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Abstract

IRRIGATION networks of open-water channels are widely used to distribute water for agricul-

tural purposes under the power of gravity alone. These channels are of low efficiency when

operated manually in open-loop under a supply-based logic. Water sustainability concerns, arising

from food security and climate change issues, translate into the need to improve the operation of

irrigation channel networks. Modernisation projects around the world are leading to the installa-

tion of a sensor, actuator, and communications infrastructure that can facilitate automatic control.

So-called distant-downstream controllers lead to demand-driven release of water from upstream

storage. The spatial stability properties of such automatic control schemes is the focus of this

thesis.

Within a network, each open-water channel is divided into sections called pools, which are

linked by gates that locally set the flow. Automatic control involves the use of on-line measure-

ments to dynamically determine the setting for operational variables. The automation objectives

for each pool are to provide (i) steady-state matching between water in-flow and out-flow includ-

ing the local offtakes to farms or secondary channels and the downstream flow load and (ii) tight

regulation of the water-level at the downstream end of pools, which corresponds to the capac-

ity to supply flow at the off-take points and downstream. Therefore, water-level regulation is an

important aspect of large-scale irrigation network automation.

Distributed distant-downstream feedback control structures can yield operational benefits and

scope for the development of scalable controller design procedures. Under this control architec-

ture, propagation of water-level and flow transients are confined to the upstream direction, which

is desirable in that it corresponds to demand-driven water release from primary sources, while

achieving the aforementioned local objectives for step changes in water-level references and off-

take loads. For the distributed distant-downstream controllers available in the literature, transient
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flow peaks are amplified as they propagate when the channel is a homogeneous cascade of pool

dynamics. In view of the limited authority of the control gates, which saturate in terms of the

flow delivered when in the fully open or fully closed position, the spatial propagation of transients

under such feedback control structures is of interest.

A scalable approach to achieve string-stability (spatially stable transient propagation) under

distributed distant-downstream control is proposed. The approach is underpinned by a new con-

troller architecture, inspired by headway scheme in vehicle platoons, and it accommodates het-

erogenous pool dynamics. In particular, focusing on the flow interactions between pools, the new

scheme involves the augmentation of each decentralised local feedback with a feedforward path

from the downstream flow to the controller input. This translates to adjustment of the local water-

level reference on the basis of downstream flow. The feedforward compensation is designed to

satisfy a decentralised condition on the flow-to-flow interaction, which ensures non-amplification

of flow peaks as these propagate. The improvement in spatial stability comes at the expense of

steady-state error in the water-level for a step change in flow demand. The robustness of the string-

stability property to model parameter uncertainty is of practical concern and this is investigated via

LMI based analysis conditions. While the application of these sufficient conditions does not con-

firm robustness of the string-stability property, the bounds obtained for a benchmark channel show

that the degree to which the robustness property is violated remains mild in the face of substantial

uncertainty.

Finally, motivated by the two-dimensional nature of the dynamics of channels under dis-

tributed distant-downstream control, a 2-D Roesser model is introduced for automated irrigation

channels. The model reflects the directed information flow in both temporal and spatial dimensions

and it applies within the context of heterogenous channel and local control dynamics. Lyapunov

function based analysis of the 2-D Roesser model ultimately yields decentralised string-stability

certificates that are weaker than the non-amplification condition applied in the approach described

above. Collectively, these certificates imply uniformly bounded flow interactions between the lo-

cally controlled pool dynamics without uniformly requiring non-amplification of transient peaks.

Various illustrative simulation examples are discussed throughout the thesis.
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Chapter 1

Introduction

An introduction to irrigation channels as water distribution networks along with the motivation

for their automation is presented. Different control structures and the merits of so-called distant-

downstream controllers are reviewed in this chapter. Moreover, different aspects of distant-downstream

controller design including spatial propagation of transients and scalability of design procedure

are considered. This thesis is focused on the development of a new so-called distributed distant-

downstream control architecture and scalable design procedures for achieving spatially stable be-

haviour of an automated irrigation channel. An outline of the thesis is also provided here.

1.1 Sustainable Water Distribution For Irrigation

Water is a source of life. It is used for municipal, agricultural, and industrial purposes, where

irrigated agriculture’s share is about 70% [5, 6]. Irrigation networks have low efficiency when

operated manually and only around 60% of the amount of water dedicated to irrigation is used

consumptively [5, 6]. Although 20% of the world’s cultivated land is irrigated, this portion ac-

counts for 40% of global crop production [5,7]. The growing need for food worldwide and higher

water consumption due to population growth translates to an increase in water demand globally

[7, 8]. Thus, improving the operation of the irrigation channel networks used to distribute fresh

water for agriculture is important from a sustainability point of view [7, 8].

Irrigation networks of open water channels, natural or man-made, are utilised to distribute

water from reservoirs such as lakes, to supply points, mainly onto farms. Flume gates are installed

along the channel that can locally impose flow, see Figure 1.1. A channel’s bedding has a slope,

from reservoirs towards the consumers, facilitating gravity-powered water transportation without

1
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Reservoir
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Figure 1.1: Structure of a typical irrigation network

utilising any other source of energy. Thus, water-levels along the channel reflect the capacity to

supply flow to farms and further downstream [7, 9, 10].

A channel comprises an interconnection of pools which are separated by the flume gates. The

gates controlling water flow into (out of) a pool are considered as upstream (downstream) gates of

the pool. The side-view of a pool is illustrated in Figure 1.2. Pools are indexed from downstream

towards upstream, with the bottom and top pools indexed by 0, and N, respectively. Let hi and

hi−1 (m) denote the head of water over upstream and downstream gates of pool i, respectively,

yi (m) the downstream water-level of the pool measured from the Datum, and di offtake load at

downstream end of pool i.

The operation of channels requires command over the water-level along the channel. In gravity-

powered networks, offtake points for the supply of water to farms or secondary channels are lo-

cated at the downstream end of pools, where the water-level reflects the capacity to supply flow.

Therefore, command over the downstream water-level of each pool is an important objective.

Command of the water-level must be achieved in a way that leads to steady-state matching of

flow supply to the demand. Automation of irrigation channels, as part of modernising irrigation

networks, aims at achieving the aforementioned operational objectives of the channels by trans-

lating them to standard automatic control problems that can be expressed in terms of water-level

regulation and flow load disturbance rejection.

In this chapter, common existing models for irrigation channels and the one more suitable

for identification and control synthesis purposes are introduced. Different control mechanisms to
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Figure 1.2: A typical pool with over-shot gates. Off-takes are usually drawn from downstream end
(to the left).

achieve control objectives for an irrigation channel are discussed. Various possible control struc-

tures and design approaches for distant-downstream feedback control which leads to demand-

driven release of water from primary sources are considered. Spatial behaviour of the transient

flows and scalability of design which are both practically important are evaluated for an auto-

mated channel running under such controllers. Spatial instability properties of the existing control

structures motivates the introduction of a new distributed distant-downstream control architecture

which can, by contrast, be exploited to achieve spatially stable propagation of transients flow peaks

as pursued in this thesis.

1.2 Modeling Irrigation Channels

1.2.1 Saint-Venant Equations

A model which is conventionally used to describe an open water channel dynamics is the so-

called Saint-Venant equations based model [11, 12]. For a pool, let A(x, t) with units m2 denote

the wetted surface, defined to be the portion of the channel cross-section occupied with water at

position x and time t. Furthermore, let Q(x, t) denote the corresponding flow rate or discharge in

m3/s. With gravitational acceleration, the bottom width, the per unit length longitudinal bottom
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slope and friction slope, denoted respectively by g, B, S0 and

S f =
n2Q2

A2R4/3 , (1.1)

where n is Manning’s constant and R is the hydraulic radius (ratio of wetted surface to wetted

perimeter), the dynamics of a pool modeled using the Saint-Venant equations is given by

∂A
∂ t

+
∂Q
∂x

= 0 (1.2)

∂Q
∂ t

+(
gA
B
− Q2

A2 )
∂A
∂x

+ 2
Q
A

∂Q
∂x

+ gA(S f −S0) = 0, (1.3)

for t ≥ 0 and x ∈ [0,L], where L is the length of the pool and x = 0 is the upstream end, subject to

the boundary conditions

Q(L, t) = QL(t), Q(0, t) = Q0(t),

Q(x,0) = Q̄, A(x,0) = Ā(x),

where QL(t) and Q0(t) are the flows over the downstream and upstream gates with units m3/sec,

respectively, Q̄ = QL(0) = Q0(0) is an initial equilibrium flow and Ā(x) is the corresponding

initial equilibrium wetted surface, which satisfies

dĀ
dx

=
gĀ(S̄ f −S0)

g A
B −

Q̄2

Ā2

,

with boundary condition Ā(L) = Ã, where Ã is the initial downstream wetted area and S̄ f denotes

the friction slope as defined in (1.1) with Q = Q̄ and A = Ā.

Equation (1.2) represents mass balance, the so-called continuity equation, and equation (1.3)

conservation of momentum in a given pool. This model captures the dynamics of a large-scale

open water channel [13] and accounts for the water-level along the entire length via the wet-

ted cross-section variable. There are other variations of Saint-Venant equations; see e.g. [14].

Irrespective of the model form, to simulate such dynamics a suitable temporal and spatial discreti-

sation is required. There are different methods for approximately solving the St-Venant equations,

e.g. an implicit finite difference scheme known as the Preissmann scheme which proves to be
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consistent, convergent and stable [15].

However, due to complexity of these equations, it is not a suitable model for the purpose of

system identification and closed-loop analysis and design [16, 17]. Rational approximation of

the linearized Saint-Venant equations are proposed in Chapter 4 of [7]. In addition, based on

physical properties of a pool, a grey box first or third order model are introduced [16]. The third

order model captures both mass balance and wave dynamics oscillatory behaviour. However, the

simpler first order integrator-delay model which does not captur wave dynamics can be used for

control purposes as long as proper care is taken into account for high frequency uncertainties.

1.2.2 Integrator-Delay Model

The nonlinear model based on the Saint-Venant equations is not useful for analysis and controller

synthesis purposes. Other simpler models such as linearised version of this nonlinear PDE model

are used to represent the dynamical characteristics of channels [7, 18]. Also, a simpler model

derived based on physical properties of a channel, including mass balance and water transportation

delay, which is tractable and suitable for identification, control analysis and design purposes is

used in [16, 19, 20]. It is a grey box first order integrator-delay model used to represent a pool’s

dynamics [16]. Although such a model may not capture all of the dynamics such as waves at high

frequencies, the use of feedback control can yield robustness to modeling errors, provided the

nature of such mismatches are properly taken into account in the design process. With reference

to the side-view of a pool shown in Figure 1.2 where pools are enumerated from downstream to

upstream, note that

• hi−1(m) is a function of yi and the position of the upstream gate of pool i

• the flow over the upstream gate of pool i is proportional to h
3
2
i , i.e. ui = γih

3
2
i (m3/min).

This integrator-delay model that captures mass balance along a pool results from approximating

the volume of water towards the downstream end of a pool by a constant times the downstream

water-level [16, 19, 20]. The model is given by

ẏi(t) =
1
αi
[γih

3
2
i (t− τi)− γi−1(h

3
2
i−1(t)+ dh,i(t))], (1.4)
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Figure 1.3: Irrigation channel modeled by string of pools

where τi (min) accounts for the delay associated with the transport of water from the upstream end

to the downstream end of the pool, αi is a measure of pool surface area and dh,i (m3/2/min) models

water offtake in pool i due to load disturbance onto farms or into secondary channels. Define the

parameters cin,i := γi
αi

and cout,i := γi−1
αi

(m−1/2/min). Then model (1.4) becomes

ẏi(t) = cin,ih
3
2
i (t− τi)− cout,i(h

3
2
i−1(t)+ dh,i(t)). (1.5)

Parameters cin,i, cout,i, τi, and αi can be obtained via system identification techniques using data

generated from field test or simulations of the Saint-Venant PDE model [13, 16]. Linearising

(1.4) and (1.5) via the change of variables ui = γih
3
2
i (m3/min), vi = γi−1h

3
2
i−1(m

3/min), di =

γi−1dh,i(t)(m3/min), uh,i = h
3
2
i (m3/2), and vh,i = h

3
2
i−1 (m

3/2) leads to integrator-delay models

ẏi(t) =
1
αi
[ui(t− τi)− (vi(t)+ di(t))], (1.6)

and

ẏi(t) = cin,iuh,i(t− τi)− cout,i(vh,i(t)+ dh,i(t)), (1.7)

for pool i, respectively. Note that models (1.6) and (1.7) are interchangeable by a change of

variable.

The model for a channel is then obtained by interconnecting integrator-delay models via

vi(t) = ui−1(t) or vh,i(t) = uh,i−1(t), see Figure 1.3 . Taking the Laplace transform of (1.6) as-

suming y(0) = 0, yields

Yi(s) =
1

αis
[Ui(s)e−τis− (Ui−1(s)+Di(s))], (1.8)
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which is used later for controller design purposes. This simple integrator-delay model is used for

both analysis and synthesis purposes throughout this thesis.

1.3 Irrigation Channel Automation

Traditionally, the channels are operated manually [7, 10]. In this case, water distribution involves

manual adjustment of the gates [17]. In particular, water-levels are maintained to ensure sufficient

flow rates at offtakes [10]. Manual distribution of water in the channels, may lead to water losses

mainly due to oversupply, which can result in spillage along the channels and also irrecoverable

outflow at the end of the channels [21]. Modernisation of irrigation channels, such as those of

Goulburn-Murray Irrigation District, Australia, Canal de Provence in Sourthern France, or Cen-

tral Arizona Project, USA, can be exploited to achieve improved operation of irrigation channels

and water distribution management in the networks [7, 22], via a shift from manual to automatic

control, as underpinned by advancement in sensor and actuator technology. The large scale and

networked nature of irrigation automation calls for the layered application of model based and

optimisation based techniques in a hierarchy of control as seen in the operation of other complex

infrastructures, [23, 24]. Automatic control typically involves the use of on-line measurements

to dynamically determine the settings for operational variable via the use of feedback. This can

provide robustness to modeling uncertainties that inevitably arise in the design process or un-

known demand, by contrast with open-loop approaches that try to set flow on the basis of demand

forecast. At the same time, the performance achievable with feedback alone, a purely reactive

approach, can be limited and conservative. Recall that, in gravity-powered networks, the water-

level at downstream end of each pool reflects the capacity to supply flow from that point, either

off-channel or further downstream. As such, the control of these water-levels across the network

is operationally important in terms of meeting demand. The water-levels of the pools in a channel

are mainly determined by the flows over the gates along the channel. The local control objectives

in each pool are the following:

• matching water in-flow and out-flow including the local offtakes to farms or secondary chan-

nels and the downstream flow load in steady-state; and

• tight regulation of the water-level at the downstream end of pools.
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Figure 1.4: Centralised control scheme of an irrigation channel.

These can be achieved with different control architectures such as the ones described in the sequel.

1.3.1 Centralised Feedback Control

A centralised multi-input multi-output (MIMO) feedback control is a mechanism for achieving the

aforementioned control objectives. A centralised controller for a channel of N pools is shown in

Figure 1.4. With this structure, all gates positions can be utilised in order to regulate a measured

water-level error received as input of the controller [25,26], and to satisfy local control objectives.

Simulations of a channel running under a centralised controller can be found in [25, 27]. As

can be seen, in the absence of any structure for the controller, a centralised controller results in

bidirectional propagation of transients, i.e. an offtake drawn from a pool can affect all the pools

along the channel. Note that downstream propagation of transients relies on downstream storage,

which is always limited, to the extent that excess water may need to be spilled at the end in an

irrecoverable fashion. However, effect of an offtake drawn from one pool is smaller in the other

pools, see [27, page 53]. Moreover, the communication burden increases with the number of pools

and this may lead to delays in information transmission for large number of pools [25, 28].

There are different possible control strategies to synthesise a centralised controller, for instance

linear quadratic (LQ) control is used in [26,28–31] for controller design. H∞ loop-shaping control
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Figure 1.5: An irrigation channel running under distributed distant-downstream control modeled
as a cascade.

scheme is also used to design a centralised controller for open water channels, [25, 32]. The cen-

tralised controller design procedure can involve selecting the weights used in LQ cost functions

or local loop-shaping weights in the H∞ scheme on a pool by pool basis using each pool’s infor-

mation alone. Synthesis of such centralised controllers involves the solution of a channel-wide

optimisation problem. This stage is not scalable and has to be repeated if an update is necessary

due to local changes of dynamics or operating regime of a pool for instance.

1.3.2 Distant-Downstream Feedback Control

In order to reduce water wastage at the end of the channel, the so-called distant-downstream

control strategy, as considered in [21] can be used, whereby the gates positioned upstream rel-

ative to flow load are manipulated on the basis of water-level measurements. This is in contrast

with so-called upstream control, where water-levels are regulated via immediate downstream gate,

[7, 10, 18]. In this case, the overall water wastage increases since such control structure relies on

downstream storage, which is limited [33]. The distant-downstream feedback control is the special

case of a centralised controller with triangular structure for the multi input-multi output transfer

function. This way the propagation of flow transients are confined to the upstream direction, which

is desirable in view of the demand-driven water release from primary sources. Communication

burden can still be large with such control architecture, as for the pools close to the downstream

end of the channel, data has to be communicated to all upstream pools. Moreover, design of a

general distant-downstream controller can involve using all pools information. This is undesirable
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Figure 1.6: Decentralised control scheme of an irrigation channel.

since all components of the controller may have to change due to a change in dynamics or opera-

tional conditions of a small section of the channel when optimal control approaches to synthesis

is taken. Therefore, a more structured distant-downstream feedback controller that provides scope

for scalable synthesis can be useful. One instance of such structured distant-downstream control

can be distributed distant-downstream control where only neighboring pools communicate infor-

mation, reducing the communication overhead. A channel running under this control architecture

can have a cascade structure as in Figure 1.5.

1.3.3 Decentralised Distant-Downstream Control

Decentralised distant-downstream control as a special case of distributed distant-downstream con-

trol, as shown in Figure 1.6, involves the use of local controller Ki in setting the upstream flow to

regulate downstream water-level of pool i to the corresponding reference level, [20, 21].

An approach to the design of decentralised distant-downstream controller is based on each

component of the structured controller achieving local control objectives with the spatial interac-

tions, treated as unknown disturbances. In [20,21] local controllers are chosen to be a PI controller

and an additional roll-off is introduced to guarantee low gain at wave frequencies. A tuning method

of the PI controllers for irrigation channels based on frequency domain techniques such as gain

and phase margin analysis are proposed in [34] and [7, chapter 7]. In the latter, H∞ loop-shaping

design is used to tune local controllers. Quantitative feedback control theory (QFT) is utilised in

[35] to design decentralised PID controller for irrigation channels.
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down
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Ui = Vi+1
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Yi

e−τis

Pi(s) =
1

αis

Vi = Ui−1

Di

Figure 1.7: Block diagram of a local control loop

A local control block diagram of a purely decentralised control scheme of the structure shown

in Figure 1.6 is illustrated in Figure 1.7, where pool model (1.8) is used. Accordingly, the transfer

functions associated with the local control objectives are as follows:

TRi→Ei(s) =
1

1+Li(s)e−τis
,

TDi→Ei(s) =
Pi(s)

1+Li(s)e−τis
,

TUi−1→Ui(s) =
Li(s)

1+Li(s)e−τs , (1.9)

where Li(s) = Ki(s)Pi(s). Lets consider each control objective separately.

1)Steady-state flow matching. It is required that in steady-state the flow of water entering a

pool equals the flows leaving the pool. Therefore, TUi−1→Ui(0) = 1 is needed.

2)Water level tracking. Usually ri(t) is a piecewise constant signal. Assuming closed-loop

stability and applying the Final Value Theorem [36], for a constant reference input, yield the

following expression for the steady-state water-level error:

lim
t→∞

ei(t) = lim
s→0

sEi(s) = lim
s→0

sTRi→Ei(s)
1
s
= lim

s→0

1
1+Li(s)e−τis

,

which equals zero provided that the open-loop transfer function Li(s) contains at least one in-

tegrator. Given that Pi(s) contains an integrator and Ki(0) 6= 0 to maintain internal stability by

avoiding unstable pole zero cancelation between plant and controller [37], water-level regulation
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is achieved.

3) Output disturbance rejection. Since knowledge of the offtake or downstream flow informa-

tion is not utilised in design, it is considered as an unknown disturbance to be rejected by control

action. Assuming closed-loop stability and applying the Final Value Theorem to ei(t) in response

to a constant disturbance, we get

lim
t→∞

ei(t) = lim
s→0

sEi(s) = lim
s→0

sTDi→Ei(s)
1
s
= lim

s→0

1
1+Li(s)

1
αis

.

Hence, at least 2 integrators in Li(s), i.e. one in Ki(s), are needed to achieve zero steady-state

water-level error, i.e. limt→∞ ei(t) = 0.

4) Stability of the closed-loop. The two integrators of Li(s) contribute -180◦ across all frequen-

cies. Therefore, a phase lead is required, (1+φis), in the controller to add phase around cross-over

frequency, i.e. ωc,i such that |Li( jωc,i)|= 1, [21, 27].

5) Preventing wave dynamics excitation. In order not to excite wave dynamics which are not

accounted for in the pool’s integrator-delay model, the loop gain, i.e. |Li( jω)|, must be very small

around the frequencies of the pool waves. Hence, a low pass filter 1
1+ρis

is added to the controller.

6) Accounting for the effect of the delay. Due to the fact that the delay component e−τis

contributes a phase of −τiω , cross-over frequency ωc,i <
1
τi

is needed for robust stability and

ensuring a phase margin of more than 35◦ [27].

A scalable approach to the design of the decentralised distant-downstream controller is to take

Ki(s) =
κi(1+φis)
s(1+ρis)

for the local controllers [20, 21]. But doing this does not directly account for

the interaction between the locally controlled pools, which can lead to poor transient propagation

characteristics as discussed below. Note that for good water-level regulation and load disturbance

rejection large local loop-gain |Li( jω)| is needed at frequencies where Ri(s) and Di(s) are signifi-

cant, i.e. low frequencies, see [38, Section 5.5]. For more details of local control loop design refer

to [27].

Figure 1.8 shows simulation of an automated irrigation channel of 5 identical pools with spec-

ifications as in Table 1.1 operating under decentralised distant-downstream control. It is assumed

that an off-take of 17m3/min is taken from the most downstream pool of the channel for 1000mins.

From the simulations, it can be seen that flow of all the pools equal the offtake flow at steady-state

and water-level errors tend to zero at steady-state. However, it can be seen that there is amplifica-
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Table 1.1: Pool model and controller parameters

Pool number
Pool Model Parameters Controller Parameters
time-delay τ α κ ρ φ

(mins) (m2)
0,1,2,3,4 16 43806 7.72 15.2 128

0 500 1000 1500 2000

−0.1

−0.05

0

0.05

0.1

0.15

Time (mins)

W
at

er
−

le
ve

l e
rr

or
 (

m
)

0 500 1000 1500 2000
−100

−50

0

50

100

150

Decentralised PI feedback, flow offtake in bottom pool =17  m3 / min

Time (mins)

D
ev

ia
tio

n 
fr

om
 n

om
in

al
 fl

ow
 a

t u
ps

tr
ea

m
 g

at
es

 (
m

3  / 
m

in
)

 

 
Pool 0
Pool 1
Pool 2
Pool 3
Pool 4

Figure 1.8: Simulations of a channel with decentralised controller.

tion of the transient flow and water-level error peaks as they propagate upstream. This effect can

bring the gates to saturation and cause flooding.

The inevitable flow amplification property of the automated channel with the control structure

under consideration is shown as follows:

Theorem 1.1. Let Ki(s) be any proper rational transfer function such that Ki(s) has a pole at

s = 0 and the local closed-loop system of Figure 1.7 is internally stable. Then the transfer function

corresponding to flow propagation, TUi−1→Ui(s), satisfies

∫
∞

0
ln |TUi−1→Ui( jω)|dω

ω2 ≥ 0.

Thus, there exists an ω̂ ∈ [0,∞) such that |TUi−1→Ui( jω̂)|> 1.
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Figure 1.9: Nyquist contour

Proof. The proof follows in the same line of argument as [21,27,39] applied within the context of

a homogenous channel to establish a similar result for TEi→Ei+1 which equals TUi−1→Ui in this case.

Due to |e− jτiω |= 1,

|TUi−1→Ui( jω)|=
∣∣∣ Li( jω)

1+Li( jω)e− jτiω

∣∣∣= ∣∣∣ Li( jω)e− jτiω

1+Li( jω)e− jτiω

∣∣∣, (1.10)

for all ω ∈R. Define

Q(s) :=
1
s2 ln

( Li(s)e−τis

1+Li(s)e−τis

)
.

Applying the Cauchy’s Theorem to integral of Q(s) along the Nyquist contour shown in Figure

1.9 , it follows that

∮
C

Q(s)ds = 0 =
∫

Ci

Q(s)ds+
∫

Cε

Q(s)ds+
∫

C∞

Q(s)ds, (1.11)

where Ci is the imaginary axis excluding the part due to identation Cε . The last two terms on the

right hand side of (1.11) are evaluated separately:

Dividing the numerator and denominator of the term inside ln in Q(s) by Li(s)e−τis, and noting



1.3 Irrigation Channel Automation 15

that Li(s) contains two integrators, we have

∫
Cε

Q(s)ds =
∫

Cε

ln
( 1

1+L−1
i (s)eτis

) 1
(s−0)1+1 ds

= lim
z→0
−2π j

d
dz

(ln(1+L−1
i (z)eτiz))( by the Residue Theorem)

= −2π j lim
z→0

d
dz (1+L−1

i (z)eτiz)

(1+L−1
i (z)eτiz)

= −2π j lim
z→0

dL−1
i (z)
dz eτiz + τiL−1

i (z)eτiz

1+L−1
i (z)eτiz

= −2π j lim
z→0

L−1
i (z)−L−1

i (0)
z eτiz

1+L−1
i (z)eτiz

= −2π j lim
z→0

L−1
i eτiz

z(1+L−1
i (z)eτiz)

= −2π j lim
z→0

1
zLi(z)

= 0.

Moreover,

∫
C∞

Q(s)ds =
∫

C∞

ln(Li(s)e−τis)− ln(1+Li(s)e−τis)

s2 ds,

whereby s = Re jθ , it follows that

∫
C∞

Q(s)ds = j lim
R→∞

∫ − π

2

π

2

ln(Li(Re jθ ))− τiRe jθ − ln(1+Li(Re jθ )e−Rτie jθ
)

Re jθ dθ . (1.12)

Due to the two integrators in Li(s), when R→ ∞, Li(Re jθ ) can be approximated by c
(Re jθ )2 , where

c is a constant. Hence, each term of the right hand side of (1.12) can be calculated as follows:

• j limR→∞

∫ − π

2
π

2

ln(Li(Re jθ ))
Re jθ dθ = 0.

• j limR→∞

∫ − π

2
π

2

−τiRe jθ

Re jθ dθ = jπτi.
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• Using the fact that lim|x|→0 ln(1+ x) = x, we get

j lim
R→∞

∫ − π

2

π

2

− ln(1+Li(Re jθ )e−Rτie jθ
)

Re jθ dθ

= j lim
R→∞

∫ − π

2

π

2

−Li(Re jθ )e−Rτie jθ

Re jθ dθ

=0

Therefore,
∫

C∞
Q(s)ds = jπτi.

Then, it follows from (1.11) that
∫

Ci
Q(s)ds = − jπτi, which yields

∫
∞

0
ln
∣∣∣ Li( jω)e− jτiω

1+Li( jω)e− jτiω

∣∣∣dω

ω2 =
∫

∞

0
ln |TUi−1→Ui( jω)|dω

ω2 =
πτi

2
≥ 0. (1.13)

Since with this choice of the controller, Li(s) is strictly proper,

ln |TUi−1→Ui( jω)|< 0

at high frequencies. Hence, from (1.13), there exists an ω̂ such that |TUi−1→Ui( jω̂)|> 1 as claimed.

The Theorem proves amplification of flow peaks along a channel since |TUi−1→Ui( jω)| > 1

corresponds to amplification of a component of the transient response to a change in operating

conditions, as it propagates towards upstream [39, 40]. Note that if |TUi−1→Ui( jω)| are identical

for all pools, the maximum amplification of the flow peaks will be observed. The same effect is

appearing in the analysis of vehicle platoons [40–42] for predecessor following and bidirectional

control schemes where two integrators are required in the control loop to achieve zero steady-state

relative positioning errors of the vehicles in response to disturbance. Avoiding such behaviour of

an automated channel is the focus of this thesis.
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Figure 1.10: Decentralised feedback with flow to flow feedforward control scheme of a channel.

1.3.4 Decentralised Feedback With Flow-to-Flow Feedforward Distant-Downstream
Control

The offtake and flow over the downstream gate was considered as an unknown disturbance in the

design approach chosen for decentralised feedback distant-downstream control. Motivated by the

information available from downstream flow load, the decentralised feedback with flow-to-flow

feedforward distant-downstream control structure as in Figure 1.10 has been made available to

adjust the flow into a pool accordingly. Indeed, the feedforaward path adds an extra degree of

freedom to deal with the spatial propagation of the flow peaks towards upstream of the channel

[21]. One approach to design such controller is to design the local feedback controllers as de-

scribed above, followed by the selection of a simple stable transfer function for Fi(s). An instance

of such control structure is [43], where the feedforward path is considered to equal the unity in-

stead of noncausal inverse of the pure delay to decouple the effect of downstream flow.

Figure 1.11 shows simulations of the channel of Table 1.1 with the feedforward path chosen to

be F(s) = 0.7. As can be seen, local control objectives including steady-state flow matching and

water-level regulation are satisfied and spatial propagation of transients performance has improved

compared to purely decentralised distant-downstream control. However, there is propagation of

flow peaks towards upstream of the channel.

The feedforward path, Fi(s), cannot be used to decouple the effect of downstream flow, since

it will have to contain the non-causal inverse of the delay component. In addition, it is not possible
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Figure 1.11: Simulations of a channel with decentralised feedback and constant flow-to-flow feed-
forward, Fi(s) = 0.7.

to arbitrarily set Fi(s) to enforce TUi−1→Ui(s) to be a specific transfer function that prevents ampli-

fication of flow peaks along the channel. To see this, following a similar procedure to [27, 39] the

inevitable amplification of flow peaks can be proved:

Theorem 1.2. Let Ki(s) be any proper rational transfer function such that Ki(s) has a pole at s= 0

and the local closed-loop system of Figure 1.10 is internally stable. Then, there exists an ω̂ ∈ [0,∞)

such that the transfer function corresponding to flow propagation satisfies |TUi−1→Ui( jω̂)|> 1.

Proof. Note that TUi−1→Ui is a stable transfer function and so by definition it will be analytic in

a sufficiently small open ball centred at s = 0. That is to say that Ti(s) is differentiable and the

Taylor series is convergent in the vicinity of s = 0. Moreover, with the two integrators in Li(s),

it can be proved that
dTUi−1→Ui

d jω (0) = τi, see [27]. Taylor expansion of TUi−1→Ui(s = jω̂) for small

ω̂ > 0 gives

TUi−1→Ui( jω̂) = TUi−1→Ui(0)+ ( jω̂−0)
dTUi−1→Ui

d jω
(0)+R( jω̂),

where the remainder can be made small for a suitable choice of ω̂ . Due to TUi−1→Ui(0) = 1 and
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Figure 1.12: Simulations of a channel with decentralised feedback and constant flow-to-flow feed-
forward, Fi(s) = 0.9.

dTUi−1→Ui
d jω (0) = τi, it follows that

|TUi−1→Ui( jω̂)| ≈
√

1+ ω̂2τ2
i > 1.

As can be seen from Figure 1.12 choosing a low-pass filter of 0.9 increases the amplification

of flow peaks along the channel. So, although including the feedforward path improves flow

propagation, it is not systematically dealing with the interaction between pools and flow peak

amplification cannot be avoided.

1.3.5 Distributed Distant-Downstream Control Via H∞ Loop-Shaping

Distributed Distant-Downstream Control with the architecture shown in Figure 1.13 is a general-

isation of the decentralised feedback distant-downstream control where there is directed commu-

nication between controllers of neighbouring pools.

As discussed in previous section, it is difficult to systematically exploit the downstream infor-
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Figure 1.13: Distributed control scheme of an irrigation channel.

mation to deal with spatial propagation of flow transients with the decentralised feedback with

flow-to-flow feedforward distant-downstream control [27]. One approach to designing a dis-

tributed distant-downstream control to systematically deal with interaction between automated

pools and spatial dynamics of channels is a H∞ loop-shaping based design, [44], which is used for

irrigation channels control as in [7, 21, 45]. This method involves two stages. First, loop-shaping

weights are scalably designed in view of local control objectives (i.e. local water level regulation,

disturbance rejection, and steady-state flow load matching). Design procedure of the loop-shaping

weights (e.g. Wi, i = 0, · · · as shown in Figure 1.14), is similar to the controller design of the

decentralised feedback distant-downstream control scheme.

Next step, is a non-scalable synthesis procedure to systematically deal with the interaction

between automated pools (i.e. interconnection signals of the cascade in Figure 1.5) via find-

ing K̂i for all i. In particular, let ni :=
[
ri di qi

]T
be the vector of exogenous inputs, zi :=[

(ri− yi) uK
i

]T
represent performance signals, Ĝ = (Ĝ0, · · · , ĜN), and K̂ = (K̂0, · · · , K̂N) with

respect to Figure 1.14. Define H(Ĝ, K̂) to be the transfer function from input n :=
[
nT

0 · · · nT
N

]T

to z :=
[
zT

0 · · · zT
N

]T
. Then, the second step entails solving the structured optimisation control

problem

min
K̂
‖H(Ĝ, K̂)‖∞ = min

K̂
sup
ω∈R

σ̄(H(Ĝ, K̂)),

where σ̄(H) denotes maximum singular value of a matrix H, for all the channel via the computa-
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Figure 1.14: Block diagram of a local control system consistent with H∞ loop-shaping method.

tion techniques described in [46]. Subsequently, the local controller Ki follows from

Ki(s) =

I 0

0 Wi

 K̂i.

Simulation results of 10 identical pools with specifications as in Table 1.1 running under dis-

tributed distant-downstream controller designed via H∞ loop-shaping scheme are plotted in Figure

1.15. An offtake of 17m3/min is withdrawn from pool 0 for 1000mins. It can be seen in addition to

satisfying local control performance, less amplification of transient flows and water level errors is

observed compared to decentralised feedback control or decentralised feedback with flow-to-flow

feedforward scheme. Recall that, the cost of this improvement in performance is that synthesis

becomes non-scalable (i.e. all components of the controller need to be re-synthesised for any

change in plant dynamics). In addition, the flows peaks are still being amplified in the upstream

direction, and thus a potential for spatial instability. Therefore, the problem of achieving a channel

automation structure that provides non-amplification of flow transients where control design can

be carried out in a scalable fashion is still remaining and will be the focus of the current thesis.

1.3.6 Decentralised Feedback With Flow-to-Reference Feedforward Distant Down-
stream Control

The control structure proposed in this thesis is the local block diagram of a decentralised feed-

back with flow-to-reference distant downstream control with a PI and a roll-off feedback in Figure

1.16. The addition of the flow-to-reference feedforward path, Fi(s), provides an extra degree
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Figure 1.15: Simulations of a channel with distributed control.

of freedom for modifying the flow interactions, TVi→Ui , characteristic of the purely decentralised

distant-downstream scheme. The inclusion of the feedforward path yields a distributed distant-

downstream control structure, which also ensures transients propagate in the upstream direction

and can be designed in a scalable fashion similar to decentralised distant-downstream control. Fur-

thermore, it has to be designed to maintain the steady-state flow matching property of each pool.

For simplicity, by change of variable the references are all considered to be zero;i.e. ri = 0. This

new feedforward scheme, discussed in this thesis, can be viewed in terms of non-constant water-

level references Ri,new = Ri−Fi(s)Vi = −Fi(s)Vi for a loop with local decentralised PI controller

retained to sustain capacity to supply under the power of gravity without steady-state offsets due

to the local feedback action alone. The following now holds in the frequency domain:

Ui =
Li(s)

1+Li(s)e−τis
[(1− Fi(s)

Pi(s)
)Vi +Di], (1.14)

where

Gi(s) := TVi→Ui(s) =
Li(s)

1+Li(s)e−τis
(1− Fi(s)

Pi(s)
), (1.15)



1.4 Summary 23

−−

−

Ri

Ei Ki(s)
Ui = Vi+1

from downstream to upstream

Yi

e−τis

Pi(s) =
1

αis

Vi = Ui−1

Di

Fi(s)

Figure 1.16: Block diagram of a local control loop with a feedforward of the downstream flow

satisfies Gi(0) = 1 for steady-state flow matching. As such, it is possible to achieve a desirable

Gi(s) for any stable Gi(s) with Gi(0) = 1 by appropriate choice of stable

Fi(s) =
Gi(s)
Ki(s)

+Pi(s)(1−Gi(s)e−τis), (1.16)

provided Ki(s) is the PI with roll-off mentioned in Section 1.3.4. Stability of Fi(s) follows from

the stability of both terms on the right hand side of (1.16). The first term is stable by stability of

Gi(s) and left half plane zeros of Ki(s); In addition, stability of the second term follows due to

Gi(0) = 1 and 1−Gi(s)e−τis having a zero at s = 0 which cancels the pole at s = 0 in Pi(s) which

can be shown by writing the Taylor series of e−τis around s = 0.

In this thesis, zero steady-state water-level error is relaxed to achieve attenuation of transients

as they propagate upstream. This introduces a trade-off to be more discussed in section 2.6.

1.4 Summary

Irrigation channels and the need for improved performance of automated channels for sustainable

management of water resources is discussed. Different control structures and design approaches

for open water irrigation networks are introduced. The properties of different architectures of

distant-downstream control are discussed in terms of spatial water flow propagation and scalabil-

ity of design. Flow transients amplification by existing control structures for automated irrigation

channels motivate the thesis focus on spatial stability properties of automated channels and decen-

tralised conditions that imply uniformly bounded water flows across space. In Chapter 2, a flow
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Figure 1.17: Cascade representation of a channel running under decentralised feedback with flow-
to-reference distant-downstream control

to reference feedforward scheme is introduced that leads to bounded flows along an automated

irrigation channel.

1.5 Thesis Outline

An automated channel with decentralised feedback with or without feedforward (flow-to-flow or

flow-to-reference) distant-downstream scheme can be represented by a cascade shown in Figure

1.17. The properties of the subsystems that gives the desirable spatial propagation of the flow

peaks along the channel are analysed in this thesis.

Chapter 2: Flow-to-Reference Feedforward Compensator Design for Non-Amplification

of Transient Flow Peaks. In this chapter, first, a scalable (sufficient) condition on the flow-to-

flow interaction between the automated pools of a channel under distributed distant-downstream

control, that ensures a spatially uniform bound on the transient peaks of the flows in response to

bounded load variation at the bottom of the channel is identified. Indeed, the conditions introduced

ensure non-amplification of transient flow peaks from one pool to an upstream neighbouring pool.

On this basis, the flow-to-reference feedforward compensation for each pool, as introduced in

Section 1.3.6 is selected to satisfy the corresponding decentralised condition, which relates to

the L∞-to-L∞ induced norm (i.e. 1-norm of the impulse response) of the flow-to-flow interaction

between automated pools. The price to pay is steady-state water-level offsets. This approach is

inspired by time headway schemes in vehicle platoons. A design trade-off is identified between

steady-state water-level errors and spatial attenuation of water flow peaks, for a particular choice

on flow-to-flow interaction between the automated pools along a channel.

Chapter 3: Robustness analysis of a nominally L∞-to-L∞ string-stable automated channel.
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While the control design process introduced in Chapter 2 nominally achieves L∞-to-L∞ string-

stability, the robustness of this property to model parameter uncertainty is of practical concern.

Robustness of the worst L∞ to L∞ induced norm of the automated flow interactions between neigh-

bouring pools is investigated using Linear Matrix Inequalities. While the application of these does

not confirm robustness of the string-stability property, the bounds obtained show that the degree

to which the property is violated remains mild in the face of substantial uncertainty for a channel

under consideration.

Chapter 4: 2-D modeling and analysis of automated irrigation channels. The condition on

L∞ to L∞ induced norm introduced in Chapter 2 ensures spatially uniform boundedness of the flow

interaction signals. Indeed, this is achieved by ensuring transient flow peaks are non-amplified as

they propagate from one pool to the next, which is a particularly strong condition. It is also shown

that an H∞ condition on the flow interaction transfer function is necessary for this spatial stability

property. In particular, it is of interest to know if it leads to a property of uniform boundedness of

flow-interactions without requiring non-amplification between all pools.

Moreover, two-dimensional modeling and analysis are carried out for an automated irrigation

channel. Motivated by the finite spatial extent of an irrigation channel, a discrete-discrete 2-

D model is introduced for a homogenous automated irrigation channel and analysis conditions

implying uniformly boundedness of flow interaction signals are derived. On the other hand, a 2-D

discrete-continuous state-space like model for a heterogeneous automated channel represented by

a cascade, comprising infinitely many stable sub-systems, is studied in terms of the spatial flow

propagation. Lyapunov function based analysis of the 2-D model is used to establish decentralised

H∞ norm based spatial-stability certificates for the sub-systems along the cascade. Collectively,

these certificates imply uniformly bounded interconnection signals. This H∞ norm condition may

be more amenable for systematic synthesis than the condition introduced in Chapter 2.

Chapter 5: Conclusion. This chapter contains concluding discussions and future research

directions.
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Chapter 2

Flow-to-Reference Feedforward
Compensator Design for

Non-Amplification of
Transient Flow Peaks

A new distributed distant-downstream controller structure for irrigation channels is studied. The

controller ensures upstream propagation of transients, like those considered in Chapter 1, but now

in a spatially-stable fashion. This is achieved by foregoing zero steady-state water-level errors in

response to step changes in flow offtakes, via a mechanism that adjusts water-level references on

the basis of downstream flow load. While structurally different, the approach is inspired by time

headway schemes in vehicle platoons. A trade-off between steady-state water-level errors and the

spatial attenuation of the water-flow peaks is identified. The design and synthesis procedure can

be carried out on a pool by pool basis, building up on the purely decentralised control scheme

described in Section 1.3.4.

2.1 Introduction

As discussed in Chapter 1, local control objectives for an irrigation channel, i.e. steady-state flow

load matching along the channel and water-level tracking of step references at downstream gate of

each pool in presence of offtake disturbances, can be achieved via distributed distant-downstream

control schemes that confine transients to spatially propagate in the upstream direction, [7, 21].

Purely decentralised feedback distant-downstream control, the decentralised feedback with flow-

to-flow feedforward scheme and H∞ loop-shaping based distributed distant-downstream control

27
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are possible structures for distant-downstream controllers [21]. As discussed in Chapter 1, these

control schemes, result in amplification of the transient flow over gates towards upstream as they

propagate along the automated channel. This chapter’s focus on bounding flow transients peaks is

motivated by the limited authority of the control gates, which saturate in terms of the flow delivered

when in the fully open or fully closed position. We use the term ”L∞-to-L∞ string-stability”, which

is discussed in Section 2.3, to refer to uniformly bounded water flows towards upstream of an

automated channel in response to a constant offtake drawn from a pool. Considering step offtakes

in all pools at once does not yield a useful measure of performance since, in this case, the flow

over a gate grows linearly with its distance from the bottom pool whenever the flow matching

requirement is satisfied in steady-state.

In this chapter, while water-levels are still to be controlled, as these reflect the capacity to

locally supply flow under the power of gravity alone, the focus is on flow load matching and on

the identification of a control structure for achieving attenuation of transients as they propagate

spatially. Ultimately, the latter is accomplished via a feedforward-like adjustment of the local

water-level references based on the downstream flow load as set by the downstream controller.

The controller ensures upstream propagation of transients, like those considered previously, but

now in a spatially stable fashion. This gain comes at the cost of water-level off-sets, which equate

to the exploitation of storage in the pools. While structurally different, the modeling style is

inspired by the vehicle platoons setup and ideas of time headway, as discussed in [47–49], for

example. In that context, string-stability can be achieved by adjustment of the spacing reference,

via a modification of the forward path of each local control loop, without changing the closed-loop

characteristics. In the irrigation channel context, it is not possible to modify the local control loops

in this way as it would require physical modification to the channel infrastructure. In the new

set-up introduced, a feedforward-information path provides the extra degree of freedom needed

to modify the interaction between neighboring pools under closed-loop control. In the recent

work [50], MPC based water-level reference planning is being considered from the perspective

of ensuring the satisfaction of operational constraints, given an uncertain load schedule. As such,

although the offsets resulting from the feedforward path gives rise to a new trade-off between

steady-state water-level errors and the spatial attenuation of the water flow peaks to be considered,

the offsets present for constant references is of minor concern as long as the levels remain within
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practically acceptable bounds.

Like the decentralised feedback with flow-to-flow feedforward distant-downstream scheme

described in [21], the process of designing a controller with the distributed distant-downstream

control architecture achieving L∞-to-L∞ string-stability introduced here is scalable in the sense

that the local components of the distributed controller are chosen on the basis of local pool model

parameters alone. In this way, updates of pool dynamics only require update of the local controller

components.

This chapter contains an overview of different string-stability notions used in the literature

in Section 2.3. In Section 2.4, sufficient conditions on the flow interactions for L∞-to-L∞ string-

stability is introduced. The design tradeoffs of the proposed method is investigated in Section 2.6.

The tradeoff in using a feedback controller in the completely decentralised distant-downstream

control scheme that does not include integral action is discussed in Section 2.7. A summary is

presented at the end.

2.2 Notation

A transfer function Q(s) and the input-output relation Y = Q(s)U , with impulse response q(t) =

L −1(Q(s)) in the time domain, where L denotes the Laplace transform, is called stable if Q

is analytic on Re(s) > −ε for some ε > 0; this is equivalent to bounded-input bounded-output

stability in the time domain [51]. For a stable transfer function Q, the following inequalities prove

to be useful:

‖y‖∞ ≤ ‖q(·)‖1‖u‖∞, (2.1)

‖y‖∞ ≤ ‖Q( j·)‖2‖u‖2, (2.2)

‖y‖2 ≤ ‖Q( j·)‖∞‖u‖2, (2.3)

where ‖q(·)‖1=
∫

∞

0 |q(t)|dt, ‖Q( j·)‖2= ( 1
2π

∫
∞

−∞
|Q( jω)|2dω)

1
2 is the H2 norm of Q where

lims→∞ Q(s) = 0, ‖Q( j·)‖∞ = supω |Q( jω)| is the H∞ norm of Q, ‖u‖∞ = supt |u(t)|, and ‖u‖p =

(
∫

∞

−∞
|u(t)|pdt)

1
p . The L∞ space is defined to consist of all vector-valued continuous time signals,

x(t) ∈Rn, for which ‖x‖∞ < ∞ and L2 space consists of those signals with ‖x‖2 < ∞. Moreover,
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g(t) ∈ L1[0,∞) if ‖g‖1 < ∞ and g(t) = 0 for t < 0.

2.3 Overview of String-Stability

Interests in propagation pattern of disturbances or initial conditions along a chain or string of

subsystems is not exclusive to automated irrigation channels. Indeed, a number of research studies

are dedicated to this topic in vehicle platoons [52, 53], autonomous intelligent cruise control [54],

vehicle formation [55], interval management in aircrafts [56] and supply chain [57, 58], etc. It

started with optimal error control of string of vehicles in [59]. Later on, in [60], stability of a

string is defined in terms of requiring bounded position error fluctuations, that would also tend to

zero in steady-state, in response to bounded initial conditions for all vehicles. Afterwards, more

research has been carried out in this field and different types of string-stability can be identified

based on different signal measures considered.

2.3.1 Measures of String-Stability

String-stability of a chain of subsystems can be viewed from an input-output perspectives or from

autonomous systems view. Consider a string of N identical subsystems interconnected through

some physical or communication connections. Moreover, a unidirectional interconnections with

communication range of one is considered for simplicity. Then, string-stability can be measured

within the following two categories:

• Autonomous String:

Consider a string of subsystems with the dynamics of subsystem i described by

ẋi(t) = Aixi +Bixi−1, xi(0) := xi0, i = 0,1, · · · ,N, (2.4)

where xi is the semi-state, N ∈N, and x−1(.) = 0.

The performance of xi(t) in (2.4) in response to initial conditions, xi0, is of concern for

the mentioned string of systems. Therefore, the following measures of performance are
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considered:

Definition 2.1 (L2 string-stability). The origin (xi = 0) of a string of subsystems modeled

by (2.4) is said to be L2 string-stable if ∀ε > 0, ∃δ > 0 s.t. if |xi0|2 < δ implies ‖xi(.)‖2 <

ε , for all i where δ is independent of the length of the string.

Authors of [52, 53] has carried out some analysis of L2 string-stability of a string intercon-

nection of linear models of vehicles in response to initial conditions.

Definition 2.2 (L∞ string-stability). The origin (xi = 0) of the string of subsystems modeled

by (2.4) is said to be L∞ string-stable if ∀ε > 0, ∃δ > 0 s.t. if |xi(0)|∞ < δ implies

‖xi(.)‖∞ < ε , for all i where δ is independent of the length of the string, [52, 53].

Other measures of the boundary conditions and xi(t) can be used for identifying string-

stability.

• Non-Autonomous String:

Consider a string of subsystems with interconnection signal yi(t) and disturbance d0(t) and

the impulse response gi(t) for the mapping from yi−1(t) to yi(t). Therefore, in the frequency

domain,

Yi(s) = Gi(s)Yi−1(s), i = 1,2, · · · ,N,

Y0(s) = G0(s)D0(s) (2.5)

represents the string, where Gi(s) = L (gi(t)), Yi(s) = L (yi(t)), and D0(s) = L (d0(t))

for i = 0,1, · · · ,N. Therefore, the following measures of performance are defined for system

(2.5) in response to disturbances at the top of the information flow along the string, d0(t).

Definition 2.3 (L2 string-stability). A string of subsystems modeled by (2.5) is said to be

L2 string-stable if ‖yi‖2 ≤ ‖yi−1‖2 for all i with ‖d0(.)‖2 < ∞.

Due to inequality (2.3) and the fact that Yi(s) = ∏
i
k=0 Gk(s)D0(s) for any subsystem, the

string of subsystems modeled by (2.5) is L2 string-stable, as defined above, if ‖Gi( j·)‖∞≤
1, for all k. Some authors have been interested in L2 string-stability, mostly in vehicle pla-

toon and formation context. For instance, in [55], authors used the mass-spring-damper
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framework as a model for vehicle control and to analyse different string-stability properties

of different longitudinal controllers.

Definition 2.4 (L∞ string-stability). A string of subsystems modeled by (2.5) is said to be

L∞ string-stable if ‖yi‖∞ ≤ ‖yi−1‖∞ for all i with ‖d0(.)‖∞ < ∞.

Similar to L2 string-stability, noting Yi(s) = ∏
i
k=0 Gk(s)D(s) and (2.1), for any subsystem

in the string, the string of subsystems modeled by (2.5) is L∞ string-stable, as defined above,

if ‖gk(.)‖1≤ 1, [55]. Some studies were dedicated to L∞ string-stability analysis of chains

of subsystems. For example, in the context of irrigation channels, the amplification of water

levels and flows as they propagate along an irrigation channel have been analysed [21, 39,

61,62]. Moreover, this property is analysed for automated vehicle strings in [42] or interval

management in next generation air transportation systems [56].

L∞ string-stability is mostly considered as a measure of propagation of the effect of dis-

turbances in vehicle platoons. In [40], it is proved that the predecessor following problem

with a constant spacing results in L∞ string-instability with only relative spacing informa-

tion available by the follower. Different strategies have been proposed to tackle this issue.

One method is communicating extra information from the lead vehicle to all the followers,

[40, 63], or the bidirectional control where the information from both adjacent vehicles are

exploited by each agent, [42, 64]. Some others have achieved L∞ string-stability by allow-

ing speed dependent inter-vehicle spacing, [54, 65]. Indeed, the so-called ”time headway”

policy changes the interaction between two vehicles by modifying the control feedback path

[66]. In [67] string-stability is achieved for a string of identical platoons with constant inter-

vehicle spacing using non-identical controllers.

Definition 2.5 (String-stability without overshoot). A string of subsystems modeled by

(2.5) is said to be string-stable without overshoot if ‖yi(.)‖∞ ≤ ‖yi−1(.)‖∞ with ‖d0(.)‖∞ <

∞, in addition, if yi−1 does not change sign, then the yi always has the same sign as yi−1,

[55].

This type of string-stability is achieved if ‖gi(.)‖1≤ 1, for all i and gi(t)> 0,∀t > 0. Indeed

by gi(t) ≥ 0,∀t ≥ 0, the step response is ensured to be strictly increasing reaching its final

value.
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This type of string-stability has been used in automation of vehicle platoons. These works

include [55, 67, 68], where non-amplification and non-oscillation of the distance errors are

guaranteed by imposing positive impulse responses of the interactions transfer functions.

Similar concepts have been used under different terminologies, such as ”Bullwhip Effect”, in other

fields like supply chain and production and inventory control, [57,58]. It is defined as the variance

amplification of order quantities observed in supply chains, [69].

In the references mentioned, authors have considered a homogeneous string of subsystems.

However, there are others who have investigated the methods of achieving different types of string-

stability for heterogenous strings, such as [70, 71] in the field of vehicle platoons or [61] who has

studied systematic design of the feedforward path in irrigation channels to improve the propagation

of the transients along the channel.

Similar ideas are used in this chapter to achieve L∞-to-L∞ string-stability for automated irriga-

tion channels.

2.4 An Approach to Achieving L∞-to-L∞ String-Stability

Synthesis of the feedforward path of Figure 1.16 to attenuate flow transients as they propagate

upstream is discussed in this section. To this end, TVi→Ui(s) is modified. Analysis corresponding

to the following definition of L∞-to-L∞ string-stability which is weaker than the common definition

used for non-autonomous vehicular platoons is carried out first.

Definition 2.6 (L∞-to-L∞ string-stability). An irrigation channel operating under the distributed

distant-downstream control scheme illustrated in Figure 1.16 is L∞-to-L∞ string-stable if there

exists an 0 < M < ∞ such that, with di = 0 for i = 1,2, . . . and d0 bounded, ‖ui‖∞ ≤M‖d0‖∞ for

all i = 0,1,2, . . ..

In the following, Fi(s) is chosen to achieve L∞-to-L∞ string-stability in the sense defined above.

To this end, using (1.14) and the spatial boundary condition V0 = 0, note that the following holds:

U0 =
L0(s)

1+L0(s)e−τ0s D0, (2.6)

Ui = Gi(s)Vi for i = 1,2, . . . , (2.7)
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whereby

Ui =
i

∏
k=1

Gk(s)
L0(s)

1+L0(s)e−τ0s D0 for i = 1,2, . . . . (2.8)

From (2.6), u0 is bounded since TD0→U0(s) is designed to be a stable transfer function. For each

i = 1,2, . . ., ui is bounded for a bounded input d0 if, and only if, TD0→Ui(s) is a stable transfer

function. For this to be the case, it is clearly sufficient for Fi(s) to be chosen such that Gi(s) is

stable. Indeed, this is also necessary as L0(s)
/
(1+L0(s)e−τ0s) has no unstable zeros. In view of

this, repeated application of (2.1) gives

‖u0‖∞ ≤ ‖L −1(
L0(s)

1+L0(s)e−τ0s )‖1 · ‖d0‖∞,

‖ui‖∞ ≤
i

∏
k=1
‖gk‖1 · ‖L −1(

L0(s)
1+L0(s)e−τ0s )‖1 · ‖d0‖∞ for i = 1,2, . . . . (2.9)

As such, we have the following result.

Theorem 2.1. The distributed distant-downstream control scheme shown in Figure 1.16 is L∞-to-

L∞ string-stable in the sense of Definition 2.6 if Gi(s) in (1.15) is stable and ‖gi‖1 ≤ 1 for i =

1,2, . . . .

In view of Theorem 2.1, ensuring satisfaction of local control objectives and L∞-to-L∞ string-

stability reduces to deriving an Fi(s) that gives a stable Gi(s) which satisfies lims→0 Gi(s) = 1 and

‖gi‖1 ≤ 1. There are many possible choices for such a Gi(s), one of which is a constant transfer

function of 1; i.e.

Gi(s) = (
Li(s)

1+Li(s)e−τis
)(1− Fi(s)

Pi(s)
) = 1.

However, inverting over all frequencies in this way will be sensitive to uncertainties, particularly

in the high frequency dynamics which have not been modeled here. An alternative is a first-order

low pass filter with DC gain 1; i.e.

Gi(s) = (
Li(s)

1+Li(s)e−τis
)(1− Fi(s)

Pi(s)
) =

1
1+Tc,is

, (2.10)
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for some Tc,i > 0. The required feedforward transfer function Fi(s) is obtained as

Fi(s) =
−1

Ki(s)(1+Tc,is)
+Pi(s)(1−

e−τis

1+Tc,is
). (2.11)

Remark: Note that Fi(s) in (2.11) is stable as discussed in Section 1.3.6 due to stability of

Gi(s) and Gi(0) = 1.

Remark: If Fi(s) is chosen such that the condition of Theorem 2.1 is satisfied, then it follows that

‖Gi‖∞ ≤ 1, since |Gi( jω)| ≤ ‖gi‖1 ≤ 1 for all ω . By (2.8) and repeated application of (2.3)

‖u0‖2 ≤ ‖
L0(s)

1+L0(s)e−τ0s ‖∞ · ‖d0‖2,

‖ui‖2 ≤
i

∏
k=1
‖Gk‖∞ · ‖

L0(s)
1+L0(s)e−τ0s ‖∞ · ‖d0‖2 for i = 1,2, . . . (2.12)

holds. As such, with ‖Gi‖∞ ≤ 1, it follows that the controlled channel is also L2 string stable in

the sense of definition 2.3.

Remark: If the proposed feedforward scheme, with Fi(s) as in (2.11), is compared to the decen-

tralised feedback with flow-to-flow feedforward distant-downstream control of Figure 1.10, [21],

it can be seen that the first term of the right hand side of (2.11) is equivalent to the flow-to-flow

feedforward path, Fi(s), of Figure 1.10. The extra term gives flexibility to deal with the flow am-

plification property. However, note that with a feedforward path of Figure 1.10, it is not possible

to achieve a stable feedforward filter such that TVi→Ui = Gi(s) with ‖Gi‖∞ ≤ 1. It can be shown by

noting that

Gi(s) =
Li(s)+Fi(s)
1+Li(s)e−τis

. (2.13)

As such, it is not possible to find a suitable Gi(s), ‖Gi‖∞ ≤ 1, for any stable Gi(s) with Gi(0) = 1

by appropriate choice of stable

Fi(s) = Gi(s)−Li(s)(1−Gi(s)e−τis), (2.14)

provided Ki(s) is the PI with roll-off mentioned in Section 1.3.4. The first term of Fi(s) is stable

by stability of Gi(s); Instability of the second term follows due to Gi(0) = 1 and 1−Gi(s)e−τis
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having only one zero at s = 0 which cancels one pole at s = 0 in Li(s). This can be shown by

writing the Taylor series of e−τis around s = 0:

Li(s)(1−Gi(s)e−τis) =
κi(1+φis)

αis2(1+ρis)
(1−Gi(s)

∞

∑
k=0

(−τis)k

k!
),

which cannot have more than one zero at s = 0 due to stability of Gi(s) and ‖Gi‖∞ ≤ 1. So,

Li(s)(1−Gi(s)e−τis) has a pole at s = 0.

The advantage of the flow-to-reference feedforward scheme is that it is possible to achieve

‖Gi‖∞ = 1 with a stable Fi, as this only requires (1−Gi(s)e−sτi) to have one zero at s = 0.

Remark: ‖Gi(s)‖∞ ≤ 1 is a necessary condition for L∞-to-L∞ string-stability of an automated

irrigation channel with Gi(s) = G(s) for all i. Otherwise, if ∃ω0 such that |Gi( jω0)|> 1, we can

show that the channel is not L∞-to-L∞ string-stable. Let u0(t) = cos(ω0t), then response of the ith

pool in frequency domain is

Ui(s) = G(s)iU0(s). (2.15)

Therefore, ui(t) at steady-state, uss,i(t), equals ai sin(ω0t +φi), where

ai =|G( jω0)|i,

φi =


arcsin(Re(G( jω0)i)

|G( jω0)|i| ) Im(G( jω0)i) ≤ 0,

π−arcsin(Re(G( jω0)i)
|G( jω0)|i| ), Im(G( jω0)i) > 0.

(2.16)

As such, supt>0 limi→∞ |uss,i(t)|= limi→∞ ai which is unbounded. Thus, the conditions for L∞-to-

L∞ string-stability do not hold.

Remark: If gi ∈ L1[0,∞) with gi(t)≥ 0 for all t ∈ [0,∞) and Gi(0) = 1, then ‖gi‖1 =
∫

∞

0 gi(t)dt =

lims→0
∫

∞

0 gi(t)e−stdt = Gi(0) = 1.

Simulation results presented in Figure 2.1 are carried out to illustrate the impact of adding

the feedforward path Fi(s) chosen as in (2.11). A channel of 5 identical pools with the speci-

fications as in table 1.1 are used. An off-take of 17m3/min is considered to be taken from the

most downstream pool of the channel for 1000mins. Flow transients attenuation is reached while

having non-zero steady-state water-level errors which can be noticed comparing performance of
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Figure 2.1: Simulations with top plot: TVi→Vi+1(s) =
1

1+Tcs , Tc = 10, bottom plot: purely decen-
tralised scheme.

the channel under the decentralised feedback distant-downstream control scheme in bottom row of

the figure. Indeed, water storage of the pools is exploited to overcome amplification of transients

towards upstream. This is a trade-off to be discussed in section 2.6. The roll-off frequency of the

low-pass filter Gi(s) is an extra freedom to deal with this trade-off. The nonzero steady-state water

levels are acceptable as long as they remain within operational bounds. In fact there are higher

level controllers or supervisors to adjust water-level references accordingly.

It should be noted that Fi(s) consists of an infinite dimensional delay component which can be

realised with a Pade approximation. It is reasonable to use a rational approximation of the delay

transfer function e−τis, provided the error remains sufficiently small up to the loop-gain crossover

frequency, as the closed-loop behaviour is insensitive to such modeling uncertainty. For example,

the first order Pade approximation (1− sτi/2)/(1+ sτi/2) is acceptable provided the controller

gain and corresponding loop-gain crossover frequency are sufficiently small, which is necessary
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Figure 2.2: Simulations with TVi→Vi+1(s) =
1

1+10s and first order approximation of the delay in
Fi(s).

Table 2.1: Pool model and controller parameters

Pool number
Pool Model Parameters Controller Parameters

time-delay τ α wave frequency κ ρ φ Tc

(mins) (m2) (rad/min)
0,1,2 16 43806 0.20 7.72 15.2 128 30

3 3 11942 0.74 38.47 3.5 30 10
4 8 22414 0.42 11.44 8.7 77 20

to achieve reasonable control performance and robustness at any rate [27]. Figure 2.2 shows the

simulation result carried out for performance comparison when a first order Pade approximation

of the delay is used. Comparing Figures 2.1 and 2.2 reveals that such approximation of the delay

does not deteriorate performance.

This method is scalable as it uses each pool’s data for design of local controllers. Performance

of a heterogenous channel of 5 pools with model parameters as in table 2.1 is simulated and

illustrated in Figure 2.3. An off-take of 17m3/min is drawn from Pool 0 for 1000mins. Water

level off-sets depend on pools parameters and Tc,i as will be shown in next section. Water flow

transients do not get amplified towards upstream of the channel.
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Figure 2.3: Simulations of a heterogenous channel with feedforward scheme.

2.5 Validation of Control Design Approach via Simulation with a
PDE Model

To validate the performance of a heterogenous channel controller obtained via the aforementioned

design procedure based on the approximate integrator-delay model, simulations of a distributed

distant-downstream controller, designed as described in Section 2.4 are carried out, in closed-loop

with the corresponding PDE model in Section 1.2.1. Among various methods for approximately

solving the Saint-Venant equations, an implicit finite difference scheme known as the Preissmann

scheme proves to be consistent, convergent and stable [15]. This scheme involves both spatial

and temporal discretisation [1]. The controller designed in continuous time is discretised and the

Zero-Order-Hold technique is employed with the sample time of 1 min.

The results are shown in Figure 2.4, which show the downstream water level in each pool and

the corresponding inflows, for an off-take flow in pool 0 of 33% of the initial equilibrium channel

flow of 70 m3/min, starting at 600 min and stopping at 1000 min. It is apparent that closed-

loop water level responses and control flow commands for two models follow similar trajectories,

validating use of the integrator-delay model for controller design with the flow-to-reference feed-

forward scheme described above. Transients at the start of simulation are due to the effect of the
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Figure 2.4: Simulations of the closed-loop water levels and flows with flow-to-reference feedfor-
ward scheme; dashed line: integrator delay model; solid line: PDE model.

initial equilibrium channel flow input to the feedforward block.

2.6 A Design Trade-Off

As illustrated with simulations of Figure 2.1, by adjusting the water-level references to Rnew,i :=

Ri−Fi(s)Vi via the addition of the feedforward path to the purely decentralised control scheme,

L∞-to-L∞ string-stability is achieved at the cost of non-zero steady-state water-level errors for step

changes in flow load. In this section, we will see how the selected roll-off frequency, 1/Tc,i, of the

interconnection dynamics (2.10), gives rise to a trade-off between steady-state water-level errors

and the peaks in flow transients.

As shown in Figure 2.1, the response of u0 to a step change of the off-take d0 has a peak in

the transient component. Note that ui, i = 0,1, . . . is passed through the low-pass filter, Gi(s), to

produce ui+1. Therefore, the lower the bandwidth of Gi(s), larger Tc,i, the more attenuation of the

flow peaks towards upstream of the channel. It can also be seen from the following result which
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characterises the effect of Tc,i on the flow peaks bounds in response to d0 ∈ L2∩L∞.

Theorem 2.2. Consider an automated channel operating under a distributed distant-downstream

control scheme with the architecture illustrated in Figure 1.16 and Fi(s) set as in (2.11) to yield

the flow-to-flow interaction Gi(s) = 1
Tc,is+1 between neighbouring pools. If d0 ∈ L2∩L∞ and di = 0

for i = 1,2, . . ., then ‖ui‖∞ ≤ β

√
1

2Tc,i
‖d0‖2 for i = 1,2, . . ., where β := ‖ Li( j.)

1+Li( j.)e− jτi .
‖∞.

Proof. According to the relation (2.2), it follows from (2.6) that

‖u1‖∞ ≤ ‖
1

1+ jTc,1ω
‖2‖u0‖2,

‖ui‖∞ ≤ ‖
1

1+ jTc,iω
‖2

i−1

∏
k=1
‖ 1

1+ jTc,kω
‖∞‖u0‖2 for i = 2,3 . . . .

Noting that U0(s) = L0(s)/(1+L0(s)e−τ0s)D0(s), and ‖ 1
1+ jTc,iω

‖∞= 1

‖ui‖∞≤ β‖ 1
1+ jTc,iω

‖2‖d0‖2 for i = 1,2, . . .

where β = ‖ L( jω)
1+L( jω)e− jτω ‖∞. Since ‖ 1

(1+ jTc,iω)
‖2=

√
1

2Tc,i
, therefore,

‖ui‖∞≤β

√
1

2Tc,i
‖d0‖2, (2.17)

Hence, ui(t) is uniformly bounded in i for Tc,i > 0.

The previous theorem indicates that a larger time-constant Tc,i for the flow-to-flow interaction

transfer function Gi yields smaller bound on the flow peaks as they propagate. However, as shown

next, this also yields larger steady-state water-level errors along the channel, and thus a design

trade-off associated with the choice of the time-constant Tc,i.

Theorem 2.3. An automated channel operating under a distributed distant-downstream control

scheme with the architecture illustrated in Figure 1.16 and Fi(s) set as in (2.11) to yield the flow-

to-flow interaction Gi(s) = 1
Tc,is+1 between neighbouring pools responds to a unit step d0(t) such
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that

lim
t→∞

e0(t) = 0,

lim
t→∞

ei(t) =
Tc,i + τi

αi
for i = 1,2, . . . . (2.18)

Proof. According to Figure 1.16,

Ei =
Pi(s)

1+Li(s)e−τis
[(1+Ki(s)Fi(s)e−τis)Vi +Di].

Note that vi(t) = ui−1(t) = d0(t)+ ṽi(t) due to flow matching property, where ṽi(t) is the tran-

sient component tending to zero over time. Moreover, considering Di = 0 for i = 1,2, . . . and the

integrator of Ki(s) and two integrators of Li(s) = Pi(s)Ki(s), the steady-state water-level error of

pool i = 1,2, . . . is computed as follows

lim
t→∞

ei(t) = lim
s→0

sEi(s)

= lim
s→0

s
Pi(s)

1+Li(s)e−τis
(1+Ki(s)Fi(s)e−τis)Vi(s)

= 0+ lim
s→0

s
Li(s)e−τis

1+Li(s)e−τis
Fi(s)Vi(s)

= lim
s→0

s
Li(s)e−τis

1+Li(s)e−τis
Fi(s)(

d0

s
+ Ṽi(s))

= lim
s→0

Li(s)e−τis

1+Li(s)e−τis
Fi(s)d0

= 1× lim
s→0

Fi(s)d0 (2.19)

= 0+ lim
s→0

Pi(s)(1−
e−τis

1+Tc,is
)d0

= lim
s→0

1
αis

1+Tc,is− e−τis

1+Tc,is
d0

= lim
s→0

1
αi

Tc,i + τie−τis

1+ 2Tc,is
d0

=
Tc,i + τi

αi
d0 for i = 1,2, . . . , (2.20)

where Ṽi(s) is the Laplace transform of ṽi(t) with stable singularities and the second last inequality

is derived by applying the L’Hospital’s rule when s→ 0 along the real axis. Recall that Pi(s) = 1
αis

.
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Figure 2.5: Simulations with TVf ,i→Vf ,i+1(s) =
1

1+Tcs , top plot: Tc = 10, bottom plot: Tc = 100.

Steady-state water-level error of the bottom pool, e0(t), is zero as the feedforward path is not

applied, Fi(s) = 0.

Remark: The steady-state water-level error off-sets are proportional to Tc,i and decrease with

a low-pass filter of a larger bandwidth.

In other words, increasing Tc,i results in larger water-level errors and smaller peaks of the flow

over gates. This is illustrated via simulations of a channel of Table 1.1 in two cases Tc,i = Tc=

10, 100 in Figure 2.5. As plotted, higher attenuation rate of the flow peaks is achieved with a low-

pass filter of a smaller cut-off frequency, 1
Tc

, while steady-state water-level errors are increased.

Although flow transients attenuation due to flow offtake disturbances are desired, water-levels

are also important as they are considered as a proxy to provide flow at supply points. Therefore,

even though transients are attenuated with the non-constant level reference scheme introduced,

water-level errors should be taken into consideration at steady-state since a non-zero error means

water storage of pool is utilised.
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Lemma 2.1. It is not possible to choose Fi(s) such that zero steady-state water-level errors is

achieved in response to a step offtake d0.

Proof. According to (2.19), for zero steady-state water-level errors,

lim
t→∞

ei(t) = lim
s→0

Fi(s)d0 = 0 (2.21)

has to hold, requiring

lim
s→0

Fi(s) = 0.

Since, when applying the Final Value Theorem, the limit is taken along the real axis, then we can

apply the L’Hopital’s rule for s = σ ∈R:

lim
σ→0

Fi(σ) = lim
σ→0
−Gi(σ)

Ki(σ)
+P(iσ)(1−Gi(σ)e−τiσ )

= lim
σ→0

1
αiσ

(1−Gi(σ)e−τiσ )

= lim
σ→0

−dGi(σ)
dσ

e−τiσ + τiGi(σ)e−τiσ

αi

= lim
σ→0

−dGi(σ)
dσ

+ τiGi(σ)

αi
. (2.22)

In order for this to be 0, τiGi(0) = dGi
dσ

(0) is needed. Since τiGi(0) > 0, as implied by τi > 0 and

Gi(0) = 1, dGi
dσ

(0) > 0 and thus ∃σ0 > 0, s.t. |G(σ0)| > 1 which implies ‖G(.)‖∞ > 1 and the

automated channel is string instable in the L∞-to-L∞ sense.

2.7 Decentralised Lead Compensator Distant-Downstream Control

The proposed distributed distant-downstream scheme which is a decentralised feedback with a

flow to reference feedforward control with the local control structure of Figure 1.16 and Fi(s)

chosen as in (2.11) does not achieve zero steady-state water-level error. Using a completely de-

centralised feedback controller that does not include an integral action will also yield non-zero

steady-state water-level errors in response to a step offtake following the discussion in Section

1.3.4. Therefore, in this section, the performance of decentralised feedback with feedforward

control is compared to the completely decentralised feedback distant-downstream scheme.



2.7 Decentralised Lead Compensator Distant-Downstream Control 45

The design of a feedback control of Figure 1.7 is considered here with the same local control

objectives as in Section 1.3.4 without the zero steady-state water-level error requirement. The

cross-over frequency, ωc,i <
1
τi

needs to hold to avoid poor phase margin due to the phase lag

associated with the delay [27]. Local loop-gain Li(s) = K′i (s)Pi(s) has an integrator due to Pi(s),

thus for robustness to the neglected high frequency wave dynamics, a roll-off is included in the

K′i (s). Around cross-over, phase contribution of Li(s) is about -90◦, not violating closed-loop

stability. Therefore, the local controller is picked as

K′i =
κ ′i

1+ρ ′i s
. (2.23)

With K′i in the control loop of purely decentralised scheme, steady-state water-level error in re-

sponse to a step at d0(t) and di(t) = 0 for i = 1,2, . . . is

lim
t→∞

ei(t) = lim
s→0

sEi(s)

= lim
s→0

s
Pi(s)

1+Pi(s)K′i (s)e−τis
Vi(s)

=
1
κ ′i

d0 for i = 1,2, . . . . (2.24)

Therefore, smaller steady-state water-level errors can be achieved by making the gain of the con-

troller larger, however, that implies larger control input values, larger crossover frequency, and

larger high frequency magnitudes which reduces robustness to unmodeled wave dynamics.

The flow-to-flow transfer function is

TVi→Ui =
Li(s)

1+Li(s)e−τis

=
κ ′i

αis(1+ρ ′i s)+κ ′i e−τis

for the controller chosen as in (2.23). Although it may be possible to satisfy ‖TVi→Ui‖∞ ≤ 1 with

some choice of controller parameters, however, systematically designing controllers that achieve

‖L −1(TVi→Ui(s))‖1 ≤ 1 is our concern.

A comparison of frequency responses of the open-loop transfer function of Figure 1.7 without

the delay component is carried out. A channel with specifications as in Table 1.1 is used here with
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Figure 2.6: Bode plot of open-loop and closed-loop transfer function of the system with and
without integrator in the controller(κi = 1000,ρi = 2.2).

controller parameters designed to yield the required control objectives. The feedback controller

of Section 1.3.4 and controller (2.23) are considered for comparison. Corresponding bode plots

are shown in Figures 2.6, 2.8, and 2.10. Simulations of the channel with these controllers are

plotted in Figures 2.7, 2.9, and 2.11 under an identical scenario to that of Figure 2.5. As can be

seen from Figure 2.6, larger high frequency loop gain may be needed to achieve non-amplification

of transient flows as shown in Figure 2.7. On the other hand, reducing range of frequencies

that the controller magnitude is large, to decrease sensitivity to high frequency uncertainties, by

reducing the controller gain κ ′i results in larger steady-state water-level errors according to (2.24).

In addition, reducing high frequency gain by increasing ρ ′i , results in ‖TVi→Ui‖∞ > 1 leading to

flow amplifications, see Figures 2.8 and 2.9. A non-amplification performance can be achieved by

decreasing the controller gain as in Figure 2.11, however, this results in larger water-level offsets.

Therefore, there exists a trade-off between flow transients attenuation and steady-state water-level

errors.

Hence, reducing steady-state water-level errors is at the price of increasing sensitivity to un-

modeled wave dynamics and also amplification of flow transients. The new distributed distant-

downstream control structure with a flow-to-reference feedforward path is a systematic method of
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Figure 2.7: Simulation of a channel under completely decentralised control with no integral
action(κi = 1000,ρi = 2.2).

achieving flow transients attenuation, but with non-zero steady-state water-level errors.

2.8 Summary

Attenuation of the effect of flow disturbances propagating along an irrigation channel is gained

with the water-level references effectively adjusted on the basis of downstream flow via the feed-

forward path. This is achieved at the price of having to exploit water storage in steady-state for

step changes in flow load, not just during transients. This shows, if the knowledge of the inter-

action is used in reference adjustment, performance will improve. In order to accommodate for

the case that offtakes are drawn at several points, linear growth of the transients along the string

needs to be allowed. This is inevitable due to the steady-state flow matching requirement along the

channel. The design method is scalable and allows for pool by pool synthesis in a decentralised

fashion. In next chapter, we will analyse robustness of the feedforward scheme to uncertainties in

the plant model, particularly to the water transportation delay.
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Figure 2.8: Bode plot of open-loop and closed-loop transfer function of the system with and
without integrator in the controller(κi = 1000,ρi = 15.2).
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Figure 2.9: Simulation of a channel under completely decentralised control with no integral
action(κi = 1000,ρi = 15.2).



2.8 Summary 49

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

 

 

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−180

0

180

360

540

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

OL(no integrator)
OL(with integrator)
CL(no integrator)
CL(with integrator)

Figure 2.10: Bode plot of open-loop and closed-loop transfer function of the system with and
without integrator in the controller(κi = 700,ρi = 5.2).
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Figure 2.11: Simulation of a channel under completely decentralised control with no integral
action(κi = 700,ρi = 5.2).



This page intentionally left blank.



Chapter 3

Robustness Analysis of a Nominally
L∞-to-L∞ String-Stable Automated

Channel

Robustness of the distributed distant-downstream control architecture for irrigation channels pro-

posed in Chapter 2 is analysed. The robustness of L∞-to-L∞ string-stability is investigated via

known LMI based analysis conditions for bounding the L∞-to-L∞ induced norm of systems with

uncertain transfer functions. Application of the conditions, which are only sufficient, does not con-

firm L∞-to-L∞ string-stability robustness for the channel example presented. However, the robust

induced-norm bounds obtained for substantial pool-delay parameter uncertainty are such that the

degree to which transient flow peaks could be amplified remains reasonable at worst. Illustrative

simulations are presented.

3.1 Introduction

In Chapter 2, a nominal spatially-stable propagation of the transient peaks is achieved with a new

distributed distant-downstream control architecture at the expense of steady-state water-level error

off-sets for step changes in offtake load and constant water-level set-points, [3]. In particular,

focusing on the flow interactions between pools, the new scheme involves augmentation of each

decentralised local feedback controller with a feedforward path from the downstream flow to the

controller input. This translates to an adjustment of the local water-level reference on the basis of

downstream flow.

While this design process can nominally achieve peak-to-peak or L∞-to-L∞ string-stability that
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concerns the spatial propagation of transient flow peaks, the robustness of this property to model

parameter uncertainty is of practical concern. Robustness of the peak-to-peak gain of the auto-

mated flow interactions between neighbouring pools is investigated here via LMI based analysis

conditions from [72] for bounding the L∞-to-L∞ induced norm of systems with uncertain transfer

functions. While the application of these conditions, which are only sufficient, does not confirm

robustness of the L∞-to-L∞ string-stability property, the robust induced-norm bounds obtained

show that the degree to which the property is violated remains mild in the face of substantial un-

certainty. That is, transients may be spatially amplified, but only slightly at worst, compared to

other distributed distant-downstream control schemes.

This chapter is organised as follows: Preliminaries including LMI conditions for nominal and

robust peak-to-peak performance are introduced in Section 3.3. Section 3.4 introduces robustness

analysis techniques for a state-space model with parametric uncertainty. Section 3.5 contains

analysis of robustness to uncertainty in pool delay parameter followed by simulations for a channel

with uncertainty. A summary of the chapter is presented at the end.

3.2 Notations

Let the L∞ space consist of all vector-valued continuous time signals, x(t)∈Rn, for which ‖x‖∞ :=

esssupt ‖x(t)‖< ∞. Then the worst case L∞ to L∞ induced norm or peak-to-peak norm of a system

M mapping w(t) to z(t) is defined as

‖M‖p−p := sup
w∈L∞

‖z‖∞

‖w‖∞

. (3.1)

Two subspaces X and Y of a subspace W are said to be complementary if X∩Y = {0} and

X+Y = W. The latter means that any vector w ∈W can be (uniquely, because X∩Y = {0})
represented as w = x+ y, x ∈ X, y ∈ Y.

A symmetric n× n real matrix P is said to be positive (semi-)definite, denoted by P > (≥)0,

if xT Px > (≥)0, ∀x 6= 0 in Rn (∀x ∈ Rn). P is negative (semi-)definite if −P is positive (semi-

)definite. A symmetric n×n real matrix P is positive definite on a subspace S if xT Px > 0, ∀x 6= 0

in S. The Kernel of a real m×n matrix P is denoted by ker(P) := {x ∈Rn|Px = 0}.
The Schur Complement theorem is defined as follows:
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Lemma 3.1. For any symmetric matrix, H, of the form

H =

 A B

BT C

 ,

if C is invertible then the following properties hold:

(i) H > 0 if and only if C > 0 and A−BC−1BT > 0.

(ii) If C > 0, then H ≥ 0 if and only if A−BC−1BT ≥ 0.

Convex hull of real matrices δ1, · · · ,δH is denoted by Co{δ1,δ2 · · · ,δH}.

3.3 Preliminaries

3.3.1 Nominal Peak-to-Peak Norm Performance

In this section we will be reviewing sufficient conditions guaranteeing L∞ to L∞ induced norm of

a nominal dynamical system.

Assume the linear time invariant state-space representation of a closed-loop system is

M22 :


ẋcl = Axcl +Bww2

z2 =Czxcl +Dzww2

, xcl(0) = 0, (3.2)

where xcl ∈ Rn, w2 ∈ Rnw , and z2 ∈ Rnz denote the state vector, exogenous inputs and control

performance signal of the closed-loop system, respectively [73]. The system (3.2) is a mapping

from w2 ∈ L∞ to z2 ∈ L∞ and we are interested in peak-peak norm, ‖M22‖p−p.

A non-strict upper bound γ on the L∞ to L∞ induced norm can be characterised in terms of the

sufficient LMI (linear matrix inequality) conditions in Lemma 3.2 which is established following

the analysis technique described in [72] (where the corresponding strict bound result can be found).

Lemma 3.2. Considering state-space realisation of M22 in (3.2), if there exists X = XT > 0, λ > 0
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and µ > 0 such that

AT X +XA+λX XB

BT X −µI

< 0 and (3.3)


λX 0 CT

0 (γ−µ)I DT

C D γI

≥ 0, (3.4)

then the L∞ to L∞ induced norm of the system is no larger than γ > 0, i.e. ‖M22‖p−p ≤ γ .

Proof. Considering system (3.2), inequality (3.3) implies

d
dt

xT
clXxcl +λxT

clXxcl−µwT
2 w2 ≤ 0, ∀xcl,w2.

Let v = d
dt (x

T
clXxcl)+λxT

clXxcl. Then for any h > 0,

xT
cl(h)Xxcl(h) = e−λhxT

cl(0)Xxcl(0)+
∫ h

0
e−λ (h−t)v(t)dt

and v(h) ≤ µwT
2 (h)w2(h). Thus, using x(0) = 0, it follows that

xT
cl(h)Xxcl(h) ≤ µ

∫ h

0
e−λ (h−t)wT

2 (t)w2(t)dt.

Hence,

xT
clXxcl ≤

µ

λ
‖w2‖2

∞. (3.5)

The Schur complement applied to (3.4) gives

zT
2 z2

γ
≤ λxT

clXxcl +wT
2 w2(γ−µ),

whereby using (3.5) yields

‖z2‖2
∞ ≤ γ

2‖w2‖2
∞.
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This is the non-strict bound claimed.

Modeling of uncertainty follows in next subsection.

3.3.2 Linear Fractional Transformation Based Uncertainty Modeling

To establish L∞ to L∞ induced norm performance bounds for parameterically uncertain transfer

functions, an LFT (linear fractional transform) modeling framework can be employed [38].

Consider a transfer function

M(s) =

M11(s) M12(s)

M21(s) M22(s)


and a ∆∈Rq1×p1 that represents parametric uncertainty according to the following set of equations

z1

z2

= M

w1

w2

 ,

w1 = ∆z1, (3.6)

as depicted in Figure 3.1. Then, the transfer function of the upper LFT mapping w2 to z2, derived

by closing the upper loop of Figure 3.1, is

Fu(M,∆) = M22 +M21(I−∆M11)
−1∆M12, (3.7)

given that the inverse (I −∆M11)−1 exists. In fact, M22 is the transformation of the nominal

mapping (3.2).

M
w2z2

w1z1

∆

Figure 3.1: Upper LFT representation of Fu(M,∆).
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If state-space realisation of M(s) is


A B1 B2

C1 D11 D12

C2 D21 D22

 , (3.8)

then a state-space realisation of Fu(M,∆) is given by

 A(∆) B(∆)

C(∆) D(∆)

 , (3.9)

where

A(∆) := A+B1(I−∆D11)
−1∆C1,

B(∆) := B2 +B1(I−∆D11)
−1∆D12,

C(∆) :=C2 +D21(I−∆D11)
−1∆C1, and

D(∆) := D22 +D21(I−∆D11)
−1∆D12. (3.10)

Definition 3.1. The LFT representation from w2 to z2 in (3.7) is defined to be well-posed if (I−
∆M11)−1 exists or I−∆D11 is non-singular for all ∆ ∈∆∆∆.

3.3.3 Full Block S-Procedure

The full block S-procedure is a technique that allows to equivalently translate robust performance

objectives characterised in terms of a common Lyapunov function into the corresponding analysis

test with multipliers [74, 75]. The S-procedure, [76], can be used in similar applications, while

introducing some conservatism in general due to the block diagonal structure of multipliers [77] in

contrast to full block S-procedure where the full block multipliers are used [75]. LMI conditions

for testing robust performance, similar to [75], are used here. These conditions are derived by

applying the full block S-procedure to inequalities in terms of rational functions of uncertainties.

The strict version of full block S-procedure of [74, 75] is used here, in addition to non-strict

version, which to the best of our knowledge, has not been used in the literature. A prove of this is
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proposed in Lemma 3.4.

Let S⊂Rn be a subspace, N a fixed symmetric matrix, and T ∈Rl×n a full row rank matrix.

For UUU ⊂Rk×l a compact set of full row rank matrices and U ∈UUU let

SU := S∩ker(UT ) = {x ∈ S|T x ∈ ker(U)}.

In the following, it is assumed that UUU is such that all subspaces SU are complementary to a fixed

subspace S0 ⊂ S that

dim(S0) ≥ k and N ≥ 0 on S0.

Lemma 3.3. [74] The condition

∀U ∈UUU : SU ∩S0 = {0}, N < 0 on SU

holds if and only if there exists a symmetric matrix (multiplier) P that satisfies

∀U ∈UUU :


N +T T PT < 0 on S

P > 0 on ker(U).
(3.11)

Lemma 3.4. The condition

∀U ∈UUU : SU ∩S0 = {0}, N ≤ 0 on SU (3.12)

holds if and only if there exists a symmetric matrix P that satisfies

∀U ∈UUU :


N +T T PT ≤ 0 on S

P≥ 0 on ker(U).
(3.13)

Proof. Sufficiency: If condition (3.13) holds then ∀x̂ ∈ SU such that


x̂T Nx̂+ x̂T T T PT x̂≤ 0

x̂T T T PT x̂≥ 0,
(3.14)
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It follows that x̂T Nx̂≤ 0. Therefore, condition (3.12) holds.

Necessity: Suppose to the contrapositive for all matrices P there exists a U ∈ U and an x̂ ∈ SU

such that 
x̂T Nx̂+ x̂T T T PT x̂ > 0 or

x̂T T T PT x̂ < 0
(3.15)

resulting in 3 cases to be analysed separately.

Case 1 Suppose x̂T Nx̂ + x̂T T T PT x̂ > 0 and x̂T T T PT x̂ < 0. It follows that ∃x̂ ∈ SU such that

x̂T Nx̂ > 0 which contradicts condition (3.12).

Case 2 Suppose x̂T Nx̂ + x̂T T T PT x̂ > 0 and x̂T T T PT x̂ ≥ 0. It follows that ∃x̂ ∈ SU such that

x̂T Nx̂ > 0 which contradicts condition (3.12).

Case 3 Suppose x̂T Nx̂ + x̂T T T PT x̂ ≤ 0 and x̂T T T PT x̂ < 0. It follows that ∃x̂ ∈ SU such that

x̂T Nx̂ > 0 which contradicts condition (3.12).

Therefore, the result follows as claimed.

3.4 Robust Performance Analysis

In order to find an upper bound on the L∞ to L∞ induced norm of Fu(M,∆) with state-space

representation (3.9), Lemma 3.2 and the Schur Complement are applied :

Lemma 3.5. [75] Given an uncertainty set ∆∆∆ of appropriately dimensioned real matrices and a

scalar γ > 0, if the interconnection (3.7) is well-posed and ∃ X = XT , λ > 0, µ such that


I 0

A(∆) B(∆)

0 I

C(∆) D(∆)



T 
λX X 0 0

X 0 0 0

0 0 −µI 0

0 0 0 0




I 0

A(∆) B(∆)

0 I

C(∆) D(∆)

< 0, and (3.16)
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
I 0

0 I

C(∆) D(∆)


T 
−λX 0 0

0 (µ− γ)I 0

0 0 I
γ
I




I 0

0 I

C(∆) D(∆)

≤ 0, (3.17)

for all ∆ ∈∆∆∆, then the poles of A(∆) are in the left half plane and ‖Fu(M,∆)‖p−p≤ γ , ∀∆ ∈∆∆∆.

Conditions (3.16) and (3.17) involve matrices that are functions of the uncertainty ∆∈∆∆∆ which

is difficult to verify. Applying the so-called full block S-procedure, strict and non-strict versions,

equivalent conditions can be derived [74,75]. Proof of similar conditions can be found in [74,75].

Lemma 3.6. Given the set of real matrices ∆∆∆, if the interconnection (3.7) is well-posed with all

∆ ∈∆∆∆ and ∃ X = XT , λ > 0, µ , Q1 = QT
1 , S1, R1 = RT

1 , Q2 = QT
2 , S2, R2 = RT

2 , γ > 0 such that

∆

I

T Q1 S1

ST
1 R1

∆

I

> 0,

∆

I

T Q2 S2

ST
2 R2

∆

I

≥ 0, for all ∆ ∈∆∆∆ (3.18)

∗T



λX X 0 0 0 0

X 0 0 0 0 0

0 0 Q1 S1 0 0

0 0 ST
1 R1 0 0

0 0 0 0 −µI 0

0 0 0 0 0 0





I 0 0

A B1 B2

0 I 0

C1 D11 D12

0 0 I

C2 D21 D22


< 0, and (3.19)

∗T



−λX 0 0 0 CT
2

0 Q2 S2 0 DT
21

0 ST
2 R2 0 0

0 0 0 (µ− γ)I DT
22

C2 D21 0 D22 −γI





I 0 0 0

0 I 0 0

C1 D11 D12 0

0 0 I 0

0 0 0 I


≤ 0, (3.20)
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then the poles of A(∆) lie in the left half plane and ‖Fu(M,∆)‖p−p≤ γ , ∀∆ ∈∆∆∆.

Conditions in (3.18) involve the uncertainty ∆ ∈∆∆∆, yielding an infinite number of inequalities

needed to be checked. Following [74, 75], these can be equivalently converted to tractable con-

ditions by taking ∆∆∆ to be the convex hull of finite number of matrices if Q1 ≤ 0 and Q2 ≤ 0 is

assumed for convexity, introducing conservatism in general [75]:

Lemma 3.7. Given real matrices δ1, · · · , δN , if the interconnection (3.7) is well-posed for all

∆ = δn, n ∈ {1,2, · · · N} and ∃ X = XT , λ > 0, µ , Q1 = QT
1 , S1, R1 = RT

1 , Q2 = QT
2 , S2, R2 =

RT
2 , γ > 0 such that

Q1 ≤ 0, Q2 ≤ 0,δn

I

T Q1 S1

ST
1 R1

δn

I

> 0, ∀ n ∈ {1,2, · · · N},

δn

I

T Q2 S2

ST
2 R2

δn

I

≥ 0 ∀ n ∈ {1,2, · · · N}, (3.21)

∗T



λX X 0 0 0 0

X 0 0 0 0 0

0 0 Q1 S1 0 0

0 0 ST
1 R1 0 0

0 0 0 0 −µI 0

0 0 0 0 0 0





I 0 0

A B1 B2

0 I 0

C1 D11 D12

0 0 I

C2 D21 D22


< 0, (3.22)

∗T



−λX 0 0 0 CT
2

0 Q2 S2 0 DT
21

0 ST
2 R2 0 0

0 0 0 (µ− γ)I DT
22

C2 D21 0 D22 −γI





I 0 0 0

0 I 0 0

C1 D11 D12 0

0 0 I 0

0 0 0 I


≤ 0, (3.23)
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then the poles of A(∆) are in the left half plane and ‖Fu(M,∆)‖p−p≤ γ , ∀∆∈Co{δ1, δ2, · · · , δN}.

Lemma follows from a convexity property based on Q1 and Q2 where with Q1 ≤ 0 and Q2 ≤ 0,

(3.18) and (3.21) are equivalent. The bilinear term λX in the LMIs above make the conditions non-

convex. On the other hand, the problem is a convex problem in γ for a fixed λ . Solving the LMIs

for a grid of λ , a value of λ that yields the smallest possible γ can be identified.

3.5 Robustness to Uncertainty in Pool Delay Parameter

To illustrate an example of the robust performance analysis conditions in Section 3.4, within the

context of assessing the string-stability robustness of the distributed control architecture shown in

Figure 1.16, this section focuses on time-delay parameter uncertainty.

In order to apply the finite-dimensional state-space based conditions of Lemma 3.7, a Padé

approximation of the delay element is used to approximate delay terms in Fi(s) and the feedback

path in Figure 1.16. The first order Padé approximation e−τis ∼= 1− τi
2 s

1+ τi
2 s

is reasonable for the delay

component in both the plant model and the feedforward filter Fi(s) at low frequencies and suitable

as long as the bandwidth of the closed-loop, i.e. cross-over of Li(s), and that of Gi(s) is set small

enough by Ki(s) and Fi(s), respectively [3]. The approximation of the feedforward path filter is

denoted by Fp,i(s). Using
1− τi

2 s
1+ τi

2 s
= −1+

2
1+ τi

2 s
,

the plant model with uncertain parameter τi = τ0,i + δτ ,i, where δτ ,i ∈ ∆∆∆i ⊂R, and ∆∆∆i is a closed

interval, has the structure shown in Figure 3.2.

With reference to Figure 3.2, an upper LFT representation of TVi→Ui(δτ ,i) is given by Fu(Mi,δτ ,i)

in accordance with (3.7), where

Mi =

 M11,i M12,i

M21,i M22,i

 , (3.24)

with

M11,i(s) = −
s

2(1+ τ0,i
2 s)

+
sKiPi

(1+ τ0,i
2 s)2(1+KiPi

1− τ0,i
2 s

1+
τ0,i

2 s
)
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Yi

Pi(s) =
1

αis

Vi = Ui−1

Di

Fp,i(s)

2

s
4

δτ,i

τ0,i

Figure 3.2: Block diagram of a closed-loop with a feedforward of the downstream flow; delay is
represented with additive uncertainty.

M12,i(s) =
Ki(Pi−Fp,i)s

2(1+ τ0,i
2 s)(1+KiPi

1− τ0,i
2 s

1+
τ0,i

2 s
)

M21,i(s) =
2KiPi

(1+ τ0,i
2 s)(1+KiPi

1− τ0,i
2 s

1+
τ0,i

2 s
)

M22,i(s) =
Ki(Pi−Fp,i)

1+KiPi
1− τ0,i

2 s

1+
τ0,i

2 s

.

Since M22,i is a SISO transfer function, ‖z2,i‖∞ and ‖w2,i‖∞ represent the supremum on the peak

values of the signals. Table 3.1 summarises the smallest achievable γi for which the conditions

of Lemma 3.7 can be satisfied, given the nominal parameters values specified in Table 1.1 and

different uncertainty set ranges. For the identical pools of channel under consideration the flow

interactions transfer function, Gi, are considered identical. Since the bound obtained exceeds

unity for all cases considered, it is not possible to conclude robustness of the L∞-to-L∞ string-

stability property. However, it is of note that the bounds are all very close to 1; recall that the gain

in transient flow peak as it propagates upstream is bounded as such. The simulations discussed

below serve to compare this with the flow peak gain associated with a H∞ loop-shaping based

distributed controller that is designed as described in [21, 45]. The simulations also reveal the
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Table 3.1: Bounds on the peak to Peak gain in presence of uncertainty. Parameters are same for
all pools.

τi γi λi

Tc,i = 100

16 1 0.01
[15,17] 1.0006 0.01
[14,18] 1.0018 0.01
[13,19] 1.0042 0.01
[12,20] 1.008 0.01

Tc,i = 50

16 1 0.02
[15,17] 1.0047 0.02
[14,18] 1.0257 0.019
[13,19] 1.0632 0.0173
[12,20] 1.01134 0.0155

conservative nature of the analysis.

Simulations are carried out for a 5-pool channel with model parameters as in Table 1.1, where

a flow off-take of 17.7928 m3

min is drawn for 1000 mins from the most downstream pool. Simula-

tions of a the channel model with nominal delays running under the aforementioned distributed

distant-downstream H∞ loop-shaping based controller are shown in Figure 3.3 for the purpose of

comparison. Simulations of channel with uncertainty in the delay parameter equipped with the

new decentralised feedback and flow to reference feedforward scheme as described in Chapter 2

are shown in Figures 3.4 and 3.5 for different values of Tc,i, respectively. Note that for the identical

pools under consideration the interactions transfer function, Gi = 1/(1+Tc,is) are designed to be

the same. According to Figure 3.3, the peak-to-peak gain of the H∞ loop-shaping based distributed

controller is about 1.15. This is 14% larger than the bound on peak-to-peak gain of the distributed

controlled channel under feedforward scheme in the presence of 25% uncertainty in the nomi-

nal delay parameter in Table 3.1. The conditions of Lemma 3.7 are only sufficient for L∞-to-L∞

string-stability. The bounds on the flow peaks achieved are potentially loose upper bounds. The

conservativeness of the method can be seen from the simulations in Figures 3.4 and 3.5 where the

flow interactions transfer functions are chosen to be a fast and slow low-pass filter (Tc,i = 10,100),

respectively. Moreover, simulations are carried out for different uncertainties in the delay param-

eter. From these, it would appear that the L∞-to-L∞ string-stability property is actually robust to

delay uncertainty.

According to Table 3.1, if Tc,i is chosen large enough, the bound on the peak-to-peak norm
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Figure 3.3: Simulations with distributed control scheme.

does not grow much larger than 1. Indeed, Tc,i is a design parameter and identifies a trade-off

between attenuation of the water flow peaks and steady-state water level errors [3]. Larger Tc,i

results in smaller bound on the peak-to-peak norms and larger steady-state water-level errors, on

the other hand.

3.6 Summary

This chapter provides a framework for robustness analysis of the L∞-to-L∞ string-stability of an

irrigation channel operating under a distributed distant-downstream control with flow to reference

feed-forward scheme via some sufficient LMI conditions. As a sample application, the robustness

of the proposed control scheme to delay parameter uncertainty is considered. The framework

accommodates for uncertainties of independent or joint model parameters. The results show that

the rate of amplification of the water flow peaks of a real channel is reasonably small compared to

the previous design schemes of distributed distant-downstream control. It should be noted that the

method is scalable spatially and the analysis can be done on a pool by pool basis. It is desirable

to derive necessary and sufficient conditions to analyse robustness of the L∞-to-L∞ string-stability

property of an automated channel.
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Figure 3.4: Simulations with decentralized feedback and feed-forward scheme, Tc = 100. (a)τ =
16(nominal), (b)τ = 13, (c)τ = 19
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Figure 3.5: Simulations with decentralized feedback and feed-forward scheme, Tc = 50. (a)τ =
16(nominal), (b)τ = 13, (c)τ = 19
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Chapter 4

A 2-D Modeling and Analysis Framework
for Automated Irrigation Channels

Spatially uniform bounded flow peaks along an automated channel is implied by a constraint on

the L∞ to L∞ induced norm of flow interactions as stated in Chapter 2. This condition, indeed,

implies non-amplification of peaks in flow transients as they propagate in the upstream direction.

Moreover, it is shown that an H∞ norm constraint on the flow interactions is a necessary condition

for such spatial stability. This chapter considers the question of what type of transient propagation

characteristics are implied by this weaker condition. Ultimately, Lyapunov based stability analysis

of a 2-D Roesser model is used to show that the collection of decentralized H∞ norm conditions

on each pool imply uniformly bounded flow interactions between the locally controlled pools.

However, it does not imply non-amplification of peaks between all pools, as illustrated by example.

4.1 Introduction

In Chapter 2, uniformly bounded in space and time flow interaction signals between pools operat-

ing under a new distant-downstream control architecture are achieved by ensuring non-amplification

of transient peaks from pool to pool. This is a strong condition, for which a collection of decen-

tralized H∞ norm conditions is necessary. The nature of flow interaction signals implied by these

conditions is studied in this chapter. In particular a 2-D approach, based on Roesser state-space

like model, is pursued. To illustrate the modeling approach a homogenous cascade of automated

pools is considered first and practical notions of stability are investigated from the perspective

of flow interaction signal response to spatial and temporal Roesser model boundary conditions.

Ultimately, Lyapunov based analysis of a 2-D Roesser model for a heterogenous cascade is used

67



68 A 2-D Modeling and Analysis Framework for Automated Irrigation Channels

to establish sufficiency of decentralised H∞ norm based certificates that are sufficient for ensur-

ing uniformly bounded interaction signals in response to finite-energy boundary conditions. The

analysis is related to work reported in [78, 79], where stability of a homogenous string of vehicle

platoons is considered.

The chapter is structured as follows: After introducing notations and preliminary review of

the relevant literature, the problem setup for a general heterogeneous cascade is discussed. Strong

practical stability and the corresponding conditions are derived for a homogeneous cascade, to

illustrate aspects of the modeling approach. String-stability analysis of a heterogeneous cascade

is then presented, followed by an application of this within the context of distributed distant-

downstream control system design for irrigation channels. Simulation examples are used for com-

parison.

4.2 Notations and Preliminaries

The symbol Z+ refers to the subset {i ∈ Z : i ≥ 0} of the integers Z, R+ denotes the subset

{t ∈ R : t ≥ 0} of the real numbers R, and C− denotes the subset {z ∈ C : ℜ(z) < 0} of the

complex numbers C = {α + jβ : α ,β ∈R}, where ℜ(z) denotes the real part α of z = α + jβ

and j :=
√
−1. Fp×m denotes the linear space p-row-by-m-column matrices with entries in F ∈

{R,C}. A superscript ∗ denotes the (complex conjugate) transpose of a matrix or column vector

considered as an n×1 matrix.

Given a vector x= (x1, . . . ,xn)∗ ∈Rn, |x|2 := (∑n
i=1 x2

i )
1
2 and |x|∞ :=max{|xi| : i= 1,2, . . . ,n}.

Note that |x|∞ ≤ |x|2 =
√

x∗x for all x ∈Rn. Given A ∈Rp×m with elements ai j ∈R, ‖A‖2→2 :=

supx 6=0 |Ax|2/|x|2 and ‖A‖∞→∞ := supx 6=0 |Ax|∞/|x|∞ = maxi ∑ j ai j. The set of eigenvalues of A

is denoted by σ(A) = {λ ∈ C : Ax = λx, x 6= 0}. Clearly, λ ∈ σ(A)⇔ −λ ∈ σ(−A) and

λ ∈ σ(A)⇔ (1+ λ ) ∈ σ(I +A), where I denotes the identity matrix. The spectral radius of a

matrix A is denoted by ρ(A).

A symmetric matrix P = P∗ ∈Rn×n has eigenvalues that are real and λmax(P) (resp. λmin(P))

denotes the maximum (resp. minimum) eigenvalue. It is said to be positive definite (resp. semi-

definite) if x∗Px≥ cx∗x (resp. x∗Px≥ 0) for all x ∈Rn and some c > 0, which is denoted by P > 0

(resp. P ≥ 0). Also, P < 0⇔ −P > 0 and P ≤ 0⇔ −P ≥ 0. Note that P > 0⇔ λmin(P) > 0
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d(t)

w(0)w(1)w(i) w(i − 1)

u0u1ui−2ui−1ui
G0(s)G1(s)Gi−1(s)Gi(s)· · · · · ·

Figure 4.1: Block diagram of cascade of heterogeneous dynamical systems.

and P < 0⇔ λmax(P)< 0. The operator ⊕ denotes the direct sum of two matrices, i.e., P1⊕P2 =

diag(P1,P2).

Ln
2 denotes the space of functions x : R+→Rn with ‖x‖2 := (

∫
∞

0 |x(t)|22dt)
1
2 < ∞. The space

of functions x : R+→Rn such that ‖x‖∞ := supt |x(t)|∞ < ∞ is denoted by Ln
∞. Similarly, `n

2 and

`n
∞ denote the subspaces of sequences x : Z+ → Rn such that ‖x‖2 := (∑∞

i=0 |x(i)|22)
1
2 < ∞ and

‖x‖∞ := supi |x(i)|∞ < ∞, respectively. The dimension n of the function value is often suppressed

for convenience.

X = Ric(A,B,C) stands for existence of a X = X∗ such that A∗X +XA+ γ−2XRX +Q = 0,

where Q = C∗C and R = BB∗ are real symmetric n× n matrices. A solution X of this Riccati

equation is stabilising if σ(A+RX) ∈ C−.

4.3 Problem Setup

An automated irrigation channel operating under a distributed distant-downstream control such as

the decentralised feedback with flow-to-reference feedforward control, as discussed in Chapter 1,

can be modeled by a cascade of heterogeneous dynamical systems shown in Figure 4.1, where

there is a single interconnection signal ui(t). Subsystems are indexed from right to left, start of the

information flow towards the end of the string, with the first subsystem numbered 0. The signals

d(t) and w(i) represent spatial and temporal boundary conditions, which correspond to the offtake

drawn from pool 0 and w(i) denotes the non-zero initial conditions due to the mismatch between

the initialisation of the controllers and initial flows, respectively. According to Figure 1.17, input

of the subsystem i is the output of subsystem i− 1. Therefore, a state-space realisation of Gi(s)
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denoted by Gi(s) = {A(i),B(i),C(i),D(i)} is

ẋi(t) = A(i)xi(t)+B(i)ui−1(t),

ui(t) =C(i)xi(t)+D(i)ui−1(t), i = 0,1,2, · · · , (4.1)

where xi(0) = w(i) and u−1(t) = d(t) represent the initial condition of each subsystem and source

of the chain in Figure 1.17, respectively. Noting that xi(t) of each subsystem is evolving with

time and input of subsystem i, ui(t), is the output of Gi−1, information flow in such strings is in

two directions, spatial and temporal, motivating a 2-dimensional representation of the string. In

frequency domain

Ui(s) = Gi(s)Ui−1(s)+ G̃i(s)w(i), i = 1,2, · · ·

U0(s) = G0(s)D(s)+ G̃0(s)w(0), (4.2)

where G̃i(s) =C(i)(sI−A(i))−1.

In the case of a homogenous cascade, Gi(s) = G(s) ∀i≥ 0, taking the Z-transform (spatially)

with d(t) = 0 yields:

U(s,z) =
G̃(s)

1− z−1G(s)
W (z)

with W (z) := ∑
∞
k=0 w(k)z−k, where due to steady-state interconnection signals’ matching require-

ment, i.e. G(0) = 1, the corresponding transfer function has a pole at (s = 0,z = 1) and, according

to [80, Theorem 1], the system is not BIBO stable, and ui(t) does not remain bounded. Similarly,

if w(i) = 0

Ui(s) = Gi(s)G(s)D(s), i = 0,2, · · · .

Taking the Z-transform yields

U(s,z) =
G(s)

1− z−1G(s)
D(s),

which is unstable due to the pole at (s = 0,z = 1). Therefore, the cascade can not be BIBO stable
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motivating considering a weaker notion of stability [80–83].

4.4 2D Analysis of a Homogenous Channel Under Decentralised Distant-
Downstream Control

To illustrate the scope for analysis via the 2-D state-space like Roesser model, consider in this

section a homogenous cascade. For a corresponding spatially and temporally homogeneous irri-

gation channel, measures of performance are defined which relate to notions of strong practical

stability and disturbance attenuation and noting that BIBO stability does not hold because of the

non-essential singularity on the boundary. Motivated by the finite spatial extent of an irrigation

channel, the notion of strong practical stability is introduced for Roesser models, building on

work for so-called repetitive systems [84]. This notion is stronger than practical stability defined

for n-dimensional systems in [83, 85], but weaker than the conventional notion of asymptotic sta-

bility [86]. The analysis carried out in [84, 87] include computational tests that lead to control

law design. These are extended to disturbance attenuation measures for discrete linear repetitive

systems in [88].

4.4.1 A Discrete-Discrete 2-D Roesser Model

With reference to Figure 1.2 and the integrator-delay model (1.7) of an irrigation channel, where

the pools are indexed such that pool i+1 is upstream relative to pool i, a discrete-discrete Roesser

model is derived.

Discretising dynamics of pool i in (1.7) yields:

y(i, j+ 1) = y(i, j)+T (ciniz1(i, j)− couti(uh(i−1, j)+ dh(i, j)))

z1(i, j+ 1) = z2(i, j)

...

z τi
T
(i, j+ 1) = uh(i, j), (4.3)

where T is the sampling time (assumed to be an integer fraction of τi), j stands for the j-th time

instant, y(i, j) = yi( jT ) and similarly for uh(i, j), vh(i, j) and dh(i, j). This is a 2-dimensional
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representation of an irrigation channel, with signals indexed by discrete time and spatial position

in the channel. The extent of signals is finite in the spatial dimension, whereas in the temporal

dimension the extent of signal is unbounded. Note that under feedback control such that uh(i, j)

only depends on y(k, l) for k ≤ i and l ≤ j, information flow remains directed in both the spatial

and temporal dimensions.

Various sate-space forms are available for realising 2-D system models, that exhibit directed

information flow in all dimensions; these forms can be converted into each other via straight-

forward mathematical manipulations. The most popular models are models of linear repetitive

systems [89] and those introduced by Roesser and Fornasini-Marchesini, [86, 90–92]. The 2-D

model used herein is the discrete-discrete Roesser state-space model involving two independent

variables such as spatial and temporal semi-states denoted by xs(i, j) ∈ Rns , and xt(i, j) ∈ Rnt ,

respectively:

xs(i+ 1, j)

xt(i, j+ 1)

=

A11 A12

A21 A22

xs(i, j)

xt(i, j)

+
B1

B2

u(i, j)

y(i, j) =
[
C1 C2

]xt(i, j)

xs(i, j)

+Duu(i, j), (4.4)

subject to the boundary conditions defined by xs(0, j) = h( j) and xt(i,0) = v(i) for i, j ∈ Z+

and uh(i, j) ∈Rnuh+ndh containing the control input and disturbance signals. This model was first

introduced for an image processing application, [90]. Then, it was utilised for modeling other

applications such as grid sensor networks [93], long transmission lines [94] or any process that

can be modeled by discrete partial differential equations. Roesser model exhibits the quarter-

plane causality, in that the semi-states at node (i, j) only depend on the inputs in the rectangle

[0 : i)× [0 : j) and southwest boundary condition [95]. Bearing in mind (4.3), define

xs(i, j) := uh(i−1, j) and xt(i, j) :=


y(i, j)

z1(i, j)
...

z τi
T
(i, j)

 (4.5)
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for i ∈ {0, . . . ,N−1} and j ∈Z+, where xs(i, j) is the spatial semi-state of pool with spatial index

i at time index j, which captures the flow out of pool i due to downstream control action and N

is the number of pools. As such, the dynamics of an irrigation channel can be represented by the

following Roesser model:

xs(i+ 1, j)

xt(i, j+ 1)

=

 0 0

As(i) At(i)

xs(i, j)

xt(i, j)

+
 1

Bu(i)

uh(i, j)+

 0

Bd(i)

dh(i, j),

y(i, j) =
[
0 Ct

]xs(i, j)

xt(i, j)

 , (4.6)

with boundary conditions xs(0, j) = h( j) for j ≥ 0 and xt(i,0) = v(i) for i = 0, . . .N−1, where

At(i) :=



1 T cini 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0

1

0 · · · 0


, As(i) :=



−T couti

0
...

0

0



Bu(i) :=



0

0
...

0

1


, Bd(i) =



−T couti

0
...

0

0


,

and Ct :=
[
1 0 · · · 0

]
. As an initial step, it is of interest to gain an understanding of how a

spatially-and-temporally homogeneous version of the model (4.6) – i.e. As, At do not depend on

i – performs under static semi-state feedback uh(i, j) =
[

Fs Ft

][
xs(i, j)T xt(i, j)T

]T
. The

resulting closed-loop model is

xs(i+ 1, j)

xt(i, j+ 1)

=

Ass Ast

Ats Att

xs(i, j)

xt(i, j)

+
Bs

Bt

dh(i, j)
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y(i, j) =
[
Cs Ct

]xs(i, j)

xt(i, j)

 , (4.7)

with Ass := Fs, Ast := Ft , Ats := As + BuFs, Att := At + BuFt , Bs := 0, Bt := Bd , Cs := 0, and

boundary conditions xs(0, j) = h( j) and xt(i,0) = v(i) for (i, j) ∈ {0, . . . ,N − 1}×Z+. This

model is used for stability and performance analysis [2].

4.4.2 Practical Stability Analysis

For a Roesser model in the form (4.4), internal asymptotic stability implies BIBO stability [86].

Restricting attention to this notion of stability, however, is limiting in terms of what might be oth-

erwise acceptable performance for systems with finite spatial extent. Indeed, asymptotic tendency

to 0 in each of the dimensions, with the other fixed at an arbitrary finite value, is possible without

Xr being zero as r→ ∞. This is illustrated in Figure 4.2, which shows the zero-input semi-state

response of a simple 2-D Roesser model (not of an irrigation channel) with non-zero boundary

conditions. The corresponding concept of strong practical stability, introduced for linear repetitive

systems in [84], is developed below for the Roesser model (4.7).

Lemma 4.1. [2] Suppose the boundary conditions and input for (4.7) are configured such that

xs(0, j) = 0, xt(i,0) = 0 and dh(i, j) = d̃( j) for i, j ∈Z+, with |d̃( j)| uniformly bounded. If

ρ(Ass) < 1 and ρ(Att +Ats(I−Ass)
−1Ast) < 1,

then s̃( j) := limi→∞ xs(i, j) and t̃( j) := limi→∞ xt(i, j) both exist for all j ∈ Z+, with uniform

bound in magnitude.

Proof. This result concerns the spatially asymptotic response. For each j ∈Z+, let

sλ ( j) :=
∞

∑
i=0

xs(i, j)λ i, tλ ( j) :=
∞

∑
i=0

xt(i, j)λ i, and dλ ( j) :=
∞

∑
i=0

d̃( j)λ i =
d̃( j)
1−λ

.

These transformed variables are functions of λ defined on a disc, of suitably small radius, centred
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j

Figure 4.2: Strong practical stability without asymptotic stability: Ass = 0; Ast =
√

0.91 = Ats;
Att = −0.1. Non-zero boundary-condition response xs asymptotically approaches 0 along each
dimension, with the other fixed, but not the supremum of the magnitude across the line r = i+ j
(which diverges) as r→ ∞.

at the origin in the complex plane. Applying the transformation to (4.7) yields:

λ
−1sλ ( j) = Asssλ ( j)+Asttλ ( j)+Bs

d̃( j)
1−λ

,

tλ ( j+ 1) = Atssλ ( j)+Atttλ ( j)+Bt
d̃( j)
1−λ

,

yλ ( j) =Cssλ ( j)+Cttλ ( j). (4.8)

Then

sλ ( j) = λ (I−λAss)
−1Asttλ ( j)+λ (I−λAss)

−1Bs
d̃( j)
1−λ

,

tλ ( j+ 1) = (λAts(I−λAss)
−1Ast +Att)tλ ( j)+ (λAts(I−λAss)

−1Bs +Bt)
d̃( j)
1−λ

,

yλ ( j) =Cssλ ( j)+Cttλ ( j). (4.9)

This constitutes a discrete dynamical system with the state variable tλ ( j) and an algebraic equation



76 A 2-D Modeling and Analysis Framework for Automated Irrigation Channels

for sλ ( j). Since the specified boundary conditions imply tλ (0) = 0,

tλ ( j) =
j−1

∑
k=0

[(λAts(I−λAss)
−1Ast +Att)

j−k−1(λAts(I−λAss)
−1Bs +Bt)

d̃(k)
1−λ

]. (4.10)

In order to apply the final value theorem in the spatial direction, 1−λ

λ
tλ ( j) needs to be analytic on

the unit disc. Since ρ(Ass)< 1, tλ ( j) is analytic as a function of λ on |λ |< 1, for any j ∈Z+. In

fact, tλ ( j) is a rational function with no poles inside or on the unit circle T := {λ ∈C : |λ |= 1},
except one at λ = 1 due to the input. Therefore, the final value theorem applies to yield

lim
i→∞

xt(i, j) = t̃( j) = lim
λ→1

1−λ

λ
tλ ( j)

=
j−1

∑
k=0

[(Ats(I−Ass)
−1Ast +Att)

j−k−1(Ats(I−Ass)
−1Bs +Bt)d̃(k)]. (4.11)

Moreover, since ρ(Ats(I−Ass)−1Ast + Att) < 1 and there exists a D < ∞ such that |d̃( j)| < D

∀ j ∈Z+, it follows there exists a T < ∞ such that |t̃( j)|< T ∀ j ∈Z+.

Similarly, sλ is a rational function with no poles inside or on the unit circle T, except at λ = 1.

Applying the final value theorem yields:

lim
i→∞

xs(i, j) = s̃( j) = lim
λ→1

1−λ

λ
sλ ( j)

= (I−Ass)
−1Ast t̃( j)+ (I−Ass)

−1Bsd̃( j) (4.12)

and thus, ∃S < ∞ such that |s̃( j)|< S ∀ j ∈Z+.

Corollary 4.1. When the conditions in Lemma 4.1 hold, the so-called spatial limit profile ỹ( j) :=

lim
i→∞

y(i, j) exists in accordance with the following stable 1-D model:

t̃( j+ 1) = (Ats(I−Ass)
−1Ast +Att)t̃( j)+ (Ats(I−Ass)

−1Bs +Bt)d̃( j),

s̃( j) = (I−Ass)
−1Ast t̃( j)+ (I−Ass)

−1Bsd̃( j),

ỹ( j) =Css̃( j)+Ct t̃( j)

= (Cs(I−Ass)
−1Ast +Ct)t̃( j)+Cs(I−Ass)

−1Bsd̃( j),

(4.13)
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with boundary condition t̃(0) = 0.

Remark: As stated, Lemma 4.1 provides a sufficient condition for the existence of uniform-

bounds on the spatially-asymptotic semi-states profiles approached as i→ ∞, for a particular con-

figuration of the boundary condition and input. Under the following stabilisability and detectabil-

ity hypotheses, regarding in particular the model (4.13), the condition in Lemma 4.1 becomes

necessary for the analyticity of tλ ( j) and sλ ( j), the uniform boundedness of the limits in (4.11)

and (4.12) and thus, the existence of the uniformly-bounded spatially-asymptotic semi-state pro-

files:

• (Ass, Ast) is stabilisable

• (Ats, Ass) is detectable

• (Ass, Bs) is stabilisable

• (Ats(I−Ass)−1Ast +Att , Ats(I−Ass)−1Bs +Bt) is stabilisable

• ((I−Ass)−1Ast , Ats(I−Ass)−1Ast +Att) is detectable.

Remark: The condition in Lemma 4.1 is also sufficient for the existence of spatially-asymptotic

semi-state profiles, s̃ and t̃, that are uniformly bounded in magnitude over j ∈Z+, when the in-

put and boundary conditions of (4.7) are configured as follows: dh(i, j) = 0, xs(0, j) = x̃s( j)

and xt(i,0) = x̃t for i, j ∈ Z+, with |x̃s( j)| uniformly bounded. Appropriate stabilisability and

detectability hypotheses make the condition necessary.

Lemma 4.2. Suppose the boundary conditions and input for (4.7) are configured such that xs(0, j) =

0, xt(i,0) = 0 and dh(i, j) = d̂(i) for i, j ∈Z+, with |d̂(i)| uniformly bounded. If

ρ(Att) < 1 and ρ(Ass +Ast(I−Att)
−1Ats) < 1

then ŝ(i) := lim j→∞ xs(i, j) and t̂(i) := lim j→∞ xt(i, j) both exist for i ∈Z+, with uniform bound

in magnitude.

Proof. The proof involves application of the final value theorem and the transformed variables

sµ(i) :=
∞

∑
j=0

xs(i, j)µ j, tµ(i) :=
∞

∑
j=0

xt(i, j)µ j, and dµ(i) :=
∞

∑
j=0

d̂(i)µ j =
d̂(i)

1−µ
,
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in a fashion similar to the proof of Lemma 4.1.

Corollary 4.2. When the conditions of Lemma 4.1 hold, the temporal limit profile ŷ(i) := lim
j→∞

y(i, j)

exists in accordance with the following stable 1-D model:

ŝ(i+ 1) = (Ass +Ast(I−Att)
−1Ats)ŝ(i)+ (Ast(I−Att)

−1Bt +Bs)d̂(i),

t̂(i) = (I−Att)
−1Atsŝ(i)+ (I−Att)

−1Bt d̂(i),

ŷ(i) = (Cs +Ct(I−Att)
−1Ats)ŝ(i)+Ct(I−Att)

−1Bt d̂(i),

(4.14)

with boundary condition ŝ(0) = 0.

Remark: Under the following stabilisability and detectability hypotheses concerning the

model (4.14), the conditions in Lemma 4.2 are also necessary for uniformly-bounded temporal

limit profiles:

• (Att , Ats) is stabilisable

• (Ast , Att) is detectable

• (Att , Bt) is stabilisable

• (Ast(I−Att)−1Ats +Ass, Ast(I−Att)−1Bt +Bs) is stabilisable

• ((I−Att)−1Ats, Ast(I−Att)−1Ats +Ass) is detectable.

Remark: The condition in Lemma 4.2 is also sufficient for the existence of temporally-

asymptotic semi-state profiles ŝ and t̂, that are uniformly bounded in magnitude over i∈Z+, when

the input and boundary conditions of (4.7) are configured as follows: dh(i, j) = 0, xs(0, j) = x̂s

and xt(i,0) = x̂t(i) for i, j ∈Z+, with |x̂t(i)| uniformly bounded. Appropriate stabilisability and

detectability hypotheses make the condition necessary.

In view of Lemmas 4.1 and 4.2, the following strong practical internal stability property is

defined for the Roesser model (4.7). Note that it is stronger than the usual notion of practical

internal stability [83,85], which is typically defined in terms of the weaker requirement of ρ(Ass)<

1 and ρ(Att) < 1 alone.
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Definition 4.1. The Roesser model (4.7) is said to have the property of strong practical internal

stability whenever all of the following hold:

(a) ρ(Ass) < 1,

(b) ρ(Att) < 1,

(c) ρ(Att +Ats(I−Ass)−1Ast) < 1,

(d) ρ(Ass +Ast(I−Att)−1Ats) < 1,

Remark: Note that the inverses in (c) and (d) exist provided (a) and (b) hold.

Remark: The strong practical stability notion introduced for irrigation channels turn out not

to reflect the desirable string-stability property. Indeed, due to flow matching property in steady-

state, it can be seen from (4.14) that ρ(Ass + Ast(I−Att)−1Ats) = 1 when d̂(i) = 0 for i > 0.

Moreover, the analysis in this section relies on homogeneity of the string of pools. In future, it

may be possible to develop new approaches to controller synthesis via more suitable constraints

for irrigation channels. In the next section, we will focus on the L2-to-L∞ gain from the offtakes

to the flow instead of L∞-to-L∞ gain, as a weaker notion for string-stability that allows for the

analysis to be carried out for a heterogenous channel.

4.5 Analysis of a Heterogenous Channel Under Decentralized Distant-
Downstream Control

4.5.1 A Continuous-Discrete 2-D Roesser Model

Performance and spatial stability analysis of an automated irrigation channel operating under

distributed distant-downstream control where information flow is directed towards upstream of

the channel is carried out via string-stability analysis of the cascade of Figure 1.17. As such,

each subsystem represents a mapping from downstream flow to the upstream flow of a pool, i.e.

Gi(s) := TUi−1→Ui(s). Although it is natural to analyse performance in terms of step changes in

offtakes and initial conditions, in this section, we consider d(t) ∈ L2 ∩ L∞ and w(i) ∈ `2. This

assumption is not limiting since, in practice, the offtakes drawn from the channel are taken for a

finite time interval and channels are of finite spatial extent. Moreover, effect of only one offtake at
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the most downstream pool is analysed, otherwise linear growth of transients must be allowed due

to flow matching at steady-state. Considering a state-space realisation of Gi(s) as in (4.1), such

a cascade of subsystems can be represented by continuous-discrete Roesser model, as in [96], as

follows:  ẋt(t, i)

xs(t, i+ 1)

=

A(i) B(i)

C(i) D(i)

xt(t, i)

xs(t, i)

 , i ∈Z+, (4.15)

with boundary conditions xt(0, .) = w(i) ∈ `2 and xs(.,0) = d(t) ∈ L2 ∩ L∞. Linear repetitive

systems is an example of such systems [95]. The continuous temporal and discrete spatial semi-

states are defined as xt(t, i) := xi(t) and xs(t, i) := ui−1(t). This model will be exploited later in

the subsequent Lyapunov based analysis. In the rest of this chapter, a strictly proper Gi(s) for all

pools is assumed, i.e. D(i) = 0,∀i. Therefore, the string-stability under consideration follows:

Definition 4.2 (L2-to-L∞ string-stability). A cascade of subsystems with the architecture illus-

trated in Figure 1.17 is L2-to-L∞ string-stable if there exists an 0 < M < ∞ such that, with

d ∈ L2∩L∞ and w = {w(0),w(1), · · ·} ∈ `2, ‖ui‖∞ ≤M for all i = 0,1,2, . . ..

Now we are in a position to analyse stability of (4.15) with the purpose of deriving conditions

that lead to L2-to-L∞ string-stability.

4.5.2 L2-to-L∞ String-Stability Analysis

Lyapunov analysis is a common way of stability analysis of multi-dimensional systems, [86, 97,

98]. Lyapunov based analysis is carried out here to derive analysis conditions for L2-to-L∞ string-

stability of the cascade under consideration.

A space dependent positive quadratic 2-D Lyapunov function is used. A non-strict version of

Bounded Real Lemma gives conditions on each subsystem of the cascade to imply existence of

a 2-D Lyapunov function with negative semi-definite variation. This property of the Lyapunov

function is, then, used to derive a bound on the semi-states.



4.5 Analysis of a Heterogenous Channel Under Decentralized Distant-Downstream Control 81

Consider the 2-D Lyapunov function

V (t, i) =

xt(t, i)

xs(t, i)

T

P(i)

xt(t, i)

xs(t, i)


=xT

t (t, i)Pt(i)xt(t, i)+ xT
s (t, i)Ps(i)xs(t, i)

:=Vt(t, i)+Vs(t, i), (4.16)

where P(i) = Pt(i)⊕Ps(i) = PT (i) ≥ 0 is spatially varying matrix.

The variations of V (t, i) along the trajectory of the 2-D system (4.15) is

∆V (t, i) =
∂Vt(t, i)

∂ t
+Vs(t, i+ 1)−Vs(t, i)

=ẋT
t (t, i)Pt(i)xt(t, i)+ xt(t, i)Pt(i)ẋt(t, i)+ xT

s (t, i+ 1)Ps(i+ 1)xs(t, i+ 1)

− xs(t, i)Ps(i)xs(t, i)

=x(t, i)T (ÃT (i)P̃t(i)+ P̃t(i)Ã(i)+ ÃT (i)P̃s(i+ 1)Ã(i)− P̃s(i))x(t, i)

=xT (t, i)Q(i)x(t, i),

where

Ã(i) :=

A(i) B(i)

C(i) 0

 , P̃t(i) :=

Pt(i) 0

0 0

 ,

P̃s(i) :=

0 0

0 Ps(i)

 , x(t, i) :=

xt(t, i)

xs(t, i)

 ,

Q := ÃT (i)P̃t(i)+ P̃t(i)Ã(i)+ ÃT (i)P̃s(i+ 1)Ã(i)− P̃s(i).

Result of Lemma 4.3, as can be found in [78], will be used later to show bounded energy of

semi-states.

Lemma 4.3. Consider function V (t, i) =Vt(t, i)+Vs(t, i) of the form shown in (4.16) with Vt(t, i) ≥ 0,

Vs(t, i) ≥ 0. If ∆V (t, i) = ∂Vt (t,i)
∂ t +Vs(t, i+ 1)−Vs(t, i) ≤ 0, then, ∀t, i > 0

i

∑
k=0

Vt(t,k) ≤
i

∑
k=0

Vt(0,k)+
∫ t

0
Vs(τ ,0)dτ , and
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∫ t

0
Vs(τ , i)dτ ≤

∫ t

0
Vs(τ ,0)dτ +

i

∑
k=0

Vt(0,k). (4.17)

Proof. Since ∆V (τ ,k) ≤ 0,

i

∑
k=0

∫ t

0
∆V (τ ,k)dτ =

i

∑
k=0

(Vt(t,k)−Vt(0,k))+
∫ t

0
(Vs(τ , i)−Vs(τ ,0))dτ ≤ 0.

Thus,

i

∑
k=0

Vt(t,k)+
∫ t

0
Vs(τ , i)dτ ≤

i

∑
k=0

Vt(0,k)+
∫ t

0
Vs(τ ,0)dτ ,

whereby the result claimed follows by Vs(t, i) ≥ 0 and Vt(t, i) ≥ 0.

A statement of the Bounded Real Lemma in the required non-strict form derived in Theorem

4.1 could not be found in the literature. It is used later to extract conditions on each subsystem

that imply ∆V (t, i) ≤ 0.

Theorem 4.1. Let G(s) = C(sI−A)−1B be a state-space realization of a strictly-proper matrix

transfer function, with A ∈Rn×n Hurwitz (i.e. σ(A)⊂C−), 0 < γ ∈R. The following are equiva-

lent:

(i) ‖G‖∞ := supℜ(s)>0 ‖G(s)‖2→2 = supω∈R ‖G( jω)‖2→2 ≤ γ;

(ii) there exists a unique real matrix X = X∗ ≥ 0 such that X = Ric(A,B,C) and σ(A+BB∗X)⊂
C−∪ jR.

Proof. ‖G(.)‖∞ ≤ γ is equivalent to

φ ( jω) :=I− γ
−2GT (− jω)G( jω)

=
[
γ−1B∗(− jωI−A∗)−1 I

]−C∗C 0

0 I

γ−1( jωI−A)−1B

I

≥ 0. (4.18)

Applying [38, Lemma 13.17], φ ( jω) ≥ 0 for all ω ≥ 0 is equivalent to existence of a unique real

Y = Y ∗ ≤ 0 such that

A∗Y +YA− γ
−2Y BB∗Y −C∗C = 0, (4.19)
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and σ(A− γ−2BB∗Y ) ∈ C−∪ jR. By taking X = −Y , it follows that existence of Y ≤ 0 such that

(4.19) and σ(A− γ−2BB∗Y ) ∈ C−∪ jR hold is equivalent to existence of X ≥ 0 such that

A∗X +XA+ γ
−2XBB∗X +C∗C = 0 (4.20)

and σ(A+ γ−2BB∗X) ∈ C−∪ jR. Therefore, ‖G(.)‖∞ ≤ γ if and only if ∃X = Ric(A,B,C) ≥ 0

and σ(A+BB∗X) ∈ C−∪ jR.

Lemma 4.4. Consider the 2D system of the form (4.15) with Gi(s) = C(i)(sI−A(i))−1B(i), if

σ(A(i))⊂ C−for all i, and ‖Gi(.)‖∞ ≤ 1, ∀i ∈Z+ then ∃Pt(i) = Pt(i)T ≥ 0 such that

∆V (t, i) =
∂Vt(t, i)

∂ t
+Vs(t, i+ 1)−Vs(t, i) ≤ 0, (4.21)

where V (t, i) = Vt(t, i)+Vs(t, i) = xt(t, i)T Pt(i)xt(t, i)+ xs(t, i)T xs(t, i) (i.e. Ps equal to the iden-

tity).

Proof. According to Theorem 4.1, for a stable transfer function Gi(s) with ‖Gi(.)‖∞ ≤ 1, and

state-space realisation {A(i),B(i),C(i),0}, ∃X(i) = XT (i) ≥ 0 such that

X(i)A(i)+A(i)T X(i)+X(i)B(i)B(i)T X(i)+C(i)TC(i) = 0. (4.22)

Applying the Schur complement to (4.22) gives

 X(i)A(i)+A(i)T X(i)+C(i)TC(i) X(i)B(i)

B(i)T X(i) −1

≤ 0, (4.23)

which yields Q(i) ≤ 0 by defining Pt(i) := X(i) and Ps(i) := I in (4.17). Therefore, it can be

concluded that ∆V (t, i) =

xt

xs

T

Q(i)

xt

xs

≤ 0.

The following Theorem provides sufficient conditions that ensure uniformly bounded semi-

states based on the introduced Lemmas.
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Theorem 4.2. Given (A(i),B(i),C(i)) and D(i) = 0 for i∈Z+, consider the spatially varying but

temporally stationary 2-D Roesser model (4.15) with boundary conditions xs(·,0) ∈ L2∩L∞ and

xt(0, ·) ∈ `2. If ‖Gi‖∞ ≤ 1 with Gi(s) := C(i)(sI−A(i))−1B(i) for all i ∈Z+, and the following

conditions hold on the model data:

1. σ(A(i))⊂ C−for all i ∈Z+;

2. there exist constants 0 < λ ,k,λt ,C̃, B̃ < ∞ such that ‖eA(i)t‖∞→∞ ≤ ke−λ t , λmax(X(i)) ≤ λt

with X(i) =Ric(A(i),B(i),C(i))≥ 0 such that σ(A(i)+B(i)B(i)∗X(i))⊂C−, ‖B(i)‖∞→∞≤
B̃ and ‖C(i)‖∞→∞ ≤ C̃ for all i ∈Z+.

then the semi-states remain uniformly bounded in the sense that there exist constants 0 < Mss,

Mtt < ∞ such that |xs(t, i)|< Mss and |xt(t, i)|< Mtt for all t > 0 and i ∈Z+.

Proof. Let Xt := supi |xt(0, i)|, Mt := ∑
i
k=0 xt(0,k)∗xt(0,k), Ms :=

∫ t
0 xs(τ ,0)∗xs(τ ,0)dτ which

are bounded as xt(0, .) ∈ L2 ∩ L∞, xs(.,0) ∈ `2. Since the conditions of Lemma 4.4 hold, with

Pt(i) = Xt(i), Ps = I and V (t, i) = xt(t, i)T Pt(i)xt(t, i)+ xs(t, i)T xs(t, i) then ∆V (t, i) ≤ 0 ∀i, and

we can apply result of Lemma 4.3. As such,

∫ t

0
x∗s (τ , i)xs(τ , i)dτ ≤ 1

λmin(Ps)

∫ t

0
Vs(τ , i)dτ

≤
∫ t

0
Vs(τ ,0)dτ +

i

∑
k=0

Vt(0,k)

=
∫ t

0
x∗s (τ ,0)Ps(0)xs(τ ,0)dτ +

i

∑
k=0

x∗t (0,k)Pt(k)xt(0,k)

≤ λmax(Ps(0))‖xs(·,0)‖2
2 + sup

i
λmax(Pt(i))‖xt(0, ·)‖2

2

= ‖xs(·,0)‖2
2 +λt‖xt(0, ·)‖2

2. (4.24)

Now noting that ‖xs(·,0)‖2,‖xt(0, ·)‖2 are bounded,

|xt(t, i)|∞ = |xt0(i)eA(i)t +
∫ t

0
eA(i)(t−τ)B(i)xs(τ , i)dτ|∞

≤ |xt0(i)|∞ke−λ t + k sup
i
‖B(i)‖∞→∞

∫ t

0
|e−λ (t−τ)||xs(τ , i)|∞dτ

≤ Xtk+ kB̃(
∫ t

0
e−2λ (t−τ)dτ)

1
2 (
∫ t

0
|xs(τ , i)|2∞dτ)

1
2 (4.25)
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≤ Xtk+ kB̃(
1− e−2λ t

2λ
)

1
2 (
∫ t

0
xs(τ , i)∗xs(τ , i)dτ)

1
2

≤ Xtk+ kB̃(
1

2λ
)

1
2

√
‖xs(τ ,0)‖2

2 +λt‖xt(0,k)‖2
2 (4.26)

≤ Xtk+ kB̃(
1

2λ
)

1
2
√

Ms +λtMt

:= Mtt ,∀t, i (4.27)

where, inequality (4.25) follows from the Cauchy Schwartz inequality and (4.26) follows from

(4.24). Hence, ∃Mtt s.t. ‖xt(., .)‖∞ < Mtt .

Moreover, according to (4.15), xs(t, i+1) =C(i)xt(t, i) holds. Then, it follows that ‖xs(t, i)‖∞≤
supi ‖C(i)‖∞→∞‖xt(t, i− 1)‖∞ ≤ C̃Mtt := Mss. Thus the semi-states are uniformly bounded in i, t

as claimed. Note that semi-states grow linearly with ‖xs(t,0)‖2 and ‖xt(0, i)‖2.

Similar result in the context of irrigation channel follows:

Corollary 4.3. Consider an automated irrigation channel running under distributed distant- down-

stream control that can be modeled as (4.15) with an offtake at the bottom pool d(t) ∈ L2∩L∞ and

pools initial operating conditions w = {w(0),w(1), · · ·} ∈ `2. Suppose the following conditions

hold on the flow to flow interactions realisation:

1. the stable strictly proper flow-to-flow transfer function TVi→Ui = Gi(s) has a realisation

{A(i),B(i),C(i),0} for all i ∈Z+;

2. there exist constants 0 < λ ,k,λt ,C̃, B̃ < ∞ such that ‖eA(i)t‖∞→∞ ≤ ke−λ t , λmax(X(i)) ≤ λt

with X(i) =Ric(A(i),B(i),C(i))≥ 0 such that σ(A(i)+B(i)B(i)∗X(i))⊂C−, ‖B(i)‖∞→∞≤
B̃ and ‖C(i)‖∞→∞ ≤ C̃ for all i ∈Z+.

If ‖Gi‖∞ ≤ 1 for all i ∈Z+, then the channel is L2-to-L∞ string-stable in the sense of Definition

4.2.

Proof. A direct application of Theorem 4.2 to an automated irrigation channel under distributed

distant-downstream control architecture modeled as (4.15) gives the result.
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4.5.3 Simulation Examples

For the sake of comparison, in this section three automated channels are compared in terms of

response and the analysis conditions. For simplicity, performance of a homogeneous channel

is investigated. The first case is a homogeneous channel of pools automated with decentralised

feedback distant-downstream control which yields

G1(s) := TUi−1→Ui =
1

αs K(s)

1+ 1
αs K(s)e−τs

, (4.28)

where K = κ(1+φs)
s(1+ρs) . The channel under consideration has parameters as in Table 1.1. G1(s)

contains an infinite dimensional delay component, which is approximated by a first order pade

as in previous chapters. The transfer function G1(s) is stable but ‖G1(.)‖∞ = 1.8359. Due to

necessity of ‖G1‖∞≤ 1 for L∞-to-L∞ string-stability as stated in Chapter 2, we expect amplification

of flow transient peaks toward upstream. Simulation of a channel of pools with the interaction

transfer function G1(s) is shown in Fig. 4.3 where an offtake of 17m3/min is drawn from the most

downstream pool for 1000 mins. As can be seen we face amplification of transient flows towards

upstream of the channel.

In another case, an automated channel under the proposed decentralised feedback with flow-

to-reference feedforward distant-downstream control scheme in Chapter 2 is considered where the

flow to flow interaction transfer function is a low pass filter with Tc = 40:

G2(s) := TUi−1→Ui =
1

1+ 40s
, (4.29)

which achieves L∞-to-L∞ string-stability due to ‖g2‖1≤ 1. As discussed, with this choice of G2(s),

‖g2(.)‖1 ≤ 1→ ‖G2(.)‖∞ ≤ 1, which achieves L∞-to-L∞ string-stability or non-amplification of

transient flows in response to a constant offtake changes. Simulation under same scenario is carried

out for a channel of pools with interactions transfer functions equal to G2(s). The result is plotted

in Fig. 4.4 where no amplification is observed as expected.

As an another case, consider the interactions transfer function to be

G3(s) := Tui−1→ui =
0.01

s2 + 1.48s+ 0.01
. (4.30)
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Figure 4.3: Response of a channel with TUi−1→Ui = G1(s) to a pulse offtake at bottom pool.

In this case G3(s) is stable and ‖G3(.)‖∞ = 1. Thus, L2-to-L∞ stability can be achieved by Lemma

4.3. The controlled flow responses to a 17m3/min step change in the outflow at the bottom pool

are shown in Figures 4.5 and 4.6. It can be seen that, while there is amplification of flow peaks as

these propagate along the bottom pools, this does not persist and the peak flows remain uniformly

bounded along the channel as expected.

4.6 Summary

The L2-to-L∞ string-stability property is defined and analysed for a heterogeneous automated ir-

rigation channel operating under distant-downstream control using 2-D modeling and analysis

techniques. Lyapunov based stability analysis is carried out to develop a decentralised string-

stability certificate leading to L2-to-L∞ string-stability in automated irrigation channels in response

to bounded offtakes of finite duration drawn from a pool. The analysis conditions are derived with

the aim to find systematic synthesis methods to bound water flows along an automated irrigation

channel. It would be of interest to understand if the H∞ norm condition is necessary for L2-to-L∞
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Figure 4.4: Response of a channel with TUi−1→Ui = G2(s) to a pulse offtake at bottom pool.
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Figure 4.5: Response of a channel with TUi−1→Ui = G3(s) to a pulse offtake at bottom pool.

stability of homogeneous cascades. The robustness properties of the presented flow-to-reference

feedforward approach to satisfying the decentralised string-stability certificate within the context

of irrigation channel control system design also requires further investigation.
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Figure 4.6: Response of a channel with TUi−1→Ui = G3(s) to a pulse offtake at bottom pool, closer
view.
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Chapter 5

Conclusion

5.1 Contributions

Aspects of automating the operation of large scale gravity-powered open-water irrigation channels

are considered in this thesis. Automation of large scale irrigation channels (e.g. a cascade of

pools) under the so-called distributed distant-downstream control architecture has lead to demand

driven release of water from resources. This demand driven aspect in turn minimises the water

wastage at the end of channels as apposed to conventional manual water delivery operation. Under

distant-downstream automatic control, water levels along the channel are regulated as a measure of

capacity to provide flow demand. Nevertheless, it has been shown that with the existing distributed

distant-downstream control architectures the amplification of load-change induced adjustments of

flow along a channel is inevitable. The consequences are the possibility of saturation of flow

regulating structures, and poor quality of service to farmers.

In this thesis, such behaviour is avoided by achieving the so-called string-stability in terms

of channel flows, i.e. by uniformly bounding upstream gate flow values both in time and spatial

extent of a channel. To do so, mathematical tools are developed for analysing the propagation

of flow adjustments defined by controllers to account for demand variations along an irrigation

channel. In particular, the non-amplification of transient flows along the channel is guaranteed

by an impulse response constraint on spatial flow interactions. Satisfying such decentralised 1-

norm criteria is made possible by introduction of a new distributed distant-downstream control

structure in Chapter 2. Namely, the novel flow-to-reference feedforward scheme which essentially

adjusts water level set-points based on downstream flow demand. However, the price to pay is

non-zero water-level errors which reflect the exploitation of the water storages along the channel.

91
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Nonetheless, this is acceptable as long as water-levels remain within pre-specified operational

bounds. In addition, a design trade-off has been identified between the magnitude of steady-state

water-level errors and the rate of amplification of transient flows peaks.

It should be noted that, the impulse response constraint for string-stability needs time domain

mathematical tools which are not suitable for systematic control design. Therefore, weaker de-

centralised criteria for string-stability of an automated irrigation channel under distributed distant-

downstream control is introduced in Chapter 4, which implies existence of uniform bound on flow

adjustments along the channel for all times, in response to load changes. This frequency domain

constraint on the flow interactions along the channel is more suitable for control analysis and syn-

thesis using existing mathematical tools. Such H∞ norm constraint is admissible to the introduced

distributed distant-downstream control structure and is designed in a decentralised fashion. Mo-

tivated by the two-dimensional nature of an automated irrigation channel where information flow

is in time and spatial directions, a measure of string-stability is established using two-dimensional

modeling and analysis of an automated channel.

Furthermore, a framework is established in Chapter 3 for robustness analysis of string-stability

of the distributed distant-downstream control architecture satisfying the 1-norm constraint via lin-

ear matrix inequalities. Note that, application of sufficient LMI conditions for L1 norm robustness

analysis does not warrant robustness of the spatial stability of the decentralised feedback with

flow-to-reference feedforward control scheme, e.g. to delay parameter uncertainty. Nevertheless,

the obtained bound on the amplification rate of transient peaks due to considerable delay param-

eter uncertainty remains acceptable. Robustness analysis of the H∞ norm-based criteria is part of

the future work.

5.2 Future Research Directions

With the research carried out in this thesis, bounded flow values along an automated irrigation

channel are achieved with the introduction of a feedforward path from downstream flow of a pool

to adjust water level references while leading to water-level error offset at steady-state. Therefore,

the question arises whether with extra information communicated from further downstream pools,

zero steady-state water level errors are achievable. While such objective may not be feasible, a
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comparison of these seems interesting.

Another approach to achieving zero steady-state water level errors may be to represent an

automated channel with a cascade of subsystems where each subsystem is an interconnection of

a number of automated pools in itself. Allowing internal pools to have the original decentralised

controller and maintain zero steady-state water level errors while still the L1-norm certificated

is required for the cascade of subsystems can improve global flow amplification and water level

tracking performance.

Other directions can be followed to remove level steady-state error such as switching between

controllers, resetting integrators at required time instances or periodically. However, these meth-

ods bring nonlinearity to the system and more complicated tools are required for analysis.

In future, it may be possible to pursue discrete-discrete 2-D model analysis to derive conditions

that are more consistent with characteristics of an automated irrigation channel. One other question

to investigate is whether continuous-discrete 2-D modeling can be used for synthesis of a controller

resulting in smaller steady-state water-level errors using the less conservative H∞ norm certificate

compared to the L1 norm certificate.

Following the research direction of Chapter 4, it would be of interest to clarify whether H∞

norm certificate is necessary for L2-to-L∞ string-stability of homogeneous automated channels.

Moreover, robustness properties of the an L2-to-L∞ string-stable automated irrigation channel with

a flow-to-reference feedforward scheme designed according to the H∞ norm certificate can be

investigated in future.
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