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Abstract

THE demand on telecommunication networks is increasing rapidly, and wireless

access is a major contributor to this trend. On the other hand, wireless is consid-

ered to be the least energy efficient transmission medium mainly due to its unguided

nature. The general focus of increasing the energy efficiency of wireless systems is on

the reduction of their transmit power. However, this strategy may not save energy in

short distance communication systems as the processing energy in hardware becomes

more significant compared to the transmit radio energy. This thesis focuses on looking

at the energy consumption of wireless systems by modeling the energy consumption

as a function of several parameters such as receiver SNR, RF bandwidth, information

rate, modulation scheme and code rate. We propose energy models for synchronization

systems and other digital signal processing modules by considering the computational

complexity of the algorithm and the required circuitry.

Initially we focus on the synchronization aspects of wireless receivers, and we study

various algorithms for symbol timing recovery, carrier frequency recovery and carrier

phase recovery. We compare the performance of these approaches in order to identify

suitable algorithms to operate within various SNR regions. We then develop energy mod-

els of these synchronization sub-systems by analyzing the computational complexity of

their circuitry based on their number of arithmetic, logic and memory operations. We

define a new metric – energy consumption to achieve a given performance as a function

of SNR – in order to compare the energy efficiency of different estimation algorithms.

Next, we investigate the energy-efficiency trade-offs of a point-to-point wireless sys-

tem by developing energy models of both transmitters and receivers that include prac-

tical aspects such as error control coding, synchronization and channel equalization. In
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our system, a multipath Rayleigh-fading channel model and a low-density parity check

(LDPC) coding scheme are chosen. We then develop a closed-form approximation for the

total energy consumption as a function of receiver SNR and use it to find a minimum-

energy transmission configuration. The results reveal that low SNR operation (i.e. low

transmit power) is not always the most energy efficient strategy, especially in short dis-

tance communication. We present an optimal-SNR concept which can save a significant

amount of energy mainly in short-range transmission systems.

We then focus on cooperative relay systems. We investigate the energy efficiency

trade-offs of single–relay networks by developing a complete energy model of the sys-

tems for two relay strategies: amplify-and-forward (AF) and detect-and-forward (DF).

We then optimize the location and power allocation of the relay to minimize the total

energy consumption. The optimum location is found in two-dimensional space for con-

strained and unconstrained scenarios. We then optimize the total energy consumption

over the spectral efficiency and derive expressions for the optimal spectral efficiency val-

ues. We use numerical simulations to verify our results.

Finally, we focus on energy efficiency of multi-hop systems by considering a two-relay

cooperative system using a detect-and-forward (DF) protocol with full diversity. We pro-

pose a location-and-power-optimization approach for the relays to minimize the transmit

radio energy. We then minimize the total system energy from a spectral efficiency per-

spective for two scenarios: throughput-constrained and bandwidth-constrained config-

urations. Our proposed approach reduces the transmit energy consumption compared

to an equal-power allocated and equidistant-located relay system. Finally, we present

an optimal transmission scheme as a function of distance by considering single-hop and

multi-hop schemes. The overall results imply that more relays are required as the trans-

mission distance increases in order to maintain a higher energy efficiency.
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Chapter 1

Introduction

THE telecommunication industry is an integral part of the world economy as it fa-

cilitates various services such as voice, video and the Internet, and connects the

global market. Over the last few decades the capacity of telecommunication networks

has expanded rapidly and is expected to rise further [8]. The growing popularity of cloud

services and social media as well as future 5G (fifth generation)technologies will catalyze

the rise of telecommunication system capacities. The advancement of the Internet-of-

Things (IoT), with an expectancy of between 50 - 200 billion devices by 2020, will only

increase these demands [9].

As the network capacity is expected to increase exponentially, the focus on the energy

consumption of telecommunication systems has become prominent. Information and

communication technology (ICT) is accountable for 2% to 4% of the global carbon foot-

print [10, 11]. This is an important fact not only from an environmental perspective, but

also from the economic perspective of telecommunication service providers because en-

ergy costs contribute a significant portion of their operational costs [12, 13]. For instance,

mobile operators’ concerns about increasing energy bills were discussed in [13, 14].

The energy consumption of telecommunication systems has been analyzed by vari-

ous researchers [10, 15–19]. Reports indicate that the majority of telecommunication net-

works’ energy is spent by the access network [16, 18]. Among different types of access

networks, wireless is identified as the least energy efficient transmission medium com-

pared to guided media such as optical fiber. For example, wireless technologies such as

the Universal Mobile Telecommunications System (UMTS) and WiMax consume more

than 10 times the energy of passive optical networks (PON) and digital subscriber lines

1
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(DSL), hybrid fiber coaxial (HFC) and point-to-point optical technologies [16]. Other

studies have revealed that the energy consumption of a number of mobile operators was

dominated by the radio access network which consumed 55–70% of total energy [20, 21].

The evolution of cellular communication standards such as long-term evolution (LTE),

has also focused on achieving more capacity by using the limited available bandwidth of

wireless channels. For instance, the LTE standard uses technologies such as orthogonal

frequency-division multiple access (OFDMA) in the downlink to achieve high spectral

efficiencies. However, the use of orthogonal frequency-division multiplexing (OFDM) as

the carrier modulation results in a higher peak-to-average power ratio (PAPR), hence it

provides low energy efficiencies [22].

The main reason for the low energy efficiency of wireless transmission is the spread-

ing of radio energy around the area due to the transmission being unguided.

On the other hand, the energy efficiency of communication systems, especially in

mobile communications, is growing at a slow pace in comparison with the dramatic ex-

pansion of the traffic requirement [23]. As energy consumption increases with network

capacity, the efficiency of mobile systems needs to improve significantly in order to sat-

isfy future capacity requirements and at the same time keeping network energy costs

affordable.

In order to address this major gap, several organizations have been formed and a

number of projects launched. One such project is Green Radio (2009-2012) which focused

on a 100-fold reduction of energy in high data rate services [20]. The EARTH (Energy

Aware Radio and Network Technologies) project was rolled-out in 2010 with the aim

of reducing the energy usage of mobile cellular networks by a factor of two [24]. The

recently concluded GreenTouch consortium focused on reducing energy consumption

per bit by a factor of 1000 by 2015 and had a strong interest in wireless systems’ energy

reduction [25]. This thesis was initially motivated by projects driven by GreenTouch.

The most common approach to improving energy efficiency of wireless systems is

to reduce the transmit power; however, this results in reducing the signal to noise ratio

(SNR) at the receiver end; therefore, wireless systems need to be optimized to operate

in the low SNR region. From an information theoretical perspective, according to Shan-
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non’s capacity theorem, capacity decreases when the SNR is reduced [26]. It also intro-

duces errors due to high noise levels at detection. In order to combat the noise, powerful

error-control coding schemes need to be introduced while more bandwidth is required to

support the additional coding overheads [20, 21].

Although the bandwidth expansion seems to be a difficult task to achieve in practical

systems with regard to current demand, future wireless systems may allow additional

bandwidth per user with the adaptation of smaller cells with high frequency reuse factors

[27]. It is expected that future wireless communication standards proposed for 2020 and

beyond will focus more on energy efficiency.

1.1 Problem Statement

Although low SNR operation is considered to increase energy efficiency in terms of the

transmit power, several issues arise as a result and need to be addressed. One major

challenge is the receiver design.

Wireless receivers perform many important functions such as carrier synchroniza-

tion, symbol synchronization, channel estimation and equalization, noise and interfer-

ence mitigation, error detection and correction and data demodulation. These functions

can be categorized into two types, inner receiver and outer receiver. The inner receiver

engages with carrier and symbol synchronization, and channel estimation and equal-

ization. The outer receiver is responsible for the remaining functions such as noise and

interference mitigation, error detection and correction, and data demodulation. Most of

the modern wireless literature assumes perfect performance of the inner receiver func-

tions, that is perfect synchronization in carrier frequency, carrier phase, sampling rate

and symbol timing. These assumptions are quite accurate when the receivers operate in

the high SNR region; however, in low SNR operation, the accuracy of these estimates

may be poor and the assumption of perfect synchronization may not be valid. Moreover,

the performance of synchronization as a function of SNR and the related complexities are

interesting problems worth investigating. This provides insights into practical consider-

ations of wireless systems within an energy efficiency framework.
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As the transmission parameter configuration is changed according to the relevant

SNR value, the complexity of signal processing operations also changes. The signal pro-

cessing energy consists of the energy consumption of analog components such as mixers

and digital signal processing components such as decoders. The lowest SNR operation,

therefore, may not be the most energy efficient configuration because the circuit energy

consumption is expected to rise at low SNR. The total energy consumption, which can be

calculated by adding the transmit radio energy and signal processing energy of circuitry,

can be expressed as a function of SNR. As SNR varies with different configurations of

bandwidth and other system variables such as modulation and channel coding, the total

energy can be expressed as a function of these parameters.

Therefore, it is important to develop a complete energy model for a simple wireless

transmission systems such as a point-to-point link. The energy model should consider

both analog and digital components of the wireless system and should reflect relation-

ships with SNR, bandwidth, modulation scheme and code parameters. In terms of digital

energy consumption, the energy consumption of error control codes, channel equalizers

and synchronizers should be considered. Moreover, it is important to analyze the energy

consumption of practical wireless systems such as multi-point systems and multi-user

systems. The effects of the bandwidth and SNR allocation can be formulated into op-

timization problems and will provide deep insights into these systems from a practical

implementation perspective.

1.2 Background

This section provides an overview of the literature pertaining to energy modeling and

energy efficiency improvement approaches in wireless systems. Much of the research on

energy efficient wireless has been undertaken since 2000. There was a significant boost

in research in this area after 2010.

Hasan et al. discussed novel insights for green cellular systems after carrying out a

detailed survey [28]. Power breakdowns of various parts of a cellular system and a base

station were thoroughly analyzed before presenting green metrics to measure the energy
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efficiency. Hasan et al. discussed several energy saving approaches for base stations such

as improving the power amplifier, zooming cells, and changing the network architec-

tures. Adaptation of future technologies as well as changing network planning strate-

gies were also investigated before presenting the potential energy savings that could be

achieved by the proposed methodologies. Fundamental trade-offs for energy efficient

wireless systems were analyzed using a framework of four metrics by Chen et al. [20].

Energy efficiency versus spectral efficiency trade-off and power versus bandwidth trade-

off were considered with practical concerns such as circuit energy. Energy efficiency-

deployment efficiency trade-off was discussed from an economic perspective whereas

power-delay trade-off was analyzed from a system requirement perspective. Among

many other related works, there have been several investigations into energy efficiency

trade-offs in wireless systems [29–32].

Cui et al. studied the energy efficiency of wireless systems for two modulation types,

quadrature amplitude modulation (QAM) and frequency-shift keying (FSK), by mod-

eling the transmit energy and analog circuit components [33]. The authors referred to

previous power models of analog components such as filters, digital-to-analog convert-

ers (DACs), analog-to-digital converters (ADCs) and mixers. The energy consumption

was derived for both uncoded and trellis-coded transmission. The analog power mod-

els used by Cui et al. are comparatively old, and the failure to include digital circuit

energy has resulted in the final energy consumption differing from realistic values for

modern equipment. Finally, the energy consumption of each system was analyzed and

minimized as a function of spectral efficiency using numerical calculations. More accu-

rate power models for wireless transceiver front-ends were presented later by Li et al. by

referring to different types of recent designs [34]. Here, power models for ADC, DAC,

low noise amplifier (LNA), filters and power amplifiers were developed as functions of

RF bandwidth, noise power, supply voltage, symbol rate, and carrier frequency.

On the other hand, digital circuit energy consumption was modeled and introduced

by Desset et al. using energy-complexity conversion tables [35]. Desset et al. used com-

plementary metal-oxide semiconductor (CMOS) based implementation to measure the

average energy consumption for arithmetic operations such as real additions and real
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multiplications, memory operations such as ROM access and RAM writing/reading and

logical operations. In the original work [35], the complexities of different error correction

schemes including turbo codes, convolution codes and Reed-Muller codes and Reed-

Solomon codes are modeled and converted to respective energy consumption values. The

encoder and decoder energy costs are then compared with coding gains to evaluate the

energy efficiency of channel coding schemes for applications with different requirements.

Howard et al. used different power models to investigate the energy efficiency of error

control schemes [36]. In this study, Howard et al. presented a pathloss dependent trans-

mit radio energy model to compare with the circuit energy consumption. They referred to

existing implementations of different encoders and decoders from Reed-Solomon, BCH,

Viterbi and LDPC code families and used their power ratings and throughput values to

calculate the absolute energy efficiency. However, these studies [35, 36] did not focus on

both the analog and digital circuit components and did not develop an energy model

based on bandwidth, code rate and SNR.

Theory-based energy models for a decision feedback channel equalizer and message

passing decoder were derived by Grover et al. [37]. Grover extended this work to derive

lower bounds on the decoding power to illustrate the fundamental trade-off between

transmit and decoding power [38]. The results were compared with Shannon’s limit to

show that the total power diverges to higher values as the error probability reaches zero

due to the decoder energy consumption. Grover et al. investigated the lower power-

bounds of coded communication further [39] and their work was influenced by complex-

ity analysis of very-large-scale integration (VLSI) circuits [40]. The energy efficiency of

decoders was further analyzed by Kienle et al. and Xiong et al. [41, 42].

An end-to-end energy model for a long haul optical transmission system was devel-

oped by Pillai et al. with consideration of analog and digital processing components

in an optical communication system [43]. The analog power models are derived using

previous work and the digital processing energy was modeled using the computational

complexity of circuit level implementations. This paper provides energy efficient solu-

tions for optical system design based on link length and provides insights for wireless

system energy modeling.
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1.3 Focus of the Thesis

In this thesis, we aim to develop a better understanding of the energy consumption of

wireless systems. We use energy consumption per information bit as the main metric to

investigate the energy efficiency. We focus on total energy consumption by considering

both transmit radio energy as well the signal processing circuit energy, which accounts

for practical aspects such as synchronization and channel imperfections. We initially look

at the synchronization capability at lower SNRs to support our main work that follows.

We aim to understand the relation between the energy consumption of wireless systems

by answering the following fundamental questions:

• How do the synchronization systems perform at low SNR? Which architectures are

best suited for operation over all SNR values?

• How does the processing energy of the circuit impact the total energy consumption

of the wireless systems? What is the relationship of SNR, bandwidth, modulation

orders and code rates to the total energy consumption?

• What are the optimal configurations for wireless transmission systems for given

user requirements?

As discussed in the literature review, a straightforward solution to low-energy wire-

less communication is to use a larger bandwidth and trade-off spectral efficiency for en-

ergy efficiency as outlined by Shannons information theory [44]. As a result of transmit

power reduction, the received SNR is also decreased; however, lowering the receiver SNR

may have an impact on inner receiver operations such as carrier synchronization, sym-

bol synchronization, channel estimation and channel equalization. We first focus on the

trade-off’s of different synchronization systems as a function of SNR and propose a syn-

chronization system architecture to be used in later chapters. We then develop energy

models for synchronization systems and then compare the energy-performance trade-

offs by defining a new metric.

Our main focus is modeling the total energy consumption of wireless systems. As dis-

cussed in the literature review, power models for analog components are used to obtain
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energy costs of wireless systems without considering digital signal processing energy.

In contrast, different approaches are taken to model the digital energy consumption, es-

pecially for encoders and decoders; however, to the best of our knowledge a complete

energy model has not been presented in the literature. Throughout this thesis, we use an-

alytical expressions and optimization techniques when possible. We use prediction and

curve fitting approaches to evaluate the energy consumption of wireless systems when

the analytical expressions are not derivable.

We initially investigate and optimize the energy consumption of a basic point-to-point

wireless link and then extend our models to more advanced wireless systems such as re-

lay networks. In relay systems, we consider resource allocation for the relays to optimize

energy efficiency.

We use an all-digital approach for our receiver [45, 46]. In today’s practical receivers,

most of the signal processing functions are implemented in the digital domain, by mov-

ing the analog-to-digital converter to the front end of the receiver. This approach enables

the receiver designers to use powerful digital processing techniques for carrier synchro-

nization, timing synchronization, channel estimation and equalization processes.

Throughout this thesis, we focus on single-carrier transmission as multi-carrier sys-

tems such as OFDM suffer from high peak-to-average power ratio (PAPR) which reduces

their energy efficiency; however, we exploit the advantages of frequency domain pro-

cessing tools using single-carrier frequency domain equalizers [47]. We focus on different

channels; frequency selective fading (Chapter 4) and frequency flat channels (Chapter 5

and 6). We assume randomly generated channel coefficients following a Rayleigh distri-

bution [48]. We also look at the synchronization of signals, we especially choose the most

appropriate algorithms for the operating criteria. In Chapter 4 we use low-density par-

ity check (LDPC) error control coding schemes to obtain coding gains in point-to-point

transmission.
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1.4 Contributions and Outline of Thesis

In the following section, we give an outline of the thesis and state the contributions of the

thesis.

Chapter 2 investigates the performance of synchronization systems in low SNR re-

gions in order to facilitate the low SNR operation of wireless receivers. We review the

literature and identify appropriate carrier synchronization and timing synchronization

algorithms and observe their performance as a function of SNR and other related pa-

rameters. We conclude this chapter by presenting a synchronization system architecture

designed for low SNR operation.

Chapter 3 analyzes the energy consumption of the synchronization systems discussed

in Chapter 2. We develop energy consumption models for different algorithms and seg-

ments of synchronization systems including carrier frequency estimators, carrier phase

estimators and timing estimators. We initially analyze the computational complexity of

each algorithm and component using their implementation block diagrams with consid-

eration to arithmetic, memory and logical operations. Then we use energy tables to con-

vert the complexity into energy consumption. We then define a new metric to compare

the performance and energy consumption of frequency, phase and timing estimators as

a function of SNR.

In Chapter 4, we analyze the energy consumption of practical point-to-point wireless

systems. We use previously developed synchronization energy models in Chapter 3 and

available power models of analog functions. In addition, we develop energy models for

other components such as frequency domain equalizers. The transmit energy is modeled

as a function of distance, pathloss exponent, received SNR and noise spectral density.

The circuit energy is modeled as a function of bandwidth, modulation order and data

rate. We use a numerical evaluation to investigate the energy consumption as a function

of the above parameters and then derive conclusions for energy efficient transmission.

We then focus on more advanced wireless systems such as single-relay and multi-

relay networks. Chapter 5 analyzes the energy consumption of cooperative single relay

systems considering two relaying protocols: amplify-and-forward (AF) and detect-and-

forward (DF). We obtain an expression for the transmit energy which is a convex function
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of relay location and power allocation. We present optimal solutions for power alloca-

tions and relay location for constrained and unconstrained scenarios. We then, optimize

the energy consumption as a function of modulation order and distance. We verify the

accuracy of our analytical expressions using numerical evaluations.

After optimizing single relay systems, we focus on multi-relay systems with consid-

eration of a dual–relay system in Chapter 6. We assume that the relays and destination

utilize full diversity by combining signals using a maximal ratio combiner. As we con-

cluded in Chapter 5, DF relays are more energy efficient, therefore, in the multi-relay

system we use DF relays. We derive an expression for the transmit energy as a function

of relay location and power allocation. We develop a complete energy model by calcu-

lating the circuit energy consumption of this system; however, due to the complexity of

the expressions, analysis of the energy consumption is not possible; therefore, we use

numerical simulations to investigate energy consumption. Next, we present the opti-

mal relay locations and power allocations as a function of pathloss of the environment,

bit error rate and spectral efficiency. Finally, we compare the energy consumption of

dual–relay systems with direct transmission and single–relay systems as a function of

source-destination distance. Chapter 7 concludes the thesis.
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Chapter 2

Synchronization of Wireless Systems

This chapter discusses about synchronization subsystems of wireless receivers. The symbol tim-

ing recovery, carrier frequency recovery and carrier phase recovery algorithms are investigated and

compared in order to identify the suitable algorithms to operate at different SNR regions, especially

at low SNR. We propose a synchronization system architecture for low SNR operation and choose

appropriate algorithms after a careful performance and limitation investigation.

2.1 Introduction

IN wireless communication, the dynamic nature of wireless channels results in multi-

path fading and Doppler frequency shifts [48]. In addition, the non-ideal operations

of hardware such as oscillator phase noise and frequency mismatch, amplifier nonlin-

earities and non-ideal filtering also contribute towards a distorted signal at the receiver.

Finally, the noise generated in hardware components also corrupts the received signal. In

order to overcome such effects, several functions are performed at the receiver; synchro-

nization, channel estimation and equalization, and error correction and detection [49].

A channel equalizer overcomes the multi-path fading effects after explicitly or implicitly

estimating the channel. In order to overcome noise and other distortions, error detection

and correction schemes are used. Synchronization removes the carrier frequency and

phase offsets and also samples the signal at optimal SNR instants where eye opening of

matched filter output is at its maximum.

Synchronization of a wireless system can be categorized into several segments:

• Symbol rate synchronization - The symbol rate may not be exactly equivalent to an

integer multiple of the receiver sampling rate. Therefore, it is important to make

13
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sure that the receiver generates exactly the same symbol rate as the transmitter.

• Symbol timing synchronization - This segment is responsible to sample the received

signal at positions where the SNR is highest (i.e. maximum opening of the eye-

diagram). Naturally a receiver cannot predict the optimum position beforehand.

Therefore, this segment is placed after the matched filter to correct the sampling

error and to fix the symbol phase error.

• Carrier frequency synchronization - The carrier frequency of the received signal

and the frequency of the receiver oscillator may be different due to various reasons

such as frequency drifts in the oscillator and Doppler effects occurred during the

transmission. The carrier frequency recovery unit is used to correct the frequency

mismatches at the receiver front end.

• Carrier phase synchronization - Coherent detection is performed based on the in-

stantaneous phase of the signal constellation diagram. However, the received sym-

bols may contain phase errors due to delays in the channel as well as due to the

phase ambiguities in the hardware filters. This segment is responsible for fixing the

phase offsets in the received signal prior to signal detection.

A scatter plot of a perfectly synchronized 4-QAM modulated signal with a SNR of

20 dB is shown in Figure 2.1. All the symbols are centered around the four original

constellations points
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. The noise in the AWGN

channel results in spreading the constellation around the original four points.

Symbol rate errors change the sampling point of the received signal with time and

hence the required output rate gets changed. As the timing recovery unit uses interpo-

lation to correct sampling errors, symbol rate mismatches can be corrected using that.

Usually the oscillator errors are quite small compared to carrier frequency errors, and

therefore they can be corrected without using a separate unit [49].

When the received signal is not sampled at the optimum point, it creates additional

noise due to timing jitters. Figure 2.2 shows a 4-QAM modulated signal of a SNR of 20

dB with a normalized timing offset of 0.25. The timing offsets result in moving the signal
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Figure 2.1: Scatter diagram of 4-QAM signal with perfect timing, frequency and phase
recovered signal.

samples around the original constellation points. At lower SNR operations, this distorts

the signal detection process.

The received signal frequency changes from that of the transmitted signal mainly due

to Doppler effect which occur during the transmission and due to oscillator frequency

mismatches. This results in a frequency offset and it changes the phases of the received

symbols at a constant rate. Hence the received symbol constellation rotates as shown in

Figure 2.3. Therefore, it is important to estimate the frequency offset and then de-rotate

each of the received symbols to cancel out the frequency errors.

Finally, towards the end of synchronization process, phase recovery unit is used to

overcome the phase offsets. Phase offsets occur due to the channel phase shifts as well as

the phase changes occur due to hardware components such as filters. Phase offsets rotate

the signal constellation of an entire block by a fixed angle. Figure 2.4 illustrates a signal
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Figure 2.2: Scatter diagram of 4-QAM signal with a normalized timing offset of 0.25 (SNR
= 20 dB).

constellation of 4-QAM signal with a phase offset of 20 degrees.

Wireless receiver synchronization systems can be designed according to different

topologies [49–51]. Depending on the requirement, the strategies of synchronization are

changed. The initial parameters are estimated at the beginning of the transmission and

it is known as acquisition. Acquisition stage uses specific approaches that usually use

training symbols to estimate the initial parameters within a short period of time. After

initial acquisition, data transmission starts with small carrier frequency, phase and tim-

ing variations still remaining. So, tracking algorithms which track the minor variations

of synchronization parameters are used to achieve this goal. Generally these algorithms

have less complexity compared to the acquisition algorithms.

In early days of communications, most transmission systems used feedback based

synchronizers which operate using phase locked loops (PLL). However, PLLs suffer from

hang-up phenomenon which results in a prolonged dwell time when large phase errors

occur [52]. Nowadays, burst mode transmission has become more popular with high
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Figure 2.3: Scatter diagram of 4-QAM signal with a normalized frequency offset of 0.01
(SNR = 20 dB).

speed data communication such as LTE and WiFi. These systems need rapid carrier and

clock acquisition using short bursts of data. Therefore, feed-forward techniques are pro-

posed to achieve this objective. Feed-forward techniques can be used to acquire and track

the parameters using preambles and data respectively.

Synchronization algorithms can be categorized again based on the type of informa-

tion used in estimation: data-aided (preamble), decision directed or non-data-aided [51].

In data-aided operation, the received preamble is fully known at the synchronizer and

hence accurate estimates can be formed. Decision-directed and non-data-aided mode op-

erations are used without any training. In decision-directed mode, the output of symbol

detector is used to estimate the synchronization parameters. In non-data-aided mode,

mathematical approaches are used to overcome the effect of modulation schemes, for

instance, modulation of a QPSK modulated signal is removed by obtaining the fourth

power so that all the modulated symbols would end up in the same phase angle.

Apart from the parameter synchronization, the receiver has additional tasks to per-
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Figure 2.4: Scatter diagram of 4-QAM signal with a normalized phase offset of 200 (SNR
= 20 dB).

form such as frame detection [49, 53]. However, we will not focus on frame synchroniza-

tion aspects in this thesis.

The rest of the chapter is organized as follows. Section 2.2 describes the system model

we used in the rest of this chapter and establishes basic notations and variables. Sec-

tion 2.3 discusses the performance of timing synchronization algorithms at low SNR re-

gions. Section 2.4 discusses the performance of carrier frequency synchronization at low

SNR. The performance of carrier phase recovery systems are discussed in Section 2.5. Sec-

tion 2.6 concludes the chapter by summarizing the proposed synchronization algorithms

for low SNR operations.

2.2 System model

Throughout this chapter, we consider a single-carrier transmission with a single antenna

system assuming a Gaussian channel model. Quadrature amplitude modulation (QAM)
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is considered in our system as it provides a higher spectral efficiency than other modu-

lation schemes. The received signal at the antenna undergoes regular analog signal pro-

cessing such as band filtering, amplification (by a low noise amplifier), gain controlling

and down conversion to baseband before entering the matched filter. We assume that the

frequency of the down converter is different from the received signal frequency and this

frequency difference is defined as the carrier frequency offset. We define the output of

matched filter as

Figure 2.5: Receiver block diagram of the synchronization system.

r(t) = ej(2πfdt+θ)
∑
k

ckg(t− kTs − τ) + w(t) , (2.1)

where the variables are denoted as follows:

• fd is the carrier frequency offset

• θ is the carrier phase offset

• τ is the time delay from the optimum sampling point

• Ts is the symbol time

• T is the sampling time

• ck is unit amplitude transmitted information symbol at kth instance

• g(t) is raised cosine Nyquist pulse

• w(t) is the complex Gaussian noise with power spectral density of N0.

The signal is sampled at t = iT + τ̂ where the time delay estimate is defined as τ̂ . The

samples are sent to timing recovery unit are given as

x1(iT + τ̂) =
∑
k

cke
j(2πfd(iT+τ̂)+θ)g(iT + τ̂ − τ) + w(iT + τ̂) (2.2)
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The oversampling rate N is defined as N = Ts
T . A block diagram of our synchroniza-

tion system is presented in Figure 2.5. The output of the timing synchronizer x1(i) has

only one sample per symbol and is fed into the frequency recovery system. Its output

x2(i) is then sent to the carrier phase synchronizer. SNR is defined as the symbol energy

to noise spectral density at the receiver.

2.3 Symbol timing recovery

The timing recovery system estimates the timing error and corrects the sampling instance

to maximize the SNR of the signal. The optimum sampling point minimizes the inter-

symbol-interference (ISI). Some symbol timing estimators can perform independently of

the carrier frequency offset, provided that this offset is small. On the other hand, carrier

recovery systems perform quite poor in the presence of timing errors. Therefore, in our

proposed system, timing synchronization is carried out prior to carrier synchronization.

Wireless receivers use different architectures to recover the timing errors, namely, syn-

chronous sampling and non-synchronous sampling [51]. Synchronous sampling systems

use previous signal samples to decide the current sampling instance in real-time. Non-

synchronous sampling systems sample the signal at fixed rates and send the samples into

the timing recovery circuit to overcome the timing errors. Timing recovery circuits use

a timing error detector (TED), a loop filter, an interpolation controller and an interpola-

tor. Non-synchronous sampling as more frequently used as it allows to carry out more

operations in the digital domain using powerful signal processing concepts.

According to our system model in Figure 2.5, the timing error τe = τ̂ − τ needs to

be eliminated and the signal should be sampled at optimum points to generate a per-

fectly sampled signal. In addition to that, the timing recovery unit possesses timing rate

correction capability. Unlike carrier frequency offsets, timing frequency offsets are small

in practice, hence it is not needed to correct the timing rate errors separately. It can be

recovered using a timing recovery loop or timing phase un-wrapper [49]. As described

in the introduction, there are two main timing recovery approaches available; feedback

recovery and feed-forward recovery.
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2.3.1 Feedback based timing recovery systems

Feedback based timing recovery systems have the distinct advantage of correcting sam-

pling rates. A block diagram of a non-synchronous feedback based timing recovery loop

is given in Figure 2.6. The received signal r(t) is first sampled using a free running os-

cillator with an oversampling factor of N . Since the sampling may not be perfect, the

samples produced at this point may not align with the symbol boundaries (at maximum

opening of the eye diagram). Next, the samples are sent through a digital matched filter

followed by an interpolator which generates optimum sampling points according to the

timing error estimates.

sampled 

signal
Interpolator

Interpolation 

control
TED

Loop 

filter

synchronized 

signal

Figure 2.6: Feedback based timing recovery loop.

Different types of interpolators proposed in literature [45, 51]. Piecewise polynomial

interpolator is quite common and performs with high accuracy. Polynomial order can be

selected as linear (1), parabolic (2) or cubic (3). The performance of these interpolators

increase with the order at the cost of complexity. Another type of interpolation technique,

polyphase filter bank interpolation [54], utilizes several different banks of interpolators

with different in-built timing offsets which produce different timing corrections. Most

suitable filter should be selected after calculating and selecting the smallest timing errors

from all the interpolator banks. As this technique needs more hardware resources in

practical implementation, it consumes higher complexity and energy compared to the

piecewise polynomial interpolators.

The output of the interpolator is taken and timing error is calculated by TED. The tim-

ing error is fed to a loop filter. Usually 2nd order loop is utilized with proportional and



22 Synchronization of Wireless Systems

integrator paths. Interpolator controller is used to provide timing indices and fractional

offsets to the interpolator. Modulo 1 counter based control and recursive interpolation

control are two popular approaches used in practical systems [45, 55].

Next, we discuss about some popular TED algorithms used in communication sys-

tems.

Maximum Likelihood Timing Error Detector (MLTED)

The theoretical optimal timing error detector is given by maximum likelihood based TED

which uses the slope of the matched filtered signal to calculate the timing error [45, 51].

A noise free signal gives a zero slope at the optimum sampling position of the matched

filter output. MLTED uses this phenomenon to track the timing error. When it is operated

in data-aided mode, MLTED uses the knowledge of preamble symbols to remove the

modulation. In decision-directed mode, the preambles are replaced by the output of

detector. However, digital implementation of the derivative matched filter has a higher

complexity. MLTED estimation for a QPSK modulated signal is given by [45],

e(k) = a0(k)ẋ(kTs + τ̂) + a1(k)ẏ(kTs + τ̂) , (2.3)

where a0(k) and a1(k) represent in-phase and quadrature-phase components of the sym-

bols. Then x(t) and y(t) are in-phase and quadrature-phase components of the received

signal at time t. Therefore, ẋ(kTs + τ̂) and ẏ(kTs + τ̂) represent the slope of in-phase and

quadrature-phase signals sampled at t = kTs + τ̂ . The above equation is defined for the

data aided mode and when operating in the decision directed mode, the decisions â0 and

â1 are used instead of a0 and a1.

Early-Late Timing Error Detector (ELTED)

Early-Late TED uses time differences between samples to approximate the derivatives

of the pulse given in (2.3) [56]. ELTED can operate at different oversampling rates, but

commonly use two samples per symbol. Both MLTED and ELTED suffer from self noise,

which results in a non-zero derivative at the perfect sampling point when consecutive
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transmit symbols are same. ELTED algorithm for a QPSK modulated signal with over-

sample rate of two is defined as [56] follows:

e(k) = a0(k)[x((k + 1/2)Ts + τ̂)− x((k − 1/2)Ts + τ̂)]

+a1(k)[y((k + 1/2)Ts + τ̂)− y((k − 1/2)Ts + τ̂)] (2.4)

Zero-Crossing Timing Error Detector (ZCTED)

Zero-Crossing TED operates based on the concept of finding the points where the signal

crosses zero in the eye diagram. It is defined for an oversampling rate of two. ZCTED

has a lower self noise compared to the MLTED and ELTED. ZCTED algorithm for a QPSK

modulated signal is mathematically represented as [51],

e(k) = x((k − 1/2)Ts + τ̂)[a0(k − 1)− a0(k)]

+y((k − 1/2)Ts + τ̂)[a1(k − 1)− a1(k)] (2.5)

Gardner Timing Error Detector (GTED)

Gardner introduced a pure non-data aided TED by replacing the data symbols in ZCTED

with signal samples [57]. This also operates at an oversampling rate of two. Unlike the

previously discussed TEDs, GTED is capable of estimating the timing errors independent

of the carrier phase, hence, GTED is suitable for timing recovery prior to carrier recovery

in coherent communication systems. GTED algorithm for a QPSK modulated signal is

given by [57] as

e(k) = x((k − 1/2)Ts + τ̂)[x((k − 1)Ts + τ̂)− x(kTs + τ̂)]

+y((k − 1/2)Ts + τ̂)[y((k − 1)Ts + τ̂)− y(kTs + τ̂)] (2.6)

Mueller & Muller Timing Error Detector (MMTED)

Mueller et al. presented MMTED which operates at one sample per symbol [58]. The low

sampling rate is important to reduce the ADC’s sampling rate. MMTED has a lower self
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noise compared to above TEDs. MMTED is defined as follows for a QPSK signal [45]:

e(k) = a0(k − 1)x(kTs + τ̂)− a0(k)x((k − 1)Ts + τ̂)

+a1(k − 1)y(kTs + τ̂)− a1(k)y((k − 1)Ts + τ̂) (2.7)

Among the above algorithms ZCTED, GTED and MMTED perform better than ELTED

in high noise environments [51]. ZCTED and GTED perform better when the pulse band-

width is increased while the performance of MMTED degrades with the pulse bandwidth

[51].

2.3.2 Feed-forward based timing recovery systems

Feedback based recovery systems take longer to acquire the lock, and hence, a higher

number of samples are needed for an initial estimate. Feedback systems may also ac-

quire false locks which could result in hang-up phenomenon. Therefore, for application

which require fast acquisition, feed-forward based recovery schemes are proposed to esti-

mate timing errors within a short period of time using a determined number of symbols.

As in feedback schemes, ML based approaches have been followed to derive practical

estimators.

The MSE variance of feed-forward timing estimators is lower bounded by modified

Cramer-Rao bound (MCRB) [51]. It is defined for a QPSK signal as follows:

MCRB(τ̂) =
1

8π2LξEs/N0T 2
s

, (2.8)

where, L is the number of symbols used in the estimator, ξ is the normalized mean square

bandwidth of pulse shaping filter and Es/N0 is the ratio of symbol energy to noise spec-

tral density.

Oerder & Meyr (SLN) estimator

Oerder et al. proposed a non-data aided feed-forward timing estimator which operates at

an oversampling rate of four [1]. This estimator is also known as square-law non-linear
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(SLN) estimator because it takes the second power of the amplitude.

The received signal is first sent through a low pass filter or a matched filter. The fil-

tered output samples x(kTs) are then squared, and each sample is multiplied by e−j2πk/N

where k is the sample number. The multiplied outputs are then added together, and next

the phase angle of the complex signal is measured to obtain the timing estimate. A nor-

malizing factor of −Ts
2π is used to calculate the final estimate. This estimator is unbiased

and its performance increases with wide pulse bandwidth.

SLN estimator can be mathematically defined as [1],

τ̂ = −Ts

2π
arg

{
4L−1∑
k=0

|x(kT )|2e−jπk/2

}
(2.9)

LOGN and AVN based estimators

Morelli et al. presented improvements for the SLN estimator and proposed three new

estimators [59]. The logarithmic nonlinearity estimator (LOGN) is derived based on ML

estimation. The other estimators are named as absolute value nonlinearity (AVN) estima-

tor and fourth-law nonlinearity (FLN) estimator [7]. The fourth-law nonlinearity (FLN)

estimator performs quite poorly compared to the other estimators [59].

LOGN estimator is defined as [59],

τ̂ = −Ts

2π
arg

{
4L−1∑
k=0

f [x(kT )]e−jπk/2

}
, (2.10)

where, f(z) = ln[1 + |z|2(Es
N0

)2].

AVN estimator is defined as [59],

τ̂ = −Ts

2π
arg

{
4L−1∑
k=0

|x(kT )|e−jπk/2

}
(2.11)

The LOGN and AVN estimators perform better than SLN estimator when a low band-

width pulse is used.
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Zhu estimator

Zhu et al. presented a timing error estimator which uses two samples per symbol [2]. This

estimator exploits both the in-phase and quadrature-phase components of the received

signal and multiplies the complex modulated signal with half symbol rate exponential.

Low pass filters with a cutoff frequency of α/2Ts are used prior to squaring and averaging

operations. Zhu et al. propose to use Kalman filters to improve the performance of this

estimator [2].

Figure 2.7: Block diagram of Zhu timing estimation algorithm.

Zhu estimator is defined as [2],

τ̂ = −Ts

2π
arg

{
2L−1∑
k=0

y2I (kT ) + y2Q(kT )

}
, (2.12)

where, the signals at various points of the estimator are shown in Figure 2.7 and yI(t) =

uI(t) + vI(t) and yQ(t) = uQ(t) + vQ(t).

Lee estimator

Lee introduced a non-data aided feed-forward symbol timing estimator which also uses

a lesser sampling rate compared to the previous estimators - two samples per symbol

[60]. It contains a lower computational complexity compared to Zhu estimator because

of the avoidance of low pass filters.
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Lee estimator is defined as [60],

τ̂ = −Ts

2π
arg

{
2L∑
k=1

|x(kT )|2e−jkπ +Re[x(kT )x∗((k − 1)T )]e−j(k−0.5)π

}
(2.13)

2.3.3 Performance investigation of timing estimators

In this section, the performance of SLN, AVN, LOGN and Lee estimators are investigated

using computer simulations and compare with MCRB. The performance of the above

mentioned estimators depends on the pulse bandwidth, SNR and block size. We used

Nyquist pulse shaping filter with two values of excess bandwidth 0.35 and 0.75. Block

lengths of 32 and 128 are considered. The initial timing errors were uniformly distributed

as τ = (−0.5,−0.4, ...0.4, 0.5).
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Figure 2.8: Performance comparison of timing estimators (L = 32).

Figure 2.8 shows MSE performances of feed-forward timing estimators for two pulse

bandwidths when the block size is 32. It can be observed that the two-sample based Lee
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Figure 2.9: Performance comparison of timing estimators (L = 128).

estimator performs quite poorly when low pulse bandwidth (α = 0.35) is used. SLN

estimator also performs poorly with low bandwidth, but performs better than the Lee

estimator. AVN and LOGN estimators perform close to each other when α = 0.35. But

when α is increased to 0.75, AVN and LOGN estimators perform closer to MCRB at high

SNR region. It can be observed that AVN estimator records lower MSE for both pulse

bandwidths within the considered SNR region.

However, the performance of each estimator improves when the block size is in-

creased to 128 as illustrated in Figure 2.9. It shows that the performance gains between

the estimators also reduce when L is increased from 32 to 128. All four estimators be-

have similarly at low SNR when α = 0.75. The performance of Lee estimator increases

compared to L = 32 when the α is increased. Based on the above two figures, it can

be concluded that AVN estimator is the best estimator for low SNR operation. SLN is

suitable for high pulse bandwidths and LOGN for low pulse bandwidths.

We investigated the bit-error rate (BER) performance after timing recovery and pre-

sented in Figure 2.10. AVN estimator is used as the timing estimator and block length of
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Figure 2.10: BER performance after timing recovery (L = 32).

32 is used. It can be observed that the BER curve of the timing recovered signal is quite

close to the perfect BER curve when α is 0.75. When α is reduced to 0.35, the system

performance degrades. The performance gap between the timing recovered signal and

perfect signal at SNR of 3 dB is about 0.1 dB with α = 0.75 and 0.3 dB with α = 0.35. The

performance gap reduces to about 0.03 dB with α = 0.75 and 0.1 dB with α = 0.35 at 14

dB.

The BER performance loss due to timing error is approximated [61] as follows,

∆ ∼=
10

ln(10)

[
A+ 2B

Es

N0

]
Var(τ̂) (in dB) , (2.14)

where A and B constants are calculated according to the pulse shaping filter parameters.

The performance of these timing estimators is investigated at the presence of carrier

frequency offsets. Figure 2.11 shows the MSE of AVN estimator when the normalized

carrier frequency offset is 0.01 and 0.1 (1% and 10%). The performance degradation due

to a frequency offset of 0.01 is very small while a frequency offset of 0.1 degrades the per-
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formance considerably. The performance degradation due to frequency offsets increases

when the pulse bandwidth is reduced. Based on the observations it can be concluded that

timing recovery systems perform accurately in the presence of small carrier frequency er-

rors (less than 0.1) and the AVN estimator is suitable to be used as the timing estimator

when operate at low SNR.
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Figure 2.11: MSE performance of LOGN and AVN timing estimators at the presence of
carrier frequency offsets (L = 32).

2.4 Carrier Frequency Recovery

Carrier frequency recovery is a very sensitive operation in coherent communication sys-

tems. Even a small frequency offset could entirely destroy the final signal constella-

tion and also the performance of the system [49, 51]. Carrier frequency recovery can

be achieved using different types of approaches. One approach is to transmit the un-

modulated carrier prior to the data transmission which helps the receiver to extract the

carrier frequency offset of the received signal. Such methods were used in early days of
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the wireless communication where a low throughput was required. But sending an un-

modulated carrier is a waste of resources and energy. The most common approach is to

estimate the frequency offset from the modulated signal and it is adopted in our system.

As in the timing synchronization system, frequency recovery can also be divided into

several categories.

Feedback based closed loop carrier recovery architectures are mostly used in continu-

ous mode transmission using frequency locked loops and phase locked loops. But due to

the high acquisition time and the possibility of occurrence of the ’hang-up’ phenomenon,

feed-forward approaches are more popular [62]. So, we use feed-forward schemes to

estimate the frequency errors. However, most of the systems still use feedback based

phase-locked loops to track residual small frequency errors after the initial acquisition.

Phase locked loops are discussed in later sections of this chapter.

There are many frequency estimation algorithms proposed for single carrier transmis-

sion. In this section, we focus on some popular algorithms which were developed based

on different methodologies. Usually, the frequency offset is estimated using preambles at

the beginning of the transmission. Several data-aided frequency estimators are discussed

in [49, 51]. A simple implementation of ML frequency estimator is not available due to

the high complexity [51].

According to Figure 2.5, the input signal of the frequency recovery unit can be defined

as

x(k) = cke
j[2πfdkTs+θ] + w′(k) , (2.15)

where, fd is the carrier frequency offset, θ is the carrier phase offset, Ts is symbol time,

ck is a QAM modulated complex symbol with the index k, where the region is defined

as 0 ≤ k ≤ L − 1. The total number of symbols used in the estimator is given by L.

w(k) is complex Gaussian noise sample with power spectral density N0. (2.15) is derived

assuming perfect timing recovery. We remove the modulation of PSK or 4-QAM symbol

by multiplying (2.15) with c∗k as z(k) , x(k)c∗k.

z(k) = ej[2πfdkTs+θ] + w′′(k) , (2.16)
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where w′′(k) , w′(k)c∗k has the same mean and variance as w(k). The MRCB of frequency

estimators for a QPSK modulated system is defined as follows [51]:

MCRB(f̂d) =
3

8π2L3
0Es/N0Ts

2 , (2.17)

where, Ts is the symbol time, L is the block length and Es/N0 is the ratio of symbol energy

to noise spectral density.

2.4.1 Kay estimator

Kay presented an unbiased frequency estimator which achieves MCRB at high SNR re-

gion [3]. This estimator is derived by multiplying z(k) with conjugate of the previous

symbol z∗(k − 1). It results in a complex number where the phase angle is equivalent to

the normalized frequency offset and an additive noise sample. Weighting factors γ(k) are

calculated based on the autocorrelations of relevant noise samples. The final frequency

estimate is obtained by adding the weighted angles of L symbols and normalizing the

result. Kay estimator is defined as [3],

f̂d =
1

2πTs

L−1∑
k=1

γ(k) arg{z(k)z∗(k − 1)} , (2.18)

where γ(k) is defined as,

γ(k) =
3

2

L

L2 − 1

[
1−

(
2k − L

L

)2
]
, k = 1, 2..., L− 1

2.4.2 Lovell and Williamson (L&W) estimator

Lovell et al. presented an improved version of the Kay algorithm [63]. L&W estimator

uses the phase differences of consecutive symbols z(k) and z(k − 1). L&W estimator is

defined as [63],

f̂d =
1

2πTs
arg

{
L−1∑
k=1

γ(k) exp{j[arg{z(k)} − arg{z(k − 1)}]}

}
, (2.19)
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where weighting factors are defined as,

γ(k) , 6k(L− k)/[L(L2 − 1)]

2.4.3 Fitz estimator

Fitz developed a frequency estimator based on the correlation of the received symbols

[6]. R(m) vector is calculated using autocorrelations of z(k) as follows:

R(m) , 1

L−m

L−1∑
k=m

z(k)z∗(k −m), 1 ≤ m ≤ L− 1 , (2.20)

where 1 ≤ m ≤ L− 1. It can be simplified as

R(m) = ej2πmfdTs + w′′′(m) , (2.21)

where w′′′(m) is a zero mean noise term and|w′′′(m)| can be neglected at high SNR region.

By measuring the phase of R(m) and taking the summation over N autocorrelations, Fitz

estimator can be obtained as follows [6]:

f̂d =
1

πN(N + 1)Ts

N∑
m=1

arg{R(m)} , (2.22)

where N must satisfy the two requirements N ≤ 1/(fdTs) and N ≤ L/2.

2.4.4 Luise and Reggianni (L&R) estimator

Luise et al. proposed another frequency estimator which utilizes the autocorrelations of

the input vector [4]. This estimator sums the autocorrelations R(m) prior to calculating

the phase. L&R estimator is defined as [4],

f̂d =
1

πTs(N + 1)
arg

{
N∑

m=1

R(m)

}
, (2.23)

where N is limited by N ≤ L/2 and N ≤ 1/(fdTs) conditions.
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2.4.5 Mengali and Morelli (M&M) estimator

Mengali et al. presented an autocorrelation based algorithm overcoming the 2π phase

ambiguity of autocorrelation vector arg(R(m)) which suffered in Fitz estimator [64]. M&M

estimator replaces the phase angles of the autocorrelations in Fitz estimator with phase

angle difference between the neighboring components in autocorrelation vectors

arg{R(m)R∗(m− 1)}. M&M estimator is mathematically defined as [64],

f̂d =
1

2πTs

N∑
m=1

γ(m) [arg{R(m)} − arg{R(m− 1)}]2π , (2.24)

where, γ(m) , 3[(L−m)(L−m+1)−N(L−N)]/[N(4N2−6NL+3L2−1)] and N ≤ L/2.

2.4.6 Other frequency estimators

All the above estimators were proposed to be used when preambles are transmitted in a

single block. Palmer et al. presented two frequency estimators when the preambles are

distributed throughout a burst along with data [65]. These have the advantage of over-

coming burst errors where the first block (preamble block) is lost during the transmis-

sion. The proposed estimators, namely, phase-incremental estimator and autocorrelation-

based estimator achieve MCRB at high SNR region [65].

The previously discussed frequency estimators can be used in decision-directed mode

or non-data aided mode by canceling the modulation (e.g. take the M th power for a M-

PSK modulated signal) [51]. A pure non-data aided and non-timing aided feed-forward

estimator is suggested, which uses delayed samples of the signal [66]. the cost is its

poor performance compared to data-aided and timing-aided estimators and hence is not

suitable for low SNR operation.

2.4.7 Performance investigation of frequency estimators

We investigate the performance of frequency estimators using computer simulations.

MSE of each estimator is compared with MCRB as a function of SNR. Nyquist pulse

is used with an excess bandwidth α = 0.5. Two block sizes 32 and 128 are considered
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with an initial frequency offset of 0.
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Figure 2.12: MSE performance of frequency estimators (L = 32 & L = 128).

According to Figure 2.12, when the block size is 32, all the frequency estimators

achieve MCRB at high SNR values over 14 dB. L&W and Kay estimators perform poorly

when SNR is lower than 13 dB and 9 dB respectively. M&M estimator achieves MCRB

at a low SNR of 1 dB. Fitz and L&R estimators perform well at low SNR by reaching

MCRB. When the block size is increased to 128, L&W estimator fails to achieve MCRB till

15 dB and Kay estimator achieves MCRB at 9 dB. The performance of M&M algorithm

improves compared to a block size of 32 and it achieves MCRB before 0 dB. Fitz and L&R

estimators also reach MCRB at negative SNR values. Therefore, based on MSE investiga-

tion, it can be concluded that data-aided M&M, Fitz and L&R estimators are suitable for

low SNR operation.

Estimation range is another key metric to compare frequency estimators. It measures

the maximum frequency offset that the estimators can track and it is also named as the

S-curve. In our investigation the initial frequency offset is varied from -0.1 to 0.1. The
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operating SNR is chosen as 15 dB and block sizes of 32 and 128 are considered. The
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Figure 2.13: S curves of frequency estimators (L = 32).

estimation ranges for block size of 32 are presented in Figure 2.13. Kay, L&W, and M&M

estimators have a wide estimation range about 0.3, 0.45 and 0.45 Hz per symbol. These

three estimators use the phase differences between the consecutive symbols to calculate

the frequency offset. Therefore, block length do not affect these estimators. However,

on the other hand, Fitz estimator and L&R estimator use the auto correlation and phase

differences among the symbols in entire block. So these estimators have a maximum in

terms of the estimation range depending on the phase difference between the first and

last symbol of the block. When N = 32 Fitz estimator records the lowest estimation

range of 0.03 among the considered algorithms. L&R estimator is capable of measuring

the normalized frequency offsets up to 0.05.

Higher block sizes result in lower estimation ranges for Fitz and L&R. Figure 2.14

shows the estimation ranges when the block size is increased to 128. L&W, Kay and M&M

estimators still operate with the same range, higher than 0.1 Hz per symbol. However, the

normalized ranges of Fitz and L&R estimators have fallen to 0.005 and 0.01 respectively.
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Figure 2.14: S curves of frequency estimators (L = 128).

We also investigate the performance of these algorithms for non-data aided operation.

Instead of performing the process defined in (2.16), we remove the modulation by taking

the received signal to its fourth power since QPSK modulation is used. Therefore, we

re-write z(k) as

z(k) = ej[2π4fd(kT )] + n′(k) (2.25)

The remaining part of the derivations is the same, except for the division of estimators

by a factor of 4 to obtain f̂d being the final step. Estimation range of the NDA estimators

are also reduced by a factor of 4 compared to the data-aided versions, because of the

fourth power operation.

MSE performance for NDA frequency estimators are presented in Figure 2.15. The

NDA estimators perform quite poorly compared to DA estimators at low SNR. When

block size is 32, all the estimators fail to achieve MCRB below SNR of 16 dB. However,

Fitz and L&R estimators start performing better, when SNR is higher than 10 dB. M&M

estimator aligns with Fitz and L&R estimators at 12 dB. However, L&W estimator be-

haves poorly within the considered SNR region.
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Figure 2.15: MSE performance of frequency estimators (Non data-aided) (L = 32 & L =
128).

The performance of some NDA estimators improve when the block size is increased

to 128. Fitz and L&R estimators perform close to MCRB from a SNR of 7 dB and M&M

estimator starts to reach MCRB from 10 dB. Kay and L&W estimators result in higher

MSE compared to other estimators. However, the MSE gap of Fitz and L&R with MCRB,

increases when SNR gets lower. Therefore, we realize that non data-aided mode is not

suitable for the low SNR operation.

Based on the above observations, we select data-aided M&M estimator as the most

appropriate frequency estimator, due to its superior performance at low SNR (around 0

dB) and the wider estimation range.

Performance of frequency estimators at the presence of timing errors

The behavior of M&M frequency estimator in the presence of timing errors is investigated

and presented in Figure 2.16 when the block size is 32. It is observed that the MSE is

not converging to the MCRB at high SNRs. This is because at high-SNR, timing errors

have more impact than the Gaussian noise, resulting in a higher MSE compared to the

perfectly-sampled scenario. At the presence of worst timing error of 0.5, variance of
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M&M converges to 10−5. Therefore, it is important to perform the timing recovery prior

to the frequency recovery.
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Figure 2.16: MSE performance of M&M estimators at the presence of timing offsets (L =
32).

2.5 Carrier Phase Synchronization

Carrier phase synchronization is a necessary component in coherent communication sys-

tems. It needs to correct both the initial phase offsets as well as the phase errors occurring

due to residual frequency errors. Especially in low SNR region, the residual frequency

errors can be large enough to distort the received signal constellation. It is important

to recover the carrier phase continuously throughout the data transmission. Therefore,

non-data aided or decision-directed estimators are needed to operate during the data

transmission. As preamble is already supplied for the training stage, data-aided opera-

tion can be conducted to obtain a more accurate estimate of the initial phase offset.

Assuming perfect timing and frequency recovery, the input of carrier phase recovery
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unit can be written as follows:

x(k) = cke
jθ + w′(k) (2.26)

2.5.1 Feedback based carrier recovery loop

Carrier phase recovery loops are widely used in current communications systems. They

are mostly suitable in continuous mode operations where it is needed to track small phase

variations over a long period of time. A typical carrier recovery loop consists of a phase

error detector, a loop filter and a direct digital synthesizer (DDS). Usually maximum

likelihood phase detector is used as it calculates the optimal phase error. Second order

loop filters are widely used due to their capability of tracking small frequency errors with

a low complexity.

2.5.2 Feed-forward based carrier recovery system

As feedback based carrier recovery loops may require a long time to acquire the initial

lock, an alternative approach can be used for fast acquisition during the burst transmis-

sion. Feed-forward synchronizers are proposed to achieve this requirement. We focus on

data-aided ML estimator [51] and non data-aided Viterbi & Viterbi estimator [7] in this

section.

The Cramer-Rao bound (CRB) is defined for QPSK modulated phase estimators as

follows [51]:

MCRB(θ̂) =
1

2LEs/N0
, (2.27)

where, L is the number of symbols used in the estimator.

Maximum likelihood (ML) phase estimator

ML based feed-forward and data-aided phase estimator performs with a high accuracy

even at low SNR values around -2 dB and is widely used during the training mode [51]. It

basically removes the modulation by multiplying the matched filter output x(k) with the
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conjugate of preambles. Then average phase angle over a block of L symbols is calculated

as the final estimate. ML estimator is mathematically represented as follows [51]:

θ̂ML = arg

{
L−1∑
k=0

c∗kx(k)

}
, (2.28)

Viterbi & Viterbi (V&V) estimator

Viterbi et al. presented a non data-aided and feed-forward estimator for PSK modulated

signals which is widely used in modern wireless and optical communication systems

[7]. V&V algorithm estimates the phase of middle symbol when a small frequency error

is present. The performance of V&V estimator varies with two parameters use in the

estimator: window size (L) and non-linear transformation function.

The input signal can be written as, x(k) = ak + jbk, where ak = real(x(k)) and

bk = imaginary(x(k)). The parameters of the estimator, are calculated as ρk =
√

a2k + b2k

and ϕk = tan−1(bk/ak).

The nonlinear transformation function is defined as F = ρnk where n is the order of the

non linearity and n = 0, 1 and 2.

Then new variables a′k and b′k are calculated as

a′k + jb′k = F(ρk)ejMϕk

The final phase estimate is obtained as follows:

θ̂k =
1

M
tan−1



N∑
k=0

b′k

N∑
k=0

a′k


, (2.29)

where M is the signal constellation size. V&V estimator gives a rise to an M-fold ambigu-

ity in the phase estimate. Practical systems overcome this phase ambiguity by adapting

differential encoding and decoding. However, adopting differential encoding and de-

coding will result in a higher bit error rate, by approximately two times at high SNR
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region. Another method to overcome this phase ambiguity is to use a phase un-wrapper

[1]. A phase un-wrapper resolves the phase ambiguity through accumulating the phase

estimate around the discontinuities.

2.5.3 Performance investigation of phase estimators

Figure 2.17 and 2.18 illustrate MSE for ML and V&V estimators with different non-linear

transformation functions. It can be seen that ML estimator achieves CRB even at low SNR

values for both block sizes chosen. All the V&V estimators perform poorly compared to

the ML estimator at low SNR region, however, the performances improve at high SNR

values. V&V estimator with unit magnitude (F (ρ) = 1) gives the worst performance

when SNR is less than 11 dB. For SNR values less than 5 dB, square non-linear func-

tion (F (ρ) = ρ2) performs superior to other two functions. Absolute non-linear function

(F (ρ) = ρ) performs better than other two only during the mid SNR region around 5 dB

to 11 dB, however, the performance gain over square non-linear function is very small.
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Figure 2.17: Performance comparison between of phase estimators (L = 32).



2.5 Carrier Phase Synchronization 43

SNR (dB)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
S
E

10-4

10-3

10-2

10-1

ML

V&V, F (ρ) = 1

V&V, F (ρ) = ρ

V&V, F (ρ) = ρ
2

MCRB

Figure 2.18: Performance comparison phase estimators (L = 128).
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Figure 2.19: BER performance after phase recovery (L = 32 & L = 64).
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We also observe the BER performance after the carrier phase recovery and presented

in Figure 2.19. V&V estimator (F (ρ) = ρ2) is implemented with block sizes of 32 and 64.

The phase recovered signal suffers a loss of 0.4 dB compared to the perfect synchronized

signal at SNR of 3 dB and a 0.07 dB loss at SNR of 10 dB when block size is 32. The

number of errors is reduced when block size is increased to 64, the signal suffers losses

of 0.2 dB and 0.03 dB at SNR’s of 3 dB and 10 dB respectively. Therefore, by using a large

enough block size, V&V estimator provides a near perfect BER performance.

BER for a perfectly synchronized un-coded QPSK signal is given by [50] as,

BERQPSK = Q

(√
Es

N0

)
(2.30)

An analytical expression is available for the BER loss (∆) due to the variance of phase

estimation Var(θ̂) [61]. This expression is highly accurate when the phase variance is low.

∆ ∼=
10

ln(10)

[
1 +

Es

N0

]
Var(θ̂) (in dB) (2.31)

We also investigate the performance of V&V algorithm in the presence of frequency

errors. The average symbol phase increases in proportion to the frequency error present.

In such scenarios, V&V estimator produces an estimate of the middle symbol in the block.

In order to avoid this problem, a lower block size should be used. However, at low

SNR, small block sizes give inaccurate estimates. Therefore, it is important to decide the

optimum block size depending on the possible frequency offsets and operating SNR [67].

One issue with feed-forward phase estimators is the phase wrapping due to frequency

offsets. Therefore, the output of the phase estimator needs to be tracked and un-wrapped

as proposed in [1].

The maximum variance of the phase estimator in the presence of frequency error is

given by [67] as

σ2
θ̂,max

= σ2
θ̂
+ 4π2L2

θf
2
e T

2
s , (2.32)

where, σ2
θ̂

is the phase error variance of the central symbol, feTs is the normalized fre-

quency error, 2Lθ + 1 is the number of symbols used in the phase estimator.
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Figure 2.20 shows the MSE of V&V estimator for small frequency errors of 10−3, 10−4

and 0 for three block sizes 32, 128 and 256. The signal with highest frequency error of 10−3

produces large phase variance due to the frequency error when long block size is used

(L = 128 and L = 256). The phase variance is dominated by the second term in (2.32).

When the block size is 32, the total phase variance due to frequency error is small com-

pared to the phase estimator variance. So all three graphs almost overlap with each other.

When L = 256 and frequency error is high (10−3), V&V estimator is unable to estimate

the phase correctly as the phase of the symbols in the block exceeds the estimation range

of (−π/2, π/2). But smallest block size of 32 produces similar performance for all three

signals. The performances for signals with small frequency error 10−4 and no frequency

error are quite similar for these block sizes. Based on our investigation, we conclude that
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Figure 2.20: Performance comparison of Viterbi & Viterbi estimator at the presence of
frequency errors (L = 32 & L = 128).

the initial phase acquisition should be carried out using data-aided ML phase estima-

tor. However, small residual frequency errors can still exist after the frequency recovery.

Those frequency errors should be tracked continuously, and therefore, a non-data aided

estimator has to be used. For low SNR operation of PSK modulated systems, V&V esti-
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mator should be used with non-linearity of F (ρ) = ρ or F (ρ) = ρ2 depending on the exact

operating SNR. However, for high order QAM signals, carrier recovery loops need to be

used for tracking after the initial phase is acquired by feed-forward ML phase estimator,

because V&V phase estimator performs quite poorly in that case.

2.5.4 Performance of combined timing and carrier synchronization systems

Based on our investigations and conclusions of individual scheme performances, we sim-

ulated a combined timing and carrier phase recovery system1. We have chosen absolute

value non-linearity (AVN) based feed-forward timing estimator [59] as to estimate the

timing error. We then use correct the phase offset using Viterbi and Viterbi estimator [7].

Nyquist pulse with excess bandwidth of α = 0.35 is used with different block sizes 32,

64 and 256. The initial timing and phase offsets were evenly distributed. The BER results

are presented in Figure 2.21.

The BER degradation due to the non-perfect synchronization reduces as the number

of symbols or the block size (N ) is increased. At a BER of 10−1, there is SNR degrada-

tion of 0.8 dB when 32 symbols are used in the estimators. But the SNR degradation

reduces to 0.4 dB when the block size is increased to 64. At a lower BER value of 10−4,

32 and 64 blocks require to operate at 11.6 dB and 11.5 dB while the perfect synchronized

system only needs 11.4 dB. When 256 blocks are used for synchronization, the perfor-

mance closely aligns with perfect synchronized signal. When compared with individual

estimated BER performances - timing recovered in Figure 2.10 and phase recovered in

Figure 2.19 - the joint synchronized system performance is slightly poor mainly due to

the effect of non-perfect timing recovered signal fed into phase estimator. However, by

selecting a large enough number of symbols for the estimators (e.g. N = 256) near perfect

synchronization can be achieved for a given application.

1Even though the synchronization parameter estimates are evaluated in MSE, a complete system per-
formance is more meaningful to evaluated using BER. In practice, when the carrier synchronizer fails to
mitigate the frequency offset, it results in a frequency error. In the presence of a frequency error, the sym-
bol constellation rotates and in such situations the BER renders meaningless ( e.g. by converging to 0.5 for
QPSK). Considering such a scenario into BER calculation would provide inaccurate results. Therefore, we
did not consider the frequency synchronization in the BER simulation and we only considered timing and
phase recovery in Figure 2.21
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Figure 2.21: BER performance with joint timing and carrier phase synchronization (L =
32 & L = 64).

2.6 Conclusions

In this chapter, we evaluate the performance of various synchronization architectures

and algorithms for single-carrier transmission in AWGN channel. We propose a synchro-

nization system architecture with appropriate algorithms for low SNR operations. It is

important to use a preamble to train the receiver, especially for the low SNR region. The

preamble can be used to acquire the initial parameters such as timing offset, carrier fre-

quency offset and phase offset. Then, non-data aided algorithms and decision directed

algorithms can be used during the data transmissions to track the synchronization pa-

rameters.

Timing error is corrected first as timing estimators can perform independently of

small carrier frequency errors. We propose to use absolute value non-linearity (AVN)

based feed-forward timing estimator [59] or Gardner TED [57] in the timing recovery
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system. We propose to adopt Mengali et al. algorithm to estimate the large frequency

offsets using a preamble [64]. Using the initial frequency estimation, the frequency error

should be correct throughout the data transmission.

The small residual frequency errors can be corrected by phase recovery subsystem

during the data transmission. Feed-forward Viterbi and Viterbi estimator [7] can be used

for 4-QAM modulated transmission, and a feedback loop with decision directed ML car-

rier recovery loop [51] is recommended for any M-QAM modulated transmission.



Chapter 3

Energy Modeling of Synchronization
Systems

This chapter presents energy models for different synchronization systems which were discussed

earlier in Chapter 2. We initially analyze the computational complexity of synchronization system

components considering arithmetic, logic and memory based operations. The energy consumption of

digital signal processing (DSP) circuitries is then modeled using a computational complexity–energy

framework assuming complementary metal-oxide-semiconductor (CMOS) implementation. The com-

putational complexity of parameter estimation algorithms and other segments are studied according to

available implementation architectures. We also define a new metric to compare the energy efficiency

of synchronization estimators by considering both MSE performance and operating SNR.

3.1 Introduction

As discussed in the Chapter 2, many estimators are available for carrier frequency [3,

4, 6, 64], carrier phase [7, 51] and symbol timing synchronization [1, 59, 60]. We com-

pare the performance of these algorithms using various metrics such as mean squared

error (MSE), estimation range and bit-error rate (BER). Another important metric which

is useful in practice is computational complexity. The complexity of these algorithms

can be calculated based on the required number of computational operations and the re-

quired circuitries for completing each operation. The computational complexity can be

categorized into arithmetic operations, logical operations and memory accesses. These

computations are performed by digital circuits and it results in circuit processing energy

consumption. Energy consumption for a given algorithm also depends on the hardware

implementation platform and the technology.

49
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Complementary metal-oxide-semiconductor (CMOS) is commonly-used technology

in constructing digital electronic circuits for communication systems [68, 69]. One of the

main advantages of CMOS technology is that it enables chips that are small in size to

have features like high operating speeds and efficient usage of energy [70]. Another im-

portant characteristics of CMOS technology is its low static power consumption, making

it possible for low-power high-speed application [70]. Devices using CMOS technology

also have a high degree of noise immunity, and for these reasons, many leading telecom-

munication standards were fabricated using CMOS technology in the last few decades.

The complexity of digital circuits was initially investigated in VLSI systems using area

and time-based computational designs [40,71]. New investigations have been carried out

recently to analyze the energy consumption of decoders [37,38]. Grover et al. introduced

simple energy models for equalizers and decoders [37]. This study is later extended to

derive fundamental lower bounds for complexity and to model power consumption for

LDPC encoders and decoders [38, 39].

A computational complexity – energy conversion framework is presented by Desset

et al. for wide range of operations covering arithmetic, logic and memory operations

[35]. The authors used this framework to model the energy consumption of Hamming

codes, Reed-Solomon codes, Reed-Muller codes and turbo codes. It is later used to model

energy more accurately in different code families such as Reed-Solomon [72] and LDPC

[43].

To the best of our knowledge, however, a computational complexity based complete

model for a whole synchronization system in wireless receivers is not available. It is

important to model the energy costs of synchronization systems due to two main reasons:

• Low power devices such as wireless sensor nodes and IoT transceivers generally

use batteries with limited stored energy. In such cases, the energy consumption of

digital processing becomes more significant, therefore, modeling the circuit energy

for the synchronization system provides insights on energy efficient system design.

• Circuit energy is more important at low SNR operation. As the received SNR is

reduced, the coding overhead needs to increase in order to overcome the additional

errors that occur due to the high noise power. This results in receivers to process
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more bandwidth, which results in higher circuit processing energy. The selection

of algorithms could also change at different SNRs, and therefore, the circuit energy

will change.

In order to address the gap this area, we model the energy consumption of synchro-

nization systems. This chapter is organized as follows: Section 3.2 consists of a descrip-

tion of a framework for our system. Section 3.3 provides the analysis and energy mod-

eling details of timing recovery subsystem. Frequency system complexity analysis and

energy modeling are presented in Section 3.4. Section 3.5 consists of complexity analysis

for different phase synchronization algorithms and details of the energy models. Finally,

Section 3.6 summarizes and concludes the chapter.

3.2 Energy Modeling Framework for DSP Circuits

In this chapter, we use the complexity–energy framework presented by Desset et al. [35]

with necessary modifications to match modern processing technologies. This framework

is then used to derive energy models from different parts of the synchronization systems.

The complexity-energy framework provides energy consumption estimates of DSP

components for basic operations such as addition, multiplication, register access, read-

only memory (ROM) access and logic gate operations. Desset et al. presented the energy

consumption values for an operating voltage of 1.8 V and CMOS technology of 180 nm.

The original energy consumption details are listed in Table 3.1 and represent the average

equivalent energy consumed by each basic operation [35]. The parameter n is defined

as the average bit resolution of the DSP module. The energy costs are estimated on the

basis of data sheets as well as on practical experience. The energy values include related

overheads such as interconnection [35]. The energy consumption for a given DSP module

is a sum of energy costs of all individual operations.

In our system, registers are used to store temporary variables that are needed later.

ROMs are used to save fixed constants used in arithmetic operations. Most of the com-

ponents in our system use complex numbers; therefore, complex operations need to be
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Table 3.1: Energy consumption basic framework [35] (0.18µm CMOS implementation
with a supply voltage of 1.8 V).

Operation Energy consumption
per operation (pJ)

Logic gate 0.4

Flip-flop 2 (write)
n-bit Adder 1.5n

n-bit Multiplier 1.5n2

RAM 10 per bit (read or write)
m-input ROM m per bit (read)

carried out. A complex addition is realized using two real additions. A common ap-

proach to implement complex number multiplication is to use four real multiplications

and two real additions, but an alternative approach can be taken by using three real mul-

tiplications and five real additions [73]. Both approaches have different trade-offs, which

depend on the bit resolution of the system. But the second approach requires different

DSP clock frequencies, which affects the throughput of the system [74]. Therefore, first

approach is used to implement a complex multiplication in our calculations.

Table 3.2: Energy consumption for different operations in our system (45 nm CMOS im-
plementation and with a supply voltage of 1 V).

Operation Energy consumption
per operation (pJ)

Logic gate 0.03

Register (read & write) 1.23

Real adder 0.93

Real multiplier 7.41

RAM 6.17

ROM (read) 6.17 (read)
Sin, Cosine, Tangent 6.17

Complex exponential 12.34

Argument 6.17

Logarithm 6.17

Root, Power 6.17
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In addition to basic mathematical and memory operations, the estimators need to

calculate non-linear complex functions such as trigonometric and logarithmic functions.

The easiest method to calculate the value of these functions is to use look-up tables (LUT)

and read values from the ROM. The accuracy of the function values depend on the res-

olution of the LUT. The second approach uses COordinate Rotation DIgital Computer

(CORDIC) architectures. CORDIC can be used to provide calculations with higher ac-

curacy [75]. The fundamental operation of CORDIC is based on vector rotations, and

realized using a set of iterative shifts and additions; however, CORDIC requires a higher

number of computations than LUTs and is suitable for applications that need very high

accuracy. A third approach - Taylor series approximation - is also available to perform

complex functions. Taylor series approximation uses basic arithmetic operations to calcu-

late values of a complex function. The accuracy of the Taylor series expression, however,

depends on the number of terms used in the approximation; therefore, highly accurate

implementation may consume higher complexity. In our system, we assume that com-

plex functions are implemented using LUTs due to its simpler implementation with suf-

ficient accuracy [43].

LUT-based implementation for an n-bit ROM with a resolution of 2m consumes mn

pJ energy. Functions such as sin, cos, tan, log, exp, arg, roots and powers of variables are

implemented using LUTs as shown in Table 3.2.

CMOS circuit energy consumption changes according to the supply voltage and pro-

cessor technology [76]. In our system, 45nm CMOS technology and 1 V supply voltage

are assumed as they are equivalent to today’s common practice. The original energy

framework given in Table 3.1 is scaled according to the relevant rules [76] and presented

in Table 3.2. We assume a bit-resolution of 8 to represent arithmetic values in our system.

3.3 Timing Recovery Systems

In this section, we first analyze computational complexity of the timing recovery system

and then develop relevant energy models. A block diagram of our timing recovery sys-

tem is illustrated in Figure 3.1. We start with feed-forward based timing synchronization
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system.

3.3.1 Feed-forward Timing Estimators

Timing error is first estimated using a timing estimator and then we use timing phase

un-wrapper to track the errors continuously. An interpolator is used to correct the timing

error. The computational complexity of the entire system is derived by analyzing each

segment and adding individual contributions together. We analyze complexity of the

timing estimators which were discussed in Section 2.3.2.

Figure 3.1: A block diagram of the timing recovery system.

Oerder & Meyr (SLN) estimator

Oerder & Meyr (SLN) estimator is given by [1] as follows:

τ̂ = −Ts

2π
arg

{
4L−1∑
k=0

|x(kT )|2e−jπk/2

}
, (3.1)

where, the variables are defined as follows:

• τ is the time delay from the optimum sampling point

• Ts is symbol time

• T is sampling time

• x(kT ) is the received sample belongs to the time instance kT

• L is the block size used in the estimator
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• τ̂ is the estimator output

A block diagram of SLN estimator is presented in the original publication [1] and

shown in Figure 3.2.

Figure 3.2: Hardware implementation architecture of the Oerder & Meyr estimator ([1]).

This estimator operates on four samples per symbol. Four parallel paths are used to

perform the calculation for the four samples of each symbol more efficiently allowing

its operation at high data rates. This realization avoids the use of sinusoidal multipliers

and saves LUT access for sine and cosine functions. The squared magnitude of the signal

was calculated using two real multiplications and one real addition. Finally, a summation

over a block of L symbols were taken and the angle of the complex output was calculated

using the LUT to obtain the final estimator.

The required number of computations to obtain one estimate for an L size block is

presented in the Table 3.3.

Table 3.3: Computational complexity of the Oerder & Meyr ([1]) estimator.

Operation No. of operations
Real additions 8L− 2

Real multiplications 8L+ 1

Argument 1

ROM access 1
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LOGN and AVN estimators

Modified Oerder & Meyr algorithms can also be implemented similar to the SLN al-

gorithm. The LOGN based feed-forward estimator [59] can be implemented as SLN

estimator (Figure 3.2), by replacing the squared magnitude function with the function

f(z) = ln[1 + |z|2(SNR)2]. SNR is defined as the ratio of symbol energy to noise spectral

density for the remainder of this Chapter and can be found at the matched filtered output

of the previous symbol block. The analysis of the computational complexity of the LOGN

estimator is presented in Table 3.4.

Table 3.4: Computational complexity of the LOGN feed-forward estimator.

Operation No. of operations
Real additions 12L− 2

Real multiplications 12L+ 2

Logarithm 4L

Argument 1

ROM access 2

Table 3.5: Computational complexity of the AVN feed-forward estimator.

Operation No. of operations
Real additions 4L− 2

Real multiplications 1

Absolute value 4L

Argument 1

ROM access 1

Similarly, the AVN based feed-forward estimator [59] can also be implemented ac-

cording to Figure 3.2 by performing the absolute value function instead of the squared

magnitude function. The analysis of the computational complexity of this estimator is

given in Table 3.5.
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Zhu estimator

An implementation architecture for a two-sample Zhu estimator is presented in Figure

3.3 [2]. The in-phase and quadrature-phase components of the input signal are first multi-

plied with sinusoidal constants before sending through low pass filters. Then the result-

ing complex numbers are squared and sent to arithmetic processes prior to calculating

the timing error using the argument function. The low pass filters are assumed to be 1st-

order infinite impulse response (IIR) filters. It is assumed that two multiplications, one

addition and one register shifting are required to perform low-pass filtering.

Zhu algorithm is presented as [2]

τ̂ = −Ts

2π
arg

{
2L−1∑
k=0

y2I (kT ) + y2Q(kT )

}
, (3.2)

where, the signals at various points of the estimator are shown in Figure 3.3 and yI(t) =

uI(t) + vI(t) and yQ(t) = uQ(t) + vQ(t).

Figure 3.3: Hardware implementation architecture of the Zhu estimator [2].

The computational complexity of the Zhu estimator is summarized in Table 3.6.
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Table 3.6: Computational complexity of Zhu estimator.

Operation No. of operations
Real additions 16L− 2

Real multiplications 24L

Argument 1

ROM access 4

LPF 8L

Lee estimator

The Lee estimator [60] is proposed to implement by using low complexity architecture

with four parallel data lines as shown in Figure 3.4. Each sample of the two-sample

based algorithm is sent through two parallel lines to calculate the timing error. The Lee

estimator’s computational complexity is presented in Table 3.7.

Figure 3.4: Hardware implementation architecture of the Lee estimator.

Lee estimator is defined as [60]

τ̂ = −Ts

2π
arg

{
2L∑
k=1

|x(kT )|2e−jkπ +Re[x(kT )x∗((k − 1)T )]e−j(k−0.5)π

}
(3.3)
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Table 3.7: Computational complexity of the Lee estimator.

Operation No. of operations
Real additions 8L− 2

Real multiplications 8L+ 1

Argument 1

ROM access 1

Register shifting 4L

3.3.2 Interpolation

The operation of interpolators was discussed in Section 2.3.1. The complexity of two

popular types of piece-wise polynomial interpolators–parabolic and cubic–are discussed

by Erup et al. [77] and is summarized in Table 3.8, where N is the oversampling factor.

Table 3.8: Computational complexity of piece-wise polynomial interpolators (Per inter-
polator).

Operation Parabolic Cubic
No. of operations No. of operations

Real additions 9NL 11NL

Real multiplications 2NL 3NL

Register shifting 5NL 8NL

ROM access 1 3

3.3.3 Energy consumption of timing recovery systems

We summarize the computational complexity of previously discussed algorithms and in-

terpolators in Table 3.9 where a piece-wise parabolic interpolator is assumed to be used.

An over-sampling factor of four is considered for Oerder & Meyr estimators (SLN, AVN

and LOGN), while an over-sampling factor of two is considered for Zhu and Lee estima-

tors. L symbols are considered to generate one estimate.

We then convert the complexity into energy consumption by applying the energy

framework and present the energy consumption as a function of block size L in Table



60 Energy Modeling of Synchronization Systems

Table 3.9: Computational complexity summary of the timing recovery system.

Operation SLN AVN LOGN Zhu Lee Interpolator Interpolator
(N=4) (N=2)

Real additions 8L− 2 8L− 2 12L− 2 16L− 2 8L− 2 72L 36L

Real multiplications 8L+ 1 8L+ 1 12L+ 2 24L 8L+ 1 16L 8L

Argument 1 1 1 1 1 - -
ROM access 1 1 2 4 1 1 1

Square-root - 4L - - - - -
Logarithm - - 4L - - - -
Register shifting - - - 4L 40L 20L

LPF - - - 8L - - -

Table 3.10: Energy budget variation of the timing recovery systems with L (in nJ).

Block SLN AVN LOGN Zhu Lee Interpolator Interpolator
length (L) (N=4) (N=2)
16 1.1 1.5 2.1 5.3 1.2 3.0 1.5
32 2.1 2.9 4.1 10.5 2.3 6.1 3.0
64 4.3 5.9 8.1 21.0 4.6 12.2 6.1
128 8.6 11.7 16.1 42.1 9.2 24.4 12.2
256 17.1 23.4 32.0 84.1 18.3 48.8 24.4

3.10.

As Oerder & Meyr estimators (SLN, AVN and LOGN) require four samples per sym-

bol, interpolator with an over sampling factor of four should be adopted with the esti-

mators. In these systems, interpolators consume higher levels of energy mainly due to

the high number of samples being used. In comparison with SLN and AVN, the LOGN

estimator consumes higher levels of energy, mainly due to the additional arithmetic op-

erations and memory accesses.

Zhu and Lee estimators operate with interpolators of two samples per symbol. Even

though the Zhu estimator operates at a lower sampling rate at than the Oerder & Meyr

estimator, it consumes more energy than other estimators. This is mainly due to the

fact that it requires a higher number of arithmetical calculations and low pass filters.

However, the Lee estimator-based system gives the lowest energy consumption for a

fixed block size due to the lower interpolator energy.

Figure 3.5 shows a new metric to compare the energy consumption of SLN, AVN,

LOGN and Lee estimator–based timing recovery systems to achieve a given MSE as a
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function of SNR. MSE values of 10−3 and 10−2 are considered. Both the estimator energy

and interpolator energy are considered in the analysis. The MSE simulation similar to

that described in Section 2.3.3 have been used with a roll–of–factor of 0.35 and the initial

timing offsets uniformly distributed between -0.5 and 0.5.
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Figure 3.5: Energy consumption comparison of different timing recovery systems.

According to Figure 3.5, the Lee estimator consumes the highest levels of energy with

an MSE of 10−2, when the SNR is higher than 5 dB. For an MSE of 10−3, it consumes less

energy than Oerder & Meyr systems when the SNR is less than 10 dB. The main reason for

the high energy consumption of the Lee based system is that its MSE performance is poor

in comparison with other estimators; therefore, it needs a high number of symbols which

results in more energy consumption, even though it uses fewer of samples. However, in

order to count the effect of sampling rate, we need to consider the energy consumption

of the interpolator and analog-to-digital converter (ADC).

AVN and LOGN estimators have more complexity than others; however, AVN pro-
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duces the best MSE performance for a SNR higher than 5 dB and LOGN performs poorly

when SNR is less than 10dB. The AVN requires fewer symbols to obtain the given MSE

values, hence AVN consumes the lowest levels of energy when SNR is higher than 5 dB.

When SNR is at 0 dB, SLN is the most energy efficient.

This result was affected by the selection of excess bandwidth of Nyquist pulse. Over-

sampling rate also has a strong influence on devices such as ADC, which operate prior

to the timing recovery system. Therefore, these need to be considered when making

decisions in relation to output of energy budget.

3.3.4 Feedback-based Timing Recovery Systems

In this section, we analyze the complexity and energy consumption of feedback-based

timing recovery systems. A block diagram of the proposed feedback-based timing re-

covery system is shown in Figure 3.6. Our system consists of a TED, a loop filter, an

interpolation controller and an interpolator. We focus on Gardner TED [57] (GTED), Zero

Crossing TED (ZCTED) [51], and Mueller & Muller TED (MMTED) [58] as they are quite

popular in practical receivers [45, 51]. Proportional and integrator loop filters were used

due to their ability to correct the small symbol rate mismatches. Piece-wise parabolic in-

terpolators were used as in the previous section. Interpolation controllers were used to

feed the precise timing error to the interpolator and to sample the symbol at the optimum

position. N is the over-sampling factor which takes the value of two when ZCTED and

GTED are used, and the value of one when MMTED is used.

sampled 

signal
Interpolator

Interpolation 

control
TED

Loop 

filter

synchronized 

signal

Figure 3.6: A block diagram of a feedback-based timing recovery system.



3.3 Timing Recovery Systems 63

Figure 3.7: Hardware implementation architecture of the Gardner TED.

The output of GTED is defined as [57] follows:

e(k) = x((k − 1/2)Ts + τ̂)[x((k − 1)Ts + τ̂)− x(kTs + τ̂)]

+y((k − 1/2)Ts + τ̂)[y((k − 1)Ts + τ̂)− y(kTs + τ̂)] , (3.4)

where a0(k) and a1(k) represent in-phase and quadrature-phase components of the sym-

bols. Then x(t) and y(t) are in-phase and quadrature-phase components of the received

signal at time t. τ̂ is previous timing estimate.

The output of ZCTED is defined as [51] follows:

e(k) = x((k − 1/2)Ts + τ̂)[a0(k − 1)− a0(k)]

+y((k − 1/2)Ts + τ̂)[a1(k − 1)− a1(k)] (3.5)

MMTED output is mathematically represent as follows [45]:

e(k) = a0(k − 1)x(kTs + τ̂)− a0(k)x((k − 1)Ts + τ̂)

+a1(k − 1)y(kTs + τ̂)− a1(k)y((k − 1)Ts + τ̂) (3.6)
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Figure 3.8: Hardware implementation architecture of the Zero Crossing TED.

Figure 3.9: Hardware implementation architecture of the Mueller & Muller TED.

Computational complexity summary of different modules of the timing recovery sys-

tem is presented in Table 3.11 based on the implementation block diagrams of interpo-
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Table 3.11: Computational complexity summary of feed-back based timing recovery sys-
tems.

Operation Gardner ZCTED MMTED Loop Interpolation Interpolator
TED filter controller

Real additions 3 3 3 2N 2N + 1 18N

Real multiplications 2 2 4 2N - 4N

Register shifts 4 4 2 N - 10N

Divisions - - - - 1 -
ROM access - - - - - 2

lation controller and loop filters. The complexity of TEDs can be derived from the block

diagrams in Figure 3.7, 3.8 and 3.9. The complexity of TEDs is given as number of com-

putations carry out in a symbol duration (i.e. GTED and ZCTED operates twice). After

applying the complexity–energy framework, energy consumption of different compo-

nents and algorithms were developed and presented in Table 3.12.

Table 3.12: Energy consumption of feed-back based timing recovery systems (in pJ per
symbol).

Gardner TED ZCTED MMTED Loop filter Interpolation controller Interpolator
N = 2 N = 1 N = 2 N = 1 N = 2 N = 1

22.53 22.53 34.89 35.82 17.91 12.06 10.2 129.70 71.02

According to Table 3.12, Gardner-based and ZCTED-based timing recovery loops con-

sume 200.11 pJ in total per symbol. The MMTED-based timing recovery system con-

sumes 134.02 pJ in total per symbol; therefore, the single-sample-based timing recovery

loop consumes less energy. However, the actual energy efficiency can only be measured

after considering the performance of these estimators.

3.4 Frequency Recovery Systems

In this section, we analyze the computational complexity and energy consumption of

carrier frequency recovery systems. Unlike timing recovery systems, the majority of the

complexity in frequency recovery systems belongs to the estimators. Some estimators

can be realized using different architectures.

A block diagram of a feed-forward frequency recovery system is given in Figure
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3.10. This system consists of a preamble processing unit, a frequency estimator and a

frequency correction unit. During the training mode, preambles are used to make the ini-

tial estimate. During the data mode, either previous estimate with frequency correction

or decision-directed operation of frequency estimators are used. In these figures, x(k)

represents the perfectly sampled received signal; c∗k represents the conjugate of complex-

modulated symbols and z(k) represents the received signal after removal of the modula-

tion.

Figure 3.10: A block diagram of the frequency recovery system.

3.4.1 Preamble processing unit

The frequency estimators use preambles to remove the modulation of the received sym-

bols. The received symbols are multiplied with the complex conjugate of the relevant

preambles. Figure 3.11 represents the preamble processing unit. The complexity of this

unit is presented in Table 3.13.

Figure 3.11: Hardware implementation architecture of the preamble processing unit.
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Table 3.13: Computational complexity of the preamble processing unit.

Operation No. of operations
Real additions 2L

Real multiplications 4L

3.4.2 Frequency estimators

The computational complexity of several feed-forward frequency estimators is discussed

by Morelli et al. using several approximations [5]. The autocorrelations–based estima-

tors can be implemented in both time and frequency domains. In time domain based

implementation, computational complexity increases exponentially with the block size

L of the estimator. In frequency domain calculations, autocorrelation becomes multi-

plication, which reduces complexity in comparison with time domain [5]. Fast Fourier

Transform (FFT) can be used for efficient implementation of frequency domain conver-

sion of discrete signals; therefore, a suitable implementation approach should be chosen

depending on the block length.

Kay estimator

The Kay estimator can be implemented in hardware as shown in Figure 3.12 [3]. The in-

coming data is used to calculate the difference between neighboring phase angles which

consume L−1 additions. The final estimator can be taken after L−1 multiplications and

L−2 additions at the mixer and accumulator. The total computations needed for the Kay

estimator are summarized in Table 3.14.

Figure 3.12: Hardware implementation architecture of the Kay estimator [3].
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Kay estimator is defined as [3],

f̂d =
1

2πTs

L−1∑
k=1

γ(k) arg{z(k)z∗(k − 1)} (3.7)

where, f̂d is the estimate of carrier frequency offset, Ts is symbol time, z(k) are the re-

ceived symbols after modulation removal using preamble. γ(k) are the weighting factors.

Table 3.14: Computational complexity of the Kay estimator.

Operation No. of operations
Real additions 2L− 3

Real multiplications L

Argument L

ROM access L

Register shifting L− 1

Luise and Reggianni estimator

An implementation block diagram of the Luise and Reggianni (L&R) estimator, which

was first is shown in Figure 3.13 and proposed by authors in their original paper [4].

The autocorrelation vector R(m),m = 1, 2, ...N was calculated in parallel using multiple

paths. Shift registers, complex multipliers and complex adders were used to calculate

the autocorrelation vector. At each clock cycle the content of each register is shifted to the

following one and multiplied by a constant and then summed together. All the additions

and multiplications up to the final accumulator are performed as complex numbers. The

computational complexity summary of the L&R estimator is presented in column three

of Table 3.15.

L&R estimator is defined as [4] follows:

f̂d =
1

πTs(N + 1)
arg

{
N∑

m=1

R(m)

}
, (3.8)
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where N is limited by N ≤ L/2 and N ≤ 1/(fdTs) conditions.

Figure 3.13: Hardware implementation architecture (time domain) of the L&R estimator
[4].

The L&R algorithm can be implemented using frequency domain autocorrelation cal-

culation approach [5] as in Figure 3.14 where FFT is used to perform DFT operation [78].

First, N zeros are added to L number of symbols to perform the FFT operation on L+N

sized block. The absolute square of the FFT output Z(n) is calculated and then the in-

verse fast Fourier transform (IFFT) is performed. Using the last L values in the IFFT

output y(m), the autocorrelation vector is calculated. Radix-2 based FFT implementation

is assumed in our system. The resultant complexity is included in Table 3.15.

Fitz estimator

An efficient implementation model of the Fitz estimator is presented by the author in

the original paper [6] as shown in Figure 3.15. Parallel paths are used to calculate the

autocorrelation vector R(m). In each path, a shift register, a complex conjugate operator,
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Figure 3.14: Hardware implementation architecture (FFT-based) of the L&R estimator [5].

Table 3.15: Computational complexity of the L&R estimator.

Operation Time domain implementation FFT-based implementation
No. of operations No. of operations

Real additions 2NL+N − 1 6(L+N) log2(L+N) + L+ 2N − 1

Real multiplications 2NL+ 4L+ 1 4(L+N) log 2(L+N) + 2L+ 3N + 1

ROM access N + 1 (L+N) log 2(L+N) +N + 1

Argument 1 1

Register shifting NL−N −

two multipliers, an accumulator, and an argument operator is used. A complete block

diagram of the Fitz algorithm is shown in Figure 3.15.

Figure 3.15: Hardware implementation architecture (time domain) of the Fitz estimator
[6].
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Fitz estimator is defined as [6]

f̂d =
1

πN(N + 1)Ts

N∑
m=1

arg{R(m)} , (3.9)

where N satisfies the conditions N ≤ 1/(fdTs) and N ≤ L/2.

The Fitz algorithm can be implemented using FFTs similar to the Luise & Reggianni

algorithm. A computation analysis for time domain and frequency domain implementa-

tions of the Fitz estimator are included in Table 3.16.

Table 3.16: Computational complexity of the Fitz estimator.

Operation Time domain implementation FFT-based implementation
No. of operations No. of operations

Real additions 4NL− 2N2 − 3N − 1 6(L+N) log2(L+N) + L+ 2N − 1

Real multiplications 4NL− 2N2 −N + 1 4(L+N) log2(L+N) + 2L+ 4N + 1

ROM access N + 1 (L+N) log2(L+N) +N + 1

Argument N N

Register shifting NL−N2/2−N/2 −

Mengali and Morelli estimator

The Mengali & Morelli estimator can be implemented using a similar architecture as the

Fitz estimator. The autocorrelations are calculated as in Fitz model, then the phase dif-

ferences are calculated prior to multiplying by the weighted constants w(m) and an ac-

cumulator. A complete block diagram of this estimator is shown in Figure 3.16.

M&M estimator is mathematically defined in [64] as

f̂d =
1

2πTs

N∑
m=1

γ(m) [arg{R(m)} − arg{R(m− 1)}]2π , (3.10)

where, γ(m) are the weighting factors and N ≤ L/2.

A frequency domain based implementation similar to the Fitz estimator is also con-

sidered. Required number of computations were analyzed and are presented in Table
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Figure 3.16: Hardware implementation architecture (time domain) of the Mengali &
Morelli estimator.

Table 3.17: Computational complexity of the Mengali & Morelli estimator.

Operation Time domain implementation FFT-based implementation
No. of operations No. of operations

Real additions 4NL+ 4L− 2N2 − 2N − 3 6(L+N) log2(L+N) + L+ 3N − 1

Real multiplications 4NL+ 4L− 2N2 −N + 1 4(L+N) log2(L+N) + 2L+ 4N + 2

ROM access N + 1 (L+N) log2(L+N) + 2N + 2

Argument N + 1 N + 1

Register shifting NL−N2/2−N/2 −

3.17.

3.4.3 Frequency correction

The estimated frequency errors are corrected by the frequency correction unit. It can

be simply implemented as shown in Figure 3.17. The phase angle for each symbol is

calculated using the frequency error and multiplied by the received symbol to de-rotate

the constellation. The computational cost for the frequency correction unit is given in

Table 3.18.

3.4.4 Energy consumption of frequency recovery systems

The computational complexity of frequency recovery systems is summarized in Table

3.20. The preamble processing energy is also added to the estimator as it is compulsory
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Figure 3.17: A block diagram of the frequency correction unit.

Table 3.18: Computational complexity of the frequency correction unit.

Operation No. of operations
Real additions 3L

Real multiplications 5L

Register shifting 2L

Complex exponential L

for the estimation. For autocorrelation based estimators, we assume N = L/2, which

is half of the symbol block size. We calculated the energy consumption for different

block sizes of frequency estimators and the frequency correction unit, and the results are

presented in Table 3.19.

Table 3.19: Energy budget variation of frequency recovery systems with L (in nJ).

Block Kay L&R L&R (FFT) Fitz Fitz (FFT) M&M M&M (FFT) Frequency
length (L) correction

16 0.9 3.5 4.9 3.9 5.0 4.5 5.0 0.7
32 1.8 11.8 11.4 14.8 11.7 15.9 11.8 1.5
64 3.6 43.3 26.3 57.0 26.7 59.2 26.9 3.0
128 7.1 164.9 59.3 224.2 60.1 228.5 60.6 5.9
256 14.2 643.4 132.1 888.5 133.8 897.2 134.7 11.8
512 28.4 2541.1 291.2 3537.6 294.7 3554.9 296.5 23.6



74 Energy Modeling of Synchronization Systems

Ta
bl

e
3.

20
:C

om
pu

ta
ti

on
al

co
m

pl
ex

it
y

su
m

m
ar

y
of

fr
eq

ue
nc

y
re

co
ve

ry
sy

st
em

s.

O
pe

ra
ti

on
K

ay
L&

R
L&

R
(F

FT
)

Fi
tz

Fi
tz

(F
FT

)
M

&
M

M
&

M
(F

FT
)

Fr
eq

ue
nc

y
co

rr
ec

ti
on

R
ea

l
4L

−
3

L
2
+
2
.5
L

9L
lo
g
2
(1
.5
L
)

1.
5
L
2
+
0.
5L

9L
lo
g
2
(1
.5
L
)

1.
5L

2
+
5
L

9L
lo
g
2
(1
.5
L
)

3L

ad
di

ti
on

s
−
1

+
4L

−
1

−
1

+
4L

−
1

−
3

+
4.
5L

−
1

R
ea

l
5L

L
2
+
8L

6L
lo
g
2
(1
.5
L
)

1.
5
L
2
+
3.
5L

6L
lo
g
2
(1
.5
L
)

1.
5L

2
+
7
.5
L

6L
lo
g
2
(1
.5
L
)

5L

m
ul

ti
pl

ic
at

io
ns

+
1

+
7.
5L

+
1

+
1

+
8L

+
1

+
1

+
8L

+
2

R
O

M
L

0.
5L

+
1

0.
5L

+
1

0
.5
L
+
1

0.
5L

+
1

0.
5L

+
1

L
+
2

-
ac

ce
ss

A
rg

um
en

t
L

1
1

0.
5L

0.
5L

0.
5L

+
1

0
.5
L
+
1

-
R

eg
is

te
r

2L
−

2
L
2
−
L

-
0
.7
5
L
2
−
0.
5L

-
0.
75
L
2
−

0.
5
L

-
2L

sh
if

ti
ng

C
om

pl
ex

-
-

-
-

-
-

-
L

ex
po

ne
nt

ia
l



3.4 Frequency Recovery Systems 75

As Table 3.19 reveals the autocorrelation based estimators consume more energy than

the Kay estimator, due to the fact that autocorrelation calculation requires significantly

high complexity. Another important observation is that for larger blocks, the complexity

of FFT-based implantations have a lower energy cost than time domain implementations;

therefore, frequency domain implementation becomes more energy efficient as block size

increases.
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Figure 3.18: Energy consumption comparison of different frequency estimation algo-
rithms.

We now investigate the energy consumption of four frequency estimators by making

the MSE fixed at different SNR values. Two different MSE values were considered: 10−6

and 10−7, and the required number of symbols to achieve the given MSE was found using

simulations. Then the energy consumption was calculated from Table 3.19 .

The energy consumption of the Kay estimator [3], Luise & Reggianni estimator[4],

Fitz estimator [6] and Mengali & Morelli estimator [64] are calculated and presented as a

function of SNR in Figure 3.18. The vertical axis represents the energy consumption in nJ



76 Energy Modeling of Synchronization Systems

in logarithmic scale.

The Kay estimator is a least square-based estimator and the other three estimators are

autocorrelation based estimators. We used the least complex approach for time domain

and frequency domain implementations for a given block size. The energy consump-

tion of autocorrelation based estimators are higher than the Kay estimator when SNR

is greater than 10 dB, due to the high computational cost of autocorrelation estimators.

We observed that the energy consumption of the Kay estimator increases rapidly and ex-

ceeds the energy consumption of autocorrelation estimators when SNR is less than 5 dB.

The main reason for this behavior is that the Kay estimator performs poorly at low SNRs

(< 10 dB); i.e. the Kay estimator needs a very high block size in order to achieve the same

MSE as the other three estimators. It is, therefore, inefficient to use the Kay estimator for

low SNR operation.

As indicated in Table 3.19, the Mengali & Morelli estimator has the highest complex-

ity, thus consuming the most energy. However, as the required MSE is reduced from 10−6

to 10−7, energy consumption of all autocorrelation algorithms converge to approximately

the same value.

According to the Figure 3.18, we can conclude that the Kay estimator is most energy

efficient when SNR is higher than 10 dB, and autocorrelation based estimators are most

energy efficient when operating in low SNR region. When selecting an algorithm, how-

ever, it is also important to consider the estimation range as discussed in section 2.4.

3.5 Phase Recovery Systems

This section presents the computational complexity and energy costs of carrier phase

recovery systems for feed-forward and feedback-based approaches. A block diagram

of a feed-forward carrier phase recovery system is shown in Figure 3.19. This system

consists of a phase estimator, a phase un-wrapper and a phase correction unit. We focus

on two phase estimators: data-aided ML phase estimator and non data-aided Viterbi &

Viterbi (V&V) estimator with different configurations of non-linear function (F (ρ) = 1, ρ

and ρ2). When calculating the computational complexity of the ML estimator, preamble
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Figure 3.19: A block diagram of the phase recovery system.

processing was considered.

As the phase estimators have limited estimation ranges, higher phase errors produce

phase ambiguities, for example, π/4 for Viterbi & Viterbi estimators. In addition, residual

frequency errors result in changing the phase offsets at constant rates. Therefore, it is

important to track and correct the phase errors continuously. A phase un-wrapper is

used to achieve this objective. The complexity of the phase un-wrapper is considerably

small as it operates only once per estimate, hence the computational cost of the phase un-

wrapper is negligible in comparison with other modules in the phase recovery system.

ML phase estimator

In data-aided ML phase estimator, modulation of the received symbols is removed with

the aid of preambles. The average angle of symbols is then calculated to estimate the

phase offset of the received signal as in Figure 3.20. The computational cost of the ML

phase estimator is summarized in Table 3.21. ML estimator is defined as follows [51]:

Figure 3.20: A block diagram of the ML phase estimator.

θ̂ML = arg

{
L−1∑
k=0

c∗kx(k)

}
, (3.11)
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where x(k) is the input signal at kth instance c∗k is the complex conjugate of the preamble

at kth instance. θ̂ML is the estimate and L is the block size.

Table 3.21: Computational complexity of the ML phase estimator.

Operation No. of operations
Real additions 4L− 2

Real multiplications 4L

Argument 1

Viterbi & Viterbi phase estimator

The Viterbi & Viterbi phase estimator has different configurations based on the non-linear

function (F (ρ) = 1, ρ and ρ2). An implementation block diagram for the general model

of V&V estimator is presented in Figure 3.21.

Figure 3.21: A block diagram of the Viterbi & Viterbi phase estimator [7].

The input complex signal is x(k). It can be written as, x(k) = ak + jbk, where ak =

real(x(k)) and bk = imaginary(x(k)). The parameters of the estimator, are calculated as

ρk =
√

a2k + b2k and ϕk = tan−1(bk/ak). The nonlinear transformation function is defined

as F = ρnk where n is the order of the non linearity and n = 0, 1 and 2.

Then new variables a′k and b′k are then calculated as

a′k + jb′k = F(ρk)ejMϕk
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The final phase estimate is defined as follows [7]:

θ̂k =
1

M
tan−1



N∑
k=0

b′k

N∑
k=0

a′k


, (3.12)

where M is the signal constellation size.

The computational complexity for each configuration of Viterbi & Viterbi estimator is

analyzed and presented in Table 3.22.

Table 3.22: Computational complexity of the Viterbi & Viterbi phase estimator.

Operation No. of operations No. of operations No. of operations
F (ρ) = 1 F (ρ) = ρ F (ρ) = ρ2

Real additions 2L− 2 3L− 2 3L− 2

Real multiplications L+ 1 5L+ 1 6L+ 1

Complex exponential L L L

Argument L+ 1 L+ 1 L+ 1

Square root function − L L

3.5.1 Phase un-wrapper

An implementation block diagram of a phase un-wrapper is shown in Figure 3.22 and

its computational cost is summarized in Table 3.23. The output of the phase estimator

is taken and compared with the un-wrapped output using a SAW function [1]. SAW

function can be implemented in hardware with low complexity.

Table 3.23: Computational complexity of the phase un-wrapper

Operation No. of operations
Real additions 2

Register shifting 1

SAW function 1
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Figure 3.22: A block diagram of the phase un-wrapper [1].

3.5.2 Phase correction

The final component in the feed-forward phase recovery system is the phase correction

unit. It is used to de-rotate the signal constellation according to the phase estimates. An

implementation model of a phase correction unit is shown in Figure 3.23. The computa-

tional cost for the phase correction unit is given in Table 3.24.

Figure 3.23: A block diagram of the phase correction unit.

Table 3.24: Computational complexity of the phase correction unit.

Operation No. of operations
Real additions 2L

Real multiplications 5L

Complex exponential 1



3.5 Phase Recovery Systems 81

3.5.3 Energy consumption of phase recovery systems

A summary of the computational complexity of different phase recovery systems is pre-

sented in Table 3.25. We calculated the energy consumption for each algorithm as a func-

tion of block size and the results are presented in Table 3.26.

Table 3.25: Computational complexity summary of phase recovery systems.

Operation ML V&V (F(ρ) = 1) V&V (F(ρ) = ρ) V&V (F(ρ) = ρ2) Phase
correction

Real additions 4L− 2 2L− 2 3L− 2 3L− 2 2L

Real multiplications 4L L+ 1 5L+ 1 6L+ 1 5L

Argument 1 1L+ 1 1L+ 1 1L+ 1 -
Complex exponential - L L L 1

Square-root - - L L -

Table 3.26: Energy budget variation of phase recovery systems with L (in nJ).

Block ML V&V (F(ρ) = 1) V&V (F(ρ) = ρ) V&V (F(ρ) = ρ2) Phase
length (L) correction

16 0.5 0.4 1.0 1.1 0.5
32 1.0 0.9 2.0 2.3 1.0
64 2.1 1.8 4.1 4.6 2.0
128 4.3 3.6 8.3 9.2 4.0
256 8.5 7.1 16.5 18.4 8.0

According to Table 3.26, the V&V estimator with square non-linear function consumes

the highest levels of energy for a given block size. The data-aided ML estimator has the

lowest energy consumption; however, compared with estimating algorithms, the phase

correction unit consumes a significant amount of energy.

Energy consumption of data-aided ML algorithm and V&V algorithms are now com-

pared by fixing the target MSE at 10−2 and 10−3. V&V1, V&V2 and V&V3 represent the

Viterbi & Viterbi algorithm with non-linear factors of F (ρ) = 1, F (ρ) = ρ and F (ρ) = ρ2

respectively. We changed the block size for each algorithm to achieve the same MSE at a

given SNR.

The ML estimator achieves MCRB for all the SNR in the given range (0 - 15 dB), but

Viterbi & Viterbi algorithms achieve MCRB after 10 dB. According to Figure 3.24, the
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Figure 3.24: Energy consumption comparison of different phase estimation algorithms.

ML algorithm and V&V1 algorithm consume similar energy and the least in the higher

SNR region (SNR >10 dB). But in the lower SNR region, energy consumption of V&V1 is

higher than ML. The energy costs for V&V2 and V&V3 are almost the same, but higher

than V&V1 because implementation of F (ρ) = 1 results in a simple computational model.

Being non data-aided, they perform quite poorly at low SNR. Therefore, more symbols

are needed to achieve the same MSE as ML at lower SNRs. According to Figure 3.24,

V&V1 is the most energy efficient among the non-data-aided phase estimators.

3.5.4 Feedback-based Carrier Recovery Systems

This section presents the computational complexity of a feedback-based carrier synchro-

nization system. A block diagram of our phase recovery system is given in Figure 3.25

[45]. This system consists of a phase error detector, a loop filter and a DDS. We used a

digital phase-locked loop (PLL) with a first order proportional and integrator loop fil-
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ter. This loop filter is capable of correcting small carrier frequency errors. The ML-based

decision-directed phase error detector is adopted in our system. A direct digital synthe-

sizer (DDS) is used to accumulate the phase of the PLL, which is equivalent to voltage

control oscillator in an analog PLL [45, 51].

A summary of the computational complexity analysis of the feedback-based phase

recovery system is presented in Table 3.27. The computational complexity is calculated

for number of operations required in one symbol cycle.

Figure 3.25: A block diagram of a feedback-based carrier recovery system.

Table 3.27: Computational complexity summary of feed-back based phase recovery sys-
tems.

Operation ML phase Loop filter DDS Phase
detector corrector

Real additions 1 2 1 -
Real multiplications 2 - - 2
Multiplications by - 2 - -
a constant
Decisions 2 - - -
Sine & Cosine functions - - 2 -
Register shifts - 1 1 -

We then derive the energy consumption of the phase recovery system and presented

in Table 3.28. We have ignored the complexity of the decision making device, as it can be

taken from the detector/decoder and it is in outside of the synchronization system.

Based on our calculations, the energy cost of the ML-based decision-directed phase

recovery system was 62.98 pJ per symbol; this is far more energy efficient than feed-
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Table 3.28: Energy consumption of feed-back based phase recovery systems (in pJ per
symbol).

ML phase detector Loop filter DDS Phase corrector
15.75 17.91 14.5 14.82

forward estimators.

3.6 Conclusions

In this chapter, we developed energy models for synchronization systems. These energy

models provide energy costs for different synchronization functions, i.e. how much en-

ergy is consumed to remove frequency and phase offsets and to sample the signal at the

optimum eye opening point.

We use our energy models to compare the energy efficiency of different estimation al-

gorithms using a new metric: energy cost to achieve a given MSE. By doing so, we carried

out a fair evaluation of synchronization algorithms from an energy efficiency perspective.

Considering the energy consumption of a combined synchronization system, typi-

cally, frequency estimators consume the highest energy due to the higher complexity

(e,g, auto correlation calculations), and timing and phase estimators consume energy in

a similar range. According to Table 3.10, 3.19 and 3.26, when block size of 256 is used,

frequency (M&M), timing (AVN) and phase (V&V) estimators consume 134.7 nJ, 23.4 nJ,

and 16.5 nJ per each estimate respectively. In general frequency estimation consists of the

highest complexity among the feedforward estimators.

Our energy framework is developed based on computational complexity. While the

actual energy consumption of these algorithms may vary, we considered many low-level

operations such as memory access and register access along with the complexity of arith-

metic operations, and our results should therefore provide a reasonably close approxi-

mation to actual energy consumption. More accurate energy costs can be measured by

implementing the circuits on software platforms and simulating for power consumption.



Chapter 4

Energy Efficiency of Point-to-Point
Wireless Transmission

A widely-used approach to increase the energy efficiency of wireless systems is to reduce trans-

mit power. Although this approach is beneficial for high-power wireless systems, it may not save

energy in small area networks and short distance transmission as the computational energy in dig-

ital hardware becomes more significant compared to the transmit radio energy. In this chapter, we

investigate the energy-efficiency trade-offs of a point-to-point wireless system by developing energy

models of both the transmitter and receiver that include practical aspects such as error control coding,

synchronization and channel equalization. We assume a multipath Rayleigh-fading channel model

and use a frequency-domain equalizer, regular low-density parity check (LDPC) codes with girth 6

and column weight 3, and fix specific synchronization algorithms for our energy models. The total

energy consumption of this wireless system is modeled as a function of spectral efficiency, data rate,

bandwidth spectrum, and received signal-to–noise ratio per bit Eb
N0

. We develop a closed form analyti-

cal expression that approximates the total energy consumption as a function of Eb
N0

and compare it to

results from numerical simulation. A minimal-energy transmission configuration as a function of dis-

tance is determined, and results show that low-SNR-per-bit receiver operation is not always the most

energy-efficient strategy, especially at very short distances. The digital component energy consump-

tion is noteworthy at short distances and can reach upwards of 20% of the total system energy. This

percentage varies non-monotonically as a function of distance due to changes in the optimal energy

configuration (modulation order and code rate).

4.1 Introduction

THE capacity of telecommunication networks has been growing rapidly over the

last decade, and wireless access is identified as a key contributor to this fast grow-

ing traffic distribution [79]. While wireless is very convenient for user access, it is far

85
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less energy efficient compared to guided media like fiber and copper access technolo-

gies [23]. The spreading of wireless energy over the surrounding area causes this major

inefficiency, which is further worsened by the low efficiency of wireless hardware.

Over the last decade, researchers have been working to reduce the energy consump-

tion of wireless systems. Among the major projects, Green Radio, EARTH and Green-

Touch investigated different approaches to improve the energy efficiency of wireless sys-

tems. [20] investigated fundamental tradeoffs of energy efficiency by considering four

categories: bandwidth-power, delay-power, spectral efficiency-energy efficiency and de-

ployment efficiency-energy efficiency. Among the recommendations for energy-efficient

wireless systems, reduction of transmit power, adoption of beamforming techniques for

multi-antenna systems, and implementation of heterogeneous cell concepts are widely

popular.

In conventional wireless systems, energy consumption is mainly dominated by the

transmitter power amplifier [80]. A direct approach to reduce energy consumption is

to simply decrease the transmit power. This lowers the received signal-to-noise ratio

(SNR) and increases the bit-error rate (BER) at the receiver. In order to compensate for

the increased error performance, strong error-control coding (more redundancy) is re-

quired, which ends up lowering the spectral efficiency. Additional bandwidth is needed

to support this extra redundancy to maintain the same information rate. The additional

coding and increased bandwidth also result in a rise of signal processing load (mainly

at the receiver), which increases the computational energy of the system. This chapter

investigates the achievable energy gains of error-control coding while considering main

transceiver functions such as amplification, sampling, equalization and synchronization.

Most of the energy-efficient wireless research has focused on saving transmit radio en-

ergy. The tradeoffs of energy efficiency with bandwidth, power and modulation schemes

are discussed in [81] using a basic power-throughput model. Similar work is presented

in [82] by investigating the energy efficiency and deployment efficiency tradeoffs for dif-

ferent cell types. [83] presents the bandwidth-power tradeoff in heterogeneous networks

considering site-sleeping strategies and small-cell deployments. An overview of different

energy-efficiency approaches such as radio resource management, network deployment,
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multiple-input multiple-output (MIMO), orthogonal frequency-division multiple access

(OFDMA) and cross-layer design technologies were proposed in [30].

Energy-efficiency improvements in base stations and the transmitter side are pro-

posed widely in the literature, but there still are some open problems to consider from

the receiver-side perspective, including joint optimization of the transmitter and receiver

energy consumption. This is particularly important for applications where energy is a

critical resource due to being derived from batteries or harvested from solar, mechani-

cal vibration, or wireless induction. Such scenarios may be commonplace in an inter-

net of things (IoT) network made of sensors and other battery-powered and/or energy-

harvested devices.

The overall energy savings of error-control coding schemes in low-power wireless

systems is analyzed in [35] using a computational-complexity-based energy model of

complementary metaloxide-semiconductor (CMOS) technology. Similar work is carried

out in [36] by comparing the energy efficiency of various error-control codes with a

distance-based path-loss model. However, this work uses constant energy consump-

tion for the decoder which is independent of operating parameters. More advanced and

accurate energy models for Reed-Solomon (RS) [72], BCH [84] and low-density parity

check (LDPC) encoders and decoders [43] have been developed based on their computa-

tional complexity analysis. All of these works assume an additive white Gaussian noise

(AWGN) channel, and therefore ignore the fading conditions present in practical wire-

less channels and relevant signal processing. [37] discusses energy efficiency in multi-

path fading channels by proposing basic energy models for a decision-feedback equal-

izer and an iterative LDPC decoder. Cui et al. in [33] studied the energy efficiency of

wireless systems for two modulation types, quadrature amplitude modulation (QAM)

and frequency-shift keying (FSK), by modeling the transmit energy and analog circuit

components. More recently, [84] presented an energy-efficiency optimization approach

that used BCH coding, but, the RF and baseband power consumption of the system were

assumed to be constant irrespective of the transmission configuration (i.e. modulation

scheme and code rate) which may lead to inaccurate energy modelling in low-power

devices.
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In this chapter, we consider a more complete wireless receiver energy model com-

pared to previous works by including a detailed modelling of digital processing seg-

ments such as equalization and synchronization of carrier, phase and timing. To the best

of our knowledge, this depth of energy analysis of both digital and analog components

in wireless receivers has not been investigated previously. The more complete receiver

modeling allows for the investigate the energy efficiency trade-offs of a point-to-point

wireless transmission system by evaluating the computational complexity of hardware

algorithms and modeling their corresponding energy consumption. The energy models

are investigated as a function of modulation order, data rate, signal bandwidth, code rate,

received SNR per bit and multipath channel parameters. We then simulate a system with

practical characteristics such as multipath fading and channel coding. The total energy

is then approximated analytically, and optimum solutions are derived for a given system

requirement.

The organization of this chapter is as follows. Section 4.2 presents our system model

and the signal processing algorithms used in it. In Section 4.3, we present the energy

models of the various system components. In Section 4.4, we minimize the energy con-

sumption of a point-to-point wireless transmission using numerical analyses. Finally, we

summarize the results and give concluding remarks in Section 4.5.

4.2 System Model

We consider a point-to-point system with a single transmitter and receiver, with no other

end users in the system and no interferers. A block diagram of our transmitter model is

shown in Figure 4.1. We focus on a burst-mode, single-carrier, single-antenna transmis-

sion system in our work. A single-carrier system is chosen over orthogonal frequency-

division multiplexing (OFDM) due to its lower peak-to-average power ratio (PAPR),

which results in a higher energy efficiency at the transmit power amplifier compared

to OFDM.

We employ a frequency-domain equalizer (FDE) due to its lower computational com-

plexity compared to time-domain equalizers when the number of channel taps is large
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Figure 4.1: Block diagram of the transmitter analog and digital functions.

[47]. The information bits generated by upper layers are encoded, and these coded bits

are linearly modulated into multiple quadrature amplitude modulation (M-QAM) sym-

bols and passed through a pulse-shaping filter. Additional transmit samples are then

added in the form of a cyclic prefix (CP) to help alleviate inter-symbol-interference (ISI)

effects by allowing linear channel convolution to be modeled as circular convolution. The

digital signal is then fed through a digital-to-analog converter (DAC). This analog signal

is then up-converted to a carrier frequency and amplified using a power amplifier (PA)

before transmission through a radio frequency (RF) filter and an antenna.

In our system, we consider a multipath Rayleigh fading channel with additive white

gaussian noise. A direct conversion architecture [85] is employed with the block diagram

shown in Figure 4.2. The received signal at the antenna is first filtered using a band-

select RF filter. The signal then is amplified using a low-noise amplifier (LNA), followed

by down-conversion to baseband. The baseband signal is then amplified using baseband

amplifiers (BA), filtered and then sampled using analog-to-digital converters (ADC). The

sampled signal after the digital front-end is assumed to be oversampled at two samples

per symbol and matched filtered after removing the CP.

Figure 4.2: Block diagram of the receiver analog and digital functions.
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4.2.1 Timing Recovery

Feedback-based timing recovery with a phase-independent timing error detector like

Gardner [57] is utilized for our timing synchronizer because there is no optimal pulse

peak in the presence of ISI but the recovery of clock frequency - instead of the clock

phase - is still required for proper functioning of the equalizer delay line. The timing

phase-offset correction is then passed over to the equalizer. Feed-forward timing estima-

tors, on the other hand, can only detect a timing phase offset that is constant throughout

the whole block length [1], [60], [2]. The output rate of the timing recovery loop is kept

at two samples per symbol, as our chosen equalizer needs more than one sample per

symbol.

4.2.2 Channel Equalization

The signal is then passed through a channel equalizer to invert the channel effects and

remove the ISI. Wireless signals undergo various types of fading, depending on the en-

vironment, that can result in ISI. Time-selective fading occurs due to the variation of the

channel with time. A receiver should estimate the new channel and other parameters

as the channel changes slowly. Frequency-selective fading is due to the multipath signal

reception at the receiver. In our system, we chose a multipath Rayleigh random channel

model with an exponentially-decaying power delay profile for the channel taps, where

the ratio of the last and the first taps is set as 1/e. The FDE inverts the channel, and is

also capable of compensating for small timing and phase errors [86]. Preambles are used

to train the FDE and then equalizer taps are updated during data transmission to track

channel variations. We use the least mean square (LMS) based adaptive algorithm [87]

to update the minimum mean square error (MMSE) equalizer coefficients. The equalizer

operates at two samples per symbol and outputs one sample per symbol.

4.2.3 Carrier and Phase Synchronization

The ISI-mitigated signal is then fed to a frequency synchronizer to remove the residue

carrier frequency offsets. We chose a data-aided, feed-forward based approach to re-
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cover the carrier frequency error due to needing fast frequency acquisition. The Kay

algorithm [3] has a low complexity compared to the other auto-correlation based esti-

mators like Luise & Reggiani [4], Lovel & Williamson [63] and Mengali & Morelli [64]

algorithms. However, it performs poor in the low-SNR-per-bit regime. The Mengali &

Morelli estimator has a wider estimation range compared to Luise & Reggiani and Lovel

& Williamson estimators, and we therefore adopt this algorithm to estimate the initial

frequency offset during preamble transmission. During data transmission, we use this

frequency offset estimate to correct the frequency error.

The frequency corrected signal is then sent through a phase synchronizer, which

is required for reliable coherent symbol detection. We use the data-aided maximum-

likelihood (ML) based feed-forward phase estimator [51] to estimate the initial phase

offset. We then adopt a decision-directed ML phase recovery loop with a second-order

loop filter [51] to correct phase errors and small residual frequency errors. The popular

non-data-aided, feed-forward phase estimator in [7] is capable of estimating phase errors

in 4-QAM modulated signals. However, non-data-aided, feed-forward phase estimators

perform quite poorly in higher order modulation schemes as shown in [51]. Therefore, in

order to compare the performance of various M-QAM modulation schemes, we adopted

a carrier recovery loop in our system.

4.2.4 Decoder

Finally, the synchronized signal is detected and decoded using an iterative decoder. We

chose LDPC as the channel coding scheme due to its superior error-correcting capability

[88]. In our initial work [89], we used Reed-Solomon codes and observed the achievable

performance gain was limited at a bit-error rate of 10−4. In this work, we use LDPC

codes with girth six and column weight three quasi-cyclic [90]. Girth is defined as the

shortest cycle in the bipartite graph representing the parity-check matrix of the LDPC

code. Column weight denotes the number of ones in each column in the parity-check

matrix. We use iterative LDPC soft decoding to recover the transmitted bits [91]. Each

symbol in a received code block corresponds to a variable node unit (VNU) and each

parity check constraint corresponds to a check node unit (CNU). The decoder uses the
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scaled min-sum algorithm for the CNU and VNU computations [43], [91]. We employ

different rates of LDPC codes by first fixing the information bit length k, then allowing the

code length n to vary, which results in the code rate k/n. We then scale the transmission

bandwidth so that the data rate remains constant for all considered codes.1

4.2.5 Preamble Training

The receiver needs to be initialized using training sequences (preambles) to estimate sev-

eral parameters such as the equalizer coefficients, symbol-timing error, carrier-frequency

error and carrier-phase error. Apart from these, a practical receiver may also estimate

the signal power, noise power and I-Q imbalance, the latter of which we ignore in our

system model. We use 4-QAM symbols for our preambles which are transmitted using

the same RF bandwidth allocated for data transmission. The required preamble size and

percentage is calculated according to the application requirement and channel model.

We note that timing recovery is performed before equalization, frequency and phase

recovery due to its ability to perform independently of the the channel, carrier phase and

moderate frequency offsets. The initial estimates for frequency error and phase error are

made during the preamble transmission using data-aided feed-forward estimators due

to their fast acquisition.

4.3 Energy Models

The following notations are used in the subsequent sections: Rd is the required informa-

tion bit rate and rc is the code rate defined as the ratio between the input information

block length of the encoder k and the output codeword block length of the encoder n

(i.e. rc = k
n ). We consider M-QAM modulation in our system, where M is the size of the

signal constellation and is selected from 4, 16 or 64.

1For example, starting with an information bit length k = 3000, consider a (3750, 3000) LDPC code that
has rate 0.8 and operates with a bandwidth of 5 MHz. An equivalent information rate is achieved using a
(7500, 3000) code that has rate 0.4 and operates with a bandwidth of 10 MHz. Further note that when there
is a change in modulation order, there will be a change in k as well to keep the operating rate of encoder and
decoder same for all the symbol rates. This is seen later in the chapter in Table 4.9.
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The information symbol rate Rs is defined as

Rs =
Rd

rc log2 (M)
(4.1)

We define the FFT length used in the frequency-domain equalizer as NEq and the

length of the CP as l, which is set equal to the number of effective channel taps in a

worst-case scenario, i.e.

l =

⌊
τ

T ′
s

⌋
, (4.2)

where ⌊·⌋ is the integer floor operator and τ and T ′
s denote the worst-case channel time

length and transmit symbol time duration, respectively.

The CP is used during both preamble and information transmission. We define λ

as the ratio of the preamble symbol length to the combined preamble and information

symbol length. Therefore, the total symbol rate R′
s including both information symbols

and preamble symbols is written as

R′
s =

1

1− λ

NEq + l

NEq
Rs , (4.3)

The required signal bandwidth of the transmit signal W is calculated as follows:

W = 2 (1 + α)R′
s , (4.4)

where α is the excess bandwidth assuming a square-root raised-cosine pulse shape and

chosen to be α = 0.5 for the remainder of the chapter.

Our receiver is a multi-rate system, where the decoder and encoder operate at rate
Rd
rc

, the timing synchronizer and the equalizer operate at rate 2Rs
1−λ , and all the other digital

receiver functions operate at a rate of Rs
1−λ .

The next three subsections present the analog, digital and total energy consumption

models for the considered system. The notation used in the expressing these models is as

follows:

• Px is used to represent power consumption, where x is an identifier subscript for
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where this power is consumed.

• Ex is used to represent energy consumption per information bit, where again x is an

identifier subscript.

• Cx represents a fixed constant used in the energy modeling of analog and digital

blocks.

We also note that the energy consumption for transmitting or processing data symbols

may differ from processing training (preamble) symbols. We distinguish these energy

differences, when necessary, with either a ’D’ or ’P’ in the subscript of an energy figure.

4.3.1 Analog Components

Power consumption of analog components can vary significantly depending on the topol-

ogy, implementation architecture and required system performance [34]. As such, power

models need to be dependent on many system conditions. In this work, we choose CMOS

45 nm technology, which is used in modern wireless devices, and we assume reasonable

power consumption values using recent designs. We assume a supply voltage of 1 V for

our system and chose the power consumption values based on the designs in [92]–[93].

Table 4.1 presents operating specifications of wireless receiver front-end designs for

different standards and applications, including WLAN, WiMAX, UMTS, DCS1800, LTE

and general UWB systems.2 We have normalized the power consumption of these de-

signs to 45 nm technology and a 1 V supply voltage according to the analog power scal-

ing rules3 presented in [80]. The results show that the normalized designs consume about

1–10 mW, and the power consumption of our forthcoming RF front-end (4–8 mW for a

bandwidth of 10 MHz) is in agreement with these results.

The receiver power consumption is attributed to various analog components, such

as the a LNA, mixer, and frequency synthesizer (Syn). Where appropriate, we need to

2Some designs [92], [94], [95] are capable of operating in multiple standards.
3The analog power scaling from technology Y (in nm) to technology Z (in nm) is Power(Z) = Power(Y )·

1 + 0.5 · (Z/65nm − 1)

1 + 0.5 · (Y/65nm − 1)
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Table 4.1: Power consumption of wireless RF front-ends.

[92] [94] [96] [97] [95] [98] [99]
Standard WLAN UMTS WLAN UWB-IR WiMAX WLAN M-

/WiMAX /DCS1800 /LTE WiMAX
/WLAN

CMOS 180 nm 130 nm 180 nm 130 nm 90 nm 240 nm 130 nm
Technology
Supply voltage 1.8 V 1.2 V 1.8 V 1.35 V 1.2 V 2 V 1.5 V
Carrier 2.6 GHz - 2.4 GHz 7.875 700 MHz 5 GHz 2.3 GHz
frequency /3.6 GHz - GHz - 6 GHz

/ 5.5 GHz
Signal - - 22 MHz 1.25 GHz 30 MHz 23.5 MHz 30 MHz
bandwidth
Power 45 mW 20 mW 47 mW 4.2 mW 10.2 mW 12.4 mW 40 mW
consumption - 48 mW / 24 mW
Normalized 6.2 7.8 6.5 mW 1.3 mW 5 mW 1.1 mW 10 mW
power - 6.6 mW - 9.4 mW
consumption

model the power consumption of each component as a function of bandwidth, which is

variable in our system. Table 4.2 presents the power and energy models we used in this

chapter, where we chose the most appropriate models and parameters from the literature.

Transmitter energy is usually dominated by the power amplifier in wireless systems,

which needs to provide enough transmit power to maintain the received signal at a re-

quired SNR per bit. Its power consumption can be expressed in terms of the required

received Eb
N0

, PAPR, losses occuring during transmission (including path loss, shadow

fading and fading margin) and the noise floor at the receiver. A general path-loss-based

transmit power model from [36] is used in our work and presented in Table 4.2. We note

that PAPR, which depends on the modulation order, is a very important parameter in

some analog components’ power consumption as discussed in [34].

Among the other analog components, the power models of the ADC and DAC de-

pend on the signal bandwidth and quantization resolution. Based on the models pre-

sented in [34], we assume that the power consumption of the frequency synthesizer

(Syn), mixer, and LNA are independent of the operating RF bandwidth, while the BA

power consumption is proportional to the signal RF bandwidth. We neglect the power
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Table 4.2: Power consumption of different components in RF front-end of wireless
transceivers.

Component Power model Reference values Parameter values

PA PPA = 1
ηPA

CPA PAPR e
a
Eb
N0 Rd dγ [36] 4 Depends on the CPA = 5.55 × 10−14 mW,

PAPR = 1.4

√
3

√
M−1√
M+1

[34] required output power ηPA = 0.5, a = ln(10)

Mixer PMixer = CMixer [34] 7.7 mW [100], 2.1 mW [98] CMixer = 1.25 mW
2.1 mW [98]

Syn PSyn = CSyn [34] 6.9/1.8 mW [101], CSyn = 1.25 mW
3.2 mW [98]

LNA PLNA = CLNA [34] 2.5 mW [102] CLNA = 1.25 mW
DAC PDAC = CDACrDAC W [43]5 5.4 mW [103] CDAC = 5× 10−8 mW/Hz
ADC PADC = CADC rADC W [43]6 2 mW [93] CADC = 3.4× 10−8 mW/Hz
BA PBA = CBA W [34] 5 mW [34], 2.4 mW [95] CBA = 1.25× 10−7 mW/Hz

consumption of band filters used in our system as these passive analog filters consume

negligible power.

The energy consumption per information bit of the analog section in the transmitter

is written by dividing the average power by the information rate Rd:

ETx
Analog =

2PDAC + 2PMixer + PSyn + PPA

Rd
. (4.5)

The analog transmitter energy consumption per information bit for data mode is deter-

mined by multiplying this with the ratio of information symbols:

ETx
Analog-D = (1− λ)ETx

Analog . (4.6)

Similarly, the preamble-mode transmit energy cost per information bit is written as,

ETx
Analog-P = λETx

Analog . (4.7)

4The power amplifier energy model is derived using Eq. (10) in [36] assuming a carrier frequency of 1
GHz, receiver noise spectral density of -174 dBm/Hz, receiver noise figure and other losses and margins of
9 dB [104]. γ is the path loss exponent. The transmit distance d in the pathloss model is dimensionless as
shown in [36]. Eb

N0
is defined as the receiver SNR per bit in dB.

5The ADC and DAC energy models presented in [43] are used with proper scaling. The resolution of the
ADC and DAC are given by rADC and rDAC, respectively, and are defined as follows [43]: rADC is 6, 7 and 8
for 4-QAM, 16-QAM and 64-QAM, respectively, and rDAC is 4, 5 and 6 for 4-QAM, 16-QAM and 64-QAM,
respectively.
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Likewise, the energy consumption per information bit of the receiver analog section

is written as

ERx
Analog =

PLNA + 2PMixer + PSyn + 2PBA + 2PADC

Rd
. (4.8)

The analog receiver energy consumption per information bit for data mode can is deter-

mined by multiplying this with the ratio of information symbols:

ERx
Analog-D = (1− λ)

PLNA + 2PMixer + PSyn + 2PBA + 2PADC

Rd
. (4.9)

Similarly the preamble-mode receiver analog energy cost per information bit is written

as

ERx
Analog-P = λ

PLNA + 2PMixer + PSyn + 2PBA + 2PADC

Rd
. (4.10)

Note that the factors of 2 in Eqs. (4.5) – (4.10) are due to two converters, filters and

mixers required in the direct conversion architecture.

4.3.2 Digital Components

The energy consumption of the digital signal processing blocks is derived based on com-

putational complexity analysis. For the LDPC encoders and decoders, we used the en-

ergy models presented in [43]. For other digital blocks, we use the energy consumption

models of arithmetic and memory operations proposed in [35], where we use the rules

presented in [76] to scale the energy consumption for 45 nm CMOS technology with a 1

V supply voltage and assumed a DSP module resolution of 8-bits.6 The equivalent en-

ergy consumption of the various operations are obtained from Table 3.2 in Chapter 3 and

listed in Table 4.3. We assumed a radix-2 based implementation for the required FFT and

IFFT modules, and a complex addition is constructed using two real additions while a

complex multiplication is realized using four real multiplication and two real additions.

6Energy consumption is proportional to the technology length c and voltage V squared (E ∝ cV 2), and
we scale by the proportionality change between technologies.
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Table 4.3: Energy consumption of different digital operations.

Operation Average energy consumption (pJ)
Real multiplication (Mul) 7.41

Real addition (Add) 0.93

Register access (Reg) 1.23

ROM access (ROM) 6.17

The remainder of Section 4.3.2 presents the energy modeling details of the digital pro-

cessing segments. We first analyse the computational complexity per symbol or block of

each segment in terms of real additions, real multiplications, and memory operations. We

then use Table 4.3 to convert the computations into energy per information symbol (i.e.

non-CP and non-preamble symbols). Dividing this by the number of information bits per

symbol, we obtain expressions of energy per information bit for all digital segments in

terms of transmission variables M (constellation size), rc (code rate) and n (code length),

as well as some fixed constants (Cx’s) and some block processing parameters (Nx’s and

l). For the synchronization blocks and the equalizer, we must determine the energies per

information bit in preamble mode separately from data mode.

Note that we neglect the energy consumption of the digital transmit pulse-shaping

and receiver matched filters in our energy modelling. Both filters will have less compu-

tations than other digital blocks, especially when exploiting the symmetry of the raised-

root cosine filters and up/down-sampling operations which involve many samples that

are either zeros or discarded.

Timing synchronizer

Figure 4.3 shows a block diagram of our timing synchronizer with an over-sampling rate

of two. The timing error is detected using the Gardner timing error detectors (TEDs)

[57] and corrected using a parabolic interpolator [55]. A second-order loop filter and

an interpolation controller is used to control the feedback loop [45]. The computational

complexity of our timing synchronizer is summarized in Table 4.4 based on Table 3.11 in

Chapter 3.
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Figure 4.3: Block diagram of the timing synchronizer.

Table 4.4: Computation complexity of a timing synchronizer (per symbol).

Task Mul Add Reg ROM
I. Interpolator 12 32 20 −
II. Gardner TED 2 3 4 −
III. Loop filter 4 4 2 −
IV. Interpolator controller 2 4 2 2

After converting these computations into energies using Table 4.3, summing the result

gives the energy consumption per symbol for timing recovery as the constant CTS. Note

that this energy is the same for both preamble and data symbols as the same algorithm is

used on received symbols regardless of their designation.

In data mode, dividing CTS by the number of information bits per symbol gices the

the energy consumption per information bit, ETS-D:

ETS-D =
1

rc log2(M)
· CTS (4.11)

For preamble mode, the energy cost per information bit is

ETS-P =
1

rc log2(M)
· λ

1− λ
· CTS (4.12)

where λ
1−λ · CTS is the ratio of information symbols to preamble symbols.
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Equalizer

A functional block diagram of our frequency-domain equalizer is shown in Fig. 4.4. The

received samples, which are at twice the symbol rate, are transformed into the frequency

domain using a 2NEq–point FFT operation. During training mode, the initial tap coeffi-

cients are estimated, while the received samples are equalized during data transmission

mode. In addition, noise power is estimated using the ML-based estimation algorithm

in [87], and this estimate is later used by the LDPC decoder. The over-sampling rate is

reduced to one through a NEq-point IFFT operation to obtain the time-domain samples.

The coefficient adaptation algorithm in [87] updates the equalizer taps with symbol de-

cisions. The computational complexity of this equalizer for each of its five main tasks is

listed in Table 4.5.

Figure 4.4: Block diagram of the frequency domain equalizer (FDE).

Table 4.5: Computation complexity of a frequency domain equalizer (per block).

Task Mul Add Reg
I. FFT/IFFT operation 6NEq log2(NEq) 9NEq log2(NEq) −

+4NEq +6NEq

II. Initial tap estimation 5NEq 4NEq −
III. Equalization 8NEq 4NEq −
IV. Coefficient 2NEq log2(NEq) 3NEq log2(NEq) 4NEq

update +14NEq +13NEq

V. Noise power estimation NEq + 2 NEq + 2 −

When the equalizer is in data mode, Tasks I, III, IV and V in Table 4.5 are required.

Summing these computational operations per block and using Table 4.3 converts these

computations into an energy per data block. Dividing by the number of information bits
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per block (rc log2(M)NEq), results in the following equalizer energy per bit in data mode,

EEq-D

EEq-D =
1

rc log2(M)
[CEq-D 1 log2(NEq) + CEq-D 2] . (4.13)

Appendix A gives the computational details of this result and serves as a model for de-

riving the remaining energy-per-bit results.

Initializing the equalizer with a preamble block requires Tasks I, II and V in Table 4.5.

Summing these operations and using Table 4.3, we convert these computations into an

energy consumption per preamble block. Dividing by the block length gives the energy

per preamble symbol, and the same scaling as in the time synchronizer case results in

EEq-P, the equalizer energy per information bit in preamble mode:

EEq-P =
1

rc log2(M)
· λ

1− λ
· [CEq-P 1 log2(NEq) + CEq-P 2] . (4.14)

Frequency synchronizer

Figure 4.5: Block diagram of frequency synchronizer.

Frequency synchronization has two important tasks: carrier-frequency estimation is

carried out in a blockwise fashion using preambles, while the frequency correction unit

operates on all data symbols to compensate for the frequency error. We use the Mengali &

Morelli’s frequency estimator in our system, and a simple block diagram of the frequency

synchronizer unit is shown in Fig 4.5. The computational complexity of the frequency

estimator is analysed in Table in 3.20 in Chapter 3 using a FFT/IFFT-based approach and
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is shown in Table 4.6 for a block size NFS.

Table 4.6: Computation complexity of the frequency synchronizer.

Task Mul Add Reg ROM
I. Mengali & Moreli 6NFS log2(1.5NFS) 9NFS log2(1.5NFS) 1.5NFS log2(1.5NFS)

estimation algorithm +4NFS + 2 +2.5NFS − 1 +1.5NFS + 3

(per block)
II. Frequency correction 5 3 1 2

(per symbol)

The energy cost of the frequency recovery loop during training mode, which includes

both frequency estimation and correction, is calculated by converting the computations

in Tasks I and II in Table 4.6 into energy consumption. Note that the frequency estimate

is made only once per block and the correction is carried on each individual QAM sym-

bol. The resulting energy per information bit for frequency synchronization in preamble

mode is written as,

EFS-P =
1

rc log2(M)
· λ

1− λ
[CFS-P 1 log2(NFS) + CFS-P 2] , (4.15)

where CFS-P 1 and CFS-P 2 are the coefficients of the dominant energy terms7 when compu-

tations are converted to energy normalised by total number of bits used in the preamble

(2NFS).

The frequency correction energy per information bit, EFS-D, for data mode is derived

by calculating the energy cost per symbol, CFS-D, to perform Task II in Table 4.6, then

normalising by the number of information bits per symbol, rc log2(M) bits:

EFS-D =
1

rc log2(M)
· CFS-D , (4.16)

Phase synchronizer

The initial phase offset is estimated using the feed-forward based maximum-likelihood

(ML) phase estimator [51] with the aid of known preambles as shown in Fig. 4.6. Phase
7A negligible third term consisting of a smaller constant divided by a large block size NFS is ignored in

(4.15). Appendix A details a similar energy modelling reduction for the case of the equalizer.
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unwrapping is used to overcome the phase ambiguities that occur during the initial phase

estimation [51]. During data mode, a feedback-based decision-directed loop [51] is used

to correct the phase errors as illustrated in Fig. 4.7. A ML-based decision-directed phase

detector is used identify the initial phase error. A second-order loop filter and direct digi-

tal synthesizer (DDS) is then used to track and correct the phase error. The computational

complexity of both approaches were investigated and are summarized in table 4.7 (based

on Table 3.25 in Chapter 3). NPS is the block size used in the feed-forward ML phase

estimator.

Figure 4.6: Block diagram of feed-forward phase synchronizer.

Figure 4.7: Block diagram of phase synchronization loop.

The computational energy for phase recovery in data mode, is calculated using Tasks

III, IV, V and VI in Table 4.7 along with the energies in Table 4.3, and results in the energy

per data symbol, CPS-D. Normalizing by the number of information bits per symbol gives

the energy per information bit for phase synchronization in data mode, EPS-D:

EPS-D =
1

rc log2(M)
· CPS-D (4.17)
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Table 4.7: Computation complexity of phase synchronizers (per symbol, unless labeled
otherwise).

Task Mul Add Reg ROM
I. Data-aided ML feed-forward 4NPS 4NPS − 2 − 2

estimator (per block)
II. Phase un-wrapper − 2 1 1

III. Phase correction unit 5 2 − 2

IV. ML phase detector 2 1 − −
V. Loop filter 2 2 1 −
VI. DDS − 1 1 2

The computational energy for phase recovery during receiver training is obtained

using Tasks I, II and III in Table 4.7 along with the energies in Table 4.3. Note that Task

I and II are performed per block (NPS symbols), while Task III in performed per symbol.

The resulting computational energy per preamble symbol, CPS-P, is scaled as in (4.12) to

give EPS-P, the phase synchronization energy per information bit in preamble mode:

EPS-P =
1

rc log2(M)
· λ

1− λ
· CPS-P (4.18)

Encoder and decoder

A detailed energy model of the LDPC encoder and iterative decoder is presented in [43]

and summarized in (4.19) and (4.20). The computational complexity of the encoder in-

creases with code length n and the number of redundancy bits (n − k). The encoder

energy consumption per bit is given by

EEnc =
(1− rc)(n rc CEnc 1 − 1)CEnc 2 + CEnc 3

rc
, (4.19)

where CEnc 1 is the generator matrix average ratio of ones per column, CEnc 2 is the average

energy per gate operation, and CEnc 3 is the energy per register access.

The decoder energy consumption per bit is calculated as

EDec =
fav wc

rc
(CDec 1 − rc CDec 2) , (4.20)
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where fav is the average number of iterations and wc is the column weight. CDec 1 and

CDec 2 are calculated using the computational analysis presented in [43] and according

to our code specifications. We verified that the row weight of the generating matrix is

inversely proportional to the code rate, and hence included in the above energy model.

Table 4.8 gives the energy model numerical parameters calculated for the digital com-

ponents. Timing synchronizer, frequency synchronizer and phase synchronizer parame-

ters were obtained from Chapter 3.

Table 4.8: Parameters of digital component energy models.

Component Parameter values (pJ)
Channel equalizer CEq-P 1 = 52.8, CEq-P 2 = 84.3, CEq-D 1 = 70.4,

CEq-D 2 = 227.3, NEq = 1024
Timing synchronizer CTS = 235.0
Frequency synchronizer CFS-P 1 = 62.1, CFS-P 2 = 130.9,

CFS-D = 53.4, NFS = 256
Phase synchronizer CPS-P = 84.6 , CPS-D = 99.4, NPS = 256
Encoder CEnc 1 = 5, CEnc 2 = 0.03, CEnc 3 = 0.15
Decoder CDec 1 = 7.58, CDec 2 = 0.53, wc = 3,

fav = 12 [43]

4.3.3 Total energy consumption

In this section we give the expression for total energy consumption using the previous en-

ergy models. We also derive an approximate analytical expression for predicting energy

costs that is used in Section IV.

The total energy per information bit in data mode, and write this using the analog

and digital results in the last two subsections:

EData = (ETx
Analog-D + ERx

Analog-D) + (ETS-D +EEq-D + EFS-D

+EPS-D + EEnc + EDec) (4.21)

where the first grouped terms represent the analog energy (including mixed signal en-

ergy) and the second group of six summed terms represents the digital energy per infor-



106 Energy Efficiency of Point-to-Point Wireless Transmission

mation bit in the point-to-point system.

The energy per information bit to transmit preambles and train the receiver is written

as

EPreAm = (ETx
Analog-P + ERx

Analog-P) + (ETS-P

+EEq-P + EFS-P + EPS-P) . (4.22)

Note that the encoder and decoder do not operate on preamble symbols, and therefore

do not contribute to (4.22).

The total energy per information bit for the point-to-point wireless system can now

be written as

ETotal = EData + EPreAm . (4.23)

The goal in the simulations in Section IV is to evaluate this total energy as a function of

distance to determine an optimal minimal energy configuration of M , rc, and received
Eb
N0

. Note that these three variables are sufficient to then generate the system bandwidth

W and cyclic prefix length l.

Analytical Approximation for Energy Consumption

We now formulate an analytical approximation to (4.23) so that an approximated energy

curve can be quickly generated, and possibly be used for further analysis. For a selected

location (i.e. fixed distance d) and data rate Rd, the energy cost for data transmission is

a function of three configuration parameters: modulation order (M ), code rate (rc) and

operating SNR per bit (Eb
N0

).

Several other parameters in the energy model do depend on these three key param-

eters. In the digital energy modeling, the cyclic prefix length l (equal to the number of

channel taps) depends on both M and rc. Both the encoder and decoder energy models

are a function of rc. In the analog energy modeling, the following segments with asso-

ciated parameters from Table 1 are functions of M or l: PA (PAPR), DAC (W and rDAC),
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ADC (W and rADC) and BA (W ).

The goal of the approximation will be to remove the combinatoric dependency on M

and rc (i.e. choice of modulation order and code rate) from the energy equation. How-

ever, we will allow for any log2(M)rc term in the approximation, as this term is propor-

tional to spectral efficiency and will approximated as a simple linear function of Eb
N0

in the

next section using system simulations.

The following five approximations are made to eliminate the dependence on M , rc

and l:

AP1: The equalizer block length NEq is sufficiently long enough such that NEq ≫ l, and

hence NEq + l ≈ NEq. This removes the dependency of l in time synchronization

and in the required bandwidth W that affect the DAC, ADC and BA powers.

AP2: We remove the PAPR’s dependence on M in the PA power model by choosing the

intermediate value M = 16 in the calculation (PAPR = 1.88).

AP3: In a similar fashion, we use the ADC and DAC resolutions for 16-QAM to remove

dependence on M : rDAC = 5 and rADC = 7.

AP4: For the decoder energy, the second constant term is dropped due to being much

less significant, and the energy is approximated as

EDec ≈ fav wc

rc
CDec 1 =

fav wc log2(M)

rc log2(M)
CDec 1 , (4.24)

where the log2(M) term in numerator is then fixed using M = 16 as done above.

AP5: The encoder energy is ignored as it is dominated by all other digital segment ener-

gies as shown in simulations results in Section 4.

We now use these approximations and the summed terms in (4.21) to express ÊData

as

ÊData = A1d
γe

a
Eb
N0 +

B1

log2(M)rc
+

D1

Rd
(in nJ/bit) (4.25)
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where,

A1 = 1
ηPA

(1− λ)CPA . 1.88× 106 , (4.26)

B1 = 2 (1 + α)
(
2CDAC . 5 + 2CADC . 7 + 2CBA

)
× 106

+
(
CEq-D 1 log2(NEq) + CEq-D 2 + CTS + CFS-D + CPS-D

+fav wc 4CDec 1

)
× 10−3 (4.27)

and

D1 = (1− λ)
(
4CMixer + 2CSyn + CLNA

)
× 106 (4.28)

Note that the analog power model parameters (Table 4.2) were initially presented in

mW, therefore in order to convert them to nJ it was multiplied with a scaler 106. Similarly

digital energy model parameters (Table 4.8) were multiplied by 10−3 to convert pJ to nJ.

The parameter A1 is derived from the PA energy model included in the ETx
Analog-D

term. The term B1 is calculated using the DAC, ADC and BA energy models in ETx
Analog-D,

ERx
Analog-D and all digital energy models. The parameter D1 is derived from the mixer,

synthesizer and LNA energy models in the ETx
Analog-D and ERx

Analog-D terms. We assume

λ = 0.1 for the simulations in the next section, and using the previously presented values

in Table 4.2 and 4.8, the parameters A1, B1 and C1 are calculated to be 1.88 × 10−7, 6.09

and 7.87× 106, respectively.

We now use the preamble energy (4.22) using the above approximations to express

ÊPreAm as

ÊPreAm = A2d
γe

a
Eb
N0 +

B2

log2(M)rc
+

D2

Rd
(in nJ/bit) (4.29)

where,

A2 = 1
ηPA

λCPA . 1.88× 106 , (4.30)
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B2 =
λ

1− λ
.
[
2 (1 + α)

(
2CDAC . 5 + 2CADC . 7 + 2CBA

)
× 106

+
(
CEq-P 1 log2(NEq) + CEq-P 2 + CTS + CFS-P 1 log2(NFS)

+CFS-P 2 + CPS-P
)
× 10−3

]
(4.31)

and

D2 = λ
(
4CMixer + 2CSyn + CLNA

)
× 106 (4.32)

The factor λ
1−λ above comes from the preamble to data symbol normalization. The

parameters A2 and D2 are defined using analog power modules similar to calculating A1

and D1. The parameter B2 is calculated in similar way as B1 except for preambles not

using coding. Again assuming λ = 0.1 and using Table 4.2 and 4.8, the parameters A2,

B2 and C2 are calculated to be 0.21× 10−7, 0.582 and 0.875× 106, respectively.

The total energy per information bit (4.23) can now be approximated using data (4.25)

and preamble (4.29) energy approximations as,

ÊTotal = (A1 + A2)e
a
Eb
N0 dγ +

B1 + B2

rc log2(M)
+

D1 + D2

Rd
(4.33)

This provides a closed-form analytical expression for the total energy consumption of

a practical wireless link.

4.4 Energy consumption investigation of a point-to-point trans-
mission

We now investigate the energy consumption using system simulations and numerical

evaluations. We also complete our analytical approximation to total energy by using

a model of the available code rate and modulation order configurations, and derive a

minimum-energy approximation from this as a function of Eb
N0

.

The relationship between the spectral efficiency and the received SNR per bit depends

on many factors, including the channel model and the LDPC code. In our system, we fix

the target data rate at 5 Mbps and calculated various RF bandwidths and the resulting
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number of channel taps to support the error-control codes for three M-QAM modulation

formats. We simulated a LDPC-coded system over 10, 000 random channel realizations

to observe the required Eb
N0

to achieve a target BER of 10−4. We discarded 0-4% of channel

realizations when a BER for a particular estimated channel shows higher than 0.001 at a

high SNR where almost all of the other channels have 0 errors. We assume τ = 4.3 µs,

γ = 3 and λ = 0.1, and assume the channel remains constant during the transmission of a

block as the channel coherence time is quite high compared to block transmission time.

Table 4.9: System parameters for different transmission configurations to achieve a BER
of 10−4 and a data rate of 5Mbps.

Modulation Bandwidth Channel taps Code rate Code Required Eb
N0

M W (MHz) l rc (dB)

4-QAM 21.44 30 0.40 (7500,3000) 9.8
4-QAM 17.06 24 0.50 (6000,3000) 10.5
4-QAM 14.88 21 0.57 (5250,3000) 10.9
4-QAM 13.44 19 0.63 (4750,3000) 11.4
4-QAM 12.72 18 0.67 (4500,3000) 11.8
4-QAM 12.00 17 0.71 (4250,3000) 12.5
4-QAM 11.28 16 0.75 (4000,3000) 12.7
4-QAM 10.57 15 0.80 (3750,3000) 13.4
4-QAM 9.86 14 0.86 (3500,3000) 14.4
4-QAM 9.14 13 0.92 (3250,3000) 15.6
4-QAM 8.43 12 1 uncoded 19.6

16-QAM 8.43 12 0.50 (3000,1500) 14.0
16-QAM 7.01 10 0.60 (2500,1500) 16.1
16-QAM 5.60 8 0.75 (2000,1500) 17.2
16-QAM 4.89 7 0.86 (1750,1500) 20.4
16-QAM 4.19 6 1 uncoded 24.4

64-QAM 7.01 10 0.40 (2500,1000) 19.3
64-QAM 5.60 8 0.50 (2000,1000) 22.2
64-QAM 4.89 7 0.57 (1750,1000) 23.6
64-QAM 4.19 6 0.67 (1500,1000) 25.1
64-QAM 3.49 5 0.80 (1250,1000) 28.1
64-QAM 2.79 4 1 uncoded 31.8

The simulated system includes imperfect channel estimation and equalization using

the algorithms in Section 4.2.2. Perfect synchronization has been assumed in these sim-

ulations and the synchronization algorithms are used solely for energy modelling in the
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results in this section. This is because the synchronization estimates are random variables

as well. With imperfect synchronization, the BER computations dramatically degrade

with just one off-the-mark estimate. For example, even a small frequency offset out of

the capture range of the PLL for phase synchronization can completely randomize the

incoming bit stream. When our eventual goal is to compare energy consumption for a set

BER, it then makes sense to assume perfect synchronization parameters8.

The simulation results in Table 4.9 show that the required SNR per bit can be reduced

using a modulation scheme with low spectral efficiency such as 4-QAM, along with a low

rate code. However, this requires a higher bandwidth compared to using higher-order

modulation schemes. Another important factor is that SNR per bit is influenced by the

ISI, which increases with bandwidth (and hence, the number of channel taps) and results

in BER performance reduction. The lowest Eb
N0

operation requires approximately eight

times more bandwidth compared to the highest Eb
N0

operation. The results also reveal that

approximately similar signal bandwidths can be used to operate at two different Eb
N0

’s

depending on the modulation scheme and the code rate. The use of LDPC codes in our

system also results in significant savings of the required SNR per bit and a wider SNR-

per-bit operating range compared to our previous work [89] where only RS codes were

used.

4.4.1 Energy minimisation using an analytical approximation

We now seek to use the analytical approximation of total energy consumption in Section

4.3.3 to determine an approximate optimal operating Eb
N0

as a function of only distance

d. The goal is to test the validity of the approximation by comparing it to the energies

calculated from our earlier models.

We start by using the results in Table 4.9 to find a relationship between rc log2(M) and
Eb
N0

for our system can be approximated using the following curve-fitting approach,

8By adopting such a strategy, we are basically eliminating cases where channel and/or synchronization
are very poor and retransmissions are required.
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rc log2(M) = b1
Eb

N0
+ b2 (4.34)

where the curve fitting parameters b1 and b2 are calculated as 0.2116 and -1.244 using

least squared-error approach and Eb
N0

is given in decibels as defined in the previous sec-

tion. We plotted the actual values and approximations in Fig. 4.8.
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Figure 4.8: Curve fitting approximations of Eq. (4.34).

We can re-write (4.33) using the curve fitting approximation as follows,

ÊTotal ≈ (A1 + A2)e
a
Eb
N0 dγ +

B1 + B2

b1
Eb
N0

+ b2

+
D1 + D2

Rd
(4.35)

The optimal SNR per bit that minimizes the total energy consumption can be obtained

setting the derivative of (4.35) with respect to Eb
N0

to zero, which produces the following

equation,

a(A1 + A2) d
γ e

a
Eb
N0 − b1(B1 + B2)(

b1
Eb
N0

+ b2

)2 = 0 (4.36)
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The expression can be re-written as,

e
a
Eb
N0

(
b1

Eb

N0
+ b2

)2
=

b1(B1 + B2)

a(A1 + A2) dγ
(4.37)

By substituting, t = b1
Eb
N0

+b2 into (4.37), the following expression can be obtained which

can be solvable using the Lambert function W.

at
2b1

e
at
2b1 =

√
a(B1 + B2)

4 b1 (A1 + A2) dγ
e

ab2
b1 , (4.38)

where a = ln(10) as defined in the PA model in Table 4.2. The optimal solution for (4.38)

is given by,

(
Eb

N0

)∗
=

2b1W

(√
a (B1+B2)

4 b1 (A1+A2) dγ
e

ab2
b1

)
− ab2

ab1
(4.39)

where, W provides the solutions of y = W(y)eW(y), which can be calculated using a

wide range of available mathematical tools.

4.4.2 Simulation results

We now use numerical evaluation over the available data points in Table 4.9 to find so-

lutions within the available Eb
N0

values. We assume the following parameters; τ = 4.3 µs

and λ = 0.1. We assume the channel remains constant during the transmission of a block

as the channel coherence time is quite high compared to block transmission time.

We start with Figs. 4.9 and 4.10 which present two example transceiver energy con-

sumptions using two different system configurations and a transmission distance of 30

m. Fig. 4.9 summarizes the energy consumed by various parts of the transceiver when

the receiver operates at Eb
N0

= 13.4 dB with 4-QAM modulation and code rate 0.8. The

transceiver consumes a total energy of 5.3 nJ per bit, where the analog components con-

sume about 77% of this total energy while the digital consumes about 23%. When the

operating Eb
N0

is increased to 17.2 dB and uses 16-QAM with code rate 0.75 (as in Fig.
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4.10), the digital energy percentage drops to 20%, and the total energy consumption and

bandwidth become reduced to 4.3 nJ/bit and 5.6 MHz, respectively. A key difference

between the two configurations is the PA energy, which is higher for the lower energy

configuration. Furthermore, in both configurations and due to the short distance, the

receiver energy consumption exceeds that of the transmitter.
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Figure 4.9: Energy consumption breakdown when the receiver operates at Eb
N0

= 13.4 dB
with bandwidth 10.57 MHz at a distance of 30 m and data rate of 5 Mbps.

Fig. 4.11 shows the total energy consumption ETotal according to the actual energy

models in (4.23) as a function of received Eb
N0

when transmitted over a distance of 30 m.

The total energy consumption is 9.5 nJ per bit when the receiver operates at the lowest
Eb
N0

of 9.8 dB using 4-QAM. As the operating Eb
N0

is increased over the 4-QAM modula-

tion scheme until 19.6 dB, the total energy gradually decreases to 4.7 nJ per bit which

corresponds to uncoded transmission. For the low SNR-per-bit region, the total energy is

dominated by the circuit processing energy and not the PA as shown in Fig. 4.9. A lower

SNR-per-bit operation requires a higher symbol rate (and hence a higher RF bandwidth),

which increases the energy consumption percentage of the ADC, DAC, LNA, BA and all

digital components.
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Figure 4.10: Energy consumption breakdown when the receiver operates at Eb
N0

= 17.2 dB
with bandwidth 5.60 MHz at a distance of 30 m and data rate of 5 Mbps.
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Figure 4.11: Total energy consumption versus the receiver Eb
N0

for a distance of 30 m and
data rate of 5 Mbps.
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The total energy consumption of 16-QAM transmission behave differently. The con-

sumed energy per bit decreases up until Eb
N0

= 17.2 dB, and begins to increase after this

point. When 64-QAM is used, there is a slight energy drop initially, followed by a sharp

increase in energy with increasing Eb
N0

. This is due to the high PAPR and requirement of a

high transmit power to maintain a higher Eb
N0

. PA energy is the dominant factor here, and

therefore total energy increases with the operating SNR per bit.

The approximate analytical energy consumption derived in (4.35) is sketched in Fig.

4.11 as the solid black line. It deviates slightly from the actual values, but is a reasonable

approximation for the wide range of Eb
N0

values considered. The small gaps in the approx-

imation in the lower and higher Eb
N0

regions are mostly due to approximations AP2–AP4

in Section 4.3.3 being based on a fixed intermediate value of M = 16 (and therefore fixed

values of rDAC and rADC). A better fit in Fig. 4.11 could be achieved with even a simple

continuous approximation of M , rDAC and rADC7 as a function of Eb
N0

with the help of

Table (4.35) as a guide for modulation order versus Eb
N0

.

Fig. 4.12 illustrates the total energy consumption as a function of RF bandwidth for

a fixed distance of 30 m and a data rate of 5 Mbps. In the low bandwidth region, where

64-QAM can be used, the energy consumption decreases with increase in bandwidth. 64-

QAM requires a higher transmit energy compared to the processing energy and therefore,

by increasing the bandwidth and reducing the operating SNR per bit (as in Fig. 4.11) the

total energy can be decreased for 64-QAM.

However, as the signal processing energy is more dominant in 4-QAM and 16-QAM

systems, total energy consumption increases with an increase in bandwidth. Results

show that a bandwidth expansion from 2.79 MHz to 4.19 MHz and a modulation scheme

change from 64-QAM to 16-QAM could achieve an energy savings close to 60%. Fig. 4.11

and 4.12 present the trade-offs between rising of signal processing energy with transmit

energy savings achieved by lowering the SNR per bit.

Fig. 4.13 shows the optimal minimum-energy operating Eb
N0

and bandwidth as a func-

tion of distance using our energy models. The two dash-dot vertical lines at distances of

11 m and 53 m indicate the two distances where the optimal modulation order switches

between 64-QAM or 16-QAM and 16-QAM or 4-QAM, respectively. The decaying dashed
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Figure 4.12: Total energy consumption versus the allocated bandwidth for a distance of
30 m and data rate of 5 Mbps.

line is the optimal operating E∗
b

N0
as a function of distance in (4.39) that was derived from

the closed-form analytical approximation in (4.33). Results show a close agreement with

the numerical evaluated energy models, and the approximation can help predict code

rates (using (4.34)) and their resulting bandwidths for Eb
N0

operating values between those

from the limited number of code rate choices in our simulations.

As expected, the optimal Eb
N0

is inversely proportional to the transmit distance, while

the optimal bandwidth expands to reduce energy consumption as distance increases.

Transmit energy dominates the total energy for long distances, where it is important to

reduce the received SNR per bit and allocate a wide bandwidth to achieve minimal total

energy consumption. Results show that 64-QAM is energy efficient only for very short

distances (less than 11 m) due to its high receiver SNR-per-bit requirement. 16-QAM is

energy efficient for distances between 11 m and 53 m, while 4-QAM is more suitable for

distances beyond 53 m for the example scenario considered here. Such results and the

modelling process can be used in low-power wireless systems when allocating resources,

i.e. provide smaller bandwidths to nearby users and wider bandwidths to users at longer
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Figure 4.13: Optimal bandwidth and Eb
N0

versus distance for most energy efficient trans-
mission for a data rate of 5 Mbps.

distances.

Fig. 4.14 illustrates the energy consumption of analog segments in the transmitter

and receiver, as well as the digital segments in the receiver as a percentage for different

distances. The system is configured optimally for each distance according to Fig. 4.13.

The digital energy consumption in the transmitter is only contributed by the encoder in

our model and since it is very small (as shown in Fig. 4.9 and 4.10) we do not include

it here. The analog transmit energy (and its percentage of overall energy) fluctuates in

the first 55 m due to two modulation order and code rate changes. From 55 m onwards,

the 4-QAM is the fixed modulation and there is an increasing energy trend. At the exact

distance of a code rate decrease, the analog transmit energy decreases slightly due to less

transmit power being compensated by a stronger bit-error correcting capability.

The digital received energy increases (not strictly though) as a function of distance.

The increases in energy only occur when there is a change in M or code rate (rc), and

the energy is flat for distances in between. The percentage of overall energy increases

sharply after 25 m when the minimal energy configuration first uses a code rate less than

1. The digital receiver percentage of overall energy reaches as high as 19.8% and begins
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to slowly decrease as the analog transmit energy begins to dominate the overall energy.

The analog received energy also increases (not strictly though) as a function of dis-

tance. Increases occur at distances where the optimal bandwidth increases as shown in

Figure 4.13. At the shortest distances, the analog receive percentage of overall energy is a

significant factor because it only partially depends on distance (via the ADC’s and base-

band amplifier’s dependence on modulation order and bandwidth, respectively) and has

a static energy component from the mixer, synthesizer, and LNA. As distance increases,

this percentage has a decreasing trend due to the analog received energy only mildly

increasing compared to analog transmit and digital receive energies. In particular, the

analog receive energy increases by 63% from d = 30 m to d = 150 m, while the digital

receiver and analog transmitter energies increase by factors of 2.1 and 5.2, respectively.
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Figure 4.14: Energy consumption of transmitter and receiver analog and digital segments
as a percentage when operated at optimal configurations as in Fig. 4.13 (distance = 30 m,
data rate = 5 Mbps).

Finally, we consider future hardware implementations and predict the energy con-

sumption for upcoming CMOS technologies. It is clear that with the development of ef-

ficient semiconductor components, circuit energy consumption will be reduced. CMOS
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technologies of 32 nm scale have already been introduced and 22 nm scale is being tested.

Using the analog and digital CMOS technology scaling rules used earlier in the chapter

assuming an uncoded 16-QAM transmission with the same requirements as in the above,

we calculated the energy costs and present them in Fig. 4.15. The energy consumption for

digital signal processing would decrease by 51% with the use of 22 nm technology, while

the analog energy consumption would reduce by only 21%, and the total energy would

fall by 27%. This might seemingly allow the minimum-energy configuration to rely more

on receiver digital processing and a bit less on analog transmission power through lower-

rate codes. However, note that lowering the code rate requires an increase in bandwidth

to keep the same information rate, which results in requiring more analog power. Due

to this interdependence and analog energy consumption being the majority factor, simu-

lations based on 32 nm and 22 nm technologies have shown similar Eb
N0

and bandwidth

versus distance results as those in Fig. 4.13.
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Figure 4.15: Energy consumption prediction for upcoming CMOS technologies (Here the
transmission distance is assumed to be 30 m, data rate to be 5 Mbps and the receiver Eb

N0

to be 17.2 dB).
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4.5 Conclusions

A detailed energy modelling of the digital components (along with analog components)

has resulted in a more complete energy model of a point-to-point, burst-mode wireless

system compared to existing works. This allows for the analysis of energy consumption

as a function of design parameters (bandwidth, modulation order, code rate, transmit

power) and physical parameters (distance, channel model, and pathloss). For a given

physical scenario and data-rate requirement, the optimal minimum-energy configuration

can be determined as an optimal bandwidth and received Eb
N0

that represent the design

parameters. Eq. (4.33) is a key contribution because it provides an analytical approxima-

tion of total energy as a function of receiver Eb
N0

and spectral efficiency which we could

used to derive an expression for the optimal Eb
N0

.

The goal of the chosen system and its parameter configuration was to work towards

a minimum-energy wireless point-to-point system. A single-carrier system was chosen

due to a lower PAPR than OFDM systems, while the frequency-domain equalizer (FDE)

allows the receiver to still have the performance advantage of an OFDM equalizer. As the

transmitter energy is highly dependent on PAPR, single-carrier transmission is a better

candidate for systems where energy efficiency is the main focus.

Shorter distances were considered in this chapter, and a prime application for our

analysis is between devices in an internet-of-things (IoT) network, where burst-mode

transmission is expected and energy consumption (possibly battery lifetime) is of extreme

importance. At the shortest of distances with a fixed data rate, our results indicate that

the receiver components were the dominant energy factor and analog transmit power is

less constrained. In particular, these results show that digital energy consumption makes

up a relevant portion of both the receiver’s and overall system’s energy consumption

(as high as 24.6%). Furthermore, this percentage varies non-monotonically as a function

of distance, as analog RX energy increases monotonically (as bandwidth increases with

distance), while the digital energy can increase at distances where the optimal energy

configuration changes (i.e. modulation order or code rate change).

A promising extension of this chapter is to consider relay networks, where one or

more devices in an IoT network could serve as relays between source and destination
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nodes. Our framework could be used to determine the optimal energy configuration of

the source transmitter and relays, including the number of required relays, type of relay

(amplify or decode/detect and forward) and where the optimal relay locations are. Our

modelling approach and the optimum-Eb
N0

concept may possibly be extended to a LTE

network, where our receiver models are altered to that of a LTE receiver and a LTE base

station energy model [80] is used.

4.6 Appendix

4.6.1 Equalizer energy model parameter derivation

When the equalizer is in data mode, Tasks I, III, IV and V result in the following total

number of multiplies, adds and register accesses:

Multiplies: 8NEq log2NEq + 27NEq + 2

Adds: 12NEq log2NEq + 24NEq + 2

Register accesses: 4NEq

Using Table 4.3, the energy per preamble block is then computed as

Energy per block = 7.41 · (8NEq log2NEq + 27NEq + 2) +

0.93 · (12NEq log2NEq + 24NEq + 2) + 1.23 · 4NEq

There are rc log2(M)NEq total number of data bits in NEq size equalizer block,

Energy per bit (EEq-D) =
Energy per block
rc log2(M)NEq

EEq-D =
1

rc

(
70.4 · log2NEq + 227.3 +

16.7

NEq

)
The last term of the above equation, 16.7

NEq
, is negligible as NEq is large in practice (512,

1024,...). Therefore, we ignore the last term and present two constants CEq-D 1 = 70.4 and
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CEq-D 2 = 227.3 as coefficients to represent the above equation as,

EEq-D =
1

rc log2(M)
[CEq-D 1 log2(NEq) + CEq-D 2]





Chapter 5

Energy Modeling and Optimization of
Cooperative Relay Transmission

Cooperative relays have been used in many wireless applications to reduce transmit power as well

as to add diversity at the receiver. However, the energy efficiency trade-offs of relay networks have

not been thoroughly investigated using a complete energy model of the system. In this chapter, we

present an energy model for a cooperative single-relay system for two relay strategies: amplify-and-

forward (AF) and detect-and-forward (DF). The proposed energy model consists of relative power

allocation, relay location, spectral efficiency, data rate, transmission distance, and target error rate

as parameters. Using this energy model, we optimize the location of the relay and power allocations

to minimize the total energy consumption. The optimum location is found in two-dimensional space

for constrained and unconstrained scenarios. The optimum location for an AF system can be found

independently of the modulation scheme, while the optimum location for a DF system depends on the

modulation scheme. We then optimize the total energy consumption over the spectral efficiency and

derive expressions for the optimal spectral efficiency values, and verify our results using numerical

simulations. Finally, we consider both single-hop (direction transmission) and two-hop (single-relay)

transmission and present the optimal scheme and associated parameters as a function of source-to-

destination distance.

5.1 Introduction

COOPERATIVE relay transmission has been used to improve the performance of

wireless systems as well as to increase their coverage area [105]. The main function

of a relay is to capture the incoming signal from the source and send it to the next relay or

the destination. The relayed signals can be processed by the destination in multiple ways;

they can be combined or used individually according to various available strategies [105,

125
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106].

Relays generate independent channel paths between the source and destination. A

major aspect of cooperative communication is the operation of the received signals at

the relay and how they are forwarded on to the next node [105, 107]. The cooperative

protocols of relay networks can be divided into two main categories based on their op-

eration: amplify & forward (AF) and decode & forward. AF relays receive a signal from

an incoming node, amplify the signal, and then forward it on to the next node. AF relays

only amplify their received signals and do not perform any signal detection or decoding.

Usually, AF is used as a fixed-wireless relaying approach, where it simply forwards the

incoming signal.

DF relays detect the received signal first, followed by transmitting the signal to the

next node. These relays are also known as regenerative relays as they attempt to fully

reconstruct the original source signal again. In order to obtain closed-form analytical ex-

pressions, most of the related literature assume only signal detection at the relay without

considering channel decoders. We follow the same procedure in our system, and hence

adopt the terminology detect & forward (DF) instead of decode & forward. Therefore,

uncoded transmission is used in the work that follows.

DF systems can be operated in various ways, with fixed DF and selective DF being

the two common approaches. Fixed DF relay systems [105], where relays re-transmit all

the times irrespective of perfect detection, are more suited when the source-destination

link is weak and the source-relay link is quite strong. Otherwise, higher number of errors

can be detected at the relay and can propagate to the destination and result in high error

rates. Maximum-likelihood detection algorithms are available for fixed DF systems, but

the receiver implementations is quite complex [108]. Therefore, selective transmission

strategies [105] are proposed in DF systems where the relay transmits only when it detects

the signal perfectly. When the relay does transmit a signal, the destination will combine

the received signal from both the source and relay using maximal-ratio combining (MRC)

techniques [109].

Most of the available literature on relay systems focus on either improving the final

error probability or increasing the transmission capacity [107,110–115]. Power allocation
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and relay positioning are jointly optimized by Zhang et al. for multi-relay cooperative AF

and DF relay systems to minimize the outage probability [112]. The authors discuss two

types of operations: combining all relays and selecting the best relay to minimize errors.

Similarly, power allocation of both AF and DF relay systems is optimized by Liu et al.

to minimize the symbol error rate after deriving closed-form expressions [107]. Zhao et

al. performed power and relay location optimization for wireless multi-cast transmission

using distribution relay selection and genie-aided relay selection schemes [113]. Lau et

al. propose an optimum power allocation scheme for BPSK-modulated relay system un-

der BER constraints and present upper bounds for the achievable power reduction gains

[114]. Differentially-modulated AF relays are studied by Cho et al., and the system is

optimized using a joint power and location allocation scheme [115].

Traditional research on the energy efficiency of wireless systems has mainly focused

on power amplifier energy consumption, which is proportional to the transmit radio en-

ergy. Recent work, however, has shown that circuit energy or signal processing energy

can be a significant contributor of the total energy in certain scenarios [33, 116]. In re-

lay systems, several publications present energy optimization solutions that consider cir-

cuit energy consumption [107, 117–119]. Waqar et al. present an analysis of such energy

model for a multi-hop AF non-cooperative relay network [117]. The authors adopt a non-

cooperative strategy at the destination which results in equal power allocation and mid-

point located relays. The authors assume a fixed circuit power consumption and jointly

optimize the total energy as a function of the number of relays and spectral efficiency

for a BER-constrained environment. However, non-cooperative systems, while less com-

plex, do not benefit from diversity (especially in fading environments) and have higher

error rates in comparison with cooperative systems. Kakitani et al. also consider only

a fixed circuit power when analyzing the energy efficiency of single-hop and multi-hop

relay networks for AF and DF systems [118]. However, their approach uses a fixed mod-

ulation scheme to investigate energy consumption instead of considering a more flexible

rate system with a variable modulation. Furthermore, as in [117], assuming a fixed circuit

power consumption can effect accuracy, especially in low power systems. Liu et al. [107]

discussed the energy efficiency in sensor networks between direct transmission, AF relay
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and DF relay cooperations by assuming static circuit energy consumption under outage

probability constraints. Chen et al. carried out a detailed energy efficiency comparison

for both types of relay systems using outage probability analyses [119]. The authors as-

sumed data retransmission whenever the final detection fails. However, this research is

limited by the assumption of equal transmit power at the source and relay to reduce the

system complexity. Energy efficiency of relay selection strategies and trade-offs between

the energy consumed on data transmission and channel state information (CSI) acquisi-

tion are studied by Madan et al. [120]. Of the above, the works of [107,119] use numerical

simulations to solve their optimization problems.

To the best of our knowledge, accurate circuit energy models based on computational

complexity, spectral efficiency and data rate have not been used in any previous works

related to cooperative relays. In the remainder of this chapter, we present an analytical

framework to optimize the energy efficiency of AF and DF cooperative systems. Our

contributions with respect to previous publications are as follows.

• We present a more comprehensive model for circuit energy consumption which

are derived using our previous work in Chapter 4. We then approximate the cir-

cuit energy as a function of data rate and modulation scheme. This allows us to

formulate a closed-form total energy consumption model for BER-constrained and

throughput-constrained cooperative AF and DF relay systems.

• We propose to minimize the energy consumption of our system by introducing a

multi-dimensional optimization problem that considers the following parameters:

power allocation for both source and relay, location of the relay, and spectral effi-

ciency.

• We solve the optimization problem in two steps: First, location is optimized con-

sidering both constrained and unconstrained scenarios. We then minimize the total

energy consumption as a function of modulation order. The slight difference be-

tween AF and DF systems results in a specific optimization approach for each.

• Numerical simulations verify our analyses, and finally, we propose an optimal co-

operation strategy as a function of distance for energy-efficient transmission.
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The remainder of this chapter is organized as follows; Section 5.2 presents the single-

relay system model. Section 5.3 and 5.4 present the models for the total energy con-

sumption for AF and DF relay systems, respectively, along with energy minimization ap-

proaches for each. These approaches are numerically evaluated and verified Section 5.6.

Finally, implications of our results and concluding remarks are discussed in Section 5.7.

Section 5.8 contains the details of convexity of optimization functions and the radio en-

ergy derivations for direct transmission.

5.2 System Model

In our system, we consider a general scenario where a relay (R) is placed in a two-

dimensional area with respect to source (S) and destination (D) as shown in Figure 5.1.

The distances between the source-destination, source-relay and relay-destination are de-

fined as ds,d, ds,r and dr,d, respectively. We define βl, where 0 < β < 1, as the horizontal

distance between the source and relay, and (1− β)l as the horizontal relay-to-destination

distance. The vertical relay distance, δl, is the distance component orthogonal to the

direct path between the source and destination.1 Together, β and δ provide a relative lo-

cation of the relay with respect to the source-destination distance l. With basic geometry,

we then rewrite the distances as

ds,d = l , ds,r =
√

β2 + δ2 l , dr,d =
√

(1− β)2 + δ2 l . (5.1)

In our work we make the following assumptions:

• Our system time-shares the resources between the relay links using two time in-

stances for each transmission: First, between the source and relay/destination, and

second, between the relay and destination. In each transmission time slot, a data

rate of two times the average system throughput is required in order to achieve the

same throughput as a direct transmission system.

1We only consider the region of δ from -1 to 1, as anything beyond this requires the source to transmit
farther to the relay than to the destination. Such a scenario is not practical in an energy-efficiency sense as it
would not require a relay in the first place.
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Figure 5.1: Diagram of the single relay system.

• All transmission links are modelled as flat-fading channels with mutually indepen-

dent coefficients that follow the Rayleigh distribution and remain constant for the

duration of a symbol.

• Channel state information is available at each receiver and the environment is interference-

free.

• We only consider square-QAM modulation, and use exact BER expressions in our

analyses. In this chapter, we refer to spectral efficiency as b, the number of bits

per square-QAM symbol.2 While the standard definition of spectral efficiency is

the ratio of information bit rate to RF bandwidth measured in bits/sec/Hz, the

forthcoming results are more easily viewed in terms of bits/symbol. Furthermore,

as the standard spectral efficiency is proportional to b when the excess bandwidth

of the Nyquist pulse shaping filter is fixed, it is easier to see spectral efficiency

through b [45]. We consider four modulation schemes: 4-QAM, 16-QAM, 64-QAM

and 256-QAM, thereby giving b values of 2, 4, or 8. We assume that for a fixed data

throughput, the transmission bandwidth can be adjusted accordingly or a given

modulation scheme.

• The system transmits at data rates in the range of 0.5–5 Mbps.

• Perfect receiver synchronization is assumed at the relay and the destination.

• The destination use maximal-ratio combining on the signals received from the relay

2Non-square QAM constellations, such as 32-QAM or 128-QAM, could be considered as well as their BER
can be well approximated by square-QAM BER expressions.
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Figure 5.2: Block diagram of the AF relay transceiver.

and source.

5.3 Energy Modelling of Amplify-and-Forward (AF) Relaying
Systems

In this section, we develop a total system energy model for our proposed AF relay system.

We start with an overview of the AF relay transceiver, and then separately model the

power amplifier (PA) and remaining circuit energies.

A block diagram of the AF relay node in our proposed system is shown in Figure

5.2. As an AF relay only re-transmits its received signal, it does not perform any symbol

detection. Instead, it down converts, samples, up converts and amplifies during the pro-

cess of re-transmission. Its received signal is first filtered using a band-pass filter and then

amplified using a low-noise amplifier (LNA). The filter output is then down-converted

to baseband and re-amplified using a baseband amplifier prior to the sampling process.

An analog-to-digital converter (ADC) samples the analog signal and is followed by a

timing recovery unit which maximizes the SNR of the received signal. The samples are

then converted back to an analog signal using a digital-to-analog converter (DAC), and

this signal is then modulated onto a transmit carrier frequency, amplified by the PA, and

transmitted using a single antenna.

We denote the average required data throughput as Rd, and that direct transmission
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requires a bandwidth of W . The two variables are related by

Rd =
W

2(1 + ϵ)
b , (5.2)

where ϵ is denoted as the excess bandwidth of the Nyquist pulse. However, as the relayed

transmission uses two transmission instances, in order to maintain the same throughput

as a direct transmission system, it must transmit with twice the throughput, i.e. it requires

twice the bandwidth for a given modulation scheme.

5.3.1 AF Power Amplifier Energy Modelling

We focus now on the energy consumed by the PA at both the source and relay. We begin

by considering a point-to-point link and denote the following variables:

• EPA is the power amplifier energy consumption per bit

• ETx is the power amplifier output energy per bit

• ERx is the received energy per bit

• η is the power amplifier efficiency

• L0 is the constant in the pathloss model [121]

• γ is the path-loss exponent

• l is the transmission distance

The peak-to-average power ratio for square-QAM constellations is given by [34]

PAPR(b) = 1.4

√
3(2b/2 − 1)

2b/2 + 1

We then write the PA output energy as follows:

ETx =

√
2b/2 + 1

3(2b/2 − 1)

ηEPA

1.4
(5.3)
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Efficiency of a PA cannot usually be represented by a single number in reality as it

depends on various factors including the load. However, in order to obtain a closed-

form solution to our problem, we assume a fixed efficiency (η) for the PA. Base station

PAs are usually very inefficient and are predicted to operate with just 50% efficiency in

2020 [122]. The PA efficiencies in recent works lie within a wide range with maximum

efficiencies of 33% in [123], 35% in [124] and 65% in [125]. We assume a PA efficiency

efficiency (η) of 50% in this work.

Using the propagation model presented in [121], we can write the PA output energy

and received energy as follows:

ERx = ETxL0l
−γ (5.4)

Using (5.3) and (5.4), we can now calculate the energy consumption of the power ampli-

fier as follows:

EPA = 1.4

√
3(2b/2 − 1)

2b/2 + 1

ERx

Ll−γ
, (5.5)

where L = L0η is a constant.

An average symbol-error rate (SER) expression for cooperative AF transmission is

derived in [107] assuming high-SNR operation3. We use the same expression as in [107]

along with two assumptions: (1) Gray-coded symbol mapping is used; (2) A symbol

error occurs only at neighboring symbol regions. Combined, the two assumptions result

in a symbol error resulting in a single bit error, and this allows us to derive a closed-

form approximation for BER later in this chapter. This BER approximation is accurate at

high SNRs, is valid for any square M-QAM modulation scheme, and is a function of the

spectral efficiency b = log2M . The obtained BER of our cooperative AF transmission can

3The objective of this chapter is to minimize the total PA energy, and minimize the total energy which
include both radio energy and signal processing energy. The approximation of high SNR holds for low BER
values such as 10-4, but may not valid for higher BER values as higher BER can be achieved in low SNR.
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be written using Eq. (5.85) in [107] and (5.5) as follows:

Pe ≈ B(b)N0
2

ESLd
−γ
s,d

(
1

ESLd
−γ
s,r

+
1

ERLd
−γ
r,d

)
, (5.6)

where the PA energy per bit at the source and relay are represented by ES and ER, respec-

tively, and N0 represents the receiver noise spectral density multiplied into the receiver

noise figure (RNF) at the receiver side of the relay and destination. The pathloss exponent

γ is typically in the range 2 < γ < 6 in practice, and the M-QAM modulation dependent

constant B(b) is based on Eq. 5.85 in [107] and (5.5), and is written as follows:

B(b) =
23.52(2b − 1)(2b/2 − 1)

2

9b32b

(
3(2b − 1)

8
+

(2b/2 − 1)
2

π

)
(5.7)

We denote the total PA energy consumption from both the source and relay as EAF
tr .

We use a weighting variable α to denote the relative PA power allocations for the source

and relay. We now write the PA energy consumption of the source as ES = αEAF
tr , and

the relay as ER = (1 − α)EAF
tr , where 0 < α < 1. Substituting these energies and the

distances defined in (5.1) into (5.6), followed by solving for EAF
tr , results in

EAF
tr =

N0l
γ

L

√
B(b)

Pe
fAF(α, β, δ) , (5.8)

where,

fAF(α, β, δ) =
(β2 + δ2)

γ/2

α2
+

((1− β)2 + δ2)
γ/2

α(1− α)
(5.9)

5.3.2 AF Circuit Energy Modelling

A summary of the energy models of a wireless transceiver4 is presented in Table 5.1 based

on the work in Chapter 4. According to the assumptions and our system model, we

4The digital pulse-shaping and receiver matched filters are neglected in our energy model. Both filters
have less computations than other digital blocks, especially when exploiting the symmetry of the raised-root
cosine filters.
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Table 5.1: Power and energy models for wireless transceivers (from Table 4.2 and Table
4.8 in Chapter 4).

Component Power / energy model Parameter values

Mixer PMixer = CMixer CMixer = 1.25 mW

Oscillator POscil = COscil COscil = 1.25 mW

Low noise amplifier PLNA = CLNA CLNA = 1.25 mW

Digital-to-Analog converter PDAC = CDACW
5 CDAC = 0.25 mW/MHz

Analog-to-Digital converter PADC = CADCW
5 CADC = 0.23 mW/MHz

Baseband Amplifier PBA = CBAW CBA = 0.125 mW/MHz

Timing Synchronizer ETS = CTS
b CTS = 0.235 nJ

Frequency Synchronizer EFS = CFS
b CFS = 0.053 nJ

Phase Synchronizer EPS = CPS
b CPS = 0.099 nJ

define the circuit energy consumption of the relay as follows:

EAF
c, R =

PLNA + 4PMixer + 2POscil + 2PBA + 2PADC + 2PDAC

2Rd
+ ETS (5.10)

=
4CMixer + 2COscil + CLNA + 2W (2CBA + 2CADC + 2CDAC)

2Rd
+

CTS

b
, (5.11)

where PX denotes the power consumption of analog component X and EX denotes the

energy consumption per information bit of component X. The integer in front of each

PX and EX represents the number of such components in the considered system. The de-

tailed models and parameter values are presented in Chapter 4. The source performs the

function of a transmitter as presented in Figure 4.1 in Chapter 46. The energy consump-

tion of the source is written by adding the energy costs of the individual components

5We assumed fixed DAC and ADC resolutions of 5 and 7 bits, respectively. These values are irrespective
of the modulation scheme in order to make EDAC and EADC simpler linear models.

6We ignore the encoder block as we are focusing on uncoded transmission.
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as

EAF
c, S =

2CMixer + COscil + 2W × 2CDAC

2Rd
(5.12)

The destination performs the function of a receiver as presented in Figure 4.2 in Chap-

ter 4,7 but consumes twice the energy of a single receiver as it needs to process the re-

ceived signals at two instances; first from the source, and second from the relay. The

energy consumption of the destination is written by adding the energy costs of the indi-

vidual circuit modules as

EAF
c, D =

4CMixer + 2COscil + 2CLNA + 2W (4CBA + 4CADC)

2Rd
+

2CTS + 2CFS + 2CPS

b
(5.13)

The total circuit energy consumption of the AF cooperative system comprised of

source, relay and destination nodes is now written by adding (5.10), (5.12) and (5.13),

giving

EAF
c =

10CMixer + 5COscil + 3CLNA + 2W (6CBA + 6CADC + 4CDAC)

2Rd
+

3CTS + 2CFS + 2CPS

b

(5.14)

We simplify the above equation using Table 5.1, (5.2) and (5.14) to the following:

EAF
c =

CAF
1
Rd

+
CAF

2
b

, (5.15)

where the constants CAF
1 and CAF

2 are defined as,

CAF
1 =

10CMixer + 5COscil + 3CLNA

2
× 106 (5.16)

and

CAF
2 = 2 (1 + α)

(
6CBA + 6CADC + 4CDAC

)
× 106 +

(
3CTS + 2CFS + 2CPS

)
× 10−3 .(5.17)

7We ignore the equalizer and decoder blocks as we are focusing on uncoded transmission in a single-tap
channel.
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CAF
1 and CAF

2 are calculated as 11.25× 106 and 4.98 by using the models presented in

Table 5.1 and assuming ϵ = 0.25.

The total energy consumption for an AF system can now be written as a summation

of PA energy (5.8) and circuit energy (5.15) as

EAF
total(α, β, δ, b) =

N0l
γ

L

√
B(b)

Pe
fAF(α, β, δ) +

CAF
1
Rd

+
CAF

2
b

(5.18)

Looking closely at this equation, we see that minimizing fAF(α, β, δ) results in the optimal

relative location (β∗,δ∗) and relative power allocation (α∗) that minimizes EAF
tr . The first

key result here is that the minimal-energy b∗ is therefore independent of of the relative

location and power allocation. The second key result is that the distance l from source

to destination does not affect the optimal relative relay configuration parameters, which

was the primary reason for their introduction into the analysis.

5.4 Energy Modelling of Detect-and-Forward (DF) Relaying Sys-
tems

We now investigate the energy consumption of a cooperative DF relay system. We first

use SER expressions presented in [107] to derive the required transmit energy to achieve a

desired BER. We make the same assumptions as in Section 5.3, and further to this, assume

that the relay transmits only if it perfectly detects the signal. Otherwise, the relay remains

silent in the second time slot and the destination uses only the signal received from the

source to detect the transmitted data.

We present block diagrams of the receiver and transmitter segments of the DF relay in

Figure 5.3 and Figure 5.4, respectively. A DF relay performs several additional functions

compared to an AF relay. At the receiver end of the relay, carrier frequency and phase

synchronization are performed. Following coherent detection, the detected signal is then

re-modulated and transmitted as shown in Figure 5.4.
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Figure 5.3: Block diagram of a DF relay receiver end.

Figure 5.4: Block diagram of a DF relay transmitter end.

5.4.1 DF Power Amplifier Energy Modelling

When the relay detects the signal perfectly, the destination combines signals coming from

both the source and the relay using maximal-ratio combining. Therefore, the final BER

depends on the probability of accurate detection at the relay, which is a function of pa-

rameters such as relay location (β and δ), power allocation (α) of source and relay and

spectral efficiency (b). However, the relative relay configuration parameters (β, δ, α) can-

not be separated from spectral efficiency b as in (5.6) since the probability of the relay

transmission depends on successful detection, which is a function of b. The final BER of

a DF system can be written by using Eq. 5.35 in [107] and (5.5) to give

Pe =
N0

2

ESLd
−γ
s,d

(
A(b)

ESLd
−γ
s,r

+
B(b)

ERLd
−γ
r,d

)
, (5.19)

where the variables ES, ER, L, γ, N0 and B(b) carry the same definitions from Section 5.3.

The spectral-efficiency-dependent term A(b) is obtained by using both Eq. 5.35 in [107]
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and (5.5), resulting in

A(b) =
23.52 (2b − 1)(2b/2 − 1)

2

9 b3 22b

(
(2b − 1)

2
+

(2b/2 − 1)
2

π

)2

(5.20)

We denote EDF
tr as the total combined PA energy consumption from both the source

and relay. The power allocation of the source and relay are then written as ES = αEDF
tr

and ER = (1 − α)EDF
tr , respectively, where again 0 < α < 1. Substituting these energies

and the distances defined in (5.1) into (5.19), followed by solving for EDF
tr , results in

EDF
tr =

N0l
γ

L

√
1

Pe
fDF(α, β, δ, b) , (5.21)

where

fDF(α, β, δ, b) =
A(b)(β2 + δ2)

γ/2

α2
+

B(b)((1− β)2 + δ2)
γ/2

α(1− α)
(5.22)

5.4.2 DF Circuit Energy Modelling

According to the system model, we derived the circuit energy consumption of the relay

by adding the energy of all the analog and digital segments as follows:

EDF
c,R =

PLNA + 4PMixer + 2POscil + 2PBA + 2PADC + 2PDAC

2Rd
+ ETS +EFS +EPS (5.23)

=
4CMixer + 2COscil + CLNA + 2W (2CBA + 2CADC + 2CDAC)

2Rd
+

CTS + CFS + CPS

b

(5.24)

The energy models of these segments are presented in Table 5.1 based on the models

in Chapter 4. The total circuit energy consumption of the system comprised of all three

nodes is obtained by adding the energy consumption of the circuit components at the
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source (5.12), relay (5.23) and destination (5.13) as follows,

EDF
c =

10CMixer + 5COscil + 3CLNA + 2W (6CBA + 6CADC + 4CDAC)

2Rd
+

3CTS + 3CFS + 3CPS

b

(5.25)

We simplify the above equation using Table 5.1 and (5.2) as follows:

EDF
c =

CDF
1
Rd

+
CDF

2
b

, (5.26)

where the constants CDF
1 and CDF

2 are defined as,

CDF
1 =

10CMixer + 5COscil + 3CLNA

2
× 106 (5.27)

and

CDF
2 = 2 (1 + α)

(
6CBA + 6CADC + 4CDAC

)
× 106 +

(
3CTS + 3CFS + 3CPS

)
× 10−3 .(5.28)

The constants CDF
1 and CDF

2 are calculated as 11.25× 106 and 5.14, respectively, using

the models presented in Table 5.1 and assuming ϵ = 0.25. The total energy consumption

per bit of a DF system can be written as a summation of (5.21) and (5.26) as follows:

EDF
total = EDF

tr + EDF
c (5.29)

=
N0l

γ

L

√
1

Pe
fDF(α, β, δ, b) +

CDF
1
Rd

+
CDF

2
b

(5.30)

Looking closely at this equation, we see that the minimal-energy relay configuration val-

ues (α∗, β∗,δ∗) are no longer independent of b as in the AF case. Furthermore, since the

minimal-energy b∗ will depend on the source-destination distance l, we no longer have

(α∗, β∗,δ∗) being independent of l as they were in the AF case.
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5.5 Optimum Location and Power Allocation Scheme (OLPAS)
and Total Energy Minimization

Our goal is to determine the optimum relative relay location parameters (β∗ and δ∗),

relative power allocation (α∗), and optimum spectral efficiency b∗ that minimizes the en-

ergy consumption of the relay system for a given information rate Rd, source-destination

distance l, and the other physical transmission parameters in our model (i.e. pathloss

exponent γ, PA efficiency η, and pathloss constant L0). We formulate the optimization

problem in the DF or AF case as:

minimize
α,β,δ,b

ExF
total(α, β, δ, b)

subject to b = {2, 4, 6, 8},

0 < α < 1,

0 < β < 1,

− 1 < δ < 1

(5.31)

where ‘x’ in ExF
total refers to either AF or DF depending upon which system is under con-

sideration.

In both the AF and DF cases, we analyze the following three cases and find the opti-

mal minimal-energy configuration (α∗, β∗, δ∗, b∗):

1. Relative location is fixed, while relative power allocation (α) is a free variable.

2. Both relative location (0 < β < 1 , −1 < δ < 1) and relative power allocation

(0 < α < 1) have no additional constraints.

3. The relative location has additional constraints where (β1 < β < β2 and δ1 < δ <

δ2). Furthermore, 0 < β1 < β2 < 1 and −1 < δ1 < δ2 < 1. This results in the

location space to be a rectangular subset of the space in Case 2.
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5.5.1 OLPAS-AF

The global solution for the optimization problem (5.31) can be solved in two steps: First,

fAF(α, β, δ) can be minimized independently of other variables. Second, The solutions of

the first step is substituted into (5.31) and then minimized over all possible b.

The optimum relative location can be found by minimizing function fAF(α, β, δ) over

the possible range of (α, β, δ) given in the last section. We first consider the second deriva-

tives of fAF(α, β, δ) with respect to the individual parameters α, β and δ , i.e. ∂2fAF

∂α2 , ∂2fAF

∂β2

and ∂2fAF

∂δ2
. We prove in Appendix 5.8.1 that ∂2fAF

∂..2
> 0 for all 3 individual parameters.

however, given the complexity of faf(α, β, δ), it is difficult to analytically prove convex-

ity through its Hessian ∇2faf, and numerical simulation was used to verify convexity as

discussed in Appendix 5.8.1.

We now give the relative power allocation and location solutions for the three possible

cases:

• Case 1: In this case the relative locations (i.e. distances) are fixed. Due to the convex-

ity of fAF, by finding α such that ∂fAF

∂α = 0, the optimum relative power allocation α∗

is found as a function of relative distances (β and δ). These solutions are equivalent

to Eqs. 5.86 and 5.87 in [107] to minimize the SER.

α∗=
((1− β)2 + δ2)

γ/4
+

√
((1− β)2 + δ2)

γ/2
+ 8(β2 + δ2)γ/2

3((1− β)2 + δ2)
γ/4

+

√
((1− β)2 + δ2)

γ/2
+ 8(β2 + δ2)γ/2

(5.32)

• Case 2: We now consider all available regions for α, β and δ to the globally optimum

solution to (5.31) for the AF case.

The optimal relative vertical distance is determined by finding δ such that ∂fAF

∂δ = 0.

By inspection of (5.9), it can be seen that the optimal δ∗ = 0, and this result is

expected as fAF is symmetrical around δ = 0. Therefore, the optimal relay configu-

ration is on a direct line between the source and destination. We can then substitute

δ∗ into fAF(·), and by using its convexity, the optimal α∗ and β∗ are then found by

jointly solving ∂fAF

∂α = 0 and ∂fAF

∂β = 0. The result is the following two equations
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which can be solved numerically to obtain β∗ and α∗

(1− β∗)γ−2(1 + β∗)− β∗γ−1 = 0 (5.33)

α∗ =
β∗γ−1

β∗γ−1 + (1− β∗)γ−1
(5.34)

A plot of optimal parameters β∗ and α∗ versus pathloss exponent γ is shown in

Figure 5.5. We observe that the source needs more power allocation (more than

75%) when the pathloss exponents are between two and seven. This also implies

that the relay should move closer to destination to minimize the transmit energy.

These results are different from non-diversity systems (such as [117]) where the

optimal power allocation (α∗) and location (β∗) is found to be 0.5.
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Figure 5.5: Optimal parameters α∗ and β∗ that minimize the total transmit energy as a
function of pathloss exponent.

• Case 3: Here the relative location is constrained: β1 < β < β2 and δ1 < δ <

δ2. The optimal solution that minimizes fAF(α, β, δ) can be determined by using

the Karush-Kuhn-Tucker (KKT) sufficient conditions [126]. This is summarized as
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follows:

– The optimal vertical distance is found as δ∗ = min|δ|. This value minimizes

the source–relay and relay–destination distances.

– In order to find optimal horizontal distance β∗, the unconstrained optimal so-

lution β̄ is found first by solving the following equation:

(1− β̄)(1− β̄)
γ/2−2{2(1− β̄)(β̄2 + δ∗2) + β̄((1− β̄)

2
+ δ∗2)}

−β̄2(β̄2 + δ∗2)
γ/2−1

= 0 (5.35)

This equation was obtained by jointly solving ∂fAF

∂α = 0 and ∂fAF

∂β = 0.

– If β̄ lies within (β1 , β2), then the constrained optimal solution β∗ = β̄. Other-

wise, β∗ is equal to the closest of β1 or β2 to β̄.

– Finally, the optimal relative power allocation parameter α∗ is determined by

solving ∂fDF

∂α = 0 using the previously determined β∗ and δ∗. The result is the

following equation:

α∗ =
β∗(β∗2 + δ∗2)

γ/2−1

β∗(β∗2 + δ∗2)
γ/2−1

+ (1− β∗)((1− β∗)2 + δ∗2)
γ/2−1

(5.36)

5.5.2 AF energy minimization as a function of b

We can re-write (5.18) using the optimized relative location and relative power allocation

solution as follows:

EAF
total =

N0l
γ

L
CAF

opt

√
B(b)

Pe
+

CAF
1
Rd

+
CAF

2
b

, (5.37)

where the constant CAF
opt is used to represent the value of

√
fAF(α∗, β∗, δ∗). We now have

EAF
total as a function of spectral efficiency b, which our model casts as an even integer.

We temporarily relax b and treat it as a continuous variable to make (5.37) a differen-

tiable function. Numerical evaluation of
√

B(b) shows that it is a convex function of b

for b > 0 and hence the first term of (5.37) is convex. The second term is not a function
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of b and is constant for a given data rate, while the third term is a convex function for

b > 0. Therefore, since the sum of convex functions is also convex, we can conclude that

(5.37) is a convex function of b and there exits an optimal spectral efficiency b∗p > 0 that

minimizes energy consumption.

We now approximate
√
B(b) in (5.37) using an exponential curve fitting function as

follows:

p1e
p2b + p3 ≈

√
B(b) , (5.38)

where the parameters p1, p2 and p3 are calculated according to possible values of b. This

approximation simplifies the total energy expression to

EAF
total ≈ N0l

γ

L
√
Pe

CAF
opt (p1e

p2b + p3) +
CAF

1
Rd

+
CAF

2
b

(5.39)

We use this approximation to create a new optimization problem where the total en-

ergy in (5.37) is replaced and is easier to solve analytically. By differentiating (5.39) with

respect to be b and setting the result equal to 0, we obtain the following expression

b∗p
2ep2b

∗
p =

CAF
2 L(Pe)

0.5

p1p2N0lγCAF
opt

(5.40)

The optimal solution b∗p can then be found to be

b∗p =

2W

(√
p2CAF

2 L(Pe)
1/2

4p1N0lγCAF
opt

)
p2

, (5.41)

where W is the Lambert-W function [127]. We found general curve fitting parameters as

p1 = 0.194, p2 = 0.533 and p3 = 0.046 to find b∗p. Figure 5.6 shows the curve fit with these

parameters for the function
√

B(b), and the approximation in (5.38) is seen as very tight

with the actual values of the function
√

B(b). As such, using (5.38) instead of
√
B(b) will

yield indiscernible results as shown later in this chapter.

We can now allocate the optimum available spectral efficiency b∗ from the available
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Figure 5.6: Curve fitting approximation
√
B(b) for AF relay transmission.

square M-QAM constellations as follows:

b∗ =


2, if b∗p ≤ 2

b̃, if 2 ≤ b∗p ≤ 8

8, if b∗p ≥ 8

, (5.42)

where b̃ is either ⌈b∗p⌉ or ⌊b∗p⌋, whichever gives the minimum energy consumption. Note

that the ⌈ ⌉ and ⌊ ⌋ operators give the lower and higher available spectral efficiencies in

b. The optimum total energy consumption can now be calculated by substituting b∗ in

(5.37).

5.5.3 OLPAS-DF

Unlike in the AF relaying case, the optimum relative location and power allocation de-

pends on fDF(α, β, δ, b), which is a function of b. As we assume only a limited num-

ber of options for b, we can find the optimum parameters α∗, β∗, and δ∗ for each given

b ∈ {2, 4, 6, 8}. By evaluating these four choices, the optimal b∗ and associated relative

location and power parameters can be determined that minimize the total energy con-
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sumption.

The second derivatives of fDF(α, β, δ, b) with respect to either α, β and δ are positive

for all four b values. However, like in the AF case, it is difficult to analytically prove con-

vexity through its Hessian ∇2fdf, and numerical simulation was used to verify convexity

as discussed in Appendix 5.8.1.

As previously done in the AF relaying case, we consider 3 cases according to specific

parameter selections for the OLPAS-DF scheme:

• Case 1: The relay location is fixed, and therefore β and δ can be treated as constants.

We utilize the convexity of fDF(·) to find the optimum relative power allocation α∗

by solving ∂fDF

∂α = 0 for a given value of b, which results in the following solution

for α∗.

α∗=
((1− β)2 + δ2)

γ/4
+

√
((1− β)2 + δ2)

γ/2
+ 8A(b)/B(b)(β2 + δ2)γ/2

3((1− β)2 + δ2)
γ/4

+

√
((1− β)2 + δ2)

γ/2
+ 8A(b)/B(b)(β2 + δ2)γ/2

(5.43)

This solution is similar to Eqs. 5.36 and 5.37 in [107] which are derived to obtain the

minimum SER.

• Case 2: We find the globally-optimum solution assuming the original constraints

defined for α, β and δ in (5.31). Similar to the AF system, we find the optimum

relative vertical distance δ∗ is zero (i.e. straight line between source and destination)

by solving ∂fDF

∂δ = 0. We can then substitute δ∗ into fDF(·), and by using its convexity,

the optimal α∗ and β∗ are then found by solving ∂fDF

∂α = 0 and ∂fDF

∂β = 0. The result

is the following two equations which are to be jointly solved numerically to obtain

β∗ and α∗ for all four values of b:

B(b)(1− β∗)γ−2(1 + β∗)−A(b)β∗γ−1 = 0 (5.44)

α∗ =
A(b)β∗γ−1

A(b)β∗γ−1 +B(b)(1− β∗)γ−1 (5.45)

We obtained optimal parameters for 4-QAM and 256-QAM as a function of the
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pathloss exponent γ, and the results are illustrated in Figure 5.7. The figure shows

that for the considered pathlosses, DF systems are more energy efficient when the

relay is moved towards the destination (i.e. β > 0.5), and when more power is

allocated to the source (i.e. α > 0.5). It is important to note that the major difference

between AF and DF systems according to the OLPAS scheme is that both α∗ and β∗

reduce as the spectral efficiency b increases in DF systems, while they remain same

in AF systems regardless of b.
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Figure 5.7: Optimal parameters α∗ and β∗ versus pathloss exponent γ that minimize the
total transmit energy of a DF system.

• Case 3: Here the relative relay location is constrained by β1 < β < β2 and δ1 <

δ < δ2. The optimal solutions of fDF(α, β, δ, b) can be determined by Karush-Kuhn-

Tucker (KKT) sufficient conditions [126]. It is summarized as follows:

– The optimal vertical distance is found as δ∗ = min|δ|. This results in minimiz-

ing the source–relay and relay–destination distances.

– The optimal horizontal distance β∗ is found using the unconstrained optimal
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solution β̄, which is numerically solved for using the following equation.

B(b)(1− β̄)(1− β̄)
γ/2−2{2(1− β̄)(β̄2 + δ∗2) + β̄((1− β̄)

2
+ δ∗2)}

−A(b)β̄2(β̄2 + δ∗2)
γ/2−1

= 0(5.46)

This equation was obtained by jointly solving ∂fDF

∂α = 0 and ∂fDF

∂β = 0.

– If β̄ lies within (β1 , β2), then the constrained optimal solution is assigned as

β∗ = β̄. Otherwise, β∗ is equal to closest of β1 or β2 to β̄.

– Finally, the optimal relative power allocation α∗, is calculated by solving ∂fDF

∂α =

0 using the previously determined β∗ and δ∗. The result is the following equa-

tion:

α∗ =
A(b)β∗(β∗2 + δ∗2)

γ/2−1

A(b)β∗(β∗2 + δ∗2)
γ/2−1

+B(b)(1− β∗)((1− β∗)2 + δ∗2)
γ/2−1

(5.47)

5.5.4 DF energy minimization as a function of b

As discussed in the previous subsection, we calculate four different optimal parameter

sets for the four values of b. We re-write (5.30) for a given b using location and power

optimized solutions as

EDF
total =

N0l
γ

L

√
1

Pe
fDF(α∗, β∗, δ∗, b) +

CDF
1
Rd

+
CDF

2
b

(5.48)

We now temporarily relax b and treat it as a continuous variable to make (5.48) a

differentiable function of b. Proving the convexity of EDF
total as a function of b > 0 is difficult

due to the square root in the first term and
√

fDF(α∗, β∗, δ∗, b) being a function of B(b) and

A(b) from (5.7) and (5.20), respectively. Furthermore, it is not sufficient to show that fDF()

is a convex function because
√
x is a concave function for x > 0. Numerical simulation

of
√

fDF(α∗, β∗, δ∗, b) was performed under Case 2’s parameter space and over the range

of pathloss exponents 2 < γ < 6 with a resolution of 0.01 on γ and b.8 Using the set of
8Under Case 3 and certain region constrictions on β and δ that are likely not practical, EDF

total is not a convex
function of continuous-valued b > 0. In this case, one can compute EDF

total for all possible b values and choose
the minimum-energy configuration directly.
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optimal parameters α∗, β∗ and δ∗ = 0 that resulted from a given b and γ, convexity was

verified as a function of b. Similar to the AF case, the remaining terms in (5.48) are convex

with respect to b, and therefore we can conclude that (5.37) is a convex function of b and

there exits an optimal spectral efficiency b∗p > 0 that minimizes energy consumption.

We now approximate
√

fDF(α∗, β∗, δ∗, b) in (5.48) using an exponential curve fitting

function of b as follows:

p4e
p5b + p6 ≈

√
fDF(α∗, β∗, δ∗, b) , (5.49)

where the parameters p4, p5 and p6 are calculated according to possible values of b.

This approximation simplifies the total energy consumption in (5.48) to

EDF
total ≈ N0l

γ

L
√
Pe

(p4e
p5b + p6) +

CDF
1
Rd

+
CDF

2
b

(5.50)

As in Section 5.3, we now use this approximation to create an analytically solvable

new optimization problem. By differentiating (5.50) with respect to be b and setting the

result equal to 0, we obtain the following expression.

b∗p
2ep5b

∗
p =

CDF
2 L

√
(Pe)

p4p5N0lγ
(5.51)

Rearranging this equation, the optimal solution that minimizes the approximation of

EDF
total in (5.50) is found to be

b∗p =

2W

(√
p5CDF

2 L(Pe)
0.5

4p4N0lγ

)
p5

, (5.52)

where W is the Lambert-W function. This continuous result is then mapped to the closest

available discrete spectral efficiency.

Assuming a pathloss exponent of γ = 3.5 and the Case 2 with unconstrained location,

we calculated the general curve fitting parameters as p4 = 0.133, p5 = 0.534 and p6 =

−0.029. Optimal relative power allocation parameter α∗ values were calculated to be
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0.86, 0.84, 0.83 and 0.83 for the four discrete spectral efficiencies 2, 4, 6 and 8, respectively.

The optimal relative location parameter β∗ values were calculated to be 0.72, 0.68, 0.67

and 0.66 for the same four values of b, respectively. We then use the mapping proposed in

(5.42) to allocate the optimum available spectral efficiency b∗ using b∗p. The curve fitting

function for this scenario is illustrated in Figure 5.8, and shows that our approximation in

(5.49) is very tight with the actual values of the function
√

fDF(α∗, β∗, δ∗, b). Using (5.49)

instead of
√

fDF(α∗, β∗, δ∗, b) will therefore yield indiscernible results as shown later in

this chapter.
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Figure 5.8: Curve fitting approximation of
√

fDF(α∗, β∗, δ∗, b) for DF relay transmission.

After finding b∗, the optimal total energy consumption can be calculated by (5.48)

using EDF
total(α

∗, β∗, δ∗, b∗).

5.6 Numerical Evaluation

We now use the above expressions to investigate the energy consumption of AF and DF

relay systems.
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5.6.1 Performance of OLPAS compared to other schemes

We first look at the energy gains achieved by the OLPAS scheme compared to two con-

ventional one-dimensional optimization approaches. The first is equal-energy allocation,

where both source and relay have the same power allocation (i.e. α = 0.5) and location is

optimized. The second is middle-location allocation, where the relay is located halfway

between the source and destination (i.e. β = 0.5 and δ = 0) and power allocation is

optimized. Figure 5.9 represents the effective output of fAF(α, β, 0) in the radio energy

consumption of OLPAS and these two resource allocation strategies for AF transmission

The figure shows that the OLPAS schemes saves energy compared to both other schemes
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Figure 5.9: Radio energy consumption for the OLPAS-AF scheme, equal-energy scheme,
and middle-location scheme versus pathloss γ.

for all pathloss considering. However, the gain achieved by our proposed scheme re-

duces when pathloss exponent is high. Another important note is that power optimiza-

tion appears to be more important than location optimization due to the middle-location

strategy being more efficient than the equal-energy strategy.
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Figure 5.11: Optimum spectral efficiency using exhaustive search, (5.41) and proposed
solution.

5.6.2 Performance of the proposed optimizing approach

In this section, we investigate the accuracy of our proposed optimization methodology

for AF systems using numerical evaluation. We compare the performance of our pro-
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posed approach with exhaustive search results of (5.37). We also investigate the energy

breakdown between the power amplifier transmission energy and circuit processing en-

ergy. Results for an AF system are presented in Figure 5.10 assuming a pathloss exponent

of 3.5 [117]. We do not present the results for DF systems as they show a similar pattern

as in AF. In this simulation, our approach using the approximation in (5.39) achieves the

optimal solutions from an exhaustive search, but with a lower complexity. It can also

be seen that the total energy increases exponentially with distance, which is expected.

The shapes of the curves in Figure 5.10 change at a few occasions due to a change in

modulation scheme as a function of distance (see Figure 5.11). The breakdown between

the power amplifier energy and circuit processing energy highlights the importance of

having a modulation-dependent energy model.

At short distances, the radio energy is small, and therefore the lowest circuit process-

ing energy is chosen by increasing the spectral efficiency to minimize the total energy.

As the distance increases and radio energy dominates the total energy, a higher portion

of the energy budget is allocated to radio energy. This results in a reduction in spectral

efficiency (b) in order to reduce the dominant energy component, and while this does

increase the circuit energy, the trade-off is beneficial as it reduces the radio energy by a

greater amount. This trend is more visible at distances above 80 m in Figure 5.10.

Figure 5.11 shows the optimal spectral efficiency as a function of distance. The con-

tinuous b solution of (5.41) is plotted along with the final solution of our approach and

the exhaustive search result. This figure also verifies that our algorithm produces the

optimal results in terms of energy efficiency.

At short distances 256-QAM provides the most energy efficient transmission, and as

the distance increases the optimal modulation order reduces. Specifically, the reduction

from to 64-QAM, to 16-QAM and to 4-QAM occur at the distances of 45 m, 73 m and 134

m, respectively.

5.6.3 Performance comparison of various transmission schemes

We now investigate energy efficiencies of three transmission systems: AF relaying, DF

relaying and direct transmission. We set a target average BER Pe = 10−4 with target
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data rate Rd = 1 Mbps, and assume a pathloss exponent of γ = 3.5. Receiver noise

spectral density of −174 dBm/Hz and receiver noise figure of 9 dB [104], and path-loss

propagation constant L0 = 10−3 [121] are assumed. The optimal parameters α∗ are β∗

are chosen according to the OLPAS schemes with δ = 0.

In order to compare the performance of cooperative-relayed transmission with direct

transmission under the same Rayleigh channel conditions, we derived an expression for

the power amplifier energy consumption EDir
tr to achieve a given BER of Pe. This is given

as follows:

EDir
tr =

1.4N0 (2
b − 1)

1/2
(2b/2 − 1)

2

√
3PeLl−γ b22b

[(
1 +

2

π

)
2b/2 +

(
1− 2

π

)]
, (5.53)

and a derivation is presented in Appendix 5.8.2. The circuit energy consumption of direct

transmission9 is found by adding the energy costs of components from the source and the

destination as follows:

EDir
c =

4CMixer + 2COscil + CLNA +W (2CBA + 2CADC + 2CDAC)

Rd
+

CTS + CFS + CPS

b

(5.54)

EDir
c =

CDir
1
Rd

+
CDir

2
b

, (5.55)

where the constants CDir
1 and CDir

2 are defined as,

CDir
1 =

4CMixer + 2COscil + CLNA

2
× 106 (5.56)

and

CDir
2 = 2 (1 + α)

(
2CBA + 2CADC + 2CDAC

)
× 106 +

(
CTS + CFS + CPS

)
× 10−3 . (5.57)

The constants CDir
1 and CDir

2 are calculated as 4.375× 106 and 3.45, respectively.

9The circuit energy model in Chapter 4 includes energy consumption of an equalizer, an encoder and a
decoder. However, since we do not consider these segments in our system, we ignore their energy costs.
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Figure 5.12: Total energy for AF, DF and direct transmission versus distance.

By adding (5.53) and (5.55), we find the total energy consumption for the direct trans-

mission as follows:

EDir
total =

1.4N0 (2
b − 1)

1/2
(2b/2 − 1)

2

√
3PeLl−γ b2 2b

[(
1 +

2

π

)
2b/2 +

(
1− 2

π

)]
+

CDir
1
Rd

+
CDir

2
b

(5.58)

The total energy consumption, including both circuit processing energy and power

amplifier energy is plotted as a function of transmission distance in Figure 5.12. Here we

considered all available M-QAM constellations and manually picked the most efficient

modulation scheme. The circuit energy required with AF and DF systems are approxi-

mately the same as both contain the same analog operations, which are energy-dominant

over digital processing operations. In direct transmission, the circuit energy cost is ap-

proximately half of the cost in relay systems. Therefore, for shorter distances (< 50 m)

direct transmission consumes less total energy than the two relay systems. DF relay sys-

tems consume slightly more energy than AF till about 62 m, where AF then starts con-

suming more energy at longer distances. The shape of the AF and DF curves changes

at several points due to the change in modulation scheme to optimize the total energy.

We also notice that the relaying energy consumption increases rapidly after 200 m, which
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hints that additional relays may possibly reduce the transmission energy at such longer

distances.
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Figure 5.13: Optimum spectral efficiency versus distance for AF, DF and direct transmis-
sion.

The spectral efficiency adapted by each of the three transmission schemes at vari-

ous distances is presented in Figure 5.13. Higher-order modulation is much more energy

efficient for shorter distances, while lower-order modulation suits longer range transmis-

sion. The optimal spectral efficiency for both AF and DF are nearly the same except for a

small gaps around around 75 m and 134 m. Analyzing both Figure 5.12 and Figure 5.13,

it can be seen that relaying with 256-QAM or 64-QAM may not be suitable as direction

transmission for distances below 50 m. Of course, such a result will vary with the chosen

target BER and data rate, but the main point is likely to remain valid: if higher modula-

tion order is possible for the given BER constraint, it is likely that a relay simply is not

required.

Figure 5.14 shows the energy percentage breakdown of the PA, other analog circuitry,

and digital segments for the optimal-energy configuration as a function of distance. We

can see that the optimal transmission scheme switches to relay from direct transmission
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Figure 5.14: Energy consumption percentage for optimal transmission.

at around 50 m when the PA power begins to increase more rapidly. Adding a relay at

this point reduces the total PA power, but it results in an increase to the remaining analog

and digital energies. However, when the relay strategy switches to AF and DF in the

considered distance, a significant percentage difference cannot be observed due to their

analog circuit energy consumption being same and digital energy of DF being slightly

higher. PA energy is considerably lower around distances 50-70 m. However, when the

optimal modulation changes from 6 to 4 to 2 at 75 m and 134 m, respectively, the PA

energy is reduced in DF relay transmission at the expense of analog and digital circuit

energy.

Figure 5.15 summarizes the energy efficiency investigation of cooperative-relayed

transmission and direct transmission by proposing the optimal selected scheme as a func-

tion of distance. For short distances of up to 50 m, direct transmission requires the least

energy, while cooperative relayed transmission is more energy efficient for longer dis-

tances. AF is slightly more efficient than DF at short distances up to 62 m, and more

efficient than direct transmission after 50 m. Specifically, it is DF transmission that is

chosen beyond 62 m due to its low PA energy requirement at long distance transmission.
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AF briefly becomes the most efficient scheme again at around 75 m when it shifts from

64-QAM to 16-QAM, thus reducing its PA energy. However, DF shifts to 16-QAM only

with only a few additional meters of distance, and becomes most energy efficiency from

that point and further distances.

5.7 Conclusions

We derived energy models for dual-hop (single-relay) cooperative systems in which lo-

cation of the relay is defined in a two-dimensional space. Using our energy models, we

showed that both AF and DF systems have an optimal location and optimal power al-

location which minimize the total energy consumption. In AF, the location and power

allocation can be optimized independently from the spectral efficiency, circuit processing

energy and other variables, such as BER and amplifier efficiency. We were able to opti-

mize the energy over spectral efficiency using some mathematical approximations. En-

ergy optimization in DF systems, however, is more complex because location and power

are not independent of spectral efficiency and some other variables. It therefore requires

evaluation over spectral efficiency through either an exhaustive search or a more efficient
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approximation method.

However, the decode–and–forward systems usually required a lower SNR at the re-

ceivers after combining and with a higher computational complexity. Therefore, the

processing energy–radio energy trade-off would be more visible in AF system versus

decode–and–forward system investigation and the results may include AF relays as an

optimal solution in Figure 5.15.

In our system, we assumed a Rayleigh faded (non–line–of–sight-LOS) channel model.

When the distance is short, LOS component could be available and the Rician channel

model could be adopted. In such cases a lower transmit power might be needed since

usually Rician channels have a dominant LOS component which improves the perfor-

mance at the same SNR for a Rayleigh channel. However, at short distances the total

energy is dominated by the circuit processing energy and therefore, assuming a Rician

channel may not change the overall results significantly.

Based on our analysis and numerical results, single-relay systems can have rapidly

increasing energy consumptions even at relatively short distances (e.g., beyond 200 m

in our simulation example). Therefore, we will next consider the energy efficiency of

multi-relay transmission and any cooperation and diversity trade-offs.

5.8 Appendix

5.8.1 Convexity of fAF(α, β, δ) with respect to α, β and δ

The function fAF is defined as,

fAF(α, β, δ) =
(β2 + δ2)

γ/2

α2
+

[(1− β)2 + δ2]
γ/2

α(1− α)
(5.59)

The partial derivative of fAF with respect to α is

∂fAF

∂α
=

−2(β2 + δ2)
γ/2

α3
− [(1− β)2 + δ2]

γ/2
(1− 2α)

α2(1− α)2
(5.60)
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The second order partial derivative of fAF with respect to α is then

∂2fAF

∂α2
=

6(β2 + δ2)
γ/2

α6
+

2[(1− β)2 + δ2]
γ/2

[(1− 2α)2 + α(1− α)]

α3(1− α)3
(5.61)

The value of ∂2fAF

∂α2 is always positive for the given parameter ranges.

The partial derivative of fAF with respect to β is

∂fAF

∂β
=

γβ(β2 + δ2)
γ/2−1

α2
− γ[(1− β)2 + δ2]

γ/2−1
(1− β)

α(1− α)
(5.62)

The second order partial derivative of fAF with respect to β is

∂2fAF

∂β2
=
γ(β2 + δ2)

γ/2−2
[δ2 + (γ − 1)β2]

α2
+
γ[(1− β)2 + δ2]

γ/2−2
[δ2 + (γ − 1)(1− β)2]

α(1− α)
(5.63)

The value of ∂2fAF

∂β2 is always positive for the given parameter ranges.

The partial derivative of fAF with respect to δ is

∂fAF

∂δ
=

γδ(β2 + δ2)
γ/2−1

α2
+

γδ[(1− β)2 + δ2]
γ/2−1

α(1− α)
(5.64)

The second order partial derivative of fAF with respect to δ is

∂2fAF

∂δ2
=
γ(β2 + δ2)

γ/2−2
[β2 + (γ − 1)δ2]

α2
+
γ[(1− β)2 + δ2]

γ/2−2
[(1− β)2 + (γ − 1)δ2]

α(1− α)
(5.65)

The ∂2fAF

∂δ2
is always positive for the given parameter regions 0 < α < 1, 0 < β < 1, and

−1 < δ < 1.

As the set of second derivatives in (5.61), (5.63) and (5.65) are positive, and numerical

solutions exist for the first derivatives that satisfy ∂fAF

∂α = 0, ∂fAF

∂β = 0, and ∂fAF

∂δ = 0 for

the given parameter regions, it can be concluded that fAF is a convex function of each

individual variable (α, β and δ).

fAF is a convex function of all three parameters if its Hessian matrix (∇2fAF) is positive

semi-definite [126] for all α, β and δ in the given parameter regions. The Hessian ∇2fAF
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is defined as [126],

∇2fAF =



∂2fAF

∂α2
∂2fAF

∂α∂β
∂2fAF

∂α∂δ

∂2fAF

∂β∂α
∂2fAF

∂β2
∂2fAF

∂β∂δ

∂2fAF

∂δ∂α
∂2fAF

∂δ∂β
∂2fAF

∂δ2


(5.66)

Since it is difficult to show that ∇2fAF is positive semi-definite by using a general an-

alytical framework, we instead use numerical simulations to verify convexity up to a

resolution of 0.01 for the parameters α, β and δ in their defined ranges and the pathloss

exponent in the range (2 < γ < 6). We observed that ∇2fAF was positive semi-definite in

all cases.

Similar simulations were used to verify the convexity of fDF(α, β, δ, b) up to the same

0.01 resolution and for all available spectral efficiencies b.

5.8.2 Transmit Energy per bit for direct transmission

The symbol error rate for Rayleigh faded single link is derived by Simon et al. [128] and

given as

Ps =
4K1

π

∫ π/2

0

1

1 + K2

sin2 θ
ERx
N0

dθ − 4K1
2

π

∫ π/4

0

1

1 + K2

sin2 θ
ERx
N0

dθ , (5.67)

where ERx
N0

is the received SNR per bit and the modulation-dependent constants are de-

fined as K1 = 1 − 2−b/2 and K2 = 1.5b
2b−1

. Assuming the system operates in a high SNR

region, we introduce the following approximation:

1 +
K2

sin2 θ

ERx

N0
≈ K2

sin2 θ

ERx

N0
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This allows the for the simplification of (5.67) to

Ps =
4K1N0

πK2ERx

∫ π/2

0
sin2 θdθ − 4K1

2N0

πK2ERx

∫ π/4

0
sin2 θdθ (5.68)

Evaluating these integrals results in

Ps =
N0 (2

b − 1)(2b/2 − 1)

3ERx b 2b

[(
1 +

2

π

)
2b/2 +

(
1− 2

π

)]
(5.69)

Using (5.69) and by substituting the power amplifier energy-consumption-based expres-

sion from (5.5) for ERx, we obtain the following BER expression for direct transmission:

Pe =
1.4N0

√
(2b/2 − 1)

5
(2b/2 + 1)

√
3EDir

tr Ll−γ b2 2b

[(
1 +

2

π

)
2b/2 +

(
1− 2

π

)]
, (5.70)

where EDir
tr is the power amplifier energy consumption in direct transmission. Rearrang-

ing terms in the equation results in

EDir
tr =

1.4N0 (2
b − 1)

1/2
(2b/2 − 1)

2

√
3PeLl−γ b2 2b

[(
1 +

2

π

)
2b/2 +

(
1− 2

π

)]
(5.71)





Chapter 6

Energy Modeling and Optimization of
Dual-Relay Systems

In this chapter, we present an energy model for a cooperative dual-relay system using detect-and-

forward (DF) protocol with receiver diversity. Energy consumption is based on models of both analog

and digital components for transmission and reception. A quartic transmit power amplifier (PA) en-

ergy equation is derived that is a function of the following parameters: relay location, relative transmit

power allocation amongst the relays, spectral efficiency, transmission distance, pathloss, and target

bit-error rate (BER). The energies of the remaining circuit components are added to form a multi-relay

DF system energy equation, which is then numerically evaluated to minimize total energy by finding

the optimal relay locations, relay transmit PA power allocations, and spectral efficiency. Results are

compared to our previous work in Chapter 5 that considered the energy of direct transmission and a

single-relay system, and the minimum-energy system as a function of source-destination distance is

considered.

6.1 Introduction

THe previous chapter showed that single cooperative relay can be used to reduce

energy consumption of wireless transmission. Specifically, the detect-and-forward

(DF) protocol showed higher energy efficiency compared to the amplify-and-forward

(AF) protocol. In this chapter, we observe that further energy savings can be achieved

by a dual-relay system. Previous results show that for longer distances, total energy is

dominated by transmission energy, and therefore, this energy consumption should be

more focused on such scenarios. This has been recognized in the research literature, as

more relays are proposed to reduce the power consumption of wireless transmission in

165
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[106, 107, 117].

There are various strategies used in multi-hop relaying systems to increase the per-

formance in terms of error rate and capacity. Several studies have focused on AF relays

that utilize the multi-link diversity [106, 129, 130], but when the signals are combined at

the destination, the final SNR produces a complex expression of channel gains, which

results in underivable error rate and outage probability expressions. Most of the work

related to AF multi-hop systems, therefore, ignore the optimization of the power alloca-

tion and relay locations; however, some research has focused on single-link diversity at

the receiver end [131] and contributes simpler analytical expressions that can be used to

optimize power allocation [110]. In general, however, AF relays are not used when the

number of hops is large, as more noise is amplified with each additional link.

DF is more popular in multi-hop transmission, especially when the number of hops

is large [106, 117]. The energy efficiency of multi-hop DF relay systems was analyzed

for fixed-circuit power consumption and outage probability constraints in [118]. Liu et

al. [107] discussed symbol-error rate (SER) performance and energy efficiency aspects of

multi-hop relays without considering location or power allocation. A detailed investiga-

tion of multi-hop systems’ energy consumption is shown in Waqar et al. [117], but only

single-link diversity is assumed.

With the exception of a limited study in Liu et al. [107]1, and to the best of our knowl-

edge, system parameters such as relay locations and power allocations have not been

jointly optimized for multi-hop systems when full diversity is utilized. We address this

issue by focusing on a two-relay system and using numerical analysis to find optimal

energy configurations.

We use the circuit energy models presented in Chapter 5 to analyze and optimize

the system energy consumption and compare with single-hop (direct transmission) and

two-hop (single-relay) systems. We compare energy consumption by modifying such

variables like target BER, spectral efficiency and the environment’s pathloss exponent.

The rest of the chapter is organized as follows; Section 6.2 presents the four-node sys-

tem model and description of our energy model. The locations and power allocations

1Liu et al. studied the best locations and power allocations assuming static circuit energy consumption
to minimize SER by considering a few example scenarios.
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are optimized in Section 6.3 to minimize energy consumption. Section 6.4 uses numer-

ical simulations to analyze energy consumption for scenarios where either throughput

or bandwidth are constrained. Finally, implications of our results and future work are

discussed in Section 6.5.

6.2 System Model and Energy Model

Our system is comprised of two relays (R1 and R2) placed on a straight line between

the source (S) and the destination (D) as shown in Figure 6.1. We define the distances

between the node i and j as di, j . In order to locate the relative positions independent of

the actual distances, we can also model all distances in comparison with dS,D as follows:

First, we define dS,D = l as the distance between source and destination, along with the

β1 and β2 as the normalized distances (by l) between source and relay 1 and source and

relay 2. This allows us to express the distance between all nodes as follows:

dS,D = l , dS,R1 = β1l , dS,R2 = β2l , dR1, R2 = (β2 − β1)l ,

dR1, D = (1− β1)l , dR2, D = (1− β2)l ,

where 0 < β1, β2 < 1.

Figure 6.1: Block diagram of the cooperative two-relay multi-hop system.

We use the following system assumptions in our analysis:

• The system time-shares resources between relay links using three time instances

for each transmission: first, between the source and the relays/destination; second,

between the relay 1 and the relay 2/destination; and third, between the relay 2 and
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the destination. In each transmission time slot, a data rate of three times the average

system throughput is required in order to achieve the same throughput as a direct

transmission system.

• Selective relaying only occurs when a DF relay detects bits perfectly to simplify the

forthcoming analysis.

• All transmission links are modelled as flat-fading channels with mutually indepen-

dent coefficients that follow the Rayleigh distribution and remain constant for the

duration of a symbol.

• Channel state information is available at each receiver and the environment is interference-

free.

• We only consider square-QAM modulation, and we use exact BER expressions in

our analysis. In this chapter, we define the spectral efficiency b as the number of

bits per square-QAM symbol, while the standard definition of spectral efficiency is

the ratio of equivalent bit rate to RF bandwidth - measured in bits/sec/Hz, forth-

coming results are more easily viewed in terms of bits/symbol. As the standard

spectral efficiency is proportional to b when the excess bandwidth of the Nyquist

pulse shaping filter is fixed, it is easier to see spectral efficiency through b [45].

We consider four modulation schemes 4-QAM. 16-QAM, 64-QAM and 256-QAM

which give 2, 4, 6 and 8 values for b.

• System transmit data rates are in the range of 0.5–5 Mbps.

• Perfect receiver synchronization is assumed at all relays and the destination.

• Relay 2 and the destination use maximal-ratio combining on the signals received

from the relay(s) and source.

We denote Rd as the average required throughput of two-relay system. Therefore,

in one time instance the system needs to transmit 3Rd. Assuming a transmit Nyquist

pulse with excess bandwidth ϵ, we define the transmission radio bandwidth used in this
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system as 3W . The bandwidth and rate are related as

Rd =
W

2(1 + ϵ)
b (6.1)

A block diagrams of our proposed transmitter in the source/relays is presented in

Figure 6.2. The information is first modulated and sends through a pulse shaping filter

prior to converting to an an analog signal using a digital-to-analog converter (DAC). This

signal is then modulated onto a transmit carrier frequency and amplified using the power

amplifier (PA) before transmission using a single antenna.

Figure 6.2: Block diagram of a DF relay transmitter end.

The received signal at the relays/destination undergoes the functions presented in

Figure 6.3. The received signal is first filtered using a band-pass filter and then amplified

using a low-noise amplifier (LNA). The filter output is then down-converted to baseband

and re-amplified using a baseband amplifier prior to the sampling process. An analog-to-

digital converter (ADC) is used to sample the analog signal and is followed by a timing

recovery unit which maximizes the SNR of the received signal. The sampled signal is

fed through frequency recovery and phase recovery units prior to detection in order to

remove the constellation rotations due to carrier frequency and phase offsets.

Due to the complexity of the forthcoming analysis, we separate the energy modelling

of the power amplifiers and the remainder of the analog and digital circuitry.
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Figure 6.3: Block diagram of a DF relay receiver end.

6.2.1 Total Power Amplifier Energy Model

We first define the average received SNR per bit at node j from the transmitted signal by

node i is written as

Γi, j =
ERx

N0
=

EiLd
−γ
i, j

N0ξ
, (6.2)

where ERx is the average received energy per bit,2 Ei is the transmitter power amplifier

(PA) energy consumption per bit for node i, di, j is the distance between nodes i and

j, γ is the pathloss exponent, and ξ is the peak-to-average power ratio defined as ξ =

1.4
√

3(2b/2−1)

2b/2+1
for QAM modulated sinusoidal carriers [34]. L = L0η is a propagation

constant, where L0 is a constant in the pathloss model [121] and η is the PA efficiency.

N0 represents the receiver noise spectral density multiplied into the receiver noise figure

(RNF).

The average SER for a single link between transmitter node i and receiver node j with

an average SNR per bit Γi,j over Rayleigh distributed channel gains is given by [132] as

PS = F

(
1 +

AΓi,j

sin2 θ

)
, (6.3)

2ERx can found using the transmitter output energy ETx as ERx = ETxLl
−γ [121]. The transmit power

amplifier energy consumption per bit Ei can be found as Ei = ξETx.
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where F (x(θ)) is defined as

F (x(θ)) =
4K

π

∫ π/2

0

1

x(θ)
dθ − 4K2

π

∫ π/4

0

1

x(θ)
dθ ,

and b is the spectral efficiency defined as the number of bits per transmitted QAM sym-

bol, and the modulation dependent constants A and K are defined as

A = 1.5b/(2b − 1) and K = 1− 2−b/2 , (6.4)

respectively.

For n received signals using maximal-ratio combining, the average SER can be written

as follows [107]:

PS = F

((
1 +

AΓi1,j1

sin2 θ

)
·
(
1 +

AΓi2,j2

sin2 θ

)
· . . . ·

(
1 +

AΓin,jn

sin2 θ

))
(6.5)

The final SER at the destination’s detector can be derived using the conditional prob-

ability of error detection at the relays. There are four possible scenarios to consider:

1. Both relay 1 and relay 2 detect incorrectly. The average SNR at relay 1, relay 2 and

destination result only from the signal coming from the source.

2. Relay 1 detects incorrectly, while relay 2 detects correctly. The average SNRs at relay

1 and relay 2 result only from the source, while the average SNR at the destination

results from the signals coming from both the source and relay 2.

3. Relay 1 detects correctly, while relay 2 detects incorrectly. The average SNR at relay

1 results from the source signal, while the average SNRs at relay 2 and the destina-

tion result from the signals coming from both the source and relay 1.

4. Both relay 1 and relay 2 detect correctly. The average SNR at relay 1 results from

the source signal, the average SNR at relay 2 results from both the source and relay

1 signals, and the average SNR at the destination is the result of the signals from

the source and both the relays.
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Using the above four cases, we mathematically represent the SER as follows:

PS = PR1(ΓS, R1) PR2(ΓS, R2) PD(ΓS, D)

+PR1(ΓS, R1) (1− PR2(ΓS, R2)) PD(ΓS, D + ΓR2, D)

+ (1− PR1(ΓS, R1)) PR2(ΓS, R2 + ΓR1, R2) PD(ΓS, D + ΓR1, D)

+ (1− PR1(ΓS, R1)) (1− PR2(ΓS, R2 + ΓR1, R2)) PD(ΓS, D + ΓR1, D + ΓR2, D) , (6.6)

where Pj(Γi, j) represents the symbol error probability at node j when the signal is re-

ceived from node i.

We now consider a high-SNR approximation to simplify the SER expression so that

we can utilize it in our system energy optimization3. We start with the following approx-

imation that is valid at high SNRs:

1 +
AΓi,j

sin2 θ
≈ AΓi,j

sin2 θ

This can be used to simplify (6.5) to

PS = F

(
AnΓi1,j1Γi2,j2 ...Γin,jn

sin2n θ

)
(6.7)

Using the high-SNR approximation (1− Pi(j)) ≈ 1 along with (6.2) and (6.7), we can

simplify (6.6) to

PS =
N3

0d
γ
S, R1d

γ
S, R2d

γ
S, DX

3
1

L3B3E3
S

+
N3

0d
γ
S, R1d

γ
R2, Dd

γ
S, DX1X2

L3B3E2
S ER2

+
N4

0d
γ
S, R2d

γ
R1, R2d

γ
S, Dd

γ
R1, DX

2
2

L4B4E2
S E

2
R1

+
N3

0d
γ
S, Dd

γ
R1, Dd

γ
R2, DX3

L3B3ESER1ER2
, (6.8)

where the modulation-dependent constants are defined as Xn = F (sin−2n θ) for n =

{1, 2, 3}, and the modulation dependent constant B is defined as A/ξ. We denote E to be

the total PA energy consumption (per bit) from the source and two relays, and use α1 and

α2 to represent the relative power allocation to the first and second relays, respectively.

3The approximation of high SNR holds for low BER values such as 10−4, but may not valid for higher
BER values as higher BER can be achieved in low SNR.
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We can write the energy allocation for the source and two relays as

ES = (1− α1 − α2)E , ER1 = α1E , ER2 = α2E , (6.9)

where the parameters are constrained by 0 < α1, α2 < 1 and 0 < α1 + α2 < 1.

By substituting these radio energies and the link distances into (6.8), we obtain the

following expression:

PS =
N3

0l
3γ

L3B3E3

{
X3

1β
γ

1β
γ

2

(1− α1 − α2)
3 +

X1X2β
γ

1(1− β2)
γ

(1− α1 − α2)
2α2

+
N0 l

γX2
2β

γ

2(β2 − β1)
γ(1− β1)

γ

LBE(1− α1 − α2)
2α2

1

+
X3(1− β1)

γ(1− β2)
γ

(1− α1 − α2)α1α2

}
(6.10)

Assuming the BER is equal to SER divided by the number of bits per symbol4 (i.e.

Pe = Ps/b), and by interchanging the variables in (6.10), we obtain the following quartic

equation of total PA energy E.

E4 − N3
0l

3γ

L3B3Peb

{
X3

1β
γ

1β
γ

2

(1− α1 − α2)
3 +

X1X2β
γ

1(1− β2)
γ

(1− α1 − α2)
2α2

+
X3(1− β1)

γ(1− β2)
γ

(1− α1 − α2)α1α2

}
E

− N4
0l

4γX2
2β

γ

2(β2 − β1)
γ(1− β1)

γ

L4B4Peb(1− α1 − α2)
2α2

1

= 0 (6.11)

In analyzing this result, we observe that the first coefficient of the equation is positive,

while the second and third coefficients are negative. By applying Descartes’ rule of signs

[133] on (6.11), we identify that only one positive real root exists for transmit energy E.

This root can be found using basic quartic equation solving approaches as presented in

PlanetMath online article [134].

The solution for the total PA transmit energy E is too complex to present analytically;

therefore, we represent this energy in a general form as follows:

E =
N0l

γ

LB
f(b, γ, Pe, α1, α2, β1, β2) , (6.12)

4When Gray-coded symbol mapping is used at high-SNRs, it can be assumed that the bit errors occur
only via an incorrect detection at a neighboring adjacent symbol.
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where the function f(b, γ, Pe, α1, α2, β1, β2) is defined using system variables b, γ, Pe, and

relay parameters such as power allocation (α1 and α2) and relay locations (β1 and β2).

6.2.2 Circuit Energy Model

Focusing on the circuit energy consumption, we need to model the energy of all compo-

nents and understand when they are operating. The receiver in the first relay operates

only during the first time slot, while the receiver of the second relay operates in both the

first and second time slots. The destination receives the signal from source and two relays

over all three time slots. Transmission from the source, first relay and the second relay

occur at the first, second and third time slots, respectively. The previous statement on

relay transmission is only true when the selective-relaying conditions are satisfied. We

assume this is always true to simplify the energy modelling, and note that due to our

high SNR assumption, the probability of a relay not transmitting will be very low.

The circuit energy models of the remaining active components in a wireless transceiver

were developed in the Chapter 4 and 5. A summary of these energy models is presented

in Table 6.15. We denote PX and EX to be component X’s power and energy consump-

tions per information bit, respectively.

According to the system model presented in Figures 6.2 and 6.3 and the models in

Chapter 5, we write the circuit energy consumption per information bit of nth relay by

summing the energy from each component as follows:

E
Relay-n
c =

(2 + 2n)PMixer + (1 + n)POscil + nPLNA + 2nPBA + 2nPADC + 2PDAC

3Rd

+n(ETS + EFS + EPS) (6.13)

=
(2 + 2n)CMixer + (1 + n)COscil + nCLNA + 3W (2nCBA + 2nCADC + 2CDAC)

3Rd
,

+
n(CTS + CFS + CPS)

b
(6.14)

5The digital pulse-shaping and receiver matched filters are neglected in our energy model. Both filters
have less computations than other digital blocks, especially when exploiting the symmetry of the raised-root
cosine filters.
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Table 6.1: Power and energy models for wireless transceivers (from Section 5.3).

Component Power / energy model Parameter values

Mixer PMixer = CMixer CMixer = 1.25 mW

Oscillator POscil = COscil COscil = 1.25 mW

Low Noise Amplifier PLNA = CLNA CLNA = 1.25 mW

Digital-to-Analog Converter PDAC = CDACW
6 CDAC = 0.25 mW/MHz

Analog-to-Digital Converter PADC = CADCW
6 CADC = 0.23 mW/MHz

Baseband Amplifier PBA = CBAW CBA = 0.125 mW/MHz

Timing Synchronizer ETS = CTS
b CTS = 0.235 nJ

Frequency Synchronizer EFS = CFS
b CFS = 0.053 nJ

Phase Synchronizer EPS = CPS
b CPS = 0.099 nJ

where the integer in front of PX and EX terms represents the number of such components

in the relay.

The source performs functions only as a transmitter with circuit energy as derived in

Eq. (5.12) in Chapter 5

EMR
c, S =

2CMixer + COscil + 3W × 2CDAC

3Rd
(6.15)

The destination performs the function of a receiver, but consumes three time the en-

ergy of a single receiver as it needs to process the received signals at three instances; the

source and two relays. Its energy consumption is written by adding the energy costs of

6We assumed fixed DAC and ADC resolutions of 5 and 7 bits, respectively. These values are irrespective
of the modulation scheme in order to make EDAC and EADC simpler linear models.
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the individual components as

EMR
c, D =

6CMixer + 3COscil + 3CLNA + 3W (6CBA + 6CADC)

3Rd
+

3CTS + 3CFS + 3CPS

b
(6.16)

The total circuit energy consumption of the complete system can then be written by

adding the components from the source (6.15), destination (6.16) and two relays (adding

(6.13) for both n =1 and 2) as follows

EMR
c =

18CMixer + 9COscil + 6CLNA + 3W (12CBA + 12CADC + 6CDAC)

3Rd

+
6(CTS + CFS + CPS)

b
(6.17)

We can simplify the above equation by grouping terms, the resulting circuit energy

per bit model is

EMR
c =

CMR
1
Rd

+
CMR

2
b

, (6.18)

where the constants CMR
1 and CMR

2 are defined as,

CMR
1 =

(
6CMixer + 3COscil + 2CLNA

)
× 106 (6.19)

and

CMR
2 = 2 (1 + α)

(
12CBA + 12CADC + 6CDAC

)
× 106 +

(
6CTS + 6CFS + 6CPS

)
× 10−3 .(6.20)

The constants CMR
1 and CMR

2 are calculated as 13.75×106 and 7.21 using the numerical

constants from Table 6.1 into this equation, and assuming ϵ = 0.25.

The total energy consumption of the dual-relay system can now be written using

(6.12) and (6.18) as follows:

EMR
total =

N0l
γ

LB
f(b, γ, Pe, α1, α2, β1, β2) +

CMR
1
Rd

+
CMR

2
b

(6.21)
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6.3 Relay location and power allocation optimization for dual-
relay systems

In this section, we investigate the optimal power allocation and relay locations to mini-

mize the required transmit energy. We present numerical results to benchmark our pro-

posed approach against conventional equal-power and equidistant-location approaches.

We use a numerical search to optimize the power allocation and relay locations be-

cause the function f(b, γ, Pe, α1, α2, β1, β2) in (6.12) is too complex to minimize analyti-

cally. We therefore simulate over all the possible values of α1, α2, β1 and β2 and obtain

the optimal values for a range of pathloss exponents, BER and spectral efficiency. Our

simulations considered the power allocation and relative location to a resolution of 1%

(i.e. 0.01 relative to 1).

Figure 6.4 presents the optimal location and power allocation parameters as a function

of pathloss exponent for 4-QAM modulation and a target BER of 10−4. It can be observed

that the source requires the most power (i.e. α0 in the range of 0.69 – 0.89) while the

second relay requires a small power (i.e. α2 between 0.01 to 0.11) for the given pathloss

region of interest. As the pathloss coefficient increases, power allocation to the relays

increases, while the source power allocation decreases. This is due to the fact that the the

received SNR difference between the relays and destination increases when the pathloss

increases. In other words, the relays are able to detect data more accurately than the

destination, and therefore, the relaying signals are more relied upon in high attenuating

environments. Hence more power is allocated to the relays with increasing pathloss.

In terms of the optimal relay locations, the first relay is situated near the middle with a

relative distance β1 in the range of 0.41–0.72, while the second relay is located quite close

to the destination (i.e. β2 in the range of 0.76–0.99). Note that an equidistant location

strategy is not optimal, and as the pathloss coefficient increases, both relays are shifted

towards the source for optimal energy efficiency. This is due to the same issue discussed

above, where the relays are able to detect data more accurately than the destination when

the pathloss exponent is increased. In addition, as more power is allocated to the relays,

less power is allocated to the source and therefore, the relays need to be moved closer to
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Figure 6.4: Optimal power allocation and location parameters versus pathloss exponent
(Pe = 10−4 and 4-QAM modulation).

source to acquire a signal with a better SNR.

Figure 6.5 shows the value of the jointly-optimized function f(b, γ, Pe, α
∗
1, α

∗
2, β

∗
1 , β

∗
2)

compared with the function’s values for equal-power allocation (α0 = α1 = α2 = 1/3)

and equidistant-located relays (β1 = 1/3, β2 = 2/3). It can be clearly seen that the joint

optimization always reduces the transmit energy consumption by a factor of 3 or more

compared to the equal-power equidistant-relay case.

Figure 6.6 shows the behavior of the optimal system parameters as a function of QAM

modulation order for a pathloss exponent of 3.5 and a 10−4 target BER. The optimal

power allocation to the source reduces slightly from 0.76 to 0.71 as the spectral efficiency

increases from 2 to 8 bits/symbol. On the other hand, the power allocations of the second

relay rises slightly with spectral efficiency while the power allocation of the first relays

fluctuates within a limited region. The optimal location of the first relay is closer to the

source, but the second relay is always very close to the destination. As the spectral ef-

ficiency increases the relays’ optimal locations are slightly shifted towards the source.
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The most interesting observation is that all power allocations and location parameters lie

within a narrow range for all spectral efficiencies. For high spectral efficiencies such as

256, the last term in (6.11) with a factor of B−4 becomes more dominant over the second

term (coefficient of E) with a factor of B−3 (B is inversely proportional with b). This

influences the optimality of relay locations and power allocations.

Figure 6.7 shows the optimal location and power allocation parameters as a function

of target BER, where 4-QAM modulation is used along with a pathloss exponent of 3.5.

Due to the high SNR approximations used in the preceding analysis, our expressions

are only valid for small BER values. As such, we considered a BER range of 10−8 to

10−3 in our simulations. Results show that as BER increases, the source’s and second-

relay’s power allocation increases, while the first relay power allocation decreases. In

terms of location, the first relay moves toward the destination with increasing BER, while

the second relay moves toward the source. Clearly, BER has a significant impact on the

optimal parameter allocation.
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Figure 6.7: Optimal power allocation and location parameters versus target BER (4-QAM
and γ = 3.5).
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6.4 Energy minimization of fixed–throughput and fixed–bandwidth
2-relay systems

We now investigate the total energy consumption of the system from two perspectives.

First, the system has a fixed-throughput, and bandwidth can be varied according to

the selected modulation scheme. In the second approach, we fix bandwidth and allow

throughput to change. From a practical perspective, adapting the data rate instead of the

bandwidth is a more feasible approach, as bandwidth may be a scarce resource.

Note that the transmit energy consumption per bit (6.12) is independent of total

throughput for a fixed modulation7. Therefore, transmit energy in (6.12) depends on

the spectral efficiency (via b), and the circuit energy consumption in (6.18) depends on

both the spectral efficiency (via b) and throughput.

In the fixed–throughput approach, the first term in the circuit energy model in (6.18)

remains the same for a given modulation scheme, while in the fixed–bandwidth ap-

proach, the same term changes according to the throughput. However, in the second

scenario, the terms in (6.18) change as bandwidth is fixed and the data rate is changed

according to the spectral efficiency. We have assumed receiver noise spectral density

of -174 dBm/Hz and receiver noise figure of 9 dB [104], path-loss propagation constant

L0 = 10−3 [121], and η = 0.5.

6.4.1 Fixed-Throughput Case

We set a target data rate of 1 Mbps, pathloss exponent γ = 3.5, a target average BER

of 10−4, and evaluate energy and required bandwidth as a function of distance l. Op-

timal relay locations and power allocations are obtained via a numerical search to op-

timize (6.12) for all b ∈ {2, 4, 6, 8}, followed by finding the optimal b∗ and associated

(α∗
1, α

∗
2, β

∗
1 , β

∗
2) that minimizes the energy consumption per bit for a given distance l. The

minimal energy consumption of single relay system (5.30) and direct transmission sys-

tem (5.58) are also obtained as in Chapter 5. Figure 6.8 illustrates the minimal total energy

consumption of three systems as a function of distance.

7We consider energy per bit, which is obtained by total power consumption divided by the throughput.
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Figure 6.8: Optimized total energy consumption vs distance (Pe = 10−4, Rd = 1 Mbps and
γ = 3.5).

These results are essentially an extension of those in Figure 5.15 in Chapter 5 for a

two-relay system. At short distances, direct transmission is the most efficient system, but

its energy quickly increases beyond 50 m due to the PA needing to overcome the distance-

dependent pathloss. The single-relay system then becomes the more efficient system at

this distance, and remains so until the exponentially-increasing pathloss requires more

radiated energy from its PAs. The exponential increase of the single-relay system is not

as fast as direct transmission due to diversity combining enabling lower PA energy con-

sumption. As a result, the system switch point at 225 m from single- to dual-relaying is

far more than the 50 m switch point from direct to single-relay transmission.

The optimal spectral efficiency for the three systems is plotted as a function of distance

in Figure 6.9. The basic pattern of adopting higher-order modulation schemes at low

distances and lower-order modulation schemes at longer distances is reflected in this

graph. It is important to note that the two-relay system utilizes higher-order modulation

at longer distances than the other systems. The main reason for this behavior is that the

second term in (6.18) reduces with high spectral efficiency and the circuit energy is more
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Figure 6.9: Optimal spectral efficiency vs distance (Pe = 10−4, Rd = 1 Mbps and γ = 3.5).

dominant in multi-relay systems at short distances.

Figure 6.10 shows the minimal-energy bandwidth required for the 1 Mbps through-

put as a function of distance. Up until 50 m, direct transmission’s b∗ decreases from 8

to 6 to 4 to 2 bits/symbol, and the corresponding bandwidth increases at each transition.

Single-relay systems require twice the bandwidth of direct transmission due to using two

time slots, but the bandwidth decreases from 1.25 MHz to 0.833 MHz at 50 m when sin-

gle relaying becomes optimal. The reason here is that b∗ increases to 6 bits/symbol at

this switch point, and later decreases to 4 and 2 bits/symbol at approximately 75 m and

135m, respectively. The same pattern can be observed at the switching point of single- to

dual-relay transmission at about 200 m where b∗ increases to 4 bits/symbol and results

in a lower bandwidth compared to the single-relay case. Further away, b∗ decreases to

2 bits/symbol at approximately 260 m and 100% more bandwidth is needed to support

the same throughput using a dual-relay system. These results typify the standard pattern

of adopting higher-order modulation at shorter distances and lower-order modulation at

distance increases.
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Figure 6.10: Optimal bandwidth vs distance (Pe = 10−4, Rd = 1 Mbps and γ = 3.5).
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Figure 6.11: Optimal minimal-energy bandwidth vs distance (Pe = 10−4, Rd = 1 Mbps
and γ = 3.5).

Figure 6.11 shows the energy percentage breakdown of the PA, other analog circuitry,

and digital components for the minimal-energy configuration as a function of distance.
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We can see that the relay switch points at 50 m and 225 m occur when the PA power

begins to increase more rapidly. While adding a relay at these distances reduces the

total PA power, it causes an increase to the remaining analog and digital circuit energies.

The other peaks in PA energy curve occur when modulation is lowered within the same

transmission system at the expense of analog and digital circuit energy.
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Figure 6.12: Optimal transmission scheme vs distance (Pe = 10−4, Rd = 1 Mbps and γ =
3.5).

Figure 6.12 summarizes the results of the optimal transmission scheme versus dis-

tance for an average throughput of 1 Mbps and BER of 10−4. This result clearly demon-

strates the use of distributing energy to intermediate nodes and using diversity in order

to reduce the transmit energy at the expense of additional circuit processing energy.

6.4.2 Fixed–Bandwidth case

Figure 6.13 shows total energy consumption as a function of distance for three systems

with a fixed 2.5 MHz bandwidth and a variable throughput Rd. The second terms in

(6.18)–(5.30) now increase as Rd decreases, allowing b to decrease more slowly with dis-
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Figure 6.13: Optimized total energy consumption vs distance (Pe = 10−4, W = 2.5 MHz
and γ = 3.5).

tance than the fixed-throughput case. At short distances, direct transmission is most

efficient system as expected. This is similar to Figure 6.8, but the energy consumption of

the single-relay and dual-relay systems are slightly closer to each other over a short range

of distance (100 m to 160 m). Dual relaying is most efficient from 150 m as its transmit

energy is reduced by having 3 hops.

The minimal-energy throughput versus distance is illustrated in Figure 6.14 for the

three transmission strategies. As expected, higher throughputs are more efficient at short

distances due to lower pathloss allowing for higher receiver SNRs and spectral efficiency.

At longer distances, however, a stronger pathloss results in lower received SNRs being

more energy efficient, resulting in a decreased spectral efficiency and lower throughput

for a fixed bandwidth. This reasoning and a similar result is also seen in Figure 6.9, where

the optimal spectral efficiency is plotted as a function of distance for the throughput-

constrained scenario.

Figure 6.15 shows the optimal transmission strategy versus distance for the same

bandwidth-constrained system as above and summarizes the results of this Section. It can
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Figure 6.14: Optimal data rate vs distance (Pe = 10−4, W = 2.5 MHz and γ = 3.5).
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be concluded that relayed transmission provides an energy efficient solution for long dis-

tance communication when a target throughput is not a primary concern. The transmit-
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circuit energy trade-off of single-relay and two-relay systems is also noticeable as their

energy consumptions are different when compared with the throughput-constrained re-

sults in Figure 6.12.

6.5 Conclusions

In this chapter, we developed an energy model for dual-relay DF transmission system

and evaluated its energy consumption in comparison to direct and single-relay DF trans-

mission. Due to the high-complexity relationship between total transmit energy and the

relay locations and their power allocations, it required numerical evaluation to optimize

the dual-relay parameters. As expected, the use of additional relays helps reduce the total

system energy consumption as distance increases in order to overcome the exponential

pathloss.

Results indicate that when full diversity is utilized at the relays and destination, more

power should be allocated to the initial nodes as that signal will be utilized by the relay

node(s) that follows. When moving from the source towards the destination, the dis-

tances between the neighboring nodes gets reduced, e.g., the distance between the source

and first relay is the longest and the distance between the second relay and destination

is the shortest. Both equal power allocation amongst the transmitters and equidistant

spacing of the relays is clearly suboptimal from an energy-efficiency perspective.

Going beyond our work, finding the transmit energy of a three-relay system is much

more complex than a two-relay system as it results in a sextic equation8 (The quadratic

equation (6.11) becomes a sextic equation). Due to this complexity, we have not investi-

gated this system or beyond three relays. However, our conclusions regarding the power

allocation and relay positioning likely remain valid for multi-hop systems with larger

number of relays and full diversity.

Our results on fixed-throughput and fixed-bandwidth systems reveal the importance

of using multiple hops to reduce the energy consumption. Previously, relays were mostly

used to achieve diversity and increase performance by reducing the BER [105, 106, 130,

8A sextic equation is a polynomial equation of degree six.
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131].

The proposed framework could be applied to future IoT networks where energy

might be the most significant concern and high, but bursty throughputs may be required.

Optimizing the relay-network configuration can help maximize battery and/or energy

harvesting lifetimes.





Chapter 7

Conclusions and Future Work

THIS chapter summarizes the key contributions of this thesis and discusses some

future directions for research in the area of energy modeling and optimization of

wireless systems.

7.1 Conclusions

This thesis investigates the energy consumption of wireless systems and presents total

energy minimization solutions for point-to-point transmission and relay transmission

systems. Our motivation was to analyze the energy consumption of the wireless physi-

cal layer as a function of practical parameters such as receiver SNR, modulation scheme,

data rate, code rate, RF bandwidth, distance and pathloss exponent.

In modeling the wireless system energy consumption as a function of SNR, we first

observed the synchronization capability at low SNR operation. We investigated syn-

chronization system architectures and evaluated the performance of various estimation

algorithms as a function of SNR. The most appropriate architectures and algorithms were

selected to operate at in the low-SNR region.

We identified the need of preamble to acquire the initial synchronization parameters

such as timing offset, carrier frequency offset and phase offset, and this was especially

true for the low-SNR region. We recommend the use of non-data aided algorithms and

decision-directed algorithms during data transmission to track the synchronization pa-

rameters. We recommend that timing synchronization should be performed first, as tim-

ing errors can be recovered prior to carrier recovery. We selected the absolute value non-

191
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linearity (AVN) based feed-forward timing estimator [59] or the Gardner TED [57] for the

timing recovery system. We then propose that frequency recovery should be performed

using the feed-forward Mengali & Morelli estimator [64] during preamble transmission.

This estimate can be used to correct the frequency errors during the data transmission

with the aid of the phase recovery system. We recommend a feedback loop with decision-

directed ML carrier recovery loop [51] to be used. Otherwise, for 4-QAM systems, we also

recommend the feed-forward Viterbi and Viterbi estimator [7].

Next, we analyzed the computational complexity of synchronization systems and de-

veloped energy models. These energy models were then used to compare the energy

efficiency of different estimation algorithms to achieve a given MSE performance. By us-

ing this new metric, we evaluated the synchronization algorithms from an actual energy

efficiency perspective. Although, the real energy consumption values can only be mea-

sured by implementing the circuits on simulators or actual hardware, we considered the

required number of arithmetic operations and memory accesses that provide an accurate

estimate compared with just arithmetic calculation based developments.

We then used the synchronization system energy models along with other digital sig-

nal processing (DSP) segment energy models and a transmit energy model to investigate

the energy consumption of a point-to-point wireless transmission system. We considered

a multipath environment with Rayleigh-faded channel coefficients. An approximative

analytical expression –a summation of two exponential functions of SNR – was applied

to find an optimal solution to minimize the total energy consumption. The results re-

veal that an optimum SNR and an optimum bandwidth can be found from an energy-

efficiency perspective for a given user requirement.

We then focused on relay transmission by using the energy models of point-to-point

communication. We initially developed an optimization problem for amplify-and-forward

(AF) and detect-and-forward (DF) cooperative single-relay systems. Our optimization

problem was formulated on the basis of the source and relay power allocations, relay

location and spectral efficiency. We showed that both AF and DF systems have an op-

timal location and optimal power allocation that minimizes the total energy consump-

tion. In AF systems, the location and power allocation can be optimized independently
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from the spectral efficiency, but the same parameters in the DF system depend on spec-

tral efficiency. Total energy consumption was then minimized from a spectral-efficiency

perspective for both AF and DF systems when considering transmit energy and circuit

processing energy. Using mathematical approximations, we were able to optimize energy

consumption over spectral efficiency. On the basis of our analysis and numerical results,

direct transmission is more energy efficient at shorter distances, but single-relay systems

save energy in relatively longer distance transmission. However, even the single relay

system’s energy consumption increases after certain longer distances (e.g., beyond 200 m

in our simulation example). We, therefore, next focused on multi-relay transmission to

reduce the energy consumption at longer distances.

The energy efficiency of cooperative multi-relay systems was then evaluated by con-

sidering DF protocol with full diversity at the relays and destination. An energy model

for a two-relay transmission system was developed. Due to the highly complex relation-

ship between total transmit energy and the relay locations and their power allocations,

numerical simulations were used to optimize these parameters. We then compared the

total energy consumption of single-hop, two-hop and three-hop systems using numeri-

cal evaluation for two cases: throughput-constrained and bandwidth-constrained trans-

mission. Our observations reveal that the total energy consumption of long distance

transmission can be reduced by adding more relays with energy distributed amongst the

additional nodes and using diversity to combat channel fading. The simulation outcomes

also suggest that when full diversity is utilized at the relays and destination, more power

should be allocated to the initial nodes as that signal will be utilized by the relay node(s)

that follows. In terms of the relay locations, the initial relays should be positioned closer

to the source, but the final relays should be located closer to the destination. The distances

between the nodes are reduced towards the destination end.

7.2 Future Work

Before concluding this thesis, we briefly present some ideas that will motivate future

studies on this topic.
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7.2.1 Modeling the Energy Consumption of an IoT Gateway

In future IoT networks, wireless access will be used to connect millions of low pow-

ered devices [135–137]. An IoT gateway is proposed to connect a number of wireless

sensors into the IoT network [137, 138]. These sensor devices can be use to provide a

wide range of applications such as video surveillance, environmental condition moni-

toring, e-health, home automation, etc. Each application will have its own requirements

in terms of quality-of-service and resources. For example, a video sensing camera re-

quires a higher transmission rate with a low latency, but a temperature and humid sen-

sor requires only a limited transmission rate and can afford a higher latency. Therefore,

when connecting these different devices, the IoT gateway needs to optimize the physical

layer resource allocations. Hence, physical layer energy models need to be developed

as a function of bandwidth, spectral efficiency, operating SNR and other parameters in

order to optimize the energy efficiency. The point-to-point communication energy we

presented in Chapter 4 can be used to derive energy models for Internet-of-Things (IoT)

gateways. Additional constraints such as multi-user data rates and bit-error rates, will

need to be considered when allocating optimal bandwidths and modulation schemes.

7.2.2 Cellular Network Energy Efficiency Improvement by traffic offloading
using relay transmission

The power consumption of cellular networks has been increasing due to the rapid growth

of connected devices as well as ever–rising traffic demands. Larger network densification

and higher spectral efficiencies have been adapted to satisfy these requirements. Such

approaches have consequently resulted in increasing the power consumption of mobile

networks, especially in base stations. Several methodologies are presented to reduce the

power consumption of base stations [28, 30, 139]. The power consumption of various

types of base stations are modeled up to different levels in the literature [80, 122, 140].

The use of relays to offload some demand on base stations has gained an attention [28,

141]. This approach effectively reduces cell sizes and the transmission distances between

the base station and user equipment. The energy models we presented in Chapter 5 and

6 can be merged with base station power models (e.g. [140]) to formulate an energy
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minimization problem for the network with a base station and relays. Furthermore, in

services such as broadcasting, selected users can be assigned as relays to forward data

onto other users [142]. The energy consumption of such systems can be investigated

using our models and optimal solutions can be derived.

7.2.3 Investigating the Trade-offs in Energy Harvesting Networks

Future wireless networks are set to use energy harvesting technologies to generate to re-

quired energy within wireless nodes. Unlike typical wireless devices which are operated

using batteries, energy harvesting devices have strict limitations on the energy related

parameters (i.e. maximum available energy and the time duration of energy availabil-

ity) [143]. Therefore, it is essential to have more accurate energy models for transmit-

ter and receiver segments as a function of system parameters (i.e. bandwidth, transmit

power/received SNR, spectral efficiency). Our CMOS based energy models of single–

hop and multi–hop systems can be used with different system architectures proposed

by Lu et al. [144] in order to obtain practical energy optimization solutions for energy

harvesting networks.
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[97] S. Soldà, M. Caruso, A. Bevilacqua, A. Gerosa, D. Vogrig, and A. Neviani, “A 5

Mb/s UWB–IR transceiver front–end for wireless sensor networks in 0.13 CMOS,”

IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1636–1647, 2011.

[98] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5–GHz CMOS wireless LAN receiver

front end,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 765–772, 2000.



BIBLIOGRAPHY 207

[99] H. Seo, I. Choi, C. Park, J. Yoon, and B. Kim, “A wideband digital RF receiver

front–end employing a new discrete–time filter for m–WiMAX,” IEEE Journal of

Solid-State Circuits, vol. 47, no. 5, pp. 1165–1174, 2012.

[100] M. Demirkan, S. P. Bruss, and R. R. Spencer, “Design of wide tuning–range

CMOS VCOs using switched coupled–inductors,” IEEE Journal of Solid-State Cir-

cuits, vol. 43, no. 5, pp. 1156–1163, 2008.

[101] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20

ps time–to–digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans-

actions on Circuits and Systems, vol. 53, no. 3, pp. 220–224, 2006.

[102] S. Hyvonen, K. Bhatia, and E. Rosenbaum, “An ESD–protected, 2.45/5.25–GHz

dual-band CMOS LNA with series LC loads and a 0.5 V supply,” in IEEE Radio

Frequency integrated Circuits (RFIC) Symposium, 2005, pp. 43–46.

[103] N. Ghittori, A. Vigna, P. Malcovati, S. D’Amico, and A. Baschirotto, “1.2–V

low–power multi–mode DAC+ filter blocks for reconfigurable (WLAN/UMTS,

WLAN/Bluetooth) transmitters,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9,

pp. 1970–1982, 2006.

[104] GreenTouch, Mobile Communication WG,Architecture Doc 2: Reference scenarios,, 2013.

[105] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity in wireless

networks: Efficient protocols and outage behavior,” IEEE Transactions on Informa-

tion Theory, vol. 50, no. 12, pp. 3062–3080, 2004.

[106] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless

relaying channels,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1820–

1830, 2004.

[107] K. R. Liu, Cooperative communications and networking. Cambridge university press,

2009.



208 BIBLIOGRAPHY

[108] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High–performance co-

operative demodulation with decode–and–forward relays,” IEEE Transactions on

Communications, vol. 55, no. 7, pp. 1427–1438, 2007.

[109] D. Brennan, “Linear diversity combining techniques,” IEEE Proceedings of the IRE,

vol. 47, no. 6, pp. 1075–1102, 1959.

[110] G. Farhadi and N. C. Beaulieu, “Power–optimized amplify–and–forward multi–

hop relaying systems,” IEEE Transactions on Wireless Communications, vol. 8, no. 9,

pp. 4634–4643, 2009.

[111] K. Vardhe, D. Reynolds, and B. D. Woerner, “Joint power allocation and relay selec-

tion for multiuser cooperative communication,” IEEE Transactions on Wireless Com-

munications, vol. 9, no. 4, pp. 1255–1260, 2010.

[112] X. J. Zhang and Y. Gong, “Joint power allocation and relay positioning in multi–

relay cooperative systems,” IET Communications, vol. 3, no. 10, pp. 1683–1692, 2009.

[113] H. V. Zhao and W. Su, “Cooperative wireless multicast: performance analysis and

power/location optimization,” IEEE Transactions on Wireless Communications, vol. 9,

no. 6, pp. 2088–2100, 2010.

[114] A. P. T. Lau and S. Cui, “Joint power minimization in wireless relay channels,” IEEE

Transactions on Wireless Communications, vol. 6, no. 8, pp. 2820–2824, 2007.

[115] W. Cho, R. Cao, and L. Yang, “Optimum resource allocation for amplify–and–

forward relay networks with differential modulation,” IEEE Transactions on Signal

Processing, vol. 56, no. 11, pp. 5680–5691, 2008.

[116] D. Kudavithana, Q. Chaudhari, and B. Krongold, “On the energy-efficiency of

point-to-point wireless transmission,” Elsevier Physical Commmunications, 2015,

submitted.

[117] O. Waqar, M. A. Imran, M. Dianati, and R. Tafazolli, “Energy consumption analysis

and optimization of BER–constrained amplify–and–forward relay networks,” IEEE

Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1256–1269, 2014.



BIBLIOGRAPHY 209

[118] M. T. Kakitani, G. Brante, R. D. Souza, and A. Munaretto, “Comparing the en-

ergy efficiency of single–hop, multi–hop and incremental decode–and-forward in

multi–relay wireless sensor networks,” in IEEE 22nd International Symposium on Per-

sonal Indoor and Mobile Radio Communications (PIMRC 2011), 2011, pp. 970–974.

[119] Q. Chen and M. C. Gursoy, “Energy efficiency analysis in amplify–and–forward

and decode-and-forward cooperative networks,” in IEEE Wireless Communications

and Networking Conference (WCNC 2010), 2010, pp. 1–6.

[120] R. Madan, N. B. Mehta, A. F. Molisch, and J. Zhang, “Energy–efficient cooperative

relaying over fading channels with simple relay selection,” IEEE Transactions on

Wireless Communications, vol. 7, no. 8, pp. 3013–3025, 2008.

[121] Y. Chen, S. Zhang, and S. Xu, “Characterizing energy efficiency and deployment

efficiency relations for green architecture design,” in IEEE International Conference

on Communications Workshops (ICC 2010), 2010, pp. 1–5.

[122] B. Debaillie, C. Desset, and F. Louagie, “A flexible and future–proof power model

for cellular base stations,” in IEEE Vehicular Technology Conference Spring (VTC-

Spring), 2014.

[123] E. Kaymaksut and P. Reynaert, “Transformer–based uneven doherty power ampli-

fier in 90 nm CMOS for WLAN applications,” IEEE Journal of Solid-State Circuits,

vol. 47, no. 7, pp. 1659–1671, 2012.

[124] A. Afsahi, A. Behzad, V. Magoon, and L. E. Larson, “Linearized dual–band power

amplifiers with integrated baluns in 65 nm CMOS for a 2x2 802.11 n MIMO WLAN

SoC,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 955–966, 2010.

[125] Y. Li, J. Lopez, C. Schecht, R. Wu, and D. Y. Lie, “Design of high efficiency mono-

lithic power amplifier with envelope–tracking and transistor resizing for broad-

band wireless applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp.

2007–2018, 2012.



210 BIBLIOGRAPHY

[126] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[127] E. W. Weisstein, “Lambert w-function. from mathworlda wolfram web resource,”

2004.

[128] M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of

digital communication over generalized fading channels,” Proceedings of the IEEE,

vol. 86, no. 9, pp. 1860–1877, 1998.

[129] K. Schwieger and G. Fettweis, “Power and energy consumption for multi–hop pro-

tocols: A sensor network point of view,” in International Workshop on Wireless Ad-hoc

Network, 2005.

[130] C. Conne and I.-M. Kim, “Outage probability of multi–hop amplify–and–forward

relay systems,” IEEE Transactions on Wireless Communications, vol. 9, no. 3, pp. 1139–

1149, 2010.

[131] S. S. Ikki and S. Aı̈ssa, “Multihop wireless relaying systems in the presence of

cochannel interferences: Performance analysis and design optimization,” IEEE

Transactions on Vehicular Technology, vol. 61, no. 2, pp. 566–573, 2012.

[132] M. K. Simon and M.-S. Alouini, Digital communication over fading channels. John

Wiley & Sons, 2005, vol. 95.

[133] D. J. Grabiner, “Descartes’ rule of signs: Another construction,” American Mathe-

matical Monthly, pp. 854–856, 1999.

[134] PlanetMath. (1999) Quartic formula. [Online]. Available: http://planetmath.org/

QuarticFormula

[135] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Elsevier

Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[136] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s intranet of things to

a future internet of things: a wireless–and mobility–related view,” IEEE Wireless

Communications, vol. 17, no. 6, pp. 44–51, 2010.



BIBLIOGRAPHY 211

[137] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):

A vision, architectural elements, and future directions,” Elsevier Future Generation

Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[138] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IoT gateway: Bridgingwireless

sensor networks into internet of things,” in IEEE/IFIP 8th International Conference on

Embedded and Ubiquitous Computing (EUC), 2010, pp. 347–352.

[139] A. P. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier, “A survey of green net-

working research,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 3–20,

2012.

[140] H. Holtkamp, G. Auer, V. Giannini, and H. Haas, “A parameterized base station

power model,” IEEE Communications Letters, vol. 17, no. 11, pp. 2033–2035, 2013.

[141] N. Ristanovic, J.-Y. L. Boudec, A. Chaintreau, and V. Erramilli, “Energy efficient

offloading of 3G networks,” in IEEE 8th International Conference on Mobile Adhoc and

Sensor Systems (MASS), 2011, pp. 202–211.

[142] F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic, “Optimal transmission radius for

energy efficient broadcasting protocols in ad hoc and sensor networks,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 17, no. 6, pp. 536–547, 2006.

[143] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in en-

ergy harvesting sensor networks,” ACM Transactions on Embedded Computing Sys-

tems (TECS), vol. 6, no. 4, p. 32, 2007.

[144] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with rf en-

ergy harvesting: A contemporary survey,” IEEE Communications Surveys & Tutori-

als, vol. 17, no. 2, pp. 757–789, 2015.



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Kudavithana, Dinuka

 

Title: 

Energy efficient wireless system design

 

Date: 

2015

 

Persistent Link: 

http://hdl.handle.net/11343/91674

 

File Description:

Energy Efficient Wireless System Design


