepare someone for athletic 

competition. However, the mechanisms by which these effects worked remained 

unknown. 

After a number of behavioral studies examined mental imagery and motor 

execution, subsequent investigations of motor imagery were specific to imagined 

motor movements from a first-person perspective. Such investigations 

evidenced a possible neural connection between motor imagery and motor 

execution. Specifically, it was hypothesize that motor imagery and motor 

movements are functionally equivalent (Jeannerod, 1994; Jeannerod & Frak, 

1999; Johnson, 1982; Kosslyn, et aI., 2001). 

As a result of this speculation, electrophysiological and neuroimaging 

techniques were employed to test this hypothesis. What can be gleaned from 

that work is that motor imagery is remarkably similar to motor performance. 

While it is not proven to be functionally and neurologically identical, the two 

activities do in fact share common neural pathways. It is clear that executed and 

imagined movements activate similar motor areas including the contralateral 

primary motor cortex and, likely, the premotor cortex. However, results indicating 
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bilateral activation of the supplementary motor area and a number of parietal 

areas including the somatosensory cortex are a bit more idiosyncratic. The roles 

of these areas in motor imagery and motor execution need to be further 

investigated. In addition, it should be noted that while common areas of 

activation are reported between motor imagery and execution, the mean 

activation levels are consistently weaker during imagined movements compared 

to those that are executed. This suggests that while common areas are 

stimulated, the degree to which they are activated is modulated by the task. 
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IV. CRITICAL ISSUES 

Two bodies of literature were reviewed, each lending support to major, 

distinct theoretical models involving human motor control. Direct Mapping offers 

a neurological explanation to account for observational learning, action 

understanding, and human imitation. The Functional Equivalence model of 

motor imagery proposes that motor execution and motor imagery are functionally 

equivalent, thus offering a neurological explanation for the relative impact of 

motor imagery on motor performance. In each case, the models suggest clear 

predictions that common neural pathways exist for multiple motor-related 

functions. Direct Mapping suggests that we understand the actions of others by 

mapping the visual representation of an observed action onto an existing motor 

representation of our own. Thus, neural mechanisms responsible for motor 

execution are also involved in action observation. Similarly, the Functional 

Equivalence model of motor imagery suggests that motor imagery and motor 

execution are functionally the same. Underlying this assumption is the 

implication that the neural mechanisms responsible for motor execution are also 

activated during motor imagery. Despite the apparent similarities and the 

relationship with motor execution, these two perspectives are investigated largely 

independent of each other. Each line of work serves to elucidate a number of 

questions and predictions concerning these models. Despite the apparent 

differences in these fields of work, the content is not all that dissimilar, each 
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drawing connections to the neural substrates of motor execution. While the two 

fields progressed largely independent of each other, the majority of the methods 

are common between them, often reporting comparable results. A comparison of 

these two bodies of literature reveals a number of interesting commonalities; 

most notably are the motor related areas of the brain reported to be involved in 

these activities. These areas include the frontal operculum (BA 44), dorsolateral 

prefrontal cortex (BA 45), primary motor cortex (M1) including Rolandic areas, 

the premotor cortex (BA 6) including the supplementary motor area (SMA), the 

somatosensory cortex (S1) and other inferior portions of the parietal lobe. 

While some areas have been strictly associated with action observation, 

and others with motor imagery, many are directly related to motor execution. 

Specifically, the SMA, often associated with motor planning and execution has 

been implicated to some degree in both motor observation and motor imagery. 

Unfortunately, few researchers have addressed both motor imagery and motor 

observation in concert. It is reasonable to hypotheSize that even if similar 

activation occurs, the sequence in which these areas are activated may differ 

between these motor related processes. In short, despite the wealth of evidence 

supporting both Direct Mapping and Functional Equivalence, the degree to which 

the processes outlined by these models and the related brain areas overlap 

remains unsettled. Even if these activities lead to activation of similar motor 

areas of the brain, it is unclear if these areas are activated in the same sequence 

and order. In other words, the manner and extent to which motor observation 

and motor imagery compare is still largely overlooked. Such a comparison would 
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benefit both fields tremendously. The major goal of the present project is to 

further investigate both the spatial and temporal characteristics of motor 

observation and motor imagery in concert. 

The first major aim of this project examines the spatial characteristics of 

the neurological differences and similarities between motor observation, motor 

performance and motor imagery. A number of neuroimaging studies have 

established that several brain areas are involved in both motor observation and 

motor execution. These areas include portions of the inferior frontal gyrus and 

the inferior parietal lobule (Buccino, et aI., 2001; Buccino, Binkofski, et aI., 2004; 

lacoboni, et aI., 1999; Nishitani & Hari, 2000; Giacomo Rizzolatti, Fadiga, Matelli, 

et aI., 1996). These areas correspond nicely with F5 and PF of the MNS 

identified in non-human primates. However, only mixed results exist suggesting 

that other motor-related areas, such as premotor areas, M1, or S1 are involved in 

motor observation (Buccino, et aI., 2001; Cochin, Barthelemy, Lejeune, Roux, & 

Martineau, 1998; Cochin, et aI., 1999; Decety, et aI., 1997). Still, both PET 

(Decety, et aI., 1997; Decety, et aI., 1994) and fMRI studies (Buccino, et aI., 

2001) indicated that the SMA might also be involved in motor observation. With 

these considerations in mind, it can be hypothesized that the SMA, along with the 

inferior frontal and angular gyri are responsive to motor observation, while M1 

and S 1 are not. 

Furthermore, several neuroimaging studies also assessed the role of 

motor-related brain areas involved in motor imagery. The earliest work using 

Single Photon Emission Computed Tomography provided only conflicting reports 
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(Ingvar & Philipson, 1977; Roland, et aI., 1980). Since that time, more recent 

investigations, primarily using fMRI, have reported more consistent conclusions. 

Strong evidence demonstrates that motor imagery involves contralateral 

activation of M1 and S1 as well as activation of the SMA (Leonardo, et aI., 1995; 

Lotze, et aI., 1999; Naito, Roland, & Ehrsson, 2002; Porro, et aI., 2000; Porro, et 

aI., 1996; Roth, et aI., 1996; Sabbah, et aI., 1995). However, the signal intensity 

of the activation of the SMA is characteristically weaker than the activation of M 1 

and S1. Based on the available evidence, the following hypotheses are 

advanced: 

Hypothesis 1: All three motor-related experimental conditions (Motor 

Observation, Motor Performance, and Motor Imagery) will involve activation of 

the SMA compared to a non-motor related control (Visual Imagery). In addition, 

the activation of the SMA will be weaker in both Motor Observation and Motor 

Imagery compared to Motor Performance 

Hypothesis 2: Motor Performance and Motor Imagery will lead to activation of 

the contralateral primary motor and somatosensory cortices compared to both 

Motor Observation and Control. 

Hypothesis 3: Motor Performance and Motor Observation will show activation in 

the posterior portion of the inferior frontal gyrus (BA 44) and the angular gyrus 

(BA 39), predominantly in the left hemisphere. 

The second major aim of the present project is to explore the temporal 

characteristics of these processes. The coordination among these areas across 

these different motor functions has been almost entirely ignored. Currently, 

43 



Movement-Related Potentials are characterized by both pre- and post-movement 

components (Brunia & van den Bosch, 1984; Kornhuber & Deecke, 1965; 

Vaughan, et aI., 1968). The earliest pre-movement component is the 

Bereitschaftspotential (Kornhuber & Deecke, 1965). This preparatory potential is 

a slow negative shift that begins as early as 2 seconds prior to movement. It is 

also referred to as the readiness potential, or the N1. In some cases, it is 

separated into two separate components: an early bilateral negativity and a later 

lateralized negativity. A lateralized positive wave (P1) known as the Pre­

Movement Positivity follows the readiness potential. Lastly, the Motor Potential, 

or N2, is a negativity recorded over the contralateral primary motor cortex that 

occurs about 60 ms prior to movement. 

Post-movement potentials occur simultaneously with movement execution 

and the characteristics of these components tend to be task specific (e.g. goal­

directed, movement monitoring, directed attention, relaxation potentials). It 

should be noted that the N1, P1, and N2 components just described should not 

be confused with the N 1, P1, and N2 components recorded from visual and 

auditory event-related potentials. The eliciting events, latencies, amplitudes and 

topographical distributions of visually and auditorally evoked potentials are 

distinctly different than the motor-related components just described. To be 

clear, all references to N 1, P1, and N2 will, henceforth, refer only to the motor 

related components. 

Few studies exploring the human motor potential have compared motor 

movement to motor inhibition. These studies use Go-NoGo paradigms (Gemba 
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& Sasaki, 1989, 1990; Jackson, et aI., 1999; Naito & Matsumura, 1994; Nativ, et 

aI., 1992). In addition, few directly compared motor execution to motor imagery 

(Beisteiner, et aI., 1995; Caldara, et aI., 2004; Naito & Matsumura, 1994; 

Pfurtscheller & Neuper, 1997; Romero, Lacourse, Lawrence, Schandler, & 

Cohen,2000). Taken together, much of the evidence suggests that motor 

imagery is distinctly different than motor inhibition and more similar to motor 

execution. Specifically, these investigations reported that motor imagery and 

motor execution share similar ERP components, reflecting comparable neural 

activity in S1 (Pfurtscheller & Neuper, 1997), Premotor areas (Romero, et aI., 

2000), and M1 (Caldara, et aI., 2004). However, most agree that the component 

amplitudes are smaller for motor imagery than motor execution (Beisteiner, et aI., 

1995; Naito & Matsumura, 1994). 

Others employing EEG have also compared motor execution to motor 

observation (Babiloni, et aI., 2002; Babiloni, Carducci, et aI., 2003; Babiloni, Del 

Percio, et aI., 2003; Calmels, Holmes, Jarry, Hars, et aI., 2006; Holz, 

Doppelmayr, Klimesch, & Sauseng, 2008). While the series of studies by 

Babiloni and colleagues (Babiloni, et aI., 2002; Babiloni, Carducci, et aI., 2003; 

Babiloni, Del Percio, et aI., 2003) report conflicting accounts, others have 

provided good evidence indicating that motor observation and motor 

performance share similar ERP components (Calmels, Holmes, Jarry, Leveque, 

et aI., 2006; Holz, et aI., 2008). 

Further, Holz and associates (2008), in contrast to the majority of 

neuroimaging work, reported activation of M1 and premotor areas including the 
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SMA during motor observation. This unique difference raises the question of 

whether the primary motor cortex is involved in motor observation. With this in 

mind, the following three additional hypotheses are also presented. 

Hypothesis 4: Because the SMA may be activated in all three experimental 

conditions (Hypothesis 1), there should be a comparable N1 component in all 

three experimental conditions compared to the control. In addition, the amplitude 

of the N 1 is also likely to be larger for Motor Performance compared to both 

Motor Imagery and Motor Observation. Further, all three experimental conditions 

will also share similar latencies of the N1 component. 

Hypothesis 5: Similarly, contralateral sensorimotor areas, thought to be 

responsible for the Premovement Positivity should result in a comparable P1 

during Motor Performance and Motor Imagery, and be distinctly different than 

both Motor Observation and the control. While Holz and colleagues (2008) 

reported activation of M1 during Motor Observation, this is in stark contrast to the 

majority of electrophysiological and neuroimaging work investigating the neural 

substrates of motor observation. 

Hypothesis 6: Lastly, the N2 is associated with the initiation and accompaniment 

of movement, respectively. As such, the presence of these components will be 

restricted to Motor Performance and will be absent in both the Motor Imagery and 

Motor Observation conditions. 
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v. METHODS 

a. Participants 

Twenty-Seven adult volunteers between 18 and 25 years of age 

participated. Participants were recruited from the undergraduate student 

population at the University of Louisville. They were recruited through online 

advertisements and bulletin boards. Each participant was paid $10.00 for 

participation. All Participants provided written informed consent prior to 

participation. An estimated effect size of 0.35 and a power estimate of 0.8 were 

used to calculate an expected sample size of 8. Similar estimates are sited 

within the literature (Romero, et aI., 2000). This standard was met for both male 

and female participants. The study was approved by the University of Louisville's 

Institutional Review Board. Participant confidentiality was also maintained 

according to the standards set forth by that Board. 

Screening Procedures: 

All Participants had normal or corrected to normal vision and were 

screened for history of neurological disorders, head injury, and medications that 

affect the EEG response. The Neuropsychological Screening Questionnaire 

involved 8 self-reported yes-or-no questions concerning Neuropsychological 

History. In addition, all participants completed the Edinberg Handedness 

Inventory (Oldfield, 1971) to assess hand preferences. This scale ranges from 

+1.0 (strongly right-handed) to -1.0 (strongly left-handed). Further, a generic 4-
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point, Likert Type rating scale was used to assess the participants' ability to 

perform mental and motor imagery required by the task (1 = always performed 

imagery, 2 = often performed, 3 = rarely performed, 4 = never performed). One 

participant was omitted due to a history of head injury. Five (5) were omitted due 

to various prescription medications shown to disrupt recordings of ongoing EEG. 

Three (3) participants were omitted due to low Imagery Ratings exceeding a 

value of 2.0 that indicated a persistent inability to perform either the mental 

imagery or motor imagery required during the task. 

Participant Characteristics: 

Eighteen adult participants (10 Female, Mean Age = 22.8 years) were 

included in the analyses. All participants were strongly right-handed (LQ = 74.43, 

St. Dev = 20.7). Mean imagery ratings for Motor Imagery and Visual Imagery 

were 1.40 (.339) and 1.29 (.3), respectively. 

b. Procedure 

Stimuli: 

The stimuli consisted of a fixation point (a small plus sign in the center of a 

computer monitor), a neutral image and two target images. All images were 

gray-scale images of a human right hand situated above two small objects. The 

hand was presented from a third-person perspective. The two objects were a 

baseball-sized sphere and a small marble. The Neutral Image depicted the hand 

in a neutral and relaxed posture, ambiguously located above and in between the 

two objects. See Figure 2. 
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Figure 2. The Neutral Image depicting a hand in a neutral position presented 

from a third-person perspective. 

The Target Image depicted the hand grasping one of the two objects . The 

perspective of the image is important, as it represents an action performed by 

another person. Therefore it is presented from a third-person perspective. 

Further, the difference in target images (which object is grasped) requires two 

different types of goal directed, object-related actions. One requires whole hand 

prehension, while the other requires more precise finger-to-thumb opposition. 

See Figure 3. 
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Figure 3. The Target Images; The left image depicts a hand using a finger-to­

thumb motion to grasp the marble while the right image depicts a hand using a 

whole-hand prehension to grasp the ball. 

This is consistent with the tasks involved in the majority of the existing 

literature supporting both Direct Mapping and Functional Equivalence. In 

addition, having two separate and distinct images prevented the participant from 

anticipating the motor act and activating a motor program prior to the onset of the 

target stimulus. In addition, still images were chosen rather than a video 

presentation to ensure an abrupt onset of the stimulus needed to elicit the ERP. 

The need for a punctual stimulus is imperative. 

Using a still image is a common and well-accepted alternative to 

movement-based stimuli. A number of studies have illustrated that still images 

depicting hand-actions are effective in motor-visual and visuo-motor priming 

effects (Castiello, et aI. , 2002; Craighero, et aI., 2002; Vogt, et aI., 2003). 
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Further, Sturmer, Aschersleben, and Prinz (2000) illustrated that images 

depicting end-state postures of hand related actions such as grasping were 

effective in producing visual and motor priming effects. The authors concluded 

that movement-based and state-based mechanisms correspond to process­

oriented and result-oriented forms of imitation, respectively. Thus, state-based, 

result-oriented forms of imitation involve attempts to attain the same goal. This 

relates nicely to the distinction made between strictly and broadly congruent 

Mirror Neurons. The majority (-60%) of Mirror Neurons are classified as broadly 

congruent Mirror Neurons where the effective observed and effective executed 

actions correspond in terms of the type and the goal of the action. The authors 

ultimately concluded that goal-correspondence may be stronger than process­

correspondence. 

A few fMRI studies report that Mirror Neurons are also responsive to 

inferred action when the action itself cannot be seen directly. This effect 

occurred using partially occluded actions (Umilta, et aI., 2001) and action-related 

sounds (Kohler, et aI., 2002). For the present project, an image depicting a hand 

in a neutral state precedes the target image that illustrates the grasping action. 

Taken together, the two images give the impression or illusion of motion allowing 

the observers to infer the action taken by the model. While the imperative stimuli 

are identical, the intention of the observer is the key manipulation. Decety (1997) 

demonstrated that the intention of the observer leads to differential activation. 

Participants instructed to observe actions with the intention of recalling them later 

showed activation of memory related structures, where as participants instructed 
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to observe with the intent to imitate showed activation of areas related to motor 

planning. In the present study, participants observed the stimuli with different 

intentions: Motor Observation, Motor Performance, Motor Imagery, and Visual 

Imagery. These different conditions are described in the next section. 

Task: 

Participants sat in a dimly lit room. Stimuli were presented on a Dell 17" 

LCD computer monitor positioned 1 meter directly in front of and with the center 

of the screen at eye-level to the participant. Participants were instructed to sit as 

still as possible and to position the head and body comfortably. The use of a 

chin rest ensured limited movement of the head and shoulders by the participant. 

Any such movement could cause a physical distortion of the electrical signal. 

Each trial began with the fixation point (a plus [+] sign presented in the center of 

the screen), followed by the presentation of the neutral image. This image was 

presented for 1.0 second and was followed by a blank screen lasting for a 

variable interval (750 ms - 1250 ms). The variability in the interstimulus-interval 

reduced the likelihood of any preparatory responses, such as contingent negative 

variation or hesitation effects (Walter, et aI., 1964). Following this interval, the 

target image was presented for 1.0 second. A blank screen replaced the Target 

Image and lasted long enough for the participant to complete the condition­

specific behavior (approximately 500ms). The task flow is illustrated in Figure 4. 
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Figure 4. Representation of the presentation of the task images. Each trial 

began with the fixation point [+], followed by the Neutral Image, each presented 

for 1.0 second. The Neutral Image was followed by a blank gray square with 

similar dimensions and luminance as the neutral and target images. This blank 

image was presented with a variable inter-stimulus interval of 750 - 1250 ms. 

Subsequently, the Target Image presented for 1.0 second. The final blank 

screen was presented for an additional 500 ms allowing the participant to 

complete the condition specific task demands. 
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MOTOR OBSERVA TlON (MO): During Motor Observation trials, the participants 

were responsible for reporting which of the two actions (whole-hand grasping of 

the larger of the two objects, or precision grasping of the smaller object) the 

image depicted. Responses were made with right hand, using a 4-button 

response pad. Buttons 1 and 4 were used to collect responses and were 

counterbalanced across participants. 

MOTOR PERFORMANCE (MP): During Motor Performance trials the 

participants were instructed to perform or imitate the action depicted in the 

image. This included reaching and grasping one of the two same objects. The 

objects were present and placed on the table 3 inches in front of the participant's 

right hand. A wrist pad served as a starting/resting position, allowing the 

participant to reach and grasp the objects without eye movements; otherwise, 

eye saccades would severely disrupt the EEG. 

MOTOR IMAGERY (MI): During Motor Imagery trials the partiCipants imagined 

performing the action depicted in the image. The imperative objects were 

presented as described in the MP condition. 

VISUAL IMAGERY (VI): Imagining one of two landscape scenes based on the 

state of the target image served as the control condition. This was chosen as a 

control for both the motor-related and imagery-related aspects of the 

experimental conditions (Porro, et aI., 1996). Example images, depicting either a 

desert or lake scene, were provided as examples at the beginning of the study 

and at the beginning of each block of control trials. See Figure 5. 
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Figure 5. Visual Imagery Cues: Left image depicts a dry desert scene, intended 

to be in stark contrast in both content and color to the lake scene in the right 

image. The stark contrast between the images is intended to help facilitate visual 

imagery during the task. 

The participants successfully completed 16 practice trials (4 trials of each 

condition) to familiarize themselves with the task. The participants then 

completed 200 experimental trials (50 of each condition). Trials were organized 

in 20 blocks of 10 trials of the same condition. Each block was comprised of five 

trials depicting whole-hand grasping and five depicting finger-to-thumb precision 

grip. The block order was organized in a Latin Square so that no condition would 

be repeated in succession. This also controlled for the order of presentation 

across participants. Stimulus presentation was controlled by E-Prime 

(Psychology Software Tools Inc, Pittsburg PA). E-Prime was also used to send a 

digital signal to two separate computers, each responsible for recording the 

ongoing EEG and EMG signals. This digital signal was used to time-lock the 

stimulus presentation to the ongoing recordings for later analysis. 
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Hardware and Software Setup: 

Participants were fitted with two surface electrodes on the right forearm. 

Surface EMG was recorded from the Extensor Digitorum Communis and Flexor 

Digitorum Profundus of the forearm. The Extensor Digitorum Communis 

connects to tendons that extend into the second and third phalanges (forefinger 

and middle finger respectively). The Flexor Digitorum profundus also has 

tendons that run through the carpel tunnel and attach to the phalanges. The 

recordings from these two muscles provide a clear indication of any movement of 

the fingers for either flexion (i.e. grasping) or extension (i.e. spreading) of the 

hand. The electrodes were referenced to the upper forearm using two additional 

surface electrodes. 

In addition to the surface electrodes on the arm, participants were fitted 

with a 256-electrode high-density hydrocel net (EGI, Eugene OR). Following 

standard procedures, the electrode net was soaked in a warm saline solution for 

approximately 10 minutes prior to application to ensure proper hydration of all 

electrodes. The saline solution is composed of 1.5 tablespoons of potassium 

chloride dissolved in one liter of deionized water with a drop of baby shampoo to 

help break up oils on the scalp. This solution was warmed for the participants' 

comfort. The net was then placed on the participant's scalp. The layout for 

these electrodes can be seen in Figure 6. 
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Figure 6. The 256-Electrode High Density Array Montage. Electrode E31 rests 

on the Nasion, just superior to the bridge of the nose. Sites E1, E10, E18, E25, 

E32, E37, E46 and E54 rest on the forehead. Sites E238 and E241 rest below 

the eyes and are used along with electrode sites E18 and E37, respectively, to 

detect eye blinks. Similarly, sites E230 and E248 are used to detect eye 

saccades. The VREF at the center is located at the vertex of the scalp and used 

as the reference during data acquisition. Later, the data are re-referenced to an 

average reference off-line. The empty spaces located laterally from the VREF are 

ear holes in the net structure. The most posterior (bottom of the image) 

electrode sites, E102, E111, E120, E133, E145, E165, E174, E187, E199, E208 

and E216, are located along the base of the skull, just above the neckline. 
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Impedances were measured and reduced to 40 KQ or less prior to the 

start of the task. The electrodes were initially referenced to Cz (vertex of scalp) 

during data acquisition and later re-referenced to an average reference off-line 

prior to analysis. Both the EEG and the EMG were each collected and recorded 

using separate Macintosh laptops running OSX 10.4. Specifically, the ongoing 

EEG was collected and recorded using a Macintosh Laptop running NetStation 

4.3 (EGI, Eugene OR). The ongoing EEG was collected at a sampling rate of 

250 Hz (one sample/4 milliseconds) using a digital high pass filter of 0.1 Hz and 

a low pas filter set to 100 Hz. The EMG data were also measured at a sampling 

rate of 250 HZ using a BIOPAC MP-150 system (BIOPAC Systems, Goleta, CA). 

The EMG data were then recorded on separate Macintosh laptop running 

AcqKnow/edge, version 3.9.2. 

Traditionally, ERP components elicited by visual and auditory stimuli are 

characterized by latencies and positive and negative deflections (peaks and 

valleys) that occur in response to the triggering stimulus. Thus, the latencies of 

these components refer to time intervals that occur immediately following 

stimulus onset. In contrast, early ERP studies investigating motor potentials 

often attempted to time-lock the ERP waveforms to the EMG onset, rather than 

the triggering stimulus (Mushiake, Inase, & Tanji, 1991; Nativ, et aI., 1992; Okano 

& Tanji, 1987; Thickbroom & Mastaglia, 1985; Thickbroom, Mastaglia, Carroll, & 

Davies, 1985). This method allowed researchers to reference the pre- and post­

movement potentials to the movement rather than the triggering stimulus. This 

was often necessitated by the fact that the movements were either self-paced or 
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set to a metronome-paced tone. Thus, a discrete triggering stimulus did not elicit 

an ERP in the traditional sense. The only event to which the evoked potentials 

could be tied was EMG onset. However, more recent investigations of visually 

triggered motor-related potentials examine the ERP waveforms that are time­

locked to the triggering stimulus (Romero, et aI., 2000; Senkfor, Van Petten, & 

Kutas, 2002; Thayer & Johnson, 2006). Because the motor movements of the 

present study were visually triggered, the ongoing signals were each time-locked 

to the onset of the Target stimuli described above using a digital signal 

originating from the E-Prime software responsible for stimulus presentation. This 

was achieved by placing an electronic marker at the time point within the ongoing 

EEG when the target image was presented. This digital flag was used to identify 

the time of stimulus onset. Therefore, the waveforms remained time-locked to 

onset of the Target Image. 

Pre-Analysis Processing: EEG 

In order to identify the discrete waveforms within the EEG, the data were 

subjected to a series of artifact correction procedures. These included applying 

filters, epoch segmentation, artifact correction, bad channel replacement, 

averaging, re-referencing, and baseline correction. The first of these is the 

application of a 30 Hz low-pass filter. The electroencephalogram is the collection 

of recorded voltage changes measured from various locations across the human 

scalp over a given time period. Fluctuations in these recordings are described or 

classified by their relative frequencies: Delta waves (-0.5 - 4 Hz), Theta waves 
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(-5-7 Hz), Alpha waves (8-12 Hz), Beta waves (13-30 Hz), and Gamma waves 

(-31-50 Hz). Thus, a 30 Hz low-pass filter is applied which allows all frequencies 

below 30 Hz to pass through the filter unaffected. Frequencies above 30 Hz are 

attenuated. This essentially filters out high frequency artifacts such as high 

frequency EMG and electrical interference. 

Further, recorded voltage changes result from either endogenous or 

exogenous neural activity. The present investigation is particularly interested in 

the exogenous activity, that is, those fluctuations directly related to an eliciting 

event, a.k.a. evoked potentials. These ERP components are hidden within all the 

endogenous activity. However, these exogenous components of interest have a 

temporal relationship to the eliciting event, where as the endogenous, 

background activity does not. Therefore, averaging discrete EEG epochs 

together will cause the endogenous background activity to average out to near 

zero while the evoked responses that are temporally related will remain present, 

appearing as positive and negative deflections (Van Boxtel, 1998). Before 

averaging, these discrete segments in time need to be defined. 

The continuous EEG, then, is segmented using an electronic marker into 

discrete segments ranging from 100 ms before the onset of the imperative 

stimulus to 1500 ms after the onset of the stimulus. Specifically, the filtered data 

was segmented into 1600 ms segments, ranging from 100 ms prior to the onset 

of the Target Image to 1500 ms after the onset of the Target Image. All 

continuous EEG outside of those 1600 ms segments is essentially cut out. 

These filtering and segmentation procedures were carried out using NetStation 
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version 4.3 (EGI, Eugene OR). The filtered and segmented data were exported, 

and all subsequent processing steps were carried out using the ERP PCA Toolkit 

(Dien, 2010). 

Once the data were reduced to the specific epochs, those epochs were 

examined for various artifacts; extraneous variations in the waveforms. Such 

artifacts are caused by eye blinks, eye movements, and physical movements or 

simply by electrode sites with high impedance. Epochs or even individual 

channels with these various artifacts were identified and then were either 

corrected or removed from the average all together. Before checking individual 

epochs for movement artifacts, the data were examined for globally bad 

channels. Channels are checked statistically using correlations with each 

channel's direct neighbors and the reference channel. Simply, each channel is 

checked for very low correlations or perfect correlations amongst its direct 

neighbors, and for having a perfect correlation with the reference channel. Given 

the close proximity of the electrodes, those sites that are closer together 

theoretically should measure similar, but not identical, voltage changes. 

Channels further apart are theoretically measuring voltages generated by very 

different areas of the brain and therefore may not share similarities in electrical 

activity. As such, low correlation between two adjacent channels indicates that 

one or both channels may include extraneous noise or may have a poor signal. 

Thus, channels whose highest absolute correlation with its directly adjacent 

neighbors falls below 0.4 are considered globally bad and are excluded from 

further processing and analysis. Similarly, having a perfect correlation with either 
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the reference channel or a direct neighbor (indicating arching between channels) 

also generates a warning. These channels may also be removed from 

subsequent stages of processing and analysis. 

Once these bad channels were identified, individual epochs were 

examined for eye blinks. The 100 ms pre-stimulus baseline is individually 

corrected to ensure the quality of the eye blink corrections. The technique in the 

present study for correcting eye blinks used an individually defined eye blink for 

each subject. Given the idiosyncratic nature of eye blinks, it was best to define 

each participant's eye blink, rather than comparing a generic blink template to all 

participants. This was achieved by running an Independent Component Analysis 

routine to identify trials where the upper eye channel pairs (specifically, sites E18 

[Right Eye] and E37 [Left Eye]) covary with each other and negatively vary with 

the lower eye channels (sites E238 [Right Eye] and E241 [Left Eye] respectively). 

These are used to generate a blink template that will then be compared to the 

data set. The artifact detection routine runs an independent component analysis 

and compares these components to the blink template. Components that 

correlated highly with the blink template were subtracted trial-by-trial on an 

individual basis. Similarly, Horizontal Eye Movements are identified by a 

difference of greater than 55 !-tV between horizontal eye channels, specifically 

channels E230 and E248. 

In addition to blink correction, additional movement artifacts must also be 

corrected. A temporal principle component analysis was used to identify 
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components with highly variable minimum and maximum values with a difference 

greater than 200 !-lV. Any such activity identified by the PCA was removed. 

Once these artifacts were removed from the data set individual trials were 

examined. This process is similar to marking channels globally bad, but was 

performed on individual trials rather than individual channels. Simply, segments 

defined with more than 30 !-lV difference at some pOint in the segment from the 

six directly adjacent channels, or having more than 100 !-lV difference between 

the minimum and maximum values are marked as bad segments. Trials with 

greater than 10% bad segments are marked bad and are removed from further 

analysis. Once all the movement artifacts were corrected and removed, the bad 

channels and bad trials were marked, and either corrected or removed. 

Individual trials marked bad are zeroed out, while bad channels are replaced 

using interpolating data from the good channels. The EPR PCA Toolkit 

generated a log file detailing each these corrections along with an Artifact 

Correction Plot representing the data segments during the course of these 

procedures. The plots from one participant are found in Figure 7 and the quality 

control measures behind these corrections are summarized in Table 2. 
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Figure 7. Artifact Correction Plots illustrating sequential artifact correction 

procedures for an individual participant. The scale on the vertical axis is in 

microvolts and only pictures data within +/- 200 microvolts. The first plot at the 

top shows the raw data segments, laid end to end, prior to any corrections. The 

second shows the eye blinks to be removed from the data. The next graph 

pictures the subtracted movement artifacts. The next graph shows data 

identified in bad channels and bad trials. The final graph is the resulting data set 

with all bad data removed from the segments. 
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--- ------------

Table 2. Artifact Removal Summary. Trials - number of trials per condition; 

Blinks - proportion of trials containing eye-blinks to be corrected; Movement-

proportion of trials containing movement artifacts; Bad Trials - proportion of trials 

marked bad; Bad Channels - proportion of channels marked globally bad; Noise 

- Measure of noise obtained by inverting every other trial and then summed 

together to provide a measure of noise within trials. 

Motor Motor Motor Visual 
Observation Performance Imaaerv Imaaerv 

TRIALS 49.4444 48.6111 48.6111 49.8333 
BLINKS 0.3575 0.3613 0.3614 0.3590 
MOVEMENT 0.2530 0.2733 0.4416 0.2451 
BAD TRIALS 0.0111 0.0091 0.0278 0.0033 
BAD CHANNELS 0.0228 0.0241 0.0368 0.0237 

NOISE 1.4011 1.2925 1.4701 1.3991 

Following artifact correction, segments were averaged together, for each 

channel, participant, and condition. The final two steps before analysis include 

re-referencing the data to an average reference and baseline correction. During 

acquisition and the previously described artifact detection routines, the data were 

referenced to a single electrode located at the vertex of the scalp. All data were 

re-referenced to an average reference. Similarly, all data were also adjusted to a 

pre-stimulus onset period, so that all data points within the 100 ms baseline 

average out to zero. 
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Pre-Analysis Processing: EMG 

Only minor processing steps were needed for the EMG. The raw 

electromyograms from the Extensor Digitorum Communis and Flexor Digitorum 

Profundus of the forearm were first filtered using a 15 Hz highpass filter. The 

filtered data were then converted to an Average Rectified Signal. Simply, this 

converts the raw electrical signal to the absolute value of the voltage changes 

being recorded. The reason for this conversion is that the signal activity from 

muscle contractions is oscillatory in nature, which results in a zero-mean 

Gaussian distribution. As such, when averaged together, the signals would 

theoretically average out to zero. Thus, using the absolute value of the voltage 

changes allows for data averaging. Analysis included measures of Maximum 

Voltage and Time of Maximum Voltage. 
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VI. RESULTS 

Analysis 1: EMG 

Measurements from two muscles were recorded across the four 

experimental conditions resulting in a 2 Muscle (extension, flexion) x 4 Condition 

(Observation, Performance, Imagery, Visual) design. These data were subjected 

to a Repeated Measures ANOVA. Sphericity was not assumed, and significance 

was tested using the Greenhouse-Geisser correction. Analysis of the maximum 

amplitude revealed a main effect for muscle, F(1, 17)=44.725, p<0.001, and for 

condition, F(1.301, 22.114)=73.535, p<0.001. The interaction was also 

significant, F(1.968, 33.449)=26.585, p<0.001. The analysis of the simple effects 

revealed significant differences between conditions for both flexion, F(1.160, 

19.723)=44.479, p<0.001, and extension, F(1.557, 26.461 )=91.842, p<0.001. 

Simple effects between muscles were also significant for Motor Observation, 

F(1,17)=8.415, p<0.010 (max Flexion =0.76; max Extension =1.0), and Motor 

Performance, F(1, 17)=51.51, p<0.001 (max Flexion =2.0; max Extension =2.92). 

The Simple Effect of muscle for Motor Imagery, F(1,17)=3.267, p=0.088, was not 

significant (max Flexion =0.29; max Extension =0.40). Surprisingly, however, the 

Simple Effect of muscle for the control was also significant, F(1.17)=9.737, 

p=0.006 (max Flexion =0.25; max Extension =0.31). Follow-up comparisons 

indicated that MP was significantly higher than VI, t=10.308, p<0.001, MO was 
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significantly higher than VI, t=8.397, p<O.001, and MP was significantly higher 

than MO, t=7.157, p<O.001. Group means are presented in Table 3. 

Table 3. Maximum Amplitude (StdDev), and marginal means for each condition 

as a function of muscle movement. Units in Microvolts; see text for details. 

Average Maximum Amplitude (StDev), By Condition 
Units in Microvolts, N=50 

Motor Motor Motor Visual 
Observation Performance Image!y Image!y 

Flexion 0.76(0.28)* 2.00 (0.97)* 0.29(.14) 0.25(0.06) 0.82(0.23) 
Extension 1.00(0.40)* 2.92(0.87)* 0.40(0.39) 0.31(0.10) 1.16(0.25) 

0.88(0.30) 2.46_(0.89) 0.34(0.26) 0.28(0.07} 

* Reached significance 

Taken together, one can conclude that motor movements occur in motor 

performance and motor observation conditions and that there is a much greater 

activity in the extensor muscle than the flexor. The activity in the motor 

observation condition is significantly less than that during motor performance. 

This activity may simply be the result of preventing the wrist and fingers from 

resting on the buttons of the response pad. Thus, the minimal activity in MO is 

likely the result of the minor activity required to use the response pad whereas 

the movement in the motor performance condition is the result of the extension of 

the hand and forearm and grasping of the object. This becomes evident when 

graphing the mean activation for each muscle across the different conditions. 

(Figure 8). Ultimately, these data support the notion that executed movements 

requiring grasping occurs only during MP and is consistent with the demands of 

the experiment. 
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Figure 8. Mean activation of the extensor is significantly higher than mean 

activation of the flexor. Further, the graphed means illustrate the significantly 

greater activity in the MP. 

In addition, measures of reaction time and maximal flexion were also 

calculated to determine the point at which the participants initiated and executed 

these movements. Average reaction time to execute movements, obtained from 

the reaction time of MO trials, was just over a one half second , M=526.5(113.1) 

ms. This compares quite well the EMG data. Specifically, the time of the 

maximum amplitude for the extension occurred at 495.48 ms (134.3ms) after the 

onset of the target image. Initiation of movement occurs around 200 ms. See 

Figure 9. 
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Figure 9. Average EMG during Motor Performance. Initiation of movement (first 

vertical black line) occurs at approximately 200 ms. The peak amplitude for the 

extensor muscle (second vertical black line) occurs at approximately 500ms. 

The initial increase in extension is followed by gradual increase in the flexor 

muscle before returning to a relaxed state. This is consistent with the task which 

requires the extending of the arm and opening of the hand followed by a gradual 

closing of the hand to grasp the object. 

Lastly, the argument that similar motor areas of the cerebral cortex are 

involved in the three experimental conditions simply due to physical movement 

present in all three experimental conditions cannot be supported because real 
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muscular contractions necessary to reach and grasp objects were present in only 

the motor performance condition. 

Analysis 2: ERPs-PCA 

A Spatiotemporal Principal Components Analysis was used to reduce the 

data into manageable ERP components (Dien, Beal, & Berg, 2005; Dien & 

Frishkoff, 2005). These procedures were implemented using the ERP PCA 

Toolkit (Dien, 2010). Specifically, the first step is a Temporal PCA using Promax 

rotation (Kayser & Tenke, 2003) and the second is spatial, using an Infomax 

rotation. In the present analysis, the temporal PCA yielded 20 factors and the 

spatial PCA yielded an additional 5 factors for each temporal factor, resulting in 

100 total components. The numbers of factors retained resulted from the use of 

a Scree Plot and a parallel test (Horn, 1965). This directly compares the Scree 

plot of the experimental data set to that from a random data set. The intersection 

of these two lines was used to determine the recommended number of factors to 

retain. 

It was expected that specific components would correspond with motor 

related activity. Specifically, it was expected that the sequential PCA would 

reveal components that would correspond with peaks associated with motor 

evoked potentials. For example, a component corresponding with the N2 would 

likely have a negative polarity occurring just prior to 200 ms with maximal 

amplitude in the left hemisphere around C3 (E59). Theoretically, the motor 

related activity prior to the initiation of motor movement during Motor 

71 



Performance would be the generator for this component. However, none of the 

components obtained from the PCA correspond in time course or location that 

might reflect or be related to activation of motor related areas. The full list of 

factors can be found in Appendix 1. 

While several components were identified that occur prior to and up to 200 

ms, the spatial location at maximal amplitude is irregular and does not 

correspond to any motor related areas. Typically, components corresponding to 

possible motor related activity based on a-priori hypotheses would be subjected 

to ANOVAs. However, given the erratic nature of these components, any 

component meeting a minimum criterion 0.5% of the variance was subjected to 

ANOVAs to examine differences between conditions. Of the 100 PCA 

components, only 39 met this criterion, and only eight factors reached 

significance. These results are summarized in Table 4. The results of the 

analysis are not straightforward, as they are unrelated to any expected motor 

related activity. 

Table 4. The eight significant PCA factors and electrode sites, latencies and the 

associated amplitudes across the four conditions. 

Level of Motor Motor Motor Visual 
Factor LatencY Site Sianificance Imaaerv Observation Performance Imagerv 

TF01SF1 328 E128 4.97. p=0.048 3.350 4.490 4.270 3.890 

TF01SF4 328 E145 6.08. p=.016 0.730 1.700 0.540 0.730 

TF01SF5 328 E199 3.83. p=.084 0.200 0.240 -0.860 0.550 

TF03SF3 884 E37 5.74. p=.02 0.950 -0.150 -0.250 0.210 

TF04SF1 564 E175 4.68. p=.032 -0.330 -0.470 -0.720 0.750 

TF04SF3 564 E18 20.13. p=.0015 0.810 -0.800 0.870 0.310 

TF06SF2 212 E90 7.43. p=.011 -0.580 -0.830 -2.010 -0.380 

TF13SF2 116 E119 4.4.0=.044 -0.140 -0.500 -1.230 -0.580 
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Robust ANOVA procedures using Welch-James Approximate Degrees of 

Freedom Solution, Trimmed Means, and Winsorized Variances (TWJUc) were 

used to test for differences between conditions for each factor. Only three 

components occur early enough to be of interest, TF06SF2, TF13SF2, and 

TF01 SF1. Of these three, the earliest occurs at 116 ms and is maximal in the 

parietal area. While this demonstrates an increased negativity during MP, 

TWJUc(3.0, 14.2)=4.4, p=.044, this component occurs too early to related to any 

sensory feedback. In addition, this demonstrates a negativity that corresponds 

with the P1, thus making this result difficult to reconcile. The next component 

occurs at 212 ms and is maximal at E90 - centrally located just posterior to Cz. 

This could be the result of activity in the somatosensory cortex in response to the 

initiation of movement. However, one would expect to find this activity in the 

contralateral hemisphere (left hemisphere) rather than centrally or bilaterally. 

The most interesting component reaching significance is the first spatial factor for 

the first temporal factor, TWJUc(3.0, 14.2)=4.97, p=0.048. This component 

accounts for the most variance (7.5%) and is maximal at E128. While parietal 

activity would be expected, it would, again, only be expected in the left 

hemisphere. Further, the difference occurs between MI and MO, TWJUc(1.0, 

17.0)=8.94, p=0.0085, as there are no differences between MO, MP and VI, 

TWJUc(2.0, 15.1 )=0.43, p=0.69. In the end, these components do not lend any 

support to the spatial hypotheses. 

The other 6 components reaching significance may share temporal 

similarities with the imagining or execution of grasping movements, but the 
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spatial distributions are very diffuse and not likely related to any motor activation. 

Specifically, areas at which these components are maximal include two different 

eye channels and electrode sites on the back of the scalp along the neckline. 

Taken together, it is highly unlikely that many of the components revealed by the 

sequential PCA share any relationship with any possible motor planning, motor 

movement, nor any sensory feedback. The majority of components resulting 

from the sequential PCA are inexplicable and additional analyses were 

necessary to further elucidate the characteristics of the EEG. Specifically, 

measures of specific peaks within the waveforms were obtained for each 

condition and compared. Namely, the N1, P1 and N2 described in previous 

sections. The peak latencies and peak amplitudes of the raw data were 

specifically compared for differences between the three experimental conditions 

and the control condition. 

Analysis 3: ERPs-Windowed ANOVA 

Windowed measures were examined by obtaining peak amplitude and 

peak latency measures at specific time points from selected electrode channels 

of interest. These measures were obtained using the ERP PCA Toolkit. 

Specifically, the N1, P1, N2, were examined by taking measures of peak latency 

and the relative peak amplitude within specific time windows from selected 

channel clusters. For example, measures of N1 were obtained from sites 

clustered around FCz. This cluster included seven electrode sites including FCz 

(E1S) and the six adjacent channels - E6, El, E14, E16, E22 and E23. Further, 
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measures of P1 and N2 were clustered around C3 (E59, and the six surrounding 

electrode sites - E51, E52, E58, E60, E65, and E66) and C4 (E183, and the six 

surrounding sites - E155, E164, E182, E184, E195 and E196). FCz is believed 

to measure activity from SMA and C3 and C4 are believed to record activity from 

the left and right hand area of M1, respectively (Homan, Herman, & Purdy, 1987; 

Jasper, 1958; Towle, et aI., 1993). The N1 occurred between 40-80 ms. The P1 

occurred between 80-150 ms. The N2 occurred between 150-200 ms. This time 

course corresponds nicely with the initiation of movement observed in the EMG. 

These peaks can be seen in Figure 10. 
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Figure 10. The average EEG waveforms across the four conditions recorded 

from C3. Vertical black lines indicate, moving chronologically, stimulus onset and 

EMG onset (-200ms). The N1, P1, and N2 peaks are apparent in all four 

conditions, and occur around 65ms, 11 Oms, and 180ms, respectively. 

As previously noted, Robust ANOVA procedures using Welch-James 

Approximate Degrees of Freedom Solution, Trimmed Means, and Winsorized 

Variances (TWJt/c) were used. Here, measures were investigated for latency 

and amplitude differences between conditions for each peak at the described 

channels clusters. For the P1 and N2, an additional factor of hemisphere was 

also investigated . These specific analyses test temporal hypotheses 4, 5 and 6. 
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Latency measures were obtained first in order to better identify the window 

within which peak measures were to be obtained. While the hypotheses suggest 

differences in amplitude, or in some cases the presence or absence of peaks, 

there is little to no evidence to suggest that there should be differences in peak 

latencies. With this in mind, it should be noted that, theoretically, there should be 

no difference in peak latency where peaks should occur. Indeed, the first 

temporal hypothesis suggests a comparable N 1 , and thus, no differences in 

latency are expected. The first ANOVA indicated that there are no differences in 

the latencies at N1, TWJUc (3.0,14.2)=1.13, p=0.39 (MO=63.75, MP=61.78, MI= 

69.21, VI=66.41). Similar results were found for both the P1 and N2, measured 

around C3 and C4: P1 condition main effect, TWJUc(3.0, 14.2)=0.38, p=0.78 

(MO=110.46, MP=111.6, MI=112.51, VI=108.98); Hemisphere, TWJUc(1.0, 

17.0)=3.89, p=0.067 (Left=107.06, Right=114.72); ConditionXHemisphere 

interaction, TWJUc(3.0, 14.2)=0.55, p=0.70; N2 condition main effect, TWJUc 

(3.0,14.2)=1.31, p=0.34 (MO=182.60, MP=179.83, MI=178.41, VI=175.24), 

Hemisphere, TWJUc(3.0, 14.2)=0.23, p=0.63, and interaction, TWJUc(3.0, 

14.2)=0.17, p=0.92. While this is not theoretically interesting, it is of some 

empirical value as it demonstrates that there is no need to modify the time 

windows used to obtain the measures of maximum amplitude. 

Measures of maximum amplitude were obtained from the same time 

windows and from the same clustered regions described above. These 

measures were also subjected to robust ANOVAs. According to the fourth 

hypothesis, each of the motor related conditions should show a comparable N1 
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peak, and each should differ from the control condition. The ANOVA revealed no 

significant differences: TWJtJc (3.0,14.2)=1.04, p=0.43 (MO= -2.27, MP= -2.66, 

MI= -2.51, VI= -2.73). While the motor related conditions ought not to be 

different, the average peak amplitude for the control condition also does not 

differ. Based on the available evidence there should be no N1 present in control 

condition. However, not only is the waveform present, it does not differ 

significantly from the experimental conditions. The presence of this peak in the 

control condition is a topic that will be addressed in the discussion. 

Next, there should be a lateralized P1 , primarily during MP and MI trials. 

Unfortunately, this assumption is not supported. While the peaks are visually 

evident in the waveform, the ANOVAs still failed to reach significance for the 

Condition main effect, TWJtJc(3.0, 14.2)=0.55, p=0.67 (MO=0.20, MP=0.38, 

MI=0.26, VI=0.37), main effect of Hemisphere, TWJtJc(1.0, 17.0)=1.0, p=0.33 

(left=0.17, right=0.43), or the interaction, TWJtJc(3.0, 14.2)=3.75, p=0.11. 

Lastly, the N2 peak is likely to show the more robust differences given that 

this peak should just precede motor movements. Therefore this peak should 

occur in the MP condition just prior to 200 ms. Further, this peak should also be 

lateralized in the left hemisphere. The ANOVA did reveal a strong main effect for 

Hemisphere, TWJtJc(1.0, 17.0)=9.81, p=0.0058 (left=-1.75, right=-0.69) indicating 

and greater negativity in the left hemisphere as expected. While the main effect 

for condition did not reach significance, TWJtJc(3.0, 14.2)=2.02, p=0.18 
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(MO=-1.12, MP= -1.40, MI= -1.35, VI=-1.01), there was a trend toward 

significance for the interaction, TWJUc(3.0, 14.2)=3.49, p=0.072. All means are 

compiled in Table 5. 

Table 5. Mean Amplitude (Latency) for the N1, P1, and N2 waveforms for each 

condition at each electrode region along with marginal means for hemisphere. 

Motor Motor Motor Visual 
Hemisehere Observation Performance Imaaerv Imaaerv 

N1@SMA -2.27 (63.75) -2.66 (61.78) -2.51 (69.21) -2.73 (66.41) 

P1 0.2 (110.46) 0.38 (111.60) 0.26 (112.51) 0.37 (108.98) 
P1@C3 -0.13 (104.32) 0.68 (108.79) -0.13 (108.29) 0.27 (106.83) 0.17 (107.06) 
P1@C4 0.52 (116.50) 0.08 (114.41) 0.65 (116.73) 0.47 (111.14) 0.43 (114.72) 

N2 -1.12 (182.60) -1.40 (179.83) -1.35 (178.41) -1.01 (175.24) 
N2@C3 -1.91 (184.03) -2.04 (180.44) -1.76 (181.05) -1.31 (175.71) -1.75 (180.31) 
N2@C4 -0.33 (181.17) -0.77 (179.21) -0.95 (175.78) -0.71 (174.76) -0.69 (177.73) 

Although these comparisons fell short of statistical significance, the overall 

picture is still revealing. Specifically, several of these conditions are supposed to 

share similarities rather than differences. For example, the only group expected 

to show a difference in the N1 was the control condition. The three experimental 

conditions were supposed to yield an N1, and the peak characteristics ought to 

be comparable, with one exception. Namely, motor performance was expected 

to show increased activation compared to the other motor related conditions. 

Motor performance was supposed to lead to a maximal N1, compared to both 

motor imagery and motor observation. Looking that the means presented in 

Table 6, it is clear that in all cases except the P1 in the right hemisphere, the 
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peak amplitude for motor performance in numerically higher. While this is not 

statistically significant, it does persist across all amplitude measures. So, this 

finding suggests that the SMA may be involved in all three motor-related 

experimental conditions. In another case, both motor performance and motor 

imagery were expected to contain a pre-movement positivity, the P1. Again, 

these peaks are evident when they are supposed to occur, leaving only the 

question of why the peak is present and comparable when it is not supposed to 

occur, especially during Visual Imagery. Thus, the greatest cause for 

questioning these results is not the failure to find statistical differences among the 

experimental conditions. Rather, the most curious result is the mere presence of 

these peaks where they are not expected at all, especially in the control 

condition. Further investigations of the data may elucidate this matter and it will 

also be addressed in more detail in the discussion. 

Analysis 5: Source Localization 

Low Resolution Brain Electromagnetic Tomography (LORETA) was used 

to estimate the 3D distribution of the generating neural activity based on the 

topographical distribution of the EEG. LORETA is a Laplacian weighted 

minimum norm method used to solve the inverse EEG problem. Given known 

dipole locations, known head volume, geometry and conductivity, the EEG 

voltage of the scalp can be predicted at known sensory locations. This is known 

as the forward EEG problem. Working in reverse, knowing the sensor locations, 

scalp voltages and head model to estimate the underlying brain activation is the 
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inverse EEG problem. The estimated 3-dimensional activation can be viewed at 

various coordinates layered over three MRI slices at designated time points: 

Horizontal, Sagittal, and Coronal slices. Images depicting neural activity at time 

pOints corresponding to the peak latencies were reviewed. Images of activity at 

68ms where the MRI slices intersect at the point of maximal activation can be 

seen in Figure 11. Source activity at 112 ms and 180ms can be seen in Figures 

12 and 13, respectively. Voltage ranges from low to high using a white (zero) to 

red (relative maximal voltage of approximately 0.8-1.2 !!V) gradient. Small black 

triangles along the top and left edge of each slice indicate the axial location of the 

other two slices. X, Y, Z values are provided, indicating the coordinates 

corresponding to the point of maximal activation at which the three slices 

intersect. 
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Figure 11 . Source Activity at 68ms as shown by the LORETA Values. Slices 

intersect at the point of maximal voltage. Moving from top row to bottom, 

conditions are as follows: images during Motor Observation, Motor Performance, 

Motor Imagery, and Visual Imagery. Activation ranges from zero (white) to 

relative maximal voltage (red). 
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Figure 12. Source Activity at 112ms as shown by the LORETA Values. Slices 

intersect at the point of maximal voltage. Moving from top row to bottom, 

conditions are as follows: images during Motor Observation, Motor Performance, 

Motor Imagery, and Visual Imagery. Activation ranges from zero (white) to 

relative maximal voltage (red). 

83 



Figure 13. Source Activity at 180ms as shown by the LORETA Values. Slices 

intersect at the point of maximal voltage. Moving from top row to bottom, 

conditions are as follows: images during Motor Observation, Motor Performance, 

Motor Imagery, and Visual Imagery. Activation ranges from zero (white) to 

relative maximal voltage (red). 
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Activity at 68ms was maximal in the left parietal cortex in all four 

conditions. While the activity appeared to be consistent between conditions, it 

did not reflect activation that would be expected to be related to motor activity. 

Activation at 112s was more diffuse, ranging from inferior left frontal activation 

during motor observation, to posterior portions of the temporal lobe during visual 

imagery. During motor performance, on the other hand, the point of maximal 

activation occurred in the precentral gyrus. However, this activity occurred 

medially, rather than laterally and therefore does not reflect activation in the hand 

area of M1. Activity occurring at 180ms, contrary to expectation, was maximal in 

the right hemisphere in all conditions. These data show the location of maximal 

activation, but do not indicate other areas that may also be activated. In other 

words, several areas of the brain may be activated, but the slices shown in 

Figures 11, 12 and 13 only show areas of maximal activation. As a comparison, 

slices of activity were also viewed at locations that intersect the SMA and M 1. 

Rather than using locations of maximal activation, these latter slices were used 

to investigate activity in two specified, motor related areas. These slices were 

taken at the same three time pOints of 68ms, 112ms and 180ms, respectively. 

The images are shown in Figures 14, 15, and 16. 
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Figure 14. Source Activity in the SMA at 68ms as shown by the LORETA 

Values. Slices intersect at the SMA. Moving from top row to bottom, conditions 

are as follows: images during Motor Observation, Motor Performance, Motor 

Imagery, and Visual Imagery. Activation ranges from zero (white) to relative 

maximal voltage (red). 
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Figure 15. Source Activity in area M1 at 112ms as shown by the LORETA 

Values. Slices intersect at area M1. Moving from top row to bottom, conditions 

are as follows: images during Motor Observation, Motor Performance, Motor 

Imagery, and Visual Imagery. Activation ranges from zero (white) to relative 

maximal voltage (red). 
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Figure 16. Source Activity in M1 at 180ms as shown by the LORETA Values. 

Slices intersect at area M1 . Moving from top row to bottom, conditions are as 

follows: images during Motor Observation, Motor Performance, Motor Imagery, 

and Visual Imagery. Activation ranges from zero (white) to relative maximal 

voltage (red). 
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Slices intersecting at SMA at 68 ms revealed medial activity across all 

conditions, but occurred at more central and parietal areas than near the SMA. 

The activity at 112 ms is rather diffuse and leads to activity predominantly in the 

parietal and occipital areas at 180 ms. Further, the specific sites of interest, 

namely SMA and M1, do not show much activation. While the source activity 

was expected to occur in motor related areas, it mirrored more the ambiguity 

resulting from the sequential peA. The estimated source activity was intended to 

elucidate the neural activity responsible for generating the peaks in the 

waveforms. 

To be clear, the purpose behind reviewing the source activity was to lend 

support to the notion that motor related areas were involved in both motor 

observation and motor imagery in addition to motor performance. The areas 

most likely to show activation are the SMA, M 1 and S 1. Additional areas 

expected to show activation included Broca's Area (BA 44) and the Angular 

Gyrus (BA 39), as these are both areas that have been implicated in Mirror 

Neuron System. While these areas may show some activation, the pattern of 

activation over time does not reflect that of motor activity. For example, both 

figures depicting activity at 68 ms show activation of the left parietal cortex. 

However, this pattern of activity would not be expected so early as it could not 

reflect any sensory (real or imagined) processing. While these data do not 

support the hypotheses, additional visual inspections of the data are reviewed 

next to help make sense of these idiosyncrasies. 
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Comparative Waveforms and Topo Plots: 

Additional examinations of the data were carried out to better make sense 

of the results. The windowed measures were only snapshots of the data 

recorded from selected regions and LORETA provided an estimation of the 

source activity. Further, the sequential PCA did not identify any temporal or 

spatial components that could be tied to or related to motor related activity. 

However, given the unusual nature of those results, further investigations were 

necessary to make sense of the disconnect between the apparent waveforms 

demonstrating the expected motor evoked potentials and the ambiguous 

outcome of the peA and source localization. 

First, the raw voltage changes were viewed using topographical plots, 2-

dimensional representations of the scalp voltages. The topographical plot at 68 

ms reveals a clear negativity centrally located at the frontal electrode sites. See 

Figure 17. This explains the strong N1 at that time point measured from SMA 

and its presence in all four conditions. This frontal negativity coincides with a 

strong positivity along the back of the scalp, which could simply be a result of 

visual processing. 
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Figure 17. Topographical plot at 68 ms. Voltages range from -5 microvolts 

(blue) to +5 microvolts (Red). Plots depict scalp voltages during (A) Motor 

Observation, (8) Motor Performance, (C) Motor Imagery, and (0) Visual Imagery. 

The negativity explains the presence of the N1 measured at the SMA across the 

four conditions. A coinciding positivity is present in posterior electrodes sites. 

This negativity is apparent across all four conditions. Indeed, statistical analysis 

of amplitude measures obtained from a cluster of electrodes sites above the 

SMA revealed no differences between conditions. 

91 



More diffuse activation is present at 112 ms. See Figure 18. While the 

peak itself is quite apparent in the waveform measured at C3, the voltage 

amplitude is very close to zero. This positivity seems quite diffuse across the 

scalp. However, in the motor performance conditions, there appears to be a 

greater positivity in the left frontal area. With this in mind, a windowed measure 

of amplitude was obtained from F7 (E47), which measures activity of the inferior 

frontal gyrus - the home of Broca's area that is implicated in the Mirror Neuron 

System. The ANOVA performed on these measures revealed a significant effect 

of condition, TWJUc(3.0, 14.2)=4.04, p=0.049 illustrating a significantly higher 

activation during motor performance (MO=1.00, MP=1.71, MI=0.82, VI=0.81). 

This area is believed to be involved with the mirror neuron system. Therefore 

this result is not surprising and, in part, lends support to hypothesis 3 that posits 

the involvement of Broca's area in motor performance and motor observation. 

The caveat is that there is no support for the involvement of this area during 

Motor Observation, nor the involvement of the Angular Gyrus. 
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Figure 18. Topographical plot at 112 ms. Voltages range from -5 microvolts 

(blue) to +5 microvolts (Red). Plots depict scalp voltages during (A) Motor 

Observation, (B) Motor Performance, (C) Motor Imagery, and (0) Visual Imagery. 

A lateralized positivity appears in the frontal areas during motor performance. 

Statistical analysis of amplitude measured at F7 revealed a Significantly higher 

activation in Motor Performance. This activity could be related to activation of 

Broca's area, part of the Mirror Neuron System. 
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The third topographical plot illustrates the voltage changes at 180 ms. 

See Figure 19. This pattern of activity is similar to the pattern of activity 

observed during the first negative peak, showing a strong negativity, centrally 

located in frontal electrode sites with a coinciding positivity along parietal and 

occipital areas. 

A 
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$ 

Figure 19. Topographical plot at 180 ms. Voltages range from -5 microvolts 

(blue) to +5 microvolts (Red). Plots depict scalp voltages during (A) Motor 

Observation, (8) Motor Performance, (C) Motor Imagery, and (0) Visual Imagery. 
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In contrast to the PCA and the LORET A results, the topographical voltage 

changes provide a level of consistency to the results. There is a strong polarity 

coinciding with the N 1 followed by a more diffuse patter of activity that returns to 

another strong polarity. To be fair, the observed motor evoked potentials 

measured at specific locations are simply a subset of the full montage presented 

in these 20 topographical plots. Still, the data depicted in these images are in 

stark contrast to the rather erratic results from the PCA and LORET A that 

seemed to have no relationship with the observed motor evoked potentials. 

To further investigate the nature of the waveforms, three additional 

comparisons were made. The first was a comparison to the pattern of activity in 

response to the visual information available during the inter-stimulus interval. 

The second comparison evaluated the morphology of the waveform elicited by 

the Neutral Image. These comparisons were chosen to investigate the possibility 

that some of the activity being observed in response to the target image was 

simply due to visual processing. The third comparison was made to the 

response-locked ERP during the motor observation condition. This comparison 

was chosen to determine if any of the putative motor evoked peaks would be 

revealed by locking the EEG to the motor response, rather than the triggering 

stimulus. For each of these comparison waveforms, ongoing EEG was subjected 

to the same preprocessing steps described previously. However, the critical 

difference was the time point to which the segments would be locked. The EEG 

during the lSI was time locked to the onset of the gray inter-stimulus interval. 

The second comparison required the EEG to be time-locked to the onset of the 
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Neutral Image. The response-locked average was obtained by averaging 

segments based on the button response recorded during motor observation. 

Button responses were collected by which the participants reported which of the 

two actions were depicted in the target image. Therefore, a response-locked 

average was obtained for MO only, as it was the only condition that required and 

recorded participant responses. 

The ongoing EEG during the lSI was chosen as a comparison to the 

originally segment ERPs to investigate the nature of the EEG during visually 

similar information but which contained no visually meaningful information, 

namely any visual or motor information. The grey square presented during the 

lSI contained the same luminance to prevent a strong visual evoked potential in 

order to provide a better controlled evoked potential in response to the target 

image. Amplitude means were obtained from the same C3 cluster and graphed 

in the same manner as those data presented in Figure 10. The graph of the lSI 

averages for each condition can be seen in Figure 20. The only difference in 

how these data were processed what the visual stimulus to which they are time­

locked. The graphs are presented on the same scale to provide the best 

possible comparison. 
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Grand Average EEG by Condition during lSI at C3 
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Figur.e 20. Average EEG waveforms for the four different conditions recorded 

around C3 (E59, E51, E52, E58, E60, E65, and E66) during the Inter-stimulus 

interval. The Grand Average for the EEG following the Target Image is provided 

for comparison. 

There is no apparent evoked potential during the lSI. There also does not 

appear to be much of a relationship in the EEG between conditions. Further, and 

most important, there is also no apparent comparison to the EEG time locked to 

the target image. What can be gleaned from this comparison is that the evoked 

potential time locked to the target imaged is not likely visually evoked response. 

This not only provides credence to the experimental design, but it provides a 
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better indication that the evoked potential observed in response to the target 

image is not simply a result of visual processing. 

To further validate this point, a comparison was also drawn between the 

Neutral and Target Images. The Neutral Image should elicit quite a large visually 

evoked potential due to the absence of any images or brightness leading up to 

the presentation of the Neutral Image. Secondly, the Neutral image still contains 

the presence of the objects and the human hand. However, the grasping motion 

is not presented until the target image. These waveforms are presented in 

Figure 21. 

Grand Average ERPs, Neutral and Target Stimuli 
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Figure 21. ERPs during the presentation of both the Neutral and Target Stimuli. 

The amplitude of the peaks believed to be related to motor observation are 

significantly greater for the N1 and N2. 
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The peaks identified in the waveforms as an N1, P1 and N2 are present in 

both waveforms. However, the amplitudes for the N1 and N2 are significantly 

greater in response to the Target Image: N1, t (1, 54)=11.075, p<0.001; N2, t (1, 

54)= 9.909, p<0.001. If these peaks were visually related rather than motor 

related, it would be expected that the peaks would have a larger amplitude in 

response to the Neutral Image than to the Target Image. This is not the case. 

As such, it is not likely that these peaks are only visually related. While there is a 

clear visual component to the observed peaks, they not expected to be observed 

at C3. Further, given the increased amplitude to the Target Image, there is an 

additional component augmenting the amplitude of these peaks. This 

augmentation is believed to be the motor related activation. 

On the other hand, each stimulus appears to be eliciting these peaks to 

some degree. With this in mind, it is important to note that both stimuli contain 

similar object characteristics. Therefore, it could be argued that the evoked 

potentials may be due in part to object recognition rather than a traditional 

visually evoked potential or the possibility of a motor related response. While the 

visual characteristics of luminance remained constant from the neutral image to 

the target image, there is a presence of the objects in the target image that is 

absent during the lSI. To better investigate this possibility, another comparison 

to a response-locked ERP was also investigated. Early investigations of motor 

evoked potentials were typically time-locked to EMG onset during repeated motor 

movements that were paced to a metronome or self paced (Mushiake, et aI., 

1991; Nativ, et aI., 1992; Okano & Tanji, 1987; Thickbroom & Mastaglia, 1985; 
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Thickbroom, et aI., 1985). This strategy was used to obtain a response-locked 

average. During motor observation, participants were required to report which of 

the two actions they observed in the target image. These button responses were 

used to generate a response-locked average as opposed to the stimulus-locked 

averages previously examined. The response-locked waveform contains some 

of the same features as the stimulus-locked waveforms. See Figure 22. 

Response-Locked and Stimulus-Locked EEG during Motor Observation 
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Figure 22. Response-Locked ERP during Motor Observation. The vertical black 

line on the right side of the graph is at zero and represents the time at which the 

button response was made. The average response time during motor 

observation was approximately 526 ms. Moving backward from there, the vertical 

black line on the left represents the approximate onset of the target image. The 
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average stimulus-locked ERP (including baseline) is added for comparison 

beginning at -626 ms. 

ERPs time-locked to stimulus presentations are characterized by peak 

latencies that occur after the onset of the stimulus. Response-locked ERPs are 

characterized by latencies that occur prior to the onset of EMG or, as in the 

present case, prior to a punctual participant response. The point at which the 

participant's respond, and the point at which the waveform is time locked will be 

referred to as Response Time. Activity prior to this time point shows a gradually 

increasing negativity, which peaks about 300 ms prior to response time. This 

peak negativity coincides with the N2 when comparing the relative time course of 

the stimulus-locked ERP. There also appears a comparable peak coinciding with 

the N 1. It was difficult to determine if there is a similar peak comparable to the 

P1. Still, the response-locked average yields a fairly similar waveform that was 

observed in the stimulus-locked EEG. This comparison, yet again, provides an 

additional level of consistency within the data, lending more support that the 

observed waveforms are not simply a response to visual information. This 

further supports the notion that the observed activity is more likely to be related 

to some kind of motor activity. 
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VII. DISCUSSION AND CONCLUSIONS 

Two major theoretical models, Direct Mapping and Functional 

Equivalence, suggest that the observation of action and imagery of action, 

respectively, involve activation of similar motor related areas. Both perspectives 

attempt to elucidate the common neural substrates involved in imagining or 

observing motor actions, and the planning and execution of similar motor 

movements. Despite the wealth of evidence that supports these two 

perspectives, the degree to which these motor-related actions overlap is still only 

vaguely defined. The present investigation sought to assess both the spatial and 

temporal characteristics of the brain activity involved in these motor related 

conditions. Specifically, the present study used ERP technology to assess the 

neural substrates of Motor Observation, Motor Performance, and Motor Imagery. 

All three of these experimental conditions were expected to show increased 

activation of motor related areas on the contralateral hemisphere (left 

hemisphere), particularly in the Supplementary Motor Area, Primary Motor Cortex 

and Primary Somatosensory Cortex. 

The data were subjected to a sequential PCA to reduce the data into 

manageable ERP components. Specifically, the PCA was expected to produce 

components that would reflect previously identified motor evoked potentials, 

namely the N 1, P1, and N2. The analysis revealed 100 components, only eight 

of which reached significance. Of these eight, three are maximal in parietal 
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areas. None are maximal in motor related areas. The three components that are 

maximal in the parietal areas are two early to be sensory feedback during motor 

movements. The third is not maximal in the left parietal area where it would be 

expected with a motor movement of the right hand. Ultimately, the analysis did 

not reveal any temporal components that corresponded to any of the expected 

peaks associated with motor evoked potentials, nor any other components that 

might reflect any expected motor related activity. Thus, the three temporal 

hypotheses were not supported by the temporal spatial PCA. 

The three spatial hypotheses were addressed in part by estimating the 

source activity using LORETA. LORETA attempts to solve the inverse EEG 

problem which estimates the source activity within the brain based on the scalp 

voltages, electrode locations and what is known about the average human brain 

and the skull that houses it. Initial slices were obtained by locating areas of 

maximal activation. However, much of the activity revealed by the LORETA 

values suggest very diffuse sources of brain activity, ranging from frontal areas to 

occipital areas, all having very little to do with motor control. Secondly, specific 

motor related areas were targeted to investigate activity possibly occurring in 

these areas, namely the SMA and M1. Contrary to expectations, LORETA 

values did not demonstrate that there was activity present in these areas. 

Given the paucity of support for the hypotheses, as well as the general 

lack of consistency among these analyses, additional investigations of the data 

were warranted. Specifically, identified peaks within the waveforms were 

subjected to ANOVAs, and 2-dimensional views of the scalp voltages were 
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examined to better understand the nature of the data. Each was intended to 

compliment the primary analyses, while providing a better picture of what can be 

learned from the data. These subsequent examinations of the data were also 

intended to provide some insight and rationale for the unanticipated results 

yielded by the PCA and LORETA results. 

The greatest source of useful information came from the windowed 

ANOVAs. Here, windowed measures were obtained for specifically identified 

peaks within the waveforms. These windowed measures provided minimal 

support for the temporal hypotheses. These amplitude measures were subjected 

to robust ANOVAs. MO, MP and MI all share an N1 as expected. However, this 

peak was also present during the VI. The presence of this peak in the control 

condition makes this outcome a bit suspect. Similarly, MP and MI also share a 

P1 as expected. Still, this peak is also present during MO and the control. 

Lastly, the N2 was only supposed to be present during MP, but was quite 

apparent in all four conditions. While there was a hemisphere affect for the N2, 

demonstrating a greater negativity in the left hemisphere, there were no 

differences between conditions at any of these peaks. One remaining question is 

why there are not identifiable differences between conditions. 

The literature suggests that there are a number of similarities among 

Motor Observation, Motor Performance, and Motor Imagery. Specifically, these 

similarities include activation of motor related areas. While subtle differences 

among these conditions theoretically exist, the similarities eclipse any differences 

that might be present, thus making it ever more difficult to detect those 
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differences. In other words, the experimental conditions themselves may have 

been too similar in nature, making it increasingly difficult to detect subtle 

differences between the participant tasks. While previous work suggested that 

the intention of the observer leads to differential activation (Decety, et aI., 1997), 

there is no indication that same manipulation worked here. This could account 

for the similarities between the experimental conditions. While participants 

understood the task demands and may have performed honestly, all three motor 

related experimental conditions required the participants to observe the same 

motor information. While the intention varied, the imperative stimuli did not. It 

was believed that despite the similarities in stimuli, the differences in intention 

would be robust enough to lead to differences in motor processing and therefore 

result in differences in recorded waveforms. As such, the ERPs would 

demonstrate the expected differences in motor processing. This was not the 

case, Had the experimental stimuli differed between the conditions, the outcome 

would not have weighed so heavily on the intention of na·ive participants. 

While this explanation can account for the similarities between the experimental 

conditions, it fails to explain the similarities to the control condition. 

Ultimately, the last question begging to be answered was why are these 

peaks present even under conditions where they are not expected to occur? 

There are two probable explanations, including confusion with visually evoked 

potentials, or the presence of motor related activity across all the conditions. 

To tease these apart, specific comparisons were made between three 

additional waveforms. Specifically, comparisons were drawn between the EEG 
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during both the Neutral Image and the inter-stimulus interval. A third comparison 

was made to a response-locked ERP. Close inspection of the EEG in response 

to the inter-stimulus interval demonstrated that the ERPs elicited by the 

presentation of the target images were uniquely different than the waveforms 

during the lSI. The lSI followed directly the presentation of the neutral images. 

Essentially, the participants viewed a novel visual stimulus of identical size and 

luminance as the target images. However, the EEG during this presentation was 

nearly unaffected and did not contain any elicited response. The additional 

comparison to the Neutral Stimulus revealed a similar morphology to that elicited 

by the Target Image. However, significant differences were found between 

measures of maximum amplitude. These differences demonstrate a significantly 

greater response to the Target Image than the Neutral Image. Thus the 

waveforms time-locked to the target images were not simply evoked by the 

presentation of a novel visual stimulus. Therefore, the peaks under investigation 

could not be confused for visually evoked potentials. 

There were two critical differences between the visual display during the 

neutral images, the inter-stimulus interval, and the target images. One is the 

presence of a human hand, and the two objects. The second is the presence of 

the motor related activity inherent in the image. The latter of these two is the 

basis for the present investigation. It is the motor related information that is the 

fundamental issue. Therefore, an additional comparison was made to a 

response-locked average obtained during the motor observation condition. 
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During the motor observation trials, participants were instructed to report 

using a response pad which of the two target images they saw. In addition to the 

recorded response, the ongoing EEG was also marked when these responses 

were made. The EEG was segmented using these markers and averaged 

together. This average was then compared to the time-locked ERP for the same 

condition. The waveforms shared similar characteristics including the N1 and N2 

peaks. It was difficult to determine if a positive deflection the response-locked 

average was comparable to the P1. Nonetheless, this comparison provides 

support that the peaks could still be related to motor activity. What is most 

interesting is the presence of this activity in all four conditions, especially the 

purported non-motor related control. The following explanation is presented. 

a. Automatic Motor Recognition 

As previously explained, the theoretical similarities among the three motor 

related conditions could explain the remarkable commonalities between these 

conditions. However, this explanation does not explain the similarities to the 

control condition. Secondly, this explanation relies on the assumption that 

viewing motor information alone elicited these motor evoked potentials. This 

assumption would further suggest there is more motor related activity involved in 

motor observation that previously thought. Essentially what may be happening 

here is a kind of automatic motor recognition. Much like object recognition, but 

recognition of motor information. This explanation is plausible given the line of 

work of visuo-motor priming previously introduced. 
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Several studies using Serial Reaction Time (SRT) tasks demonstrate that 

action and perception directly affect one another. Specifically, these tasks 

illustrate the direct relationship between observed motor information and motor 

behavior (Heyes & Foster, 2002; Howard, et aI., 1992) such as visually guided 

actions (Flanagan & Johansson, 2003). This idea is further supported by Heyes 

and Ray's Associative Learning Theory (Heyes, Bird, Johnson, & Haggard, 2005; 

Heyes & Foster, 2002) that suggests visual information from a model can directly 

activate motor representations of the observer. These lines of work validate the 

suggestion that the peaks found in the present data set may be due to this 

automatic relationship between motor observation and action understanding. 

However, there are some additional concerns regarding the present study 

including both methodology and the number of participants. The present 

investigation relied on only 18 participants using a within-subjects design. As 

such, participants experienced all four conditions. While these were presented in 

blocks of 10, it could be argued that motor related activity present during one 

motor related condition, could carryover to the next block of trials, including the 

control condition. This could possibly lead to some kind of priming or carryover 

effect that could theoretically account for the similarities found between the 

different conditions. As such, the conclusion that the similarities between the 

conditions are caused by an automatic motor recognition as part of motor 

observation is tempered by these methodological issues mentioned above. 

In order to evaluate if motor observation is in fact responsible for these 

similarities and the observed evoked potentials in all four conditions, only a few 
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simple changes to the present design would be necessary. Essentially, only a 

few modifications to the methodology would be necessary. Specifically, these 

modifications would include changes to the imperative stimuli, namely the target 

images, increasing the number of participants, and using a between subjects 

design to prevent any kind of carryover or priming effects from one condition to 

another. Removing the motor related information from all but the motor 

observation condition could be enough. Simply using an arrow or some other 

indicator during those conditions would suffice. The task and intention of the 

observer would not change, nor would the nature of the stimuli aside from the 

absence of the motor information. The motor information would simply be 

removed from the image. In the end, only the Motor Observation condition would 

employ the Target Image in its present form - that is containing the hand 

performing the grasping motion. Therefore, only the Motor Observation condition 

would require the subject to actually observe motor related behavior. Similarly, 

only the Motor Performance condition would require actual motor behavior on the 

behalf of the participant, and only the Motor Imagery condition would require the 

expected kinesthetic motor imagery. Therefore, by augmenting the target stimuli, 

any differences that theoretically exist between the motor processes would be 

more pronounced and more likely to be observed and identified statistically. 

Further, any automatic motor recognition would not confound the other 

experimental conditions or the control condition. 
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b. Impact and Relevance to the Field 

The most recent investigations concerning the MNS in humans suggest 

that this system plays several vital roles from action understanding, human 

imitation, response facilitation and observational learning to higher cognitive 

functions such as language understanding, empathy, and even mind reading 

(Frith & Frith, 1999; Gallese, 2001; Gallese & Goldman, 1998; Hickok, 2010; 

Kelley & Bass, 2010). 

From a clinical perspective, the dysfunction of the putative MNS has been 

suggested to be involved with autism (G. Rizzolatti, Fabbri-Oestro, & Cattaneo, 

2009; Williams, 2008). In addition to the purported impact on motor execution 

and athletic performance, motor imagery may playa role in stroke rehabilitation 

(Garrison, Winstein, & Aziz-Zadeh, 2010), relearning locomotor skills (Malouin & 

Richards, 2010) and prehabilitation. Prehabilitation is the practice of engaging in 

rehabilitation prior to surgery by incorporating resistance training and flexibility 

training. This strategy is employed in order to facilitate better post-surgery 

outcomes (Oitmyer, Topp, & Pifer, 2002). In the event that an injury prevents any 

kind of physical prehabilitation, it could be argued that motor imagery could be 

employed as a substitute. In other words, if one can't exercise the muscles 

before surgery, perhaps exercising the neural pathways for those actions may 

have a benefit (T. Mulder, 2007). 

Taken together, there may be numerous benefits of understanding the 

common neural substrates of motor imagery and motor observation by taking 

advantage of those commonalities in a variety of settings involving sensory-motor 
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dysfunction. Flor, Diers and colleagues are among the first the employ both 

motor imagery and motor observation in addition to motor execution to facilitate 

cortical reorganization in an effort to treat a variety of sensory and motor 

abnormalities such as stroke, dystonia and tinnitus (Diers, Christmann, Koeppe, 

Ruf, & Flor, 2010; Flor & Diers, 2009). 

While the methodology of the present study failed to further elucidate 

these neural mechanisms, this area of study is increasingly important and 

beneficial to wide ranging areas of medicine and psychology. Studies that aim to 

provided better understanding of the neural substrates of motor imagery and 

motor observation and how they relate to motor execution ultimately benefit a 

growing and thriving body of literature. In the end, a greater understanding of 

these processes through scientific advances further develops and improves both 

interventions and treatments. Each are aimed at bettering the lives of those 

suffering from a myriad of psychological, physical and psychophysical disorders 

resulting from many psychobiological causes including stroke, dismemberment, 

physical injury, and cognitive dysfunction. 
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APPENDIX 1 

Factors resulting from Sequential peA. The Temporal peA yielded 20 factors, 

followed by a Spatial peA yielding 5 factors for each temporal component for a 

total of 100 components. The first temporal factor (TF01-) with the first spatial 

factor (-SF1) is listed first, followed by the additional spatial factors for the first 

temporal factor. The latency of the component and the channel where the 

component is maximal is listed along with the polarity and the amount of variance 

accounted for by the factor. 

Factor Latency Channel Polarity FacVar FacVarQ 
TF01SF1 328 E128 1 0.0746 0.0442 
TF01SF2 328 E134 -1 0.0215 0.0128 
TF01SF3 328 E169 -1 0.0163 0.0096 
TF01SF4 328 E145 -1 0.0093 0.0055 
TF01SF5 328 E199 1 0.0078 0.0047 
TF02SF1 1372 E18 -1 0.0455 0.0221 
TF02SF2 1372 E234 1 0.0256 0.0124 
TF02SF3 1372 E34 -1 0.0138 0.0067 
TF02SF4 1372 E18 -1 0.0086 0.0042 
TF02SF5 1372 E187 -1 0.0056 0.0027 
TF03SF1 884 E133 1 0.0267 0.0104 
TF03SF2 884 E208 1 0.0134 0.0052 
TF03SF3 884 E37 1 0.0113 0.0044 
TF03SF4 884 E18 1 0.0092 0.0036 
TF03SF5 884 E188 1 0.0065 0.0025 
TF04SF1 564 E175 1 0.0279 0.0117 
TF04SF2 564 E199 1 0.0132 0.0055 
TF04SF3 564 E18 -1 0.0103 0.0044 
TF04SF4 564 E10 -1 0.005 0.0021 
TF04SF5 564 E217 1 0.0036 0.0017 
TF05SF1 64 E148 -1 0.0202 0.0096 
TF05SF2 64 E101 -1 0.008 0.0038 
TF05SF3 64 E95 1 0.0033 0.0016 
TF05SF4 64 E136 1 0.0025 0.0012 
TF05SF5 64 E101 -1 0.0013 5.97E-04 
TF06SF1 212 E169 -1 0.0174 0.009 
TF06SF2 212 E90 1 0.012 0.0062 
TF06SF3 212 E150 -1 0.0023 0.0012 
TF06SF4 212 E178 -1 0.0019 9.96E-04 
TF06SF5 212 E102 1 0.0013 6.76E-04 
TF07SF1 156 E19 1 0.0206 0.0082 
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TF07SF2 156 E90 -1 0.0083 0.0033 
TF07SF3 156 E192 1 0.0027 0.0011 
TF07SF4 156 E150 -1 0.0018 7.04E-04 
TF07SF5 156 E13 -1 0.001 4.20E-04 
TF08SF1 1120 E101 1 0.0196 0.0089 
TF08SF2 1120 E213 1 0.0027 0.0012 
TF08SF3 1120 E66 1 0.0024 0.0011 
TF08SF4 1120 E212 -1 0.0017 7.83E-04 
TF08SF5 1120 E18 -1 0.0017 7.77E-04 
TF09SF1 436 E127 1 0.0123 0.0059 
TF09SF2 436 E216 1 0.007 0.0034 
TF09SF3 436 E94 0.0029 0.0014 
TF09SF4 436 E256 0.0025 0.0012 
TF09SF5 436 E202 -1 0.0019 9.22E-04 
TF10SF1 1484 E101 -1 0.0214 0.0114 
TF10SF2 1484 E112 1 0.0025 0.0017 
TF10SF3 1484 E213 -1 0.0025 0.0013 
TF10SF4 1484 E51 1 0.0013 6.71E-04 
TF10SF5 1484 E101 6.85E-04 3.57E-04 
TF11SF1 1060 E101 -1 0.0179 0.0092 
TF11SF2 1060 E149 -1 0.0024 0.0013 
TF11SF3 1060 Cz 0.0021 0.0011 
TF11SF4 1060 E212 1 0.0013 6. 54E-04 
TF11SF5 1060 E199 1 9.78E-04 5.09E-04 
TF12SF1 32 E101 -1 0.0219 0.0105 
TF12SF2 32 E84 -1 0.0024 0.0013 
TF12SF3 32 E212 1 0.0018 8.56E-04 
TF12SF4 32 E90 -1 0.0011 5.54E-04 
TF12SF5 32 E139 -1 7.19E-04 4.10E-04 
TF13SF1 116 E168 -1 0.0177 0.0144 
TF13SF2 116 E119 -1 0.0055 0.0046 
TF13SF3 116 E159 -1 0.0014 0.0011 
TF13SF4 116 E116 1 7.97E-04 6.72E-04 
TF13SF5 116 E28 -1 4.87E-04 4.14E-04 
TF14SF1 1184 E18 -1 0.01 0.0054 
TF14SF2 1184 E242 -1 0.003 0.0016 
TF14SF3 1184 E208 0.0017 9.76E-04 
TF14SF4 1184 E213 0.0011 6.22E-04 
TF14SF5 1184 E208 7.10E-04 4.01E-04 
TF15SF1 716 E101 0.008 0.0048 
TF15SF2 716 E213 -1 0.0025 0.0015 
TF15SF3 716 E208 1 0.0019 0.0011 
TF15SF4 716 E90 1 0.0012 6.85E-04 
TF15SF5 716 E213 -1 8.08E-04 4.82E-04 
TF16SF1 252 E101 -1 0.0095 0.0042 
TF16SF2 252 Cz -1 0.0024 0.0011 
TF16SF3 252 E72 -1 0.0013 5.66E-04 
TF16SF4 252 E90 -1 7.30E-04 3.53E-04 
TF16SF5 252 E151 -1 4.93E-04 2.30E-04 
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TF17SF1 692 E54 -1 0.0077 0.006 
TF17SF2 692 E213 1 0.0016 0.0012 
TF17SF3 692 E66 -1 0.0012 9.34E-04 
TF17SF4 692 E90 -1 9.83E-04 7.76E-04 
TF17SF5 692 E213 -1 8.13E-04 6.34E-04 
TF18SF1 132 E101 1 0.0092 0.0063 
TF18SF2 132 E213 -1 0.0027 0.0019 
TF18SF3 132 E103 -1 8.65E-04 6.11E-04 
TF18SF4 132 E213 -1 7.49E-04 5.18E-04 
TF18SF5 132 E90 1 4.64E-04 3.27E-04 
TF19SF1 16 E101 1 0.0067 0.0047 
TF19SF2 16 E213 1 0.0019 0.0013 
TF19SF3 16 E213 -1 9.32E-04 6.59E-04 
TF19SF4 16 E90 -1 8.45E-04 5.99E-04 
TF19SF5 16 E90 -1 4.71E-04 3.35E-04 
TF20SF1 1500 E230 -1 0.0039 0.0037 
TF20SF2 1500 E185 -1 0.0013 0.0013 
TF20SF3 1500 E208 -1 9. 38E-04 9. 15E-04 
TF20SF4 1500 E46 1 5.43E-04 5.32E-04 
TF20SF5 1500 E90 -1 4.20E-04 4.21E-04 
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