
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2009

Optimal trajectory generation with DMOC versus
NTG : application to an underwater glider and a
JPL aerobot.
Weizhong Zhang
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Zhang, Weizhong, "Optimal trajectory generation with DMOC versus NTG : application to an underwater glider and a JPL aerobot."
(2009). Electronic Theses and Dissertations. Paper 1633.
https://doi.org/10.18297/etd/1633

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1633
mailto:thinkir@louisville.edu

OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS
NTG: APPLICATION TO AN UNDERWATER GLIDER AND A JPL

AEROBOT

By

Weizhong Zhang
B.5c. 2002, Electrical Engineering and Automation, Harbing Engineering

University
M.5c. 2005, Control Theory and Control Engineering, Shanghai Jiaotong

University

A Dissertation
Submitted to the Faculty of the

Graduate School of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Louisville

Louisville, Kentucky

December 2009

OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS
NTG: APPLICATION TO AN UNDERWATER GLIDER AND A JPL

AERO BOT

By

Weizhong Zhang
BSc. 2002, Electrical Engineering and Automation, Harbing Engineering

University
MSc. 2005, Control Theory and Control Engineering, Shanghai Jiaotong

University

A Dissertation Approved on

by the Following Reading and Examination Committee:

Tamer Inanc, Ph.D., Dissertation Director

Joseph D. Cole, Ph.D.

Ibrahim N. Imam, PhD.

Jerrold E. Marsden, Ph. D.

Jacek M. Zurada, PhD.

ii

DEDICATION

This dissertation is dedicated to

my parents Zaiming Zhang and Xiaoya Qian, whose silent love and support

make me to be what I am today.

III

ACKNOWLEDGMENTS

My deepest gratitude goes to my advisor Dr. Tamer Inanc. I am a lucky

student to have had the opportunity to meet Dr. Tamer Inanc. He provides me all

he can to help me to grow as a Ph.D. student. Carefully reading my sometimes

rash paper manuscripts, pointing out possible research directions, helping me to

avoid unnecessary obstacles in research projects. All he did for me as an advisor

will have a lasting impact on me wherever my career path takes me. The training

and guidance I received in his directions will be also a valuable asset to assist me

to solve different practical problems in the future.

I am so fortunate that Dr. Jerrold E. Marsden from Caltech could take the

time to be one of my Ph.D. committee members. During my past projects, his in

sights and acuteness were shown to me in how research can be done with complete

considerations including right directions to solve problems. I thank Dr. Sina Ober

Bl6baum from Caltech, Dr. Alberto Elfes from JPL for offering me the research

collaboration experience which enhances my ability to solve problems. Whole

heartedly, I thank Dr. Jacek M. Zurada who was the Chair of the ECE department

when I came to VofL. Without his recruiting me as a graduate student to V of L.

I may have ended working as an engineer in Shanghai, and I may have chosen a

totally different career path from what I am today. The growth and improvement

in my ability and power are obvious during the Ph.D. study. I am so glad that I

had this opportunity to come here. Gratitude goes to Dr. Joseph D. Cole and Dr.

Ibrahim N. Imam for serving in my committee. I attended Dr. Cole's digital control

class, and he is always ready to help me and give me some practical suggestions

to enhance my knowledge and expertise in this specific field.

In conclusion, V of L as a fast-growing university in academics, is a very nice

iv

place in which to study and live. I personally have the chance to go to President Dr.

James R. Ramsey's home to enjoy his family's courtesy. I thank Dr. Ramsey and

Provost Shirley Willihnganz's leadership, all the faculty and staff members in our

university are so nice and I am feeling welcome everywhere. Our department's Ph.

D. Program Secretary Lisa Bell is always helping me whenever I have questions or

problems. My friends at U of L, Sara, Elom, Travis, Dr. Dongqing Chen, Lijun

Zhang, Qiang Ao, Liang Yang, Zhiyong Zhang, Gang Zhao, Yinan Cui and Hui

Wang and so on helped me during the study. All others not mentioned here, thank

you all for the help and kindness.

At last but not the least, I am thankful for the University of Louisville Fel

lowship, EeE teaching assistantship, and KY-NASA EPSCoR (contract WKURF

596855-08-02) for supporting me throughout my years of study at U of L.

v

ABSTRACT

OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS NTG:

APPLICATION TO AN UNDERWATER GLIDER AND A JPL AEROBOT

Weizhong Zhang

October 5, 2009

Optimal trajectory generation is an essential part for robotic explorers to execute

the total exploration of deep oceans or outer space planets while curiosity of hu

man and technology advancements of society both require robots to search for

unknown territories efficiently and safely.

As one of state-of-the-art optimal trajectory generation methodologies, Non

linear Trajectory Generation (NTG) combines with B-spline, nonlinear program

ming, differential flatness technique to generate optimal trajectories for modelled

mechanical systems. While Discrete Mechanics and Optimal Control (DMOC) is

a newly proposed optimal control method for mechanical systems, it is based on

direct discretization of Lagrange-d' Alembert principle. In this dissertation, NTG

is utilized to generate trajectories for an underwater glider with a 3D B-spline

ocean current model. The optimal trajectories are corresponding well with the

Lagrangian Coherent Structures (LCS). Then NTG is utilized to generate 3D op

portunistic trajectories for a JPL (Jet Propulsion Laboratory) Aerobot by taking ad

vantage of wind velocity. Since both DMOC and NTG are methods which can

generate optimal trajectories for mechanical systems, their differences in theory

and application are investigated. In a simple ocean current example and a more

complex ocean current model, DMOC with discrete Euler-Lagrange constraints

vi

generates local optimal solutions with different initial guesses while NTG is also

generating similar solutions with more computation time and comparable energy

consumption. DMOC is much easier to implement than NTG because in order

to generate good solutions in NTG, its variables need to be correctly defined as

B-spline variables with rightly-chosen orders.

Finally, the MARIT (Multiple Air Robotics Indoor Testbed) is established

with a Vicon 8i motion capture system. Six Mcam 2 cameras connected with a

datastation are able to track real-time coordinates of a draganflyer helicopter. This

motion capture system establishes a good foundation for future NTG and DMOC

algorithms verifications.

vii

~-~--.~---- .. --~

TABLE OF CONTENTS

DEDICATION

ACKNOWLEDGMENTS.

ABSTRACT ...

LIST OF TABLES

LIST OF FIGURES.

CHAPTER

I. INTRODUCTION

A. Motivation..

B. Literature Review.

C. NTG and DMOC .

D. Dissertation Contributions

E. Dissertation Outline

II. GLIDER TRAJECTORY GENERATION WITH NTG

iii

v

vii

xii

xvi

1

1

5

8

9

10

13

A. Problem Definition 13

B. Glider Trajectory Generation 14

C. Ocean Current Model 16
1. 2D B~spline Ocean Flows Model 16
2. 3D B-spline Ocean Flows Model 17

D. Nonlinear Trajectory Generation 20
1. Cost Function 20
2. Constraints 21

E. Optimal Control of a Kinematical Glider 21
1. NTG Solution for 3D B-spline Ocean Flows Model 22
2. Comparison in the 2D AND 3D B-spline Ocean Current

Models 24
a. Trajectory to Minimize the Energy Only. . . 24
b. Trajectory to Minimize the Energy and Time 25

viii

------------~---- -----~-

F. Optimal Control of a Dynamical Glider
1. Cost Function
2. Constraints
3. NTG Solutions for the Dynamic Glider

G. Animation of Glider and Ocean Current.

H. Summary

III. AEROBOT TRAJECTORY GENERATION WITH NTG

A. NASA-JPL Aerobot

B. Euler-Lagrange Based Aerobot Trajectories
1. Euler-Lagrange Equations.
2. Wind Profile.
3. Problem Formulation . . .
4. Simulated 3D Trajectory . .

C. State Space Model Based Trajectories.
1. Problem Formulation ..
2. Simulated 3D Trajectories

D. Summary

IV. TRAJECTORY GENERATION WITH DMOC

A. DMOC Methodology .

B. DMOC Tutorial
1. IPOPT
2. AMPL
3. Implementation Details
4. An Application Example

C. Summary

V. COMPARISON OF DMOC AND NTG

A. Discrete Mechanics and Optimal Control
1. Discrete Cost Function.
2. Discrete Lagrange-d' Alembert Principle

B. Nonlinear Trajectory Generation
1. Problem Formulation
2. Procedure in NTG

C. DMOC versus NTG
1. A Glider in the Simple Current Model.

a. Problem Formulation in DMOC
b. Problem Definition in NTG
c. Comparisons

IX

27
27
28
29

31

31

34

34

38
39
42
43
44

47
51
52

55

56

56

58
59
61
62
65

68

69

69
70
70

71
71
73

73
74
74
77
80

D. A Glider in the B-spline Ocean Model

E. Hovercraft Example

F. Summary

VI. THE UOFL MARIT TESTBED

A. The MARIT Testbed

B. Vicon Vision System

C. Real-Time Application

D. Summary

VII. CONCLUSION AND FUTURE WORK .

A. Conclusion .

B. Future Work .

REFERENCES
APPENDIX

I. NOMENCLATURE

II. NTG program for a glider in a B-spline ocean model

III. NTG program for a JPL Aerobot

IV. DMOC program for a glider in a B-spline ocean model .

v. DMOC program for a JPL Aerobot

VI. MATLAB program for generating ODE45 trajectories.

VII. Program to obtain real-time coordiates of a draganflyer

CURRICULUM VITAE

A. CONTACT INFORMATION

B. EDUCATION

C. RESEARCH EXPERIENCE

D. JOURNAL PUBLICATIONS

E. CONFERENCE PUBLICATIONS.

x

90

93

96

98

98

98

99

.102

· 105

.105

· 106

· 114

· 115

. . 116

· 131

· 141

· 145

· 149

· 152

· 154

· 154

· 154

· 154

· 155

.. 155

F. HONORS AND AWARDS

G. SERVICE

xi

. 156

. 156

LIST OF TABLES

TABLE PAGE

1. A kinematical glider in a 3D B-spline ocean current model 24

2. A kinematical glider in the 3D B-spline ocean current model versus
the 2D model. 26

3. A dynamical glider in the 3D B-spline ocean current model 30

4. 3D trajectories generated by NTG for the Euler-Lagrange based
Aerobot , 47

5. 3D trajectories generated by NTG for the state-space based Aerobot 55

6. DMOC solutions for a dynamical glider in the 3D B-spline current
model. 67

7. DMOC vs. NTG for a glider in a simple ocean current model 81

8. DMOC solutions with different intervals with the same initial guess
(Guess 3) 85

9. DMOC solutions in NTG constraints versus DMOC Constraints
(EuX) , 86

10. DMOC solutions in NTG constraints versus DMOC constraints (Eu Y) 86

11. DMOC vs. NTG for a glider in a B-spline ocean model. 93

12. DMOC vs. NTG for a hovercraft trajectory. 96

xii

LIST OF FIGURES

FIGURE PAGE

1. The ocean floor survey by NOAA [1]. 2

2. The Mars Rover by NASA [2]. 4

3. Surveying Mars by an Aerobot [3]. 4

4. The Slocum glider [4] 15

5. The ocean current data and the 20 B-spline model for time t=10
and 13 (hours). .. 17

6. The ocean current data and the 3D B-spline model for time t=lO
and 13 (hours). .. 18

7. The ocean current data and the 3D B-spline model for u(x,y,t) when
x is fixed at -122.3061. .. 19

8. The ocean current data and the 3D B-spline model for v(x,y,t) when
x is fixed at -122.3061. .. 19

9. Trajectories of the kinematical glider in the 3D ocean current model. 23

10. Speed of the kinematical glider in the 3D ocean current model. . .. 23

11. The kinematical glider minimizing-energy trajectories in the 3D
and 20 ocean current models. 25

12. A kinematical glider minimizing-energy-and-time trajectories in
the 3D and 2D ocean current models. 26

13. Trajectories of a dynamical glider in the 3D ocean current model. . 29

14. Speed of the dynamical glider in the 3D ocean current model. .. 29

15. Orientation of the dynamical glider in the 3D ocean current model. 30

xiii

16. The figure shows the correspondence with the optimal trajectories
shown in Figure 11 and an LCS. Note that the red and pink in the
figures near the LCS represents the location of the AUVs while the
blue represents the final target location. 32

17. The figure shows the correspondence with the optimal trajectories
shown in Figure 13 and an LCS. Note that the red and pink in the
figures near the LCS represents the location of the AUVs while the
blue represents the final target location. 32

18. An artists view of an Aerobot exploring a planet [5]. 36

19. A JPL Aerobot for exploration of Titan and Venus [5]. 36

20. The Euler-Lagrange based Aerobot controls. 38

21. The wind profile for the state-space based Aerobot. 43

22. The minimizing-energy trajectory generated by NTG for the Aerobot. 45

23. The control input T for the minimizing-energy trajectory. 45

24. The pitch angle ~) for the minimizing-energy trajectory. . 46

25. The minimizing-time trajectory generated by NTG for the Aerobot. 46

26. The control input T for the minimizing-time trajectory .. 46

27. The pitch angle (,) for the minimizing-time trajectory. 47

28. The state-space based Aerobot controls [6] 48

29. The wind profile for the state-space based Aerobot. 50

30. The minimizing-energy trajectory for the state-space based Aerobot. 52

31. The elevator deflection 5, and the thrust demand bT for Figure 30 53

32. The elevator deflection 5" and the thrust demand 51' for Figure 30 53

33. The minimizing-time trajectory for the state-space based Aerobot 54

34. The elevator deflection bF and the thrust demand 5T for Figure 33 54

35. The elevator deflection 6" and the thrust demand 6,. for Figure 33 55

36. A DMOC procedure to solve an optimization problem. 59

xiv

37. Software requirements for IPOPT, where ALS is referred to AMPL
Solver Library, BLAS represents Basic Linear Algebra Subroutines,
LAPACK means Linear Algebra PACKage, one Liner solver for in
definite matrices can be MA27, MA57 or other solvers, the details
is described in [7]. 60

38. Dynamical glider trajectories in the 3D B-spline current model. . 67

39. The DMOC solution when the initial guess is a straight line. .. 77

40. The control input T in DMOC when the initial guess is a straight line. 78

41. The DMOC trajectory properties when the initial guess is a straight
line. 78

42. The minimizing-energy trajectory from NTC when the initial guess
is a straight line. .. 80

43. The control input T in NTC when the initial guess is a straight line. 81

44. The NTC optimal trajectory properties when the initial guess is a
straight line.. .. 81

45. The trajectory from DMOC versus the one from NTC when the
initial guess is a straight line. 82

46. The trajectory from DMOC when initial guess changes. 82

47. The trajectory from NTC when initial guess changes. . 83

48. Trajectory from DMOC versus the one from NTC when initial
guess changes. .. 83

49. Trajectories from DMOC versus the ones from NTC when intervals
are changing. 87

50. Trajectories from DMOC in details when intervals are changing. 87

51. Trajectories from DMOC versus NTC with no current. 88

52. Trajectories from DMOC and NTC versus Matlab ODE45 solutions. 89

53. Trajectory from DMOC when the final velocity is fixed as O. . . 90

54. The 3D ocean current B-spline model u(x,y,t) at t=13 hour [8]. . 91

xv

55. The 3D ocean current B-spline model v(x,y,t) at t=13 hour [8]. . 91

56. DMOC solutions in the 3D ocean current B-spline model. 92

57. NTC solutions in the 3D ocean current B-spline model. 92

58. Hovercraft [9]

59. Hovercraft trajectory from DMOC and NTG.

60. The control input for the trajectories shown in Figure 59.

61. A Mcam 2 camera in the Vicon Motion Capture System.

62. The datastation in the Vicon Motion Capture System. .

....... 94

95

96

99

.100

63. A camera interface unit in the Vicon Motion Capture System. . . 100

64. The workstation in the Vicon Motion Capture System.

65. The Vicon Motion Capture System. . . .

. 101

. 102

66. The Vic on iQ 2.0 in 3D live work space. . 103

67. The markers are tracked in the Vicon Motion Capture System. . 103

68. Real-time coordinates output in the Vicon Motion Capture System. 104

xvi

CHAPTER I

INTRODUCTION

This chapter provides a general introduction and motivation to optimal tra

jectory generation for unmanned vehicles. Related literature review in order to

highlight some of the past development is given as well. Finally, contribution and

organization of the dissertation is presented.

A. Motivation

Curiosity and exploration, question and action appear in every step of hu

man civilization history. The past and ongoing centuries witness that the world

is becoming smaller and smaller due to technical advancements in transportation

and communication. Exploration fields of man have expanded from tribes, coun

ties to countries, continents and even to deep ocean, and outer space.

On the Earth where we live, more than seventy percent of surface is covered

by ocean, and many parts of the ocean have not been explored and studied in

details. Some questions remain to be answered. Are there any kind of sources

in the ocean for future renewable energy? Can storms be predicted by studying

the behavior of ocean? Manned vehicles can help people to find some answers.

However, considering the cost and the potential danger in deep sea, a better option

would be to utilize unmanned autonomous robotic explorers. These vehicles will

be convenient even if not necessary tools for assisting scientists to investigate these

kind of problems, to which part of solutions will have a huge positive impact on

the world.

An Autonomous Underwater Vehicle (AUV) known as a glider plays an

important role as one of robotic explorers for ocean research. The glider offers an

1

FIGURE 1-The ocean floor survey by NOAA [1].

attractive approach for gathering data in ocean due to its relatively low cost and

high sustainability. As shown in Figure 1 by NOAA (National Oceanic and At

mosphere Administration), scientists and engineers are deploying gliders for data

collection. As another example of robotic explorer application, the Autonomous

Ocean Sampling Network (AOSN) [10] project, [11], [12], [13] aims to advance the

ability to observe and predict the ocean by bringing together sophisticated new

robotic vehicles (gliders) with advanced ocean models. In the AOSN project, two

types of gliders are employed, which are the Slocum [4], [14] and the Spray [15] .

The gliders are designed to collect data autonomously. The efficiency and sustain

ability of the glider operation are important considerations for the control of the

glider. Therefore, the ability to quickly determine the most efficient trajectory for

the glider is important [11].

Besides deep ocean on Earth, which is just one planet in the cosmos, most

spaces outside the planet or even the solar system are also mystical to humans.

People started to explore space long time ago, mostly by human vision or by sim-

2

pIe telescopes which appeared in 1608 [16]. For far beyond the limit of human

vision and reachability of simple devices, what philosophers, scientists or ordi

nary people did most those days were imagination [17]. For instance, just before

the Apollo 11 landed on the moon [18] in 1969, no one knew what characteristics

the moon actually had. Many myths and stories reflected the imagination of peo

ple. Today, with years of developments in technology and science, people have

the ability as well as determination to explore outer space. One might compare

the current outer space exploration to the exploration of the America by the first

generation of immigrants. When the pilgrims were not sure about whether they

could survive to cross the Atlantic ocean, they had the courage and determination

to explore the unknown. This kind of courage and determination brought about

this prosperous new land. Who knows that Mars shown in Figure 2 and Figure 3

or other planets will not become new human territories for generations to come?

Big achievements need to be made step by step. Using robotic explorers is the safe

and cost-effective initial step for exploration. The robot rovers Spirit and Opportu

nity have successfully landed on the Mars. The next generation of robotic explorer

such as the JPL-Aerobot can overcome some weakness of the rovers, for example,

it will not get stuck by rocks or mountains, and it can explore more regions.

Both for a robotic explorer in ocean or in space exploration, trajectory gener

ation is an essential part of its total mission planning. With optimal trajectory the

exploration will become more sustainable and more efficient. The important issue

is how to develop and apply an efficient trajectory generation method.

In this dissertation Nonlinear Trajectory Generation (NTG) and Discrete

Mechanics and Optimal Control (DMOC) as the two state-of-the-art methodolo

gies to generate optimal trajectory are investigated in theory and in application to

an underwater glider and a JPL Aerobot. A specific kind of optimal trajectory gen

eration problems that takes advantage of surrounding circumstances, called "Op

portunistic Trajectory Generation". For the glider, ocean current flows are mod

elled as B-spline functions, trajectories are generated both for a kinematic glider

3

FIGURE 2 - The Mars Rover by NASA [2].

FIGURE 3-Surveying Mars by an Aerobot [3].

4

and a dynamic one. The minimizing-energy trajectories are shown to correspond

well with the Lagrange Coherent Structures and their energy usages are efficient.

For a JPL Aerobot, NTG trajectories are generated both from the perspective of

Euler-Lagrange and from the state space model with decoupled longitudinal and

latitudinal dynamics. Then DMOC is introduced with a detailed theory explana

tion and an application procedure.

For analyzing and comparing NTG and DMOC an underwater glider is

utilized in both a simple ocean model and a complex B-spline ocean current model.

The cost functions and constraints in NTG are the same as the ones in DMOC while

the NTG ones have continuous Euler-Lagrange equations, DMOC ones have their

discrete forms. DMOC is shown to have less computation time than NTG with

the comparable energy cost. It is much easier for DMOC to model the problem

and generate solutions, while on NTG, its variables should be correctly defined

as B-spline functions with right orders. Finally, for the future research, a MABIT

(Multiple Air Robotics Indoor Testbed) testbed with Vicon 8i vision system is being

successfully established with the proposed program to track real-time coordinates

of draganflyers [19].

B. Literature Review

Optimal control as a research topic came into being in June 1696 when Pro

fessor Johann Bernoulli published his solution to the Brachistochrone ("shortest

time" in Greek) problem [20]. This problem as a challenge in 1696 caught the at

tention of giants like Newton, Leibniz, Tschirnhaus, I'Hopital and Jakob Bernoulli

who published their solutions in May 1697. However this kind of problem is not

systematically solved. Only after years of development, in 1744, as a student of

Bernoulli, Euler gave a general procedure for writting down what later became

known as Euler's equations in his book "the Method of finding Plane Curves that

Show Some Property of Maximum and Minimum". About ten years later, La-

5

grange eliminated the tedium and need for geometrical insight in Euler's method

and attained the same solution by analysis alone. He derived the Euler-Lagrange

equation for the necessary first variation condition of optimum. The standard op

timization problem is shown in (1), its Euler-Lagrange equation is presented in

(2).

1
tf

minimize J = £(q(t), q(t), t)dt, subject to q(to) = A, q(tf) = B
to

(1)

d 8£ 8£
dt 8q 8q

(2)

The second variation as an additional necessary condition for a minimum

was done by Legendre (1752-1833). Legendre's condition for the scalar case is in

(3), while the Hessian matrice has to be nonnegative definite for the vector case.

(3)

Hamilton wrote Hamiltonian to simplify the previous Euler-Lagrange equa

tions. Around 1836, Hamilton and Jacobi showed that the partial derivatives of

the performance index with respect to each parameter of a family of extremely

obeyed the Hamilton-Jacobi equation. This is the basis of Dynamic Programming

proposed by Bellman over 100 years later. Weierstrass derived the side condition

which can transform the minimization problem into Weierstrass's form, it is the

predecessor of the maximum principle [21]. In the middle of 20th century, optimal

control was basically developed due to the maximum principle by L. S. Pontrya

gin [22] and the dynamic programming method by R. Bellman [23]. Compared

to the maximal principle by Pontryagin, the method of dynamic programming

was developed for the needs of optimal control processes which are of a much

more general character than those which are described by systems of differential

equations. Therefore, the method of dynamic programming carries a more uni

versal character than the maximum principle, but it does not have the rigorous

logical basis but a heuristic method. Some assumptions are needed to derive Bell

man's equations which even in the simplest examples do not hold. In the 1960s

6

Kalman [21] et.al. showed that the MIMO (Multi Input and Multi Output) LQ

(Linear Quadratic) optimal control problem can be solved numerically and effi

ciently with a backward sweep of a matrix Ricatti equation. He introduced the

concept of state and control variables and proposed a compact vector-matrix nota

tion which became standard in optimal control. To solve optimal control problems

numerically, the paper [24] proposed that control states can be approximated by

values at a finite number of time points, the control history can be parametrized by

piecewise polynomials, and further this problem can be solved by a standard Non

linear Programming solver. The idea is quite similar to what NTG implements in

problem formulation. Nonlinear Trajectory Generation (NTG) is based on a com

bination of spline function (piecewise polynomials), nonlinear programming and

differential flatness. Discrete Mechanics and Optimal Control is based on direct

discretization of states and direct discretization of Lagrange-d' Alembert principle

which results into discrete Euler-Lagrange equation.

Optimal trajectory generation problem is one kind of optimal control prob

lems. Its applications vary from the control of various devices such as control of

linear system [25], and engine valves [26], to motion planning of robots [27] [28],

manipulator robots [29] [3~], humanoid robot [31], and trajectory tracking for boom

cranes [32]. Optimal trajectory generation for hypersonic vehicles as a research

topic was raised in [33], Philip D. Hattis and Richard K. Smolskis proposed a cal

culus of variations direct method of steepest descent to determine the trajectory

for hypersonic vehicles. The trajectory optimization algorithm is based on a gra

dient/ steepest descent technique for solving two pOint boundary value problems,

however this method has little hope of being realizable as a real-time algorithm.

To make the problem solvable in real-time, Nonlinear Trajectory Generation can

also exploit the possible differential flatness of the system to speed up the compu

tation time and parametering trajectory with B-spline [34] functions, while DMOC

efficiency is shown later impressive by directly discretizing Lagrange-d' Alembert

principle without first deriving equations of motion to generate optimal solutions.

7

Particularly, opportunistic [35] [36] [37] trajectory generation on which this dis

sertation focused is taking advantages of circumstances such as current or wind

velocities, to generate optimal trajectories for robotic explorers.

C. NTG and DMOC

In this section, NTG and DMOC as two different state-of-the-art method

ologies to solve optimal control problems for mechanic systems are introduced.

Milam [38] et al. developed NTG which is designed to generate real-time

trajectories. "Real-Time" means the method should generate a solution fast enough

for a real-time application. The optimal trajectory generation is generally con

cluded as a nonlinear programming problem. For nonliner programming, if the

problem scale is large and complex, it is not straightforward to get the solution

in real-time. Therefore, the real-time optimal trajectory generation is a challeng

ing task. As it is indicated in [38], some standard numerical solution of optimal

control problem cannot be implemented in real-time. NTG use the nonlinear ge

ometric control [39] techniques to solve the optimal control problem much faster

than the standard method. This technique can first exploit differential flatness [40]

of the system to reduce the complexity of the problem then use the collocation

method to solve the optimization problem. In NTG the variables are represented

in the format of B-spline 134] functions.

Discrete Mechanics and Optimal Control (DMOC) is developed by Jerrold

E. Marsden et. al., which is presented in [9]. Basically, the system states, con

trol forces, equality constraints are discretized based on the direct discretization

of the Lagrange-d' Alembert principle. The expected key advantages over tradi

tional methods are less energy consumption for system control purpose and more

robust to modelling errors [9]. After discretization, the resulted finite dimensional

nonlinear optimal control problem is also solved by the sequential quadratic pro

gramming (SQP) [41].

8

NTC and DMOC are two different approaches which can be utilized to solve

optimal trajectory generation problems of robotic explorers. The complete evalu

ation of differences between two methodologies is one of the main parts of this

dissertation.

D. Dissertation Contributions

This dissertation investigates two state-of-the-art optimal trajectory gener

ation methods NTC and DMOC, their theoretic and practical differences are pre

sented with applications to an underwater glider and a JPL aerobot. The contribu

tions of this dissertation work are listed in the following:

First, optimal trajectory generation for an underwater glider is presented,

in this part, ocean flows are modelled by 3D B-spline functions since NTC need

derivatives of variables in its problem formulation. Both for a kinematic and dy

namic glider, trajectories with NTC are successfully obtained, which are corre

sponding well with Lagrangian Coherent Structures (LCS). They are shown by

animations that LCS and NTC can generate optimal trajectories for a glider to save

the energy with known ocean current velocities.

Secondly, for a robotic explorer in the space, a JPL Aerobot is modelled with

consideration of its aerodynamics, and constraints as Euler-Lagrange equations.

NTC successfully generates 3D optimal trajectories for minimizing energy and

minimizing time in a defined wind field. Furthermore, a decoupled longitudinal

and lateral dynamics of an Aerobot state-space model is also utilized to generate

optimal trajectories. The solutions are energy efficient from NTG.

Thirdly, Discrete Mechanics and Optimal Control as a methodology for solv

ing optimal control problems for mechanic systems are presented with its adaption

to solve the trajectory generation problems. The problem is modelled by AMPL,

the solver is chosen as IPOPT, this dissertation presents a detailed procedure to use

the available tools with DMOC to solve optimal trajectory generation problems for

9

mechanical systems.

Fourthly, DMOC and NTG are compared with a glider in a simple ocean

current model and a B-spline ocean current model. In a simple ocean current ex

ample, DMOC with discrete Euler-Lagrange constraints generates local optimal

solutions with different initial guesses while NTG is also generating similar solu

tions with more computation time and comparable energy consumption. Further

in a more complex ocean current model, optimal solutions from DMOC also cost

similar energy and computation time than the ones from NTG. The cost functions

are the integral of gyroscopic forces over time, nonlinear constraints are direct dis

crete Euler-Lagrange equations for DMOC, continuous ones for NTG.

Finally, an Unmanned Air Vehicle 3D testbed is preliminarily established in

our lab, a Vicon 8i motion capture system with 6 Vicon MCam 2 cameras is uti

lized in the system to track real-time coordinates of a draganflyer helicopter. A

c++ program is written to connect the real-time engine of the Vicon system with

the user program, the draganflyer with markers can be modelled as a rigid body,

the proposed program has the ability to retrieve the 6 DOF (Degree of Freedom) in

formation. It makes a good foundation to further utilize this testbed to test control

or planning algorithms such as NTG and DMOC for the UAVs.

E. Dissertation Outline

This dissertation consists of seven chapters, with seven appendices. The

dissertation is organized as follows.

1. Chapter I is the introductory part of the whole dissertation. The back

ground and motivation of optimal trajectory generation for ocean and

space exploration are introduced and discussed. A literature review is

provided to show the work in the context of optimal control research

history. Then, Nonlinear Trajectory Generation (NTG) and Discrete Me

chanics and Optimal Control (DMOC) as two optimal trajectory genera-

10

tion methodologies are introduced.

2. Chapter II is showing the work to generate optimal trajectory for an un

derwater glider with NTG. In this Chapter, ocean current data is mod

elled as B-spline functions, the minimizing-energy trajectories are shown

to corresponds with Lagrange Cohere Structures (lCS).

3. Chapter III generates opportunistic trajectories for a JPL Aerobot with

NTG. In this Chapter, wind profile data is modelled as layers, the aer

obot with simplified model from Euler-Lagrange perspective and with

state-space based model are both investigated. The control inputs are

easilyappliable. The minimizing-energy trajectories are shown to take

advantage of wind velocities more than the minimizing-time trajecto

ries. It is shown that energy-efficient trajectories can be generated based

on NTG methodology.

4. Chapter IV presents a new DMOC approach of real time trajectory gen

eration method. The detailed procedure is provided to use DMOC ap

proach with AMPL and IPOPT to solve optimal control problems for

mechanical systems. It is shown that user-defined functions can be in

volved to solve more complex problems in DMOC problem formulation.

5. Chapter V compares the DMOC trajectory generation method with the

NTG method with application to an underwater gl:lder both in a simple

ocean current model and a B-spline ocean current model. The results

show that DMOC is easy to implement, cost less computation time and

comparable energy cost than NTG.

6. Chapter VI describes the procedure to upgrade the U of L mobile robot

testbed to a 3D UAV (Unmanned Air Vehicle) testbed with a Vicon mo

tion capture system and draganflyer helicopters. It is shown that the

newly established UAV testbed can obtain 6 DOF information of a de

fined rigid body in real-time. It makes a good foundation to utilize this

testbed for future NTG and DMOC algorithms verifications experimen-

11

tally.

7. Chapter VII concludes the dissertation with clarifying the main contents

of this dissertation and directions for further research.

12

CHAPTERn

GLIDER TRAJECTORY GENERATION WITH NTG

A. Problem Definition

Optimal trajectory generation for a glider can be considered as one kind of

optimal control problems. Consider a general dynamical system [11] [8] which

includes a glider under investigation:

x(t) = f(x(t), u(t)) (4)

where x(t) is the state of the system and u(t) is a control input. For optimal control,

given a cost function of the form:

it!

J = <I>o(x(to), u(to), to) + L(x(t), u(t), t)dt + <I>f(x(tf), u(tf), tf)
to

(5)

It is suitable to choose u(t) for t E [to, tf] which minimizes J subject to constraints

of the form

Initial Lbo < wo(x(to), u(to), to) < ubo

Trajectory lbt < wt(x(t), u(t), t) < ubt (6)

Final lbf < W f(x(tf), u(tf), tf) < ubf

Notice that the cost function J is composed of an initial condition cost, <I>o(-), an

integral cost over the trajectory, L(·), and a final condition cost, <I> f (.). The con

straints are similarly partitioned. lb and ub represent lower and upper bounds, re

spectively. Cost (5) and (6) are standard in optimal control, and further explained

in [42] and [43]. An optimal solution for a specified problem is obtained generally

by nonlinear programming. After the optimal control problem with costs and con

straints are modelled, it can be expressed mathematically as nonlinear program':'

ming problem in which a solver is required. In NTG the nonlinear programming

13

solver is NPSOL [44] which is developed by Philip Gill et. al. NPSOL employs a

dense Sequential Quadratic Programming (SQP) [41] algorithm and the user must

supply an initial guess of the solution to the problem, and define subroutines that

evaluate cost and constraint functions. If the problem is large and sparse, MI

NOS [45] package should be used, since NPSOL treats all matrices as dense. If

there are not nonlinear constraints, gradients of the bound and linear constraints

are never recomputed, and NPSOL will function as a specialized algorithm for a

linearly constrained optimization problem. It can be arranged that the problem

functions are evaluated only at points that are feasible with respect to bounds and

linear constraints. NPSOL uses subroutines from the LSSOL [46] constrained lin

ear least squares package, which is distributed together with NPSOL.

B. Glider Trajectory Generation

Autonomous Underwater Vehicles (AUVs) including gliders are becoming

more and more popular [47L [48L [49]. For example, oil companies can use gliders

to make a detailed underwater map or search resources before they decide a next

step to exploit. Besides industry application, some research related projects also

need to use this kind of robotic explorer. The Autonomous Ocean Sampling Net

work II project (AOSN-II) [10L [SOL [IlL [12L [13] aims to advance the ability to

observe and predict the ocean by bringing together sophisticated new robotic ve

hicles (gliders) with advanced ocean models. In this project, two types of gliders

are employed, which are the SLOCUM [4L [14] and the SPRAY [15].

Gliders offer an attractive means for gathering data in the ocean because

they are relatively low cost and highly sustainable. For adaptive ocean sampling,

the gliders are often redirected throughout the ocean to areas of high uncertainty

or transient features of interest. Therefore the ability to quickly determine the most

efficient trajectory for a glider to take is desirable. It is also necessary to minimize

the glider energy usage in order to keep it autonomously operational for the great-

14

FIGURE 4- The Slocum glider [4].

est amount of time. The tradeoff for a glider's remarkable efficiency with the mod

est energy cost is a relatively low average speed for the vehicle. Typically, gliders

move around 40 (cml s) relative to the ambient water. However, the ambient water

can often move at speeds the same order of magnitude as the speed of the glider.

For instance, in Monterey Bay, CA, which was the location for the AOSN-II exper

iment, the surface currents average velocity is around 20 (cm/s), and it is typically

stronger outside the bay. Therefore it is advantageous, if not necessary, to make

use of ocean currents to help propel the gliders around the ocean for sustainable

missions.

This chapter is to extend the previously proposed method [11] for quickly

determining near optimal glider trajectories between two fixed points in the ocean

based on approximate ocean current data. It will show that optimal trajectories

computed using NTG corresponds to LCS obtained using the Direct Lyapunov

Exponent method [51]. There are two parts are tackled in this chapter. One is to

improve the previous analytical ocean flows model [11], which is required in the

NTG formulation, to a 3D model using B-spline functions. The other is to establish

a new dynamical model of the glider. Then, these models are used in the NTG to

find near optimal trajectories for the glider.

The ocean flows velocity data used for these computations was obtained

15

from High Frequency Radar stations measuring surface currents around the Mon

terey Bay, CA [52] and processed by Open-Boundary Modal Analysis [53] to smooth

the data and fill in the missing data points. In the NTG formulation [38], [11], the

costs and the constraints in terms of outputs and their derivatives need to be spec

ified. As will be seen in the following sections that ocean flows velocity field will

appear in the costs and constraints of the optimal control problem. Therefore, the

NTG method needs the derivatives of the velocity field with respect to the out

puts. Numerically computing these derivatives directly from the velocity data sets

can easily create convergence problems. Thus, it is better to use approximation

techniques to find a smooth analytical model for the data. For this, the B-spline

functions are employed, allowing straightforward computation of derivatives.

C. Ocean Current Model

1. 2D B-spline Ocean Flows Model

B-splines are commonly used in data approximation and calculation [34]. In

the previous work [11], ocean curr~nt flows are modeled using 2D B-spline func

tion as given below:

u(x,y)

v(x,y)

2::12:';=1 Bi,kuJx)Bj,kuy(y)aij

2:f=1 2:;=1 Bi,kvx (x) Bj,kvy (y)bij
(7)

where aij and bij represent coefficients of the B-spline function for u(x, y) and

v(x, y) which are components of the ocean currents in the x- and y-direction, re

spectively. Coordinates are chosen such that the x-axis is in the direction of in

creasing longitude and the y-axis in the direction of increasing latitude. Bi,k and

Bj,k represent B-spline basis functions for the x- and y- direction, respectively. The

orders of the polynomials were kux = kuy = kvx = kvy = 4 and the numbers of the

coefficients were m = p = 32 and n = r = 22.

The parametrizations given by (ILC.1), developed in the previous work [11],

16

". "' ~

a) u(x,y) model,t=10 b) v(x,y) model,t=10

J6' - ~-1216
366 ·121S

36~ """"""-- _ 1222 -122

y(lItIlUdI) 362 ·122 . lCI1Dngitude)

c) u(x,y) model,t=13 d) v(x,y) model,t=13

FIGURE 5- The ocean current data and the 2D B-spline model for time t=10 and
13 (hours).

do not incorporate the time dependence of the currents. The time dependence

of the velocity data was built into the NTG by assuming that the velocity fields

were constant over hourly intervals. For every hour a different ocean model was

calculated. Then, these models were used in a receding-horizon approach where at

every hour a new trajectory was calculated from the current location of the glider

to the final destination. Figure 5 shows u(x, y) and v(x, y) from ocean current data

and a 2D B-spline model at times t = 10 and t = 13 hours.

2. 3D B-spline Ocean Flows Model

Further in this section, the 2D ocean current flows model is extended to a

3D B-spline model incorporating the time dependence of the currents explicitly as

shown in (8).

17

'00

50

-50

-'00

"

~ ., o

-'- -20

...
"

JO' ~
" 21 6

-121 8 ". -m
~ -122.2

362 -122 4 lCt\orVlUde)

a) u(x,y,t) model,t=lO
30 B-SplineFllvs o.t. Poinls(t .'3)1orfUdel.f~

". ~-"'.
-12U1

-'22
~ -'222

, ..
36.2 -122 4 JC(~)

c) U(x,y,t) model,t=13

l ~l -
-' 00

- ,r, ~

"
20

~o

"

'" ~-1216
366 -12111

36 4 -........... _ -122.2 ·122

y(IMiIudej 36 2 -122 4 1C(1ongi1Ude)

b) v(x,y,t) model,t=10

'" ~"216 ~ . ~.

36~ _ _ 1222 . ,22

y(1I1itude) 362 -1224 II(longjIude)

d) v(x,y,t) model,t=13

FIGURE 6- The ocean current data and the 3D B-spline model for time t=lO and
13 (hours).

u(x,y,t)

v(x, y, t)

L:::l L:7=1 L:%=l Bi,kux (X) Bj,kuy (y)Bk ,kut (t)aijk

L:f=l L:;=l L:~= l Bi,kvx(x)Bj,kvy(y)Bk,kvJt)bijk
(8)

where aijk andbijk represent coefficients of B-spline for u and v,respectively.

Bi,k, Bj,k and Bk,k represent B-spline basis functions for the x- , y- and t- direction,

respectively. The orders of the polynomials used were kux = kuy = kvx = kvy =

kut = kvt = 4 and the numbers of the coefficients were m = p = 32, n = r = 22 and

0= s = 25.

The 3D B-spline ocean model has three input variables-longitude, latitude

and time. In order to visualize the model, the time is fixed as it is in 20 function.

The results in Figure 6 are similar with the 20 case results shown in Figure 5 as

expected.

Figure 7 and Figure 8 show the 3D B-spline ocean flows model changing

with time where x-direction is fixed at - 122.3061 (deg) for ease of visualization

purposes only.

18

30 B-Spl ine Fit fudata vs I(x is fixed to one point)

100

50

>. 0 >i :r
-SO

- 100
30

20 37

36.6
t(hour) o 36.5

y(latitude)

FIGURE 7 - The ocean current data and the 3D B-spline model for u(x,y,t) when x
is fixed at -122.3061.

50

>. -50
~

- 100

- l SO
30

30 a -Spline Fit fvdata vs t(x is fixed to one point)

20 37

10

t(hour) y(lati tude)

FIGURE 8-The ocean current data and the 3D B-spline model for v(x,y,t) when x
is fixed at -122.3061.

19

D. Nonlinear Trajectory Generation

Nonlinear Trajectory Generation (NTG) developed by Milam et al. [38], [44]

is designed to solve constrained nonlinear optimal control problems in real time.

The main advantage of NTG compared to other dynamic optimization methods is

that it can quickly provide sub-optimal solutions, which makes it very attractive

for real-time application. In addition, linear as well as nonlinear constraints and

cost functions can be defined in the problem formulation of NTG.

NTG is based on a combination of nonlinear control theory, spline theory

and sequential quadratic programming. With the optimal control problem formu

lation, characterization of trajectory space, and collocation points definition, NTG

transforms the optimal control problem into a Nonlinear Programming (NLP) prob

lem solved by NPSOL [44], a popular NLP solver, which uses Sequential Quadratic

Programming (SQP). The baseline NTG algorithm has been described extensively

in the literature [43], [38], [11], therefore in this section it is outlined briefly.

1. Cost Function

The cost function for this problem is a weighted sum of a time cost and an

energy cost as follows:

. dx
X=-

dT
. dy
y=

dT

(9)

(10)

Where Wt and Wu represent the weighting on the total mission time and en

ergy expenditure, respectively. Note that the T terms in the integral, representing

the unknown final mission time, and the integral bounds ranging from 0 to 1 are

20

both due to introducing time as a state variable in the NTG formation which is not

straight forward. This is explained in detail in [11].

2. Constraints

Constraint functions are given as [11]:

• (Linear) Initial Constraints:

-122.1780 - E(deg) :::; x(O) :::; -122.1780 + E(deg)

36.8557 - E(deg) :::; y(O) :::; 36.8557 + E(deg)

o :::; T :::; 48 hours

• (Linear) Final Constraints:

-122.2420 - E(deg) :::; x(T) :::; -122.2420 + E(deg)

36.6535 - E(deg) :::; y(T) :::; 36.6535 + E(deg)

• (Nonlinear) Trajectory Constraints:

1 ~ W,,;, (G~)' + G!)') S 1600

E. Optimal Control of a Kinematical Glider

The optimal control problem considered here is to find optimal glider tra

jectories, -in the case of time, or energy, or time and energy -, between two fixed

points in the ocean utilizing the NTG method. The same start and destination

points as in [11] are used for comparison:

(x(to), y(to))

(x(tj), y(t j))

(-122.178(deg),36.8557(deg))

(-122.242(deg) , 36.6535(deg))

21

(11)

In order to compare the 2D B-spline ocean flows model with the 3D B-spline

model, first the 2D kinematical glider model as in [11] considered:

i; V cose + u
(12)

y V sine + v

where V is the speed of the glider, e is the orientation of the glider, u(x, y, t) and

v(x, y, t) are the components of the ocean currents in the x and y direction, respec

tively.and V is a control input. The pair (u(x,y,t),v(x,y,t)) is referred to as the

(time-dependent) velocity field.

1. NTG Solution for 3D B-spline Ocean Flows Model

After the 3D B-spline ocean current flows model is applied in the NTG, sev

eral optimal trajectories of the kinematical glider are obtained. The output of NTG

is defined as the position sequence of the glider trajectory. The properties of the

trajectories are listed in TABLE 1. In this table, min E, min TE and min T repre

sent minimizing the energy, time and energy and time, respectively. Tf is the final

mission time for the glider to travel from the start point to the final point. Time

represents the actual running time of the NTG algorithm to find the (near) optimal

solution. Energy Cost is the energy of the glider to travel from start to final point

and it is calculated from

iT! ((dX)2 (dY)2) e = 0 dt - u + dt - v dt

The results are reasonable considering the purpose of the trajectories. The energy

cost is the maximal when the NTG only minimizes the time, and it is the least when

the NTG only minimizes the energy as expected.

The following Figure 9 shows the trajectories and the Figure 10 shows that

the constraints on the glider velocities are satisfied. In these figures, red, blue and

green lines correspond to the min E, min TE,and min T trajectories, respectively.

22

Trajectories of kinematical glider in 20 time varying ocean current model
37 r-----.-~--~------------------------~_,

36.9
min E

1f Wu=O.OO6, Wt=O
Tf=48.0 hours

_ 36.8

~
g>
'0
-; 36.7

~
~

36.6

Destination
x=- 122.2420

36.5 y=36.6535

36.4 L-____ ~ ____ -" ______ -'-____ ~ ______ ~ ____ ~___l
-122.3 -122.2 -122.1 -122 -121 .9 -1 21.8 -121 .7

l ongitude (degree)

FIGURE 9 - Trajectories of the kinematical glider in the 3D ocean current model.

Speeds of kinematical glider in 20 and time varying ocean current model
4

JI

-0.5 L-____ -'-____ ~ ____ ~ ____ ~~ ____ _'_ __ _____'
o 500 1000 1500 2000 2500 3000

Time (min)

FIGURE IO-Speed of the kinematical glider in the 3D ocean current model.

23

TABLE 1
A KINEMATICAL GLIDER IN A 3D B-SPLINE OCEAN CURRENT MODEL

In 3D model Tf(hrs) Time(s) Energy Cost(cm2 js)

minE 48.00 2.72 2.7538e4

minTE 39.38 1.43 9.0038e4

minT 22.60 0.5 1.320ge5

2. Comparison in the 2D AND 3D B-spline Ocean Current Models

In the following subsections, the trajectories of the kinematical glider found

using 2D and 3D B-spline ocean models are compared. These two types of ocean

current flows models are applied into NTG with the same kinematical glider model,

refer to (12), cost and constraint functions.

a. Trajectory to Minimize the Energy Only The 2D B-spline ocean current

model given by (II.C1), does not incorporate the time dependence of the currents

and it assumes that the ocean velocity fields are constant over hourly interval.

Therefore, for every hour a different ocean model was found. Then, optimal tra

jectories were found for each hour by updating the ocean models between the

current location of the glider after one hour (at time zero, this is the start point)

and the final desired destination. This is to be the receding-horizon approach [11].

This causes unnecessary running of the NTG algorithms many times. On the other

hand, the 3D B-spline ocean current model integrates the time into the ocean model

continuously by extending the B-spline parametrizations in time (as well as space).

Hence, for the 3D ocean current model, the ocean current is dynamically changing

with the time, and the total trajectory can be easily acquired by running the NTG

algori thm once.

Figure 11 shows optimal trajectories minimizing the energy by using two

different ocean flows models. The dotted line shows concatenated trajectories

found using 2D B-spline ocean model by running NTG algorithm several times,

once for every hour. The solid blue line shows the glider trajectory found using

24

Trajectory from 20 versus 20 plus time varying ocean current model(min E)
37 ,----~...:-~--_-_-_--...........

36.9

36.8
0;-

~
~
-; 36.7

~
j

36.6

Destination
x=-122.2420

36.5 y=36.6635

36.4'---~-~--~-~-~---'----.J

- 122.3 -122.2 - 122.1 - 122 - 121.9 -121 .8 -121.7
Longitude (degree)

FIGURE 11-The kinematical glider minimizing-energy trajectories in the 3D and
2D ocean current models.

the 3D B-spline ocean model.

The trajectory properties of kinematical glider in 3D ocean current model

and 2D model are listed in TABLE 2. In this table, parameters are same as in the

TABLE 1. Two set of values are given for min E and min TE . As it is indicated in

TABLE 2, trajectories found by 3D ocean models have less energy cost than the

ones found for the 2D ocean models. Specifically, for min E the energy cost for

3D is 2.7538e4 while it is 4.03ge5 for 2D case. Similar results are shown for min

TE trajectories. Another advantage of utilizing the 3D ocean models is to reduce

the computation of the optimal (or near optimal) trajectories. In detail, the total

execution time of NTG algorithm are 2.72 seconds for the 3D ocean models while

it is 64.42 seconds for the 2D case as shown in TABLE 2 for min E. These results

changes from min T as 1.43 seconds for 2D case while 42.77 seconds for the 3D

case.

b. Trajectory to Minimize the Energy and Time The trajectories to mini

mize the energy-and-time from two models are illustrated in Figure 12. Figure 11

indicates that the minimizing-energy trajectories from 3D and 2D ocean current

models are almost the same. They are very similar to each other, so it shows that

the assumption in [11] that the velocity fields are constant over hourly intervals is

25

Trajectory from 20 versus 20 plus time varying ocean current model(min TE)
37 r----.--..~~-~-____ ~-~-~__"

36.9

36.8

"
current model

~
rajectOry frOm 2D

~
g>
."
-; 36.7
."

~
-'

36.6

36.5

~
Destination
x=-122.2420
y=36.6635

Trajectory from 20 plus time
varying current model

. 36.4 '-------'----'---'----'----'----'---'
-1 22.3 -122.2 -122.1 -122 -121 .9 -121 .8 -121 .7

Longitude (degree)

FIGURE 12 - A kinematical glider minimizing-energy-and-time trajectories in the
3D and 2D ocean current models.

TABLE 2
A KINEMATICAL GLIDER IN THE 3D B-SPLINE OCEAN CURRENT MODEL

VERSUS THE 2D MODEL.

3D/2D Tf(1~rs) Time(s) Energy Cost(cm 2 / s)

minE 48.00/ 45.84 2.72/ 64.42 2. 7538e4/ 4.03ge5

minTE 39.38/ 39.31 1.43/ 42.77 9.0038e4/ 4.178e5

tolerable in this minimizing energy case.

However, the minimizing-time-and-energy trajectories obtained from 3D

and 2D ocean models are not the same as clearly shown in Figure 12. The rea

son is that for minimizing time-and-energy when the start point and velocity field

are different, the glider might decide to choose a different way based on the current

flows and the position. It will not necessarily move with the direction of the ocean

flow as in the min E case. Even though the trajectories are different in the case of

minimizing energy and time, the shapes and curves of these two trajectories are

still similar with each other. Another point to remember is that, for the 2D ocean

model, the trajectory is recalculated for every hour. At the end of each hour, the

glider final point is taken as a start point for the new trajectory calculation.

Note that for minimizing time only trajectories, they are both straight lines

26

for 2D and 3D ocean models since the ocean current speed is not large enough

against the forward direction of the glider.

F. Optimal Control of a Dynamical Glider

The trajectories of the glider with the kinematical model are already ob

tained. In this section, dynamics of the glider is taken into account in purpose of

producing more realistic glider trajectories. The glider is assumed to be actuated

by a gyroscopic force F gyr· which implies that the relative forward speed of the

glider is constant. However, the orientation of the glider cannot change instantly

and the control force is the change in the orientation of the glider. The dynamic

model of the glider is presented in the following:

x V dB . e . - dt sm + u
(13)

y V'!it cos e +i!

According to (12), then the dynamical glider model can be expressed as:

x _dB(y-v)+it dt

y '!it (.r - u) +u

The gyroscopic force is given by:

(

_ de (y-v))
F - dt

gyr - de
- (i; - u)
dt

(14)

(15)

The gyroscopic force acts proportional to the relative velocity between fluid and

the glider.

1. Cost Function

For the dynamic glider model, the control force is the Fgyl" Therefore, the

cost function is changed from (9) to the following:

27

The cost function can be further expressed by utilizing (13) and (15), as:

(16)

Then, the cost function is obtained for the dynamic glider after introducing

the time as a state variable in the NTG formulation [11] using16 as:

t ((..) 2 (..) 2) J = WtT + Wu io ;2 -u + :2 - i; TdT

2. Constraints

The constraints for the dynamic glider model are almost the same as the

ones in the kinematical glider model in the previous section. One more constraint

related with the control force Fgyr is added since it cannot be infinitely large. There

fore, the constraints for the glider orientation change are introduced as shown in

(17):

-18 (deg / s) :S; '!ft :S; 18 (deg / s) (17)

The constraint function (17) can be further expressed utilizing (12) and (14),

as:

-18 (deg / s) :S; E :S; 18 (deg / s) (18)

where

28

Trajectories of dynamical glider in 20 and time varying ocean current model
37,--...,,-......... -_-_--_---.--_-,

Start x=- 122. 1

36.9

36.8

" k:
Y

=36.8557 ". ~~~~C:~~~I=O
~
g>
." ~~=~~0.WI=0001
-; 36.7 Tf=42.1 hours

~
j

36.6

36.5

~min T
Wu=0,WI=1

Destination Tf;;22.6hours
x=-122.2420
y=36.6535

36.4 L--~--~---'---~-~-_ _'___.J

-122.3 -1 22.2 -122.1 -122 -121.9 -121.8 - 121.7
l ongitude (degree)

FIGURE 13 - Trajectories of a dynamical glider in the 3D ocean current model.

Speeds of dynamical glider in 20 and time varying ocean current model

!!fin TE

/ / =
."

.~
min E

1 L--~--~---'---~-_~_~
o 500 1000 1500 2000 2500 3000

Time (min)

FIGURE 14-Speed of the dynamical glider in the 3D ocean current model.

3. NTG Solutions for the Dynamic Glider

After applying the dynamic glider model(14) and 3D B-spline ocean current

models(8) in NTG, the trajectories of the dynamic glider are plotted in Figure 13

and Figure 14 shows the velocity constraints of the glider. The properties of the

trajectories from the dynamic glider model are listed in the following TABLE 3,

3D (Dyn) represents the trajectories obtained from the 3D B-spline ocean current

models and from the dynamic glider model. Tj,' Time and Energy Cost represents

the same as in TABLE 1, see Section IV-D.

29

TABLE 3
A DYNAMICAL GLIDER IN THE 3D B-SPLINE OCEAN CURRENT MODEL

3D (Dyn) T f (hrs) T ime(s) Energy Cost(cm2 /s)

minE 48.00 17.87 5.642e3

minTE 42. 12 17.60 6.9491e3

minT 22 .60 0.95 1.138ge4

Orientation of the glider with dynamical model

250

200

100

50 x=64.4 min
~1.4deg

minTE

min L ".:.I.. X=1827.0 min
~ y=180.0 deg

x=1821 .0min
y=3.1deg

"

I

°0~~~~~~1~~--~15~00~~2~00~0--~2~5OO~~3OO0
Time(min)

FIGURE 15 - Orientation of the dynamical glider in the 3D ocean current model.

The energy cost is calculated as

(19)

The orientation of the glider, shown in Figure 15, is obtained using the following

(II.F.3).

y - v
tan () = -.--

x-u

The figure of the orientation:

(20)

The two sharp orientation changes shown in Figure 15 do not violate the

constraint given in (17). Specifically, the sharp orientation turn one on the left of

30

green trajectory is

de
dt

(1.406 - 215.9)/(64.36 - 59.6)/60

= -0.75deg/s 2: -18deg/s

The sharp turn on the right of the green trajectory is

de
dt

(180 - 3.138)/(1827 - 1821)/60

= -0.49deg / s ::; 18deg / s

(21)

(22)

Therefore, the trajectory is satisfied with the constraints about the glider orienta

tion change.

G. Animation of Glider and Ocean Current

The animation of the glider and ocean current is obtained through Tecplot

and the results are shown in Figure ILG and Figure ILG for the kinematical and

dynamic glider models, respectively. These new results strengthen our previous hy

pothesis [l1J that LCS in the ocean reveal efficient or near-optimal routes for glider trans

port. In Figure ILG and Figure n.G, we have superimposed instances of the min

E trajectories given in Figure 11 and Figure 13 with the corresponding LCS fields

at that time, respectively. These figures should be thought of as snapshots of a

movie which shows the progression of the LCS and the progression of the glider

path together. One can see that there is indeed a good correspondence between the

optimal trajectory and the LCS.

H. Summary

In this chapter, as an extension to the previous work [11], the ocean current

flows 3D B-spline models are established incorporating the time explicitly. These

models are applied in the NTG to find the optimal glider trajectories and the re

sults were compared with the previous 2D B-spline models. The results show that

31

.. .
" • I ..

• <;

. I (, ,, I~ .• ~ .

. ~ . " ,. ,.~
\ .l , "

a)t=5 b)t=15

c)t=30 d) t=45

FIGURE 16-The figure shows the correspondence with the optimal trajectories
shown in Figure 11 and an LCS. Note that the red and pink in the figures near the
LCS represents the location of the AUVs while the blue represents the final target
location.

a) t=5 b)t=15

c) t=30 d)t=48

FIGURE 17 - The figure shows the correspondence with the optimal trajectories
shown in Figure 13 and an LCS. Note that the red and pink in the figures near the
LCS represents the location of the AUVs while the blue represents the final target
location.

32

the 3D ocean current model is much accurate than 20 ocean current model for

the optimal trajectory generation in the ocean currents. The 3D ocean model has

produced trajectories with less energy cost. It also eliminated the tedious work to

update the current information everyone hour as in the 20 ocean model. Hence,

it reduced significantly the computational time of obtaining optimal trajectories.

Next, the dynamics of the glider is considered in the glider model. The gyroscopic

force is applied to control the glider orientation. The new dynamic glider model

is used with the 3D B-spline ocean models to produce better trajectories. Finally,

Tecplot is used to make the animation movies of the glider traveling in the ocean

current. The results enhance our previous hypothesis showing that the trajectory

of minimizing energy is reasonably consistent with the LCS.

33

CHAPTI~R III

AERO BOT TRAJECTORY GENERATION WITH NTG

A. NASA-JPL Aerobot

The thrill of the unknowns makes people eager to explore the outside far

beyond our own planet. The main drawback of the current ground-based robotic

planetary vehicles, such as Mars exploration rovers, is their limited range. The

2006 Solar System Exploration Roadmap (SSE) [54] by the National Academy of

Sciences indicate that aerial platforms will be required to explore Mars, Venus and

Titan shown in Figure 18.

Several types of aerial vehicles such as airplanes, gliders, helicopters, bal

loons and airships [5] [55] [56] [35] have been considered for aerial robotic plane

taryexploration. Airplanes and helicopters require significant energy to just stay

airborne, flight time of gliders depend mainly on wind, while balloons have lim

ited navigation capabilities. Lighter-Than-Air (LTA) vehicles combine long term

mission capabilities and low energy requirements of balloons with flexible maneu

verabilities of airplanes. LTA systems, a.k.a. Aerobots or Robotic Airships, bring

a new opportunity for the robotic exploration of planets and their moons with at

mosphere, such as Mars, Titan and Venus. LTA vehicles have capabilities to travel

long distances with limited energy and bring a relatively more in-situ laboratory

facilities. They can transport scientific equipments, accomplish regional surveys

and wide-area surface mappings. Aerobots can also provide, due to their control

lability, precise flight path executions for surveying, station-keeping for extended

monitoring high-value science sites, long-range as well as near surface observa

tions, and transportation of scientific equipments. They are also able to execute

34

extensive surveys over solid as well as liquid-covered terrains. Aerobots can reach

essentially any point of the planet over multi-month time scales with minimal con

sumption of limited onboard energy sources. Aerobots can further expand their

range by generating opportunistic trajectories making use of winds in planets and

moons with atmosphere [57].

The NASA-JPL Aerobot program aims to develop autonomous robotic air

ships to explore planets and moons with atmosphere, such as Mars, Titan and

Venus. They have high potential to overcome the current limitations of the ground

based rovers: limited range. Aerobots or air-based rovers can travel long distances

with less energy. Another purpose of designing Aerobots is to allow the robotic

air vehicle to travel over rocks instead of around them and hence increasing the

versatility, speed and range of the rovers. For instance, seven dark spots near

Mars equator have recently been discovered by a Mars-orbiting satellite. They

could be entrances to underground Martian caves. The possible caves are called

the seven sisters -Dena, Chloe, Wendy, Annie, Abbey, Nikki and Jeanne. Their

openings range from about 330 to 820 feet wide. Some researchers have suggested

to look into caves for signs of alien life on Mars where there is significant evidence

of potential underground aquifers that could support basic, microbial organisms.

Robotic air-based rovers might have the advantage of flying over difficult terrain to

enter the caverns and explore them whereas land rovers might be cumbersome to

do. The NASA-JPL Aerobot program develops a prototype outdoor test-bed and

a physically accurate simulation system for testing purposes [58] [59]. The Aer

obot is based on an Airspeed Airship AS-800B as shown in Figure 19. The airship

specifications are: 11 m in length, 2.5 m in diameter, total volume of 34 m 3, two

2.3 kW(3 hp) and 23 cm3 (1.4 cu inch) fuel engines, double catenary gondola sus

pension, max. speed of 13 m/s(25 kts), max. altitude of 500m, static lift payload

of 10 kg, and dynamic lift payload of up to 16kg. The avionics and communi

cation systems are installed in the gondola. It has several onboard sensors such

as an IMU (angular rates, linear accelerations), a compass/inclinometer (yaw, roll

35

FIGURE 18 - An artists view of an Aerobot exploring a planet [5].

FIGURE 19-AJPL Aerobot for exploration of Titan and Venus [5] .

36

and pitch angles), laser altimeter (surface relative altitude), barometric altimeter

(absolute altitude against reference point), GPS (absolute 3D position), ultrasonic

anemometer (3D wind speed) [60], two down looking navigation cameras and a

science camera mounted on a pan and tilt unit. The ground station includes a lap

top, a graphical user interface to the vehicle, wireless data and video links, video

monitors and VCRs, and a differential GPS (DGPS) base station providing differ

ential corrections to the onboard GPS receiver to achieve centimeter accuracy of

the 3D position estimates of the vehicle.

Aerobots have different flight modes: take-off, landing, station-keeping,

hovering, ascent, descent, high-speed cruise, low-speed flight. These require al

ternative control strategies and trajectory generation algorithms. Important flight

control challenges are non-minimum phase behavior, oscillatory modes at low

speeds, time-varying behavior due to altitude variations, and unknown wind dis

turbances. Even though Aerobots consume modest power, any planetary explo

ration will require careful management of onboard power sources. Planetaryex

ploration activities such as scientific data gathering, navigation for science site in

vestigation, surface sampling, communications with Earth and/ or with an orbiter,

control and navigation of the Aerobot, they all require energy. Therefore, Aerobots

must use all possible external energy sources. For some planets such as Titan, the

Sun is blocked by Titans higher atmosphere. Wind energy for planets and moons

with an atmosphere is a very viable source of energy. Therefore, opportunistic

trajectory generation algorithms which utilize wind patterns to travel to desired

locations are in need to be developed [57]. The wind profile of the atmosphere

of some planets such as Mars is known to some degree through observations of

previous space missions and atmospheric modeling. The NASA-JPL Aerobot has

also an ultrasonic anemometer. This sensor providing estimates of the 3D relative

airspeed vector of the Aerobot is used to experimentally obtain the wind profiles.

With the specified wind profile, NTG can generate the sub-optimal trajectories for

the Aerobot. The objective of this chapter is to guide the Aerobot move by taking

37

Fgyr

FIGURE 20- The Euler-Lagrange based Aerobot controls.

advantage of the specified wind to save the energy.

B. Euler-Lagrange Based Aerobot Trajectories

In this work toward obtaining opportunistic trajectory generation for the

JPL Aerobot, the Aerobot is modeled by considering its aerodynamics and assum

ing control inputs are three propellers mounted in the Aerobot which are on the

local Cartesian axes. The gyroscopic forces control the velocity in x and y direc

tions, the vertical force control the vertical velocity A dynamical Aerobot shown

in Figure 19 modeled as (23) is moving from the point ql = 0, q2 = 0, q3 = ° to

ql = 200, q2 = 200, q3 = 200, which are the coordinates in the Cartesian system.

Still, the following assumptions are made:.

• the Aerobot center of gravity is at the same location as the center of buoy

ancy.

• the Aerobot roll rotation is small enough to disregard, the pitch, yaw an-

gles of Aerobot are automatically consistent with their velocity directions.

• the reference system is Cartesian, the shape of earth is disregarded.

• the temperature is kept as constant and the air flow is un-compressible.

The Aerobot has three controlled inputs. The horizontal orientation is con-

trolled by gyroscopic forces (23), the ascending and descending velocities are con-

38

trolled by a force m * w,and m is the mass of the Aerobot. The mass of the Aerobot

is simplified as 1. For consideration of rotational energy, the rotational inertial I is

also regarded as 1.

ql Vcos¢cose+u;

q2 V cos ¢ sin e + v;

where V is the forward velocity of the Aerobot. ¢ is the pitch angle, e is the yaw

angle.

.. - V· rI, ed¢ V· rI,' ede '. ql - - sm,/-,cos dt - cos,/-,sm Cit + u,

.. - V· rI, . ed¢ V rI, ede '. q2 - - sm '/-' sm dt + cos'/-' cos dt + v,

.. - V rl,d¢.
q3 - cos '/-' dt'

-7 ~Sin¢cose~~ + COS¢Sine~~~ = JIgyr

. d¢ de
-7 sm ¢ cos edi - cos ¢ cos e dt = hgyr

T (V cos ¢ ~~) = hgyr

Fgyr· = (23)

Where ql, q2, q3 represents x, y and z. u, v are the wind velocities in the x and y di-

rections, 7 is the control input for the gyroscopic force. The Aerobot roll, pitch, yaw

angles are correspondingly represented as 'I/J, ¢, e, the respective angular velocities

are denoted as ~ = p, 1> = q, iJ = r.

1. Euler-Lagrange Equations

The optimal control problem for NTG is to obtain f(t) to minimize the cost

function.

l
tf

J(q, J) = C(q(t), g(t), f(t))dt
to

(24)

At the same time, the motion of q(t) of the mechanic system from (qtO, gtf) to a state

(qtO, gtf) is to satisfy the Lagrange-d' Alembert principle, which requires that (25).

l tf ltf
o L(q(t),g(t))dt + f(t)· oq(t)dt = 0

to to
(25)

39

It can be expressed as

l

tt oL oL ltJ
(7)bq + Fbq)dt + f(t)bq(t)dt = 0

to q q to
(26)

l

tt oL ltt oL ltt
(7)bqdt + Fdbq) + f(t)bq(t)dt = 0

to q to q to
(27)

Because of:

l

tt oL oL t ltJ d oL ltJ
F dbq = Fbqt~ - bq· dF . dt + f(t)bq(t)dt = 0

to q q to t q to
(28)

For variations bq(to) = bq(tf) = 0, thus

l

tt oL doL
to oq bqdt - dt oq bqdt + f(t)bq(t)dt = 0 (29)

Finally, the continuous Euler-Lagrange equation

oL doL
oq - dt oq + f (t) = 0 (30)

Since the Aerobot is controlled by gyroscopic forces in the horizontal plane and

a vertical force along the z axes, the Euler-Lagrange equations should be satisfied

along the x, y and z axes in the local reference frame. The Lagrange L of the system

is the kinetic energy K E minus the potential energy P E.

L=KE-PE (31)

The kinetic energy of the Aerobot should be expressed as the sum of the transla

tional kinetic energy of the center of mass and the rotational kinetic energy about

the center of mass. For a given fixed axis of rotation, the kinetic energy can be

expressed in the form of

1 2 1 2
K E = K Erotation + K Etransiation = "2 I w +"2 m v (32)

For the local reference system, the Euler-Lagrange equations along x, y, z axes are

presented as

oLx doL
ox - dt ox + fx = 0;

oLy doL
oy - dt oy + fy = 0;

oLz doL
oz - dt oi + fz = 0; (33)

40

And the Lagranges of the Aerobot are listed as:

(34)

where mgz is the potential energy of the Aerobot. 9 is the gravity acceleration.

The control forces fx) f y) fz are the summation of all effective forces along the three

axes.

(35)

where ftgyr) f2gyr are the gyroscopic forces in the horizontal plane. hgyr is the

control force to move the Aerobot vertically. fxd) fyd reflect the drag force due to

the aerodynamics while fzl is the lift force. fbi is the buoyancy force due to the

Helium in the Aerobot. Due to velocity up-limit of the Aerobot, the air or wind

in the field is considered as a piece of uncompressed and inviscid flow. Therefore,

the Euler-Lagrange equations 33 are transformed into

-m (£ - it) + ftgyr + fxd = 0;

-m (ij - v) + !2gyr + fyd = 0;

-mg - mz + hgyr + fzl + fbi = 0; (36)

Vx = V cos rp cos B = j; - U;

Vy = V cos rpsin B = y - v;

V z = V sinrp = i (37)

V is the forward velocity, 7j;, B are the yaw and pitch angles of the Aerobot respec

tively. For aerodynamics, the drag and lift forces of the Aerobot are derived due to

41

the flows around the Aerobot when it is flying at certain speeds [61] [62].

fxd = CxdApair V2 cos 1jJ cos e;

fyd = CydApair V2 sin VJ sin e;

fzl = CzlApaiT V2 sin V);

fbI = (Pair - Phelium)fg; (38)

where Pair is the mean density difference of ambient air. Phelium is the mean density

of helium in the Aerobot envelope. 1jJ is the yaw angle of the Aerobot. Cxd , Cyd , Czl

are the coefficients of the drag and lift forces which are dependent on the physical

parameters of the Aerobot such as the volume, the shape, the pitch angle and the

material frictions of the Aerobot surface. A is the reference area. It is chosen as

(Buoyant Volume)2/3 [62]. f is the volume of the Aerobot, 9 is the constant gravity

acceleration on earth [63].

2. Wind Profile

The wind profile is modified from the paper [57], the research area is re

stricted in the cube which the reference point is (0,0,0) to (200,200,200). Assum

ing the wind profile is layered horizontally, no upward or downward wind exists.

The wind velocity vectors at each layer are considered as known.

(u, v) =

(10,10), for q3 <:;::: (0,50)

(-10,10),forq3 <:;::: (50,100)

(1O,-1O),forq3 <:;::: (100,150)

(0, -10), for q3 <:;::: (150,300)

(39)

where q3 is the coordinate in the vertical direction. In Figure 21, the x, y, z are the

coordinates of the system, respectively represent ql, q2, Q3'

42

200

150

N 100 i

50.

o.
200

150

100

The wind profile

z;s from (150.200).
(1J.\I)-(O.~lO).

z is from (50,100),
(u.v).::(~10.1O).

50

a a

z is from (100,150),
(u.\I)",('O.-10).

z is from (0,50),
(u.v)=(10,10).

50
100

200
150

FIGURE 21-The wind profile for the state-space based Aerobot.

3. Problem Formulation

The cost function and constraints are listed in the following. The cost func-

tion J is

(40)

where Wv W u , W v , Wq are the weights, t f is the unknown final time for the trajec

tory. The constraints:

• (Linear) Initial Constraints:

o ::; t f - to ::; 100 s

• (Linear) Final Constraints:

200 - E ::; ql (t f) ::; 200 + E

200 - E ::; q2 (t f) ::; 200 + E

200 - E ::; q3 (t f) ::; 200 + E

43

• (Nonlinear) Trajectory Constraints:

o - E :s; ql (t) :s; 300 + E

0- E:S; q2(t) :s; 300 + E

o - E :s; q3 (t) :s; 300 + E

o - E :s; V :s; 400 + E

where ql (to), q2(to), q3 (to), ql (t f)' q2 (t f)' q3 (t f) are the initial and final location of the

Aerobot. ql (t), q2 (t) and q3 (t) are the positions of the Aerobot in the trajectory. V is

the horizontal forward velocity of Aerobot. E is a small number.

Since the Aerobot is controlled by the gyroscopic force and the vertical pro

peller. The trajectory is satisfied with Euler-Lagrange equations. According to (36),

(37) and (38), the Euler-Lagrange equations are expressed as:

-m (x - it) + flgyr + CxdPairv2 cos1/; = 0;

-m (jj - v) + hgyr + CydPair V 2 sin 1/; = 0;

-mg - mz + hgyr + CzlPair V2 + (Pair - Phelium)fg = 0; (41)

4. Simulated 3D Trajectory

The prototype Aerobot [64] testbed developed at JPL is based on an Air

speed Airship AS-800 B (Figure 19). The parameters for the Aerobot are: length

of 11 m, diameter of 2.5 m, total volume of 34 m 3, two 2.3 kW (3 hp) 23 cm3 fuel

engines, double catenary gondola suspension. Assuming maximum speed of the

Aerobot is 20 m/5, maximum ceiling of 500 m.

When the Aerobot is modeled as (23), the physical parameters are simplified

with lift and drag coefficients are both set to be 1. The buoyancy is considered to be

zero with the mass is considered to be 1. The wind profile is assumed to be known

44

The minimizing-energy trajectory for the Aerobot

250

200

150

100 j

200
150

100

150 100
50

50

FIGURE 22 - The minimizing-energy trajectory generated by NTG for the Aerobot.

The control coefficient (Of the min E trajectory

:~
, T

300

200'

" .~ 100·

~ I

i:~l;
- 400

- 5000 20 40 60 80 100
Time (sec)

FIGURE 23 - The control input T for the minimizing-energy trajectory.

as 39 and, NTG generated the following 3D trajectory presented in Figure 22. The

energy cost for this trajectory is 4.165ge7, the final time is 100 second, the running

time is less than 29.12 seconds. From this example, we have shown NTG can gen

erate the reasonable optimal trajectory with the specified wind profile. The control

input T as in (23) The minimizing-energy trajectory shown in Figure 22, the tra

jectory is taking advantage of the wind profile to save energy. The roll angle is

zero, while the yaw angle is always point to the destination, which is 45 degrees.

NTG tried to generate the minimizing-time trajectory, the final time is 87.35 sec

ond. The running time is 11.46 seconds The energy cost is 12.584e7. The control

input T for the min T trajectory is presented as: For the minimizing time trajec

tory, it is almost a straight line, the Aerobot roll angle is zero, while the yaw angle

is always point to the destination, which is 45 degrees. The computer specifica-

45

Pitch of the aerobot in the min E trajectory
8o,-----~----~------r_----~----_,

60

40

20
~

g>
« 0
n
&:

-20

-40

-60

-800L-----~20:------4~0------6~0----~80:-------,J100

Time

FIGURE 24 - The pitch angle <p for the minimizing-energy trajectory.

The minimizing- time trajectory for the Aerobot

200

150

N 100

50
200

0 100

200 150 100 W 0 0

FIGURE 25 - The minimizing-time trajectory generated by NTG for the Aerobot.

The control coefficient for the min T trajectory
2000

1S00

1000

c
.~ SOO
IE

8
e
~ -Soo[

-1000

-1soof

-2000L1
-----;;,-----~ --';;------;;;----;';;------,;;;;------;

0- 10 20 30 40 SO 60 70
Time (sec)

FIGURE 26- The control input T for the minimizing-time trajectory.

46

Pitch of the aerobet in the min E trajectory

20

..
g>
.. 0
:g
a.

-20

-40

-6oo'----~10:--~20-~30-4~0-50~---,6~0 -7~0 ~80,-------,'90

Time

FIGURE 27 - The pitch angle ¢ for the minimizing-time trajectory.

TABLE 4
3D TRAJECTORIES GENERATED BY NTG FOR THE EULER-LAGRANGE

BASED AEROBOT

NTC Tf(s) T ime(s) Energy Cost(m2 /s)

minE 100.00 29.12 8.336e7

minT 87.35 11.46 14.466e7

tion of the simulation is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Memory 2.0 GB,

AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. TABLE 4 shows the trajec

tories generated by NTG for the modeled Aerobot are reasonable considering the

minimizing-time trajectory is the straight line and the energy cost is larger than

the minimizing-energy trajectory. These two trajectories are presented in Figure 22

and Figure 25, respectively.

C. State Space Model Based Trajectories

When the Aerobot is modeled as a state-space model, the trajectories can

be generated with more time. It is reasonable to assume with ordinary computa

tion capability, trajectories can only be generated off line with all other conditions

known in advance. For this demonstration, the decoupled longitudinal and lateral

47

VeClor;og £leI,utOt

Rudder ,',
;,': IS tail Ste m thruster
, +1-

FIGURE 28- The state-space based Aerobot controls [6]

equations of motion of the Aerobot are from AURORA (Autonomous Unmanned

Remote Monitoring Robotic Airship) project [65].

The state-space model is decoupled into longitudinal and lateral motions.

The control inputs as elevator deflection oe, thrust demand OT, vectoring angle Ov

for the longitudinal motion, and aileron deflection oa, rudder deflection Or for the

lateral motion. The outputs are the velocities and orientation of the airship. The

airship control inputs and their positive references are shown in Figure 28 The air

ship is moving from the point ql = 0, q2 = 0, q3 = 0 to ql = 200, q2 = 200, q3 = 200,

which are the coordinates in the Cartesian system. Still, the following assumptions

are made:. The linearized state-space model is obtained from nonlinear dynamic

equation of the airship given by [6], resulting into decoupled longitudinal and lat

eral motions. For the longitudinal motion, the output vector is

Xv(t) = [u, w, q, eJ (42)

where u is the longitudinal component of the airship absolute speed which is rela

tive to the air, w its vertical component, q is the pitch rate and e is the pitch angle.

The control vector for the longitudinal motion is

(43)

where oe is the elevator deflection, OT is the thrust demand and Ov is the vectoring

48

angle. The equation of longitudinal motion is listed as

(44)

where Av and Bv are numerically linearized system matrices [6] as

where v is the lateral component of the airship absolute velocity, p and T are the

roll and yaw rates, e is the roll angle. The control vector is given by

(46)

where 6a is the aileron deflection, 6r is the rudder deflection. Its lateral motion of

equation is presented as

where Ah and Bh are numerically linearized matrices from [66] as

0.0378 0.4037 1.8059 -2.5864

1.5641 -0.6429 8.0737 -6.3747

-0.4161 -1.4674 -6.2235 -0.0225

o 1 0.0913 o

49

(47)

200

. 150

N 100

50

o
300

200

The Wind Profile

z from (150, 200),
(u,v)=(1 0, -10).

z from (50, 100),
(u,v)=(10,-8).

100
o 0

y

• zfrom (100,150),
(u,v)=(5,8).

z from (0, 50),
(u,V)=(-1 0, 1 0)

100

x

300
200

FIGURE 29 - The wind profile for the state-space based Aerobot.

-7.1360 4.5273

-13.4035 3.07573

-0.2389 -2.9211

o 0

For the state-space model, the wind profile is modeled as (48), the research

area is restricted in the cube which the reference point is (0,0,0) to (200,200,200)

meters. Assuming the wind profile is layered horizontally, no upward or down

ward wind exists. The wind velocity vectors at each layer are considered as known.

(u, v) =

(-lO,10),forq3 ~ (0,50)

(10, -8), for q3 ~ (50,100)

(5,8), for q3 ~ (100,150)

(10, -10), for q3 ~ (150,300)

(48)

where q3 is the coordinate in the vertical direction. In Figure 29, the x, y, z are the

coordinates of the system, respectively represent ql, Q2, Q3.

50

1. Problem Formulation

The cost function and constraints are listed in the following. The cost func-

tion J is

(49)

where Wt , Wu are the weights. For minimizing time trajectory, Wt is equal to 1000,

while Wu are both o. For minimizing energy trajectory, Wt is set to be 0, while Wu

are both set to be 10. t f is the unknown final time for the trajectory. The constraints:

• (Linear) Initial Constraints:

o - f ::; q2 (to) ::; 0 + f

o - f ::; q3 (to) ::; 0 + t

o ::; t f - to ::; 200 .5

• (Linear) Final Constraints:

200 - f ::; ql (t f) ::; 200 + f

200 - E ::; q2(tf) ::; 200 + E

200 - f ::; q3 (t f) ::; 200 + E

• (Linear) Trajectory Constraints:

o - E ::; ql (t) ::; 300 + E

o - E ::; q3 (t) ::; 300 + E

• (Linear) Control Inputs Constraints:

51

The minimizing energy trajectory fOf AURORA Airship

200

150 j
N 100 1

50

o·
200

150 200
100 150

50
100

50
y o 0 x

FIGURE 30- The minimizing-energy trajectory for the state-space based Aerobot.

-100 ::; 6T ::; 100

-0.5 ::; 6v ::; 0.5

-1 ::; 6,. ::; 1

where ql (to), q2 (to), q3 (to), ql (t f), q2 (t f) ' q3 (t f) are the initial and final location of the

Aerobot. ql(t), q2(t) and q3(t) are the positions of the Aerobot in the trajectory. E is

a small number. The other constraints are nonlinear constraints listed as 44 and 47.

2. Simulated 3D Trajectories

When the Aerobot is modeled as (44) and (47), the wind profile is assumed

to be known as in (39). NTG generated the minimizing-energy 3D trajectory in

Figure 30. The energy cost for this trajectory is 4.2297e3, the final time is 183.97

seconds, the computation time is about 18 minutes. The longitudinal and lateral

constraints make the computation time is as long as 18 minutes, it means that the

trajectory has to be obtained by off-line with the available wind profile in advance.

The control inputs elevator deflection 6e , thrust demand 6T, and aileron deflection

6a , rudder deflection 6" are shown in the following.

The vectoring deflection 6v is not shown here considering that it is not ex

plicitly shown in the longitudinal and lateral dynamics constraints.

52

The elevator deflection control input for the min E trajectory
lSO

0.5

-SOr

-1001

200 -lSCfi-

The thrust demand control input for the min E trajectory

so 100
I

FIGURE 31-The elevator deflection be and the thrust demand bT for Figure 30

The aileron deflection control input for the min E trajectory
1.5

0.5

-0% ----;:;.SO -,~OO-

I

The rudder deflection control input for the min E trajectory

lSO

FIGURE 32 - The elevator deflection ba and the thrust demand br for Figure 30

53

200

200

The minimizing time trajectory for AURORA Airship

200

150

N 100

50

0 ,
200

150 200

50

100
50

~'00
150

y o 0 x

FIGURE 33 - The minimizing-time trajectory for the state-space based Aerobot

- 0.2

-0.3

- 0.4 1

8 -0.5l

1-0.6

1-0
.
7

w-0.8·

-0.9

The elevator deOection control input fO(the min T trajectory

-111-------- ----''

40 50
t

80 100 120

- 0.5-

- 0.5r

-071
- O.Sr

i-0
.
9

-0 - 1

!l
E: - 1.1
t-

-1 .2

- 1.3

-1 .41-

-1 '!b

The thrust demand control input for the min T trajectory

FIGURE 34-The elevator deflection De and the thrust demand DT for Figure 33

When the trajectory is trying to minimize the time, the trajectory is not go

ing with the wind profile. It just go straight to the destination as it is shown in

Figure 33. For the minimizing-time trajectory, the final time is 100.30 seconds. The

computation time of the NTG algorithm is 6 minutes. The energy cost is 4.6963e3.

The minimizing time trajectory control inputs elevator deflection De, thrust de

mand DT, and aileron deflection Da, rudder deflection Dr are also shown in the fol-

lowing.

The simulation platform is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Mem

ory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+.

TABLE 5 shows the trajectories generated by NTG for the modeled Aerobot

are reasonable considering the minimizing-time trajectory is the straight line and

the energy cost is larger than the minimizing-energy trajectory.

54

120

The aileron deflection control input for the min T trajectory
-0.2

-0.3

-0.4

-0.5

-0.6>

-
07

1

-0.8

-0.9

-10:---"""20-..........,40~----,60.,...--=;80,-:---- 100
I

120

The rudder deflection control input for the min T trajectory
0.4~

-0.4,

-0.6r
-0.8,

-1-----------'
-1~ 20 40 iii) 80 100

I

FIGURE 35 - The elevator deflection fla and the thrust demand flr for Figure 33

TABLES
3D TRAJECTORIES GENERATED BY NTG FOR THE STATE-SPACE BASED

AEROBOT

NTC · Tj(s) Time(m) Energy Cost(m2 js)

minE 183.97 18 4.2297e3

minT 100.29 5 4.6963e3

D. Summary

This chapter shows that the JPL Aerobot energy efficient trajectories can be

generated by NTG. This problem is investigated from two perspectives, one is from

the energy perspective, another is from the state-space based model. The former

one is much faster to calculate than the later one. Both for the Euler-Lagrange con

straints based trajectories and the state-space based models NTG can be utilized to

generate energy-efficient trajectory for the JPL Aerobot.

55

120

CHAPTER IV

TRAJECTORY GENERATION WITH DMOC

A. DMOC Methodology

Based on discrete Lagrangian mechanics [67] [68], DMOC (Discrete Me

chanical and Optimal Control) [9] is proposed to solve optimization control prob

lems both for mechanical systems. Its application is mainly in the control of me

chanical systems, such as trajectory generation for a glider, control of Compass

Gait Biped [27], formation of flying spacecrafts [69]. Also DMOC can be applied

in solving variational problems in computer vision and graphics [70], poit vor

tices [71].

The innovative part of DMOC is to exploit the variational structure directly.

Instead of first deriving the Euler-Lagrange equations (equations of motion) for

the system, it utilizes a global discretization of the states and the controls by the

discrete Lagrange-d' Alembert principle to obtain equality constraints, then the

problem is transformed into a finite dimensional nonlinear optimization problem.

While in NTG the collocation method [72] is to choose a finite-dimensional space of

candidate solutions and a number of points (collocation points) in the domain, and

to select a solution which satisfies with the given cost and constraints equations at

collocation points.

Considering a mechanical system with configuration space Q is to move on

a curve q(t) E Q in the time period of [to, tf] from a state (qtO, qto) to a state (qtj, qtj)

under a control force f(t), the cost function in this optimal control problem is given

56

as:

J(q,1) = lot! C(q(t), q(t),f(t))dt (50)

where q(t) is the state of the system. For optimal control, I(t) is chosen so that the

cost function is minimized. The constraints are listed as in (51).

Initial Lbo < wo(q(to), f(to), to) < ubo

Trajectory lbt < wt(q(t), f(t), t) (51)

At the same time, motion q(t) of the system is satisfied with the Lagrange

d' Alembert principle, which requires that (52).

It! It!
6 to L(q(t),q(t)dt + to I(t)· 6q(t)dt = 0 (52)

where L : TQ ---+ lR is the Lagrange of the mechanical system. The variations 6q in

two terminals are 6q(to) = 6q(tf) = o.

For a trajectory generation problem with a cost function as (50), constraint

functions as (51). The time for system states is discretized as 0, h, 2h, ... Nh = tf'

where h is the step size and N E N. The continuous state q(t) and the continuous

force I(t) is approximated by discrete states qd(kh) and forces Id(kh).

Through direct discretization, the Lagrangian in Euler-Lagrange equation

(52) is approximated over a time slice [kh, (k + l)h] by a discrete Lagrangian L d .

At the same time, the virtual work in (52) also can be approximated as

l
(k+l lh

Ii: ·6qk + It· 6qk+l :=;:j I(t) .6q(t)dt,
kh

where Ii:, r: are called left and right discrete force respectively.

Ii: = I(kh) . h/2;

r: = I((k + l)h) . h/2

57

(53)

(54)

(55)

(56)

The discrete version of Lagrange-d' Alembert principle (52) requires that

N-l N-l

6L Ld(qk, qk+d + LU; . Oqk + I: . 6qk+d = o. (57)
k=O k=O

It can deduce into the following equation with derivative operations according to

variables qk and qk+l by Dl and D2, respectively.

N-l N-l N-l

L D1Ld(qk, qk+d ·6qk+ L D2Ld(qk, qk+d ·Oqk+l + L I; ·Oqk+ I: ·6qk+l = o. (58)
k=O k=O k=O

Then, the equation can be transformed into

N-l N-l N-l
L D1Ld(qk, qk+d . 6qk + L DzLd(qk-l, qk) . 6qk + L I; . 6qk + 1:-1· 6qk = o. (59)
k=O k=I k=l

It can be expressed as:

N-l
L(D1Ld(qk,qk+d + D2Ld(qk-l,qk) + ILl + I;)oqk = o. (60)
k=l

For all variations 6qk, 6qo = OqN = 0, the discrete Lagrange-d' Alembert principle is

derived as

(61)

where k = L.N - I, called the forced discrete Euler-Lagrange equations. Other

constraints such as (51) are also discretized with corresponding discrete states and

forces. Discrete boundary conditions at to = a and t f = N h are expressed as

D2L(qo, go) + D1Ld(qo, qd + 10 = 0,

-D2 L(qN,gN) + D2 Ld(QN-l,qN) + If;-l = o.

B. DMOC Tutorial

(62)

This section presents a detailed procedure [73] to apply DMOC methodol

ogy to solve optimal control problems. It explains the principle of DMOC, and how

to formulate the problem in DMOC. Then the steps are shown about how to install

and configure nonlinear programming solver IPOPT, and how to use the modeling

58

Start

Establish Mathematical Model

[IPQPT }-

End

FIGURE 36-A DMOC procedure to solve an optimization problem.

language AMPL. In particular, the user-defined function is involved with AMPL

to solve more complicated problem. The glider trajectory generation example uses

DMOC to solve an optimization problem with AMPL and IPOPT.

1. IPOPT

IPOPT as an open source nonlinear programming solver is invented by

Dr Andrew Wachter at Carneige Mellon University. It is a primal-dual interior

point [74] algorithm with a filter line-search method. IPOPT has been proved at

tractable using CUTEr test set (954 problems), compared with other two interior

point optimization codes KNITRO and LOQO [75]. In IPOPT, an original optimal

control problem is transformed into a sequence of barrier (interior-point) prob

lems for a decreasing sequence of barrier parameters converging to zero. IPOPT

includes a line-search filter method with the feasibility restoration phase, second

order corrections which are supposed to improve the proposed step if a trial point

59

Software requirements for IPOPT

FIGURE 37 - Software requirements for IPOPT, where ALS is referred to AMPL
Solver Library, BLAS represents Basic Linear Algebra Subroutines, LAPACK
means Linear Algebra PACKage, one Liner solver for indefinite matrices can be
MA27, MA57 or other solvers, the details is described in [7].

has been rejected, and initial correction of the Karush-Kuhn-Tucker matrix which

is the necessary optimal condition for nonlinear programing. For the IPOPT algo

rithm details, see [75].

IPOPT package is available from COIN [76] under the Common Public Li-

cense. The user can download and use it free of charge even for commercial pur

poses. Some third party components are required for the execution of IPOPT, these

components consist of BLAS (Basic Linear Algebra Subroutines), LAPACK (Lin

ear Algebra PACKage), a sparse symmetric indefinite linear solver such as MA27

or other one. While only ASL (AMPL Solver Library) is required for using with

AMPL. The software sources including the dependent solvers are located in the

website, the detailed procedure to download and install IPOPT can be found in

the IPOPT manual [7].

The user should model problem in a nonlinear programing formulation

which can be interfaced with IPOPT through code such as C++, C, or Fortran. For

programming problems in C++ interfacing with IPOPT, the user must provide the

Jacobian matrix, and Hessian matrix which may be approximated by setting up the

IPOPT option "hessian_approximation" as "limited-memory". The eight functions

need to be implemented to define the problem and supply the information, the

60

eight functions are geLnlpjnfoO, geLboundsjnfoO, geLstarting_pointO, evaLfO,

evaLgO, evaLjacgO, evaL..hO, finalize_solutionO separately. As their names in

dicate, the functions provide the IPOPT with the necessary information like the

number of variables, the bounds, the starting points, the constraints Jacobian, the

Hessian of the Lagrangian for the solver to generate the solution for the problem.

But the difficulty exists in the Jacobian and Hessian parts. The Hessian matrix

can be approximated and this evaLhO can be disregarded. Finally it is supposed

to provide the IPOPT with the Jacobian of the constraints, which is not easy. For

example, in this problem, the constraints have 104 equations, and the number of

the variables is 151, therefore, the Jocabian of the constraints has the dimension of

104 x 151, every element in the matrix needs to be specified, even there is some

kind of principle implicit in these elements, it is still not easy to avoid the mistakes

for constructing the Jacobian matrix in the programming.

Therefore, the easier way for IPOPT to solve the problem is to interface it

with AMPL, because AMPL automatically provide some necessary information

to IPOPT to solve the problem, the information include and not limited to the

Jacobian, Hessian matrix.

2. AMPL

AMPL, developed in Bell Laboratories, is a comprehensive and powerful al

gebraic modeling language for linear and nonlinear, continuous or discrete system

optimization problems. It is user-friendly, making the user focus on the modelling

of the problem, not the technical details for programming. All the variables, pa

rameters, cost functions, constraint functions are defined intuitively and straight

forward. The main difference between AMPL with other programming languages

such as C or Fortran are the expressions of the variables. In AMPL, "set" and "in

dex" are used to invoke the specific variable. On the other hand, the mathematical

expression is generally adapted from an advanced programming language, for ex-

61

ample, "sum" or ">" and so on as arithmetic or logical operators are used. Since

AMPL is based on algebratic expressions of constraints and objectives. Its syntax

is easily learned by referring to the manual [77] or through some examples [78].

With the AMPL scripture of the program, the AMPL translator can read the opti

mization model and data provided through the language. The seven logic phases

are executed like parse, read data, compile, generate, collect, presolve, out. The AMPL

needs call the solvers to generate the solution for the formulated problem.

3. Implementation Details

To implement, the first step, download IPOPT from COIN [76]. The latest

(Apr 26,2008) C++version of IPOPT tarball is Ipopt3.4.0.tgz. Assume the tarball

is downloaded to the folder Program I I PO PTtutorial. Unpack the archive file by

gunzip IPOPT3.4.0.tgz, resulting into IPOPT3.4.0.tar. Using tar xv! IPOPT-

3.4.0.tar, the tarball is extracted into I POPT3.4.0.tar. For convenience, the name

of the directory IPOPT3.4.0 to Coinlpopt. According to Figure IV.B.I, IPOPT

needs a few external packages to make it work, including AMPL solver library

ASL, basic linear algebra subroutines-BLAS or Linear Algebra Package-LAPACK,

a linear solver for symmetric indefinite matrices such as MA27 or MAS7. If IPOPT

is used with AMPL as it is in this example, only ASL is required. However, IPOPT

can work independently from AMPL, so the procedure to download BLAS, LA

PACK, MA27 is listed in the following by utilizing the scripts included in the

IPOPT distribution.

• cd CoinlpoptlThirdPartyl Bias go to the BIas directory

• .lget.Blas run the script to download BLAS from the Netlib Repository,

after succession, the message "Done downloading the source code for

BLAS" appears.

• cd .. I Lapack go to the Lapack directory

• .lget.Lapack download Lapack, get the message "Done downloading the

62

source code for LAPACK".

• cd .. j AS L go to the ASL directory

• .jget.ASL download ASL, get the message "Done ... ".

For the sparse symmetric linear solver MA27, search and get MA27. save ma27ad.f

to CoinlpoptjThirdPartyj H SL. As indicated, other linear solver for symmetric in

definite matices instead of MA27. After the third party codes are installed, IPOPT

needs to be compiled and installed by the generally command.

• cd Coinlpopt

• .Jconfigure get the message "configure: Configuration of Ipopt success

ful,configure: Main configuration of Ipopt successful"

• make

• make install

After IPOPT is successfully installed in Coinlpoptj Ipopt, begin to testthe examples

to make sure it work. For instance, if go to jexamplesjCpp_example, type make,

then .jcpp_example, the screen output should be "Optimal Solution Found.*** The

problem solved in six iterations!*** The final value of the objective function is -

4.000000e+OO". Generally, it means that IPOPT is ready to use for solving your

optimization problem. The easiest way to make IPOPT solve an optimization

problem is to make it work with AMPL, even also program problems in c, c++

or Fortran language. In this paper, we are considering the problem to make IPOPT

work with AMPL. Firstly, AMPL can be downloaded from the web without any

charges if the variables are less than 300. In this case, the experimental system

is HP Pavilion a1430n, Memory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Pro

cessor 3800+. The operating system is Ubuntu 7.10, Kernel Linux 2.6.22-14-386.

Thus "Intel (Pentium-compatible) PCs running Linux" AMPL is downloaded to

IpoptjexamplesjAM P Lex. Using gunzip ampl.gz to uncompress the file into ampl,

by typing chmod + x ampl to make. sure to have the privilege to execute the

AMPL. Then AMPL is ready to use when modeling the problem in AMPL and

63

the problem is in the format of test.mod in which the solver is specified as IPOPT .

. Iampl test. mod is used to solve the problem, the output can be saved into a file

and shown on the screen.

The useful feature of AMPL is that it can include user-defined function as

an externally added function to solve more complex problems. In order to make

the user-defined functions work with AMPL, the "funcadd.c" should be download

from the server [78], and modify it according to your purpose, basically the user

needs to embeded his or her own program to the downloaded function making

the user-defined function work like the example function. Then compile the "fun

cadd.c" by the different makefile which is dependent on the work station where

the program is supposed to execute. Download the makefile from AMPL web

site and modified it according to the specific system. The Makefile.Linux listed in

the appendix in the appendix is tested successfully in Ubuntu 7.10, Kernel Linux

2.6.22-14-386, Memory 2.0 GB, AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+.

After the funcadd.c is compiled by make f Makefile.Linux, the amplfunc.dll will be

created, now the user-defined function is ready to be called during the optimiza

tion process.

AMPL can hook with different kinds of solvers such as ACRS, MINOS,

NPSOL, IPOPT and so onto generate the solution for the optimization problem.

The "solve" command in AMPL language make AMPL send the problem infor

mation to the solver which is regarded as a separate program, then read the so

lution back from the solver. The files for the communication between AMPL and

the solver is called stub.suffix [79]. At the beginning, the initial file from AMPL

is stub.nl which describe the problem information, after solver received this infor

mation and with the specified toleration and iteration parameters, the solver write

the solution or resulting information to a file named stub.sol. Practically, in order

to make AMPL work with IPOPT, the user just need to install AMPL to the right

directory, then specify solver option in AMPL program as "option solver IPOPT"

at the beginning of the program.

64

4. An Application Example

The following example is shown how DMOC work with IPOPT and AMPL

to solve the optimal control problem. A dynamical glider is simulated moving in

Monterey Bay from (-122.1780,36.8557) to (-122.2420,36.6535) which represents

the position in degrees (Longitude and Latitude), it is controlled by the gyroscopic

forces.

The AMPL program listed in the following with the solver specified as

IPOPT. For calculation purpose, the position unit is transformed into centime

ter based on the reference point as (-122.3246,36.5658). The ocean current flows

are modeled as time-varying 2D B-spline model, the optimal trajectory generation

with NTG for the glider in this model has been presented in [8].

In AMPL, the modeled problem is shown as follows:

• Cost function:

minimize force_energy:

sum {j in O .. N-2}0.5 * ut[j] * It[j]+

11 [j] * 11 [J] + Ii [j] * Ii [J] + 12 [j] * 12 [j]) * h;

• Start and final Constraints:

subject to y_start:Q2[0] = ay;

subject to x_destination:Ql[N - 1] = bx ;

subject to y_destination:Q2[N - 1] = by;

• Trajectory Constraints:

subject to Euler_Lagrange...x {j in O .. N-3} :

-KEq1p[j + 1] + KEqlp[j] + 0.5 * h * (KEq1[j] + KEq1[j])+

0.5 * h * (Vql[j + 1] + Vq1[j]) + fi[j] + flU] = 0;

65

subject to EuleLLagrange_y {j in O .. N-3} :

-KEq2p[j + 1] + KEq2p[j] + 0.5 * h * (KEq2[j] + KEq2[j]) +

0.5 * h * (Vq2[j + 1] + Vq2[j]) + fi[j] + fi[J] = 0;

where il~' ii, it and ii are the left and right discrete forces [9]. for the compo

nents of the gyroscopic force.Fgyr (15). N is the number of knots in the trajectory.

ax,ay,bx,and by are the starting and destination point, it has been transformed in the

program to the centimeter assuming the radius of the earth is 6378krn and the earth

is a perfect sphere. The trajectory constraints are introduced because the glider

is controlled by the gyroscopic force and its motion is satisfied with Lagrange

d' Alembert principle. These constraints are called discrete Euler-Lagrangian equa

tions [9]. In the trajectory constraints, K EqIp, K Eq2p is the derivative of the glider

kinetic energy according to (h, rh respectively. V ql, V q2 is the potential energy of

the glider. The index of all these variables shows the states are discrete in the pro

gram. For the glider travels in the ocean current. The function is defined in AMPL

in the way shown in the following:

• Define function:

function splineinfo;

• Call function to retrieve the ocean current velocities:

var u {i in V ELNODES}

= splineinfo(x[iJ, y[i], h * i/3600, u, v);

var v {i in VELNODES} = v;

• Discrete forces are connected with currents:

var it {i in VEL_NODES}

= 0.5 * h * (-taurn[i] * (q2p[i] - v[i]));

var il~{i in VEL_NODES}

66

36.95t
36.9

36.85r
36.8'

.i 36.751..

! 36.7~
>- 36.65

36.6

36.55

36.5

Trajectory from DMOC in B-spline ocean current

Start: X=-122.178,Y=36.856

(

(j
) l ~itia l 9uess 1 sub-optimal solution

e=2S.7327, T=48 hours.

A Initial guess 2 optimal solution
• e=lS.3604, T:48 hoos.

Initial guess 3 sub-optimal solution
• e::28.8153, T=48 hoors.

Final: X=- 122 .240,Y=36.S54

36.45r ~ ~
- 122.4 - 122.3 -122.2 -122.1 -12~9----=i21.8 -1 21 .7

X (Longitude)

FIGURE 38 - Dynamical glider trajectories in the 3D B-spline current model.

TABLE 6
DMOC SOLUTIONS FOR A DYNAMICAL GLIDER IN THE 3D B-SPLINE

CURRENT MODEL.

DM OC Interval T(hours) Iter T ime(s) Energy Cost

Guess 1 40 42.51 3000 23.10 7.9615

Guess 2 42 30.05 3000 43.30 62.2179

Guess 3 40 43.22 3000 23.10 16.192

= 0.5 * h * (-taum[i] * (q2p[i] - v[i]));

var fi{iin VELNODES}

= 0.5 * h * (taum[i] * (q1p[i] - uri]));

= 0. 5 * h * (taum[i] * (q1p[i] - uri]));

where VELNODES = {O, .. . N -I}, h is the step size of optimization, taum is the

control force, q2p, q1p is the derivative approximation of q1 and q2. The index of

variables show that the states are discrete.

By combining DMOC, IPOPT, AMPL and time-varying 2D B-spline ocean

current model, the glider trajectory is generated and shown in Figure 38. As

shown in TABLE 6, DMOC has successfully generated the local solutions for the

67

optimal control of the glider with a complex ocean current model. It illustrates

the promising aspects of DMOC methodologies combined with IPOPT to solve

other optimization control problems. Furthermore, an efficient method is needed

to choose a better solution from local solutions. The obtained solution will be an

approximate global solution for the optimal control problem.

C. Summary

In this chapter, a tutorial on solving the optimal control problems with

DMOC is presented. It is shown that DMOC combined with AMPL and IPOPT

can solve complex optimal control problems. Especially, it is shown that user

defined functions can be invoked in this procedure. The fundamentals of IPOPT

and AMPL are explained and procedure to solve problems is presented. As an

example, a dynamic glider is simulated moving in Monterey Bay California where

the ocean current is modeled as time varying 2D B-spline function. The minimiz

ing energy local solution trajectories are obtained by DMOC methodology. Conse

quently, this tutorial proposes a feasible approach and procedure to solve optimal

control problems with the available resources including DMOC methodology, the

open source IPOPT, the AMPL with a free student version with 300 variables limit.

68

CHAPTER V

COMPARISON OF DMOC AND NTG

In this chapter, two state-of-the-art optimal trajectory generation method

ologies as DMOC and NTG are analyzed and compared. DMOC is a recently de

veloped methodology to solve optimal control problems for mechanical systems.

It is based on a direct discretization of the Lagrange-d' Alembert principle while

NTG is based on a combination of differential flatness, spline theory and sequen

tial quadratic programming. Theoretical foundations and results for comparisons

are presented with application to a dynamic glider. In a simple ocean current ex

ample, DMOC with discrete Euler-Lagrange constraints generates local optimal

solutions with different initial guesses while NTG is also generating similar solu

tions with more computation time and less energy consumption. Furthermore in

a more complex ocean current model, optimal solutions from DMOC also cost less

energy and computation time than the ones from NTG. In both cases, DMOC op

timal solutions are shown to cost less energy and less computation time than NTG

optimal solutions. The cost functions are the integral of control forces over time,

nonlinear constraints are direct discrete Euler-Lagrange equations for DMOC, con

tinuous ones for NTG.

A. Discrete Mechanics and Optimal Control

Discrete Mechanics and Optimal Control (DMOC) [9] is based on a direct

discretization of the Lagrange-d' Alembert principle. For comparison, NTG uses

the continuous version of Euler-Lagrange equations as constraints.

69

1. Discrete Cost Function

The cost function (SO) over a time slice [kh, (k + l)h] is approximated as

(63)

The integral in the cost function can be approximated by some standard methods

such as the Midpoint Rule [9]. Thus the overall cost function becomes as:

N-l

Jd(qd, fd) = L Cd(qk, qk+l, fb fk+l) (64)
k=O

2. Discrete Lagrange-d' Alembert Principle

The innovative part of DMOC is to exploit the variational structure directly.

Instead of first deriving the Euler-Lagrange equations (equations of motion) for

the system to get the optimal solution, it uses a global discretization of the states

and the controls by the discrete Lagrange-d' Alembert principle to obtain equality

constraints, then the problem is transformed into a finite dimensional nonlinear

optimization problem.

For a trajectory generation problem shown with the cost function as (50),

constraint functions as (S2) and (Sl), the time for system states is discretized as

0, h, 2h, ... Nh = tf' where h is the step size and N E N. The continuous state q(t)

and the continuous force f(t) is approximated by discrete states qd(kh) and forces

h(kh).

Through direct discretization, Lagrangian in Euler-Lagrange equation (52)

is approximated over a time slice [kh, (k + l)h] by a discrete Lagrangian Ld.

(6S)

At the same time, the virtual work in (S2) also can be approximated as

l
(k+l)h

fi: . 8qk + f: . 8qk+l ~ f(t) ·8q(t)dt,
kh

(66)

70

where Ii:, Ii: are called left and right discrete force respectively.

Ii: = I(kh) . h/2;

Ii: = I((k + l)h) . h/2

(67)

(68)

The discrete version of Lagrange-d' Alembert principle (52) requires that

N-l N-l

6L L d (qk,qk+1) + LUi:' 6qk + 1:' 6qk+1) = o. (69)
k=O

As it is shown in IV, the discrete Lagrange-d' Alembert principle is derived as

(70)

where k = L.N - I, called the forced discrete Euler-Lagrange equations. Other

constraints such as (51) are also discretized with corresponding discrete states and

forces, see [9] for details. Discrete boundary conditions at to = 0 and tf = Nh are

expressed as

D2L(qo, qo) + D1Ld(qo, ql) + 10- = 0,

-D2L(qN,qN) + D2 Ld(QN-l,qN) + 11;-1 = o.

B. Nonlinear Trajectory Generation

1. Problem Formulation

(71)

NTG methodology is based on a combination of nonlinear control theory,

spline theory, and Sequential Quadratic Programming. NTG transforms optimal

control problem into Nonlinear Programming Problem (NLP). It is then solved

by NPSOL [80] [44]. In NTG the collocation method [72] is to choose a finite-

dimensional space of candidate solutions and a number of points (collocation points)

in the domain, and to select a solution which satisfies given cost and constraints

equations at the collocation points. In order to compare DMOC with NTG, the

71

cost and constraint functions should be the same. The optimal control problem for

NTG is to obtain f (t) to minimize a cost function.

itl

J(q, J) = C(q(t), q(t), f(t))dt
to

(72)

At the same time, the motion of q(t) of the mechanical system from (qto, qt I) to a

state (qtO, qt!) is to satisfy the Lagrange-d'Alembert principle [9]. This constraint

(52) can be expressed as

i

t! 8L 8L it!
(7}8q + a-8q)dt + f(t)8q(t)dt = 0

to q q to
(73)

As shown in lILB.1, the continuous Euler-Lagrange equation is obtained in the

following.
8L d 8L
8q - dt 8q + f (t) = 0

Other constraints are listed as (6):

Initial Lbo < wo(q(to), f(to), to) < ubo

Trajectory lbt < wt(q(t), f(t), t) < ubt

Final lbf < W f(q(tf), f(tf), tf) < ubf

(74)

(75)

where q(i) is the state of the system and f(t) is the control input. The constraints

compose of initial constraints <po(.), trajectory constraints, <pt (.), and final con

straints, <Pf(.). lb and ub are lower and upper bounds for the constraint functions

and to, t f are the initial and final time. If the cost function and constraints are

evaluated at discrete points in the interval [to, if]' it is possible to transform the op

timization problem, defined by (72) and (74), (6), into the following NLP problem

in Cj:

subject to

LB <::: G(C) <::: UB

where C = [C1 ••• Cp]T, F(C) is the transformed cost function, and G(C) are

the transformations of the constraints, with LB and U B as the lower and upper

bounds, respectively. The discrete points, C, at which cost and constraints are

evaluated, are called collocation points.

72

2. Procedure in NTG

Three steps are required in the NTG algorithm. The first step is to exploit

any differential flatness of the system to find a new set of outputs of the system

so that the system dynamics can be mapped down to a lower-dimensional space,

with the property that all the states and controls of the original system can be

recovered from the new lower-dimensional representation. The differentially flat

system [81] means the system states and inputs can be determined from a new

set of outputs without integration. Suppose that the system has states ql ERn,

and inputs f E Rm then the system is flat if new outputs can be found such that

q2 E Rm of the form q2 = q2(q1, f, j, ... ,j(p)) such that q1 = Q1(q2, (h, ... ,q~k)), and

f = f(Q2, (h, ... , Q~k)), where p, k are constant variables. The second step is to further

represent these outputs in terms of the B-spline functions:

p,

Zi(t) = L Ej,r, (t)C;
j=l

where Pi is the number of free parameters Cj (coefficients of the B-spline functions).

E),r, are B-spline basis functions. The basis functions [34] are defined as:

{

I, if t J :::; t < t j+ 1

El,a =
0, otherwise

(76)

(77)

Lastly, to solve the coefficients of the B-spline functions, Cj, with the se

quential quadratic programming solver NPSOL.

C. DMOC versus NTG

Two examples are presented to compare DMOC and NTG. One example is

a dynamical glider in a simplified current situation, and the other example shows

trajectories of this glider in a complex B-spline ocean current model. In both cases

the glider is controlled by gyroscopic forces. DMOC and NTG formation have the

73

same cost function, the same constraints, and the same nonlinear programming

solver.

1. A Glider in the Simple Current Model

Considering the example presented in [82], a dynamical glider shown in

Figure 4 modelled as (78) is moving from the pOint qi = 10, q2 = 0 to ql = 15, q2 =

2 with the unit of centimeter in ocean current where qI, and q2 represent :t and

y directions in a Cartesian coordinate system. The initial relative velocities are

(h = -10, g2 = -10 with the unit as centimeter/second, and it is controlled by

gyroscopic force Fgyr (79).

de (.) . -- q2 - V + u dt

de (.) . - ql - U + v dt

Fgyr = (11 = -7 (g2 - V))

12 = 7 (gl - u)

(78)

(79)

where e is the orientation of the glider shown in Figure 4, u and v are components

of the ocean current velocity in the qi and q2 direction, respectively. iJi, iJ2, gl, g2 are

accelerations and velocity of the glider in x and y direction, respectively, and 7 is a

control input.

a. Problem Formulation in DMOC The cost function of this problem is

given as:

it!

J = II Fgyr 112 dt
to

(80)

Since the control input is a gyroscopic force, the cost function is an integral of these

forces over the operation time [to, tf]. With (15), it can be expressed as

(81)

Discrete form of the cost function can be derived as:

N-l

Jd = I) !I (k)2 + 12(k)2)h (82)
k=O

74

where N is number of intervals in the trajectory and h is the step size in the trajec

tory. In the DMOC problem formulation, velocity at knot j of the trajectory in qll

q2 are correspondingly approximated as

qlP[j] = (qdj + 1]- qdj])/h

q2P[j] = (q2[j + 1] - q2[j])/h

II (j) = -T[j] (q2P[j] - v[j])

h(j) = T[j] (qlP[j] - u[j])

1L[j], and v[j] are the current velocities in the ql and q2 directions, respectively.

(83)

(84)

Euler-Lagrange equations as the constraints are listed in (61) and (62). Specif

ically, the Lagrangian L of the glider is the difference between the kinetic energy

K E and the potential energy P E.

are

L(q(t),q(t)) = KE(q(t),q(t)) - PE(q(t),q(t))

1
KEq1 (ql(t),i/l(t)) = 2m (ql(t) _U)2

1
KEq2 (Q2(t),q2(t)) = 2m(q2(t) - v)2

PEq1 (ql(t),ql(t)) = 0

P Eq2 (q2(t), q2(t)) = 0

(85)

(86)

(87)

According to the discrete Euler-Lagrange equations (61), trajectory constraints

-m(qlP[j + l]-u[j + 1]) + m(qlP[j]- u[j]) + Inj] + Il[j + 1] = 0

-m(q2P[j + 1]- v[j + 1]) + m(q2P[j]- v[j]) + I2+[j] + I2-[j + 1] = 0 (88)

where the left and right discrete forces are

II [j] = I:[j] = -T[j](q2P[j] - v[j])h/2

12- [j] = Ii [j] = T[j] (QlP[j] - u[j])h/2

75

(89)

They are different from h[j], h[j]. The initial boundary constraints are listed as:

ql [0] - qlini = 0

q2 [0] - q2ini = 0

-m(qlP[O] - u [0]) + 11- [0] + mqlinip = 0

-m(q2p[0]- v[O]) + 1;[0] + mq2inip = 0

The final conditions are listed as:

qdN - 1] - qljinal = 0

q2[N - 1] - q2jinal = 0

-m(qlP[N - 1]- urN - 1]) + 1t[N - 1] + mqljinp = 0

-m(q2P[N - 1]- v[N - 1]) + fi[N - 1] + mq2jinp = 0

(90)

(91)

where (qlini, q2ini) and (qljinal, q2jinad. are initial and final positions of the glider

at ql and q2, which are (10,0) and (15,2). (qlinip, q2inip) , (qljinp, q2jinp) are initial and

final velocities of the glider. m is the mass of the glider. (qlinip, q2inip) are (-10, -10)

correspondingly. u(O), and v(O) are ocean current velocities at the initial time. In

addition to the discrete Euler-Lagrange equation constraints, the variables are also

constrained as

-100 ::; ql [j] ::; 100;

-100 ::; q2 [j] ::; 100;

-100::; T[j] ::; 100;

1 - c ::; t j - to ::; 1 + c;

c is a small number. For this example, the velocity of the current in x-direction u is

equal to the value of x multiplied by 0.1, the velocity v in y-direction is assumed to

be o. The glider is controlled by gyroscopic forces given in (84), and an animation

to show that the glider is generating an optimal trajectory by DMOC.

To generate optimal trajectories with DMOC, the problem modelled in AMPL

is solved by a nonlinear programming solver NPSOL which is the same as the NTG

76

>-

Trajectory from DMOC when initial guess is a straight line
2~~~~'--------r---'---'~~.---.

- DMOCTraJ
"'Init Guess

0

-1

-2

-3

-4 J , , , , , , ,
-58 9 10 11 12 13 14 15 16

X

FIGURE 39-The DMOC solution when the initial guess is a straight line.

solver. The default NPSOL options [44] are used in both DMOC and NTG solu

tions of the problem. The number of intervals as 50 is the same as the one defined

in NTG. When the initial guess is a straight line connecting the start and the des

tination points, an optimal solution from DMOC is shown in Figure 39. After 96

iterations, the optimal cost is 4672.54, and the final time is 1 second. The system

for the experiments is Ubuntu 7.10, Kernel Linux 2.6.22-14-386, Memory 2.0 GB,

AMD Athlon(tm) 64 x 2 Dual Core Processor 3800+. Figure 40 shows the control

input T in DMOC changes smoothly with the time. In the DMOC trajectory when

the initial guess is a straight line, the changes of the coordinates and velocities are

smooth and listed in Figure 41.

b. Problem Definition in NTG In this part, optimal trajectory generation

problem of the glider is formulated in NTG as listed in the following. The cost

function J as in (80):

it!

J = (Il + fn dt
to

(92)

with (15), the cost function becomes

77

The control input from DMOC when initial guess is a straight line
7c-----.,---

6

5

2

10 20 30 40 50
t (sec)

FIGURE 40- The control input T in DMOC when the initial guess is a straight line.

XII) from Dt.1OC wtlen initial guess is a Itraighlline Ylt) from OMOC when initial gu ls • • tnlighlline

'r ,

--'f i: -,
-,

10 2<l 30 50 ::l iil J
10 50

!(sec) tiMe)

a) x(t) b) y(t)
Vx(1) !rom !)Moe when initial guess II (I Itraigh1 tine

1
''1"

10 2<l '" 50
tine)

c) Vx d)Vy

FIGURE 41- The DMOC trajectory properties when the initial guess is a straight
line.

78

where to, tf are the start and final time for the trajectory, respectively. Constraints

in NTG formulation are given as:

• Trajectory constraints: The glider is controlled by FgYTI and its motion is

constrainted by Euler-Lagrange equation:

8L d 8L - - -- + f(t) = 0
oq dt 04 (93)

where q can be ql or q2, f(t) should be II and h, correspondingly. The

deduced continuous Euler-Lagrange equations are represented in ql and

q2 directions as

(94)

(95)

Other constraints are listed in the following.

• Initial Constraints:

-10 - E S ch (to) S -10 + E

• Final Constraints:

• Other Trajectory Constraints:

-100 - E S q2 (t) S 100 + E

-100 - EST S 100 + E

1 - E S tf - to S 1.0 + E

79

where to , t f are the start and final time for the trajectory, respectively. Constraints

in NTG formulation are given as:

• Trajectory constraints: The glider is controlled by Fgy1" and its motion is

constrainted by Euler-Lagrange equation:

8L d 8L - - -- + f(t) = 0
8q dt 8q

(93)

where q can be ql or q2, f (t) should be fl and 12, correspondingly. The

deduced continuous Euler-Lagrange equations are represented in ql and

q2 directions as

(94)

(95)

Other constraints are listed in the following.

• Initial Constraints:

-10 - E ::; (h(to) ::; -10 + E

- 10 - E ::; rh(to) ::; -10 + E .

• Final Constraints:

• Other Trajectory Constraints:

-100 - E ::; ql(t) ::; 100 + E

-100 - E ::; q2(t) ::; 100 + E

-100 - E ::; T ::; 100 + E

79

Trajectory from NTG when initial guess is a straight line
2 ~

- NTGTraj
--- Init Guess

1 ~

01

- 1'

>-

-2~
- 3

-4 '

-59 -'- , ~ ----'--
10 11 12 13 14 15 16

X

FIGURE 42- The minimizing-energy trajectory from NTG when the initial guess is
a straight line.

where ql(tO) , Q2(tO), ql(tt) , Q2(tt) are initial and final locations of the glider. (h(to)

and (h(to) are initial velocities of the glider. !1 and h are two components of the

Fgy,' given in (15).

When NTG, using NPSOL with linesearch = Ie - 10 and other default op

tions, is applied to solve this optimal trajectory generation problem with a straight

line initial guess, the optimal trajectory shown in Figure 42 is slightly different

from the one shown in Figure 39 obtained with DMOC. The final nonlinear objec

tive value is 4163.94 and the final time is 1 sec, the computation time is 43.47 sec.

In NTG, the variables ql, q2, and T are specified as 50 intervals, the B-spline order

for these three variables are 4, and the smoothness are all two.

c. Comparisons When the initial guess is a straight line, the trajectories

from NTG and DMOC are similar. DMOC successfully generates an optimal so

lution while NTG is only generating a sub-optimal solution in which sub-optimal

means the solution cannot be improved upon from NTG. DMOC costs less energy

and computation time to generate an optimal solution than NTG.

Furthermore, when the initial guesses change, trajectories from DMOC and

NTG with initial guesses are shown in Figure 46 through Figure 48.

80

The control input from NTG when initial guess is a straight line
7

a

L

0.2 0.4 0.6 0.8
t (sec)

FIGURE 43 - The control input T in NTG when the initial guess is a straight line.

XI!) from NTG when initial go8S1 II, Sb1Mghl IIoe

:r

0" 0.6 08
t (sec)

a) x(t)
VJl(t) from NTG when initial guess ii, 5!11I1gh11ine

2tl

"'

t(sec)

c) Vx

Y(t) from NTGwhen lnitlalguus il8.traight I.,...

J
- 2

::t
-'i) -~O.2 0. 06 0.8

t(MC)

b) y(t)
Vy(I) !rom NTG when initial guess ill. Slraighlline

1
~ 0

-,
-'0
- 15

-"Ii
I(MC)

d) Vy

FIGURE 44- The NTG optimal trajectory properties when the initial guess is a
straight line.

TABLE 7
DMOC VS. NTG FOR A GLIDER IN A SIMPLE OCEAN CURRENT MODEL

DMOC/NTG Interval T Iter Time(s) Energy Cost

Guess 1 50/ 50 1/ 1 94/ 144 2.61/ 43.47 4672.81*/4163.94

Guess 2 50/50 1/ 1 43/62 1.65/17.42 5569.49*/4870.12

81

Trajectory from OMOC versus NTG
2

>-

16

FIGURE 45 - The trajectory from DMOC versus the one from NTG when the initial
guess is a straight line.

Trajectory from OMOC when initial guess changes

" - =O=M=O=C =Tr=ar '········ · ~-~

3.5 "' Inlt Gue~,~ .••••••••••.••••.•..•

':i ...
>- 1.5 :/

1 \.,

0.5

-01
,~ L -16 7 8 9 10 11

X

--' ,
12 13 14 15

FIGURE 46 - The trajectory from DMOC when initial guess changes,

82

Trajectory from NTG when initial guess changes
5 = ~

- NTGTraJ]
41-- -lnlt Guess

3

>- 2

'--
S 9 10 11 12 13

x
J

14 15

FIGURE 47 - The trajectory from NTG when initial guess changes.

Trajectory from DMOC versus NTG
5 ====-c

- DMOCTraj

3

>- 2

1(""

"'-
10 11 12 13 14 15 x

FIGURE 48 - Trajectory from DMOC versus the one from NTG when initial guess
changes,

83

TABLE 7 compares the trajectories found by DMOC versus NTG in terms of

interval, final time, iteration number, computation time, and energy cost. In this

table, * at the right corner of the data indicates that solution is optimal, otherwise it

is sub-optimal. T = t f - to means the final time for the glider to get the destination.

Iter means iterations, Time means the time for the program to solve the problem,

the unit is seconds. Guess 1 means the initial guess for both cases are the straight

line. Guess 2 represents that the initial guess is the curve shown in Figure 48 as the

dotted line.

NTG obtained the solution with the defined B-spline variables of ql, q2, T,

and T. Their degree of smoothness is (2,2,2,1), B-spline order is (4,4,4,1) in the

number of interval is (50,50,50,1). If the interval number, order, and smoothness.

If these values are not correctly chosen, NTG cannot generate a satisfactory solu

tion. On the other hand, there is only one adjustable DMOC parameter. That is

the number of interval chosen as 50 which is the same as NTG for ql, q2, T. It is

interesting to point out that the two trajectories from two initial guesses both in

DMOC and NTG are symmetric to each other which are due to the current model.

Even the optimal DMOC solutions from Guess 1 and Guess 2 are used as

initial guesses for NTG, NTG solutions do not change, while the iteration numbers

are reasonably reduced from 144 (43.47 seconds) to 55 (15.66 seconds) and from 62

(17.42 seconds) to 49 (13.56 seconds) correspondingly. On the other hand, DMOC

solutions also do not change when initial guesses are changed to the corresponding

NTG solutions from Guess 1 and Guess 2. In this case, the iteration numbers also

reduced from 94 (2.61 seconds) to 20 (0.728 seconds)and from 43 (1.65 seconds) to

25 (0.992 seconds) in these two cases.

Then reduce the step size of DMOC optimization by increasing the interval

number, the energy costs are correspondingly increasing a little bit, they are listed

in TABLE 8. And it seems that the cost is to converge to a definite number. DMOC

trajectories seem to converge to a trajectory which is closer to the NTG trajectory.

The violations of the NTG constraints are decreasing with the increased intervals.

84

TABLE 8
DMOC SOLUTIONS WITH DIFFERENT INTERVALS WITH THE SAME

INITIAL GUESS (GUESS 3)

Interval EnergyCost time Iter (11 (0) (72(0)

50 4672.81 4.56 169 -10.0097 -9.9997

60 4674.78 7.44 158 -10.0081 -9.9998

70 4675.96 14.45 183 -10.0070 -9.9998

80 4676.73 23.15 174 -10.0061 -9.9999

90 4677.26 35.63 175 -10.0055 -9.9999

100 4677.64 36.35 135 -10.0049 -9.9999

In TABLE 8, 41 (0),42(0) are the initial velocities obtained from the optimal trajecto

ries. They are initially enforced as (-10, -10). Guess 3 is the initial guess shown in

Figure 49, not the ones in Figure 42 and Figure 48.

For different intervals, 6 DMOC trajectories in Figure 49 are shown almost

at the same location compared with NTG trajectory. However by checking the

DMOC trajectories in more details , they are separated and becoming closer to

the NTG trajectory (violations of NTG constraints are decreasing) when the inter

val number is increasing. On the other hand, shown in TABLE 9 and TABLE 10,

NTG solutions with break point number as 100 are satisfied with their own con

straints with EuX value from -8.5980e - 6 to 6.9911e - 6 with the average value

as -1.423ge - 7, and EuY values vary from -6.2227e - 6 to -1.2265e - 7 with the

average value as -1.2265e - 7. For other break point numbers, NTG solutions are

not successfully generated. EuX and EuY indicate the Euler-Lagrange equation

values in x and y directions.

While put the NTG solution (initial guess is a straight line) into the DMOC

constraints, the Euler-Lagrange equation in x-direction value is from -0.7640 to

0.5225, the average value is -0.0529. It is from -0.0510 to 0.6925, the average

value is 0.0745 in y direction. On the other hand, when the DMOC solution is

85

TABLE 9
DMOC SOLUTIONS IN NTG CONSTRAINTS VERSUS DMOC CONSTRAINTS

(EUX)

Interval EuX(NTG)/ DAfOe
.

mzn max avg

50 -1.0304/ - 0.0751 3.4 7 48/0.0010 0.6393/ - 0.0017

60 -3.7772/ - 0.0172 4.4823/0.0007 -0.0087/ - 0.0004

70 -3.2493/ - 0.0181 4.1310/0.0006 -0.0320/ - 0.0003

80 -2.8554/ - 0.0086 3.6110/0.0004 -0.0385/ - 0.0001

90 -2.5499/ - 0.0091 3.1909/0.0004 -0.0509/ - 0.0001

100 -2.3059/ - 0.0093 2.8616/0.0003 -0.0604/ - 0.0001

TABLE lO
DMOC SOLUTIONS IN NTG CONSTRAINTS VERSUS DMOC CONSTRAINTS

(EUY)

Interval EuY(NTG)/ DAfOe

mzn max avg

50 -2.6879/ - 0.0247 1.2539/0.0020 -0.3967/0.0001

60 -5.5423/ - 0.0051 2.3577/0.0014 -0.6828/0.0003

70 -4.7531/ - 0.0053 2.0230/0.0011 -0.5856/0.0002

80 -4.1586/ - 0.0053 1.7760/0.0008 -0.5127/0.0002

90 -3.7021/ - 0.0055 1.5738/0.0006 -0.4561/0.0001

100 -3.3354/ - 0.0055 1.4204/0.0005 -0.4109/0.0001

86

6 DMOC trajectories from 6 number of intervals compared with the NTG trajectory r
Or

-1 '

>-
-2

-3

-4

-58 9 10

. '
I- NTGTraj

I--- Init Guess

DMOC 50 Interval ._--

DMOC 60 Interval

DMOC 70 Interval

DMOC 80 Interval

DMOC 90 Interval

DMOC 100 Interval

11
-L

12
X

13 14 15 16

FIGURE 49 - Trajectories from DMOC versus the ones from NTG when intervals
are changing_

6 DMOC trajectories from 6 number of intervals compared with the NTG trajectory

-4.788
'

-4.79

-4.792

-4.794'

>- -4.796-

-4.798'

-4.802'

- NTGTraj

--- Init Guess

DMOC 50 Interval

DMOC 60 Interval

DMOC 70 Interval

DMOC 80 Interval

DMOC 90 Interval

- DMOC 100 Interval

-4.804 -'- --'-- ~
11.75 11.755 11.76 11.765 11.77 11 .775 11 .78 11 .785 11 .79

X

FIGURE 50 - Trajectories from DMOC in details when intervals are changing.

87

Trajectory from DMOC versus NTG with no current
2

o

>-

- 4 - DMOC Tra '
- NTGTraj
--- Init Guess

- 59 10 11 12 13 14 15 16
x

FIGURE 51- Trajectories from DMOC versus NTG with no current.

put into these two constraints, the EL equation in x direction value is from -0.0018

to 0.0010, the average value is - 1.8753e - 4, the EL equation in y direction value is

from -6.678ge - 4 to 0.0020, the average value is 6.1872e - 4.

Further, in order to make a fair comparison, simply we specify the current

as (0,0) in x and y direction. The trajectories from NTG and DMOC are shown in

the following. The energy cost is 3304.243 for NTG, 3803.7 for DMOC.

The solutions from NTG and DMOC are different, it is basically due to

the difference of constraints definition. NTG constraints are enforced with vari-

abIes defined as B-spline variables and enforced along the collocation points while

DMOC constraints are discretized and enforced on the discrete points.

When optimal controls from DMOC and NTG are fixed, the equations of

motion of the glider are derived. According to the optimal controls from DMOC

and NTG, new trajectories can be generated by using Matlab original differential

equation solver ODE45. Their ODE45 solutions both for DMOC and NTG can

not reach the destination, and ODE 45 solution when DMOC optimal controls are

applied is more closer to the original solutions. The possible reason is that the

ODE45 solver is discretized, more similar as the way DMOC works while NTG is

using B-spline variables which are not closely related with the variable definitions

88

3

2,

:r
-1 r

>-
-2'

-3'

J
-5~
-6

8

Trajectory from DMOC, NTG versus their ODE 45 solutions

9 10 11

DMOC T rajeclary

Matlab ODE45
solutions for DMOC
trajectory

12
X

..L

13 14

solutions for NTG
trajectory

15 16

FIGURE 52 - Trajectories from DMOC and NTG versus Matlab ODE45 solutions.

in Matlab. In Figure 52, the Matlab solutions are obtained by fixing the optimal

controls from DMOC and NTG, then using 00E45 solver to obtain the solutions

from the original differential equations.

When the final velocity is constrained to (0, 0) in DMOC, nonlinear con

straints are infeasible, and the trajectory is not smooth, it is shown in the following.

On the other hand, when the final velocity in NTG is fixed to (0,0), NTG

cannot generate good solutions either. Therefore, both DMOC and NTG cannot

generate suitable solutions when the final velocity is fixed to (0,0), the reason may

be that in this example, the trajectory cannot be arbitrarily controlled especially at

the end point since the trajectory is controlled by the gyroscopic forces. It can be

proved by the following:

x = V cos a + uy = V sin a + v

Therefore

(96)

It is independent of a, while the control input r in the gyroscopic force 79 can only

control ~~. Thus the final velocity cannot be arbitrarily controlled by this control

89

Trajectory from DMOC when final velocity is fixed to 0
2.5 . ,

- DMOCTraJ

f ·"'G"," .

10 11 12
X

13 14 15

FIGURE 53- Trajectory from DMOC when the final velocity is fixed as O.

input.

D. A Glider in the B-spline Ocean Model

Next the characteristics of NTG and DMOC are further investigated with

the dynamical glider in a more complex environment. The real ocean current [8]

is modeled by B-spline functions shown in Figure 54 and Figure 55. The figures

show the ocean current velocities at a specific time (t=13) in ql and q2 directions

respectively. This dynamical glider (78) is simulated moving in Monterey Bay, CA

from (-122.1780, 36.8557) to (-122.2420, 36.6535) which represents the position in

degrees (Longitude and Latitude), and it is controlled by the gyroscopic forces

given in (79). The problem considered here is to find an optimal trajectory for the

glider to travel from a start point to a final destination with minimum energy by

taking advantage of the ocean current velocities.

In the time-varying 20 B-spline ocean current model, with different initial

guesses, the glider trajectories generated from DMOC and NTG are shown in Fig

ure 56 and Figure 57.

Trajectories from DMOC and NTG are both optimal solutions when the

initial guesses are straight lines (Guess 2 in the table and figures). When initial

90

10

o

Z' -10
:>;
x
"5' -20

-30

-40
37

3D B-Spline Fit VS . Data Points(t=13)for fudatafit

36.8 -121 .6

36.6

36.4

y(latitude) 36.2 -122.4
x(longitude)

FIGURE 54- The 3D ocean current B-spline model u(x,y,t) at t=13 hour [8].

3D B-Spline Fit VS . Data Points(t=13)for fvdatafit

-121 .6

y(latitude) 36.2 -122.4
x(longitude)

FIGURE 55- The 3D ocean current B-spline model v(x,y,t) at t=13 hour [8].

91

36.95

36.9

36.85

36.8'
OJ
'036.75' .a
~ 36.7

>- 36.65

36.6

36.55

36 .5~
36.45'

-122.4

Trajectory from DMOC in B-spline ocean current

-122 .3

Start: X=-122.178,Y=36.856

Initial guess 1 sub-optimal solution
e=26. 7327, T=48 hours.

Initial guess 2 optimal solution
e=16.3604. T=48 hous .

Final : X=-122.240,Y=36.654

~

-122.2 -122.1 -122 -121.9 -121 .8
X (Longitude)

-121 .7

FIGURE 56- DMOC solutions in the 3D ocean current B-spline model.

36.95

36 .9~

36.85

36.8
OJ
'036.75 .a
~ 36.7
::::!.
>- 36.651

36.6~

36.55

L
36.5

36.45

-122.4

Trajectory from NTG in B-spline ocean current

Start: X=-122.178,Y=36.856

Initia,l guess 1 optimal solution
e=22.1965, T=48 hours.

Jnitial guess 2 optimal solution
e=21 .9345, T=48 hours .

Initial guess 3 sub-optimal solution
e=15.0895, T=48 hours.

Final: X=-122.240,Y=36.654

.1 _ -----"-----
-122.3 -122.2 -122.1 -122 -121.9

X (Longitude)

--'-
-121.8 -121 .7

FIGURE 57 - NTG solutions in the 3D ocean current B-spline model.

92

TABLE 11
DMOC VS. NTG FOR A GLIDER IN A B-SPLINE OCEAN MODEL

DMOC/NTG Interval T(hours) Iter Time(s) Energy Cost

Guess 1 50/50 48/48 158/25 18.11/10.98 26.7372/22.1965*

Guess 2 50/50 48/48 80/31 9.89/10.44 16.3604*/21.9345*

Guess 3 50/50 48/48 35/16 4.71/6.14 28.8153/15.0895

guesses are defined on the left and right of the straight line, DMOC and NTC only

generate sub-optimal solutions. The results for comparisons are presented in TA

BLE 11. In TABLE 11, Guess I, Guess 2, Guess 3 are three initial guesses which

represent the guess on the left, center, right of the straight line as shown in Fig

ure 56 and Figure 57. As it is in TABLE 7, the data with note' *' on the right are

the optimal solutions, other data are the sub-optimal solutions. It is suitable to

compare DMOC and NTC when they are both generating optimal solutions when

the initial guess is a straight line. For a glider trajectory generation problem in the

complex ocean current model, it is still shown that DMOC solution costs less energy

and less computation time than NTG. It is clear for both DMOC and NTC to generate

a local optimal solution, it is important to choose a suitable initial guess.

E. Hovercraft Example

Further, a hovercraft shown in Figure 58as an example [9] [83] is presented

to investigate and compare DMOC with NTC, since we tried to make the problem

with the constraints both as locations and velocities for the start and destination

points. In this hovercraft example, the initial velocity and final velocity are both

zero, it just need to fly from one location to another location with the objective

to minimize the control input. The hovercraft has three degrees of freedom: its

position (x, y) and its orientation e. It has two control forces !I and 12 as shown in

Figure 58. They are applied at a distance r from the center of mass with fl acting

in the direction of motion of the body and 12 acting orthogonally to the fl. The

93

y

x

FIGURE 58 - Hovercraft [9]

Lagrangian of the system is shown as:

(97)

where q = (x, y, ()), m is the mass of the hovercraft and J is the moment of inertia,

The forces acting in the three directions are shown as:

(

fX = cos ()(t)!I(t) - sin ()(t)h(t))

f(t) = fy = sin ()(t)!I(t) + cos ()(t)h(t)

ff) = -1' h(t)

The resulted forced discrete Euler-Lagrange equations are

where k = 1, .. " N - 1 and

m a a

M= a m a

a a J

94

(98)

Trajectory (Hovercraft) from DMOC, NTG

-20

- 30'

>-
-40

-50

-60

-~~O
.

-20 0 20 40 60 80 100
X

FIGURE 59 - Hovercraft trajectory from DMOC and NTG.

The goal for controlling the hovercraft is to minimize the control input !I

and 12, the cost function is defined as

(100)

From (98) and (99), the forced discrete Euler-Lagrange equations in the x, y and B

directions are shown in the following:

~m(- x (k _ 1) + 2x (k) _ x (k + 1)) + !!..(fx(k - 1) + f x(k) + f x(k) + f x(k + 1))
h 2 2 2

~m(-y(k - 1) + 2y(k) _ y(k + 1)) + !!..(fy(k - 1) + fy(k) + f y(k) + fy(k + 1))
h 2 2 2

~J(-B(k - 1) + 2B(k) - B(k + 1)) + !!..(f()(k - 1) + f()(k) + f()(k) + f()(k + 1) JlOl)
h 2 2 2

The boundary conditions are defined as the start point (0, 0, 0) and the final point

as (100 , 0, pi). In DMOC, these conditions need to be fitted into the equations listed

as 90 and 91. Their initial velocity is (-2. - 2, 0), the final velocity is (2 , 2, 0) .

Both for DMOC and NTG, when the initial guess 'is a straight line. Their

trajectories are different shown in the following. From Figure 59, DMOC trajectory

costs much less computation time than NTG trajectory and comparable energy.

There control forces fl and 12 are shown in the following:

Further when NTG trajectory is input as an initial guess to DMOC, the

95

eo

a) The control input fl . b)The control input h .

FIGURE 60 - The control input for the trajectories shown in Figure 59.

TABLE 12
DMOC VS. NTG FOR A HOVERCRAFT TRAJECTORY

DMOC/NTG I nterval T(seconds) Iter Time(s) Energy Cost

Straight guess 50/50 100/100 480/346 40.16/398.35 0.2845/0.2003

DMOC trajectory does not change. On the other hand, the NTG trajectory does

not change when the initial guess is set as the DMOC solution.

From the hovercraft example, the trajectories from DMOC and NTG are dif

ferent, They generate similar trajectory and cost similar energy. The difference

should be due to the numerical accuray for modelling the problem differently in

DMOC and NTG. Two obvious benefits of DMOC are less compuation time and

easy to model the problem as they are also shown in the glider example.

Further, more intervals are specified in DMOC to make sure that DMOC can

generate a more accurate solution, however, with the increase of interval numbers,

the computation time is speeding up as O(n) . The trajectories of the hovercraft

from DMOC do not change much even the computation time is increased by 10

times as the interval number increases by 2 times.

F. Summary

In this chapter, DMOC and NTG as two different state-of-the-art optimal

trajectory generation methods are compared. In application, NTG is more difficult

than DMOC to be applied since several variables have to be defined as B-spline

96

functions, in which parameters should be suitably chosen. On the other hand,

there is only one DMOC parameter which can be adjusted to generate an optimal

(sub-optimal) solution. These two methods are analyzed and compared with opti

mal trajectory generating problems of a dynamical glider both in a simplified and

a complex ocean current model. For a simplified ocean current model, with the

right selections of NTG parameters, the glider optimal trajectories from DMOC

and NTG are similar as shown in Figure 45 through Figure 48. DMOC can gen

erate an optimal solution which costs comparable energy and less computation

time than NTG sub-optimal solution. Furthermore, as shown in TABLE II, in a

complex B-spline ocean current model, when DMOC and NTG both generate sim

ilar optimal solutions, DMOC still costs comparable energy and less computation

time. In addition, a hovercraft example further shows that DMOC can save much

computation time to generate similar optimal solutions to the NTG, the difference

between DMOC trajectory and NTG trajectory is related to the numerical reasons.

In summary, this chapter shows that DMOC can generate optimal solutions with

comparable energy consumption and less computation time than NTG.

97

CHAPTER VI

THE UOFL MARIT TESTBED

A. The MARIT Testbed

A MARIT (Multiple Air Robotics Indoor Testbed) testbed is established at

the University of Louisville for investigating control algorithms, it is upgraded

from the previous mobile robot testbed [84]. The system consists of a Vicon 8i mo

tion capture system and draganflyer helicopters on which markers are attached,

therefore they can be tracked by 6 Vic on Mcam 2 cameras. The similar testbeds

exist in Vanderbelt [85], MIT [86], and University of Essex [87], United Kingdom.

This testbed further can be used to study autonomous systems in which several

agents cooperate with each other to perform some assigned tasks. UAVs are at

tracting quite a lot of attention shown in [88] [89] [90] since UAVs provide con

venient and cost-effective tools for various applications [91] including terrain and

utilities monitoring or environmental surveillance, search and rescue, aerial map

ping, traffic surveillance. Benefits of indoor testbed include that it can perform

testing purposes regardless of outside weather conditions and easy to monitor and

control.

B. Vicon Vision System

Vicon motion capture systems have been used in life science, sports, medi

cal, movie and game industry, music, robot to accurately track and analyze move

ments. The testbed established at U of L is utilizing a Vicon system to track he

licopters, then to study control methods for helicopters. The system consists of 6

98

FIGURE 61-A Mcam 2 camera in the Vicon Motion Capture System.

Mcam 2 cameras shown in Figure 61, one datastation presented in Figure 62, two

third party megapixel Camera Interface Unit shown in Figure 63, several video

channel distribution cables, one workstation shown in Figure 64 which is a dedi

cated desktop with Vicon iQ 2.0 in Windows XP. The datastation is connected to the

cameras through camera interface units with every three cameras using an Unit.

Also, the datastation is connected with the workstation with a crossover cable.

c. Real-Time Application

In order to make the Vicon system obtain real-time 6 degrees of freedom in-

99

FIGURE 62 - The datastation in the Vicon Motion Capture System.

FIGURE 63 - A camera interface unit in the Vicon Motion Capture System.

100

FIGURE 64- The workstation in the Vicon Motion Capture System.

formation, first the system should be calibrated, the calibration steps can be found

in the Vicon Manual [92]. After calibration, a program is written in C++ with the

application of Vicon Real Time SDK. The following steps are done to achieve the

task.

• I, set up 6 vicon cameras and calibrate these cameras so that the dragan

flyer can be checked with 5 markers on it

• 2, in Vicon IQ, create a rigid body with 5 markers, the rigid body is named

as draganflyer.

• 3, connect the workstation with the datastation by specifying the proper

IP addresses.

• 4, download Vicon Real Time SDK.

• 5, in Visual C++, create a project, include VrtSDKI0ex.h header files in

your folder. link with VrtSDKI0ex.lib. In Visual c++, Project- >Add

Existing Item- > choose VrtSDKlOex.lib in thefolder}.

• 6, begin to write a program, our program is shown in the attachment

After real-time coordinates of the draganflyer are obtained, the future step

is to send the comands to the draganflyer in real-time through the computer. Since

101

FIGURE 65- The Vic on Motion Capture System.

the cameras are already calibrated, the 6 cameras are shown in the 3D live space

as Figure 66. For the tracked draganflyer, five markers are attached on the body.

These five markers shown in Figure 67 are defined as a rigid body, thus its center

coordinates and its orientation angles can be obtained by the program with the

application of Vicon Real-Time SDK.

In the C++ program, the real-time coordinates and orientation angles can be

obtained as shown in Figure 68.

D. Summary

The UAV 3D testbed is established with Vicon 8i motion capture system.

6 cameras connected with the datastation are able to track real-time coordinates

of any suitable vehicle or helicopter, even biological activities. The Vicon system

should first be calibrated, then a c++ program should be written by the user to pro

cess the raw data from the Vicon system after the program is connected with Vic on

Real-Time Engine. After setting up the Vicon System, the draganflyer helicopter

is modelled as a rigid body, its 6 DOF information can be obtained in real-time

102

FIGURE 66 - The Vicon iQ 2.0 in 3D live work space.

FIGURE 67 - The markers are tracked in the Vicon Motion Capture System.

103

• . w ...

FIGURE 68 - Real-time coordinates output in the Vicon Motion Capture System.

with our own C++ program based on Vicon Real-Time SDK This motion capture

system establishes a good foundation for verifying optimal trajectory generation

methods such as DMOC and NTG by experiments.

104

CHAPTER VII

CONCLUSION AND FUTURE WORK

A. Conclusion

In this dissertation, DMOC and NTG as two state-of-the-art optimal trajec

tory generation methodologies were investigated with application to an underwa

ter glider and a JPL aerobot. These two optimal trajectory generation methods

were analyzed and compared with application to a glider in both simple ocean

current and B-spline current. For the detailed conclusion in the every chapter, they

are listed as follows:

In Chapter I, the motivation for this research was presented which indicated

that robotic explorers for ocean and outer space will be necessary tools to discovery

and advancements in science and technology. In order to make robotic rovers ex

plore the unknown places efficiently and robustly, optimal control methodologies

need to be utilized. Then two state-of-the-art trajectory generation methodologies

were introduced, NTG and DMOC. Finally, outline of this dissertation was pre

sented in this chapter.

Chapter II presented optimal trajectories from NTG for an underwater glider

to strengthening the previous hypodissertation that LCS (Lagrangian Coherent

Strutures) in the ocean reveal efficient or near-optimal routes for glider transport.

In this chapter, with modelling the glider kinematically and dynamically, trajecto

ries found with the 3D B-spline ocean flows model corresponds well with LCS, for

which numerical solutions of several scenarios and animations of glider trajecto

ries with Tecplot were presented.

Chapter III proposed to utilize Nonlinear Trajectory Generation method-

105

ology to generate 3D opportunistic trajectories for an aerobot by utilizing wind

information. The aerobot is dynamically controlled by three propellers which are

respectively parallel to the local three Cartesian axes. Constraints for the aerobot

control are derived from Euler-Lagrange equations in the condition that the aer

obot must be satisfied with the Lagrange-O' Alembert principle. The new proposed

aerobot model takes the aerodynamics into account. The results show that NTG

can take the advantage of wind profiles to save significant energy for the defined

goal. Further, a state space model of the Aerobot which decoupled its longitudinal

and lateral dynamics is also investigated to generate the optimal trajectories. The

minimizing energy trajectory with this complex model did cost more time than the

simple model but the optimal trajectory is still energy efficient with NTG.

Chapter IV presented a detailed procedure to apply OMOC methodology

to solve optimal control problems. It explains the principle of OMOC, and how to

formulate the problem in OMOC. Then the steps are shown about how to install

and configure nonlinear programming solver IPOPT, and how to use the modeling

language AMPL. In particular, a user-defined function is involved with AMPL to

solve more complicated problem.

In Chapter V theoretical foundations and results for comparisons were pre

sented with application to a dynamic glider. In a simple ocean current example

and a B-spline ocrean current model, OMOC optimal solutions are shown to easier

to generate, cost less computation time and comparable energy than NTG optimal

solutions.

Chapter VI presented the MARIT testbed with Vicon 8i motion capture sys

tem. The real-time 6 OOF information of a defined rigid body can be tracked. The

testbed is being established for future research.

B. Future Work

Since the MARIT testbed is being established and it is able to get real-time

106

coordinates of an object which can be a mobile robot or a draganflyer helicopter,

future research is focused on implementing and validating NTG and DMOC in the

control of draganflyers. NTG and DMOC can be embedded in the program which

gets the position information from Vicon system, then the program can generate

trajectory which consists of a few of waypoints with NTG or DMOC. Based on

the reference trajectory given by NTG or DMOC, the program can send the com

mands wirelessly to the draganflyers to make them fly from one start pOint to one

destination point by specified routes minimizing energy, and or minimizing time.

107

REFERENCES

[1] The NOAA posts new updates to Jacksonville area nautical chart, safe
navigation important to Super Bowl vistors. www. noaanews . noaa. gOY /
stories2 005/ s2383 . htm, Feb 2005.

[2] Mars exploration rovers.
missions/mer.html.

http://www.nasa.gov/centers/jpl/

[3] Mars aerobot image. http://www.fourth-millennium.net.

[4] H. Stommel. The slocum mission. Oceanography, 2:22-25, 1989.

[5] Nasa-jpl planetary aerovehicles. http://www . j pl. nasa. gOY.

[6] V. R. Cortes, J. R. Azinheira, and E. C. Paiva. Identification of lateral dynamics
of aurora airship. 2004.

[7] A. Wachter. Introduction to IPOPT: A Tutorial for Downloading, Installing, and
Using IPOPT. 2008.

[8] Weizhong Zhang, Tamer Inane, S. O. baum, and Jerrold E. Marsden. Optimal
trajectory generation for a dynamic glider in ocean flows modeled by 3d b
spline functions. In Proceedings of ICRA 2008, CA, May 2008.

[9] O. Junge, J. E. Marsden, and S. Ober-bI6baum. Discrete mechanics and opti
mal control. In Proccedings of the 16th IFAC World Congress, page 6, 2005.

[10] Autonomous ocean sampling network homepage. http://www . mbari.
org / aosn/, Jun 2006.

[11] T. Inanc, S. C. Shadden, and J. E. Marsden. Optimal trajectory generation in
ocean flows. In Proceedings of 2005 American Control Conference, J un 2005.

[12] F. Zhang, D. M. Fratantoni, D. Paley, J. Lund, and N. E. Leonard. Control of
coordinated patterns for ocean sampling. International Journal of Control, spe
cial issue on Navigation, Guidance and Control of Uninhabited Underwater Vehicles,
80(7):1186-1199, July 2007.

[13] P. Bhatta, E. Fiorelli, F. Lekien, and N. E. Leonard et al. Coordination of an
underwater glider fleet for adaptive ocean sampling. In Proc. International
Workshop on Underwater Robotics, Int. Advanced Robotics Programmed (IARP),
2005.

[14] J. G. Graver, R. Bachmayer, N. E. Leonard, and D. M. Fratantoni. Underwater
glider model parameter identification. In Proc. 13th Int. Symp. on Unmanned
Un tethered Submersible Technology (UUST), Aug 2003.

108

[15] J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes. The autonomous under
water glider spray. IEEE J.Oceanic Engin., 26(4):437-446, 2001.

[16] J. J. Fahie. CaWeo: His Life and Work. Adamant Media Corporation, 2000.

[17] 1. P. Gerson. Aristotle and Other Platonist. Ithaca: Cornell University Press,
2005.

[18] W. D. Compton. Where No Man Has Cone Before: A History of Apollo Lunar
Exploration Missions. DIANE Publishing Co, 1996.

[19] Draganfly innovations inc. http://www.rctoys.com.

[20] H. J. Suss mann and J. C. Willems. 300 years of optimal control: from the
brachystochrone to the maximum principle. Control Systems Magazine, IEEE,
17(3):32-44,1997.

[21] A. E. Bryson. Optimal control-1950 to 1985. Control Systems Magazine, IEEE,
16(3):26-33, 1996.

[22] 1. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. Interscience publishers, a divi
sion of John Wiley & Sons, Inc., 1962.

[23] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[24] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlin
ear programming and collocation. J. Guidance, Control and Dynamics, 10(4),
1987.

[25] J. E. Mcinroy and J. A. Mellstrom. Optimal trajectory generation for linear
systems. In American Control Conference, 1995. Proceedings of the, volume 5,
pages 3121-3125,1995.

[26] A. Fabbrini, D. Doretti, S. Braune, A. Garulli, and P. Mercorelli. Optimal tra
jectory generation for camless internal combustion engine valve control. In
Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pages
303-308,2008.

[27] D. Pekarek, A. D. Ames, and J. E. Marsden. Discrete mechanics and optimal
control applied to the compass gait biped. In Proc. of the 46th IEEE Con! on
Decision and Control, pages 5376-5382, Dec 2007.

[28] c. Xu, A. Ming, and M. Shimojo. Optimal trajectory generation for manipu
lator with strong nonlinear constraints and multiple boundary conditions. In
Robotics and Biomimetics, 2004. ROBIa 2004. IEEE International Conference on,
pages 192-197,2004.

[29] M. Guilbert, P. Wieber, and 1. Joly. Optimal trajectory generation for manipu
lator robots under thermal constraints. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 742-747, 2006.

109

[30] B. Mcavoy, B. Sangolola, and Z. Szabad. Optimal trajectory generation for
redundant planar manipulators. In Systems, Man, and Cybernetics, 2000 IEEE
International Conference on, volume 5, pages 3241-3246 voL5, 2000.

[31] B. H. Lee, J. S. Kong, and J. G. Kim. Optimal trajectory generation for a hu
manoid robot based on fuzzy and genetic algorithm. In 2006 IEEE Congress on
Evolutionary Computation, pages 1968-1974,2006.

[32] E. Arnold, J. Neupert, O. Sawodny, and K Schneider. Trajectory tracking for
boom cranes based on nonlinear control and optimal trajectory generation. In
Proceedings of the 41st IEEE Conf on Decision and Control, Las Vegas, Dec.

[33] P D. Hattis and R. K. Smolskis. Optimal trajectory generation and design
trades for hypersonic vehicles. In American Control Conference, 1989, pages
1125-1130,1989.

[34] c. D. Boor. A Practical Guide to Splines. Springer, 2003.

[35] A. Elfes, J. L. Hall, J. F. Montgomery, C. F. Bergh, and B. A. Dudik. Towards a
substantially autonomous aerobot for exploration of titan. In in the Proceedings
of the 2004 IEEE International Conference on Robotics & Automation, New Orleans,
LA" pages 2535-2541, Apr 2004.

[36] M. Fox and D. Long. Single-trajectory opportunistic planning under uncer
tainty. In Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space, 2002.

[37] D. Johnstone and S. Bradley. Opportunistic scheduling in a constraint-rich
world. SIGBED Rev., 2(2):19-22, 2005.

[38] M. B. Milam, K.Mushambi, and R. M. Murray. A new computational ap
proach to real-time trajectory generation for constrained mechanical systems.
In Proc. of IEEE Conference on Decision and Control, pages 845-851, 2000.

[39] V. Jurdjevic. Geometric Control Theory. Cambridge University Press, 1997.

[40] Michel Fliess, Jean Levine, and Pierre Rouchon. Flatness and defect of nonlin
ear systems: Introductory theory and examples. International Journal of Con
trol, 61:1327-1361, 1995.

[41] P T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica,
pages 1-50, 1995.

[42] Jr. A. E. Bryson and Y. C. Ho. Applied Optimal Control: Optimization, Estimation
and Control. Washington: Hemisphere Pub. Corp., 1975.

[43] M. B. Milam. Real time Optimal Trajectory Generation for Constrained Dynamical
Systems. 2003.

[44] P. E. Gill, W. Murray, M. Saunders, and M. Wright. Npsol nonlinear program
ming software.

110

[45] B. A. Murtagh and M. A. Saunders. MINOS 5.5 USER'S GUIDE, Ju11998.

[46] P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright.
User's guide for lssol(version 1.0): A fortran package for constrained linear
least-squares and convex quadratic programming. Technical report, Jan 1986.

[47] R. Bachmayer, N. E. Leonard, J. Graver, E. Fiorelli, P. Bhatta, and D. Paley.
Underwater gliders: Recent developments and future applications. In Proc. of
2004 International Symposium on Underwater Technology, pages 195-200,2004.

[48] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry.
Underwater gliders for ocean research. Marine Technology Society Journal, 38,
2004.

[49] S. A. Jenkins, D. E. Humphreys, J. Sherman, J. Osse, C. Jones, N. Leonard,
J. Graver, R. Bachmayer, T. Clem, P. Carroll, P. Davis, J. Berry, P. Worley, and
J. Wasyl. Underwater glider system study. May 2003.

[50] B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous oceano
graphic sampling networks. Oceanography, 6:86-94, 1989.

[51] G. Haller. Lagrangian coherent structures from approximate velocity data.
Physics of Fluids, 14(6):1851-1862, June 2002.

[52] J. D. Paduan and L. K. Rosenfeld. Remotely sensed surface currents in mon
terey bay from shore-based hf radar (coastal ocean dynamiCS application
radar). Journal of Geophysical Research, 101:20669-20686, 1996.

[53] F. Lekien, C. Coulliette, R. Bank, and J. Marsden. Open-boundary modal anal
ysis: Interolation, extrapolation and filtering. Journal of Geophysical Research
Oceans, 109, 2004.

[54] J. A. Cuttes, T. S. Balint, A. P. Belz, and C. E. Peterson. Overview of nasa's
2006 sse strategic roadmap. In Aerospace Conference, 2007 IEEE, pages 1-10,
2007.

[55] J. Jones. Inflatable robotics for planetary applications. In 6th International
Symposium on Artificial Intelligence, Robotics, and Automation in Space, Montreal,
Canada, Jun 2001.

[56] B. Kroplin. Solar airship lotte, technical report, institute for statics and dy
namics of aerospace structures. Technical report, 2002.

[57] T. Kampke and A. Elfes. Optimal wind-assisted flight planning for planetary
aerobots. In Proceedings of the 2004 IEEE International Conference on Robotics &
Automation, New Orleans, LA" pages 2542-2549, Apr 2004.

[58] J. Biesiadecki, A. Jain, and M. L. James. Advanced simulation environment
for autonomous spacecraft. In International Symposium on Artificial Intelligence,
Robotics and Automotion in Space.

111

[59] M. S. Hassouna and A. A. Farag. Dsends - a high-fidelity dynamics and space
craft simulator for entry, descent and surface landing. In Proceeding of IEEE
Aerospace Conference, volume 7, pages 3343-3359, 2002.

[60] R. M. Young. Model 81000 ultrasonic anemometer. http://www.
youngusa. com.

[61] J. D. Anderson. A History of Aerodynamics and its Impact on Flying Machines.
New York: Cambridge University Press, Cambridge, 1998.

[62] G. A. Khoury and J. D. Gillett. Airship Technology. New York: Cambridge
University Press, Cambridge, 1999.

[63] V. V. Kerzhanovich and J. A. Cutts. Aerobots in planetary exploration. In Proc.
of IEEE Aerospace Conference 2000.

[64] Alberto Elfes, James F. Montgomery, Jeffery L. Hall, Sanjay S. Joshi, Jeffrey
Payne, and Charles F. Bergh. Autonomous flight control for a titan exploration
aerobot. In Proc. of the 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2005.

[65] A. Elfes and Jose R. Azinheira. Robotic airships for exploration of plane
tary bodies with an atmosphere: Autonomy challenges. Autonomous Robots,
14:147-164,2003.

[66] V. R. Cortes, J. R. Azinheira, E. C. Paiva, B. Faria, J. Ramos, and S. Bueno.
Experimental identification of aurora airship.

[67] J. E. Marsden and M. West. Discrete mechanics and variational integrators.
Acta Numerica, 10:357-514,2001.

[68] S. Lall and M. West. Discrete variational hamiltonian mechanics. Journal of
Physics A: Mathematical and general, 39:5509-5519, 2006.

[69] O. Junge, J. E. Marsden, and S. Ober-BlObaum. Optimal reconfiguration of
formation flying spacecraft-a decentralized approach. In Proceedings of the
45th IEEE Con! on Decision and Control, pages 5210-5215, Dec 2006.

[70] M. Desbrun, A. N. Hirani, and J. E. Marsden. Discrete exterior calculus for
variational problems in computer vision and graphics. In Proceedings of the
42nd IEEE Con! on Decision and Control, Dec 2003.

[71] C. W. Rowley and J. E. Marsden. Variational integrators for degenerate la
grangians, with application to point vortices. In Proceedings of the 41st IEEE
Con! on Decision and Control, pages 1521-1527, Dec 2002.

[72] L.T. Biegler. Solution of dynamic optimization problems by successive
quadratiC programming and orthogonal collocation. Technical report, 1983.

[73] W. Zhang, T. Inanc, and J. E. Marsden. A tutorial for applying dmoc to solve
optimization control problems. submitted to the 2010 American Control Con
ference, 2010.

112

[74] S. J. Wright. Primal-dual Interior-Point Methods. Society for Industrial and Ap
plied Mathematics, 1997.

[75] A Wchter and L. T. Biegler. On the implementation of a primal-dual inte
rior point filter line search algorithm for large-scale nonlinear programming.
Mathematical Programming:Series A and B, 106:25-57,2006.

[76] Computational infrastructure for operations research. ht tps: / /proj ects.
coin-or.org/Ipopt.

[77] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathe
matical programming. Manage. Sci., 36:519-554,1990.

[7S] R. Vanderbei. Nonlinear optimization models. http://www.sor.
princeton.edu/-rvdb/ampl/nlmodels/.

[79] D. M. Gay. Hooking your solver to ampl. Technical report, 1997.

[SO] P. E. Gill, W. Murray, M. A Saunders, and M. H. Wright. Some theoretical
properties of an augmented lagrangian merit function. Advances in Optimiza
tion and Parallel Computing, pages 100-12S, 1992.

[SI] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical
control systems: A catalog of prototype systems. In Proceedings of 1995 ASME
Int'l Mech Eng Congress and Expo, pages 1-9, November 1995.

[S2] O. Junge, S. Ober-Bl6baum, and J. E. Marsden. Dmoc project. http://www .
cds.caltech.edu/-marsden/research/demos/dmoc/.

[S3] O. Junge and S. Ober Bl6baum. Optimal reconfiguration of formation flying
satellites. In Proc of IEEE Conference on Decision and Control and European Con
trol Conference ECC, 2005.

[84] T. Riggs, T. Inanc, and W. Zhang. The VofL autonomous mobile robotics sys
tems testbed. Accepted to IEEE Transactions on Control Systems Technology, Dec
2008. .

[85] T. J. Koo. Vanderbilt embedded computing platform for autonomous
vehicles. http://www . vuse. vanderbil t. edu/ -kootj /Proj ects/
VECPAV /, Jul2006.

[86] J. P. How, B. Bethke, A Frank, D. Dale, and J. Viano Real-time indoor au
tonomous vehicle test environment. Control Systems Magazine, IEEE, 28(2):51-
64,200S.

[87] John Oyekan and Huosheng Hu. Toward autonomous patrol behav-
iors for uavs. http://cswww.essex.ac . uk/staff/hhu/Papers/HAM%
202009.pdf.

[SS] Stanford testbed of autonomous rotorcraft for multi-agent control. h t t P :
//hybrid.eecs.berkeley.edu/index.php?section=31.

113

[89] The Berkley aerial robot project. http://robotics.eecs.berkeley.
edu/bear/.

[90] USC autonomous flying vehicle project. http://www- robotics. usc.
edu/-avatar/.

[91] A. OHero and L. Merino. Control and perception techniques for aerial
robotics. Annual Reviews in Control, 28:167-178, 2004.

[92] Vic on company. http://www.vicon.com/.

114

APPENDIX I

NOMENCLATURE

The following convention is used throughout this dissertation.

NTG

DMOC

SQP

LCS

NASA

]PL

AMPL

IPOPT

UAV

PCTx

u(x,y)

v(x,y)

Bi,k

Bj,k

u(x, y, t)

v(x,y,t)

Fgyr

q(t)

L(q(t), q(t))

Q

h

L d(qk,qk+l)

Jd(qd, fd)

Nonlinear Trajectory Generation

Discrete Mechanics and Optimal Control

Sequential Quadratic Progromming

Lagrangian Coherent Structure

National Aeronautics and Space Administration

Jet Propulsion Laboratory

A Mathematical Programming Language

Interior Pointer OPTimizer

Unmanned Air Vehicle

PC to Transmitter Interface

20 ocean current velocity in x direction

20 ocean current velocity in y direction

B-spline basis function for the x direction

B-spline basis function for the y direction

3D ocean current velocity in x direction

3D ocean current velocity in y direction

Gyroscopic Force

System State

Lagrangian of the system

Configuration Space

Step Size of Discretization

Discrete Lagrangian

Discrete Cost Function

115

APPENDIX II

NTG program for a glider in a B-spline ocean model

liThe following NTG Program is to generate tt'aject(nies for a glider in a B-spline Ocean Model.

I/The programs have four parts They are optl ,main.c which is the main program, optl.sub_h is the B-spline

I/ocean current model pro~Ham, optl inp which is the input file tor the NTG, optl.make which is makefile

/ /for the program.

Ilopt1. main.c

#include <stdlib.h>

#inc-lude <math.h::.j ... math functiuns */

#include <ntg.h>/ ... main NTG declaratiuns *1

#include <tlme.h:>- I*get the time ... !

#include <ParselnputFile.c>

int. main(int argc, char *argv[]}

oprPARAM optparam;

int i,j,5um, kl;

char "" fname ;

FILE *fp;

FILE * tp2;

FILE *fcurrent;

FILE *fcurrent2 ;

double h,Traj, ,.Tlme;

int nTraj, Traj_offset, coef_offsE:t, nPts=500;

float cuu"ent.dat.au[1] {a};

float. currentdatavl4] {oj;

double Tf = 0;

FILE * fxinit, * fyinit j

const int sizeofinit = 93 ;

float xinit [onZE'ofinitJ ;

float yinit [sizeofinit] ;

float xsta:rt, xstop, xdif, ystart, ystop, ydlf;

double ",,,,knots; /'" knot pOl.nts, list of times fol. each out.put */

int nbps;

double ",bps i

oc)uble ",,,,lic,*,,,lfc, ",,,,ltc;

1* initial guess size sum Over each output ninterv", (order-mult) +nlult */

int ncoef;

int *NCOEF;

double *coefficients;

int .dstate;

double ",clambda;

double ",R;

int inform;

double Objective;

if (argcl=2) {

printf ("\n\tUsage: %s inputfile inp\n\n" ,argv[OJ);

exit (-l) ;

116

IIRead Input file

parse_lnput_file (argv [1] ,&Optpcu'am);

II Allocate space and initial ize the knot points

knots= (double I I) maUoe (optparam. noutIsizeof (double ...)) ;

for (l=O,i<optparam.nout.;i-H) {

knots (i 1 = (double ,,) malloe ((optparam. ninterv [il .1) * si zeof (double)) ;

linspace{knots[iJ, 0, optparam.HL, optparam.ninterv[iJ+l);

neoef 0;

NCOEF (int,,) malloc{optparam.nout*sizeof (int));

for (i",O; i<::optparam. nout; i++) {

neoef neoef + (oprparam.ninterv(il*(optparam.order[iJ-optparam.mult[il)

+optparam.rnl.llt [l]);

NCOEF [i 1 = [)ptp~nHn. nlnterv [i; * (optpararn Drder [i] -optparam. mult [iJ)

+optparam.mult[il;

II Initial guess for coefficients (all Os) *1

coeff icients= (double*) malloc (ncoef+s izeof (double)) ;

xstart 1483790 964036;

ystart = 2430868,637727;

xstop 9.1338e5;

ystop g.8015e5;

xdif xstop xst.:'iyt;

ydif ystop yst art;

kl " 0;

while(kl <:: sizeofinitl

xinit [k1l

yinit [kl]

kl = kl 1- 1;

xstart + (xdif/(sizeofinit l))*k1;

ystart + (ydif/(sizeotinit l))*kl;

fur (kl=O ;kl<sizeofinit iklH)

r:oefficients lklJ = xinit [k1l ;

coefficients [kl+sizeofinit] yinit [klJ ;

coefficients [ncoef -1] '" 1 72800; IITMR: fm time variable

III inspace (coeffic ients, 0,0, n("oef) ;

IIDone wlth the download of coefflcients

1* Allocate space for breakpoints and initialize *1

bps~ (double.,.) maUoe (optparam. nbps-.,si zeof (double) l i

linspace (bps, 0, opt par am . HL, oplparam. nbp~) ;

1* NTG Memory Variables *1

istate= (inu) malloc ((ncoef+

optparam. nlic-+-optparam. nl fc+

optparam. nl tcwoptpar am. nbps+

optparam. nnlic+

optparam. nnl te*optparam. nbp$+

optparam.nnlfc) *sizeof (iIlt)):

clambda= (double I) malloc ((neoef+

optparam, nlic+optparam. nlfe ..

optparam, nl tc*optparam. nbps+

optparam. nnlic+optparam. nnl tc*oplparam .nbps-+

optparam .nnlfcl .. sizeof (double)) ;

R= (double *) maUoe ((ncoef+l) * (nt'oef1-1) *sizeof (double));

I ... Set NPSOL options if any *1

for (i=O; i.-;optparam. nnpsol_options i iH)

117

npsoloption(optparam.npsol_uptions [i]);

/ /1 ine 159 to line 173 is copied from "ntgmultilo e", try to find the optimal solution

/ /Call to ntg

/ /npsoloption ("verify level = J ") i

npsolopt10n("Majm iter-atlon Ilmit 3000") i

npsoloption("Minor iteratlon 1lmit 1500");

npsoloption (IILine search t.olerance = 0.001 II) ;

npsoloption ("Feasibil i ty tolerance 2. e-5") i

npsoloption ("cold start ") ;

ntg (opt par-am. nout, bps, optparam. nbps,

optparam. ninterv, knots, ptpaI'<I.!\\. order, opt par am . mult,

optparam, maXoerl v, r:oefflcients, optparam. nlie,

optpar am. 1 if' _A, optparam. nl tc, optparam. lte _A,

optparam. nlfe, optparam. 1 fe_A, opt pal am. nnl ir, nllef, / / Function pointer

optparam.nnltc,nHcf, 1/ Function pointer

optparam.nnlfc, nIfef, 1/ Function pointer

optparam. nini tialconstlav, optparo.m. ini tialeonstrav,

optparam. ntra ieetoryconstrav, opt par am. traj ectoryconstrav,

optparam. nflnal constrav, optparam. finalconstrav,

optparam.lowerb,

optparam. upperb,

optparam.nirf I :iet I 1/ Function pointer

opt-param. ntcf, tcf,

optparam. nfef, fef,

I I Function pointer

I I Function pointer

optparam. n ini t ial costav, optparam. in1 t ialcostav,

optparam. ntrai eetorycostav, optpaI am. traj ect(lIycostav,

optparam. nfinalcostav, optparam. final cost av,

istate, elambda, R, &infonn, &objeetive) ;

I I Get trajectoI'ies from B-Splim~ Coeffidents

nTra 1 =0 i

for (l=O; i<:optpalanl. r10ut; 1+ +)

nTraj += optparam.maxderiv[i1;

Traj = (riouble**) ma11oc(nPts*sizeof(double));

for (i=O; i<:tlPts; i)

Traj [il '" (double ..) malloc (nTraj *size(lf (double)) ;

Tral_offset = O;coef_offset =' 0;

TIme = (double ..) malloe (nPts*sizeof (double));

linspace (Time, 0, optparam. HL, nPts) i

for (i",O; i<optparam. nout; i++) {

for(j=O;j.;:nPts;j++) {

Splinelnterp &TraJ [11 [Tra] offsetJ I I I Return Variable

Time [jJ,

knots[i] ,

I I Point at which to evaluate

II Knot sequence

optparam.nint erv[lJ, I I Number of intervals

&coefficients[coef_offset], NCOEF(i) , II Coefficients

optparam.ordE·r [iJ, optparam.mult [i),

optparam.maxcleriv [iJ) ;

Tra] offset

eoe f _off se t

optparam.maxderiv[i] ;

NCQEF [i) ;

Tt = eoefficlents [ncoef~l);

printf ("\n Tf = %f sees _ %f minutes

/ I Open File to pr'iIlt data

fp=fopen("Tr('ldModTest txtl," W ");

%f hours\n", Tf, Tf/60, Tf/3600) i

fprintf(fp,!I %% time(min) x(cm) xd(cm/sec) y(cm) yd(cm/sec)\n")i

for(j=O;)<IlPts;j++) {

118

fplintf (fp, "\n") i

fC'urrent fopen ("CurOldTest, dat", "w,,) i IITMR

float trll;

tm=Time [j J *Tf! 3600;

if(tm>24) tm=24;llwe only have the data from 1 to 25 hours

for (l =0; l <:nPts; -] ++)

GetSpllnelnfo(Tnll [jl [OJ, Traj [jl [2] ,tm, ':urrentdatau, currentdatav);

GetSplinelnf() (Traj [jJ [OJ, Traj [jJ [2J ,tm, currentdatau, currentdatav) i

fprintf(fcurrent,"%lf %If \-If %If %If %If %1£ %If \n ",currF.'ntdatau[O] ,

cl.lnent-dat-al)[lJ, ('l,lrTF.'ntdatau[2J ,C'l,lrrentd;;ltau[3J, currentdatav[Ol, currentdatav[1J,

currentdat_av[2] ,rUTTentdatav[J]);

liTo see the values (x,y) upto 3600*14 min 3600 sec

li:1space(Tlme,O, (double) (50400./Tf) ,nPts);

Traj_otfset. = 0 ;coef_offset .. 0;

for' (i=O; i<optparam. nout ; i ++) {

for(j=O;l<:nPts;j++) (

Splinelnterp(&Traj [jJ [Tral_offset],

Tlme[j] ,II Pcnnt at WhICh to evaluate

knots Ii] , I I Knot- sequence

optparam.ninterv lil, I I Number of intervals

&coefficients [coef_offset], NCOEF [i], I I Coefficients

optpar.;l.m,ClIoer [lJ,

optparam.mult [i],

optparam.maxderlv[ll) ;

Tral offset optparam.maxderiv[i] ;

NCOEFIi] ;

printf ("\n At t~25 (fromla) hours x, y = %f %f a a\n\n",

Tt'ai [nPts-IJ [OJ -1000, T1'o.j [nPts-l] [2]-1000);

printf("\n At t=25(fromlO) hours x, y = %i %f 172800\n\nlt,

Traj [nPts-lJ (0], Traj [nPts IJ [2J),

II Open File to print data

fp2 = fopen ("Qptlupto25 ,dat", "w");

if (fp2 ==NULL) (

fprintf(stderr,"Can't open file optlupto60nnn.dat for writing\n");

exit (-1) ; l

I I P:nnt to File

fOT(j",O;j<:nPts;j++) {

fprintf(fp2,!!%lf 'I,Time[jl*Tf/riO);

fprintf(fp2,"%lf %If %If %If'',Tra][jJ[O],

Traj [j] [1] ITt, Tr.;l.j [J] [2], Traj Ij] [3] ITf) ;/Ix,xd,y,yd

fprintf (fp2, "\n") i

fcurrent2 = fopen("turrentlnfoupt060min dat", "w");

if (fcurrent2 == NULL) {

fpr'intf Istderr, "Can't open flle optlupto60min.dat for writing\n"};

eX:l t (-1) ;

for(j=O;J<nPts;j-H-} {

GetSplineInfo(Tra-] [j] [0], Traj [jJ [2J ,Time!jl*Tf/3600, currentdatau,

cur:rentdatav) ;

GetSplinelnfo (T1'aj [j] [0], Tt'o.j [J] [2], Time [j] *Tf/3600, currentdatau,

ClJrrentdatav) ;

fprintf(fcllrrent2,"%lf %If %If %If %If %If \n ",cUl't'entdatau[ol,

119

CUTTentdatau [1], currentdatau [2J ,currentdatau [3], cu:n:entdatav [OJ,

currentdatav[l] ,<:,:urrentdatav[2] ,currentdatavl3]);

fclose(fp) i

felose (fp2) ;

fclose (fcurrent) ;

fclose (fcurrent2) j

free (Time);

free (NCOEF) ;

for (i =0; i<optparam. nbps i i+ +)

free (Tr'8J [iJ);

free (Tro.j) ;

free (istate),

free (clarnbda);

tn:e(R) ;

free (bps) i

tor (1-=0; i<optparam.nout ;i++)

free (knuts [i]) i

free (coefficients);

retun) 0;

Iloptl.sub.h

#include <stdlib h>

#include <stdio.h;.

#include <math. h>

#ifndef optl_autorode header

#deflne _optl_autocode_header

#define 21 zp[O] [0]

#deflne zld zplOl [1)

#deflne z2 zp [IJ [OJ

#define z2d zp[1] [1J

#define z3 zp [2] (0]

#define PI

#det ine NEPS

int check = 1 i

3 14159

100

int GetBcoef(float B[], float knots[], int k, int lengthknots, float data)

IIThis function calr:ulat.es the Basis functions of the B-spline

Ilfunction at given data point and get the relative location of input data

I I data is one dimension, x or y or t

I /INPUTS,

II knots: knot points (found by MAT LAB program sigfitspline2.mJ

II k order of the B-spline bas]s function

IIOUTPUT.

II index: location of the data respect to knot sequence

II B [J Basis function values at a given data for for degree k

IIMETHOD,

IIMultidimensional tensor" B-spline products can be calculated explicitly by using:

II z=f(x,y,t)=sum(i=1,n1) {sum(j",l,n2) {sum(k=1,n3) {{B_(i,k1) (x)*B_(j,k2) (y)B_(k,k3) (t)*Aijk}}}

I I In general

I I The definition of B-Spline basis function is

II B_(l,k) (1,1) ~ {(u -knots_u(i))/(knots_u(i+k-l) knots_u(i)))*B_(i,k 1) (u) +

II {(knots_u (i+k) u) I (knots_u (i+k)

II B_(i,l) (u) = 1 if knots_u(i)

I I 0 othe;rWl se

II Not.e: In B_(i,k) (u), if denominator of any term is equal to zero, that term is SET to zero!

II For example if knots u(i+k) knots u(i ... l) OR knots u(i+k 1)

120

II

/1 Please check the matlab file omasplinefit:3d.m

1/ B-spline coefficient matrix A and knot." were found by using the MATLAB progranl omasplinefit3d.m

! I For detai Is pleo.se see, "A Practical Guide to Splines II, revised edit ion, Carl de Boor J 2001, page 111

int d1, j, r; Iidummy variables

lnt index = 0, Ifin our case x=elavation, y=azlmuth

float tempsaved,

fluat tempterm ;

/ /Add 1 to start the index from 1 as in Carl De Boor's notation

float deltaR [4+1J ;

float del taL [4+1] i

//Right Slde need constant,can nut wait for k transfer'ed £:lom the outside

I/Left side

for (.1=0; l<=k; j++) {S[j] == 0; deltaR[jJ = 0; deltaL[j] Of}

for (d1=1; dl<lengthknots; 01++) {

it ((data >= knot.s [dl1) && (data <knots [d1+1J)

index," d1; Iishow this commond has been executed

B[l] .- 1, IISkip B[O] to agree with carl De Boor's notation

tor (j=l; J<k; j++)

knots [index+j] data; del taR [j]

deltaL[]J data knots[index+l-j];

t.empsaved 0;

for (r=l; r<=j i rHo)

tempterm " B Ir]1 (deltaR lr] + deltaL [j +1 rJ);

8[rJ = tempsaved + deltaR[rjeO-tempteIlTl;

tempsaved = del taL [i + 1- r] "tempt-erm;

B[j+ll = tempsaved;

re t urn index;

void EvaluateSpline(float result!], float A[J [22] [27J, float BX[],

float By!] ,float Bt[]. lnt xindex, int yindex,int tindex, int k:x;, int ky,int kL)

IIThls function evaluates the tensor product spline fUnl"'tlon value at given data point

I I INPUTS:

IIA[] [] I); Coefficients of the B-spline fit, found by the MATLAB program, omasplinefit3d.m

II Bx [J

II By [I

II Bt [I

II xindex:

II yindex:

II tindex;

II kx

II ky

II kt

I lOUT PUT :

Basis function values at a <jiven data for x for degree kx

Basis function values at a given data for y fOL degree ky

Basis function values at a 9lven data for t for degree kt

locatlon of the X- da ta respect to knot sequence

location of the y-ciata respect to knot sequence

locat.ion of the t-data respect to knot sequence

order of the B- spline basis fL1rlction fOr x

order uf the B-spline basis function for y

order of the B-spline basis function for t

I I result IJ: Evaluatlon of the tensor product spline function is given in result [0]

IIMETHOD:

II MultldlmenSlonal tensor B-spline p~Oducts can be calculated explicitly by using:

I I f (x, y, t) =sum(i"l, nl) {sum (j =Ln.2) {sum (k=l, n3) {B_ (1, kl) (x) *B_ (j, k2) (y) *B_ (k, k3) (t) eO-Aijk}} }

II nLn2,n3: # of coefficients of x,y,t directlOrl respectively

I I kl, k2, kJ: degree of splines of x, y, t direct ion respe<"::t ively

II

I I specifically,

II For knots sequences; knots_x(rl) <= x .-; knots_x(rl+ll

II knots_y(r2) <= Y < knots_y(r2+1)

121

/ /

/ / fix, y, t) sum(1=rl-kl+1,Ll) {sum(j=r2-k2-+1,r2J {sum(k=r3 k3+1,r3l

/ /

/ / For details please see I "A PraN l('al Gu ide to Splines", revised edi t ion, Carl de BOOL I

2001, page 117

/ I values at the begining at knots sequences, and also for the B [J I and

/1 dE[] matrices first elerrmts are not used

/ / which corresponds to indices = 0

II Please check the mat lab file bformchec:k3.m and omasplinefitJd.m pIogIams

1/ B-spline coefficient matrix A and knots were found by using the MATLAB program

omaspl inefi Ud. m

int dl. d2,d3; //dummy variab1es

result[n] = 0; //Signature value

fClY (d3=tindex kt·"};dJ<=tindex;d3++)

for (dl=xindex-kx-tl; dl<=xindex; dl++)

for (d2=yindex-ky+l; d2<;-yindex; d2-t+)

result [0] = result [OJ -+ Ex [dl-xindex+kxl

*By[d2 yindex+kyl*Bt[dJ tindex-.-kt}'kA[d1-1] [d2 1] [d3-1];

void EvaluateSplineDeIivar.ives(f]oat result[], float A[] [22J [27J,

fluat Bx[], tloat BY[],fJoat Btl], float dEx[J, float dBy[] ,float

dEl[]. int xlfldex, int ywdex,int tindex, int kx, int ky,int kt,

float knotsx [], float knotsy [], float knotst [])

IITMR: This tunctlon evalu;;I.tes the fIrst derivatives of tensor product

II spline functions at given data point

II INPUTS:

II A[] [] [] Coefficients of the B-spline fit, found by the MATLAB

prugram, omasplinefit.3d.m

Bx[] Basis function values at a given data fo, x fOr degree

By[J Basis function values at a given data for y for degree

kx

ky

Bt [J Basis function values at a g~ven data for y for degree ky

/ /

/ /

/ /

/ /

/ /

/ /

dBx [J Basis fUr1ctlOn values at a given data for x for degree kX-1

dBylJ Basis function values at a given data for y for degree ky-l

dBt [] Basis function values at a given data for t

II xindex: locat~on of the x-data respect to knot sequence

II yindex: lO(,03.t+on of the y-data respect to knot sequence

for

II tindex: location of the t-data respect to knot sequen('e

! / kx order of the B-spline baS1S function for x

/ / ky

/ / kt

order of the B-spline basis fUIl<:tion for y

oIder of the B-spline basis function for t

degr'ee kt-1

/1 knotsx; knot points fOr' x-dlrectioTl (found by MATLAB program omasplinefit3d.m)

Ilknotsy: knot points for y-direction (found by MATLAB program omaspl inefi t3d. m)

II knotst knot points for t-din':ctioTl (found by MATLAB program omasplinefit3d m)

IIOUTPUT;

II resultl]; Evaluation of the first derivatives of tensor product spline

function are given in result[lJ & [2J&[3]

IIMETHOD;

II Multidimensional tensor 8-spline 1st derivatives can be calculated

Ilexpllcitly hy using;

II f (x, y, t) =$um (i=l, nl) {sum (j =1, n2) {sum(k=l,n3) {B_ (i, kl) (x) 'kB_ (j, k2) (y) *B_ (k, k3) *Aijk} }}

122

II nl,n2,n3: #- of coefficients in x,y,t direction

II kl,k2,k3: degree of splines lTl x,y,t dIrection

I I

IlspfOClfically,

IIFoI knots sequences: knots_x(II) <'" x < knots_x(rl+ll

I I

I I

I I

y <:: knots_y(r2+1l

knots __ t(Ll) <= t < knDts_t(r3+ll

II f(x,y,t) " surn(I"'rl-kl+1.rll {sum(j=r2 k2.1,r2){sum(k~r3 k3+l,r3l ... {B_(i,kll (xl

II.B_Ij,k,) ly).B_Ik,k3) It).Aijk)))

I I

II Dx(f(x,y,t)) = sum(i=rl kl+2,rl){sum(1=r2 k2+l,r2}

II{sum(k=r3-k3+1,r3)*{(k1-1)*(A(i,l,kl flA(i l,],kl)

.8_li,k1 11 Ixl.8_lj,k2) ly).B_Ik,kJl It))))

I I

II (knotsx(i+kl 1) knotsx (i))

IIDy(f(x,y,tl) '" sum(i=r1 kl+l,rlJ{surn(j=r2 k2+2,r2)

II{sum(k=r3-k3+1,rJl ... {(k21) ... (A(l,4,kl A(l,j-l,k))

II ... B_ (i,kll (x) ... B_(j,k2 1) (y)*B_{k,kJ) {t} }}}

I I

II(knotsy{j+k2-1) knotsY(i))

I I

IIDt(f(x,y,tl) = sum(i=rl kl+1,:rl) {surn(j=r2 k2+1,r2)

II{sum(k=r3-kJ+2,rJ) ... {(kJ 11 ... (A(i,j,kl A(l,J,k 1))

II*B __ (i,kll (x) ... B_(j,k2) (y)*B_(k,k3-1) (t) }}}

I I

I I (knotsy O<+kJ 1) knotsy (k) 1

I I

I I please check the matlab file hformr'herk3.m ana sigfitspline2.m programs

II B-spline coefficient matrix A ond knots were found by using

lithe MATLAB program si9titsp}~ne2.rn or for the probability

II pdfitspline3.m

int dl, d2, d3 ; Iidummy variables

result [lJ 0; IIDerivative value in x-direction

resul t [2J 0; IIOerivative value in y-di.r:ection

result [31 IIDerivative value in t-direction added on Feb 7 2007

for (dl=oxind€x·kx+2, dl<=xino.ex; 0.1++)

for (d2=yindex-ky+l; d2<=YIndex; d2-t-t)

for (d3=tindex kt+1 ;d3<.tindex; dJ++l

re~ult [lJ '" result III (kx-1) I (knutsx [dl +kx-IJ knotsx [dl])

... (A[dl-l] [d2-1J [d3-1J A[dl-2] [d2-1] [d3 11l ... dBx[dl-xinciex+kx 1J*

By[d2 YIndex-tkyJ ... Bt [d3 tindex+ktJ;

for (dl=x1ndex-kx+1, dl<=xindex; 0.1++)

fot' (d2=yindex-ky+2; d2c:oyindex; d2-t+)

for (d3= tindex-kt -+ 1; d3<",t Index; d3-t-t)

result [2J '" result [2J + (ky-ll I (knotsy[d2+ky IJ -knotsy[d2])

* (A[dl-l] [d2-1J [d3-1J -A[dl~11 [d2-21 [d3-1] 1

wBx {dl rxindex+kxJ ",dEy [d2-yindex+ky-l J ",Bt [d3 tindex+ktJ;

123

for (dl=xindex-kx+l; dlc=xirldex; dl++)

for (d2=Ylndex-ky+2 i d2c=yindex; d2-t--t-)

for[d3=tindex kt+2;dJc=tlTldex; d3-t--t-J

result[3J = result[3J+(kt-l)/(knotst[d3+kt 1J

-knotst[d3JJ.(A[d1-1J [d2-1J [d3-IJ-A[dl 1] [d2·11 [d3-2])

,.Bx [dl xindex+kxJ" By [d2 -yindex-t-kyJ .dBt [d3 - tindex+kt -1] ;

void GetSplinelnfo (float xdat.af, float ydataf, float tdataf,

float currentinfou [4J, float C'urrentinfov [4J)

I/TMR; This function gives the (;urrent value, ar.d its first

/ /derlvatlves respect to xdataf and ydataf

I /INPUTS:

I I xdataf: xdata data value

/ I ydataf ydata data value

I I tdataf tdata data value

IluUTPUT:

current value

derivative of the cur:rent r'espect to xdataf angle given in

//currentlnfo [01

/ lr:l.lrrentlnfo [1]

I Irurrentinfo [2J

I /cuII'entinfo ['3J

derivative of the current respect to ydata angle glven in

deri vat lye of the current respect to tdato. angle given in

IIThis part h.:'ls to changed for each different spline fit

FILE *fi]eAu, "fi]eknotsux, .fileknotsuy, .flleknotsut;

FILE ,.fileAv, ,.fileknotsvx, ,.fileknotsvy, ,.fileknotsvt;

int kl, k2, kJ, i i

/ /Add 1 to start the incjex from 1 as in Carl De Boor's notation

float dummy = le20;

(;OIlSt int lengthknotsx 36+1

const int lengthknotsy = 26+ 1;

canst mt lengthknotst = 31+1 Ilknotsut=c31, t .. l;25,expanded to t after

Ilwe use [",1,2,3 for test ,knots of tare 1 1 1 1 2 3 3 3 3

int nx = 32; /1# of coeffic-ients in the tensor product B-spline expression,

I/n"- In] n2,n3)

int. ny 22;

int nt = 27 i

const lnt kx 4; Iidegree of B-spline polYTlomials, k"'lk1 k2,k3]

const int ky 4;

('onst int kt 4 ;

IIFor current v<3.lue u (x, y, t)

static float knotsux[J7J ;1/3fi+l

static float knotsuy [27); 1126+1

statiC' float knotsut [32J; 1131+1

staLi~ float Au [32] [22] [27] ;

IIFor current value v(x,y, t)

sto.t ic float knotsvx [37J i

static float knotsvy[27] ;

static float knotsvt [32] ;

static float Av[J2] [22) [27J;

/ /Variables for the evaluation of the tensor product B-splines

I fAdo 1 to start the index from 1 as in Carl De Soor's notation

float Bx[kxt1J ;I/For [Bi k+l,k(el} Ei, k (el)] total k

Ilelements active fur each t1 Co; x <ti+1

flO<3t By[ky+l] illValues of basis functions, Bi, will be in B[lJ,

I I .. " B [k+l], skip the B [OJ value!

124

:radians

radlarlS

hour

float Bt [kt.+1J ;

float xindex

float yindex

float tindex

//Varlables for thE: evaluation uf the 1st derlvative of tensor product B-splines

int dkx kx 1;

int dky ky 1;

int dkt- kt 1 ;

float dBx[kx] ; //original float dBx[dkx+lJ the error

f lOot dBy Iky] ,

float dBt [ktJ ;

//Read knots and coefs matrix here

if (check == 1) {

knotsux [OJ

knotBUY [OJ

knot-sut [01

dummy;

dummy;

dummy;

flleknotsux"'- fop",n("Knotslnfo/knotSl)x", "T");

fOl' (kl = 0; kl " lengthknotsx 1; kl++)

fsreanf (fileknotsux, "%f ", &knotsux [kl+ll) ;

tc-lo$;e(flleknotsux) ;

fileknotsuy = fopen("Knotslnfo/knotsuy", "r");

for (kl = 0; kl " lengthknotsy·l, kl++)

fsranf(fileknotsuy, "%f ", &knotsuy[kl+l1);

fcluse (fileknotsuy) ;

f i leknotsut = fopen ("Knots lnfo/knotsut" , "r") i

for (kl = 0; k1< lengthknotst-l; kl++)

fscanf(fileknotsut,"%f ", &knotsut[kl+l]);

fclose (fileknotsut);

fileAu = fopen("KnotsInfo/Au.txt","r");

for (k3 0; k3 < nt; k3++)

for (kl = 0; kl m:.; kl++)

for (k2 =0; k2 < ny; k2++1

fscanf (fileAu, "%f," I &Au [kl] [k2] [k3]) i

fclose(fileAu) ;

knotsvx [0]

knot"svy [OJ

dummy;

dummy;

knot svt [0 J = dummy;

f i leknotsvx = fopen ("Knots Info/knotsvx" , "rt!) ;

for (k1 '" 0; kl <:: lengthknQtsx-l; kl-++l

fscanf(fileknot.svx, "tf It, &knotsvx[ld+l]);

fclose (fileknotsvx);

fileknotsvy", fopen("Knotslnfo/knotsvy", "r");

fOl (kl = 0; kl " lengthknotsy-l; kl +t)

fscanf (fileknotsvy, "%f

fclose(fileknotsvy) i

&knotsvy [kl + 1]) ;

fileknotsvt = fopen ("Knotslnfo/knotsvt" I "r") ;

for (kl " 0; kl " lengthknotst-l; kl++)

fsC"onf(flleknotsvt, "%f ", &knotsvt[kl+1]);

fclose (fileknot.svt.l ;

int scan_result;

fileAv = fopen ("Knotslnfo/Av. txt", "r");

for (k3 = 0; kJ ..:;: nt; k3++)

for (kl 0; kl <:: nx, kl++)

for (k2 0; k2 " ny; k2++1 {

scan_result",fscanf(fileAv, "%f,", &Av[kl] [k2] [k3]);

if (scan_:fesult==--l)

puts ("scan fail It) ;

125

fclose(tileAv) ;

/Ioone with reading

IIEvaluate the tensor product B-splines

for I j~o; j<~kx i j++) {BX [jl 0;)

for li~O ; j<=ky; j ++) {By Iii 0;)

for (j =0; J<=kt; j++l {Bt Ii) 0;)

xindex GetBcoef (Bx, knotsl,lx, kx, lengthknotsx, xdat.af) ;

yindex GetEcoef (By, knotsuy, ky, lengthknotsy, ydataf l ;

tindex ~ GetEeoef (Bt, knotsut, kt, lengthknotst, tdat3.f) ;

EvaluateSpl ine (currentinfou, Au, Bx, By,Bt. xindex, yindex,

tindex, kx, kY,ktl;

xindex GetBcoef (Bx, knQtsvx, kx, lengthknotsx, xdataf) ;

yindex GetB(:()ef (By, knotsvy, ky, lengthknotsy, ydataf) ;

tlndex GetBeoef (Bt, knotsvt, kt, lengthknotst, tdat.'if) ;

EValuateSpline(currentulfov, Av, Sx, BY,Bt, xindex, yindex,

tindex, kx,ky,kt) j

IIEvaluate the 1st derivatives of tenSQT product B-splines

for I j~O; j<=dkx; j++l {dBX Ii) 0;)

for ii"O; j<=dky; j ++) {dBylil 0;)

for (j =0; J<=dkt; j ++) {dBt Iii 0;)

xindex GetBcoef(dBx, knotsux, dkx, lengthknotsx, xdataf);

yindex GetBeoet (dBy, knotsuy, dky, lengthknotsy, ydataf);

tindex Get Bcoef (dBt, knotsut, dkt, lengthknotst, tda.taf);

EvaluateSplineDerivatives(eurrentinfou, Au, Bx, By,Bt, dBx,

dBY,dBt, xHldex, yindex,tindex, kx, ky,kt, knotsllx, knotsuy,knotsut);

xindex GetBeoef (dBx, knotsvx, dkx, lengthknotsx, xdataf);

yindex GetBeoef (dEy, knotsvy, dky, lengthknotsy, ydataf);

tindex GetBeoef (dBt, knotsut, dkt, lengthknotst, tOo.taf);

EvaluateSplineDerivatives(r:urrentinfov, Av, Bx, By,Bt, dBx,

dBy, dEt, xindex, yindex, tindex, kx, ky, kt, knot svx, knotsvy, knotsvt) ;

1* Nonlinear Initial Constraint *1

1* -~--======================~ *1

VO.ld nlir:f(int *mode, int *nstate, double *f, double **df, dO~lble **zp) (

/,. Nonl inear 'Traj ectory Constraint * /

void nltcf(int *mode, int *nstate, int wi, double *t. double **df,

double HZp)

float eurrentinfuu[4] {o};

tloat ('urrentinfov[4] {o};

float tempzl 0;

float tempZ2 0;

int tpl,tp2;

float time, tao;

IITMR: Set up internal time parameters Ilcopy from ntgmultilo to test the internal time

tpl = *li

tp2 NBPS;

tao L tphl 0/tp2;

time=tao*z3 /3 600; /Ihours

if (t ime~24) t lme=24;

II printf("\n the internal time in the nltef is", %f \n",time);

int kl;

if (*mode==O II *mode __ a2l {

IITMR: Variables for GetSplinelnfo() function (a-spline fit):

for (kl""O; kl < 4; kl++)

currentinfou [klJ 0; IITMR: Need to set t:o zero before each call

126

currentinfov [klJ 0 i

tempZl

tempz2

(float) (z1) i

(float) (z2);

Get-Sp1 inelnfo (tempZl, tempz2, time, currentinfou, ~\,1rr-;;nt lnfov) i

GetSplinelnfo(tempz1, t.empz2, time, currentinfou, cu:r:r'C'rltinfov) i

check++ ;

Ilprintf("\n zl = %f, z2 = %f, yobstacle[Ol = %f, 22-yobstacle[O] -.- %f,

yobstacle[l) Hit, 21. 22, yobstacle[OJ, z2 yobstatl,'o[O) , yobstacle[lJ) i

f [OJ = (zld/z3 currentinfou [OJ),.. (210./23 - currentinfou [OJ) .. (z2d/zJ

currentinfov [OJ),.. (22d/z3 currentinfov [OJ) j

if (,..mode", .. 1 II *mode==2){

df [OJ [0] = -2* (Zld/z3 eurrentinfou [0]) ,..currentinfou [lJ -2,. (22d/z]

cU:r"rentinfuv[OJ) *currentinfov[lJ i I,. WIt zl ,..1

of [0] [1]

cit [OJ [2]

2,.. (zld/z3 cu:r"rentinfou[Ol)*(1/23) i 1* wrt zld *1

-2* (210./23 currentinfou [OJ) ... currentinfou [2J

-2 (z2d/2] - cUIrentinfov[OJ) ,..currentinfov[2J; 1* wrt~ 22 *1

df [0] IJ] 2* (Z2d/z3 cUIrentinfov[O]) ... (1/z3) ; 1* wrt z2d ,..1

Ildf [OJ [4J =-2* (zld/23 currentinfou [OJ),. (zld/z3/z3)

- 2,. (z2d/z3 - current infov [OJ) (z2d/z3 Iz3) i

df [OJ [4J ",Oil/regard T constant

Ildt[O] [4J = -2 ... (zld/z3 currentintou[OJ) (z1d/z3/z3+

tao/3600 ... clilrentinfou[3J) -2'1< (z2d/z] currentinfov[O

.., (z2d/z.3/z3+taoI360o*cullentinfov[J]) ;llassume du/dT s not equal to 0

Ildf[O] [4J = -2,.(zld/z3 (:urrentinfou[0]) ... (zld/z3/z3

2,.. (z2d/z3 - cllnentlnfov[Ol),. (z2d/z3/z3);

Ilassume du/dT=O,T is constant ,t=tao ... T

1* Nonlinear Final Constraint 1

vOld nlfcf(int 'l<mude, int *nstate, double *f, double ~*df, double hZp) {

I,. Initial Cost ... 1

void ief (int *mode, int *nstate, double f, double ,.df, double zp) {

double wq=o" 1;

if (.... mode" .. O II mode==2) {

*f = Wq*z3;

if (*mode" "1 II *mode==2) {

df [0] 0;

dt [lJ 0;

df [2] 0;

df [31 0;

df [4] Wq;

I ... Trajectory Cost 1

1* -~======'======= ,..1

void tcf{int ... mode, int "'Dstate, int i, double f, dcuble ,..df, double **zp){

flQ"t currentinfou[4] {a};

float currentinfov[4) {a};

float ternpz1 a i

float tempz2 0;

int k1;

double Wu =0 i

int tpl,tp2;

127

float time, tao;

tpl d;

tp2 = NBPS;

tao'" tpld.O/tp2;

time=tao*z3/3600; Ilhours

if (time:>24) time=24;

II pI'intf("\n the internal tlme in the tcf is= %f \n",time);

if (*mode=",O II *mode==2) {

fo:r (kl=Oi kl < 4; kl++)

currentlnfou[kl] 0,

currentinfov [klJ 0;

tempzl (float) (zl) i

tempz2 = (float) (z2);

Ger-.Splinelnfo(ternpzl, r-.ernpz2, time, currentinfou, currentinfovl i

GetSplineInfo (tempzl, tempz2, tlfr\e, CUI rent lrtfou, rurrentinfov) i

rheck++ ;

f [OJ = Wu.z3. (zld/z3 currentinfou [0]). (zld/z3

cllrrentinfou(O)) + Wu*z3w(z2d/z3 currentinfov[O]).(.~2d/z3 - current-infov[O]);

printf ("f 101/Wu=%lf\n", f [OJ IWu);

if (... r'I:\ode==l II .mode==2) {

df [OJ = -2*W1HZ3* (zld/z3 <:urrent.:intou [OJ) *currentinfou (1)

-2*Wu*z3* (z2d/z3 cllrrentinfov[Ol } ... CuI'rentinfov[11; 1* wrt zl *1

df[l] 2*Wu*(zld/z3 - cllrrentinfou[OJ); 1* wrt z1d *1

df [2J =-2"Wll*z3,., (zld/z3 c:uIrentlnfou [0]) H:urrent.infou [2]

-2*WuwZJw(Z2d/z3 cUrrentlnfov[O])*currentinfov[2]; 1* wrt z2 *1

df [3J = 2*Wu* (z20/z3 - ("l.lTrentlofov[OJ), 1* wrt z2d .,,1

/ /df [41 2.Wu* ((z1d/z3 f'urrentinfou [0]) * (zld/z3)

+ (z2d/z3 currentinfov[O]) w (z2d/z3)) +Wu." ((zld/z3

currentinfoulOl},., (zld/z3 currentinfou[O)) ~ (z2d/7.3

currentinfov[O)) * (z2d/z3 currentinfov[OJ)) i

df[4]",O,11 Regard T is constant here

Ildf [4J = -2*W,HZ3* (zld/z3 - currentinfou [OJ) * (zld/z3/z3

+tao/36 DO. currentinfou [3 J) - 2*Wu* (z2d/z3 currentinfov [OJ)

* (z2d/z3/zJ+taol 3600*currentinfov [3J) + Wu* ((z1d/z3

Cl)rrentlTlfou[O]) * (z10/z3 - currentinfou [OJ) + (z2d/z3

currentinfov [OJ). (Z2d/z3 currentinfov [OJ)) ; IlasSUf:le du/dT .. tao*du/dt

Ildf [4] '" T2*Wu*z3* (zld/zJ currentinfou[O]) *Zld/z3/z3

-2*Wu* (z2d/z3 currentinfov(OJ).Z2d/z3/z3 + Wu* ((Zld/z3

curI'entinfou[O])*(z1d/23 C'urrentlnfoll[O]) + (z2d/z3

C'urrentinfuv [OJ) * (z2d/z3 currentinfov [0))); Ildu/dT",O even t=tao.T

1* Final Cost *1

1* ========== *1

void fcf(int *mode. lnt *nstate, double *t, double *df, double *,.zpl {

#endif

I loptl. inp

% Trajectory Definitions

NOUT 3

NINTERV 30 30 1

MULT 3 3 1

ORDER 6 6 1

MAXDER IV 2 2 1

128

% HOr i zOn Length

HL 1

% Number uf break points

NBPS 100

% Define Linear Inltial Constraint.s

%/ /Thee are for min time t:rajectories after for zone 2'1 and on

%//6/25/04

N~IC 3

LIC LB

1fl20R06 6'12201 3223724.674343

1620906.642201 3223824.674.343 172800

LIC A

xd Y yo. T

% DefIne Linear Trajectory Constraints

NLTC 2

LTC_LB

1 9.361ge5

4_72S4e64.27S7e6

LTC~A

xd Y yd T

% Define Linear Final Constraints

NLFC 2

9 1338e5

LFC_UB

9.1348e5

LFC ~A

9.8015e5

9.8025e.S

xd Y yd T

% Define Nonlinear Trajectory Constraints

NNLTC 1

NLTC LB

1600

NTRAJECTDRYCONSTRAV 5

TRAJECTORYCONSTRAV 0 0 0 1 1 0 1 1 2 0

% Define Ini tial Cost

129

NICF 1

NINITIALCOSTAV 1

INITIALCOSTAV 2 0

% Define Trajector:y Cost

NTCF 1

NTRAJECTORYCOSTAV 5

TRAJECTORYCOSTAV 0 0 0 1 1 0 1 1 2 0

% Define NPSOL Options

NNPSOLOPTION 2

NPSOLOPTION NOLIST

NPSULUPTION Print Level 5

% NPSOLOPTION Major Iteration Limit 100

NPSOLOI?TION Minor Iteration Limit 100

//optl.makefile

/:IMake file is modified by zwz ,;l.rcc)Id+ng to the Makefile

uf vanderpol .Jan #25 2007

#$NTGDIR and $NTGMLDIR has to be defined

NTGDIR =

NTGINCDIR $(NTGDIR)/inr.lude

NTGLTBDIR $ (NTGDIR) /lib

cc=g<"'c -g - I $ (NTGINCDIR)

CFLAGS= -03 -TIl32 -1 $(NTGINCD1R) -L $(NTGLIBDIR) -indude opt1.sub.h

LIB= -1m -lgfortr:'an -lntg -lnpsol -lpgs -lg2C

opt1: optl.main,o

S(CC) $ (CFLAGS) -L $ (NTGLIBDIR) -0 optl optl.main.c $(LI8)

130

APPENDIX III

NTG program for a JPL Aerobot

I/This program is modified to <::jeneIate the optimal trajec.tory for

// an aerobot which is travelling from (0,0,0) to (200,200,200)

/ / The wlnd profIle is assumed to have the layer format which the wind speed

/ / is changing between layers while it L'emains the same in the same layer

1/ fOT example, in layer one, Z .lS from (0,50), u=10,v=O (x and y direction

/1 wEld Speeds), in layer two, z is from (50,100), u=lQ,v=10. In layer three

1/ u=8, v=O, in layer fouy, u~S,v'"-10

/! The aerobot has three inputs, t.he model of aerobot is simplified and modifed

//from tIle underwater glider model The three inputs are V (forward velocity) I

I/dthetajdt (the change of orietation), W (ascend or descent velo('ity,upw<3.rd

Iland downward). The cost fUIl(;tion is W'tT+\int(O,t) KIV+K2dtheta/dt+K3W,Kl,K2,

IIKJ are three (;oeftirients for the three control inputs. The constraints are

lithe start pOlnt (0,0,0), the destlnation point (200,200,200) The t1ajeC'tQry

Ilconstraints .;ire the velocity bounds (forward and upwi.nd) and orientation

II change bounds (one) .Here the trajectory is 3D trajectory whihc has the information

Ilof x(t), y(t}, z(t), assuming around 10 m/s for the aerobot, initial Tf=50 $

II optI. main. c for the aerobot

#include ..;:stdlib.h:>

#include <math.h:>l .. m.;ith functlons .. I

#inc:lude <ntg.h,.l .. main N1'G declarations .. I

;I:Iinclude <time.h::.

#include <ParseInputFile

int main(int argc, char .. argv[J)

OPTPARAM optparam;

int i,j,sum,kl;

chaI .. fname;

FILE .. fp;

FILE .. fder i

double TraJ, ... Time;

int nTraj, Trai_offset, coef_offset, nPts=30;

float w1ndU[91

float windV[9l

double Tf = 50 i

{o}; //TMR

{D); //TM

FILE .. fxinit, .. fyini t;

const int slzeofinlt = 93; lit est interval 50 ,153

float xinit[93J",{O};

float yinit[931"'{O};

float zinit[9Jl={O}; //30 traJectory

float tauinit[93J={Oj; Ilrontrol input

Ilfloat winlt[93J .. {O};

Iistatic float xinit[sizeofinitl={O,O};

float xstart, X$top, xoif, ysta:r:t, ystop, ydif,zstart,zstop,zdif;

double knots;l. knot points, list of times for each output ... 1

131

int nops;

double *bps;

double **llc,**lfc, **ltc:

1* initial guess size ... sum over each output ninterv*(order-mLllt)+mult *1

lTlt Tlcoef i

int *NCOEF;

double *coeffif'ients;

int dstate;

douhle *clambda:

double *R;

lnt inform;

double obiective;

if (<3rgc! =2) {

printf("\n\tUsage: %8 inputfile inp\n\n",argv[O]);

exit(I};

knot So; (double * *) malloe (optpar am. r1ClUt*S i zeof (double*)) ;

for (i=O:i<optparam.flout ;i++) {

knot s [i 1 = (double .,) malloe ((optparam. ni ntE':rv l i] +1) * sizeof (double)) ;

linspace (knots [;L J, 0, optparam. HL, optpar"am. ninterv [i J + 1) :

nCDef 0;

NCOEF = (int*) malloe (optparam.nout"l<sizeof (int)) i

fOT(i",O;i<optparam.nout;i++) t
neoef = neoef ... (optparam.ninterv[i] * (optparam.order[iJ

-optparam.mult [iJ) +optparam.mult [i]);

NCOEF[iJ - optparam.ninterv[iJ., (optpar'am order[i)

-optP<.'lY<.'Im mult [iJ) +optparam.mult [iJ ;

1* lnltial guess for eoefficH,:nts (<.'Ill Os) *1

coefficients= (double*) malloc (ncoef*sizeof (double)):

xstart~Oi

ystart_O ;

zstart=Oi

xstop=200 i

ystop,,200;

zstop=200;

xdif xstop

ydif ystop

zdif zstop

k1 0,

xstart;

ystart;

zstaIt:

whlle(kl < slzeofinit)

xinit [kl]

yinit [kl]

zini t [klJ

xstart + (xdifl (sizeoflnit-l)) *kl;

ystart (ydifl (sizeofinit-ll) *kl;

zstart + (zdif/(sizeofinit-l) 1 *kl:

tauinit [klJ" 1;

kl = kl + 1,

IIChange initial guess, tI'Y to make the optimal solution

lito be simihar with the one from DMQC, the init.ial guess

I lis separated into 4 segments

while (kId] 1 {

xlnit[kl]=IO- (2 O/12)*kl;

yinit [klJ ... 0-0 .8/12*kl;

132

kl=kl+l ;

lnt kk2;

kk2 0;

while(kk2.::20) {

xinit [klJ =8-2 O/19*kk2;

yinit[klJ= O.8+1.8/19*kk2:

kk2=kk2+1;

k1=k1 .. 1 ;

int kkJ;

kk3=O ;

while (kk3dO)

xini t [kl) =6-+ 2.0/2 9*kkJ;

Ylnit [klj =1+3 O/29:tkk3,

kk3=kk3+1;

k1 .k1+1;

int kk4:

kk4",O ;

while (kk4<30)

xini t [klj =8 7. 0/2 9*kk4;

yini t !klJ =4 - 2.012 9 ... kk4;

kk4=kk4+1:

kl=kl+l;

fm: (k1=O;kl<sizeofinit;kl++) {

coefflcients[k1] = xinit [klJ;

cOeffioents lk1+sizeofinitJ = yinit [kl];

coefficients [kl+sizeofinit:t2] = zlnit [k:1} ,

coefficients [kl.j-:i';izeofinit*3] = tauinit [k1J;

II coeffieients[k1+sizeofinit*JJ .. winit[kl]:

coefticlents [neoef 1J =100;

l/l inspaee (coef fieients, 0,0, neoef) :

IIDone with the download of coefficients

l<c Allocate space fOr breakpoints and initlal12';e *1

bps ~ (double*) malloe (optparam. nbps*sizeof (double)) ;

llnspace (bps, 0 I opt par am . HL, optparam. nbpsJ ;

I ... NTG Memory Variables *1

istate= (int*) mailoe ((nroef+optparam.nlic

+optparam. nl fc+optparam. nl tC:toptparam. nbps+

optparam .nnli("+optparam. nnl tc*optparam. nbps+

optparam.nnlfc) *sizeof (int));

('lambda", (double :t) mallQ(~((n('oef+

optparam. nli("+optparam .nlfe+

optparam. nl tc*optparam. nbps+

optparam. nnl i c+optparam. rlnl t C :"Icoptparam. nbps ...

optparam.nnlfe) *sizeof (double)) i

R= (duuble :t) malloc ((neoef +1) :t (ncoef·"}) ... :i';lzeof (double)) ;

I" Set NPSOL options if any */for(i",O;i·wptparam.nnpsol_options;i++)

npsoloption (optparam. npsol_ optiOrlS [i 1) ;

Illine 159 to line 173 is copied from !!nt.gmultilo.c" , try to find the optimal solut~on

Ileall to ntg

npsoJoption("Major iteratlon limit 3000");

npsoloption("Minor iteration limit 1500"):

133

npsoloptlon("Line search tolerance 0.001");

npsoloption("Feasibility tolerance 2.e-5") ;

npsolopt ion (" :J.state",l") ;

npsoloption("Line search tolerance =0.001") ;

npsoloption ("Hesslan =Yes");

ntg (optparam. nout I

bps, optparam. nbps, optparam. ninterv, knots I

optparam. order' I optpar am. mul t, optparam. maxderi v,

coefficients,

optparam. nl ie I optparam. I ie_A,

optparam. nl tc, optpa.ram. 1 te _A,

optpa.r am. nlte, optparam. 1 fe_A,

optparam. nnll c I nlicf, // Function point.er

optparam.nnltc,nltcf, // F~mrti()n pointe

optparam.nnlfc,nlief,/I Function pointer

opt paramo nini t ial{"onstrav, optparam. ini tialconstrav,

optparam. ntra j ector:yconstrav, optparam. trajeetoryconstrav,

optparam. nf inalconstrav, optparam. f inal{"onstrav I

optparam. lowerb J optparam. upperb,

optpa.r"am.nicf, ic:f, 1/ Function pointer

opt.param. ntef, tC"f,

optparam. nfef, fef,

I I Function pointer

I I Func:t.lon pOlnter

optpa.ram. nini t ialcostav J optparam. init ialcostav,

opt.param. ntraJ et'tory('ostav, optparam. tral ectorycostav,

optparam. nfinalcostav, optparam, f in<31 ('ost (3. v ,

is[ate, clambda, R, &inform, &Ohj e"t i ve) ;

1/ Print Vector (" coefl" ,('oef f icients, ncoe£) ;

/ I Get trajec:tmies £lQrn B-Spline Coefficients

nT.raj =0;

for(i",O;i<optparam nout;i++) nTraj += optpararrLmaxderlv[ll;

Tra-j = (double*,,) malloc(nPts.sizeof(double));

for (1.=0; i'dlPtS ; i++) Traj [iJ = (double*) malloe (nTra 1 *sizeof (double)) ;

TU1J_offset = O;coef_offset '" 0;

Time" (double",,) malluc (nPts>I"sizeof (double)) i

1 inspaee ("rime, 0 I optparam. HL, nPts) ;

fOr' (i=O; i<optpil.rCirn. flout; i++) {

for(j=O;j<:nPts;-j++) (

Spllnelntelp(&TraJ [JJ [TraJ offset], // Return Variable

Time [j J ,

knots [iJ,

/ I Point at. which to evaluate

// Knot sequence

optparam. ninterv [i 1 , I I Number of inter'vals

&coefficients koef_offsetl J NCOEF [iJ J 1/ Coefficients

optparam. order [i J ,

optparam. mul t [1 J ,

optparam.maxdeIlv[ij) ;

Traj_offset

coef_offset

optparam.maxderiv[iJ;

NCOEF [i) ;

Tf = coefficients[ncoef-lJ; IITMR; Tf in seconds

printf("\n Tf = %f sees = %f minutes = %f hours\n", Tf, Tf/60 , Tf/3600) ;

fp=fopen ("TrAe.roEL txt", "w") ;

fprintf(fp," %% time (min) x(cm) xd(cm/S8(,)

xdd(cm/sec/sec) y(em) yd(cm/sec) ydd(cm/set'lsec)

z zd zdd wlTldU windY Tf orient tau\n"); II Print to File

float tm;

134

for(l=O;j<nPts;J++) (

GetWindlnfo(Traj [iJ [b], windU, windV); liz .. . Traj [j] [6J

fpnntf (fp, ''%If %If %1f %If %If %If %If %If %If %If %If %If %If !lilf

%1 f\n", Tlrne [j] ",Tf, Traj [j] [0], Troj [j] [1] ITf, Trai [j J [2] ITf/Tf.

Traj [l] [3] ,Traj [l] [4]/Tf,Traj [j] [5]/Tf/Tf, Tral [jl [6], Traj [j] [7I1Tt,

Trai [i] [8]/Tf/Tf, windU[OJ ,windV[OJ, Tf,

atan2 (Traj Ij] [4 J ITf ·windV [OJ, Tra-j [i 1 [1] ITf -windU [0]), Tra-j [:i J [9J) i

fclose (fp) ;

free (Time) ;

free (NCOEF) ;

free (Traj) ;

free (istat.e) ;

free (clambda) ;

hee (R) ;

free (bps) ;

for (l=O;l<optparam.TIout;i++)

free (knots [iJ);

free (coefficients) ;

return 0;

I I optl sub" h for the aerobot

#include <$tdllb h::>

#indude <stdio.h>

#lTIC'lude <math.h>

#ifndef _optl_autocode headeL",

#define _optl_autocode, header

#define z1 zp [OJ [OJ

#define zld zp[O] [1]

#det ine zldd zp [OJ [2J

#deflIl.e z2 zp[l) [0)

#define z2d zp [1] [l]

#def ine z2dd zp [1 J [2J

#def ine z3 zp [2] [0]

#define z3d zp [2J [lJ

#define z3dd zp [2J [2J

#deflne z4 zp [3J [OJ

#define 24d zp [3 J [1]

#deflne z4dd zp [J] [2]

#deflne z5 zp[4) [OJ liT

Ilxdd

I/ydd

/ /z

Iitauc

#define PI 3.11159

lTlt check = 1;

contl01 Val lable

I ... Function to define the wind velocities *1

void GetWindlnfo(float zdataf, float windU[9] , float windV[9]) {

if (zdataf>",O && zdataf<50) {

wlndU [0] =10;

windV[O]=10i}

else If. (zdataf::>=50 && zdataf<100) {

windU[OJ =-10;

wiTldV[O] =10;}

else if (zdataf> 100 && zdataf<150) {

windU[O)",lO;

windV[0]=-10;}

else if (zdataf::>=150 && zdataf<=300) {

windU[O] =OJ

windV[O] =-10;}

135

else

printf ("out of bound, the limlt is 0-300 In zdataf");

It Nonlinear Initial Constraint -d

1* ============================ *1

vOld nlicf(int *nlode, int Hlstate, double *f, double **df, double **zp) {

l'k Nonlinear T:faiectory Constraint 'kl

1* ======="=""="'''''''''"''''''''--==== *1

void nltt'f(int 'kmode, int 'kTIstate, int wi, double 'kf,

dOl.1ble **df, double **zp) {

float windU[9J = {O}; II u,ux,uy,uz,ut,utx,uty,utz utt

float windV[9] {O};

float tempz = 0;

float Cx=l; float Cy=l; float CZ=l; II Drag and lift coefficients

int kl;

if (*mode==O II Hrlode==2) {

for (kl=O; kl < 9; kl-t-t)

windU [klJ

wlndV [klJ

G; I ITMR: Need to set to zero before each call

0;

tF'mpz (float) (z3) i

GetWuldlnfO(tempz, windU, windV),

check-t-t ;

f [OJ = (zld/z') windU[OJ) * (zld/z5 windU[O]) -t (Z2d/z5

windV[OJ) * (z2d/z5 windV [0]) -tz3d,.z3d/z5/z5i I IV, forward veloC'lty

II f[lJ '" (z2dd/z:i/z5 windvU])/(Zld/z5-windU[0]);lldtheta/dt

IIEuler j,agrange equationsnow I donot know how I got theSe equations

f[1]-'zldd/zs/z5 + O,S*10.049*puw(zld/z5,2)*CX+Z4*zldd/pow(Z5,2) i

IIz4 is the control variable

f[2]=-Z2dd/zS/z5 -t 0 5*10 049*pow(z2d/z5,2),.Cy+z4,.z2dd/pow(z5,2);

t[3]=-9.8-z3dd/zS/z5 + O.5*10.049*pow(z3d/z5,2)*Cz + z4*z3dd/pow(zS,2};

if (,.mode==1 II *mode==2) {

df [0] [Or .-0;

df [OJ [lJ = 2* (zld/z5- windU[O]) * (1/z5); I,. wrt zld *1

df [0] [2]

df [0] [3]

df [OJ [4J

0;

2* (z2d/z5- windV(O]) * 0/Z5) i 1* wrt z2d TI

df [OJ [5J = OJ I*wrt z2dd .. 1

df [0] [6]

df [0] (7]

df [a] [8]

df [0] 191

0; Ilfor 23

2,.z3d/z5/z5,

0;

0; I I for 24

df (0] [10] __ 0;

df [OJ [11] = 0;

dfIOII121·0;

df [1J [0] ,,0;

df [1] [1] ",2*0.5*10. 049*Cx*zld/z5/z5;

dfllJ [2J=24/z5/25; Ilwrt zldd

df [I] [3].0;

df [I] [4].0;

df [I] [5]·0,

df[l] [6].0;//z3

df [1] [71·0;

dfll] [8J .. 0;

df[l] [9] '" zldd/pow(z5,2); /lz4

df [1] [10]. 0; //24d

136

Of[lJ[l1J=O; IIz4dd

df [lJ [12J =0;

df [2J [OJ =0;

df [2J [lJ =0;

df[2J [2J = 0; Ilwrt zldd

df [2J [3 J =0;

dfl2] [4J =2*0 5*10.049*z2d!zS!Z5i

df[2l [51=tA/pow(z5,21;

df [2J [6J

dt [2J [7J

0; IIz3

0;

df [2J [8J = 0;

df [2J [9J =z2dd/pow(Z5,2), //24

of [2J [10J =0; / /z4d

df[2J [l1J =0; IIz4do

dfl2] [12]=0;

df [3J [OJ =0;

of [31 111 =0;

dfU]!2] = 0; Ilwrt zldd

df I3J [3J.0;

df I3J [4J = 0;

df [3 J [5J =0;

df [31 [61

df [3J [7J

df [3J [8J

0; IIz3

2,.0 S*10 049,..z3d!zS!Z5;

-1/z5/z5 • z4/pow(z5,2);

dfUl[9] = z3dd/pow(z5,2); Ilz5,T

df[3j [10J=0;

df [J] [11J =0;

df [3J [12J·O;

1* Nonlinear Final Constraint */

void nIfef (int ... mode, :i.nt *TIstate, double "f, double **df, double **zp) i

1* Initial Cost */

I. .1

void icf(int ,.mode, int ..,nstate, double *f, double ",df, double ,**zp) {

dQuble Wq"'-l;

if (*mode==O II *mode==2) {

*f = Wq*z5 i

if (,.mode==l II ",mode .. ",2) {

df [OJ 0;

df [lJ 0;

df [2) 0;

df [3 J = 0;

Of [4J 0;

df [SJ 0;

df [6J 0;

df [7J 0;

of [8J 0;

Of [9J =0 ; I IT is vaL iable for intial cost funtion,

I Iso df/dT is not equal to 0

df [10J =0 ; / /z4

Of [111 =0 ; IIz4

df[12] ",wq; I IZ5

137

1* Trajectory Cost *1

1* =============== ... 1

void tcf(int "mode, int "nstate, int "i, dOl)ble "f,

double Hit, double HZp) {

float windU[9J {a};

float wlndV[gJ {a};

int kl;

float tempz;

int tpl, tp:2, NBPS;

NBPS~100i

float time:

tpl ... i;

tp2 NBPS;

float tao, Wu;

tao= tpl,,1.0/tp2i

time =tao"zS/3fiOO;

Wu=O i 11100000 for min E

if (:ldllode==O II "mode==2) {

for (kl=O; kl <: 9; kl++) {

windU [kl J 0; IITMR: Need to set to zero before each call

wlndV[klJ '" 0;

tempz ~ (float) (z3);

GetWuldInfo(tempz, windU, windV);

check++ ;

II prinrfl"\n tempz =%f, u=%f,v=%f \n",tempz, windU[O],windV[ll);

f [OJ =Wu*zS-.pow((zld/zS-ynndU [OJ) ,2) +

W1.Hz5"pow((;z:2d/:t:5-windV [0]),2) +

Wu* Z5*pow (z3d/zS, 2) +Wu .. z4 .. z4 .. (Zldd* zldd+z2dd"z2dd+z3dd* z3dd) /pow (z5, 3) ;

f [0] /wu=%lf\n" ,pow ((zld/z5 -windU [01) ,2) +pow ((z2d/z5 -windY [0 J) ,2)

+ (zldd"zldd+z2dd"z2dd) Ipow (z5, 3) +z3d*z3d/z5/z5) ;

if (*mode==l II "mode==2) {

df [0] =0;

df[l] ~2*wu"(Zld/zs windU[O]); 1/ wrt zld

df [2J =2 .. Wu .. z4"z4 .. z1dd/pow(z5, 3) i

df [3] =0;

df [4] 2"Wu* (z2d/zS windV[01); I/wrt z2d

df [SJ = 2"Wu"z4"z4"z2dd/pow(z5,3);

df[6] 0;//23

dt l7J 2*Wu .. Z3d/zS;

df [8) 2"I"hH:;o:4";z:4,,z3dd/pow(z5,3J i i

df [9] =2*Wu .. z4*z5* (zldd*zldd+

z2dd"z2dd+z3dd .. z3ddJ/pow(zS,3l i l/z4

df [10J =0; //z4d

dUll] =0: I/Z4dd

df1121;O;

void fcf(int "mode, lnt "Ilstate, double .. f, dO~lble "df, double .. *zp) {

#endlf

/ loptl. inp for the aerobot

% Traiectory Definitions

138

NOUT 5

NINTER'I 30 30 30 30 % x,y,z, control. t

MULT] 3 3 3 1 % this should mean "smoothiness"

ORDER 6 6 6 6 1

MAXDERIV J J J 3

% Horizon Length

HL 1

%- Number of break points

NBPS 100

% Define Linei'l.r Initlal Constr3lnts

NLIC 5 %number of initial (,Orlstri'l.ints

LIe_LB

o 0 -100000 0 %x,y, z, tau, t

LIC_UB

100000 100

% x xd xdd Y yd ydd z zd zdd tau td tdd T

o 0

o 0

o 0

% init.ial velocity 15 10 (x direction)

% Define Linear Final Constraints

NLFC J

LFC L8

200 200 200 %final dest.ination

LFC UB

200 200 200

LFC_A

xd xdd y yd ydd z zd zdd tau td tdd

o 0 0

o 0 0

o 0 0

% Define Linear 'trajectory Constraints

NLTC 3

100 300 300

LTC A

xd xdd Y yd ydd z zo. zdo. tau to tdd T % coef

% Define Nonlinear Tra-jectory Constraints

NNLTC 4

o 0 0 0

139

400 0 0 0

NTRA.JECTORYCONS1'RAV B

TRAJECTORYCONSTRAV

Define Initial Cost

0102 1112 2122 30 40

% 000000 0 ~ ." 0 0 0

NICF 1

NlNlTlALCOSTAV 1

INITIALCOSTAV 4 0

Define T:rajeC"to:ry Cost

NTCF 1

NTRAJECTORYCOSTAV 8

TRAJECTORYCOSTAV 0 1 0 2 1 1 1 2

% Define NPSOL Options

NNPSOLOPTION 2

NPSOLOPTlON

NPSOLOPTION

NOLlST

Print Level 5

2 2 4 0

140

APPENDIX IV

DMOC program for a glider in a B-spline ocean model

#DMOC program fOr the glider is wrltten III AMPL, the solver both can be IPOPT

#01: NPSOL, ~n order to compare t.he NTG with DMOC, we choose NPSOL since NTG

#i8 using NPSOL as its solver. In this program DMOC needs call the B-spline

ocean current mudel thus a-spline function should act as a user-defined

function. In Unutnu, the makefile for adding user'-defined function is also

/:jattached here while B spline function program is not completely listed here

#c(JIlsidenng it is just modified from the foregoing appedix.

#test.mod, func-add.h. funcadd.c makefile.linux are needed

#first, make -f makefile.linux to create amplfunc dll

#then lampl test.mod to get the solution

opt ion solver npsol;

#option npsol_options "iterations .. 3000"i

Uoption ipopt_options "halt_oTI_ampl_error yes" i

#option ipopt_options 'max_iter=10a'i

#option ipopt_options "max_iter'=3aaO";

#option ipopt_options "constr_viol_tol=le 5" j

#option ipopt_options "tol=le-5";

function usplinein£u;

function vsplineinfo;

param N:=51; # number of knots in t.he trajectory

set POS NODES := {a .. N-1};

set VEL NODES {a, ,N-2};

a = (a_x, a_y) and b = (b_x. b_y) are positions of start and final pOlnts

param a_x

param a_y

param b x

param b y

1620806.642201; #c':r'll, (xstart-xref) *scalefactor from optl. inp

3223724.674343 i

913380.0;

980150.0 i

pal'am TO := 172800.0; #Initial trial final t~me

param m :~1.0;

param kno : =N;

param hO ;"TO/ (kno 1);

{i POS_NODES} i

var y (i in POS_NODES) ;

var tau (i in POS _NODES) .>= 1000000, <=1000000 ;

var lambda ::.=0.99, <=1 .01 ;

h~hO ; #final time is fixed to T=48 hour

T=TO i #final time fixed to T",48 hour

qlp (i in VEL_NODES) (x [i+1J -x Iii) /h;

q2p {i in VEL_NODES} (y [i+1J -ylil) /h;

var qlm (i in VEL_NODES} O.5*(x[i]+x[i+1]);

q2m (i in VEL_NODES} 0.5*(yliJ+yli+l]);

u (i in VEL_NODES} ;

Control in every knot

141

VaT v {i ln VEL_NODES};

var {i in VEL_NODES} =usplineinfo(x[i] ,y[i] ,h.i/3600.0,u[i] ,vIi] J;

wy {l in VEL_NODES}" vsplineinfo(x[il ,y[il ,hd/3600.0,u[iJ ,v[iJ) i

taum (i in VEL_NODES) '" tau[iJ ;

#derlvative of kinetic energy w.r.t \dot{q}

KEqlp {i in VEL_NODES} m* (qlp[iJ -wx[iJ);

KEq2p {i in VEL_NODES} m*(q2pliJ-wy[iJli

#derivative of kinetic energy w., . t q

param KEql Ii In VEL NODES} 0;

param KEq2 Ii in VEL_NODES} 0;

#potential

param Vql Il in VEL_NODES} ; =0;

param Vq2 Ii in VEL_NODES} : =0;

#discrete forces

forcel_plus {i in VEL_NODES} = -taurn[iJ*(q2p[iJ -wy[iJl ;

farrel_minus Ii in VEL_NODES} = -taum[il.(q2p[il-wy[i]);

force2_pll,l$ {i in VEL_NODES} == taum[iJ.(qlp[il-wx[il);

force2_minus {i in VEL_NODES} ., taumli]*(qlp[l]-WX[l]);

#mlnimlze the control energy and time

param Wl,l == 1 ;

minimi ze force_energy:

$um{j In ° N 2} 0 5.(forcel pIIlS[JJ*forcel_plus[l]+

forcel_ minus [j 1 * forcel_minus [j 1 + force2_plus [j] ,. force2_plus [j] +

torce2 . minus [j] ,. tor ce2_ minus [j 1 J .h* WU ; #+0. 5*T;

#Subject to constraints, there are 104 equality constraints due to EL equations

#Here, the position is considered differently, so there are 100 EL eqllatl()rlS needed

UStarting and final point

subje('t to x left anchor: x[O] a x;

subJ ect to L left anchor: y [01 a y,

subj eet to x_right_anchor: x[N 11 b x,

sub] ect to y rlght an('hor yiN 11 = b y;

#StaIting veloc.it.y (momentum)

No constraints on the fina1 velocity

subject to Euler_Lagrange_x {J In 0, ,N-3}:

-KEqlp[j+l] + KEqlp[jl + O.5 .. h.(KEql[j+l]+KEqUj]) + O.5,.h,.(VqU]+1]+Vq1[j})

+ 0 5.h.forcel_plus [j] + 0 S*h.forcel_minus [1+1] == 0;

subJect to Euler_Lagrange_y {j in O .. N-3}:

-KEq2p[j+1l + KEQ2p[jJ + O.S .. h .. (KEq2(i+1]+KEq2[jJ) + O.S*h .. (Vq2[j+lJ+vq2[j]J

+ 0.5*h*force2 .plus[")]

param xref:==-122,32458;

param yret: =36.5658 i

param 5cale: .. 11126067;

#Start point guess 1

o 5.tu·force2 mlnus IJ+1J 0;

#Let initial guess to be the tUl.Jecotry on the left side of the stIaight 1 ine

let Ii in 0, .19 } x[J] ; = (j 119),. (-122. 3-xref) ,.scale + (1-j /19) * (-122

let Ii in o. .19 } y[jl ; = (j /19),. (36.75 -yt'ef J .seale+ (1 j/19)*(36.8557

let Ii 20. .N-j) x [J] .- (j -20) I (N-1-20J * (-122 .242-xref) *scale

+ (1-(j-20)/(N l-20))t(-122.3-xref)*scalei

let {J in 20 .N 1} y[jJ : .. (j-20J/{N-1-20J .. (36.6535-yref)*scale

+ (1-(j-20)/(N-1-20)).(36,75-yreO .. scalei

let {j in o .. N-I} tau[jJ -1;

let lambda:= 1;

display x, y >DMOCinitL. txt;

solve;

142

.178-xrefl .. scale i

yrefJ *scale:

display x, y, q1p, q2p, tau>t:rajL txt;

display qlp,q2p,tau,wx,wy;

du,p1ay T/3600;

display force_energYi

II iuncadd. c

1 * sample illilcadd * 1

#include "math.h" 1* for sqrt *1

#include "iuncadd hi' 1* includes "stdiol.h" *1

int cheC'k1 0; II fo:r lisp1 ineinfo

int check2 0; Ilfo1' vSpllnelTlfo

void EvaluateSphne(float resultll, float A[J [22J [27J, floo.t Bx[],

float By [J ,tloat Bt. [], int. xindex,

int yindex, int. tindex, int kx, int ky, int kt) ;

void Eva1uateSplineDerlvat1.ves(float result[]. float A[J [22J [27J,

float BX[], float By[] ,float Bt[], float dBx!]. float day[J ,float

dm [], int xindex, int yindex,int tindex, int kx, int ky,int kt.

float knot.sx[], tlQo.t knotsy[] ,float knotstl]);

int GetBcoef(float BI], tloat knots!], int k, int lengthknots, float data);

real u;

real v;

static real

uspllneinfo(register argllst *al)

real xdataf, ydatdi, tdata!:

float currentinf(Ju [7] (o} ;

tloat cur:rent.infov [7] {o} i

real x, Z;

int *at, 1, Ili

char *se;

const r:har *sym;

AmplExpOIts -I<ae al->AE; 1* for fprinti and strtod *1

if ((n = a1-;.n) <= 0)

return 0;

at a1 >at;

a1 :;.ora;

de .:'Il->oerivs;

o. i

checkl++ ;

Ilmake the knots info just updated once

Ilmodled by weizhong zhang. to make the complex bnspline ocean current

Ilmodel work

xdataf=ra [0); Ilinpllt x as the first variable

ydataf=ra [1];

tdataf=ra [2J i

1 Ichecky=ra [at [5J] ;

if (tdataf:>24) tdataf=24i Ilwe only have 24 time zone data,

II when t>24, assume t.he current stays constant at t=24.

void

funcadd (AmplExports *ae) {

1* Insert calls on addfunc here. -1<1

I. Arg 3, called argtype, can be 0 Or 1:

143

o ==> force all argument.s t.o be numeric

* 1 "'or> pass both SymbOllC and numeriC' arguments.

* Arg 4, called nargs, is int.erpren.ed as follows:

o ==> the function has exact:..y nargs argt.ments

-1 ==> the function has - (ni:n'gs+ 1) argLments.

Arg 5, funcinfo, is passed to the functions in struct arglist;

it is not used in t.hese examples, so we just pass o . . /
dddbmc("1)spllneinfo", (rfunc)usplineinfo, 0,5,0) j

addfunc ("vspl ineinfo" , (:r func) vspl inei nfo, 0, 5,0) ;

#Makefi Ie for adding function to ('reate ampl func .dll

#which is from AMPL, thank David M. Gay's help to make it work

For Linux

. SUFFIXES:

$S = ampl/solvels directory

CC =

CFLAGS = - I$S -02

J'.O :

$(CC) $ (CFLAGSl $*.c

amplfunc.dll: funcadd.C'

$(CC) -c $ (CFLAGS) -fPIC funcadd.c

$(CCl shared -0 amplfunc.dll funcadd.o

sample solver creation.

$(myobjects) = llst of .0 files

myobjects

mysolver: $(myobjects)

$ (CCl rO mysol vel' $ (myubl ects) $S/ amplsol ver. a -1m -ldl

144

APPENDIX V

DMOC program for a JPL Aerobot

#DMOC program for generating trajectories of a JPL Aerobot

#io the defined wind profile with consideration of aerodynamics

#This problem ronstraints are Euler-Lagrange equations which aloe

#from the perspective of energy rat.her than Newton's perspective.

#test.mod, funcadd.h. funcadd.c makeflle.linux are needed

-IHirst, make -f makefile.linux to create amplfunc dll

#then ./ ampl test. mod to get the solut ion.

#Program test. mod for the Aerobot

option solver npsal;

#option npsol_options ' iterations == 3000' i

#optlon npsol optlons 'Minor iteration limit 1500';

#opt ion npsol_options ' linesearch= 1.08-8';

#option npsol_options 'Linear Feasibillty tolerance = I.De 8';

#optior) npsol_options 'Nonlinear Feasibility tolerance'" 1.Oe-8';

#option npso1_options 'cold start';

Uoption npsol_options 'Optimality tolerance =1 Oe-8',

Find optimal trajectories for a JPL Aerobot

From (0,0,0) to (200,200,200) in the wind

function uWind;

funrtion vWind;

param N:=51; # number of knots in the trajectory

set POS
~

NODES { 0 .N-l} ,

set VEL NODES { 0 .N-2} ,

set ACE NODES {D. .N-3},

a = (a_x, a_y, a_z) and b = (b_x, b_y,b_z) are positions of

start and final points

param a -x 0,

param a -Y 0;

pcLIam a z 0,

paIam b - x 200,

param b -Y 200 ;

param b - z 200;

param TO := 100; #Initial trial final time

param m : =1. 0;

para.m kno :=N;

param hO : .1'0/ (kno

#Initial speed

param xinip: 0;

param yinip: 0 i

param zinip:= 0;

1) ;

#Bounds on variables

{l POS_NODES}::>",O, <0=300;

var y {i in POS_NODES} ::>=0, <=300;

145

z {i in POS_NODESj>",O, <",300;

tau {i in POS_NODES};.=-100000, <=100000;

lambda >=0, <=1;

Control in every knot

#var h=hO*lambda;

#var T=TO ... lambda i

val' h=hO;

v," T=TO;

qlp {i in VEL_NODES}

va, Q2p {I in VEL_NODES j

q3p { i lfl VEL NODES}

• Acceleration

Qlpp {i in ACE NODES}

va, q2pp {i in ACE_NOD8S)

q3pp {i in ACE_NODES}

qlm {i in VEL_NODES}

q2m { i in VEL_NODES}

q3m { i in VEL_NODES}

var {I in VEL_NODES)

wy {i lfl VEL NODES}

=

(x[i .. lJ-x[iJl/h;

(y[i+1J -y[i) l/h;

(z [i .. 1J -z [iJ) /h;

(qlp[i+lJ -qlp [i]) Ih;

Iq2pli+ll-q2plill/h;

(q3p [i+l] -q3p [i]) Ih;

O.5*(x[ij+x[i+1Jl;

0.5* (y[i] +y [i+1J);

0.5 ... (z [i]-+z[i-+lJ);

uWind(x[i] ,y[i],z[iJ);

vwind (x Ii 1 ,y [i 1 ,z [i J) ;

no wind velocity in 2; dlrection

var taurn {i in VEL_NODES} = tau [iJ ;

#minimize the control energy and time

param Wu =1;

minimize force_energy: sum{j in o .. N-3} ((q2p[jJ -wy[jJ)

* (q2p Ij J -wy Ij 1) + (qlp [j J . wx [j 1) ... (qlp lj 1

-wx [j]) +q3p[j] *q3p [jJ + (qlpp IjJ *qlpp [j) +q2pp [j J *q2pp [il

+q3pp [j 1 *q3pp [j 1) *tau [] 1 *tau [i J) *h*Wu;

#Subject to constraints, there are 104 equality const.raints

#due to EL equations

Here, the position is considered differently, so there

#are 100 EL equations needed

#Starting and final point

Sub] ect to x left ane-hor: x [OJ a x,

sub"jeC't to L left
-

anchor: y [01 • y,

subj er.t to z left anchor: z [0] a Z;

suhj t':ct to x_right_anchor' x [N 11 b x; -

subi ect to y_right_anchor: y[N-ll b y,

subj ect to z rlght anchor Z [N-l] b Z;
"C

#The constraints lrJ the trajectory, there 96 (48 knots) EL equations

#are needed to be satisfied cUIlsidering it is controlled by t.he gyroscopic force

subJect to velocity_tutal {J in 0 .N-2}:

(qlp [j J -wx [i J) .. (qlp [j J -wx [j J) + (q2p [j J -wy [j] l ~ (q2p [j J -wy [j 1)

+ q3p[jJ*q3pIjJ<dOO;

subj ect to Euler _Lagrange_x {j in O .. N-3),

-qlpp[il , tau[jl*q1pp[jl + 0 5dO.049*qlp[jl *qlp[iJ 0;

subj ect to Euler _Lagrange_y {j in O .. N-3) ,

-Q2pp [j I + tau[j) ... q2pp[jJ , 0.5*10.04 9 ... q2p [jJ *q2p [j] 0;

subject to Euler_Lagrange_z {j in 0 .N 3}:

-98 q3pp[jl + tau[iJ*q3pp[j] + O.5...J0 049 ... q3p[j] ... q3p[j] 0;

#Start point

let {i in O. .N-l } x[il (J/N1 ... b x (1 J IN) *0. x,

let {i in O. .N-l) y[il (j/N)*b_y + 11 j/N) ,.a~y;

let {j in o. .N-l) z [j J 1]/NI,b z , II] IN) *a z,

146

let Ij in o .. N-l} tau[j] -1;

let lambda: = 1;

display x, y, z ;;.ini tdm()~. txt;

solve;

display x,y,z,tau >traj,txt;

dlsplay x,y,z,wx,wy,qlp,q2p,q3p,tau,T,furce energy,

1* funcadd * I

#include "math, h" 1* for sqrt *1

#include "funcadd h" 1* includes "stdioLh" *1

statiC' real

l,.lWind(a:rgllst. *031) 1* sqrt (x*x + y ... y) *1

L'eal xdataf,ydataf,zdataf;

float windU[7] {OJ;

float windV[7] to};

real x, Z;

real *d, *de, *ra;

lnt "at, i, n;

char *se;

canst char *sym;

AmplExports *ae a1·::.AE; 1* for fprintf and strtod *1

if ((n = al-;;.n) <= 0) return 0;

at 031 >at;

a1 ::.ra;

d de = al->derivs;

0.;

xdataf",ra [0]; Ilinput x as the first variable

ydataf=ra [1) ;

zdataf=ra [2] ;

if (zdataf;;.=O && zdataf<50) {

windU[O] =10;

windV[Ol~10,)

else if (zdataf::.=50 && zdatafdOO) {

windU[OJ =-10;

windV[Ol-lO;)

elSe If (zdataf::.=100 && zdatafdSO) {

windU[O] =10;

windV[O) 00-10; J

else if (;z:dataf> lS0 && zdataf<=300) {

windU[OJ=O;

wlndV[OJ= 10;

else

printf("out of bound, the limit is 0-300 in zdataf");

return wlndU [0] ;

static real vwind(arglist *al)

real xdataf,ydataf,zdataf;

float windU[7j {oI,

float windV[7] {OJ;

real x, Z;

real *d, *de, *ra;

int *at, i, nj

char *se;

canst char *sym;

AmplExports ,o-ae al-.>AE; 1,0- for fprintf and strtod *1

if ((n = al->n) <= 0) return 0;

at = a1-.>at;

147

ra = al->ra;

d de = al->derivs;

0,;

xdataf=ra [0]; / /input :x; as the fix-st variable

ydataf=r'a [1J;

zdataf=ra [2] ;

1 t (:;z:dataf::>",O && zdataf<50) {

windU[O] =10;

windV[OJ=10;)

else if (zdata£>=50 &&. zdat.ai<lOO) {

windU [OJ =-10;

windV[OJ =10;}

else if (zdataf>=100 && zdataf<150) {

windU[O] =10;

windV[O] =-10;}

else if (zdataf>=150 && zdatat<=300) {

windU [OJ =0;

windV[OJ"- 10;)

else

printf("out of bound, the limit is 0-300 in zdataf");

return windY [0] ;

void funcadd(AmplExports *ae) {

I * Insert calls on addfunc here. ... /

1* Arg J, called argtype, can be 0 or 1:

(1 ==:> force all arguments to be numeric

1 ==:> pass both symbolic and numeric arguments.

ALg 4. called nargs, is int.erpLetted as follows:

o ==::> the function has exactly nargs arguments

-1 ==::> the function has - (nargs+l) arguments

Arg 5, funcinfo, is passed to the functions in struct argllst;

it is not used in these examples, so we just pass 0,

, /
addfunc("uWind", (ufunc*)uWind, 1, -1,0);

addfunc("vWind", (ufunc*)vWind, 1, -1,0) i

148

APPENDIX VI

MATLAB program for generating ODE45 trajectories

% By weizhong Zhang under directions of Dr Jerry E Marsden

%- To use MATLAB 00E45 (Ordinary 01 fferential Equat ion Solve:):) to

% reintegrate the t.rajectory

% Derive the equatiuns of motion for an underwater glider cc.mt:rolled

% by gyroscopiC' forces, put optimal control input from DMOC or NTG

% into the equdtlOrlS of motion as fixed control input. , trlen reintegrate

% the trajectory using ode45 to c:her:k the DMOC and NTG solutions

% Cost tunet ion

% Equatlons of motion

% \ddot{x}= \t.au* (\dot{YI v) + \dot{u} (1)

\ddot{y}= \tau*(\dot{x)-ul + \dot{v} (2)

% Inltial Conditions

'xI01.l0, yIOI=O, \dot{x}lol= 10, \dot{y}lol=-10

% Final Conditions

% x(l)=15, y(1)=2

% Current u=O lx, v=O

% On the DMOC and NTG traJectories, there are 51 points, it means there are

% 51 tau values, for every tau v<3-1uE, there is a cOITesponding x value,

% thus y value. Thus, we can get a new sets of x, y values according to the

% tau value

% For OD£45 to solve the pl'oblem, the differential equation should be a

% first older equation, it needs to define a function glider_motion_equ()

"Ie;

clear all;

i",l; % tOI tau(i)

p01=[10 -10 0 -lOJ;

opt ions odeset (' RelTol' ,le-6, 'AbsTol' ,le-6) ;

[t.l,plJ ode45(@glider_motion_equ_Ilt.g, [0:1/2000:i/50] ,pOl,options);

('ODEntg/pl.txt', 'p1', '-as('il');

('ODEntg/tl txt','t1','-o.sC'ii');

% T=1/S1 for tau(2), the initial COTl(:htiort should be changed to the final

% condition from last calculat.ion

for i=2: SO

var=strcat ('p' ,num2str(i-l)} j

name"-strcat. (, /home/weizhong/Desktop/MatlabWork/ODEntg/' ,var, . txt') ;

% Initial condition for the next ODE solution, t=i/SO, i=1:S0

p_mid=load(name) ;

[m, nJ ",size (p_mid) ;

149

p_init.=p_mid (!Il, :); % the last row fr(lm the last ODE solution

%- Begin to generate next file

tname=strcat (' t' ,num2str (il " txt' 1 ;

pIldme=strcat('p' ,num2str(il,' .txt');

ftname=strcat (' ODEntg/' ,tnameJ ;

fpname=strcat (' ODEntg/' ,pnamel ;

(tname, pname] =ode4 S (@glider_motion_equ_ntg, [(i 1) /50: 1/20 00: i / Sal ,p_ini t, options) i

save (tpname, 'pname' I' ascii'l;

save (ft.name, 'tname',' -ascii');

end

function dp = glider_motioIl_equ_ntg(t,p)

% This function def1I1Es t.he equations of motion for an underwat.er glider

% p is a vector dehned as [x, dx/dt, y, dy/dt]

%Equations of motion

% \ddot{x)= \tau,..(\dot{y}-v) \dot{u} (1)

% \ddot(y}= \tau,l\dot(x} u) + \dot(v} (2)

% dp/dt==[O

-0 1 0 -\tau;

1;

-0 l\tau \tau 0 O;lp

TrNTGSimC'ur-o-zeros(51, 9);

TrNTGSimCUI =load (' /home/welzhonq/oeskt Op/NTG/TraSlmCur /TrSlmCur st txt' 1 ;

for] ==1 50

if t>=(j 1)/50 && t'::=l/50

i=j;

end

end

tau (1) .. TrNTGSimCur (i, 9) ;

dp =- zeros (size (p)) i

dpI1l=p(2) ;

dp(2)=-O.1*p(2)-tau(i),..p(4) ;

dp{31=p(4) ;

dp(4) ",-0, 1,.. tau (i) *p (1) +tau(i) *p(2) ;

% Plot trajectory frOm ODE 45 when the control input as the optima.l

% solution from DMOC

, p. Ix, dx/dt, y dy/dtJ

clear all;

for i=1:50

var==strcat ('p' ,num2str (i)) ;

dname=strcat (' /home/weizhong/Desktop/Mat labWork/ODEdmoc/' ,var, ' . txt ') ;

gname"'strr.at (, /home/weizhong/oesktop/Mat labWork/ODEntg/' ,var I ' . txt' 1 i

pd==load(dname) ;

gd=load(gname) ;

hold on;

plot{pd(:,l) ,pd{;,]), '-r' ,'LineWidth' ,2);

hold on;

plot (gd(·, 1) ,gd(:, 3) I f -', 'LineWidth' ,2);

end

TrDMOCSimCur=zeros(51,6) ;

TrNTGSimCur'==zeros(51, g);

DMOCini=zeros (51,3) ;

TrDMOCSlmCUl" -load ('/home/welzhong/Desktop/OMOCnpsol/TestSlmCurrent/traJ st txt');

DMOcini t==load (' /home/wei zhong/Desktop!DMOCnpsol/TestSimCurrent/xini tdmoc_st. txt') ;

TrNTGSimCur=load (' /home/we izhong/Desktop/NTG/TraSimCur /TrSimCUl:·_st. txt') i

hold on iplot (TrOMOCsimCur (: ,2) ,TrOMOCSimCur (; ,]) , 'g' , 'Linewidth' ,3) ;

150

hold OIl;plot (TrNTGSimCl1r (: ,2) ,Tr"NTGSimCl1r (: ,S) , ' b' , ' LineWidth' ,J) ;

hold oniplot (DMOCinit (: ,2) ,DMOCirnt (: ,3) , , - -' , 'LinewJ.dth' ,2) ;

h=legend('DMOC ODE45 Solution' ,'NTG UDE45 Solut.:i.on', 'DMOC Traj','NTG Traj','Init Guess',S);

sEt(h,' Interpreter', 'none');

hold nn;plot(lO,O,'o'),

hold on;plot (15,2, '*') ;

title ('Traject.ory from DMOC, NTG verSuS thelr ODE 45 solutions',' Font Slze', 30);

set (gCB., 'Font Size' ,30), xlabel (' X' , 'FontSize' ,30) ;ylabel (' Y' , 'FontSize' , 30) ;

grid on,

151

APPENDIX VII

Program to obtain real-time coordiates of a draganflyer

II In order to get the real-time coordlnates of a draganflyer,

/ I flY$;t I you TIeE!d to install Real Time SDK, your project must

/ / include the Vrt SDKIOex. h header file and link wi th VytSDKIOex. 1 ib.

II To lUlk with VrtSDKloex.lib, you need to "add existing item" in "PI'uject"

/ I zwz. cpp m;;I.lTI proj ect f i Ie.

#include "stdafx.h"

#include <iostream::.

#in(:lude IIVrtSDK10ex h"

#include <string.h:>

/ fusing namespace System;

using namespace std;

using std: :string;

char *chIpAddress="192 168.1.230";

char *chErroy="Error Message";

int rnalrl() I /array<System: : String ::> args

if (Vi(;onConne(;t (chlpAddress) '" ",true) {

cout «"RTE is connected. \n" i

else

cOut«"RTE is not coIlnected\n";

it (Vic()nIsConnected () ",,,,t:rue) \

cout« "vi conIsConnected\n" ;

II Get one f:rame of data

bool param .. falsei

ViconGetFrame (par.'amJ i Ilpar'am lS set to be false, this is for future features

if (ViconGetFrame(param) ==true) {

('()ut«"Get one frame of data\n";

else

cout«"Cannot get data of frame";

int BodyCQunt"O;

int *p_BodyCount &Bodycount;

IIGet Number bodies

VlconGetNumBodles (p BodyCQunt) ,

cout«"The number of bodies is: "«SodyCount«"\n" ;

II Get Marker Number

int MarkerCount;

int *nMarkerCount=&MarkerCount;

if (Vl(,c)nGetNumMar-ke:rs (nMarkerCount) ==true) {

cout«"the number of markers is: "<:<:Markercount<:<:"\n";

II Get Marker Name

int nMarkerNum[Sl",{O,l,2,J,4}; 110 based number of the marker

string chName [5J; Ilcontain five marker names

char *p_chName=&chName [OJ j

cout<<:"old p_chName "«*p_chName«endl;

152

for (i~O;i++ii<5) {

1 f (Vi C"onGetMarkerName (nMarkerNum [iJ ,p _chName++) ==true) {

cout«"the marker number is:''<<nMarkerNum[il<<''\n'';

cout«"the marker name IS: "«*p_chName«"\n";}

else (

cout«"cannot retrieve marker names"«"\n";

cout«"the marker name is: "«*p_chName«"\n";}

cout«"new p chName "«*p_("'hNamE'O«endl,

char *a_pName=&chNamei //get marker name, why there is only one marker

fluat aX=Oi float aY=O;

t loat az ... o; long aV=O i

float *a_rX=&aX; float rY=&aYi

float *a_rz=&az; long *a_rV=&aV;

Hi t nB()dyNum= 0 i / / zero based

char chBName[lOl={'c','c'};

(Char *P _ chBName ... &chBName;

If (VlconGetBociyName (nBodyNum, p chBName) --true) {

cout«"The body number is: "«IlBodyNum«"\n";

cout«"The body name is "«chBName«"\n";

else{cout«"cannot retrieve body names"«"\n";}

char *p_BName .. &chBName; //get body name from Vl(~onGetBc)dyName()

float x=O;float y=O;

float z=Oifloat rx=O;

float rY=Oifloat

float op_ bX=&x;

float *p_bY=&y:

float op_ bZ=&z;

float *p_ax=℞

float *p_aY=&ry;

float *p_aZ=&rz;

I z=O;

if (ViconGetBodyAngleAxis (p_BName, p_bX, p_bY, p_bZ, P ~ aX, P _aY, p _az) ==true) {

cout,,<"The name of the body lS:"«cchBName«"\n";

C'out«"The x of the body is:"«x«"\n";

cout,,<"The y of the body is:''<<y<<''\n'';

cout«"The z of the body is:"«z«"\n";

cout«"The rx of the body "«rx«"\n";

cout«!lThe ry of the body "«ry«"\n";

cOllt«"The rz of the body IS:"«rz«"\n";

else {

cout«"cannot get body informatIOn. "«"\n";}

/ / 0/

/ /NOW you need to write a p:rogram to send commands to the draganflyer through PCTx

:retu:rn 0;

153

CURRICULUM VITAE

A. CONTACT INFORMATION

WEIZHONG ZHANG

Email:greatzwz@hotmail.com
Phone:0-502-852-0409 (lab)
778 David Fairleigh Ct, #8

Louisville, Kentucky, 40217 USA.

B. EDUCATION

University of Louisville, Louisville, USA
PhD., Electrical & Computer Engineering, October, 2009

• Dissertation Topic: "Optimal Trajectory Generation with NTG versus
DMOCApplication to an underwater glider and a JPL aerobot",

• CPA: 3.818
• Advisor: Prof. Tamer Inanc, Ph.D

Shanghai Jiaotong University, Shanghai, China
M.5c., Control Theory and Control Engineering, March, 2005

• Thesis Topic: "'Research on the measurement and control of the main
parameters in producing process of polymerized macromolecule'

• Advisor: Prof. Hao Wang, Ph.D

Harbin Engineering University, Harbin, China
B.5c., Electrical Engineering and Automation, July, 2002

C. RESEARCH EXPERIENCE

University of Louisville, USA
• Optimal Trajectory Generation for a NASA-JPL aerobot with NTGMay

2008- May 2009
In this project, a new aerobot model with consideration of aerodynamics
is proposed, optimal trajectories with NTC are generated to shown the
solutions are satisfied with the energy and time concerns.

154

• Comparisons between NTG and DMOC Jan, 2008 - Nov, 2008
The project focused on theoretic and practical comparisons between two
state of the art optimal trajectory generation methods. NTG is based on B
spline, nonlinear programming and differential flatness while DMOC is
dependent on the direct discretization of Lagrange-d' Alembert principle.
The pros and cons of both two methods are clarified with application to
an underwater glider and a JPL aerobot.

• Optimal trajectory generation for a glider in time varying 2D B-spline
ocean current Jan 2007- Jan 2008
The ocean current is modeled as time-varying 2D B-spline functions with
available sampled ocean current data, minimizing-energy trajectories gen
erated by NTG both for kinematic and dynamic glider are shown consis
tent with Lagrange Cohere Structures.

Shanghai Jiaotong University, China
• A New Real-time Method of Measuring PAE Polymerization Degree

Jan, 2003 - Oct, 2004
A new real-time method for measuring one polymer'S polymerization de
grees is proposed, the detecting error is less than 3% compared with the
off-line chemical time-delay analysis technique. This method can gen
erate the polymer degrees by measuring a few easily-obtained parame
ters such as flow, temperature and pressures from commercially avail
able instruments. This method is patented and used in Chemical plants
in China.

D. JOURNAL PUBLICATIONS

1. Weizhong Zhang, Tamer Inanc, Sina Ober-Blobaum and Jerrold E. Mars
den, "Optimal Trajectory Generation in DMOC versus NTG: Application
to a Glider," will be submitted to one journaL

2. Weizhong Zhang, Tamer Inanc, Alberto Elfes, "Energy Efficient Trajec
tory Generation for the JPL Aerobot Based on its Decoupled Dynamics",
will be submitted to Journal of Guidance, Control, And Dynamics

3. Travis Riggs, Tamer Inanc,Weizhong Zhang, "The VofL Autonomous
Mobile Robotics Systems Testbed," accepted to IEEE Transactions on
Control Systems Technology, Dec, 2008.

4. Weizhong Zhang, Hao Wang, "Real-time Detecting to Estimate the Av
erage Polymerization Degree of PAE,"Control and Instruments in Chemical
Industry, 2004 VoL31 No.6 P.51-53.

E. CONFERENCE PUBLICATIONS

1. Weizhong Zhang, Tamer Inanc, Jerrold E. Marsden, "A Tutorial for Ap
plying DMOC to Solve Optimization Control Problems," submitted to
the 2010 American Control Conference, Maryland, Jun 30- Ju12, 2010.

2. Weizhong Zhang, Tamer Inanc, Jerrold E. Marsden, "DMOC Approach
of Real-Time Trajectory Generation for Mechanical Systems,"in the Proc.
of 10th International Conference on Control, Automation, Robotics and

155

Vision, 17- 20 December 2008, Hanoi, Vietnam.
3. Weizhong Zhang, Tamer Inanc, Sina Ober B16baum and Jerrold E. Mars

den, "Optimal Trajectory Generation for a Dynamic Glider in Ocean Flows
Modeled by 3D B-Spline Functions," in the Proc. of the 2008 IEEE Inter
national Conference on Robotics and Automation (ICRA08), Pasadena,
California, Decl9-23,2008.

4. Travis A Riggs, Weizhong Zhang, Tamer Inanc, "The UofL Autonomous
Mobile Robotics Systems Testbed," in the Proc of 47th IEEE Conference
on Decision and Control (December 2008).

F. HONORS AND AWARDS

1. ICRA 2008 Student Travel Award, May 2008.

2. University Fellowship, University of Louisville, 2005-2007.

3. University of Louisville International Travel Award, Dec 2008

4. UofL Graduate Student Council Travel Award, May 2008

5. UofL NASA-JPL Research ASSistantship, 2008.5-2009.10

6. UofL ECE Teaching Assistantship, 2007.9-2008.5

G. SERVICE

• Commissioner, Committee on Diversity and Race Equality, University of
Louisville, 2007.9-2008.9.

• Student Member, IEEE Control Systems, Power Engineering, Robotics
and Automation Society, 2005.9- Present.

• Co-Chair, Biologically Inspired Robotic in 2008 International Conference
on Robotics and Automation, 2008.12.

• President,UofL Chinese Students and Scholars Association, 2006-2007.

• Vice President, UofL Chinese Students and Scholars Association, 2005-
2006.

156

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2009

	Optimal trajectory generation with DMOC versus NTG : application to an underwater glider and a JPL aerobot.
	Weizhong Zhang
	Recommended Citation

	tmp.1423685735.pdf.aKzym

