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ABSTRACT 

EIG ENVECTOR-BASED MULTIDIMENSIONAL FREQUENCY ESTIMATION: 

IDENTIFIABILITY, PERFORMANCE, AND APPLICATIONS 

Jun Liu 

August 7, 2007 

Multidimensional frequency estimation is a classic signal processing problem 

that has versatile applications in sensor array processing and wireless communica

tions. Eigenvalue-based two-dimensional (2-D) and N-dimensional (N-D) frequency 

estimation algorithms have been well documented, however, these algorithms sufl"er 

from limited identifiability and demanding computations. This dissertation develops 

a framework on eigenvector-based N-D frequency estimation, which contains several 

novel algorithms that estimate a structural matrix from eigenvectors and then resolve 

the N-D frequencies by dividing the elements of the structural matrix. Compared 

to the existing eigenvalue-based algorithms, these eigenvector-based algorithms can 

achieve automatic pairing without an extra frequency pairing step, and thus the com

putational complexity is reduced. The identifiability, performance. and complexity 

of these algorithms are also systematically studied. Based on this study, the most 

relaxed identifiability condition for the N-D frequency estimation problem is given 

and an efl"ective approach using optimized weighting factors to improve the perfor

mance of frequency estimation is developed. These results are applied in wireless 

communication for time-varying multipath channel estimation and prediction, as well 

as for joint 2-D Direction-of-arrival (DOA) tracking of multiple moving targets. 
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CHAPTER 1 

INTRODUCTION 

Two-dimensional (2-D) and N-dimensional (N-D) frequency estimation has a 

variety of practical applications, including radar signal processing, wireless commu

nication, and image processing. In this chapter, Section 1.1 and Section 1.2 review 

some applications and the state of the art of multidimensional frequency estimation. 

Then, Section 1.3 and Section 1.4 consider two theoretical issues associated with the 

N-D frequency estimation: the identifiability condition in the noiseless case and the 

statistical performance in the noisy case. 

The two-dimensional frequency estimation problem can be stated as follows. 

Given an Ml x M2 measurement data set X with typical element 

F 

X = '""' C' ej(rr!J -l)wf,l e j (m 2 -1)wj,2 + w 
mj,m2 ~ -j mj,m2' (1.1 ) 

j=l 

for m1 = 1, ... , 1"v11 , and m2 = 1, ... , M2 , how to estimate the parameter triples 

(Wj,l, Wj,2, Cj) for f = 1"" ,F, where the frequencies Wj,l, Wj,2 E II, and II := [-Jr, Jrl· 
wmj ,m2 is observation noise. The frequency pair (Wj,l, Wj,2) is a 2-D frequency com

ponent, and there are F such components to be estimated. The data model (1.1) can 

be generalized to N-D and multiple snapshot case. For example, a single snapshot 

N-D frequency mixture can be modeled as an N-D array X with typical element 

(1.2) 

where mn = 1, ... ,.A1n , for n = 1, ... , N, and lYln is the dimension size of the n-th 

dimension. The total dimension size is M := Il~=l Mn- In (1.2), the frequencies 
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WJ,n E II, for f == 1, ... , F, n = 1, ... , N, and W ml,m2,'" ,mN is observation noise. 

Similarly T snapshots of N-D frequency data mixtures may be modeled as T N-D 

arrays, X(t), with typical element 

F N 

xm1 ,m2,'" ,mN(t) := L cJ(t) II ejWj,n(mn-l) + wm1 ,m2,'" ,mN(t), t = 1"" ,T, (1.3) 
J=l n=l 

where t is the snapshot index, which can be a time index, or trial index in case of 

multiple trials of experiments. T = 1 corresponds to the single snapshot case. The 

objective of N -D frequency estimation is to estimate {w J,n };;=l' for f = 1, ... , F, 

from given X(t), t = 1, ... ,T. 

1.1 Applications of the Multidimensional Frequency Estimation 

Earlier applications of N-D frequency estimation in signal processing include 

the Direction-of-Arrival (DOA) estimation in radar signal processing using an antenna 

array. When the antenna array is a Uniform Linear Array CULA), to estimate the 

DOA is a problem of 1-D frequency estimation [1, 2, 3]. When the antenna array is a 

Uniform Rectangular Array (URA), the problem becomes 2-D frequency estimation 

[4, 5, 6]. The two dimensions are azimuth and elevation angles. If the samples of a 

sinusoidal signal are collected in the time dimension, 3-D frequency estimation can be 

applied to jointly estimate the 2-D angles and signal carrier frequencies as in [7]. If 

the signal frequencies are hopping, 3-D frequency estimation algorithms are applicable 

when combined with other tracking techniques as in [8]. 

The N-D frequency estimation is also critical to the estimation of the pa

rameters in the deterministic multipath channel models in wireless communication 

[9,10,11]. The JADE algorithm in [9] is a 2-D frequency estimator to resolve the delay 

and DOA parameters in wireless multi path channels. The most general determinis

tic multipath channel is the so-called Double Direction Channel Model (DDCM) [12], 

which is used in wireless channel sounding extensively. The N-D frequency estimation 

is an important tool to estimate the model parameters such as DOA, Direction-of

Depart (DOD), delay, doppler shift in each path of the model [13, 14, 15]. 
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Other applications of N-D frequency estimation were also found in recent years. 

For example, in motion estimation of video compression, the estimation of the 3-D 

motion vector field can be formulated as a 3-D frequency estimation problem [16]. In 

nuclear magnetic resonance (NMR) spectroscopy, the measured 2-D resonance data 

is obtained by exciting a molecular system with a 2-D radio-frequency pulse sequence 

and can be modeled as sum of 2-D damped harmonics [17, 18]. 

Since N -D frequency estimation is so important in practice, the development of 

reliable and efficient algorithms with both theoretical support and application value 

become a necessity. 

1.2 State of the Art 

Both non-parametric methods, which are based on Fast Fourier Transform 

(FFT), and parametric algorithms, which are based on parametric data modelling, 

have been developed for 1-D as well as N -D frequency estimation. In the I-Dease, the 

performance of FFT-based estimation is bounded by the resolution limit of Fourier 

transform (27r / M), which is decided by the sample size (M). The parametric al

gorithms, by exploiting data structures, can ofi'er superior performance and better 

resolution over non-parametric methods. The estimation error of these methods can 

be arbitrarily small as long as the number of snapshots is sufficiently large or the noise 

power is sufficiently small, which is not shared by FFT-based methods. Therefore, 

these algorithms are often called high resolution methods. The MUSIC algorithm [19] 

and the ESPRIT algorithm [3] are two well-known examples of such high resolution 

algorithms for I-D frequency estimation. Although these algorithms are efi'ective for 

I-D frequency estimation, extensions to 2-D and N-D cases are nontrivial. 

The main challenge of N -D frequency estimation is N -D frequency association 

or pairing. In practice, the frequencies are easy to be resolved separately in each 

dimension, but it is difficult to efi'ectively associate the N-D frequencies of the same 

component. If N-D MUSIC [20] is implemented by N-D grid search, no frequency 

association step is needed, but N-D grid search is very complex. Alternatively, I-D 
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frequency estimation can be implemented in individual dimensions of the N-D mix

ture followed by a frequency pairing step [21, 22, 14]. For 2-D frequency estimation, 

there are some methods to pair the two sets of the frequencies such as comparing 

ratios or sums of the two sets of frequencies [22]. However, when the problem is gen

eralized to the N-D case, the frequencies in all the other dimensions are often paired 

with those of a single dimension, which is clearly not optimal. For example, in the 

RARE algorithm [14], all the frequencies are paired with the first dimension, whose 

frequencies are assumed to be well separated. 

A better method to pair N-D frequencies is to resort to joint diagonalization 

techniques. This method attempts to simultaneously diagonalize N matrices, whose 

eigenvalues are the estimates of the N-D frequencies. Various subspace algorithms 

[5, 9, 13, 23] can be classified into this category. For example, the JADE algorithm [9] 

and the N-D Unitary ESPRIT algorithm [13] use an iterative Jacobi-type approach 

to implement joint diagonalization. Some other techniques can also be considered 

as variants of the joint diagonalization technique. For example, the 2-D Unitary ES

PRIT [5] diagonalizes a complex matrix to obtain the eigenvalues of two real matrices 

constructed from a unitary transformation. The 2-D ESPRIT algorithm [23] attempts 

to diagonalize a weighted matrix constructed from two matrices using randomly gen

erated weighting factors. 

Since most existing subspace-based N-D frequency estimation algorithms at

tempt to resolve the N-D frequencies from eigenvalues, a frequency pairing step or 

joint diagonalization process is necessary to associate the N- D frequencies of the 

same components. However, the computational complexity of this step is often high. 

For example, the computational order the frequency pairing step of the Matrix En

hancement and Matrix Pencil (MEMP) algorithm [21] is O(M F 3
). Therefore, other 

approaches that have lower computational complexity are desired. In [24], an alge

braic algorithm, namely the Multidimen,sional Folding (MDF) algorithm, is proposed 

to estimate the N-D frequencies from eigenvectors. Compared to the eigenvalue-
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based algorithms, the MDF algorithm achieves automatic pairing once an eigenvalue 

decomposition (EVD) is solved, therefore it does not require an extra frequency pair

ing step. This dissertation develops several novel eigenvector-based N-D frequency 

estimation algorithms and study their identifiability and performance in a systematic 

way. 

1.3 Identifiability Bound 

The identifiability (ID) condition of an algorithm is the sufficient condition 

under which the algorithm gives a unique solution to an estimation problem in the 

noiseless case. The algorithm identifiability may be different from the model identifia

bility. For N-D frequency estimation, the maximum number of resolvable frequencies 

for a given sample size in the noiseless case is referred to as the ID bound. The 

higher the ID bound is, the more relaxed the sufficient condition is. The ID condi

tion of N -D frequency estimation is of interest in both theoretical exploration and 

engineering practice. In practice, the ID bound is of importance in situations where 

data samples come at a premium, e.g., in spatial sampling for direction estimation 

using an antenna array, where the number of samples in space domain has a high 

cost, and in time sampling for time-varying parameter estimation in wireless channel 

sounding, where only a few samples may be obtained in a time segment with constant 

parameters. 

In a deterministic sense, for example, for 2-D frequency estimation, the ID 

bounds in [25] and [26] are constrained by min(Ml, M 2 ), where Ml and M2 are the 

sample sizes along the two dimensions. It is shown in [27] that the maximum number 

of identifiable frequencies is proportional to Ml + M 2 . Furthermore, if it is assumed 

that the N-D frequencies are drawn from a continuous distribution, it is shown in 

[24] that approximately M1M2/4 2-D frequencies are uniquely resolvable almost surely 

(i.e. with probability one), which is the most relaxed ID bound before the work in 

this dissertation. The MDF algorithm forms the constructive proof of this statistical 
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ID result [24J. 

One key technique to improve identifiability and performance is data smooth

ing. Several similar N-D smoothing techniques are employed in different frequency 

estimation algorithms. For example, the MEMP algorithm [21J constructs an en

hanced data matrix using 2-D smoothing technique. The Unitary ESPRIT algorithm 

[13J employs an N-D smoothing preprocess step to construct a large smoothed data 

matrix. The 2-D MDF algorithm has a multidimensional smoothing step, which can 

be visualized as first expanding the 2-D data to a higher-dimensional structure, then 

folding back this structure into a matrix [24]. 

1.4 Performance Analysis 

In the noisy case, the performance of an algorithm is its ability to combat 

against noise (i.e. performance demonstrates how accurate the algorithm can esti

mate). The performance is often measured by the mean square error (MSE) of the 

estimates. The Cramer Rao bound (CRB) indicates the performance bound of all 

unbiased estimators. Although the performance of an N-D frequency estimation al

gorithm can be evaluated by comparing MSE to CRB using Monte Carlo simulations, 

it is desirable to analyze its performance theoretically since analytical results are more 

rigorous and general. 

There are extensive performance analysis results for I-D ESPRIT [28] and MU

SIC [19], but performance analysis for N-D frequency estimation algorithms is rela

tively limited in the literature. The MEMP algorithm is analyzed in [29]. However, 

since the frequency pairing step is difficult to analyze in closed forms, the perfor

mance analysis in [29J assumes that perfect pairing is always achieved, which is not 

the case in practice. Although the performance of a joint diagonalization process can 

be approximately analyzed, there are few analytic results for the Unitary ESPRIT 

algorithm using simultaneous Schur decomposition. 

Performance analysis is also desirable to develop theoretically robust algo-
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rithms. Firstly, performance analysis is necessary to understand some behaviors of 

an algorithm. For example, although the MDF algorithm demonstrate superior per

formance in Monte Carlo simulations in most cases, it is found that sometimes its 

performance is not satisfying for certain distributions of the N -D frequencies. Sec

ondly, performance analysis is required to optimize parameter configuration in some 

algorithms. For example, the 2-D ESPRIT algorithm [23] uses weighting factors to 

diagonalize two matrices simultaneously, but it is unknown how to choose the weight

ing factors so as to improve the performance of that algorithm. The RARE algorithm 

[14] also use weighting factors to construct a mixed polynomial in order to associate 

N-D frequencies. However, the impact of these factors on the performance is only an

alyzed using computer simulations [14], and no analytic results about the estimation 

errors are given. 

1.5 Main Contributions 

This dissertation develops a framework on eigenvector-based N-D frequency 

estimation, which includes several novel N-D frequency estimation algorithms. These 

algorithms are shown to have more relaxed ID bound and better performance than 

existing subspace algorithms. The main contributions of this dissertation are listed 

as follows. 

(1) The ID condition of proposed eigenvector-based 2-D and N-D frequency 

estimation algorithms is given. Those algorithms have the most relaxed statistical ID 

bound up to date. This result is summarized in Chapter 2. 

(2) Using matrix perturbation theory, Chapter 3 analyzes the performance of 

the proposed eigenvector-based algorithms and validates the theoretical results by 

computer experiments. In sufficient snapshot case, it is proved that the eigenvector

based frequency estimation algorithms are asymptotically consistent estimators with 

respect to the number of snapshots and noise power [30]. 

(3) Chapter 4 proposes to use weighting factors to obtain a better estimate 
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of the eigenvector matrix. By introducing adaptive weighting factors, this method 

attempts to perform EVD to an optimal weighted matrix so that the dispersiveness of 

the eigenvalues in the EVD is as large as possible. The simulation results demonstrate 

that the N-D frequency estimation algorithms based on weighted diagonalization can 

offer superior performance over existing algorithms [31, 32]. 

(4) Chapter 5 applies the aforementioned results in wireless communication to 

estimate and predict the time-varying multipath channel in adaptive OFDM systems. 

Furthermore, Chapter 6 proposes a fast 2-D frequency estimation algorithm and apply 

it in joint 2-D DOA tracking of multiple moving targets. 

1.6 Problem Statement of Multidimensional Frequency Estimation 

In this section, the multidimensional frequency estimation problem is stated 

again in matrix forms. The introduction is started from the 2-D case, then extended 

to the N-D case. The notations and abbreviations used in this dissertation are defined 

in Appendix D. 

1.6.1 2-D Frequency Estimation from one snapshot 

Given (1.1), one can define two Vandermonde matrices: A E C M1XF and B E 

CM2XF , with generators ejw
f,1 and ejWj,2, f = 1, ... , F, respectively, then the 2-D 

mixture in (1.1) can be written in matrix form as 

x = AD(c)BT + W, (1.4) 

where c = [CI, C2,' .. ,cF]T and W is the corresponding noise matrix. Eqn. (1.4) can 

also be written in vector form. For example, let 

x = [XII Xl2 ... Xl M X2 I ... XM M ]T 
" ,2) 1, 2 ' 

then it can be verified that 

x = (A8B)c+w, (1.5) 
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where w is a noise vector, which is assumed to be complex Gaussian with zero mean 

and a covariance matrix (J'2 I MIM2' Here 8 stands for the Khatri-Rao product of two 

matrices, which is defined as the column-wise Kronecker product such that 

In the noiseless case, W = 0, then 

x=(A(~B)c. (1.6) 

The identifiability conditions of proposed algorithms are investigated in the noiseless 

case and their performance is analyzed in the noisy case. 

1.6.2 N-D Frequency estimation from a single snapshot 

The data model in scalar form is given in (1.2). Given (l.2), define the sample 

vector x for the t-th snapshot as 

Furthermore, define N Vandermonde matrices An E reM" xF with generators {ejWf,n }f=l 

such that 

An := [al,n a2,n '" aF,n] , where af,n = [1 eJWj,n ... ej(Mn-l)u.Jf,n JT, n = 1, ... , N. 

It can be verified that 

x = Ac+w, (1.8) 

where w is the noise vector, and 

In the noiseless case, w = 0, the model becomes 

x=Ac. (1.9) 

9 



1.6.3 N-D Frequency Estimation from multiple snapshots 

The data model in scalar form is given in (1.3). Given (1.3), define the sample 

vector x(t) for the t-th snapshot as 

x(t) = [Xl,l,. .. ,l(t) Xl,l, ... ,2(t) ... Xl,l, ... ,MN(t) xl,l, ... ,2,1(t) X:M],M2, ... ,MN (t)] T. 

(1.10) 

It can be verified that 

x(t) = Ac(t) + w(t), t = 1, .... T, (1.11) 

where w(t) is the noise vector, and c(t) := [Cl(t) C2(t) ... CF(t)]T. Define 

X := [x(l) x(2) ... x(T)] E CMxT , 

C:= [c(l) c(2) ... c(T)] E CFXT , 

then the data model in (1.11) can be rewritten in matrix form as 

x = AC+ lV, (1.12) 

where W is the corresponding noise matrix. In the noiseless case, W = O. Notice 

that the same data models for the case of multiple snapshots have been used in 

[13, 14]. 
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CHAPTE:R 2 

THE IMDF ALGORITHM 

This chapter presents the Improved Multi-Dimensional Folding (IMDF) algo

rithm for multidimensional frequency estimation. It offers the most relaxed identi

fiability up to date. The introduction is started from the 2··D single snapshot case. 

Then, the result is extended to the N-D multiple snapshot case. 

2.1 The IMDF algorithm 

For convenience, the IMDF algorithm is developed with a noiseless data model. 

The IMDF algorithm gives the most relax identifiability bound for the multidimen

sional frequency estimation problem. Its identifiability bound is discussed in Section 

2.2. 

2.1.1 Some Properties of the Khatri-Rao Products 

It can be seen from the matrix models of multidimensional frequency estimation 

in (1.5) and (1.8) that the Khatri-Rao product of Vandermonde matrices plays a key 

role in the modelling of multidimensional frequency mixture. In the following, some 

relevant properties of the Khatri-Rao product are reviewed briefly. 

pI) The Khatri-Rao product of a matrix A and a row vector bT is interchangeable, 

p2) Another property, which can be found in [:34], is (A®B)(CCDD) = (AC)0(BD). 
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It can be extended into multiple products: 

p3) The following property establishes the almost sure full rank of the Khatri-Rao 

product of multiple Vandermonde matrices, and a proof can be found in [35]. 

Given a set of Vandermonde matrices An E CMnxF , n = 1, ... , N :2: 2, let 

n=,N 

and M = II Mn 
n==l 

then A is almost surely (a.s.) full rank, i.e., T A = min (M, F), provided that 

the N F generators of An, n = 1, ... , N, are drawn from a distribution that is 

continuous with respect to the Lebesgue measure in C'VF. 

2.1.2 The 2-D IMDF Algorithm 

In the noiseless case, the data model takes the forms of (1.6). The objective 

here is to retrieve (wf' vf, cf) for f = 1,··· ,F from X. Without loss of generality, 

one can assume that X in (1.4) is a tall or square matrix, i.e., M1 :2: M 2 . Otherwise 

one can take the transpose of X to switch 1\!h and M 2 . The following lemma is needed 

later. 

Lemma 1: Given M1 and M2 , define the following selection matrices 

for 1 ::; h ::; L 1, 1 ::; l2 ::; L2, where J hh is of size K1K2 >< M}M2, and K 1. and Li , 

for i = 1,2, are positive integers such that 

(2.2) 

Further define a 2-D smoothing operator S for the measurement vector x in (1.5) as 
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then it can be verified that 

S(X) = (A(Kd 0 B(K2)) D(c) (A(Ll) 0 B(L2J) T. (2.3) 

Prool See Appendix A. • 
Suppose that x is a snapshot of 2-D observed data in (1.11), then the smoothed 

data matrix S (x) is equivalent to 

Xl X 2 XLI Xk,l Xk,2 Xk,L2 

S(x)= 
X 2 X3 X L1 + I 

, where X k = 
Xk,2 Xk,3 Xk,L2+ 1 

X K1 X K1 + I X M1 Xk,K2 Xk,K2+ 1 Xk,M2 

. T 
Lemma 1 claims that S (x)=( A(Kl! 0 B(K2J) D (c) (A(LIl (0 B(L2J) . 

Now one can begin the development the 2-D IMDF algorithm. The idea is 

to first use data smoothing extensively to enlarge the sample matrix size, and then 

exploit eigenvector structure for frequency estimation. One can define two selection 

matrices 

J 1 = [IM1 - I O(Ml-I)XI] 

J 2 = [O(MI-I)XI 1M1 - I ] . 

Due to the shift invariance property of Vandermonde matrices, one can have 

Xl := (J I ® 1M2 ) X = (A(MI-IJ 0 B) C 

X2 := (J 2 ® 1 M2 ) X = (A(Ni)-I) 0 B) D(w)c 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

.. . T 
where X is given in (1.5), and w := [eJW1 , eJW2 , ••• , eJWF ] • One can apply the 2-D 

smoothing operator S defined in Lemma 1 to Xl and X2. Since the sizes of both Xl 

and X2 are (MI - 1)M2 X I, here the integers in (2.2) should be chosen such that 

(2.8) 
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Applying the 2-D smoothing operator, one can obtain 

XI,S:= S(Xl) = GD(c)HT 

X 2,S := S(X2) = GD(c)D(w)HT 

where 

(2.9) 

(2.10) 

(2.11) 

To further explore the data structure, one can perform the backward smoothing on 

the data vector x in (1.5). Define 

Y := IIx* = (A 8 B)c (2.12) 

where II is an MlM2 x MIM2 backward permutation matrix with ones on its antidi

agonal, andc = [Cl' C2,' .. ,CF]T, with cf = cje- j (Ml-l)Wj-.i(M2- l )lI j . Applying the 

same technique to Y that is used to obtain X 1,S and X 2,S from x, one can obtain 

Yl := (JI ® IM2 )y = (A(Ml-l) 8 B) C 

Y2 := (J2 ® I M2 )y = (A(Ml-l) 8 B) D(w)c 

Yl,s := S(Yl) = GD(c)HT 

Y 2,s := S(Y2) = GD(c)D(w)HT. 

If one defines the following matrices 

Zl:= [XI,S], Z2:= [X2'S] , 
YI~ Y2~ 

then he has 

where the size of Z is 4KIK2 X L IL2, and PI and P are defined as 
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(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 



Since both PI and Hare Khatri-Rao products of Vandermonde matrices, invoking 

Property p3), when 2KIK2 :2: F and LIL2 :2: F, PI and H are almost surely full 

column rank. Hence Z 1 and Z 2 are of rank F almost surely, and the singular value 

decomposition of Z yields 

(2.20) 

where Us has F columns which together span the column space of Z. Since the same 

space is spanned by the columns of P, then there exists an F x F nonsingular matrix 

T- 1 such that 

(2.21) 

where Us is divided into two equal-size sub-matrices U 1 and U 2 . Therefore utu2 = 

TD(w)T-l. Assuming that the elements of ware distinct, T can be obtained from 

the eigenvalue decomposition of U!U2 up to column scaling and permutation ambi

guity, i.e., the eigenvalue decomposition of utu2 gives 

(2.22) 

where Tsp = TAD., and A is a nonsingular diagonal column scaling matrix and D. 

is a permutation matrix. Once obtain Tsp is obtained, one can retrieve P and H up 

to column scaling and permutation using (c.f., (2.21) and (2.18)) 

P sp = UsTsp = PAD. 

Hsp = (T;;}~sVsH)T = HA- 1D.. 

(2.23) 

(2.24) 

In (2.24), notice that D. -1 = D.T
. One can retrieve wf and vf from the columns of P sp 

and Hsp by exploiting the structure of the two matrices as explained in the following. 

The permutation is not an issue here, however, because wf and vf appear in the same 

column of P sp , as well as in H sp , thus are automatically paired; and arbitrary nonzero 

column scaling is immaterial, because the frequencies can be obtained by dividing 

suitably chosen elements of the aforementioned column. Therefore the column scaling 
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and permutation will not have material effect on the algorithm, for notation simplicity 

in the following one can drop the subscript sp of T sp , P sp , and Hsp as long as it is 

clear from the context that there may exist column-scaling and permutation. Suppose 

e
jWj and e

jVj appear in the f-th column of P, then e jWj can be retrieved by anyone 

of the following equations in the noiseless case: 

ejWj = Pn,j 

Pn-K 2,j 

similarly, ejVj can be retrieved by anyone of the following 

ejVj = Pn,j, mod (n - 1, K 2 ) 2': 1. 
Pn-l,f 

(2.25) 

(2.26) 

Notice that ejWj and ejVj are automatically paired since they are obtained from the 

same column of P. 

If the data observations are noisy, the observation vector becomes (1.5), and 

x in the above algorithm should be replaced by x. The estimates of P and Hare 

denoted as P and ii respectively. In this case, one can take advantage of the rich 

structure of the Khatri-Rao product of Vandermonde matrices, and use average to 

obtain the frequency estimates, thus reduce the variance of estimation error. In fact, 

ejWj can be estimated by 

. 1 
eJWj =- (2.27) 

11 

where 11 = 4(Kl - 1)K2 + (Ll - 1)L2. Similarly, e
jVj can be estimated by 

(2.28) 

where 12 = 4Kl (K2 - 1) + Ll (L2 - 1). The 2-D frequency estimates can be obtained 

by 

Wf = I (log;;;;) , (2.29) 
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TABLE 2.1 

The 2-D IMDF algorithm 

1. Form Xl, X2 from X using (2.6) and (2.7), and form Xl,S and X2,s using 

(2.9) and (2.10). From y from X using (2.12), and construct 1\,s and Y2,S 
using (2.15) and (2.16). Form Z using (2.18). 

2. Compute the SVD of Z. Partition the F principle left singular vectors (i.e. 
U) into two equal-sized matrices U1 and U2 according to (2.21). 

~ ~t~ ~ 

3. Compute the set of eigenvectors (i.e., T) of U 1 U 2, and obtain estimates of P 
and Ii using (2.23). 

4. Use (2.27) and (2.28) to calculate ejwf and ejvf. The frequency estimates are 
then obtained by (2.29). 

Notice that the method used to compute the frequency through average in (2.27) 

and (2.28) is in fact the circular mean method in directional statistics [36]. After the 

frequency estimates are obtained, the amplitude c can be obtained by solving (1.5) 

using a Least Squares approach. The 2-D IMDF algorithm for frequency estimation 

from noisy data is summarized in Table 2.1. 

2.1.3 The N-D IMDF Algorithm 

The 2-D IMDF algorithm can be extended to N-D frequency estimation. In 

the N-D case, the data model is given in (1.2) or equivalently (1.11). Without loss of 

generality, one can assume that M1 ~ M n , for n =1= 1, otherwise a simple permutation 

on (1.11) would make this true. Corresponding to the 2-D smoothing operator in 

Lemma 1, one can define an N -D smoothing operator l as follows. 

1 Notice that a similar smoothing operator is used in [13] but its connection to the Khatri-Rao 
products is not explored. 
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Lemma 2: Given Mn , n = 1, ... ,N, one can define a set of selection matrices 

JKn .= [0 1 0 ] In· Knx(ln- l ) Kn Knx(Ln-ln) 

N N 

J hh··· ,IN := J~l ® J~2 ... ® Ji: : II Kn x II Mn 
n=l n=l 

where In = 1, ... , Ln, and Kn and Ln are positive integers satisfying Kn + Ln -1 = Mn, 

for n = 1, ... ,N. An N-D smoothing operator for the measurement vector x in (1.11) 

is defined as 

then it can be verified that 

Xs = S(x) = GD(c)HT (2.30) 

where 

G := AiK1 ) 8 A~K2) 8···8 AWN), H:= AiLil 8 A~L2) 8···8 A};N). 

Proof: See Appendix A. • 

Now one can begin the development of the N-D IMDF algorithm. Using the 

selection matrices defined in (2.4) and (2.5), one can construct Xl and X2 from X of 

(1.11) as 

Xl := (J I ® 1M2 ... ® IMN) X = (AiM1
-

I
) 8 A2 8···8 AN) c 

X2 := (J2 ® 1 M2 ... ® IMN) X = (AiM1
-

I
) 8 A2 8···8 AN) D(wdc 

where 

(2.31) 

(2.32) 

(2.33) 

Then one can apply the N-D smoothing operator defined in Lemma 2 to (2.31) and 

(2.32) to construct the following matrices 

XI,s:= S(xd = GD(c)HT 

X 2,s := S(X2) = GD(c)D(WI)HT 
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where 

and Kn and Ln are positive integers subject to 

Furthermore one can perform forward-backward (FB) smoothing on the single

snapshot vector x(t) in (1.11). Define 

(2.38) 

where IIM is the backward permutation matrix of size A1x M, and c(t) = [C1 (t),·· . ,CF(t)]T, 

with cf(t) = cj(t)e-j</>f. Here ¢f is defined as 

N 

<Pf = LWf,n(Mn - 1). (2.39) 
n=l 

Applying the same technique to y that is used to obtain X 1,S and X 2,S from x, one 

can obtain 

Y1 := (J1 0 1M2 ... 0 IMN)Y = (AiM1 - 1) 8 A~M2) 8···8 A}:N))C, (2.40) 

Y2:= (J2 0 1M2 ... 0 IMN)Y = (AiM1 - 1) 8 A~M2) 8···8 A}:N))D(W1)C, (2.41) 

Y1,S := S (Y1) = GD(c)HT, (2.42) 

(2.43) 

The rest of the N-D IMDF algorithm is the same as (2.17) (2.24) except for dif

ferent dimension sizes, which are clear from the N-D context. After P and Hare 

retrieved, N-D frequency estimates can be obtained by simple division and average 

operation similar to (2.25) for the noiseless case or (2.27) for the noisy case. Notice 

that individual frequencies of an N-D frequency component wf,n, n = 1, ... ,N, are 

automatically paired. 
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2.1.4 The IMDF algorithm In Multiple Snapshots Case 

The data model with multiple snapshot is given in (1.11). The algorithm 

proposed in Section 2.1.3 can be generalized to multiple snapshot case. The following 

lemma is necessary for the argument. It claims that the Khatri-Rao product of 

a random matrix after FB smoothing and multiple Vandermonde matrices has full 

column rank. 

Lemma 3: In (1.11), given N Vandermonde matrices An E CMnxF , with gener

ator {ejw1,n .,. ejwF,n}. for n = 1 ... N and one complex random matrix C E CFxT 
" , '" 

with C j,t = Cj(t), if one define 

(2.44) 

where lIT is a TxT permutation matrix with ones on its anti-diagonal, and ¢ = 

[e- jeh e-je/>2 .•• e-jePF1 T , with ¢j is defined in (2.39), then the rank of matrix: 

is min{2T I1~=1 K n , F} almost surely, provided that the N F frequencies (Wj,l,' .. ,Wj,N), 

f = 1"" ,F, and amplitudes (cj(l), .,. ,cj(T)), f = 1, ... , F, are drawn according 

to a distribution that is continuous with respect to the Lebesgue measure in (f>NF and 

CTF respectively. 

Proof: See Appendix B. • 
When multiple snapshots are available, for each snapshot x(t), one can perform 

the operations in (2.31)-(2.35) and (2.40)-(2.43). Then one can stack these smoothed 

data matrices to form Z I and Z2 as follows. 

Zl : = [Xf,s(1) Xf,s(2) 

Z2 : = [X[s(1) X[s(2) 

Xf,s(T) Yi,s(T) Yf,s(T - 1) 

X[s(T) Yf,s(T) Y[s(T - 1) 
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I t can be verified that 

(2.47) 

where P := [PIT (PID(WI)fjT and PI := Q 8 G. Here Q is defined in (2.44). 

Since H is the Khatri-Rao product of Vandermode matrices, according to Property 

p3), if I1~=I Ln ;:: F, H is almost surely full column rank. According to Lemma 3, 

if 2T n~=1 Kn ;:: F, PI is almost surely full column rank. Hence ZI and Z2 are of 

rank F, the singular value decomposition of Z yields Us. All the remaining steps to 

estimate T and N-D frequencies from Us are similar to those given (2.20)-(2.25) in 

Section 2.1.3. 

2.2 Statistical Identifiability 

In this section, the statistical identifiability condition of the IMDF algorithm 

is derived. The maximum number of uniquely resolvable frequencies in the absence of 

noise is referred to as the ID bound here. This section shows that the IMDF algorithm 

offers the most relaxed ID bounds among existing algebraic approaches for 2-D and 

N-D frequency estimation. 

2.2.1 Statistical Identifiability of the 2-D IMDF Algorithm 

The identifiability result of the IMDF algorithm for 2-D frequency estimation 

from single snapshot is summarized in the following theorem. 

Theorem 1: Given a sum of F 2-D exponentials as in (1.1) and without loss 

of generality, assume MI ;:: M2, the parameter set (Wj, Vj, Cj), f = 1, ... ,F, can be 

uniquely retrieved by the 2-D IMDF algorithm almost surely, if 

F:::; max min (2KIK2' L IL 2) 
Kl+Ll=Ml 

K2+L2=M2+I 
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where (wj, Vj), f = 1, ... , F, are assumed to be drawn from a distribution that is 

continuous with respect to the Lebesgue measure in rr2F , and Cj is also drawn from 

a continuous distribution on IC. 

Proof: The 2-D IMDF algorithm described in Section 2.1.2 can be used as a 

constructive proof of Theorem 1. Suppose that (Wj, Vj), f = 1, ... ,F, are drawn from 

a distribution that is continuous with respect to the Lebesgue measure in rr 2F , and Cj 

is also drawn from a continuous distribution on IC. Given (1.1), it is shown in Section 

2.1.2 that the 2-D IMDF algorithm can uniquely retrieve (Wj, Vj, Cj), f = 1, ... , F, 

with probability one, provided that (see (2.20)) 

where K 1 , K 2, L1, and L2 are positive integers subject to (see (2.8)) 

(2.49) 

Therefore Theorem 1 is proved. • 
To calculate the ID bound (2.48) for the 2-D IMDF algorithm, one can define 

the following function 

r(Ml' M2) = max min (2KIK2' L 1L2) 
Kl+Ll=Ml+l 

(2.50) 
K2+L2=M2+1 

where Ki and Li , for i = 1,2, are positive integers. It is clear that the statistical ID 

bound of the 2-D IMDF algorithm is given by r(Ml - 1, M2). It is difficult to obtain 

the exact solution of the integer optimization problem f(Ml - 1, M2). But one can 

give its lower and upper bounds as follows. 

Lemma 4: f(Ml - 1, l\I2 ) is bounded by 

min {2 [(h -1)M1] [(h -1)(M2 + 1)] , [(2 - h)M1] [(2 - h)(M2 + 1)] } 
:; f(Ml - 1, M 2 ) :; lO.34M1(M2 + l)J . 
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Proof: The upper bound is proved first. Denote Al = KdMl' A2 = K2/(M2+1). 

Clearly 0 < AI, A2 < 1. If Kl , K2, Ll and L2 are real numbers, then 

min(2KIK2' L1L2) = min(2Ml(M2 + 1)AlA2' Ml (M2 + 1)(1 - Al)(l - A2)) 

= Ml(1vl2 + 1) min(2AlA2' (1 - Al)(l - A2)) 

::::: Ml(M2 + 1) min ((AI ~ A2)2, (2 - A~ - A2)2) 

= {Ml(M2+1)('\!~'\2)2, O<Al+A2:::::(2J2-2) 

Ml(M2 + 1)(2~\~A2?, (2J2 - 2):::::Al + A2<2 

::::: O.34Ml (M2 + 1). 

The maximum is achieved when Kl = Ml(J2 - 1) and K2 = (M2 + 1)(J2 -

1). In the context, K l , K 2 , and r(Ml - 1, M 2 ) are all integers, therefore f(Ml -

l,M2 )::::: lO.34Ml (M2 + l)J. 

Next the lower bound is proved. Let Kl = [J2MlJ -Ml and K2 = [J2(M2 + 1)]

(M2 + I), where [.J stands for rounding towards nearest integer, then one can obtain 

a lower bound of f(Ml - I, M 2 ) as given in Lemma 4. • 
Remark 1: In Section 2.1.2, the first step of the 2-D IMDF algorithm is to 

apply smoothing to the column dimension of X to obtain Xl and X2 (see, (2.6) and 

(2.7)). Instead, if smoothing is applied to the row dimension of X, then one has 

Xl = (A 8 B(M2~1)) c 

X2 = (A 8 B(M2~1») D(v)c 

where v = [e jV
!, ... ,ejVF(. The rest of the algorithm is the same as in Section 2.1.2. 

It is clear that the identifiability condition in this case is F ::::: r( M1 , M2 - 1). The 

following lemma is useful. 

Lemma 5: If Ml 2: M 2 , then r(Ml - 1,1\12) 2: f(Ml' lvI2 -1). 

Proof: Suppose Ml 2: M2 . Let 
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then either Kr2K~ + 1 or Li2L; + 1, otherwise 

which contradicts the assumption that M 12M2 . 

If K;?K; + 1, then 2(K; - 1)(K~ + 1)?2K;K;, and one has 

Kl=Kj-l, Ll=Lj 
K 2=K-i+1, L2=L2 

Kl =Kj, Ll=Lj-1 
K 2=K-i, L2=L2+1 

• 
From Lemma 5 one can conclude that from the identifiability perspective, it 

is advantageous to first perform smoothing along the dimension with a larger sample 

size. 

Theorem 1 shows that the IMDF algorithm offers a significantly improved ID 

bound for 2-D frequency estimation over existing algebraic algorithms. Previously 

the most relaxed statistical ID bound is achieved by the MDF algorithm as shown 

in [24]. Using Property p3), one is able to obtain the statistical ID bounds of the 

MEMP algorithm [21]. Fig. 2.1 plots a comparison of the statistical ID bounds of 

different algebraic algorithms for 2-D frequency estimation in the absence of noise, 

where M1 = M 2 • The MDF algorithm have the ID bound as 

The statistical ID bound of the MEMP algorithm is slightly smaller than those of 

the MDF algorithm because no FB smoothing is used in the MEMP algorithm. Note 
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Figure 2.1. Comparison of ID bounds for 2-D frequency estimation (the two dimen
sions have equal size: Ml = M2)' 

that the deterministic ID bound of the MEMP algorithm is F ::; min (Md2, M2/2) 

as shown in [21] and [26]. It is clear that the IMDF algorithm outperforms these 

approaches in terms of the maximum number of resolvable 2-D frequencies. From 

Fig. 2.1, one can also observe that the upper and lower bounds given in Lemma 4 

are very close to the integer solution of r(Ml - 1, M 2 ) . 

2.2.2 Statistical Identifiability of the N-D IMDF Algorithm 

Similar to the 2-D case, one can establish the following ID result for the N-D 

IMDF algorithm. 

Theorem 2: Given a sum of F N-D exponentials in (1.1), without loss of gen

erality, assuming that Ml = max{Mn , n = 1, ... , N}, if 

(2.51) 

and the distributions used to draw the N F frequencies and F amplitudes are con

tinuous with respect to the Lebesgue measure in rrNF and C, respectively, then the 

parameter (N + I)-tuples (W'f,l,"" wf,N, cf), f = 1, ... 1 F, can be uniquely resolved 

almost surely by the N-D IMDF algorithm. 
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Proof: In the N-D case, the parameter (N + I)-tuples (Wf,l, ... , Wf,N, cf), f = 

1, ... ,F, are uniquely identifiable by the N-D IMDF algorithm, provided that the 

corresponding matrices PI and H are full column rank. Suppose the distributions 

used to draw the N F frequencies and F amplitudes are continuous with respect to 

the Lebesgue measure in rrNF and C, respectively, then according to Property p3), 

PI and H are almost surely full column rank if 

N 

F:::; 2 IT K n , 

n=l 

where Kl + Ll = Ml , and Kn + Ln = Mn + 1 for n =/= 1. Therefore Theorem 2 is 

proved. • 
Similar to 2-D case, one can define following integer function 

(2.52) 

then the RHS of (2.51) is given by r(Nh - 1, M2,' .. ,MN)' 

Lemma 6: An upper bound of f(Ml - 1, M2,'" ,Mn) is given by 

l2Ml n:=2(Mn + l)j f(Ml - 1, M2, ... ,Mn):::; N' 

(1 + 0/2) 
This lemma is a special case of Lemma 8 when T = 1. 

(2.53) 

Proof: Please refer to 

the proof of Lemma 8. • 
Let Kl = [(1+ ~)N] and Kn = [(l~~~N]' 1 :::; n :::; N, one can obtain a lower 

bound for f(Ml - 1, ... ,M2)' Lemma 2 can also be extended to the N-D case, the 

result is given as follows. 

Lemma 7: If Ml?:.Mn, n=/=l, then 

f(Ml -1 M2 ... MN»f(Ml ... M -1 ... M N ) , , , _ , ,n , , . 

Theorem 2 also shows significant improvement over previously available sta

tistical ID bound for N-D frequency estimation, for example, the ID bound given in 
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2.2.3 Statistical Identifiability in the Multiple Snapshot Case 

For the identifiability bound in multiple snapshots case, the following result is 

available. 

Theorem 3: Given T snapshots of sums of F N-D exponentials as in (1.3) or 

(1.11), without loss of generality, assume that Ml = max{Mn, n = 1, ... , N}, then 

the parameter set ({ wf,n};;=,l' {cf(tn[=l)' f = 1, ... , F, are almost surely unique, 

provided that 

(2.54) 

where the N F frequencies (Wf,l,' .. ,Wf,N), f = 1,' .. ,F, and amplitudes (cf(1),' .. ,cf(T)), 

f = 1, ... ,F,are assumed to be drawn according to a distribution that is continuous 

with respect to the Lebesgue measure in <I>NF and CTF respectively. 

Proof: The proof of this theorem follows the same argument as that in Theorem 

2. The proof is omitted here. Notice that the proof requires Lemma 3. 

Define the function 

then the RHS of (2.54) is given by rT(M1 - 1, M2 )· .. ,MN)' 

Lemma 8: If T ::; (Ml -1) n:=2 Mn/2, then 

r (M - 1 M ... M)< l2TMl n:=2(Mn + l)J 
T 1 ,2, ,n - (1 + f..fif) N ' 

N 

rT(M1 - 1, M2 ,' .. ,Mn) = (Ml - 1) II Mn-
n=2 
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Prool Define'\l = KdMl' '\n = Kn/(Mn + 1), n = 2"" ,N, and ,\ '

(L:~=1 '\n)/N E [0,1]. If Kl and K n, n = 2"" ,N are all real numbers, 

min (2TD K,,, D Ln) ~ M, n (Mn + I} min (2T DAn, D(l- An}) 
N 

~Ml II (Mn + 1) min (2T,\N, (1 _ ,\)N) 
n=2 

= { Ml rr~=2(Mn + 1)2T,\N, 

Ml rr~=2(Mn + 1)(1 - ,\)N, 

<2TMI rr~=2(Mn + 1) 
- (1 + 'V2T)N 

0<,\< 1 - -1+W' 
1 <,\<1 1+W- -

Since the maximum is achieved when Kl - ( &r Nand Kn = ( M~)N' n = 
1+ 2T) 1+ 2T 

2" .. ,N. But Kl and K n, n = 2, ... ,N are all integers, r(Ml -1, ... ,MN) can not 

equal to the maximum value, therefore 

Because f T (M1 - 1, ... ,MN ) is an integer, 

T 1 -1··· MN< f (M ) l2T Ml rr~=2(Mn + I)J 
, , - (1 + 'V2T)N . 

Notice that since T ~ (Ml - 1) rr~=2 Mn/2, it is possible that the equation achieves 

when Kn, n = 1, ... , N, equal integers. When T 2: (Ml - 1) rr~=2 Mn/2, since 

Kn 2: 1, Mn 2: Ln for n = 1, ... , N, one can obtain 

N N N N N 
2T II Kn 2: (Ml - 1) II Mn II Kn 2: (Ml - 1) II Mn 2: (Ll - 1) II Ln, (2.57) 

n=1 n=2 n=1 n=2 

therefore in this case f T(M1 - 1, M2, ... ,Mn) = (Ml - 1) rr~=2 Mw 

Similar to Lemma 5 and Lemma 7, one can obtain 

Lemma 9: If Ml 2: Mn , then 

n=2 

f T(M1 - 1 ... fl;f ... MN»fT(Ml ... M - 1 .,. MN) , ,n, , _ "n" . 
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Figure 2.2. Identifiability (ID) bound of 2-D frequency estimation: (a) ID bound 
versus Ml when Ml = M 2 ; (b) ID bounds versus the number of snapshots where 
Ml = 10 and M2 = 6. 

As a special case, consider N = 2. The identifiability condition (2.54) becomes 

(2.58) 

The identifiability condition of the Unitary ESPRIT algorithm [13] is 

(2.59) 

In Fig. 3.1 (a), the identifiability bound in (3.25) is plotted as a function of the 

dimension size with Ml = M 2 . It can be seen that the identifiability bound generally 

increases with the increase of snapshot size and the number of snapshots. Fig. 3.1 (b) 

plots the identifiability bounds in (2.58) and (2.59) versus the number of snapshots, 

respectively. It can be seen that when the number of snapshots T is less than a 

threshold (approximately M/2), as T increases, the bounds increase like stairs. When 

T is greater than the threshold, the bounds become approximately M. For example, 

for the identifiability condition given in (2.58), when T ~ (Ml - 1)M2/2, the bound 

becomes (Ml - 1)M2 . 
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2.3 Computational Complexity 

The section gives an estimate of the computation order in term of real multi

plications required by the 2-D IMDF algorithm in single snapshot case described in 

Table 2.1. For the multiple snapshot case, the complexity can be analyzed similarly. 

It is obvious that the computation required for data smoothing is trivial compared 

to that of the rest of the algorithm. Therefore the computation order of steps (2)-(4) 

in Table 2.1 is considered. Table 2.2 lists the number of flops required in each step of 

the 2-D IMDF algorithm in estimating F 2-D frequencies from an 11111 x M2 data set, 

where SVD is assumed to be performed by the Golub-Reinsch SVD algorithm [37]. 

The computational complexity of the 2-D IMDF algorithm is O(Mf Mi). 

Many existing algebraic approaches for 2-D frequency estimation resort to SVD 

to obtain the signal subspace, and 2-D data smoothing is also commonly used, e.g., 

in Unitary ESPRIT, MEMP. For those algorithms, the computation complexity to 

solve an eigenvalue problem is comparable to that of the 2-D IMDF algorithm, which 

is proportional to 0 (Mf M?). 

However, one advantage of the IMDF algorithm is that the frequency parame

ters corresponding to the individual dimensions of a given multidimensional frequency 

component are associated automatically once the eigenvalue problem is solved. Other 

algebraic multidimensional frequency estimation algorithms generally require an extra 

association step, which can be computationally complex. For example, multidimen

sional Unitary ESPRIT [13] entails a simultaneous Schur decomposition (joint diag

onalization) step to attain automatic pairing. While this step improves performance, 

it also comes with higher computational complexity. 

2.4 Performance Analysis 

This section provides a first order perturbation analysis for the 2-D IMDF 

algorithm outlined in Table 2.1. Recall that in the presence of noise, the observation 

30 



TABLE 2.2. Computational complexity of the 2-D IMDF algorithm when T = 1 

Operation Dimension Required Flops 
Size 

SVD of Z 4K1K2XL1L2 4( 4K1K2)~ L1L2 + 32K1K2(L1L2? + 9(L1L2) 
SVD to compute uI 2K1K2XF 4(2K1K2? F + 16K1K 2F 2 + 9F3 

Multiplication Ur U 2 FxF 2F2K1K2 
QR EVD of ulu2 FxF 25F3 

Multiplication U sT 4K1K2XF 4K1K2F~ 

Estimate frequencies from P A.:l 4K1K2XF 4F(2K2K1 - K1 - K 2) 
Multiplication (T -l~sVsHf FxL1L2 F2 L1L2 

Estimate Frequencies from H A --1 .:l L1L2XF (2L1L2 - L1 - L2)F 
32K1K2(L1L2)~ + (4K1K2)~ L1L2 + Total flops required rv O(Mr Ml) 
9(L1L2)3 + 34F3 + (22K1K2 + L1L2)F2 + 
4(2K1K2? F + (SK1K 2 + 2L1L2)F 

vector is (c.f., (1.5)) 

x = (A8B)c+w (2.60) 

where w is the perturbation of the data, assumed to be complex Gaussian distributed 

with zero mean and variance (J2 I M1 M2' Suppose the 2-D frequency estimates given 

by the IMDF algorithm are G-if = wf +f:1wf and vf = vf + f:1Vfl for f = 1, ... , F. The 

closed form expressions of the expectation and variance of f:1w f and f:1v f are derived 

in [38]. 

When F = 1, the variances of f:1wf can be reduced to 
2 

E [(f:1Wf )2J = ~(3K2L2 - P~ + l)pd(Kl' K 2) 
3'1 c 

where P2 = min{K2' L 2}, and f(K1' K 2) is defined as 

( 1 1)2 (1 1)2 ( 1 )2 
L,L2 + 4K,K2 (16K1 - 28) + 4 L,L2 + 2K,K2 + 4 4KIK2 ' 

( 1 1)2 (1 1)2 
L,L2 + 4K,K2 (16K1 - 28) + 4 LIL2 + 2K,K2 ' 

( 1 1) 2 
L,L2 + 4KIK2 (16K1 - 24), 

( 1 1)2 (2 1)2 
L,L2 + 4K,K2 (16L 1 - 28) + 4 LIL, + 4KIK2 ' 

( 1 1)2" (2 1)2 (1)2 
L,L2 + 4K,K2 (lbL 1 - 28) + 4 L , L, + 4K,K, + 4 LIL2 . 

(2.61) 

2~K1 < (M1 - 1)/2 

K1 = (M1 - 1)/2 

K1 = Ml/2 

K1 = (M1 + 1)/2 

M1/1 <K1 < M1 
(2.62) 

The variances of f:1vf are reduced to 
2 

E [(f:1Vf )2J == 3(J2 22p1(6K1L1 - 2pi - 1)g(K1' K 2) 
'2 C 

(2.63) 
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where PI = min{ K 1 , L1 }, and g(Kl' K 2) is defined as 

2SK2 < (M2 + 1)/2 

K2 = (M2 + 1)/2 

(M2 + 1)/2 < K2 < M2 + 1 

(2.64) 

Fig. 2.3 illustrates how the selection of smoothing parameters Kl and K2 

affects the estimation variance of the 2-D IMDF algorithm, where the standard de

viation (STD) of the estimate of a single 2-D frequency pair from a 20 x 20 data set 

with (J2 = 1 is plotted in various ways as explained as follows. 

Fig. 2.3 (a) and (b) are the plots of the STDs of .6w and .6v, respectively. 

Fig. 2.3 (c) is the plot of the average STD of .6w and .6v. The smoothing parameter 

Kl ranges from 2 to 18, while K2 varies from 2 to 19, according to (2.8). It is clear 

that as Kl and K2 change, the STD changes, but not significantly. Fig. 2.3 (c) shows 

that there are four areas where the average estimation variance is minimized. Fig. 

2.3 (d) plots the STDs of the frequency estimation error by fixing K2 = 14 while 

changing K 1 . Similarly, Fig. 2.3 (e) plots the STDs of the frequency estimation 

error by fixing Kl = 6 while changing K 2. Notice that it is chosen that Kl = 6 and 

K2 = 14 according to the observation from Fig. 2.3 (c). The corresponding Cramer 

Rao Bound (CRB) is also plotted in Fig. 2.3 (d) and (e). For .6w, the minimum STD 

is achieved when Kl -;::;;Md3 or 2Md3 and K2-;::;;2 or M2 - 1. The results resemble 

those in [29]. On the other hand, the minimum STD of .6v is achieved when K 1-;::;;2 or 

Ml - 2 and K 2-;::;;M2/3 + 1 or 2Md3 + 1. From the closed forms of variances in (2.61) 

and (2.63), one can obtain that the minimal average estimation variance is achieved 

when 

Kl -;::;; O.29Ml or 0.65Ml 

K2 -;::;; O.29(M2 + 1) or 0.65(M2 + 1). 

As mentioned earlier, one of the major difi'erences of the IMDF algorithm 

and existing algebraic algorithms is that the IMDF algorithm estimates frequencies 
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from eigenvectors instead of eigenvalues. An interesting question is whether this will 

result in different estimation variance. Fig. 2.3 (f) studies this issue. Notice that 

without considering frequency paring, wf can be estimated from the eigenvalues of 

u1u2 directly (see, (2.22)). The STD of the eigenvalue-based estimates can then 

be obtained. The STD of the eigenvalue-based and eigenvector-based estimates are 

plotted in Fig. 2.3 (f), where a single frequency pair (w,//) = (0.4l7r,0.617r) is to 

be estimated from a 20x20 data set. It can be seen that the difference of the two 

STDs are negligible. This demonstrates that the eigenvector-based estimator (i.e., 

the IMDF algorithm) is as efficient as those based on eigenvalues. Note that because 

an extra pairing step is usually required for eigenvalue-based approaches, which could 

be fallible, so the actual estimation variance of eigenvalue-based approaches may be 

higher. Fig. 2.3 (f) also plots the CRB, and the root mean square error (RMSE) of 

the IMDF algorithm obtained by Monte Carlo simulations. 

2.5 Simulation Results 

This section presents the Monte Carlo simulation results to demonstrate the 

performance of the proposed 2-D IMDF algorithm. The RMSE of the IMDF algo

rithm is compared to those of several existing algebraic approaches for 2-D frequency 

estimation, as well as to the corresponding CRB. The CRB for N-D frequency esti

mation is given in Appendix C. In all simulations, the amplitude Cf for f = 1, ... , F, 

is set to one because the main purpose is frequency estimation. 

In the experiments, the IMDF, MDF [24], MEMP [21], Unitary ESPRIT [13] 

and 2-D ESPRIT [23] algorithms are applied to estimate three 2-D frequencies from 

1000 realizations of 20 x 20 noisy data sets in four cases as follows . 

CasQ l~ Moderately close freQuencies in both dimensions: 
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Case 2: Very close frequencies in both dimensions: 

Case 3: Very close frequencies in the first dimension, well separated in the second 

dimension: 

Case 4: Very close frequencies in the second dimension, well separated in the first 

dimensions: 

Fig. 2.4 plots the averaged RMSE over the two dimensions for the aforementioned 

algorithms. All the legends are the same as in Fig. 2.4 (a). The associated eRB, 

and the STD derived from perturbation analysis of the 2-D IMDF algorithm are also 

plotted. SNR is defined as (see (1.5)) 

SNR = 10l0g IIA 8 Bcl1 2 

10 M1M2CJ2 

For the IMDF algorithm, it is chosen that K1 = 5 and K2 = 6. The smoothing 

parameters for other algorithms are chosen as follows (notations are from the corre

sponding references): (i) for the MDF algorithm, K1 = L1 = 10 according to [24]; 

(ii) for the Unitary ESPRIT algorithm, Msub1 = 10, Msub2 = 10 according to [13]; 

(iii) for the MEMP and 2-D ESPRIT algorithms, K = 6 and L = 6 according to [21]. 

Automatic paring of frequency estimates in the two dimensions is achieved by the 

IMDF, MDF, and 2-D ESPRIT algorithms. Exhaustive search is used for paring in 

the MEMP algorithm, and simultaneous Schur decomposition is used for frequency 

pairing for the Unitary ESPRIT algorithm. 

As shown in Fig. 2.4, when frequencies are very closely located along the first 

dimension but well separated in the second dimension, the IMDF algorithm suffers 
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slight performance degradation when compared to other algorithms (Fig. 2.4 (c)), 

because the eigenvectors obtained using (2.22) may not be independent in this case. 

However, as expected, the performance of the IMDF algorithm is not affected when 

frequencies are well separated along the first dimension but very closely located in the 

second dimension (Fig. 2.4 (d)). In addition, if frequencies are very closely located in 

both dimensions, IMDF still provide competitive performance over eigenvalue-based 

approaches (Fig. 2.4 (b)). Tn all cases, the RMSE of the IMDF algorithm matches 

the results of the perturbation analysis very well at moderate to high SNRs. 
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CHAPTER 3 

EIGENVECTOR-BASED ESTIMATION WITH 

WEIGHTING FACTORS 

The IMDF algorithm discussed in the previous chapter has a drawback. In 

the noiseless case, the IMDF algorithm is not applicable when there are identical 

frequencies in the dimension along which the first step of smoothing is performed 

(Le., (2.6) and (2.7) in the 2-D case, or (2.31) and (2.32) in the JV-D case), because 

the frequencies are estimated from eigenvectors. For example, in the 2-D case, if there 

are identical frequencies in w, then the corresponding columns of Tsp will be linear 

combinations of those in T. Although the probability of the event that there exist 

identical frequencies in that dimension is almost zero in practice, the performance of 

the algorithm in noise case is degraded when there are very close frequencies in the 

dimension. This is because the estimation of eigenvectors are not accurate when there 

exist very close eigenvalues. This phenomenon is also illustrated in the simulation 

results in Section 2.5 of Chapter 2. This chapter proposes to use weighting factors to 

solve this problem. 

Considering the data model of JV-D frequency estimation from multiple snap

shots (1.11), one can differentiate two situations: the sufficient snapshot case and 

finite snapshot case. In the former case, data smoothing is not necessary, while in the 

latter, data smoothing is necessary. Since the sufficient snapshot case is simpler, it is 

described at first, then the finite snapshot case is detailed. A thorough performance 

analysis of the proposed eigenvector-based algorithm in finite snapshot case is given 

because the optimization in Chapter 4 requires such study. 
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3.1 The Sufficient Snapshot Case 

3.1.1 Eigenvector-based algorithms using weighting factors 

According to Lemma 8, smoothing technique can not improve the identifiabil

ity. In this case, the sample covariance matrix of x in (1.11) should be exploited to 

estimate the N-D frequencies. This section presents an eigenvector-based frequency 

estimation algorithm using weighting factors when T is sufficiently large. 

The sample covariance matrix Rx of x(t) in (1.11) is 

(3.1 ) 

One can also use following backward and forward smoothing technique to double 

the number of available snapshots: X = [X IIMX*], where IIM is the backward 

permutation matrix of size M x M. Then, one can use X to replace the X, and 2T 

to replace T in (3.1). In the noiseless case, it can be verified that Rx = ARcAH, 

where Rc is the sample covariance matrix of c( t) 

1 T 

Rc := T L c(t)cH (t). 
t=1 

Since A is the Khatri-Rao product of multiple Vandermonde matrices, according to 

Property p3), if M > F, A is almost surely full column rank. If Rc is nonsingular 

and T > F) then Rx is of rank F. The EVD of Rx yields 

where Us has F columns that together span the column space of R:r . The same space 

is also spanned by the columns of A, therefore there exists a nonsingular matrix T- I 

satisfying Us = AT-I. 

Similar to the IMDF algorithm [38], once the signal subspace Us is obtained, 

one can construct two matrices from Us whose general eigenvalues are the exponen-

tials of the first dimension, and then use the general eigenvectors to estimate N -D 
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frequencies. However, as mentioned before, the IMDF algorithm fails when there ex

ist identical frequencies in the first dimension since the eigenvectors are not linearly 

independent anymore. Furthermore, it has been shown in [38] that the performance 

of the IMDF algorithm degrades if there are close frequencies in the first dimension. 

To address this problem, in the following, a method is presented to construct two 

matrices whose general eigenvalues are weighted sums of the N-D exponentials. The 

N-D frequencies are still resolved from the general eigenvectors. Although the form 

is quite different, the basic idea to avoid repeated eigenvalues is similar to that in 

[23]. 

One can define two selection matrices J 1 and J 2 as 
N 

J I := JI,I ® J I ,2'" ® JI,N, J 2 := L (J;nJ2,n, 
n=I 

(3.2) 

Here {(J;n};;=1 are complex weighting factors, which can be randomly chosen initially. 

As will be shown in Section 3.3, the MSEs of the frequency estimates are affected 

by these weighting factors in the noisy case. Next, one can obtain two equal-sized 

matrices Uland U 2 by 

(3.3) 

(3.4) 

where P = AiM1
-

I
) 8 A~M2-I) 8··· 8 A;:N-I). It is clear that P has full column 

rank almost surely if F :::; n:=1 (Mn - 1). In (3.18), , '- [(1., (2,' .. ,(F]T, and 

(f = 2..::=1 (J;nejWj,n. Then it can be verified that 

Therefore T can be estimated by the eigenvector matrix of ut U 2. The matrix P can 

be estimated by 

(3.5) 
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TABLE 3.1 

An eigenvector-based algorithm for N-D frequency estimation using weighting factors 

1. Given (1.11), compute the sample covariance matrix R accord
ing to (3.1), then compute the EVD of R to obtain the signal 
subspace Us. 

2. Randomly select weighting factor {CYn};;=l' construct matrices U 1 

and U 2 according to (3.3), and compute the EVD of u1u2 to 
obtain T. 

3. Compute P by (3.5) and obtain the N-D frequency estimates by 
(2.27) and then (2.29). 

Finally, the N-D frequencies can be estimated by dividing the elements in the obtained 

structural matrix P similar to (2.27). the algorithm is summarized in Table 3.1. 

3.1.2 Performance Analysis 

The performance of this algorithm in sufficient snapshot case is analyzed in 

[30]. It can be shown that E [~Wj,n] = 0, and 

[( 2J a
2 

II 11 2.f, ![T]i,f!2 Ai 
E ~Wj,n) = 4T/l-~ 'f/j,n f:t (a2 - Ai)2' (3.6) 

where 'f/},n:= TJ',n(JI-PspDjP~p(Jl(j-J2))' Al~A2 ~ ... ~AF are the F principle 

eigenvalues of R, a2 is the noise variance, /l-n := (Mn - 2) IT:;l (Mi -1), and Tj,n are 
',...n 

T},n := [PsP]l,} (<pj,l ® ... ® <Pj,n-l) ® 'Pj,n ® (<Pj,n+l ® ... ® <Pj,N) , 

<Pj,n := [1 e-jWj,n ... e-j(Mn-2)Wj,n] T : (Mn - 1) x 1, 

'Pj,n := [-1 0 ... 0 e- j(Mn-2)Wf,nf : (Mn - 1) x 1. 

Notice if one uses forward and backward smoothing, the number of snapshots T 

should be replace by 2T in (3.6). 
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When T ---> 00, E[~wJ,n] ---> 0, therefore the proposed algorithm is consistent 

in terms of the number of snapshots. When (J ---> 0, E[~wJ,n] --+ 0, therefore the 

algorithm is also consistent in terms of SNR. 

When (J ---> 0, r~n' Ai and t j will converge to their noiseless counterparts, 

which are mainly determined by Wj,n, f = 1" .. ,F and an, n = 1,' .. ,N. Therefore 

E[~wJ,n] can be considered as an asymptotically linear function of (J2. Based on the 

1-D results in [19], one can obtain the eRB for N-D frequency estimation as follows: 

eRB = Diag {;; [R(D H (1 - AAt)D) 0 (K ® Ref] -l} . (3.7) 

where K is an NxN matrix with all the elements equal 1, 0 is the Hadamard product, 

and 

dj,n = (OJ,l ® ... ® OJ,n-l) ® (nnOj,n) ® (OJ,n+l ® ... ® OJ,N) 

OJ,n=[l ejWj,n ... ej(Mn-l)w/,nr 

nn=D('Pn), with 'Pn= [0 j ... j(Mn -1)]T 

:MxNF, 

: M xl, 

: Mn x 1, 

With the decrease of noise power (J2, the ratio of the error variance and the eRB 

converges to a constant only determined by the distribution of the N-D frequencies 

and {an}. If one randomly selects the parameters an, simulation results show that 

the ratio ranges approximately from 1.1 to 4. Therefore the proposed algorithm is 

relatively efficient. However, in order to further guarantee the performance in noisy 

case, one should optimize the parameters {an}~=l' An optimization strategy to select 

the parameters is proposed in [31]. 

3.1.3 Simulation Results 

Thanks to the introduction of the random weighting factors, eigenvectors of 

ut U 2 are almost surely distinct even if there exist identical frequencies in one or more 

dimensions. In practice, identical frequencies are commonly encountered, for example, 
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in joint delay and angle estimation, signals may come from a common direction with 

different delays due to a common reflector. As another example, in frequency hopping 

systems, frequency channels are pre-assigned and frequencies may collide. However, 

note that it is possible that the algorithm may also yields some poorer frequency 

estimates if both frequencies and weighting factors are randomly generated. This 

section uses simulation results to show that even in this case, the average performance 

the proposed algorithm is better than eigenvalue-based algorithms due to the fact that 

eigenvalues are almost surely distinct when frequencies are randomly generated with 

or without random weighting factors. 

The eigenvector-based algorithm described in Section 3.1.1 is applied to esti

mate three sets of 3-D frequencies from noisy data with T = 217 snapshots, each 

of size 6x6x6, i.e., F = 3, N = 3, and M1 = M2 = M3 = 6. For comparison, 

the Unitary ESPRIT [13] is also applied in the experiments. In the first exper

iment, the three frequency sets are fixed: (Wl,l, W1,2, Wl,3) = (0.591f, 0.541f, 0.601f), 

(W2,1, W2,2, W2,3) = (0.6l7r, 0.441f, 0.601f), and (W3,1, W3,2, W3,3) = (0.601f, 0.341f, 0.341f). 

The frequencies are closely located in the first dimension and there exist identical 

frequencies in the third dimension. {Cj(t)}f=l' t = 1, ... , T, are drawn from complex 

Gaussian distributions. The RMSEs of the two algorithms over 1000 trials are plotted. 

The RMSE is averaged over all frequencies in the three dimensions. The weighting 

factors are 001 = 0.3+0.9j, 002 = -0.5+0.9j, 003 = 0.7 +0.7j. The associated theoretic 

standard deviation (STD) of the proposed algorithm and the CRB on STD are also 

plotted. SNR is defined as (c.r, (1.11)): SNR = 10l0g lO O:=;=1 IIAc(t)II~)/(MT(}2). It 
can be seen from the Fig. 3.1 (a) that the RMSE of the proposed algorithm matches 

the theoretic STD in high SNR range, and it outperforms the Unitary ESPRIT algo

rithm for a wide SNR range. In the second experiment, all frequencies, amplitudes, 

and weighting factors are random generated in each of the 1000 trials. Fig. 3.1 (b) 

plots the RMSE results. It can be seen that the performance of the proposed algo

rithm is still better than Unitary ESPRIT in for a wide SNR range, but the threshold 
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Figure 3.1. RMSE of 3-D frequency estimation with multiple snapshots: (a) frequency 
tuples are fixed in all realizations; (b) frequency tuples are randomly generated in each 
realization. 

is moved towards higher SNR compared to the results shown in Fig. 3.1 (a). 

3.2 The Finite Snapshot Case 

For the finite snapshot case, where data smoothing is applied, an eigenvector

based algorithm using random weighting factors is also developed. This section de

scribes the algorithm. The performance analysis to the proposed algorithm in noisy 

case is detailed in Section 3.3. This algorithm can be considered as an improved 

version of the IMDF algorithm introduced in Chapter 2. For simplicity of exposition, 

the algorithm is developed in the noiseless case. 

Given (1.11) in the noiseless case, one can apply the smooth operator S defined 

in Lemma 1 to every snapshot x(t), and obtain 

Xs(t) := S[x(t)] = GD(c(t))HT, (3.8) 

where 

G := AiK!) 8 A~K2) ... 8 A;:N) , 

H := AiL!) 8 A~L2) ... 8 A;;N). 
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The positive integers Kn and Ln, n = 1, ... ,N, are chosen such that 

(3.9) 

To further explore the data structure, one can perform the forward-backward smooth

ing on the data vector x(t) in (1.11). Define 

(3.10) 

where IIM is an M x M backward permutation matrix. It can be verified that 

y(t) = Ac(t), 

where c(t) = [Cl(t),C2(t),'" ,cp(t)F with cf(t) = cj(t)e-JrPf, and cPf is defined in 

(2.39). Applying the same technique to y(t) that is used to construct X s(t) from 

x(t), one can obtain 

Ys(t) := S[y(t)] = GD(c(t))HT. 

Then one can collect all the smoothed data matrices to obtain 

X:= [Xs(l) Xs(2) ... Xs(T) Ys(T) Ys(T - 1) '" Ys(1)]. (3.11) 

Define K := rr:=l Kn and L := rr:=l Ln. The size of X is K >< 2T L. It can be 

verified that 
~ ~T 

X=G(H8Bf=GH, (3.12) 

where Band H are defined as 

(3.13) 

(3.14) 

A key step of the algorithm is the construction of X to ensure that it is of rank F 

almost surely. In (3.12), G is the Khatri-Rao product of multiple Vandermonde ma

trices, invoking Property p3) of Khatri-Rao product, G has full column rank almost 
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surely if n~=1 Kn 2': F. Similar to Lemma 3, one can prove that H has full column 

rank almost surely if 2T n~=1 Ln 2': F. Based on the Sylvester's inequality 

rank(G) + rank(H
T

) - F ~ rank( GH
T

) ~ min {rank(G), rank (HT) }, 

X is of rank F almost surely. The singular value decomposition (SVD) of X yields 

(3.15) 

where Us has F columns that together span the column space of X. Since the same 

space is spanned by the columns of G, there exists an F x F nonsingular matrix T- I 

such that 

(3.16) 

Similar to (3.3), one can obtain matrix pencil U I = JIUs and U 2 = J 2U s, 

where the selection matrix J I and J 2 is define similar to (3.2). Notice that JI,n and 

J 2,n change to 

(3.17) 

According to the Property p2) of Khatri-Rao product in Chapter 2: (A0B)(C8D) = 

AC 8 BD, it can be verified that 

(3.18) 

where P = AiK1
-

I
) 8 A~K2-I) 8· .. 8 A]:N-I). It is clear that P has full column 

rank almost surely if F ~ n~=l (Kn - 1). In (3.18), <: := [(1, (2,'" ,(Ff, and 

(f = L~=I (J;nejWj,n. One can resolve T from the matrix pencil Uland U 2 via least

squares or total-least-squares approaches [3]. Here, one can use the least-squares 

approach. T is retrieved from the following EVD up to column permutation and 

scaling ambiguity. 

(3.19) 

Clearly one can choose {(J;n}~=l to ensure that the elements of, are distinct even if 

there exist identical frequencies in one or more dimensions, but this is not guaranteed 
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by randomly generated {CYn };;=l' Chapter 4 will discuss how to choose the weighting 

factors. Suppose that the EVD of U! U 2 gives Tsp = T A..::l, where A is a nonsingular 

diagonal column scaling matrix and ..::l is a permutation matrix. Once one obtain 

T sp , he can retrieve P up to column permutation and scaling ambiguity according to 

(3.20) 

Notice that P is the Khatri-Rao product of N Vandermonde matrices, and there 

are F columns in P. The N frequencies of the same N-D component appear in the 

same column of P. In other words, for fixed f, {Wj,n};;=l appear in the same column 

of P. Thanks to this structure, one can obtain F N-D frequency components by 

dividing suitably chosen elements of the aforementioned columns of P sp ' Therefore 

the column scaling and permutation will not have a material effect on the algorithm. 

For this reason, subscript "sp" is dropped from now on as long as it is clear from the 

context. Suppose that {ejwf,n };;=1 appears in the f-th column of P. Then, ejwf,n can 

be obtained by anyone of the following quotients 

ejwf,n = Pk,f 

Pk-K'n,f 
mod (k - 1, K~_l) ~ K~, for f = 1, ... , F, (3.21) 

where 1 :S k :S Kb, Pk,f is the (k, f)-th element of P. Define K~ :== rr:=n+l (Kp - 1) 

for O:Sn:SN - 1, and K'tv := 1. Notice that the frequencies are automatically paired 

because the frequencies (Wj,n, n = 1. ... ,N) of the same N-D component (the f-th 

component) are obtained from the same column of P. 

If the data observations are noisy as given in (1.11), the above algorithm will 
~ 

give an estimate of P as P. In order to reduce the MSEs of frequency estimates, one 

can use the average of all the quotients in (3.21) to obtain an estimate of the N-D 

exponential. In other words, ejwf,n is estimated by the following average 

. 1 
eJWf,n =- n = 1, ... , lv, (3.22) 

fJ..n 
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where J-Ln = Kb(Kn - 2)/(Kn - 1). The average is also the so-called "circular mean" 

in direction statistics [36]. Finally the frequency estimates are obtained by 

(3.23) 

After the frequency estimates are obtained, the amplitude matrix C can be obtained 

by solving (1.11) using a least-squares approach. 

It can be verified that the ID bound of above algorithm is 

F::; max min (IT (Kn - 1), 2T IT Ln) . 
K n+Ln=Mn+l 

1 <Kn <Mn n=l n=l 
l:=;n;';N 

(3.24) 

When N = 2, the identifiability condition (3.24) becomes 

(3.25) 

The characters of the ID bound is given in [32], which is similar to those of the 

IMDF algorithm in Chapter 2. 

3.3 Perturbation Analysis in the Finite Snapshot Case 

This section uses perturbation analysis to derive the theoretical MSEs for the 

proposed algorithm in Section 3.2 in the noisy case. The following two assumptions 

are needed for this analysis. 

1. In the noiseless case, the nonzero singular values of X in (:3.15) are distinct, 

and the eigenvalues of utu2 in (3.19) are distinct. 

2. The eigenvectors in T of (3.19) are normalized, and the permutation matrix 

.6. = I since permutation does not affect the MSEs. 

3.3.1 The Perturbation of Singular Vectors in SVD 

Singular Value Decomposition (SVD) plays an important role in signal pro

cessing. For example, subspace-based algorithms in array signal processing depends 
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on SVD or eigenvalue decomposition to obtain a basis of the desired signal and/or 

noise subspaces. Principal component analysis (PCA) uses SVD to retrieve princi

pal components from noisy observations. Therefore, perturbation analysis of SVD is 

important for these algorithms. Consider the following observation matrix 

-----X=X+~X, (3.26) 

-----where X is a perturbed version of the data matrix X, and ~X is the perturbation. 

The subspace decomposition of X is 

(3.27) 

where Us, associated with nonzero singular values, spans the column space of X, 

which is also called the signal subspace, and Un, associated with zero singular values 

(~n = 0), spans the orthogonal space of Us, which is also called the noise subspace. 

Similarly, the subspace decomposition of X is given by 

(3.28) 

Due to the perturbation ~X, all the quantities in the right hand side (RHS) of 

(3.28) may differ from those in the RHS of (3.27). For example, one can express Us 
as Us = Us + ~Us, where ~Us is the perturbation of the singular vectors that span 

the signal subspace. 

Perturbation analysis results for subspace decomposition have been well docu

mented in the literature. For example, the impact of the phase factor on the statistics 

of eigenvectors of sample covariance matrices is investigated in [39]. The perturbation 

of invariance subspace is considered in [40, 41]. Based on the results in [40, 41], the 

first-order approximation of ~Us is given in [28]. Furthermore, [42] and [43] give 

the second-order approximation using similar arguments as in [28]. It is shown in 

[28, 42, 43] that the contribution of the noise subspace spanned by Unto ~U s is 

of the first order of ~X. It is argued that the contribution of the signal subspace 
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spanned by Us to flUs is of the second order of flX, and thus the contribution of 

the signal subspace to flUs is ignored when the first-order perturbation is considered. 

This subsection analyze the perturbation of Us from another perspective. Dif

ferent from the existing results in [43, 42, 28], it is found that the contribution of the 

signal subspace to flUs is also of the first order of flX. 

Let the SVD of an M x N (assuming M ::; N) matrix X in the noiseless case 

be given as in (3.27). Suppose that X is of rank F (F ::; M). The columns in Us, 

associated with the F non-zero distinct real singular values (i.e., 0"1 > 0"2 > ... > O"F), 

span the signal subspace, while the columns in Un, associated with the remaining 

M - F zero singular values (i.e., O"F+1 = ... = O"M = 0), span the orthogonal noise 

----subspace. The perturbed data matrix is X = X + flX, whose SVD is given by 

(3.28). The f-th left singular vector of X is ti f = uf + fluf, for f = 1, ... , F. 

The result on the first-order perturbation of singular vectors is summarized in 

the following theorem. 

Theorem 4: A first-order approximation of the pertuTbation fluf is given by 

where v f is the right singular vector corresponding to 0" f' and D f is a diagonal matrix 

of size F x F with the (j, J) -th element being zero and (g, g) -th element being ~, 
{7f {7g 

for 9 = 1, ... ,F, 9 # f. Collectively, one can e:r:press flUs as 

(3.30) 

where R = D 0 (U~ flXVs:Es + :Es V~ flXHUs). Here 0 denotes the Hadamard 

(element-wise) product, the (g, J)th element of D is D(g, J) = (72~c;2, for 9 # f, and 
f 9 

D(j,f) = o. 

Prool The following assumptions are needed to prove the theorem: 

al) The phase factors of singular vectors are chosen such that the perturbation flu f 

is orthogonal to uf for f = 1, ... ,F(see [39] for more detail). 
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a2) The perturbation ~X is so small that the order of the singular values in ~s 

are the same as the order of the corresponding singular values in ~s. 

(3.31) 

Since only the first-order perturbation is considered, one can use differentiation to 

obtain the first-order quantities. Differentiating (3.31), one can obtain 

Since U f is a normalized eigenvector of X X H, according to [44, Chapter 2] and 

Assumption a1), one can express ~uf as a linear combination of all other eigenvectors 

such that 
M 

~uf = L kf,gug, 
g=l, gi-f 

(3.33) 

where kf,g is the coefficient to be determined. Substituting (3.33) into (3.32) and left 

multiplying both sides by uff, one can obtain 

(3.34) 

where one should use the facts that uff XXHuf = CY;6g,f and UffUf = 6g,f, with 6g,/ 

being the Kronecker delta symbol (6g ,/ = 1 when 9 = j, and 6g,/ == 0 when 9 -=1= J). 

Note that (3.33) and (3.34) are consistent with the results on the perturbation of 

eigenvectors of a covariance matrix given in [39]. Substituting (3.34) to (3.33), and 

noticing that CY 9 = 0 for 9 ~ F + 1, one can get 

= UsDfU~ (~XXH + X~XH) Uj + UnU;; (~XXH + X~XH) UfCY·/. 

(3.35) 
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Using XHUf = CYfvf and X = Us~s V~, one can write the first term in the RHS of 

(3.35) as 

UsDfU~(!:J..XXH + X!:J..XH)Uf = UsDfU~ !:J..XvfCYf + UsDf~sV~!:J..XHUf' 

(3.36) 

Since U;:' X = 0, the second summation term in the RES of (3.35) can be written as 

(3.37) 

Summarizing (3.35)-(3.37), one can obtain (3.29) and (3.30). • 
In (3.30), the term UsR is the contribution of the signal subspace to !:J..Us, 

while the term U nU;:' !:J..XV s~;l is the contribution of the noise subspace. It is clear 

that the contributions of both the signal subspace and the noise subspace are of the 

first order of !:J..X. 

It can be observed from (3.30) that if any singular value becomes close to (}f, 

then the perturbation in uf grows toward infinity. This is because if (}g - (}f is small 

enough, () 9 and CY f become nearly identical singular values, the corresponding singular 

vectors are not unique any more. In this case, the first-order approximation fails to 

approach uf - ufo Higher-order terms may have to be taken into account. 

Remark 2: In [43], it is argued that the contribution of the signal subspace is 

of the second order of !:J..X, and the first-order perturbation of Us is thus given as 

(3.38) 

The argument in [43] depends on the existence of a matrix P in Theorem 4.11 

of [40] (or equivalently Theorem 2.7 of [41]). For a square matrix X, it is easy to 

verify that Us is an invariant subspace of X. Define 

where sep(A, B) = inf ll PII=l liP A - BPII. Theorem 4.11 of [40] states that if!3 > 0 

and 

(3.40) 
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then there exists a unique (M - F) x F matrix P satisfying 

IIPII < 211U~ ~XUsll, (3.41) 

such that Us + U nP is an invariant subspace of X. Since U 8 is also an invariant 

subspace of X, there exists a unique F x F non-singular transformation matrix Q 
~ -H-

such that Us = (Us + UnP) Q. Because Us Us = I, it can be further verified that 

(3.42) 

In [43], Q is constrained to be a Hermitian matrix (I + pH P)-~, from which it is 

concluded that Q - I has no first-order terms of nX, and thus the contribution 

of Us to the first-order perturbation of Us is ignored. However, any matrix Q = 

(I +pHp)-~cJ>, where cJ>HcJ> = I (Le., cJ> is a unitary matriX), also satisfies (3.42). 
~ 

Since Q is a unique transformation matrix associating Us and Us + UnP, it is 

not necessary that Q = (I + pH P)-~. In fact, as will be demonstrated in the 

follow example, in some cases Q may not be a Hermitian matrix, and Q - I may 

contain first-order terms of nX. In this case, the contribution of Us to the first-order 

approximation of nUs cannot be ignored. 

Note that the classical approaches such as the one used in [28] that start from 

Us = Us + U nP, where Us = [Ul U2 ... UF], does not yield (3.30). In fact, 

the result is (3.38). Furthermore, this approach requires the assumption that nUs 

is orthogonal to Us, which means nU:Uj = 0 for 1 ::; g, f ::; F. While in (3.33), it 

is only assumed that nUfuj = 0 for f = 1, ... ,F. Because the latter assumption is 

weaker than that of [28], the corresponding result in (3.30) is more general. 

A simple deterministic example is demonstrated here. Consider the perturbed 
.--.. 

data matrix X = X + nx, where 

200 

X = 0 1 0 

000 

o E 0 

nX = E 0 E 

o E 0 

53 

(3.43) 



and E is a small real number. It is clear that the singular values of X are 0"1 = 2, 

0"2 = 1, 0"3 = 0, and the signal subspace and noise subspace are spanned by 

(3.44) 

where ei denotes the i-th column of 13 . The singular values of X are 1 + p, 1, and 

p - 1, where p = VI + 2E2. The singular vectors corresponding to the singular values 

1 + P and 1 are 

1£1 = ~ [11P E -12+
P r ' 1£2 = ~ [-E 1 E r . (3.45) 

Therefore, the true perturbations of U1 and U2 are 

~U1=1£1-e1=~[1? E -12+pr, ~U2=1£2-e2=~[-E I-p Er· (3.46) 

According to the Taylor expansion, ~ = (1+2E2)-~ = 1-~2E2+~4E4+ ... = 1+0{E2}, 

where O{ E2} stands for the higher-order terms of E. Therefore, (3.46) can be rewritten 

as 

O{E2} 

E + O{ E3} 

O{E2} 

-E + O{E3} 

O{E2} 

E + O{E3} 

(3.47) 

Next one can check if the first-order perturbation results, (3.30) or (3.38), can 

be used as a first-order approximation of ~U s in (3.47). The first··order approxima

tions of ~U s are 

o -E 

~Us = E 0 

o E 

o 0 

by (3.30), and ~Us = 0 0 

o E 

by (3.38). (3.48) 

It is clear that (3.30) gives a correct first-order approximation while (3.38) can not. 

Finally, one can solve the matrices P and Q in Remark 1. Let 

l+p -E -2-
1 

Us =- E 
P 

1 = (Us + UnP)Q. (3.49) 

-1+p E -2-
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Substituting (3.44) into (3.49), one has 

p = [1- p 
1 +p' 

2E ] 
1 +p , Q = ~ [~ -E]. 

PEl 
(3.50) 

It can be verified that P and Q satisfy (3.42). However, it can also be verified that 

Q i= (I +pH P)-~, and Q-I is not a Hermitian matrix and contains some first-order 

terms of E. This shows that (3.38) can not be used as the first-order approximation 

of l::lU s in this example. 

3.3.2 The Perturbation of Us 

Suppose that the perturbed data matrix is X = X + l::lX, where l::lX is the 

perturbation term, which is related to the noise term in (1.11), W, such that (c.f., 

(3.11)) 

l::lX = [S[w(l)] ... S[w(T)] S[ITMw*(T)] ... S[ITMW*(l)]] , (3.51) 

Let the SVD of X in the noiseless case be 

(3.52) 

where the vectors in Us, associated with the F non-zero singular values, span the 

signal subspace, while the vectors in Un, associated with the zero singular values, 

span the orthogonal subspace of Us. It is clear that ~n = 0, and the diagonal 

elements of ~s in decreasing order are Al 2': A2 2': ... Ap. The perturbed data matrix 

is X = X + l::lX, whose SVD is given by 

(3.53) 

The perturbed signal subspace is Us = Us+l::lUs. Subsection 3.3.1 gives a first-order 

approximation of l::lU s' The result is general and available for other applications 

whenever SVD appears. Suppose that the frequencies estimated from X are Wj,n, 
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which is written as Wj,n = Wj,n + /:::;'Wj,n, for f = 1, ... , F and n = 1, ... , N. In the 

following, the theoretical MSEs of Wj,n are derived based on the Theorem 4. 

Next one can express /:::;.Uj as a function of W by substituting (3.51) to (3.29). 

First, the vector Vj is separated into 2T equal-sized sub-vectors such that 

Vj,t(L)] and 

for t = 1, ... ,T. Define 

Qj,t : = J 1, ... ,lVj,t(1) + J 1, ... ,2Vj,t(2) + ... + J L1,L2,··,LNVj,t(L), (3.54) 

Q f,t : = J 1,···,1 17j,t(1) + J 1,··· ,217j,t(2) + ... + J LI,L2,·· ,LN 17j,t(L), (3.55) 

I t can be verified that 

S [w(t)] Vj,t = Q.r,tw(t), 

S [IIMw*(t)] Vj,t = Qj,tIIMw*(t), 

and thus the first two terms on the RHS of (3.29) can be written as 

T T 

UnU;; /:::;.XVjAjl + UsBjU~ /:::;.XVjAj = L EjQj,tw(t) + LEjQj,tIIMw*(t), 
t=1 t=1 

(3.56) 

where E j := U nU;; Ajl + UsB jU~ Aj. For the third term on the RHS of (3.29), one 

can divide the matrix U sB /~s V ~ into 2T blocks such that 

Then, it can be verified that 

T T 

UsB j~s V~ !1XH Uj = L K j,tUjw*(t) + L K j,tUjITMw(t) , (3.57) 
t=1 t=1 
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where 

where 

U}' J 1,1,·· ,1 

U}' J 1,1", ,2 

Uf:= TJ U f 1,1,·· ,LN 

U},JI,1, .. ,2,I 

Summing (3.56) and (3.57), one can write (3.29) as 

T T 

fj,uf = L <Pf,tW(t) + L ~f,tW*(t), 
t=I t=I 

- -
<Pf,t = EfQf,tITM + Kf,tUf· 

Notice that one can write K f,t and K f,t as 

3.3.3 The Perturbation of T 

Given fj,U s , the perturbations of U I and U 2 in (3.3) are 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

According to (3.18), one can obtain UITD () = U 2T. Let T = [tI t2 ... tF], then 

(3.64) 
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Differentiating (3.64), one can obtain 

Since tf is the f-th normalized eigenvector of u1u2 , according to [44, Chapeter 2], 

one can write tltf as a linear combination of the eigenvectors t g, 1 ~ 9 ~ F, 9 i- f, 

such that tltf = L~=l kgftg. One can substitute it into (3.65) and obtain 
9#1 F 

(tlUl(f - tlU2)tf + Ultftl(f = -(Ul(f - U 2) L kgftg. (3.66) 
g=l,g'lf 

From (3.18), one can get p!pU2 = D(()P!pU j • Suppose that pJp := [Sl S2 ... sFf, 

then SJ(Ul(f - U 2 ) = OT. Also from (3.18), it can be verified that S~Ultgl = 5g,gl 

and S~U2tgl = (g5g,gl, where 5g,gl is the Kronecker delta (5g,gl = 1 when 9 = g'; 

5g,gl = 0 when 9 i- g'). If one multiply both sides of (3.66) by sJ, he can obtain 

(3.67) 

Note that this analysis is similar to the perturbation analysis of eigenvalues in ESPRIT

type algorithms [45, 46, 28, 47]. The expression of tl(f as in (3.67) was also obtained 

in [47, 28, 45, 46]. However, here the main interest lies in the perturbation of eigen

vectors. One can multiply both sides of (3.66) by s~ (g i- J) and obtain 

(3.68) 

Here D f is a diagonal matrix with [Df]g,g = (/~(Y' for 9 i- f and [Df]fJ = O. Since 

the f-th column of P is obtained using Pf = Ultf , one has 

(3.69) 
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3.3.4 The Perturbation of eWj,n 

Now it is ready to obtain the perturbation of wf,n, Differentiating (3.23), one 

has 

( 

L:1ejWj,n ) 
L:1w f n = 'I ' , 

, eJWj,n 
(3.70) 

where ejWj,n is obtained using (3.22). Differentiating (3.22) would result in L:1e jWj,n. 

Eqn. (3.22) can be expanded into 

(3.71) 

where Q:= rr~-==\(Km -1). Then, differentiating (3.71), one can obtain L:1ejWj,n = 

• PqK' +K;'+r',f , Therefore, usmg n-l = eJWj,n, one has 
PqK~_1 +r,f 

= ~ ~ { _ L:1PqK~_1 +l,f _ L:1PqK~_1 +2,f ... _ L:1PqK~_1 +K~,f 
f..ln q=O PqK~_1 +u PqK~_1 +2,f PqK;,_1 +K~,f 

L:1PqK~_1 +K~_1 -K;, +l,f L:1PqK~_1 +K~,_l,f } + + .. . + ----"---=-----"--"-

PqK;,_1 +K~_l-K~ +l,f PqK~_l +K;,_l,f 
(3.72) 

Notice that pJ' = Pu[l ejwj,l ... e j (KI- 2)Wj,1] ® ... ® [1 ejWj,N e j (KN-2)wj,N]. 

Therefore P(qK~_l +r, f) (q = 0" .. ,Q-1 and r = 1, ... ,K~_l) is the product of the 

(q + 1 )-th element of Pu [1 e jWj ,1 ... e j (Kl-2)Wj,l] ® ... ® [1 ejWj,n-l ... e j (Kn-1-2)Wj,n-l] 

and the r-th element of [1 ejWj,n ... ,ej (Kn -2)Wj,n] ® ... ® [1 ejWj,N ... e j (KN-2)wj,N]. 

Similarly, one can express (3.72) as 

(3.73) 

Here T J,n is a vector that contain all the corresponding denominators of terms in 

(3.72). It can be verified that the (qK~_l +r)-th element ofr},n is the product of the 
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(q+1)-th element of PI,} [1 e-jWj,l ... e-j (Kl-2)wj,1]0" '0[1 e-jWj,n-l ... e-j (Kn-1-2)Wj,n-l] 

and the r-th element of [-1 0 ... 0 e-j(Kn -2)wj,n ]0[1 e-jWj,n+l ... e-j (Kn+l-2)Wj,n+l]0 
'-v-' 

Kn-3 zeros 

... 0 [1 e-jWj,N ... e-j (KN-2)wj,N]. Therefore TT can be written as j,n 

TJ,n := PI,} (cPf,1 0 ... 0 cPj,n-1) 0 'Pj,n 0 (cPj,n+1 0 ... 0 cPj,N) : Kb x 1, (3.74) 

cPj,n = [1 e-jWj,n ... e-j (Kn- 2)Wj,n] T : (Kn - 1) x 1, 

'Pj,n = [-10 ···0 e-j (Kn- 2)Wj,nr: (Kn -1) x 1. (3.75) 

Here PlJ is (1, f)-th element of P sp , which is also the f-th diagonal element of A. 

Notice that the nonzero elements of TJ',n are the reciprocals of corresponding {Pk,j }~!1 

with scaling ambiguity, and the zero elements are distributed regularly. Substituting 

(3.58) to (3.69) and (3.69) to (3.73), one has 

, T 
/}.eJWj,n 1 L [ -T] , = - ~Tjn tw(t) + ~j n tw*(t) , eJWj,n I/. ' , , , 

r--n t=l 

where tJ' := [tf,1 tj,2 ... tj,F], and 

F 

~J,n(t) = TJ,n(J 1 + U 1R j ) L tj,g<Pg,t, 

g=l 

F 

e~n(t) = TJ,n(J 1 + U 1R j ) L tj,g~g,t, 
g=l 

and <Pg,t and ~g,t are defined in (3.58). 

3.3.5 Simplification of (3.77) and (3.78) 

(3.76) 

(3.77) 

(3.78) 

The equation (3.77) and (3.78) can be simplified. In order to simplify those 

equations, one need the following lemma. 

Lemma 10: T1,n(J 1 + U 1R j )Us = 0, f = 1, ... , F, and n = 1, ... , N. 

Proof: Since P~p = T- 1Ut and utu2 = TD(C,)T- 1
, one has 
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where PJ is the f-th row of T- 1
. With (3.79), and noticing that U 1t f = Pf and 

TJ,nPf = 0, one can obtain 

Therefore, Lemma 10 is proved. • 
Now Substituting (3.59) and (3.60) to (3.77) and (3.78), and invoking Lemma 

10, one can cancel out all the terms that contain Us and obtain 

F 

~J:n(t) = TJ,n(J1 + U 1R f ) L t f,9UnU;;)..;IQg,t, 
g=1 

F 
~T T '""' H 1 ~ ~f,n(t) = Tf ,n(J1 + U 1R f ) ~tf,gUnUn)..; Qg,tIIM, 

g=1 

3.3.6 The Theoretic Mean and MSE of the Estimates 

Since E [w(t)] = 0, it is ready to see 

(3.80) 

(3.81) 

(3.82) 

This means that the estimation is unbiased if only the first-order perturbation is 

considered. Using the following properties of complex Gaussian noise, 

~2 ~2 
E [R(w(t))(R(WT(S)))] = 2IM1M26t,s, E [I(w(t))(I(wT(s)))] = 2IMIM26t,s, 

E [R(w(t))(I(WT(S)))] = E [I(w(t))(R(wT(s)))] = 0, (3.83) 

one can obtain the theoretic MSEs for the frequency estimates as 

E [(L'>Wj,n)'] = ;:~ t [lin (e}n(t) - e;'n(t)) II' + III (e~n(l) + e;'n(t)) II'] , 
(3.84) 

for n = 1, ... ,N, and f = 1, ... ,F. 

Remark 3: In (3.30), the contribution of the signal subspace U sR is in the sig

nal subspace, thus one may call it "in-space" perturbation. Since the contribution of 
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the noise subspace U nU;; ~XV8~;1 is orthogonal to the signal subspace, one may 

call it "out-of-space" perturbation. In the above performance analysis, it is found 

that the "in-space" perturbation does not impact the performance of the proposed 

eigenvector-based frequency estimation algorithm. This fact is actually true for any 

subspace-based algorithm that only need the signal subspace or an arbitrary basis 

of the signal subspace. One can explain this phenomenon using the concept of sub

space angles. Let the space spanned by Us be span(Us ), and similarly for span(Us ). 

As a metric of the distance between span(Us ) and span(Us ), let us examine the 

principal angle!. (span(Us ), span(Us )) [48]. Since columns in Us and Us are both 

orthonormal basis, and the principal angle is relatively small, according to [48], one 

has 

sin (!.(span(Us), span(Us))) = IIU: - U: UsU~112 = IIU nU;; ~XVs~;1112' 
(3.85) 

Eqn. (3.85) states that the angle between the subspaces spanned by Us and Us is 

only determined by the "out-of-space" perturbation. 
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CHAPTER 4 

OPTIMIZATION OF WEIGHTING FACTORS 

This chapter analyzes the impact of the weighting factors adopted in the previ

ous chapter to the performance of frequency estimation. It is found that the random 

selected weighting factors can not guarantee the performance and in order to improve 

the performance in the worst case the weighting factors should be optimized. Based 

on the theoretical MSE derived in the previous chapter, the optimization criterion 

to choose weighting factors is derived. Interestingly, the optimization criterion has a 

very simple interpretation in term of the eigenvalue distribution of U 1 U~. That is 

to say, good weighting factors should increase the eigenvalue dispersiveness of U lU~. 

Simulation results are presented to demonstrate the derived optimization criterion is 

effective to improve the performance of eigenvector-based frequency estimation than 

randomly selected weighting factors and other existing frequency estimation algo

rithms. 

4.1 Optimizing Weighting Factors to Minimize Variances 

Based on the MSEs of estimation obtained in the previous section, one can 

optimize the weighting factors {O::n};;=l to minimize the MSEs and improve the per

formance of the proposed algorithm. Notice that minimizing (3.84) with respect to 

{O::n};;=l is too complex to be solved. However, the MSEs can by regarded as asymp

totical error variances when the noise power ()"2 approximates zero, and thus one can 

take its ratio with the Cramer-Rao Bound (CRB) as an equivalent performance mea

sure, and then use inequalities to bound this ratio so that only entries related to 
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{an};';=1 need to be minimized. 

Then the asymptotical efficiency of the estimation of Wj,n is defined as 

. E[~wJ,nl 
TJj n := hm C) , 

, (72-->0 varCRB Wj,n 
(4.1) 

where varcRB(Wj,n) is eRB of N-D frequency estimation problem given in (7.2). One 

can bound TJj,n using properties of matrix norms such that 

1 2 2 
TJj,n:S 2b IITj,nll (11J1 11 + IIU1 1111Rj ll) 

I1n (n-l)F+f 

T F 2 F 2 

L ( Lij,g (<pg,t + ~g,t) + L ij,g (<pg,t - ~g,t) ). 
t=1 g=1 g=l 

In the RHS of the above inequality, only R j depends on the weighting factors {an };';=l' 

Furthermore, IIRjl1 :S IITIIIIDj llll pt llll(J1(j - J 2 )11· Define a:= [a1 ... aNJT and 

Wj := [e jWj
,l ..• ejWj,NlT. Notice that (j = wJa (see (3.18)). Ignoring all the 

entries that do not depend on a, one can find the upper bound of the efficiency TJj,n 

is decided by 

Without loss of generality, it is assumed that Ilall:S1 since a appears in both the 

numerator and the denominator of the RHS of (4.2). If II a II :S 1, then I an I:S 1 for 

n = 1" .. ,N. In this case, 

(4.3) 

where ')'j(a) := L:~=1 I(WT _~T)al' In order to minimize the upper bound of the 
9#j f 9 

average efficiency 
1 F N 

TJ = NF L L TJj,n, ( 4.4) 
j=l n=l 

it is desired to minimize the following cost function 

1 F F-1 F 1 

,(a) = '2 L 'j(a) = L L l(wT _ wT)al' 
j=l j=l g=j+1 j 9 

(4.5) 
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An optimal 0 can be obtained by 

Oopt = argmill"f(o), subject to 11011<1. o - (4.6) 

In fact the optimization criterion (4.6) has a simple interpretation in term 

of the eigenvalue distribution of U!U2 . The difference of eigenvalues is dh,h := 

(h - (12 = (W}l - W}Jo, for l:;.h, f2:;'F. Notice that these differences appear as 

the denominators in the entries of {'(o) (see (4.5)) and the diagonal elements of D f 

(see (3.68)). If 0 is approximately orthogonal to some W}l - W}2' dh,h is close to 

zero, then {'( 0) will be very large, and the performance of the algorithm will degrade 

dramatically due to high MSE. 

Furthermore, an example is used to show the effect of 0 on TJ. Suppose that 

three 3-D frequency components are to be estimated from 3 snapshots of 6 x 6 x 6 noisy 

data samples as given in (1.3). The 3-D frequency components are 

f = 1: (Wl,l, Wl,2, Wl,3) = (O.70Jr, O.50Jr, O.20Jr), 

f = 2: (W2,1, W2,2, W2,3) = (O.80Jr, O.60Jr, O.20Jr), 

f = 3: (W3,l, W3,2, W3,3) = (O.80Jr, O.50Jr, O.40Jr). 

(4.7) 

(4.8) 

(4.9) 

Fig. 4.1 depicts the logarithmic plot of TJ as a function of 0:1 and 0:2, while 0:3 is fixed 

at If· For simplicity of the plot, it is assumed that 10:11 = If and 10:21 = If· 
Hence the x- and y-axes in Fig. 4.1 are the angles of 0:1 and 0:2 respectively. 

As illustrated in Fig. 4.1, in most cases, 0 keeps the average efficiency TJ as 

small as 1, but when 0 falls into some "bad regions", the average efficiency becomes 

very large. A random selected 0 does not guarantee that TJ does not fall into the 

"bad regions". Therefore one should use (4.6) to optimize the choice of o. 

The optimization problem (4.6) is a so called sum-of-ratios fractional pro

gramming problem, which is a difficult global optimization problem [49]. There is no 

efficient algorithm available to solve it to date. From Fig. 4.1 it is found that the 

"bad regions" are often regular and small, and most choices of 0 are fairly good to 
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o 0 

Figure 4.1. The average efficiency as a function of 0:1 and 0:2 (10:11 = 0, 10:21 = 0, 
and 0:3 = 0)· 
obtain a small average efficiency. One can use grid search in the super-sphere Iiall ::;1 

to find a moderate initial value of a, then use a Newton type algorithm to find an 

optimal {O:n};{=l' In order to reduce the complexity, one may set 100n I = #' for 

n = 1, ... ,N, and the search grid does not need to be fine (for example, the step size 

of angle in one dimension can be set to 7r / F). Alternatively one can use the following 

method to obtain a moderate initial value of {O:n};{=l' Define 

E(a):= min l(wJ - w~)al· 
l<;'j<g<;'F 

(4.10) 

Then it is clear that ,(a) < F~r~)l). If one can solve the following optimization 

problem 

ao = arg max E(a), 
Ilall<;'l 

( 4.11) 

the upper bound of ,(a) is minimized. The optimization problem (4.11) can be 

solved using a sequential quadratic programming (SQP) method, which is a common 

quasi-Newton type algorithm available in many optimization packages such as the 

optimization toolbox in Matlab. 
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TABLE 4.1 

An improved eigenvector-based algorithm using optimal weighting factors 

1. Given (1.11), follow (3.8)-(3.15) to obtain Us. 

2. Randomly select Q subject to lanl = f1;, n = 1. ... , N, compute {Wj,n};;=l' f = 

1, ... ,F, using (3.2)-(3.23). 

3. Based on {Wj,n};;=l' for f = 1, ... , F, obtain an updated Qopt by first solving (4.11) 
using SQP to get initials, then solving (4.6) using a Newton method. 

4. Compute updated {Wj,n};;=l' 1::; f::; F, with Qopt using (3.2)-(3.23). 

5. Iterate Steps 3 and 4 until frequency estimates converge (typically one execution of 
Steps 3-4 is sufficient). 

Remark 4: The optimization problem (4.11) can be formulated as a fixed toler

ance problem [50], therefore it can be solved using SQP. Typically, the SQP procedure 

includes a sequence of iterations. In each iteration, there are three steps: 

1. Update the Hessian matrix of the Lagrangian function, for example, using the 

BFGS method [51, Chapter 8]. 

2. Solve a quadratic programming subproblem to obtain a suitable step size. For 

example, an active-set strategy [51, Chapter 16] can be applied. 

3. Test to determine if the iteration can be stopped by evaluating a merit function, 

which can be chosen as the target function itself. 

The algorithm using an optimal Q for N-D frequency estimation is described 

in Table 4.1. Notice that the first step, which involves the SVD of X, is most 

computationally complex. However this step is executed only once. To appreciate 

the proposed algorithm in Table 4.1, three methods to obtain an optimal Q are 

compared. The difference is only in Step 3 of Table 4.1, where one may: (a) use the 

solution of (4.11) as Qopt, referred to as "Minmax" here; (b) use the solution of (4.11) 

as initials, then solve (4.6) to obtain Qopt, referred to as "Minmax-t-Newton", which 
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is the proposed algorithm; and (c) solve (4.6) by grid search first then refine it using 

a Newton method, referred to as "Grid+Newton". These approaches are applied to 

estimate three 3-D frequency components from 3 snapshots of 6 >< 6 x 6 noisy data 

samples. The frequency components are given in (4.7)-(4.9). Fig. 4.2 (a) depicts 

the root mean-square error (RMSE) versus signal-to-noise ratio (SNR). The RMSE is 

obtained by averaging over all frequencies after only one iteration of Steps 3-4, except 

for the case indicated with "Random a" where only Steps 1-2 are executed. The SNR 

is defined as (c.f., (1.12)): 

(4.12) 

The corresponding CRB on standard deviation (STD) is also plotted. 

It can be seen from Fig. 4.2 (a) that the three optimization methods provide 

similar performance, and all outperform the case with randomly chosen o. It turns 

out one iteration of Steps 3-4 is sufficient, as demonstrated by Fig. 4.2 (b), where the 

RMSEs of frequency estimates are plotted versus the number of iterations of Steps 

3-4. Zero iteration corresponds to the case with only randomly chosen o. It can 

be observed that one execution of Steps 3 and 4 is sufficient as further iterations 

only provide negligible performance improvement if any. This is largely due to that 

"bad regions" only account for a very small percentage of the total area as shown 

in Fig. 4.1. Also note that here the main aim is to avoid 0 falling into those 

"bad regions" 1 rather than finding an absolute optimal solution, therefore there is 

no convergence issue as there are many good choices of o. Furthermore, it can be 

seen that "Minmax+Newton" and "Grid+Newton" are comparable, and both are 

slightly better than "Minmax". Because "Grid+Newton" has a higher complexity 

than "Minmax+Newton", it is better to choose "Minmax+Newton" with one iteration 

as the proposed algorithm in Table 4.1 for optimizing the weightin~~ factors, which is 

the algorithm used in the simulations of Section 4.2. 
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Figure 4.2. (a) RMSE of different optimization methods versus SNR; (b) RMSE of 
different optimization methods versus the number of iterations of Steps 3-4. 

4.2 Simulation Results 

This section presents the Monte Carlo simulation results to demonstrate the 

performance of the proposed algorithm in Table 4.1, which is also compared to other 

N-D frequency estimation algorithms as well as the associated CRB. 

4.2.1 2-D Identical Frequency Estimation from Single Snapshot 

In the first experiment, the proposed algorithm, MEMP [21], Unitary ESPRIT 

[13], and 2-D ESPRIT [23] are applied to estimate three 2-D frequencies from a 20x20 

noisy data set. The amplitudes, cf(l) for f = 1, ... ,P, are set to be one for this case. 

The three frequency pairs are 

(WI,I, WI,2) = (O.557T,O.207T), 

(W2,I, W2,2) = (O.607T, O.207T), 

(W3,I) W3,2) = (O.607T,O.257T). 

Notice that there are identical frequencies in both dimensions. Fig. 4.3 depicts 

the performance comparisons. Fig. 4.3 (a) plots the simulated RMSE of various 

algorithms and the average CRB on STD in the two dimensions. The RMSE results 
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Figure 4.3. (a) Comparison of different algorithms for 2-D frequency estimation from 
single snapshot; (b) Comparison of optimized Q and randomly chosen Q. 

are averaged over all frequencies and obtained through 1000 realizations. For the 

proposed algorithm, the smoothing parameters ({ Kn};;'=l' {Ln};;'=l) are chosen such 

that the identifiability bound in (3.25) can be achieved. The smoothing parameters 

of other algorithms are chosen according to their corresponding references. As shown 

in Fig. 4.3 (a), the proposed algorithm offers comparable performance as that of the 

Unitary ESPRIT algorithm, and outperforms 2-D ESPRIT and MEMP. 

Fig. 4.3 (b) compares the optimized weighting factors to randomly chosen ones, 

where "Random a" means zero iteration of Steps 3-4 in Table 4.1. The theoretical 

RMSE is obtained from the square root of the average of (3.84), for n = 1,2 and 

F = 1, ... ,3, with an optimized Q by solving (4.6) using the true frequencies, which 

serves as a benchmark since in the algorithm Q is optimized when the true frequencies 

are unknown. It is clear that the proposed algorithm significantly outperforms the one 

with random weighting factors, and the simulated RMSE of the proposed algorithm 

matches well to the theoretical RMSE for moderate to high SNR range. 
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Figure 4.4. (a) Comparison of different algorithms for 2-D frequency estimation from 
multiple snapshots; (b) Comparison of optimized Q and randomly chosen Q. 

4.2.2 2-D Close Frequency Estimation from Multiple Snapshots 

In the second experiment, the proposed algorithm, Unitary ESPRIT and RA.RE 

are applied to estimate three 2-D frequencies from 10 snapshots of noisy data, each 

of size 12x 12, as given in (1.11). The amplitudes, Cj(t), for f = 1, ... , F and 

t = 1, ... ,T, are drawn from a complex Gaussian distribution. The three frequency 

pairs are 

(Wl,1, Wl,2) = (0. 727f, 0.627f), 

(W2,1, W2,2) = (0.747f, 0.587f), 

(W3,1, W3,2) = (0.767f, 0.607f). 

Notice that frequencies are close to each other in both dimensions. Fig. 4.4 plots the 

simulated RMSE of various algorithms, along with the corresponding CRB and the 

theoretical RMSE of the proposed algorithm. Multidimensional data smoothing is 

also performed for the Unitary ESPRIT algorithm and the RARE algorithm. It can 

be seen from Fig. 4.4 (a) that the proposed algorithm offers competitive performance 

when compared with the Unitary ESPRIT and RARE algorithms. Fig. 4.4 (b) con

firms again that optimized weighting factors outperform randomly chosen weighting 
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Figure 4.5. (a) Comparison of different algorithms for 3-D frequency estimation from 
single snapshot; (b) Comparison of optimized 0: and randomly chosen 0:. 

factors, and the simulated RMSE matches the theoretical RMSE at high SNR. 

4.2.3 3-D Identical Frequency Estimation from Multiple Snapshots 

In the third experiment, the proposed algorithm and the Unitary ESPRIT al

gorithm are applied to estimate three 3-D frequencies from 10 snapshots of 6x6x6 

noisy data samples. The frequencies components are given in (4.7)-(4.9). Notice that 

there are identical frequencies in all dimensions. The amplitudes are drawn from a 

complex Gaussian distribution. Fig. 4.5 shows the performance comparisons. From 

Fig. 4.5, it can be found that the proposed algorithm also offer competitive perfor

mance in 3-D frequencies estimation compared to the Unitary ESPRIT algorithm. 

Notice that the simulated RMSE of the proposed algorithm matches its theoretical 

RMSE for moderate to high SNR range. 

4.2.4 Complexity Comparison 

Since it is difficult to analytically calculate the complexity order of the opti

mization step of the proposed algorithm, here the Performance API (PAPI) tool [52] 

of Matlab is used to count the number of floating point operations., The complexity 
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Figure 4.6. The number of floating point operations versus Ml when: (a) F = 3; (b) 
F= 30. 

of proposed algorithm is compared to that of N-D Unitary ESPRIT [13], whose ana

lytical form of complexity order is also unavailable due to the iteration nature of the 

simultaneous Schur decomposition. The two algorithms are applied to estimate 3-D 

frequencies from a data set of size Ml x M2 X M3 . Note that both algorithms obtain 

the signal subspace using SVD with a similar data smoothing step in the single snap

shot case, therefore the cost of the frequency estimation and pairin~; steps determines 

the difference in complexity. In order to have a fair comparison, the same smoothing 

parameters are used in both algorithms. It is set that Ml = M2 = M 3 . Figs. 4.6 

(a) and 4.6 (b) plot the number of floating point operations of the two algorithms as 

a function of Ml for F = 3 and F = 30, respectively. It can be observed that the 

proposed algorithm has lower complexity than Unitary ESPRIT and the difference 

increases as the number of frequency components increases. 
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CHAPTER 5 

APPLICATION IN TIME-VARYING CHANNEL 

ESTIMATION 

Multidimensional frequency estimation has plenty of applications in communi

cations and signal process. This chapter applies the proposed 2-D frequency estima

tion algorithm to time-varying channel estimation in Orthogonal Frequency Division 

Multiplexing (OFDM) communication systems. 

Recently adaptive OFDM wireless communication systems were proposed to 

overcome the limitations of conventional OFDM systems [53]. In such systems, the 

estimation of the time-varying wireless channel is an important problem for system 

design. Not only does the receiver require channel state information (CSI) for re

liable symbol estimation, but the transmitter also uses CSI feedback from receiver 

to adaptively vary power, modulation and code rate on each sub carrier. Therefore 

robust and fast channel estimation approaches at the receiver side, which can track 

time-varying channel instantaneously, and long range channel prediction algorithms 

for the transmitter, which can predict future CSI based on current channel estimates, 

are both desired. 

Channel identification and prediction for OFDM systems have gained consid

erable attention. Both non-parametric channel estimation algorithms and parametric 

approaches were proposed. In [54], a robust non-parametric MMSE channel estima

tor was developed for OFDM. However, it was shown that the parametric channel 

estimator outperforms its non-parametric counterpart in [55], where a deterministic 

parametric model was used to represent the multipath channel. In [55], the delay 

parameters of each path were initially estimated through I-D ESPRIT algorithm and 
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then tracked by a delay locked loop. The same parametric channel model was adopted 

in [56], where a subspace tracking algorithm was proposed to track the delay param

eters. Parametric channel models were also adopted to predict channel variation in 

[57, 58]. In summary, parametric channel models were widely applied to estimate, 

track and predict time-varying channel in OFDM systems. 

It is noticed that only multipath (frequency-selective) channel model was con

sidered in most previous work. For frequency- and time-selective (doubly-selective) 

fading channels, where the Doppler spreading can not be ignored, the coefficients 

in the multipath channel model vary rapidly that effective tracking is difficult. In 

[57, 58], deterministic models for doubly selective channel were considered to pre

dict channel variations. In [58], I-D ESPRIT algorithm was applied in two stages to 

estimate the delay and Doppler parameters sequentially. 

Although I-D ESPRIT algorithms were used in channel estimation in OFDM 

system, its high dimension extension, multidimensional frequency estimation algo

rithms, were not considered in this problem. Actually, these algorithms were exten

sively used in wireless channel sounding [15]. This chapter proposes to use proposed 

2-D frequency estimation algorithm to estimate the parameters in the deterministic 

doubly-selective channel model. The algorithm possesses several advantages in iden

tifiability, performance and complexity. The estimated parameters are then used to 

predict channel variations. 

5.1 System Model 

5.1.1 Adaptive OFDM System 

The adaptive OFDM system model considered in this chapter is presented in 

Fig. 5.1.1. The input of the system is information bitstream at the transmitter, and 

the output is restored information bitstream at the receiver. The main difference of 

the adaptive OFDM system and the conventional OFDM system is that the channel 

information obtained at the receiver is fed back to the transmitter by the channel 
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predicator in the block diagram. The adaptive coder in the transmitter performs 

adaptive coding and modulation according to the near future CSI [53]. 

At the transmitter, the m-th OFDM symbol s(m) contain lV frequency signals 

(m) ._ [(m) (m) (m) ]T - 0 M s .- So Sl ... SN-1 ,m - , ... , - 1. 

QAM modulation is assumed. The OFDM symbols are converted into time-domain 

samples {t~m)} according to the normalized lV-point inverse DFT operation 

N-1 

t (m) = _1_ "s(m)ej~kn N < < N n ..,fN~ k ,- c_ n . 
k=O 

(5.1) 

For each time-domain block with length N, a cyclic prefix (i.e., samples in the head 

of the block) of length Nc (Nc ~ N) is appended at the end of the block. Then these 

samples are transmitted sequentially over a noisy multipath channel. The multipath 

channel is modeled by the time-variant discrete impulse response h(m) [n, C], defined as 

the time-n response to an impulse applied at time n - C. Assuming a causal channel 

with maximum delay spread Nh ~ N c , the received sample collected during the m-th 

OFDM symbol are 

(5.2) 
l=O 

where w~m) is complex additive white Gaussian noise (AWGN) with variance (J2. Due 

to the introduction of the cyclic prefix, the linear convolution is equivalent to circular 

convolution. Since the cyclic prefix is corrupted by inter-block interference, it is 

discarded at receiver side. The receiver then computes an N-point DFT of {r~m)} 

and obtain signals in frequency domain 

N-1 

(m) __ 1_" (m) -j~dn 0 <_ d < N. 
xd -..,fN~rn e , 

n=O 

(5.3) 

One can substitute (5.1) and (5.2) to (5.3) and obtain 

N-1 

x~m) = L H(m)[d, k]sim ) , 0 ~ d < N, (5.4) 
k=O 
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Figure 5.1. Adaptive OFDM system. 

where H(m) [d, k] is the channel spectrum in the Doppler domain in the m-th symbol 

duration 
N-l N-l 

H(m)[d,k]:= ~L Lh(m)[n,£]ej~(kn-dn-ek), (5.5) 
n=O [=0 

for 0 ::; d < Nand 0 ::; k < N. 

5.1.2 Time-Varying Channel Models 

The frequency- and time-selective or doubly-selective channel is described by 

a linear time-varying system [59] 

L 

h(t, T) = L ae(t)O(T - Te(t)). (5.6) 
e=l 

Assuming a far-field discrete scatterer model, ae(t) can be further decomposed as [59] 

Re 

ae(t) = L ae,r(t)ej27rve.,.(t)t. (5.7) 
r=l 

Then, the channel model (5.6) can be written as 

p 

h(t, T) = L ap(t)ej27rVp(t)tO(T - Tp(t)), (5.8) 
p=l 
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where P = 'L;=l Re· Notice some Tp(t) may be identical. It is assumed that the 

complex amplitude ap(t), the time delay Tp(t), and Doppler frequency shift vp(t) vary 

slowly when compared with duration of one OFDM symbol, and can be regarded as 

invariant parameters. Therefore ap and T; and vp are used to represent the amplitude, 

delay and Doppler for the p-th path in the sequel. Suppose the duration of one OFDM 

symbol is Ts , then 

(m) [ ] _ ( nTs €Ts) 
h n, € - h mTs + N + Nc' N + Nc . (5.9) 

Substituting (5.8) and (5.9) to (5.5), and defining Tp := T; Nttr, which can be regarded 

as a delay parameter of p-th path, one has 

p 

H(m)[d, k] = ~ L apej27fmT,vpe-j27fk~ s(m)[p, k - d], 
p=l 

where s(m)[p, k - d] is the p-th path Doppler spectrum in one OFDM symbol duration 

Ts 
1 - ej27fvpTs N:Nc 

s(m)[p, k - d] = ---.2-(-=To-"8'-'P-+-.!!.--' _-!L-.). 
1 - eJ 7f N+Nc . N N 

If it is assumed that IVpTs N:Nc I « 1, p = 1, ... ,P, then 

{ 

N d= k 
s(m)[p, k - d] = ' , 

0, d i= k. 

Therefore (5.4) becomes 

(5.10) 

(5.11) 

(5.12) 

for 0 :::; m < M and 0 :::; n < N. Here Hm[n] is the long range channel spectrum 

p 

H(m)[nj = L apej27fmT,vpe-j27fn~. (5.13) 
p=l 
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5.1.3 Pilot Pattern 

In a pilot-assisted OFDM system, the pilot tones st'k) are evenly inserted in 

the time-frequency plane: 

mk = mI + (k - l)~M, k = 1, ... , K, 

nc=nI+(£-l)~N, £=l, ... ,L. 

A least-squares estimate of Ht;k) [ncJ is obtained by the division of the received signal 

over the known pilot symbols 

(5.14) 

Once H~~k)[nc] is obtained, the model parameters can be estimated from H~~k)[nd 

through (5.13). This problem is 2-D frequency estimation. In the following, a 2-

D frequency estimation algorithm is proposed to estimate the model parameters 

{ap, vp, Tp }:=I from {H~~k) [nc] H'=I' k = 1, ... , K. 

5.2 Channel Identification and Prediction 

H (m k ) I' 1 . h Given K x L least-squares estimates of channel spectrum LS nc WIt 

p 

H '- H(mk )[ ] _ ""' j27f(k-I)!::.MTsvp -j27f(f-I)D.N?; k,e.- LS ne - ~cpe e (5.15) 

p=I 

for k = 1, ... , K, and £ = 1, ... ,L, where 

It is desired to estimate the channel parameter sets {ap , vp , Tp }:=I' 

d t . e E CKXP and 
Given (5.15), one can define two Vandermon e rna flces: 
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cP E CLxP such that 

(5.16) 

(5.17) 

'" ._ [1 -j27fD.N'-1'-TT -j27f(L-l)D.N
TP

] T 
'f'p .- e s '" e Ts. 

The data model in (5.15) can be written in matrix form as 

(5.18) 

where c = [Cl' C2, . .. ,Cp]T and [Hke = Hk,e. Eqn. (5.18) can also be written in 

vector form. Let 

h = [Hl,l H1,2 ... H1,L H2,1 ... HK,Lf, (5.19) 

then it can be verified that 

h= (80)cp)c. (5.20) 

Here 0) stands for the Khatri-Rao (column-wise Kronecker) product, i.e., 

The Khatri-Rao product will be used in the sequel. 

If the smoothing operator defined in (2.1) is applied, then it can be verified 

that [38] 

S(h) = GD(c)ET, (5.21 ) 

where 

To further explore the data structure, one can perform the backward smoothing on 

the data vector h in (1.5). Define 

(5.22) 
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where IIM is an MxM permutation matrix with ones on its anti-diagonal. It can be 

verified that 

h := (88 <1»c, 

(5.23) 

Applying the same 2-D smoothing technique defined in (2.3) to h, one can obtain 

(5.24) 

Then, one can define a big matrix using the two matrices S(h) and S(h) 

(5.25) 

Notice that 11 is matrix of size KILl x 2K2L2. 

The maximal possible number of pathes the algorithm can resolve is called the 

identifiability bound, which is denoted as Pmax . It can be proved that [38] 

P
max 

= { r(K - 1, L), 

r(K, L - 1), 

where r( K, L) is the function defined as 

K< L, 

K>L, 
(5.26) 

(5.27) 

Generally, P max can be as large as about O.34K L in noiseless case. In the algorithm, 

the 2-D smoothing parameters K and L are carefully chosen such that Pmax achieve 

its maximal value [38]. 

5.2.1 Estimation of the Model Order and Signal Subspace 

The signal subspace can be obtained by the singular value decomposition 

(SVD) to the following matrix 

R:= 1 7-(JiH = U AUH
, 

2K2L2 
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The choice of model order P is obtained by the Minimized Description Length (MDL) 

algorithm [60J. Suppose the eigenvalues of R in (5.28) are Al ;:: A2 ... Ap ;:: Ap+l ... ;:: 

AM, and the power of the AWGN is 0"2, then the MDL cost function is 

KILl 1 
- 2K2L2ln II Ap + 2,P(2K1L1 - P + 1) In (2K2L2)' 

p=P+l 

(5.29) 

One should choose P such that MDL(P) is minimized. Once P is determined, the 

signal subspace Us is composed by the P principle eigenvectors of R. From (5.28), 

it is noticed that the column spaces spanned by Us and G are equivalent, therefore 

there exists a nonsingular transformation matrix T- 1 such that 

(5.30) 

5.2.2 Estimation of the Transformation Matrix T 

In the following, weighting factors are used to construct a matrix, whose eigen

vector matrix is T. The construction approach is similar to (3.2) in Chapter 3. 

One can construct a matrix pencil along the first dimension, 

U 1,1:= ([IK1 - 1 O(K1-1)Xl] 129 ILl) Us, 

U 1,2 := ([O(K1-1)Xl I K1 - 1] 129 ILl) Us· 

Then it can be verified that 

where 

Similarly one can construct a matrix pencil along the second dimension 

U 2,1 := (IK1 129 [IL1 - 1 O(L1-1)Xl]) Us, 

U 2,2 := (IK1 129 [O(L1-1)Xl ILl-I]) Us. 
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Then, it can be verified that 

where 

[ 
-j27r6.N!l -j27r6.N7"2 -j27r6.M7"PJT T:= e Ts e Ts •.. e Ts. 

Next, using two complex weighting factors a and (3 satisfying lal ::; 1 and 1,61 ::; 1, 

one can perform eigenvalue decomposition (EVD) to the following matrix 

(5.35) 

(p( and 

(5.36) 

for p = 1, ... ,P. The weighting factors a and (3 are randomly chosen at the first time, 

once one has the estimates of e27r6.MT,vp and e -27r6.N 1; , he can obtain better weighting 

factors by solving the following optimization problem. As is shown in Chapter 4, these 

optimization criteria can be obtained from the perturbation analysis. 

The weighting factors {a,,6} are chosen so as to minimize the following cost 

function 

p p 1 

,(a, (3) = ~ q~l I(p - (ql) 

(a,,6)opt=arg min ,(a,(3). 
10019,1(319 

(5.37) 

(5.38) 

In order to solve the optimization problem (5.38) using a quadratic programming 

(SQP) method, one can obtain an initial value of (a, fJ) by solving the following 

optimization problem 

(a,,6)o=arg max c:(a,,6). 
10019,1(319 
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The eigenvector matrix of EVD in (5.35) is 

Tsp:= TAll., (5.40) 

where A is a nonsingular diagonal column scaling matrix and Ll. is a permutation 

matrix. 

5.2.3 Estimation of Model Parameters 

Once the transformation matrix is obtained, one can obtain the estimate of 

matrix G according to (c.f. (5.30)) 

(5.41) 

Notice that G is the Khatri-Rao product of two Vandermonde matrices e(KI) and 

<.I>(L1), and there are P columns in G. The Doppler and delay parameters of the same 

path appear in the same column of G. In other words, for fixed p, vp and Tp appear in 

the same column of G. Thanks to this structure, the exponentials containing vp and Tp 

can be obtained by dividing suitably chosen elements of the aforementioned columns 

of G sp . Therefore the column scaling and permutation will not have material effect 

on the algorithm. Since there are many quotients can be regarded as the estimate of 

the exponentials, one can take average over them to reduce estimation error variance. 

Suppose the Doppler and delay parameters of the p-th path appear in the p-th column 

of esp, then ej27rb.MTs vp can be estimated through 

(5.42) 

S· '1 1 -j27rb.N:T b . d b 1m1 ar y, e Ts can e estImate y 

(5.43) 
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The Doppler frequency and delay parameters of the p-th path can be obtained by 

v;, = I (logej27r~'r9Vl') / (27ft1MTs), 

i; = I (lOge-jMN~) Ts/ (-27ft1N) , 

(5.44) 

(5.45) 

where I(·) stands for the imaginary part. After the frequency estimates are obtained, 

the amplitude c can be obtained by applying a least-squares approach to (5.20) 

( ~ ~)t 
C = 80) <I> h, (5.46) 

where 8 and <I> are obtained by substituting the estimates v;, and i; into (5.16) and 

(5.17). The complex amplitude of p-th path ap is obtained by 

(5.47) 

The proposed algorithm for channel identification in OFDM system is summarized in 

Table 5.1. 

5.2.4 Channel Prediction 

After all the parameters {vp, Tp , ap}:=l in the channel model (5.13) are ob

tained, the channel variation at near future (for example, at the time when (mK+i)-th 

symbol is transmitted) can be predicted by assuming that these parameters do not 

change or only change slightly. The predicted channel is 

p 

H(mK+i) [nJ = L apej27r(mK+i)'r9Vl'e -j27rn~. (5.48) 
p=l 

5.3 Simulation Results 

This section presents the Monte Carlo simulation results. The simulated chan

nel wireless fading has Nh = 6 taps. A modified Jakes simulator introduced in [61J 

with 8 propagation paths is applied to simulate each taps since the simulator has 

desired statistics for Rayleigh fading channels even when the number of sinusoids is 
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TABLE 5.1 

OFDM channel identification using joint 2-D frequency estimation 

(1) Obtain the least-squares estimates of the channel by (5.14). 

(2) Determine the smoothing parameter K1 and L1 by solving (5.26), per
form 2-D smoothing to form H by (5.25). 

(3) Compute the sample covariance matrix R by (5.28), and perform SVD 
to R and determine the model order P by the MDL principle, and obtain 
signal subspace Us. 

(4) Compute Ul,r U1,2 and Ub U2,2. 

(5) Randomly choose a and (3, perform EVD to Q by (5.35), obtain G by 

(5.41), and obtain estimates of exponentials ej27rb.MTsvp and e-
j27r

b.N¥; 

by (5.42) and (5.43), respectively. 

. . -·27rb.N~ (6) Based on the estImates of eJ27rb.MTsvp and e J T s , compute <: by 
(5.36), obtain better factors a and (3 by solving (4.11) and then (5.38), 
repeat step (5) using the updated factors. 

(7) Obtain the Doppler shift and delay of the path by (5.44), estimate c by 
(5.46) and ap by (5.47). 
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small. Consider an OFDM system with bandwidth BW = 5 MHz and carrier fre

quency 2.6 GHz as in IEEE 802.16 [62]. The sampling factor is 144/125, and the 

sampling rate is = BW . 144/125 = 5.76 MHz. There are N = 256 sub carriers in the 

system and the length of the cyclic prefix for each OFDM symbol is Nc = 64, there

fore the duration of one OFDM symbols is Ts = (N + Nc)/ is = 155.56 /-lS. Suppose 

the maximum Doppler frequency id = 180 Hz, which is corresponding to a mobility 

of 75 km/h. Notice the Tmax = (Nh - 1)/ Is = 0.87 /-lS. The pilots are distributed in 

the frequency-time plane evenly and satisfy the reconstruction conditions mentioned 

in [63]: 

(5.49) 

In the simulation, M = 800, ml = 1, nl = 1, tlM = 25, tlN =: 8, K = 24, and 

L = 32. Therefore, the channel is interpolated in the duration from the first to the 

576-th symbol, where pilot symbols are inserted, while the channel is predicted in the 

duration from the 577-th to the 800-th symbol, where no pilot is applied. Notice there 

are only a few pilot symbols in the system. One advantage of the proposed method 

is that even with few pilot symbols, the maximum number of identifiable path P max 

can be as large as about l 0.34K L J . 

Since it was shown in [55] that parametric channel estimation outperforms its 

non-parametric counterpart, one can only consider parametric channel estimation in 

the simulation. The proposed algorithm is compared to the 2x I-D ESPRIT algorithm 

proposed in [58]. The signal-to-noise ratio (SNR) is defined as (cf. (5.2)): 

SNR = -1OIogcr2
. (5.50) 

Fig. 5.2 plots the channel trace of the amplitude of the first tap at SNR = 15 

dB, where the horizonal axis represent the time in the unit of 1'.,. It can be seen that 

the channel amplitudes can be tracked for both algorithms in the duration when the 

pilot symbols are available. After the 576-th symbol, the estimation error increase 

with the growth of prediction length. A snapshot of the predicted channel in frequency 
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Figure 5.3. Snapshot of predicted channel at 610-th symbol at SNR = 15 dB. 
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Figure 5.4. Channel NMSE versus (a) time at SNR=15 dB and (b) SNR when the 
61O-th symbol is received. 

domain is plotted in Fig. 5.3, where the amplitudes of the 256 subcarriers are depicted 

at SNR = 15 dB when the 610-th symbol is received. 

Fig. 5.4(a) plots the normalized mean square error (NMSE) of the channel 

estimation in each OFDM symbol for the two algorithms at SNR = 15 dB. The 

horizonal axis represent the time in the unit of Ts. The NMSE are averaged over all 

NMSE's that are collected from 400 realizations. It can be seen from Fig. 5.4(a) that 

the proposed algorithm outperforms the 2 x I-D ESPRIT algorithm. 

Fig. 5.4(b) plots the NMSE of the predicted channel for the two algorithms 

versus SNR when the 61O-th symbol is received. It can be seen from Fig. 5.4(b) 

that the prediction performance of proposed algorithm is better that of the 2 x I-D 

ESPRIT algorithm in all SNR range. 
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CHAPTER 6 

APPLICATION IN TRACKING OF MULTIPI,E MOVING 

TARGETS 

It is clear that many DOA estimation problems in radar signal process can 

be reduced to multidimensional frequency estimation. This chapter develops a fast 

eigenvector-based frequency estimation algorithm using adaptive weighting factors 

to tracking the 2-D DOA of multiple move targets. The update of those weighting 

factors is based on the optimization criterion derived in Chapter 4. 

The problem of tracking the direction-of-arrivals (DOAs) of multiple moving 

targets in radar signal processing has attracted much interests in recent years. Various 

methods based on adaptive filter and Bayesian statistics were proposed [64]. However, 

most previous work assumed that the DOAs were one dimension vectors. A uniform 

rectangular array (URA) can be applied to track the DOAs in two dimensions: eleva

tion and azimuth. The problem of jointly estimating the two dimensional (2-D) angles 

is actually a 2-D frequency estimation problem. Effectively associating the 2-D angles 

of the same target is critical. The Unitary ESPRIT algorithm was applied to jointly 

estimate 2-D DOAs in [65]. Based on simultaneous Schur decomposition, the Unitary 

ESPRIT algorithm was generalized to multidimensional case in [13.1. The problem 

of jointly tracking 2-D DOA was considered in [66], where a subspace tracking algo

rithm (i.e., Bi-SVD) was applied to track the subspaces of the structural matrices in 

an adaptive MI-ESPRIT algorithm. The MI-ESPRIT algorithm employed adaptive 

simultaneous Schur decomposition to estimate the 2-D DOAs. 

As pointed out in Chapter 2, the eigenvector-based frequency estimation al

gorithms do not need a frequency pairing step or joint diagonalization process, and 
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have relatively lower computational complexity. It is natural to consider develop

ing low complexity frequency tracking algorithms based on these eigenvector-based 

algorithms. 

This chapter proposes a new 2-D DOA tracking algorithm based on the opti

mization criterion derived in Chapter 4. Similar to [66], subspace tracking technique is 

applied to estimate the instantaneous signal subspace, but another subspace tracking 

algorithm LOAFR1 [67J is adopted, since the LOAFR1 algorithm demonstrates bet

ter performance over other subspace tracking algorithms and has the same complexity 

order as the remaining steps of the proposed algorithm. The signal subspace shares the 

same column space as that of a structural matrix, which is the Khatri-Rao product of 

several Vandermonde matrices. The transformation matrix connecting the structural 

matrix and the signal subspace is estimated through a so-called "weighted diagonal

ization" method, which performs eigenvalue decomposition (EVD) of an adaptively 

weighted matrix. The weighting factors are updated adaptively according to current 

angle estimates and an optimization criterion similar to those in Chapter 4. The 

sequential quadratic programming (SQP) process in Chapter 4 is avoided here, thus 

computational complexity is reduced. The computational order of the proposed track

ing algorithm is as low as O( M N F2), where M and N are the dimension sizes of the 

URA array in elevation and azimuth directions, F is the number of targets. It can 

be used to estimate the 2-D DOA of multiple moving targets at every snapshot and 

track the DOA trajectories in real time. The performance of the proposed algorithm 

is evaluated by numerical simulations. 

6.1 Data Model for 2-D DOA Tracking 

This chapter assumes that the number of targets does not change in the track

ing process. Suppose there are F moving targets that are to be tracked by aURA 

of size M x N. Suppose the elevation and azimuth angles of the loth target at tth 

snapshot are Bf(t) and ¢f(t), which are the angles with respect with x-axis and y-axis; 

91 



the inter-sensor spacings in x-axis and y-axis are .6.x and .6.y , respectively. Define 

(6.1) 

where A is the wavelength. The output signal of the URA at the (m, n)-th sensor is 

modeled as [65J 

F 

Xm,n(t) = L cj(t)ej(m-l)Wj(t)e j (n-l)lI j(t), t = 1, ... ,T, 
j=1 

where m = 1, ... ,M and n = 1, ... , N. If one chooses .6.x = .6.y := ~, and assumes 

o < OJ(t), (/Jt(t) ::; 7f, there is one-to-one mapping between wf(t) and OJ(t), and 

between Vj(t) and (/Jt(t), where -7f ::; Wj(t) < 7f and -7f ::; Vj(t) < 7f. For this 

reason, Wj(t) and cPj(t) are referred as the 2-D DOA of the f-th target in the sequel. 

If the f-th target moves, (Wj(t), Vj(t)) travels a trajectory in the II x II plane, 

where II = [-7f,7f). The problem of 2-D DOA tracking is to estimate F trajecto

ries {(Wj(t), Vj(t))}}=1 from the observations {xm,n(t)} for t = 1, ... , T. Define the 

snapshot vector as 

and the amplitude vector c(t) := [Cl (t) C2(t) ... CF(t)]T, then it can be verified that 

x(t) = (A(t) 0) B(t) )c(t) = G(t)c(t), t = 1, ... ,T, (6.2) 

where A(t) and B(t) are Vandermonde matrices with generators {e jWj (t)}}=1 and 

{ejllj (t)}}=1 respectively, and the structural matrix G(t) := A(t) C) B(t). Suppose 

that the signal subspace of the time-varying correlation matrix of ~:(t) is Q(t), then 

Q(t) and G(t) share the same column space, therefore there exists a nons in gular 

transformation matrix T(t) of size F x F such that 

G(t) = Q(t)T(t). (6.3) 

The proposed fast recursive 2-D frequency tracking has four steps: firstly, apply 

the LOAFR1 algorithm to estimate the signal subspace Q(t); secondly, estimate the 
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transformation matrix T(t) by performing EVD to an adaptive weighted matrix; then, 

obtain the estimates of G(t) through (6.3) and estimate the 2-D DOAs by dividing 

the elements in G(t); finally, update the weighting factors according to the current 

estimates of DOA. The updated weighting factors are applied to estimate T(t + 1) in 

the next snapshot. The proposed algorithm is detailed in the following. 

6.2 Subspace Tracking Based on the LOAFRI Algorithm 

The LOAFR1 subspace tracking algorithm [67] is adopted to estimate the 

signal subspace Q(t) from x(t) adaptively. The initialization process of the LOAFR1 

algorithm is 

[ I 1 Q(O) = F , 

O(MN-F)xF 

P(O) = [ IF 1 
O(MN-F)xF ' 

8(0) = IF, P = 0.85. 

At time t, the updating process of the LOAFR1 algorithm is 

h(t) = QH (t - l)x(t), 

P(t) = pP(t - 1)8(t - 1) + (1 - p)x(t)hH (t), 

Q(t)L(t) = P(t), by truncated QR factorization, 

8(t) = QH(t -l)Q(t). 

6.3 Estimation of the Transformation Matrix T(t) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

This section presents a method to solve T(t) using weighting factors. One can 

construct a matrix pencil along the elevation dimension of Q(t) such that 

U1,l(t):= ([IM - 1 O(M-l)Xl] rj9IN) Q(t), 

U 1,2(t) := ([O(M-l)Xl 1M - I ] rj9 IN) Q(t). 
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Then, it can be verified that 

where w(t) := [ejwl(t) e jw2 (t) ... ejWF(t)f. Similarly one can construct a matrix pencil 

along the azimuth dimension of Q(t) such that 

U 2,1(t) := (1M ® [IN - 1 O(N-l)xl]) Q(t), 

U 2,2(t) := (1M ® [O(N-l)Xl IN-I]) Q(t), 

and it can be verified that 

(6.10) 

(6.11) 

where v(t) := [ejVl(t) e jv2 (t) ... ejVF(t)f. The two variable complex weighting factors 

al (t - 1) and a2 (t - 1) are initialized randomly and updated adaptively according to 

Section 6.5. The EVD of the following weighted matrix is 

M(t) := al(t - 1)Ml(t) + a2(t - 1)M2(t) 

= T-1(t)D(((t))T(t), 

where ((t) := [(l(t) (2(t) ... (p(t)f, and 

(6.12) 

(6.13) 

(6.14) 

for f = 1, ... , F. Consider the column scaling and permutation ambiguity, the EVD 

of M(t) of (6.13) gives 

Tsp(t) := TA(t)d(t), (6.15) 

where A(t) is a nonsingular diagonal column scaling matrix and d(t) is a permutation 

matrix. 

6.4 Estimation of DOAs 

Once the transformation matrix Tsp(t) is obtained, one can estimate G(t) 

according to (c.f. (6.3)) Gsp(t) = Q(t)Tsp(t). Since G(t) = A(t)8B(t), the elevation 
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and azimuth angles of the same target appear in the same column of G(t). Thanks 

to this structure, one can obtain the exponentials containing {wf(t)} and {vf(t)} by 

dividing suitably chosen elements of the columns of Gsp(t). Therefore the column 

scaling will not have material effect on the algorithm. Since there are many quotients 

that can be regarded as the estimate of the exponentials, one can take average over 

them to reduce estimation error variance in the case when the observation is noisy. 

This method is the so called "circular mean" in direction statistics. However, because 

of the existence of the permutation ambiguity d(t), the order of estimated angles is 

different from the true order in (6.2). Suppose the elevation and azimuth angles of 

the g-th target appear in the f-th column of Gsp(t), then ejWg(t) can be estimated by 

MN 

ejWg(t) = 1) L gn,J(tl), f, 9 E {I, ... ,P}. (6.16) 
(NI - 1 N n=N+l gn-N,J t 

where gn,J(t) is the (n, f)-th element of Gsp(t). Similarly, ejl/g(t) can be estimated by 

1 MN 
ejl/g(t) = ""' 

M(N -1) :;; 
gn,J(t) j. {I F} 

( )
' ,g E , ... ,;. 

gn-l,J t 
(6.17) 

mod (n,N)",l 

Finally wg(t) and vg(t) of the g-th target can be obtained by 

(6.18) 

where I(·) stands for the imaginary part. 

6.5 Update of the Weighting Factors 

Similar to Section 4.1, the weighting factors O::l(t - 1) and 0::2(t - 1) in (6.12) 

can be optimized so that the performance of eigenvector-based estimation can be 

improved. However the optimization algorithm (Le., SQP) used in Section 4.1 is 

computational demanding and not suitable for a tracking algorithm. Here a low

complexity method is proposed to dynamically adjust the weighting factors. If it 

is assumed that \ai(t)\ :S 0.5, for i = 1,2, then it is obvious that !(f(t)! ::; 1, for 
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f = 1, ... ,F. For the EVD in (6.13), it is shown in [24J that the perturbation of the 

f -th eigenvector t j (t) is 

(6.19) 

where Dj(t) is diagonal matrix with [Dj(t)JfJ = 0 and [Dj(t)Jg,g == (J(t)~(g(t) for 9 =l

f. In order to minimize the estimation errors, one should minimize the perturbation 

~T(t) and thus the norm of all Dj(t), f = 1, ... ,F. Therefore it is desired to solve 

the following optimization problem 

(opt(t) = argminf(((t)), l(j(t)1 :::; 1,/ = 1, ... ,F. (6.20) 
((t) 

F F 1 

f(((t)) := ~ ~ I(j(t) _ (g(t)J· (6.21) 
9#-i 

It can be verified that f(((t)) < F(F - 1)--f-, where 
- (3(." (t)) 

(6.22) 

In order to solve (6.20), one can maximize f3(((t)). If F :::; 6, it is easy to prove that 

the optimal {(j(t)}}=l should distribute regularly in the unit circle such that 

(6.23) 

For F > 6, the problem is related to the circle packing problem and solved in [68J. 

Define o:(t) := [al (t) a2(t)f. Since w(t) and v(t) change continuously, at time t + 1, 

Eqn. (6.14) become 

((t + 1) = [ w(t + 1) v(t + 1) ] o:(t)~ [w(t) v(t)] o:(t) (6.24) 

In order to make ((t+l) close to the optimal distribution as in (6.23), one can update 

o:(t) by solving the following least-squares (LS) problem 

o:(t) = argmin II [w(t) v(t)]o: - (optll· 
0: 

(6.25) 
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TABLE 6.1 
The complexity order of the 2-D DOA tracking algorithm 

Algorithm Operations Complexity Order 

h(t) = Qlt (t - l)x(t) in (6.4) MNF 
Updating P(t) as (6.5) M N F2 + M N F -+- F2 
QR factorization to P(t) 2MNF2 
E>(t) = QH (t - l)Q(t) in (6.7) MNF2 

M 1(t) = UL(t)U1,2(t) 2MNF2 + 8F3 /3 
M 2(t) = UL(t)U2,2(t) 2MN F2 + 8F3 /3 
EVD of M(t) 25F3 

G(t) = Q(t)T(t) MNF2 
Estimation of eWg(t) by (6.16) (M -l)NF 
Estimation of eVg(t) by (6.17) M(N -l)F 
min II [w(t) v(t)] a(t) - (optll 4F 
Total 9MNF2 + 30F3 

The updated a(t) is employed in (6.12) at time t + 1. 

Since the DOA of one target vary continuous, one can eliminate the permu

tation ambiguity A(t) and associate the DOA estimate at time t with those at time 

t - 1 by minimizing the difference of the exponentials at time t and those at time t - 1 

F 

Po = argm~n { L [lejWp(f)(t) - ejWj (t-1) 12 + lejVp(f)(t) _ ejvj (t-1) 12] }, 
f=1 

Here P = {p(l) p(2) ... p(F)} is a permutation of {I 2 ... F}. ejwp(f)(t) and 

ejvp(f)(t) are the estimates at time t obtained in (6.16) and (6.17) respectively. The 

current DOA estimates are appended to the DOA trajectory as wf(t) = wpo(f)(t) and 

l/f(t) = l/po(f) (t). 

The consumed flops of the proposed algorithm is counted in Table 6.5. In prac

tise, Gauss elimination is used to solve the equation Uf1 (t)U 1,1 (t)X = Uf1 (t)U2,1 (t) 

to obtain M 1 (t). The method of normal equations [37] is employed to solve the LS 

problem (6.25). 
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6.6 Simulation Results 

This section presents the simulation results. Consider three moving targets, 

whose DOAs vary as linear functions of time. Therefore W f (t) and /" f (t) are sinusoidal 

functions of time 

Wl(t) = 0.451fsin(60t) + 0.451f, Vl(t) = 0.51fcos(100t) + 0.331f, 

W2(t) = 0.41f sin(120t) + 0.331f, V2(t) = 0.31f cos(50t) + 0.51f, 

W3(t) = 0.21fsin(80t) + 0.51f, V3(t) = 0.161fsin(90t + 0.251r) + 0.21f. 

In this specific case, since the variation frequency of W f (t) and v f (t) are relative 

low (8Hz-20Hz), the sampling period Ts = O.OOOls is chosen here. The tracking 

duration is from 0 s to 0.1 s, therefore there are T = 1000 snapshots. If the sampling 

period increases, the tracking performance become worse because the data sample 

is not enough to track the relatively fast variation of DOAs. If the sampling period 

decreases, the tracking duration should be increased accordingly. Since the tracking 

algorithm require some time to converge and DOAs estimates before convergence is 

not accurate. The size of the URA is 10 x 10. The observation signal from the array 

is polluted by complex AWGN, i.e., Eqn. (6.2) becomes 

x(t) = G(t)c(t) + n(t), 

where n(t) is noise with variance (J2. The signal-to-noise ratio (SNR) is defined as 

SNR = -10log lO (J2. The amplitudes {cf(inT=l are drawn from independent normal 

distributions. Fig. 6.1 illustrates the true and estimated DOA trajectories of the 

moving targets in the II x II plane at SNR = 2dB for 5 noise realizations. The point 

in the plane with coordinates (wf(t), vf(t)) represents the 2-D DOA of the f-th target 

at time t. As time elapses, these points form three trajectory curves that describe the 

variation of the 2-D DOAs of the three moving targets. As is seen from Fig. 6.1, the 

estimated trajectories match well to the true trajectories. Fig. 6.2 and Fig. 6.3 plot 

the variation of the elevation and azimuth angles, respectively, as functions of time 
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Figure 6.1. The trajectory of the true and estimated 2-D DOAs for three moving 
targets (SNR = 2dB) 

in the unit of Ts at SNR = 2dB for 5 noise realizations. These results demonstrate 

that the proposed algorithm can track the 2-D DOA variations closely. 

The performance of the proposed algorithm is evaluated in various SNRs 

through Monte Carlo simulation. The scenario is the same as the previous exper

iment except that the number of snapshot is T = 200. For comparison, another 2-D 

frequency tracking algorithm is implemented by combining the LOAFRl subspace 

tracking [67] and the 2-D Unitary ESPRIT algorithm [65], which is called "LOAFRl 

+ 2D Unitary ESPRIT". Different from the proposed algorithm, this algorithm uses 

the 2-D Unitary ESPRIT algorithm to estimate (wf(t), vf(t)) from Q(t). The nor

malized mean square error (NMSE) is defined as 

where wf(t) and vf(t) are estimated DOAs. The NMSE of the two algorithms that is 

averaged over 1000 realizations is plotted in Fig. 6.4. It is evident that the proposed 

algorithm outperforms the "LOAFRl + 2D Unitary ESPRIT" algorithm in moderate 
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Figure 6.2. The true and estimated elevation angles for three moving targets (SNR = 
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Figure 6.3. The true and estimated azimuth angles for three moving targets (SNR = 
2dB) 
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Figure 6.4. The NMSE versus SNR 

and high SNR range in Fig. 6.4. This demonstrates the advantage of the proposed 

adaptive weighted diagonalization scheme since the subspace tracking steps of the 

two algorithms are identical. Notice that in the high SNR range the floor of NMSE 

implies these two trackers are both biased estimators due to the estimation delay. 

An interesting problem under investigation is the tracking of multiple moving 

targets when the signal powers fluctuate as the targets move, and the number of 

signals may also vary. For example, if the number of targets varies, an adaptive order 

selection approach similar to that of [67] may be considered, and the least squares 

problem (6.25) also changes. 
Another interest problem is the tracking performance of several very fast tar-

gets. If the targets are not too fast, the tracking algorithm gives some intermediate 

points in the trajectories of these targets. However, if the targets are so fast that 

even the LOAFR1 subspace tracking algorithm can not converge timely, the whole 

tracking algorithm will fail. 
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CHAPTER 7 

CONCLUSION 

Summarily, this dissertation develops a framework on eigenvector-based mul

tidimensional frequency estimation and systematically studies the identifiability, per

formance, and complexity of several proposed algorithms. Application examples are 

also presented. A summary comparison is given in Table 7.1 for the algorithms derived 

in this dissertation and some of those found in the literature. All the algorithms fol

low the following framework for eigenvector-based N-D frequency estimation, which 

contains four main steps: 

1. Perform N-D smoothing defined in Lemma 2 and FB smoothing to the obser

vation data so as to obtain a large smoothed data matrix. This step is critical 

to improve the statistical identifiability and alleviate the small sample effects 

when the number of snapshot is limited. 

2. Determine the model order (i.e. the number of components) and perform the 

SVD to the smoothed data matrix to obtain the signal subspace. This step is 

often the most computational expensive and dominate the complexity order of 

the whole algorithm. 

3. Estimate the transformation matrix (i.e. T) using the matrix pencil method 

or joint diagonalization method. To some degree, this step is critical for the 

performance of the algorithm. 

4. After the transformation matrix is obtained, the N-D frequencies can be re

solved by first estimating a structural matrix (i.e. G or P) and then computing 
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TABLE 7.1 

Algebraic algorithms for N-D frequency estimation 

Algorithms Data Smoothing Obtain Estimate the transfor- Estimate 
Us mation matrix T {ejWj,n }f-l 

2-D MEMP [21] 2-D smoothing, back- SVD matrix pencil of two eigenvalue-
ward smoothing large matrices based 

MDF [24] N-D smoothing, back- SVD matrix pencil of two eigenvector-
ward smoothing large matrices based 

IMDF [38] N-D smoothing, back- SVD matrix pencil along the eigenvector-
ward smoothing, and first dimension based 
rotation invariance 

2-D ESPRIT [23] N-D smoothing, back- SVD joint diagonaliza- eigenvalue-
ward smoothing tion using random based 

weighting factor~' 
Unitary ESPRIT [13] N-D smoothing, back- SVD Simultaneously Schur eigenval ue-

ward smoothing, and decomposition based 
rotation invariance 

Optimized IMDF [32] N-D smoothing, back- SVD matrix pencils using eigenvector-
ward smoothing, and optimal weighting fac- based 
rotation invariance tors 

2-D Channel Estimation [33J 2-D smoothing, back- SVD joint diagonaliza- eigenvector-
ward smoothing, and tion 1lsing optimal based 
rotation invariance weighting factors 

Adaptive 2-D DOA Tracking [69] N/A subspace joint diagonaliza- eigenvector-
track- tion using adaptive based 
ing weighting factors 

the N-D frequencies by dividing the elements in the structural matrix (i.e. 

(2.24) and (3.22)). The quotients are often averaged to improve the estima

tion based on the "circular mean" method. In order to estimate the structural 

matrix, the eigenvector matrix is required, therefore the approach are named 

eigenvector-based frequency estimation. 

For the eigenvalue-based algorithms, the N-D frequencies are either estimated 

from the eigenvalues of several matrices using joint diagonalization (e.g. simultane

ous Schur decomposition), or obtained separately in individual dimensions and then 

paired by an extra step. Since the joint diagonalization and eigenvalue pairing step 

are often computational demanding, eigenvector-based algorithms, which consume 

less computation resources, are attractive. 

The key contributions of this dissertation include 

1. The IMDF algorithm offer the most relaxed statistical identifiability bound to 

date. However, it may not be operational when there are identical or very close 
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frequencies in some dimensions. 

2. The eigenvector-based algorithm using random weighting factors are then pro

posed to estimate very close or identical frequencies in certain dimensions. The 

performance of the proposed algorithm is analyzed in detail, based on which an 

optimization strategy is also proposed to obtain optimal weighting factors. 

3. The proposed algorithms are also applied to time-varying channel estimation in 

OFDM communication systems and 2-D DOA tracking in radar signal process

ing. 

4. The identifiability and performance of the proposed algorithms are studied an

alytically. All the theoretic analysis is confirmed by computer simulations. Fur

thermore, the simulation results show that the proposed algorithms can offer 

superior performance over existing algorithms for the N-D frequency estimation 

problem. 
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Appendix 

Appendix A. Proof of Lemma 2 in Chapter 2 

Lemma 1 is a special case of Lemma 2 when N = 2. One can only prove 
Lemma 2. Given (1.11), one can prove (2.30) by mathematical induction. Define 

G:= A~Kll 8 A~K2l 8··· 8 AJ:Nl 

H '= A(L n ) "' ••• '" A(LN-l) '" A(LN) 
n' n v v N-l v N 

then (2.30) can be written as Xs = GD(c)H'[. one can first prove that the first LN 
columns of Xs are GD(c)Hrv. Using Property p2), a typical column of Xs can be 
written as 

Jhh,. .. ,INX = (J~l ® J~2 ® ... ® J;:) (AI 8 A2 8··· 8 AN) C 

= (J~l Al 8 J~2 A2 8 ... 8 J;: AN) e 

= GD (wi1
-

1
) D (w~2-1) ... D (W~-I) c 

where w~ := [ejIW1,n, ... ,ej1wF,n]T, for n = 1, ... ,N. Therefore the first LN columns 
of S(x) are 

[JI,I,. .. ,IX Jl,1,. .. ,2X ... Jl,l,. .. ,LNX] = G [c D(w~)e '" D(wtN-I)C] 

= GD(e) [wRr ("LJ7v ... W~-IJ 

= GD(e)Hrv· 

Assume the first Ln ... L N columns of X s are G D ( e) H n, then the first Ln- I ... L N 

columns of Xs are 

T 

GD(e) 

According to the principle of mathematical induction, Lemma 2 follows. 
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Appendix B. Proof of Lemma 3 in Chapter 2 

Prool Define K := n:=l Kn· One can prove that the determinant of a is 
nonzero when 2T K = F. Since when 2T K < F or 2T K > F, the proof still holds 
for corresponding column-r~uced or row-reduced square sub-matrix. 

Suppose 2T K = F, IGI is a polynomial of (T + N)F variables {ejWj,n, cj,d, n := 

1"" ,N, f == 1,'" ,F, t = 1··· ,T, hence is analytic in C(T+N)F. According to 
Lemma 2 in [35], if one can find one point in C(T+N)F such that lal =1= 0, a is full 
column rank almost surely. If one chooses the (T + N)F variables such that 

where C > 0 and 

ceJO! j(tK +(3), 
Cj,t = . 

-1 ( N ) (J = 2 (2T + l)K + ~(Mn - l)Kbn . 

l:S:n:S:N - 1 
n=N 

The f-th column of Q is 

(7.1) 

thus Q is a Vandermonde matrix. Now G can be writ~en as a VandermoEde matrix 
with generators equally-spaced on the unit circle, so IGI =1= O. Therefore G is almost 
sure full rank. 

Appendix C. CRB of Multidimensional Frequency Estimation 

One can derive the eRB of N-D frequency estimation from (1.3) using a 
method similar to that of [19]. The result is given as follows: 

0'2 

varCRB(Wj,r,) = 2'b(n-l)F+j, 

where b(n-l)F+j is the (nF - F + f)-th element of following vector 
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(7.2) 



where Ce(t) := IN ® D(c(t)), and 

D == [dl,l d 2,1 ... dF,l d l ,2 ... dF,N] : M x NF, 

dj,n == (On ® ... ® OJ,n-l) ® iJj,n ® (OJ,n+l ® ... ® OJ,N) : M x 1, 

° j,n == [1 ejw/,n ... ej(Mn-l)Wj,,,] T : Mn xI, 

iJj,n =: [0 jejw/,n ... . j(Mn - l)e j (Mn -l)Wj,nf : lvln x 1. 

In all simulations, the RMSEs of various algorithms are compared to the square root 
of the corresponding eRB on variance. 
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Appendix D. Notations and Abbreviations 

A* 
AT 
AH 
At 

® 
8 
Ip 
OMxN 

D(a) 
A(m) 

IIAII 
IIAI12 
[Alf,n or af,n 
E(·) 
R(·) 
IO 
Upper bold face letters 
Lower bold face letters 

Notations 

conjugate of A 
transpose of A 
Hermitian transpose of A 
pseudo-inverse of A 
Kronecker product 
Khatri-Rao (column-wise Kronecker) product 
a p x p identity matrix 
an M x N zero matrix 
a diagonal matrix with a as its diagonal 
a sub-matrix of A formed by its first m rows 
the Frobenius norm of A 
the l2 norm of A ( the largest eigenvalue) 
the (j, n )-th element of A 
expectation 
real part of complex variables 
imaginary part of complex variables 
matrices 
column vectors 
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AWGN 
CSI 
CRB 
DOA 
DFT 
ESPRIT 
EVD 
FB 
FFT 
ID 
IMDF 
JADE 
LHS 
LS 
MEMP 
MMSE 
MSE 
MUSIC 
NMSE 
OFDM 
PAPI 
PCA 
QAM 
RARE 
RMSE 
RHS 
SVD 
SNR 
STD 
ULA 
URA 

Abbreviations 

Additive White Gaussian noise 
Channel State Information 
Cramer Rao lower Bound 
Direction-of-Arri val 
Discrete Fourier Transform 
Estimation of Signal Parameters via Rotational Invariance Techniques 
Eigen Value Decomposition 
Forward Backward 
Fast Fourier Transform 
IDentifiabili ty 
Improved Multi-Dimensional Folding 
Joint Approximate Diagonalization of Eigenmatrices 
Left Hand Side 
Least Square 
Matrix Enhanced Matric Pencil 
Minimal Mean Square Error 
Mean Square Error 
MUltiple SIgnal Classification or Characterization 
Normalized Mean Square Error 
Orthogonal Frequency Division Multiplexing 
Performance APplication Interface 
Principal Component Analysis 
Quadrature amplitude modulation 
RAnk Reduction Estimator 
Root Mean Square Error 
Right Hand Side 
Singular Value Decomposition 
Signal-N oise-Ratio 
STandard Deviation 
Uniform Linear Array 
Uniform Rectangular Array 
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