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ABSTRACT 

LEARNING FROM GRAPHICALLY INTEGRATED 2D AND 3D 

REPRESENTATIONS IMPROVES RETENTION OF NEUROANATOMY 

Farah Naaz 

April 20, 2012 

Visualizations in the form of computer-based learning environments are highly 

encouraged in science education, especially for teaching spatial material. Some spatial 

material, such as sectional neuroanatomy, is very challenging to learn. It involves 

learning the two dimensional (2D) representations that are sampled from the three 

dimensional (3D) object. In this study, a computer-based learning environment was used 

to explore the hypothesis that learning sectional neuroanatomy from a graphically 

integrated 2D and 3D representation will lead to better learning outcomes than learning 

from a sequential presentation. The integrated representation explicitly demonstrates the 

2D-3D transformation and should lead to effective learning. 

This study was conducted using a computer graphical model of the human brain. 

There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups 

learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D 

neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D 
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representations only. The Integrated 2D3D group learned sectional anatomy from a 

graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to 

interpreting biomedical images was conducted immediately after learning was completed. 

The order of presentation of the tests of generalization of knowledge was 

counterbalanced across participants to explore a secondary hypothesis of the study: 

preparation for future learning. If the computer-based instruction programs used in this 

study are effective tools for teaching anatomy, the participants should continue learning 

neuroanatomy with exposure to new representations. A test of long-term retention of 

sectional anatomy was conducted 4-8 weeks after learning was completed. 

The Integrated 2D3D group was better than the Whole then Sections group in 

retaining knowledge of difficult instances of sectional anatomy after the retention 

interval. The benefit of learning from an integrated 2D3D representation suggests that 

there are some spatial transformations which are better retained if they are learned 

through an explicit demonstration. Participants also showed evidence of continued 

learning on the tests of generalization with the help of cues and practice, even without 

feedback. This finding suggests that the computer-based learning programs used in this 

study were good tools for instruction of neuroanatomy. 
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INTRODUCTION 

Visualization is important in science education. Domains such as physics, 

chemistry, and biology rely heavily on visualization to explain concepts, processes, 

structures, and spatial relationships (Gilbert, 2007). Visualizations in the form of 

computer-based learning environments have been highly encouraged and are commonly 

adopted in science education (Miller, Lehman, & Koedinger, 1999; Lee, Linn, Varma, & 

Liu, 2010; Lowe, 2004; Russel & Kozma, 1994; Crowley & Medvedeva, 2006). 

However, most visualization tools are being developed on the basis of intuitions of the 

instructor or the designer and without taking findings in cognitive science into 

consideration (Ainsworth, 2006; Issenberg, McGaghie, Petrus a, Gordon, & Scalese, 

2005; Khalil, Paas, Johnson, & Payer, 2005, Mikropoulos, & Natsis, 2011). There is a 

need for development of computer-based learning environments which are based on 

theories of learning and which have been rigorously evaluated for their effectiveness 

(Chariker, Naaz, & Pani, 2012; Cook & Levinson, 2011; Issenberg et. aI, 2005; Khalil et 

al.,2005). 

Neuroanatomy is a discipline that requires spatial visualization for a coherent 

understanding of the material. The brain has a complex spatial organization with a variety 

of different structures in complex relations to each other. Learning neuroanatomy is 

challenging due to the complexity of the brain and because the learner must assimilate a 

large amount of information from various anatomical representations, including atlases, 

cadaver dissection, and MRI images. Several recent studies have also pointed out that 



students struggle in retaining their anatomy knowledge, and that there is a need for 

supplemental material to support the students in learning (Cottam, 1999; Fitzgerald, 

White, Tang, Maxwell-Armstrong & James, 2008, Waterson & Stewart, 2005). 

Recently, many medical schools have started incorporating computer-based 

instructional programs to supplement anatomy education (Cottam, 1999; Dev, 1999; Dev, 

Hoffer, & Barnett, 2006). However, these computer-based teaching programs have 

typically not been evaluated for their effectiveness. A relatively small set of studies have 

focused on assessing the effectiveness of computer-based anatomical models in teaching 

anatomy. The results of these studies are mixed. Some studies report benefits of using 

computer-based programs over traditional material (Garg, Norman, & Sperotable, 2001; 

Luursema, Verwey, Kommers, & Annema, 2008; Luursema, Verwey, Kommers, 

Geelkerken, & Vos, 2006; Nicholson, Chalk, Funnell, & Daniel, 2006). Other studies 

report computer-based programs to be either as efficient as traditional teaching material 

(Codd & Chaudhury, 2011; Hariri, Rawn, Srivastava, Youngblood, & Ladd, 2004; Garg, 

Norman, Eva, Spero, & Sharan, 2002; Keedy, et aI., 2011), or inferior to traditional 

approaches (Garg, Norman, Spero, & Maheshwari, 1999; Levinson, Weaver, Garside, 

McGinn, & Norman, 2007). However, the relatively poor performance by computer­

based groups in these studies can be explained by several points. First, these studies 

utilize a short study time, which is unrealistic if the aim is to simulate a real-world 

learning environment. Second, these studies often teach relatively simple anatomy, such 

as carpal bone anatomy, which may not be spatially complex enough to require 3D 

visualization. Third, because building realistic and detailed computer graphical models 
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requires large amounts of resources, the computer-based models used in these studies are 

often simplistic, and less detailed than textbook illustrations. 

Existing comparisons of computer-based instructional programs with traditional 

approaches to teaching do not allow adequate exploration of the capabilities that can be 

incorporated into computer-based programs. In order to develop a computer-based 

instructional program that can successfully facilitate the process of learning anatomy, 

there is a need to focus on designing programs which can provide realistic graphics, 

flexible learning environments, and that follow principles of learning described in 

cognitive science (Issenberg, et aI., 2005; Silen, Wirell, Kvist, Nylander, & Smedby, 

2008). 

We have been developing computer-based instructional programs for teaching 

neuroanatomy and have evaluated its effectiveness empirically (Chariker, Naaz, & Pani, 

2011,2012; Pani, Chariker, & Naaz, in preparation). These studies focused on the 

challenges involved in learning sectional neuroanatomy. Sectional neuroanatomy is an 

important aspect of learning neuroanatomy, with application in domains such as 

radiology and pathology. Sectional neuroanatomy is the two dimensional (2D) 

representation of the brain through depictions, or actual samples, of planar slices taken 

from the three dimensional (3D) tissue at different orientations and positions. MRI 

images are the most familiar example, but students study many types of sectional 

representation (e.g., diagrams and dissections). The structures in the brain change their 

appearance in these sectional representations, in part because the whole brain has a 

complex spatial organization. For example, the fornix is a C-shaped structure which 
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wraps around the thalamus, runs through the hypothalamus, and connects the 

hippocampus with the mammillary body. The shape and location of the fornix changes in 

different sections of the brain. In addition, the fornix is confusable with the optic tract in 

some sections of the brain (but not others), as the structures sometimes appear similar. 

Thus, learning sectional anatomy becomes a very challenging task for the learner as it 

requires dealing with a large amount of complex spatial information. Graphical 

visualization tools should be helpful in understanding such complex spatial material. 

However, it is not clear what approach to visualization would best lead to a coherent 

understanding in this case. In these studies, different approaches to graphical 

visualization was explored to determine which approaches lead to better learning 

outcomes for sectional neuroanatomy. 

A previous research on learning sectional anatomy focused on encouraging 

integration of the 3D and 2D representations of neuroanatomy (Chariker et al., 2011, 

2012). The hypothesis was that learning whole anatomy (3D shape and organization of 

the neuroanatomical structures) before learning sectional anatomy would make learning 

sectional anatomy more efficient and effective. This hypothesis was supported by 

research on learning and memory which encourages presentation of information in an 

organized framework (Bower, Clark, Lesgold, & Winzenz, 1969; Bransford, Brown, & 

Cocking, 2000). A 3D computer graphical model was created to teach whole anatomy, 

and 2D graphical sections were created by dense sectioning of the 3D model to teach 

sectional anatomy. The performance of a group who learned whole anatomy first and 

then sectional anatomy (Whole then Sections) was compared with a group that learned 

only sectional anatomy (Sections Only). The results of the study showed that learning 
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whole anatomy before learning sectional anatomy was better than learning just sectional 

anatomy. The Whole then Sections group was more efficient in learning neuroanatomy. 

They learned both whole and sectional anatomy in little more time than the Sections Only 

group, while making significantly fewer errors. In addition, the Whole then Sections 

group retained their sectional anatomy knowledge better than the Sections Only group 

after an interval of 2-4 weeks. Another important benefit of learning whole anatomy 

before sectional anatomy was found in the generalization of knowledge. The tests of 

generalization of knowledge were conducted using biomedical images, which participants 

had never seen before, to test their capacity to transfer their knowledge to new 

representations of sectional anatomy (MRI and Visible Human images). The Whole then 

Sections group was significantly better at generalizing their knowledge to new 

representations of sectional neuroanatomy than the Sections Only group. These results 

suggest that whole anatomy knowledge provided a framework for organization of 

sectional anatomy knowledge, hence leading to more efficient learning, better retention, 

and better generalization of sectional anatomy knowledge. 

A second study attempted improving the organization of sectional anatomy 

knowledge by interleaving (alternating) trials of whole and sectional anatomy learning 

(Pani et aI., in preparation). This approach to learning provides multiple opportunities for 

the participants to transfer their whole anatomy knowledge to learning sectional anatomy, 

and sectional anatomy knowledge to learning whole anatomy. Evidence from the 

literature on interleaved learning suggests that although learning from an interleaved 

presentation is more difficult than learning from blocked presentation, it leads to better 

learning outcomes (KorneH & Bjork, 2008; Rohrer & Taylor, 2007; Taylor & Rohrer, 
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2010). Learning from a sequential (blocked) presentation of whole and sectional anatomy 

(Whole then Sections) was compared with learning from an interleaved presentation of 

whole and sectional anatomy (Alternation). Neuroanatomy was taught from three 

different views (i.e., front, side, and top). The presentation of the views was blocked. 

Participants learned one view to the criterion level, then started learning the second view, 

and so on. It was found that interleaved presentation makes learning more efficient than 

learning from a sequential presentation. The Alternation group learned sectional anatomy 

with fewer errors than the Whole then Sections group. The benefit of interleaved 

presentation was also seen in the number of trials to finish learning a view. The 

Alternation group took significantly fewer trials to learn sectional anatomy in the third 

(and last) view of sectional anatomy. The benefit of interleaving did not extend to long­

term retention and generalization of knowledge. Both the groups performed at 

comparable levels on these tests. 

Although both of these approaches to learning neuroanatomy (sequential and 

interleaved) were efficient ways to learn, there were some brain structures which 

remained challenging for the participants. The long-term retention tests of sectional 

anatomy showed that while most test items were retained at a high level (group retention 

of 80-90%), retention for some test items was quite low (40% or below). These test items 

appeared to be difficult for participants because they were confusable with each other due 

to their common size, shape, and location (Chariker et aI., 2012). It is possible that 

learning and retaining these difficult test-items would be easier if participants understood 

how the 3D to 2D transformation of structures occurs in sectional representation. 
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Based on the previous two studies, it appears that integrating 3D and 2D 

information may be a key to a coherent understanding of 3D and 2D mapping. The 

sequential and interleaved presentations of whole and sectional neuroanatomy relies on 

participants' ability to recall and integrate the 3D and 2D representations. The literature 

on spatial cognition shows that spatial knowledge is often global, and imagining even 

simple spatial transformations depends on favorable conditions (Hinton, 1979; 

Kozhevnikov, & Hegarty, 2001; Pani, Jeffres, Shippey, & Schwartz, 1996; Pani, 

Chariker, Dawson, & Johnson, 2005; Reed, 1974; Stevens & Coupe, 1978; Tversky, 

1981). For example, Tversky (1981) showed that memory for spatial information, such as 

the location of continents on a map, is global and schematic. Due to tendency for spatial 

alignment, people remember North and South America as vertically aligned when 

actually they are not. Another interesting example is of imagining projective 

transformations (e.g., casting a shadow of an object). People struggle with imagining the 

shadow of even simple objects such as a cube if the object is not shown aligned to the 

direction of projection (Pani et aI, 1997). These studies suggests that many instances of 

spatial integration of whole and sectional representation can be too challenging for the 

learner to attain without seeing them explicitly. Certainly there are cases when the best 

way to teach a spatial transformation is to show it to people (Pani et aI., 2005). Hence, 

instead of relying on the learners to integrate the information on their own, it may be a 

better approach to show them the explicit mapping of whole and sectional anatomy in an 

integrated graphical representation. If seeing the explicit 2D-3D spatial transformation is 

advantageous for better understanding of the difficult test items, performance on these 

test items should improve after learning with explicit graphical integration. Therefore, in 
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this study learning neuroanatomy from an explicitly integrated graphical representation 

was compared with sequential presentation of neuroanatomy to explore if there is any 

benefit of learning from an integrated representation. 

While the literature on spatial cognition suggests that explicit integration of 

spatial information may be beneficial, an alternative hypothesis is that cognitive 

integration of whole and sectional anatomy is always a better approach for integration. 

The effort required to integrate the representations cognitively may be an instance of 

desirable difficulty (Bjork, 1994). The concept of desirable difficulty suggests that 

conditions which may seem difficult during instruction (such as spaced learning and 

interleaved presentation) may lead to better retention than conditions which appear to be 

more efficient. Providing a graphical tool for a process that is best performed cognitively 

may impair learning. There is evidence that complex graphical visualizations are not 

always beneficial (Hegarty, 2004; Keehner, Hegarty, Cohen, Khooshabeh, & Montello, 

2008; Tversky, Morrison, & Betrancourt, 2002). In a previous study (Chariker et aI., 

2011), providing participants the capability for continuous navigation between sections 

during sectional anatomy learning did not lead to any benefit over discontinuous 

navigation (similar to turning pages in an atlas). It is possible that learning from an 

explicitly integrated representation would lead to poor retention of sectional anatomy. 

However, we believed that neuroanatomy is complex enough that learning from an 

explicitly integrated graphical model of 2D and 3D neuroanatomy would help the learner 

to build a more accurate and organized mental model of sectional anatomy. This, in turn, 

would benefit learning and retention. Note that if participants in the study show better 

learning with an explicitly integrated graphical model of 2D and 3D anatomy, it would be 
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one instance where computer-based learning provides a learning opportunity which is 

otherwise very difficult to obtain. 

A major concern for any approach to learning is whether it is suitable for learners 

with varying cognitive abilities. Some studies on visualization suggest that visualizations 

may only be beneficial for high spatial learners (Cohen & Hegarty, 2007; Garg et aI., 

1999; Keehner et aI., 2008; Hoffler, 2010; Huk, 2006; Levinson et al.,2007; Nguyen, 

Nelson, & Wilson, 2012). It is important to note that most of the studies that report no 

benefit for low spatial groups were focused on the initial stage of learning after a brief 

exposure to the learning material. These studies on spatial learning suggests that there 

will be large variations in how beneficial visualizations can be to learners of varying 

spatial ability during the initial learning stage. However, these differences may not be 

important if the goal is mastery of the material. Studies using longitudinal learning 

suggest that with practice, even low spatial groups can achieve proficiency (Chariker, 

2009; Keehner, Lippa, Montello, Tendick, Hegarty, 2006; Pani et aI., 2005). 

Based on the studies of visualization that report no benefit for the low spatial 

group, it could be predicted that low spatial participants in this study will not benefit from 

graphically integrated visualizations. On the other hand, studies using longitudinal 

learning suggest that graphically integrated visualizations may be helpful for low spatial 

participants (Chariker, 2009; Keehner et aI., 2006). Since learners in this study were 

allowed to learn until they reached a high performance criterion, even low spatial 

participants should benefit from the integrated visualization tools. Overall, the role of 

spatial ability in learning from graphical programs remains an empirical question. 
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The procedure for testing generalization of knowledge was modified in this study 

to address a secondary hypothesis about preparation for future learning and the present 

methods of computer-based learning. The concept of preparation for future learning 

suggests that the benefits of learning in real-world situations go beyond immediate 

outcomes (Bransford & Schwartz, 1999). Another way to evaluate the effectiveness of an 

approach to learning is to measure how prepared the learner is to continue learning in the 

field. Participants in this study were tested on their ability to generalize knowledge to 

new representations of neuroanatomy such as MRI images and photographs of real brain 

sections (Visible Human images). These generalization tests were used for two purposes. 

The initial purpose was to evaluate between-group differences in performance on the 

ability to generalize knowledge of neuroanatomy. The second purpose was to evaluate if 

participants continued learning with exposure to new representations of neuroanatomy in 

the context of cues, even in the absence of feedback. For example, if a cue is provided to 

participants in the form of an arrow pointing to a structure, and their task is to name the 

structure, that implies that the participants have been taught that structure. Biomedical 

images contain much more information than the participants have seen during learning. If 

the participants remembered their neuroanatomy well, the cue in the form of an arrow 

indicating a structure would help participants eliminate other neuroanatomical structures 

that they might consider as possible locations for that structure. In later exposure to 

biomedical images with different types of cues, the previous experience with the material 

should provide some help in correct identification of the structure. Thus, learning can 

continue with new representations of neuroanatomy even in the absence of feedback. 

However, the initial learning had to be relatively complete and generalizable. 
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There were two learning groups in the study: Whole then Sections and Integrated 

2D3D. Both groups learned whole anatomy first, because it is efficient to learn with the 

present methods, and it provides a good overview of neuroanatomy. Both groups then 

moved to learning sectional anatomy, either with sectional representation only or with a 

graphical integration of whole and sectional anatomy. 

Both the learning groups used a method of learning called adaptive exploration 

(Pani et aI., 2005; Chariker et aI., 2011, 2012; Pani et aI., in preparation). Adaptive 

exploration provides flexibility to the learner in graphically exploring the learning 

material. This capability is embedded in learning trials which consist of successive stages 

of study, test, and feedback. As a consequence, participants space their learning, 

frequently test their knowledge, and receive continuous feedback. This approach was 

adopted because there is evidence to suggest that these methods lead to good retention of 

information (Melton, 1970; Karpicke & Roediger, 2008; Kornell & Bjork, 2009). 

Another important aspect of this study was that the participants continued learning the 

material until they reached a high performance criterion. Requiring a high performance 

criterion allowed us to test the participants' long-term retention and generalization of 

knowledge after participants had fully learned the material. 
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METHOD 

Participants 

Sixty-four volunteers were recruited for the study through paper and online 

advertisements posted throughout the University of Louisville campus. Eleven 

participants did not complete the study due to scheduling conflicts or because they did 

not comply with instructions. Participants were randomly assigned to the learning groups 

while keeping the group mean and distribution for DA T score balanced. A further 

balancing procedure was used to match the participants in the two learning groups on a 

pre-test of sectional neuroanatomy identification (see Procedure). After matching 

participants in the two learning groups, forty participants were included in the final 

analyses. The participants included in the final analyses were between 16 and 34 years of 

age. 

All volunteers took an initial survey which assessed their knowledge of 

neuroanatomy. The survey asked them to indicate if they were familiar with the names of 

the 19 neuroanatomical structures included in the study and whether or not they would be 

able to locate these structures in the brain. Only the volunteers with minimal or no 

knowledge of neuroanatomy were included in the study. 

Participation in the study required coming to the laboratory for an hour long 

session at least twice a week. On average, participants took twelve sessions to finish. 

Participants were compensated 100 dollars for completing the study. Participants who did 

not complete the study were compensated at the rate of 8 dollars per hour, up to a total of 
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100 dollars. This rule for compensation was implemented to discourage any intentional 

delay in completion of the study. 

Material 

Psychometric tests. Before learning neuroanatomy, participants were tested on 

their spatial ability and the capacity of their short -term memory for visuospatial patterns 

using standard psychometric tests. The Differential Aptitude Test: Space Relations 

(OAT; Bennett, Seashore, & Wesman, 1989) was used to measure spatial ability. The 

DA T is a test of "mental paper folding". The test involves presenting a two-dimensional 

pattern which can be folded to form a three-dimensional figure. There are four pictures of 

three-dimensional figures presented as possible answers. The participant's task is to 

indicate the correct option among the four provided. There were thirty-five test questions. 

Percentile scores for the test were used in the data analyses. 

The Designs I test for immediate recall from Wechsler Memory Scale-IV 

(Wechsler, 2009) was used to measure short-term memory for visuospatial patterns. The 

test consists of separate measures for visual content memory, visual spatial memory, and 

an overall visuospatial memory score. The participants were shown a picture of a 4x4 

grid. The grid contained patterns in some of its cells. The participants' task was to 

remember these patterns and their location in the grid. After the picture was removed, 

participants were presented with a physical4x4 grid with empty cells and a set of cards. 

These cards included both the correct patterns and distractors. Participants' task was to 

identify the cards with the correct patterns and to place them in the correct locations on 

the grid. 
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The visual content memory score (Visual Content) represent the participants' 

ability to identify the correct patterns irrespective of the spatial location in the grid. The 

spatial memory score (Spatial Memory) represent the participants' ability to remember 

the correct location on the grid irrespective of the accuracy in choosing the correct 

pattern. The overall visuospatial memory score (Overall Memory) was calculated using 

the sum of content and spatial memory score plus bonus points for remembering both the 

correct patterns and the locations. The test consisted of four presentations with increasing 

levels of difficulty. The first item showed 4 patterns in the grid, the second and third 

items showed 6 patterns in the grid, and the fourth item showed 8 patterns in the grid. 

The scaled scores for Visual Content, Spatial Memory, and Overall Memory were used in 

the study. Scaled scores range from 1-19, with a mean at 10 and standard deviation of 3. 

These scores represent the participant's performance relative to their peers in the 

reference age group. 

Neuroanatomical model. A 3D computer graphical model of the human brain 

was adopted from earlier studies (Chariker et a1., 2011; Pani, et a1., 2012) This model was 

created using digital photographs of the cryosections of a cadaver brain available from 

the Visible Human project (version 2.0) of the National Library of Medicine (Ackerman, 

1995; Ratiu, Hillen, Glaser, & Jenkins, 2003). The model consisted of 19 major 

neuroanatomical structures: amygdala, brainstem, caudate, cerebellum, cortex, fornix, 

globus pallidus, hippocampus, hypothalamus, mammillary bodies, nucleus accumbens, 

optic tract, pituitary, putamen, red nucleus, subthalamic nucleus, substantia nigra, 

thalamus, and ventricles. Dense sectional representation of the 3D model also was 

available in the three standard planes: coronal (frontal), sagittal (side), and axial (top), for 
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use in the sectional anatomy learning programs. Neuroanatomy was taught in the study 

from all three standard views. 

Learning programs. There were three learning programs in this study: one 

program for learning whole anatomy and two programs for learning sectional anatomy. 

All learning programs were used in series of individual learning trials. Each learning trial 

was a continuous sequence that consisted of a timed study stage (4 minutes), a self-timed 

test stage, and a timed feedback stage (2 minutes). 

The three learning programs differed in the type of neuroanatomical model 

(whole or sectional) being used, and the graphical interaction, but the basic structure of 

trials was the same across all three learning programs. During study, participants could 

freely explore the brain model using the graphical tools available. Clicking on a structure 

with a computer mouse highlighted the structure, and its name appeared prominently at 

the bottom of the screen. In the test stage, participants were asked to name the structures 

they had learned by clicking on each structure and selecting its name from a button panel. 

The feedback stage consisted of two elements: a numerical feedback screen, and 

graphical feedback. The numerical feedback screen was presented first, and it indicated 

the number of structures that were named correctly, the number of structures named 

incorrectly, and the number of structures omitted. The graphical feedback consisted of a 

color coding of the brain model: the structures named correctly appeared in green, the 

structures named incorrectly appeared in red, and the structures that were omitted 

appeared in their original color. Participants could click on structures, highlight them, and 

see their names. The feedback stage ended with the appearance of an exit screen which 

displayed the participant's percentage correct score on the test. 

15 



Whole anatomy program. The program for learning whole anatomy featured the 

3D model of the brain. Both of the learning groups (Whole then Sections, Integrated 

2D3D) learned whole anatomy using this program. Participants could explore the model 

freely with the help of tools provided for rotation, zooming, and virtual dissection (Figure 

I). Participants could select a structure and learn its name. The brain model initially 

appeared from a coronal, sagittal, or axial view, and participants could rotate the brain by 

360 degrees in the horizontal plane of the scene and a vertical plane of the brain. The 

virtual dissection of the brain was conducted by selecting structures and removing them 

one by one, using buttons on the button panel at the right side of the screen. Participants 

also could restore the structures removed either one by one or all at once by using the 

buttons on the button panel. 

The test stage interface was similar to the study stage, with the exception that the 

model was restricted to the view (coronal, sagittal, or axial) in which it was originally 

presented in the study stage (Figure 2). Participants could rotate the brain only 45 degrees 

from the canonical view. Tools for zooming, removing, and restoring the structures were 

also available. To name a structure, participants selected the structure, selected its name 

from the button panel, and then clicked on a "Submit Name" button. Structures which 

were named turned blue to help the participants keep track of the structures they had 

already named. A numerical counter also was included at the top-left corner of the screen 

to indicate the number of structures named and the number of structures remaining. 

Participants could omit naming a structure if they wished. Participants exited the test 

stage once they finished naming the structures by clicking on the "Proceed to Feedback" 

button. The participants received numeric feedback first and then proceeded to graphical 
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feedback by clicking on a button. The participants could explore the color-coded brain 

model using all the tools that were available to them during the study stage (Figure 3). 
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Figure 1. Whole anatomy program: Study stage. The left cortex in the model has been 
removed and the ventricles have been selected in this image. 
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Figure 2. Whole anatomy program: Test stage. The left cortex has been removed to name 
inner structures. The structures in blue have been named. Structures in their original color 
have not been named. 
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Figure 3. Whole anatomy program: Feedback stage. The left cortex has been removed. 
The structures that have been named correctly appear green in the model. The structures 
that have been named incorrectly appear red, and the structures which were omitted 
appear in their original color. 

Sections only program. The Whole then Sections group learned sectional anatomy 

using a program that permitted exploring the 2D model of the brain (called the Sections 

Only program). During study, the participants saw thin parallel sections of the brain in a 

single view (coronal, sagittal, or axial) . The participants could move from one section to 

another by using a slider tool provided at the bottom of the screen (Figure 4). For 

example, in the coronal view, moving the slider from the left end to the right allowed 

participants to see all the sections of the brain from front to back. Participants could go to 

individual sections of the brain and click on structures to learn their names. Clicking on a 

structure highlighted it, and its name appeared at the bottom of the screen. 
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The sectional anatomy test stage was slightly different from the whole anatomy 

test stage. Here only a few structures were selected from some of the sections for testing 

(Figure 5). This procedure was adopted because all sections of the model could not be 

tested in every trial, and specifying the test items allowed us to vary them in different 

trials and to adequately sample each structure of the brain. Several sections of the model 

(12-15) were selected for each test stage. The structures that were tested were indicated 

by arrows in the sections. The participants were to name the structures indicated by the 

arrows. Once again, participants named a structure by selecting it, selecting its name from 

the button panel, and clicking the "Submit Answer" button. As with whole anatomy 

testing, tested structures turned blue, and a counter was provided to keep track of the 

number of structures named in a test section. In addition, a counter was provided at the 

bottom of the screen indicating the number of test sections remaining. Participants could 

move from one test section to the next by clicking on the "Next Section" button, but they 

could not go back to a previous test section. 

After finishing the test stage, participants received numeric feedback followed by 

graphical feedback. The graphical feedback stage was similar to the study stage and 

included all the sections of the brain (Figure 6). The test sections were marked "Test 

Section". The arrows indicating test items remained, and the test items again were color 

coded to reflect the performance on the test. The feedback stage allowed participants to 

go freely through all of the sections and to see where the test sections were taken from 

the model. They could select structures and see their names. The trial concluded with the 

appearance of the exit screen. 
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Figure 4. Sections only program: Study stage. The left cortex has been selected in a 
coronal section from the middle of the brain. 
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Figure 5. Sections only program: Test stage. Red arrows indicated strlictures to be named 
in each test section. The structures that have been named appear in blue. 
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Figure 6. Sections only program: Feedback stage. Test sections appeared with their red 
arrows. The structures that have been named correctly appear green in the model. The 
structure that have been named incorrectly appear red, and the structures which were 
omitted appear in their original color. 

2D3D program. The Integrated 2D3D group learned sectional anatomy using the 

2D3D program (Figure 7). During the study stage of a trial, participants could explore the 

3D model using all the tools they used earlier in the whole anatomy program for rotation, 

zooming, and virtual dissection. In addition , the 3D model could be sliced to view 

sectional anatomy with the help of the slider tool. On moving the slider from left to right, . 

a virtual cutting plane appeared to move through the brain and to remove the part of the 

brain in front of the plane. This exposed the 2D cross-sections of the 3D structure from 

one end of the brain to the other. For example, in the coronal view moving the slider from 

left to right made a cutting plane move from the front of the brain to the back, removing 
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the part of the brain anterior to the plane. Beyond the cutting plane, the 3D structures 

remained visible, allowing the participants to see the transformation from 3D to 2D. 

Participants could move the slider back and forth to see how these 3D structures would 

appear in sections from different depths in the brain. The test and feedback stages were 

identical to the test and feedback stages of the sections only program (i.e., test and 

feedback included only the 2D sectional anatomy, see Figures 5 and 6). 
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Figure 7. 2D3D program: Study stage. The program allowed exploration of whole 
anatomy and sectional anatomy simultaneously, using an integrated graphical 
representation. In this screenshot the left cortex is removed to expose the inner structures. 
The slider tool was used to remove the sections from the front of the brain. 
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Generalization tests. Four generalization tests were created using biomedical 

images to test the transfer of knowledge to new representations of neuroanatomy. The 

biomedical images used were MRI images (from the SPL-PNL Brain Atlas, Kikinis et aI., 

1996), and images from the Visible Human project. The Visible Human (V H) images 

were photographs of cryosections of a human cadaver through the brain and skull. 

Compared to the VH images, the MRI images had low resolution, low contrast, and few 

clear boundaries between structures. Both set of images showed many additional 

structures, such as bones, muscles, and blood vessels, that were not taught during 

learning. Both the VH images and the MRI images were presented from all three views. 

Global cues test. In this test, the participants were presented with a set of images 

one by one, and they were asked to name all recognizable structures in every image. The 

participants received two global cues to orient them for this test, one visual and one 

numeric (Figure 8). The visual cue was a brain icon at the top left corner of the screen 

which showed a line going through the brain, indicating the orientation and depth of the 

cross-section. For example, in the coronal view, a brain icon was presented from a side 

view with a line indicating the position and orientation of the coronal slice. The numeric 

cue was presented below the brain icon indicating the number of identifiable structures in 

that image. Participants indicated a structure by clicking on the image where they thought 

the structure was present and a dot would appear on the image at that location. They then 

selected a corresponding name from the button panel for the structure and submitted the 

answer. Participants were asked to give their best effort on a particular test image and 

then move to the next image. 
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Figure 8. Generalization test: Global cues. The participants were asked to identify all 
recognizable structures in the biomedical images. The brain icon provided information 
about the orientation and the position of the image. The numeric cue provided 
information about the number of recognizable structures present in the image. 
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Submit structure. In this test, participants were presented with a set of images. 

The name of a structure appeared at the bottom of the screen for each image (Figure 9). 

The task was to indicate the location of the structure being named in the image. 

Participants responded by clicking on the image where they thought the structure was 

located, and a dot appeared on the screen at that location. The participants then submitted 

their response and moved to the next test image. 

TEST STAGE 

Cortex 

Figure 9. Generalization test: Submit structure. The participants were asked to indicate 
the location of the structure named at the bottom of the screen. 
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Submit name. In this test, participants were presented with a set of images. A 

single structure was indicated by a red arrow on each image (Figure 10). The participant 

named the indicated structure by selecting a name from the button panel and submitting 

the answer. 

r::1 
t.:::J 

TEST STAGE 

1ntIr'I. 0000C. I C 

C. ....... N 

_. 
---- . 

Figure 10. Generalization test: Submit name. The participants were asked to name the 
structure being indicated by the red arrow. 
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Numeric cues. This test was similar to the Global Cues test but included only the 

numeric cue about the number of structures present in the image (Figure 11 ). Participants 

were instructed to name as many structures as they could in each image by clicking on 

the structures and using the button panel to name them. 

TEST STAGE 

r .... c __ 
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Figure 11. Generalization test: Numeric cues. The participants were asked to identify all 
recognizable structures in the biomedical images. The numeric cue provided information 
about the number of recognizable structures present in the image. 

Sections test and long-term retention test The Sections Test and Long-term 

Retention Test (LTR) were tests of knowledge of sectional anatomy. These tests were 

taken from the tests used in the sectional anatomy learning trials. Hence, they were 

identical to the test stage of sectional anatomy trials. Thus, several sections of the 2D 

model were presented to the participants. They had to name the structures that were 

indicated by arrows by clicking on the structures and selecting the names from the button 
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panel. Counters were provided to help keep track of the number of structures named, the 

number of structures remaining in the section, and the number of test sections remaining 

in the test. No feedback was provided after these tests. 

Instruction programs. Instruction programs were created for all learning 

programs and generalization tests. A mock brain model was created for instruction of the 

learning programs (Whole Anatomy, Sections Only, and 2D3D). The mock brain model 

contained several geometric structures in a variety of shapes and spatial relations. The 

structures were given pseudo-biological names. Using the mock brain model in the 

learning programs, demonstration videos were created which included visual 

demonstration and verbal description of how to use the learning programs. After 

watching the videos, the participants demonstrated their understanding of how to use the 

program by using the instruction programs with the mock brain. The experiment did not 

proceed until the participant could successfully demonstrate complete use of the relevant 

programs. 

The instruction programs for the generalization tests consisted of biomedical 

images (MRI and VH images) that were not part of the actual tests. Participants received 

instruction on how to use the generalization test programs. 

Apparatus 

The study was conducted using individual workstations with high capacity 

graphics cards and sufficient RAM for smooth presentation of the neuroanatomical 

models and images. The programs were displayed on twenty-four inch LCD monitors at a 

resolution of 1920 x 1200 pixels. The participants were seated approximately 60 cm from 

the monitors. Participants learned by themselves in quiet rooms using the 
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neuroanatomical programs. They were provided with headphones to be used for the 

instructional videos. 

Design and Procedure 

The primary hypothesis of the study was evaluated using two learning groups: 

Whole then Sections (WtS), and Integrated 2D3D (2D3D). The participants in the two 

learning groups received the same treatment except for the program used for learning 

sectional anatomy. 

After obtaining informed consent from the participants, the psychometric tests 

were conducted. Participants were assigned to a learning condition, and they were given 

instruction videos to watch in a quiet room with headphones. After watching the video, 

the participants used the instructional programs to demonstrate their ability to use the 

programs to an experimenter. 

All participants learned whole anatomy first. The participants learned whole 

anatomy from the three different views (coronal, sagittal, and axial) in alternating trials. 

The order of presentation of the views was counterbalanced over participants. 

Participants continued cycling through trials until they reached 90% accuracy on tests in 

three successive trials. 

Once the participants finished learning whole anatomy, they were given a 

sectional anatomy pre-test (Sections Test). This test was given to the participants before 

they began learning trials with sectional anatomy, to test their initial ability to transfer 

knowledge of whole anatomy to identifying sectional anatomy. 

After taking the Sections Test, participants started learning sectional anatomy 

using one of the two learning programs (Sections Only or 2D3D), based on their learning 
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group assignment. Participants continued learning until they reached a high performance 

criterion; 90% accuracy on three successive trials. They were given tests of 

generalization of knowledge immediately after they completed learning sectional 

anatomy. The three generalization tests, Global Cues, Submit Structure, and Submit 

Name, were presented in a counterbalanced order across participants. After the 

generalization tests, the participants were scheduled for their last session in the study 4-8 

weeks from the day they finished learning neuroanatomy. On their last visit to the 

laboratory after the retention interval, participants were tested on the long-term retention 

test of sectional anatomy and the fourth generalization test (Numeric Cues), in that order. 

Participants received no feedback. 

Balancing participants. Spatial ability is known to be an important predictor of 

learning in the spatial domain (Pani et aI., 2005; Hegarty, Montello, Richardson, 

Ishikawa, & Lovelace, 2006; Cohen & Hegarty, 2007; Keehner et aI, 2008; Chariker et 

aI., 2011). Differences between groups on spatial ability can confound the interpretation 

of results. Therefore, an effOlt was made to balance the two groups on spatial ability by 

using DAT score when assigning participants to a learning group. Forty-eight participants 

were included in the initial analyses. 

The participants also were tested on their ability to identify sectional anatomy, 

using the Sections Test, after they finished learning whole anatomy. Even though the 

participants in the two groups had comparable DA T scores, and they had received the 

same treatment in the experiment so far, it did not appear that the groups were matched 

on their Sections Test performance (t = 1.43, p = 0.16;WtS = 62.9, SD = 11.34; 2D3D = 

58.16, SD =11.73; see Appendix A for group means and statistical values for DAT, 
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Designs test, and Sections Test scores). The Sections Test measures the ability to infer 

sectional anatomy based on knowledge of 3D shape and organization. Thus, it is a type of 

measure of spatial ability. If the Sections Test is effectively measuring differences in the 

spatial ability of participants to transform 3D knowledge to 2D representation, 

differences on the Sections Test performance between the two learning groups could 

confound the interpretation of results. Another possibility is that this difference in 

performance is related to mastery motivation of the participants, which is known to be 

responsible for large variations in performance in spatial learning (Pani et aI, 2005). 

Even though the difference in Sections test performance was not significant at the 

typical level of alpha, the two groups cannot be considered equivalent. Frick (1995) 

pointed out that most psychological studies treat the absence of a statistically significant 

difference (p level greater than 0.05) between two groups as an indicator of equivalence 

(null hypothesis being true). However, two groups should be considered clearly matched 

on a variable only when the p level is above 0.5 (Frick, 1995; Mervis & Klein-Tasman, 

2004; Mervis & lohn, 2008). 

Therefore, the two learning groups were matched on their Sections Test and DA T 

scores by applying a matching algorithm. Participants who matched poorly were 

excluded from statistical analyses. In particular, variation in DA T and Sections Test 

scores were treated as dimensions in a Euclidean space (both varying from 1 to 100). The 

standard distance formula (from the Pythagorean theorem) was used to calculate the 

distance between participants in the space. Thus, for each Whole then Sections 

participant, 24 values were calculated corresponding to the distance from each Integrated 

2D3D participant. A low value indicated a good match, while a high value indicated a 
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poor match. For example, the best matched pair had corresponding DAT scores of 55 and 

Sections Test scores of 63 and 64. In the use of the algorithm, the pair with the best 

match was removed from consideration and the pair with the next lowest value was 

identified. This continued until the worst matching pair of participants was identified. 

These two participants were then removed from further statistical analyses. The 

difference between the Whole then Sections and Integrated 2D3D groups were then 

checked on DAT and Sections Test scores. This process was continued until the p level 

for both subject variables were greater than 0.5. Twenty participants in each condition 

were selected based on this algorithm. After the matching procedure, the two groups were 

equivalent on their scores on the DAT, Designs Test, and Sections Test scores (p > 0.5; 

Table 1). It should be noted that the statistical significance of critical comparisons did not 

change by matching participants in this manner. However, after matching participants in 

the two groups, we are more confident that the two groups were equivalent. 
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Table 1 

The mean and standard deviation of the mean for DAT, Designs Test, and Sections Test 
for WtS and 2D3D after matching the groups. 

After Matching (N = 40) WtS 2D3D Statistical Values 

DAT M= 75.2 M= 73.65 t = 0.950 

SD=21.16 SD = 20.74 p = 0.816 

Designs Test M= 11.10 M = 11.25 t = -0.164 

SD = 3.06 SD = 2.73 p = 0.871 

Sections Test M= 62.09 M= 61.04 t = 0.352 

SD = 9.92 SD = 8.81 p =0.727 

Scoring. T~ree of the generalization tests, Global Cues, Numeric Cues, and 

Submit Structure, required manual scoring of the locations of mouse clicks on images. 

The scoring was done with the help of biomedical images that had predefined boundaries 

for each structure. The individual who scored the responses was blind to the participant's 

experimental group. 

Item difficulty analysis. A procedure for the analysis of item difficulty was 

developed in a previous work to identify particularly difficult test items in each test 

(Chariker et aI., 2012). The item difficulty analysis was conducted using binomial logistic 

regression following these procedures: 

1. The most basic measure of item difficulty was the proportion of the sample in the 

control group (Whole then Sections) that identified an item correctly. 
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2. Binomial logistic regression was used to determine the mean proportion correct 

and the upper and lower bounds of the mean at the 95% confidence interval for 

each test. 

3. Test items above the lower bound of the mean proportion correct were 

categorized as typical, and items below the lower bound of the mean were 

categorized as difficult. 

4. Mean performance of each participant on these typical and difficult test items was 

calculated for each test for both the learning groups. 
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RESULTS 

The analyses of data involved correlation, multilevel binomial modeling, and 

mixed randomized ANOV A. The binomial models were used to determine difficult and 

typical test items for analysis of the data from the long-term retention and generalization 

tests. 

Learning Whole and Sectional Anatomy 

Learning whole anatomy. Participants learned whole anatomy in relatively few 

trials (M = 4.98 trials, SD = 1.48). As shown in Figure 12, the mean percent correct on 

the first learning trial was 52.8% (SD = 16.24) and reached 95.7% (SD = 7.8) by the third 

trial. As expected, there was no significant difference in the number of trials to learn 

whole anatomy between the two groups, t(38) = 0.963, p = 0.342 (WtS: M = 5.2, SD = 

1.88; 2D3D: M = 4.75, SD = 0.91). 

Sections test. After completing learning of whole anatomy, participants were 

tested on their ability to identify sectional anatomy prior to instruction in sectional 

anatomy. As discussed earlier, this test was also used to match the participants in the two 

learning groups. The participants were quite good at transferring their knowledge of 

whole anatomy to identifying sectional anatomy (M = 60.5%, SD = 11.66). 

Learning sectional anatomy. Mean percent correct across all learning trials for 

the two sectional anatomy learning conditions is presented in Figure 12. The Whole then 
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Sections group performed at 79.0% correct (SD = 13.31) on their first learning trial, while 

the Integrated 2D3D group started at 73.7% correct (SD = 12.74). This difference in 

performance was not statistically significant, t(38) = 1.30, p = 0.203. 

To further analyze if the learning groups differ in their performance across 

learning trials, a 5x 2 mixed randomized ANOV A was conducted with performance on 

trial 1 to trial 5 as a repeated measure variable, and learning condition as a between group 

variable. The analysis included only the first five trials because a large number of 

participants completed learning in five trials (n in trial 5: WtS = 17; 2D3D = 18). Even in 

the first four trials, several participants finished learning. Data for these participants was 

extrapolated to five trials. The main effect of learning condition was not significant, F(1, 

38) = 2.58, p = 0.116, n/ = 0.064. The interaction of learning condition with performance 

on sectional anatomy trials also was not significant, F(4, 152) = 206, p = 0.303, n/ = 

0.031. 
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Figure 12. Percent correct performance during the learning stage for the two learning 
groups on the whole anatomy trials, the Sections Test, and the sectional anatomy learning 
trials . Error bars are standard error of the mean. Note: Some participants finished learning 
in three trials. The missing data was handled by extrapolating their performance on 
subsequent trials. 

Participants were able to learn sectional anatomy to the criterion level in a few 

trials (M = 8.57, SD = 4.37). The mean number of sectional anatomy trials for the Whole 

then Sections condition was 7.8 (SD = 4.83) and the mean for the Integrated 2D3D 

condition was 9.35 (SD = 3.82). There was not a significant difference between the two 

learning groups in the number of trials to learn sectional anatomy, t(38) = -l.13, P = 

0.267. 

The order of presentation of the anatomical views was counterbalanced in this 

study, which permits us to explore which view was more challenging during sectional 
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anatomy learning. A one-way repeated measure ANOV A was conducted on the first three 

learning trials. There was a significant main effect of view, F = 6.055, p = 0.004, n/ = 

13.4. The performance on the coronal view was significantly better than performance on 

the sagittal and axial views (Coronal: M = 84.06, SD = 10.09; Sagittal: M = 78.63, SD = 

12.05; Axial: M = 79.19, SD =14.01; pair-wise comparisons using Bonferroni correction, 

Coronal vs. Sagittal: MD = 5.43, p = 0.007; Coronal vs. Axial: MD = 4.87, P = 0.027). 

The Sagittal and Axial views were not significantly different from each other. 

Long-term Retention 

The participants were tested on sectional anatomy after a retention interval of 4-8 

weeks. The mean performance of the WhoLe then Sections group across the three 

anatomical views was 83.4%. The Integrated 2D3D group performed slightly better than 

the WhoLe then Sections group at 87.3%. However, this difference was not significant, 

t(38)= -1.60, p = 0.119. 

An item difficulty analysis was conducted for the data from the test of long-term 

retention. This analysis led to categorization of 67 test items as typical (78.8% of the test 

items) and 18 as difficult (21 % of the test items). The mean percent correct was 

calculated for each participant for the typical and the difficult items. The mean 

performance on typical and difficult test items for the two learning conditions are shown 

in Figure 13. A 2 x 2 mixed randomized ANOVA was conducted using item difficulty as 

a repeated measure variable and learning condition as a between group variable. There 

were significant main effects of item difficulty, F(l, 38) = 206, p < 0.001, n/ = 0.844, 

and learning condition, F(1, 38) = 6.171, P = 0.018, n/ = 0.140. The interaction between 
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item difficulty and condition also was significant, F(l, 38) = 11.943, p = 0.001, n/ = 

.239. The pair-wise comparisons show a significant effect of condition for difficult test 

items, F( 1, 38) = 8.929 , p = 0.005, n/ = 0. 190. The Integrated 2D3D group was 17 

percent better than the Whole then Sections group in remembering difficult test items. 

The performance on typical test items was not significantly different for the two learning 

groups (Whole then Sections: M = 92.7, SD = 5.95 ; 2D3D: M = 92.9; SD = 5.95). 
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Figure 13. Mean percent correct on the test of long-term retention of sectional anatomy 
for the two learning groups for typical and difficult test items. Error bars show standard 
error of the mean. 
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A 2x2x2 mixed randomized ANOYA was conducted to analyze the role of spatial 

ability in learning from graphically integrated representation. Item difficulty, learning 

condition, and DA T were used as independent variables. The participants were divided 

by spatial ability into two groups using a median split: a higher spatial group (M = 90.6) 

and a lower spatial group (M = 58.2). The mean percentile for the lower spatial group was 

quite high (58 percentile), therefore this group should be considered average on spatial 

ability. There was no interaction of spatial ability with learning condition. Participants 

with both higher and lower spatial ability had similar performance on typical test items 

(approximately 93% for all four groups). Both the higher and lower spatial ability groups 

in Integrated 2D3D condition retained difficult test items at a higher level than higher 

and lower spatial groups in Whole then Sections condition (WtS: Higher - 53.9%; Lower-

43.9%; 2D3D: Higher - 68.3%; Lower - 63.9%). 

Generalization Tests: Interpretation of Biomedical Images 

Three tests of generalization to interpreting new biomedical images were 

presented immediately after the learning trials. The order of presentation of these tests 

was counterbalanced. The fourth generalization test was presented after the long-term 

retention interval. 

Effect of test type (cues). Another question of interest was how effective are the 

cues used in the tests of generalization. Therefore, the performance of the three 

generalization tests was compared collapsed across the learning groups. The mean 

percent correct on the Submit Name test was 70%, the mean percent correct on the 

Submit Structure test was 64%, and the mean percent correct on the Global Cues test was 
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52% (Figure 14). A repeated measure ANOVA was conducted on the three generalization 

tests (collapsed across order of presentation). There was a significant main effect of test-

type, F(2, 78) = 52.589, p < 0.001, n/ = 0.574. Performance on the Submit Name test 

was significantly better than performance on both the Global Cues, t(39) = 10.92, p = 

0.00, d = 1.96, and the Submit Structure test, t(39) = 3.15, p = 0.003, d = 0.59. 

Performance on the Submit Structure test was significantly better than performance on 

the Global Cues test, t(39) = 6.89, p = 0.00, d = 1.11. 
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Figure 14. Mean percentage correct for the three generalization tests. Error bars are 
standard error of the mean. 

Effect of learning condition. The item difficulty analysis was also conducted on 

the generalization tests. The performance on typical and difficult test items for the 

generalization tests are presented in Figure 15. A 2x2 mixed randomized ANOVA was 

conducted on each of the four generalization tests. The result of analyses is summarized 

in Table 2. 
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Figure 15. Performance on the generalization tests: Mean percent correct of the two 
learning groups is presented for typical and difficult test items for the three generalization 
tests: Submit Name, Submit Structure, Global Cues, and Numeric Cues. 

In general, there were no effects of learning group or interaction of group with 

item difficulty. In particular, in the Submit Name test the item difficulty analysis led to 

categorization of 60 (35.3%) test items as difficult and 110 (64.7%) as typical test items. 

There was a main effect of item difficulty, F( 1,38) = 429.335, p < 0.001 , n/ = 0.919. The 

mean of performance on typical test items was 86.8% (SD = 6.3) and performance on 

difficult test item was at 41.08% (SD = 16.58). There was no main effect for learning 
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condition. The interaction of learning condition with item difficulty was also not 

significant. 

In the Submit Structure test, the item difficulty analysis led to categorization of 54 

(3l.2%) test items as difficult and 116 (68.2%) as typicaJ test items. There was a main 

effect of item difficulty, F( 1,38) = 650.388, p < 0.001, n/ = 0.945. The mean of 

performance on typicaJ test items was 83 .7% (SD = 8.7) and performance on difficult test 

item was at 37.9% (SD = 16.45). There was no main effect for learning condition. The 

interaction of learning condition with item difficulty was also not significant. 

In the Global Cues test, the item difficulty analysis led to categorization of 74 

(43.5%) test items as difficult and 107 (62.9%) as typical test items. There was a main 

effect of item difficulty, F (1,38) = 3149.024, p < 0.001, 11/ = 0.988. The mean of 

performance on typical test items was 76.1 % (SD = 10) and performance on difficult test 

item was at 19.1 % (SD = 9.09). There was no main effect for learning condition. The 

interaction of learning condition with item difficulty was also not significant. 

In the Numeric Cues test, the item difficulty analysis led to categorization of 54 

(3l.2%) test items as difficult and 116 (68.2%) as typical test items. There was a main 

effect of item difficulty, F (1,38) = 650.388, p < 0.001, n/ = 0.945. The mean of 

performance on typical test items was 78.6% (SD = 7.38) and performance on difficult 

test item was at 2l.7% (SD = 8.7). There was no main effect for learning condition. The 

interaction of learning condition with item difficulty was also not significant. 
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Table 2. 

Summary of mixed randomized ANOVA analyses for the tests of generalization. 

Item Difficulty 

Condition 

Item Difficulty x Condition 

Item Difficulty 

Condition 

Item Difficulty x Condition 

Item Difficulty 

Condition 

Item Difficulty x Condition 

Item Difficulty 

Condition 

Item Difficulty x Condition 

Submit Name 

F (1,38) = 429.335 , p < 0.001, n/ = 0.919 

2 F (1 ,38) = 1.805, P = 0.187, np = 0.045 

2 F (1,38) = 2.097, p= 0.156, np = 0.052 
Submit Structure 

2 F (1,38) = 650.388, p < 0.001, np = 0.945 

2 F (1,38)= 0.330, p '= 0.569, np = 0.009 

2 F (1,38)= 0.172, p = 0.680, np = 0.005 
Global Cues 

2 F (1,38) = 3149.024, p < 0.001 , np = 0.988 

F (1 ,38) = 0.214, P = 0.646, n/ = 0.006 

F (1,38) = 1.656, P = 0.206, n/ = 0.042 
Numeric Cues 

2 F (1,37) = 2141. 4, P < 0.001, np = 0.983 

2 F (1,37) = 0.001 , P = 0.970, np = 0.000 

F (1 ,37) = 2.894, P = 0.097 n/ = 0.073 

Effect of test order. The three generalization tests presented just after completion 

of learning were presented in a counterbalanced order. This allows us to explore the 

secondary hypothesis about preparation for future learning. A one-way repeated measure 

analysis was conducted on the effect of test position. In particular, the score of each 

participant on each of the three generalization tests was categorized according to the 

ordinal position in which it was taken (first, second, or third). There was a significant 

effect of test order, F(2,78)= 12.034, P < 0.001, np 
2 = 0.236. As shown in Figure 16, 
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performance of the participants improved on the generalization tests as they moved from 

the first test (M = 56, SD = 12.77) to the second (M = 63.2, SD = 10.7) and the third test 

(M = 67.5, SD = 11.2). Pair-wise comparisons of the three test positions was conducted 

with Bonferroni correction (p = 0.016). The performance on the second and third tests 

was significantly better than the performance on the first test (first vs. second: t(39)= 

3.51, p = 0.001, d = 0.62; first vs. third: t(39) = 4.50, p = 0.00, d = 0.96). 
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Figure 16. Mean percentage correct for the first, second, and third generalization tests. 
Error bars show the standard error of the mean. 

Correlation of psychometric test scores 

A correlation matrix was constructed to examine the relationships among the 

psychometric test scores and the outcome measures that did not depend on the 

experimental treatment (see Table 3). The outcome measures were the number of trials 
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required to complete whole anatomy learning and performance on the Sections Test. 

DA T scores were correlated with Spatial Memory scores (r = 0.408, p = 0.009) and 

Overall Memory scores (r = 0.421, P = 0.007). The Visual Content scores were not 

correlated with DAT (r = 0.243, p = 0.131). As expected, the Overall Memory scores 

were highly correlated with the Visual Content (r = 0.853, p < 0.001) and the Spatial 

Memory scores (r = 0.669, p < 0.001). Because Spatial Memory and Visual Content 

memory scores are sub-scores of Overall memory, and they are highly correlated with 

each other, these measures will only be discussed with outcome measures if and when the 

Overall scores are not significantly correlated but the Spatial Memory or Visual Content 

memory are. 

Table 3. 

Correlation Matrix (Pearson) relating psychometric test scores with number of whole and 
sectional anatomy trials and Sections Test. 

Overall Visual_C Spatial_M Trials_WA Sections_T 

DAT **.421 .243 **.408 ***-.581 *.345 

Overall **.853 ***.699 *-.333 **.515 

VisuaCC *.381 -.230 **.452 

Spatial_M -.144 **.411 

Acronyms used in the table: Overall for Overall visuospatial short term memory, 
Visual_C for Visual Content memory, Spatial_M for Spatial Memory, Trials_ WA for 
number of whole anatomy trials, and Sections_T for Sections Test performance. Asterisk 
indicate statistical significance: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. 
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Learning whole anatomy. Spatial ability and the Overall Memory score for 

visuospatial memory were correlated with the number of trials to learn whole anatomy 

(DA T: r = -0.581, P < 0.001; Overall: r = -0.333, p < 0.05; see Table 3). The DAT and 

Overall Memory scores are significantly correlated with each other. In order to estimate 

their independent correlation with the number of whole anatomy trials, partial correlation 

was calculated for both the psychometric test scores. Partial correlation of DA T scores 

with the number of trials to learn whole anatomy after controlling for Overall Memory 

scores was significant (r = -0.516 p < 0.01). Partial correlation of Overall Memory scores 

with the number of trials to learn whole anatomy after controlling for DAT was not 

significant (r = -0.119 P = 0.469). In other words, OAT shares a substantial amount of 

variance with Overall visuospatial memory in accounting for the number of trials to learn 

whole anatomy. In addition, OAT contributes uniquely to accounting for the number of 

trials. 

Sections test. The Sections Test scores were correlated with all of the 

psychometric test measures (see Table 3).The performance on the Sections Test 

correlated most highly with Overall Memory (r = 0.515, p = 0.001). Due to shared 

variance between Overall visuospatial short-term memory and DAT, partial correlations 

were estimated for Sections Test performance after controlling for each of these 

variables. Partial correlation of Overall Memory scores with Sections Test scores after 

controlling for DAT was significant ( r = 0.434 p < 0.01). Partial correlation of DA T with 

Sections Test scores after controlling for Overall Memory scores was not significant ( r = 

0.165 p = 0.315). Thus, for the Sections Test, there was substantial shared variance 
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among the statistical predictors, with Overall visuospatial short-term memory providing a 

unique ability to account for Sections Test performance. 

Learning sectional anatomy. The correlations of psychometric test scores with 

the number of trials to learn sectional anatomy were computed after removing two 

outliers from the data. Because the two groups learned sectional anatomy using different 

programs, the correlations were computed separately for the two groups. For the Whole 

the Sections group, the number of trials to learn sectional anatomy was correlated with 

DA T (r = - 0.526, p < 0.05). Overall Memory (r = - 0.356, p = .135), Content Memory (r 

= - 0.291, P = 0.227), and Spatial Memory scores (r = - 0.443, p = 0.057) were not 

correlated with the number of trials to learn. 

For the Integrated 2D3D group, the number of trials to learn sectional anatomy 

was correlated with the Overall Memory scores (r = - 0.532, P < 0.05) and the Spatial 

Memory scores (r = - 0.527, p < 0.05). The DAT (r = - 0.404, P = 0.086) and Content 

Memory scores (r= - 0.319,p = 0.184) were not correlated. 

Long-term retention. The correlations of psychometric test scores with 

performance on the test of long-term retention were measured separately for each 

learning group. For both groups, long-term retention was not correlated with any of the 

psychometric measures (WtS: DAT: r =0.332, p = 0.152; Overall: r = 0.203, p = 0.392; 

Visual Content: r = 0.097, p = 0.684; Spatial Memory: r = 0.204, p = 0.388; 2D3D: DAT: 

r = -0.023, P = 0.922; Overall: r = 0.173, p = 0.466; Visual Content: r = 0.168, P = 0.478; 

Spatial Memory: r =0.226, p = 0.339). 

50 



The correlation of performance in long-term retention broken down by item 

difficulty with the psychometric scores was computed for both the learning groups. There 

was a significant correlation between performance on the difficult test items and the DA T 

scores for the Whole then Sections group only (WtS: r = .445, p < 0.05; 2D3D: r = .099, p 

= 0.676). The complete correlation matrix of psychometric tests with item difficulty for 

the two learning groups is presented in Appendix B. 

Tests of generalization of knowledge. The outcome measures of generalization 

tests were correlated with psychometric test scores. There were no significant correlations 

of interest in these correlations. The complete correlation matrix of psychometric tests 

with item difficulty for all four generalization tests is presented in Appendix C. 
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DISCUSSION 

The computer-based learning programs used in this study were very good tools 

for learning neuroanatomy. Participants in both the learning groups learned whole and 

sectional anatomy in a few trials (approximately 14 trials). Performance on the Sections 

Test suggests that participants were able to transfer substantial amounts of whole 

anatomy knowledge to inferring sectional anatomy. Support for the primary hypothesis 

that learning from graphically integrated 2D and 3D representation would be a more 

effective way to learn sectional anatomy comes from the test of long-term retention. 

Learning from a graphically integrated model of 2D and 3D representation helped the 

participants in retaining the difficult sectional information better than learning from a 

sequential presentation. This finding shows that graphically integrated representations 

have a unique advantage of illustrating the 3D to 2D transformation and apparently 

helped the participants to build a more accurate mental model of neuroanatomy. 

It is important to emphasize that this difference in performance was found only 

for the difficult test items. These test items appear to be challenging because they are 

confusable with other structures, or have an atypical appearance in some of the sections 

of the brain (Chariker et aI., 2012). Thus, the Whole then Sections group was able to 

retain the knowledge of typical test items at a high level but struggled with a small set of 

difficult test items. The Integrated 2D3D group could see the transformation of 3D 

structures into 2D slices, which allowed them to have a deeper understanding of the 

spatial relationships among these structures. 
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This finding is consistent with the literature on spatial cognition, which suggests 

that imagining spatial transformations for even simple objects can be very challenging. If 

the objects are not in a canonical orientation, not symmetric, or are not aligned to a 

salient reference system, spatial imagination may be inaccurate (Hinton, 1979; 

Kozhevnikov, & Hegarty, 2001; Pani et aI., 1996; Pani et aI., 2005; Reed, 1974; Stevens 

& Coupe, 1978; Tversky, 1981). The results suggest that much spatial information about 

whole and sectional anatomy can be learned, transferred, and retained without explicit 

demonstration of spatial transformations. However, in some cases where attention to 

spatial detail is necessary, explicit presentation of the information to be integrated is more 

beneficial than sequential presentation. 

Another important finding in long-term retention was the lack of interaction of 

spatial ability with the learning conditions. The literature on computer-based learning has 

expressed concern for the ability of low spatial learners to learn from complex 

visualizations. This study shows that the lower spatial group also benefited from an 

integrated presentation. While the higher spatial group in the Integrated 2D3D condition 

was 14% better than Whole then Sections, the lower spatial group in the Integrated 2D3D 

condition was 20% better than the lower spatial group in Whole then Sections condition. 

This finding is consistent with the studies which have used longitudinal learning sessions 

to train participants (Chariker, 2009; Keehner et aI., 2006, Pani et aI., 2005). Based on 

this finding, it can be argued that educational visualization tools can be beneficial to 

learners of varying spatial ability if the exposure to the material is not limited. With 

enough time, participants with lower spatial ability adapt to the complexity of graphically 

integrated visualization and benefit from it. 
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Support for the secondary hypothesis about preparation for future learning was 

also found. The analysis of test order for the tests of generalization showed that the 

participants were able to generalize their knowledge to a high level and continued 

learning with the help of cues from the first generalization test to the second and third. 

The MRI and Visible Human images used in these tests were very different from the 

neuroanatomy model used for learning. Evidence of good generalization and continued 

learning with these new representations of neuroanatomy suggests that the participants 

were proficient in their neuroanatomy knowledge. This finding is encouraging because 

in real world learning situations preparedness for future learning is considered important 

(Bransford & Schwartz, 1999). 

Another interesting finding of the study was the effect of different cues in the tests 

of generalization of knowledge. It was expected that the more specific cues (such as 

arrows pointing to a structure, or the name of a structure that is present in the image) 

would be more helpful than global orienting cues. As expected, performance on the 

Submit Name and the Submit Structure tests was better than the performance on the 

Global Cues test. The cues in the Submit Name test were most helpful. This is probably 

because the arrows in the Submit Name test images were particularly helpful in 

eliminating from consideration the anatomical structures that the learner had not seen 

before. 

An interesting outcome of the data analyses was the correlation between the two 

psychometric test scores (r = .421). These tests were measuring spatial ability using 

different tasks. The Differential Aptitude Test involves identification of the correct 3D 

object that can be made from folding the 2D pattern provided. The task suggests that it 
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would require thinking about manipulating an object in 2D and 3D space. The Designs 

Test explores memory for patterns and spatial locations in a 2D grid. The task in the 

Designs test involves thinking about spatial location in 2D space and visuospatial 

memory for patterns. It is possible that the correlation between the two tests of spatial 

memory is due to a common aspect of spatial ability that they measure: thinking in 2D 

space. 

There were some interesting correlations of performance outcome with the 

psychometric tests. There was a significant correlation of DA T with the number of trials 

to learn whole anatomy after controlling for the effect of Overall visuospatial memory 

scores. It is possible that this unique relation of DAT with the number of trials to learn 

whole anatomy occurs because learning whole anatomy requires participants to think in 

3D space. The significant correlation of the Sections Test with the Overall Memory 

scores after controlling for the effect of DA T suggests that inferring the 2D 

representation with the help of whole anatomy knowledge largely involved thinking in 

2D space. It will be important to see whether this result replicates in future work. 

The two learning groups were not significantly different on their test performance 

on the first five trials of sectional anatomy learning. Similarly, there were no differences 

in the number of sectional anatomy trials to complete learning. However, the Integrated 

2D3D group was 4.3% lower than the Whole then Sections group in their mean 

percentage correct on the first five trials of sectional anatomy learning. This difference 

approached statistical significance (p = 0.116). Similarly, the Integrated 2D3D group 

took 1.6 more trials to learn sectional anatomy. At face value, it seemed possible that the 

17% increase in performance of the Integrated 2D3D group for difficult test items on the 
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long-term retention test was due to the 1.6 additional trials taken by this group. To 

understand the role of number of trials in increasing retention, a comparison of the Whole 

then Sections group was done across the three studies in this project. The Whole then 

Sections group in the previous two studies learned using a more stringent criterion (90% 

or more performance on trials in six tests). Therefore, the number of trials to learn 

neuroanatomy for these groups was higher than the current study. In Figure 17, the 

performance of the three Whole then Sections groups on difficult test items in long-term 

retention test is plotted against number of trials taken by the groups to learn 

neuroanatomy (both whole and sectional anatomy). As shown in Figure 17, with the 

increase in number of trials, the performance of Whole then Sections increased across the 

three studies. However, only the Whole then Sections group in Chariker et al. (2012) had 

comparable performance to the Integrated 2D3D group. This group required 

approximately 12 more trials than the Integrated 2D3D group (nearly double) to learn 

neuroanatomy. This comparative look at the data suggests that the better performance of 

the Integrated 2D3D group on difficult test items cannot be explained by the two 

additional trials taken by the group to learn sectional neuroanatomy. Instead, the benefit 

appears to be due to the explicit graphical integration of 3D and 2D representation. 
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Figure 17. The performance of the learning groups on difficult test items in long-term 
retention test as a function of number of trials to learn neuroanatomy. The 95% 
Confidence Interval of the mean is plotted for performance on difficult test items. 1: 
Whole then Sections group in current study, 2: Whole then Sections group in Pani et aI, 
2012; 3: Whole then Sections in Chariker et aI., 2011. 

Limitations 

The results of this study are promising for suggesting directions for developing 

computer-based instruction for learning neuroanatomy. The lack of interaction of spatial 

ability with learning condition is very encouraging. However, the sample mean percentile 

for spatial ability was 74.4, a rather high value. The trend in results suggests that the 

Integrated 2D3D should be beneficial for even very low percentile group, but this claim 

needs to be experimentally verified. 
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Another limitation of this study was that the participants showed good 

generalization for the typical test items, but struggled with the difficult test items. It 

appears that participants were unable to use their knowledge to orient themselves and 

reason about the possible structures present in the image. For example, the size of the 

cerebellum and the presence or absence of ventricles in an image should have provided 

them with information about where the slice was taken from the brain. However, the 

participants found this task very challenging. One possible reason for a lack of successful 

reasoning and problem solving in tests of generalization is that participants never had to 

rely solely on reasoning to identify structures during the learning stage of sectional 

anatomy. The sectional anatomy test slices were always presented in the same order (for 

instance, if the fourth, seventh, and tenth slices that participants sees during learning were 

selected for testing, they were always presented in ascending order). It is possible that 

randomizing the order of test slices would have made the participants think about the 

location of test slices in the model and focus more on using familiar structures as 

landmarks to reason about unknown structures. Another possibility is that the images 

used in tests of generalization are too complex to learn without explicit instruction. 

Exposure to these images during learning may be necessary for high levels of 

recognition. 
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CONCLUSIONS AND FUTURE PROSPECTS 

The results of this study suggest that there are certain spatial relationships and 

transformations which require explicit demonstration. The graphically integrated 

visualization tools used in this study provided a unique advantage of presenting the 

spatial information explicitly. In domains such as medicine, the opportunity for learners 

to see the 3D and 2D mapping in representation of anatomy is very limited due to 

constraints on resources (e.g., dissection labs). Similar challenges may be encountered in 

the domain of chemistry for learning molecular organization, in physics for 

understanding organization at the atomic level or at the level of the universe, in biology 

for understanding the microscopic views of organisms, and in geography for 

understanding the 2D and 3D layout. In these domains, a real-world opportunity to see 

the spatial relationships and transformations is not even possible. A computer-based 

graphical visualization tool can be very beneficial in these cases. 

The learning programs used in this study show the capability to make naIve 

learners proficient in neuroanatomy where they can continue to learn with some 

guidance. A good learning environment (real or virtual) should prepare the learner to 

adapt and tackle new problems in the domain effectively. Computer-based learning 

programs are usually evaluated on immediate learning outcomes. Based on findings of 

this study it can be suggested that computer-based learning programs need to adopt a 

more rigorous set of tests for evaluating their effectiveness beyond immediate learning 
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outcomes before being introduced in a curriculum to ensure it is providing some unique 

benefit. 

An important point to remember when recommending integrated 2D and 3D 

graphics for visualization is that in this study this tool was beneficial for a small set of 

spatially challenging representations. It is possible that a similar benefit could be 

achieved by exposing participants to integrated graphics only for the difficult test items. 

For instance, a learning program can be created which uses just sectional anatomy in the 

study stage and the integrated 2D3D for feedback to allow participants to see where they 

made errors and why (3D to 2D transformations). Such a program may be more efficient 

than the existing approach while maintaining the benefits. Therefore, it would be 

important to evaluate the visualization tools to establish which approach to implementing 

graphical visualization would lead to good retention and generalization while retaining 

efficiency in learning. 
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APPENDIX A 

The mean and standard deviation of the mean for DAT, Designs Test, and Sections Test 
for WtS and 2D3D before after matching the groups. 

Before Matching (N = 48) WtS 2D3D Statistical 
Values 

DAT M=73.17 M= 74.75 t = -0.248 

SD = 23.55 SD = 20.53 p = 0.805 

Designs Test M= 11.13 M = 11.04 t = 0.108 

SD =2.79 SD = 2.58 p = 0.915 

Sections Test M= 62.91 M= 58.16 t = 1.426 

SD = 11.34 SD = 11.73 p = 0.160 

After Matching (N = 40) 

DAT M= 75.2 M= 73.65 t = 0.950 

SD = 21.16 SD = 20.74 p = 0.816 

Designs Test M= 11.10 M = 11.25 t = -0.164 

SD = 3.06 SD = 2.73 p = 0.871 

Sections Test M= 62.09 M= 61.04 t = 0.352 

SD = 9.92 SD = 8.81 p =0.727 
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APPENDIX B 

Correlation Matrix (Pearson) relating psychometric test scores with long-term retention 

test of sectional anatomy broken by item difficulty. 

WtS 2D3D 

Typical Difficult Typical Difficult 

DAT .125 *.445 -.112 .099 

Overall .289 .054 .151 .171 

Visual_C .267 -.109 .152 .157 

Spatial_M .129 .228 .188 .234 

Overall for Overall visuospatial short term memory, Visual_C for Visual Content 

memory, and Spatial_M for Spatial Memory. Asterisk indicate statistical significance: * 

for p < 0.05. 
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APPENDIX C 

Correlation Matrix (Pearson) relating psychometric test scores with tests of generalization 

of knowledge broken by item difficulty. 

Typical test items WtS 2D3D 

SN SS GC NC SN SS GC NC 

DAT .41 .35 -.25 .42 .27 -.02 .27 -.12 

Overall .19 .03 -.32 .21 .11 .14 *.44 .41 

Visual_C .29 -.20 -.40 -.02 .05 .07 .24 .36 

Spatial_M -.23 .04 -.41 .23 .17 .35 *.48 .40 

Difficult test items WtS 2D3D 

SN SS GC NC SN SS GC NC 

DAT .28 .32 .17 *.47 .23 .31 .25 .05 

Overall .15 .24 .20 .14 .21 *.53 *.45 **.60 

Visual_C .05 .04 .06 .06 .02 .40 .20 *.53 

SpatiaCM .06 .02 -.05 .01 .22 *.50 *.46 .32 

Acronyms used in the table: Overall for Overall visuospatial short term memory, 

Visual_C for Visual Content memory, SpatiaCM for Spatial Memory, SN for Submit 

Name, SS for Submit Structure, GC for Global Cues, and NC for Numeric Cues. Asterisk 

indicate statistical significance: * for p < 0.05 and ** for p < 0.01. 
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