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ABSTRACT 

3-D LUNG DEFORMATION AND FUNCTION FROM RESPIRATORY-GATED 4-0 

X-RA Y CT IMAGES: APPLICATION TO RADIATION TREATMENT PLANNING 

Mohammadreza Negahdar 

June 21, 2012 

Many lung diseases or injuries can cause biomechanical or material property changes that can alter 

lung function. While the mechanical changes associated with the change of the material properties 

originate at a regional level, they remain largely asymptomatic and are invisible to global measures of 

lung function until they have advanced significantly and have aggregated. In the realm of external beam 

radiation therapy of patients suffering from lung cancer, determination of pattems of pre- and post

treatment motion, and measures of regional and global lung elasticity and function are clinically 

relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including 

mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary 

function which may be incorporated into the treatment planning process. 

Our contributions are as follows: 

(i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) 

has been designed and implemented which permits the possibility of enforcing physical constraints on 

the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The 

proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. 

v 



(ii) A large displacement landmark-base elastic registration method has been devised for thoracic 

CT volumetric image sets containing large deformations or changes, as encountered for example in 

registration of pre-treatment and post-treatment images or multi-modality registration. 

(iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of 

mechanical strain as an index of lung functionality has been formulated for measurement of regional 

pulmonary function. 

(iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of 

physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of 

ventilation, Vjae, and principal strains, (Vill , Vilz ' VilJ, has been performed through correlation of the 

derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT 

have shown that the maximum principal strain pulmonary function map derived from MOFIO, 

outperforms all previously established ventilation metrics from 40-CT. 

It is hypothesized that use of CT -derived ventilation images in the treatment planning process will 

help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that 

measures of regional and global lung elasticity and function obtained during the course of treatment 

may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment 

global and regional lung function and biomechanical properties, the radiation treatment dose can 

potentially be escalated to improve tumor response and local control. 
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CHAPTER 1 

INTRODUCTION 

1.1 Lung Anatomy and Respiratory Physiology 

Lungs are essential organs for respiration, facilitating gas exchange between human body and the 

atmosphere. They deliver oxygen from the air into the venous blood and extract carbon dioxide from the 

blood at the same air-blood interface. Moreover, they play other critical roles in physiology, such as rapid 

modulation of blood pH, thermoregulation, and immunoprotection. Each lung is attached by its root and 

pulmonary ligament to the heart and trachea but is otherwise free in the thoracic cavity. Lungs are light, 

soft, spongy, and elastic and because they contain air they tloat in water. Human lungs consist of the left 

and right lungs, and the two lungs are located in the chest on either side of the heart. Each lung has an apex, 

three surfaces (costal, medial, and diaphragmatic), and three borders (anterior, inferior, and posterior). Each 

lung is surrounded by a completely closed pleural cavity. The pleural folds back into itself and forms a two

layered, membrane structure. The outer pleura (parietal pleura) is attached to the chest wall. The inner 

pleura (visceral pleura) covers the lungs and divides the two lungs into five lobes. The left lung has two 

lobes; left upper lobe (LUL) and left lower lobe (LLL), separated by an oblique fissure. The right lung is 

partitioned into three lobes; right upper lobe (RUL), right middle lobe (RML), and right lower lobe (RLL). 

The RUL and RML are separated by a horizontal fissure and the RML and RLL are separated by an oblique 

fissure. A lobar fissure is a thin space (approximately 0.5 mm depending on volume of pleural tluid) 

separating the lung lobes. Lung lobes can slide against the chest wall and adjacent lobes during respiration 

[36, 142], and this motion may provide the means to reduce the lung parenchymal distortion and avoid 

regions of high local stress [70]. 

Figure l.l provides an overview of the respiratory system. As illustrated in Figure 1.I, the trachea 

branches into two bronchi. Gas is transported between the lungs and the atmosphere through airways, 

which consist of a series of branching tubes with progressively decreasing dimensions. Within the lung, 



Rlghl lung: -MiddieJc:JM 

..-.-

Figure 1.1 : Organization of the respiratory system [I]. 

there are more than 20 generations of airway branching. It is believed that such a bifurcating network 

connects to about 300 million alveoli, where gas exchange between air and blood takes place. Gas 

inspiration and expiration are driven by the pressure differences between the atmosphere and chest. The 

pressure of the intrapleural fluid is called intrap leural pressure (Pip). The changes of the intrapleural 

pressure cause the lungs and thoracic wall to move in and out together during normal breathing. The 

pressure inside the lung is the alveolar pressure (Palv ) . The difference in pressure between the inside and 

outside of the lung is termed the transpulmonary pressure (Ptp ) , which is a determinant of lung size, where 

Ptp = Palv - Pip · The transrespiratory system pressure, the difference between the alveolar pressure and the 

atmospheric pressure Prs = Pa1v - Patm, is a determinant for air flow . The intrapleural pressure at rest is a 

balance between the tendency of the lung to collapse and the tendency of the chest wall to expand. During 

inspiration, as the diaphragm and the intercostal muscles contract, the thorax expands and the Pip becomes 

more negative; then the transitionary pressure becomes more positive causing the lungs to expand. The 

enlargement of the lung causes an increase in the sizes of the alveoli throughout the lung. Therefore, by 

Boyle's law, the Pa1v decreases to become less than Patm causing a bulk flow of air from the atmosphere 

through the airways into the alveo li. During expiration, as the diaphragm and inspiratory intercostal 

muscles stop contracting, the chest wall passively recoils inward to its pre-inspiratory volume, causing the 

Pip to move back towards its pre-inspiration value. As the lung becomes smaller, air in the alveoli becomes 
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Figure 1.2: Definition of lung volumes and capacities [3]. 

compressed, so that by Boyle's law, alveolar pressure exceeds atmospheric pressure, therefore air flows 

from the alveoli through the airways out to the atmosphere. 

Lung capacities/volume associated with respiratory physiology are given in Figure 1.2: 

Tidal Volume (TV) : the air volume breathed in and out during a normal breath. Typical values are 

around 500 ml for an adult. 

Residual Volume (RV) : the amount of air left in the lung after a maximum expiration. 

Vital Capacity (VC): the maximum amount of air volume that can be breathed in after a maximum 

expiration. 

Functional residual Capacity (FRC): the amount of air left in the lungs after a normal expiration. 

Total Lung Capacity (TLC) : The volume of the lung after maximal inspiration. 

Beside the air flow, blood circulates inside the lung parenchyma. Blood is pumped from the right 

ventricle through the pulmonary arteries and travels through the lungs, where it releases carbon dioxide and 

picks up oxygen during respiration . The gas exchange occurs between capillaries and alveoli . The 

oxygenated blood then leaves the lungs through pulmonary veins to the left atrium . 

Lung tissue function depends upon the material properties of the lung parenchyma and the relationships 

between the lungs, diaphragm, and other parts of the respiratory system. Pulmonary diseases/injuries can 

change the tissue material properties of lung parenchyma. Pulmonary emphysema, a chronic obstructive 

pulmonary disease (COPD), is characterized by loss of elasticity (increased compl iance) of the lung tissue, 

from destruction of structures supporting the alveo li and destruction of capillaries feeding the alveoli. 

3 
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Figure 1.3: Lung cancer distribution in the United States [2]. 

Idiopathic pulmonary fibrosis (IPF), a classic interstit ial lung disease, causes inflammation and fibrosis of 

tissue in the lungs. Over time, the disease makes the tissue thicker and stiffer (reduced compliance). As the 

change of structural properties and the disease process per se are associated with the mechanical changes, it 

would be desirable to have objective methods to determine the regional mechanics which reflect regional 

pulmonary function . 

1.2 Lung Cancer 

Lung cancer, which is one of the main causes of deaths due to cancer, is a form of very rapid cell 

growth in the lung tissue caused by changes in tissue form itself. The cells form a mass or tumor that differs 

from the surrounding tissues from which they arise. Tumors take oxygen, nutrients, and space from healthy 

cells, and they invade and destroy or reduce the ab ility of normal tissues to function . Compared with other 

types of cancer, the number of people diagnosed with lung cancer is rising. The American Cancer Society 

estimates that in 2012 there will be about 226, 160 new diagnoses of lung cancer, accounting for about 14% 

of cancer diagnoses, and an estimated 160,340 deaths from lung cancer, accounting for about 28% of all 

cancer deaths, which is more than the number of deaths from colorectal , breast, and prostate cancer 

combined. Figure 1.3 shows the distribution of lung cancer in the United States. 

4 
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Figure 1.4: Tobacco use in the United States, 1900-2006 (taken from [149]). 

Basically lung cancer is divided into two classes: 

Primary lung cancer has two types, namely small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC). Small cell lung cancers account for about 15% of all lung cancers and have a high degree 

of malignancy with fast growth and the potential to quickly metastasize. Non-small cell lung cancers 

account for about 85% of all lung cancers and result from the growth of s ingle cells and often strike more 

than one area in the lung, but are not as malignant as SCLC. 

Secondary lung cancer arises as a result of the spread of cancer from other organs, most often breast 

cancer and colon cancer. 

Symptoms may include persistent cough, sputum streaked with blood, chest pain, voice change, and 

recurrent pneumonia or bronchitis . Signs and symptoms of lung cancer will only occur with abnormal and 

severe cell growth, sometimes many years since the onset of its development. There is even the possibility 

that the cancer does not result in any specific signs and symptoms, and is only visible in the chest X-ray. 

The biggest cause of lung cancer is smoking. Figure 1.4 demonstrates that lung cancer deaths in the 

United States have a direct relation and in fact have followed the same trend as per capita tobacco 

consumption between 1930-2005 . Exposure to radon gas released from soil and building materials is 

estimated to be the second leading cause of lung cancer. Other causes are air contamination by asbestos, air 

pollution by combustion, or fumes inc luding second hand cigarette smoke. There are some diseases that 
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increase the risk of lung cancer, namely tuberculosis and pneumonia. Both of these diseases can cause 

injury to the lung tissue organ causing abnormal cell growth within the chest cavity. 

Treatment of patients with lung cancer depends on the staging, and can include surgery, chemotherapy, 

and radiation treatment, or a combination thereof. 

1.3 Pulmonary CT Imaging 

Computed tomography (CT) theory, techniques, and applications have seen continuous development 

over the years, matching advancement in new acquisition hardware and techniques. The advances in X-ray 

CT such as transition from fan-beam to cone-beam geometry, from single-row detector to multiple-row 

detector arrays, and from conventional to spiral CT now permit a larger scatming range in shorter time and 

with a higher image resolution [67, 176]. A schematic showing the development of four generations of CT 

is shown in Figure 1.5. First generation consisted of a single detector and a sharply collimated X-ray beam. 

The attenuation profil6 was recorded during a translation of both the source and detector, which was 

followed by a rotation of both the detector and the X-ray tube to generate the projection profile for a 

different angle. Second generation scanners acquired the data in the same manner, but utilized several 
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detector elements and an X-ray fan beam with less collimation. A separate translational movement was still 

part of the acquisition process. In third generation scanners, only a rotation of the curved detector row 

together with the X-ray tube is carried out. A stationary detector ring with rotating X-ray tube was the 

fourth generation systems [13]. Helical CT was developed to cover a larger volume of the body in a short 

time. The data are acquired as the table position is moved continuously in the scanner. Simultaneous 

motion of the patient bed and rotation of the X -ray source and detectors results in a spiral trajectory of the 

X-ray transmitted through patient. To date, seven generations of X-ray CT systems have been developed, 

with the latest generation being cone-beam CT systems having many detector rows (256 rows are now 

available) and capable of performing helical scans. 

CT imaging has been used to study lung since 1980s via the CT -based scanner developed at Mayo 

Clinic (Rochester, MN), known as the dynamic spatial reconstructor [65, 140, 141]. Because early scanners 

required up to five seconds for acquiring and reconstruction of a single slice of the lung, CT imaging was 

primarily used to image static organs. With the emergence of multi detector-row CT (MDCT), it then 

became possible to image both static and dynamic organs via use of an X-ray imaging modality [64], as had 

been possible with the use of Ultrasound at that time. MDCT scanners can use multiple detector rows to 

collect more slices per rotation, thus allowing for increased z-coverage and fast acquisition speed. Current 

clinical MDCT provides the ability of acquiring up to 256 thin sections with scanner rotation speeds on the 

order of 0.33 second/revolution for single source X-ray tube systems. Operated in a spiral mode, these 

scanners can acquire images of the lung in a breath hold as short as 5 to 10 seconds. [t is possible to achieve 

near isotropic voxels on the order of 0.5 mm and image the whole lung in a single breath hold. High

resolution CT imaging is particularly useful for close examination of lung parenchyma and is used to assess 

a variety of lung pathologies, including interstitial diseases that manifest with different characteristic 

patterns [170]. Functional information can also be measured with the aid of contrast imaging or post

processing techniques. For example, regional ventilation can be quantitatively assessed with Xenon

enhance CT (Xe-CT) [23, 86, 99] and regional perfusion can be estimated with bolus contrast injection. 

The main disadvantage of CT imaging is that it exposes patients to harmful ionizing radiation [102]. An 

area of increasing research activity involves techniques for dose reduction with simultaneous preservation 
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of image quality - for example by using novel X-ray source geometries or use of iterative reconstruction 

techniques in place of standard filtered back-projection reconstruction [192]. 

1.3.1 4-D CT Lung Imaging 

Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger 

margins during radiotherapy planning and causes errors during radiation delivery. CT scans acquired 

synchronously with the respiratory signal can be used to reconstruct 4-0 CT scans, which can be employed 

for 4-0 treatment planning. This approach explicitly accounts for the respiratory motion and provides an 

estimate of the intrathoracic tumor motion [46,8 1,90,93, 104, 127, 153, 174]. 

A 4-0 model is generally built with from 4-0 CT images. 4-0 CT imaging [41,80,139] can be defined 

as the acquisition of a sequence of 3-0 CT image sets over consecutive segments of a breathing cycle. 

After 4-0 CT data acquisition and image reconstruction, a software algorithm retrospectively sorts the 

images into multiple temporally coherent volumes. Current implementations of 4-0 CT utilize phase 

binning of CT images acquired from patients during normal tidal breathing. Most current sorting methods 

depend on an externally recorded breathing index associated with each CT slice. An external tracking 

device such as a real-time position management (RPM) by Varian is one possible breathing index. RPM is 

an infrared reflective marker placed on the abdomen which is used to provide a signal corresponding to 

both amplitude and phase of the respiratory signal. Based on the data acquisition time stamps in the image 

Oicom headers and the correlation signal in the RPM trace, each image can be assigned to a specific 

respiratory phase of the respiratory cycle. Using a MOCT scanner, N images are acquired at each location 

over the entire thorax then sorted into N respiratory phases [126], as illustrated in Figure 1.6. 

In most thoracic 4-0 CT studies, ten respiratory phases are imaged and these are typically referred to as 

phases POO, PIO, ... , P90, where phase POO corresponds to end-inhale and phase P50 corresponds to end

exhale. The full set of images provides a movie of the internal anatomical motion resulting from a sampled 

respiratory cycle and has found use for tumor targeting in radiotherapy treatment planning [97, 168]. 

Registration of such large data sets requires a computationally efficient image registration algorithm. 

Furthermore, the image acquisition process renders the resulting thoracic CT images prone to noise, 

blurring, and image artifacts Moreover, motion reproducibility assumption with respect to the breathing 
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Respiratory 'Bin' 

Figure 1.6: .Retrospective 4-0 CT Lung Imaging. Images acquired with the aid of respiratory waveform 

from RPM respiratory gating system in order to bin the image data into different phases. 

index and insufficient number of projections per breathing phase for volumetric 3-0 reconstruction are 

potential limitations of 4-0 CT. Breath-hold CT images on the other hand, are acquired while the patient 

holds their breath at either inhale or exhale [27, 42, 43 , 55 , 89, 94, 10 I, 156, 183]. Commonly, a static 

breath-hold scan is at lung volume near FRC or TLC and a 4-0 CT dynamic scan is at lung volumes 

between FRC and FRC+TV. As a result, breath-hold image sets do not suffer from the noise and motion 

artifacts common to 4-0 CT. However, the differences between breath-hold image pairs are considerably 

greater than those between a sequential pair of images in a 4-0 CT. Even though the breath-hold image 

pairs are relatively "clean", clearly, in comparison to 4-0 CT, there is significantly less information 

available in them. 

1.4 Radiotherapy 

Radiation therapy is a standard technique for cancer treatment where cancer cells are destroyed by 

highly energetic ionizing radiation. In conformal radiation therapy, high-energy radiation beams from 

several angles are focused precisely onto the tumor. Ideally these beams overlap exactly in the tumor so 
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Figure 1.7: Target volumes for radiotherapy planning. 

that the tumor receives the maximum dose of radiation while the radiation in the surrounding healthy tissue 

is minimized. Similarly, intensity-modulated radiation therapy (IMRT) gives radiation therapists the ability 

to sculpt the edges of a tumor, minimizing damage to adjacent healthy tissue. In IMRT, radiation beams are 

delivered in approximately 300 different segments, focusing the radiation on the tumor. Dose modulation 

allows different areas of a tumor or adjacent tissues to receive different doses of radiation . In image-guided 

radiation therapy (IGRT), repeated imaging scans during treatment are performed to identifY changes in a 

tumor' s size and location due to treatment and to allow needed adjustments in the position of the patient or 

the planned radiation doses. 

Nearly all patients receiving thoracic RT develop some degree of lung injury. Irradiating healthy tissues 

can cause cancer and lead to organ failure due to cell damage. In fact, pulmonary injury and toxicity is the 

dose-limiting factor in thoracic RT for lung cancer. Vitally important organs that are especially sensitive to 

radiation are called risk organs, such as the heart and bronchi in the case of lung tumor radiation treatment. 

These organs should be spared from radiation . Besides beam positioning, therefore, major aspects of 

radiation treatment planning are determination of risk organs, the target volume that should be treated, and 

the surrounding healthy tissue. Because of patient movement, such as breathing motion, inaccurate patient 

positioning and organ motion , the patient anatomy and position may vary during the course of radiation 

therapy [183] . Due to these motions the actual received dose distribution in the target volume is in fact 

lower than the planned dose distribution whereas the surrounding healthy tissue ends up receiving some 

unnecessary radiation. 

As shown in Figure 1.7, three regions are defined for target volume definition . The volume containing 

the tumor is called the gross tumor volume (GTV). The clinical target volume (CTV) is defined to be the 
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GTV plus a margin to allow for suspected tumor involvement. The planning target volume (PTV) is 

defined to contain the CTV plus a margin to account for patient movement or organ motion [183]. 

Therefore PTV contains healthy tissues that ideally should not be treated. 

1.4.1 Stereotactic Radiation Therapy 

Stereotactic radiation is a specialized form of external beam radiation therapy which makes use of 

focused radiation beams to target a well-defined tumor using high resolution imaging scans. There are two 

types of stereotactic radiation treatments. Stereotactic radiosurgery (SRS) involves use of a single or 

several stereotactic radiation beams in treatment of brain or spine tumors or brain metastases from other 

cancers. SRS can be used to treat small tumors with well-defined boundaries. A specially designed 

coordinate-system is used in Stereotactic body radiation therapy (SBR T), for the precise localization of 

tumors in the body in order to treat it with limited but highly accurate treatment beams. In SBRT, a single 

high dose radiation treatment or a few fractionated radiation treatments are applied and is typically used to 

treat tumors that are more likely to move with the normal motion of the body, such as for example tumors 

of the lung or the liver, and therefore cannot be targeted as accurately as tumors within the brain or 

spine[79]. 

The major advantage of SBRT is that it delivers the right therapeutic dose to the tumor in a shorter 

amount of time than traditional treatments - typically in 10 days or less as opposed to 6 to II weeks. With 

SBRT, treatments are applied with high accuracy in order to limit the effect of radiation on healthy tissues. 

1.5 Deformable Image Registration 

Image registration (IR) problems arise in the context of many different fields. Regardless of the precise 

context, the IR problem involves description of the relationship between two or more images. Indeed, IR is 

the process of finding a point-to-point pixel (voxel) mapping (correspondence) between a set of images 

(Figure 1.8). This desired mapping (correspondence) should describe the location of each pixel (voxel) in 

the first image relative to the other images(s). When the mapping contains deformations, one speaks of 

deformable image registration (DIR). The output of DIR is the deformation vector field, indicating the 

correspondence between each voxel in the first image and a corresponding voxel in the second image. The 
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Figure 1.8: Image registration is the task of finding a spatial transformation which maps one image to 

another [71]. 

deformation can be applied to the moving image [M(O in order to simulate the njerence image [R(O 

(warping), such that all corresponding voxels have the same coordinates in both images. Registration is the 

problem of finding a displacement u( 0 that makes [M (( + u( 0) spatially aligned to [R (0. An equivalent 

formulation is to say that registration is the problem of finding a transformation T(O = ( + u(O that 

makes [M(T(O) spatially aligned to [R(O. The quality of a DIR can be visualized by computing a 

difference image between reference and warped image, (this metric will be adopted in Chapter 4). In fact, 

the quality of alignment is defined by a distance or similarity measure (S), such as the sum of squared 

differences (SSD), the correlation ratio (CR), or the mutual information (MI) measure. Since this problem 

is ill-posed for non-rigid transformations, a regularization term 1? is often introducf:d that constrains the 

possible transformations. Commonly, registration is formulated as an optimization problem in which the 

cost function (C), or metric, is minimized so as to find the transformation that provides maximum 

similarity (or minimum distance) between the reference and the warped image: 

with (I-I) 

(1-2) 

where y weighs similarity against regularity (smoothness). To solve the above minimization problem, there 

are basically two approaches: parametric and non parametric which will be further explained in Chapter 2. 

Figure 1.9 shows the general components of a parametric registration algorithm. The input images are 

resampled into different resolutions. Registration of the lower resolution images requires less memory and 

computational time. The higher resolution images preserve the local details of the anatomical information, 

but will require significantly more memory and compute time. Commonly, a multi-resolution strategy is 

employed to speed-up registration and to make it more robust. The transform box in Figure 1.9 defines how 
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Figure 1.9: The basic components of the image registration framework [71, 83]. 

one image can be deformed to match another. The transformation can be rigid which can be described by 6 

parameters (3 translations and 3 rotations). It can also be an affine transformation with 12 parameters (3 

translations and 9 shear/scaling) for a whole image or it may be a non-rigid registration. The interpolator is 

used to evaluate the template image intensities at non-integer positions. The cost function component may 

consist of a single metric such as similarity measure based on geometric and intensity approaches or a 

compound function with other constraints depending on models that are employed. The cost function 

measures how well the reference image is matched to the transformed moving template image and is 

optimized by the optimizer over the search space defined by the parameters of the transform. 

1.5.1 Thoracic CT Registration 

Registration of thoracic CT images is of particular interest to the medical community and to this end a 

variety of techniques have been proposed. Most often, methods for chest CT registration employ elastic 

registration and typically include domain-specific modifications to standard approaches [25, 51, 76, 105, 

108, 119, 125, 148, 167]. There are probably four reasons for registration of CT lung scans [148]: 

1. Matching a CT scan to another scan of the same patient from a different modality, typically a PET 

scan (though with the advent of hybrid PET/CT scanners, there is little need to perfoml this operation). 
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II. Intra-patient registration: matching follow-up CT scans to pre-treatment CT of the same patient for 

effective visual or automatic comparison to detect or quantify interval change and/or monitor response to 

therapy. 

III. Intra-patient temporal registration: matching a temporal sequence of 3-D thoracic images acquired 

during respiration in order to quantify motion, deformation, and regional respiratory function. 

IV. Inter-patient matching, possibly to an atlas to guide segmentation or to detect deviations from 

normal appearance. 

The multi-modality registration (I), follow-up study (II) and intra-patient 4-D study (III) are within the 

scope of this research. 

Given the growing amount of research dependent on accurate registration of thoracic CT images, the 

benefit of a D1R algorithm designed to account for the many challenges and peculiarities associated with 

this problem is clear. Since lung motion varies from apex to base and ventral to dorsal, and is non

homogeneous, it is desirable to use non-rigid transformations in order to perform temporal registration of 

the data. In any application, the proper registration method is a compromise between the computational 

time and demands for accuracy and robustness, especially in the presence of large (ventilation) 

deformations, pathology, and noise. 

1.6 Regional Ventilation 

Performing D1R to determine regional ventilation essentially has the goal of quantifying local gas 

exchange inside the lungs. Since the computed ventilation map provides a metric for lung functionality, 

accurate assessment of regional ventilation as a way to quantify the effects of illness or radiation on lung 

tissue is essential for the diagnosis and evaluation of pathological conditions. Lung function is not uniform; 

there are wide ranges of ventilation (and perfusion) levels throughout the lung. Variations in ventilation 

inside the lung is affected by many factors such as airway geometries, tissue mechanical properties, 

breathing rate, posture, and so on. Pulmonary ventilation is difficult to measure with physiologically 

meaningful and quantitative values in three dimensions. Nuclear medicine imaging methods, such as 

positron emission tomography (PET) and single-photon emission computed tomography (SPECT), provide 

estimation of regional ventilation by imaging spatial distribution of inhaled gas or aerosol as tracer [59, 

14 



Figure 1.10: SPECT ventilation map image; the bright areas indicate where ventilation is high while the 

dark areas indicate where ventilation is poor. 

109, 158, 182]. However, PET isotopes require an on-site cyclotron with a gas delivery system due to the 

relatively short half-lives of isotopes limiting their use for research studies. On the other hand, Technetium 

labeled radiopharmaceutical agent aerosols in SPECT are known to produce artifacts due to airway 

deposition , rendering them unsuitable for quantitative use. In Oxygen-enhanced magnetic resonance 

imaging (MRI), images are acquired before and after a simple change in the inspiratory oxygen 

concentration . The subtraction images are claimed to represent ventilation [39]. Hyperpolarized noble 

gases , such as xenon or helium, have been utilized to provide paramagnetic contrast for MR ventilation 

imaging [4, 10, 54, 145]. However, MR techniques for ventilation imaging require tracer gases and 

hyperpolarizer equipment, which limit the availability of these methods . Additionally, the degree of 

hyperpolarization is time dependent and the resulting images do not yield accurate quantitative 

physiological values. Multi-detector row CT (MDCT) is able to quantify pulmonary function with a higher 

resolution despite the ionizing radiation. With inert and non-radioactive xenon gas as a contrast agent, 

MDCT yields good estimation of regional ventilation by measuring wash-in and wash-out time rates over 

multiple breathes [23 , 58, 64, 99, 145] . Another disadvantage of the technique is that the requirement for 

temporal sampling of the wash-in phase limits the spatia l coverage of this technique to the axial field of 

view of the CT scanner and increases the subject's radiation dose. In comparison to MRI, both of those 

factors limit its use in human subjects . Ideally, a more broadly available, inexpensive, high resolution 

quantitative ventilation imaging method is still needed . 
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1.6.1 Regional Ventilation from Image Registration 

4-D CT is used routinely as part of standard clinical care for patients suffering from lung cancer [41, 81, 

95, 168, 174, 191]. Although 4-D CT has increased radiation dose, it has high resolution, relatively low 

cost, and short scan time. However, very relevant to this research, since in 4-D CT spatio-temporal motion 

is available, it may be used to derive measures of ventilation in patients. The observed spatio-temporal 

changes in the Hounsfield Unit (HU) in thoracic 4-D CT images reflect the changes in air content of the 

lungs due to respiration. 

Previously, a few investigators have studied the relation between estimates of regional lung expansion 

and local lung ventilation from 4-D CT as a measure of pulmonary function [35, 56, 57, 137, 160, 162]. 

Two classes of metrics have been used in CT-based ventilation imaging: Hounsfield Unit (HU) change and 

Jacobian (ratio of volume) of the deformation field. Both metrics are based on image-registration-derived 

deformation fields and are based on the assumption that regional ventilation is proportional to the regional 

volume/density change. Although Jacobian shows better correlation with pulmonary function scans, clear 

discrepancies have also been reported by several researchers [20, 34, 190]. One of the distinguishing 

aspects of this research is that physiologic validation of 4-D X-ray CT based ventilation imaging in patients 

is also included. To date, such validations have only been reported in few studies [20, 21, 34, 190]. Using 

novel DIR techniques proposed in this dissertation, as well as using novel indices of regional pulmonary 

mechanics and function, we show that we can significantly improve on these previously reported 

physiologic validations. 

1.7 Application and Significance of Proposed Work 

Many disease or injury conditions can cause biomechanical or structural property changes that can alter 

lung function. Lung elastic recoil plays a crucial role in breathing [179]. Furthermore, a variety of 

important diseases involve significant alterations in lung tissue deformation and mechanics [9, 159]. For 

example, elastic recoil is markedly elevated in pulmonary fibrosis [195] and surfactant deficiency [100] and 

can be greatly reduced in emphysema [53]. In fact, virtually all pulmonary diseases of either the obstructive 

or restrictive classification involve some abnormality of lung tissue mechanics [159]. While the mechanical 

changes associated with the change of the material properties originate at a regional level, they are largely 
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asymptomatic and invisible to global measures of lung function until they have advanced significantly and 

have aggregated. Therefore it would be desirable to have objective methods with which to evaluate and 

follow the progression of disease based on measures of regional mechanics. 

In the realm of radiation therapy of patients suffering from lung cancer, determining patterns of lung 

motion prior to radiation treatment as well as predicting treatment toxicity and efficacy can both be 

clinically relevant. By determining regional lung elasticity and function, radiation treatment planning may 

be tailored to each patient. This functional information can be used to achieve conformal-avoidance 

radiation treatment planning. Some dose escalation studies for NSCLC found higher radiation dose 

associated with improved overall survival [85], while other studies demonstrated the feasibility of 

minimizing radiation dose to functional lung tissue [72, 194]. Therefore, if the risk of lung injury can be 

reduced for all patients, then a greater fraction of NSCLC patients can benefit from higher radiation dose. 

Having objective methods with which to assess regional lung function, radiation treatment doses can 

potentially be escalated, thus improving tumor response and local control. Additionally, pulmonary toxicity 

has the potential to be more accurately predicted and prevented [33], i.e. optimizing radiation beam 

geometry to preferentially pass through dysfunctional regions of lung and maximally spare regions of 

normal lung function as well as meaningfully quantifying the radiation toxicity risks by separating normal 

and dysfunctional regions of the lung in the dose volume histogram. 

In this research, we present a technique that uses 4-0 CT respiratory gated images of the lung, along 

with a novel deformable volumetric optical flow method (MOFIO), to make regional estimates of lung 

tissue function and mechanics. We propose to validate our method using expert-defined landmarks and 

tomographic SPECT ventilation and perfusion images of lung. 

The major contribution of our work includes: 

1. A new multi-scale optical flow framework with lung-specific assumptions (MOFIO) that has the 

advantage to provide the possibility to enforce physical constraints on the estimated motion field from 4-0 

CT images of lung. 

2. A new elastic registration method to estimate large deformations, such as registration of multi

modality images of lung and registration of early and late post-treatment lung images with the pre

treatment lung images in order to evaluate the effectiveness of the treatment. 

17 



3. A new mechanical index for assessment of regional lung function as ventilation metric. 

4. A physiologic accuracy validation and correlation of the 4-0 CT derived quantitative images with 

SPECT ventilation and perfusion scans, in a population of seven non-small cell lung cancer patients 

undergoing radiation treatment. 

The overarching goal of our study is to design a planning tool for R T planning which would be useful 

for tracking the progression of radiation induced toxicity to surrounding normal tissue during RT, and can 

be used to evaluate the effectiveness of treatment. 

1.8 Organization ofthe Dissertation 

The rest of this dissertation is organized as follows: 

Chapter 2 provides a review of well-known and well-established image registration methods. We give 

an overview of both generic registration algorithms and lung specific registration methods. The review 

examines the strengths and weaknesses of previously reported approaches. 

Chapter 3 introduces the fundamental assumptions and the formulation of a new deformable registration 

framework (MOFIO). We provide details on how the proposed framework enforces lung specific physical 

constraint in the calculated deformation map from 4-0 CT thoracic images. 

Chapter 4 discusses a newly proposed elastic registration method for performing large deformation 

registrations - this technique which combines global statistical intensity information with local image 

feature information may be used to register the early or late post-treatment lung images with the pre

treatment lung images. The same framework may also be used to register multi-modality images (e.g., CT 

and SPECT). 

Chapter 5 introduces and formulates regional mechanical strain as a novel ventilation metric for 

quantitative measurement of regional pulmonary function. The relation between Jacobian of deformation 

which has previously been used by several authors with mechanical strain is derived. 

Chapter 6 reports on the physiologic accuracy and correlation of the proposed regional pulmonary 

function measures from radiotherapy treatment-planning thoracic 4-0 CT images in a cohort of seven 

NSCLC patients with tomographic SPECT ventilation and tomographic SPECT perfusion images. 

Chapter 7 provides concluding remarks and proposes directions for future research. 
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CHAPTER 2 

REVIEW OF LITERATURE ON DEFORMABLE IMAGE REGISTRATION 

2.1 Introduction 

Imaging of regional pulmonary function (ventilation or perfusion) could be used for functional 

avoidance in lung cancer radiotherapy and would also further our understanding of pathophysiological 

characteristics of pulmonary disease and injury conditions. As discussed in section 1.6, many methods have 

been used in evaluating the function of the lung. These include nuclear medicine imaging (PET and 

SPECT), hyperpolarized noble gas MRI, and Xe ventilation CT. These techniques have disadvantages such 

as low resolution, high cost, long scan time, high radiation dose, and/or low accessibility. Since 4-D CT is 

standard for clinical care for patients diagnosed with lung cancer and is widely available, it can also be used 

to derive measures of ventilation in addition to functional avoidance. However, ventilation computation and 

treatment evaluation involves deformable image registration (DIR). DIR is mainly applied in conjunction 

with image-guided radiation therapy which involves an image-based monitoring of changes in the shape 

and position of organs and tumor during treatment. The goal is to reduce treatment margins, allowing safe 

dose escalation, and improving patient treatment. In this chapter, well-known and well-established methods 

stressing both generic registration algorithms and lung specific registration methods is surveyed. For lung 

specific techniques, we will describe the way that they take into account nonlinear motions, time-varying 

boundary conditions during breathing, and changes in intensities due to inflation. 

If the nature of the transformation is known a-priori, a registration method can always be decomposed 

into three major components [98]: the problem statement, the registration paradigm, and the optimization 

procedure. Problem statement refers to the imaging techniques involved and to the subject to be registered. 

The registration paradigm determines the nature of the registration and the transformation. It comprises 

feature detection, feature matching, transform model estimation and image resampling and transformation. 
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The optimization procedure alters the parameters of the transformation until a predefined metric reaches an 

ideal value. 

2.2 Deformable Image Registration Methods 

Thoracic registration methods comprise an extremely wide range of algorithms and are difficult to 

categorize. In the broadest sense, methods can be split into two main classes: I) Landmark based methods 

and II) Intensity based methods. 

Intensity based methods as intrinsic methods rely on image content and are the main focus of this 

review primarily due to their independence from the undesirable and required user interaction associated 

with traditional landmark based techniques. Landmark based methods would be briefly reviewed since it is 

possible to incorporate them into an intensity-based method [74, 125, 129, 156]. 

I. Landmark based Methods: Landmark based registration requires knowledge of the location of 

predefined landmark points in both the reference and target images. They should be homologous, i.e. each 

landmark in one image is related to its corresponding feature in the other image. The image pairs are then 

registered based on the motion of the landmarks. In cases where the image motion can be identified by a 

few parameters, such as an affine motion, the entire displacement field can be determined by only a few 

landmarks. For more general cases, a displacement field may be computed by interpolating between the 

known landmarks' displacements. 

In thoracic images the landmark based approach uses corresponding anatomical features to define 

image transformations and takes advantage of segmentation algorithms for delineating the different 

substructures constituting the pulmonary anatomy, e.g., differentiation of the whole-lung from the chest 

wall [50,132, 171], lobe/fissure detection [36], bronchial structure extraction [63, 92, 125, 187, 196], and 

segmentation of lung vasculature from the parenchyma [50]. Estimation of lung motion via matching of 

corresponding landmarks is possible once the airway/vessel bifurcations have been identified. However, 

warping models such as thin-plate spline [27, 63, 89], radial basis interpolation with the shift log function 

[101], and B-splines [125, 156, 196] need to be subsequently applied to permit computation of dense 

displacement fields. 
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The main drawback of landmark based methods is the required human involvement needed to identifY 

the landmarks. For example, an expert needs to identifY landmarks such as an anatomical structure, 

bifurcation of airways or vessels, or a tumor before the registration is performed. Moreover, in order to 

accurately compute the deformation, landmarks should be uniformly distributed within the lung volume. 

Many review papers have discussed the specifics of landmark registration [43,62,89,107,202]. 

J1. Intensity based Methods: Intensity based methods determine a point-wise correspondence between 

all image voxels by computing a displacement field based only on image intensities (Hounsfield Units in 

case of CT images). An immediate advantage of this approach is the absence of required user interaction. 

However, determining each point's displacement in a given image set is almost impossible, unless the 

displacement field has some known structure or characteristics. Typically, an intensity based method is 

built on one key (physical) assumption and one secondary regularization assumption or technique. The 

physical assumption describes the motion or flow of the imaged point and is the basis for building a voxel 

motion model or equation. The most common physical assumption is that voxel values remain constant 

through time and space. However, for lung images this assumption does not truly work due to fluctuation of 

the lung volume during the respiratory cycle. Therefore, a varying voxel intensity motion model is required 

[130]. Precisely, how to model the voxel intensity variations depends on the nature of the variations and the 

characteristics of the image data. 

The physical assumption alone does not generally provide enough information to uniquely determine a 

displacement field. In fact, the fundamental difficulty inherent to all DIR problems is simply a lack of 

information. Hence, a regularizing assumption is required to make the DIR problem well-posed. 

Regularization techniques come either in a local or in a global approach. 

Local DIR methods solve for pixel displacements after coupling a physical assumption with a 

regularization assumption valid only in a local neighborhood of the image domain. The most common local 

regularization assumption which was introduced by Lucas-Kanade is that the displacement field is constant 

over the neighborhood [96]. In this case, we need only solve either a linear or nonlinear least squares 

problem to determine the displacement of each point in the neighborhood. 

Global methods place a regularization assumption on the behavior of the displacement field over the 

whole image domain and can be classified as either parametric or non-parametric. A parametric approach 
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models the unknown displacement field with a linear combination of basis-functions. First proposed by 

Horn-Schunck [66], non-parametric approaches place an extra physical property on the displacement field, 

such as the required level of smoothness. Both techniques lead to a well-posed problem. 

DIR methods also categorize based on the way in which the physical assumption is stated. The 

mathematical expression of the physical assumption is referred as the motion model which is enforced at a 

single point. Methods utilizing a differential equation as the motion model are referred to as partial 

differential equation (PDE) based methods versus nonlinear matching methods which employ a nonlinear 

algebraic equation as the voxel motion model. 

2.2.1 Constant Intensity Methods 

The constant intensity assumption which assumes that the intensity of corresponding voxels remain the 

same in a temporal sequence of images - this is one of the cornerstones of DIR techniques, especially the 

optical flow and intensity matching methods. Since due to respiration, the intensity of voxels (i.e., the 

HU's) in thoracic 4-D CT change with time, these methods, per se, are clearly ill-suited for temporal 

registration of lung volumes. The varying intensity methods assume some degree of change in the intensity 

of corresponding points and are defined and implemented using strategies similar to the constant intensity 

methods; however, the fundamental difference between the two approaches is that in the varying intensity 

methods the voxel motion models are adjusted to account for intensity variations. 

Most registration algorithms designed to calculate the motion of objects captured by image sequences 

are referred to as optical flow methods. Optical flow methods provide a fine compromise between 

computational costs and theoretical adaptability and find voxel correspondences between two images by 

computing a velocity/motion field describing the apparent motion between them. With p denoting the 

image voxel intensity, PDE based methods model the constant intensity assumption with a differential 

equation commonly referred to as the optical flow equation (also known as the Horn-Schunck optical flow 

constraint or the brightness constancy constraint): 

(2-1) 

Several authors have previously published review papers and performed comparison of previously 

published methods [7, 8, 91, 103, 115, 180]. The aforementioned constant intensity assumption in the 
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image sequence in optical flow is also common to algorithms that use the sum of squared difference (SSD) 

similarity metric between two images: 

(2-2) 

where fl is the volume over which the motion is to be estimated. The optical flow equation is not adequate 

to uniquely determine a velocity field, hence a regularization assumption is needed. Global non-parametric 

strategies involve imposing an additional regularization constraint on the behavior of the displacement field 

over the entire image domain. Hom-Schunck optical flow [66] is based on Equation (2-1) and the 

additional regularizing assumption that neighboring voxels move similarly relative to one another. This 

smoothness assumption implies that the velocity field does not vary abruptly in space, and as a 

consequence, the gradients of the velocity components should remain small. Hom-Schunck combines both 

the optical flow equation and the smoothness assumption into a penalty function which is numerically 

optimized to produce dense deformation fields between successive images: 

(2-3) 

where a is a parameter determining the weighing of the smoothness term in comparison to the optical flow 

constraint data term. In comparison to local methods which produce sparse displacements, a significant 

advantage of global methods - such as Hom-Schunck - is that the computed displacement fields are dense. 

Indeed, dense displacement fields are desirable in deformable registration of thoracic 4-D CT images in 

order to permit subsequent computation of mechanical indices of function. Generally, optical flow methods 

work well when voxel displacements are small, and accurate approximations to image derivatives are 

available [8]. Basically, large displacements translate into poor approximations for ~~ which can cause the 

discretized optical flow equation to become invalid. Therefore, POE based methods are generally not well 

equipped to handle large displacements. 

Rather than enforce a global constraint, local methods produce displacement field for neighborhoods of 

the image domain. The Lucas-Kanade method [96] is based on the assumption that the voxel velocity is 

constant on a neighborhood around a point ~ in the reference image. In Lucas-Kanade, the following 

weighted least squares problem is posed for determination of the velocity field in image neighborhoods: 

(2-4) 
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where oa is a Gaussian centered at ( with standard deviation (J. This Gaussian serves as a window function 

that isolates the neighborhood around a point r The Lucas-Kanade method is robust to image noise 

because of convolution of the optical flow equation with the Gaussian o. Similar to the global methods, this 

method does not yield accurate results when voxel displacements are too large. The displacement field 

produced by a local method may contain gaps in place where the results are considered unreliable. A 

filling-in scheme, such as interpolation, is necessary to provide a complete or dense displacement field. 

Some authors have adopted combined local-global (CLG) optical flow which was originally derived by 

Bruhn et al. [15, 16] to take advantage of the benefits of both global and local approaches for deriving a 

dense deformation field. In CLG the traditional optical flow equation is substituted with the Lucas-Kanade 

formulation: 

(2-5) 

Nonlinear methods utilize a nonlinear algebraic equation, equivalent to the integrated form of the PDE 

optical flow equation [87,94, 161], as the voxel motion model: 

(2-6) 

In either a local or global framework, application of the integrated optical flow equation does not 

require approximations to image derivatives. In this sense, nonlinear methods are better suited for handling 

large displacements and are not as susceptible to image noise. 

Nonlinear methods couple the pixel motion model with a regularization assumption and then pose an 

optimization problem; however, the optimization problems are now nonlinear and generally non-convex. 

Thus, one needs to deal with local minima and the higher computational costs required for solving the 

optimization problem. Additionally, some nonlinear methods require evaluation of the image at non-integer 

locations. Since images are discrete, some type of continuous image representation becomes necessary. 

The most popular strategy for creating a continuous image representation is to use B-spline 

interpolation.[ 169]. B-splines are piecewise polynomials of degree n (tri-cubic splines are commonly used, 

n = 3). In particular, B-splines provide a smooth and computationally efficient representation of an image 

with interesting mathematical properties: compact support, continuous en - 1)th derivative. They are 

mostly described by a free-form deformation (FFD) model [69,94, 135, 144, 166]. Alternatives to a B-

spline representation include the nearest neighbor strategy or bi-linear interpolation [107]. 
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Two main difficulties of the thoracic CT IR problem are image noise and the large image dimensions. 

Since the nonlinear methods are computationally costly and that the typical solution route for most POE 

methods involves solving a linear system of equations, a POE approach is more feasible. The only concern 

is the susceptibility of POE methods to image noise. However, data pre-processing involving smoothing 

and application of the CLG approach offers a solution for incorporating noise robustness into the problem 

formulation. 

2.2.2 Varying Intensity Methods 

To account for temporal variations in voxel intensities, the varying intensity methods require design of 

an adaptive motion model which considers the nature of the underlying intensity variations [130]. Given an 

appropriate motion model, it may be incorporated into one of the aforementioned optical flow framework 

and subsequently an IR method can be formulated by applying any of the regularization strategies 

described in [14,44,48,119,152,180]. 

Haussecker et al. [60] proposed a general framework to build a varying brightness model by adjusting 

the optical flow equation to account for brightness variations: 

Jp 
at(x((,t),t) + Vp.v(x((,t),t) = b((,t,a) (2-7) 

where a is a set of parameters required by the brightness model. Equation (2-7) is referred to as the 

generalized brightness change constraint equation. The same sort of idea applies to a matching method 

framework [130,163]: 

p(X((, 0), 0) + d(O = b' ((, t, a) (2-8) 

Accounting for general intensity variations demands calculation of more unknowns and added 

computational complexity; therefore, one can apply a specific varying intensity voxel motion model. The 

most commonly employed varying intensity motion model is based on the conservation of mass 

(continuity) principle: 

Pt + Vp. v + pdiv(v) = 0 (2-9) 

The conservation of mass principle is applicable in situations where the material imaged undergoes 

local changes in density while overall the total mass of the material is conserved [26, 32, 44, 134, 184]. 

Given the fact that the mass of the lung is conserved, the conservation of mass equation is the logical 
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choice for the thoracic CT varying intensity motion model [18, 52, 116, 118, 119, 198]. Further, it can be 

shown that the density of the object imaged in X-ray CT is related to Hounsfield Unit and therefore in (2-9) 

density and intensity are interchangeable. 

Since calculating divergence of an unknown displacement field requires information from neighboring 

points, it would be difficult to incorporate mass conservation into such methods. Global differential 

methods - similar to the Hom-Schunck optical flow method - however may be adopted by augmenting the 

constant intensity model with the mass conservation model. The models described in [18, 44, 117, 184]. all 

use mass conservation in their compressible optical flow formulation, though as will be seen, in addition to 

differences in the adopted regularization approach, other distinguishing factors exist. 

2.3 Deformable Lung Registration Methods 

The compressible nature of lung tissue which results in varying voxel intensities has hampered 4-0 CT 

thoracic image registration and has been the root of significant challenges. To date, a number of papers 

have proposed techniques for non-rigid lung motion estimation [17, 55, 105, 108, 136, 198]. Previously 

proposed techniques most often have employed elastic registration with specific modifications [25, 76, 105, 

108, 125, 148, 167], such as incorporation of mass conservation [51, 198], or employing respiratory lung 

motion hysteresis [II]. A useful classification scheme for the intensity and geometric lung registration 

techniques is based on the two common quantitative measures similarity and smoothness [98, 108, 146, 

148,167,180,202]. 

Most authors have used the sum of squared differences (SSO) or the sum of intensity differences (SID) 

for measuring intensity similarities [11,25,30,38,43, 55,56, 77, 78,89,94,137,146,164,183,187,193]. 

While these measures are useful, they do not accurately reflect the variations of the lung density due to 

breathing. Since local density changes are linearly reflected in the intensity changes in CT imaging [20], a 

few authors have used cross correlation (CC) as a similarity measure. In addition to assuming a linear 

relationship between intensity of corresponding points, CC requires linear shape changes in order to 

determine accurate point trajectories [151, 183]. Some similarity measures, such as mutual information 

(M!) are insensitive to changes in voxel intensity because they are computed from global image statistics 

[27,92, 106, 125, 154, 155, 172]. In order to take into account changes in the voxel intensity with inflation, 
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some authors have used the sum of squared tissue volume difference (SSTVO) as the similarity criterion 

[197,198]. An alternative approach has been to apply the principle of mass conservation; this has now been 

adopted by a number of researchers [18,51,52, 116, 118-121, 198]. 

Most proposed models enforce smoothness on the deformation fields. Included are implicit 

regularization constraints such as symmetry and consistency which are key to several approaches [24, 25, 

40,88,137,147,151]. 

In the lung tracking area, modifications of the original Hom and Schunck optical flow constraint based 

on the continuity equation, dubbed compressible optical flow (CO F), have revealed improved tracking 

performance [18, 184]. Castillo et al. [18] proposed the compressible combined local global (CCLG) 

optical flow to improve the quality of the deformable image registration of the lung tissue. One drawback 

of this approach is the associated computational costs requiring a parallel implementation. Some studies 

have also used a preprocessing method to accommodate the original optical flow constraint for lung 

registration for example, Sarrut et al. proposed a priori lung density modification (APLOM) to account for 

the density change during deformation on breath-held images [4]. Subsequently, this approach was 

extended to 4-0 CT images [11]. 

Some authors have taken advantage of the rich set of anatomic features to formulate lung-specific 

geometric strategies for registration. The feature-based approach uses corresponding anatomical features to 

define image transformations and takes advantage of segmentation algorithms for delineating the different 

substructures constituting the pulmonary anatomy, e.g., differentiation of the whole-lung from the chest 

wall [50, 132, 171], lobe/fissure detection [36], bronchial structure extraction [63, 92, 125, 187, 196], and 

segmentation of lung vasculature from the parenchyma [50]. Estimation of lung motion via matching of 

corresponding landmarks is possible once the airway/vessel bifurcations have been identified. However; 

warping models such as thin-plate spline [27, 63, 89], radial basis interpolation with the shift log function 

[10 I], and B-splines [125, 156, 196] need to be subsequently applied to permit computation of dense 

displacement fields. 

Temporal registration methods either use an Eulerian approach or a Lagrangian approach to motion 

tracking. In the Eulerian approach, all deformations are computed between pairs of neighboring time 

points, while in the Lagrangian approach, deformations are described with respect to a chosen reference 
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frame. Metz et al. [105] surveyed and categorized different medical registration approaches based on their 

transformation model which either describe an Eulerian or a Lagrangian approach. Although the 

Lagrangian approach has the advantage of permitting a strict comparison of deformations in successive 

frames relative to one another, the Lagrangian model causes a bias towards the reference and the need to 

deal with estimation of larger deformations. Predominantly, existing methods use a Lagrangian model, 

though for the most part, do not take into account the temporal smoothness of the deformations [17, 78, 

105, 136, 138, 198]. In recent times, several authors have also adopted temporal smoothness constraints as 

well [17, lOS, 120] 

2.4 Performance Evaluation of Lung Registration Methods 

Evaluation of the computed estimation of registration methods is nontrivial because the ground truth 

motion (e.g. gold standard) is often not available. Additionally, errors can occur in each step of a 

registration process, and it is hard to differentiate between registration inaccuracies and actual physical 

differences in the image content. Even if a gold standard is available, often the uncertainty in the gold 

standard itself limits the ability to assess true accuracy [185]. The literature proposes many different 

methods for registration validation [73, 108, 167, 185, 202]; however, it is difficult to compare the accuracy 

measured with one method to that of another method due to methodological incompatibilities [185]. It 

should also be pointed out that although some reported literature confines itself to only one of the 

validation categories described below, many research groups have used two or more of the validation 

techniques [167]. 

One of the quickest methods is visual inspection of the result [185]. Visual inspection of the registration 

can offer a qualitative idea of the accuracy. Another possibility is to use intensity-based similarity 

measures, such as cross correlation, before and after registration in order to assess performance of the 

registration method [30, 177]. 

Analysis of point correspondences is also commonly used to evaluate registration algorithms [I I, 19, 

45, 61, 131, 173, 187]. Given the abundant features present within the lung (e.g. vessel and airway 

bifurcations) seen in CT images, the set of homologous points can be manually annotated by an expert in 

the different phases of the lung. The difference between the estimated position of the landmark by 
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registration method and the actual position of the landmark may then be measured and is referred to as the 

ground truth discrepancy. A common approach is to report the average error, the root mean square (RMS) 

error, and the average angular error (AAE) for the calculated motion field. Nonetheless, the manual 

selection of landmarks is certain to have some inaccuracy while in the case of automated selection of 

landmarks, error estimation becomes more complicated. This is because we cannot differentiate between 

the localization error of landmarks due to their inaccurate selection, the matching error, and the error due to 

the difference between the transformation model and the actual deformation. 

While the annotated landmark pairs are used to assess correspondence internal to the lung, overlap 

assessment of anatomic contours of the lung are used to assess the alignment of lung boundaries. Aligning 

the boundaries of the lungs correctly is fundamentally expected of all pulmonary CT registration 

algorithms. The lung boundary is easily defined in CT in most regions, with the notable exception of the 

mediastinal (central) regions [108]. Some researchers have used manual or automated segmentation to 

compare the measured tidal volumes with volumes estimated from the calculated displacement fields [37, 

38, 56, 57, 175]. If corresponding anatomic structures may be delineated, common overlap measures such 

as Jaccard and Dice may be used to assess the quality of overlap for both single and multiple labeled 

images [28,47,89, 167,201]. For source and target segmented regions, Sand T, respectively, the Jaccard 

coefficient is defined as: 

IsnTI 
jaccard(S,T) = -I -I suT 

whereas the Dice coefficient is calculated from: 

. IsnTI 
Dlce(S, T) = 2 ISI+ITI 

(2-10) 

(2-11) 

The final figure of merit is the Jacobian of the calculated deformation map to determine physical 

plausibility of the calculated deformation. In particular, we expect that a deformation should be bijective. 

Regions where the deformation field is not bijective are commonly referred to as singularities. The 

determinant of the Jacobian of the deformation field at every point (described further in Chapter 5) 

specifies whether local expansion or contraction has taken place. Any point where Jacobian is zero is a 

singularity in the deformation map. Additionally, a negative Jacobian implies a deformation that is 

physically not permissible since that would imply folding of tissue onto itself. 
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CHAPTER 3 

MASS PERSERVING OPTICAL FLOW 

3.1 Introduction 

This chapter introduces an approach to Defonnable Image Registration (DIR) of 4-D thoracic CT data 

via a novel highly versatile 3-D mass conserving optical flow technique referred to as MOFJD for 

computing lung motion within a variational fonnulation which uses an Eulerian approach. The energy 

function for computing optical flow has been designed to address the shortcomings of the existing DIR 

methods for 4-D thoracic CT. 

4-D thoracic CT is characterized by both tissue motion as well as respiratory induced changes in the CT 

image resulting from ventilation. Defonnable image registration provides a link between the component 

phase images for extraction of the motion and physiological infonnation. Registration of 4-D thoracic CT 

images is specifically difficult due to the compressible nature of the lung and the high computational 

workload required to handle the massive amount of data. 

The original optical flow constraint has been modified and provided with some dedicated lung specific 

constraints to take advantage of both geometric and intensity features of 4-D CT images of the lung. The 

proposed method (MOFJD) is a global partial differential equation (PDE) based technique which enforces 

the governing intensity constancy assumption in standard optical flow, but in addition has a constraint that 

ensures intensity gradient constancy in consecutive image frames to allow variations in the gray value and 

to better track vessel and airway boundaries, mass conservation in consecutive volumetric image frames to 

ensure that the local lung mass is conserved over the entire imaged region, and spatioootemporal smoothness 

of the defonnation map to regularize the estimated motion in order to estimate smooth defonnations of the 

lung in space and time. Taken together, these constraints penn it highly accurate estimates of the lung 

motion between different respiratory phases from 4-D CT images. 
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In the rest of this chapter, a detailed derivation of the proposed energy function formulation is first 

provided. Subsequently, the details of multi-scale numerical implementation of the method and the 

proposed approach to determination of the optimum parameters for the energy function are discussed [117]. 

Although less accurate, the 2-D planar version of our DIR method is first described [118] before our 

volumetric DIR technique [119]. A comprehensive validation of MOFID against expert annotated 

landmarks for II 4-D X-ray CT lung datasets acquired in human subjects has been reported. Comparison of 

the MOFID with previously published results is also included in this chapter [120]. 

3.2 The Variational Formulation 

In order to derive a variational formulation for the proposed optical flow method, below, the constraints 

of interest are listed: 

1. Ideally, the gray value of a voxel should not change after displacement: 

1(( + W) = 1(0 (3-1) 

In this equation, I is the image intensity as a function of space and time, (:= (x,y, z, t)T, and W 

:= (u, V, W, l)T is the displacement vector field between two subsequent images. This is a nonlinear 

equation in u, v, and w. Its linearized version yields the well-known optical flow constraint [66]: 

(3-2) 

However the linearization of the intensity constancy assumption is in general an unreliable 

approximation of the original constraint [5, 110]. In particular in the case of 4-D thoracic CT images, the 

displacement between respiration phases does not change linearly along the displacement vector. Therefore 

the non-linearized equation is adopted and the linearization is postponed to the numerical scheme. 

2. In anatomical CT images, we assume the imaged intensities follow a conservation principle in 

analogy to mass conservation in fluid flow. In fact, one can show that if it can be assumed that the 

Hounsfield unit is proportional to density then the two conservation principles are equivalent. Application 

of the conservation principle to a temporally varying image yields: 

V.UV) + It = 0 => VI. (V) + I(V.V) + It = 0 (3-3) 
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Figure 3. 1: An axial CT slice of lung on the left and the corresponding gradient image on the right 

demonstrating pronouncement of the pulmonary anatomy and bronchial structures - In the proposed 

implementation, the gradient image is used (Equation (3-5)) to bring to bear the significant utility of this 

rich feature set in order to improve the optical flow tracking performance. 

(3-4) 

where V = (u, v, w) is the velocity field . Equation (3-4) is a more general constraint for deformable object 

motion in comparison to the classic Hom-Schunck optical flow constraint equation shown in (3-2) . 

3. In order to allow variations in the grey value and to help determine the displacement vector by a 

criterion that favors matching moving edges, a constraint based on image gradients is also incorporated: 

Linearization leads to : 

VI(( + W) = VI(O 

Ixxu + Ixyv + Ixzw + lxt = 0 

Ixyu + lyyv + lyzw + lyt = 0 

lxzu + lyz v + lzz w + lzt = 0 

(3-5) 

(3-6) 

where double scripts denote second derivatives . This constraint was originally proposed within a 

variational 2-D optical flow framework by Brox et al. [14]. As shown in Figure 3.1 , this constraint takes 

advantage of the rich set of anatomic features of thoracic CT data to match substructures of the pulmonary 

anatomy in order to align the bronchial structures in two successive respiratory phases. The quantitative 

evidence for importance of this term in the energy function will be provided in Section 3.4.2 and Figure 

3.10. 
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4. Finally, in order to regularize the solution, spatio-temporal smoothness of the flow field has been 

adopted. The advantage of this approach proposed for the variational optical flow framework by Weickert 

et al. [181] is to smooth out the background noise and preserve true motion boundaries: 

(3-7) 

where V 4 := (ax, ay , az , atf and u, v, and ware components of displacement along x, y, and z. The 

extension of the spatial smoothness to the spatio-temporal domain in general leads to better estimates due 

to the additional information exchange along the temporal axis. Therefore, the energy functional that 

penalizes deviations from these model assumptions is formulated as: 

E(u, v, w) = In (ED + aEs) dv = In 1jI[I/(X + W) - I(X) + (3(1V. v)IZ + rIVI(X + W) - VI(XW] + 

(3-8) 

where f1 is the volume over which the motion is to be estimated. The function 1/.1(S2) = -.j S2 + E2 is a 

modified Ll norm which is convex and yields robustness to outliers in the minimization process. Since E is 

only utilized for numerical reasons, it can be set to a fixed value (we chose 0.00 I). {3 can only be zero or 

one: zero when the object is incompressible and one when the object is compressible (for the thoracic CT 

application (3 is always one). In order to obtain a numerical solution, this energy function should be 

discretized with all image derivatives approximated by finite differences. 

3.3 Numerics 

A minimizer of E(u, v, w) must fulfill the Euler-Lagrange equations: 

(3-9) 

Having adopted the finite difference approximation proposed by Weickert et al. [14, 181] and for better 

readability, the following abbreviations are used: 

a 
I :=-/(X+W) x ax ' 

a 
I :=-/(X + W) y ay , 

a 
Iz := az I(X + W), 
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lq, := I(X + W) - leX) 

a2 

lxx := ax2 I(X + W), 

a2 

lyy := ay2 I(X + W), 

a2 

lzz := az 2 I(X + W), 

a2 

lxy:= -leX + W), axay 

a2 

lxz := axazl(X + W), 

a2 

lyz := ayaz I(X + W), 

a a 
lxA.:=-I(X+W)--a leX), 

'f' ax x 

a a 
lyq,:= ayl(X + W) - ayl(X), 

a a 
lzq, := a/ex + W) - a/eX) 

In the interest of brevity, derivations that relate to the u component of the flow field is only included. 

Derivations for the v and w component are identical. 

Therefore: 

(3-10) 

with the iteration variable Wk instead ofW, W k+1 will be the solution of; 

(3-11 ) 

To remove the nonlinearity in 1!;+1, first order Taylor expansion yields 
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Introducing an abbreviation for the robustness factor ljJ~ata and the diffusivity ljJ~mooth' 

(3-12) 

(3-13) 

As the only remaining nonlinearity is due to ljJ', and ljJ has been chosen to be a convex function, the 

remaining optimization problem is a convex problem; i.e., there exists a unique minimum. To remove the 

remaining nonlinearity in ljJ', a second, inner fixed point iteration loop is applied. Let I denote the iteration 

index for this inner loop. The fixed point variables dUk,l, dVk,l, and dWk,1 are initialized with O. Therefore, 

the linear system of equations in dU k ,l+l: 

+ f3(!kV. (Uk + du k,l+l, v k + dvk ,l+l, w k + dWk,l+l))) 

+ y ([k ([k + [k dUk,l+1 + [k dVk,l+l + [k dWk,I+1) xx x~ xx xy xz 

+ [k ([k + [k dUk,l+l + [k dVk,l+l + [k dWk,l+l) xy y~ xy yy yz 

+ [k ([k + [k dUk,l+l + [k dVk,l+l + [k dWk,l+l)) xz z~ xz yz zz 

- f3([kV. (uk + dUk,l+l, v k + dV k,l+l, w k + dW k,I+1)) ( 1 

+ ([~ + [:dU k,l+l + [~dVk,l+l + [}dwk,l+l))) 

- a div (( ljJ~moothtl [V 4(Uk + dU k,I+1)1) = 0 

(3-14) 

Discretization yields a linear system of equations, which can be iteratively solved by Successive Over 

Relaxation (SOR) [133]. Let m denote the iteration index for the SOR iterations, then the iteration scheme 

for solving the linear system is: 

35 



(3-15) 

Since the proposed method converges to the estimated motion In an iterativt: form, a multi-scale 

framework was used to speed up the calculations realizing significant computational savings. A 

multiresolution strategy helps to improve the computational efficiency as well as to deal with larger 

displacements which may be encountered due to limited number of imaged respiratory phases [197]. In the 

multi-resolution framework, both images are first downsampled and then registered. Once the registration 

has been completed, the deformation field is upsampled and the calculated deformation field is then 

propagated to the next finer level and used as the initial transformation for that level. 

While the proposed method results in accurate lung motion estimation, the number of weighting factors-

that is a, y, and 1 (number of multi-scale level)- and their various combinations is a significant challenge. 

To find the optimum weights, normalized mutual information (NMI) [157] has been used as a similarity 

measure between the first frame warped with the calculated motion field and the second frame. NMI is 

essentially used here as the yardstick to compare the accuracy of the estimated motion for different 

weighting factors [22, 68, 128, 157]. Figure 3.2 shows a similarity calculation between the first warped 

image and the second image corresponding to two consecutive respiratory phases of POPI-model for five 

different a values, that is from 10 to 50 (increments by 10), five different y, that is from 50 to 210 

(increments by 40) and for 1 = 5, 6. 
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Figure 3.2: Similarity calculation between the first warped image and the second image of the POPI-model 

data set. This graph shows similarity calculation in terms of five gamma (Y1 -Ys), that is from 50 to 210 in 

increments of 40, and five alpha (a1 -as) values from 10 to 50 in increments of 10, for two different 

number of levels II = 5 and l2 = 6. Note that the smaller the value of the plot, the higher the similarity. 

3.4 Experimental Results 

Though the purpose of the MOFIO is to estimate the motion of the volumetric CT images of the lung, a 

series of 2-D experiments were conducted on both synthetic and real data-sets to test the efficacy of the 

proposed method. 

3.4.1 Two Dim ensional Experiments 

The proposed method has been applied to well-known image sequences such as the symmetric sponge 

expansion and the Yosemite sequence with cloudy sky, both used extensively by previous authors . The 

sponge sequence illustrates the scenario under which mass conservation holds while the Yosemite sequence 

typifies most cases where mass conservation does not hold in 2-D. The algorithm is capable of handling 

both cases: f3 = 1 would enforce mass conservation while f3 = 0 would result in no mass conservation. 

These results are shown in Figure 3.4. As shown in the color wheel (Figure 3.3) used to visualize flow 

fields in this study, smaller vectors are darker while the color indicates direction of movement. 

For both qualitative and quantitative evaluation of the proposed method, POP I-model data-set of lung 

deformation has been used [173] . The POPI-model is a 4-0 pixel-based and point-validated breathing 
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Figure 3.3: Color wheel for encoding estimated motion vectors : smaller vectors are darker while color 

indicates direction of movement. 

thorax model which is used to validate the planar results of our method. The anonymized respiration

correlated 4-0 CT image consists of 10 3-D CT images sampling the entire respiratory cycle. Images were 

acquired on a 16 slice Brilliance CT Big Bore Oncology configuration (Philips). Breathing correlated 

information was obtained using associated Pneumo Chest bellows (Lafayette Instruments). Each 3-D image 

volume is made up of 141 axial slices with a slice thickness of 2mm. Each slice is a 2-D image with size 

512x512 with an isotropic in-plane resolution of 0.97 mm. Landmarks are defined by experts in all of the 3-

D CT image volumes that make up the 4-0 CT data. Although it is clear that landmarks in general move in 

3-D, a subset of them which exhibited planar motion in subsequent frames were chosen in order to validate 

the proposed methodology. The average number of available landmarks for validation of our method for 

each of the coronal , sagittal , and axial orientation through-out the breathing cycle was 25, 24, and 22. 

Figure 3.5 shows calculated vector field in all three anatomical orientations. 

The average computational time to arrive at these results were 38 seconds within a multi-scale 

framework on a Dell 5160 machine with a quad-core Xeon 3.00 GHz processor. Whereas Figures 3.4 and 

3.5 give a good visual impression of the resu lts, the fact that ground truth motion is available for the 

landmark points also offers the possibility to have a quantitative measure of the quality of the estimated 

motion field . Such a quantitative measure to assess and compare the performance of the method has been 

introduced with the so-called average angular error (AAE) in [8] and weighted angular error (W AE) in 

[115]. Assume the computed motion field Ve = (ue• ve) and the ground truth vector field Vg = (ug • Vg) , the 

AAE of the calculated flow field can be computed by: 

38 



.. ~ ~ . .. .... .. ~ .............. ... ............ .... .......... " .. .. .. .. ~ . , , . . . . . . . .... . ..... " .... ... ................... .... , ...... ... ..... , ............... ... .. ' ..... '., ....... , .. \ ....... ... 

.......... I •• I ••• I •• \ \ ." .. ,' 

Figure 3.4: (top row) the image /(x,y, t) = exp(-(x - ut) 2 - (y - vt)2). (bottom row) Yosemite 

sequence with cloudy sky (316x252x 15), frame 9. From Left To Right: (a) First frame. (b) Ground Truth. 

(c) Calculated vector field superimposed on the original image. (d) Color coded diagram of the velocity 

field (based on Figure 3.3). 

(3-16) 

where n denotes the total number of the landmark points . This expression not only measures the spatial 

angular error between the estimated flow vector and the correct vector, but also the differences in the 

magnitude of both vectors, since it evaluates the angu lar error of the spatio-temporal vector (ue, ve' 1). 

In the W AE, the individual angle deviations have been weighed by the magnitude of the landmark 

displacement vector; normalized by the sum of magnitude of all ground truth vectors. The reason for this is 

to emphasize angle deviation of points which have large displacements, and similarly to de-emphasize the 

angle deviation of points which have a smaller displacement: 

1 "I I Vg.vc Elvgl LtC Vg . arccos IVg!lV) (3-17) 
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Figure 3.S: Top row: coronal, and bottom row: transversal planes of the lung. From left to right: (a) First 

frame. (b) Calculated vector field superimposed on the first frame with a = 50, Y = 150, {3 = 1. (c) Color 

coded diagram of the related vector filed (based on Figure 3.3). 

Table 3.1 reports these results in comparison with the well-known optical flow methods which were 

reported in [liS]. As shown in table 3.1 , MOFID was superior in both AAE and WAE, meaning that 

amongst the optical flow algorithms which were evaluated, we should expect better estimation of the lung ' s 

planar motion using the proposed method. 

3.4.2 Three Dimensional Experiments 

For both qualitative and quantitative evaluation of MOFlO, the publicly available POPI-model [173] 

and DIR-Iab [19] data of lung deformation has been used . In the POPI-model dataset, 41 homologous 

landmarks were defined by experts in each of the ten respiratory phases of a single individual that make up 

this 4-0 CT dataset with voxel dimensions 0.97 xO.97x2 mm and made up of SI2 xSI2x 141 voxels. For the 

OIR-lab data, 7S landmarks for each time point between time phases POO and PSO are avai lab le. DIR-Iab 
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Table 3.1 : Quantitative evaluation and comparison of the already implemented methods and the proposed 

method, MOFlD. AAE and WAE stand for average angular error and weighted angular error, 

respectively . Mean errors are shown with (standard deviation) for each case. 

Method AAE WAE 

Hom-Schunck (Global) [66] 92.65° (9.3°) 91.4° (10.6°) 

Lucas-Kanade (Local) [96] 92.62° (11 .5°) 92.22° (12.8°) 

CLG (Local-Global) [16] 89.88° (~) 89.7° (9.8°) 

Brox et al. [14] 28.93° (3 .7°) 36.1 °(3 .9°) 

Wildes et aI. [184] 28.22° (3.5°) 35.89° (3.8°) 

MOFID 26.98° (3.1°) 34.2° (3 .2°) 

data has ten 4-D CT lung images from patients treated for thoracic malignancies . The 4-D image 

characteristics of the ten cases utilized in this study are given in Table 3.2. The accuracy of MOFID relative 

to the known expert-defrned landmarks of both the POPI-model and D1R-lab data are reported here. 

Two evaluation measures are employed for both POPI-model and DIR-Iab data: the primary measure is 

the accuracy of the registration results and the secondary measure is physical plausibility of the computed 

deformation. 

To measure the accuracy of the registration results, the computed transformation has applied to the 

ground truth point set from consecutive phases and compared estimated positions to the actual positions of 

the ground truth points. The differences between the estimated positions with the actual position are 

referred to as ground truth discrepancies or target registration error (TRE). The registration result is 

reported as iJ.gt ± a/-lgt where iJ.gt denotes the average of all ground truth discrepancies and a/-lgt is the 

standard deviation . 

Figure 3.6 presents the calculated motion field of POPI-model dataset between two consecutive 

respiratory phases P30 and P40 in volumetric form . Adopting the NMI-based method to fmd the optimum 

weights, a , y , and f3 were chosen to be 25, 80, and I, respect ively and three scales were used in the multi-

scale strategy. 
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Table 3.2: Spatial accuracy of the proposed algorithm, MOFID, for the 75 landmarks and six time points of 

DlR-lab data sets . A verage spatial errors are reported in mill imeters with standard deviation (SD) in 

parentheses. The fourth column exhibits the average landmark displacements before registration. The fifth 

column represents the errors subsequent to deformable registration. 

Patient Image dimension Voxel dimension (mm) 
Average Landmark Average 

displacements registration error 

Case I 256x256x94 (0.97>< 0.97x2.5) 4.01 (2.91) 0.91 (0.9) 

Case 2 256x256x 112 ( 1.16x 1.1 6x2.5) 4.65 (4.09) 1.08 (1.06) 

Case 3 256x256x 104 (1.\5 >< 1.\5x2.5) 6.73 (4.21) 1.52 (1.\5) 

Case 4 256x256x99 (1.13 x 1.1 3x2.5) 9.42 (4.81) 1.91 (1.39) 

Case 5 256 ><256 >< 106 (I.\O xI.\Ox2.5) 7.10(5.14) 1.66 (1.45) 

Case 6 512 x512x l28 (0.97xO.97x2.5) 11.1 0 (6.98) 2.05 (1.75) 

Case 7 512x512x l36 (0.97xO.97x2.5) 11.59 (7.87) 2.03 (1.51) 

Case 8 512x512x l28 (0.97 xO.97x2.5) 15.16 (9.11) 2.5 (1 .85) 

Case 9 512x512x l28 (O.97xO.97x2.5) 7.82 (3.99) 1.49 (0.95) 

Case 10 512 x512 x l20 (0.97 xO.97x2.5) 7.63 (6.54) 1.71 (1.38) 

Considering all 9 registrations of the POPI-model , the average 3-D Euclidean distance between the 

computed and actual ground truth points with the proposed optical flow method was 1.02 ± 0.70 mm 

(3.3 ± 2 111m was the mean landmark distance without registration). The average computational time to 

arrive at the motion field between two volumetric frames was 74 minutes on a Dell 5160 machine with a 

quad-core Xeon 3.00 GHz processor. A similar qualitat ive evaluation of the method for the 75 landmarks in 

six time points of the DIR-Iab data is summarized in Table 3.2. Similarly, adopting the method in 11.8, a, 

y , and f3 were chosen to be 10, 110, and I, respectively, and three scales were used in the multi-scale 

strategy. 

The physical plausibility of the deformation fi eld was measured using the determinant of the Jacobian 

of the deformation field which is directly related to specific volume changes [137]. If the Jacobian is unity, 

there is no local expansion or contraction. l f the Jacobian is greater than one, there is local tissue 
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Figure 3.6: The computed volumetric motion fie ld for the POPI-model dataset between two consecutive 

phases 30 and 40. 

expansion ; if the Jacobian is less than one, there is local tissue contraction. In particular, we expect the 

calculated deformation field to be bijective. Regions where the deformation field is not bijective has a 

Jacobian determinant of zero and is a singularity [108]. Additionally, a negative Jacobian implies a 

deformation that is physically not pennissible. Figure 3.7 shows box plot of the Jacobian value for each of 

the 9 calculated deformation maps between successive respiratory phases of the POPI-model data as well as 

the color-coded Jacobian between phases 30 and 40 for the mid-coronal imaging plane. 

Figure 3.8 shows a box plot of the error range at each two successive respiratory phases for POPI

model data, using the cumulative set of all 4 I annotated landmarks . A trend toward bigger magnitude errors 

between phases P20 and P30 at exhale as well as P60 and P70 at inhale is visually apparent, consistent with 

the correlation between landmark displacements between each two successive respiratory phases [173]. 

Figure 3.9 shows a similar box plot of the error range at each two successive respiratory phases from 

the end of inspiration to the end of expiration, using the cumulative set of all 75 annotated landmarks for all 

10 DIR-Iab data sets . As expected, a similar trend toward a bigger TRE for the respiratory phases with 

bigger displacement can be seen here. 
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Figure 3.7: (a) The distribution of calculated Jacobian of lung for the computed deformation field 

between consecutive phases of the POPI-model data. For each box, the central mark is the median of 

all computed values, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the 

most extreme data points not considered outliers, and outliers are plotted individually. (b) The coronal 

plane of the calculated motion field of the POPI-model in Figure 3.6 between phases P30 and P40 

volumetric frames and (c) the related Jacobian image. 

The average resulting error of MOFID over the expert-defined homologous landmarks is found to be 

comparable to previously reported optical flow registration methods; as stated in Table 3.3, Castillo et al. 

[18] proposed a combined compressible local global (CCLG) method and achieved mean registration 

1.02 ± 1.03 mm,1.29 ± 1.22 mm , and 2.50 ± 1.9 1 mm on first, second, and fifth case of D1R-lab, 
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Figure 3.8: Phase-step target registration error (TRE) for POP I-model data. A box plot is shown 

illustrating the range of MOFID magnitude registration errors for each of the two consecutive respiratory 

phases of the data. The errors for the 41 annotated landmarks were pooled to produce the plot. 

respectively, while the compressible optical flow method by Wildes [184] achieved 1.17 ± 1.07 

mm,1.37 ± 1.27 mm , and 2.57 ± 1.85 mm of error for same dataset. To the best of our knowledge, 

performance of CCLG and COF methods have not been reported on the remaining seven DIR-Iab data sets. 

Our results which were determined from all 10 available DIR lab data sets improves on previously reported 

values and motivates the use of physical constraints which were utilized in our numerical implementation. 

The incorporated spatio-temporal regularization in the optical flow formulation forces the defonnation to 

be continuous and differentiable in both the spatial and temporal domain in addition to he lping to alleviate 

motion artifact inherent to dynamic images as well as avert singularities in Jacobian of the deformation. 

It should be noted that the temporal smoothness need be regulated wisely to take into account the 

expected smoothness of the motion of the lung so as not to sacrifice the registration accuracy. Therefore, 

the optimum and effective incorporation of the aforementioned assumptions in the optical flow energy 

function is nontrivial. An NMI-based method has been proposed to find the optimum combination of 

weighting parameters. Figure 3.10 shows the sensitiv ity of TRE to different combination of a and y values 

which set the importance of the regularization and gradient terms. Sensitivity of TRE to a and y values has 

been evaluated for motion estimation between phases P30 and P40 which exhibits the largest deformation 

of all the exhale phases of the respiratory cycle (Figure 3.8). 
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Figure 3.9: Phase-step target registration error (TRE) for DIR-lab data - please see Table 3.2. A box plot 

is shown illustrating the range of MOFID magnitude registration errors for each of the two consecutive 

respiratory phases for all of the DIR-lab data. For each of the 10 subjects, 75 annotated landmarks were 

combined to pool the measured errors. 
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Table 3.3 : Spatial accuracy of the proposed algorithm, MOFlD, in comparison with compressible optical 

flow (COF) and compressible combined local global (CCLG) method. 

Patient Image dimension Voxel dimension (mm) 
Average Landmark A verage registration 

displacements error 

1.1 7 (1.07) COF 

Case 1 256x256x94 (0.97xO.97x2.5) 4.01 (2.91) 1.02 (1.03) CCLG 

0.91 ( 9) ID 
1.37 (1.27) COF 

Case 2 256x256 x I 12 (1.16 x 1.\6x2.5) 4.65 (4.09) 1.29 (1.22) CCLG 

1.08 1.06 MOFID 
2.57 (1.85) COF 

Case 5 256x256x 106 (I. lOx 1.1 Ox2.5) 7.10 (5.14) 2.50 (1.91) CCLG 

1.66 (1.45) MOFID 

Based on Figure 3.10 and as expected, changing a has a significant impact on TRE, most I ikely because 

of the resulting increase in effectiveness of the regularization term in the energy function . For a values less 

than 10, the regularization term is not effective enough and TRE starts to grow. a = 10 has been a good 

choice in terms of the mean and error range of TRE. On the other hand, specific values for y (shown here 

with different colors) plays a highly significant role on TRE value. Indeed, turning off the gradient 

constancy term by setting y = 0 leads to the largest value for TRE. 

We have also evaluated the convergence behavior of MOFlO which iteratively arrives at the final 

solution based on the SOR method [133]. Figure 3.1 1 plots the normalized difference between the value of 

the energy function at two successive iterations for three scales. 
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Figure 3.10: Sensitivity of total registration error (TRE) to a value and y value. These error bars show 

the mean and error range of TRE in mm in terms of four different a values, I, 10, 50, and 100 and five 

different y values, 0 (red), 80 (green), 110 (blue), 140 (magenta), and 250 (cyan) over all41 annotated 

landmarks for POPI-model between phases P30 and P40 vo lumetric frames . 
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Figure 3. 11 : The normalized difference between two successive calculated energy function values in 

tenns of SOR iterations (1IEi~:~t'dl) for motion estimation between phases P30 and P40 of the POPI-

model data at three scales. 
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CHAPTER 4 

LANDMARK-BASED ELASTIC REGISTRATION }I'OR 

ESTIMATING LARGE DEFORMATIONS 

4.1 Introduction 

The success of most PDE based DIR methods depends in a important way on the accuracy of fmite 

difference approximations to image derivatives. As a result, factors such as image artifact and large voxel 

displacements affect this accuracy and can lead to significant registration errors. For example, breath-hold 

thoracic CT images (Figure 4.1) which are acquired at opposite ends of the breath cycle, follow-up CT 

images (Figure 4.2), or images from different scaners with the possibility of the different modalities all 

falling, within the scope of this study, depict large voxel displacements. In particular, follow-up studies of 

lung cancer patients entail large deformation IR due to change in lung/tumor definition. 

An important problem in radiation treatment planning is to determine how a target volume changes 

during the course of a breathing cycle or during the course of treatment. Clearly, physiological movement 

of the patient or organs affects the definition of the target volume [146, 162]. A second challenge arises 

from the need to register the post-treatment lung with the pre-treatment lung in order to evaluate the 

effectiveness of the treatment and in order to correlate injury to the normal lung with the radiation dose 

received. This is difficult not only because the tumor volume changes but because normal lung is also 

affected by radiation treatment as it becomes fibrotic leading to completely different Hounsfield units post

treatment. The proposed optical flow method in Chapter 3, like most PDE-based methods, is not capable of 

handling large voxel displacements. One consideration that can prove useful in the design of algorithms for 

this problem is that bifurcations of bronchi provide reliable features which may be utilized as part of 

landmark-based deformable image registration. 

To achieve the goal of landmark-based image registration, automatic landmark localization is 

important, as manual selection of landmarks is time-consuming and often inaccurate. In addition to land-
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Figure 4.1: A pair of corresponding slices from 4-D CT data at end-exhale (left) and end-inhale (right) 

respiratory phases. 

mark based registration, which uses local feature information, a B-spline transformation model [69, 87, 

135, 144, 166] guided by mutual information similarity metric [22, 68, 157] is also proposed here to 

guarantee the smoothness of transformation . The proposed method therefore uses a hybrid local/global 

approach to deformable registration with landmarks providing the local information and the mutual 

information-based registration providing the global statistical intensity infonnation. Since during normal 

breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would 

also be applicable to large deformation registration between maximum inhale and maximum exhale images 

in the same subject. The proposed framework can be used to co-locate SPECT and CT volumes, though 

with a different choise of landmarks (expanded upon in Chapter 6) . As described in this chapter, the 

method has been evaluated by registering 3-D CT volumes at maximum exhale data with all the other 

temporal volumes in the POPI-model data [125] . 

4.2 Path Planning and Landmark Extraction 

Ln order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and 

homologous features which are not affected by the radiation treatment along with a smooth deformation 

field . Since airways are well-distributed in the entire lung, we propose use of airway tree bifurcations for 

registration of the pre-treatment volume to the post-treatment volume. Estimation of lung deformation via 

matching of corresponding landmarks is possible because of the identification of airway and the 

bifurcations. 
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Figure 4.2 : CT scans showing tumor response and treatment accuracy of TomoTherapy SBRT. From left to 

right: (a) pre-treatment, (b) two months after treatment, (c) three months after treatment, Cd) six months 

after treatment [Courtesy of University of Virginia]. 

Landmarks were extracted from the segmented airway tree of the lung. For airway tree segmentation a 

level-set segmentation with region competition with ITK-SNAP was used [200] . Subsequently, the path 

planning algorithm by Negahdar et al. [112-114] was used. The output of the latter algorithm is a centerline 

representation of the segmented airways tree- it automatically produces all of the end points along with the 

labeled bifurcation point. Figure 4.3 illustrates the output of the path planning method. The bifurcation 

landmark points consist of three airway branches with radii f'i' i = 1,2,3, 2. Lf'i > R - (JR whereR and (JR 
m 

denote the average and standard deviation of all radii in the centerlines of the whole airways tree, this 

condition removes small branches that are likely to vanish between the CT slices. To filter those 

bifurcations where one branch significantly differs in its radius from the other two, a MAD-based outlier-

. . th d h b d d l"-i- media n ("-i) 1 2 h MAD() ' h d' b I rejectIOn me 0 as een a opte ; Vf'i: () < were f'i IS t e me Ian a so ute 
MAD "-i 

deviation of the radii of branches at that particular bifurcation. Landmark based registration has the 

advantage of matching landmarks either exactly or inexactly based on the confidence in the specific 

landmark location . 

In general, the landmark image registration problem can be thought of as a Dirichlet problem [74, 75] 

and can be stated mathematically as finding the displacement field u that minimizes the cost function: 

(4-1 ) 

subject to the constraint that U(Pi ) = qi - Pi over all bifurcations used as landmarks. The operator L 

denotes a symmetric linear differential operator and is used to interpolate U away from the corresponding 

landmarks [6, 12]. 
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Figure 4 .3: (Left) segmented airways. (Right) the extracted landmark points with the proposed path 

planning method. 

4.3 Transformation Estimation 

Having identified the corresponding landmarks we estimate a volumetric transformation T that maps 

the post-treatment landmark set {qd onto the pre-treatment landmark set {pd . A B-spline transformation 

model guided by mutual infonnation similarity metric is used because the compact support of B-splines 

keeps the running time reasonably low for volumetric and time series image dataset 

(4-2) 

with Xk being the control points, (33(X) the cubic B-spline polynomial , Pk the B-spl ine coefficient vectors, 

(1 the B-spline control point spacing, and N xthe set of all control points within the compact support of the 

B-spline at x. B-spline in comparison with other spline-based transformation models, such as thin-plate 

spline [12, 63 , 143] or elastic-body spline [29, 186], is locally controlled. One of the main motivations 

behind the use of B-spline transformation is the implicit regularization embedded in the B-spline basis 

functions which guarantees the smoothness of transformation. The cost function CMf guided by mutual 

information simi larity metric is minimized with respect to T . The total cost funct ion CT = ACl.M + CMf is 

optimized using the gradient descent method. 

4.4 Experimental Results 

The deformation map between the remaining 9 phases of the publicly available point-validated pixel-

based POPI model and the end-exha le image of the same dataset which is used as the reference is 
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Figure 4.4: (a) Reference image at end-exhale, (b) deformed image at inhale. Difference image (c) before 

registration and (d) after application of the MI-B-spline and landmark-based registration. 

calculated. In the POPI model data, 41 homologous landmarks were defmed by experts in each of the 3-D 

volumes that make up this 4-D CT data set with voxel dimensions 0.97 x 0.97 x 2 mrn [173]. The accuracy 

of the proposed method relative to the known expert-defmed landmarks of the POPI-model is reported. 

The estimated transformation is applied to the ground truth point set from different phases and 

compared estimated positions in the maximum exhale phase to the actual positions of the ground truth 

points. The differences between the estimated positions with the actual positions are referred to as ground 

truth discrepancies. The registration result is reported as ilgt ± a/-lgt where ilgt denotes the average of all 

ground truth discrepancies and a/-lgt is the standard deviation. The average Euclidean distance between the 

ground truth points was reduced from 1.85 ± 1.43 mm for deformable B-spline registration to 1.33 ± 0.99 

mm by having the bifurcation landmarks. Referring to other landmark-based lung registration methods, 

Urschler et al. [171] used point correspondence from lung and diaphragm surface for a thin-plate spline 

registration and achieved mean registration error in the range of 5 to 9 mm in experiments on CT sheep 

scans with voxel dimensions of 0.5 x 0.52 x 0.6 mm . Coselmon et al. [27] applied gray value based image 

registration using mutual information and thin-plate spline interpolation. They achieved an alignment 

accuracy of 1.7 mm, 3.1 mm, 3.6 mm in the left-right, anterior-posterior, inferior-superior directions. 

Hilsmann et al. [63] used vessel bifurcations from lung for a thin-plate spline registration and achieved 

mean registration error 2.85 ± 2.11 mm for thin-plate spline and 3.40 ± 2.38 mm for affine registration on 
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Figure 4.5: Histogram of difference images before (red dashed line) and after (blue solid line) 

registration. The histograms are normalized and weighed with the bin volume. 

CT images with voxel size of 0.98 x 0.98 x 2.5 mm. Compared to these registration results, we have been 

able to obtain smaller errors . 

The second validation metric relies on the difference image before and after registration . We register the 

maximum inhale image to the maximum exhale image by applying the estimated transformation. We obtain 

a transformed version of the inhale image that, in the ideal case, is equal to the exhale image. Comparing 

the difference images before and after registration provides us with information about the registration result 

that depends on the image infonnation only. Figure 4.4 presents an example of difference image in the 

coronal plane. As may be gathered from examining the difference image, the registration errors are reduced 

near the airways and near the diaphragm . In order to evaluate the difference images quantitatively, we build 

histograms of the difference images in the region of the lung. Figure 4.5 depicts difference image 

histograms before and after registration. According to Figure 4 .5, after registration the number of points 

with values less than -200 in the difference image can be reduced significantly in contrast to the difference 

image before registration. Additionally, the number of points with value 0, i.e. the number of points that 

have the same value in both images, increases after registration. Generally, the histogram changes in such a 

way that the left tail of the histogram drops off more quickly and the peak rises in exchange, ·signifying 

smaller errors after registration. 
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The average computational time to arrive at these results was 44 minutes on a Dell Q6600 machine with 

a quad-core 2.4GHz processor and 3 GB memory. 

The proposed parametric, elastic, free-form, landmark-based registration technique with automated 

landmark bifurcation extraction which was developed in this chapter, has the capability to assess breathing 

motion as well as follow-up studies of lung cancer patients involving large deformations with different 

lung/tumor definitions. Airways' bifurcation points have been chosen as robust landmarks to align the 

deformed lung over treatment or respiration. Landmark information improves the average registration 

errors when compared to elastic registration alone 
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CHAPTER 5 

MEASURES OF REGIONAL MECHANICS FROM DEFORMATION MAPS 

5.1 Introduction 

Many disease or injury conditions can cause biomechanical or structural property changes that can alter 

lung function. While the mechanical changes associated with the change of the material properties originate 

at a regional level, they are largely asymptomatic and invisible to global measures of lung function until 

they have advanced significantly and have aggregated. In fact, virtually all pulmonary diseases of either the 

obstructive or restrictive classification involve some abnormality of lung tissue mechanics [159]. 

Imaging has long been used to study lung mechanics. Some investigators havf: studied the linkage 

between estimates of regional lung expansion and local lung ventilation as a measure of pulmonary 

function [20,21,35,56,57, 124, 137, 160, 162, 190]. We hypothesize that by determining regional and 

global lung elasticity and function, radiation treatment planning may be tailored to the individual patient. 

This function information may be used to achieve conformal-avoidance radiation treatment planning. As a 

result, pulmonary toxicity may be more accurately predicted and prevented [33]. It would be desirable 

therefore to have objective methods with which to evaluate and follow the progression of disease based on 

measures of regional mechanics. 

In this chapter, we present a novel approach to quantification and visualization of regional mechanical 

strain in the lung from 4-D CT using a multi-scale lung-specific optical flow deformable image registration 

method (MOFID) which was discussed in detail in Chapter 3. We propose to validate our method using a 

synthetic dataset and to apply it on the POPI-model data [122]. 
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Figure 5.1: Deformation of a continuum body from the reference configuration, Lagrangian (left) to the 

current configuration, Eulerian (right) and elongation/compression of an infinitesimal line element under 

deformation. 

5.2 Regional Measures of Mechanics from Image Registration 

Figure 5.1 depicts a continuum body from the reference configuration at time tl that is deformed to the 

current configuration at time t z. For a continuous bijective deformation x((. t 1 ) ~ x((. t z) the line 

element PQ in region transforms to the line element PQ [165]. 

In large deformation theory the elongation or compression of a line element is often defined as the 

normal strain. Strain is a dimensionless quantity representing the ratio change in length of a continuously 

deformable body. The length of the line element PQ is: 

(5-1) 

whereas the length of the line element PQ is: 

(5-2) 

The expressions for the total differentials (dx. dI). d3) can be written in terms of (dx. dy. dz): 

ih ar ar 
dx = - dx + - dy + - dz ax ay az 

dI) = al) dx + al) dy + al) dz 
ax ay az (5-3) 

a3 a3 a3 
d3 = -dx +-dy +-dz ax ay az 
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In addition, the displacement field u: (u,V',W') relates the coordinates such that: 

u = :r - x, V' = I) - y, W' = 3 - z 

therefore, the previously written differential relationships in Equation (5-3) can be rewritten as: 

au a1i au 
d:r = (1 + -)dx + -dy + -dz ax ay az 

a~ a~ a~ 
dl) = ax dx + (1 + ay)dy + az dz 

aUf aUf aUf 
d3 = -dx + -a dy + (1 + -a )dz ax y z 

therefore by Equation (5-1), (5-2), and (5-5) we obtain: 

where the coefficients are given by: 

_ 1 (2 2 2) 
E22 - V'y +"2 u y + V'y + W'y 

1 (2 2 2) 
1':33 = W'z +"2 u z + V'z + W'z 

21':12 = 21':21 == V'x + u y + uxuy + V'xV'y + W'xW'y 

21':13 == 21':31 == W'x + u z + uxuz + V'xV'z + W'xW'z 

21':23 == 21':32 == W'y + V'z + uyuz + V'yV'z + W'yW'z 

If the Equation (5-6) is divided by dS 2 the normal strain for the line element PQ is obtained: 

(5-4) 

(5-5) 

(5-7) 

(5-8) 

where N: (N1' N2 , N3 ) are the direction cosines corresponding to the reference configuration. Therefore, the 

normal strain of a line element implicitly contains information regarding the ratio of lengths of an 

infinitesimal line element before and after a continuous deformation. the Equation (5-8) can be rewritten in 

the tensorial formulation: 

(5-9) 

where E is defined to be the Lagrangian strain tensor. 

The Lagrangian strain tensor can also be derived directly from the relationship between the 

infinitesimal line element in the undeformed state, given by dx and its mapping to the deformed state, 

denoted by dx: 
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dx = Fdx (5-10) 

the deformation gradient tensor (DGT), F, maps infinitesimal lengths between the undeformed and 

deformed state of a continuously deformable body. The elements ofthe DGT are: 

ax ax ax 
ax ay az 

F= a9 a9 a9 
(5-1 1 ) ax ay az 

a3 a3 a3 
ax ay az 

in terms of the displacement field, u: (u, 11', w-), the elements of the DGT are computed to be: 

(5-12) 

Various kinematic descriptors of deformation can be calculated from the DGT. Because of the need for 

one-to-one correspondence between material points during continuous deformation, the determinant of the 

DGT, normally referred to as the Jacobian, has to be nonzero: 

J = det (F) (5-13) 

in addition, in the absence of any deformation the Jacobian is equal to unity. Since the deformation is 

assumed to be a continuous function of time, it is impossible for the Jacobian to be negative without 

passing through zero which was previously excluded from physical possibility. It then:fore follows that for 

a continuous deformation to be physically possible, the Jacobian must be greater than zero. We took 

advantage of this fact to evaluate the accuracy of the calculated motion field which discussed in details in 

Section 2.4. The degree of regional lung expansion is measured using the Jacobian of the displacement 

field which is directly related to the specific volume change [137]. If the Jacobian is unity, there is no local 

expansion or contraction. If the Jacobian is greater than one, there is local tissue expansion; if the Jacobian 

is less than one, there is local tissue contraction. 

DGT can be decomposed into stretch and rotation components: 

F=RU (5-14) 

where the U is the right stretch tensor and R is an orthogonal rotation tensor. The Cauchy-Green 

deformation tensor is defined as: 

C = FTF = U2 (5-15) 
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VJ 

(a) (b) (c) (d) 

Figure 5.2: (a) Space of tensor shape. Three basic diffusion tensor shapes: (b) Isotropy, (c) Linear 

anisotropy, (d) Planar anisotropy. 

The concept of strain may be used to evaluate how much a given displacement differs locally from a 

rigid body displacement. The Lagrangian strain tensor, E, is then given by: 

1 1 T E=-(C-I) =-(F F-I) 
2 2 

(5-16) 

where I is the identity matrix . From the Lagrangian strain tensor we can calculate the various nonnal, 

shear, and principal strain va lues which describe the regional deformation of the element. Since F is non 

singular, the reverse mapping, F- l, exists and allows for the Eulerian description of strain, G, which is 

given by: 

(5-17) 

Eigenvalue decomposition on the Lagrangian strain tensor yields the three principal strain values, 

(ill' il2• il3)' The principal strain vectors, (Vl. V2• V3), are the corresponding eigenvectors and correspond to 

the directions of the principal axes of the reciprocal strain ellipsoid. The maximum (ill) ' medium (il2) , and 

minimum eigenvalue (il3) are called the maximum, medium, and minimum principal strain, respectively . 

The maximum principal strain relates to maximum elongation and the minimum strain relates to maximum 

compression 

5.3 Visualization of 3-D Strain Tensor Field 

Tensor field visualization is a challenging task due in part to the multivariate nature of individual tensor 

samples [31 , 82, 178, 188] . Ellipsoids describe tensor variables by mapping the tensor eigenvectors and 

eigenvalues to the orientation and shape of a geometric prim itive. 
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A symmetric tensor such as lagrangian strain tensor can always be diagonalized, that is, decomposed 

into a rotation matrix, R, a diagonal matrix, A, and the inverse rotation, R- l
. R has its column vectors made 

up of the eigenvectors (Vl' Vz, V3) and A has eigenva lues (.11' .12, .13) as the entries on the main diagonal and 

has zero entries elsewhere. 

(5-18) 

This is the natural decomposition of a tensor quantity into orientation and shape information. As shown 

in Figure 5.2, the orientation of the ellipsoid axes conveys the eigenvectors, and the scaling along the axes 

corresponds to the eigenvalues. The anisotropy of a tensor expresses the amount of variation in the 

eigenvalues. If tensors do not have any anisotropy (.11 = .12 = .13) , then they are considered spherical in 

shape. Anisotropic diffusion tensors can have linear shapes (.11 > .12 = .13), planar shapes (.11 = .12 > .13), 

or some combinations [82]. 

5.4 Relationship between Jacobian and Principal Strains 

Since the inverse of a rotation matrix is equals to its transpose, we have the following relations: 

(5-19) 

(5-20) 

(5-21 ) 

Since F is a 3x3 tensor, applying the determinant to both sides of the above equality yields: 

(det(F))2 = 8 det(A + liz I) (5-22) 

As J = det (F) , 

(5-23) 

Therefore, Jacobian of defonnation can be computed from the principal strain values . 
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Figure 5.3: (a) Cross section of a contracting volumetric sponge I(x, y, z, t) = exp (-(x - !1t)2 -

(y - vt)2 - (z - wt)Z) for time points t = 1 and t = 1.1. (b) The three dimensional calculated motion field . 

(c) Axial cross section of the calculated motion fie ld in (b) corresponding to the same axial location shown in 

(a). (d) Cross section of the glyph ellipsoid representation of the calculated strain tensor, same cross section 

as in (a). (e) The same display in (d) but shown from a different view point. (f) Minimum principal 

component (contraction component) of the calculated strain tensor corresponding to the cross sections 

disp layed in (a). 

5.5 Experimental Results 

Since the respiratory motion of the lung can be simplified and modeled as a time varying contraction 

and expansion [116], a volumetric sponge model which undergoes contraction and expansion has been used 

to evaluate the accuracy of the strain calculation method. Figure 5.3 displays the estimated motion and the 

calculated strain in glyph ellipsoid representation for a contracting sponge. 
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(a) (b) (c) 

(d) (e) (f) (g) 

Figure 5.4: (a) Coronal plane of the POPI-model in max-inhale (top) and max-exhale (bottom) respiration 

phase. (b) The calculated volumetric motion field . (c) The coronal plane of the calculated motion field. (d) A 

color coded Jacobian image with the scale going from 0.3 (blue) to 1.7 (red). (e) The maximum principal 

strain component. (t) The minimum principal strain component. (g) The superimposition of both maximum 

(red) and minimum (blue) principal strain components. 

Figure 5.4 displays results from two volumetric images between phases P30 and P40 of the POPI

model. To further evaluate correctness of the deformable registration, singularity assessment was 

performed in order to ensure that registrations represented meaningful and physically plausible 

deformations . Figure 5.4(d) shows color-coded Jacobian of the POPI-model data between P30 and P40. As 

expected, there is no singularity in the calculated registration . Figure 5.4(e) and 5.4(t) display the maximum 

and minimum 3-D principal strains illustrated for the mid-coronal slice of Figure 5.4(a). In Figure 5.4(g), 

the two strain images were combined using RGB channel combination with the R channel corresponding to 

the maximum component and B channel corresponding to minimum component. The G channel was set to 

zero. 

The robustness of the proposed motion estimation and strain calculation method has been evaluated on 

the deforming sponge volume in the presence of Gaussian noise with different variances added to temporal 
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Figure 5.5: Solid lines: RRMS error between the estimated Lagrangian principal stra ins (maximum, 

medium, and minimum) and corresponding ground-truth quantities for the entire image volume. Dashed 

line: RRMS error between the estimated motion and the true motion. Abscissa: variance of additive 

Gaussian noise (Noise with a variance of 0.0 I far exceeds the noise power encountered in lung CT data). 

Ordinate: RRMS error in percent. 

volumetric images for both times t = 1 and t = 1.1. Figure 5.5 shows the relative root mean squared 

(RRMS) error between the true and estimated motion as well as the estimated maximum, medium, and 

minimum principal strain and corresponding ground-truth quantities . As may be seen, the errors for the 

motion field are significantly smaller than those for the strain. Clearly, spatio-temporal smoothness in the 

optical flow energy function has alleviated the effect of noise on the estimated motion while the derivative 

operator in calculation of DGT has amplified the effect of noise in the calculated strain tensor. 

65 



CHAPTER 6 

PHYSIOLOGIC VALIDATION OF MEASURES OF REGIONAL PULMONARY 

FUNCTION 

6.1 Introduction 

Radiotherapy for thoracic malignancies can cause biomechanical (strain and elasticity) changes which 

alter the physiological function of the lung (uptake of 02 and release of C02).The extant and severity of 

these alterations depend on the dose and fractionation. Hypofractionated treatment, in particular SBRT, 

reduces the level of normal tissue tolerance to radiation and therefore presents a higher risk to a patient 

care. Assessing lung function for these high risk cases with an objective method which relates 

biomechanical change with physiological function is essential in evaluating risk for treatment and 

retreatment cases. Some dose escalation studies for NSCLC found higher radiation dose associated with 

improved overall survival [85], while other studies demonstrated the feasibility of minimizing radiation 

dose to functional lung tissue with incorporation of 4-0 CT derived ventilation measurements [72, 194]. 

Currently, the most prevalent approach for assessing regional lung function from 4-0 CT data has been 

a measure of Jacobian of deformation [20, 21, 35, 56, 137, 189, 190]. However, although the Jacobian 

describes regional volume changes of the lung during deformation, it lacks any consideration of directional 

changes of local compressions and expansions during respiration. 4-0 CT measured lung strain is a 

quantitative method which provides regional volume changes during deformation; it provides directional 

changes for the local compressions and expansions during respiration. 

Herein, we propose a novel approach to quantification of motion and mechanical strain in the lung from 

treatment planning 4-0 CT images using MOFIO to derive volumetric deformation maps. Principal strains 

of deformation computed from clinical treatment planning 4-0 CT data were then correlated with both 

tomographic SPECT ventilation (VSPECT) and tomographic SPECT perfusion (QSPECT) scans in seven lung 
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cancer patients and showed quantitative results of the comparison of mechanical strain as a novel index of 

regional lung function with previously established Jacobian of deformation [123, 124]. 

6.2 Patient Studies 

The study was approved by University of Louisville's Institutional Review Board. Seven patients with 

non-small cell lung cancer (NSCLC) who were scheduled to receive thoracic radiotherapy were enrolled in 

the study and imaging was performed prior to the initiation of treatment. 4-0 CT data were collected with 3 

mm slice thickness using a Philips Brilliance Big Bore CT scanner and the Varian Real-time Position 

Management (RPM) system (Varian Medical Systems, Palo Alto, CA) to record patient respiratory traces 

in the Department of Radiation Oncology at the University of Louisville. An audiovisual feedback device 

was utilized to ensure a reproducible and consistent respiratory cycle waveform to ensure fidelity of the 4-

OCT data. For each patient, 4-0 CT images of the entire thorax and upper abdomen were obtained. The 4-

o CT image characteristics of each of the seven patients utilized in this study are given in Table 6.1. 

Each patient also received tomographic (SPECT) ventilation and tomographic (SPECT) perfusion 

imaging on a Philips AOAC Sky-light Dual head gamma camera. For SPEer ventilation, 99mTc_ 

diethylenetriamine-penta-acetic acid (Tc-99m OTPA) was aerosolized and inhaled, while for SPECT 

perfusion, 99mTc_ macroaggregated albumin (Tc-99m MAA) was injected intravenously. The range of 

inhaled Tc-99m OTPA was 21.2-25.9 mCi (mean ± SO: 23.8 ± 1.5 mCi) while the range of injected Tc-

99m MAA was 4.1-4.9 mCi (mean ± SO: 4.5 ± OJ mCi). The SPECT scans were acquired in a 128xl28 

matrix with a pixel size of 4.6 mm x4.6 mm. Table 6.1 shows the characteristics of patient data. Figure 6.1 

shows the VSPECT and QSPECT of all patients in this study at mid-coronal slice. The SPECT images have 

been thresholded to the 95th percentile value of intensities within the segmented lung area in order to 

remove the SPECT focal areas of intense tracer activities, occurring because of airway deposition of the 

tracer. 
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Table 6.1: The characteristics of patient data included in this study 

Pt Malignancy 4-0 CT image 4-0 CT voxel SPECT ventilation SPECT perfusion 
dimension dimension (mm) image dimension image dimension 

NSCLC 512x512xl04 1.36x 1.36x3 128x128x72 128x128x65 

2 NSCLC 512x512x94 1.1 7x 1.1 7x3 128xl28x85 128xl28x84 

3 NSCLC 512x512x92 1.17x 1.17x3 128x128>< 79 128x128x88 

4 NSCLC 512x512x85 1.17x 1.1 7x3 128xl28x83 128x128x88 

5 NSCLC 512x512x71 1.17x 1.17x3 128x128x62 128x128x58 

6 NSCLC 512x512 x92 1.1 7x 1.1 7x3 128x l28x89 128xl28 x86 . 

7 NSCLC 512x512x96 1.17x 1.17x3 128x128x63 128x128x61 

6.3 Method 

6.3.1 Deformable Image Registration 

Following 4-0 CT data collection, the multi-scale optical flow defonnable image registration method 

(MOFID), described in Chapter 3, was used to create a spatia l voxe l-w ise deformation map that shows the 

motion of the lung tissue between the end of inhale and the end of exhale [I 19] . 

The volumetric images of expiratory phases are registered pairwise to calculate the deformation field 

between the max-inhale and max-exhale respiratory phases through composition of pairwise deformation 

maps. The normalized mutual information (NM I) similarity yardstick has been employed to find the 

optimum weighs for MOFID energy function . For all 4-0 CT registrations in this study, we set the 

weighting constant (J = 1, Y = 10, and a = 110 to weigh mass conservation constraint, gradient constancy 

constraint, and regularization ter. Figure 6.2 illustrates the motion field as calcu lated by MOFID between 

max-inhale and max-exhale for Patient I in the study. 
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6.3.2 Lung Parenchyma Segmentation 

A level-set segmentation with region competition with ITK-SNAP [150, 200] was applied to delineate 

lung voxels from the CT images. For all cases, the primary lung tumor volume was excluded from the lung 

mask. Figure 6.3 shows the volumetric segmented lung from the 4-0 CT images for all patients in this 

study. 

6.3.3 Measures of Regional Function from Deformation Maps 

Subsequently, the 4-0 CT derived ventilation images were created as follows; the Jacobian of the 

deformation field which represents the local tissue expansion, was calculated for each voxel in the lung 

volume. We will refer to Jacobian maps calculated from MOFIO as Vjae' Figure 6.4 shows the calculated 

Jacobian map of Patient 1 at mid-axial, mid-coronal, and mid-sagittal plane. For more intuitive realization, 

we defme the Jacobian metric of ventilation to be: 

V'jae = ] - 1 (6-1) 

This is defined at each inhale voxel position. In Equation (6-1), positive values indicate local expansion 

and negative values indicate local contraction. 

The strain tensor map of the deformation field was also calculated for each voxel in the lung. Figure 6.5 

shows the principal strain values for the deformation between max-inhale and max-exhale calculated from 

4-0 CT data of Patient 1 at mid-axial, mid-coronal, and mid-sagittal plane. 

6.3.4 Co-Registration of CT and SPECT Data 

Figure 6.6 shows the SPECT ventilation image (VSPECT) and SPECT perfusion image (QSPECT) of 

Patient 1. As shown in Figure 6.6, QSPECT shows asymmetric and heterogeneous perfusion throughout the 

lung, which is essentially identical to ventilation distribution of the lung. Having calculated the 4-0 CT 

derived images, they were separately registered with SPECT ventilation and SPECT perfusion maps with 

an affine transformation using elastix [84]. For the affine transformation, the proposed large displacement 

registration framework in Chapter 4 was adopted where mutual information has been employed as a 

similarity metric and an adaptive stochastic gradient descent technique has been used as the optimizer. 

Figure 6.7 shows the SPECT ventilation image (VSPECT) for Patient I along with the 4-0 CT derived 
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measures (V]ao VAl' VA2 , VA3 ,) registered on SPECT ventilation space. Similarly, Figure 6.8 shows the 

SPECT perfusion image (QSPECT) for Patient 1 along with the 4-0 CT derived measures (V]ac' VAl' VA2 , VA3 ) 

registered on SPECT perfusion space. 

6.3.5 Statistical Analysis 

Finally, the physiologic accuracy of registered 4-0 CT ventilation maps (i.e., Ja.cobian and principal 

strains) was quantified by comparison with both SPECT ventilation images (VSPECT) and SPECT perfusion 

images (QSPECT), used as ground truth for measuring the pulmonary function. 

The Spearman's rank correlation coefficient (p) was determined in order to quantify the correlation 

between each of the 4-0 CT derived ventilation images and the SPECT ventilation/perfusion images. 

Spearman's rank correlation coefficient is a non-parametric measure of statistical dependence between two 

images. The Pearson's linear correlation coefficient (pee) was also calculated as a measure of the strength 

of linear dependence between each of the 4-0 CT derived ventilation images and the SPECT 

ventilation/perfusion images. The least squares regression between each of the 4-0 CT derived ventilation 

image values and the SPECT ventilation/perfusion values were also plotted. 

6.4 Results 

Table 6.2 shows the Spearman's correlation coefficient (p) and Pearson's linear correlation coefficient 

(pee) between each of the 4-0 CT derived ventilation images and VSPECT for all seven subjects in this 

study. Similarly, Table 6.3 shows the Spearman's correlation coefficient (p) and Pearson's linear 

correlation coefficient (pee) between each of the 4-0 CT derived ventilation images and QSPECT for all 

subjects. 

70 



Table 6.2 : The Speannan's correlation coefficients, p , and Pearson's linear correlation coefficient, PCC, 

between SPECT ventilation (VSPECT) and 4-D CT derived venti lation images for seven subjects with non-

small cell primary lung cancer. The strongest correlation values have been bolded in each row and the best 

correlation, p, has been highlighted for each patient 

I 
-0.1222 <0.001 -0.2859 0 -0.1311 <0.001 0.0853 <0.001 

P 0.1224 <0.001 <0.001 -0.0264 <0.001 0.0878 0 

0.1342 <0.001 -0. \333 <0.001 0.0066 0.14 0.0027 0.54 

P -0.1772 <0.001 0 -0.1909 <0.001 -0.0287 <0.001 

-0.0978 <0.001 -0.1919 <0.001 -0.0703 <0.001 0.0039 0.44 

P 0.022 <O.OOl <0.001 -0.0637 <0.001 0.1308 <O.OOl 

0.0357 <0.001 -0.1373 <0.001 -0.0205 <0.001 0.1"36 <0.001 

P -0.1978 <0.001 0 -0.1616 <O.OOl 0.0426 <0.001 

-0.1332 <0.001 -0.2519 0 0.1162 <0.001 -0.0062 <0.00 1 

P -0.0992 <0.001 0 -0.0791 <0.001 -0.0007 0.86 

-0.0272 <0.001 -0.3449 0 0.001 0.8 0.1424 <0.001 

P 0.0653 <0.001 0 0.1115 <0.001 0.1183 <0.001 

0.0848 <0.001 -0.1315 <0.001 0.0632 <0.001 0.1499 0 
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Table 6.3: The Spearman' s correlation coefficients, p , and Pearson's linear correlation coefficient, PCC, 

between SPECT perfusion (QSPECT) and 4-0 CT derived ventilation images for seven subjects with non

small cell primary lung cancer. The strongest correlation values have been bolded in each row and the best 

correlation, p, has been highlighted for each patient 

-0.179 

-0 .1349 <0.001 -0.305 -0.1516 <0.001 0.086 <0.001 

0.0147 0 -0.0658 <0.001 0.2111 0 

0.0625 <0.001 -0.1891 0 -0.0257 <0.001 0.0007 0.87 

-0.0564 <0.001 -0.1148 <0.001 0.0481 <0.001 

-0.0488 <0.001 -0.1529 <0.001 -0.0678 <0.001 -0.0014 0.79 

P -0.1003 <0.001 0 -0.1826 <0.001 0.0839 <0.001 

-0.0898 <0.001 -0.2927 0 -0.132 <0.001 0.1102 <0.001 

P -0.1513 <0.001 0 -0.1258 <0.001 0 .0406 <0.001 

-0.0876 <0.001 -0.1772 <0.001 -0.078 <0.001 -0.0057 OJ 

P -0.2638 0 0 -0.1838 0 -0.1868 0 

-0.2076 0 -0.3275 0 -0.1179 <0.001 -0.0418 <0.001 

P -0.0739 <0.001 0 0.0214 <0.001 -0.0343 <0.001 

-0.0491 <0.001 -0.1143 <0.001 -0.0116 0.002 0.0 147 <0.001 
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6.5 Discussion 

Regional heterogeneity is apparent for 4-0 CT derived images (V;ae> VAl' VAz ' VAJ; however, the spatial 

distribution is different between the Jacobian and each of the principal strain values. By visual inspection of 

Figure 6.7 and Figure 6.8, agreements in some regions can be observed; however, many disagreements 

throughout the lung are also observed. For instance, for mid-coronal QSPECT and in the lower right region of 

lung, a reasonable agreement between VIae and VAl and perfusion image can be seen. Similarly, VSPECT and 

QSPECT demonstrate more activity in the right apical upper lobe, in agreement with pulmonary function 

maps Viae, VAl' VAz ' and VA3 . Overall, where there is more contraction in Viae and VAl there is more 

agreement with both the perfusion and ventilation images. 

The 4-0 CT derived ventilation images versus VSPECT and QSPECT together with the Spearman's voxel

based correlation coefficient (p) for all subjects are reported in Figure 6.9 - Figure 6.15. From visual 

inspection of the spatial distribution of 4-0 CT derived images as well as from the computed Spearman's 

correlation coefficients and Pearson's correlation coefficient, VAl clearly and consistently shows better 

agreement and stronger correlation with both VSPECT and QSPECT. On the other hand, VAz and VA3 yield 

smaller Spearman's correlation coefficients which imply less agreement with both VSl'ECT and QSPECT. 

In comparison to previously reported studies [20, 190], our measure of Jacobian (Viae) resulted in a 

better correlation with VSPECT and QSPECT. We attribute this to MOFIO's more accurate estimation of the 

deformation field between respiratory phases of 4-0 CT images. 

In comparison to Viae, the proposed VAl shows stronger correlation with both VSPECT and QSPECT. 

Figure 6.16 shows the correlation value of the maximum principal strain (VA) and Jacobian (Viae) with 

both SPECT ventilation (VSPECT) and SPECT perfusion (QSPECT) where VAl consistently had a more 

significant correlation with VSPECT and QSPECT when compared to Viae (p<IO-3
). We hypothesize that this 

may be due to the relation between Jacobian and principal strain values (please see the derived relation in 

Section 5.4). Based on Equation (5-23), all three principal strain values, (ill' ilz. il3 ), affect the value of the 

Jacobian in a non-linear fashion. Since ill is the maximum principal strain value, it has a more significant 

impact on the statistical correlation of the Jacobian with both VSPECT and QSPECT; however, ilz and il3 being 

less correlated to VSPECT and QSPECT weaken the correlation of Jacobian with both VSl'ECT and QSPECT. 
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Relative to the rest of the patients in the study, for the patients with a better match of spatial distribution 

of ventilation and perfusion pattern as evident in the nuclear medicine physician's report, a stronger 

correlation of the 4-0 CT derived images with both VSPECT and QSPECT was found (see for example, 

correlation values in Tables 6.2 and 6.3 for the first and sixth patients). It should be noted that unlike the 

case of patients with diseases such as pulmonary embolism and hypopalsialaplasia of pulmonary artery 

where there is a clear mismatch between VSPECT and QSPECT' there is no such mismatch evident in 80% of 

lung cancer patients [49, III, 199]. 

Overall, the 4-0 CT derived ventilation images show a relatively weak correlation with both SPECT 

ventilation (VSPECT) and SPECT perfusion (QSPECT)' which conform to previous studies [20,41, 190]. This 

could be due to issues present in both 4-0 CT and SPECT imaging. Lung cancer patients can have irregular 

breathing; this leads to artifacts and degradation in the acquired 4-0 CT images. Artifacts in treatment 

planning 4-0 CT images cause inaccuracies in calculated CT ventilation images. Lik(:wise, Tc-99m OTPA 

aerosols cause artifacts in SPECT images due to the central airway deposition rendering SPECT scans 

prone to inaccuracies. Although the correlation values between 4-0 CT derived pulmonary function maps 

and SPECT images have been moderate, we should be cognizant of the fact that Tc-99m OTPA aerosol 

ventilation SPECT images are not strictly quantitative. The main area of strength for SPECT ventilation has 

been its ability to localize regional ventilation deficits-such as those arising in airway obstruction or 

chronic obstructive pulmonary disease (COPO)-potentially of benefit in image-guided radiation therapy 

treatment planning. 

Moreover, the different spatial and perhaps temporal resolutions between 4-0 CT images and SPECT 

scans can exacerbate this issue. All 4-0 CT and SPECT acquisitions were performed separately and on 

different days resulting in significant differences in both location and stretching of th(: lung and diaphragm 

relative to the rib cage as well as more generally changes in lung function, although less likely. 

The difference of imaged lung volumes between 4-0 CT and SPECT should also be highlighted. 

SPECT ventilation and perfusion scans are free breathing scans, thus they are blurred average images of the 

ventilation and perfusion volumes of the patient that is studied. However, the 4-0 CT scan is gated to RPM, 

and patients are coached via an audiovisual feedback to time their breathing so that their lung volume goes 

from the max-inhale phase to the max-exhale phase. It is therefore expected that the ventilation metrics 
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between the max-inhale and max-exhale phases do not entirely match the ventilation and/or perfusion 

metrics as derived from SPECT images. Therefore, the apparent mismatch between 4-0 CT derived 

ventilation maps and SPECT does not refute the hypothesis that quantitative images depicting regional 

ventilation from 4-0 CT can indeed provide an accurate appraisal of pulmonary function for use in image

guided radiation therapy of the lung. 

One of the limitations of this study is that due to lack of availability, the SPECT studies were not 

performed on a hybrid SPECT/CT system. Availability of such systems would surely improve the results 

since in that case 4-0 CT studies could be registered to a breath-hold CT study from the hybrid system 

already registered to SPECT. Notwithstanding this, we have been able to obtain reasonable registrations 

between SPECT and 4-0 CT studies and have demonstrated that measures of mechanical strain are 

indicative of pulmonary function from 4-0 CT studies. 
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(VSPECT) (QSPECT) (VSPECT) 

Case 1 Case 2 

Case 3 Case 4 

Case 5 Case 6 

Case 7 

Figure 6.1 : The SPECT ventilation image (VSPECT) and SPECT perfusion image (QSPECT) of all 7 patients 

in the study in the mid-coronal slice, shown with a scale from 5th percentile value to the 95th percentile 

value. At xth percentile value, x% of the total lung volume has lower value. 
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(a) (b) 

(c) (d) (e) 

Figure 6.2: (a) Segmented lung for Patient I . (b) The calculated volumetric motion field between end

inspiration and end-expiration phases. The mid-coronal plane of the volumetric lung at end-inhale (c) and 

end-exhale (d). (e) The projection of the calculated motion field superimposed on max-inhale respiratory 

phase. 
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(a) (b) (c) 

(d) (e) (t) 

Figure 6.3: (a-g) The volumetric segmented lung from the 4-0 CT images of each patient at end

inspi ration. 
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Figure 6.4: Calculated Jacobian (~ac ) at mid-axial , mid-coronal , and mid-sagittal slice, superimposed on 

end-inhale images (left column) and the quantitative images (right column). 

79 



a a I II 8 
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Figure 6.5: The calculated principal strain values at mid-axial (first row), mid-coronal (second row), and 

mid-sagittal sl ices (third row). The maximum principal strain image (left column), VAl' the medium 

principal strain image (midd le column), VA2 , and the minimum principal strain image (right column), VA3 . 
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Qs 

Figure 6.6: The SPECT ventilation image (VSPECT) (left column) and SPECT perfusion image (QSPECT) 

(right column) of the first patient at mid-axial (first row), mid-coronal (second row), and mid-sagittal slice 

(third row). 
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Figure 6.7: 4-0 CT derived calculated images at mid-axial (first row), mid-coronal (second row), and mid-

sagittal slice (third row) at ventilation image resolution . The SPECT ventilation image, VSPECT , (first 

column). Jacobian ventilation image, Vjae , (second column). The maximum principal strain image, VA l' 

(third column). The medium principal strain images, VA2, (fourth column). The minimum principal strain 

image, VA3, (fifth column). 
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Figure 6.8: 4-0 CT derived calculated images at mid-axial (first row), mid-coronal (second row), and mid-

sagittal slice (third row) at perfusion image resolution. The SPECT perfusion image, QSPECT , (first 

column). Jacobian ventilation image, Viae, (second column). The maximum principal strain image, VAl ' 

(third column). The medium principal strain images, VA2, (fourth column). The minimum principal strain 

image, VA3, (fifth column). 
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Figure 6.9: Comparison ofV'jac (first row), VAl (second row), VAz' (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT , (left column) and SPECT perfusion, QSPECT , (right column) in subject one. The 

least square regression lines and Spearman correlation coefficients, p, are also shown in each case. 
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Figure 6.10: Comparison of V' jac (first row), VAl (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT, (left column) and SPECT perfusion, QSPECT , (right column) in subject two. The 

least square regression lines and Spearman corre lation coefficients, p, are also shown in each case. 
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Figure 6. 11 : Comparison of V ' jac (first row), VAl (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT , (left column) and SPECT perfusion, QSPECT , (right column) in subject three . The 

least square regression lines and Spearman correlation coefficients, p, are also shown in each case. 
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Figure 6.12: Comparison ofV'Jac (first row), VAl (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPEcr , (left column) and SPECT perfusion, QSPEcr , (right column) in subject four. The 

least square regression lines and Spearman correlation coefficients, p, are also shown in each case. 
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Figure 6.13: Comparison of V' lac (first row), v'l.1 (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT , (left column) and SPECT perfusion, QSPECT , (right column) in subject five . The 

least square regression lines and Spearman correlation coefficients, p, are also shown in each case, 
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Figure 6.14: Comparison ofV',ac (first row), VAl (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT , (left column) and SPECT perfusion, QSPECT , (right column) in subject six. The 

least square regression lines and Spearman correlation coefficients, p, are also shown in each case. 
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Figure 6. 15 : Comparison of V'jac (first row), VAl (second row), VA2, (third row), and VA3 (fourth row) versus 

SPECT ventilation, VSPECT , (left column) and SPECT perfusion, QSPECT , (right column) in subject seven. 

The least square regression lines and Spearman correlation coefficients, p, are also shown in each case. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Motivations 

In radiotherapy planning of lung cancer, respiratory motion can be problematic in determination of the 

target volume, potentially leading to irradiation of risk organs. As a result, nearly all patients who undergo 

thoracic radiation treatment develop some degree of lung injury and loss of pulmonary function. In modem 

clinical practice, studies have demonstrated that dose escalations as part of hypofractionated treatments are 

associated with improved survival rates for NSCLC [85]. Oespite this it has also been demonstrated that 

hypofractionated treatments reduce the level of normal tissue tolerance to radiation and present a higher 

risk of toxicity. 

Prediction and prevention of pulmonary toxicity is of paramount importance in radiation treatment of 

lung cancer [33] and should involve, optimization of the radiation beam geometry to preferentially pass 

through dysfunctional regions of the lung and to maximally spare the regions with normal function. The 

dose volume histograms for the normal and dysfunctional regions of the lung should therefore be calculated 

separately since the risk of radiation toxicity to the normal and dysfunctional lung need to be considered 

separately. Incorporation of regional pulmonary function information into the treatment planning process 

through computation of mechanical strain from 4-0 CT will therefore establish a more sophisticated 

planning practice for the treatment of thoracic malignancies. 

7.2 Contributions 

In this dissertation, we have developed a novel multi-scale optical flow framework with lung-specific 

assumptions, MOFIO, that provides the possibility to enforce physical constraints on the estimated 

deformation map from 4-0 CT thoracic images. MOFIO has been extensively validated on eleven 
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annotated 4-0 CT data sets. It has been shown that use of continuity equation-based mass conservation and 

gradient constancy as well as use of spatio-temporal smoothness improves prior efforts in measuring and 

modeling of lung motion from thoracic 4-0 CT images. 

A new landmark-based elastic registration method to estimate large deformations has also been 

developed. The proposed method uses a hybrid local/global approach to deformable registration with 

landmarks providing the local information and mutual infomlation-based registration providing the global 

statistical intensity information. We have used airway bifurcations as landmarks because they permit 

accurate point localization and are well-distributed throughout the lungs. These landmarks are extracted 

from automatically calculated airway centerlines via a path planning method. The proposed elastic 

registration method has been used in this dissertation in order to register the multi-modality images of the 

lung (e.g., SPECT and CT). Although we have not registered early and late post-treatment lung CT images 

with pre-treatment lung CT images (and the corresponding pretreatment/early/late CT-derived indices of 

lung function), we believe the proposed elastic registration method is well-suited to the task of evaluating 

the effectiveness of radiation treatment. 

We have developed a novel framework for quantification of volumetric deformation maps and 

mechanical strain from treatment planning 4-0 CT images using MOFIO. Strain has also been introduced 

as a novel ventilation metric for assessment of regional lung function from 4-0 CT images. 

The 4-0 CT derived quantitative images of regional lung function and their physiologic accuracy were 

evaluated on seven non-small cell lung cancer patients and were compared with tomographic SPECT 

ventilation and perfusion scans in the same patients. In comparison to previous studies, the Jacobian 

function map derived from MOFIO produced a better correlation with both SPECT ventilation and 

perfusion maps. It was also determined that the maximum principal strain pulmonary function map derived 

from MOFIO outperforms the Jacobian of deformation pulmonary function map which has previously been 

utilized by several authors as a 4-0 CT-derived metric of ventilation. 

Having calculated highly accurate spatial deformation maps with MOFIO to facilitate regional lung 

function quantification, our study has provided evidence towards the potential of strain derived from 4-0 

CT as a tool in the treatment planning process of thoracic malignancies for functional avoidance and its 

capability to depict regional pulmonary function. 
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The reported correlations between strain derived from 4-D CT with SPECT ventilation and perfusion 

were found to be significant, validating strain as a measure of regional lung function. We have 

demonstrated that in the cohort of 7 patients that were studied, the 4-D CT strain measurements were 

effective in evaluating the functional and dysfunctional lung volume. We hypothesize that assessment of 

the changes in regional strain post-treatment will permit more effective treatment plans, to minimize 

damage to the normal lung. We believe this to be especially important for hypofractionated treatment plans 

where toxicity can be very high. 

7.3 Future Studies 

Current radiation treatment planning techniques are suboptimal and require further optimization by 

accounting for an accurate regional heterogeneous model of lung function. These findings suggest an 

image-guided radiation therapy (IGRT) strategy for incorporation of the 4-D CT derived function images 

into a treatment planning framework for lung cancer patients. in which hypo-functioning regions are 

identified in order to remove avoidance restriction. This strategy could be combined with function-based 

conformal avoidance methods. The overarching goal of this study has been to design a planning tool for RT 

which would be useful for tracking the progression of radiation induced toxicity to surrounding normal 

tissue during RT, and can be used to design a predictive model of toxicity and to evaluate the effectiveness 

of treatment. 

Limitations of the study reported here include: lack of availability of CT scanners with higher number 

of detector rows (the patient CT studies were performed on a CT system with 16 detector rows) and lack of 

availability of a hybrid SPECT/CT system; availability of a hybrid SPECT/CT system would make 

registration of SPECT with CT unnecessary and should improve on the reported correlation measures. 

Additional improvements to physiologic correlation should also be expected through use of Xe-CT or 

hyperpolarized MR in lieu of ventilation and perfusion SPECT. 

We have not studied or compared strain changes from pre-treatment CT studies to early changes after 

radiation treatment to late changes after radiation treatment. We believe however that the pieces of the 

project are in place that would permit such comparisons. In each case, SPECT studies should be performed 
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to reveal functional and dysfunctional lung volumes and strain should be calculated as an index of lung 

functionality . 

In conjunction with a precise image segmentation algorithm, the proposed functional and biomechanical 

measurements can be reported on the entire lung, a specific lobe, or sub lobar basis, or interpreted relative to 

the anatomy of other important respiratory structures or risk organs. This will be subject for future studies. 
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