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ABSTRACT 

OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS NTG: 

APPLICATION TO AN UNDERWATER GLIDER AND A JPL AEROBOT 

Weizhong Zhang 

October 5, 2009 

Optimal trajectory generation is an essential part for robotic explorers to execute 

the total exploration of deep oceans or outer space planets while curiosity of hu

man and technology advancements of society both require robots to search for 

unknown territories efficiently and safely. 

As one of state-of-the-art optimal trajectory generation methodologies, Non

linear Trajectory Generation (NTG) combines with B-spline, nonlinear program

ming, differential flatness technique to generate optimal trajectories for modelled 

mechanical systems. While Discrete Mechanics and Optimal Control (DMOC) is 

a newly proposed optimal control method for mechanical systems, it is based on 

direct discretization of Lagrange-d' Alembert principle. In this dissertation, NTG 

is utilized to generate trajectories for an underwater glider with a 3D B-spline 

ocean current model. The optimal trajectories are corresponding well with the 

Lagrangian Coherent Structures (LCS). Then NTG is utilized to generate 3D op

portunistic trajectories for a JPL (Jet Propulsion Laboratory) Aerobot by taking ad

vantage of wind velocity. Since both DMOC and NTG are methods which can 

generate optimal trajectories for mechanical systems, their differences in theory 

and application are investigated. In a simple ocean current example and a more 

complex ocean current model, DMOC with discrete Euler-Lagrange constraints 
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generates local optimal solutions with different initial guesses while NTG is also 

generating similar solutions with more computation time and comparable energy 

consumption. DMOC is much easier to implement than NTG because in order 

to generate good solutions in NTG, its variables need to be correctly defined as 

B-spline variables with rightly-chosen orders. 

Finally, the MARIT (Multiple Air Robotics Indoor Testbed) is established 

with a Vicon 8i motion capture system. Six Mcam 2 cameras connected with a 

datastation are able to track real-time coordinates of a draganflyer helicopter. This 

motion capture system establishes a good foundation for future NTG and DMOC 

algorithms verifications. 
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CHAPTER I 

INTRODUCTION 

This chapter provides a general introduction and motivation to optimal tra

jectory generation for unmanned vehicles. Related literature review in order to 

highlight some of the past development is given as well. Finally, contribution and 

organization of the dissertation is presented. 

A. Motivation 

Curiosity and exploration, question and action appear in every step of hu

man civilization history. The past and ongoing centuries witness that the world 

is becoming smaller and smaller due to technical advancements in transportation 

and communication. Exploration fields of man have expanded from tribes, coun

ties to countries, continents and even to deep ocean, and outer space. 

On the Earth where we live, more than seventy percent of surface is covered 

by ocean, and many parts of the ocean have not been explored and studied in 

details. Some questions remain to be answered. Are there any kind of sources 

in the ocean for future renewable energy? Can storms be predicted by studying 

the behavior of ocean? Manned vehicles can help people to find some answers. 

However, considering the cost and the potential danger in deep sea, a better option 

would be to utilize unmanned autonomous robotic explorers. These vehicles will 

be convenient even if not necessary tools for assisting scientists to investigate these 

kind of problems, to which part of solutions will have a huge positive impact on 

the world. 

An Autonomous Underwater Vehicle (AUV) known as a glider plays an 

important role as one of robotic explorers for ocean research. The glider offers an 
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FIGURE 1-The ocean floor survey by NOAA [1]. 

attractive approach for gathering data in ocean due to its relatively low cost and 

high sustainability. As shown in Figure 1 by NOAA (National Oceanic and At

mosphere Administration), scientists and engineers are deploying gliders for data 

collection. As another example of robotic explorer application, the Autonomous 

Ocean Sampling Network (AOSN) [10] project, [11], [12], [13] aims to advance the 

ability to observe and predict the ocean by bringing together sophisticated new 

robotic vehicles (gliders) with advanced ocean models. In the AOSN project, two 

types of gliders are employed, which are the Slocum [4], [14] and the Spray [15] . 

The gliders are designed to collect data autonomously. The efficiency and sustain

ability of the glider operation are important considerations for the control of the 

glider. Therefore, the ability to quickly determine the most efficient trajectory for 

the glider is important [11]. 

Besides deep ocean on Earth, which is just one planet in the cosmos, most 

spaces outside the planet or even the solar system are also mystical to humans. 

People started to explore space long time ago, mostly by human vision or by sim-
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pIe telescopes which appeared in 1608 [16]. For far beyond the limit of human 

vision and reachability of simple devices, what philosophers, scientists or ordi

nary people did most those days were imagination [17]. For instance, just before 

the Apollo 11 landed on the moon [18] in 1969, no one knew what characteristics 

the moon actually had. Many myths and stories reflected the imagination of peo

ple. Today, with years of developments in technology and science, people have 

the ability as well as determination to explore outer space. One might compare 

the current outer space exploration to the exploration of the America by the first 

generation of immigrants. When the pilgrims were not sure about whether they 

could survive to cross the Atlantic ocean, they had the courage and determination 

to explore the unknown. This kind of courage and determination brought about 

this prosperous new land. Who knows that Mars shown in Figure 2 and Figure 3 

or other planets will not become new human territories for generations to come? 

Big achievements need to be made step by step. Using robotic explorers is the safe 

and cost-effective initial step for exploration. The robot rovers Spirit and Opportu

nity have successfully landed on the Mars. The next generation of robotic explorer 

such as the JPL-Aerobot can overcome some weakness of the rovers, for example, 

it will not get stuck by rocks or mountains, and it can explore more regions. 

Both for a robotic explorer in ocean or in space exploration, trajectory gener

ation is an essential part of its total mission planning. With optimal trajectory the 

exploration will become more sustainable and more efficient. The important issue 

is how to develop and apply an efficient trajectory generation method. 

In this dissertation Nonlinear Trajectory Generation (NTG) and Discrete 

Mechanics and Optimal Control (DMOC) as the two state-of-the-art methodolo

gies to generate optimal trajectory are investigated in theory and in application to 

an underwater glider and a JPL Aerobot. A specific kind of optimal trajectory gen

eration problems that takes advantage of surrounding circumstances, called "Op

portunistic Trajectory Generation". For the glider, ocean current flows are mod

elled as B-spline functions, trajectories are generated both for a kinematic glider 
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FIGURE 2 - The Mars Rover by NASA [2]. 

FIGURE 3-Surveying Mars by an Aerobot [3]. 
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and a dynamic one. The minimizing-energy trajectories are shown to correspond 

well with the Lagrange Coherent Structures and their energy usages are efficient. 

For a JPL Aerobot, NTG trajectories are generated both from the perspective of 

Euler-Lagrange and from the state space model with decoupled longitudinal and 

latitudinal dynamics. Then DMOC is introduced with a detailed theory explana

tion and an application procedure. 

For analyzing and comparing NTG and DMOC an underwater glider is 

utilized in both a simple ocean model and a complex B-spline ocean current model. 

The cost functions and constraints in NTG are the same as the ones in DMOC while 

the NTG ones have continuous Euler-Lagrange equations, DMOC ones have their 

discrete forms. DMOC is shown to have less computation time than NTG with 

the comparable energy cost. It is much easier for DMOC to model the problem 

and generate solutions, while on NTG, its variables should be correctly defined 

as B-spline functions with right orders. Finally, for the future research, a MABIT 

(Multiple Air Robotics Indoor Testbed) testbed with Vicon 8i vision system is being 

successfully established with the proposed program to track real-time coordinates 

of draganflyers [19]. 

B. Literature Review 

Optimal control as a research topic came into being in June 1696 when Pro

fessor Johann Bernoulli published his solution to the Brachistochrone ("shortest 

time" in Greek) problem [20]. This problem as a challenge in 1696 caught the at

tention of giants like Newton, Leibniz, Tschirnhaus, I'Hopital and Jakob Bernoulli 

who published their solutions in May 1697. However this kind of problem is not 

systematically solved. Only after years of development, in 1744, as a student of 

Bernoulli, Euler gave a general procedure for writting down what later became 

known as Euler's equations in his book "the Method of finding Plane Curves that 

Show Some Property of Maximum and Minimum". About ten years later, La-
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grange eliminated the tedium and need for geometrical insight in Euler's method 

and attained the same solution by analysis alone. He derived the Euler-Lagrange 

equation for the necessary first variation condition of optimum. The standard op

timization problem is shown in (1), its Euler-Lagrange equation is presented in 

(2). 

1
tf 

minimize J = £(q(t), q(t), t)dt, subject to q(to) = A, q(tf ) = B 
to 

(1) 

d 8£ 8£ 
dt 8q 8q 

(2) 

The second variation as an additional necessary condition for a minimum 

was done by Legendre (1752-1833). Legendre's condition for the scalar case is in 

(3), while the Hessian matrice has to be nonnegative definite for the vector case. 

(3) 

Hamilton wrote Hamiltonian to simplify the previous Euler-Lagrange equa

tions. Around 1836, Hamilton and Jacobi showed that the partial derivatives of 

the performance index with respect to each parameter of a family of extremely 

obeyed the Hamilton-Jacobi equation. This is the basis of Dynamic Programming 

proposed by Bellman over 100 years later. Weierstrass derived the side condition 

which can transform the minimization problem into Weierstrass's form, it is the 

predecessor of the maximum principle [21]. In the middle of 20th century, optimal 

control was basically developed due to the maximum principle by L. S. Pontrya

gin [22] and the dynamic programming method by R. Bellman [23]. Compared 

to the maximal principle by Pontryagin, the method of dynamic programming 

was developed for the needs of optimal control processes which are of a much 

more general character than those which are described by systems of differential 

equations. Therefore, the method of dynamic programming carries a more uni

versal character than the maximum principle, but it does not have the rigorous 

logical basis but a heuristic method. Some assumptions are needed to derive Bell

man's equations which even in the simplest examples do not hold. In the 1960s 
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Kalman [21] et.al. showed that the MIMO (Multi Input and Multi Output) LQ 

(Linear Quadratic) optimal control problem can be solved numerically and effi

ciently with a backward sweep of a matrix Ricatti equation. He introduced the 

concept of state and control variables and proposed a compact vector-matrix nota

tion which became standard in optimal control. To solve optimal control problems 

numerically, the paper [24] proposed that control states can be approximated by 

values at a finite number of time points, the control history can be parametrized by 

piecewise polynomials, and further this problem can be solved by a standard Non

linear Programming solver. The idea is quite similar to what NTG implements in 

problem formulation. Nonlinear Trajectory Generation (NTG) is based on a com

bination of spline function (piecewise polynomials), nonlinear programming and 

differential flatness. Discrete Mechanics and Optimal Control is based on direct 

discretization of states and direct discretization of Lagrange-d' Alembert principle 

which results into discrete Euler-Lagrange equation. 

Optimal trajectory generation problem is one kind of optimal control prob

lems. Its applications vary from the control of various devices such as control of 

linear system [25], and engine valves [26], to motion planning of robots [27] [28], 

manipulator robots [29] [3~], humanoid robot [31], and trajectory tracking for boom 

cranes [32]. Optimal trajectory generation for hypersonic vehicles as a research 

topic was raised in [33], Philip D. Hattis and Richard K. Smolskis proposed a cal

culus of variations direct method of steepest descent to determine the trajectory 

for hypersonic vehicles. The trajectory optimization algorithm is based on a gra

dient/ steepest descent technique for solving two pOint boundary value problems, 

however this method has little hope of being realizable as a real-time algorithm. 

To make the problem solvable in real-time, Nonlinear Trajectory Generation can 

also exploit the possible differential flatness of the system to speed up the compu

tation time and parametering trajectory with B-spline [34] functions, while DMOC 

efficiency is shown later impressive by directly discretizing Lagrange-d' Alembert 

principle without first deriving equations of motion to generate optimal solutions. 
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Particularly, opportunistic [35] [36] [37] trajectory generation on which this dis

sertation focused is taking advantages of circumstances such as current or wind 

velocities, to generate optimal trajectories for robotic explorers. 

C. NTG and DMOC 

In this section, NTG and DMOC as two different state-of-the-art method

ologies to solve optimal control problems for mechanic systems are introduced. 

Milam [38] et al. developed NTG which is designed to generate real-time 

trajectories. "Real-Time" means the method should generate a solution fast enough 

for a real-time application. The optimal trajectory generation is generally con

cluded as a nonlinear programming problem. For nonliner programming, if the 

problem scale is large and complex, it is not straightforward to get the solution 

in real-time. Therefore, the real-time optimal trajectory generation is a challeng

ing task. As it is indicated in [38], some standard numerical solution of optimal 

control problem cannot be implemented in real-time. NTG use the nonlinear ge

ometric control [39] techniques to solve the optimal control problem much faster 

than the standard method. This technique can first exploit differential flatness [40] 

of the system to reduce the complexity of the problem then use the collocation 

method to solve the optimization problem. In NTG the variables are represented 

in the format of B-spline 134] functions. 

Discrete Mechanics and Optimal Control (DMOC) is developed by Jerrold 

E. Marsden et. al., which is presented in [9]. Basically, the system states, con

trol forces, equality constraints are discretized based on the direct discretization 

of the Lagrange-d' Alembert principle. The expected key advantages over tradi

tional methods are less energy consumption for system control purpose and more 

robust to modelling errors [9]. After discretization, the resulted finite dimensional 

nonlinear optimal control problem is also solved by the sequential quadratic pro

gramming (SQP) [41]. 
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NTC and DMOC are two different approaches which can be utilized to solve 

optimal trajectory generation problems of robotic explorers. The complete evalu

ation of differences between two methodologies is one of the main parts of this 

dissertation. 

D. Dissertation Contributions 

This dissertation investigates two state-of-the-art optimal trajectory gener

ation methods NTC and DMOC, their theoretic and practical differences are pre

sented with applications to an underwater glider and a JPL aerobot. The contribu

tions of this dissertation work are listed in the following: 

First, optimal trajectory generation for an underwater glider is presented, 

in this part, ocean flows are modelled by 3D B-spline functions since NTC need 

derivatives of variables in its problem formulation. Both for a kinematic and dy

namic glider, trajectories with NTC are successfully obtained, which are corre

sponding well with Lagrangian Coherent Structures (LCS). They are shown by 

animations that LCS and NTC can generate optimal trajectories for a glider to save 

the energy with known ocean current velocities. 

Secondly, for a robotic explorer in the space, a JPL Aerobot is modelled with 

consideration of its aerodynamics, and constraints as Euler-Lagrange equations. 

NTC successfully generates 3D optimal trajectories for minimizing energy and 

minimizing time in a defined wind field. Furthermore, a decoupled longitudinal 

and lateral dynamics of an Aerobot state-space model is also utilized to generate 

optimal trajectories. The solutions are energy efficient from NTG. 

Thirdly, Discrete Mechanics and Optimal Control as a methodology for solv

ing optimal control problems for mechanic systems are presented with its adaption 

to solve the trajectory generation problems. The problem is modelled by AMPL, 

the solver is chosen as IPOPT, this dissertation presents a detailed procedure to use 

the available tools with DMOC to solve optimal trajectory generation problems for 
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mechanical systems. 

Fourthly, DMOC and NTG are compared with a glider in a simple ocean 

current model and a B-spline ocean current model. In a simple ocean current ex

ample, DMOC with discrete Euler-Lagrange constraints generates local optimal 

solutions with different initial guesses while NTG is also generating similar solu

tions with more computation time and comparable energy consumption. Further 

in a more complex ocean current model, optimal solutions from DMOC also cost 

similar energy and computation time than the ones from NTG. The cost functions 

are the integral of gyroscopic forces over time, nonlinear constraints are direct dis

crete Euler-Lagrange equations for DMOC, continuous ones for NTG. 

Finally, an Unmanned Air Vehicle 3D testbed is preliminarily established in 

our lab, a Vicon 8i motion capture system with 6 Vicon MCam 2 cameras is uti

lized in the system to track real-time coordinates of a draganflyer helicopter. A 

c++ program is written to connect the real-time engine of the Vicon system with 

the user program, the draganflyer with markers can be modelled as a rigid body, 

the proposed program has the ability to retrieve the 6 DOF (Degree of Freedom) in

formation. It makes a good foundation to further utilize this testbed to test control 

or planning algorithms such as NTG and DMOC for the UAVs. 

E. Dissertation Outline 

This dissertation consists of seven chapters, with seven appendices. The 

dissertation is organized as follows. 

1. Chapter I is the introductory part of the whole dissertation. The back

ground and motivation of optimal trajectory generation for ocean and 

space exploration are introduced and discussed. A literature review is 

provided to show the work in the context of optimal control research 

history. Then, Nonlinear Trajectory Generation (NTG) and Discrete Me

chanics and Optimal Control (DMOC) as two optimal trajectory genera-
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tion methodologies are introduced. 

2. Chapter II is showing the work to generate optimal trajectory for an un

derwater glider with NTG. In this Chapter, ocean current data is mod

elled as B-spline functions, the minimizing-energy trajectories are shown 

to corresponds with Lagrange Cohere Structures (lCS). 

3. Chapter III generates opportunistic trajectories for a JPL Aerobot with 

NTG. In this Chapter, wind profile data is modelled as layers, the aer

obot with simplified model from Euler-Lagrange perspective and with 

state-space based model are both investigated. The control inputs are 

easilyappliable. The minimizing-energy trajectories are shown to take 

advantage of wind velocities more than the minimizing-time trajecto

ries. It is shown that energy-efficient trajectories can be generated based 

on NTG methodology. 

4. Chapter IV presents a new DMOC approach of real time trajectory gen

eration method. The detailed procedure is provided to use DMOC ap

proach with AMPL and IPOPT to solve optimal control problems for 

mechanical systems. It is shown that user-defined functions can be in

volved to solve more complex problems in DMOC problem formulation. 

5. Chapter V compares the DMOC trajectory generation method with the 

NTG method with application to an underwater gl:lder both in a simple 

ocean current model and a B-spline ocean current model. The results 

show that DMOC is easy to implement, cost less computation time and 

comparable energy cost than NTG. 

6. Chapter VI describes the procedure to upgrade the U of L mobile robot 

testbed to a 3D UAV (Unmanned Air Vehicle) testbed with a Vicon mo

tion capture system and draganflyer helicopters. It is shown that the 

newly established UAV testbed can obtain 6 DOF information of a de

fined rigid body in real-time. It makes a good foundation to utilize this 

testbed for future NTG and DMOC algorithms verifications experimen-
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tally. 

7. Chapter VII concludes the dissertation with clarifying the main contents 

of this dissertation and directions for further research. 
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CHAPTERn 

GLIDER TRAJECTORY GENERATION WITH NTG 

A. Problem Definition 

Optimal trajectory generation for a glider can be considered as one kind of 

optimal control problems. Consider a general dynamical system [11] [8] which 

includes a glider under investigation: 

x(t) = f(x(t), u(t)) (4) 

where x( t) is the state of the system and u( t) is a control input. For optimal control, 

given a cost function of the form: 

it! 

J = <I>o(x(to), u(to), to) + L(x(t), u(t), t)dt + <I>f(x(tf), u(tf), tf) 
to 

(5) 

It is suitable to choose u(t) for t E [to, tf] which minimizes J subject to constraints 

of the form 

Initial Lbo < wo(x(to), u(to), to) < ubo 

Trajectory lbt < wt(x(t), u(t), t) < ubt (6) 

Final lbf < W f(x(tf), u(tf), tf) < ubf 

Notice that the cost function J is composed of an initial condition cost, <I>o(-), an 

integral cost over the trajectory, L(·), and a final condition cost, <I> f (. ). The con

straints are similarly partitioned. lb and ub represent lower and upper bounds, re

spectively. Cost (5) and (6) are standard in optimal control, and further explained 

in [42] and [43]. An optimal solution for a specified problem is obtained generally 

by nonlinear programming. After the optimal control problem with costs and con

straints are modelled, it can be expressed mathematically as nonlinear program':' 

ming problem in which a solver is required. In NTG the nonlinear programming 
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solver is NPSOL [44] which is developed by Philip Gill et. al. NPSOL employs a 

dense Sequential Quadratic Programming (SQP) [41] algorithm and the user must 

supply an initial guess of the solution to the problem, and define subroutines that 

evaluate cost and constraint functions. If the problem is large and sparse, MI

NOS [45] package should be used, since NPSOL treats all matrices as dense. If 

there are not nonlinear constraints, gradients of the bound and linear constraints 

are never recomputed, and NPSOL will function as a specialized algorithm for a 

linearly constrained optimization problem. It can be arranged that the problem 

functions are evaluated only at points that are feasible with respect to bounds and 

linear constraints. NPSOL uses subroutines from the LSSOL [46] constrained lin

ear least squares package, which is distributed together with NPSOL. 

B. Glider Trajectory Generation 

Autonomous Underwater Vehicles (AUVs) including gliders are becoming 

more and more popular [47L [48L [49]. For example, oil companies can use gliders 

to make a detailed underwater map or search resources before they decide a next 

step to exploit. Besides industry application, some research related projects also 

need to use this kind of robotic explorer. The Autonomous Ocean Sampling Net

work II project (AOSN-II) [10L [SOL [IlL [12L [13] aims to advance the ability to 

observe and predict the ocean by bringing together sophisticated new robotic ve

hicles (gliders) with advanced ocean models. In this project, two types of gliders 

are employed, which are the SLOCUM [4L [14] and the SPRAY [15]. 

Gliders offer an attractive means for gathering data in the ocean because 

they are relatively low cost and highly sustainable. For adaptive ocean sampling, 

the gliders are often redirected throughout the ocean to areas of high uncertainty 

or transient features of interest. Therefore the ability to quickly determine the most 

efficient trajectory for a glider to take is desirable. It is also necessary to minimize 

the glider energy usage in order to keep it autonomously operational for the great-
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FIGURE 4- The Slocum glider [4]. 

est amount of time. The tradeoff for a glider's remarkable efficiency with the mod

est energy cost is a relatively low average speed for the vehicle. Typically, gliders 

move around 40 (cml s) relative to the ambient water. However, the ambient water 

can often move at speeds the same order of magnitude as the speed of the glider. 

For instance, in Monterey Bay, CA, which was the location for the AOSN-II exper

iment, the surface currents average velocity is around 20 (cm/s), and it is typically 

stronger outside the bay. Therefore it is advantageous, if not necessary, to make 

use of ocean currents to help propel the gliders around the ocean for sustainable 

missions. 

This chapter is to extend the previously proposed method [11] for quickly 

determining near optimal glider trajectories between two fixed points in the ocean 

based on approximate ocean current data. It will show that optimal trajectories 

computed using NTG corresponds to LCS obtained using the Direct Lyapunov 

Exponent method [51]. There are two parts are tackled in this chapter. One is to 

improve the previous analytical ocean flows model [11], which is required in the 

NTG formulation, to a 3D model using B-spline functions. The other is to establish 

a new dynamical model of the glider. Then, these models are used in the NTG to 

find near optimal trajectories for the glider. 

The ocean flows velocity data used for these computations was obtained 
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from High Frequency Radar stations measuring surface currents around the Mon

terey Bay, CA [52] and processed by Open-Boundary Modal Analysis [53] to smooth 

the data and fill in the missing data points. In the NTG formulation [38], [11], the 

costs and the constraints in terms of outputs and their derivatives need to be spec

ified. As will be seen in the following sections that ocean flows velocity field will 

appear in the costs and constraints of the optimal control problem. Therefore, the 

NTG method needs the derivatives of the velocity field with respect to the out

puts. Numerically computing these derivatives directly from the velocity data sets 

can easily create convergence problems. Thus, it is better to use approximation 

techniques to find a smooth analytical model for the data. For this, the B-spline 

functions are employed, allowing straightforward computation of derivatives. 

C. Ocean Current Model 

1. 2D B-spline Ocean Flows Model 

B-splines are commonly used in data approximation and calculation [34]. In 

the previous work [11], ocean curr~nt flows are modeled using 2D B-spline func

tion as given below: 

u(x,y) 

v(x,y) 

2::12:';=1 Bi,kuJx)Bj,kuy(y)aij 

2:f=1 2:;=1 Bi,kvx (x ) Bj,kvy (y )bij 
(7) 

where aij and bij represent coefficients of the B-spline function for u(x, y) and 

v(x, y) which are components of the ocean currents in the x- and y-direction, re

spectively. Coordinates are chosen such that the x-axis is in the direction of in

creasing longitude and the y-axis in the direction of increasing latitude. Bi,k and 

Bj,k represent B-spline basis functions for the x- and y- direction, respectively. The 

orders of the polynomials were kux = kuy = kvx = kvy = 4 and the numbers of the 

coefficients were m = p = 32 and n = r = 22. 

The parametrizations given by (ILC.1), developed in the previous work [11], 
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FIGURE 5- The ocean current data and the 2D B-spline model for time t=10 and 
13 (hours). 

do not incorporate the time dependence of the currents. The time dependence 

of the velocity data was built into the NTG by assuming that the velocity fields 

were constant over hourly intervals. For every hour a different ocean model was 

calculated. Then, these models were used in a receding-horizon approach where at 

every hour a new trajectory was calculated from the current location of the glider 

to the final destination. Figure 5 shows u(x, y) and v(x, y) from ocean current data 

and a 2D B-spline model at times t = 10 and t = 13 hours. 

2. 3D B-spline Ocean Flows Model 

Further in this section, the 2D ocean current flows model is extended to a 

3D B-spline model incorporating the time dependence of the currents explicitly as 

shown in (8). 
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FIGURE 6- The ocean current data and the 3D B-spline model for time t=lO and 
13 (hours). 

u(x,y,t) 

v(x, y, t) 

L:::l L:7=1 L:%=l Bi,kux (X) Bj,kuy (y)Bk ,kut (t)aijk 

L:f=l L:;=l L:~= l Bi,kvx(x)Bj,kvy( y)Bk,kvJt)bijk 
(8) 

where aijk andbijk represent coefficients of B-spline for u and v,respectively. 

Bi,k, Bj,k and Bk,k represent B-spline basis functions for the x- , y- and t- direction, 

respectively. The orders of the polynomials used were kux = kuy = kvx = kvy = 

kut = kvt = 4 and the numbers of the coefficients were m = p = 32, n = r = 22 and 

0= s = 25. 

The 3D B-spline ocean model has three input variables-longitude, latitude 

and time. In order to visualize the model, the time is fixed as it is in 20 function. 

The results in Figure 6 are similar with the 20 case results shown in Figure 5 as 

expected. 

Figure 7 and Figure 8 show the 3D B-spline ocean flows model changing 

with time where x-direction is fixed at - 122.3061 (deg) for ease of visualization 

purposes only. 
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FIGURE 7 - The ocean current data and the 3D B-spline model for u(x,y,t) when x 
is fixed at -122.3061. 
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FIGURE 8-The ocean current data and the 3D B-spline model for v(x,y,t) when x 
is fixed at -122.3061. 
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D. Nonlinear Trajectory Generation 

Nonlinear Trajectory Generation (NTG) developed by Milam et al. [38], [44] 

is designed to solve constrained nonlinear optimal control problems in real time. 

The main advantage of NTG compared to other dynamic optimization methods is 

that it can quickly provide sub-optimal solutions, which makes it very attractive 

for real-time application. In addition, linear as well as nonlinear constraints and 

cost functions can be defined in the problem formulation of NTG. 

NTG is based on a combination of nonlinear control theory, spline theory 

and sequential quadratic programming. With the optimal control problem formu

lation, characterization of trajectory space, and collocation points definition, NTG 

transforms the optimal control problem into a Nonlinear Programming (NLP) prob

lem solved by NPSOL [44], a popular NLP solver, which uses Sequential Quadratic 

Programming (SQP). The baseline NTG algorithm has been described extensively 

in the literature [43], [38], [11], therefore in this section it is outlined briefly. 

1. Cost Function 

The cost function for this problem is a weighted sum of a time cost and an 

energy cost as follows: 

. dx 
X=-

dT 
. dy 
y=

dT 

(9) 

(10) 

Where Wt and Wu represent the weighting on the total mission time and en

ergy expenditure, respectively. Note that the T terms in the integral, representing 

the unknown final mission time, and the integral bounds ranging from 0 to 1 are 
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both due to introducing time as a state variable in the NTG formation which is not 

straight forward. This is explained in detail in [11]. 

2. Constraints 

Constraint functions are given as [11]: 

• (Linear) Initial Constraints: 

-122.1780 - E(deg) :::; x(O) :::; -122.1780 + E(deg) 

36.8557 - E(deg) :::; y(O) :::; 36.8557 + E(deg) 

o :::; T :::; 48 hours 

• (Linear) Final Constraints: 

-122.2420 - E(deg) :::; x(T) :::; -122.2420 + E(deg) 

36.6535 - E( deg) :::; y(T) :::; 36.6535 + E( deg) 

• (Nonlinear) Trajectory Constraints: 

1 ~ W,,;, ( G~)' + G!)') S 1600 

E. Optimal Control of a Kinematical Glider 

The optimal control problem considered here is to find optimal glider tra

jectories, -in the case of time, or energy, or time and energy -, between two fixed 

points in the ocean utilizing the NTG method. The same start and destination 

points as in [11] are used for comparison: 

(x(to), y(to)) 

(x(tj), y(t j )) 

(-122.178(deg),36.8557(deg)) 

(-122.242( deg) , 36.6535( deg)) 
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In order to compare the 2D B-spline ocean flows model with the 3D B-spline 

model, first the 2D kinematical glider model as in [11] considered: 

i; V cose + u 
(12) 

y V sine + v 

where V is the speed of the glider, e is the orientation of the glider, u(x, y, t) and 

v(x, y, t) are the components of the ocean currents in the x and y direction, respec

tively.and V is a control input. The pair (u(x,y,t),v(x,y,t)) is referred to as the 

(time-dependent) velocity field. 

1. NTG Solution for 3D B-spline Ocean Flows Model 

After the 3D B-spline ocean current flows model is applied in the NTG, sev

eral optimal trajectories of the kinematical glider are obtained. The output of NTG 

is defined as the position sequence of the glider trajectory. The properties of the 

trajectories are listed in TABLE 1. In this table, min E, min TE and min T repre

sent minimizing the energy, time and energy and time, respectively. Tf is the final 

mission time for the glider to travel from the start point to the final point. Time 

represents the actual running time of the NTG algorithm to find the (near) optimal 

solution. Energy Cost is the energy of the glider to travel from start to final point 

and it is calculated from 

iT! ((dX )2 (dY )2) e = 0 dt - u + dt - v dt 

The results are reasonable considering the purpose of the trajectories. The energy 

cost is the maximal when the NTG only minimizes the time, and it is the least when 

the NTG only minimizes the energy as expected. 

The following Figure 9 shows the trajectories and the Figure 10 shows that 

the constraints on the glider velocities are satisfied. In these figures, red, blue and 

green lines correspond to the min E, min TE,and min T trajectories, respectively. 
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FIGURE 9 - Trajectories of the kinematical glider in the 3D ocean current model. 
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FIGURE IO-Speed of the kinematical glider in the 3D ocean current model. 
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TABLE 1 
A KINEMATICAL GLIDER IN A 3D B-SPLINE OCEAN CURRENT MODEL 

In 3D model Tf(hrs) Time(s) Energy Cost(cm2 js) 

minE 48.00 2.72 2.7538e4 

minTE 39.38 1.43 9.0038e4 

minT 22.60 0.5 1.320ge5 

2. Comparison in the 2D AND 3D B-spline Ocean Current Models 

In the following subsections, the trajectories of the kinematical glider found 

using 2D and 3D B-spline ocean models are compared. These two types of ocean 

current flows models are applied into NTG with the same kinematical glider model, 

refer to (12), cost and constraint functions. 

a. Trajectory to Minimize the Energy Only The 2D B-spline ocean current 

model given by (II.C1), does not incorporate the time dependence of the currents 

and it assumes that the ocean velocity fields are constant over hourly interval. 

Therefore, for every hour a different ocean model was found. Then, optimal tra

jectories were found for each hour by updating the ocean models between the 

current location of the glider after one hour (at time zero, this is the start point) 

and the final desired destination. This is to be the receding-horizon approach [11]. 

This causes unnecessary running of the NTG algorithms many times. On the other 

hand, the 3D B-spline ocean current model integrates the time into the ocean model 

continuously by extending the B-spline parametrizations in time (as well as space). 

Hence, for the 3D ocean current model, the ocean current is dynamically changing 

with the time, and the total trajectory can be easily acquired by running the NTG 

algori thm once. 

Figure 11 shows optimal trajectories minimizing the energy by using two 

different ocean flows models. The dotted line shows concatenated trajectories 

found using 2D B-spline ocean model by running NTG algorithm several times, 

once for every hour. The solid blue line shows the glider trajectory found using 
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Trajectory from 20 versus 20 plus time varying ocean current model(min E) 
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FIGURE 11-The kinematical glider minimizing-energy trajectories in the 3D and 
2D ocean current models. 

the 3D B-spline ocean model. 

The trajectory properties of kinematical glider in 3D ocean current model 

and 2D model are listed in TABLE 2. In this table, parameters are same as in the 

TABLE 1. Two set of values are given for min E and min TE . As it is indicated in 

TABLE 2, trajectories found by 3D ocean models have less energy cost than the 

ones found for the 2D ocean models. Specifically, for min E the energy cost for 

3D is 2.7538e4 while it is 4.03ge5 for 2D case. Similar results are shown for min 

TE trajectories. Another advantage of utilizing the 3D ocean models is to reduce 

the computation of the optimal (or near optimal) trajectories. In detail, the total 

execution time of NTG algorithm are 2.72 seconds for the 3D ocean models while 

it is 64.42 seconds for the 2D case as shown in TABLE 2 for min E. These results 

changes from min T as 1.43 seconds for 2D case while 42.77 seconds for the 3D 

case. 

b. Trajectory to Minimize the Energy and Time The trajectories to mini

mize the energy-and-time from two models are illustrated in Figure 12. Figure 11 

indicates that the minimizing-energy trajectories from 3D and 2D ocean current 

models are almost the same. They are very similar to each other, so it shows that 

the assumption in [11] that the velocity fields are constant over hourly intervals is 
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FIGURE 12 - A kinematical glider minimizing-energy-and-time trajectories in the 
3D and 2D ocean current models. 

TABLE 2 
A KINEMATICAL GLIDER IN THE 3D B-SPLINE OCEAN CURRENT MODEL 

VERSUS THE 2D MODEL. 

3D/2D Tf(1~rs) Time(s) Energy Cost(cm 2 / s) 

minE 48.00/ 45.84 2.72/ 64.42 2. 7538e4/ 4.03ge5 

minTE 39.38/ 39.31 1.43/ 42.77 9.0038e4/ 4.178e5 

tolerable in this minimizing energy case. 

However, the minimizing-time-and-energy trajectories obtained from 3D 

and 2D ocean models are not the same as clearly shown in Figure 12. The rea

son is that for minimizing time-and-energy when the start point and velocity field 

are different, the glider might decide to choose a different way based on the current 

flows and the position. It will not necessarily move with the direction of the ocean 

flow as in the min E case. Even though the trajectories are different in the case of 

minimizing energy and time, the shapes and curves of these two trajectories are 

still similar with each other. Another point to remember is that, for the 2D ocean 

model, the trajectory is recalculated for every hour. At the end of each hour, the 

glider final point is taken as a start point for the new trajectory calculation. 

Note that for minimizing time only trajectories, they are both straight lines 
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for 2D and 3D ocean models since the ocean current speed is not large enough 

against the forward direction of the glider. 

F. Optimal Control of a Dynamical Glider 

The trajectories of the glider with the kinematical model are already ob

tained. In this section, dynamics of the glider is taken into account in purpose of 

producing more realistic glider trajectories. The glider is assumed to be actuated 

by a gyroscopic force F gyr· which implies that the relative forward speed of the 

glider is constant. However, the orientation of the glider cannot change instantly 

and the control force is the change in the orientation of the glider. The dynamic 

model of the glider is presented in the following: 

x V dB . e . - dt sm + u 
(13) 

y V'!it cos e +i! 

According to (12), then the dynamical glider model can be expressed as: 

x _dB(y-v)+it dt 

y '!it (.r - u) +u 

The gyroscopic force is given by: 

(

_ de (y-v)) 
F - dt 

gyr - de 
- (i; - u) 
dt 

(14) 

(15) 

The gyroscopic force acts proportional to the relative velocity between fluid and 

the glider. 

1. Cost Function 

For the dynamic glider model, the control force is the Fgyl" Therefore, the 

cost function is changed from (9) to the following: 
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The cost function can be further expressed by utilizing (13) and (15), as: 

(16) 

Then, the cost function is obtained for the dynamic glider after introducing 

the time as a state variable in the NTG formulation [11] using16 as: 

t (( .. ) 2 (.. ) 2) J = WtT + Wu io ;2 -u + :2 - i; TdT 

2. Constraints 

The constraints for the dynamic glider model are almost the same as the 

ones in the kinematical glider model in the previous section. One more constraint 

related with the control force Fgyr is added since it cannot be infinitely large. There

fore, the constraints for the glider orientation change are introduced as shown in 

(17): 

-18 (deg / s) :S; '!ft :S; 18 (deg / s) (17) 

The constraint function (17) can be further expressed utilizing (12) and (14), 

as: 

-18 (deg / s) :S; E :S; 18 (deg / s) (18) 

where 
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FIGURE 13 - Trajectories of a dynamical glider in the 3D ocean current model. 

Speeds of dynamical glider in 20 and time varying ocean current model 

!!fin TE 

/ / = 
." 

.~ 
min E 

1 L--~--~---'---~-_~_~ 
o 500 1000 1500 2000 2500 3000 

Time (min) 

FIGURE 14-Speed of the dynamical glider in the 3D ocean current model. 

3. NTG Solutions for the Dynamic Glider 

After applying the dynamic glider model(14) and 3D B-spline ocean current 

models(8) in NTG, the trajectories of the dynamic glider are plotted in Figure 13 

and Figure 14 shows the velocity constraints of the glider. The properties of the 

trajectories from the dynamic glider model are listed in the following TABLE 3, 

3D (Dyn) represents the trajectories obtained from the 3D B-spline ocean current 

models and from the dynamic glider model. Tj,' Time and Energy Cost represents 

the same as in TABLE 1, see Section IV-D. 
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TABLE 3 
A DYNAMICAL GLIDER IN THE 3D B-SPLINE OCEAN CURRENT MODEL 

3D (Dyn) T f (hrs) T ime(s) Energy Cost(cm2 /s) 

minE 48.00 17.87 5.642e3 

minTE 42. 12 17.60 6.9491e3 

minT 22 .60 0.95 1.138ge4 

Orientation of the glider with dynamical model 
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FIGURE 15 - Orientation of the dynamical glider in the 3D ocean current model. 

The energy cost is calculated as 

(19) 

The orientation of the glider, shown in Figure 15, is obtained using the following 

(II.F.3). 

y - v 
tan () = -.--

x-u 

The figure of the orientation: 

(20) 

The two sharp orientation changes shown in Figure 15 do not violate the 

constraint given in (17). Specifically, the sharp orientation turn one on the left of 
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green trajectory is 

de 
dt 

(1.406 - 215.9)/(64.36 - 59.6)/60 

= -0.75deg/s 2: -18deg/s 

The sharp turn on the right of the green trajectory is 

de 
dt 

(180 - 3.138)/(1827 - 1821)/60 

= -0.49deg / s ::; 18deg / s 

(21) 

(22) 

Therefore, the trajectory is satisfied with the constraints about the glider orienta

tion change. 

G. Animation of Glider and Ocean Current 

The animation of the glider and ocean current is obtained through Tecplot 

and the results are shown in Figure ILG and Figure ILG for the kinematical and 

dynamic glider models, respectively. These new results strengthen our previous hy

pothesis [l1J that LCS in the ocean reveal efficient or near-optimal routes for glider trans

port. In Figure ILG and Figure n.G, we have superimposed instances of the min 

E trajectories given in Figure 11 and Figure 13 with the corresponding LCS fields 

at that time, respectively. These figures should be thought of as snapshots of a 

movie which shows the progression of the LCS and the progression of the glider 

path together. One can see that there is indeed a good correspondence between the 

optimal trajectory and the LCS. 

H. Summary 

In this chapter, as an extension to the previous work [11], the ocean current 

flows 3D B-spline models are established incorporating the time explicitly. These 

models are applied in the NTG to find the optimal glider trajectories and the re

sults were compared with the previous 2D B-spline models. The results show that 
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FIGURE 16-The figure shows the correspondence with the optimal trajectories 
shown in Figure 11 and an LCS. Note that the red and pink in the figures near the 
LCS represents the location of the AUVs while the blue represents the final target 
location. 
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FIGURE 17 - The figure shows the correspondence with the optimal trajectories 
shown in Figure 13 and an LCS. Note that the red and pink in the figures near the 
LCS represents the location of the AUVs while the blue represents the final target 
location. 
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the 3D ocean current model is much accurate than 20 ocean current model for 

the optimal trajectory generation in the ocean currents. The 3D ocean model has 

produced trajectories with less energy cost. It also eliminated the tedious work to 

update the current information everyone hour as in the 20 ocean model. Hence, 

it reduced significantly the computational time of obtaining optimal trajectories. 

Next, the dynamics of the glider is considered in the glider model. The gyroscopic 

force is applied to control the glider orientation. The new dynamic glider model 

is used with the 3D B-spline ocean models to produce better trajectories. Finally, 

Tecplot is used to make the animation movies of the glider traveling in the ocean 

current. The results enhance our previous hypothesis showing that the trajectory 

of minimizing energy is reasonably consistent with the LCS. 
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CHAPTI~R III 

AERO BOT TRAJECTORY GENERATION WITH NTG 

A. NASA-JPL Aerobot 

The thrill of the unknowns makes people eager to explore the outside far 

beyond our own planet. The main drawback of the current ground-based robotic 

planetary vehicles, such as Mars exploration rovers, is their limited range. The 

2006 Solar System Exploration Roadmap (SSE) [54] by the National Academy of 

Sciences indicate that aerial platforms will be required to explore Mars, Venus and 

Titan shown in Figure 18. 

Several types of aerial vehicles such as airplanes, gliders, helicopters, bal

loons and airships [5] [55] [56] [35] have been considered for aerial robotic plane

taryexploration. Airplanes and helicopters require significant energy to just stay 

airborne, flight time of gliders depend mainly on wind, while balloons have lim

ited navigation capabilities. Lighter-Than-Air (LTA) vehicles combine long term 

mission capabilities and low energy requirements of balloons with flexible maneu

verabilities of airplanes. LTA systems, a.k.a. Aerobots or Robotic Airships, bring 

a new opportunity for the robotic exploration of planets and their moons with at

mosphere, such as Mars, Titan and Venus. LTA vehicles have capabilities to travel 

long distances with limited energy and bring a relatively more in-situ laboratory 

facilities. They can transport scientific equipments, accomplish regional surveys 

and wide-area surface mappings. Aerobots can also provide, due to their control

lability, precise flight path executions for surveying, station-keeping for extended 

monitoring high-value science sites, long-range as well as near surface observa

tions, and transportation of scientific equipments. They are also able to execute 
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extensive surveys over solid as well as liquid-covered terrains. Aerobots can reach 

essentially any point of the planet over multi-month time scales with minimal con

sumption of limited onboard energy sources. Aerobots can further expand their 

range by generating opportunistic trajectories making use of winds in planets and 

moons with atmosphere [57]. 

The NASA-JPL Aerobot program aims to develop autonomous robotic air

ships to explore planets and moons with atmosphere, such as Mars, Titan and 

Venus. They have high potential to overcome the current limitations of the ground

based rovers: limited range. Aerobots or air-based rovers can travel long distances 

with less energy. Another purpose of designing Aerobots is to allow the robotic 

air vehicle to travel over rocks instead of around them and hence increasing the 

versatility, speed and range of the rovers. For instance, seven dark spots near 

Mars equator have recently been discovered by a Mars-orbiting satellite. They 

could be entrances to underground Martian caves. The possible caves are called 

the seven sisters -Dena, Chloe, Wendy, Annie, Abbey, Nikki and Jeanne. Their 

openings range from about 330 to 820 feet wide. Some researchers have suggested 

to look into caves for signs of alien life on Mars where there is significant evidence 

of potential underground aquifers that could support basic, microbial organisms. 

Robotic air-based rovers might have the advantage of flying over difficult terrain to 

enter the caverns and explore them whereas land rovers might be cumbersome to 

do. The NASA-JPL Aerobot program develops a prototype outdoor test-bed and 

a physically accurate simulation system for testing purposes [58] [59]. The Aer

obot is based on an Airspeed Airship AS-800B as shown in Figure 19. The airship 

specifications are: 11 m in length, 2.5 m in diameter, total volume of 34 m 3, two 

2.3 kW(3 hp) and 23 cm3 (1.4 cu inch) fuel engines, double catenary gondola sus

pension, max. speed of 13 m/s(25 kts), max. altitude of 500m, static lift payload 

of 10 kg, and dynamic lift payload of up to 16kg. The avionics and communi

cation systems are installed in the gondola. It has several onboard sensors such 

as an IMU (angular rates, linear accelerations), a compass/inclinometer (yaw, roll 
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FIGURE 18 - An artists view of an Aerobot exploring a planet [5]. 

FIGURE 19-AJPL Aerobot for exploration of Titan and Venus [5] . 
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and pitch angles), laser altimeter (surface relative altitude), barometric altimeter 

(absolute altitude against reference point), GPS (absolute 3D position), ultrasonic 

anemometer (3D wind speed) [60], two down looking navigation cameras and a 

science camera mounted on a pan and tilt unit. The ground station includes a lap

top, a graphical user interface to the vehicle, wireless data and video links, video 

monitors and VCRs, and a differential GPS (DGPS) base station providing differ

ential corrections to the onboard GPS receiver to achieve centimeter accuracy of 

the 3D position estimates of the vehicle. 

Aerobots have different flight modes: take-off, landing, station-keeping, 

hovering, ascent, descent, high-speed cruise, low-speed flight. These require al

ternative control strategies and trajectory generation algorithms. Important flight 

control challenges are non-minimum phase behavior, oscillatory modes at low 

speeds, time-varying behavior due to altitude variations, and unknown wind dis

turbances. Even though Aerobots consume modest power, any planetary explo

ration will require careful management of onboard power sources. Planetaryex

ploration activities such as scientific data gathering, navigation for science site in

vestigation, surface sampling, communications with Earth and/ or with an orbiter, 

control and navigation of the Aerobot, they all require energy. Therefore, Aerobots 

must use all possible external energy sources. For some planets such as Titan, the 

Sun is blocked by Titans higher atmosphere. Wind energy for planets and moons 

with an atmosphere is a very viable source of energy. Therefore, opportunistic 

trajectory generation algorithms which utilize wind patterns to travel to desired 

locations are in need to be developed [57]. The wind profile of the atmosphere 

of some planets such as Mars is known to some degree through observations of 

previous space missions and atmospheric modeling. The NASA-JPL Aerobot has 

also an ultrasonic anemometer. This sensor providing estimates of the 3D relative 

airspeed vector of the Aerobot is used to experimentally obtain the wind profiles. 

With the specified wind profile, NTG can generate the sub-optimal trajectories for 

the Aerobot. The objective of this chapter is to guide the Aerobot move by taking 
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Fgyr 

FIGURE 20- The Euler-Lagrange based Aerobot controls. 

advantage of the specified wind to save the energy. 

B. Euler-Lagrange Based Aerobot Trajectories 

In this work toward obtaining opportunistic trajectory generation for the 

JPL Aerobot, the Aerobot is modeled by considering its aerodynamics and assum

ing control inputs are three propellers mounted in the Aerobot which are on the 

local Cartesian axes. The gyroscopic forces control the velocity in x and y direc

tions, the vertical force control the vertical velocity A dynamical Aerobot shown 

in Figure 19 modeled as (23) is moving from the point ql = 0, q2 = 0, q3 = ° to 

ql = 200, q2 = 200, q3 = 200, which are the coordinates in the Cartesian system. 

Still, the following assumptions are made:. 

• the Aerobot center of gravity is at the same location as the center of buoy

ancy. 

• the Aerobot roll rotation is small enough to disregard, the pitch, yaw an-

gles of Aerobot are automatically consistent with their velocity directions. 

• the reference system is Cartesian, the shape of earth is disregarded. 

• the temperature is kept as constant and the air flow is un-compressible. 

The Aerobot has three controlled inputs. The horizontal orientation is con-

trolled by gyroscopic forces (23), the ascending and descending velocities are con-
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trolled by a force m * w,and m is the mass of the Aerobot. The mass of the Aerobot 

is simplified as 1. For consideration of rotational energy, the rotational inertial I is 

also regarded as 1. 

ql Vcos¢cose+u; 

q2 V cos ¢ sin e + v; 

where V is the forward velocity of the Aerobot. ¢ is the pitch angle, e is the yaw 

angle. 

.. - V· rI, ed¢ V· rI,' ede '. ql - - sm,/-,cos dt - cos,/-,sm Cit + u, 

.. - V· rI, . ed¢ V rI, ede '. q2 - - sm '/-' sm dt + cos'/-' cos dt + v, 

.. - V rl,d¢. 
q3 - cos '/-' dt' 

-7 ~Sin¢cose~~ + COS¢Sine~~~ = JIgyr 

. d¢ de 
-7 sm ¢ cos edi - cos ¢ cos e dt = hgyr 

T (V cos ¢ ~~) = hgyr 

Fgyr· = (23) 

Where ql, q2, q3 represents x, y and z. u, v are the wind velocities in the x and y di-

rections, 7 is the control input for the gyroscopic force. The Aerobot roll, pitch, yaw 

angles are correspondingly represented as 'I/J, ¢, e, the respective angular velocities 

are denoted as ~ = p, 1> = q, iJ = r. 

1. Euler-Lagrange Equations 

The optimal control problem for NTG is to obtain f(t) to minimize the cost 

function. 

l
tf 

J(q, J) = C(q(t), g(t), f(t))dt 
to 

(24) 

At the same time, the motion of q(t) of the mechanic system from (qtO, gtf) to a state 

(qtO, gtf) is to satisfy the Lagrange-d' Alembert principle, which requires that (25). 

l tf ltf 
o L(q(t),g(t))dt + f(t)· oq(t)dt = 0 

to to 
(25) 
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It can be expressed as 

l

tt oL oL ltJ 
(7)bq + Fbq)dt + f(t)bq(t)dt = 0 

to q q to 
(26) 

l

tt oL ltt oL ltt 
(7)bqdt + Fdbq) + f(t)bq(t)dt = 0 

to q to q to 
(27) 

Because of: 

l

tt oL oL t ltJ d oL ltJ 
F dbq = Fbqt~ - bq· dF . dt + f(t)bq(t)dt = 0 

to q q to t q to 
(28) 

For variations bq(to) = bq(tf ) = 0, thus 

l

tt oL doL 
to oq bqdt - dt oq bqdt + f(t)bq(t)dt = 0 (29) 

Finally, the continuous Euler-Lagrange equation 

oL doL 
oq - dt oq + f (t) = 0 (30) 

Since the Aerobot is controlled by gyroscopic forces in the horizontal plane and 

a vertical force along the z axes, the Euler-Lagrange equations should be satisfied 

along the x, y and z axes in the local reference frame. The Lagrange L of the system 

is the kinetic energy K E minus the potential energy P E. 

L=KE-PE (31) 

The kinetic energy of the Aerobot should be expressed as the sum of the transla

tional kinetic energy of the center of mass and the rotational kinetic energy about 

the center of mass. For a given fixed axis of rotation, the kinetic energy can be 

expressed in the form of 

1 2 1 2 
K E = K Erotation + K Etransiation = "2 I w +"2 m v (32) 

For the local reference system, the Euler-Lagrange equations along x, y, z axes are 

presented as 

oLx doL 
ox - dt ox + fx = 0; 

oLy doL 
oy - dt oy + fy = 0; 

oLz doL 
oz - dt oi + fz = 0; (33) 
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And the Lagranges of the Aerobot are listed as: 

(34) 

where mgz is the potential energy of the Aerobot. 9 is the gravity acceleration. 

The control forces fx) f y) fz are the summation of all effective forces along the three 

axes. 

(35) 

where ftgyr) f2gyr are the gyroscopic forces in the horizontal plane. hgyr is the 

control force to move the Aerobot vertically. fxd) fyd reflect the drag force due to 

the aerodynamics while fzl is the lift force. fbi is the buoyancy force due to the 

Helium in the Aerobot. Due to velocity up-limit of the Aerobot, the air or wind 

in the field is considered as a piece of uncompressed and inviscid flow. Therefore, 

the Euler-Lagrange equations 33 are transformed into 

-m (£ - it) + ftgyr + fxd = 0; 

-m (ij - v) + !2gyr + fyd = 0; 

-mg - mz + hgyr + fzl + fbi = 0; (36) 

Vx = V cos rp cos B = j; - U; 

Vy = V cos rpsin B = y - v; 

V z = V sinrp = i (37) 

V is the forward velocity, 7j;, B are the yaw and pitch angles of the Aerobot respec

tively. For aerodynamics, the drag and lift forces of the Aerobot are derived due to 
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the flows around the Aerobot when it is flying at certain speeds [61] [62]. 

fxd = CxdApair V2 cos 1jJ cos e; 

fyd = CydApair V2 sin VJ sin e; 

fzl = CzlApaiT V2 sin V); 

fbI = (Pair - Phelium)fg; (38) 

where Pair is the mean density difference of ambient air. Phelium is the mean density 

of helium in the Aerobot envelope. 1jJ is the yaw angle of the Aerobot. Cxd , Cyd , Czl 

are the coefficients of the drag and lift forces which are dependent on the physical 

parameters of the Aerobot such as the volume, the shape, the pitch angle and the 

material frictions of the Aerobot surface. A is the reference area. It is chosen as 

(Buoyant Volume)2/3 [62]. f is the volume of the Aerobot, 9 is the constant gravity 

acceleration on earth [63]. 

2. Wind Profile 

The wind profile is modified from the paper [57], the research area is re

stricted in the cube which the reference point is (0,0,0) to (200,200,200). Assum

ing the wind profile is layered horizontally, no upward or downward wind exists. 

The wind velocity vectors at each layer are considered as known. 

(u, v) = 

(10,10), for q3 <:;::: (0,50) 

(-10,10),forq3 <:;::: (50,100) 

(1O,-1O),forq3 <:;::: (100,150) 

(0, -10), for q3 <:;::: (150,300) 

(39) 

where q3 is the coordinate in the vertical direction. In Figure 21, the x, y, z are the 

coordinates of the system, respectively represent ql, q2, Q3' 
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FIGURE 21-The wind profile for the state-space based Aerobot. 

3. Problem Formulation 

The cost function and constraints are listed in the following. The cost func-

tion J is 

(40) 

where Wv W u , W v , Wq are the weights, t f is the unknown final time for the trajec

tory. The constraints: 

• (Linear) Initial Constraints: 

o ::; t f - to ::; 100 s 

• (Linear) Final Constraints: 

200 - E ::; ql (t f) ::; 200 + E 

200 - E ::; q2 (t f) ::; 200 + E 

200 - E ::; q3 (t f) ::; 200 + E 
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• (Nonlinear) Trajectory Constraints: 

o - E :s; ql (t) :s; 300 + E 

0- E:S; q2(t) :s; 300 + E 

o - E :s; q3 ( t) :s; 300 + E 

o - E :s; V :s; 400 + E 

where ql (to), q2( to), q3 (to), ql (t f)' q2 (t f)' q3 (t f) are the initial and final location of the 

Aerobot. ql (t), q2 (t) and q3 (t) are the positions of the Aerobot in the trajectory. V is 

the horizontal forward velocity of Aerobot. E is a small number. 

Since the Aerobot is controlled by the gyroscopic force and the vertical pro

peller. The trajectory is satisfied with Euler-Lagrange equations. According to (36), 

(37) and (38), the Euler-Lagrange equations are expressed as: 

-m (x - it) + flgyr + CxdPairv2 cos1/; = 0; 

-m (jj - v) + hgyr + CydPair V 2 sin 1/; = 0; 

-mg - mz + hgyr + CzlPair V2 + (Pair - Phelium)fg = 0; (41) 

4. Simulated 3D Trajectory 

The prototype Aerobot [64] testbed developed at JPL is based on an Air

speed Airship AS-800 B (Figure 19). The parameters for the Aerobot are: length 

of 11 m, diameter of 2.5 m, total volume of 34 m 3, two 2.3 kW (3 hp) 23 cm3 fuel 

engines, double catenary gondola suspension. Assuming maximum speed of the 

Aerobot is 20 m/5, maximum ceiling of 500 m. 

When the Aerobot is modeled as (23), the physical parameters are simplified 

with lift and drag coefficients are both set to be 1. The buoyancy is considered to be 

zero with the mass is considered to be 1. The wind profile is assumed to be known 
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The minimizing-energy trajectory for the Aerobot 
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FIGURE 22 - The minimizing-energy trajectory generated by NTG for the Aerobot. 
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FIGURE 23 - The control input T for the minimizing-energy trajectory. 

as 39 and, NTG generated the following 3D trajectory presented in Figure 22. The 

energy cost for this trajectory is 4.165ge7, the final time is 100 second, the running 

time is less than 29.12 seconds. From this example, we have shown NTG can gen

erate the reasonable optimal trajectory with the specified wind profile. The control 

input T as in (23) The minimizing-energy trajectory shown in Figure 22, the tra

jectory is taking advantage of the wind profile to save energy. The roll angle is 

zero, while the yaw angle is always point to the destination, which is 45 degrees. 

NTG tried to generate the minimizing-time trajectory, the final time is 87.35 sec

ond. The running time is 11.46 seconds The energy cost is 12.584e7. The control 

input T for the min T trajectory is presented as: For the minimizing time trajec

tory, it is almost a straight line, the Aerobot roll angle is zero, while the yaw angle 

is always point to the destination, which is 45 degrees. The computer specifica-
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Pitch of the aerobot in the min E trajectory 
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FIGURE 24 - The pitch angle <p for the minimizing-energy trajectory. 

The minimizing- time trajectory for the Aerobot 
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FIGURE 25 - The minimizing-time trajectory generated by NTG for the Aerobot. 
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FIGURE 26- The control input T for the minimizing-time trajectory. 
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Pitch of the aerobet in the min E trajectory 
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FIGURE 27 - The pitch angle ¢ for the minimizing-time trajectory. 

TABLE 4 
3D TRAJECTORIES GENERATED BY NTG FOR THE EULER-LAGRANGE 

BASED AEROBOT 

NTC Tf( s) T ime(s) Energy Cost(m2 /s) 

minE 100.00 29.12 8.336e7 

minT 87.35 11.46 14.466e7 

tion of the simulation is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Memory 2.0 GB, 

AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. TABLE 4 shows the trajec

tories generated by NTG for the modeled Aerobot are reasonable considering the 

minimizing-time trajectory is the straight line and the energy cost is larger than 

the minimizing-energy trajectory. These two trajectories are presented in Figure 22 

and Figure 25, respectively. 

C. State Space Model Based Trajectories 

When the Aerobot is modeled as a state-space model, the trajectories can 

be generated with more time. It is reasonable to assume with ordinary computa

tion capability, trajectories can only be generated off line with all other conditions 

known in advance. For this demonstration, the decoupled longitudinal and lateral 
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FIGURE 28- The state-space based Aerobot controls [6] 

equations of motion of the Aerobot are from AURORA (Autonomous Unmanned 

Remote Monitoring Robotic Airship) project [65]. 

The state-space model is decoupled into longitudinal and lateral motions. 

The control inputs as elevator deflection oe, thrust demand OT, vectoring angle Ov 

for the longitudinal motion, and aileron deflection oa, rudder deflection Or for the 

lateral motion. The outputs are the velocities and orientation of the airship. The 

airship control inputs and their positive references are shown in Figure 28 The air

ship is moving from the point ql = 0, q2 = 0, q3 = 0 to ql = 200, q2 = 200, q3 = 200, 

which are the coordinates in the Cartesian system. Still, the following assumptions 

are made:. The linearized state-space model is obtained from nonlinear dynamic 

equation of the airship given by [6], resulting into decoupled longitudinal and lat

eral motions. For the longitudinal motion, the output vector is 

Xv(t) = [u, w, q, eJ (42) 

where u is the longitudinal component of the airship absolute speed which is rela

tive to the air, w its vertical component, q is the pitch rate and e is the pitch angle. 

The control vector for the longitudinal motion is 

(43) 

where oe is the elevator deflection, OT is the thrust demand and Ov is the vectoring 
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angle. The equation of longitudinal motion is listed as 

(44) 

where Av and Bv are numerically linearized system matrices [6] as 

where v is the lateral component of the airship absolute velocity, p and T are the 

roll and yaw rates, e is the roll angle. The control vector is given by 

(46) 

where 6a is the aileron deflection, 6r is the rudder deflection. Its lateral motion of 

equation is presented as 

where Ah and Bh are numerically linearized matrices from [66] as 

0.0378 0.4037 1.8059 -2.5864 

1.5641 -0.6429 8.0737 -6.3747 

-0.4161 -1.4674 -6.2235 -0.0225 

o 1 0.0913 o 
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FIGURE 29 - The wind profile for the state-space based Aerobot. 

-7.1360 4.5273 

-13.4035 3.07573 

-0.2389 -2.9211 

o 0 

For the state-space model, the wind profile is modeled as (48), the research 

area is restricted in the cube which the reference point is (0,0,0) to (200,200,200) 

meters. Assuming the wind profile is layered horizontally, no upward or down

ward wind exists. The wind velocity vectors at each layer are considered as known. 

(u, v) = 

(-lO,10),forq3 ~ (0,50) 

(10, -8), for q3 ~ (50,100) 

(5,8), for q3 ~ (100,150) 

(10, -10), for q3 ~ (150,300) 

(48) 

where q3 is the coordinate in the vertical direction. In Figure 29, the x, y, z are the 

coordinates of the system, respectively represent ql, Q2, Q3. 
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1. Problem Formulation 

The cost function and constraints are listed in the following. The cost func-

tion J is 

(49) 

where Wt , Wu are the weights. For minimizing time trajectory, Wt is equal to 1000, 

while Wu are both o. For minimizing energy trajectory, Wt is set to be 0, while Wu 

are both set to be 10. t f is the unknown final time for the trajectory. The constraints: 

• (Linear) Initial Constraints: 

o - f ::; q2 ( to) ::; 0 + f 

o - f ::; q3 (to) ::; 0 + t 

o ::; t f - to ::; 200 .5 

• (Linear) Final Constraints: 

200 - f ::; ql (t f) ::; 200 + f 

200 - E ::; q2(tf) ::; 200 + E 

200 - f ::; q3 ( t f) ::; 200 + E 

• (Linear) Trajectory Constraints: 

o - E ::; ql (t) ::; 300 + E 

o - E ::; q3 ( t) ::; 300 + E 

• (Linear) Control Inputs Constraints: 
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The minimizing energy trajectory fOf AURORA Airship 

200 

150 j 
N 100 1 

50 

o· 
200 

150 200 
100 150 

50 
100 

50 
y o 0 x 

FIGURE 30- The minimizing-energy trajectory for the state-space based Aerobot. 

-100 ::; 6T ::; 100 

-0.5 ::; 6v ::; 0.5 

-1 ::; 6,. ::; 1 

where ql (to), q2 (to), q3 (to), ql (t f), q2 (t f) ' q3 (t f) are the initial and final location of the 

Aerobot. ql(t), q2(t) and q3(t) are the positions of the Aerobot in the trajectory. E is 

a small number. The other constraints are nonlinear constraints listed as 44 and 47. 

2. Simulated 3D Trajectories 

When the Aerobot is modeled as (44) and (47), the wind profile is assumed 

to be known as in (39). NTG generated the minimizing-energy 3D trajectory in 

Figure 30. The energy cost for this trajectory is 4.2297e3, the final time is 183.97 

seconds, the computation time is about 18 minutes. The longitudinal and lateral 

constraints make the computation time is as long as 18 minutes, it means that the 

trajectory has to be obtained by off-line with the available wind profile in advance. 

The control inputs elevator deflection 6e , thrust demand 6T, and aileron deflection 

6a , rudder deflection 6" are shown in the following. 

The vectoring deflection 6v is not shown here considering that it is not ex

plicitly shown in the longitudinal and lateral dynamics constraints. 
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The elevator deflection control input for the min E trajectory 
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FIGURE 31-The elevator deflection be and the thrust demand bT for Figure 30 
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FIGURE 32 - The elevator deflection ba and the thrust demand br for Figure 30 
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The minimizing time trajectory for AURORA Airship 
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FIGURE 33 - The minimizing-time trajectory for the state-space based Aerobot 
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FIGURE 34-The elevator deflection De and the thrust demand DT for Figure 33 

When the trajectory is trying to minimize the time, the trajectory is not go

ing with the wind profile. It just go straight to the destination as it is shown in 

Figure 33. For the minimizing-time trajectory, the final time is 100.30 seconds. The 

computation time of the NTG algorithm is 6 minutes. The energy cost is 4.6963e3. 

The minimizing time trajectory control inputs elevator deflection De, thrust de

mand DT, and aileron deflection Da, rudder deflection Dr are also shown in the fol-

lowing. 

The simulation platform is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Mem

ory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. 

TABLE 5 shows the trajectories generated by NTG for the modeled Aerobot 

are reasonable considering the minimizing-time trajectory is the straight line and 

the energy cost is larger than the minimizing-energy trajectory. 
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The aileron deflection control input for the min T trajectory 
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FIGURE 35 - The elevator deflection fla and the thrust demand flr for Figure 33 

TABLES 
3D TRAJECTORIES GENERATED BY NTG FOR THE STATE-SPACE BASED 

AEROBOT 

NTC · Tj(s) Time(m) Energy Cost(m2 js) 

minE 183.97 18 4.2297e3 

minT 100.29 5 4.6963e3 

D. Summary 

This chapter shows that the JPL Aerobot energy efficient trajectories can be 

generated by NTG. This problem is investigated from two perspectives, one is from 

the energy perspective, another is from the state-space based model. The former 

one is much faster to calculate than the later one. Both for the Euler-Lagrange con

straints based trajectories and the state-space based models NTG can be utilized to 

generate energy-efficient trajectory for the JPL Aerobot. 
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CHAPTER IV 

TRAJECTORY GENERATION WITH DMOC 

A. DMOC Methodology 

Based on discrete Lagrangian mechanics [67] [68], DMOC (Discrete Me

chanical and Optimal Control) [9] is proposed to solve optimization control prob

lems both for mechanical systems. Its application is mainly in the control of me

chanical systems, such as trajectory generation for a glider, control of Compass 

Gait Biped [27], formation of flying spacecrafts [69]. Also DMOC can be applied 

in solving variational problems in computer vision and graphics [70], poit vor

tices [71]. 

The innovative part of DMOC is to exploit the variational structure directly. 

Instead of first deriving the Euler-Lagrange equations (equations of motion) for 

the system, it utilizes a global discretization of the states and the controls by the 

discrete Lagrange-d' Alembert principle to obtain equality constraints, then the 

problem is transformed into a finite dimensional nonlinear optimization problem. 

While in NTG the collocation method [72] is to choose a finite-dimensional space of 

candidate solutions and a number of points (collocation points) in the domain, and 

to select a solution which satisfies with the given cost and constraints equations at 

collocation points. 

Considering a mechanical system with configuration space Q is to move on 

a curve q(t) E Q in the time period of [to, tf] from a state (qtO, qto) to a state (qtj, qtj) 

under a control force f(t), the cost function in this optimal control problem is given 
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as: 

J(q,1) = lot! C(q(t), q(t),f(t))dt (50) 

where q(t) is the state of the system. For optimal control, I(t) is chosen so that the 

cost function is minimized. The constraints are listed as in (51). 

Initial Lbo < wo(q(to), f(to), to) < ubo 

Trajectory lbt < wt(q(t), f(t), t) (51) 

At the same time, motion q(t) of the system is satisfied with the Lagrange

d' Alembert principle, which requires that (52). 

It! It! 
6 to L(q(t),q(t)dt + to I(t)· 6q(t)dt = 0 (52) 

where L : TQ ---+ lR is the Lagrange of the mechanical system. The variations 6q in 

two terminals are 6q(to) = 6q(tf ) = o. 

For a trajectory generation problem with a cost function as (50), constraint 

functions as (51). The time for system states is discretized as 0, h, 2h, ... Nh = tf' 

where h is the step size and N E N. The continuous state q(t) and the continuous 

force I(t) is approximated by discrete states qd(kh) and forces Id(kh). 

Through direct discretization, the Lagrangian in Euler-Lagrange equation 

(52) is approximated over a time slice [kh, (k + l)h] by a discrete Lagrangian L d . 

At the same time, the virtual work in (52) also can be approximated as 

l
(k+l lh 

Ii: ·6qk + It· 6qk+l :=;:j I(t) .6q(t)dt, 
kh 

where Ii:, r: are called left and right discrete force respectively. 

Ii: = I(kh) . h/2; 

r: = I((k + l)h) . h/2 
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The discrete version of Lagrange-d' Alembert principle (52) requires that 

N-l N-l 

6L Ld(qk, qk+d + LU; . Oqk + I: . 6qk+d = o. (57) 
k=O k=O 

It can deduce into the following equation with derivative operations according to 

variables qk and qk+l by Dl and D2, respectively. 

N-l N-l N-l 

L D1Ld(qk, qk+d ·6qk+ L D2Ld(qk, qk+d ·Oqk+l + L I; ·Oqk+ I: ·6qk+l = o. (58) 
k=O k=O k=O 

Then, the equation can be transformed into 

N-l N-l N-l 
L D1Ld(qk, qk+d . 6qk + L DzLd(qk-l, qk) . 6qk + L I; . 6qk + 1:-1· 6qk = o. (59) 
k=O k=I k=l 

It can be expressed as: 

N-l 
L(D1Ld(qk,qk+d + D2Ld(qk-l,qk) + ILl + I;)oqk = o. (60) 
k=l 

For all variations 6qk, 6qo = OqN = 0, the discrete Lagrange-d' Alembert principle is 

derived as 

(61) 

where k = L.N - I, called the forced discrete Euler-Lagrange equations. Other 

constraints such as (51) are also discretized with corresponding discrete states and 

forces. Discrete boundary conditions at to = a and t f = N h are expressed as 

D2L(qo, go) + D1Ld(qo, qd + 10 = 0, 

-D2 L(qN,gN) + D2 Ld(QN-l,qN) + If;-l = o. 

B. DMOC Tutorial 

(62) 

This section presents a detailed procedure [73] to apply DMOC methodol

ogy to solve optimal control problems. It explains the principle of DMOC, and how 

to formulate the problem in DMOC. Then the steps are shown about how to install 

and configure nonlinear programming solver IPOPT, and how to use the modeling 
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FIGURE 36-A DMOC procedure to solve an optimization problem. 

language AMPL. In particular, the user-defined function is involved with AMPL 

to solve more complicated problem. The glider trajectory generation example uses 

DMOC to solve an optimization problem with AMPL and IPOPT. 

1. IPOPT 

IPOPT as an open source nonlinear programming solver is invented by 

Dr Andrew Wachter at Carneige Mellon University. It is a primal-dual interior 

point [74] algorithm with a filter line-search method. IPOPT has been proved at

tractable using CUTEr test set (954 problems), compared with other two interior

point optimization codes KNITRO and LOQO [75]. In IPOPT, an original optimal 

control problem is transformed into a sequence of barrier (interior-point) prob

lems for a decreasing sequence of barrier parameters converging to zero. IPOPT 

includes a line-search filter method with the feasibility restoration phase, second

order corrections which are supposed to improve the proposed step if a trial point 
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Software requirements for IPOPT 

FIGURE 37 - Software requirements for IPOPT, where ALS is referred to AMPL 
Solver Library, BLAS represents Basic Linear Algebra Subroutines, LAPACK 
means Linear Algebra PACKage, one Liner solver for indefinite matrices can be 
MA27, MA57 or other solvers, the details is described in [7]. 

has been rejected, and initial correction of the Karush-Kuhn-Tucker matrix which 

is the necessary optimal condition for nonlinear programing. For the IPOPT algo

rithm details, see [75]. 

IPOPT package is available from COIN [76] under the Common Public Li-

cense. The user can download and use it free of charge even for commercial pur

poses. Some third party components are required for the execution of IPOPT, these 

components consist of BLAS (Basic Linear Algebra Subroutines), LAPACK (Lin

ear Algebra PACKage), a sparse symmetric indefinite linear solver such as MA27 

or other one. While only ASL (AMPL Solver Library) is required for using with 

AMPL. The software sources including the dependent solvers are located in the 

website, the detailed procedure to download and install IPOPT can be found in 

the IPOPT manual [7]. 

The user should model problem in a nonlinear programing formulation 

which can be interfaced with IPOPT through code such as C++, C, or Fortran. For 

programming problems in C++ interfacing with IPOPT, the user must provide the 

Jacobian matrix, and Hessian matrix which may be approximated by setting up the 

IPOPT option "hessian_approximation" as "limited-memory". The eight functions 

need to be implemented to define the problem and supply the information, the 
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eight functions are geLnlpjnfoO, geLboundsjnfoO, geLstarting_pointO, evaLfO, 

evaLgO, evaLjacgO, evaL..hO, finalize_solutionO separately. As their names in

dicate, the functions provide the IPOPT with the necessary information like the 

number of variables, the bounds, the starting points, the constraints Jacobian, the 

Hessian of the Lagrangian for the solver to generate the solution for the problem. 

But the difficulty exists in the Jacobian and Hessian parts. The Hessian matrix 

can be approximated and this evaLhO can be disregarded. Finally it is supposed 

to provide the IPOPT with the Jacobian of the constraints, which is not easy. For 

example, in this problem, the constraints have 104 equations, and the number of 

the variables is 151, therefore, the Jocabian of the constraints has the dimension of 

104 x 151, every element in the matrix needs to be specified, even there is some 

kind of principle implicit in these elements, it is still not easy to avoid the mistakes 

for constructing the Jacobian matrix in the programming. 

Therefore, the easier way for IPOPT to solve the problem is to interface it 

with AMPL, because AMPL automatically provide some necessary information 

to IPOPT to solve the problem, the information include and not limited to the 

Jacobian, Hessian matrix. 

2. AMPL 

AMPL, developed in Bell Laboratories, is a comprehensive and powerful al

gebraic modeling language for linear and nonlinear, continuous or discrete system 

optimization problems. It is user-friendly, making the user focus on the modelling 

of the problem, not the technical details for programming. All the variables, pa

rameters, cost functions, constraint functions are defined intuitively and straight

forward. The main difference between AMPL with other programming languages 

such as C or Fortran are the expressions of the variables. In AMPL, "set" and "in

dex" are used to invoke the specific variable. On the other hand, the mathematical 

expression is generally adapted from an advanced programming language, for ex-
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ample, "sum" or ">" and so on as arithmetic or logical operators are used. Since 

AMPL is based on algebratic expressions of constraints and objectives. Its syntax 

is easily learned by referring to the manual [77] or through some examples [78]. 

With the AMPL scripture of the program, the AMPL translator can read the opti

mization model and data provided through the language. The seven logic phases 

are executed like parse, read data, compile, generate, collect, presolve, out. The AMPL 

needs call the solvers to generate the solution for the formulated problem. 

3. Implementation Details 

To implement, the first step, download IPOPT from COIN [76]. The latest 

(Apr 26,2008) C++version of IPOPT tarball is Ipopt3.4.0.tgz. Assume the tarball 

is downloaded to the folder Program I I PO PTtutorial. Unpack the archive file by 

gunzip IPOPT3.4.0.tgz, resulting into IPOPT3.4.0.tar. Using tar xv! IPOPT-

3.4.0.tar, the tarball is extracted into I POPT3.4.0.tar. For convenience, the name 

of the directory IPOPT3.4.0 to Coinlpopt. According to Figure IV.B.I, IPOPT 

needs a few external packages to make it work, including AMPL solver library

ASL, basic linear algebra subroutines-BLAS or Linear Algebra Package-LAPACK, 

a linear solver for symmetric indefinite matrices such as MA27 or MAS7. If IPOPT 

is used with AMPL as it is in this example, only ASL is required. However, IPOPT 

can work independently from AMPL, so the procedure to download BLAS, LA

PACK, MA27 is listed in the following by utilizing the scripts included in the 

IPOPT distribution. 

• cd CoinlpoptlThirdPartyl Bias go to the BIas directory 

• .lget.Blas run the script to download BLAS from the Netlib Repository, 

after succession, the message "Done downloading the source code for 

BLAS" appears. 

• cd .. I Lapack go to the Lapack directory 

• .lget.Lapack download Lapack, get the message "Done downloading the 
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source code for LAPACK". 

• cd .. j AS L go to the ASL directory 

• .jget.ASL download ASL, get the message "Done ... ". 

For the sparse symmetric linear solver MA27, search and get MA27. save ma27ad.f 

to CoinlpoptjThirdPartyj H SL. As indicated, other linear solver for symmetric in

definite matices instead of MA27. After the third party codes are installed, IPOPT 

needs to be compiled and installed by the generally command. 

• cd Coinlpopt 

• .Jconfigure get the message "configure: Configuration of Ipopt success

ful,configure: Main configuration of Ipopt successful" 

• make 

• make install 

After IPOPT is successfully installed in Coinlpoptj Ipopt, begin to testthe examples 

to make sure it work. For instance, if go to jexamplesjCpp_example, type make, 

then .jcpp_example, the screen output should be "Optimal Solution Found.*** The 

problem solved in six iterations!*** The final value of the objective function is -

4.000000e+OO". Generally, it means that IPOPT is ready to use for solving your 

optimization problem. The easiest way to make IPOPT solve an optimization 

problem is to make it work with AMPL, even also program problems in c, c++ 

or Fortran language. In this paper, we are considering the problem to make IPOPT 

work with AMPL. Firstly, AMPL can be downloaded from the web without any 

charges if the variables are less than 300. In this case, the experimental system 

is HP Pavilion a1430n, Memory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Pro

cessor 3800+. The operating system is Ubuntu 7.10, Kernel Linux 2.6.22-14-386. 

Thus "Intel (Pentium-compatible) PCs running Linux" AMPL is downloaded to 

IpoptjexamplesjAM P Lex. Using gunzip ampl.gz to uncompress the file into ampl, 

by typing chmod + x ampl to make. sure to have the privilege to execute the 

AMPL. Then AMPL is ready to use when modeling the problem in AMPL and 
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the problem is in the format of test.mod in which the solver is specified as IPOPT . 

. Iampl test. mod is used to solve the problem, the output can be saved into a file 

and shown on the screen. 

The useful feature of AMPL is that it can include user-defined function as 

an externally added function to solve more complex problems. In order to make 

the user-defined functions work with AMPL, the "funcadd.c" should be download 

from the server [78], and modify it according to your purpose, basically the user 

needs to embeded his or her own program to the downloaded function making 

the user-defined function work like the example function. Then compile the "fun

cadd.c" by the different makefile which is dependent on the work station where 

the program is supposed to execute. Download the makefile from AMPL web

site and modified it according to the specific system. The Makefile.Linux listed in 

the appendix in the appendix is tested successfully in Ubuntu 7.10, Kernel Linux 

2.6.22-14-386, Memory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. 

After the funcadd.c is compiled by make f Makefile.Linux, the amplfunc.dll will be 

created, now the user-defined function is ready to be called during the optimiza

tion process. 

AMPL can hook with different kinds of solvers such as ACRS, MINOS, 

NPSOL, IPOPT and so onto generate the solution for the optimization problem. 

The "solve" command in AMPL language make AMPL send the problem infor

mation to the solver which is regarded as a separate program, then read the so

lution back from the solver. The files for the communication between AMPL and 

the solver is called stub.suffix [79]. At the beginning, the initial file from AMPL 

is stub.nl which describe the problem information, after solver received this infor

mation and with the specified toleration and iteration parameters, the solver write 

the solution or resulting information to a file named stub.sol. Practically, in order 

to make AMPL work with IPOPT, the user just need to install AMPL to the right 

directory, then specify solver option in AMPL program as "option solver IPOPT" 

at the beginning of the program. 
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4. An Application Example 

The following example is shown how DMOC work with IPOPT and AMPL 

to solve the optimal control problem. A dynamical glider is simulated moving in 

Monterey Bay from (-122.1780,36.8557) to (-122.2420,36.6535) which represents 

the position in degrees (Longitude and Latitude), it is controlled by the gyroscopic 

forces. 

The AMPL program listed in the following with the solver specified as 

IPOPT. For calculation purpose, the position unit is transformed into centime

ter based on the reference point as (-122.3246,36.5658). The ocean current flows 

are modeled as time-varying 2D B-spline model, the optimal trajectory generation 

with NTG for the glider in this model has been presented in [8]. 

In AMPL, the modeled problem is shown as follows: 

• Cost function: 

minimize force_energy: 

sum {j in O .. N-2}0.5 * ut[j] * It[j]+ 

11 [j] * 11 [J] + Ii [j] * Ii [J] + 12 [j] * 12 [j]) * h; 

• Start and final Constraints: 

subject to y_start:Q2[0] = ay; 

subject to x_destination:Ql[N - 1] = bx ; 

subject to y_destination:Q2[N - 1] = by; 

• Trajectory Constraints: 

subject to Euler_Lagrange...x {j in O .. N-3} : 

-KEq1p[j + 1] + KEqlp[j] + 0.5 * h * (KEq1[j] + KEq1[j])+ 

0.5 * h * (Vql[j + 1] + Vq1[j]) + fi[j] + flU] = 0; 
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subject to EuleLLagrange_y {j in O .. N-3} : 

-KEq2p[j + 1] + KEq2p[j] + 0.5 * h * (KEq2[j] + KEq2[j]) + 

0.5 * h * (Vq2[j + 1] + Vq2[j]) + fi[j] + fi[J] = 0; 

where il~' ii, it and ii are the left and right discrete forces [9]. for the compo

nents of the gyroscopic force.Fgyr (15). N is the number of knots in the trajectory. 

ax,ay,bx,and by are the starting and destination point, it has been transformed in the 

program to the centimeter assuming the radius of the earth is 6378krn and the earth 

is a perfect sphere. The trajectory constraints are introduced because the glider 

is controlled by the gyroscopic force and its motion is satisfied with Lagrange

d' Alembert principle. These constraints are called discrete Euler-Lagrangian equa

tions [9]. In the trajectory constraints, K EqIp, K Eq2p is the derivative of the glider 

kinetic energy according to (h, rh respectively. V ql, V q2 is the potential energy of 

the glider. The index of all these variables shows the states are discrete in the pro

gram. For the glider travels in the ocean current. The function is defined in AMPL 

in the way shown in the following: 

• Define function: 

function splineinfo; 

• Call function to retrieve the ocean current velocities: 

var u {i in V ELNODES} 

= splineinfo(x[iJ, y[i], h * i/3600, u, v); 

var v {i in VELNODES} = v; 

• Discrete forces are connected with currents: 

var it {i in VEL_NODES} 

= 0.5 * h * (-taurn[i] * (q2p[i] - v[i])); 

var il~{i in VEL_NODES} 
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FIGURE 38 - Dynamical glider trajectories in the 3D B-spline current model. 

TABLE 6 
DMOC SOLUTIONS FOR A DYNAMICAL GLIDER IN THE 3D B-SPLINE 

CURRENT MODEL. 

DM OC Interval T(hours) Iter T ime(s) Energy Cost 

Guess 1 40 42.51 3000 23.10 7.9615 

Guess 2 42 30.05 3000 43.30 62.2179 

Guess 3 40 43.22 3000 23.10 16.192 

= 0.5 * h * (-taum[i] * (q2p[i] - v[i])); 

var fi{iin VELNODES} 

= 0.5 * h * (taum[i] * (q1p[i] - uri])); 

= 0. 5 * h * (taum[i] * (q1p[i] - uri])); 

where VELNODES = {O, .. . N -I}, h is the step size of optimization, taum is the 

control force, q2p, q1p is the derivative approximation of q1 and q2. The index of 

variables show that the states are discrete. 

By combining DMOC, IPOPT, AMPL and time-varying 2D B-spline ocean 

current model, the glider trajectory is generated and shown in Figure 38. As 

shown in TABLE 6, DMOC has successfully generated the local solutions for the 
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optimal control of the glider with a complex ocean current model. It illustrates 

the promising aspects of DMOC methodologies combined with IPOPT to solve 

other optimization control problems. Furthermore, an efficient method is needed 

to choose a better solution from local solutions. The obtained solution will be an 

approximate global solution for the optimal control problem. 

C. Summary 

In this chapter, a tutorial on solving the optimal control problems with 

DMOC is presented. It is shown that DMOC combined with AMPL and IPOPT 

can solve complex optimal control problems. Especially, it is shown that user

defined functions can be invoked in this procedure. The fundamentals of IPOPT 

and AMPL are explained and procedure to solve problems is presented. As an 

example, a dynamic glider is simulated moving in Monterey Bay California where 

the ocean current is modeled as time varying 2D B-spline function. The minimiz

ing energy local solution trajectories are obtained by DMOC methodology. Conse

quently, this tutorial proposes a feasible approach and procedure to solve optimal 

control problems with the available resources including DMOC methodology, the 

open source IPOPT, the AMPL with a free student version with 300 variables limit. 
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CHAPTER V 

COMPARISON OF DMOC AND NTG 

In this chapter, two state-of-the-art optimal trajectory generation method

ologies as DMOC and NTG are analyzed and compared. DMOC is a recently de

veloped methodology to solve optimal control problems for mechanical systems. 

It is based on a direct discretization of the Lagrange-d' Alembert principle while 

NTG is based on a combination of differential flatness, spline theory and sequen

tial quadratic programming. Theoretical foundations and results for comparisons 

are presented with application to a dynamic glider. In a simple ocean current ex

ample, DMOC with discrete Euler-Lagrange constraints generates local optimal 

solutions with different initial guesses while NTG is also generating similar solu

tions with more computation time and less energy consumption. Furthermore in 

a more complex ocean current model, optimal solutions from DMOC also cost less 

energy and computation time than the ones from NTG. In both cases, DMOC op

timal solutions are shown to cost less energy and less computation time than NTG 

optimal solutions. The cost functions are the integral of control forces over time, 

nonlinear constraints are direct discrete Euler-Lagrange equations for DMOC, con

tinuous ones for NTG. 

A. Discrete Mechanics and Optimal Control 

Discrete Mechanics and Optimal Control (DMOC) [9] is based on a direct 

discretization of the Lagrange-d' Alembert principle. For comparison, NTG uses 

the continuous version of Euler-Lagrange equations as constraints. 
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1. Discrete Cost Function 

The cost function (SO) over a time slice [kh, (k + l)h] is approximated as 

(63) 

The integral in the cost function can be approximated by some standard methods 

such as the Midpoint Rule [9]. Thus the overall cost function becomes as: 

N-l 

Jd(qd, fd) = L Cd(qk, qk+l, fb fk+l) (64) 
k=O 

2. Discrete Lagrange-d' Alembert Principle 

The innovative part of DMOC is to exploit the variational structure directly. 

Instead of first deriving the Euler-Lagrange equations (equations of motion) for 

the system to get the optimal solution, it uses a global discretization of the states 

and the controls by the discrete Lagrange-d' Alembert principle to obtain equality 

constraints, then the problem is transformed into a finite dimensional nonlinear 

optimization problem. 

For a trajectory generation problem shown with the cost function as (50), 

constraint functions as (S2) and (Sl), the time for system states is discretized as 

0, h, 2h, ... Nh = tf' where h is the step size and N E N. The continuous state q(t) 

and the continuous force f(t) is approximated by discrete states qd(kh) and forces 

h(kh). 

Through direct discretization, Lagrangian in Euler-Lagrange equation (52) 

is approximated over a time slice [kh, (k + l)h] by a discrete Lagrangian Ld. 

(6S) 

At the same time, the virtual work in (S2) also can be approximated as 

l
(k+l)h 

fi: . 8qk + f: . 8qk+l ~ f(t) ·8q(t)dt, 
kh 

(66) 
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where Ii:, Ii: are called left and right discrete force respectively. 

Ii: = I(kh) . h/2; 

Ii: = I((k + l)h) . h/2 

(67) 

(68) 

The discrete version of Lagrange-d' Alembert principle (52) requires that 

N-l N-l 

6L L d (qk,qk+1) + LUi:' 6qk + 1:' 6qk+1) = o. (69) 
k=O 

As it is shown in IV, the discrete Lagrange-d' Alembert principle is derived as 

(70) 

where k = L.N - I, called the forced discrete Euler-Lagrange equations. Other 

constraints such as (51) are also discretized with corresponding discrete states and 

forces, see [9] for details. Discrete boundary conditions at to = 0 and tf = Nh are 

expressed as 

D2L(qo, qo) + D1Ld(qo, ql) + 10- = 0, 

-D2L(qN,qN) + D2 Ld(QN-l,qN) + 11;-1 = o. 

B. Nonlinear Trajectory Generation 

1. Problem Formulation 

(71) 

NTG methodology is based on a combination of nonlinear control theory, 

spline theory, and Sequential Quadratic Programming. NTG transforms optimal 

control problem into Nonlinear Programming Problem (NLP). It is then solved 

by NPSOL [80] [44]. In NTG the collocation method [72] is to choose a finite-

dimensional space of candidate solutions and a number of points (collocation points) 

in the domain, and to select a solution which satisfies given cost and constraints 

equations at the collocation points. In order to compare DMOC with NTG, the 
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cost and constraint functions should be the same. The optimal control problem for 

NTG is to obtain f (t) to minimize a cost function. 

itl 

J(q, J) = C(q(t), q(t), f(t))dt 
to 

(72) 

At the same time, the motion of q( t) of the mechanical system from (qto, qt I) to a 

state (qtO, qt!) is to satisfy the Lagrange-d'Alembert principle [9]. This constraint 

(52) can be expressed as 

i

t! 8L 8L it! 
(7}8q + a-8q )dt + f(t)8q(t)dt = 0 

to q q to 
(73) 

As shown in lILB.1, the continuous Euler-Lagrange equation is obtained in the 

following. 
8L d 8L 
8q - dt 8q + f (t) = 0 

Other constraints are listed as (6): 

Initial Lbo < wo( q( to), f( to), to) < ubo 

Trajectory lbt < wt(q(t), f(t), t) < ubt 

Final lbf < W f(q(tf), f(tf), tf) < ubf 

(74) 

(75) 

where q(i) is the state of the system and f(t) is the control input. The constraints 

compose of initial constraints <po(.), trajectory constraints, <pt (.), and final con

straints, <Pf(.). lb and ub are lower and upper bounds for the constraint functions 

and to, t f are the initial and final time. If the cost function and constraints are 

evaluated at discrete points in the interval [to, if]' it is possible to transform the op

timization problem, defined by (72) and (74), (6), into the following NLP problem 

in Cj: 

subject to 

LB <::: G(C) <::: UB 

where C = [C1 ••• Cp]T, F(C) is the transformed cost function, and G(C) are 

the transformations of the constraints, with LB and U B as the lower and upper 

bounds, respectively. The discrete points, C, at which cost and constraints are 

evaluated, are called collocation points. 
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2. Procedure in NTG 

Three steps are required in the NTG algorithm. The first step is to exploit 

any differential flatness of the system to find a new set of outputs of the system 

so that the system dynamics can be mapped down to a lower-dimensional space, 

with the property that all the states and controls of the original system can be 

recovered from the new lower-dimensional representation. The differentially flat 

system [81] means the system states and inputs can be determined from a new 

set of outputs without integration. Suppose that the system has states ql ERn, 

and inputs f E Rm then the system is flat if new outputs can be found such that 

q2 E Rm of the form q2 = q2(q1, f, j, ... ,j(p)) such that q1 = Q1(q2, (h, ... ,q~k)), and 

f = f(Q2, (h, ... , Q~k)), where p, k are constant variables. The second step is to further 

represent these outputs in terms of the B-spline functions: 

p, 

Zi(t) = L Ej,r, (t)C; 
j=l 

where Pi is the number of free parameters Cj (coefficients of the B-spline functions). 

E),r, are B-spline basis functions. The basis functions [34] are defined as: 

{

I, if t J :::; t < t j+ 1 

El,a = 
0, otherwise 

(76) 

(77) 

Lastly, to solve the coefficients of the B-spline functions, Cj, with the se

quential quadratic programming solver NPSOL. 

C. DMOC versus NTG 

Two examples are presented to compare DMOC and NTG. One example is 

a dynamical glider in a simplified current situation, and the other example shows 

trajectories of this glider in a complex B-spline ocean current model. In both cases 

the glider is controlled by gyroscopic forces. DMOC and NTG formation have the 
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same cost function, the same constraints, and the same nonlinear programming 

solver. 

1. A Glider in the Simple Current Model 

Considering the example presented in [82], a dynamical glider shown in 

Figure 4 modelled as (78) is moving from the pOint qi = 10, q2 = 0 to ql = 15, q2 = 

2 with the unit of centimeter in ocean current where qI, and q2 represent :t and 

y directions in a Cartesian coordinate system. The initial relative velocities are 

(h = -10, g2 = -10 with the unit as centimeter/second, and it is controlled by 

gyroscopic force Fgyr (79). 

de ( . ) . -- q2 - V + u dt 

de ( . ) . - ql - U + v dt 

Fgyr = (11 = -7 (g2 - V)) 

12 = 7 (gl - u) 

(78) 

(79) 

where e is the orientation of the glider shown in Figure 4, u and v are components 

of the ocean current velocity in the qi and q2 direction, respectively. iJi, iJ2, gl, g2 are 

accelerations and velocity of the glider in x and y direction, respectively, and 7 is a 

control input. 

a. Problem Formulation in DMOC The cost function of this problem is 

given as: 

it! 

J = II Fgyr 112 dt 
to 

(80) 

Since the control input is a gyroscopic force, the cost function is an integral of these 

forces over the operation time [to, tf]. With (15), it can be expressed as 

(81) 

Discrete form of the cost function can be derived as: 

N-l 

Jd = I) !I (k)2 + 12(k)2)h (82) 
k=O 
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where N is number of intervals in the trajectory and h is the step size in the trajec

tory. In the DMOC problem formulation, velocity at knot j of the trajectory in qll 

q2 are correspondingly approximated as 

qlP[j] = (qdj + 1]- qdj])/h 

q2P[j] = (q2[j + 1] - q2[j])/h 

II (j) = -T[j] (q2P[j] - v[j]) 

h(j) = T[j] (qlP[j] - u[j]) 

1L[j], and v[j] are the current velocities in the ql and q2 directions, respectively. 

(83) 

(84) 

Euler-Lagrange equations as the constraints are listed in (61) and (62). Specif

ically, the Lagrangian L of the glider is the difference between the kinetic energy 

K E and the potential energy P E. 

are 

L(q(t),q(t)) = KE(q(t),q(t)) - PE(q(t),q(t)) 

1 
KEq1 (ql(t),i/l(t)) = 2m (ql(t) _U)2 

1 
KEq2 (Q2(t),q2(t)) = 2m(q2(t) - v)2 

PEq1 (ql(t),ql(t)) = 0 

P Eq2 (q2(t), q2( t)) = 0 

(85) 

(86) 

(87) 

According to the discrete Euler-Lagrange equations (61), trajectory constraints 

-m(qlP[j + l]-u[j + 1]) + m(qlP[j]- u[j]) + Inj] + Il[j + 1] = 0 

-m(q2P[j + 1]- v[j + 1]) + m(q2P[j]- v[j]) + I2+[j] + I2-[j + 1] = 0 (88) 

where the left and right discrete forces are 

II [j] = I:[j] = -T[j](q2P[j] - v[j])h/2 

12- [j] = Ii [j] = T[j] (QlP[j] - u[j])h/2 
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They are different from h[j], h[j]. The initial boundary constraints are listed as: 

ql [0] - qlini = 0 

q2 [0] - q2ini = 0 

-m( qlP[O] - u [0]) + 11- [0] + mqlinip = 0 

-m(q2p[0]- v[O]) + 1;[0] + mq2inip = 0 

The final conditions are listed as: 

qdN - 1] - qljinal = 0 

q2[N - 1] - q2jinal = 0 

-m(qlP[N - 1]- urN - 1]) + 1t[N - 1] + mqljinp = 0 

-m(q2P[N - 1]- v[N - 1]) + fi[N - 1] + mq2jinp = 0 

(90) 

(91) 

where (qlini, q2ini) and (qljinal, q2jinad. are initial and final positions of the glider 

at ql and q2, which are (10,0) and (15,2). (qlinip, q2inip) , (qljinp, q2jinp) are initial and 

final velocities of the glider. m is the mass of the glider. (qlinip, q2inip) are (-10, -10) 

correspondingly. u(O), and v(O) are ocean current velocities at the initial time. In 

addition to the discrete Euler-Lagrange equation constraints, the variables are also 

constrained as 

-100 ::; ql [j] ::; 100; 

-100 ::; q2 [j] ::; 100; 

-100::; T[j] ::; 100; 

1 - c ::; t j - to ::; 1 + c; 

c is a small number. For this example, the velocity of the current in x-direction u is 

equal to the value of x multiplied by 0.1, the velocity v in y-direction is assumed to 

be o. The glider is controlled by gyroscopic forces given in (84), and an animation 

to show that the glider is generating an optimal trajectory by DMOC. 

To generate optimal trajectories with DMOC, the problem modelled in AMPL 

is solved by a nonlinear programming solver NPSOL which is the same as the NTG 
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FIGURE 39-The DMOC solution when the initial guess is a straight line. 

solver. The default NPSOL options [44] are used in both DMOC and NTG solu

tions of the problem. The number of intervals as 50 is the same as the one defined 

in NTG. When the initial guess is a straight line connecting the start and the des

tination points, an optimal solution from DMOC is shown in Figure 39. After 96 

iterations, the optimal cost is 4672.54, and the final time is 1 second. The system 

for the experiments is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Memory 2.0 GB, 

AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. Figure 40 shows the control 

input T in DMOC changes smoothly with the time. In the DMOC trajectory when 

the initial guess is a straight line, the changes of the coordinates and velocities are 

smooth and listed in Figure 41. 

b. Problem Definition in NTG In this part, optimal trajectory generation 

problem of the glider is formulated in NTG as listed in the following. The cost 

function J as in (80): 

it! 

J = (Il + fn dt 
to 

(92) 

with (15), the cost function becomes 
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FIGURE 41- The DMOC trajectory properties when the initial guess is a straight 
line. 
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where to, tf are the start and final time for the trajectory, respectively. Constraints 

in NTG formulation are given as: 

• Trajectory constraints: The glider is controlled by FgYTI and its motion is 

constrainted by Euler-Lagrange equation: 

8L d 8L - - -- + f(t) = 0 
oq dt 04 (93) 

where q can be ql or q2, f(t) should be II and h, correspondingly. The 

deduced continuous Euler-Lagrange equations are represented in ql and 

q2 directions as 

(94) 

(95) 

Other constraints are listed in the following. 

• Initial Constraints: 

-10 - E S ch (to) S -10 + E 

• Final Constraints: 

• Other Trajectory Constraints: 

-100 - E S q2 (t) S 100 + E 

-100 - EST S 100 + E 

1 - E S tf - to S 1.0 + E 
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where to , t f are the start and final time for the trajectory, respectively. Constraints 

in NTG formulation are given as: 

• Trajectory constraints: The glider is controlled by Fgy1" and its motion is 

constrainted by Euler-Lagrange equation: 

8L d 8L - - -- + f(t) = 0 
8q dt 8q 

(93) 

where q can be ql or q2, f (t) should be fl and 12, correspondingly. The 

deduced continuous Euler-Lagrange equations are represented in ql and 

q2 directions as 

(94) 

(95) 

Other constraints are listed in the following. 

• Initial Constraints: 

-10 - E ::; (h(to) ::; -10 + E 

- 10 - E ::; rh(to) ::; -10 + E . 

• Final Constraints: 

• Other Trajectory Constraints: 

-100 - E ::; ql(t) ::; 100 + E 

-100 - E ::; q2(t) ::; 100 + E 

-100 - E ::; T ::; 100 + E 
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FIGURE 42- The minimizing-energy trajectory from NTG when the initial guess is 
a straight line. 

where ql(tO) , Q2(tO), ql(tt) , Q2(tt) are initial and final locations of the glider. (h(to) 

and (h(to) are initial velocities of the glider. !1 and h are two components of the 

Fgy,' given in (15). 

When NTG, using NPSOL with linesearch = Ie - 10 and other default op

tions, is applied to solve this optimal trajectory generation problem with a straight 

line initial guess, the optimal trajectory shown in Figure 42 is slightly different 

from the one shown in Figure 39 obtained with DMOC. The final nonlinear objec

tive value is 4163.94 and the final time is 1 sec, the computation time is 43.47 sec. 

In NTG, the variables ql, q2, and T are specified as 50 intervals, the B-spline order 

for these three variables are 4, and the smoothness are all two. 

c. Comparisons When the initial guess is a straight line, the trajectories 

from NTG and DMOC are similar. DMOC successfully generates an optimal so

lution while NTG is only generating a sub-optimal solution in which sub-optimal 

means the solution cannot be improved upon from NTG. DMOC costs less energy 

and computation time to generate an optimal solution than NTG. 

Furthermore, when the initial guesses change, trajectories from DMOC and 

NTG with initial guesses are shown in Figure 46 through Figure 48. 
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The control input from NTG when initial guess is a straight line 
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FIGURE 43 - The control input T in NTG when the initial guess is a straight line. 
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FIGURE 44- The NTG optimal trajectory properties when the initial guess is a 
straight line. 

TABLE 7 
DMOC VS. NTG FOR A GLIDER IN A SIMPLE OCEAN CURRENT MODEL 

DMOC/NTG Interval T Iter Time(s) Energy Cost 

Guess 1 50/ 50 1/ 1 94/ 144 2.61/ 43.47 4672.81*/4163.94 

Guess 2 50/50 1/ 1 43/62 1.65/17.42 5569.49*/4870.12 
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guess is a straight line. 
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Trajectory from NTG when initial guess changes 
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FIGURE 47 - The trajectory from NTG when initial guess changes. 
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TABLE 7 compares the trajectories found by DMOC versus NTG in terms of 

interval, final time, iteration number, computation time, and energy cost. In this 

table, * at the right corner of the data indicates that solution is optimal, otherwise it 

is sub-optimal. T = t f - to means the final time for the glider to get the destination. 

Iter means iterations, Time means the time for the program to solve the problem, 

the unit is seconds. Guess 1 means the initial guess for both cases are the straight 

line. Guess 2 represents that the initial guess is the curve shown in Figure 48 as the 

dotted line. 

NTG obtained the solution with the defined B-spline variables of ql, q2, T, 

and T. Their degree of smoothness is (2,2,2,1), B-spline order is (4,4,4,1) in the 

number of interval is (50,50,50,1). If the interval number, order, and smoothness. 

If these values are not correctly chosen, NTG cannot generate a satisfactory solu

tion. On the other hand, there is only one adjustable DMOC parameter. That is 

the number of interval chosen as 50 which is the same as NTG for ql, q2, T. It is 

interesting to point out that the two trajectories from two initial guesses both in 

DMOC and NTG are symmetric to each other which are due to the current model. 

Even the optimal DMOC solutions from Guess 1 and Guess 2 are used as 

initial guesses for NTG, NTG solutions do not change, while the iteration numbers 

are reasonably reduced from 144 (43.47 seconds) to 55 (15.66 seconds) and from 62 

(17.42 seconds) to 49 (13.56 seconds) correspondingly. On the other hand, DMOC 

solutions also do not change when initial guesses are changed to the corresponding 

NTG solutions from Guess 1 and Guess 2. In this case, the iteration numbers also 

reduced from 94 (2.61 seconds) to 20 (0.728 seconds)and from 43 (1.65 seconds) to 

25 (0.992 seconds) in these two cases. 

Then reduce the step size of DMOC optimization by increasing the interval 

number, the energy costs are correspondingly increasing a little bit, they are listed 

in TABLE 8. And it seems that the cost is to converge to a definite number. DMOC 

trajectories seem to converge to a trajectory which is closer to the NTG trajectory. 

The violations of the NTG constraints are decreasing with the increased intervals. 
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TABLE 8 
DMOC SOLUTIONS WITH DIFFERENT INTERVALS WITH THE SAME 

INITIAL GUESS (GUESS 3) 

Interval EnergyCost time Iter (11 (0) (72(0) 

50 4672.81 4.56 169 -10.0097 -9.9997 

60 4674.78 7.44 158 -10.0081 -9.9998 

70 4675.96 14.45 183 -10.0070 -9.9998 

80 4676.73 23.15 174 -10.0061 -9.9999 

90 4677.26 35.63 175 -10.0055 -9.9999 

100 4677.64 36.35 135 -10.0049 -9.9999 

In TABLE 8, 41 (0),42(0) are the initial velocities obtained from the optimal trajecto

ries. They are initially enforced as (-10, -10). Guess 3 is the initial guess shown in 

Figure 49, not the ones in Figure 42 and Figure 48. 

For different intervals, 6 DMOC trajectories in Figure 49 are shown almost 

at the same location compared with NTG trajectory. However by checking the 

DMOC trajectories in more details , they are separated and becoming closer to 

the NTG trajectory (violations of NTG constraints are decreasing) when the inter

val number is increasing. On the other hand, shown in TABLE 9 and TABLE 10, 

NTG solutions with break point number as 100 are satisfied with their own con

straints with EuX value from -8.5980e - 6 to 6.9911e - 6 with the average value 

as -1.423ge - 7, and EuY values vary from -6.2227e - 6 to -1.2265e - 7 with the 

average value as -1.2265e - 7. For other break point numbers, NTG solutions are 

not successfully generated. EuX and EuY indicate the Euler-Lagrange equation 

values in x and y directions. 

While put the NTG solution (initial guess is a straight line) into the DMOC 

constraints, the Euler-Lagrange equation in x-direction value is from -0.7640 to 

0.5225, the average value is -0.0529. It is from -0.0510 to 0.6925, the average 

value is 0.0745 in y direction. On the other hand, when the DMOC solution is 
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TABLE 9 
DMOC SOLUTIONS IN NTG CONSTRAINTS VERSUS DMOC CONSTRAINTS 

(EUX) 

Interval EuX(NTG)/ DAfOe 
. 

mzn max avg 

50 -1.0304/ - 0.0751 3.4 7 48/0.0010 0.6393/ - 0.0017 

60 -3.7772/ - 0.0172 4.4823/0.0007 -0.0087/ - 0.0004 

70 -3.2493/ - 0.0181 4.1310/0.0006 -0.0320/ - 0.0003 

80 -2.8554/ - 0.0086 3.6110/0.0004 -0.0385/ - 0.0001 

90 -2.5499/ - 0.0091 3.1909/0.0004 -0.0509/ - 0.0001 

100 -2.3059/ - 0.0093 2.8616/0.0003 -0.0604/ - 0.0001 

TABLE lO 
DMOC SOLUTIONS IN NTG CONSTRAINTS VERSUS DMOC CONSTRAINTS 

(EUY) 

Interval EuY(NTG)/ DAfOe 

mzn max avg 

50 -2.6879/ - 0.0247 1.2539/0.0020 -0.3967/0.0001 

60 -5.5423/ - 0.0051 2.3577/0.0014 -0.6828/0.0003 

70 -4.7531/ - 0.0053 2.0230/0.0011 -0.5856/0.0002 

80 -4.1586/ - 0.0053 1.7760/0.0008 -0.5127/0.0002 

90 -3.7021/ - 0.0055 1.5738/0.0006 -0.4561/0.0001 

100 -3.3354/ - 0.0055 1.4204/0.0005 -0.4109/0.0001 
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are changing_ 
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FIGURE 50 - Trajectories from DMOC in details when intervals are changing. 
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FIGURE 51- Trajectories from DMOC versus NTG with no current. 

put into these two constraints, the EL equation in x direction value is from -0.0018 

to 0.0010, the average value is - 1.8753e - 4, the EL equation in y direction value is 

from -6.678ge - 4 to 0.0020, the average value is 6.1872e - 4. 

Further, in order to make a fair comparison, simply we specify the current 

as (0,0) in x and y direction. The trajectories from NTG and DMOC are shown in 

the following. The energy cost is 3304.243 for NTG, 3803.7 for DMOC. 

The solutions from NTG and DMOC are different, it is basically due to 

the difference of constraints definition. NTG constraints are enforced with vari-

abIes defined as B-spline variables and enforced along the collocation points while 

DMOC constraints are discretized and enforced on the discrete points. 

When optimal controls from DMOC and NTG are fixed, the equations of 

motion of the glider are derived. According to the optimal controls from DMOC 

and NTG, new trajectories can be generated by using Matlab original differential 

equation solver ODE45. Their ODE45 solutions both for DMOC and NTG can

not reach the destination, and ODE 45 solution when DMOC optimal controls are 

applied is more closer to the original solutions. The possible reason is that the 

ODE45 solver is discretized, more similar as the way DMOC works while NTG is 

using B-spline variables which are not closely related with the variable definitions 
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FIGURE 52 - Trajectories from DMOC and NTG versus Matlab ODE45 solutions. 

in Matlab. In Figure 52, the Matlab solutions are obtained by fixing the optimal 

controls from DMOC and NTG, then using 00E45 solver to obtain the solutions 

from the original differential equations. 

When the final velocity is constrained to (0, 0) in DMOC, nonlinear con

straints are infeasible, and the trajectory is not smooth, it is shown in the following. 

On the other hand, when the final velocity in NTG is fixed to (0,0), NTG 

cannot generate good solutions either. Therefore, both DMOC and NTG cannot 

generate suitable solutions when the final velocity is fixed to (0,0), the reason may 

be that in this example, the trajectory cannot be arbitrarily controlled especially at 

the end point since the trajectory is controlled by the gyroscopic forces. It can be 

proved by the following: 

x = V cos a + uy = V sin a + v 

Therefore 

(96) 

It is independent of a, while the control input r in the gyroscopic force 79 can only 

control ~~. Thus the final velocity cannot be arbitrarily controlled by this control 
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FIGURE 53- Trajectory from DMOC when the final velocity is fixed as O. 

input. 

D. A Glider in the B-spline Ocean Model 

Next the characteristics of NTG and DMOC are further investigated with 

the dynamical glider in a more complex environment. The real ocean current [8] 

is modeled by B-spline functions shown in Figure 54 and Figure 55. The figures 

show the ocean current velocities at a specific time (t=13) in ql and q2 directions 

respectively. This dynamical glider (78) is simulated moving in Monterey Bay, CA 

from (-122.1780, 36.8557) to (-122.2420, 36.6535) which represents the position in 

degrees (Longitude and Latitude), and it is controlled by the gyroscopic forces 

given in (79). The problem considered here is to find an optimal trajectory for the 

glider to travel from a start point to a final destination with minimum energy by 

taking advantage of the ocean current velocities. 

In the time-varying 20 B-spline ocean current model, with different initial 

guesses, the glider trajectories generated from DMOC and NTG are shown in Fig

ure 56 and Figure 57. 

Trajectories from DMOC and NTG are both optimal solutions when the 

initial guesses are straight lines (Guess 2 in the table and figures). When initial 
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FIGURE 54- The 3D ocean current B-spline model u(x,y,t) at t=13 hour [8]. 
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FIGURE 55- The 3D ocean current B-spline model v(x,y,t) at t=13 hour [8]. 
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FIGURE 57 - NTG solutions in the 3D ocean current B-spline model. 
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TABLE 11 
DMOC VS. NTG FOR A GLIDER IN A B-SPLINE OCEAN MODEL 

DMOC/NTG Interval T(hours) Iter Time(s) Energy Cost 

Guess 1 50/50 48/48 158/25 18.11/10.98 26.7372/22.1965* 

Guess 2 50/50 48/48 80/31 9.89/10.44 16.3604*/21.9345* 

Guess 3 50/50 48/48 35/16 4.71/6.14 28.8153/15.0895 

guesses are defined on the left and right of the straight line, DMOC and NTC only 

generate sub-optimal solutions. The results for comparisons are presented in TA

BLE 11. In TABLE 11, Guess I, Guess 2, Guess 3 are three initial guesses which 

represent the guess on the left, center, right of the straight line as shown in Fig

ure 56 and Figure 57. As it is in TABLE 7, the data with note' *' on the right are 

the optimal solutions, other data are the sub-optimal solutions. It is suitable to 

compare DMOC and NTC when they are both generating optimal solutions when 

the initial guess is a straight line. For a glider trajectory generation problem in the 

complex ocean current model, it is still shown that DMOC solution costs less energy 

and less computation time than NTG. It is clear for both DMOC and NTC to generate 

a local optimal solution, it is important to choose a suitable initial guess. 

E. Hovercraft Example 

Further, a hovercraft shown in Figure 58as an example [9] [83] is presented 

to investigate and compare DMOC with NTC, since we tried to make the problem 

with the constraints both as locations and velocities for the start and destination 

points. In this hovercraft example, the initial velocity and final velocity are both 

zero, it just need to fly from one location to another location with the objective 

to minimize the control input. The hovercraft has three degrees of freedom: its 

position (x, y) and its orientation e. It has two control forces !I and 12 as shown in 

Figure 58. They are applied at a distance r from the center of mass with fl acting 

in the direction of motion of the body and 12 acting orthogonally to the fl. The 
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FIGURE 58 - Hovercraft [9] 

Lagrangian of the system is shown as: 

(97) 

where q = (x, y, ()), m is the mass of the hovercraft and J is the moment of inertia, 

The forces acting in the three directions are shown as: 

(

fX = cos ()(t)!I(t) - sin ()(t)h(t)) 

f(t) = fy = sin ()(t)!I(t) + cos ()(t)h(t) 

ff) = -1' h(t) 

The resulted forced discrete Euler-Lagrange equations are 

where k = 1, .. " N - 1 and 

m a a 

M= a m a 

a a J 
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FIGURE 59 - Hovercraft trajectory from DMOC and NTG. 

The goal for controlling the hovercraft is to minimize the control input !I 

and 12, the cost function is defined as 

(100) 

From (98) and (99), the forced discrete Euler-Lagrange equations in the x, y and B 

directions are shown in the following: 

~m( - x (k _ 1) + 2x (k) _ x (k + 1)) + !!..(fx(k - 1) + f x(k) + f x(k) + f x(k + 1)) 
h 2 2 2 

~m( -y(k - 1) + 2y(k) _ y(k + 1)) + !!..(fy(k - 1) + fy(k) + f y(k) + fy(k + 1)) 
h 2 2 2 

~J( -B(k - 1) + 2B(k) - B(k + 1)) + !!..(f()(k - 1) + f()(k) + f()(k) + f()(k + 1) JlOl) 
h 2 2 2 

The boundary conditions are defined as the start point (0, 0, 0) and the final point 

as (100 , 0, pi ). In DMOC, these conditions need to be fitted into the equations listed 

as 90 and 91. Their initial velocity is (-2. - 2, 0), the final velocity is (2 , 2, 0) . 

Both for DMOC and NTG, when the initial guess 'is a straight line. Their 

trajectories are different shown in the following. From Figure 59, DMOC trajectory 

costs much less computation time than NTG trajectory and comparable energy. 

There control forces fl and 12 are shown in the following: 

Further when NTG trajectory is input as an initial guess to DMOC, the 
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FIGURE 60 - The control input for the trajectories shown in Figure 59. 

TABLE 12 
DMOC VS. NTG FOR A HOVERCRAFT TRAJECTORY 

DMOC/NTG I nterval T(seconds) Iter Time(s) Energy Cost 

Straight guess 50/50 100/100 480/346 40.16/398.35 0.2845/0.2003 

DMOC trajectory does not change. On the other hand, the NTG trajectory does 

not change when the initial guess is set as the DMOC solution. 

From the hovercraft example, the trajectories from DMOC and NTG are dif

ferent, They generate similar trajectory and cost similar energy. The difference 

should be due to the numerical accuray for modelling the problem differently in 

DMOC and NTG. Two obvious benefits of DMOC are less compuation time and 

easy to model the problem as they are also shown in the glider example. 

Further, more intervals are specified in DMOC to make sure that DMOC can 

generate a more accurate solution, however, with the increase of interval numbers, 

the computation time is speeding up as O(n) . The trajectories of the hovercraft 

from DMOC do not change much even the computation time is increased by 10 

times as the interval number increases by 2 times. 

F. Summary 

In this chapter, DMOC and NTG as two different state-of-the-art optimal 

trajectory generation methods are compared. In application, NTG is more difficult 

than DMOC to be applied since several variables have to be defined as B-spline 
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functions, in which parameters should be suitably chosen. On the other hand, 

there is only one DMOC parameter which can be adjusted to generate an optimal 

(sub-optimal) solution. These two methods are analyzed and compared with opti

mal trajectory generating problems of a dynamical glider both in a simplified and 

a complex ocean current model. For a simplified ocean current model, with the 

right selections of NTG parameters, the glider optimal trajectories from DMOC 

and NTG are similar as shown in Figure 45 through Figure 48. DMOC can gen

erate an optimal solution which costs comparable energy and less computation 

time than NTG sub-optimal solution. Furthermore, as shown in TABLE II, in a 

complex B-spline ocean current model, when DMOC and NTG both generate sim

ilar optimal solutions, DMOC still costs comparable energy and less computation 

time. In addition, a hovercraft example further shows that DMOC can save much 

computation time to generate similar optimal solutions to the NTG, the difference 

between DMOC trajectory and NTG trajectory is related to the numerical reasons. 

In summary, this chapter shows that DMOC can generate optimal solutions with 

comparable energy consumption and less computation time than NTG. 
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CHAPTER VI 

THE UOFL MARIT TESTBED 

A. The MARIT Testbed 

A MARIT (Multiple Air Robotics Indoor Testbed) testbed is established at 

the University of Louisville for investigating control algorithms, it is upgraded 

from the previous mobile robot testbed [84]. The system consists of a Vicon 8i mo

tion capture system and draganflyer helicopters on which markers are attached, 

therefore they can be tracked by 6 Vic on Mcam 2 cameras. The similar testbeds 

exist in Vanderbelt [85], MIT [86], and University of Essex [87], United Kingdom. 

This testbed further can be used to study autonomous systems in which several 

agents cooperate with each other to perform some assigned tasks. UAVs are at

tracting quite a lot of attention shown in [88] [89] [90] since UAVs provide con

venient and cost-effective tools for various applications [91] including terrain and 

utilities monitoring or environmental surveillance, search and rescue, aerial map

ping, traffic surveillance. Benefits of indoor testbed include that it can perform 

testing purposes regardless of outside weather conditions and easy to monitor and 

control. 

B. Vicon Vision System 

Vicon motion capture systems have been used in life science, sports, medi

cal, movie and game industry, music, robot to accurately track and analyze move

ments. The testbed established at U of L is utilizing a Vicon system to track he

licopters, then to study control methods for helicopters. The system consists of 6 
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FIGURE 61-A Mcam 2 camera in the Vicon Motion Capture System. 

Mcam 2 cameras shown in Figure 61, one datastation presented in Figure 62, two 

third party megapixel Camera Interface Unit shown in Figure 63, several video 

channel distribution cables, one workstation shown in Figure 64 which is a dedi

cated desktop with Vicon iQ 2.0 in Windows XP. The datastation is connected to the 

cameras through camera interface units with every three cameras using an Unit. 

Also, the datastation is connected with the workstation with a crossover cable. 

c. Real-Time Application 

In order to make the Vicon system obtain real-time 6 degrees of freedom in-
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FIGURE 62 - The datastation in the Vicon Motion Capture System. 

FIGURE 63 - A camera interface unit in the Vicon Motion Capture System. 
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FIGURE 64- The workstation in the Vicon Motion Capture System. 

formation, first the system should be calibrated, the calibration steps can be found 

in the Vicon Manual [92]. After calibration, a program is written in C++ with the 

application of Vicon Real Time SDK. The following steps are done to achieve the 

task. 

• I, set up 6 vicon cameras and calibrate these cameras so that the dragan

flyer can be checked with 5 markers on it 

• 2, in Vicon IQ, create a rigid body with 5 markers, the rigid body is named 

as draganflyer. 

• 3, connect the workstation with the datastation by specifying the proper 

IP addresses. 

• 4, download Vicon Real Time SDK. 

• 5, in Visual C++, create a project, include VrtSDKI0ex.h header files in 

your folder. link with VrtSDKI0ex.lib. In Visual c++, Project- >Add 

Existing Item- > choose VrtSDKlOex.lib in thefolder}. 

• 6, begin to write a program, our program is shown in the attachment 

After real-time coordinates of the draganflyer are obtained, the future step 

is to send the comands to the draganflyer in real-time through the computer. Since 
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FIGURE 65- The Vic on Motion Capture System. 

the cameras are already calibrated, the 6 cameras are shown in the 3D live space 

as Figure 66. For the tracked draganflyer, five markers are attached on the body. 

These five markers shown in Figure 67 are defined as a rigid body, thus its center 

coordinates and its orientation angles can be obtained by the program with the 

application of Vicon Real-Time SDK. 

In the C++ program, the real-time coordinates and orientation angles can be 

obtained as shown in Figure 68. 

D. Summary 

The UAV 3D testbed is established with Vicon 8i motion capture system. 

6 cameras connected with the datastation are able to track real-time coordinates 

of any suitable vehicle or helicopter, even biological activities. The Vicon system 

should first be calibrated, then a c++ program should be written by the user to pro

cess the raw data from the Vicon system after the program is connected with Vic on 

Real-Time Engine. After setting up the Vicon System, the draganflyer helicopter 

is modelled as a rigid body, its 6 DOF information can be obtained in real-time 
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FIGURE 66 - The Vicon iQ 2.0 in 3D live work space. 

FIGURE 67 - The markers are tracked in the Vicon Motion Capture System. 
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FIGURE 68 - Real-time coordinates output in the Vicon Motion Capture System. 

with our own C++ program based on Vicon Real-Time SDK This motion capture 

system establishes a good foundation for verifying optimal trajectory generation 

methods such as DMOC and NTG by experiments. 

104 



CHAPTER VII 

CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this dissertation, DMOC and NTG as two state-of-the-art optimal trajec

tory generation methodologies were investigated with application to an underwa

ter glider and a JPL aerobot. These two optimal trajectory generation methods 

were analyzed and compared with application to a glider in both simple ocean 

current and B-spline current. For the detailed conclusion in the every chapter, they 

are listed as follows: 

In Chapter I, the motivation for this research was presented which indicated 

that robotic explorers for ocean and outer space will be necessary tools to discovery 

and advancements in science and technology. In order to make robotic rovers ex

plore the unknown places efficiently and robustly, optimal control methodologies 

need to be utilized. Then two state-of-the-art trajectory generation methodologies 

were introduced, NTG and DMOC. Finally, outline of this dissertation was pre

sented in this chapter. 

Chapter II presented optimal trajectories from NTG for an underwater glider 

to strengthening the previous hypodissertation that LCS (Lagrangian Coherent 

Strutures) in the ocean reveal efficient or near-optimal routes for glider transport. 

In this chapter, with modelling the glider kinematically and dynamically, trajecto

ries found with the 3D B-spline ocean flows model corresponds well with LCS, for 

which numerical solutions of several scenarios and animations of glider trajecto

ries with Tecplot were presented. 

Chapter III proposed to utilize Nonlinear Trajectory Generation method-
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ology to generate 3D opportunistic trajectories for an aerobot by utilizing wind 

information. The aerobot is dynamically controlled by three propellers which are 

respectively parallel to the local three Cartesian axes. Constraints for the aerobot 

control are derived from Euler-Lagrange equations in the condition that the aer

obot must be satisfied with the Lagrange-O' Alembert principle. The new proposed 

aerobot model takes the aerodynamics into account. The results show that NTG 

can take the advantage of wind profiles to save significant energy for the defined 

goal. Further, a state space model of the Aerobot which decoupled its longitudinal 

and lateral dynamics is also investigated to generate the optimal trajectories. The 

minimizing energy trajectory with this complex model did cost more time than the 

simple model but the optimal trajectory is still energy efficient with NTG. 

Chapter IV presented a detailed procedure to apply OMOC methodology 

to solve optimal control problems. It explains the principle of OMOC, and how to 

formulate the problem in OMOC. Then the steps are shown about how to install 

and configure nonlinear programming solver IPOPT, and how to use the modeling 

language AMPL. In particular, a user-defined function is involved with AMPL to 

solve more complicated problem. 

In Chapter V theoretical foundations and results for comparisons were pre

sented with application to a dynamic glider. In a simple ocean current example 

and a B-spline ocrean current model, OMOC optimal solutions are shown to easier 

to generate, cost less computation time and comparable energy than NTG optimal 

solutions. 

Chapter VI presented the MARIT testbed with Vicon 8i motion capture sys

tem. The real-time 6 OOF information of a defined rigid body can be tracked. The 

testbed is being established for future research. 

B. Future Work 

Since the MARIT testbed is being established and it is able to get real-time 
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coordinates of an object which can be a mobile robot or a draganflyer helicopter, 

future research is focused on implementing and validating NTG and DMOC in the 

control of draganflyers. NTG and DMOC can be embedded in the program which 

gets the position information from Vicon system, then the program can generate 

trajectory which consists of a few of waypoints with NTG or DMOC. Based on 

the reference trajectory given by NTG or DMOC, the program can send the com

mands wirelessly to the draganflyers to make them fly from one start pOint to one 

destination point by specified routes minimizing energy, and or minimizing time. 
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APPENDIX I 

NOMENCLATURE 

The following convention is used throughout this dissertation. 

NTG 

DMOC 

SQP 

LCS 

NASA 

]PL 

AMPL 

IPOPT 

UAV 

PCTx 

u(x,y) 

v(x,y) 

Bi,k 

Bj,k 

u(x, y, t) 

v(x,y,t) 

Fgyr 

q(t) 

L(q(t), q(t)) 

Q 

h 

L d(qk,qk+l) 

Jd(qd, fd) 

Nonlinear Trajectory Generation 

Discrete Mechanics and Optimal Control 

Sequential Quadratic Progromming 

Lagrangian Coherent Structure 

National Aeronautics and Space Administration 

Jet Propulsion Laboratory 

A Mathematical Programming Language 

Interior Pointer OPTimizer 

Unmanned Air Vehicle 

PC to Transmitter Interface 

20 ocean current velocity in x direction 

20 ocean current velocity in y direction 

B-spline basis function for the x direction 

B-spline basis function for the y direction 

3D ocean current velocity in x direction 

3D ocean current velocity in y direction 

Gyroscopic Force 

System State 

Lagrangian of the system 

Configuration Space 

Step Size of Discretization 

Discrete Lagrangian 

Discrete Cost Function 
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APPENDIX II 

NTG program for a glider in a B-spline ocean model 

liThe following NTG Program is to generate tt'aject(nies for a glider in a B-spline Ocean Model. 

I/The programs have four parts They are optl ,main.c which is the main program, optl.sub_h is the B-spline 

I/ocean current model pro~Ham, optl inp which is the input file tor the NTG, optl.make which is makefile 

/ /for the program. 

Ilopt1. main.c 

#include <stdlib.h> 

#inc-lude <math.h::.j ... math functiuns */ 

#include <ntg.h>/ ... main NTG declaratiuns *1 

#include <tlme.h:>- I*get the time ... ! 

#include <ParselnputFile.c> 

int. main(int argc, char *argv[]} 

oprPARAM optparam; 

int i,j,5um, kl; 

char "" fname ; 

FILE *fp; 

FILE * tp2; 

FILE *fcurrent; 

FILE *fcurrent2 ; 

double h,Traj, ,.Tlme; 

int nTraj, Traj_offset, coef_offsE:t, nPts=500; 

float cuu"ent.dat.au[1] {a}; 

float. currentdatavl4] {oj; 

double Tf = 0; 

FILE * fxinit, * fyinit j 

const int sizeofinit = 93 ; 

float xinit [onZE'ofinitJ ; 

float yinit [sizeofinit] ; 

float xsta:rt, xstop, xdif, ystart, ystop, ydlf; 

double ",,,,knots; /'" knot pOl.nts, list of times fol. each out.put */ 

int nbps; 

double ",bps i 

oc)uble ",,,,lic,*,,,lfc, ",,,,ltc; 

1* initial guess size sum Over each output ninterv", (order-mult) +nlult */ 

int ncoef; 

int *NCOEF; 

double *coefficients; 

int .dstate; 

double ",clambda; 

double ",R; 

int inform; 

double Objective; 

if (argcl=2) { 

printf ("\n\tUsage: %s inputfile inp\n\n" ,argv[OJ); 

exit (-l) ; 
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IIRead Input file 

parse_lnput_file (argv [1] ,&Optpcu'am); 

II Allocate space and initial ize the knot points 

knots= (double I I) maUoe (optparam. noutIsizeof (double ... ) ) ; 

for (l=O,i<optparam.nout.;i-H) { 

knots (i 1 = (double ,,) malloe ( (optparam. ninterv [il .1) * si zeof (double) ) ; 

linspace{knots[iJ, 0, optparam.HL, optparam.ninterv[iJ+l); 

neoef 0; 

NCOEF (int,,) malloc{optparam.nout*sizeof (int)); 

for (i",O; i<::optparam. nout; i++) { 

neoef neoef + (oprparam.ninterv(il*(optparam.order[iJ-optparam.mult[il) 

+optparam.rnl.llt [l]); 

NCOEF [i 1 = [)ptp~nHn. nlnterv [i; * (optpararn Drder [i] -optparam. mult [iJ ) 

+optparam.mult[il; 

II Initial guess for coefficients (all Os) *1 

coeff icients= (double*) malloc (ncoef+s izeof (double) ) ; 

xstart 1483790 964036; 

ystart = 2430868,637727; 

xstop 9.1338e5; 

ystop g.8015e5; 

xdif xstop xst.:'iyt; 

ydif ystop yst art; 

kl " 0; 

while(kl <:: sizeofinitl 

xinit [k1l 

yinit [kl] 

kl = kl 1- 1; 

xstart + (xdif/(sizeofinit l))*k1; 

ystart + (ydif/(sizeotinit l))*kl; 

fur (kl=O ;kl<sizeofinit iklH) 

r:oefficients lklJ = xinit [k1l ; 

coefficients [kl+sizeofinit] yinit [klJ ; 

coefficients [ncoef -1] '" 1 72800; IITMR: fm time variable 

III inspace (coeffic ients, 0,0, n("oef) ; 

IIDone wlth the download of coefflcients 

1* Allocate space for breakpoints and initialize *1 

bps~ (double.,.) maUoe (optparam. nbps-.,si zeof (double) l i 

linspace (bps, 0, opt par am . HL, oplparam. nbp~) ; 

1* NTG Memory Variables *1 

istate= (inu) malloc ((ncoef+ 

optparam. nlic-+-optparam. nl fc+ 

optparam. nl tcwoptpar am. nbps+ 

optparam. nnlic+ 

optparam. nnl te*optparam. nbp$+ 

optparam.nnlfc) *sizeof (iIlt)): 

clambda= (double I) malloc ((neoef+ 

optparam, nlic+optparam. nlfe .. 

optparam, nl tc*optparam. nbps+ 

optparam. nnlic+optparam. nnl tc*oplparam .nbps-+ 

optparam .nnlfcl .. sizeof (double) ) ; 

R= (double *) maUoe ((ncoef+l) * (nt'oef1-1) *sizeof (double)); 

I ... Set NPSOL options if any *1 

for (i=O; i.-;optparam. nnpsol_options i iH) 
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npsoloption(optparam.npsol_uptions [i]); 

/ /1 ine 159 to line 173 is copied from "ntgmultilo e", try to find the optimal solution 

/ /Call to ntg 

/ /npsoloption ("verify level = J ") i 

npsolopt10n("Majm iter-atlon Ilmit 3000") i 

npsoloption("Minor iteratlon 1lmit 1500"); 

npsoloption (IILine search t.olerance = 0.001 II) ; 

npsoloption ("Feasibil i ty tolerance 2. e-5") i 

npsoloption ("cold start ") ; 

ntg (opt par-am. nout, bps, optparam. nbps, 

optparam. ninterv, knots, ptpaI'<I.!\\. order, opt par am . mult, 

optparam, maXoerl v, r:oefflcients, optparam. nlie, 

optpar am. 1 if' _A, optparam. nl tc, optparam. lte _A, 

optparam. nlfe, optparam. 1 fe_A, opt pal am. nnl ir, nllef, / / Function pointer 

optparam.nnltc,nHcf, 1/ Function pointer 

optparam.nnlfc, nIfef, 1/ Function pointer 

optparam. nini tialconstlav, optparo.m. ini tialeonstrav, 

optparam. ntra ieetoryconstrav, opt par am. traj ectoryconstrav, 

optparam. nflnal constrav, optparam. finalconstrav, 

optparam.lowerb, 

optparam. upperb, 

optparam.nirf I :iet I 1/ Function pointer 

opt-param. ntcf, tcf, 

optparam. nfef, fef, 

I I Function pointer 

I I Function pointer 

optparam. n ini t ial costav, optparam. in1 t ialcostav, 

optparam. ntrai eetorycostav, optpaI am. traj ect(lIycostav, 

optparam. nfinalcostav, optparam. final cost av, 

istate, elambda, R, &infonn, &objeetive) ; 

I I Get trajectoI'ies from B-Splim~ Coeffidents 

nTra 1 =0 i 

for (l=O; i<:optpalanl. r10ut; 1+ +) 

nTraj += optparam.maxderiv[i1; 

Traj = (riouble**) ma11oc(nPts*sizeof(double)); 

for (i=O; i<:tlPts; i ...... ) 

Traj [il '" (double .. ) malloc (nTraj *size(lf (double) ) ; 

Tral_offset = O;coef_offset =' 0; 

TIme = (double .. ) malloe (nPts*sizeof (double)); 

linspace (Time, 0, optparam. HL, nPts) i 

for (i",O; i<optparam. nout; i++) { 

for(j=O;j.;:nPts;j++) { 

Splinelnterp &TraJ [11 [Tra] offsetJ I I I Return Variable 

Time [jJ, 

knots[i] , 

I I Point at which to evaluate 

II Knot sequence 

optparam.nint erv[lJ, I I Number of intervals 

&coefficients[coef_offset], NCOEF(i) , II Coefficients 

optparam.ordE·r [iJ, optparam.mult [i), 

optparam.maxcleriv [iJ) ; 

Tra] offset 

eoe f _off se t 

optparam.maxderiv[i] ; 

NCQEF [i) ; 

Tt = eoefficlents [ncoef~l); 

printf ("\n Tf = %f sees _ %f minutes 

/ I Open File to pr'iIlt data 

fp=fopen("Tr('ldModTest txtl," W "); 

%f hours\n", Tf, Tf/60, Tf/3600) i 

fprintf(fp,!I %% time(min) x(cm) xd(cm/sec) y(cm) yd(cm/sec)\n")i 

for(j=O;)<IlPts;j++) { 
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fplintf (fp, "\n") i 

fC'urrent fopen ("CurOldTest, dat", "w,,) i IITMR 

float trll; 

tm=Time [j J *Tf! 3600; 

if(tm>24) tm=24;llwe only have the data from 1 to 25 hours 

for (l =0; l <:nPts; -] ++) 

GetSpllnelnfo(Tnll [jl [OJ, Traj [jl [2] ,tm, ':urrentdatau, currentdatav); 

GetSplinelnf() (Traj [jJ [OJ, Traj [jJ [2J ,tm, currentdatau, currentdatav) i 

fprintf(fcurrent,"%lf %If \-If %If %If %If %1£ %If \n ",currF.'ntdatau[O] , 

cl.lnent-dat-al)[lJ, ('l,lrTF.'ntdatau[2J ,C'l,lrrentd;;ltau[3J, currentdatav[Ol, currentdatav[1J, 

currentdat_av[2] ,rUTTentdatav[J]); 

liTo see the values (x,y) upto 3600*14 min 3600 sec 

li:1space(Tlme,O, (double) (50400./Tf) ,nPts); 

Traj_otfset. = 0 ;coef_offset .. 0; 

for' (i=O; i<optparam. nout ; i ++) { 

for(j=O;l<:nPts;j++) ( 

Splinelnterp( &Traj [jJ [Tral_offset], 

Tlme[j] ,II Pcnnt at WhICh to evaluate 

knots Ii] , I I Knot- sequence 

optparam.ninterv lil, I I Number of intervals 

&coefficients [coef_offset], NCOEF [i], I I Coefficients 

optpar.;l.m,ClIoer [lJ, 

optparam.mult [i], 

optparam.maxderlv[ll) ; 

Tral offset optparam.maxderiv[i] ; 

NCOEFIi] ; 

printf ("\n At t~25 (fromla) hours x, y = %f %f a a\n\n", 

Tt'ai [nPts-IJ [OJ -1000, T1'o.j [nPts-l] [2]-1000); 

printf("\n At t=25(fromlO) hours x, y = %i %f 172800\n\nlt, 

Traj [nPts-lJ (0], Traj [nPts IJ [2J), 

II Open File to print data 

fp2 = fopen ("Qptlupto25 ,dat", "w"); 

if (fp2 ==NULL) ( 

fprintf(stderr,"Can't open file optlupto60nnn.dat for writing\n"); 

exit (-1) ; l 

I I P:nnt to File 

fOT(j",O;j<:nPts;j++) { 

fprintf(fp2,!!%lf 'I,Time[jl*Tf/riO); 

fprintf(fp2,"%lf %If %If %If'',Tra][jJ[O], 

Traj [j] [1] ITt, Tr.;l.j [J] [2], Traj Ij] [3] ITf) ;/Ix,xd,y,yd 

fprintf (fp2, "\n") i 

fcurrent2 = fopen("turrentlnfoupt060min dat", "w"); 

if (fcurrent2 == NULL) { 

fpr'intf Istderr, "Can't open flle optlupto60min.dat for writing\n"}; 

eX:l t (-1) ; 

for(j=O;J<nPts;j-H-} { 

GetSplineInfo(Tra-] [j] [0], Traj [jJ [2J ,Time!jl*Tf/3600, currentdatau, 

cur:rentdatav) ; 

GetSplinelnfo (T1'aj [j] [0], Tt'o.j [J] [2], Time [j] *Tf/3600, currentdatau, 

ClJrrentdatav) ; 

fprintf(fcllrrent2,"%lf %If %If %If %If %If \n ",cUl't'entdatau[ol, 
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CUTTentdatau [1], currentdatau [2J ,currentdatau [3], cu:n:entdatav [OJ, 

currentdatav[l] ,<:,:urrentdatav[2] ,currentdatavl3]); 

fclose(fp) i 

felose (fp2) ; 

fclose (fcurrent) ; 

fclose (fcurrent2) j 

free (Time); 

free (NCOEF) ; 

for (i =0; i<optparam. nbps i i+ +) 

free (Tr'8J [iJ); 

free (Tro.j) ; 

free (istate), 

free (clarnbda); 

tn:e(R) ; 

free (bps) i 

tor (1-=0; i<optparam.nout ;i++) 

free (knuts [i] ) i 

free (coefficients); 

retun) 0; 

Iloptl.sub.h 

#include <stdlib h> 

#include <stdio.h;. 

#include <math. h> 

#ifndef optl_autorode header 

#deflne _optl_autocode_header 

#define 21 zp[O] [0] 

#deflne zld zplOl [1) 

#deflne z2 zp [IJ [OJ 

#define z2d zp[1] [1J 

#define z3 zp [2] (0] 

#define PI 

#det ine NEPS 

int check = 1 i 

3 14159 

100 

int GetBcoef(float B[], float knots[], int k, int lengthknots, float data) 

IIThis function calr:ulat.es the Basis functions of the B-spline 

Ilfunction at given data point and get the relative location of input data 

I I data is one dimension, x or y or t 

I /INPUTS, 

II knots: knot points (found by MAT LAB program sigfitspline2.mJ 

II k order of the B-spline bas]s function 

IIOUTPUT. 

II index: location of the data respect to knot sequence 

II B [J Basis function values at a given data for for degree k 

IIMETHOD, 

IIMultidimensional tensor" B-spline products can be calculated explicitly by using: 

II z=f(x,y,t)=sum(i=1,n1) {sum(j",l,n2) {sum(k=1,n3) {{B_(i,k1) (x)*B_(j,k2) (y)B_(k,k3) (t)*Aijk}}} 

I I In general 

I I The definition of B-Spline basis function is 

II B_(l,k) (1,1) ~ {(u -knots_u(i))/(knots_u(i+k-l) knots_u(i)))*B_(i,k 1) (u) + 

II {(knots_u (i+k) u) I (knots_u (i+k) 

II B_(i,l) (u) = 1 if knots_u(i) 

I I 0 othe;rWl se 

II Not.e: In B_(i,k) (u), if denominator of any term is equal to zero, that term is SET to zero! 

II For example if knots u(i+k) knots u(i ... l) OR knots u(i+k 1) 
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II 

/1 Please check the matlab file omasplinefit:3d.m 

1/ B-spline coefficient matrix A and knot." were found by using the MATLAB progranl omasplinefit3d.m 

! I For detai Is pleo.se see, "A Practical Guide to Splines II, revised edit ion, Carl de Boor J 2001, page 111 

int d1, j, r; Iidummy variables 

lnt index = 0, Ifin our case x=elavation, y=azlmuth 

float tempsaved, 

fluat tempterm ; 

/ /Add 1 to start the index from 1 as in Carl De Boor's notation 

float deltaR [4+1J ; 

float del taL [4+1] i 

//Right Slde need constant,can nut wait for k transfer'ed £:lom the outside 

I/Left side 

for (.1=0; l<=k; j++) {S[j] == 0; deltaR[jJ = 0; deltaL[j] Of} 

for (d1=1; dl<lengthknots; 01++) { 

it ((data >= knot.s [dl1) && (data <knots [d1+1J ) 

index," d1; Iishow this commond has been executed 

B[l] .- 1, IISkip B[O] to agree with carl De Boor's notation 

tor (j=l; J<k; j++) 

knots [index+j] data; del taR [j] 

deltaL[]J data knots[index+l-j]; 

t.empsaved 0; 

for (r=l; r<=j i rHo) 

tempterm " B Ir]1 (deltaR lr] + deltaL [j +1 rJ); 

8[rJ = tempsaved + deltaR[rjeO-tempteIlTl; 

tempsaved = del taL [i + 1- r] "tempt-erm; 

B[j+ll = tempsaved; 

re t urn index; 

void EvaluateSpline(float result!], float A[J [22] [27J, float BX[], 

float By!] ,float Bt[]. lnt xindex, int yindex,int tindex, int k:x;, int ky,int kL) 

IIThls function evaluates the tensor product spline fUnl"'tlon value at given data point 

I I INPUTS: 

IIA[] [] I); Coefficients of the B-spline fit, found by the MATLAB program, omasplinefit3d.m 

II Bx [J 

II By [I 

II Bt [I 

II xindex: 

II yindex: 

II tindex; 

II kx 

II ky 

II kt 

I lOUT PUT : 

Basis function values at a <jiven data for x for degree kx 

Basis function values at a given data for y fOL degree ky 

Basis function values at a 9lven data for t for degree kt 

locatlon of the X- da ta respect to knot sequence 

location of the y-ciata respect to knot sequence 

locat.ion of the t-data respect to knot sequence 

order of the B- spline basis fL1rlction fOr x 

order uf the B-spline basis function for y 

order of the B-spline basis function for t 

I I result IJ: Evaluatlon of the tensor product spline function is given in result [0] 

IIMETHOD: 

II MultldlmenSlonal tensor B-spline p~Oducts can be calculated explicitly by using: 

I I f (x, y, t) =sum(i"l, nl) {sum (j =Ln.2) {sum (k=l, n3) {B_ (1, kl) (x) *B_ (j, k2) (y) *B_ (k, k3) (t) eO-Aijk}} } 

II nLn2,n3: # of coefficients of x,y,t directlOrl respectively 

I I kl, k2, kJ: degree of splines of x, y, t direct ion respe<"::t ively 

II 

I I specifically, 

II For knots sequences; knots_x(rl) <= x .-; knots_x(rl+ll 

II knots_y(r2) <= Y < knots_y(r2+1) 
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/ / 

/ / fix, y, t) sum(1=rl-kl+1,Ll) {sum(j=r2-k2-+1,r2J {sum(k=r3 k3+1,r3l 

/ / 

/ / For details please see I "A PraN l('al Gu ide to Splines", revised edi t ion, Carl de BOOL I 

2001, page 117 

/ I values at the begining at knots sequences, and also for the B [J I and 

/1 dE[] matrices first elerrmts are not used 

/ / which corresponds to indices = 0 

II Please check the mat lab file bformchec:k3.m and omasplinefitJd.m pIogIams 

1/ B-spline coefficient matrix A and knots were found by using the MATLAB program 

omaspl inefi Ud. m 

int dl. d2,d3; //dummy variab1es 

result[n] = 0; //Signature value 

fClY (d3=tindex kt·"};dJ<=tindex;d3++) 

for (dl=xindex-kx-tl; dl<=xindex; dl++) 

for (d2=yindex-ky+l; d2<;-yindex; d2-t+) 

result [0] = result [OJ -+ Ex [dl-xindex+kxl 

*By[d2 yindex+kyl*Bt[dJ tindex-.-kt}'kA[d1-1] [d2 1] [d3-1]; 

void EvaluateSplineDeIivar.ives(f]oat result[], float A[] [22J [27J, 

fluat Bx[], tloat BY[],fJoat Btl], float dEx[J, float dBy[] ,float 

dEl[]. int xlfldex, int ywdex,int tindex, int kx, int ky,int kt, 

float knotsx [], float knotsy [], float knotst []) 

IITMR: This tunctlon evalu;;I.tes the fIrst derivatives of tensor product 

II spline functions at given data point 

II INPUTS: 

II A[] [] [] Coefficients of the B-spline fit, found by the MATLAB 

prugram, omasplinefit.3d.m 

Bx[] Basis function values at a given data fo, x fOr degree 

By[J Basis function values at a given data for y for degree 

kx 

ky 

Bt [J Basis function values at a g~ven data for y for degree ky 

/ / 

/ / 

/ / 

/ / 

/ / 

/ / 

dBx [J Basis fUr1ctlOn values at a given data for x for degree kX-1 

dBylJ Basis function values at a given data for y for degree ky-l 

dBt [] Basis function values at a given data for t 

II xindex: locat~on of the x-data respect to knot sequence 

II yindex: lO(,03.t+on of the y-data respect to knot sequence 

for 

II tindex: location of the t-data respect to knot sequen('e 

! / kx order of the B-spline baS1S function for x 

/ / ky 

/ / kt 

order of the B-spline basis fUIl<:tion for y 

oIder of the B-spline basis function for t 

degr'ee kt-1 

/1 knotsx; knot points fOr' x-dlrectioTl (found by MATLAB program omasplinefit3d.m) 

Ilknotsy: knot points for y-direction (found by MATLAB program omaspl inefi t3d. m) 

II knotst knot points for t-din':ctioTl (found by MATLAB program omasplinefit3d m) 

IIOUTPUT; 

II resultl]; Evaluation of the first derivatives of tensor product spline 

function are given in result[lJ & [2J&[3] 

IIMETHOD; 

II Multidimensional tensor 8-spline 1st derivatives can be calculated 

Ilexpllcitly hy using; 

II f (x, y, t) =$um (i=l, nl) {sum (j =1, n2) {sum(k=l,n3) {B_ (i, kl) (x) 'kB_ (j, k2) (y) *B_ (k, k3) *Aijk} }} 
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II nl,n2,n3: #- of coefficients in x,y,t direction 

II kl,k2,k3: degree of splines lTl x,y,t dIrection 

I I 

IlspfOClfically, 

IIFoI knots sequences: knots_x(II) <'" x < knots_x(rl+ll 

I I 

I I 

I I 

y <:: knots_y(r2+1l 

knots __ t(Ll) <= t < knDts_t(r3+ll 

II f(x,y,t) " surn(I"'rl-kl+1.rll {sum(j=r2 k2.1,r2){sum(k~r3 k3+l,r3l ... {B_(i,kll (xl 

II.B_Ij,k,) ly).B_Ik,k3) It).Aijk))) 

I I 

II Dx(f(x,y,t)) = sum(i=rl kl+2,rl){sum(1=r2 k2+l,r2} 

II{sum(k=r3-k3+1,r3)*{(k1-1)*(A(i,l,kl flA(i l,],kl) 

.8_li,k1 11 Ixl.8_lj,k2) ly).B_Ik,kJl It) ))) 

I I 

II (knotsx(i+kl 1) knotsx (i) ) 

IIDy(f(x,y,tl) '" sum(i=r1 kl+l,rlJ{surn(j=r2 k2+2,r2) 

II{sum(k=r3-k3+1,rJl ... {(k21) ... (A(l,4,kl A(l,j-l,k)) 

II ... B_ (i,kll (x) ... B_(j,k2 1) (y)*B_{k,kJ) {t} }}} 

I I 

II(knotsy{j+k2-1) knotsY(i)) 

I I 

IIDt(f(x,y,tl) = sum(i=rl kl+1,:rl) {surn(j=r2 k2+1,r2) 

II{sum(k=r3-kJ+2,rJ) ... {(kJ 11 ... (A(i,j,kl A(l,J,k 1)) 

II*B __ (i,kll (x) ... B_(j,k2) (y)*B_(k,k3-1) (t) }}} 

I I 

I I (knotsy O<+kJ 1) knotsy (k) 1 

I I 

I I please check the matlab file hformr'herk3.m ana sigfitspline2.m programs 

II B-spline coefficient matrix A ond knots were found by using 

lithe MATLAB program si9titsp}~ne2.rn or for the probability 

II pdfitspline3.m 

int dl, d2, d3 ; Iidummy variables 

result [lJ 0; IIDerivative value in x-direction 

resul t [2J 0; IIOerivative value in y-di.r:ection 

result [31 IIDerivative value in t-direction added on Feb 7 2007 

for (dl=oxind€x·kx+2, dl<=xino.ex; 0.1++) 

for (d2=yindex-ky+l; d2<=YIndex; d2-t-t) 

for (d3=tindex kt+1 ;d3<.tindex; dJ++l 

re~ult [lJ '" result III (kx-1) I (knutsx [dl +kx-IJ knotsx [dl] ) 

... (A[dl-l] [d2-1J [d3-1J A[dl-2] [d2-1] [d3 11l ... dBx[dl-xinciex+kx 1J* 

By[d2 YIndex-tkyJ ... Bt [d3 tindex+ktJ; 

for (dl=x1ndex-kx+1, dl<=xindex; 0.1++) 

fot' (d2=yindex-ky+2; d2c:oyindex; d2-t+) 

for (d3= tindex-kt -+ 1; d3<",t Index; d3-t-t) 

result [2J '" result [2J + (ky-ll I (knotsy[d2+ky IJ -knotsy[d2]) 

* (A[dl-l] [d2-1J [d3-1J -A[dl~11 [d2-21 [d3-1] 1 

wBx {dl rxindex+kxJ ",dEy [d2-yindex+ky-l J ",Bt [d3 tindex+ktJ; 

123 



for (dl=xindex-kx+l; dlc=xirldex; dl++) 

for (d2=Ylndex-ky+2 i d2c=yindex; d2-t--t-) 

for[d3=tindex kt+2;dJc=tlTldex; d3-t--t-J 

result[3J = result[3J+(kt-l)/(knotst[d3+kt 1J 

-knotst[d3JJ.(A[d1-1J [d2-1J [d3-IJ-A[dl 1] [d2·11 [d3-2]) 

,.Bx [dl xindex+kxJ" By [d2 -yindex-t-kyJ .dBt [d3 - tindex+kt -1 ] ; 

void GetSplinelnfo (float xdat.af, float ydataf, float tdataf, 

float currentinfou [4J, float C'urrentinfov [4J) 

I/TMR; This function gives the (;urrent value, ar.d its first 

/ /derlvatlves respect to xdataf and ydataf 

I /INPUTS: 

I I xdataf: xdata data value 

/ I ydataf ydata data value 

I I tdataf tdata data value 

IluUTPUT: 

current value 

derivative of the cur:rent r'espect to xdataf angle given in 

//currentlnfo [01 

/ lr:l.lrrentlnfo [1] 

I Irurrentinfo [2J 

I /cuII'entinfo ['3J 

derivative of the current respect to ydata angle glven in 

deri vat lye of the current respect to tdato. angle given in 

IIThis part h.:'ls to changed for each different spline fit 

FILE *fi]eAu, "fi]eknotsux, .fileknotsuy, .flleknotsut; 

FILE ,.fileAv, ,.fileknotsvx, ,.fileknotsvy, ,.fileknotsvt; 

int kl, k2, kJ, i i 

/ /Add 1 to start the incjex from 1 as in Carl De Boor's notation 

float dummy = le20; 

(;OIlSt int lengthknotsx 36+1 

const int lengthknotsy = 26+ 1; 

canst mt lengthknotst = 31+1 Ilknotsut=c31, t .. l;25,expanded to t after 

Ilwe use [",1,2,3 for test ,knots of tare 1 1 1 1 2 3 3 3 3 

int nx = 32; /1# of coeffic-ients in the tensor product B-spline expression, 

I/n"- In] n2,n3) 

int. ny 22; 

int nt = 27 i 

const lnt kx 4; Iidegree of B-spline polYTlomials, k"'lk1 k2,k3] 

const int ky 4; 

('onst int kt 4 ; 

IIFor current v<3.lue u (x, y, t) 

static float knotsux[J7J ;1/3fi+l 

static float knotsuy [27); 1126+1 

statiC' float knotsut [32J; 1131+1 

staLi~ float Au [32] [22] [27] ; 

IIFor current value v(x,y, t) 

sto.t ic float knotsvx [37J i 

static float knotsvy[27] ; 

static float knotsvt [32] ; 

static float Av[J2] [22) [27J; 

/ /Variables for the evaluation of the tensor product B-splines 

I fAdo 1 to start the index from 1 as in Carl De Soor's notation 

float Bx[kxt1J ;I/For [Bi k+l,k(el} Ei, k (el)] total k 

Ilelements active fur each t1 Co; x <ti+1 

flO<3t By[ky+l] illValues of basis functions, Bi, will be in B[lJ, 

I I .. " B [k+l], skip the B [OJ value! 
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float Bt [kt.+1J ; 

float xindex 

float yindex 

float tindex 

//Varlables for thE: evaluation uf the 1st derlvative of tensor product B-splines 

int dkx kx 1; 

int dky ky 1; 

int dkt- kt 1 ; 

float dBx[kx] ; //original float dBx[dkx+lJ the error 

f lOot dBy Iky] , 

float dBt [ktJ ; 

//Read knots and coefs matrix here 

if (check == 1) { 

knotsux [OJ 

knotBUY [OJ 

knot-sut [01 

dummy; 

dummy; 

dummy; 

flleknotsux"'- fop",n("Knotslnfo/knotSl)x", "T"); 

fOl' (kl = 0; kl " lengthknotsx 1; kl++) 

fsreanf (fileknotsux, "%f ", &knotsux [kl+ll) ; 

tc-lo$;e(flleknotsux) ; 

fileknotsuy = fopen("Knotslnfo/knotsuy", "r"); 

for (kl = 0; kl " lengthknotsy·l, kl++) 

fsranf(fileknotsuy, "%f ", &knotsuy[kl+l1); 

fcluse (fileknotsuy) ; 

f i leknotsut = fopen ("Knots lnfo/knotsut" , "r") i 

for (kl = 0; k1< lengthknotst-l; kl++) 

fscanf(fileknotsut,"%f ", &knotsut[kl+l]); 

fclose (fileknotsut); 

fileAu = fopen("KnotsInfo/Au.txt","r"); 

for (k3 0; k3 < nt; k3++) 

for (kl = 0; kl m:.; kl++) 

for (k2 =0; k2 < ny; k2++1 

fscanf (fileAu, "%f," I &Au [kl] [k2] [k3]) i 

fclose(fileAu) ; 

knotsvx [0] 

knot"svy [OJ 

dummy; 

dummy; 

knot svt [0 J = dummy; 

f i leknotsvx = fopen ("Knots Info/knotsvx" , "rt!) ; 

for (k1 '" 0; kl <:: lengthknQtsx-l; kl-++l 

fscanf(fileknot.svx, "tf It, &knotsvx[ld+l]); 

fclose (fileknotsvx); 

fileknotsvy", fopen("Knotslnfo/knotsvy", "r"); 

fOl (kl = 0; kl " lengthknotsy-l; kl +t) 

fscanf (fileknotsvy, "%f 

fclose(fileknotsvy) i 

&knotsvy [kl + 1] ) ; 

fileknotsvt = fopen ("Knotslnfo/knotsvt" I "r") ; 

for (kl " 0; kl " lengthknotst-l; kl++) 

fsC"onf(flleknotsvt, "%f ", &knotsvt[kl+1]); 

fclose (fileknot.svt.l ; 

int scan_result; 

fileAv = fopen ("Knotslnfo/Av. txt", "r"); 

for (k3 = 0; kJ ..:;: nt; k3++) 

for (kl 0; kl <:: nx, kl++) 

for (k2 0; k2 " ny; k2++1 { 

scan_result",fscanf(fileAv, "%f,", &Av[kl] [k2] [k3]); 

if (scan_:fesult==--l) 

puts ("scan fail It) ; 
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fclose(tileAv) ; 

/Ioone with reading 

IIEvaluate the tensor product B-splines 

for I j~o; j<~kx i j++) {BX [jl 0; ) 

for li~O ; j<=ky; j ++) {By Iii 0; ) 

for (j =0; J<=kt; j++l {Bt Ii) 0;) 

xindex GetBcoef (Bx, knotsl,lx, kx, lengthknotsx, xdat.af) ; 

yindex GetEcoef (By, knotsuy, ky, lengthknotsy, ydataf l ; 

tindex ~ GetEeoef (Bt, knotsut, kt, lengthknotst, tdat3.f) ; 

EvaluateSpl ine (currentinfou, Au, Bx, By,Bt. xindex, yindex, 

tindex, kx, kY,ktl; 

xindex GetBcoef (Bx, knQtsvx, kx, lengthknotsx, xdataf) ; 

yindex GetB(:()ef (By, knotsvy, ky, lengthknotsy, ydataf) ; 

tlndex GetBeoef (Bt, knotsvt, kt, lengthknotst, tdat.'if) ; 

EValuateSpline(currentulfov, Av, Sx, BY,Bt, xindex, yindex, 

tindex, kx,ky,kt) j 

IIEvaluate the 1st derivatives of tenSQT product B-splines 

for I j~O; j<=dkx; j++l {dBX Ii) 0;) 

for ii"O; j<=dky; j ++) {dBylil 0; ) 

for (j =0; J<=dkt; j ++) {dBt Iii 0; ) 

xindex GetBcoef(dBx, knotsux, dkx, lengthknotsx, xdataf); 

yindex GetBeoet (dBy, knotsuy, dky, lengthknotsy, ydataf); 

tindex Get Bcoef (dBt, knotsut, dkt, lengthknotst, tda.taf); 

EvaluateSplineDerivatives(eurrentinfou, Au, Bx, By,Bt, dBx, 

dBY,dBt, xHldex, yindex,tindex, kx, ky,kt, knotsllx, knotsuy,knotsut); 

xindex GetBeoef (dBx, knotsvx, dkx, lengthknotsx, xdataf); 

yindex GetBeoef (dEy, knotsvy, dky, lengthknotsy, ydataf); 

tindex GetBeoef (dBt, knotsut, dkt, lengthknotst, tOo.taf); 

EvaluateSplineDerivatives(r:urrentinfov, Av, Bx, By,Bt, dBx, 

dBy, dEt, xindex, yindex, tindex, kx, ky, kt, knot svx, knotsvy, knotsvt) ; 

1* Nonlinear Initial Constraint *1 

1* -~--======================~ *1 

VO.ld nlir:f(int *mode, int *nstate, double *f, double **df, dO~lble **zp) ( 

/,. Nonl inear 'Traj ectory Constraint * / 

void nltcf(int *mode, int *nstate, int wi, double *t. double **df, 

double HZp) 

float eurrentinfuu[4] {o}; 

tloat ('urrentinfov[4] {o}; 

float tempzl 0; 

float tempZ2 0; 

int tpl,tp2; 

float time, tao; 

IITMR: Set up internal time parameters Ilcopy from ntgmultilo to test the internal time 

tpl = *li 

tp2 NBPS; 

tao L tphl 0/tp2; 

time=tao*z3 /3 600; /Ihours 

if (t ime~24) t lme=24; 

II printf("\n the internal time in the nltef is", %f \n",time); 

int kl; 

if (*mode==O II *mode __ a2l { 

IITMR: Variables for GetSplinelnfo() function (a-spline fit): 

for (kl""O; kl < 4; kl++) 

currentinfou [klJ 0; IITMR: Need to set t:o zero before each call 
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currentinfov [klJ 0 i 

tempZl 

tempz2 

(float) (z1) i 

(float) (z2); 

Get-Sp1 inelnfo (tempZl, tempz2, time, currentinfou, ~\,1rr-;;nt lnfov) i 

GetSplinelnfo(tempz1, t.empz2, time, currentinfou, cu:r:r'C'rltinfov) i 

check++ ; 

Ilprintf("\n zl = %f, z2 = %f, yobstacle[Ol = %f, 22-yobstacle[O] -.- %f, 

yobstacle[l) Hit, 21. 22, yobstacle[OJ, z2 yobstatl,'o[O) , yobstacle[lJ) i 

f [OJ = (zld/z3 currentinfou [OJ),.. (210./23 - currentinfou [OJ) .. (z2d/zJ 

currentinfov [OJ),.. (22d/z3 currentinfov [OJ) j 

if (,..mode", .. 1 II *mode==2){ 

df [OJ [0] = -2* (Zld/z3 eurrentinfou [0]) ,..currentinfou [lJ -2,. (22d/z] 

cU:r"rentinfuv[OJ ) *currentinfov[lJ i I,. WIt zl ,..1 

of [0] [1] 

cit [OJ [2] 

2,.. (zld/z3 cu:r"rentinfou[Ol )*(1/23) i 1* wrt zld *1 

-2* (210./23 currentinfou [OJ) ... currentinfou [2J 

-2 .... (z2d/2] - cUIrentinfov[OJ) ,..currentinfov[2J; 1* wrt~ 22 *1 

df [0] IJ] 2* (Z2d/z3 cUIrentinfov[O]) ... (1/z3) ; 1* wrt z2d ,..1 

Ildf [OJ [4J =-2* (zld/23 currentinfou [OJ),. (zld/z3/z3) 

- 2,. (z2d/z3 - current infov [OJ) .... (z2d/z3 Iz3) i 

df [OJ [4J ",Oil/regard T constant 

Ildt[O] [4J = -2 ... (zld/z3 currentintou[OJ) .... (z1d/z3/z3+ 

tao/3600 ... clilrentinfou[3J) -2'1< (z2d/z] currentinfov[O 

.., (z2d/z.3/z3+taoI360o*cullentinfov[J]) ;llassume du/dT s not equal to 0 

Ildf[O] [4J = -2,.(zld/z3 (:urrentinfou[0]) ... (zld/z3/z3 

2,.. (z2d/z3 - cllnentlnfov[Ol),. (z2d/z3/z3); 

Ilassume du/dT=O,T is constant ,t=tao ... T 

1* Nonlinear Final Constraint .... 1 

vOld nlfcf(int 'l<mude, int *nstate, double *f, double ~*df, double hZp) { 

I,. Initial Cost ... 1 

void ief (int *mode, int *nstate, double .... f, double ,.df, double ....... zp) { 

double wq=o" 1; 

if ( .... mode" .. O II .... mode==2) { 

*f = Wq*z3; 

if (*mode" "1 II *mode==2) { 

df [0] 0; 

dt [lJ 0; 

df [2] 0; 

df [31 0; 

df [4] Wq; 

I ... Trajectory Cost .... 1 

1* -~======'======= ,..1 

void tcf{int ... mode, int "'Dstate, int .... i, double .... f, dcuble ,..df, double **zp){ 

flQ"t currentinfou[4] {a}; 

float currentinfov[4) {a}; 

float ternpz1 a i 

float tempz2 0; 

int k1; 

double Wu =0 i 

int tpl,tp2; 
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float time, tao; 

tpl d; 

tp2 = NBPS; 

tao'" tpld.O/tp2; 

time=tao*z3/3600; Ilhours 

if (time:>24) time=24; 

II pI'intf("\n the internal tlme in the tcf is= %f \n",time); 

if (*mode=",O II *mode==2) { 

fo:r (kl=Oi kl < 4; kl++) 

currentlnfou[kl] 0, 

currentinfov [klJ 0; 

tempzl (float) (zl) i 

tempz2 = (float) (z2); 

Ger-.Splinelnfo(ternpzl, r-.ernpz2, time, currentinfou, currentinfovl i 

GetSplineInfo (tempzl, tempz2, tlfr\e, CUI rent lrtfou, rurrentinfov) i 

rheck++ ; 

f [OJ = Wu.z3. (zld/z3 currentinfou [0]). (zld/z3 

cllrrentinfou(O)) + Wu*z3w(z2d/z3 currentinfov[O] ).(.~2d/z3 - current-infov[O]); 

printf ("f 101/Wu=%lf\n", f [OJ IWu); 

if ( ... r'I:\ode==l II .mode==2) { 

df [OJ = -2*W1HZ3* (zld/z3 <:urrent.:intou [OJ) *currentinfou (1) 

-2*Wu*z3* (z2d/z3 cllrrentinfov[Ol } ... CuI'rentinfov[11; 1* wrt zl *1 

df[l] 2*Wu*(zld/z3 - cllrrentinfou[OJ); 1* wrt z1d *1 

df [2J =-2"Wll*z3,., (zld/z3 c:uIrentlnfou [0]) H:urrent.infou [2] 

-2*WuwZJw(Z2d/z3 cUrrentlnfov[O] )*currentinfov[2]; 1* wrt z2 *1 

df [3J = 2*Wu* (z20/z3 - ("l.lTrentlofov[OJ), 1* wrt z2d .,,1 

/ /df [41 2.Wu* ((z1d/z3 f'urrentinfou [0]) * (zld/z3) 

+ (z2d/z3 currentinfov[O]) w (z2d/z3)) +Wu." ((zld/z3 

currentinfoulOl},., (zld/z3 currentinfou[O)) ~ (z2d/7.3 

currentinfov[O)) * (z2d/z3 currentinfov[OJ)) i 

df[4]",O,11 Regard T is constant here 

Ildf [4J = -2*W,HZ3* (zld/z3 - currentinfou [OJ) * (zld/z3/z3 

+tao/36 DO. currentinfou [3 J) - 2*Wu* (z2d/z3 currentinfov [OJ) 

* (z2d/z3/zJ+taol 3600*currentinfov [3J) + Wu* ((z1d/z3 

Cl)rrentlTlfou[O]) * (z10/z3 - currentinfou [OJ) + (z2d/z3 

currentinfov [OJ). (Z2d/z3 currentinfov [OJ) ) ; IlasSUf:le du/dT .. tao*du/dt 

Ildf [4] '" T2*Wu*z3* (zld/zJ currentinfou[O]) *Zld/z3/z3 

-2*Wu* (z2d/z3 currentinfov(OJ ).Z2d/z3/z3 + Wu* ((Zld/z3 

curI'entinfou[O] )*(z1d/23 C'urrentlnfoll[O]) + (z2d/z3 

C'urrentinfuv [OJ) * (z2d/z3 currentinfov [0))); Ildu/dT",O even t=tao.T 

1* Final Cost *1 

1* ========== *1 

void fcf(int *mode. lnt *nstate, double *t, double *df, double *,.zpl { 

#endif 

I loptl. inp 

% Trajectory Definitions 

NOUT 3 

NINTERV 30 30 1 

MULT 3 3 1 

ORDER 6 6 1 

MAXDER IV 2 2 1 
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% HOr i zOn Length 

HL 1 

% Number uf break points 

NBPS 100 

% Define Linear Inltial Constraint.s 

%/ /Thee are for min time t:rajectories after for zone 2'1 and on 

%//6/25/04 

N~IC 3 

LIC LB 

1fl20R06 6'12201 3223724.674343 

1620906.642201 3223824.674.343 172800 

LIC A 

xd Y yo. T 

% DefIne Linear Trajectory Constraints 

NLTC 2 

LTC_LB 

1 9.361ge5 

4_72S4e64.27S7e6 

LTC~A 

xd Y yd T 

% Define Linear Final Constraints 

NLFC 2 

9 1338e5 

LFC_UB 

9.1348e5 

LFC ~A 

9.8015e5 

9.8025e.S 

xd Y yd T 

% Define Nonlinear Trajectory Constraints 

NNLTC 1 

NLTC LB 

1600 

NTRAJECTDRYCONSTRAV 5 

TRAJECTORYCONSTRAV 0 0 0 1 1 0 1 1 2 0 

% Define Ini tial Cost 
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NICF 1 

NINITIALCOSTAV 1 

INITIALCOSTAV 2 0 

% Define Trajector:y Cost 

NTCF 1 

NTRAJECTORYCOSTAV 5 

TRAJECTORYCOSTAV 0 0 0 1 1 0 1 1 2 0 

% Define NPSOL Options 

NNPSOLOPTION 2 

NPSOLOPTION NOLIST 

NPSULUPTION Print Level 5 

% NPSOLOPTION Major Iteration Limit 100 

NPSOLOI?TION Minor Iteration Limit 100 

//optl.makefile 

/:IMake file is modified by zwz ,;l.rcc)Id+ng to the Makefile 

uf vanderpol .Jan #25 2007 

#$NTGDIR and $NTGMLDIR has to be defined 

NTGDIR = 

NTGINCDIR $(NTGDIR)/inr.lude 

NTGLTBDIR $ (NTGDIR) /lib 

cc=g<"'c -g - I $ (NTGINCDIR) 

CFLAGS= -03 -TIl32 -1 $(NTGINCD1R) -L $(NTGLIBDIR) -indude opt1.sub.h 

LIB= -1m -lgfortr:'an -lntg -lnpsol -lpgs -lg2C 

opt1: optl.main,o 

S(CC) $ (CFLAGS) -L $ (NTGLIBDIR) -0 optl optl.main.c $(LI8) 
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APPENDIX III 

NTG program for a JPL Aerobot 

I/This program is modified to <::jeneIate the optimal trajec.tory for 

// an aerobot which is travelling from (0,0,0) to (200,200,200) 

/ / The wlnd profIle is assumed to have the layer format which the wind speed 

/ / is changing between layers while it L'emains the same in the same layer 

1/ fOT example, in layer one, Z .lS from (0,50), u=10,v=O (x and y direction 

/1 wEld Speeds), in layer two, z is from (50,100), u=lQ,v=10. In layer three 

1/ u=8, v=O, in layer fouy, u~S,v'"-10 

/! The aerobot has three inputs, t.he model of aerobot is simplified and modifed 

//from tIle underwater glider model The three inputs are V (forward velocity) I 

I/dthetajdt (the change of orietation), W (ascend or descent velo('ity,upw<3.rd 

Iland downward). The cost fUIl(;tion is W'tT+\int(O,t) KIV+K2dtheta/dt+K3W,Kl,K2, 

IIKJ are three (;oeftirients for the three control inputs. The constraints are 

lithe start pOlnt (0,0,0), the destlnation point (200,200,200) The t1ajeC'tQry 

Ilconstraints .;ire the velocity bounds (forward and upwi.nd) and orientation 

II change bounds (one) .Here the trajectory is 3D trajectory whihc has the information 

Ilof x(t), y(t}, z(t), assuming around 10 m/s for the aerobot, initial Tf=50 $ 

II optI. main. c for the aerobot 

#include ..;:stdlib.h:> 

#include <math.h:>l .. m.;ith functlons .. I 

#inc:lude <ntg.h,.l .. main N1'G declarations .. I 

;I:Iinclude <time.h::. 

#include <ParseInputFile 

int main(int argc, char .. argv[J) 

OPTPARAM optparam; 

int i,j,sum,kl; 

chaI .. fname; 

FILE .. fp; 

FILE .. fder i 

double ..... TraJ, ... Time; 

int nTraj, Trai_offset, coef_offset, nPts=30; 

float w1ndU[91 

float windV[9l 

double Tf = 50 i 

{o}; //TMR 

{D); //TM 

FILE .. fxinit, .. fyini t; 

const int slzeofinlt = 93; lit est interval 50 ,153 

float xinit[93J",{O}; 

float yinit[931"'{O}; 

float zinit[9Jl={O}; //30 traJectory 

float tauinit[93J={Oj; Ilrontrol input 

Ilfloat winlt[93J .. {O}; 

Iistatic float xinit[sizeofinitl={O,O}; 

float xstart, X$top, xoif, ysta:r:t, ystop, ydif,zstart,zstop,zdif; 

double .... knots;l. knot points, list of times for each output ... 1 

131 



int nops; 

double *bps; 

double **llc,**lfc, **ltc: 

1* initial guess size ... sum over each output ninterv*(order-mLllt)+mult *1 

lTlt Tlcoef i 

int *NCOEF; 

double *coeffif'ients; 

int dstate; 

douhle *clambda: 

double *R; 

lnt inform; 

double obiective; 

if (<3rgc! =2) { 

printf("\n\tUsage: %8 inputfile inp\n\n",argv[O]); 

exit(I}; 

knot So; (double * *) malloe (optpar am. r1ClUt*S i zeof (double*) ) ; 

for (i=O:i<optparam.flout ;i++) { 

knot s [i 1 = (double .,) malloe ( (optparam. ni ntE':rv l i] +1) * sizeof (double) ) ; 

linspace (knots [;L J, 0, optparam. HL, optpar"am. ninterv [i J + 1) : 

nCDef 0; 

NCOEF = (int*) malloe (optparam.nout"l<sizeof (int)) i 

fOT(i",O;i<optparam.nout;i++) t 
neoef = neoef ... (optparam.ninterv[i] * (optparam.order[iJ 

-optparam.mult [iJ) +optparam.mult [i]); 

NCOEF[iJ - optparam.ninterv[iJ., (optpar'am order[i) 

-optP<.'lY<.'Im mult [iJ) +optparam.mult [iJ ; 

1* lnltial guess for eoefficH,:nts (<.'Ill Os) *1 

coefficients= (double*) malloc (ncoef*sizeof (double)): 

xstart~Oi 

ystart_O ; 

zstart=Oi 

xstop=200 i 

ystop,,200; 

zstop=200; 

xdif xstop 

ydif ystop 

zdif zstop 

k1 0, 

xstart; 

ystart; 

zstaIt: 

whlle(kl < slzeofinit) 

xinit [kl] 

yinit [kl] 

zini t [klJ 

xstart + (xdifl (sizeoflnit-l)) *kl; 

ystart (ydifl (sizeofinit-ll) *kl; 

zstart + (zdif/(sizeofinit-l) 1 *kl: 

tauinit [klJ" 1; 

kl = kl + 1, 

IIChange initial guess, tI'Y to make the optimal solution 

lito be simihar with the one from DMQC, the init.ial guess 

I lis separated into 4 segments 

while (kId] 1 { 

xlnit[kl]=IO- (2 O/12)*kl; 

yinit [klJ ... 0-0 .8/12*kl; 
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kl=kl+l ; 

lnt kk2; 

kk2 0; 

while(kk2.::20) { 

xinit [klJ =8-2 O/19*kk2; 

yinit[klJ= O.8+1.8/19*kk2: 

kk2=kk2+1; 

k1=k1 .. 1 ; 

int kkJ; 

kk3=O ; 

while (kk3dO) 

xini t [kl) =6-+ 2.0/2 9*kkJ; 

Ylnit [klj =1+3 O/29:tkk3, 

kk3=kk3+1; 

k1 .k1+1; 

int kk4: 

kk4",O ; 

while (kk4<30) 

xini t [klj =8 .... 7. 0/2 9*kk4; 

yini t !klJ =4 - 2.012 9 ... kk4; 

kk4=kk4+1: 

kl=kl+l; 

fm: (k1=O;kl<sizeofinit;kl++) { 

coefflcients[k1] = xinit [klJ; 

cOeffioents lk1+sizeofinitJ = yinit [kl]; 

coefficients [kl+sizeofinit:t2] = zlnit [k:1} , 

coefficients [kl.j-:i';izeofinit*3] = tauinit [k1J; 

II coeffieients[k1+sizeofinit*JJ .. winit[kl]: 

coefticlents [neoef 1J =100; 

l/l inspaee (coef fieients, 0,0, neoef) : 

IIDone with the download of coefficients 

l<c Allocate space fOr breakpoints and initlal12';e *1 

bps ~ (double*) malloe (optparam. nbps*sizeof (double) ) ; 

llnspace (bps, 0 I opt par am . HL, optparam. nbpsJ ; 

I ... NTG Memory Variables *1 

istate= (int*) mailoe ((nroef+optparam.nlic 

+optparam. nl fc+optparam. nl tC:toptparam. nbps+ 

optparam .nnli("+optparam. nnl tc*optparam. nbps+ 

optparam.nnlfc) *sizeof (int)); 

('lambda", (double :t) mallQ(~( (n('oef+ 

optparam. nli("+optparam .nlfe+ 

optparam. nl tc*optparam. nbps+ 

optparam. nnl i c+optparam. rlnl t C :"Icoptparam. nbps ... 

optparam.nnlfe) *sizeof (double)) i 

R= (duuble :t) malloc ( (neoef +1) :t (ncoef·"}) ... :i';lzeof (double) ) ; 

I" Set NPSOL options if any */for(i",O;i·wptparam.nnpsol_options;i++) 

npsoloption (optparam. npsol_ optiOrlS [i 1 ) ; 

Illine 159 to line 173 is copied from !!nt.gmultilo.c" , try to find the optimal solut~on 

Ileall to ntg 

npsoJoption("Major iteratlon limit 3000"); 

npsoloption("Minor iteration limit 1500"): 

133 



npsoloptlon("Line search tolerance 0.001"); 

npsoloption("Feasibility tolerance 2.e-5") ; 

npsolopt ion (" :J.state",l") ; 

npsoloption("Line search tolerance =0.001") ; 

npsoloption ("Hesslan =Yes"); 

ntg (optparam. nout I 

bps, optparam. nbps, optparam. ninterv, knots I 

optparam. order' I optpar am. mul t, optparam. maxderi v, 

coefficients, 

optparam. nl ie I optparam. I ie_A, 

optparam. nl tc, optpa.ram. 1 te _A, 

optpa.r am. nlte, optparam. 1 fe_A, 

optparam. nnll c I nlicf, // Function point.er 

optparam.nnltc,nltcf, // F~mrti()n pointe 

optparam.nnlfc,nlief,/I Function pointer 

opt paramo nini t ial{"onstrav, optparam. ini tialconstrav, 

optparam. ntra j ector:yconstrav, optparam. trajeetoryconstrav, 

optparam. nf inalconstrav, optparam. f inal{"onstrav I 

optparam. lowerb J optparam. upperb, 

optpa.r"am.nicf, ic:f, 1/ Function pointer 

opt.param. ntef, tC"f, 

optparam. nfef, fef, 

I I Function pointer 

I I Func:t.lon pOlnter 

optpa.ram. nini t ialcostav J optparam. init ialcostav, 

opt.param. ntraJ et'tory('ostav, optparam. tral ectorycostav, 

optparam. nfinalcostav, optparam, f in<31 ('ost (3. v , 

is[ate, clambda, R, &inform, &Ohj e"t i ve) ; 

1/ Print Vector (" coefl" ,('oef f icients, ncoe£) ; 

/ I Get trajec:tmies £lQrn B-Spline Coefficients 

nT.raj =0; 

for(i",O;i<optparam nout;i++) nTraj += optpararrLmaxderlv[ll; 

Tra-j = (double*,,) malloc(nPts.sizeof(double)); 

for (1.=0; i'dlPtS ; i++) Traj [iJ = (double*) malloe (nTra 1 *sizeof (double) ) ; 

TU1J_offset = O;coef_offset '" 0; 

Time" (double",,) malluc (nPts>I"sizeof (double)) i 

1 inspaee ("rime, 0 I optparam. HL, nPts) ; 

fOr' (i=O; i<optpil.rCirn. flout; i++) { 

for(j=O;j<:nPts;-j++) ( 

Spllnelntelp( &TraJ [JJ [TraJ offset], // Return Variable 

Time [j J , 

knots [iJ, 

/ I Point at. which to evaluate 

// Knot sequence 

optparam. ninterv [i 1 , I I Number of inter'vals 

&coefficients koef_offsetl J NCOEF [iJ J 1/ Coefficients 

optparam. order [i J , 

optparam. mul t [1 J , 

optparam.maxdeIlv[ij) ; 

Traj_offset 

coef_offset 

optparam.maxderiv[iJ; 

NCOEF [i) ; 

Tf = coefficients[ncoef-lJ; IITMR; Tf in seconds 

printf("\n Tf = %f sees = %f minutes = %f hours\n", Tf, Tf/60 , Tf/3600) ; 

fp=fopen ("TrAe.roEL txt", "w") ; 

fprintf(fp," %% time (min) x(cm) xd(cm/S8(,) 

xdd(cm/sec/sec) y(em) yd(cm/sec) ydd(cm/set'lsec) 

z zd zdd wlTldU windY Tf orient tau\n"); II Print to File 

float tm; 
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for(l=O;j<nPts;J++) ( 

GetWindlnfo(Traj [iJ [b], windU, windV); liz .. . Traj [j] [6J 

fpnntf (fp, ''%If %If %1f %If %If %If %If %If %If %If %If %If %If !lilf 

%1 f\n", Tlrne [j] ",Tf, Traj [j] [0], Troj [j] [1] ITf, Trai [j J [2] ITf/Tf. 

Traj [l] [3] ,Traj [l] [4]/Tf,Traj [j] [5]/Tf/Tf, Tral [jl [6], Traj [j] [7I1Tt, 

Trai [i] [8]/Tf/Tf, windU[OJ ,windV[OJ, Tf, 

atan2 (Traj Ij] [4 J ITf ·windV [OJ, Tra-j [i 1 [1] ITf -windU [0] ), Tra-j [:i J [9J ) i 

fclose (fp) ; 

free (Time) ; 

free (NCOEF) ; 

free (Traj) ; 

free (istat.e) ; 

free (clambda) ; 

hee (R) ; 

free (bps) ; 

for (l=O;l<optparam.TIout;i++) 

free (knots [iJ); 

free (coefficients) ; 

return 0; 

I I optl sub" h for the aerobot 

#include <$tdllb h::> 

#indude <stdio.h> 

#lTIC'lude <math.h> 

#ifndef _optl_autocode headeL", 

#define _optl_autocode, header 

#define z1 zp [OJ [OJ 

#define zld zp[O] [1] 

#det ine zldd zp [OJ [2J 

#deflIl.e z2 zp[l) [0) 

#define z2d zp [1] [l] 

#def ine z2dd zp [1 J [2J 

#def ine z3 zp [2] [0] 

#define z3d zp [2J [lJ 

#define z3dd zp [2J [2J 

#deflne z4 zp [3J [OJ 

#define 24d zp [3 J [1] 

#deflne z4dd zp [J] [2] 

#deflne z5 zp[4) [OJ liT 

Ilxdd 

I/ydd 

/ /z 

Iitauc 

#define PI 3.11159 

lTlt check = 1; 

contl01 Val lable 

I ... Function to define the wind velocities *1 

void GetWindlnfo(float zdataf, float windU[9] , float windV[9]) { 

if (zdataf>",O && zdataf<50) { 

wlndU [0] =10; 

windV[O]=10i} 

else If. (zdataf::>=50 && zdataf<100) { 

windU[OJ =-10; 

wiTldV[O] =10;} 

else if (zdataf> 100 && zdataf<150) { 

windU[O)",lO; 

windV[0]=-10;} 

else if (zdataf::>=150 && zdataf<=300) { 

windU[O] =OJ 

windV[O] =-10;} 
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else 

printf ("out of bound, the limlt is 0-300 In zdataf"); 

It Nonlinear Initial Constraint -d 

1* ============================ *1 

vOld nlicf(int *nlode, int Hlstate, double *f, double **df, double **zp) { 

l'k Nonlinear T:faiectory Constraint 'kl 

1* ======="=""="'''''''''"''''''''--==== *1 

void nltt'f(int 'kmode, int 'kTIstate, int wi, double 'kf, 

dOl.1ble **df, double **zp) { 

float windU[9J = {O}; II u,ux,uy,uz,ut,utx,uty,utz utt 

float windV[9] {O}; 

float tempz = 0; 

float Cx=l; float Cy=l; float CZ=l; II Drag and lift coefficients 

int kl; 

if (*mode==O II Hrlode==2) { 

for (kl=O; kl < 9; kl-t-t) 

windU [klJ 

wlndV [klJ 

G; I ITMR: Need to set to zero before each call 

0; 

tF'mpz (float) (z3) i 

GetWuldlnfO(tempz, windU, windV), 

check-t-t ; 

f [OJ = (zld/z') windU[OJ) * (zld/z5 windU[O]) -t (Z2d/z5 

windV[OJ) * (z2d/z5 windV [0]) -tz3d,.z3d/z5/z5i I IV, forward veloC'lty 

II f[lJ '" (z2dd/z:i/z5 windvU])/(Zld/z5-windU[0]);lldtheta/dt 

IIEuler j,agrange equationsnow I donot know how I got theSe equations 

f[1]-'zldd/zs/z5 + O,S*10.049*puw(zld/z5,2)*CX+Z4*zldd/pow(Z5,2) i 

IIz4 is the control variable 

f[2]=-Z2dd/zS/z5 -t 0 5*10 049*pow(z2d/z5,2),.Cy+z4,.z2dd/pow(z5,2); 

t[3]=-9.8-z3dd/zS/z5 + O.5*10.049*pow(z3d/z5,2)*Cz + z4*z3dd/pow(zS,2}; 

if (,.mode==1 II *mode==2) { 

df [0] [Or .-0; 

df [OJ [lJ = 2* (zld/z5- windU[O]) * (1/z5); I,. wrt zld *1 

df [0] [2] 

df [0] [3] 

df [OJ [4J 

0; 

2* (z2d/z5- windV(O]) * 0/Z5) i 1* wrt z2d TI 

df [OJ [5J = OJ I*wrt z2dd .. 1 

df [0] [6] 

df [0] (7] 

df [a] [8] 

df [0] 191 

0; Ilfor 23 

2,.z3d/z5/z5, 

0; 

0; I I for 24 

df (0] [10] __ 0; 

df [OJ [11] = 0; 

dfIOII121·0; 

df [1J [0] ,,0; 

df [1] [1] ",2*0.5*10. 049*Cx*zld/z5/z5; 

dfllJ [2J=24/z5/25; Ilwrt zldd 

df [I] [3].0; 

df [I] [4].0; 

df [I] [5]·0, 

df[l] [6].0;//z3 

df [1] [71·0; 

dfll] [8J .. 0; 

df[l] [9] '" zldd/pow(z5,2); /lz4 

df [1] [10]. 0; //24d 
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Of[lJ[l1J=O; IIz4dd 

df [lJ [12J =0; 

df [2J [OJ =0; 

df [2J [lJ =0; 

df[2J [2J = 0; Ilwrt zldd 

df [2J [3 J =0; 

dfl2] [4J =2*0 5*10.049*z2d!zS!Z5i 

df[2l [51=tA/pow(z5,21; 

df [2J [6J 

dt [2J [7J 

0; IIz3 

0; 

df [2J [8J = 0; 

df [2J [9J =z2dd/pow(Z5,2), //24 

of [2J [10J =0; / /z4d 

df[2J [l1J =0; IIz4do 

dfl2] [12]=0; 

df [3J [OJ =0; 

of [31 111 =0; 

dfU]!2] = 0; Ilwrt zldd 

df I3J [3J.0; 

df I3J [4J = 0; 

df [3 J [5J =0; 

df [31 [61 

df [3J [7J 

df [3J [8J 

0; IIz3 

2,.0 S*10 049,..z3d!zS!Z5; 

-1/z5/z5 • z4/pow(z5,2); 

dfUl[9] = z3dd/pow(z5,2); Ilz5,T 

df[3j [10J=0; 

df [J] [11J =0; 

df [3J [12J·O; 

1* Nonlinear Final Constraint */ 

void nIfef (int ... mode, :i.nt *TIstate, double "f, double **df, double **zp) i 

1* Initial Cost */ 

I. .1 

void icf(int ,.mode, int ..,nstate, double *f, double ",df, double ,**zp) { 

dQuble Wq"'-l; 

if (*mode==O II *mode==2) { 

*f = Wq*z5 i 

if (,.mode==l II ",mode .. ",2) { 

df [OJ 0; 

df [lJ 0; 

df [2) 0; 

df [3 J = 0; 

Of [4J 0; 

df [SJ 0; 

df [6J 0; 

df [7J 0; 

of [8J 0; 

Of [9J =0 ; I IT is vaL iable for intial cost funtion, 

I Iso df/dT is not equal to 0 

df [10J =0 ; / /z4 

Of [111 =0 ; IIz4 

df[12] ",wq; I IZ5 

137 



1* Trajectory Cost *1 

1* =============== ... 1 

void tcf(int "mode, int "nstate, int "i, dOl)ble "f, 

double Hit, double HZp) { 

float windU[9J {a}; 

float wlndV[gJ {a}; 

int kl; 

float tempz; 

int tpl, tp:2, NBPS; 

NBPS~100i 

float time: 

tpl ... i; 

tp2 NBPS; 

float tao, Wu; 

tao= tpl,,1.0/tp2i 

time =tao"zS/3fiOO; 

Wu=O i 11100000 for min E 

if (:ldllode==O II "mode==2) { 

for (kl=O; kl <: 9; kl++) { 

windU [kl J 0; IITMR: Need to set to zero before each call 

wlndV[klJ '" 0; 

tempz ~ (float) (z3); 

GetWuldInfo(tempz, windU, windV); 

check++ ; 

II prinrfl"\n tempz =%f, u=%f,v=%f \n",tempz, windU[O],windV[ll); 

f [OJ =Wu*zS-.pow( (zld/zS-ynndU [OJ) ,2) + 

W1.Hz5"pow( (;z:2d/:t:5-windV [0]),2) + 

Wu* Z5*pow (z3d/zS, 2) +Wu .. z4 .. z4 .. (Zldd* zldd+z2dd"z2dd+z3dd* z3dd) /pow (z5, 3) ; 

f [0] /wu=%lf\n" ,pow ( (zld/z5 -windU [01 ) ,2) +pow ( (z2d/z5 -windY [0 J ) ,2) 

+ (zldd"zldd+z2dd"z2dd) Ipow (z5, 3) +z3d*z3d/z5/z5) ; 

if (*mode==l II "mode==2) { 

df [0] =0; 

df[l] ~2*wu"(Zld/zs windU[O]); 1/ wrt zld 

df [2J =2 .. Wu .. z4"z4 .. z1dd/pow(z5, 3) i 

df [3] =0; 

df [4] 2"Wu* (z2d/zS windV[01); I/wrt z2d 

df [SJ = 2"Wu"z4"z4"z2dd/pow(z5,3); 

df[6] 0;//23 

dt l7J 2*Wu .. Z3d/zS; 

df [8) 2"I"hH:;o:4";z:4,,z3dd/pow(z5,3J i i 

df [9] =2*Wu .. z4*z5* (zldd*zldd+ 

z2dd"z2dd+z3dd .. z3ddJ/pow(zS,3l i l/z4 

df [10J =0; //z4d 

dUll] =0: I/Z4dd 

df1121;O; 

void fcf(int "mode, lnt "Ilstate, double .. f, dO~lble "df, double .. *zp) { 

#endlf 

/ loptl. inp for the aerobot 

% Traiectory Definitions 
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NOUT 5 

NINTER'I 30 30 30 30 % x,y,z, control. t 

MULT ] 3 3 3 1 % this should mean "smoothiness" 

ORDER 6 6 6 6 1 

MAXDERIV J J J 3 

% Horizon Length 

HL 1 

%- Number of break points 

NBPS 100 

% Define Linei'l.r Initlal Constr3lnts 

NLIC 5 %number of initial (,Orlstri'l.ints 

LIe_LB 

o 0 -100000 0 %x,y, z, tau, t 

LIC_UB 

100000 100 

% x xd xdd Y yd ydd z zd zdd tau td tdd T 

o 0 

o 0 

o 0 

% init.ial velocity 15 10 (x direction) 

% Define Linear Final Constraints 

NLFC J 

LFC L8 

200 200 200 %final dest.ination 

LFC UB 

200 200 200 

LFC_A 

xd xdd y yd ydd z zd zdd tau td tdd 

o 0 0 

o 0 0 

o 0 0 

% Define Linear 'trajectory Constraints 

NLTC 3 

100 300 300 

LTC A 

xd xdd Y yd ydd z zo. zdo. tau to tdd T % coef 

% Define Nonlinear Tra-jectory Constraints 

NNLTC 4 

o 0 0 0 
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400 0 0 0 

NTRA.JECTORYCONS1'RAV B 

TRAJECTORYCONSTRAV 

Define Initial Cost 

0102 1112 2122 30 40 

% 000000 0 ~ ." 0 0 0 

NICF 1 

NlNlTlALCOSTAV 1 

INITIALCOSTAV 4 0 

Define T:rajeC"to:ry Cost 

NTCF 1 

NTRAJECTORYCOSTAV 8 

TRAJECTORYCOSTAV 0 1 0 2 1 1 1 2 

% Define NPSOL Options 

NNPSOLOPTION 2 

NPSOLOPTlON 

NPSOLOPTION 

NOLlST 

Print Level 5 

2 2 4 0 
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APPENDIX IV 

DMOC program for a glider in a B-spline ocean model 

#DMOC program fOr the glider is wrltten III AMPL, the solver both can be IPOPT 

#01: NPSOL, ~n order to compare t.he NTG with DMOC, we choose NPSOL since NTG 

#i8 using NPSOL as its solver. In this program DMOC needs call the B-spline 

# ocean current mudel thus a-spline function should act as a user-defined 

# function. In Unutnu, the makefile for adding user'-defined function is also 

/:jattached here while B spline function program is not completely listed here 

#c(JIlsidenng it is just modified from the foregoing appedix. 

#test.mod, func-add.h. funcadd.c makefile.linux are needed 

#first, make -f makefile.linux to create amplfunc dll 

#then lampl test.mod to get the solution 

opt ion solver npsol; 

#option npsol_options "iterations .. 3000"i 

Uoption ipopt_options "halt_oTI_ampl_error yes" i 

#option ipopt_options 'max_iter=10a'i 

#option ipopt_options "max_iter'=3aaO"; 

#option ipopt_options "constr_viol_tol=le 5" j 

#option ipopt_options "tol=le-5"; 

function usplinein£u; 

function vsplineinfo; 

param N:=51; # number of knots in t.he trajectory 

set POS NODES := {a .. N-1}; 

set VEL NODES {a, ,N-2}; 

# a = (a_x, a_y) and b = (b_x. b_y) are positions of start and final pOlnts 

param a_x 

param a_y 

param b x 

param b y 

1620806.642201; #c':r'll, (xstart-xref) *scalefactor from optl. inp 

3223724.674343 i 

913380.0; 

980150.0 i 

pal'am TO := 172800.0; #Initial trial final t~me 

param m :~1.0; 

param kno : =N; 

param hO ;"TO/ (kno 1); 

{i POS_NODES} i 

var y ( i in POS_NODES) ; 

var tau (i in POS _NODES) .>= 1000000, <=1000000 ; 

var lambda ::.=0.99, <=1 .01 ; 

h~hO ; #final time is fixed to T=48 hour 

T=TO i #final time fixed to T",48 hour 

qlp (i in VEL_NODES) (x [i+1J -x Iii) /h; 

q2p {i in VEL_NODES} (y [i+1J -ylil) /h; 

var qlm (i in VEL_NODES} O.5*(x[i]+x[i+1]); 

q2m ( i in VEL_NODES} 0.5*(yliJ+yli+l]); 

u (i in VEL_NODES} ; 

# Control in every knot 
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VaT v {i ln VEL_NODES}; 

var {i in VEL_NODES} =usplineinfo(x[i] ,y[i] ,h.i/3600.0,u[i] ,vIi] J; 

wy {l in VEL_NODES}" vsplineinfo(x[il ,y[il ,hd/3600.0,u[iJ ,v[iJ) i 

taum (i in VEL_NODES) '" tau[iJ ; 

#derlvative of kinetic energy w.r.t \dot{q} 

KEqlp {i in VEL_NODES} m* (qlp[iJ -wx[iJ); 

KEq2p {i in VEL_NODES} m*(q2pliJ-wy[iJli 

#derivative of kinetic energy w., . t q 

param KEql Ii In VEL NODES} 0; 

param KEq2 Ii in VEL_NODES} 0; 

#potential 

param Vql Il in VEL_NODES} ; =0; 

param Vq2 Ii in VEL_NODES} : =0; 

#discrete forces 

forcel_plus {i in VEL_NODES} = -taurn[iJ*(q2p[iJ -wy[iJl ; 

farrel_minus Ii in VEL_NODES} = -taum[il.(q2p[il-wy[i]); 

force2_pll,l$ {i in VEL_NODES} == taum[iJ.(qlp[il-wx[il); 

force2_minus {i in VEL_NODES} ., taumli]*(qlp[l]-WX[l]); 

#mlnimlze the control energy and time 

param Wl,l == 1 ; 

minimi ze force_energy: 

$um{j In ° N 2} 0 5.(forcel pIIlS[JJ*forcel_plus[l]+ 

forcel_ minus [j 1 * forcel_minus [j 1 + force2_plus [j] ,. force2_plus [j] + 

torce2 . minus [j] ,. tor ce2_ minus [j 1 J .h* WU ; #+0. 5*T; 

#Subject to constraints, there are 104 equality constraints due to EL equations 

#Here, the position is considered differently, so there are 100 EL eqllatl()rlS needed 

UStarting and final point 

subje('t to x left anchor: x[O] a x; 

subJ ect to L left anchor: y [01 a y, 

subj eet to x_right_anchor: x[N 11 b x, 

sub] ect to y rlght an('hor yiN 11 = b y; 

#StaIting veloc.it.y (momentum) 

# No constraints on the fina1 velocity 

subject to Euler_Lagrange_x {J In 0, ,N-3}: 

-KEqlp[j+l] + KEqlp[jl + O.5 .. h.(KEql[j+l]+KEqUj]) + O.5,.h,.(VqU]+1]+Vq1[j}) 

+ 0 5.h.forcel_plus [j] + 0 S*h.forcel_minus [1+1] == 0; 

subJect to Euler_Lagrange_y {j in O .. N-3}: 

-KEq2p[j+1l + KEQ2p[jJ + O.S .. h .. (KEq2(i+1]+KEq2[jJ) + O.S*h .. (Vq2[j+lJ+vq2[j]J 

+ 0.5*h*force2 .plus[")] 

param xref:==-122,32458; 

param yret: =36.5658 i 

param 5cale: .. 11126067; 

#Start point guess 1 

o 5.tu·force2 mlnus IJ+1J 0; 

#Let initial guess to be the tUl.Jecotry on the left side of the stIaight 1 ine 

let Ii in 0, .19 } x[J] ; = (j 119),. (-122. 3-xref) ,.scale + (1-j /19) * ( -122 

let Ii in o. .19 } y[jl ; = (j /19),. (36.75 -yt'ef J .seale+ (1 j/19)*(36.8557 

let Ii 20. .N-j) x [J] .- (j -20) I (N-1-20J * (-122 .242-xref) *scale 

+ (1-(j-20)/(N l-20))t(-122.3-xref)*scalei 

let {J in 20 .N 1} y[jJ : .. (j-20J/{N-1-20J .. (36.6535-yref)*scale 

+ (1-(j-20)/(N-1-20)).(36,75-yreO .. scalei 

let {j in o .. N-I} tau[jJ -1; 

let lambda:= 1; 

display x, y >DMOCinitL. txt; 

solve; 
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display x, y, q1p, q2p, tau>t:rajL txt; 

display qlp,q2p,tau,wx,wy; 

du,p1ay T/3600; 

display force_energYi 

II iuncadd. c 

1 * sample illilcadd * 1 

#include "math.h" 1* for sqrt *1 

#include "iuncadd hi' 1* includes "stdiol.h" *1 

int cheC'k1 0; II fo:r lisp1 ineinfo 

int check2 0; Ilfo1' vSpllnelTlfo 

void EvaluateSphne(float resultll, float A[J [22J [27J, floo.t Bx[], 

float By [J ,tloat Bt. [], int. xindex, 

int yindex, int. tindex, int kx, int ky, int kt) ; 

void Eva1uateSplineDerlvat1.ves(float result[]. float A[J [22J [27J, 

float BX[], float By[] ,float Bt[], float dBx!]. float day[J ,float 

dm [], int xindex, int yindex,int tindex, int kx, int ky,int kt. 

float knot.sx[], tlQo.t knotsy[] ,float knotstl]); 

int GetBcoef(float BI], tloat knots!], int k, int lengthknots, float data); 

real u; 

real v; 

static real 

uspllneinfo(register argllst *al) 

real xdataf, ydatdi, tdata!: 

float currentinf(Ju [7] (o} ; 

tloat cur:rent.infov [7] {o} i 

real x, Z; 

int *at, 1, Ili 

char *se; 

const r:har *sym; 

AmplExpOIts -I<ae al->AE; 1* for fprinti and strtod *1 

if ((n = a1-;.n) <= 0) 

return 0; 

at a1 >at; 

a1 :;.ora; 

de .:'Il->oerivs; 

o. i 

checkl++ ; 

Ilmake the knots info just updated once 

Ilmodled by weizhong zhang. to make the complex bnspline ocean current 

Ilmodel work 

xdataf=ra [0); Ilinpllt x as the first variable 

ydataf=ra [1]; 

tdataf=ra [2J i 

1 Ichecky=ra [at [5J] ; 

if (tdataf:>24) tdataf=24i Ilwe only have 24 time zone data, 

II when t>24, assume t.he current stays constant at t=24. 

void 

funcadd (AmplExports *ae) { 

1* Insert calls on addfunc here. -1<1 

I. Arg 3, called argtype, can be 0 Or 1: 
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o ==> force all argument.s t.o be numeric 

* 1 "'or> pass both SymbOllC and numeriC' arguments. 

* Arg 4, called nargs, is int.erpren.ed as follows: 

o ==> the function has exact:..y nargs argt.ments 

-1 ==> the function has - (ni:n'gs+ 1) argLments. 

Arg 5, funcinfo, is passed to the functions in struct arglist; 

it is not used in t.hese examples, so we just pass o . . / 
dddbmc("1)spllneinfo", (rfunc)usplineinfo, 0,5,0) j 

addfunc ("vspl ineinfo" , (:r func) vspl inei nfo, 0, 5,0) ; 

#Makefi Ie for adding function to ('reate ampl func .dll 

#which is from AMPL, thank David M. Gay's help to make it work 

# For Linux 

. SUFFIXES: 

$S = ampl/solvels directory 

CC = 

CFLAGS = - I$S -02 

J'.O : 

$(CC) $ (CFLAGSl $*.c 

amplfunc.dll: funcadd.C' 

$(CC) -c $ (CFLAGS) -fPIC funcadd.c 

$(CCl shared -0 amplfunc.dll funcadd.o 

## sample solver creation. 

# $(myobjects) = llst of .0 files 

myobjects 

mysolver: $(myobjects) 

$ (CCl rO mysol vel' $ (myubl ects) $S/ amplsol ver. a -1m -ldl 
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APPENDIX V 

DMOC program for a JPL Aerobot 

#DMOC program for generating trajectories of a JPL Aerobot 

#io the defined wind profile with consideration of aerodynamics 

#This problem ronstraints are Euler-Lagrange equations which aloe 

#from the perspective of energy rat.her than Newton's perspective. 

#test.mod, funcadd.h. funcadd.c makeflle.linux are needed 

-IHirst, make -f makefile.linux to create amplfunc dll 

#then ./ ampl test. mod to get the solut ion. 

#Program test. mod for the Aerobot 

option solver npsal; 

#option npsol_options ' iterations == 3000' i 

#optlon npsol optlons 'Minor iteration limit 1500'; 

#opt ion npsol_options ' linesearch= 1.08-8'; 

#option npsol_options 'Linear Feasibillty tolerance = I.De 8'; 

#optior) npsol_options 'Nonlinear Feasibility tolerance'" 1.Oe-8'; 

#option npso1_options 'cold start'; 

Uoption npsol_options 'Optimality tolerance =1 Oe-8', 

# Find optimal trajectories for a JPL Aerobot 

# From (0,0,0) to (200,200,200) in the wind 

function uWind; 

funrtion vWind; 

param N:=51; # number of knots in the trajectory 

set POS 
~ 

NODES { 0 .N-l} , 

set VEL NODES { 0 .N-2} , 

set ACE NODES {D. .N-3}, 

# a = (a_x, a_y, a_z) and b = (b_x, b_y,b_z) are positions of 

start and final points 

param a -x 0, 

param a -Y 0; 

pcLIam a z 0, 

paIam b - x 200, 

param b -Y 200 ; 

param b - z 200; 

param TO := 100; #Initial trial final time 

param m : =1. 0; 

para.m kno :=N; 

param hO : .1'0/ (kno 

#Initial speed 

param xinip: 0; 

param yinip: 0 i 

param zinip:= 0; 

1) ; 

#Bounds on variables 

{l POS_NODES}::>",O, <0=300; 

var y {i in POS_NODES} ::>=0, <=300; 
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z {i in POS_NODESj>",O, <",300; 

tau {i in POS_NODES};.=-100000, <=100000; 

lambda >=0, <=1; 

# Control in every knot 

#var h=hO*lambda; 

#var T=TO ... lambda i 

val' h=hO; 

v," T=TO; 

qlp {i in VEL_NODES} 

va, Q2p {I in VEL_NODES j 

q3p { i lfl VEL NODES} 

• Acceleration 

Qlpp {i in ACE NODES} 

va, q2pp {i in ACE_NOD8S) 

q3pp {i in ACE_NODES} 

qlm {i in VEL_NODES} 

q2m { i in VEL_NODES} 

q3m { i in VEL_NODES} 

var {I in VEL_NODES) 

wy {i lfl VEL NODES} 

= 

(x[i .. lJ-x[iJl/h; 

(y[i+1J -y[i) l/h; 

(z [i .. 1J -z [iJ ) /h; 

(qlp[i+lJ -qlp [i]) Ih; 

Iq2pli+ll-q2plill/h; 

(q3p [i+l] -q3p [i]) Ih; 

O.5*(x[ij+x[i+1Jl; 

0.5* (y[i] +y [i+1J); 

0.5 ... (z [i]-+z[i-+lJ); 

uWind(x[i] ,y[i],z[iJ); 

vwind (x Ii 1 ,y [i 1 ,z [i J ) ; 

# no wind velocity in 2; dlrection 

var taurn {i in VEL_NODES} = tau [iJ ; 

#minimize the control energy and time 

param Wu =1; 

minimize force_energy: sum{j in o .. N-3} ((q2p[jJ -wy[jJ) 

* (q2p Ij J -wy Ij 1 ) + (qlp [j J . wx [j 1 ) ... (qlp lj 1 

-wx [j]) +q3p[j] *q3p [jJ + (qlpp IjJ *qlpp [j) +q2pp [j J *q2pp [il 

+q3pp [j 1 *q3pp [j 1) *tau [] 1 *tau [i J ) *h*Wu; 

#Subject to constraints, there are 104 equality const.raints 

#due to EL equations 

# Here, the position is considered differently, so there 

#are 100 EL equations needed 

#Starting and final point 

Sub] ect to x left ane-hor: x [OJ a x, 

sub"jeC't to L left 
-

anchor: y [01 • y, 

subj er.t to z left anchor: z [0] a Z; 

suhj t':ct to x_right_anchor' x [N 11 b x; -

subi ect to y_right_anchor: y[N-ll b y, 

subj ect to z rlght anchor Z [N-l] b Z; 
"C 

#The constraints lrJ the trajectory, there 96 (48 knots) EL equations 

#are needed to be satisfied cUIlsidering it is controlled by t.he gyroscopic force 

subJect to velocity_tutal {J in 0 .N-2}: 

(qlp [j J -wx [i J ) .. (qlp [j J -wx [j J ) + (q2p [j J -wy [j] l ~ (q2p [j J -wy [j 1 ) 

+ q3p[jJ*q3pIjJ<dOO; 

subj ect to Euler _Lagrange_x {j in O .. N-3), 

-qlpp[il , tau[jl*q1pp[jl + 0 5dO.049*qlp[jl *qlp[iJ 0; 

subj ect to Euler _Lagrange_y {j in O .. N-3) , 

-Q2pp [j I + tau[j) ... q2pp[jJ , 0.5*10.04 9 ... q2p [jJ *q2p [j] 0; 

subject to Euler_Lagrange_z {j in 0 .N 3}: 

-98 q3pp[jl + tau[iJ*q3pp[j] + O.5...J0 049 ... q3p[j] ... q3p[j] 0; 

#Start point 

let {i in O. .N-l } x[il (J/N1 ... b x (1 J IN) *0. x, 

let {i in O. .N-l ) y[il (j/N)*b_y + 11 j/N) ,.a~y; 

let {j in o. .N-l) z [j J 1]/NI,b z , II ] IN) *a z, 
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let Ij in o .. N-l} tau[j] -1; 

let lambda: = 1; 

display x, y, z ;;.ini tdm()~. txt; 

solve; 

display x,y,z,tau >traj,txt; 

dlsplay x,y,z,wx,wy,qlp,q2p,q3p,tau,T,furce energy, 

1* funcadd * I 

#include "math, h" 1* for sqrt *1 

#include "funcadd h" 1* includes "stdioLh" *1 

statiC' real 

l,.lWind(a:rgllst. *031) 1* sqrt (x*x + y ... y) *1 

L'eal xdataf,ydataf,zdataf; 

float windU[7] {OJ; 

float windV[7] to}; 

real x, Z; 

real *d, *de, *ra; 

lnt "at, i, n; 

char *se; 

canst char *sym; 

AmplExports *ae a1·::.AE; 1* for fprintf and strtod *1 

if ((n = al-;;.n) <= 0) return 0; 

at 031 >at; 

a1 ::.ra; 

d de = al->derivs; 

0.; 

xdataf",ra [0]; Ilinput x as the first variable 

ydataf=ra [1) ; 

zdataf=ra [2] ; 

if (zdataf;;.=O && zdataf<50) { 

windU[O] =10; 

windV[Ol~10, ) 

else if (zdataf::.=50 && zdatafdOO) { 

windU[OJ =-10; 

windV[Ol-lO; ) 

elSe If (zdataf::.=100 && zdatafdSO) { 

windU[O] =10; 

windV[O) 00-10; J 

else if (;z:dataf> lS0 && zdataf<=300) { 

windU[OJ=O; 

wlndV[OJ= 10; 

else 

printf("out of bound, the limit is 0-300 in zdataf"); 

return wlndU [0] ; 

static real vwind(arglist *al) 

real xdataf,ydataf,zdataf; 

float windU[7j {oI, 

float windV[7] {OJ; 

real x, Z; 

real *d, *de, *ra; 

int *at, i, nj 

char *se; 

canst char *sym; 

AmplExports ,o-ae al-.>AE; 1,0- for fprintf and strtod *1 

if ((n = al->n) <= 0) return 0; 

at = a1-.>at; 
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ra = al->ra; 

d de = al->derivs; 

0,; 

xdataf=ra [0]; / /input :x; as the fix-st variable 

ydataf=r'a [1J; 

zdataf=ra [2] ; 

1 t (:;z:dataf::>",O && zdataf<50) { 

windU[O] =10; 

windV[OJ=10;) 

else if (zdata£>=50 &&. zdat.ai<lOO) { 

windU [OJ =-10; 

windV[OJ =10;} 

else if (zdataf>=100 && zdataf<150) { 

windU[O] =10; 

windV[O] =-10;} 

else if (zdataf>=150 && zdatat<=300) { 

windU [OJ =0; 

windV[OJ"- 10;) 

else 

printf("out of bound, the limit is 0-300 in zdataf"); 

return windY [0] ; 

void funcadd(AmplExports *ae) { 

I * Insert calls on addfunc here. ... / 

1* Arg J, called argtype, can be 0 or 1: 

(1 ==:> force all arguments to be numeric 

1 ==:> pass both symbolic and numeric arguments. 

ALg 4. called nargs, is int.erpLetted as follows: 

o ==::> the function has exactly nargs arguments 

-1 ==::> the function has - (nargs+l) arguments 

Arg 5, funcinfo, is passed to the functions in struct argllst; 

it is not used in these examples, so we just pass 0, 

, / 
addfunc("uWind", (ufunc*)uWind, 1, -1,0); 

addfunc("vWind", (ufunc*)vWind, 1, -1,0) i 
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APPENDIX VI 

MATLAB program for generating ODE45 trajectories 

% By weizhong Zhang under directions of Dr Jerry E Marsden 

%- To use MATLAB 00E45 (Ordinary 01 fferential Equat ion Solve:):) to 

% reintegrate the t.rajectory 

% Derive the equatiuns of motion for an underwater glider cc.mt:rolled 

% by gyroscopiC' forces, put optimal control input from DMOC or NTG 

% into the equdtlOrlS of motion as fixed control input. , trlen reintegrate 

% the trajectory using ode45 to c:her:k the DMOC and NTG solutions 

% Cost tunet ion 

% Equatlons of motion 

% \ddot{x}= \t.au* (\dot{YI v) + \dot{u} (1) 

\ddot{y}= \tau*(\dot{x)-ul + \dot{v} (2) 

% Inltial Conditions 

'xI01.l0, yIOI=O, \dot{x}lol= 10, \dot{y}lol=-10 

% Final Conditions 

% x(l)=15, y(1)=2 

% Current u=O lx, v=O 

% On the DMOC and NTG traJectories, there are 51 points, it means there are 

% 51 tau values, for every tau v<3-1uE, there is a cOITesponding x value, 

% thus y value. Thus, we can get a new sets of x, y values according to the 

% tau value 

% For OD£45 to solve the pl'oblem, the differential equation should be a 

% first older equation, it needs to define a function glider_motion_equ() 

"Ie; 

clear all; 

i",l; % tOI tau(i) 

p01=[10 -10 0 -lOJ; 

opt ions odeset (' RelTol' ,le-6, 'AbsTol' ,le-6) ; 

[t.l,plJ ode45(@glider_motion_equ_Ilt.g, [0:1/2000:i/50] ,pOl,options); 

('ODEntg/pl.txt', 'p1', '-as('il'); 

('ODEntg/tl txt','t1','-o.sC'ii'); 

% T=1/S1 for tau(2), the initial COTl(:htiort should be changed to the final 

% condition from last calculat.ion 

for i=2: SO 

var=strcat ('p' ,num2str(i-l)} j 

name"-strcat. (, /home/weizhong/Desktop/MatlabWork/ODEntg/' ,var, . txt' ) ; 

% Initial condition for the next ODE solution, t=i/SO, i=1:S0 

p_mid=load(name) ; 

[m, nJ ",size (p_mid) ; 
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p_init.=p_mid (!Il, :); % the last row fr(lm the last ODE solution 

%- Begin to generate next file 

tname=strcat (' t' ,num2str (il " txt' 1 ; 

pIldme=strcat('p' ,num2str(il,' .txt'); 

ftname=strcat (' ODEntg/' ,tnameJ ; 

fpname=strcat (' ODEntg/' ,pnamel ; 

(tname, pname] =ode4 S (@glider_motion_equ_ntg, [ (i 1) /50: 1/20 00: i / Sal ,p_ini t, options) i 

save (tpname, 'pname' I' ascii'l; 

save (ft.name, 'tname',' -ascii'); 

end 

function dp = glider_motioIl_equ_ntg(t,p) 

% This function def1I1Es t.he equations of motion for an underwat.er glider 

% p is a vector dehned as [x, dx/dt, y, dy/dt] 

%Equations of motion 

% \ddot{x)= \tau,..(\dot{y}-v) \dot{u} (1) 

% \ddot(y}= \tau,l\dot(x} u) + \dot(v} (2) 

% dp/dt==[O 

-0 1 0 -\tau; 

1; 

-0 l\tau \tau 0 O;lp 

TrNTGSimC'ur-o-zeros(51, 9); 

TrNTGSimCUI =load (' /home/welzhonq/oeskt Op/NTG/TraSlmCur /TrSlmCur st txt' 1 ; 

for] ==1 50 

if t>=(j 1)/50 && t'::=l/50 

i=j; 

end 

end 

tau (1) .. TrNTGSimCur (i, 9) ; 

dp =- zeros (size (p) ) i 

dpI1l=p(2) ; 

dp(2)=-O.1*p(2)-tau(i),..p(4) ; 

dp{31=p(4) ; 

dp(4) ",-0, 1,.. tau (i) *p (1) +tau(i) *p(2) ; 

% Plot trajectory frOm ODE 45 when the control input as the optima.l 

% solution from DMOC 

, p. Ix, dx/dt, y dy/dtJ 

clear all; 

for i=1:50 

var==strcat ('p' ,num2str (i) ) ; 

dname=strcat (' /home/weizhong/Desktop/Mat labWork/ODEdmoc/' ,var, ' . txt ') ; 

gname"'strr.at ( , /home/weizhong/oesktop/Mat labWork/ODEntg/' ,var I ' . txt' 1 i 

pd==load(dname) ; 

gd=load(gname) ; 

hold on; 

plot{pd(:,l) ,pd{;,]), '-r' ,'LineWidth' ,2); 

hold on; 

plot (gd(·, 1) ,gd(:, 3) I f -', 'LineWidth' ,2); 

end 

TrDMOCSimCur=zeros(51,6) ; 

TrNTGSimCur'==zeros(51, g); 

DMOCini=zeros (51,3) ; 

TrDMOCSlmCUl" -load ( '/home/welzhong/Desktop/OMOCnpsol/TestSlmCurrent/traJ st txt'); 

DMOcini t==load (' /home/wei zhong/Desktop!DMOCnpsol/TestSimCurrent/xini tdmoc_st. txt' ) ; 

TrNTGSimCur=load (' /home/we izhong/Desktop/NTG/TraSimCur /TrSimCUl:·_st. txt' ) i 

hold on iplot (TrOMOCsimCur ( : ,2) ,TrOMOCSimCur ( ; ,]) , 'g' , 'Linewidth' ,3) ; 

150 



hold OIl;plot (TrNTGSimCl1r (: ,2) ,Tr"NTGSimCl1r (: ,S) , ' b' , ' LineWidth' ,J) ; 

hold oniplot (DMOCinit (: ,2) ,DMOCirnt (: ,3) , , - -' , 'LinewJ.dth' ,2) ; 

h=legend('DMOC ODE45 Solution' ,'NTG UDE45 Solut.:i.on', 'DMOC Traj','NTG Traj','Init Guess',S); 

sEt(h,' Interpreter', 'none'); 

hold nn;plot(lO,O,'o'), 

hold on;plot (15,2, '*') ; 

title ('Traject.ory from DMOC, NTG verSuS thelr ODE 45 solutions',' Font Slze', 30); 

set (gCB., 'Font Size' ,30), xlabel (' X' , 'FontSize' ,30) ;ylabel (' Y' , 'FontSize' , 30) ; 

grid on, 
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APPENDIX VII 

Program to obtain real-time coordiates of a draganflyer 

II In order to get the real-time coordlnates of a draganflyer, 

/ I flY$;t I you TIeE!d to install Real Time SDK, your project must 

/ / include the Vrt SDKIOex. h header file and link wi th VytSDKIOex. 1 ib. 

II To lUlk with VrtSDKloex.lib, you need to "add existing item" in "PI'uject" 

/ I zwz. cpp m;;I.lTI proj ect f i Ie. 

#include "stdafx.h" 

#include <iostream::. 

#in(:lude IIVrtSDK10ex h" 

#include <string.h:> 

/ fusing namespace System; 

using namespace std; 

using std: :string; 

char *chIpAddress="192 168.1.230"; 

char *chErroy="Error Message"; 

int rnalrl() I /array<System: : String ::> args 

if (Vi(;onConne(;t (chlpAddress) '" ",true) { 

cout «"RTE is connected. \n" i 

else 

cOut«"RTE is not coIlnected\n"; 

it (Vic()nIsConnected () ",,,,t:rue) \ 

cout« "vi conIsConnected\n" ; 

II Get one f:rame of data 

bool param .. falsei 

ViconGetFrame (par.'amJ i Ilpar'am lS set to be false, this is for future features 

if (ViconGetFrame(param) ==true) { 

('()ut«"Get one frame of data\n"; 

else 

cout«"Cannot get data of frame"; 

int BodyCQunt"O; 

int *p_BodyCount &Bodycount; 

IIGet Number bodies 

VlconGetNumBodles (p BodyCQunt) , 

cout«"The number of bodies is: "«SodyCount«"\n" ; 

II Get Marker Number 

int MarkerCount; 

int *nMarkerCount=&MarkerCount; 

if (Vl(,c)nGetNumMar-ke:rs (nMarkerCount) ==true) { 

cout«"the number of markers is: "<:<:Markercount<:<:"\n"; 

II Get Marker Name 

int nMarkerNum[Sl",{O,l,2,J,4}; 110 based number of the marker 

string chName [5J; Ilcontain five marker names 

char *p_chName=&chName [OJ j 

cout<<:"old p_chName "«*p_chName«endl; 
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for (i~O;i++ii<5) { 

1 f (Vi C"onGetMarkerName (nMarkerNum [iJ ,p _chName++) ==true) { 

cout«"the marker number is:''<<nMarkerNum[il<<''\n''; 

cout«"the marker name IS: "«*p_chName«"\n";} 

else ( 

cout«"cannot retrieve marker names"«"\n"; 

cout«"the marker name is: "«*p_chName«"\n";} 

cout«"new p chName "«*p_("'hNamE'O«endl, 

char *a_pName=&chNamei //get marker name, why there is only one marker 

fluat aX=Oi float aY=O; 

t loat az ... o; long aV=O i 

float *a_rX=&aX; float rY=&aYi 

float *a_rz=&az; long *a_rV=&aV; 

Hi t nB()dyNum= 0 i / / zero based 

char chBName[lOl={'c','c'}; 

(Char *P _ chBName ... &chBName; 

If (VlconGetBociyName (nBodyNum, p chBName) --true) { 

cout«"The body number is: "«IlBodyNum«"\n"; 

cout«"The body name is "«chBName«"\n"; 

else{cout«"cannot retrieve body names"«"\n";} 

char *p_BName .. &chBName; //get body name from Vl(~onGetBc)dyName() 

float x=O;float y=O; 

float z=Oifloat rx=O; 

float rY=Oifloat 

float op_ bX=&x; 

float *p_bY=&y: 

float op_ bZ=&z; 

float *p_ax=&rx; 

float *p_aY=&ry; 

float *p_aZ=&rz; 

I z=O; 

if (ViconGetBodyAngleAxis (p_BName, p_bX, p_bY, p_bZ, P ~ aX, P _aY, p _az) ==true) { 

cout,,<"The name of the body lS:"«cchBName«"\n"; 

C'out«"The x of the body is:"«x«"\n"; 

cout,,<"The y of the body is:''<<y<<''\n''; 

cout«"The z of the body is:"«z«"\n"; 

cout«"The rx of the body "«rx«"\n"; 

cout«!lThe ry of the body "«ry«"\n"; 

cOllt«"The rz of the body IS:"«rz«"\n"; 

else { 

cout«"cannot get body informatIOn. "«"\n";} 

/ / 0/ 

/ /NOW you need to write a p:rogram to send commands to the draganflyer through PCTx 

:retu:rn 0; 

153 



CURRICULUM VITAE 

A. CONTACT INFORMATION 

WEIZHONG ZHANG 

Email:greatzwz@hotmail.com 
Phone:0-502-852-0409 (lab) 
778 David Fairleigh Ct, #8 

Louisville, Kentucky, 40217 USA. 

B. EDUCATION 

University of Louisville, Louisville, USA 
PhD., Electrical & Computer Engineering, October, 2009 

• Dissertation Topic: "Optimal Trajectory Generation with NTG versus 
DMOCApplication to an underwater glider and a JPL aerobot", 

• CPA: 3.818 
• Advisor: Prof. Tamer Inanc, Ph.D 

Shanghai Jiaotong University, Shanghai, China 
M.5c., Control Theory and Control Engineering, March, 2005 

• Thesis Topic: "'Research on the measurement and control of the main 
parameters in producing process of polymerized macromolecule' 

• Advisor: Prof. Hao Wang, Ph.D 

Harbin Engineering University, Harbin, China 
B.5c., Electrical Engineering and Automation, July, 2002 

C. RESEARCH EXPERIENCE 

University of Louisville, USA 
• Optimal Trajectory Generation for a NASA-JPL aerobot with NTGMay 

2008- May 2009 
In this project, a new aerobot model with consideration of aerodynamics 
is proposed, optimal trajectories with NTC are generated to shown the 
solutions are satisfied with the energy and time concerns. 

154 



• Comparisons between NTG and DMOC Jan, 2008 - Nov, 2008 
The project focused on theoretic and practical comparisons between two 
state of the art optimal trajectory generation methods. NTG is based on B
spline, nonlinear programming and differential flatness while DMOC is 
dependent on the direct discretization of Lagrange-d' Alembert principle. 
The pros and cons of both two methods are clarified with application to 
an underwater glider and a JPL aerobot. 

• Optimal trajectory generation for a glider in time varying 2D B-spline 
ocean current Jan 2007- Jan 2008 
The ocean current is modeled as time-varying 2D B-spline functions with 
available sampled ocean current data, minimizing-energy trajectories gen
erated by NTG both for kinematic and dynamic glider are shown consis
tent with Lagrange Cohere Structures. 

Shanghai Jiaotong University, China 
• A New Real-time Method of Measuring PAE Polymerization Degree 

Jan, 2003 - Oct, 2004 
A new real-time method for measuring one polymer'S polymerization de
grees is proposed, the detecting error is less than 3% compared with the 
off-line chemical time-delay analysis technique. This method can gen
erate the polymer degrees by measuring a few easily-obtained parame
ters such as flow, temperature and pressures from commercially avail
able instruments. This method is patented and used in Chemical plants 
in China. 

D. JOURNAL PUBLICATIONS 

1. Weizhong Zhang, Tamer Inanc, Sina Ober-Blobaum and Jerrold E. Mars
den, "Optimal Trajectory Generation in DMOC versus NTG: Application 
to a Glider," will be submitted to one journaL 

2. Weizhong Zhang, Tamer Inanc, Alberto Elfes, "Energy Efficient Trajec
tory Generation for the JPL Aerobot Based on its Decoupled Dynamics", 
will be submitted to Journal of Guidance, Control, And Dynamics 

3. Travis Riggs, Tamer Inanc,Weizhong Zhang, "The VofL Autonomous 
Mobile Robotics Systems Testbed," accepted to IEEE Transactions on 
Control Systems Technology, Dec, 2008. 

4. Weizhong Zhang, Hao Wang, "Real-time Detecting to Estimate the Av
erage Polymerization Degree of PAE,"Control and Instruments in Chemical 
Industry, 2004 VoL31 No.6 P.51-53. 

E. CONFERENCE PUBLICATIONS 

1. Weizhong Zhang, Tamer Inanc, Jerrold E. Marsden, "A Tutorial for Ap
plying DMOC to Solve Optimization Control Problems," submitted to 
the 2010 American Control Conference, Maryland, Jun 30- Ju12, 2010. 

2. Weizhong Zhang, Tamer Inanc, Jerrold E. Marsden, "DMOC Approach 
of Real-Time Trajectory Generation for Mechanical Systems,"in the Proc. 
of 10th International Conference on Control, Automation, Robotics and 

155 



Vision, 17- 20 December 2008, Hanoi, Vietnam. 
3. Weizhong Zhang, Tamer Inanc, Sina Ober B16baum and Jerrold E. Mars

den, "Optimal Trajectory Generation for a Dynamic Glider in Ocean Flows 
Modeled by 3D B-Spline Functions," in the Proc. of the 2008 IEEE Inter
national Conference on Robotics and Automation (ICRA08), Pasadena, 
California, Decl9-23,2008. 

4. Travis A Riggs, Weizhong Zhang, Tamer Inanc, "The UofL Autonomous 
Mobile Robotics Systems Testbed," in the Proc of 47th IEEE Conference 
on Decision and Control (December 2008). 

F. HONORS AND AWARDS 

1. ICRA 2008 Student Travel Award, May 2008. 

2. University Fellowship, University of Louisville, 2005-2007. 

3. University of Louisville International Travel Award, Dec 2008 

4. UofL Graduate Student Council Travel Award, May 2008 

5. UofL NASA-JPL Research ASSistantship, 2008.5-2009.10 

6. UofL ECE Teaching Assistantship, 2007.9-2008.5 

G. SERVICE 

• Commissioner, Committee on Diversity and Race Equality, University of 
Louisville, 2007.9-2008.9. 

• Student Member, IEEE Control Systems, Power Engineering, Robotics 
and Automation Society, 2005.9- Present. 

• Co-Chair, Biologically Inspired Robotic in 2008 International Conference 
on Robotics and Automation, 2008.12. 

• President,UofL Chinese Students and Scholars Association, 2006-2007. 

• Vice President, UofL Chinese Students and Scholars Association, 2005-
2006. 

156 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2009

	Optimal trajectory generation with DMOC versus NTG : application to an underwater glider and a JPL aerobot.
	Weizhong Zhang
	Recommended Citation


	tmp.1423685735.pdf.aKzym

