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ABSTRACT 

ALGEBRA KNOWLEDGE IN EARLY ELEMENTARY SCHOOL SUPPORTING 

LA TER MATHEMATICS ABILITY 

Scott A. Strother 

November 14, 2011 

The current study explored the impact that algebra knowledge in 1 st and 2nd grade 

can have in growth and achievement in mathematics through 5th grade. Previous studies 

have shown the positive impact of teaching algebra in middle school (e.g. Smith, 1996). 

Other studies have shown that students can learn and apply fundamental algebra concepts 

even earlier, including early elementary grades (e.g. Schifter et aI., 2008; Brizuela and 

Earnest, 2008). The current study aimed to expand upon this research by showing 

students' knowledge of early algebra concepts can predict positive longitudinal 

outcomes. This would support cognitive and education theories that students can use 

algebraic concepts to structure their overall mathematics knowledge. 

The current study utilized an archival dataset with five years of student data from 

one district. District assessments measured student knowledge of algebra in 1 st and 2nd 

grade. Students' standardized mathematics test scores and district assessments for 

mathematics were collected for 3rd
, 4th

, and 5th grade. Algebra knowledge in 1 st and 2nd 

grade predicted students' mathematics ability on the state standardized assessment in 5th 

grade. It also predicted growth in scores from 3rd through 5th grade. Algebra was a 
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significant predictor in a model that included students' abilities in other areas of 

mathematics, reading ability, and race. The model also included school level 

socioeconomic data. Parallel models were done using the district assessments in 3rd 

through 5th grade as the outcome measure. Algebra knowledge in I st and 2nd grade was a 

significant predictor of 5th grade mathematics knowledge on these assessments. Algebra 

knowledge did not predict growth from 3rd through 5th grade. Overall, this study 

underlines the importance of including algebra in early elementary teaching, standards, 

and assessment. Early algebra may help students structure their mathematics knowledge 

from the beginning of their education. This can lead to improved longitudinal 

mathematics knowledge and performance. 
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INTRODUCTION 

Recently, there has been a strong push from educators and researchers to 

incorporate algebra into early mathematics education (e.g. NCTM, 2000; 1998; Fosnot & 

Jacob, 2010; Kaput & Blanton, 2000). Researchers feel that the fundamentals of algebra 

underlie and connect many basic principles in early mathematics. They have argued that 

algebra can support how students structure their mathematics knowledge in elementary 

education. This push has encouraged educators and policy makers to include algebra in 

the emerging Common Core State Standards for mathematics in kindergarten through 5th 

grade (CCSSI, 2010). 

Students form cognitive structures of basic mathematics concepts as they learn. 

Students may perform better in mathematics if they form strong connections between and 

across fundamental concepts. Early algebra concepts may help students to structure their 

knowledge around each mathematics content area taught in elementary school. Having an 

integrated knowledge structure early in elementary school may help students learn 

mathematics longitudinally. 

The current project will examine if knowing algebra concepts in early grades can 

lead to better longitudinal mathematics knowledge. The project will aim to answer the 

following research questions: 
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1) Does students' performance on assessment items targeting algebraic thinking in 

1 st and 2nd grade predict: 

a) Performance on a mathematics state standardized assessment in 5th grade? 

b) Growth in performance on a mathematics state standardized assessment in 

3rd through 5th grade? 

c) Performance on assessment items targeting algebraic thinking in 5th grade? 

d) Growth in performance on assessment items targeting algebraic thinking in 

3rd through 5th grade? 

e) Performance on assessment items targeting other areas of mathematics in 

5th grade? 

f) Growth in performance on assessment items targeting other areas of 

mathematics in 3rd through 5th grade? 

Starting Algebra Earlier 

Incorporating algebra into early mathematics teaching in the United States may 

help bridge the gap between the US and top performing nations around the world. 

Students in the United States are above average internationally in mathematics, but lag 

behind many other countries. The 2003 Trends in International Mathematics and Science 

Study (TIMSS) reported that 4th grade students in the United States were significantly 

behind eleven of the twenty-four participating countries in mathematics (Gonzalez et aI., 

2004). Eighth grade students were significantly behind fifteen of the forty-four 

participating countries. 

The countries that are ahead of the United States have standards aimed at thinking 

and structuring knowledge. Their standards encourage using fundamental skills and 
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knowledge when solving problems. This helps students make cognitive connections 

between fundamental and higher level concepts. For example, Singapore's Mathematics 

Syllabus for early grades lays out a progression from addition, subtraction, multiplication, 

and division, from whole numbers to fractions, which builds slowly up from the most 

basic concepts of the earliest grade. The Syllabus focuses largely on student thinking 

around open problems to ensure students understand the underlying concepts (Ginsburg, 

Leinwand, Anstrom, & Pollock, 2005). In the TIMSS study, Singapore was the strongest 

performing country in both 4th and gth grades. In fact, the top four countries in 4th grade 

and the top five countries in gth grade were from western Asia and have similar 

mathematics education systems. 

Educators in the United States have recently reanalyzed how standards can 

support students' knowledge growth. The Common Core State Standards were created to 

focus on core concepts and how students are thinking about and applying those concepts. 

In this way, the Standards align closely with the Mathematics Syllabus of Singapore 

(Achieve, 2010; EDinformatics, 2010). The main difference Achieve (2010) noted was 

the Common Core State Standards include even more details in outlining students' 

learning trajectory across grades. 

The Common Core State Standards also aim to address issues seen in students' 

performance on the National Assessment of Educational Progress (NAEP). Recent NAEP 

reports have shown that students in the United States have a strong knowledge base in 

mathematics in 4th grade, but their scores decline by gth grade and even more by lth 

grade. In fact, the 200g National Report Card reported that only 32% of gth grade students 

are at or above the "proficient" level on NAEP mathematics and 23% of lth grade 
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students reach that mark. 

The National Mathematics Advisory Panel (2008a; 2008b) concluded that 

students' decline on the NAEP is in large part due to students' lack of conceptual 

knowledge and overall preparedness for algebra. The decline in scores in late middle and 

high school corresponds to the grades where algebra is introduced and taught in most 

areas in the United States. The National Mathematics Advisory Panel performed a survey 

of743 randomly selected Algebra I teachers who on average reported students' 

background preparation in algebra as "weak". In the Panel's (2008a; 2008b) survey, 

teachers most often reported the reason for students' weak preparation was a lack of 

knowledge of the fundamental algebra concepts. The teachers reported a greater need to 

focus on basic algebra concepts and skills at the elementary level. 

The National Mathematics Advisory Panel (2008) recommended that algebraic 

concepts be identified, assessed, and strengthened in elementary grades. The Panel felt 

that standards should include algebraic concepts and should encourage students to solve 

problems by reasoning with these concepts. This will allow students to build algebra 

based cognitive structures that will help with conceptual understanding as well as 

computational fluency. 

These recommendations were heeded in forming the new Common Core State 

Standards. The Common Core State Standards discuss 'operations and algebraic 

thinking' in each of the elementary grades (K-5). The Standards underline the importance 

of structuring students' knowledge using algebraic principles and language. The 

Standards outline how algebra can be used to represent operational concepts, situations, 

problems, explanations, expressions, and equations (CCSSI, 2010). 
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The Standards outline how students can use the basic algebraic concepts 

presented in early grades to connect and structure their knowledge in later grades. This 

emphasizes a focus on building up from the fundamentals of mathematics, as seen in 

Singapore's Mathematics Syllabus. This also addresses the need for teaching algebra 

earlier. Lastly, this approach supports researchers and educators who have stated that 

fundamental algebra concepts can help students build their cognitive structures for all of 

mathematics (e.g. Kaput, 1995; Kaput, Carraher, & Blanton, 2008). 

Algebra Can Help Structure Students' Mathematics Knowledge 

Researchers have proposed that using algebra to help students structure their 

knowledge will foster better understanding oflater mathematics (Fosnot & Jacob, 2010; 

Kaput & Blanton, 2000). How exactly does algebra underlie the concepts and operations 

of other mathematics areas? Can greater attention to this process actually have a 

longitudinal impact on students? 

There are two landmark works that have helped explain exactly what algebra is in 

the early grades and how it supports general mathematics learning. Kaput et al. (2008) 

and Fosnot and Jacob (2010) present a coherent argument by defining the fundamental 

principles of algebra and explaining how they apply to each grade and mathematics 

content area. The works by these authors show that algebraic principles can be used to 

make sense of mathematics and provide the language, concepts, and strategies that 

students need to structure their learning. 

This section will present a summary of their arguments and show that they 

complement each other in explaining how algebra can be a mechanism to learning 

mathematics. Both explanations begin as early as 1 st grade and build through 5th grade. 
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First, Kaput and Blanton's (2000) ideas of algebra will be explained followed by a 

summary of Fosnot and Jacob's ideas (2010). This section will also expand upon these 

arguments by discussing the supporting research. 

A Language of Mathematics 

Kaput (2000; 1999) believed that algebra is a language of mathematics that has 

fundamental concepts through which all areas of mathematics can be perceived. Algebra 

can be thought of as a language system because it uses fundamental concepts and 

quantitative notation to emphasize relations among quantity and space (Kaput, 1999; 

1995). This language allows students to form a foundation of skills that help structure 

mathematical knowledge. The algebraic skills Kaput et al. (2008) posit to underlie 

mathematics include: 

• Creating and understanding generalizations; 

• Representation and symbolization of quantities and generalizations. 

Creating and understanding generalizations. Algebra deals with creating 

generalizations about mathematics and expressing these generalizations with symbolic 

notation. This is done by first understanding relationships within or between quantities. 

One can then use symbolic notation to represent these relationships. Reasoning with these 

relationships can help one form generalizations that can apply to any quantities. 

These generalizations may be taught, but can also be learned via experience and 

reasoning with patterns and mathematical representations. For example, abstracting 

fundamental number properties such as the commutative property (a + b = b + a) through 

arithmetic reasoning is considered algebraic. Schifter, Monk, Russell, and Bastable 

(2008) discussed an example of this in a 3rd grade classroom. They discussed how 
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students learned that a certain number of blocks can be parceled into several different 

groups without changing the total number of blocks (e.g. 8 blocks can become groups of 

3 and 5 or 5 and 3). The students were able to generate the generalization that reversing 

two piles and adding them together will still result in the same total. From there, the 

teacher helped with the symbolic notation and students translated their knowledge into 

the commutative property. 

Representation and symbolization of quantities and generalizations. Algebra includes 

being able to represent (through mathematical notation or symbolization) a single 

quantity or a relationship between two quantities. The ability to symbolize and to 

represent mathematics in several ways may help students learn from early elementary 

grades through middle school and beyond (Brizuela & Earnest, 2008; Brenner et aI., 

1997; Yerushalmy, 1997; diSessa, 2004). For example, Brenner et al. (1997) showed that 

students who practiced representing problems in multiple ways performed better than a 

control group on function word problems and representation tasks, such as translating 

word problems into tables and graphs. Participants in this study were 128 i h and 8th 

grade students from six classes in three junior high schools. Gender and socioeconomic 

status of the students was not reported. Seventy-two of the students participated in a unit 

based on representations of functions. Fifty-six students, the control group, received the 

standard text book lesson on functions. Three teachers participated in the study, each 

teaching one experimental class and one control class. Students took parallel versions of 

the function word problem test (FWPT) before and after the unit. This test was designed 

to measure students' ability to represent and solve a function-based word problem. 

Students also took a word problem representation test designed to test students' ability to 
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translate a function-based word problem into a table, chart, or graph. In analyzing the 

FWPT, the experimental group scored higher than the control group on problem 

representation, F(1,121) = 23.53, MSE = .08, p < .001. There was also a group by teacher 

interaction, F(2,121) = 4.54, MSE = .08,p < .05. Two of the teachers had higher 

performing students in their experimental class: one teacher had an average proportion 

correct of .08 for control students and .53 for treatment students, t(121) = 5.61, and 

another had .15 and .39, t(121) = 2.25. The experimental group also did better on problem 

solving with functions, with proportion correct of.42 versus .14 of the control group, 

F(1,121) = 4.19, MSE = .57, p < .05. These two findings were not isolated. Analysis also 

showed that students who could and did use a representation while solving were more 

likely to get a correct answer, X2( 1) = 11.0, p < .001. Experimental students also 

performed better on the word problem representation test, with proportion correct .60 

compared to.39 from the control group, F(I,121) = 18.35, MSE = .04,p < .001. 

Brizuela and Earnest (2008) followed up this study with a three-year longitudinal 

investigation that explored how students work with early algebraic fundamentals in 2nd 

through 4th grade. They observed seventy students in four classrooms in the Boston area. 

The students were mostly minority (75% Latino) and qualified for free and reduced lunch 

status (83%). In each semester of 2nd
, 3rd

, and 4th grade, these students performed six to 

eight algebra activities that each lasted ninety minutes. The activities focused on how 

students could represent problems externally using variables, functions, equations, tables, 

and graphs. Their goal was to show that students' understanding of relationships in 

mathematics problems could grow if the students are able to representing the problem in 

multiple ways. 
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In this study, students attempted to represent a problem verbally, algebraically, 

tabular, and graphically (Williams, 1993; Brenner et aI., 1997). The authors interviewed 8 

groups of 3 students about a problem where the students had to decide which deal was 

better: doubling your money or tripling your money and giving back seven dollars 

(essentially '2x' versus '3x -7'). Students had to state which deal was better with 

varying amounts of money and why. The interviewers asked students to represent the 

problem in each of the four methods and discuss their thought process. The authors found 

that students could successfully represent the problem in each of the four methods. They 

found that each method revealed new insights to students that were helpful for their 

overall understanding. For example, most groups were able to formulate tentative 

conclusions when discussing the problem, put their ideas into algebraic notation, and 

solidify them using a table. Each group of students successfully made a table with input 

amount, output amount, and which deal was better for varying dollar amounts. In other 

words, the students applied algebraic concepts as they discussed as they solved the 

problem. The students also learned they could solve a problem several ways (verbally, 

algebraically, tabular, and graphically) and that each strategy could be complimentary in 

understanding the solution. 

Using algebraic reasoning, symbolization may help students as young as 1 st grade 

(Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997; Gravemeijer, Cobb, Bowers, 

& Whitenack, 2000; Sfard, 2000). Students may begin to take mathematical situations 

such as word problems and frame them in terms of algebraic symbolization. The 

symbolization can make reasoning about the problem easier (Kaput, Blanton, & Moreno, 

2008). For example, Cobb et al. (1997) worked with one 1 st grade classroom that 
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consisted of 11 female and 7 male students from middle to upper socioeconomic families. 

The teacher in this classroom consistently attempted to extract students' reasoning when 

thinking about mathematics. She would then symbolically represent their reasoning on a 

whiteboard. Students were asked to agree or disagree if the teacher had accurately 

depicted their thought process. At the beginning, middle, and end of the year, the authors 

tested the students via interviews on how well the students could represent their additive 

strategies. Students showed strong progress for both representing quantities and 

generating strategies for addition problems across the year. Following the pre-test at the 

beginning of the year, the authors felt students showed mathematical growth that was 

"atypical when compared with that of 1 st grade students who have experienced traditional 

instruction" (p. 176). For example, most students were able to generate and compute 

basic number sentences from word problems representing different types of additive 

strategies. However, this study did not have a comparison group or a standardized 

assessment. It also did not report statistical effects or the influence of demographic 

variables. 

Structuring Knowledge 

A large part of algebra is the ability to take quantities or problem situations and 

represent them meaningfully. In this respect, algebraic reasoning also underlies the 

computational processes of many mathematics areas. Students can use algebraic 

reasoning to create oral, written, drawn, or even modeled representations of problems 

using symbols or descriptions that extracts the relationships of the problem components. 

For example, in an arithmetic word problem stating 'Johnny has 5 apples and Megan has 

7, how many more apples does Megan have?', students need to do more than just 
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compute 7 - 5 = 2. A student must first infer that Megan has more apples and that the 

difference is an unknown. The quantities could be represented visually using drawings or 

manipulatives. A student could then find a strategy after breaking down the problem 

components. For example, a counting strategy could be used to move from 5 up to 7 or a 

subtracting strategy could be used, taking away 5 units from 7 until 2 are left. 

Students' ability to represent and reason about problem components may help 

them understand problems in all areas of mathematics. Fosnot and Jacob (2010) discuss 

how this algebraic process can help students structure their general mathematics 

knowledge. Students can approach any given problem with their basic algebraic skill set 

to identify the quantities and relationships in the problem. This will allow them to reason 

using the concepts in the problem and eventually incorporate the concepts into their 

cognitive framework. Eventually their algebraic born knowledge structures will grow in 

two dimensions: (1) horizontally, which entails parallel but more complex problems 

using similar operations, and (2) vertically, which entails creating structure that involve 

higher order concepts and problems such as the move from addition to multiplication. 

Fosnot and Jacob (2010) outline how algebra can guide students' first attempts at 

building knowledge structures around mathematics (see Learning Trajectories). The 

authors describe the driving principles of algebra that help students apply knowledge 

towards reasoning, problem solving, and building more complex, integrated structures 

throughout mathematics education. They believe students can learn and perform better in 

mathematics if they have more densely integrated and connected knowledge structures. 
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The authors believe that many algebraic concepts can drive students to create and 

improve their mathematics structures, including: 

• Early structuring of the number system 

• Comparing quantities and relations 

• Equivalence 

• Variance and variables 

Early structuring of the number system begins with counting and seeing a 

progression of greater quantities by the factor of + 1 or -1. Students can then begin 

comparing quantities and relations, such as more than or less than. Eventually this will 

translate into addition and subtraction problems. The focus will not be on the problems 

themselves, but how to use problem context and models to think about the problems. This 

will allow students to apply their knowledge structure to the problem to discuss and 

eventually solve it. Then, by doing more difficult problems horizontally and vertically, 

their knowledge structures will grow accordingly. As their knowledge structures grow, 

algebraic big ideas such as equivalence and representing quantities and varying amounts 

with variables will emerge. The following section will discuss how this can unfold in a 

step by step learning progression from 1 st through 5th grade and will also include the 

supporting research showing that students can understand and use fundamental algebraic 

concepts to scaffold this process. 

Learning Trajectories 

Algebra has not traditionally been emphasized in 1 st through 5th grade. Research 

around the impact of learning algebra in these grades is also sparse. This section 

discusses how algebra can help students in these grades. This section lays out a 
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theoretical framework explaining how algebra can help students progress as they 

structure their mathematics knowledge (also see Current Research around Algebra). 

With the emerging Core Common State Standards, more research will be devoted 

in the upcoming years to how algebra is supporting mathematics learning in early grades. 

Some states and school districts have been ahead of the curve, including algebra in their 

standards. The district in the current study is one example. This district follows the state 

mathematics standards shown in Table 1 (Kentucky Department of Education, 2008a; 

2009). 

Districts that have algebra in their standards are ideal for research on algebra's 

impact. Research can examine if the algebra in the early grades provides the structural 

foundation to help students learn each other content area, such as those in Table 1. Table 

1 is by no means comprehensive of every mathematics area and concept (that would be 

too comprehensive for this paper), but attempts to demonstrate the array of content areas 

that algebra may help support. 

Algebra may scaffold students' knowledge structures of these content areas 

starting in 1 st grade. The remainder of this section will discuss how algebra can support 

student's learning in each area of mathematics shown in Table l. The discussion is based 

on how students structure their knowledge using basic algebra components (Fosnot and 

Jacob, 2010), such as representing quantities and creating generalizations (Kaput and 

Blanton, 2000). 
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Table 1 

Core Content Areas of Mathematics in Elementary School 

Topic 
Number 
Properties 
and 
Operations 

Measurement 

Geometry 

Data Analysis 
and 
Probability 

Algebraic 
Thinking 

Primary Grades (1-3) 
Represent quantities in multiple 
ways. 
Represent word problems 
mathematically. 
Comparisons «, >, =). 
Addition, subtraction. 
Multiplication, division 
(numbers less than 10). 

Identify measureable attributes 
Taking basic measurements 
(e.g. length, temperature). 
Applying correct units. 
Unit relationships and 
converSIOn. 
Describe basic geometric shapes 
and their elements. 
Describe examples of symmetry 
and similarity. 

Collect, display, and make 
inferences from data. 
Basic probability knowledge. 

Make and extend patterns. 
Model math problems with 
number sentences, unknown, 
and symbols. 
Describe functions. 

14 

Late Elementary Grades (4-5) 
Multiple representations of place value, 
whole numbers, fractions, mixed fractions, 
decimals. 
Comparisons «, >, =) of the type of numbers 
above. 
Apply representations by performing 
operations to solve problems relate to the 
type numbers above. 
Addition, subtraction, multiplication, division 
(numbers> 10 and basic mixed numbers). 
Measuring fractions of units. 
Continuing basic measurements (e.g. weight, 
angles). 
Continue unit relationships and conversion. 

Describe all basic terms (e.g. segment, 
parallel), shapes, and types of angles. 
Describe and provide examples of basic 3-D 
shapes. 
Identify and describe similar and congruent 
figures. 
Identify and graph ordered pairs on a positive 
coordinate system. And apply graphing to 
solve real world problems. 
Identify and perform rotation, reflection, and 
translation. 
Construct data using drawings, tables, and 
graphs. 
Analyze and make inferences from drawings, 
tables, and graphs. 
Determine mean, median, mode, and range. 
Determine likelihood of events with limited 
outcomes « 12). 
Extend patterns, find missing terms in a 
pattern, and apply to real world problems. 
Model real world situations with number 
sentences, including blanks and variables, 
and solve them. 
Describe functions through pictures, tables, 
or words to analyze real world problems. 
Determine output of functions. 



Algebra and Number Properties and Operations 

Number properties and operations involve three areas of mathematics: number 

sense; number operations; and properties of numbers and operation. Fosnot and Jacob 

(2010) show how these areas are inter-related through the algebra that underlies each of 

them. The authors believe that students can begin to structure their knowledge of 

mathematics from the very beginning of learning number sense. This structure will grow 

vertically and horizontally, in size and complexity, and will eventually incorporate formal 

operations and properties of numbers. Fosnot & Jacob (2010) feel that all four of their 

major algebraic concepts can help students learn number properties and operations. 

Early structuring of the number system. Number sense includes the ability to count 

and to understand numerical notation, order, and quantity. It precedes formal operations 

in mathematics and is algebraic in several ways. Understanding numbers and counting 

can entail knowledge of spatial relationships, patterns, and combinations that coincide 

with early concepts of algebra (Van de Walle, 1990). Simple counting can be thought of 

in algebraic terms since numbers themselves grow proportionally as the real or abstract 

quantity of something increases. Focusing on number sense may help children get an 

accurate spatial and algebraic understanding of numbers even before they learn to 

manipulate them. 

Fosnot and Jacob (2010) describe how children can use the counting strategies to 

structure their early knowledge of mathematics. Children structure each subsequent 

number as a + 1 relationship. The infinite number set then has an (N,<) ordered 

relationship. The one-to-one covarying relationship can be thought of as the first 

algebraic principle of functions children can incorporate into their mathematical 
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knowledge structure. This aspect of number sense can be taught using objects to show 

children that as physical quantities of toys or circles on a page increase, the height of 

number counting directly and proportionally increases (Sfard, 2000). Children will realize 

that numbers must remain in order so the proportional relationship remains intact. 

Kaput and Blanton (2000) feel the next step to structuring knowledge is learning 

how numbers link to quantities. Symbolization and representation is another important 

aspect of number sense (Cobb et aI., 1997; Gravemeijer et aI., 2000). Being able to 

represent quantities as numbers and eventually variables is key to students' algebraic 

reasoning (Goldenberg & Shteingold, 2003). Children can relate a physical quantity, such 

as toy giraffes, to a numerical representation. The representation could be anything from 

circles to the corresponding numerical figure. Children can use these varying 

representations to build a sense of how numbers and quantities relate. For example, 

children can start to understand that 7 can be represented as 

o 
o 

o 00 

00 

or 

o o 

000 

o 0 

or 7 physical toy giraffes or the number "7". 

This may provide students with a base of representational thinking. 

Representational thinking allows students to use a referent, such as circles or the physical 

number 7 to represent something such as 7 toy giraffes. This can help students understand 

equivalence of quantities through various representations. This knowledge can build into 

understanding equations, and eventually unknowns. 

Equivalence. Children's understanding that two quantities can be equal, even if 
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represented a different way, begins to structure the idea of equivalence when comparing 

amounts. Children can learn that representation does not influence quantity. Children can 

then apply this knowledge towards understanding the equal sign. From the previous 

example, children's structures could be extended to understand that (at least in quantity): 

o 
o 

o 
o o 

00 

o o 

000 = 7 physical toy giraffes = the number "7". 

o o 

Understanding quantities in this manner can lead to pre-formal operation such as 

basic comparison of quantities. If a child can understanding the previous example, they 

could extend the algebra to discover that 

o 

o 0 

o 

and 

o 

o 
o 

o o 

000 

o 0 
This is a prerequisite to understanding 3 + 4 = 7. 

Fosnot and Jacob (2010) emphasize taking this algebraic route to equalities 

because equalities are foundational to most of mathematics. They feel that this algebraic 

approach may help students understand that the equal sign is not an operational indicator, 

which can be a strong misconception with students (Seo & Ginsburg, 2003). Students 

should see operational situations as a statement with the balanced quantities on each side 

of the equal sign. Students will realize that adding three plus four is not just an operation, 

but finding an equivalent amount to having three of something and four of something. 

Seo and Ginsburg (2003) studied a 2nd grade classroom and showed that the students can 
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learn this relational use of the equal sign if their algebraic thinking is supported with 

corresponding instruction. They demonstrated that students can begin discussing the 

equal sign to mean 'the same as' , relating two equal quantities, when doing a variety of 

problems, instead of viewing it strictly as an operator. 

Fosnot and Jacob (2010) discuss how thinking of quantities in this manner relates 

to students' perceptions of unknowns. The authors use an example ofx + 3 = 8. Students 

with little algebraic understanding may not be able to reason about x + 3 as a constant 

quantity that is the same as 8. Instead, they look for a procedure to solve the problem, 

which is more complicated and can be more confusing (Behr, 1980). 

Having students identify that x + 3 can be treated as one quantity "is a huge shift 

in thinking" (Fosnot & Jacob, 2010, p 31). Students will then be less timid when looking 

at unknown quantities in operational situations. If they understand the underlying 

components of quantity based on their structured early understanding of the number 

system, they can use these concepts to build more advanced knowledge and problem 

strategies. 

Comparing quantities and relations. After children have structured their 

knowledge ofthe number system and representing quantities, they can also perform 

comparisons of different quantities. Similar to how children learn that 

o 
o 

00 

00 

is the same as 

they can also learn that 

is less than 
00 

00 

o 
o 

o 
o 

is less than 
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Further algebraic concepts, such as patterns and functions, can be built into 

children's knowledge structures within this context of number sense. Teachers can use 

physical quantities of objects, such as marbles, in order to get children to build and to see 

equality in matching two sets of marbles. They can then have children build patterns such 

as segregating two marbles, then four, then six, and so on and can organize them in 

groups of two as follows: 

o 
o 

00 
00 

000 
000 

This can allow students to see relationships between quantities and how they can 

build into patterns. Students can begin to see patterns of odds and even or even sets of 

three, etc. Students can also observe where the quantities within each set fall onto the 

number line to build upon their early structures of number sense. 

Kaput (2000) would argue that students could use their knowledge of basic 

patterns to look for generalizations that they can represent symbolically. When children 

are learning how quantities relate and compare, the equal sign (=), greater than (» and 

less than «) signs can all be introduced. A quick example can be seen as follows: 

o 

o 
< 

00 

00 
< 

000 

000 
and 

00 

00 

00 

00 

In the examples above, a student can see that each group is not just greater than 

the previous, but is greater by a quantity of +2. This comparison can be related to 

symbolic notation in the form of n + 2. Students can begin seeing comparison of 

quantities, patterns, and learn symbolism all while gaining basic number sense. 
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Dougherty (2008) continues to explain that once children can represent comparisons this 

way, and can represent quantities symbolically, they can begin to do full numeric 

comparisons of groups, such as A < B. Ignoring spatial information or how objects are 

represented and focusing on numeric quantity may allow students to better see the 

relationship of two quantities. 

Algebraic symbolism can be incorporated within counting and pattern 

construction activities, as in the above example. Symbolization can also be in the form of 

letters, as is typical in applied algebra. A student can learn that if two of something are 

added to a group, that the total objects increase by 2. If the student can represent the 

original quantity abstractly as 'n', the total number of new objects in this example can be 

perceived as n + 2 (Carraher, Schliemann, & Schwartz, 2008). 

Carraher et al. (2008) demonstrated some of these points in a longitudinal 

investigation with 70 students from 2nd grade to 4th grade in four classrooms (3 

mainstream and I bilingual) in a major metropolitan area with a 75% Latino population 

(Brizuela, Carraher, & Schliemann, 2000; Carraher, Schliemann, & Brizuela, 2000; 

Schliemann, Carraher, & Brizuela, 2000). In these studies, the authors implemented 

activities they designed with the goal of helping students build knowledge around 

addition, subtraction, multiplication, division, fractions, ratio, proportion, and negative 

numbers using an algebraic approach with an emphasis on functions. Activities lasted 

around 90 minutes and were implemented six to eight times per semester during each 

year of the study when students were in 2nd, 3fd, and 4th grade. Authors observed teachers 

and students and performed student interviews during activities throughout the study. 

Carraher et al. (2008) showed how students in 2nd and 3fd grade began to represent 

20 



unknown quantities algebraically. The students could represent changes to quantities and 

unknowns using algebraic representation, such as n + 2. Schliemann et al. (2000) and 

Carraher et al. (2001) showed how students can even use the unknown representations to 

find applicable solution sets. For example, in a problem where a person gains three more 

pieces of candy than he or she had previously, students had to represent the new quantity 

of candy. Second and 3rd grade students were both able to generate possible solution sets 

such as 0 and 3, 6 and 9, etc. following their agreement that the amount could be 

represented as n + 3. 

Fosnot and Jacob (2010) even show how students can compare and operate on 

two unknown quantities, such as x and x + 4. This is an advanced comparison that comes 

after some basic operation skills are formed (see below), but the idea is embedded in 

basic number structure. Students can understand that two quantities can be added together 

or compared, even if their exact value is unknown. This principle leads into advanced 

algebra problems where two variables, such as x and y, are unknown (see Algebra Core 

Content). 

Addition and subtraction. Fosnot and Jacob (2010) state that "manipulation of numbers 

to produce an answer can seem like a magic trick to learners if they haven't constructed 

the implicit relations for themselves" (p. 15). Students' who build early number structures 

algebraically will be able to expand their structures to include more formal addition and 

subtraction knowledge. Students may start by 'counting on' to perform addition 

problems, which is a way of applying their early knowledge structure to incorporate 

addition. Students then begin to build their additive knowledge structures which allow 

them to see how pieces of quantities are related to the whole (Baroudi, 2006). 
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Students need algebraic additive structures to understand the underlying relations 

among quantities before they perform formal operations. For example, students need to 

understand the concept of the numeral '8' and how it represents a quantity that they can 

reach through counting or adding objects together. Students can use this knowledge to 

build the foundation for performing operations involving the number 8. Students with 

these knowledge structures will recognize that 8 circles represent a constant quantity of 8. 

Students can then see how 8 can be represented in two portions of 4 and 4. Eventually, 

this knowledge can be applied to addition. An example of parsing the quantity of 8 to 

begin showing students addition is show below: 

o 0 

o 0 
+ 

or even 

o 0 
+ 

o 0 

o 0 

o 0 

o 
+ 

o 
o 
o 

= 

o 000 

000 0 

o 0 0 0 

o 0 0 0 

Students may not know the full underlying algebra of this problem, such as the 

associative property, but learning algebraically can build the foundation for children to 

reason abstractly (Cuoco, Goldenberg, & Mark, 1996). 

This is also the foundation for equivalence (see Algebra Core Content). Students 

can begin to understand that the two side of an equation are balanced, even if they do not 

look identical (Fosnot & Jacob, 2010). Fosnot and Jacob use similar problems to 

represent this idea, such as 5 + 3 = 4 + 4 or 8 + 2 + 10 = 12 + 4 + 4. In these problems, 

both sides of the equation are broken into pieces. The pieces are not the same, but their 
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sum is. Students can learn apply algebraic knowledge structures to understand equations 

and how they are balanced. 

Dougherty (2008) further discusses how parts and wholes could be taught 

algebraically early in education. He feels that once students can represent amounts using 

symbols (such as the circles above), letters can be connected with the quantities. For 

example, the symbols can be broken down into parts, such as demonstrating that A is the 

~ 

same as Band B together (when B is half of A). The above example could then translate 

to B + B = A where 

o 0 000 0 

o 0 
=Band 

000 0 
=A. 

Without putting specific numbers of operations, students can focus on the 

relationship of A and B. Dougherty discusses how this can lead to parsing number 

strategies, such as round numbers strategies, in more advanced addition problems. For 

example, when a student is adding 9 + 6, he or she may not know the answer, but may 

know 10 + 5 is 15. A strategy for adding 9 + 6 is borrowing 1 from 6 and adding it to 9 to 

make it 10 + 5. The algebraic notation for that strategy would be A + B = (A + 1) + (B-

1). Students may do this on their own, but if they can realize that it is an algebraic 

strategy that can be generalized to all addition problems, students can reason with that 

generalization to solve many other problems (Kaput et aI., 2008). 

Many have proposed that thinking about quantity in an algebraic way may lead to 

a different type of understanding of addition procedures (e.g. Carraher et aI., 2008; Fujii, 

2003). Using algebraic quantities allows student to focus on the situation and variables in 
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a problem, initially ignoring the exact method of calculation that will take place to solve 

the problem (Smith & Thompson, 2008). Students who are or are not proficient at 

computation can use reasoning about quantities in addition problems to start to build their 

knowledge of relationships. Without the process of reasoning algebraically, students will 

often read addition and subtraction statements as instructions to compute and will attempt 

to solve the problem accordingly (Baroudi, 2006; Kieran, 1981). Algebraic reasoning 

allows students to form generalizations and representations of problem situations that can 

help them when solving (Carraher et aI., 2008). 

Carraher et ai. (2008) discuss examples where 3rd grade students could represent 

unknown quantities using algebraic notation in the context of addition and subtraction. 

The students could also discuss changes in an unknown amount using addition and 

subtraction. For example, in solving a word problem, students were able to track several 

changes in an unknown amount of money to discover the end amount of money (e.g. n + 

3 + 1 - 2). Students were able to represent the changing unknown amount using multiple 

representations, such as a number line and charts. Carraher et ai. (2008) reported that 

students generally progressed from using iconic drawings and random number 

assignment to more algebraic, abstract representation of problems situations as they 

became more comfortable with this type of reasoning. For example, rather than making 

up a starting value of 10, then adding 5 and subtracting 2, students began noting that the 

change was +5 and -2, so the shift in quantity could be represented as n + 3. 

The previous example also connects subtraction to additive cognitive structures 

(Fosnot & Jacob, 2010). Students may understand subtraction better if they represent it as 

part of their basic number structure. Subtraction can represented as moving down the 
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number line, as addition is moving up. In Schifter's larger research project, Lester (1996) 

reported an example of 2nd grade students discovering the inverse relationship between 

addition and subtraction using missing addend problems. An example provided was 

'when driving somewhere 54 miles away, how far away are you after 27 miles'. Some 

students in the class attempted an addition strategy, while others tried a subtraction 

strategy. A conversation ensued where students began to algebraically identify that 

addition and subtraction could both be used because of their inter-relation. 

Students' knowledge of algebraic representation of basic addition and subtraction 

problems may help them solve more advanced problems, such as open number sentences. 

With an algebraic view of number sense and operation, the problems 5 + _ = 8 or 8 - _ = 

5 may feel much less daunting. Students can visualize the quantity of eight being 

separated into two pieces of 5 and 3. They can reason algebraically for products or 

missing values, such as 4 + 4 = _, as well as 4 + _ = 8. 

Multiplication and Division. Students can use their knowledge structures from addition 

and subtraction to incorporate multiplicative structures. Multiplication and division are 

not independent mathematics topics, but stem from the same algebraic principles that can 

scaffold students when learning addition and subtraction. 

Fosnot and Jacob (2010) discuss how looking at patterns and groups of quantities 

provides the opportunities for students to structure their number sense in a new way that 

will build towards multiplicative understanding. As students see relationships of sets, 

such as three, six, and nine, they can recognize number patterns within their previous 

knowledge of number sense. The algebraic concepts that help students understand n + 3 

can allow them to expand their structured knowledge to n x 3. When analyzing patterns 
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within number sets, instead of adding three, example quantities could be multiplied by 

three. Students may then represent the patterns as n x 3. 

This algebraic knowledge can be extended to operation problems, such as 13 x 3. 

Student can use their algebraic structure of multiplication to realize this problem can be 

represented as (10 x 3) + (3 x 3). Students can even use this knowledge to understand 

basic functions (Kalchman, & Koedinger, 2005). For example, students can generate a 3x 

function by reasoning that any number multiplied by 3 is equivalent to adding three sets 

of that number. 

Fosnot and Jacob (2010) discuss another example of using cognitive structures of 

addition to help students learn multiplication. An example problem they use involves 

pairs of people holding hands. They use this visual to help students see a pattern of 

adding by two. Students can see patterns of even numbers which will lay the groundwork 

for mUltiplying by two and thinking about factors of even numbers. The authors also 

discuss more complex problems, such as using egg cartons or chocolate boxes with 

various numbers of rows, columns, and layers to help students think about relationships 

among sets of quantities. As students begin to think of the sets as one quantity or unit, 

they are beginning to structure their knowledge for multiplication. 

When it comes to formal operation of multiplication or division, students can use 

their knowledge structures to reason about the problems algebraically (Fosnot & Jacob, 

2010). When approaching multiplication, instead of adding pennies or other symbolic 

objects, students may begin thinking about sets of pennies or about series of blocks in a 

matrix. Students could explore patterns of 7 to see that 3 x 7 is similar to adding three 

objects, where the 'objects' are blocks of7. Similarly, they could add 7 'objects' that 
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consist of 3 blocks. Students would not be memorizing the answer to 3 x 7, but using 

their algebraic language to discover multiplicative relationships that will help them 

reason about problems. 

Students can use algebraic knowledge to explore more advanced number sense 

concepts as well, such as square numbers. Schifter (1996) discusses an example from a 

4th grade classroom where students were graphing square numbers and looking for 

relations between them. A group of students was able to explore square relationship to 

deduce and articulate that they could calculate (n+ 1)2 from n2: simply add nand (n+ 1). 

One student began to notice this trend early when graphing overlapping square numbers 

and other students helped to extract the rule. Although they did not have the algebraic 

experience to articulate the rule using symbolic notation, they could reason algebraically 

to form a number property generalization from multiplication problems. 

Schifter (1996) even found that 2nd grade students could extract generalizations 

about square numbers. In one lesson where students were exploring square numbers 

using blocks, students were able to generate nine accurate conclusions about square 

numbers including several that were based on algebraic generalizations. For example, 

students extracted that square numbers alternated between odd and even. 

Carraher et al. (2000) showed that 3rd grade students were able to represent 

multiplication problems and concepts algebraically. For example, students were able to 

reason about functions using multiplication tables. To understand 3x, students did not 

simply make a 3x multiplication table. Instead, students reasoned about multiplication 

through problems, such as how much do 'n' boxes of cookies cost if they each cost three 

dollars. Students filled in partially complete tables to see how price rises in increment of 
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3 dollars per box. These activities got students doing number operations with 

multiplication as well as learning about functions. The authors reported that students 

were able to extract functions from such tables, such as 'price = n x 3'. Students were 

able to fill in tables for more complex functions such as 2x + 1 and discover these 

functions from number sets. The students were able to focus on the relationships between 

quantities instead of computational solutions. This study did not research the longitudinal 

impact that thinking algebraically had on the students' mathematics knowledge. 

Number Properties. Algebraic reasoning with number sense and operations may lead to 

discovering infonnal and fonnal properties of numbers and operations (Schifter et aI., 

2008). Kaput et al. (2008) discuss that students can create generalizations if they can 

reason using symbolic representations. This is not something students do naturally 

(Kieran, 2008). If students are supported in learning these skills, they can learn to lift 

generalizations from problems and representations of patterns. Students can then use 

algebraic reasoning to discover more advanced mathematics principles, such as the 

associative property in addition or multiplication. For example, students could deduce the 

commutative property using the reasoning skills discussed above. Students could think 

about two children, Johnny and Megan, who have 5 pennies total. They could reason that 

if Johnny has 3 pennies and Megan has 2, their total is 5. Students could then count 

Megan's pennies first, then add Johnny's, and see the total is still 5. After seeing several 

such problems, students could see that when two quantities are added together in either 

order, their total is the same. When the quantities are then expressed using symbolic 

representation, students will be able to understand or even derive the commutative 

property and its symbolic notation. 
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When helping to form a curriculum that incorporated algebraic thinking, Schifter 

et al. (2008) found several examples of students discovering rules such as the 

commutative property in early elementary grades. The authors held monthly meetings 

with a group of K-5 teachers across an ethnically diverse region to discuss how algebraic 

ideas naturally emerged in their mathematics classrooms. One 1 st grade teacher said the 

algebraic idea of the commutative property arose when they were discussing how many 

ways you could add to get 10. When students realized you could add 6+4 and 4+6, as 

well as 7+3 and 3+7, etc. they naturally began asking if the number 'tum around' always 

worked. They explored the property using larger numbers, blocks, and charts until the 

students were convinced that the property always held constant. Schifter et al. (2008) 

gave another example in 3rd grade classrooms where students attempted to translate the 

commutative property to subtraction, but found it only worked with addition. 

Schifter, Bastable, and Russell (1997) gave an example of 3rd grade students 

generating the commutative property using multiplication and realizing it does not work 

with division. Schifter et al. (2008) also discuss a 3rd grade classroom where students 

discover associative properties when learning about factors. In this classroom, students 

worked with sets of blocks and began breaking them apart in different ways. For 

example, students were able to understand that 8 blocks could be broken into eight sets of 

1, four sets of 2, or two sets of 4, or any combination thereof would add to the same total 

amount. They reasoned that how a sum was added together did not change the final sum. 

Algebraic reasoning about the properties of arithmetic can build towards 

multiplicative reasoning. Goldenberg and Shteingold (2008) discuss how algebraic 

language underlies the distributive property. They feel that long before children can 
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compute 100 x (2 + 5) they can answer 'how many is 2 pennies plus 5 pennies'. Often 

children can answer the parallel problem 'how many is 2 hundred plus 5 hundred' or 

even 'how many is 2 eighths plus 5 eighths'. Cognitively, children can listen to the 

language of the problem and reason the answer by representing the operators in their 

mind as abstract quantities. 

Understanding the distributive property of addition in algebraic terms can lead to 

understanding the distributive property of multiplication (which can be represented as 

A(B + C) = A *B + A *C). Just as 8 was preserved when separating it into 4 and 4 in 

addition, the product derived from multiplying 8 by another number is preserved when 

multiplying the pieces of 8 (4 and 4) by that same number. For example, Schifter et al. 

(2008) discussed a 3rd grade classroom where this reasoning occurred. The teacher asked 

students how they could break up 12 x 6 to make it as easier problem. Students initially 

posed doing 2 groups of 12 then adding it to two more groups and two more groups, 

prompting the teacher to notate 12 x 6 = (12 x 2) + (12 x 2) + (12 x 2), which the class 

agreed was correct. The students never named the rule, but began to reason about 

distribution by learning new ways to represent problems. 

The research performed by Schifter (1996), Brown (1996) provided an example of 

3rd grade students discovering the commutative property of multiplication using algebraic 

reasoning. In a problem where Brown's students had to add the total pencils in 3 boxes of 

12 pencils, students first attempted the addition procedure 12 + 12 + 12. Brown guided 

them to see the connection of 12 + 12 + 12 and 12 x 3. One student then unexpectedly 

stated that the boxes could be broken in half and summed by adding 6 + 6 + 6 + 6 + 6 + 

6, or multiplying 6 x 6. Another student then stated you could break the 6' s in half and 
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add twelve 3 'so Then another student announced that multiplying twelve 3's was the 

reverse of the original problem, which multiplied three 12's. Students continued this 

process and discovered they could also add 9 sets of 4, which was the same as 4 sets of9. 

For homework, they pondered if this commutative property was always true. The next 

day, they were able to use arrays to demonstrate how the total number of blocks always 

stayed consistent if a multiplication problem was reversed. 

The abilities seen in Schifter's (1996) research corresponds to Fosnot and Jacob's 

(2010) idea of using additives structures to learn and explore multiplicative structures and 

principles. Fosnot and Jacob (2010) also propose using similar tasks to get students to 

think exhaustively about combinations of addition and multiplication in a real life 

context. For example, students can compute the possibilities of postage using three and 

six cents stamps. By analyzing the patterns and relationships of addition, they can build 

x3 and x6 multiplication knowledge and the foundation for more advance concepts. The 

authors even discuss how 4th grade students are able to generate ideas that relate to the 

commutative, distributive, and associative properties of multiplication. 

The above theories and research show how students are able to discover and 

discuss, in a classroom context, generalizations when performing certain number 

operations. These algebraic abilities also translate into more advanced number properties 

and operations. 

Advanced learning. The algebraic knowledge structures students build when learning 

basic topics will easily connect to learning more advanced topics covered in elementary 

school, such as fractions. Students have to understand quantity and how it can be parceled 

to understand division and fractions. Algebraic reasoning allows students to see fractions 
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as a comparison of quantity. For example, AlB = 2 can be used an example of a 

generalization to display any two numbers where one is twice as large as the other. 

Conversely, showing BI A = Y2 shows more traditional approach to fractions while still 

allowing the students to generalize meaning. Fractions can also be represented as 

dividing a whole quantity into pieces, such as cutting a pizza in half. Students can learn 

that the fraction Y2 simply means one half of any object one breaks apart. Dougherty 

(2008) goes one step further and discusses how using algebraic notations early may 

further help understand fractions. She discusses how a total quantity can be represented 

as a letter and its pieces as another letter. For example, how many H's are in E. Being 

able to use letters first to abstractly understand breaking things into fractions may help 

the transition to using real numbers in operations (Dougherty, 2008). 

Fractions can be one of the most difficult areas for children to understand (Behr, 

Lesh, Post, & Silver, 1983). Using algebraic reasoning may help students see 

generalizations using fractions (Mason, 2008) as well how to perform operations with 

fractions. For example, Moynahan (1996) showed how students in 6th grade could revisit 

generalizations from basic multiplication and division problems to apply them to 

problems involving fractions. Moynahan's students were able to use the fact the 

multiplication is the inverse of division to reason about multiplying and dividing with 

fractions. For example, Moynahan had students think about 15 _ 113 = 5, where students 

had to figure which operator should be inserted in the blank. After discussion, students 

came to understand that multiplication was correct since 15 I 3 = 5 and 113 is the inverse 

of3. 

This type of algebraic reasoning may help with the diverse properties of fraction 
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knowledge and manipulation (Behr et aI., 1983; Carpenter, Fennema, Franke, Levi, & 

Empson, 2000; 1999). For example, early research by the Rational Number Project 

indicated that higher performing students were able to understand and apply certain 

concepts about fractions when solving problems (Behr, Wachsmuth, & Post 1985). The 

Rational Number Project worked with teachers to incorporate expansive use of 

manipulatives and physical models of the world that could give children a realistic 

perspective of the concepts of fractions and how they were applied (Cramer, Behr, Post, 

& Lesh, 1997; Behr et aI., 1983; Post, 1979). In Behr and colleagues' (1985) study, 

sixteen 4th and 5th grade students, who had recently been taught about adding fractions, 

were asked to solve one problem and explain their reasoning. They had to use the digits 

3,4,5,6, 7, and 11 to complete the equation XIX + XIX = 1 (or as close to 1 as possible). 

No digit could be used twice. High performing students were able reason algebraically by 

using the rational number order and fraction equivalence concepts they had learned to 

solve this unique problem. Lower performing students applied concepts in a manner that 

was constrained by basic procedural learning. They did not generalize as well using 

underlying concepts of the problem (e.g. finding numbers that were close to the Y2 

proportion). Lower performing students also showed less accurate problem 

representations within their strategies. 

Algebraic reasoning may also help students when adding or multiplying fractions. 

Taking 3/8 and realizing it is simply three objects where the object is 118 may make 

adding or multiplying the fraction easier. For example, Moss and Case (1999) studied a 

teacher who implemented the RNP curriculum with sixteen 4th grade students. When 

compared to a control classroom, the students receiving the experimental curriculum had 
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larger gains on the Rational Numbers Test. They also referenced proportional concepts 

more when justifying answers and had larger gains on each sub-group of items within the 

test: decimals, fractions, and percents. 

Cramer et al. (2002) followed up this study on a larger scale, implementing a 30-

day instructional program using their materials and curriculum to replace the commercial 

curriculum in 33 randomly assigned 4th and 5th grade classes (out of 66 participating 

classrooms) in one school district (Cramer, Post, & delMas, 2002). The RNP students 

outperformed the control group on a 34-item post-test, designed by the authors, which 

assessed knowledge in six areas: fraction concepts, fraction equivalence, fraction order, 

concept of unit ideas, operations and estimation, and transfer. Treatment students also 

performed better in four of the six strands on a retention test administered four weeks 

later. Additionally, interviews with the experimental students showed they took a more 

conceptual approach in finding problem strategies, where the control students more often 

used rote procedures. 

Fosnot and Jacob (2010) further discuss how students' basic multiplicative 

knowledge structures will help them in more advanced topics such as factoring and 

multiples. If students have a strong algebraic structure of knowledge, they can represent 

quantities and relationships in any higher-level multiplication problems. Students who 

use algebraic multiplicative structures will be able to reason algebraically and not just 

attempt to compute a formulaic answer (Smith & Thompson, 2008). Smith and 

Thompson (2008) provide the example of a classic rate vs. time vs. distance problem 

where elementary students must calculate how far two people will walk before they 

eventually meet. There is a formulaic answer to such problems (using distant = rate * 
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time), but students at this level may not have learned the exact fonnula. Instead, the 

students will need to apply algebraic reasoning using the relationships in the problem to 

deduce the fonnula. 

Students can reason about the quantities, properties, and relationships in any 

given problem. They can then understand how and why they are using certain equations 

or comparisons. This allows students to decide and justify what calculations are needed, 

which results in better problem solving (Sowder, 1988). Sowder (1988) demonstrates this 

idea when interviewing 6th and 8th grade students while they attempted to solve word 

problems, but did not research younger students. Sowder discovered four levels of 

sophistication in the students' problem solving. Students who could understand and relate 

quantities showed signs of a more pre-algebraic approach to finding a solution. The more 

sophisticated strategies attended to the quantities and relationships among variables in the 

problem. For example, some students discussed the concepts of the problem and used 

them to create a generalized problem representation that identified unknowns as well as 

operands. This guided them in identifying the operators and procedures required to find a 

solution. The less sophisticated strategies searched directly for operations among the 

stated numbers. This study showed the importance of understanding quantities and 

relationships in problems before fonnerly taking algebra, but it was only perfonned with 

6th and 8th grades students. This study did not extend to students in elementary school. 

Algebra and Measurement 

Algebra can help students incorporate the principles of measurement into the 

knowledge structure. Many researchers feel that children come into education with a 

basic view of quantities that is based around measurement by comparison (Davydov, 

35 



1975; Dougherty, 2008). This idea can be nurtured as students learn basic number 

structure and learn how to apply units to quantity. Education lessons can then guide 

students to more formal approaches of which quantity is more or less using comparative 

symbols, such as =, <, and> and labeling the quantities with units. 

The ability to understand measurement requires some algebraic reasoning using 

generalizations and representation. Students need to understand that there are properties, 

such as length, that are attributable to many objects and shapes. Students need to realize 

that these can be represented using standardized units, and that the number of units 

equates to one measure, not a series of objects or measurements. Reasoning algebraically 

can reduce confusion by helping students represent amounts abstractly through units. 

Dougherty (2008) discusses an example where a 1 st grade student stated during an 

interview that the number 3 or 8 could be larger when making a measurement, depending 

on what the units are. The student stated that 3 larger units could be larger than 8 smaller 

units. 

Elementary standards often address students' need to master units and formulas 

for measurement. Once students understand the idea behind units, as the 1 st grade student 

above, they can begin to add labels, or representation to units. Algebraic symbols can 

help students understand the concept of a unit and how multiple units can be equated with 

a property such as length or weight. For instance, knowing that 1 inch equals 

approximately 3 cm can help students understand that one length can be represented in 

two ways that are comparable by 3x. Students may better understand these relationships 

between units, such as Fahrenheit and Celsius, if they understand patterns and relations of 

units. For example, students can apply real world problems and see the relationship 
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between Fahrenheit and Celsius and eventually deduce the actual algebraic equation of = 

9/S*oC + 32. This could be done through fonnula tables as seen in Carraher et al. (2000). 

Algebraic reasoning can also help link measurement to number operations for 

comparison of attributes such as volume (Dougherty, 2008). Students can learn that 

adding or multiplying to a quantity can increase the physical attribute as well as the 

number of units, which allows students to see the comparison of an object and its 

quantitative representations. 

Algebra and Geometry 

Students who have algebraic knowledge structures may better learn principles of 

geometry. For example, Boester and Lehrer (2008) studied how algebra related to 

representational competence in the context of geometry. Their study was perfonned over 

two years, using twenty 6th grade students (11 female and 9 males) in the first year and 14 

in the second (2 female and 12 male). Students had diverse socioeconomic backgrounds. 

The authors designed a series of lessons where students used physical shapes, such as 

cut-out rectangles, to identify patterns within and across shapes and to discover multiple 

ways to represent those patterns. One goal was to have students use the physical shapes to 

create and understand verbal descriptions of the shapes, such as the long side is twice as 

long as the short side. They also wanted students to translate those descriptions into 

algebraic representations, such as LS = 2 x SS. The authors also wanted students to look 

for patterns across numerous shapes as well. The goal was then to get students to display 

all relationships through tables, graphing, and linear equations. 

Boester and Lehrer (2008) interviewed all students at the end of the series of 

lessons to identify which aspects of the activities they mastered. The interview task was 
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parallel to the classroom activities they had performed, but used cut out cylinders. The 

first part of the task was to indentify patterns within the physical cylinders. All students 

were able to classify several of the cylinders that had a I to I height to width ratio and 

several noted those that were 2 to 1. Most students used a graphing strategy to ensure and 

represent the relationships among the shapes. All but two students were also able to 

generate the corresponding equation to represent both relationships. Most students were 

also able to identify more complex relationship, such as 5 to 1 (85% of students) and 2 to 

3 (90%). Eight-five percent of students were able to discuss that there were theoretically 

infinite shapes that fit into the graph and equations they created. 

Boester and Lehrer (2008) showed that students can use algebraic reasoning to 

fluidly discuss varying representations of geometric relationships. Students could see 

spatial and geometric relationships as algebraic. They learned to describe this relationship 

using a variety of symbolic methods, such as graphing and the Cartesian line. This study, 

however, was performed on 6th grade students, and did not test younger students to 

examine if algebraic learning could support geometry in 1 st through 5th grade. This study 

was also not experimental and does not provide empirical evidence for long term impact 

of using algebra to gain geometry knowledge. 

A similar study has been performed with 3 rd grade students showing parallel 

results (Lehrer, Strom, & Confrey, 2002). Lehrer et al. (2002) studied 22 3rd grade 

students with one teacher in a Midwestern town. Three children were labeled as special 

needs and 4 qualified for free and reduced lunch. These students learned to classify 

shapes, including similarity, as a method of classification. Students were able to sort a 

group of rectangles into smaller similar piles. Students were then able to create algebraic 
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expressions to compare the length of one side to the adjacent within each smaller pile of 

shapes. Similar to Boester and Lehrer (2008), the students represented these similarities 

using Cartesian coordinates. Three dimensional cylinders were even used for an activity. 

Students were again able to compare and represent relationships (in this case height to 

circumference) in algebraic notation using graphs and charts. Students worked in groups 

and were heard offering conjectures and justifications without direct prompting. 

Other studies have shown that elementary students can use algebraic reasoning 

when performing early geometry tasks. For example, Lehrer et al. (1999) showed how 2nd 

grade students can use geometry to represent their world (Lehrer, Jacobson, Kemeny, & 

Strom, 1999). The authors showed how students in one classroom learned about 

classifying real world objects into shapes using geometric principles and relationships. 

The students were able to reason about the relationships of shapes to real world objects in 

space. They applied this reason to learn about the structure and principles of shapes. 

Algebra connects to geometry in several other ways. For example, relationships 

between variables can be displayed by coordinate graphs, which are symbolic and 

representational. Shapes are classified by patterns and generalizations, which are 

algebraic. For example, students have to understand that rectangles have four right 

angles, which lead to two parallel sides of equal length. Understanding more complex 

relationships, such as area = base x height, also requires algebraic symbolization and 

reasonmg. 

Fosnot and Jacob (2010) discuss how relationships such as A=1tf2 (the formula for 

the area of a circle) can help students learn about algebra. The authors discuss how these 

relationships are not meant to simply be memorized. Students should explore these 
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relationships with real examples and understand how and why the relationships exist. 

This will deepen the meaning of the geometry as well as give students time to explore 

algebraic relations and provide proofs for known relationships. 

Students can also apply measurement to geometry to help with their 

representations. Before students can learn what constitutes congruency, etc., they need to 

be able to measure and compare relationships of lines and angles within and between 

shapes (Goldenberg, Cuoco, & Mark, 1998). Students can use quantitative comparisons 

to see what is required for shapes to be congruent or similar. They can also use 

representations to understand what occurs to shapes during reflection, rotation, and 

translation. The corresponding geometry principles can be thought of as patterns (Smith, 

2008). For example, when a shape is rotated 180 degrees, the same thing will happen to 

each and every shape that has that action performed to it. Understanding a shape's 

properties and the algebraic relation of its sides and angles may help students with 

comparison to other shapes and when mentally performing movement on that shape. 

Relating how 2-D shapes relate to 3-D shapes also applies the algebraic concepts of 

patterns and equations. 

Students can use measurement along with algebra to calculate and compare more 

advanced properties of shapes, such as area and perimeter. Goldenberg et al. (1998) 

discuss how students can work with and manipulate properties of shapes using algebra. 

For example, they can see that if a side of a square doubles in length, the area quadruples 

and the perimeter doubles. Another example is putting shapes, 2-D or 3-D, side by side. 

By putting more and more blocks in a row, students can count how the total number of 

faces, sides, etc. changes as a function of the number of units. 
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Students in 15t through 5th grade can even use algebra to learn coordinate 

geometry. Coordinate geometry uses symbols and begins to build students' understanding 

of formulas. A student who has a base knowledge of these concepts from the earliest 

grades in elementary school may better understand higher level areas of geometry and 

other areas of mathematics in advanced courses (Goldenberg et at, 1998). 

Algebra and Data Analysis and Probability 

Students who understand algebraic principles may be better able to structure 

knowledge of data analysis and probability. Data analysis and probability, much like 

algebra, involves representing quantities and relationships while looking for patterns 

within numbers. The early standards around data analysis involve collecting data and 

representing it in multiple ways. Students need to take numbers and represent them with 

tables, charts, and graphs in ways that are meaningful to them. Students can represent 

singular quantities or how two quantities relate. 

Understanding how two quantities interrelate leads to equalities and functions 

which are algebraic by nature. Functions can help students use data to predict an 

outcome. For example, if students have been graphing how a plant grows over time, they 

could discover a function associated with its height at any given time. Once students are 

proficient at gathering and interpreting data, they can learn ways to mathematically 

represent the data, such as using the mean, median, mode, and range. All of these are 

standards from Table 1 and correspond to the algebraic ideas of representation and 

generalization. How students can connect algebra to these concepts has been evidenced 

by many of the studies discussed above. 

41 



Algebraic Core Content 

Although algebra is intertwined with the other subject areas, it is generally 

considered its own content area. As seen in the state mathematics standards in Table 1, 

algebraic thinking can have its own standards even in elementary school. The core 

content areas within algebra from these state standards include: patterns, relations, and 

functions; variables, expressions, and operations; and equations and inequalities. The 

above discussion focused on how algebra relates to other subject areas through 

structuring knowledge and creating generalizations and representations. The discussion 

will now tum to the conceptual areas of algebra often used in standards and how they 

build upon each other. 

Students who begin to structure their mathematics knowledge algebraically from 

the earliest concepts of number sense, quantities, and basic operations will have an 

advantage when algebra is tested explicitly. These students will be better able to 

understand the explicit, as well as implicit, concepts of algebra. Building early 

fundamental knowledge of algebra may help with growth in each of the three algebraic 

content areas mentioned above. 

Patterns, relations and functions. Patterns are represented all over our world in colors, 

sizes, shapes, words, object relations, and other areas including numerical patterns 

(Greenes, Cavanagh, Dacey, Findell, & Small, 2001; Cramer, 2001; Cuevas & Yeatts, 

2001). Students can see patterns when they are comparing quantities, as discussed above. 

These comparisons can help students to structure knowledge about the number system. 

This knowledge relates to operations, such as addition and multiplication, as well as 

external areas such as geometry (e.g. Lehrer et aI., 2002). 
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Seeing patterns requires the ability to perceive relations between quantities. One 

can then discover how and if the quantities fit into a continuous relationship. Once 

someone has this skill, he or she can begin to add to a pattern, fill in missing pieces, or 

construct a new pattern. Students as early as kindergarten have been shown to create, 

manipulate, and understand patterns (Moyer, Niezgoda, & Stanley, 2005). Moyer et ai. 

(2005) demonstrated that kindergarten students could use physical and virtual 

representations of quantities to create numerous patterns of varying complexity. 

Kindergarteners simply need the support and opportunity to use creativity in exploring 

and learning about quantitative relationships. 

Algebraic reasoning with patterns can lead to knowledge of relations and 

functions (Greenes et aI., 2001; Cuevas & Yeatts, 2001; Dreyfus & Eisenberg, 1984), 

which are difficult for students (Clement, 2001). Relations are simply how one object 

compares to other obj ects of its kind or to another group of objects. For example, a 

relation of fathers' ages to daughters' ages is that of greater magnitude (a < b). This 

relationship will always hold true even though the exact age differences will vary. A 

function extends the relation principle to incorporate situations in which one member of a 

set is exactly predicted by another member. For example, a function could be created for 

predicting one daughter's age from her father's age. If the father were 20 years older than 

the daughter, the function would exist where the daughter's age (a) could be exactly 

determined from her father's age (b) by subtracting 20 years (a - 20 = b). 

Students' ability to understand and represent patterns, relationships, and functions 

can help them understand and solve problems, as discussed above. Learning these skills 

early is important since students often have misconceptions about functions and their 
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purpose (Clement, 2001). Using prior knowledge of algebraic concepts to learn what 

functions are could help students with these misconceptions. Students who use prior 

algebraic knowledge to build knowledge structures of advanced topics, such as functions, 

will have an easier time integrating the topics into their cognitive structures of 

mathematics (Kalchman & Koedinger, 2005). 

Variables, expressions, and operations. Representing patterns and relationships is a 

large part of algebra (Kaput et aI., 2008). Being able to symbolically represent quantities 

is often considered formal algebra but this can be introduced much earlier. Students can 

learn to algebraically express the mathematics concepts they are using in their thought 

process from the earliest of formal operations. 

Symbols represent a given quantity in a problem situation, expression, or 

operation. Variables can be taught as symbols that represent relationships between 

quantities. Using variables and symbols is a form of representation that students can 

practice when thinking about concepts or problems (Greenes et aI., 2001; Cuevas & 

Yeatts, 2001). Substituting a variable into a mathematical situation may also help 

students make generalizations, as discussed above (e.g. Schifter et aI., 2008). Once 

students understand that symbols and variables can represent quantities and relationships, 

students can expand variable use into more complex algebraic problems, such as 

formulas and graphs. 

Equations and inequalities. Another component of algebra is understanding equations 

and inequalities. Equations are a subset of relationships and functions where two sides are 

equal. They are a backbone to many basic operation problems as well as understanding 

relationships among amounts, as discussed above. To review briefly, students' 
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understanding of equations or equalities may start out as basic quantity knowledge, such 

as three dots and four dots are the same as seven dots. This can build into knowledge 

about addition and eventually multiplication and beyond. The main idea is that quantities 

can appear differently and algebraic reasoning leads to an understanding that the 

underlying quantities are still the same (Fosnot & Jacob, 2010). 

Equalities are directly relevant to basic operations and number concepts and are 

foundational for more advanced, traditional algebra. Fosnot and Jacob (2010) discuss 

how basic knowledge structures of equality help students when they face more advanced 

algebra problems such as 4x - 5 = 2x +3. Understanding that the expressions represent an 

equal amount makes solving this type of problem much easier. When performing a step 

such as adding 5 to each side, students who grasp the concept of equivalence will have a 

much easier time seeing why this maintain equality while simplifying the expression. 

Other students may only attempt to memorize and apply correct procedural steps. 

The algebraic core concepts above have been discussed throughout this section 

because they relate to how students can structure and apply their mathematics knowledge 

from the beginning of formal education. These concepts may give a window into 

students' ability to reason algebraically and build their knowledge structures. If students 

understand the algebraic principles that underlie each mathematics content area 

discussed, they may be able to better learn and apply the concepts within each content 

area. Thus, early algebraic knowledge may predict how students will perform in later 

algebra as well as overall mathematics. 

Current Research around Algebra 

Researchers and educators have long proposed that beginning algebra earlier than 
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high school would be beneficial for students (Kaput, 1995; NCTM, 1989; Phillips & 

Lappan, 1998; Fey, 1989; Dossey, 1998; Briggs, Demana, & Osborne, 1986). These 

works attempted to disprove the traditional but inaccurate view that algebra is a complex 

compilation of procedures and higher order concepts that should not be learned until at 

least 8th grade or later (Kaput, 2000; 1995). Many have heeded this call and implemented 

algebra programs that have helped students learn algebra concepts before taking the 

traditional Algebra I course. 

The majority of the programs and research around early algebra has occurred in 

the middle school grades. Educators, programs, and curricula have attempted to bring the 

fundamental concepts of algebra into these grades so students can construct a framework 

for algebra before entering Algebra I (e.g. Carpenter and Levi, 2000; Bastable and 

Schifter, 2008; Kaput and Blanton, 2001; Dietiker, Kysh, Hoey, & Salley, 2006). The 

research has included both independent studies and large scale programs (e.g. Fernandez 

& Anhalt, 2001; Moses & Cobb, 2001). Researchers have had success showing a positive 

impact from teaching algebra concepts and reasoning in middle school (e.g. Carpenter 

and Levi, 2000; Fernandez & Anhalt, 2001; Bastable & Schifter, 2008; Driscoll, 1999; 

Moses & Cobb, 2001). 

Before the impact on students is discussed, it is important to note that studies have 

shown that teachers can adjust their practices to integrate algebra earlier. For example, 

Transition toward Algebra (T2 A) was created to give teachers the tools to teach algebra in 

middle school. The goal of the program was to have teachers create a base of algebra 

knowledge they could apply to all areas of mathematics (Fernandez & Anhalt, 2001). In 

this program, teachers took part in professional development that promoted teaching 
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strategies that interweave the basic concepts of algebra into other content areas. For 

example, teachers were taught how to show students that basic concepts in measurement 

can be algebraic, such as functional relationships and comparing units. Then, teachers 

were taught how to help students think algebraically when solving problems. To study the 

impact of the program, Fernandez and Anhalt (2001) researched forty teachers from 5th 

through 9th grade over two years. In the first year, twenty teachers completed a month 

long summer institute. Afterwards, project staff orchestrated monthly meetings, 

classroom collaborations, site visits and videotaping to provide feedback. The twenty 

teachers then helped lead the program in the second year for twenty additional teachers. 

The study found that initially 85% ofthe teachers defined algebra in a limited way, such 

as "algebra is solving equations with unknowns" (p. 237). After taking part in the 

program, teachers were able to give more complete definitions of algebra. Most described 

how algebra consists of looking for patterns and relationships among concepts that will 

help in problem solving. The authors reported that the teachers were also able to give 

better examples of problems that conceptually represented algebra that would engage 

their students. 

Driscoll and colleagues (1999; 2001) created an entire toolkit as part of their work 

for the National Science Foundation. It was created to help teachers in 6th through loth 

grade ease the transitions into algebra. It utilized hands on approaches to building 

students' algebraic thinking. The toolkit encouraged using problems, data collection, and 

discussion to have students connect algebra to the previously learned concepts. The 

toolkit helped teachers identify where they could promote algebraic concepts in students' 

reasoning. The toolkit framework was reported to be successful in helping teachers 
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promote algebraic reasoning. Longitudinal experimental studies were not performed 

around this framework and could add further information about its impact. 

There are also student-based programs that target curricula reform in middle 

school grades. Many of these have also shown success. For example, the Algebra Project 

is a constructivist program implemented to better prepare middle school students for high 

school algebra (Silva & Moses, 1990; Moses & Cobb, 2001). The program targeted 

students as far back as 6th grade. The goal was to provide an opportunity for all students 

to learn the concepts of algebra, especially urban and minority children, before they 

entered Algebra 1. 

The Algebra Project provided a solid conceptual transition from addition and 

multiplication to algebra. It also used a wide variety of familiar physical examples and 

experiences to help guide conceptual discussion and knowledge building. The curriculum 

for this project used models and drawings to represent physical objects and observations. 

The authors helped teachers use the representations to speak conceptually to the students 

to build students' algebra knowledge and reasoning. Once students understood changing 

physical occurrences, such as a tree growing taller over time, they translated the concepts 

into algebraic language through symbolization. Only after this did they attempt problems, 

procedures, and analysis. 

The Algebra Project demonstrated that starting a few years earlier can greatly 

enhance algebraic knowledge and performance (Smith, 1996; Driscoll, 1999). Children 

who graduated from this program were more knowledgeable in algebra than their 

counterparts and were more likely to enroll in higher level mathematics courses in high 

school and beyond (Smith, 1996; Silva & Moses, 1990; Moses & Cobb, 2001). Smith 
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(1996) also investigated the students who were able to take an algebra course before 

entering high school. Her research demonstrated that these students had increased algebra 

knowledge, were more likely to take advanced courses, and had increased overall 

achievement in high school. 

A line of research that aims to use computerized cognitive tutors to help students 

learn the concepts of mathematics has also been applied to algebra (Anderson, Corbett, 

Koedinger, & Pelletier, 1995; Koedinger & MacLaren, 2002). Corbett and colleagues 

(2001) built a cognitive tutor, called the Algebra I Cognitive Tutor, to be used with 

students in high school or upper middle school. Koedinger and colleagues also built an 

algebra tutor for the Pittsburgh Urban Mathematics Project (PUMP), called PAT 

(Corbett, Koedinger, & Hadley, 2001; Koedinger, Anderson, Hadley, & Mark, 1997). 

These tutors use the same interactive, concept-based problem solving environment to 

help students to reason using algebra. The programs used familiar concepts to learn new 

concepts and problem solving strategies in algebra. For example, the programs helped 

students use their existing knowledge in arithmetic to make generalizations using 

algebraic patterns and symbols. 

Koedinger and Anderson (1998) demonstrated the effectiveness of the Algebra I 

Cognitive Tutor during a summer tutoring program for high school students who had 

recently taken an algebra course. The cognitive tutor was used for three or four days for 

two hours a day. Thirty students participated in the study and were randomly assigned to 

one of three conditions. Each condition used the tutor, but the tutor ran the problems in 

different orders. The textbook condition presented concepts in the same order as the 

textbook. The traditional conditional presented the concepts corresponding to traditional 
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algebra. The inductive condition had the problems in order so their concepts started from 

the most fundamental and built upwards. Each student took a 30-minute test consisting of 

eight items before using the tutor and again after their experience with the tutor. All 

students had significant gains in learning within a short period of time. Their post-tests 

were significantly higher, F(I, 29) = 9.7, P < .005. The inductive group had the largest 

gains in performance F(1,17) = 4.4, p < .05. On the eight item algebra test with a scoring 

metric that yielded the highest possible score at 26, the inductive group on average 

gained 3.4 points from pre- to post-course compared to 2.4 and 0.6 from the traditional 

and textbook conditions, respectively. 

Koedinger and colleagues (1997) demonstrated the effectiveness of PAT in a 

year-long study in Pittsburgh Public High Schools. PAT focused on real world problems 

to which algebra is critical. PAT was similar to the Algebra I Cognitive Tutor (Koedinger 

& Anderson, 1998), but was designed specifically to coincide with the PUMP 

curriculum. The PUMP curriculum was designed to help students learn graphing, 

modeling, and functioning. It emphasized group work and creating charts and graphs. 

The PUMP curriculum also had students complete reports and share results via 

presentation to the class. PAT was aligned to this program by supporting group work and 

creating graphs. PAT's designers also used teachers' input to help make its problem 

solving tasks culturally and personally relevant to students. Teachers of 20 PUMP classes 

with a total of 470 students across three schools used the PAT. These students were 

compared to 120 students from five traditional classes within the same schools. The 

students with the PUMP curriculum combined with the tutor scored significantly higher 

on the Iowa Algebra Aptitude test, F(2, 398) = 17.0, P <.0001, and on two author created 
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tests: the Problem Situation Test, designed to measure verbally presented situation 

problems with algebraic content, F(2, 186) = 5.3, p < .01, and the Representations Test, 

designed to test students' ability to translate various forms of algebraic representation, 

F(2, 183) = 13.4, p < .0001. The two author-created tests were made to assess NCTM 

recommended algebra skills and concepts (Koedinger et aI., 1997). Students in the 

control condition averaged 52% (SD=19%) on the Iowa Algebra Aptitude test, 39% 

(SD=33%) on the Problem Situation test, and 37% (SD=32%) on the Representations 

Test, compared to the control group's 46% (SD=17%), 22% (SD=22%), and 15% 

(SD= 18%), respectively. 

Algebra Research in Elementary Grades 

The algebra programs in middle school have shown positive effects, but were 

never fully expanded to investigate students' algebra knowledge before 6th grade. Few 

research projects or programs have attempted to teach algebra in grades earlier that 6th
. 

There is less evidence demonstrating the impact of students' learning algebra in 

elementary grades. Studies that have been performed around elementary algebra were 

discussed above (see Algebra Can Help Structure Students' Mathematics Knowledge). 

Most of those studies were performed in one class or a handful of classes. Many only 

provided qualitative evidence of findings. Most of the studies focused on evidence of 

student's learning and using algebra in elementary grades. They did not fully explore the 

impact that knowing algebra in these grades can have on later learning. 

For example, Suh and Moyer (2007) showed that students in elementary school 

can learn and improve on formal algebraic problems using representational thinking. 

Their study included two groups of 3rd grade students. The students performed a one 
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week unit around representing relational thinking using algebra. Some students 

performed the unit using physical manipulatives and some performed the unit with a 

virtual program. Students explored how to create algebraic models of problems to 

informally represent how they were thinking about the problems. For example, students 

would place a random amount of cubes on two sides of a balance and use an 'unknown' 

pawn piece to represent the amount that was needed to balance the equation. Students 

could then use manipulatives to reason how many blocks the pawn represented. They 

would also translate the physical amounts into a numeric representation and attempt to 

solve the problems with equations. Additionally, they would attempt to verbally state the 

concepts and problem strategies. The problems also included multiplication and required 

complex balancing with different sized weights. An example problem with multiplication 

was '4x+5=x+8'. 

After completing the unit, students showed significant gains on an algebraic 

assessment. The assessment contained eighteen items including pictorial, symbolic, and 

word problems. Both the physical manipulatives and virtual groups demonstrated 

significant gains. Students also showed gains in representational fluency using 

manipulatives and symbols. Both groups demonstrated problem solving strategies that 

included pictorial representations to illustrate the problem. Both groups were also able to 

translate these representations into algebraic notation when solving problems. This study 

demonstrated that students as early as 3rd grade can learn to represent quantities and solve 

for unknowns using algebraic representation and relational thinking. It also demonstrates 

that these students can use this knowledge to improve performance on formal algebraic 

problems. It is also of note that the improvement occurred in only one week. 
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Further research around algebra in elementary grades has support from many 

educators, policy makers, and researchers alike, but researchers such as Mason (2008) 

have cautioned that showing an overall impact of early algebra may be difficult. Mason 

(2008) discusses how the difficulty in garnering evidence around the impact of algebra 

has to do with the nature of algebra itself. He states that "the difficulty with demanding 

evidence is that expressing generalities is not a strategy to be used and tested, but a 

holistic approach to mathematics" (p. 86). Nonetheless some studies have attempted to 

show how early algebra can impact students mathematics performance. 

One study that demonstrated the impact of early algebra knowledge was 

performed by Kaput and Blanton (2001). Kaput and Blanton (2001) performed a three

year study in one district that was taking steps toward integrating algebra earlier in 

education. The district was underachieving and had a large percentage of students with 

low socioeconomic status (SES) (Kaput, 1999). In their 2001 study, they analyzed the 

impact of a professional development program, led by the authors, which focused on 

integrating their ideas about algebraic reasoning into the classroom. The authors worked 

with teachers in the district to help them understand how algebra was embedded in their 

curriculum and how they could get students thinking algebraically. Over the course of the 

year, the authors found that one ofthe three trained teachers was truly supporting 

algebraic thinking and her students showed evidence of creating generalizations (Blanton 

& Kaput, 2003). 

Kaput and Blanton (2001) tested fourteen students from this 3rd grade teacher's 

class. Her students were tested on sixteen items selected from the previous year's 4th 

grade state standardized mathematics tests, the Massachusetts Comprehensive 
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Assessment System. The items tested a variety of standards and concepts with seven 

items being algebraic in nature. The experimental group of students performed better than 

a control classroom of sixteen students on eleven of the sixteen items with four reaching 

significance (at alpha = .OS). They also outperformed the previous year's 4th grade 

students from the same district and performed equivalently to the statewide population of 

4th grade students. 

The Gap in Algebra Research 

Large scale mathematics programs have often focused on how students' mastery 

of algebra concepts benefits middle school students. These programs have shown 

success, but they have not extended their research into elementary grades. For example, 

the Algebra Project and T2 A have shown short and long term success helping teachers 

and students recognize and apply algebra concepts in 6th grade and higher. Student 

impact has been found in these grades, but only for students transitioning to high school 

or advanced algebra courses. 

No large scale studies have been done to demonstrate the longitudinal impact of 

learning fundamental algebraic concepts in early elementary education. Despite the 

strong research that has been done around demonstrating that algebra can be used in the 

elementary classroom, there is a dearth of research about the long term effects of 

knowing or learning algebra in 1 st through Sth grade. 

The Common Core State Standards in mathematics have been adopted by over 40 

of the SO states. Thus at least 40 states will be aiming to have students in 1 st grade begin 

learning and applying algebra. These students should theoretically have a stronger 

mathematics trajectory (Fosnot & Jacob, 2010; RAND Mathematics Study Panel, 2003), 
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but no research has explored this trajectory on a large scale. To generate motivation for 

teaching early algebra, research is needed around the long term impact of early algebra 

knowledge. Research demonstrating that students who know early algebra concepts have 

better learning trajectories, for algebra and overall mathematics, could gamer further 

support and excitement for the new Standards around algebra. 

Research on the long term results of the Common Core State Standards 

themselves will have to wait years. Is there a way to better understand how early algebra 

helps students now? How can researchers examine if students who understand the basics 

of algebra in early elementary school in fact have better mathematics trajectories? 

To answer these questions now, we need to use longitudinal archival data from an 

area where early algebra has already been included and assessed in all elementary grades. 

Instead of attempting to implement an expensive and time consuming reform program or 

waiting to research the impact ofthe new Standards, researchers can use pre-existing data 

to better understand if early algebra knowledge predicts long term mathematics 

performance. 

Current Study 

The goal of the current study is to use a large scale, longitudinal set of data to 

explore the impact of algebra knowledge in early elementary school on later mathematics 

knowledge. The study is taking place in one district that has included and assessed 

algebra content in elementary grades for the last five years. The district is within the state 

of Kentucky, which has had standards that address algebra concepts beginning in 1 st 

grade, as discussed above (see Table 1). The current study utilizes archival longitudinal 

data collected from this district that follows students from 1 st through 5th grade. 
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The district has collected mathematics assessments that contain algebraic items 

during each of the previous five years. They also have archived standardized test scores 

in mathematics and reading for students in 3rd through 5th grade. This study utilizes the 

archival data for longitudinal analysis. Using this archival data has some limitations, such 

as a lack of data around teaching practices that students experienced. Only student and 

school level data are archived. For example, students' scores and potential moderating 

demographic information are explored; however, teaching practices and fidelity of 

curriculum implementation are not used in analyses. 

The study explores the level of algebra knowledge students have in 1 st through 5th 

grade. It also explores if their early algebra knowledge predicts later algebra and overall 

mathematics knowledge. Analysis will determine if students who have higher knowledge 

of early algebra concepts have higher scores on algebra and overall mathematics 

assessments in later grades, including state standardized mathematics test scores and 

district created formative assessments. Analysis will also determine if students with 

higher algebra knowledge in early grades have higher rates of growth across three years 

of these assessments. 
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Thus this study is guided by the following research questions: 

1) Does students' performance on assessment items targeting algebraic thinking in 

1 st and 2nd grade predict: 

a) Performance on a mathematics state standardized assessment in 5th grade? 

b) Growth in performance on a mathematics state standardized assessment in 

3rd through 5th grade? 

c) Performance on district assessment items targeting algebraic thinking in 5th 

grade? 

d) Growth in performance on district assessment items targeting algebraic 

thinking in 3rd through 5th grade? 

e) Performance on district assessment items targeting other areas of 

mathematics in 5th grade? 

f) Growth in performance on district assessment items targeting other areas of 

mathematics in 3rd through 5th grade? 
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METHODS 

Participants 

This study occurred within one large urban Kentucky school district. Participants 

were students who have completed 1 st through 5th grade in these schools. Students were 

in 1 st grade during the 2005-2006 academic year and completed 5th grade during the 

2009-2010 academic year. Students must have attended one school within the district for 

all five years of the study. Students who moved out or entered in the middle of the study 

were not included. The exclusion was made to increase the validity of the sample and to 

eliminate issues with missing data and attrition. 

The district has had standards that address early algebra concepts beginning in the 

1 st grade (see Table 1). The district has assessed algebraic thinking and each other 

mathematics content areas in every year of the study. The district was able to provide all 

relevant test scores and demographic information (discussed below) for 1,385 students 

from 68 schools. 

The student demographic variables that were collected are gender and race (see 

Table 2). Schools' free and reduced lunch information and curriculum use were also 

collected (see Table 3). 

Gender. Gender was provided for each student as 'male' or 'female' which was dummy 

coded as '0' and' l' respectively. 

Race. Race was provided for each student as 'Asian-American/Pacific Islander', 
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·African-American', 'Caucasian', 'Hispanic', 'Native American/Alaskan Native', or 

'Other/Unknown' (see Table 2). 

Table 2 

Student Demographics 

Demographic 

Male 
Female 

Asian-American/Pacific Islander 
African-American 
Caucasian 
Hispanic 
Native American/Alaskan Native 
OtherlUnknown 

Number of Students Percentage 

683 49.3% 
702 50.7% 

29 2.1% 
466 33.6% 
701 50.6% 
75 5.4% 
1 0.1% 

113 8.2% 

Free and reduced lunch (FRL) status. The National School Lunch Program provides 

free and reduced cost lunches to eligible students (United States Department of 

Agriculture, 2009). Since eligibility is determined by family income, free and reduced 

lunch information is often used as a measure for students' or schools' socioeconomic 

status. This data was not available at the student level due to district confidentiality 

reasons, so publicly available school level data was used (United States Department of 

Agriculture, 2011). The percent of students in each school that received free and reduced 

lunch was used as a school level variable. 

Table 3 

Percentage of Students Receiving Free and Reduced Lunch 

Schools Mean S.D. Minimum Maximum 
68 58.6% 25.2% 12.0% 95.0% 

Curriculum use. This study considered the impact of curriculum on student outcomes. 
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The majority of the 68 schools used the Investigations in Numbers, Data, and Space® 

curriculum (n=37) exclusively over the last five years. This information was confirmed 

by the district and by the principal or head of the math department in each school. 

Investigations in Numbers, Data, and Space is a "complete K-5 mathematics curriculum, 

developed at TERC in Cambridge, Massachusetts. It is designed to help all children 

understand fundamental ideas of number and operations, geometry, data, measurement 

and early algebra" (TERC, 2007). The concepts and content area progressions are parallel 

to the state standards followed by the district. Using this curriculum may have an 

additional benefit for students when learning or applying early algebra. 

The other 31 school used one of the following: Investigations blended with 

another curriculum; one other curriculum only; or a blend of other curricula. Other 

curricula used were: Everyday Mathematics; Math Trailblazers; Harcourt; Houghton 

Mifflin; Scott Foresman; and McGraw Hill. Thus a dummy variable was created to 

compare schools who used the Investigations curriculum only, coded as '1', compared to 

schools who used other, multiple, or varied curricula, coded as '0'. 

Exclusion criteria. This study did not include schools that primarily serve students who 

are classified as ELL or have an IEP. Ideally, this study would include all students, but 

being exploratory in nature, the range of participants was limited. These variables could 

allow for an interesting follow-up study that would be specific to ELL and IEP 

populations. Twenty-three schools were also excluded because they did not collect and 

report to the district all measures used in the study. 

Measures 

Kentucky Core Content Test. The Kentucky Core Content Test (KCCT) is the largest 
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portion of Kentucky's Commonwealth Accountability Testing System (CATS). KCCT 

assesses student mastery of the state's core content, as well as higher order thinking and 

communication skills. The KCCT consists of open response items and multiple choice 

questions. This assessment is given in April to all students in 3rd through Sth grade and 

10th and 11 th grade. The assessment has separate sections for reading, mathematics, 

science, social studies, arts and humanities and practicallivinglvocational studies. Each 

section is administered independently to students. 

The KCCT results are reported as an overall score as well as a performance level 

for students in the following order: novice low; novice medium; novice high; apprentice 

low; apprentice medium; apprentice high; proficient; and distinguished (Kentucky 

Department of Education, 2004). The mathematics section of KCCT is designed to reflect 

the mathematical content areas in the current Core Content for Assessment guide, which 

is based around the same five core principles as the CCA: number properties and 

operations, measurement, geometry, data analysis and probability, and algebraic thinking 

(Kentucky Department of Education, 200Sa; 200Sb; 2009). The percentage of items that 

focus on each of these five domains varies slightly across grade levels and is shown in 

Table 4 (Kentucky Department of Education, 2010). 

Table 4 

Percentage of KCCT Items for Each Content Area 

Content Area Grade Level 
3ro 4t6 5t6 

Number Properties and Operations 40% 40% 40% 
Measurement 10% 10% 10% 
Geometry 25% 20% 20% 
Data Analysis and Probability 10% 15% 15% 
Algebraic Thinking 15% 15% 15% 
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Due to state level archiving procedures, only overall scores for this assessment are 

available and not item or content level scores. Variables created from this assessment 

include: 

KCCT mathematics ability. This is a measure of students' knowledge of early 

mathematics across all five content areas using the overall score on the KCCT. This 

variable was created for each student for 3rd
, 4th

, and 5th grade. 

KCCT reading ability. This is a measure of students' reading ability using the overall 

reading score on the KCCT. The reading section of KCCT is designed to reflect the 

reading standards in the current Core Content for Assessment guide, which is based 

around five core principles areas: forming a foundation for reading, developing an initial 

understanding, interpreting text, reflecting and responding to text, and demonstrating a 

critical stance (Kentucky Department of Education, 2006). This variable was created for 

each student for 3rd
, 4t

\ and 5th grade. 

The scores reported out to students on these assessments are only categorical and 

range from 'novice' to 'distinguished'. These KCCT categories are based on a nationally 

normed continuous scale that ranges from 325 to 800. From the nationally normed data, a 

scale is created called the "Kentucky metric" that transform Kentucky students' data into 

a scale ranging from 0 to 80 (see Sinclair, Bynum, Thacker, & Hoffinan, 2008). The 

Kentucky Department of Education uses the Kentucky metric to create cutoff scores for 

its eight categories into which students can fall. For the current study, the district was 

able to provide to Kentucky metric score for each student on each assessment (descriptive 

statistics are shown in Table 9). 

Core Content Assessments. Core Content Assessments (CCA) are a tool used by the 
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district to monitor schools' progress in keeping students' learning trajectories in line with 

the state standards. The CCA are formative assessments used to help schools and teachers 

track students' progress throughout the year. They were created when the state 

recommended that districts track student performance in the same areas tested by KCCT. 

Instead of assessing students once a year starting in 3 rd grade, these assessments start in 

1 st grade and occur several times throughout each year. They were created as part of a 

school improvement plan where principles have to set goals and show student progress 

on standards. Schools are not mandated to implement the CCA, but can find other ways 

to demonstrate and report on student's progress; however, the CCAs are encouraged by 

the superintendent and the majority of the schools have used CCA regularly since they 

were created. 

For mathematics testing, the district supports schools and teachers choosing to 

implement the CCA by creating and providing full assessments and an open bank of 

items that can be used by teachers. Teachers can use the premade assessments, the item 

bank, work with district specialists, or create items on their own to assess students' 

progress on the standards. During the first two years of the study when the CCA were 

newer, teachers used predominantly the district premade assessments. During the first 

year, 85.5% of the items used came from district premade assessments, and 90.9% during 

the second year. During the 3rd
, 4th

, and 5th year of the study, teachers implemented a 

similar amount of district premade assessments, but also administered many additional 

assessments. Thus the percent of items from district premade assessments was lower in 

these grades (73.3%, 39.6%, and 55.0%, respectively). 

In the current study, district premade assessments and teacher created assessments 
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were included. District premade assessments were included since the majority of students 

received these assessments and they were created by district specialists to target the 

standards on which the students were supposed to be progressing. The teacher created 

assessments were also included since these may have been an even better gauge of 

students' knowledge around the concepts they were currently learning. Researchers such 

as Stiggins and Marzano have thoroughly explained how teacher created informal 

assessments can be accurately used to gauge students' current knowledge around specific 

topics (Stiggins, Arter, Chappuis, & Chappuis, 2009; Stiggins, 2005; Marzano, 2006). 

These assessments are more likely to match the exact content that students have been 

learning since all classrooms and students do not progress at the same pace. Teachers can 

also use these assessments for instant feedback on their teaching to identify on which 

concepts the students need more work (see Stiggins et aI., 2009). Thus both forms of 

CCA were used to have the most inclusive and accurate data on each student. 

Core Content Assessments for mathematics consist of a blend of multiple choice 

and open response questions. The open ended questions are composed of multiple 

components and designed so students can score up to 4 points. Thus students' scores 

range from 0 to 4 on these items. Multiple choice items are worth 1 point for a correct 

response and 0 for an incorrect response. Thus the open ended responses are weighted 

more heavily, but the majority of items given to students are multiple choice (see Table 

5). 
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Table 5 

Types of CCA Items 

Grade Multiple Choice Items Open Ended Items 
1 st 79.6% 20.4% 
2nd 81.1% 18.9% 
3rd 82.3% 17.7% 
4th 84.6% 15.4% 
5th 84.7% 15.3% 

Each question is designed to target specific standards. When the item and answer 

are reported, teachers must select the exact standard that the item was created to assess. 

The targeted standard for each item is reported along with each student's answer. With 

this reporting system, the mathematics CCAs can specifically reflect progress on the 

mathematical concepts in the state's Core Content for Assessment Guide for each grade 

(Kentucky Department of Education, 2008b; 2009). For example, the tests in 1st through 

5th grade are comprised of questions from the five core principles, or big ideas, found in 

the mathematics Core Content for Assessment Guide for primary grades: number 

properties and operations, measurement, geometry, analysis and probability, and 

algebraic thinking. The percentages of total items given to students that targeted 

standards in each mathematics content area are shown in Table 6. 
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Table 6 

Percentage ofCCA Mathematics Items Targeting Each Content Area 

Average Number Data 
Items Properties Analysis 
per and Measure- and Algebraic 

Grade Items Student OJ2erations ment Geometry Probability Thinking 
15t 25,412 18.3 48.5% 11.6% 25.5% 9.8% 4.6% 
2nd 52,465 37.9 51.4% 13.5% 12.7% 12.1% 10.4% 
3rd 49,764 35.9 57.6% 8.2% 13.5% 6.1% 14.6% 
4th 50,430 36.4 54.4% 11.7% 13.4% 14.3% 6.3% 
5th 42,131 30.4 63.9% 9.8% 17.4% 5.5% 3.4% 

Items also receive more specific labels of components within each content area. 

These components, including those within algebraic thinking, also reflect the state's Core 

Content for Assessment guide (Kentucky Department of Education, 2008b; 2009). There 

are three components of algebra thinking: patterns, relations and functions; variables, 

expressions and operations; and equations and inequalities. Table 7 shows the percentage 

of algebraic thinking items that teachers used that correspond to each component. 

Appendix A also shows the breakdown into components of the other mathematics content 

areas. 

Table 7 

Percentage ofCCA Algebraic Thinking Items Targeting Each Component of Algebra 

Patterns, Relations Variables, Expressions Equations and 
Grade and Functions and Operations Inequalities 
15t 97.1% 0.0% 2.9% 
2nd 79.1% 0.0% 20.9% 
3rd 77.6% 0.1% 22.4% 
4th 80.5% 2.0% 17.5% 
5th 61.7% 21.8% 16.5% 

Scores for the CCAs are available on an item level. Thus overall scores for each 
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assessment were computed, as well as scores for each of the big ideas, or content areas, 

being targeted, including algebraic thinking. Students' scores in each area were computed 

using the total points earned divided by the total possible points. This provided a percent 

correct for each assessment and content area. These scores were calculated separately for 

each grade. The exception was 1 st and 2nd grade, which were combined for practical and 

statistical reason described in Data Selection and Compilation below. Thus each 

knowledge score for CCAs will range between 0% and 100%. Descriptive statistics are 

provided in Table 8 and Table 9. 

Thus the variables produced from the CCA were: 

CCA algebraic thinking knowledge. This is a measure of students' knowledge of early 

algebra created by using the items that target algebra standards on the CCA. 

CCA general mathematics knowledge. This is a measure of students' knowledge of early 

mathematics outside the algebra content area created by using the rest of the items on the 

CCA. This composite score was also broken into its components: 

CCA number properties and operations knowledge. Knowledge of this content 

area created by using the items that target the corresponding standards on the 

CCA. 

CCA data analysis and probability knowledge. Knowledge of this content area 

created by using the items that target corresponding standards on the CCA. 

CCA measurement knowledge. Knowledge of this content area created by using 

the items that target corresponding standards on the CCA. 

CCA geometry knowledge. Knowledge of this content area created by using the 

items that target corresponding standards on the CCA. 
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Procedures 

Data selection and compilation. The participating district had previously collected all 

data used in the study. The researcher worked with the district to identify what pieces of 

data were needed for the study and to detennine what was available and accessible to use. 

The district was able to provide the overall KCCT scores, student demographic and 

school infonnation, and item level data for the CCA. The district initially emailed the 

data to the researcher in the fonn of excel files using coded student and school ID 

numbers for confidentiality. One file contained all the KCCT data for all students, 3rd 

through 5th grade. For the CCA, one excel file was sent for each grade that contained one 

line for every CCA item that was administered. Each line identified the student, the 

school, the student's grade level, the student's gender, the student's race, they type of 

question (multiple choice or open ended), the targeted standard, and the student's score 

on the item. 

The researcher was responsible for cleaning and compiling all data into one 

cohesive dataset. Once datasets were built that contained all of the data for each student 

as it was provided by the district, the researcher had to compile item level CCA 

infonnation and scores into grade level infonnation and scores. For example, to compute 

students' CCA algebraic thinking knowledge for a grade, the researcher computed points 

earned across all algebraic thinking items that year and divided it by total points possible 

on those items. The researcher perfonned these calculations for each content area in each 

grade and calculated the CCA general mathematics knowledge score, as described above. 

The researcher also compiled summative infonnation on how many items in each grade 

level were given to each student. The researcher then checked frequencies and 
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distributions on the data to ensure there were no outliers or significant skewing and 

kurtosis. Appropriate data cleaning was then perfonned. 

After preliminary analysis, data from 1 st and 2nd grade were merged to fonn 

knowledge variables for these early grades. Data in 1 st grade was much more limited in 

amount and variation among standards. For example, in the 1 st grade, the CCA algebraic 

thinking knowledge items consist of almost entirely patterns, relations, and functions 

(>97%; see Table 7). Students in 1 st grade only had, on average, half as many items 

administered compared to the other grades (see Table 6). These differences were in part 

due to the newness of the CCA during that year. If the CCAs are being used in slightly 

different manners in these grades, looking at growth from 1 st to 2nd grade would not be as 

meaningful as overall knowledge of the standards being assessed across the two grades. 

Another reason 1 st and 2nd grade scores were combined is that the KCCT are given in 3rd
, 

4th, and 5th grade. This may have contributed to spike in teacher created assessments 

during these years. It also means that teachers may view the purpose of the CCA 

assessments differently these years. They may have seen them as preparation for the 

KCCT. This led to the decision that 1 st and 2nd grade should be treated separately from 

the other grades as a predictor of growth within those grades (3 rd through 5th grade). 

Data Analysis 

Five years of student data were analyzed. Students were in the 1st grade during the 

first year of the study and had data collected through the 5th grade. Descriptive analyses 

were perfonned to detennine the means and standard deviations of each student variable 

in the study. These analyses revealed baseline data on how well students perfonned on 

algebra and other sections of each assessment in each grade and the variation within their 
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performance. Analyses were also performed around demographic and other student level 

variables to reveal contextual trends across the mathematics scores within the district. 

Students' mathematics scores were compared against their race and gender using 

analyses of variance. Their mathematics scores were also compared to their KCCT 

reading ability and schools' percentage of free and reduced lunch status using correlation 

analyses to see if the variables were related. 

The subsequent analyses were geared directly towards answering the research 

questions, as stated above: 

1) Does students' performance on assessment items targeting algebraic thinking in 

15t and 2nd grade predict: 

a) Performance on a mathematics state standardized assessment in 5th grade? 

b) Growth in performance on a mathematics state standardized assessment in 

3rd through 5th grade? 

c) Performance on district assessment items targeting algebraic thinking in 5th 

grade? 

d) Growth in performance on district assessment items targeting algebraic 

thinking in 3rd through 5th grade? 

e) Performance on district assessment items targeting other areas of 

mathematics in 5th grade? 

f) Growth in performance on district assessment items targeting other areas of 

mathematics in 3rd through 5th grade? 

Hierarchical linear modeling (HLM). Hierarchical linear modeling (HLM) was chosen 

as the primary means for analysis to answer the above research questions. HLM was 
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created to test models with nested data. In the current study, students were nested within 

school. This means that average students' scores and trajectories were expected to vary 

across the range of schools due to school factors such as leadership, emphasized teaching 

styles and practices, and characteristics associated with socioeconomic status, such as 

resources and community factors in which the school is located (Sameroff, Bartko, 

Baldwin, & Seifer, 1998; Caldas & Bankston, 1997; Greenwald & Hedges; 1996). 

Hierarchical linear modeling can also have advantages for addressing missing 

data in longitudinal analyses. HLM uses an estimation-maximization algorithm (Little & 

Rubin, 2002; Raudenbush & Bryk, 2002) to estimate missing data points on the outcome 

level in longitudinal analysis to create the best fitting points and slope considering the 

within and between subject variance around missing data (Snijders, 1996). 

Hierarchical linear modeling can be used to perform longitudinal modeling, which 

was necessary for the current study. Hierarchical linear modeling was performed to 

analyze the relationship of students' CCA algebraic thinking knowledge in 1 st and 2nd 

grade to their KCCT mathematics ability, CCA algebraic thinking knowledge, and CCA 

general mathematics knowledge in 5th grade and their growth from 3rd through 5th grade. 

In longitudinal models such as those in the current study, hierarchical linear modeling 

provides coefficients that reveal which predictors are significantly related to students 

performance at one point in time (intercept of the model) and which are significantly 

related to students rate of learning over time (slope of the model). The current study will 

determine if students algebra knowledge in 1 st and 2nd grade significantly predicts both 

students performance in 5th grade (intercept) as well as growth in learning from 3rd 

through 5th grade (slope). 
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HLM model 1. The first hierarchical linear model analyzed how students' CCA algebraic 

thinking knowledge in 1 st and 2nd grade predicted students' KCCT mathematics ability in 

5th grade (intercept) and growth in KCCT mathematics ability across 3rd through 5th grade 

(slope). The HLM was longitudinal and included three levels. 

Level 1 of the HLM model was longitudinal including students' KCCT 

mathematics ability scores in 3rd through 5th grade as the outcome measure. To analyze 

changes in these scores over time, a 'time' variable was created that marked whether each 

student's score was from 3rd
, 4

th
, or 5th grade. This time variable was also formatted so 

the prediction line had an intercept that represented students' 5th grade score. The time 

variable labeled 3rd grade scores as '-2', 4th grade scores as '-1', and 5th grade scores as 

'0'. Thus the intercept was students' predicted score at time '0', or in the 5th grade. The 

slope, or change over time, predicted students' change in mathematics knowledge from 

3rd through 5th grade. 

Level 2 of the HLM model included student-level information. This level 

included students' gender, race, KCCT 3rd grade reading ability, and all CCA knowledge 

scores from 1 st and 2nd grade. Students' CCA knowledge scores included their score for 

algebraic thinking and general mathematics knowledge. Students' knowledge scores for 

each content area within general mathematics knowledge (number properties and 

operations, data analysis and probability, measurement, and geometry) were also 

included for post-hoc analysis. 

Level 3 of the HLM model accounted for students' being nested within school. 

This level included which school students attended to account for school level variance. It 

also included the schools' percentage of students receiving free and reduced lunch (FRL), 
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to control for schools' differences due to their populations' socioeconomic status. Level 3 

also included the schools' curriculum information, as discussed above, to check for 

potential differences in student performance for schools that used Investigations in 

Number, Data, and Space. The effect the school level variables were explored on the 

outcome variables in l~vel 1. The impact of level 2 variables were not predicted to be 

dependent on school context. Thus the included school level variables were only included 

in predicting students' outcome, on both their trajectory and intercept (5 th grade scores), 

and were not used for interaction effects. 

The strongest predictors for both the slope and the intercept of the model were 

predicted to be students' CCA general mathematics knowledge and KCCT reading 

ability. Students with initial strong mathematics knowledge were predicted to stay strong 

and to grow across each grade. Students who showed higher academic ability through 

their reading score should have strong mathematics knowledge and growth. Student 

gender and school level curriculum were predicted to have little to no effect, but were 

explored against the slope and intercept ofthe model. School level SES (FRL) was 

predicted to have a negative effect. Schools with a higher percentage of free and reduced 

lunch students were predicted to be lower performing and have lower trajectories in 

KCCT mathematics ability. 

Students' CCA algebraic thinking knowledge was predicted to be a positive 

predictor for both intercept and slope in this model. Even after controlling for CCA 

general mathematics knowledge and KCCT reading ability, students' early CCA 

algebraic thinking knowledge was hypothesized to predict students' growth in KCCT 

mathematic ability across 3rd through 5th grade and to predict higher scores in 5th grade. 
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HLM model 2. The second HLM model analyzed how students' CCA algebraic thinking 

knowledge in 1 st and 2nd grade predicted students' CCA algebraic thinking knowledge in 

5th grade (intercept) and growth in CCA algebraic thinking knowledge across 3rd through 

5th grade (slope). 

The hierarchical linear model was again longitudinal and included three levels. 

With one exception, all variables were identical to HLM model 1. The only difference 

was the outcome variable. Instead of students' KCCT mathematics ability in 3rd through 

5th grade, CCA algebraic thinking knowledge was used. 

Students' CCA general mathematics knowledge and their KCCT reading ability 

were hypothesized to be significant predictors for both the slope and the intercept of the 

model. Students with initial strong CCA algebraic thinking knowledge and CCA general 

mathematics knowledge were predicted to stay strong and to grow across each grade. 

Students who showed higher academic ability through their KCCT reading ability should 

also have strong CCA algebraic thinking knowledge and growth. Student gender and 

school level curriculum were predicted to have little to no effect, but were explored 

against the slope and intercept of the model. School level SES was predicted to have a 

negative effect. Schools with a higher percentage of free and reduced lunch students were 

predicted to be lower performing and have lower trajectories in CCA algebraic thinking 

knowledge. 

Students' CCA algebraic thinking knowledge was hypothesized to be a positive 

predictor for both intercept and slope in this model. Even after controlling for CCA 

general mathematics knowledge and KCCT reading ability, students' early CCA 

algebraic thinking knowledge was predicted to help students learn higher level algebra 
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concepts across 3rd through 5th grade. 

HLM model 3. The last HLM model analyzed how students' CCA algebraic thinking 

knowledge in 1 st and 2nd grade predicted students' CCA general mathematics knowledge 

in 5th grade (intercept) and growth in CCA general mathematics knowledge across 3rd 

through 5th grade (slope). 

The hierarchical linear model was again longitudinal and included three levels. 

With one exception, all variables were identical to HLM model 1. The only difference 

was the outcome variable. Instead of students' KCCT mathematics ability scores in 3rd 

through 5th grade, students' CCA general knowledge scores were used. 

When analyzing students' later CCA general mathematics knowledge, the 

strongest predictors for both the slope and the intercept of the model were predicted to be 

students' early CCA general mathematics knowledge and their KCCT reading ability. 

Students with initial strong mathematics knowledge were predicted to stay strong and to 

grow across each grade. Students who showed higher academic ability through their 

reading scores should also have strong mathematics knowledge and growth. Student 

gender and school level curriculum were predicted to have little to no effect, but were 

explored against the slope and intercept of the model. School level FRL was predicted to 

have a negative effect. Schools with a higher percentage of free and reduced lunch 

students were predicted to be lower performing and have lower trajectories in CCA 

general mathematics knowledge. 

Students' CCA algebraic thinking knowledge was predicted to be a positive 

predictor for both intercept and slope in this model. Even after controlling for CCA 

general mathematics knowledge and KCCT reading ability, students' CCA algebraic 
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thinking knowledge was predicted to boost students' growth in CCA general mathematics 

knowledge across 3rd through 5th grade and to predict higher scores in 5th grade. 

HLM analysis. The first step to analyzing these models was to determine the intraclass 

correlation of the null model, or unconditional model. The null model was a model that 

only includes the outcome, or levell, variables and the student- and school level 

identifiers. The intraclass correlation "is the proportion of variation that is between 

groups" (Scientific Software International, 2010b, p. 1). In this analysis, the null model 

showed the proportion of variation in the outcome variables that was accounted for by the 

level of nesting, in this case the school level. This intraclass correlation was calculated 

after retrieving the sigma squared and the tau coefficient from the null model. In the null 

model, sigma squared (()2) was the total variance in outcomes within schools that can be 

explained by the level 1 variables while tau (too) was the total explainable variation at the 

school level. Intraclass correlation was then calculated using the equation too / (too + ()2). 

If the school level variability was greater than 5%, then HLM analysis was warranted 

(Scientific Software International, 2010a). 

If HLM was warranted, the next step was to determine which variables removed 

deviance from the null model. The deviance "can be regarded as a measure of lack of fit 

between model and data. In general, the larger the deviance, the poorer the fit to the 

data." (Scientific Software International, 2010b, p. 1). In order to have the most robust 

and accurate model to explain your outcome, variables that do not alleviate deviance in 

the model can be considered superfluous and can be excluded from the final model 

(Scientific Software International, 201 Ob; McCoach & Black, 2008). Once level 2 and 

level 3 variables were checked for eliminating deviance, the final models were 
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determined, run, and interpreted. Each model contained an intercept and a slope. Analysis 

of the intercept demonstrated which variables significant predicted students' scores on 

the included outcome measure in 5th grade. Analysis of the slope demonstrated which 

variables significant predicted students' rate of growth on the included outcome measure 

in 5th grade. Both analyses were of interest to determine if algebra could support students' 

longitudinal performance and well as their rate of growth across time. 

Attrition. Due to the archival nature of the study, attrition was controlled by only 

including students who have attended one school within the district for all five years of 

the study. Students who moved out or entered the district in the middle years of the study 

were not included. This was to increase the validity of the sample and to eliminate issues 

normally associated with missing data and attrition. 

Missing data. The problems created by missing data were accounted for in two ways in 

this study. First, CCA scores were aggregated for each overall year, and early grades (1 st 

and 2nd
) were aggregated together. This allows for students who had not completed the 

same amount of CCA to still have a valid average using the assessments they have taken. 

However, students needed to have all level 2 data, which included CCA assessments that 

consisted of items on each of the five mathematics content areas across 1 st and 2nd grade. 

Second, hierarchical linear modeling (HLM) also helped to account for missing outcome 

level data, as described above. 

Power analysis. The study had 68 schools participate with an average student sample of 

20 students. The power analysis on this population used a clustered (by school) and 

longitudinal design. To estimate power, Optimal Design was used to calculate the 

minimal detectable effect size based on our model and population. Under the clustered 
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repeated measures setting of Optimal Design, the parameters were set to the minimum 

detectable effect size (MDES) assuming a two-tailed test (alpha = .05) and power at 0.80. 

The MDES estimates ranged from 0.22 when the lCC=0.05 to 0.26 when the 

estimated ICC is increased to 0.10 (see Figure 1). Using Cohen's (1988) commonly 

applied criteria, these numbers suggested that the study was powered to detect small to 

medium effects while being calculated conservatively. A two-tailed alpha was used when 

predictions indicate an increase in student performance. These power calculations 

suggested that the study was sufficiently powered for its intended purpose. 

a = 0.1)50 

-J= 68.n=20 . .,= 0 05 

- - J= 68,n=20,.,= 0.10 

Figure 1. Estimating MDES through a power versus effect size analysis. 
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RESULTS 

Before addressing the main research questions, descriptive analyses were 

completed to show how students performed on each measure. Students showed a wide 

range of knowledge and ability in each mathematics content area from 1 st through 5th 

grade (see Tables 8 and 9). 

Table 8 

Students' Mean Performance across rt and 2nd Grade 

Core Content Assessments 
Mean S.D. 

Algebraic Thinking 77.93% 25.72% 

General Mathematics 76.45% 16.33% 
Number Properties and Operations 71.80% 18.40% 
Measurement 73.14% 26.07% 
Geometry 85.57% 16.61% 
Data Analysis and Probability 76.64% 22.49% 
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Table 9 

Students' Mean Performance in 3rd
, lh, and 5th Grade 

3ro Grade 4tli Grade stli Grade 
Kentucky Core Content Test 

Mean S.D. Mean S.D. Mean S.D. 
Mathematics 54.65 21.85 52.21 22.11 48.29 22.66 
Reading 51.73 19.55 50.36 19.78 50.06 19.31 

Core Content Assessments 
Mean S.D. Mean S.D. Mean S.D. 

Algebraic Thinking 71.83% 24.11% 74.82% 28.17% 66.92% 38.02% 

General Mathematics 73.93% 17.50% 64.01% 20.97% 68.46% 19.53% 
Number Properties and 

72.37% 18.17% 67.09% 19.70% 71.29% 18.57% 
Operations 
Measurement 81.22% 25.12% 61.34% 28.03% 68.78% 26.56% 
Geometry 77.31% 22.24% 64.62% 33.38% 65.96% 29.23% 
Data Analysis and Probability 66.16% 26.05% 62.29% 24.37% 70.37% 34.04% 

Demographic Analyses 

Before addressing the main research questions, analyses were performed around 

the demographic variables that the district was able to provide. These demographic 

analyses added important contextual information about the mathematics scores within the 

district. 

Gender. Multivariate analysis of variance demonstrated that there was not an overall 

significant difference in mathematics knowledge between males and females in this study 

at p < .05. Multivariate analyses were performed using outcomes measures from each 

grade (CCA algebra knowledge; CCA general mathematics knowledge; KCCT 

mathematics ability). Even though no overall differences were found, exploratory 

univariate analyses were performed and also found no differences among gender on any 

outcome measure in any grade (see Appendix B). Other gender differences, such as males 
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having wider variances in score by being clustered towards the top and bottom, may still 

exist; however, for the current study only differences in means were analyzed. Since the 

means were comparable on all measures, gender was not expected to have an effect in the 

larger HLM models. 

Race. Multivariate analysis of variance demonstrated significant differences between 

races in mathematics scores, Hotelling's Trace (11,159) = 125.48, p < .001. The mean 

scores for Caucasian and Asian-American students were higher on nearly every 

assessment (see Appendix B). This was consistent with previous research (e.g. 

Themstrom & Themstrom, 2004; Lee, 2002; Stiefel, Schwartz, & Ellen, 2006). For 

example, Themstrom and Themstrom (2004) carefully outlined the achievement gap that 

is seen when comparing Caucasian and Asian-American students to their African

American and Hispanic counterparts on standardized test data, such as the National 

Assessment of Educational Progress (NAEP). 

Follow-up univariate analyses of variance showed that the gap discussed by 

Themstrom and Themstrom existed in the current sample of students. Univariate analyses 

of variance showed that the four races differed on every outcome measure except CCA 

algebraic thinking knowledge in 5th grade (see Appendix B). The other/unknown race 

category was not included in these analyses due to its ambiguity and the Native 

American/Alaskan Native group was not included due its sample size of 1. 

Additionally, t-tests were performed that compared the two groups representing 

the achievement gap (Caucasian and Asian-American students compared to Hispanic and 

African-American students) to verify that this gap was attributing to the variation due to 

race. These two groups showed differences on every outcome measure except CCA 

81 



algebraic thinking knowledge in 5th grade (see Appendix B). This raCial gap was then 

predicted to have an effect in the larger HLM models. Thus the HLM models described 

below included a race variable to account for the effect of being a race other than 

Caucasian or Asian-American. 

Reading. KCCT reading ability was correlated to student's mathematics scores. With the 

exception of students' CCA algebraic thinking knowledge in 5th grade, students' KCCT 

reading ability in each grade was significantly correlated to every mathematics outcome 

measure (see Appendix B). Students' scores in each grade were also found to be highly 

intercorrelated, with correlations ranging from. 70 to .76 (p<.OO 1). 

Overall, these analyses provided validity to using reading as a control for 

intelligence or overall academic ability, since no other such measures was available from 

the district. This analysis indicated that KCCT reading ability should act a significant 

positive predictor in the larger HLM models. The high level of intercorrelation also 

indicated that reading could be inserted as a single measure in level 2. Thus 3rd grade 

ability was selected. Using only 3rd grade ability also alleviated any potential problems 

with power since additional level 1 repeated measures variables creates more complex 

models. 

Free and Reduced Lunch Status. Schools' percentage of students receiving free and 

reduced lunch (FRL) had a strong negative correlation to students' mathematics ability. 

With the exception of students' CCA algebraic thinking knowledge in 5th grade, FRL was 

significantly correlated to every mathematics outcome measure (see Appendix B). This 

analysis provided validity to using school level controls for demographic data when 

student level information was not available. This analysis also indicated that FRL should 
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act a significant negative predictor in the larger HLM models. 

HLMModeil 

The first HLM model analyzed how students' CCA algebraic thinking knowledge 

in 1st and 2nd grade predicted students' KCCT mathematics ability in 5th grade and growth 

in KCCT mathematics ability across 3rd through 5th grade. 

This analysis aimed to answer a) and b) ofthe research questions: 

I) Does students' performance on assessment items targeting algebraic thinking in 

I st and 2nd grade predict: 

a) Performance on a mathematics state standardized assessment in 5th grade? 

b) Growth in performance on a mathematics state standardized assessment in 

3rd through 5th grade? 

Effect of Nesting. The first step to analyzing these questions was to determine ifthere 

was sufficient nesting to warrant hierarchical linear modeling. To determine this, 

intraclass correlations were calculated, using the null model. The intraclass correlation 

showed the proportion of variance within the level of nesting, in this case the school 

level. The null model, shown below, was comprised of only the outcome variables along 

with student and school identifiers. The predicted intercept was represented as 1[0. The 

time variable, or 1[1, was also included which represented the predicted slope of students' 

growth in mathematics knowledge. The superscripts in the model indicated which grade 

levels were included in the variable. 
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HLM model 1: N uIl model 

Levell: 

KCCT mathematics knowledge345 
= 1[0 + 1[/(time) + e 

Level 2: 

1[0 = ~oo + ro 

Level 3: 

~oo = 'Y 000 + 1100 

~IO = 'YIOO + UIO 

In this model, intrac1ass correlations (lCC) were calculated for both Levelland Level 2. 

The intrac1ass correlations for each level were calculated as shown in Table 10. 

Table 10 

Intraclass Correlations for HLM Model J. Level J 

'too (i ICC 
Intercept (1[0) 337.21 94.44 0.7812 
Slope (1[/) 19.83 94.44 0.1735 

Intraclass Correlations for HLM Model J, Level 2 

Intercept (~oo) 91.97 94.44 0.4934 
Slope (~IO) 7.68 94.44 0.0752 

This analysis demonstrated that the proportion of school level variance was 

sufficient to necessitate hierarchical linear modeling at both levels. Level 1 showed 

nesting for predicting students' KCCT mathematics ability in 5th grade (1[0, 78.12%) and 

for student trajectories (1[/, 17.35%). This indicated that the school in which students 
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attended had a significant influence on their predicted 5th grade score and trajectories 

from 3rd through 5th grade. HLM should be used to account for this nesting. Level 2 also 

showed nesting. School level nesting accounted for 49.34% of the amount of student to 

student variation in the intercept (~oo) and 7.52% of the variation in slope (B1O). 

Building the model. The next analyses determined which variables were appropriate to 

be included in the final HLM model. This was done by inserting one variable into the null 

model to determine if it significantly lowered the deviance. For example, gender was 

inserted into the null model (shown below). Running this model produced a deviance 

score, similar to a 'goodness of fit' score, for the model. This deviance was then 

compared to deviance of the null model. The deviance score from the model that included 

gender was not significantly lower than the deviance score for the null model (see 

Table11). This demonstrated that gender did not improve the fit ofthe model and was 

therefore superfluous and should not be included in further analyses. If the deviance score 

had been significantly lower than the null model, it would have indicated that gender 

improved model fit and should be included in further analyses. This was repeated for 

each variable shown in Table 11. 
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HLM model 1: Null model + gender 

Levell: 

KCCT mathematics knowledge345 = 1[0 + 1[1(time) + e 

Level 2: 

1[0 = ~oo + ~01 (gender) + ro 

1[1 = ~10 + ~ll (gender) + r1 

Level 3: 

~oo = Yooo + Uoo 

~Ol = YOlO 

~IO=YIOO +UIO 

~II =YIIO 

Deviance analysis, measured using X2 statistics, demonstrated that both gender 

and curriculum use did not improve the fit of the model which indicates that these 

variables were superfluous to the model (see Table 11). The deviance analysis indicated 

that students' race, KCCT reading ability, CCA algebraic thinking knowledge, CCA 

general mathematics knowledge scores, and school level free and reduced lunch 

information should be included in the final model. These variables significantly reduced 

the deviance of the null model, or improved the model fit, and were therefore appropriate 

to include in the final model (shown below). 
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Table 11 

Deviance Analyses for HLM Model 1 

Variable Conditional Model Null Model 
Added Deviance Parameters Deviance Parameters X2 df p 

Gender 33119.85 11 33121.54 9 1.69 2 ns 
Race 33033.33 11 33121.54 9 88.21 2 <.001 
Reading 32039.33 11 33121.54 9 1082.21 2 <.001 
Algebraic 

32880.95 11 33121.54 9 240.59 2 <.001 
Thinking 
General 

32270.52 11 33121.54 9 851.02 2 <.001 
Mathematics 
FRL 33070.98 2 33121.54 9 50.56 2 <.001 
Curriculum 33120.00 2 33121.54 9 1.54 2 ns 

The variables that lowered the deviance of the null model were used to create the 

final model to analyze the role that early CCA algebraic thinking knowledge played in 

KCCT mathematics ability knowledge and growth. The final model is shown below. 

Student level variables (level 2) were used to predict students intercept (no) and slope 

(n/). For example, race could be a significant predictor for students' intercept at 5th grade 

(~03) and students' growth, or slope, from 3rd to 5th grade W13). At the school level (level 

3), FRL was the only predictor. It was included in predicting the intercept (YOOI) and the 

slope (YOlO). The effect of the level 2 variables (~) was not predicted to vary based on 

school level FRL, thus FRL was not included in predicting the other level 2 coefficients. 

Superscripts in the model again indicate which grade levels were included in the 

variable. Asterisks indicate that a continuous variable had been centered for statistical 

purposes. 
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HLM model 1: Final model 

Levell: 

KCCT mathematics knowledge345 = 7to + 7t](time) + e 

Level 2: 

7to = ~oo + ~o](CCA general mathematics knowledgeI2*) + ~olKCCT 

reading ability3*) + ~03(race) + ~04(CCA algebra knowledge I2*) + ro 

7t] = ~]O + ~ll(CCA general mathematics knowledge I2*) + ~n(KCCT 

reading ability3*) + ~13(race) + ~14(CCA algebra knowledge I2*) + r] 

Level 3: 

~oo=Yooo + YooI(FRL *) +uoo 

~OI=YolO 

~02 =Y020 

~03 =Y030 

~04=Y040 

~IO = YIOO + YOIO(FRL *) + UIO 

~II =YIIO 

~12 =Y120 

~13 =Y130 

~14=YI40 
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Model 1 results. The results of HLM model 1 showed that the baseline predicted 

intercept, or students' KCCT mathematics ability in 5th grade, was 48.42 (see Table 12). 

The results showed that the predicted slope, or rate of growth in students' KCCT 

mathematics ability from 3rd through 5th grade, is -3.36. The negative slope was 

consistent with the means seen in Table 9. The negative slope indicated that compared to 

national norms, the students' scores have lowered slightly across those years, which was 

consistent with the means in Table 9. 

Students' CCA general mathematics knowledge in 1 st and 2nd grade was a 

significant predictor of students' 5th grade KCCT mathematics ability. Students with 

stronger CCA general mathematics knowledge were predicted to have higher 5th grade 

KCCT mathematics ability. Students' CCA general mathematics knowledge in 1 st and 2nd 

grade did not predict their growth on the KCCT from 3rd through 5th grade. 

Students' KCCT reading ability was a significant predictor of both KCCT 

mathematics ability in 5th grade and growth in ability from 3rd through 5th grade. Higher 

KCCT reading ability predicted higher KCCT mathematics ability in 5th grade, but 

unexpectedly predicted a slightly lower trajectory from 3rd through 5th grade. 

Students who were Caucasian or Asian-American were predicted to have a 

slightly higher score in KCCT mathematics ability in 5th grade, but did not have different 

trajectories from 3rd through 5th grade from the students of another race. 

Schools with more students receiving free and reduced lunch were predicted to 

have students with lower 5th grade KCCT mathematics ability as well as lower 

trajectories from 3rd through 5th grade. 

Students' CCA algebraic thinking knowledge in 1 st and 2nd grade was a significant 
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predictor of students' 5th grade KCCT mathematics ability. Students with stronger CCA 

algebraic thinking knowledge were predicted to have higher 5th grade KCCT mathematics 

ability. Their CCA algebraic thinking knowledge in 1 st and 2nd grade also predicted 

positive growth on the KCCT from 3rd through 5th grade. Even when including students' 

CCA general mathematics knowledge, KCCT reading ability, and demographics in the 

model, students' CCA algebraic thinking knowledge predicted both growth in KCCT 

mathematics ability across 3rd through 5th grade and higher scores in 5th grade. 

Table 12 

HLM Model 1 Coefficients 

Fixed Effect 
Intercept 
General Mathematics 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept 
General Mathematics 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept: KCCT 5th Grade Mathematics Score 
Coefficient S.E. T -ratio df p 

48.42 0.91 52.96 66 <.00 I 
46.77 3.44 13.59 1380 <.001 
8.27 1.97 4.20 1380 <.001 
0.47 0.026 17.71 1380 <.001 
-2.27 0.91 -2.49 1380 <.02 
-8.56 3.42 -2.50 66 <.02 

Slope: Trajectory from 3rd through 5th Grade 
-3.36 0.38 -8.74 66 <.001 
-0.66 1.79 -0.37 1380 ns 
2.40 1.00 2.41 1380 <.02 

-0.056 0.013 -4.07 1380 <.001 
-0.62 0.47 -1.32 1380 ns 
-4.45 1.28 -3.47 66 <.01 

Follow-up analysis explored if students' CCA knowledge in 1st and 2nd grade in 

any other mathematics content area predicted their KCCT mathematics ability in 5th 

grade or growth in ability from 3rd through 5th grade. In an expanded model, the level 2 

variable for CCA general mathematics knowledge was disaggregated into the four 

content areas used to create it (number properties and operations, measurement, 

geometry, and data analysis and probability). Students' knowledge on each content areas 
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was included as an independent predictor in level 2 along with algebraic thinking 

knowledge. 

In this expanded model, students' CCA knowledge of each of the five 

mathematics content areas was a positive predictor of students' KCCT mathematics 

ability in sth grade (see Table 13). Only the coefficient for CCA geometry knowledge did 

not reach significance. Students KCCT reading ability was still a positive predictor of sth 

grade ability. Race was still a negative predictor. Schools with a higher percentage of 

FRL students were still predicted to have lower knowledge scores. 

When analyzing students' growth in KCCT mathematics ability, algebraic 

thinking knowledge was the only content area that predicted positive growth. Students 

with stronger CCA algebraic thinking knowledge were predicted to have higher growth in 

KCCT mathematics ability from 3rd through sth grade. The other four areas did not 

significantly predict student trajectories. Students' with higher KCCT reading ability 

were still predicted to have slightly lower trajectories. Schools with more students 

receiving free and reduced lunch were still predicted to have students with lower 

tra j ectori es. 
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Table 13 

HLM Model 1 Coefficients with General Mathematics Knowledge Separated 

Interce2t: KCCT 5tli Grade Mathematics Score 
Fixed Effect Coefficient S.E. T-ratio df 2 
Intercept 48.30 0.97 50.00 66 <.001 
Properties/ 

33.13 3.48 9.51 1377 <.001 
Operation 
Measurement 6.48 1.91 3.39 1377 <.01 
Geometry 3.64 2.98 1.22 1377 ns 
Data/Probability 7.37 2.43 3.03 1377 <.01 
Algebraic Thinking 6.38 1.99 3.20 1377 <.002 
Reading 0.45 0.026 17.08 1377 <.001 
Race -2.20 0.90 -2.45 1377 <.02 
FRL -8.81 3.72 -2.37 66 <.05 

Slope: Trajectory from 3ro through 5tli Grade 
Intercept -3.37 0.38 -8.78 66 <.001 
Properties/ 

0.59 1.84 0.32 1377 ns 
Operation 
Measurement -0.49 1.01 -0.48 1377 ns 
Geometry -0.063 1.57 -0.040 1377 ns 
Data/Probability 0.0010 1.28 0.001 1377 ns 
Algebraic Thinking 2.28 1.02 2.23 1377 <.05 
Reading -0.058 0.014 -4.26 1377 <.001 
Race -0.61 0.47 -1.31 1377 ns 
FRL -4.38 1.28 -3.43 66 <.01 
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HLMModel2 

The second HLM model analyzed how students' CCA algebraic thinking 

knowledge in 1 st and 2nd grade predicted students' CCA algebraic thinking knowledge in 

5th grade and growth in CCA algebraic thinking knowledge in 3rd through 5th grade. 

This analysis aimed to answer c) and d) of the research questions: 

1) Does students' performance on assessment items targeting algebraic thinking in 

1 st and 2nd grade predict: 

c) Performance on district assessment items targeting algebraic thinking in 5th 

grade? 

d) Growth in performance on district assessment items targeting algebraic 

thinking in 3rd through 5th grade? 

Effect of Nesting. The first step to analyzing these questions was again to determine if 

there was sufficient nesting to warrant hierarchical linear modeling. To determine this, 

intraclass correlations were calculated, using the null model. The null model for HLM 

model 2 was constructed in the same manner as the null model from HLM model 1, 

except the outcome variable in HLM model 2 was students' CCA algebraic thinking 

knowledge in 3rd
, 4th

, and 5th grade. The null model is shown below. 
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HLM model 2: Null model 

Levell: 

CCA algebra knowledge345 
= 1to + 1tl(time) + e 

Level 2: 

1to = Poo + ro 

Level 3: 

Poo = Yooo + ll{)o 

PIO = YIOO + UIO 

In this model, the intraclass correlations were calculated for both Levell and Level 2. 

The intraclass correlations for each level were calculated as shown in Table 14. 

Table 14 

Intraclass Correlations for HLM Model 2, Level I 

too ci ICC 
Intercept (1to) 0.05518 0.05273 0.5114 
Slope (1tl) 0.02234 0.05273 0.2976 

Intraclass Correlations for HLM Model 2, Level 2 

Intercept (Poo) 0.01447 0.05273 0.2153 
Slope (PJO) 0.00670 0.05273 0.1127 

This analysis demonstrated that the proportion of school level variance was 

sufficient to necessitate hierarchical linear modeling at both levels. Level 1 showed 

nesting for predicting students' CCA algebra knowledge in 5th grade (1to, 51.14%) and for 

student trajectories (1tl' 29.76%). This indicated that the school in which students 
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attended had a significant influence on their predicted 5th grade score and trajectories 

from 3 rd through 5th grade. HLM should be used to account for this nesting. Level 2 also 

showed nesting. School level nesting accounted for 21.53% ofthe amount of student to 

student variation in the intercept (~oo) and 11.27% of the variation in slope (~JO). 

Building the model. As done with HLM modell, the next analyses determined which 

variables were appropriate to be included in the final HLM model. This was done by 

inserting one variable into the null model to determine if it significantly lowered the 

deviance. This was repeated for each variable shown in Table 15. 

These deviance analyses again demonstrated that both gender and curriculum did 

not improve the fit of the model and were therefore superfluous (see Table 15). The 

deviance analysis indicated that students' race, KCCT reading ability, CCA algebraic 

thinking knowledge, CCA general mathematics knowledge, and school level free and 

reduced lunch information should be included in the model. These variables significantly 

reduced the deviance of the null model, or improved the model fit, and were therefore 

appropriate to include in the final model (shown below). 

Table 15 

Deviance Analyses for HLM Model 2 

Variable Conditional Model Null Model 
Added Deviance Parameters Deviance Parameters X2 df Q 

Gender -2681.21 11 -2687.33 9 2.8843 2 ns 
Race -2771.47 11 -2687.33 9 93.14192 2 <.001 
Reading -3333.97 11 -2687.33 9 646.6428 2 <.001 
Algebraic 

-2911.61 11 -2687.33 9 224.2798 2 <.001 
Thinking 
General 

-3374.48 11 -2687.33 9 687.1478 2 <.001 
Mathematics 
FRL -2708.22 2 -2687.33 9 20.89232 2 <.001 
Curriculum -2686.08 2 -2687.33 9 1.2508 2 ns 
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The variables that lowered the deviance of the null model were used to create the 

final model to analyze the role that early CCA algebraic thinking knowledge played in 

later CCA algebraic thinking knowledge and growth. The final model is shown below. 

Student level variables (level 2) were again used to predict students intercept (no) and 

slope (nl). At the school level (level 3), FRL was the only predictor. It was included in 

predicting the intercept (Y001) and the slope (YOlO). The effect of the level 2 variables (B) 

was not predicted to vary based on school level FRL, thus FRL was not included in 

predicting the other level 2 coefficients. 

Superscripts in the model again indicate which grade levels were included in the 

variable. Asterisks indicate that a continuous variable had been centered for statistical 

purposes. 
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HLM model 2: Final model 

Levell: 

CCA algebra knowledge345 = 1to + 1t](time) + e 

Level 2: 

1to = ~oo + ~o](CCA general mathematics knowledge I2*) + ~02(KCCT 

reading ability3*) + ~03(race) + ~04(CCA algebra knowledge I2*) + ro 

1t] = ~JO + ~ll(CCA general mathematics knowledge I2*) + ~]lKCCT 

reading ability3*) + ~/3(race) + ~14(CCA algebra knowledge 12*) + r] 

Level 3: 

~oo=Yooo + Yool(FRL*) +uoo 

~Ol = YolO 

~02 =Y020 

~03 = Y030 

~04 = Y040 

~IO=YIOO + Yool(FRL*) +UIO 

~II =YIIO 

~12 =Y120 

~13 =Y130 

~14=YI40 
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Model 2 results. The results of HLM model 2 showed that the baseline predicted 

intercept, or students' CCA algebraic thinking knowledge in 5th grade, was 0.71, or 71 % 

(see Table 16). The results showed that the predicted slope, or rate of growth in students' 

algebraic thinking knowledge from 3rd through 5th grade is -0.0065, or -0.65%. The 

negative slope reflected that fact that students were performing slightly lower in 5th grade 

which was consistent with the means in Table 9. 

Students' CCA general mathematics knowledge in 1 st and 2nd grade was a 

significant predictor of students' 5th grade CCA algebraic thinking knowledge. Students 

with stronger CCA general mathematics knowledge were predicted to have higher CCA 

algebraic thinking knowledge in 5th grade. Students' CCA general mathematics 

knowledge in 1 st and 2nd grade did not predict their growth in CCA algebraic thinking 

knowledge from 3rd through 5th grade. 

Students' KCCT reading ability was a marginally significant predictor of CCA 

algebraic thinking knowledge in 5th grade, but did not predict growth in algebraic 

thinking knowledge. There was no effect for being Caucasian or Asian-American in this 

model. There was no effect at the school level for percent of students receiving free and 

reduced lunch. 

Students' CCA algebraic thinking knowledge in 1 st and 2nd grade was not a 

significant predictor of students' 5th grade CCA algebraic thinking knowledge, but had a 

positive coefficient of 0.12, p=O.l. Students' CCA algebraic thinking knowledge in 1st 

and 2nd grade did not predict growth in CCA algebraic thinking knowledge as it did with 

overall KCCT mathematics ability. It did have a positive coefficient of 0.049, but it was 

not significant, p=0.2. 
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Table 16 

HLM Model 2 Coefficients 

Fixed Effect 
Intercept 
General Mathematics 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept 
General Mathematics 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept: CCA 5th Grade Algebra Score 
Coefficient S.E. T -ratio df p 

0.71 0.034 21.15 66 <.001 
.34 0.13 2.70 1380 <.01 
.12 0.072 1.63 1380 =.1 

0.0017 0.00095 1.75 1380 <.08 
-0.0050 0.033 -0.15 1380 ns 

.036 0.12 0.31 66 ns 
Slope: Trajectory from 3rd through 5th Grade 
-0.0065 0.018 -0.36 66 ns 
-0.062 0.072 -0.87 1380 ns 
0.049 0.041 1.21 1380 ns 

-0.00079 0.00054 -1.45 1380 ns 
0.0085 0.018 0.46 1380 ns 
0.044 0.064 0.69 66 ns 

Follow-up analysis explored if students CCA knowledge in 1 sl and 2nd grade in 

any other mathematics content area predicted their CCA algebraic thinking knowledge in 

5th grade or growth in knowledge from 3rd through 5th grade. In an expanded model, the 

level 2 variable for CCA general mathematics knowledge was disaggregated into the four 

content areas used to create it (number properties and operations, measurement, 

geometry, and data analysis and probability). Students' knowledge on each content areas 

was included as an independent predictor in level 2 along with algebraic thinking 

knowledge. 

None of the predictors in this expanded model reached significance in predicting 

the intercept or the slope (see Table 17). The trends were comparable to the model 

including CCA general mathematics knowledge, but with the additional predictors, the 

coefficients did not reach significance. CCA algebraic thinking knowledge in 1 st and 2nd 

grade again had positive coefficients for both 5th grade CCA algebraic thinking 
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knowledge and growth from 3rd through 5th grade, but were not significant. 

Table 17 

HLM Model 2 Coefficients with General Mathematics Knowledge Separated 

Interce12t: CCA 5tfi Grade Algebra Score 
Fixed Effect Coefficient S.E. T-ratio df p 

Intercept 0.71 0.034 20.96 66 <.001 
Properties! 

0.15 0.13 1.18 1377 ns 
Operation 
Measurement 0.091 0.071 1.28 1377 ns 
Geometry 0.11 0.11 1.03 1377 ns 
Data/Probability 0.084 0.087 0.96 1377 ns 
Algebraic Thinking 0.10 0.074 1.37 1377 ns 
Reading 0.0014 0.00095 1.47 1377 ns 
Race -0.0026 0.033 -0.078 1377 ns 
FRL 0.031 0.12 0.25 66 ns 

Slope: Trajectory from 3ro through 5tfi Grade 
Intercept -0.0067 0.018 -0.37 66 ns 
Properties! 

-0.061 0.074 -0.82 1377 ns 
Operation 
Measurement 0.035 0.040 0.87 1377 ns 
Geometry 0.030 0.061 0.49 1377 ns 
Data/Probability -0.028 0.050 -0.56 1377 ns 
Algebraic Thinking 0.049 0.042 1.18 1377 ns 
Reading -0.00086 0.00054 -1.59 1377 ns 
Race 0.0084 0.019 0.45 1377 ns 
FRL 0.049 0.064 0.76 66 ns 
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HLMModel3 

The last HLM model analyzed how students' CCA algebraic thinking knowledge 

in 1 st and 2nd grade predicted students' CCA general mathematics knowledge in 5th grade 

and growth in CCA general mathematics knowledge in 3rd through 5th grade. 

This analysis aimed to answer e) and f) of the research questions: 

1) Does students' performance on assessment items targeting algebraic thinking in 

1 st and 2nd grade predict: 

e) Performance on district assessment items targeting other areas of 

mathematics in 5th grade? 

f) Growth in performance on district assessment items targeting other areas of 

mathematics in 3rd through 5th grade? 

Effect of Nesting. The first step to analyzing these questions was again to determine if 

there was sufficient nesting to warrant hierarchical linear modeling. To determine this, 

intraclass correlations were calculated, using the null model. The null model for HLM 

model 3 was constructed in the same manner as the null models from HLM model 1 and 

2, except the outcome variable in HLM model 3 was students' CCA general mathematics 

knowledge in 3rd
, 4th

, and 5th grade. The null model is shown below. 
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HLM model 3: Null model 

Levell: 

CCA general mathematics knowledge345 = 1to + 1t}(time) + e 

Level 2: 

1to = ~oo + ro 

Level 3: 

~oo = Yooo + Uoo 

~IO=YlOo +UIO 

In this model, the intraclass correlations were calculated for both Levelland Level 2. 

The intraclass correlations for each level were calculated as shown in Table 18. 

Table 18 

lntraclass Correlations for HLM Model 3, Level 1 

Intercept (1to) 
Slope (1t}) 

too 
0.01592 
0.00102 

0.01829 
0.01829 

ICC 
0.4654 
0.0528 

Intraclass Correlations for HLM Model 3, Level 2 

Intercept (~oo) 
Slope (~JO) 

too 
0.00749 
0.00121 

0.01829 
0.01829 

ICC 
0.2905 
0.0621 

This analysis demonstrated that the proportion of school level variance was 

sufficient to necessitate hierarchical linear modeling at both levels. Level 1 showed 

nesting for predicting students' CCA general mathematics knowledge in 5th grade (1to, 

46.54%) and for student trajectories (1t), 5.28%). This indicated that the school in which 
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students attended had a significant influence on their predicted 5th grade score and 

trajectories from 3rd through 5th grade. HLM should be used to account for this nesting. 

Level 2 also showed nesting. School level nesting accounted for 29.05% of the amount of 

student to student variation in the intercept (~oo) and 6.21 % of the variation in slope (~10). 

Building the model. As done with HLM model 1 and 2, the next analyses determined 

which variables were appropriate to be included in the final model. This was done by 

inserting one variable into the null model to determine if it significantly lowered the 

deviance. This was repeated for each variable shown in Table 19. 

These deviance analyses again demonstrated that both gender and curriculum did 

not improve the fit of the model and were therefore superfluous (see Table 19). The 

deviance analysis indicated that students' race, KCCT reading ability, CCA algebraic 

thinking knowledge, CCA general mathematics knowledge, and school level free and 

reduced lunch information should be included in the model. These variables significantly 

reduced the deviance of the null model, or improved the model fit, and were therefore 

appropriate to include in the final model (shown below). 

Table 19 

Deviance Analyses for HLM Model 3 

Variable Conditional Model Null Model 
Added Deviance Parameters Deviance Parameters X2 df Q 

Gender 367.4699 11 367.9224 9 0.469854 2 ns 
Race 329.2086 11 367.9224 9 38.71375 2 <.001 
Reading 103.9693 11 367.9224 9 263.9531 2 <.001 
Algebraic 

279.7647 11 367.9224 9 88.15769 2 <.001 
Thinking 
General 

59.36885 11 367.9224 9 308.5535 2 <.001 
Mathematics 
FRL 346.9988 2 367.9224 9 20.92353 2 <.001 
Curriculum 367.5838 2 367.9224 9 0.33857 2 ns 
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The variables that lowered the deviance of the null model were used to create the 

final model to analyze the role that early CCA algebraic thinking knowledge played in 

later CCA general mathematics knowledge and growth. The final model is shown below. 

Student level variables (level 2) were again used to predict students intercept (no) and 

slope (nl). At the school level (level 3), FRL was the only predictor. It was included in 

predicting the intercept (YOOI) and the slope (YOlO). The effect of the level 2 variables (~) 

was not predicted to vary based on school level FRL, thus FRL was not included in 

predicting the other level 2 coefficients. 

Superscripts in the model again indicate which grade levels were included in the 

variable. Asterisks indicate that a continuous variable had been centered for statistical 

purposes. 
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HLM model 3: Final model 

Levell: 

CCA general mathematics knowledge345 = 1[0 + 1[j(time) + e 

Level 2: 

1[0 = ~oo + ~oj(CCA general mathematics knowledge I2*) + ~02(KCCT 

reading ability3*) + ~03(race) + ~04(CCA algebra knowledge 12*) + ro 

1[j = ~jO + ~ll(CCA general mathematics knowledge I2*) + ~jiKCCT 

reading ability3*) + ~13(race) + ~14(CCA algebra knowledge I2*) + rl 

Level 3: 

~oo=Yooo + Yo01(FRL*) +uoo 

~01 = YOlO 

~02 =Y020 

~03 =Y030 

~04=Y040 

~10 =YIOO + Yo01(FRL *) +UIO 

~11 =Y110 

~12=YI20 

~13 =Y130 

~14=YI40 
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Model 3 results. The results of HLM model 3 showed that the baseline predicted 

intercept, or students' CCA general mathematics knowledge in 5th grade, is 0.66, or 66% 

(see Table 20). The results showed that the predicted slope, or rate of growth in students' 

CCA general mathematics knowledge from 3rd through 5th grade, is -0.034, or -3.4%. The 

negative slope reflected that fact that students were performing slightly lower in 4th and 

5th grade compared to 3rd grade which was consistent with the means in Table 9. 

Students' CCA general mathematics knowledge in 1 st and 2nd grade was a 

significant predictor of students' 5th grade CCA general mathematics knowledge. 

Students with stronger CCA general mathematics knowledge were predicted to have 

higher CCA general mathematics knowledge in 5th grade. Students' CCA general 

mathematics knowledge in 1 st and 2nd grade did not predict their growth in CCA general 

mathematics knowledge from 3rd through 5th grade. 

Students' KCCT reading ability was a significant predictor of CCA general 

mathematics knowledge in 5th grade, but did not predict growth in knowledge from 3rd 

through 5th grade. Students who were Caucasian or Asian-American were predicted to 

have slightly higher scores on CCA general mathematics knowledge in 5th grade, but 

were not predicted to have different trajectories. There was no effect at the school level 

for percent of students receiving free and reduced lunch. 

Students' CCA algebraic thinking knowledge in 1 st and 2nd grade was a significant 

predictor of students' 5th grade CCA general mathematics knowledge. Students with 

stronger CCA algebraic thinking knowledge were predicted to have higher knowledge in 

other mathematics areas in 5th grade. Even when including students' CCA general 

mathematics knowledge, KCCT reading ability, and demographics in the model, 
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students' CCA algebraic thinking knowledge predicted higher CCA general mathematics 

knowledge in 5th grade. Students' CCA algebraic thinking knowledge in 1 st and 2nd grade 

did not predict growth in CCA general mathematics knowledge from 3rd through 5th 

grade, as it did with overall KCCT mathematics ability. 

Table 20 

HLM Model 3 Coefficients 

Fixed Effect 
Intercept 
General 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept 
General 
Algebraic Thinking 
Reading 
Race 
FRL 

Intercept: CCA 5th Grade General Mathematics Score 
Coefficient S.E. T -ratio df p 

0.66 0.010 63.18 66 <.001 
0.35 0.038 9.22 1380 <.001 

0.056 0.022 2.58 1380 <.01 
0.0030 0.00029 10.50 1380 <.001 
-0.022 0.010 -2.25 1380 <.05 
-0.068 0.039 -1.75 66 ns 

Slope: Trajectory from 3rd through 5th Grade 
-0.034 0.0057 -5.96 66 <.001 
-0.016 0.023 -0.68 1380 ns 

-0.0089 0.014 -0.66 1380 ns 
-0.000041 0.00018 -0.22 1380 ns 

-0.0016 0.0063 -0.25 1380 ns 
-0.028 0.020 -1.38 66 ns 

Follow-up analysis explored if students' CCA knowledge in 1 st and 2nd grade in 

any other mathematics content area predicted their CCA general mathematics knowledge 

in 5th grade or growth in knowledge from 3rd through 5~ grade. In an expanded model, 

the level 2 variable for CCA general mathematics knowledge was disaggregated into the 

four content areas used to create it (number properties and operations, measurement, 

geometry, and data analysis and probability). Students' knowledge on each content areas 

was included as an independent predictor in level 2 along with algebraic thinking 

knowledge. 

Students' CCA knowledge of every mathematics content area was a positive 

107 



predictor ofCCA general mathematics knowledge in 5th grade (see Table 21). Students 

KCCT reading ability was still a positive predictor of 5th grade CCA general mathematics 

knowledge. Race was still a negative predictor of 5th grade knowledge. Schools with 

more FRL students were still predicted to have students with lower knowledge scores, 

with the coefficient being marginally significant. 

When analyzing students' growth in CCA general mathematics knowledge, there 

are no positive predictors in this model. Early CCA geometry knowledge has a small but 

significant coefficient that predicts less growth in CCA general mathematics knowledge. 

Table 21 

HLM Model 3 Coefficients with General Mathematics Knowledge Separated 

Intercept: CCA 5tfi Grade General Mathematics Score 
Fixed Effect Coefficient S.E. T-ratio df p 

Intercept 0.65 0.011 61.75 66 <.001 
Properties/ 

0.15 0.039 3.75 1377 <.001 
Operation 
Measurement 0.048 0.021 2.29 1377 <.05 
Geometry 0.13 0.033 3.99 1377 <.001 
Data/Probability 0.064 0.026 2.44 1377 <.02 
Algebraic Thinking 0.051 0.022 2.32 1377 <.02 
Reading 0.0030 0.00029 10.28 1377 <.001 
Race -0.022 0.010 -2.22 1377 <.05 
FRL -0.075 0.040 -1.85 66 <.07 

Sloee: Trajectory from 3ro through 5tfi Grade 
Intercept -0.034 0.0058 -5.92 66 <.001 
Properties/ 

-0.041 0.025 -1.65 1377 ns Operation 
Measurement -0.0060 0.013 -0.46 1377 ns 
Geometry -0.049 0.021 2.38 1377 <.02 
Data/Probability -0.0096 0.017 -0.57 1377 ns 
Algebraic Thinking -0.0039 0.014 -0.28 1377 ns 
Reading -0.000016 0.00018 -0.088 1377 ns 
Race -0.0019 0.0063 -0.31 1377 ns 
FRL -0.028 0.021 -1.37 66 ns 
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DISCUSSION 

The goal of the current study was to show that algebra knowledge in 1 st and 2nd 

grade is an important predictor of mathematics knowledge and trajectories in upper 

elementary grades. The study was able to work with longitudinal archival data from one 

large, urban district. The archival design took advantage of existing district and state 

assessment data to study the impact of early algebra knowledge using more than a 

thousand students across 68 schools. Results from the study point out that students' 

algebra knowledge in 1 st and 2nd grade may be an important predictor of students' 5th 

grade state standardized mathematics test scores and students' 5th grade knowledge of 

algebraic thinking and general mathematics concepts measured by district assessments. 

Results also point out that algebra knowledge in 1 st and 2nd grade may be an important 

predictor of student's rate of growth on state standardized mathematics test scores from 

3rd through 5th grade. 

Contributions 

The current study contributes to the research on teaching and learning algebra in 

elementary education. Most prior work on algebra education has focused on teaching 

algebra in middle school or the longitudinal impact of passing algebra in high school. The 

current study demonstrates that knowledge of algebra as early as 1 st and 2nd grade can 

have a longitudinal impact on mathematics performance. 

The findings of the current study support the theories and research of Kaput 
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(2000; 1999; 1995; Kaput & Blanton, 2001) who believed that algebra is a language of 

mathematics. As discussed above, he felt that knowledge of fundamental algebra 

concepts connects to and support students' understanding other mathematics content 

areas. This parallels researchers who feel that algebra may help students cognitively 

structure their mathematics knowledge (Fosnot & Jacob, 2010; Seo & Ginsburg, 2003). 

Cognitive structures using algebra can help students integrate more advanced 

mathematics concepts. 

This may be why algebraic thinking knowledge was the only content area that 

significantly predicted a positive trajectory on students' state standardized mathematics 

assessments from 3rd through 5th grade. Students who understood early algebraic thinking 

concepts may have had the tools to better structure their knowledge and learn more 

advanced concepts in all areas of mathematics as they progressed through elementary 

school. Students' knowledge scores in the other mathematics content areas in 1 st and 2nd 

grade (number properties and operations, measurement, geometry, analysis and 

probability, and algebraic thinking) were predictors of 5th grade state standardized test 

scores, but not growth across 3rd
, 4th

, and 5th grade. Algebraic thinking knowledge could 

be a key to stronger gains than predicted by general mathematics knowledge. 

In researching the impact that algebra has on later education, educators have 

agreed that algebra is a gateway to learning higher mathematics (National Mathematics 

Advisory Panel, 2008a; 2008b; Spielhagen, 2006, Evan, Gray, & Olchefske, 2006; 

Achieve, Inc., 2006; Hom & Nunez, 2000; Horowitz, 2005; Adelman, 1999). This 

research has made known that students who do well in algebra have better lifelong 

trajectories in mathematics. This is why researchers have posited that algebra should be 
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taught earlier in education (Kaput, 2000; 1999; Schifter, & Fosnot, 1993; Fosnot & 

Jacob, 2010; Kieran, 1992). 

Research in middle school has shown that when algebra learning programs are 

implemented there is evidence that it helps students have more long term success (e.g. 

Corbett et aI., 2001; Fernandez & Anhalt, 2001). Programs have been designed to help 

students learn the fundamental concepts of algebra before entering formal algebra in later 

grades. Students in these programs were able to learn the novel algebraic concepts and 

how they relate to other areas of mathematics. The programs also demonstrated that 

learning algebra in middle school could lead to gains in long term mathematics outcomes 

(e.g. Smith, 1996; Carpenter and Levi, 2000; Fernandez & Anhalt, 2001). Similar 

programs could be formed to teach the fundamental concepts of algebra in early 

elementary education. Researchers and educators could take these existing programs and 

adapt them for younger students or they could create new programs to help students learn 

algebra as early as 1 st and 2nd grade. Students in programs that target algebra this early 

may have increased mathematics gains by 5th grade that could positively impact their 

lifelong mathematics outcomes. 

Kaput and Blanton (2001) did test one elementary school program that had 3 rd 

grade teachers create an environment that supported algebraic learning. Students who 

learned in this environment outperformed their piers on standardized mathematics items. 

Unfortunately, Kaput and Blanton's (2001) study could only use a small number of 

students because the corresponding professional development required an entire year of 

effort. The participating district in their study had also just begun to think about algebra 

early in these early grades. Thus there was a required shift in pedagogical approaches for 
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the participating teachers. Even with these constraints, the authors revealed positive 

findings of learning algebra an elementary grade. The current study supported these 

findings and was done on a larger scale. The current study was able to test the effect of 

students' early algebra knowledge across numerous schools in a district that was already 

supporting early algebraic learning. The archival nature of the study was able to support 

Kaput and Blanton's assumptions using a larger sample of students over a longer duration 

of time. 

This study also demonstrated the importance of early knowledge of patterns, 

relations, and functions. The majority of Core Content Assessment items in 1 st and 2nd 

grade fell within this domain of algebra. Researchers have previously posited that these 

algebraic areas in particular can help students structure their knowledge. For example, 

Carraher et al. (2008) used activities based around functions to help students learn 

number operations from 2nd through 4th grade. The students in this research project used 

functions to help understand operations from basic addition to fractions. Students were 

able to use algebraic knowledge of functions to represent and discuss the relationships 

among quantities. They were able to use these strategies to help solve problems. Schifter 

et al. (1996) found that students in elementary grades could use knowledge of patterns to 

discover properties of operations, such as the commutative property. Students in her 

studies were able to use algebra to discover and understand properties of addition and 

subtraction (2008) as well as multiplication and division (1996). The current study added 

to these findings by demonstrating that early algebraic knowledge, mostly of patterns and 

functions, predicts how well students perform on mathematics problems in 3rd
, 4th

, and 5th 

grades. This may have been a result of students using knowledge of patterns, relations, 
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and functions to build their knowledge using algebra, as seen in these studies. 

Research has also demonstrated that knowledge of patterns, relations, and 

functions can support learning in other mathematics content areas, such as measurement, 

data analysis, and geometry (e.g. Dougherty, 2008; Smith, 2008; Lehrer et aI.,1999; 

2002; Goldenberg et aI., 1998; Boester and Lehrer, 2008). For example, Lehrer et ai. 

(2002) looked at 3rd grade students' use of patterns and functions to make sense of 

geometric principles. The authors showed that 3rd grade students could generate algebraic 

expressions to represent patterns and relationships of shapes. The students were able to 

apply data techniques and geometry, such as graph and charts including Cartesian 

coordinates, to represent and discuss these relationships. The current study expanded 

upon these findings by demonstrating that algebra knowledge may help students' 

longitudinal general mathematics knowledge, which includes these content areas. 

Additionally, these prior studies did not follow students for more than a calendar year or 

use standardized or local assessments, which the current study was able to accomplish. 

The size of the coefficients for general mathematics knowledge in each model is 

also of interest. Students' general mathematics knowledge in I st and 2nd grade was the 

largest predictor of their 5th grade score in all three HLM models. This underlines the 

importance of fostering students' knowledge of other areas of mathematics as well as 

algebra. Although general mathematics did not predict students growth of knowledge 

from 3rd through 5th grade, such large coefficients for predicting 5th grade outcomes 

cannot be ignored. The coefficients indicate that building students' knowledge of each 

area of mathematics should not be diminished while bringing algebra into early 

education. Instead, algebra should be used to enhance the way students learn these areas 
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of mathematics as outlined in the Introduction. This will allow students to gain in 

knowledge of general mathematics while learning and applying algebraic principles. 

These findings also indicate that students should be assessed on each area of mathematics 

early in education since general mathematics knowledge is such a large predictor of later 

outcomes. Students who are struggling in any mathematics content area should be 

supported in that area as early as possible so they can have the highest possible 

trajectories from the beginning of education. 

A secondary but important goal of the current study was to contribute to the 

knowledge about the effects of demographic variables on students' mathematics 

performance and trajectories. The findings of this study reveal the importance of 

considering variables such as race, free and reduced lunch, and reading ability when 

analyzing longitudinal mathematics ability. For example, students' race contributed 

significantly to the models in the study. Students who were races other than Caucasian or 

Asian-American were predicted to perform lower on mathematics assessments. This 

result supports previous research that showed these minority students may have lower 

achievement levels (e.g. Themstrom & Themstrom, 2004). For example, Themstrom and 

Themstrom (2004) provided evidence that the racial gap between Caucasian or Asian

American students and African-American or Hispanic students is seen in standardized 

test as early as 4th grade and persists through 1 i h grade. In the current study, race did not 

significantly predict students' growth in ability. This indicates that the racial gap did not 

change significantly from 3rd through 5th grade. This finding supports previous research 

that showed the gap that minority students face begins early and is persistent (Lee, 2002; 

Stiefel et aI., 2006; Themstrom & Themstrom, 2004). Closing the gap across races is an 
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on-going issue of high importance. Educators and policy makers have repeatedly noted 

the racial gap in academic performance, including mathematics, and discussed factors 

that may attribute to or alleviate the gap (e.g. Lee, 2002; Stiefel, et aI., 2006). The current 

study builds support for increasing efforts to support lower performing populations of 

students. The current study did not find a significant difference between gender. This 

indicates that males and females in this district did not have a significant gap in 

elementary mathematics performance as seen in other studies (e.g. Fryer & Levitt, 2010). 

This finding does not negate that other differences in gender (such as differences in 

variance) could exist and should be considered by future studies. 

The current study found that schools' percentage of students receiving free and 

reduced lunch was shown to be a significant negative predictor of both student 

mathematics achievement in 5th grade and trajectory from 3rd through 5th grade. This 

supports previous research which indicated that students from poverty at are risk for 

lower achievement (e.g. Lee & Burkam, 2002; Burnett & Farkas, 2009; Greenwald & 

Hedges; 1996; Sameroff et aI., 1998). These authors thoroughly discuss the risk factors 

associated with poverty, such as lack of resources, which can hinder children's learning. 

For example, Lee and Burkam (2002) provide evidence that students from impoverished 

backgrounds are behind their peers in mathematics skills before formal education even 

begins. Studies such as Burnett and Farkas (2009) have demonstrated that poverty also 

effects achievement in elementary grades. 

The poverty variable in the current study was at the school level. This supports 

previous research that showed that poverty can have an adverse effect on mathematics 

achievement when is clustered at the classroom, school, or even neighborhood level (e.g. 
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Palardy, 2008; Hallinan & Kubitschek, 2010; Georges, 2009); Whipple, Evans, Barry, & 

Maxwell, 2010). For example, Hallican & Kubitschek (2010) performed a longitudinal 

study on students from 6th through 8th grade and found that school poverty had a negative 

effect on student outcomes. The authors found that schools with a higher percentage of 

free and reduced lunch students had lower gains in achievement on the Iowa Test of 

Basic Skills. Palardy (2008) also found that school level poverty predicted slower 

learning rates even when controlling for extensive individual and other school level 

factors. Georges (2009) demonstrated that classroom level poverty can have adverse 

effects that are stronger than the positive effects of beneficial instructional practices. The 

current study further emphasizes the importance of promoting this research around the 

effects of poverty on students' mathematics learning, even if information is only 

available at the school level. It also builds support for increasing efforts to support 

schools and students in lower socioeconomic contexts. 

The district could benefit from these demographic analyses. These analyses 

demonstrate a gap in mathematics knowledge and performance for African American and 

Hispanic students. The findings also reveal schools with a higher percentage of free and 

reduced lunch students are at risk for lower performance on mathematics assessments. 

The district may use this information to support initiatives that target schools with higher 

levels of free and reduced lunch students or minority students. The district may also want 

to use similar methodologies to explore the effect of additional school or student level 

variables, such as individualized learning plans or the percentage of English language 

learners in a school. 

This study did not have available an external measure of students' intelligence or 
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overall academic ability. Instead, reading knowledge was used as an indicator. Students' 

mathematics ability in four content areas (number properties and operations, 

measurement, geometry, analysis and probability) was also included. These variables 

aimed to account for overall cognitive ability so the effect of early algebra knowledge 

could be isolated when predicting later mathematics performance. Byrnes and Wasik 

(2009) found propensity factors such as these in kindergarten and lSI grade to be the 

strongest predictors of later student achievement in third grade. In the current study, early 

mathematics ability and reading ability significantly predicted later mathematics ability in 

each model. This indicates that these measures were able to account for a significant 

amount of students' academic ability. The results also indicate that reading ability and 

potential other propensity scores should be considered in long term studies involving 

growth in mathematics ability. 

Lastly, the findings also support methodology that uses hierarchical linear 

modeling in education settings involving schools or classrooms. Prior research has shown 

that school level factors can influence student outcomes (e.g. Palardy, 2008). Research 

that does not take into consideration how students are clustered in schools or classrooms 

will not account for the variation in student outcomes that is attributable to this 

clustering. Accounting for more variance by using the different levels of data creates 

more powerful models by helping to isolate the variation attributable to the variables of 

interest (O'Connell & McCoach, 2008). Hierarchical linear modeling also allows the 

inclusion of variables at each level. This can be particularly beneficial when student level 

data is unavailable. In the current study, data for student level socioeconomic status could 

not be obtained. School level socioeconomic status data, however, was publicly available. 
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Using this school level data was critical to account for poverty and strengthened the 

overall models since it predicted student final outcomes and trajectories. 

Implications 

A key implication of this study is that the policies around algebra are headed in 

the right direction. The findings support the implementation and execution of these 

policies. For example, the states that have adopted the Common Core State Standards for 

mathematics in 2011 know there is an emphasis on teaching algebraic concepts in 

elementary grades. Focusing on early algebra knowledge may be a strong shift in 

thinking for states, regions, or districts that have not been addressing algebra this early in 

education. 

Teachers' may need to strengthen their pedagogical content knowledge and 

instructional approaches to create a more algebraic environment. Teachers' content 

knowledge and pedagogical strategies have been shown to impact student outcomes (e.g. 

Hill, Rowan, and Ball, 2005; Garet, Porter, Desimone, Birman, & Yo on, 2010; Gersten, 

Dimino, Jayanthi, Kim, & Santoro, 2010). Teachers and their students can benefit from 

professional development that supports teacher knowledge of early algebra concepts. 

Since teaching algebraic thinking earlier may be required of teachers with the new 

Standards, they will need support in raising their own algebraic content knowledge and 

related pedagogical approaches. Teachers will need to have a depth of understanding how 

early algebraic concepts are embedded in the Standards and curriculum and how they can 

be assessed using formative and summative methods in order to adjust teaching strategies 

to ensure all students understand and apply algebraic reasoning. 

There will be a need for supporting professional development involving algebra 

118 



from policy makers and education leaders. The participating district is in a state that 

began using the Common Core State Standards in 2011. This study will lend support for 

heeding the Standards' emphasis on algebra in the early grades. Having evidence that 

early algebra knowledge can predict later mathematics achievement can demonstrate to 

administrators and teachers the importance of early algebra knowledge and emphasizing 

how it connects to other mathematics content areas. 

Professional development should be geared towards helping teachers integrate 

algebraic concepts from the new Common Core State Standards into their classrooms. 

Teachers may need to learn how to apply the earliest algebraic concepts to help structure 

students' knowledge, as discussed in the Introduction. For example, the Standards 

include the content area of Operations & Algebraic Thinking. When addressing this 

combined content area, teachers will need to help students learn to represent problems, 

not just solve them. Teachers can help students learn to represent quantities and 

relationships between quantities in problem situations. For example, teachers can discuss 

with students how the equals sign does not indicate an operation, but instead shows a 

relationship of two quantities. Students can then reason about quantities such as 8 to see 

that it can be broken up into 6 and 2 or 4 and 4 or 6 + 2 or 4 + 4. Students can then see 

that 4 + 4 = _ is not just an operation that needs to be memorized, but two ways to 

represent an equal quantity. 

For teachers to promote this type ofthinking among students, teachers needs to 

provide the opportunity for students to work with the underlying concepts within 

problems. Fostering discussions around the way students are reasoning about concepts in 

problems will help student to think algebraically. During algebra based activities or 
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discussions, students should be aware that they are not just looking for answers, but 

exploring quantities to look for patterns and relationships. They should look for ways to 

represent these relationships that make sense to them. Teachers can then use different 

student ideas and perspectives to discuss the algebra within problems and across 

problems in each mathematics content area. Teachers can also use students' knowledge 

and reasoning when introducing a new or more difficult topic. Students can apply the 

algebraic concepts they know to discover properties and problem solving strategies of a 

new area, such as applying knowledge of addition to reason about multiplication. For 

example, student can use knowledge of addition to explore the distributive property of 

multiplication. They can reason that 12 x 6 is similar to adding 12 sets of 6, or 6 sets of 6 

6 plus 6 sets of 6, or 3 sets of 12 plus 3 set of 12, and so on. By connecting addition to 

multiplication, students can see how multiplication is more than just memorizing 

answers, but uses similar algebraic structures as addition. This process will allow students 

to structure their knowledge of a new area using the same algebraic principles they used 

to structure previous knowledge. Students will not always perform this type of reasoning 

naturally. By setting up a classroom where students are encouraged to reason about 

problems using representations and relationships, teachers can create activities and 

discussions to truly help students learn algebra and learn other mathematics content areas 

by using algebra. 

Once the Standards are established in the district used for the current study, the 

district may want to perform parallel research. They could examine if trends in this study 

persist with the cohort of students entering into 1 sl grade in 2011 or 2012 with the new 

Standards. They may also need to research how the CCA can be adjusted and used to 
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measure student performance with the new Standards. Lastly, the district may want to 

perform in depth studies on the role that teacher instructional practices may have on the 

current findings. 

Analysis of the Core Content Assessments revealed some trends that were not the 

focus of this study, but indicate content areas on which teachers may need to emphasize. 

These trends may be of interest for the district to explore further. For example, in 1 st and 

2nd grade, students were performing strongly in geometry compared to the other areas. 

Data analysis seemed to be a challenge in 3rd grade. Students were high in measurement 

knowledge in 3rd grade, but then showed a steep drop in 4th grade (-20%). These patterns 

may indicate areas where students are struggling or where they could be challenged 

further. These patterns could be analyzed against trends the district has noticed at the 

school or teacher level as well. The patterns may also have implications for teaching 

content or practices. For example, students' CCA algebra performance was lower in 5th 

grade than other grades. The algebra content or standards in this grade may be especially 

challenging for students. The district may want to consider ways to strengthen students' 

knowledge of those algebra concepts. For example, the district could place more 

emphasis on teaching connections between basic algebra concepts and the algebraic 

concepts within the 5th grade standards. 

Limitations 

One major limitation of the study was the lack of information at the classroom 

level. The models in the study assumed that early algebraic thinking knowledge can have 

an impact on students' knowledge across a variety of classrooms. The study was not able 

to delve into the moderating role that teachers' content knowledge or pedagogical 
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practices might have in student trajectories. The influence of an effective teacher and 

teaching has long been documented (e.g. Hill, et aI., 2005; Garet, et aI., 2010), even in the 

context of teaching algebra (see Rakes, Valentine, McGatha, & Ronau; Kaput & Blanton, 

2001; Carpenter & Levi, 2000). For example, Kaput and Blanton (2001) showed that 

teachers enhance student learning if they learn where and when to help students' 

cognitive connections between algebra and general mathematics. 

In the current study, how teachers supported student algebraic thinking 

knowledge was not possible to gather with the limitations of the archival design. The 

district had not systematically collected this data. The assumption that students most 

likely had five different teachers during the course of the study would further complicate 

the design as well. However, if this information would have been available, the role of 

the teachers' pedagogy in students' trajectories would have added interesting findings to 

the study. 

Relatedly, there was no measure ofthe fidelity of teachers' implementation of the 

curriculum or standards. The effect of having the curriculum 'Investigations in Number, 

Data, and Space' was not significant. The more important aspect of the curricula may 

have been the fidelity of teachers' use. Other curricula may have been used to emphasize 

algebra concepts as well. Unfortunately this study had no measure of the degree to which 

teachers emphasized the early algebra components in the classroom. So even with 

information on which mathematics curriculum was used in each school, there were no 

data on classroom implementation. This may have contributed to why schools' 

curriculum did not improve the fit of any models and was not included in final analyses. 

There were also limitations using the district benchmark Core Content 
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Assessments. These assessments were not mandated and were not given to all students 

throughout each year of the study. Teachers and schools that did not implement the CCAs 

were therefore not included in the study. This may have biased the sample of students. 

Another limitation became apparent when using the CCA as the longitudinal outcome 

variable when analyzing students' growth in CCA performance in 3 rd through 5th grade 

(HLM Models 2 and 3). While CCA provided a good measure for early algebraic 

thinking knowledge, looking at growth across time became limiting when students scored 

higher in 3rd grade and performed lower in 4th and 5th grade. This may partially be due to 

the model of the state standards (see Table 1 and Kentucky Department of Education, 

2008a; 2009 for the full tables). The district labeled 1 st, 2nd
, and 3rd grade as primary 

grades and created one set of standards that students should master while in those grades. 

For 4th and 5th grade, the district had created unique standards that target specific content 

within that grade. Students who mastered the fundamental concepts in 1 st and 2nd grade 

may have hit the ceiling on CCA performance before and/or across 3rd grade. This may 

partially explain why CCA results dipped in 4th and 5th grade, when students were tested 

on more novel standards. 

The formative nature of these assessments was also a limitation. Teachers 

administration of the CCA was not uniform, so the number of assessments given varied 

from school to school and year to year. The number of items across each mathematics 

content area also varied accordingly and percentage of items in each content area did not 

match the KCCT (see Tables 4 and 6). This indicates that the assessment did not reflect 

the same trajectory of knowledge as the Kentucky Core Content Test. The assessments 

and items were also not as rigorously tested for validity and reliability as the items on the 
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Kentucky Core Content Test, which was a limitation of using the district created Core 

Content Assessments. 

The primary weakness for CCA algebraic thinking knowledge in 1 st and 2nd grade 

was the emphasis on patterns, relations, and functions (seen in Table 7). Patterns, 

relations, and functions constituted 97.1 % of the algebraic thinking items in 1 st grade and 

79.1 % in 2nd grade. The rest of the items were on equations and inequalities. As discussed 

above, patterns, relations, and functions could be an important early predictor of 

mathematics, but without including more items from other algebra topics, the findings 

may not reveal the complete picture of how early algebra can help students. There were 

no standards and thus no items around variables, expressions, and operations. In fact, 

knowledge within this area was barely assessed before 5th grade. Students' early 

knowledge of these concepts may help to better predict student achievement. 

The standards also do not perfectly match the core algebra components that may 

underlie algebraic knowledge structures: early structuring of the number system; 

equivalence; comparing quantities and relations, and variance and variables (Fosnot & 

Jacob, 2010). It is also unclear how much the problems tested students' mastery of 

creating generalizations and representations, which Kaput and Blanton (2010) argued is 

the key to algebra. If the CCA measured these components more explicitly, they may 

have been a more accurate predictor of mathematics knowledge and growth. Future 

research could include assessments that match these components, especially in the 

framework ofthe newly adopted Common Core State Standards. The Common Core 

State Standards are a step in the right direction by including unique standards for 1 s\ 2nd
, 

and 3rd grade. They also emphasize variables, expressions, and operations in these grades 
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by combining operational knowledge with algebraic thinking (see CCSSI, 2010). 

It is also of interest that algebraic thinking knowledge in 5th grade was the only 

outcome measure that did not correlate with reading or schools' percentage of students 

receiving free or reduced lunch. There was also no difference across race. In other words, 

CCA measurement of algebraic thinking knowledge in 5th grade did not match the 

patterns of the other mathematics measures. This may be due the fact that variables, 

expressions and operations were barely assessed until 5th grade (see Table 7). These 

concepts may have been much more difficult for students. Students may not have had the 

proper foundation for these concepts since there were no standards addressing them in 1 st, 

2nd, or 3rd grade. These concepts could have been challenging for everyone, so all 

students would have had equivalently weakened performance. This may also explain the 

dip in averages seen in CCA algebraic thinking knowledge in 5th grade (see Table 9). 

Another limitation of this archival design was the amount of missing data and 

how it was treated. As mentioned earlier entire schools were missing from the dataset 

since completing CCA was not mandated. In other cases, students in schools that used the 

CCA each year may not have taken every assessment. This was especially true in the 

early elementary grades, which resulted in many students having missing data. Students 

who were missing necessary data were excluded from some analyses, as discussed above. 

Another approach that could have been used is data imputation. Data imputation is a 

method where available data is used to calculate missing data points through advanced 

estimation procedures. Thus all subjects can have complete sets of data. Enders (2010) 

argues that estimating missing data in this manner will result in datasets with better 

estimations of population parameters. Thus he argues these datasets will yield more 
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accurate results. He suggests a procedure that includes the imputation of numerous full 

data sets. He then suggests analyses be run with each dataset and final results be 

computed by pooling results. His recommended multiple data imputation procedure 

requires advanced statistical packages that were not available to the researcher for this 

study. Instead, the current study was designed to only look at students who were in the 

district for five years in schools that consistently gave the Core Content Assessments. 

This was done to help control for external variability of students switching schools or 

districts. It was also done because the patterns of missing data were erratic with many 

students missing over 50% of their assessments. Thus focusing the sample to students 

with complete level 2 data made for more concise interpretation of the results. 

A final limitation was having only three time points for knowledge growth. A 

longer study across more grades or time points would provide additional information on 

student trajectories. A study continuing into later grades could be especially helpful as 

algebra becomes more and more overtly emphasized. If the CCA were given more 

consistently during each year, growth within each grade could also have been tracked. 

This would have added valuable information for how and when students' trajectories in 

mathematics were shifting. 

Future Research 

Despite the identified limitations, the findings demonstrate the importance of 

early algebra knowledge and have strong implications for future research. Future research 

should aim to replicate and expand upon these findings while addressing the limitations 

of this study. The opportunity for effective research will be presented in the upcoming 

years while states implement the newly adopted Common Core State Standards. Research 
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using assessments that target these Standards will address the limitations within the 

current study by using more specific grade band standards. The Common Core State 

Standards do spell out clearer concepts for early algebraic knowledge, especially around 

variables, expressions, and operations. These Standards could lead to more or other areas 

of algebra being emphasized in 1 sl and 2nd grade. Research will be needed around the 

impact of teaching this new range of algebraic concepts in early grades. Future research 

could target which major concepts of algebra are being learned in the new Standards and 

how knowledge of these early concepts is supporting student learning. 

As mentioned above, future research is needed around the impact of professional 

development, teacher pedagogical content knowledge, classroom practices, and 

assessments within the context teaching early algebra using the Common Core State 

Standards. More research is needed to determine the processes of classroom interactions 

that help students apply algebra to build their mathematics knowledge structures. With 

many states adopting the Standards, opportunities for this type of research will be 

abundant and should be pursued immediately. Learning how to fully support students' 

overall cognitive structures will make the best use of students' algebraic knowledge and 

thinking. 

Since future studies around the new Common Core State Standards will not be 

archival, researchers can also plan to analyze moderating classroom variables, such as 

teaching practices. Researchers can investigate how teachers' algebraic content 

knowledge, pedagogical strategies, and professional development experiences moderate 

students' learning trajectories. Future studies in the context of the Standards will have 

wider validity of results as well. The findings will help shape how algebra is viewed and 
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taught throughout the country. 

Learning more about the process of how students use algebra to form their 

cognitive structures can also inform cognitive research around mathematics. Students' 

cognitive structures for mathematics are intricate and constantly evolving as they learn. 

Researchers need to discover algebra's role as students' structures grow vertically (higher 

in difficulty) and horizontally (learning new content areas). Future cognitive research in 

this area can help unfold this process from the beginning of education. This research can 

build upon the previous studies that show how students use algebra in each grade to 

connect their thinking to other areas of mathematics. Researchers could focus on 

connections and relationships to other specific content areas. Researchers could try to 

undercover how algebraic principles in each grade are scaffolding students' knowledge of 

each standard within the content areas. This would require significant classroom research 

around students' perceptions and knowledge of algebra and how it affects their 

conceptual reasoning. Such educational and psychological research could be done in 

parallel to discover the theoretical and practical implications of how students are 

developing their cognitive structures of mathematics within the school system. 

Future research could model and expand upon earlier studies, such as Kaput and 

Blanton's (2001), on a larger scale. The effective elements from algebraic programs that 

have shown success could be used on entire districts or regions. The students could also 

be tracked along the new Standards for longer than five years to see if early algebra 

mastery can lead to better mathematics outcomes in middle school and potentially 

beyond. 

The current study also has implications for algebra knowledge before 1 st grade. 
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When parents and teachers first begin to teach mathematics to children, the fundamental 

concepts of algebra can be emphasized. If children learn the skills of creating 

representations and generalizations early in life, they may gain an even larger advantage 

when entering formal education. Getting children thinking algebraically, such as 

considering equivalence and comparing quantities and relations, while learning the early 

number systems, could help lead them into elementary school with algebraic knowledge 

structures. Studies such as Moyer et al. (2005) have shown that students in kindergarten 

can creatively think about and apply algebraic concepts such as patterns. This 

fundamental knowledge could help them build more complex cognitive structures during 

formal learning. Future research could target students' school readiness in mathematics in 

light of algebraic thinking. Researchers could demonstrate the longitudinal impact of 

thinking algebraically before formal education. 

Conclusions 

The current study demonstrated that algebra knowledge in I st and 2nd grade can 

predict mathematics ability in 5th grade. Early algebra knowledge was also shown to 

predict growth in standardized test scores in 3rd through 5th grade. The results considered 

students' early ability in other areas of mathematics, reading ability, race, gender, and 

schools' curriculum use and percentage of students receiving free and reduced lunch. The 

findings support prior research that demonstrated students can learn and apply 

fundamental algebra concepts in early elementary school. The findings also support 

theories that early algebraic conceptual knowledge can support the way students structure 

their on-going mathematics knowledge. Focusing on learning and applying fundamental 

algebra concepts can help students structure their mathematics knowledge from the 
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beginning of education. The results underline the importance of including algebra in early 

elementary teaching, standards, and assessments. The current study also suggests that 

further research is needed that looks at how algebra is being taught and how students are 

using algebra to build their cognitive knowledge structures across elementary grades. 

130 



REFERENCES 

Achieve, Inc. (2010). Comparing the Common Core State Standards and Singapore's 

mathematics syllabus. Washington, DC: Author. 

Achieve, Inc. (2006). Closing the expectations gap: An annual 50-state progress report 

on the alignment of high school policies with the demands of college and work. 

Washington, DC: Author. 

Adelman, C. (1999). Answers in the toolbox: Academic intensity, attendance patterns and 

bachelor's degree attainment. Washington, DC: U.S. Department of Education. 

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive 

tutors: Lessons learned. The Journal o/the Learning Sciences, 4(2), 167-207. 

Baroudi, Z. (2006). Easing students transition to algebra. Australian Mathematics 

Teache~ 62,28-33. 

Bastable, V., & Schifter, D. (2008). Classroom stories: Examples of elementary students 

engaged in early algebra. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra 

in the early grades (pp. 165-184). Mahwah, NJ: Lawrence Erlbaum Associates. 

Behr, M. (1980). How children view the equal sign. Mathematics Teaching, 92, 13-15. 

Behr, M., Lesh, R., Post, T., & Silver E. (1983). Rational number concepts. In R. Lesh, & 

M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-

125). New York: Academic Press. 

Behr, M., Wachsmuth, 1., & Post, T. (1985). Construct a sum: A measure of children's 

131 



understanding of fraction size. Journal for Research in Mathematics Education, 

16(2), 120-131. 

Blanton, M., & Kaput, J. J. (2003). Developing elementary teachers' "algebra eyes and 

ears". Teaching Children Mathematics, 10(2), 70-77. 

Boester, T., & Lehrer, R. (2008). Visualizing algebraic reasoning. In J. J. Kaput, D. W. 

Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 211-234). New 

York: Routledge. 

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., & Webb, D. 

(1997). Learning by understanding: The role of multiple representations in 

learning algebra. American Educational Research Journal, 34(4),663-689. 

Briggs, J., Demana, F., & Osborne, A. (1986). Moving into algebra: Developing the 

concepts of variable and function. The Australian Mathematics Teacher, 42,5-8. 

Brizuela, B. M., & Earnest, E. (2008). Multiple notational systems and algebraic 

understandings: The case of the "Best Deal" problem. In J. J. Kaput, D. W. 

Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 273-302). New 

York: Routledge. 

Brizuela, B., Carraher, D. W., & Schliemann, A. D. (2000, April). Mathematical notation 

to support andfurther reasoning ("to help me think of something"). Paper 

presented at the Annual Research Presession of the National Council of Teachers 

of Mathematics, Chicago, IL. 

Brown, V. (1996). Third graders explore multiplication. In D. Schifter (Ed.), What's 

happening in math class? Vol. 1. Envisioning new practices through teacher 

narratives (pp. 18-23). New York: Teachers College Press. 

132 



Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in 

kindergarten, first and third grades: An opportunity-propensity analysis. 

Contemporary Educational Psychology, 34(2),167-183. 

Burnett, K., & Farkas, G. (2009). Poverty and family structure effects on children's 

mathematics achievement: Estimates from random and fixed effects models. The 

Social Science Journal, 46(2),297-318. 

Caldas, S. J., & Bankston, C. (1997). Effect of school population socioeconomic status on 

individual academic achievement. The Journal of Educational Research, 90(5), 

269-277. 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2000). 

Cognitively Guided Instruction: A research-based teacher development program 

for elementary school mathematics. Madison, WI: National Center for Improving 

Student Learning and Achievement in Mathematics and Science. 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). 

Children's mathematics: Cognitively Guided Instruction. Portsmouth, N.H.: 

National Council of Teachers of Mathematics. 

Carpenter, T. P., & Levi, L. B. (2000). Developing concentrations of algebraic reasoning 

in the primary grades. Madison, WI: National Center for Improving Student 

Learning and Achievement in Mathematics and Science. 

Carraher, D., Schliemann, A. D., & Brizuela, B. M. (2000, October). Early algebra, early 

arithmetic: Treating operations as function. Presented at the Twenty-second 

Annual Meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education, Tucson, AZ. 

133 



Carraher, D., Schliemann, A. D., & Brizuela, B. M. (2001). Can young students operate 

on unknowns? In M. van den Hueuvel-Panhuizen (Ed.), Proceedings of the 25th 

Conference of the International Group for the Psychology of Mathematics 

Education: Vol. 1 (pp. 130-140). The Netherlands: Freudental Institute, Utrecht 

University. 

Carraher, D., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same 

as algebra early. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra 

in the early grades (pp. 235-272). New York: Routledge. 

Clement, L. L. (2001). What do students really know about functions? Mathematics 

Teacher, 94, 745-748. 

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (1997). 

Mathematizing and symbolizing: The emergence of chains of signification in one 

first-grade classroom. In D. Kirshner & J. A. Whiston (Eds.), Situated cognition 

theory: Social, semiotic, and neurological perspectives (pp. 151-233). Hillsdale, 

NJ: Lawrence Erlbaum Associates. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

Common Core State Standards Initiative. (2010). Common Core State Standards for 

mathematics. Retrieved December 20, 2010, from corestandards.org: 

http://www.corestandards.orgiassets/CCSSI_Math%20Standards.pdf 

Corbett, A. T., Koedinger, K., & Hadley, W. S. (2001). Cognitive tutors: From the 

research classroom to all classrooms. In P. S. Goodman (Ed.), Technology 

enhanced learning: Opportunities for change (pp. 235-263). Mahwah, N.J.: 

134 



Lawrence Erlbaum Associates. 

Cramer, K. (2001). Using models to build an understanding of functions. Mathematics 

Teaching in the Middle School, 6(5),310-318. 

Cramer, K., Behr, M., Post T., & Lesh, R. (1997). Rational Number Project: Fraction 

lessons for the middle grades - Level 1. Dubuque, IA: Kendall/Hunt Publishing. 

Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth

and fifth-grade students: A comparison of the effects of using commercial 

curricula with the effects of using the Rational Number Project curriculum. 

Journal/or Research in Mathematics Education, 33(2) 111-144. 

Cuevas, G. 1., & Yeatts, K. Y. (2001). Navigating through algebra in grades 3-5. Reston, 

VA: National Council of Teachers of Mathematics. 

Cuoco, A., Goldenberg, E. P., & Mark, 1. (1996). Habits of mind: An organizing 

principle for mathematics curriculum. Journal Mathematics Behavior, 15(4),375-

402. 

Davydov, V. V. (1975). The psychological characteristics of the "prenumerical" period of 

mathematics instruction. In L. P. Steffe (Ed.), Children's capacity for learning 

mathematics: Vol. 7. Soviet studies in the psychology 0/ learning and teaching 

mathematics (pp. 109-205). Chicago: University of Chicago. 

Dietiker, L., Kysh, 1., Hoey, B. & Salley, T. (2006). Algebra connections (Version 3.0). 

Sacramento, CA: College Preparatory Mathematics. 

DiSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. 

Cognition & Instruction, 22(3), 293-331. 

Dossey, 1. A. (1998). Making algebra dynamic and motivating: A national challenge. In 

135 



The nature and role of algebra in the K-14 curriculum: Proceedings o/a national 

symposium (pp. 17-22). Washington, D.C.: National Academy Press. 

Dougherty, B. (2008). Measure up: A quantitative view of early algebra. In J. J. Kaput, 

D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 389-

412). New York: Routledge. 

Dreyfus, T., & Eisenberg, T. (1984). Intuitions of functions. Journal o/Experimental 

Education, 52, 77-85. 

Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers grades 6-10. 

Portsmouth, NH: Heineman. 

Driscoll, M., Zawojeski, J., Humez, A., Nikula, J, Goldsmith, L., & Hammerman, J. 

(2001). The fostering of algebraic thinking toolkit: A guide of staff development. 

Portsmouth, NH: Heinemann. 

EDinformatics. (2010). NCTM Focal Points and Singapore Math Syllabus: New 

Curriculum is more in line with International Standards. Retrieved December 20, 

2010, from edinformatics.com: 

http://www.edinformatics.comlmath_science/nctm_singapore_math.htm 

Enders, C. K. (2010). Applied missing data analysis: Methodology in the social sciences. 

New York: Guilford Press. 

Evan, A., Gray, T., & Olchefske, J. (2006). The gateway to student success in 

mathematics and science. Washington, DC: American Institutes for Research. 

Fernandez, M. L., & Anhalt, C. O. (2001). Transition Toward Algebra. Mathematics 

Teaching in the Middle School, 7(4),236-241. 

Fey, J. T. (1989). School algebra for the year 2000. In S. Wanger & C. Kieran (Eds.), 

136 



Research in the learning and teaching of algebra (pp. 199-213). Reston, VA: 

National Council of the Teachers of Mathematics. 

Fosnot, C. T., & Jacob, B. (2010). Young mathematicians at work: Constructing algebra. 

Portsmouth, NH: Heinemann. 

Fryer, R. G., & Levitt, S. D. (2010). An empirical analysis of the gender gap in 

mathematics. American Economic Journal: Applied Economics, 2(2), 210-140. 

Fujii, T. (2003). Probing students' understanding of variables through cognitive conflict 

problems: Is the concept of a variable so difficult for students to understand? In 

N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 2ih 

Conference of the International Group for the Psychology of Mathematics 

Education: Vol. 1 (pp. 49-66). Honolulu, HI: University of Hawaii. 

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What 

makes professional development effective? Results from a national sample of 

teachers. American Educational Research Journal, 38(4),915-945. 

Georges, A. (2009). Relation of instruction and poverty to mathematics achievement 

gains during kindergarten. Teachers College Record, 111 (9), 2148-2178. 

Gersten, R., Dimino, J., Jayanthi, M., Kim, J. S., & Santoro, L. E. (2010). Teacher study 

group: Impact of the professional development model on reading instruction and 

student outcomes in first grade classrooms. American Educational Research 

Journal 47(3), 694-739. 

Ginsburg, H. P., Leinwand, S., Anstrom, T., & Pollock, E. (2005). What the United States 

can learn from Singapore's world-class mathematics system (and what Singapore 

can learn from the United States): An exploratory study. Washington, DC: 

137 



American Institutes for Research. 

Goldenberg, E. P., Cuoco, A. A., & Mark, J. (1998). A role for geometry in general 

education. In R. Lehrer & C. Chazan (Eds.), Designing learning environments for 

developing understanding of geometry and space (pp. 3-44). Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Goldenberg, E. P. & Shteingold, N. (2008). Early algebra: The math workshop 

perspective. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early 

grades (pp. 449-477). Mahwah, NJ: Lawrence Erlbaum Associates. 

Goldenberg, E. P. & Shteingold, N. (2003). Mathematical habits of mind. In F. Lester & 

R.I. Charles (Eds.), Teaching mathematics through problem solving: 

Prekindergarten-grade 6 (pp. 15-29). Reston, VA: National Council of Teachers 

of Mathematics. 

Gonzales, P., Guzman, J. C., Partelow, L., Pahlke, E., Jocelyn, L., Kastberg, D., & 

Williams, T. (2004). Highlights from the Trends in International Mathematics 

and Science Study (TIMSS) 2003 (NCES 2005-005). U.S. Department of 

Education, National Center for Education Statistics. Washington, DC: U.S. 

Government Printing Office. 

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, modeling, 

and instructional design. In P. Cobb, E. Yackel, & K. McClain (Eds.), 

Symbolizing and communicating in mathematics classrooms (pp. 225-274). 

Mahwah, NJ: Lawrence Erlbaum Associates. 

Greenes, C., Cavanagh, M., Dacey, L., Findell, C., & Small, M. (2001). Navigating 

through algebra in prekindergarten-grade 2. Reston, VA: National Council of 

138 



Teachers of Mathematics. 

Greenwald, R., & Hedges, L. V. (1996). The effect of school resources on student 

achievement. Review of Educational Research, 66(3),361-396. 

Hallinan, M. T., & Kubitschek, W. N. (2010). School sector, school poverty, and the 

catholic school advantage. Catholic Education: A Journal of Inquiry and 

Practice,14(2), 143-172. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical 

knowledge for teaching on student achievement. American Educational Research 

Journal, 42(2),371-406. 

Horn, L., & Nunez, A. (2000). Mapping the road to college: First-generation students' 

math track, planning strategies, and context of support (NCES 2000-153). 

Washington DC: U.S. Department of Education. 

Horowitz, J. E. (2005). Inside high school reform: Making the changes that matter. San 

Fransisco: WestEd. 

Kalchman, M. S., & Koedinger, K. R. (2005). Teaching and learning functions. In M. S. 

Donovan & J. D. Bransford (Eds.), How students learn: History, mathematics, 

and science in the classroom (pp. 351-396). Washington, D.C.: National 

Academic Press. 

Kaput, J. J. (2000). Transforming algebrafrom an engine of inequity to an engine of 

mathematical power by "algebrafying" the K-12 curriculum. Dartmouth, MA: 

National Center for Improving Student Learning and Achievement in 

Mathematics and Science. 

Kaput, J. J. (1999). Teaching and learning a new algebra with understanding. In E. 

139 



Fennema, & T. A. Romberg (Eds.), ~Mathematics classrooms that promote 

understanding (pp. 133-155). Mahwah, NJ: Lawrence Erlbaum Associates. 

Kaput, J. J. (1995, October). A research base supporting long term algebra reform? 

Paper presented at the 17th Annual Meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education, Columbus, 

OH. 

Kaput, J. J., & Blanton, M. L. (2001). Student achievement in algebraic thinking: A 

comparison of 3rd graders' performance on a state 4th grade assessment. In R. 

Speiser, C. Maher, & C. Walter (Eds.), The proceedings of the 23rd annual 

meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education: Vol. 1 (pp. 99-107). Columbus, OH: The 

ERIC Clearinghouse for Science, Mathematics, and Environmental Education. 

Kaput, J. J., & Blanton, M. L. (2000). Algebraic reasoning in the context of elementary 

mathematics: Making it implementable on a massive scale. Dartmouth, MA: 

National Center for Improving Student Learning and Achievement in 

Mathematics and Science. 

Kaput, J. J., Blanton, M. L., & Moreno, L. (2008). Algebra from a symbolization point of 

view. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades 

(pp. 19-55). Mahwah, NJ: Lawrence Erlbaum Associates. 

Kaput, J. J., Carraher, D. W., & Blanton, M. L. (Eds.). (2008). Algebra in the early 

grades. New York: Routledge. 

Kentucky Department of Education. (2010, January 13). Kentucky school testing system. 

Retrieved January 31, 2010, from google.com: 

140 



http://www.education.ky . gov IKD EI Administrative+Resources/Testing+and+Repo 

rting+/Kentucky+Schoo 1+ Testing+S ysteml 

Kentucky Department of Education. (2009). Core Content Guide. Retrieved October 1, 

2009, from google.com: 

http://www.education.ky.govIKDE/lnstructional+Resources/Curriculum+Docume 

nts+and+Resources/Core+Content+for+Assessmentl 

Kentucky Department of Education. (2008a, June 7). Social studies curriculum maps. 

Retrieved October 1,2009, from google.com: 

http://www.education.ky.govIKDE/Instructional+Resources/Curriculum+Docume 

nts+and+Resources/Teaching+ Tools/Curriculum+Maps 

Kentucky Department of Education. (2008b, June 2). Core Content for Assessment 

version 4.1. Retrieved October 1,2009, from google.com: 

http://www.education.ky.govIKDE/Instructional+REsources/Curriculum+Docum 

ents+and+Resources/Core+Content+for+AssessmentiCore+Content+for+Assess 

ment+4.11 

Kentucky Department of Education. (2006, August). Core Content for Reading 

Assessment: Elementary version 4.1. Retrieved October 1, 2009, from 

google.com: 

http://www.education.ky.gov/KDE/lnstructional+Resources/Curriculum+Docume 

nts+and+ Resources/Core+Content+for+ Assessment/Core+Content+for+ Assessm 

ent+4.11 

Kentucky Department of Education. (2004). 2004 CATS interpretive guide detailed 

information on using your score reports. Frankfort, KY: Author. Retrieved 

141 



October 1,2009, from google.com: 

http://www.education.ky.govINRIrdonlyres/B8DOB770-7D3F-4C8E-B7CD-

77D31 DC092EAlO/InterpretiveGuide2004. pdf 

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in 

Mathematics, 12(3),317-326. 

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), 

Handbook of research on mathematics teaching and learning: A project of the 

National Council of Teachers of Mathematics (pp. 390-419). New York: 

Macmillan. 

Kieran, C. (2008). What do students struggle with when first introduced to algebra 

symbols? Reston, VA: National Council for Teachers of Mathematics. Retrieved 

February 11,2011, from google.com: 

http://www .nctm.org/newsl content.aspx? id= 123 32 

Koedinger, K. R., & Anderson, J. R. (1998). Illustrating principled design: The early 

evolution of a cognitive tutor for algebra symbolization. Interactive Learning 

Environments, 5, 161-179. 

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent 

tutoring goes to school in the big city. International Journal of Artificial 

Intelligence in Education, 8,30-43. 

Koedinger, K. R., & MacLaren, B. A. (2002). Developing a pedagogical domain theory 

of early algebra problem solving. CMU-HCII Tech Report 02-100. Pittsburgh, 

P A: Carnegie Mellon University, School of Computer Science. 

Lee, J. (2002). Racial and ethnic achievement gap trends: Reversing the progress toward 

142 



equity? Educational Researcher January, 31, 3-12. 

Lee, V. E., & Burkam, D. T. (2002). Inequality at the starting gate: Social background 

differences in achievement as children begin school. Washington, D.C.: 

Economic Policy Institute. 

Lehrer, R., Jacobson, C., Kemeny, V., & Strom, D. (1999). Building on children's 

intuitions to build mathematical understanding in space. In E. Fennema & T. A. 

Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 63-

87). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lehrer, R., Strom, D., & Confrey, J. (2002). Grounding metaphors and inscriptional 

resonance: Children's emerging understanding of mathematical similarity. 

Cognition and Instruction, 20, 359-398. 

Lester, J. B. (1996). Is the algorithm all there is? In C. T. F osnot (Ed.), Constructivism: 

Foundations, perspectives. and practice (pp. 145-152). New York: Teachers 

College Press. 

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). 

New York: Wiley. 

Marzano, R. J. (2006). Classroom assessment & grading that work. Alexandria, VA: 

Association for Supervision and Curriculum Development. 

Mason, J. (2008). Making use of children's powers to produce algebraic thinking. In J. 

Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 57-94). 

Mahwah, NJ: Lawrence Erlbaum Associates. 

McCoach, D. B., & Black, A. C. (2008). Evaluation of model fit and adequacy. In A. A. 

O'Connell & D. B. McCoach (Eds.), Multilevel modeling of educational data (pp. 

143 



245-272). Charlotte, NC: Information Age Publishing. 

Moses, R. P., & Cobb, C. Jr. (2001). Organizing algebra: The need to voice a demand. 

Social Policy, 3,4-12. 

Moss, J., & Case, R. (1999). Developing children's understanding of the rational 

numbers: A new model and experimental curriculum. Journal for Research in 

Mathematics Education, 30, 122-147. 

Moyer, P. S., Niezgoda, D., & Stanley, J. (2005). Young children's use of virtual 

manipulatives and other forms of mathematical representation. In W. J. Masalski 

& P. C. Elliott (Eds.), Technology-supported mathematics learning environments 

6th yearbook (pp. 17-34). Reston, VA: National Council of Teachers of 

Mathematics. 

Moynahan, J. (1996). Of-ing fractions. In D. Schifter (Ed.), What's happening in math 

class? Vol. 1. Envisioning new practices through teacher narratives (pp. 24-36). 

New York: Teachers College Press. 

National Council of Teachers of Mathematics. (2000). Principles and standards for 

school mathematics. Reston, Va.: Author. 

National Council of Teachers of Mathematics. (1998). The nature and role of algebra in 

the K-14 curriculum. Reston, VA: Author. 

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation 

standardsfor school mathematics. Reston, VA: Author. 

National Mathematics Advisory Panel. (2008a). Foundations for success: The final 

report of the National Mathematics Advisory Panel. Washington, DC: U.S. 

Department of Education. 

144 



National Mathematics Advisory Panel. (2008b). Reports of the task groups and 

subcommittees. Washington DC: Author. 

O'Connell A. A., & McCoach, D. B. (2008). Multilevel modeling of educational data. 

Charlotte, NC: Information Age Publishing. 

Palardy, G. J. (2008). Differential school effects among low, middle, and high social 

class composition schools: A multiple group, multilevel latent growth curve 

analysis. School Effectiveness and School Improvement, 19(1),21-49. 

Phillips, E., & Lappan, G. (1998). Algebra: The first gate. In L. Leutzinger (Ed.), 

Mathematics in the middle (pp. 10-19). Reston, VA: National Council of Teachers 

of Mathematics. 

Post, T. (1979). Making time for the basics: Some thoughts on viable alternatives within 

a balanced mathematics program. In S. Sharron, & R. Reys (Eds.), Applications in 

school mathematics: 1979 yearbook (pp. 352-356). Reston, VA: National Council 

of Teachers of Mathematics. 

Rakes, C. R., Valentine, J. C., McGatha, M. B., & Ronau, R. N. (2010). Methods of 

instructional improvement in algebra: A systematic review and meta-analysis. 

Review of Educational Research, 80(3),372-400. 

RAND Mathematics Study Panel (2003). Mathematical proficiency for all students. 

Pittsburgh: RAND. 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and 

data analysis methods. Thousand Oaks, CA: Sage. 

Sameroff, A. J., Bartko, W. T., Baldwin, A., & Seifer, R. (1998). Family and social 

influences on the development of child competence. In M. Lewis & C. Feiring 

145 



(Eds.), Families, risk, and competence (pp. 161-185). Mahwah, NJ: Erlbaum. 

Schifter, D. (Ed.). (1996). What's happening in math class? Vol. 1. Envisioning new 

practices through teacher narratives. New York: Teachers College Press. 

Schifter, D. (Ed.). (1996). What's happening in math class? Vol. 2. Reconstructing 

professional identities. New York: Teachers College Press. 

Schifter, D. (1996). A constructivist perspective on teaching and learning mathematics. 

Phi Delta Kappan, 77(7), 492-499. 

Schifter, D., Bastable, V., & Russell, S. J. (1997). Attention to mathematical thinking: 

Teaching to the Big Ideas. In S. Friel, & G. Bright (Eds.), Reflecting on our work: 

NSF teacher enhancement in mathematics K-6 (pp. 255-262). Washington, DC: 

University Press of America. 

Schifter, D., & Fosnot, C. T. (1993). Reconstructing mathematics education: Stories of 

teachers meeting the challenge of reform. New York: Teachers College Press. 

Schifter, D., Monk, S., Russell, S. J., & Bastable, V. (2008). Early algebra: What does 

understanding the laws of arithmetic mean in the elementary grades? In J. Kaput, 

D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 413-447). 

Mahwah, NJ: Lawrence Erlbaum Associates. 

Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2000, April). From quantities to 

ratio, function, and algebraic relations. Paper presented at the 2000 Annual 

Meeting of the American Educational Research Association, New Orleans, LA. 

Scientific Software International, Inc. (201Oa). Proportion variance explained: Two-level 

models. Retrieved February 10,2011, from google.com: 

http://www.ssicentral.comlhlmlhelp6/faq/Proportion _ Variance _ Explained_Two-

146 



level_ models.pdf 

Scientific Software International, Inc. (201 Ob). Use of deviance statistics for comparing 

models. Retrieved February 10,2011, from google.com: 

http://www.ssicentral.comlhlmlhelp6/faqlUse_oC deviance_statistics _for _ compar 

ing_ models. pdf 

Seo, K., & Ginsburg, H. P. (2003). "You've got to carefully read the math sentence ... ": 

Classroom context and children's interpretations of the equals sign. In A. J. 

Baroody, & A. Dowker (Eds.), The development of arithmetic concepts and skills: 

Constructing adaptive expertise (pp. 161-187). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Sfard, A. (2000). Symbolizing mathematical reality into being-Or how mathematical 

discourse and mathematical objects create each other. In P. Cobb, E. Yackel, & K. 

McCain (Eds.), Symbolizing and communicating in mathematics classroom (pp. 

37- 97). London: LEA. 

Silva, C., & Moses, R. P. (1990). The Algebra Project: Making middle school 

mathematics count. Journal of Negro Education, 59(3),375-91 

Sinclair, A. L., Bynum, B. H., Thacker, A. A., & Hoffman, R. G. (2008). Third-party 

checking of calibration, scaling and equating of the 2008 Kentucky Core Content 

Test. Human Resources Research Organization. Report prepared for the Kentucky 

Department of Education. 

Smith, J. B. (1996). Does an extra year make any difference? The impact of early access 

to algebra on long-term gains in mathematics achievement. Educational 

Evaluation and Policy Analysis, 18(2), 141-153. 

147 



Smith, J. P., & Thompson, P. W. (2008). Quantitative reasoning and the development of 

algebraic reasoning. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the 

early grades (pp. 95-132). Mahwah, NJ: Lawrence Erlbaum Associates. 

Snijders, T. (1996). Analysis of longitudinal data using the hierarchical linear model. 

Quality & Quantity, 30(4), 405-426. 

Sowder, L. (1988). Children's solutions of story problems. Journal of Mathematical 

Behavior, 7,227-238. 

Spielhagen, F. R. (2006). Closing the achievement gap in math: The long-term effects of 

eighth-grade algebra. Journal of Advanced Academics, 18(1), 34-59. 

Stiefel, S., Schwartz, A. E., & Ellen, I. G. (2006). Disentangling the racial test score gap: 

Probing the evidence in a large urban school district. Journal of Policy Analysis 

and Management, 26(1), 7-30. 

Stiggins, R. J., Arter, J. A., Chappuis, J., & Chappuis, S. (2009). Classroom assessment 

for student learning: Doing it right, using it well. Boston, MA: Allyn & Bacon. 

Stiggins, R. J. (2005). The unfulfilled promise of classroom assessment. Educational 

Measurement: Issues and Practice, 20(3),5-15. 

Suh, J., & Moyer, P. S. (2007). Developing students' representational fluency using 

virtual and physical algebra balances. Journal of Computers in Mathematics and 

Science Teaching, 26, 155-173. 

TERC. (2007). Investigations in Number, Data, and Space. Retrieved October 1,2009, 

from google.com: http://investigations.terc.eduJ 

Themstrom, A. & Themstrom, S. (2004). No excuses: Closing the racial gap in learning. 

New York: Simon & Schuster. 

148 



United States Department of Agriculture. (2011, May 18). Nutrition and Health Services. 

Retrieved May 23,2011, from google.com: 

http://scn.ky.gov/octdataoutlrptlist.htm 

United States Department of Agriculture. (2009, October 29). National School Lunch 

Program. Retrieved October 1,2009, from google.com: 

http://www.fns.usda.gov/cndlLunch/ 

Van de Walle, J. A. (1990). Elementary school mathematics: Teaching developmentally. 

New York: Longman. 

Whipple, S. S., Evans, G. W., Barry, R. L., & Maxwell, L. E. (2010). An ecological 

perspective on cumulative school and neighborhood risk factors related to 

achievement. Journal of Applied Developmental Psychology, 31(6),422-427. 

Williams, S. R. (1993). Mathematics and being in the world: Toward an interpretive 

framework. For the Learning of Mathematics, 13(2),2-7. 

Yerushalmy, M. (1997). Designing representations: Reasoning about functions of two 

variables. Journalfor Research in Mathematics Education, 28,431-466. 

149 



APPENDIX A 

The percentages of total items given to students that target standards in each 

mathematics content area are shown in Table 7. 

Table 22 

Percentage of CCA Number Properties and Operations Items Targeting Each of Its 

Components 

Ratios and Properties of 
Number Number Proportional Numbers and 

Grade Sense Estimation Operations Reading O~erations 
1 st 27.0% 0.4% 71.7% 0.0% 0.9% 
2nd 42.3% 15.7% 33.9% 0.0% 8.0% 
3rd 44.3% 7.6% 41.8% 0.0% 6.3% 
4th 45.8% 5.3% 34.6% 0.0% 14.3% 
5th 40.8% 7.0% 34.1% 1.1% 17.1% 

Table 23 

Percentage of CCA Data Analysis and Probability Items Targeting Each of Its 

Components 

Data Characteristics Experiments 
Grade Re~resentations of Datasets and Sam~les Probability 
1 st N/A* N/A* N/A* N/A* 
2nd 99.8% 0.0% 0.0% 0.2% 
3rd 97.1% 0.0% 0.0% 2.9% 
4th 45.0% 27.5% 0.5% 27.0% 
5th 34.3% 24.9% 1.8% 39.0% 

*No items were given on Data Analysis and Probability in the 1 sl grade. 
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Table 24 

Percentage ofCCA Measurement Items Targeting Each of Its Components 

Grade Measuring Ph~sical Attributes S~stems of Measurement 
1 st 98.8% 1.2% 
2nd 95.7% 4.3% 
3rd 93.1% 6.9% 
4th 63.7% 36.3% 
5th 81.2% 18.8% 

Table 25 

Percentage of CCA Geometry Items Targeting Each of Its Components 

Grade Shapes and Relationships Transformations of Sha~es Coordinate Geometry 
1 st 99.6% 0.4% 0.0% 
2nd 62.0% 38.0% 0.0% 
3rd 78.0% 21.6% 0.4% 
4th 78.2% 12.3% 9.4% 
5th 81.6% 13.1% 5.3% 
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APPENOIXB 

Table 26 

Student Mathematics Comparison by Gender 

Gender N Mean S.D. t df ~ 
KCCT Mathematics3 Female 683 54.24 22.21 

0.49 1383 
Male 702 21.50 

ns 
55.05 

KCCT Mathematics4 Female 655 51.42 22.42 
0.19 1319 

Male 666 53.00 21.79 
ns 

KCCT Mathematics5 Female 634 48.04 22.89 
0.70 1284 

Male 652 48.53 22.44 
ns 

General Mathematics CCA12 Female 683 76.39% 16.71 
0.90 1383 ns 

Male 702 76.51% 15.96 
CCA3 General Mathematics Female 666 73.90% 17.72 

0.94 1344 
Male 680 73.97% 17.29 

ns 

CCA4 General Mathematics Female 585 63.99% 20.45 
0.98 1187 

Male 604 64.03% 21.47 
ns 

CCA5 General Mathematics Female 579 67.46% 20.10 
0.08 1173 

Male 596 69.43% 18.92 
ns 

CCA 12 Algebra Female 683 77.03% 25.48 
0.20 1383 

Male 702 78.81% 25.94 
ns 

CCA3 Algebra Female 595 71.00% 24.37 
0.24 1196 

Male 603 72.64% 23.84 
ns 

CCA4 Algebra Female 330 75.72% 28.31 
0.41 637 

Male 309 73.87% 28.03 
ns 

CCA5 Algebra Female 175 64.44% 38.94 
0.22 352 

Male 179 69.35% 37.03 
ns 
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Table 27 

Student Mathematics Comparison by Race 

Grade Race N Mean S.D. F df J2 
Asian-American 29 64.41 16.68 

KCCT 
3 

African-American 466 45.41 22.81 
40.90 

3, 
<.001 

Mathematics Hispanic 75 54.09 19.88 1267 
Caucasian 701 58.92 20.09 

Asian-American 29 60.28 20.06 
3, KCCT African-American 454 42.72 22.05 

Mathematics 
4 

Hispanic 70 49.34 19.43 
41.34 1208 <.001 

Caucasian 659 56.78 20.85 

Asian-American 27 62.56 18.52 
KCCT 

5 
African-American 442 38.05 23.06 

49.86 
3, 

<.001 Mathematics Hispanic 72 44.72 19.39 1175 
Caucasian 638 53.37 20.40 

*Continued on next page 
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Table 27 continued 

Student Mathematics Comparison by Race 

Grade Race N Mean S.D. F df E 
CCA 

Asian-American 29 84.51 10.33 

General 1-2 
African-American 466 70.24 16.54 

46.21 
3, 

<.001 
Mathematics 

Hispanic 75 70.63 18.57 1267 
Caucasian 701 80.47 14.73 

CCA 
Asian-American 28 83.46 14.61 

General 3 
African-American 455 66.76 18.60 

40.40 
3, 

<.001 
Mathematics 

Hispanic 72 72.01 17.76 1229 
Caucasian 678 77.49 15.53 

CCA 
Asian-American 24 71.90 21.75 

General 4 
African-American 404 55.27 20.30 

37.98 
3, 

<.001 
Mathematics 

Hispanic 64 56.64 22.18 1084 
Caucasian 596 68.12 18.89 

CCA 
Asian-American 25 75.21 19.88 

General 5 
African-American 395 61.03 19.62 

26.24 
3, 

<.001 
Mathematics 

Hispanic 71 67.85 17.80 1072 
Caucasian 585 71.63 18.42 

Asian-American 29 82.11 27.91 
CCA 

1-2 
African-American 466 71.73 28.26 

16.06 
3, 

<.001 Algebra Hispanic 75 71.17 30.43 1267 
Caucasian 701 81.73 23.00 

Asian-American 24 80.63 19.54 
CCA 

3 
African-American 396 64.51 25.40 

19.39 
3, 

<.001 Algebra Hispanic 62 69.01 26.48 1088 
Caucasian 610 75.80 22.60 

Asian-American 15 87.48 18.73 
CCA 

4 
African-American 207 66.59 31.86 

7.39 
3, 

<.001 Algebra Hispanic 21 78.91 27.05 553 
Caucasian 314 77.22 26.18 

Asian-American 6 81.94 40.28 
CCA 

5 
African-American 107 64.82 34.14 

0.41 
3, 

Algebra Hispanic 16 68.72 35.34 343 
ns 

Caucasian 218 66.72 40.35 
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Table 28 

Testingfor the Achievement Gap in Student Mathematics: Caucasian and Asian-

American students (CA) compared to African-American and Hispanic students (AH) 

Grade Race N Mean S.D. t df p 

KCCT Mathematics 3 
AH 541 46.62 22.61 

-10.44 1269 <.001 
CA 730 59.14 19.99 

KCCT Mathematics 4 
AH 524 43.60 21.82 

-10.81 1210 <.001 
CA 688 56.93 20.81 

KCCT Mathematics 5 
AH 514 38.98 22.68 

-11.73 1177 <.001 
CA 665 53.74 20.39 

CCA General Mathematics 1-2 
AH 541 7029 16.82 

-11.69 1269 <.001 CA 730 80.63 14.60 

CCA General Mathematics 3 
AH 527 67.47 18.56 

-10.54 1231 <.001 
CA 706 77.72 15.53 

CCA General Mathematics 4 
AH 468 55.46 20.55 

-10.63 1086 <.001 
CA 620 68.26 19.01 

CCA General Mathematics 5 
AH 466 62.07 19.49 

-8.34 1074 <.001 
CA 610 71.78 18.47 

CCA Algebra 1-2 
AH 541 71.66 28.55 

-6.95 1269 <.001 CA 730 81.74 23.19 

CCA Algebra 3 
AH 458 65.12 25.56 

-7.44 1090 <.001 
CA 634 75.98 22.49 

CCAAlgebra 4 
AH 228 67.72 31.59 

-4.07 555 <.001 
CA 329 77.69 25.95 

CCA Algebra 5 
AH 123 65.32 34.18 

-0.42 345 CA 224 67.13 40.34 
ns 
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Table 29 

Correlations of Students' Mathematics Scores to Their Reading Scores and Schools' 

Percentage of Students Receiving Free and Reduced Lunch (FRL) 

KCCT Reading 
Grade 3 4 5 FRL 

KCCT Mathematics 3 .74* .67* .63* -.31 * 
KCCT Mathematics 4 .70* .78* .68* -.37* 
KCCT Mathematics 5 .66* .71* .72* -.36* 
CCA General Mathematics 1-2 .55* .54* .51 * -.33* 
CCA General Mathematics 3 .58* .54* .46* -.29* 
CCA General Mathematics 4 .55* .56* .52* -.33* 
CCA General Mathematics 5 .50* .55* .53* -.26* 
CCA Algebra 1-2 .29* .31* .30* -.17* 
CCAAlgebra 3 .46* .42* .39* -.25* 
CCAAlgebra 4 .39* .45* .41 * -.19* 
CCA Algebra 5 .01 .04 .05 -.02 

*p<.OOI 
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