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ABSTRACT 

A NOVEL NUMERICAL FRAMEWORK FOR 

SIMULATION OF MULTISCALE SPATIO-

TEMPORALLY NON-LINEAR SYSTEMS IN 

ADDITIVE MANUFACTURING PROCESSES 

Nachiket Patil 

April 21, 2014 

 

New computationally efficient numerical techniques have been formulated for multi-

scale analysis in order to bridge mesoscopic and macroscopic scales of thermal and 

mechanical responses of a material. These numerical techniques will reduce computational 

efforts required to simulate metal based Additive Manufacturing (AM) processes. 

Considering the availability of physics based constitutive models for response at 

mesoscopic scales, these techniques will help in the evaluation of the thermal response and 

mechanical properties during layer-by-layer processing in AM. Two classes of numerical 

techniques have been explored.  The first class of numerical techniques has been developed 

for evaluating the periodic spatiotemporal thermal response involving  multiple  time   and
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spatial scales at the continuum level. The second class of numerical techniques is targeted 

at modeling multi-scale multi-energy dissipative phenomena during the solid state 

Ultrasonic Consolidation process. This includes bridging the mesoscopic response of a 

crystal plasticity finite element framework at inter- and intragranular scales and a point at 

the macroscopic scale. This response has been used to develop an energy dissipative 

constitutive model for a multi-surface interface at the macroscopic scale.  

An adaptive dynamic meshing strategy as a part of first class of numerical techniques 

has been developed which reduces computational cost by efficient node element 

renumbering and assembly of stiffness matrices. This strategy has been able to reduce the 

computational cost for solving thermal simulation of Selective Laser Melting process by 

~100 times. This method is not limited to SLM processes and can be extended to any other 

fusion based additive manufacturing process and more generally to any moving energy 

source finite element problem. 

  Novel FEM based beam theories have been formulated which are more general in 

nature compared to traditional beam theories for solid deformation. These theories have 

been the first to simulate thermal problems similar to a solid beam analysis approach. These 

are more general in nature and are capable of simulating general cross-section beams with 

an ability to match results for complete three dimensional analysis.  In addition to this, a 

traditional Cholesky decomposition algorithm has been modified to reduce the 

computational cost of solving simultaneous equations involved in FEM simulations.   

Solid state processes have been simulated with crystal plasticity based nonlinear finite 

element algorithms. This algorithm has been further sped up by introduction of an 
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interfacial contact constitutive model formulation. This framework has been supported by 

a novel methodology to solve contact problems without additional computational overhead 

to incorporate constraint equations averting the usage of penalty springs. 
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CHAPTER 1 

RESEARCH MOTIVATION AND PROBLEM 

STATEMENT  

1.1 Introduction       

   

Natural phenomena have been scientifically classified into four fundamental 

interactions [1]: gravitation, electromagnetism, strong nuclear and weak nuclear. These 

interactions have different manifestations at different scales of a material. Every interaction 

has multi-scale effects if the body geometry has significant length available for its spatial 

evolution.  

Fig 1 shows a multi-scale material structure for any crystalline material and relevant 

length scales. Atoms or molecules can be considered as the fundamental building blocks 

from the perspective of ability to tweak properties to engineer macroscopic material 

properties. Multiple atoms stack together in a particular pattern to form a crystal structure 

[2]. The manufacturing process has a decisive impact on the crystal structure of the 

fabricated part. These crystals demonstrate [3] certain point, line, area and volume defects 

when the crystallite attains a particular length scale. Point defects such as interstitial defects 

are important from the perspective of alloying while interacting with the perfect crystal and 

higher dimensional defects. Some examples of line, area and    volume            defects     are 

http://en.wikipedia.org/wiki/Gravitation
http://en.wikipedia.org/wiki/Electromagnetism
http://en.wikipedia.org/wiki/Weak_interaction
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dislocations, grain boundaries and precipitates respectively. These defects interact with 

each other leading to the determination of response to external stimuli. The vibrational 

uncertainty [4] at the atomic level has some implications for behavior of a single 

dislocation, and this can be quantified with molecular dynamics simulations for small time 

frames. These models are difficult to extend further in space and time considering the 

involved computational cost and numerical error propagation.  

 Figure 1 Multi-scale material behavior 
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The vibrational uncertainty associated with a dislocation is further augmented by 

configurational uncertainty [5] of dislocation interactions. The combined uncertainty at the 

scale of atomic and dislocation cluster interactions leads to multi-scale stochastic behavior 

of the underlying material and calls for remedies using statistical mechanics [6]. The 

constitutive model developed with the help of statistical mechanics can be used as a point 

behavior law for mesoscopic continuum mechanics simulations.  

The mesoscopic continuum mechanics constitutive model developed for the framework 

described above needs a mathematical framework, for example homogenization [7], which 

can consider microstructure and phase information to numerically formulate a macroscopic 

material constitutive law. This constitutive law for each point along with an equilibrium 

equation [8] results in a governing partial differential equation (PDE). These PDEs can be 

solved analytically for very simple geometries and require use of numerical techniques like 

Finite Element Method (FEM) [9]. These numerical methods rely on discretization of 

geometry and reducing the PDE into sets of linear equations. One of the major limitations 

of these numerical methods is numerical cost when dealing with problems involving 

significant spatial-temporal variations along with complicated geometries and boundary 

conditions.  

Material constitutive laws, geometry and time dependent boundary conditions can 

together determine the fabricated part performance in service. The multiscale material 

nature discussed above along with manufacturing freedom can be optimized together to 

produce a highly efficient product with good mechanical properties and serviceability. 

Various traditional manufacturing methods have limitation with respect to geometrical 
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freedom. Considering this limitation, Additive Manufacturing [10] (AM) has emerged as a 

new technology with immense new possibilities for freeform fabrication.   

There are many metal based Additive Manufacturing processes. Two categories [10] 

that will be explored in this work are laser based powder bed melting and solid state 

welding. Respective example processes [10] for these categories are Selective Laser 

Melting (SLM) and Ultrasonic Consolidation (UC). Simulation of these processes can help 

with better quantification of the physics involved, and this quantification can further be 

employed to better control machines for different material and part geometry scenarios. 

The present state of work in this direction has found a bottleneck at the level of solving 

PDEs at mesoscopic and macroscopic scales.  

In this work numerical techniques are attempted for bridging mesoscopic and 

macroscopic scale variations involved in representative Additive Manufacturing processes. 

This work overcomes the present bottlenecks in simulation of these processes such as the 

computational cost needed to simulate high heating and cooling rates involved in the 

thermal simulation of SLM (spatio-temporally periodic phenomena) and the high strain 

rate and non-conservative energy dissipation mechanisms in UC.  

SLM thermal behavior [11] is important from the perspective of predicting phases and 

microstructure in the built part based on cooling rates after melting using the laser heat 

source. The laser heat source moves over the powder bed at speeds on the order of 2m/s 

and cooling rates above 1050
C/s. Simulation of this scenario with finite element methods 

requires very fine mesh refinement to capture spatial variations near the laser beam (mesh 

refinement must be much smaller than the laser beam diameter of ~100μm). This thermal 



 

5 

 

behavior has multiple scales both in space and time and it is computationally very 

expensive to solve with traditional numerical methods.  

In comparison with SLM, UC is a solid state process [5] in which two thin foils of 

metal are joined by applying ultrasonic vibration in addition to a normal force in order to 

break the oxide layers on foil surfaces and create an inter-atomic bond. In this process it 

has been seen that the quality of the bond and linear weld density are dependent on the 

amount of ultrasonic energy supplied to the interface to break the oxide layer and induce 

plastic deformation. The amount of energy that is transferred to the interface for this 

purpose is a function of the overall geometry of the partially built part and the inter-laminar 

defects present in the build. These defects cause energy dissipation and their exact 

quantification requires modeling the friction and plastic deformation on surfaces of both 

foils. This phenomenon has a smaller scale compared to macroscopic bulk deformation. 

Visco-plastic deformation, which is the reason for energy dissipation, is dependent on the 

microstructure. Microstructure dependence of the visco-plastic deformation constitutive 

law can be attained numerically using homogenization techniques.  

If these two processes and their corresponding multi-scale simulation obstacles can be 

solved, ‘manufacturing integrated’ optimization of numerous day to day engineering 

products can result. Further this will lead to a better numerical framework for solving 

various multiscale phenomena discussed at the start of this chapter. 
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CHAPTER 2 

RESEARCH OBJECTIVES AND SIGNIFICANCE OF 

THE RESEARCH 

2.1 Objectives and Significance  

A muliscale simulation framework for additive manufacturing processes has been 

attempted in the present work with an emphasis on development of numerical algorithms 

with reduced computational cost. The computational complexity has been related to a set 

of governing partial differential equations and the numerical algorithms employed to solve 

them for given boundary conditions. The present work has been focused at formulating 

new numerical algorithms taking advantage of process specific multiscale behavior 

involved in these processes. The generic or broader research objectives for this research 

work are as follows 

1. Development of an efficient adaptive finite element framework for simulation 

of spatiotemporally periodic problems such as selective laser melting which 

will involve a dynamic fine mesh region in a course mesh to capture high 

gradients at the point of exposure or near the melt-pool. This algorithm should 

be efficient enough to reduce the computational cost by 10X to 100X 

depending on problem size and input processing parameters.  
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2. Development of a new visco-plastic continuum constitutive model for energy 

dissipation mechanisms such as friction at mating interfaces in UC. This will 

involve homogenization of the micro-structural response using statistical 

mechanics based crystal plasticity constitutive models [5]. This algorithm is 

efficient enough to reduce the computational cost by 5X to 20X depending on 

problem size and input processing parameters. 

3. Development of high efficiency methods for storage and solution of FEM 

matrices in problems involving prismatic structures, such as powder beds and 

part layers for thermal simulation of SLM.  

The successful completion of this research project based on the above objectives will 

contribute significantly to the following research areas in multi-scale analysis and Additive 

Manufacturing 

• It will result in efficient algorithms for adaptive refinement and de-

refinement of FEM meshes for applications in problems with 

spatiotemporally periodic boundary conditions or responses which have 

rapid variations in time and space. This will also be helpful for bridging 

multiple scales of deformation present within a continuum scale problem 

for cases of elliptical and parabolic partial differential equations. 

• A new visco-plastic continuum constitutive model for interface friction and 

its energy dissipation mechanism in UC will be formulated.  This novel 

interface constitutive law will reduce the computational cost of modeling 

interfaces while modeling bulk response with a significantly simplified 
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mesh and reduced computational cost. Rolling and forming process 

simulations or friction based dampers are additional potential applications. 

• An efficient bridge between mesoscopic scale statistical mechanics based 

crystal plasticity constitutive response and macro-scale visco-plastic 

deformation in metals will be developed. This will be useful for high-

fidelity analysis of metal parts for process analysis as well as life cycle 

performance analysis of manufactured product. 

• Efficient methods for storing and solving FEM matrices in cases of 

prismatic structures, for example in powder beds and part layers for thermal 

simulation of SLM. This will be useful in analysis and design of various 

structures and processes involving simple geometry with layered structures 

(such as composite laminates). 

 

The expected implications and impact of the present work will be as follows. 

1. A multi scale simulation framework 10 to 100x faster than traditional simulation 

frameworks for simulating additive manufacturing processes along with reduced 

computational memory (random access memory) requirements.  

2. Better process optimization through reduced computational complexity tools. 

3. Prediction of part mechanical properties such as plastic softening or hardening, part 

mechanical strength and fatigue life. 
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2.2 Thesis Outline 

This thesis is written in the multi-paper format, where each chapter represents a stand-

alone conference paper or journal article  The available literature on relevant numerical 

methods are discussed in detail in Chapter 3, but Chapter 3 is not intended to be published 

as a stand-alone article outside this dissertation. 

Chapter 4 involves development of a numerical Finite Element algorithm for thermal 

simulation of SLM. SLM simulation requires a multi scale FEM framework with 

spatiotemporal adaptive meshing where the fine mesh domain moves along with the laser 

scan path. This will also involve an intelligent algorithm which can refine and de-refine 

the fine mesh near the laser spot. The process of refinement and de-refinement requires 

renumbering and recalculation of the FEM matrices and this has been addressed with 

formulation of an efficient algorithm in order to harness the benefits of this spatiotemporal 

adaptive meshing strategy. The computational cost reduction through the two scale FEM 

model presented in this chapter needs further improvements for simulation of full powder 

bed simulations. This paper is in review with Journal of Manufacturing Science and 

Engineering. 

Chapter 5 presents a three scale simulation framework with a novel Eigenmode based 

strategy coupled with FFDAMRD to simulate the full powder bed problem. Linear 

equation solvers are required for the computational algorithms used in FFDAMRD, 

Eigenmodes, and for general FEM simulations. This paper has been published in the Solid 

Freeform Fabrication Symposium for 2013.   
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Chapter 6 presents a novel methodology to reduce the computational cost for solving 

positive definite simultaneous equations using Cholesky Decomposition. This paper is not 

yet published and will be submitted to the Finite Elements in Analysis and Design Journal. 

Algorithms developed in Chapter 3 and 4 have been focused on fusion based processes. 

Solid state processes in additive manufacturing such as UC involve interfacial contact 

simulations. Chapter 7 includes formulation of an efficient algorithm to simulate contact 

problems along with a novel methodology to solve constraint equations with reduced 

computational cost. This algorithm formulates an interface contact constitutive relation for 

linear elastic materials. This paper has been published in the Solid Freeform Fabrication 

Symposium for 2013.   

A more accurate material representation for development of the constitutive model 

developed in Chapter 7 is shown in Chapter 8.  This chapter shows classical crystal 

plasticity simulations and has future potential for solving dislocation density based crystal 

plasticity along with spatial homogenization. This paper is not yet published and will be 

submitted to the Finite Elements in Analysis and Design Journal. 

 

Appendix A shows a Nonlinear version of the FFD-AMRD algorithm presented in 

Chapter 4. The nonlinearity considered here has been due to temperature dependent thermal 

properties of  solidified part, molten metal and powder. This paper has been submitted to 

the Journal of Manufacturing Science and Engineering and is currently under review.
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CHAPTER 3 

LITERATURE REVIEW 

3.1 Additive manufacturing processes 

Additive Manufacturing (AM) processes are manufacturing processes in which 

complex 3-dimesional solid shapes based on a CAD model are manufactured layer by layer 

to the desired geometry.  This technology has distinct advantages over traditional 

manufacturing in its capability to manufacture freeform shapes without any use of molds. 

AM has been called by many other names, including solid freeform fabrication (SFF), rapid 

prototyping (RP), layered manufacturing (LM) and direct digital manufacturing (DDM). 

The various processing technologies categories as per ASTM F2792 - 12a [12] include 

binder jetting, directed energy deposition, material extrusion, material jetting, powder bed 

fusion, sheet lamination, and vat photopolymerization. The common feature of these 

processes is the numerical decomposition of the CAD model using surface triangulation in 

the form of a STereoLithography (STL) file.  STL files are further cut into slices and are 

used by machines to program layer deposition. The major differences between AM 

processes are: (1) materials used, and (2) part building technique [13-14]. AM technologies 

have been widely used for the fabrication of prototypes, as one of the design and 

development stages for product manufacture. Other applications include rapid tooling (RT) 

[15-16], repair of damaged mechanical components [17], medical implants, device 
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fabrication [18-21], and for other end-use functional components. The abilities of AM to 

fabricate complex objects without the use of molds offer designers opportunities for novel 

designs that would otherwise have been impossible with traditional manufacturing 

techniques. High levels of geometrical complexities can now be designed for manufacture 

with little or no restrictions for most AM technologies. AM also offers a wide range of 

possibilities including fabrication of structures with spatial material heterogeneity, direct 

build of multi-component assemblies, and the fabrication of materially graded structures – 

in density and composition [13-19]. There is the potential to place materials just where they 

are needed with AM technologies. 

3.2 Selective laser melting 

Laser Sintering (LS) is a process in which a moving high energy laser beam scans the 

surface of a powder bed (the powder can be metal, polymer or ceramics) and the melted 

powder solidifies to form the bulk part. Selective Laser Melting (SLM) is the term 

commonly applied to versions of laser sintering with utilize powdered metal as the build 

material.  Other nomenclatures used by machine manufacturers for this technology are 

Laser Cusing and Direct Metal Laser Sintering (DMLS) [22]. Selective laser melting is 

very complicated because of its fast laser scan speeds and material transformations in a 

very short timeframe. The temperature field was found to be transient by many previous 

researchers [23-27]. Meanwhile, the temperature evolution history in laser sintering has 

significant effects on the quality of the final parts, such as density, dimensions, mechanical 

properties, microstructure, etc. For metals, large thermal gradients increase residual 

stresses and deformation, and may even lead to crack formation in the fabricated part. 

Thermal distortion of the fabricated part is one serious problem in SLM [28]. Therefore, 



 

13 

 

understanding the process mechanisms and effects of process parameters are significant 

for the future development of SLM. 

3.2.1 SLM Process Parameters 

Like any processes or methods, theoretical and experimental tests are necessary to 

certify and qualify SLM technology.  Some of the first experiments [29] with SLM 

included direct sintering of bronze powder without polymer binders or preheating. It was 

found that process parameters and material features such as laser beam power, scanning 

speed, hatch distance and particle size distribution have an important influence on the 

melting behavior. 

 

Figure 2 Schematic diagram showing heat transfer phenomena in an SLM process [30]  
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3.2.2 SLM Heat Transfer Phenomenon Description 

Figure 2 is a schematic representation of heat transfer in SLM [30]. The laser scans the 

top of the powder bed following a prescribed scan pattern. The heat transfer process in 

SLM consists of different phenomena, including: 

 powder bed radiation,  

 convection between the powder bed and environment,  

 heat conduction inside the powder bed and between the powder bed and substrate, 

 latent heat of fusion, and 

 heat of vaporization. 

The complexity brought about by the powder phase change and the corresponding 

variation of the thermal properties during SLM also complicates the heat transfer problem. 

3.2.3 SLM Thermal Simulations 

Since temperature distribution in SLM is important, many researchers have put 

considerable effort toward understanding the SLM process [31-36] and formulating models 

to describe SLM thermal evolution [37-42]. Simulation models proved beneficial for 

demonstrating the influence of various input processing parameters. Those models are the 

essential tools for identifying proper parameters without extensive testing [43].SLM 

models include a laser source,powder bed held over a base plate, a prescribed scan pattern 

and relevant the heat transfer mechanism.  The latent heat of fusion is large in SLM. The 

complexity brought about by the powder phase change and the corresponding variation of 

the thermal properties during SLM also complicate the heat transfer problem. A detailed 

literature survey describing the heat transfer problem in SLM can be found in [45]. 
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3.3 Ultrasonic Consolidation 

Ultrasonic consolidation (UC) is a solid-state fabrication process that uses additive 

manufacturing principles to combine ultrasonic metal welding and milling to produce three 

dimensional freeform objects. The process uses the power of high frequency ultrasonic 

vibration at low amplitude to bond thin foils of materials to form solid objects. It combines 

normal and oscillating shear forces on mating foils on the one hand and the resulting 

friction forces between the materials to fracture and displace surface oxides from the 

materials. These atomically clean surfaces bond by direct contact under modest pressure 

and temperatures that are less than half of the melting point of the materials. The materials 

are thus metallurgically bonded. Fractured oxides and surface impurities in the materials 

are distributed in the bond zone. The process combines the layer-by-layer addition of foils 

with contour milling using the integrated 3-axis CNC machining facilities to produce 

desired component geometry. It is therefore both an additive and subtractive process. 

Fabrication involves the generic freeform fabrication process in which a solid CAD model 

is numerically sliced into thin horizontal layers which are sequentially sent to the 

fabricating machine to build the part from bottom up. 

The UC machine consists of a welding horn, also known as a sonotrode, which exerts 

normal force and oscillatory high-frequency vibration on the materials to be welded. 

Welding takes place on a substrate fixed on a heated plate. The UC machine is designed 

for automatic foil material feed, but materials can also be fed manually. Figure 3 shows the 

schematic view of the ultrasonic consolidation process. 
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Figure 3 Schematic of UC process [44] 

 

The primary process parameters in UC fabrications are vibration amplitude, 

temperature, welding speed, and normal force [45]. Other parameters that can affect weld 

quality include welding sonotrode surface roughness, foil surface finish [46], and how 

much “overlap” is used between adjacent foils when using the automated material feed 

system [47]. The optimum process parameters for Al alloys 3003 and 6061; stainless steel 

316L; and Al/SiC metal matrix composite have been experimentally determined in earlier 

work [48-56]. 

3.4 Computational Methods 

Computational methods to solve partial differential equations have been classified into 

two main categories i.e. analytical and numerical solution techniques. Analytical solutions 

have been limited to simple geometries and material variations with energy conserving 

systems. A class of techniques such as Green’s Function has both analytical and numerical 

components involved in analysis. Compared to these techniques Finite Element has been 

used more frequently due to its applicability for cases with complicated geometries and 

energy dissipative nonlinearities. 
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The finite element method (FEM) has been a widely used numerical method for solving 

systems of partial differential equations (PDEs).  A typical FEM algorithm involves 

discretizing a domain into a finite number of elements and formulating a weak form of the 

PDE. A weak form of differential equations can be decomposed into a system of linear 

equations with the help of weighted residuals and the principle of minimum energy. A 

standard finite element procedure is as follows. 

A standard Finite Element algorithm 

1. Domain discretization (breaking structure into small elements) 

2. Derivation of a strain operator [𝐵] (linear or nonlinear based on the type of analysis) 

at the integration point. 𝑠𝑡𝑟𝑎𝑖𝑛 = [𝐵]𝑞 where 𝑞 is the element displacement vector. 

3. First variation of element energy with respect to q to determine element stiffness 

matrix. 

4. Assembling the global stiffness matrix. 

5. Displacement and traction boundary condition application. 

6. Solution of the simultaneous equations generated in the previous steps. 

7. Calculation of stress at the integration points. 

3.5 Adaptive Mesh Refinement 

3.5.1. Introduction 

The computational cost when solving systems of equations derived in FEM and the 

accuracy of the solution depends on the extent of refinement. A strategy where mesh 

refinement is decided based on variations across a domain is called adaptive mesh 
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refinement (AMR) [57]. AMR is useful for reducing the computational costs involved in 

problems with significant spatial variations or localized behavior. 

3.5.1.1 Adaptive Meshing: 

Adaptive mesh refinement was proposed by Berger and Oliger to solve wave equations 

with localized steep gradients [57-58]. AMR provides significant advantages in terms of 

reliability and computational costs for simulating systems with different characteristic 

spatial lengths. For example, wave propagation leads to local deformation which requires 

refinement in that region to capture the localized phenomena. The multi-scale nature of 

AMR enables one to more efficiently solve problems where computational cost and time 

would be very high if the problem were to be solved with a high resolution mesh 

everywhere [58]. To apply AMR effectively, acceptable values of error bounds and 

estimated error are a consideration. The following sections explain different error 

estimation techniques and their formulation in depth. 

3.5.2 Error Estimates in FEM 

Traditionally, convergence of a finite element model is checked using mesh 

convergence. This method is computationally expensive for time dependent dynamic 

problems where adaptive meshing is required. General adaptive meshing software tools 

[59] employ error estimators to estimate accuracy of the solution obtained within a 

particular level of refinement. There are two types of error estimators available [60] namely 

apriori and posteriori estimators. Apriori error estimators are used to understand the 

asymptotic behavior of the errors but are not used to determine an actual error estimate.  

Posteriori error estimators work on the solution itself to obtain estimates of the actual 



 

19 

 

solution errors. In the following sections both of these estimators are discussed in greater 

details.  

3.5.2.1 A Priori Error Estimates  

A priori error estimates [61] provide useful information on the asymptotic behavior of 

the approximation. The Lax Theorem [62] is the fundamental theorem for apriori error 

estimation for the numerical solution of PDEs. It starts with a generalized representation 

of a PDE in the following form where 𝐿 is a differential operator and ∅ is an actual solution 

of the differential equation.  

𝐿∅ = 𝑓 ( 1 ) 

To understand the Lax Theorem assume a system where: 

𝐿𝜑 =
𝜕2∅

𝜕𝑥2
= 𝑓 

 

( 2) 

Taylor’s expansion of the above equation using central difference approximation gives  

𝜕2∅

𝜕𝑥2
=

∅(𝑖 + 1)ℎ − 2∅(𝑖ℎ) + ∅(𝑖 − 1)ℎ

ℎ2
+ 𝑂(ℎ2) 

( 3) 

Assuming a discrete solution  

𝜑𝑖 = ∅(𝑖ℎ) ( 4 ) 

A discrete operator 𝐿ℎ is defined as  

𝐿ℎ𝜑 =
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
 

( 5 ) 
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The final discretized system of equations will be 

(𝐿ℎ𝜑)𝑖 = 𝑓𝑖 

where  𝑓𝑖 = 𝑓(𝑢 = 𝑖ℎ) 

( 6 ) 

Consistency equations can be further defined as 

∅𝑖 = ∅(𝑖ℎ) 

(𝐿ℎ𝜑)𝑖 − 𝑓𝑖 = 𝜏𝑖 = O(ℎ2)  

( 7) 

and the stability equation is bounded and independent of h.   

‖(𝐿ℎ−1
)‖ ( 8 ) 

Thus error is defined as  

휀 = ∅ − 𝜑 

𝐿ℎ휀 = 𝜏 

 

( 9 ) 

Convergence is then derived from stability and consistency  

‖휀‖ ≤ ‖(𝐿ℎ−1
) 𝜏‖ ≤ 𝐶‖𝜏‖ ( 10 ) 

This theorem proves that the convergence is proportional to ℎ2 for the elliptic differential 

equation considered here. This is true with respect to linear FEM formulations with bilinear 

shape functions.  
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3.5.2.2 Posteriori Error Estimates   

In FEM, a domain is decomposed into small elements and a solution of the differential 

equation in each element is assumed to have the form  

∅̂ = 𝑁𝑖(�⃗⃗� )𝑞𝑖 ( 11 ) 

where 𝑁𝑖 are the shape functions and 𝑞𝑖 is an approximate solution of the differential 

equation at the 𝑖𝑡ℎ node of the element.   A posteriori error [63] in the approximate solution 

∅̂ is defined as: 

𝑒∅(𝑥) = ∅(𝑥) − ∅̂(𝑥) ( 12 ) 

Similarly, errors in integration point variables namely stress (σ) and strain (ε) are defined 

as: 

𝑒𝜎(𝑥) = 𝜎(𝑥) − �̂�(𝑥) 

𝑒𝜀(𝑥) = 휀(𝑥) − 휀̂(𝑥) 

    ( 13 ) 
   

These error measures are a function of position vector 𝑥  and can be positive or negative 

depending on the location of 𝑥 . A better error indicator should be a scalar so that error 

criteria can be checked and decisions can be made accordingly. For this purpose, different 

error norms are used. For example an 𝐿2 norm is defined as 

‖∅‖2 = ∫∅(𝑥) ∅(𝑥)
Ω

𝑑Ω 
( 14 ) 

The energy norm 𝐿2 of the conjugate stress and strain spaces is one of the most widely 

applied norms in FEM error analysis of linear elastic structural problems. It is defined as 
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‖∅‖2 = ∫(휀 − 휀⏞) 𝐸(휀 − 휀⏞)
Ω

𝑑Ω 

= ∫ 𝑒𝜀
𝑇𝑒𝜎𝐸

Ω

𝑑Ω 

  

( 15 ) 
 

  A relative percentage error norm is defined as  

𝑛 = 100 × 
𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟(𝑒)

𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∅
 

( 16 ) 

The main challenge in the posteriori error estimate mentioned so far is to derive an 

exact solution for the differential equation (∅(𝑥)). It is not possible in most practical 

problems involving complex geometries to find an exact analytical solution. It has been 

shown that in continuous smoothened solutions for stress and strain it is more accurate 

compared to piecewise approximate solutions determined using FEM. Among various 

methods of smoothening FEM solutions, Super Convergent Patch (SCP) recovery [64] of 

the elements is one of the most accurate methods. 

3.5.2.3 Super Convergent Patch Recovery 

 

Figure 4 Constant Jacobian Patch [63]  

It has been shown that among various smoothening techniques SCP gives the most 

accurate smoothened solution with respect to an analytical solution. The accuracy of 
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recovery makes it an ideal candidate for error estimation. It can be used with nodal variable 

as well as Gauss Point variables which are functions of first or higher derivatives of the 

nodal variable. Considering type of variable, SCP can be classified into the following types: 

 Node based patch: Adjacent elements in a group around a particular node of interest 

 Element Based: All elements adjacent to a particular element of interest 

 Face based patch: All elements sharing some common face with a particular 

element of interest 

It is recommended that each element should use its own patch to recover a variable in its 

domain. Figure 4 shows an element based constant Jacobian patch. 

SCP recovery is not a fixed process but it is more like a heuristic. It requires creating a 

database of points of interest in a patch attached to each element. In case of a nodal variable 

these interest points will be nodes inside a patch and for Gauss Point variables it will be 

Gauss Points of elements selected inside the patch. Once such a database of nodes and 

corresponding variable values are prepared, smoothening functions are calculated using 

least square interpolation based on the geometry of the patch and accuracy required. 

Generally polynomial or serendipity polynomial functions are used for this purpose. 

Unknowns involved in these polynomials are determined using least square fit for the 

information available at nodes in the database. 

3.5.3 Classification of Adaptive Meshes  

Based on the type of PDEs, complexity of the geometry, and the boundary conditions, 

different AMR strategies are used accordingly. These strategies can be classified into 
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structured and unstructured mesh strategies based on the geometrical patterns of the 

elements and nodes.  

3.5.3.1 Structured Meshes 

 

 

Figure 6 Mesh strategy for block structured refinement [67] 

In structured adaptive meshes [65], the orthonormality of the grid is strictly maintained. 

The basis of the mesh can be regular Cartesian or curvilinear in nature.  Block structured 

mesh refinement involves a mesh refinement of multiple sub domains such that two 

domains can share a boundary but no area can be shared. Each domain can be meshed 

independently and can be further refined to reach higher amounts of resolution. This 

strategy can be explained through a tree diagram as shown in figure 5. The refinement 

Figure 5 (a) Geometry and (b) data structure of a 3-level 

mesh tree. [84] 
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inside each subdomain creates a mismatch of mesh density at the interface between the 

coarse grid and the refined subdomain grid and can lead to erroneous results. This can be 

avoided with additional constraints at interfaces. The disadvantage of having additional 

constraints is that the solution may not reach its equilibrium distribution.  

 

The irregular nodes in a block structured adaptive mesh as shown in Figure 6 can be 

avoided with an adaptive mesh generated with mesh distortion as shown in figure 7. This 

method is relatively easy to implement but the unnecessary refinement of elements above 

and below the main refinement region along with bad aspect ratios in nearby regions 

restricts its usage compared to block structured mesh refinement.  

 

Figure 7 Adaptive Mesh with Mesh Distortion [65]  

3.5.3.2 Unstructured Meshes 

Triangulation is an easier way to discretize complicated geometries and for a few 

geometries it is the only method of discretization. Availability of automated triangulation 

algorithms such as Delaunay triangulation [68] makes it easy to implement for any general 

geometry.  However adaptive meshing with triangulation poses unique challenges.  In the 
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following sub-sections, widely applied refinement and de-refinement methods used for 

unstructured triangular meshes are briefly discussed.  

Bank’s Uniform Bisection Method:  

Bank [69] developed Piecewise Linear Triangular Multi-grid Finite Element Program 

software (PLTMG) for adaptive mesh refinement with unstructured meshes for solution of 

Elliptic Partial Differential Equations. The Refinement is achieved by uniform bisection of 

a triangular element into four small elements as shown in figure 8. This will lead to three 

irregular nodes on all three sides of the parent triangle. To avoid these irregular nodes he 

incorporated new triangular elements into the neighboring parent triangular elements. 

These subdivisions including parent triangle subdivisions are shown with dotted lines.  

 

  Figure 8 Bank’s uniform subdivision in first level refinement [65]  

Further refinement of the triangulation in the Bank’s scheme is done with uniform sub-

division of new triangles as shown in figure 9. Such subsequent subdivisions will avoid 

further subdivision of the resulting new triangles with bad shape.  
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Figure 9 Second Level refinement in Bank’s method [65]  

Riveras’s Bisection Method  

Rivera [65] proved that iterative bisection of the longest side of a triangle will lead to 

a regular mesh without any irregular nodes.  The first two iterations of this procedure are 

shown in figure 10. Further he showed that the lower bound of the smallest angle produced 

in this scheme will be equal to half of the smallest angle of the original triangulation. The 

algorithm used by Rivera is shown in Table 1. 

 

Figure 10 First two iterations of Rivera’s Bisection of the longest side of a triangle [65]  

De-refinement of Unstructured Meshes 

Banks’s and Rivera’s refinement methods can be represented using tree structures. The 

same tree structure can be used for de-refinement purposes. The offspring elements at a 

particular level of a tree structure can be pruned to establish a higher order coarse mesh.  

Coarsening done without a tree structure can be achieved by edge collapsing as shown in 
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figure 11. In [70] it has been shown that for a 2D problem, 𝑉0 is collapsed into 𝑉1, and 

𝑉1, 𝑉2, 𝑉3, … . , 𝑉𝑘 are the nodes of the elements connected with node 𝑉0. The node 𝑉0 is 

called the collapsing vertex and 𝑉1is called the target vertex. Collapsing a vertex needs a 

prior check on the geometry of the original mesh. An example where collapsing can lead 

to an incorrect mesh with a negative vertex angle at one triangle is shown in figure 12.  

 

Table 1: Rivera’s Algorithm 

Rivera’s Algorithm [65]: 

             Obtain ∆ℎ
1  by bisecting all triangles of  𝛿 by their longest edges 

             Let 𝜌1 contain those elements of ∆ℎ
1having irregular nodes 

i:=1 

 while 𝜌𝑖 ≠ ∅ do 

 Let e ∈ 𝜌𝑖have an irregular node P and bisect e by its longest edge 

 Let Q be the intersection point of this bisection 

 if P ≠ Q then 

     Join P and Q 

 end if 

 Let ∆ℎ
𝑖+1be the mesh created by this process 

 Let 𝜌𝑖+1be the set of elements in ∆ℎ
𝑖+1 with irregular nodes 

 i:=i+1 

 end while 

return ∆ℎ
𝑖  
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Figure 11 Coarsening of a triangulation by Edge Collapsing [65]  

 

Figure 12 Example triangulation where collapsing a vertex can lead to an erroneous mesh 

[65]  

3.5.4 Data transfer between non-matching meshes with matching domain 

Certain classes of problems such as large deformation or time dependent dynamic 

problems require adaptive dynamic mesh refinement where the mesh is dynamically 

adapted to new boundary conditions, evolving constitutive laws or geometry. This dynamic 

adaptivity of the mesh calls for data transfer from one mesh to the newly adapted mesh 

[71-72]. Various interpolation techniques are used for this purpose. In the following 

discussion two widely used interpolation techniques [72] namely the Radial Basis Function 

Method and the Inverse isoparametric method are discussed as examples of interpolation 

from one mesh to another where the boundary and domain of the two meshes match 

perfectly.  
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3.5.4.1 Radial basis function method: 

The radial basis function method has been found to produce high quality solutions to 

multivariate scattered data interpolation problems. Originally a part of the spline method 

[71], this method was proposed by Wendland [73] and Beckert [74] as being suitable for 

dealing with interpolation of variables between FEM meshes. If 𝑠(𝑥) is the actual function 

and has values 𝑓𝑖 = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑁) at points (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁), then by assuming the 

radial basis approximation function as 𝑠(𝑥), we have 

𝑠(𝑥𝑖) = 𝑓𝑖 ( 17 ) 

This means that the radial basis interpolation function will provide the exact same value 

for input data points for which interpolation has been performed. Further the radial basis 

function has the following form. 

𝑠(𝑥) = 𝑝(𝑥) + ∑𝜆𝑖∅(‖𝑥 − 𝑥𝑖‖)

𝑁

𝑖=1

 

( 18 ) 

where ∅ is a radially decaying function of radial Euclidian distance ‖𝑥 − 𝑥𝑖‖ and 𝑝(𝑥) is 

a polynomial function. It can be seen from the above functional form that the radial basis 

function is the sum of radial symmetric functions for each data point with weight 𝜆𝑖. 

Further, it is improved by adding a polynomial function. According to [75] a naive 

approach to the solution of interpolation equation (18) leads to a complexity of O(𝑁3) in 

time and O(𝑁2) in space where  𝑁 is the number of nodes. Due to the involved 

computational complexity, it is not suitable for moderate to large size problems compared 

to the inverse isoparametric method which is discussed hereafter.  
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3.5.4.2 Inverse Isoparametric Mapping Method 

Inverse isoparametric mapping is a map where an element is mapped from a global 

coordinate system to an isotropic coordinate system. Figure 13 shows a 2D four node 

element in the global coordinate system and the same element mapped into isoparametric 

coordinates. The advantage of using an isoparametric system in FEM simulations is that it 

removes the need for calculating the coefficients of shape functions which are required in 

the case of global coordinate systems.  

Isoparametric mapping has the additional capability of interpolating global coordinates 

along with the nodal variables with the same shape function.  Shape functions for the 

element considered in this discussion are: 

 

Figure 13 Global Coordinate System and Isoparametric Element 

𝑁1 =
1

4
(1 − 휁1)(1 − 휁2) 

𝑁2 =
1

4
(1 + 휁1)(1 − 휁2) 
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𝑁3 =
1

4
(1 + 휁1)(1 + 휁2) 

𝑁4 =
1

4
(1 − 휁1)(1 + 휁2) 

( 19 ) 

Using these shape functions, global coordinates and the variable ∅ will be mapped as 

follows where 𝑥𝑖 and 𝑦𝑖 are element node coordinates of the 𝑖𝑡ℎ point and ∅𝑖 is the value 

of the variable at the 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒. 

𝑥 = ∑𝑁𝑖(휁)𝑥𝑖

4

𝑖=1

 

𝑦 = ∑𝑁𝑖(휁)𝑦𝑖

4

𝑖=1

 

∅̂ = ∑𝑁𝑖(휁)∅𝑖

4

𝑖=1

 

 

 

 

 

 

 

( 20 ) 

Given the isoparametric solution, global coordinates as well as ∅̂ can be obtained. For the 

interpolation of ∅ on new mesh nodes, the 휁 coordinates of the new mesh points are 

required to be known apriori. This calls for solving the following equations derived from 

the above-mentioned equation for 휁 [76].  

𝑥𝑝 = 𝑎1 + 𝑎2휁1 + 𝑎3휁2 + 𝑎4휁1휁2 

𝑦𝑝 = 𝑏1 + 𝑏2휁1 + 𝑏3휁2 + 𝑏4휁1휁2 

 

( 21 ) 

where 

𝑎1 =
1

4
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4) 
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𝑎2 =
1

4
(−𝑥1 + 𝑥2 + 𝑥3 − 𝑥4) 

𝑎3 =
1

4
(−𝑥1 − 𝑥2 + 𝑥3 + 𝑥4) 

𝑎4 =
1

4
(−𝑥1 + 𝑥2 − 𝑥3 + 𝑥4) 

𝑏2 =
1

4
(−𝑦1 + 𝑦2 + 𝑦3 − 𝑦4) 

𝑏3 =
1

4
(−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4) 

𝑏4 =
1

4
(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4) 

 

 

( 22 ) 

Simple substitutions can lead to a quadratic equation for solving 휁1: 

𝐴(휁1)2 + 𝐵휁1 + 𝐶 = 0 ( 23 ) 

Where 

A = a2b4 − a4b2 

B = a1b4 + a2b3 − a3b2 − a4b1 + a4yp − b4xp 

𝐶 = 𝑎1𝑏3 − 𝑎3𝑏1 + 𝑎3𝑦𝑝 − 𝑏3𝑥𝑝 

 

( 24 ) 

휁2 can be obtained by substituting 휁1 into one of the main equations. The advantage of this 

method is that it interpolates variables according to the basic assumptions of FEM and 

computationally it is less expensive compared to other interpolation methods. One of the 



 

34 

 

main limitations of this method in the case of 3D formulation is that it needs a numerical 

solution for a system of three nonlinear equations. 

3.6 Spatial Homogenization: 

 In classical mathematical homogenization theory [77], displacements are expanded as 

ui
ζ(X, t) = ui

0(X, t) + ζui
1(X, Y, t) +ζ2ui

2(X, Y, t) + o(ζ3) ( 25 ) 

Where 𝐗 and 𝐘 are defined as shown in figure 14.  𝐘 represents the material coordinate in 

the initial microscopic (unit cell) domain and 𝐲 is the deformed coordinate in the unit cell 

domain. The two macro and micro scale coordinates are related by Y ≡ X/ ζ with 0 < ζ ≪

1.  

 

Figure 14 Macro and micro coordinate systems. [77]  

Assumptions in this formulation are as following.  

1. Two scales are separable. 

2. Maximum displacement magnitudes of successive lower scales follow 

asymptotic convergence. 
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3. Size of unit cell is much smaller compared to the macroscopic dimension of the 

body.  

 

Based on the above assumptions, the overall (macro) deformation gradient is obtained from 

differentiation of the leading term in the asymptotic expansion as following.  

Fik(X, t) =
1

|ΘY|
∫ Fik(X, Y, t)dΘY = [δik +

∂ui
0(X, t)

∂Xk
]
at X=X̂ΘY

 
( 26 ) 

This equation assumes that the contribution of ui
1 to the macroscopic deformation gradient 

is negligible. This leads to the periodic boundary conditions shown in figure 15. This can 

be explained mathematically as following.  

ui
1(X, Y, t) = ui

1(X, Y + kL, t) ( 27 ) 

Where L is the characteristic size of the cell.   

 

Figure 15 Definition of periodic boundary conditions: (a) initial unit cell and (b) 

deformed unit cell. [77] 
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CHAPTER 4 

A GENERALIZED FEED FORWARD DYNAMIC 

ADAPTIVE MESH REFINEMENT AND DE-

REFINEMENT FINITE ELEMENT FRAMEWORK FOR 

SPATIOTEMPORALLY PERIODIC LOCALIZED 

BOUNDARY CONDITIONS: APPLICATION TO METAL 

LASER SINTERING 

4.1. Introduction 

The finite element method (FEM) is a widely used numerical method for solving 

systems of partial differential equations (PDEs).  A typical FEM algorithm involves 

discretizing a domain into a finite number of elements and formulating a weak form of the 

PDE. A weak form of differential equations can be decomposed into a system of linear 

equations with the help of weighted residuals or the principle of minimum energy. The 

computational cost when solving these systems of equations and the accuracy of the 

solution depends on the extent of refinement. A strategy where mesh refinement is decided 

based on variations across a domain is called adaptive mesh refinement (AMR)[78]. AMR
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 is useful for reducing the computational costs involved in problems with significant spatial 

variations or localized behavior. 

4.1.1 Adaptive Meshing:  

Adaptive mesh refinement was proposed by Berger and Oliger to solve wave equations 

with localized steep gradients [78-79]. AMR provides significant advantages in terms of 

reliability and computational costs for simulating systems with different characteristic 

spatial lengths. For example, wave propagation leads to local deformation which requires 

refinement in that region to capture the localized phenomena. The multi-scale nature of 

AMR enables one to more efficiently solve problems where computational cost and time 

would be very high if the problem were to be solved with a high resolution everywhere 

[79].  

To apply AMR effectively, acceptable values of error bounds and estimated error are a 

consideration. The following subsection explains different error estimation techniques and 

their formulation in depth. 

4.1.2 Error Estimates in FEM 

Traditionally, convergence of a finite element model is checked using mesh 

convergence. This method is computationally expensive for time dependent dynamic 

problems where adaptive meshing is required. General adaptive meshing software tools 

[80] employ error estimators to estimate accuracy of the solution obtained within a 

particular level of refinement. There are two types of error estimators available [81] namely 

apriori and posteriori estimators. Apriori error estimators are used to understand the 

asymptotic behavior of the errors but are not used to determine an actual error estimate.  
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Posteriori error estimators work on the solution itself to obtain estimates of the actual 

solution errors. In the following sections both of these estimators are discussed in greater 

details.  

4.1.2.1 A Priori Error Estimates  

A priori error estimates provide useful information on the asymptotic behavior of the 

approximation. The Lax Theorem [82] is the fundamental theorem for apriori error 

estimation in the numerical solution of PDEs. It starts with a generalized representation of 

a PDE in the following form where 𝐿 is a differential operator and ∅ is an actual solution 

of the differential equation.  

𝐿∅ = 𝑓 ( 28 ) 

to understand the Lax Theorem assume a system where: 

𝐿𝜑 =
𝜕2∅

𝜕𝑥2
= 𝑓 

( 29 ) 

Taylor’s expansion of the above equation using central difference approximation gives  

𝜕2∅

𝜕𝑥2
=

∅(𝑖 + 1)ℎ − 2∅(𝑖ℎ) + ∅(𝑖 − 1)ℎ

ℎ2
+ 𝑂(ℎ2) 

( 30 ) 

Assuming a discrete solution  

𝜑𝑖 = ∅(𝑖ℎ) ( 31 ) 

A discrete operator 𝐿ℎ is defined as  
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𝐿ℎ𝜑 =
𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1

ℎ2
 

( 32 ) 

The final discretized system of equations will be 

(𝐿ℎ𝜑)𝑖 = 𝑓𝑖  

where  𝑓𝑖 = 𝑓(𝑢 = 𝑖ℎ) 

( 33 ) 

Consistency equations can be further defined as 

∅𝑖 = ∅(𝑖ℎ) 

(𝐿ℎ𝜑)𝑖 − 𝑓𝑖 = 𝜏𝑖 = O(ℎ2)  

( 34 ) 

and the stability equation   

‖(𝐿ℎ−1
)‖       

is bounded and independent of h.   

( 35 ) 

Thus error is defined as  

휀 = ∅ − 𝜑 

𝐿ℎ휀 = 𝜏 

( 36 ) 

Convergence is then derived from stability and consistency  

‖휀‖ ≤ ‖(𝐿ℎ−1
) 𝜏‖ ≤ 𝐶‖𝜏‖ ( 37 ) 
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This theorem proves that the convergence is proportional to ℎ2 for the elliptic 

differential equation considered here. This is true with respect to linear FEM formulations 

with bilinear shape functions.  

4.1.2.2 Posteriori Error Estimates   

In FEM, a domain is decomposed into small elements and a solution of the differential 

equation in each element is assumed to have the form  

∅̂ = 𝑁𝑖(�⃗⃗� )𝑞𝑖 ( 38 ) 

where 𝑁𝑖 are the shape functions and 𝑞𝑖 is an approximate solution of the differential 

equation at the 𝑖𝑡ℎ node of the element.   A posteriori error [83] in the approximate solution 

∅̂ is defined as: 

𝑒∅(𝑥) = ∅(𝑥) − ∅̂(𝑥) ( 39 ) 

Similarly, errors in integration point variables namely stress (𝜎) and strain (휀) are defined 

as: 

𝑒𝜎(𝑥) = 𝜎(𝑥) − �̂�(𝑥) 

𝑒𝜀(𝑥) = 휀(𝑥) − 휀̂(𝑥) 

( 40 ) 

These error measures are a function of position vector 𝑥  and can be positive or negative 

depending on the location of 𝑥 . A better error indicator should be a scalar so that error 

criteria can be checked and decisions can be made accordingly. For this purpose, different 

error norms are used. For example an 𝐿2 norm is defined as 
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‖∅‖2 = ∫ ∅(𝑥) ∅(𝑥)
Ω

𝑑Ω 
( 41 ) 

The energy norm 𝐿2 norm of the conjugate stress and strain spaces is one of the most widely 

applied norms in FEM error analysis of linear elastic structural problems. It is defined as 

‖∅‖2 = ∫ (휀 − 휀⏞) 𝐸(휀 − 휀⏞)
Ω

𝑑Ω 

           = ∫  𝑒𝜀
𝑇𝑒𝜎𝐸Ω

𝑑Ω 

( 42 ) 

A relative percentage error norm is defined as  

𝑛 = 100 × 
𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟(𝑒)

𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑒 ∅
 

( 43 ) 

The main challenge in the posteriori error estimate mentioned so far is to derive an 

exact solution ∅(𝑥) for the differential equation. It is not possible in most practical 

problems involving complex geometries to find an exact analytical solution. It has been 

shown that in continuous smoothened solutions for stress and strain it is more accurate 

compared to piecewise approximate solutions determined using FEM. Among various 

methods of smoothening FEM solutions, Super Convergent Patch (SCP) recovery [84] of 

the elements is one of the most accurate methods.  

In order to reduce the error peaks due to localized variations and steep gradients in 

material response, various localized refinement methods have been proposed. The 

refinements are adaptive in nature where the refinement sizes are corrected inversely with 

error magnitudes. The process of correction of refinement sizes is iterative in nature where 

the refinements are corrected until the local error magnitudes are below a user-specified 
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error-tolerance. Generally, the error-tolerances are kept as a very small fraction of the 

initial maximum response magnitude or initial maximum magnitude of the external 

stimulus or combinations of both depending on the definition of error calculation. When 

the error is out of the bound, the mesh is refined adaptively to bring it within the tolerance 

level.  Various structured adaptive mesh refinement strategies are discussed in the next 

sub-section. Unstructured adaptive mesh refinement strategies have not been discussed 

here since they are not within the scope of the application.  

4.1.3 Structured Adaptive Meshes  

In structured adaptive meshes, the mapped orthonormality of the grid is strictly 

maintained or a particular motif is maintained. The basis of the mesh can be regular 

Cartesian or curvilinear in nature.  Block structured mesh refinement [78-79] involves a 

mesh refinement of multiple sub domains such that two domains can share a boundary but 

no area can be shared. Each domain can be meshed independently and can be further 

refined to reach higher amounts of resolution. This strategy can be explained through a tree 

diagram as shown in figure 16. The refinement inside each subdomain creates a mismatch 

of mesh density at the interface of the coarse grid and refined subdomain grid (Figure 17) 

and can lead to erroneous results. This can be avoided with additional constraints at 

interfaces. The disadvantage of having additional constraints is that the solution may not 

reach its equilibrium distribution. 
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Figure 17 An example of a three-level, block-structured AMR hierarchy [86]. 

The irregular nodes in the block structured adaptive mesh can be avoided with an 

adaptive mesh generated with mesh distortion as shown in figure 18. This method has been 

used along with Multizone Adaptive Grid Generation (MAGG) [87] or Moving Meshes 

[88]. These methods require additional computations to compute the characteristics of a 

curvilinear mesh grid as shown in figure 18.  

 

Figure 16: (a) Geometry and (b) data structure of a 3-

level mesh tree [84]. 
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Figure 18 Adaptive Mesh with Mesh Distortion 

4.1.4 Adaptive Meshing in Dynamic Problems and Data Transfer between Meshes 

Certain classes of problems such as large deformation or time dependent dynamic 

problems require adaptive dynamic mesh refinement where the mesh is dynamically 

adapted to new boundary conditions, evolving constitutive laws or geometry. This dynamic 

adaptivity of the mesh calls for data transfer from the parent mesh to the newly adapted 

mesh [89,90]. Various interpolation techniques are used for this purpose. Two widely used 

interpolation techniques [89-95] are namely the Radial Basis Function Method and the 

Inverse Isoparametric Method. In the present work the Isoparametric interpolation method 

[95] is used considering its computational efficiency and compatibility with FEM 

discretization assumptions. The next subsection describes a special class of dynamic 

problems where refinement, de-refinement and data transfer is required frequently.  
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1.4.1 Literature on dynamic adaptive mesh generation  

“Dynamic adaptive meshing” has been used for various types of adaptive meshing 

strategies which involve meshing adaptively for dynamic boundary conditions or response 

evolution. A dynamically adaptive mesh [96] has been prepared with the help of a moving 

mesh strategy involving solution of Variational equations derived for moving mesh 

generation. Similar moving finite element method algorithms with various error criteria 

have been tried in the literature. An error based re-distribution [97] and adaptivity in 

moving mesh has been tried and implemented to solve localized dynamic problems. A level 

set method [98] has also been used for creating a dynamic moving mesh.  

In the case of spatiotemporal problems, a moving mesh requires a large number of 

adaptations, which entail solving the moving mesh equations multiple times.  The block 

structured refinement can provide the same computational reduction because it does not 

require solving moving mesh equations to generate the mesh. The disadvantage associated 

with this methodology is that large number local adaptations are required to follow a 

moving energy source. The error estimate calculations and graph generation can be avoided 

with intelligent schemes where patterns learned [99] from similar problems are used to 

develop intelligent schemes.  Combining block structured refinement and intelligent 

adaptive meshing strategies can help reduce the time required to perform error estimates 

and matrix assembly up to certain extent but at every iteration stiffness matrices are 

required to be assembled again.  

An easier methodology to solving these problems is to create a refined moving region 

which is upper bounded on refinement. This will avoid repeated error estimate calculations, 
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mesh graph generation and the possibility of intelligent matrix reassembly. A similar 

moving refinement of the localized regions near a machine tool has been attempted with 

coded box cell (CBC) [100] excluding a de-refinement of the refined localized region. In 

the present work a new strategy is introduced to generate a moving finite element 

refinement zone with a cut-paste-solve-restore algorithm. Mesh graph generation (excludes 

stiffness matrix assembly) using a cut-paste strategy [101] has been attempted for 

triangulated meshes. The computational time required to generate stiffness matrices for a 

newly adapted mesh graph is significantly higher compared to the new mesh graph 

generation or modification. This work will also focus on efficient regeneration of the 

stiffness matrix for the new location of the moving refinement box. 

4.1.4.2 Literature on FEM Simulations in Metal Laser Sintering 

A two dimensional plain stress model [102] has been attempted to calculate thermal 

distribution and residual stresses using FEM analysis.  An axisymmetric model [103] is 

attempted with the assumption that the powders transform into a sphere due to surface 

tension. A symmetric boundary condition model [104] with respect to a plane in the vertical 

direction of scan path has been attempted with consideration of laser light penetration and 

evaporation. Simulations with a global scale model [105] which averages out the scan 

pattern into an area heat source has been considered to reduce computational complexity. 

Such a model will calculate thermal evolution and stresses away from the scan pattern more 

accurately compared to evolution just near the laser spot.  A single scale 3D finite element 

model [106] has been attempted to simulate thermal distribution and residual stresses along 

with temperature and porosity dependent thermal properties.  
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In the simulation of Metal Laser Sintering, or more generally for spatiotemporal 

problems, multi scale simulation is necessary to account for multiple macroscopic scales 

involved in the analysis. A two scale model for subdomain refinement [107] has been 

attempted with temperature dependent thermal properties and phase transformations. An 

element birth and death process [108] has been implemented to simulate Metal Laser 

Sintering along with material nonlinearities in a 3D transient thermal finite element model. 

The simulation uses a two scale resolution model with tapering in the refinement transition 

zone.  A similar mesh simulation [109] has been attempted for overhanging part build in 

Metal Laser Sintering with the help of ANSYS.  Childs et al. [110] investigated the 

influence of process parameters on the mass of melted single layers in Metal Laser 

Sintering and found that melted mass increased with increasing scanning speed. A static 

two scale model [111] is prepared for predicting melt pool dimensions for a geometry of 

6×9 mm area.  

4.1.5 Spatio-temporal Periodic Problems and Metal Laser Sintering  

A spatio-temporal periodic function is defined as a function which repeats itself over time 

with rigid translation in space. It can be expressed in the following form. 

𝑓(𝑥, 𝑡) = 𝑓(𝑥 + 𝑣 𝑇, 𝑡 + 𝑇) ( 44 ) 

Where the 𝑣 represents the speed and T represents the time-period of the problem. An 

assumption for continuously spatio-temporal periodic problems in time is given in equation 

45. 

T → 0 ( 45 ) 
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Spatio-Temporal periodicity can be observed in various problems including metal laser 

sintering, wave propagations, thermodynamics of welding, various manufacturing 

processes like sheet metal rolling, and dynamic tire road surface contact. The present work 

is focused on simulation of metal laser sintering using a novel feed forward dynamic 

adaptive mesh refinement and de-refinement finite element (FFD-AMRD) algorithm. This 

algorithm involves a moving fine-mesh box which can capture the spatiotemporal 

phenomena shown in figure 19.  

Metal laser sintering is an additive manufacturing process in which the surface of a 

powder bed is melted layer by layer to create a 3D part with complex geometry. Further 

detailed descriptions and literature related to our metal laser sintering thermo-mechanical 

formulation can be found in a related article [112]. The basic PDE and FEM formulation 

required to solve thermal behavior during metal laser sintering is given in the next 

subsection. 

4.1.6 Governing Equations and Finite Element Formulation in FFD-AMRD  

The governing heat transfer equation can be written as  

−(
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
) + 𝑄 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

( 46 ) 

Where  𝑞𝑥, 𝑞𝑦, 𝑞𝑧 are components of heat flow through unit area. According to Fourier’s 

law 
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Figure 19 Schematic Diagram showing FFD-AMRD dynamic mesh 
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𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
 

𝑞𝑦 = −𝑘
𝜕𝑇

𝜕𝑦
 

𝑞𝑧 = −𝑘
𝜕𝑇

𝜕𝑧
 

  

 

( 47 ) 

Element Formulations of 3D thermal FEM  

 

Figure 20 A brick element with 8 integration points. The �̅� integration scheme has been 

incorporated 

Equation 46 has been decomposed into a weak form [113] as equation 48. 

[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]{�̇�} + [𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙]{𝑇} = {𝑅𝑄}  ( 48 ) 

A description of the three matrices in equation 48 is given below. 

(i) Thermal stiffness formulation 

The thermal stiffness matrix 𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙 is expressed as follows: 

             𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙 = ∫ 𝐵𝑇ℎ𝑒𝑟𝑚𝑎𝑙
𝑇 �⃗� ⃗

 
𝐵𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑑𝑉 +

𝑉
∫ ℎ𝑁𝑇𝑁𝑑𝑆
𝑆

 
( 49 ) 
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where 𝐵𝑇ℎ𝑒𝑟𝑚𝑎𝑙 is known as the flux-temperature matrix. The size of this matrix is 

3×8. For a brick element comprised of 8 integration points as shown in figure 20, 

equation 49 is cumulatively repeated for all the integration points leading to 

𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙 of size 8×8. 𝑑𝑉 denotes the volume of the element. The surface integral 

is valid when the bulk is exposed to a convection boundary condition. The surface 

integral is employed at the exposed surface with 2 dimensional shape functions 

[113] and then transformed to three dimensional space. ℎ in the above mentioned 

case is the convective heat transfer coefficient which has been assumed to be 12.5 

W/(m2K) for Argon [114]. Argon fills the chamber atmosphere for reactive 

materials processed using metal laser sintering.  

(ii) Thermal specific heat matrix formulation 

The thermal specific heat matrix 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is expressed as follows: 

             𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = ∫ 𝜌𝑁𝑇𝑐𝑁𝑑𝑉
𝑉

 ( 50 ) 

where [𝑁] = [𝑁1  𝑁2  𝑁3 … . . 𝑁8 ] are the 3 dimensional nodal shape functions of 

size 1x8. 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is computed once and it has a size of 8x8. 

 

(iii) Thermal flux vector formulation 

The thermal flux vector 𝑅𝑄 of size 8x1 is evaluated as follows: 

             {𝑅𝑄} = ∫ (𝑞 (𝑟 , 𝑡). �̂�)𝑁𝑇𝑑𝑆
𝑆

+∫ ℎ𝑇𝑒𝑆
𝑁𝑇𝑑𝑆 ( 51 ) 

where 𝑞  is the input heat flux. 𝑑𝑆 denotes the surface area of the element. The 

second surface integral in equation (51) is valid only when the convection boundary 
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conditions operate and hence should be employed on those boundaries only. In this 

scenario, 𝑇𝑒 denotes the temperature of the ambient environment. 

Calculation of these matrices and solving equation 48 requires significant computational 

effort if uniform fine mesh density is employed. In the next section a proposed efficient 

numerical algorithm is presented with mathematical error estimation rationality for its 

development.  

4.2 FFD-AMRD framework for applications in spatio-temporally periodic localized 

boundary conditions  

In this section the FFD-AMRD algorithm is described and applied to metal laser sintering. 

First a mathematical rationality for using refined moving fine mesh is established. The 

thermal behavior in the case of metal laser sintering can be decomposed into local and 

global problems in terms of thermal curvature. It can be approximately estimated using a 

cylindrical coordinate system in 2D. Here thermal flow is assumed to be 2-dimesional and 

the Gaussian heat flux from the laser is assumed to be an external heat input as ℎ(𝑟).  

𝑘
𝑑2𝑇

𝑑𝑟2
=

𝑑𝑇

𝑑𝑡
− 𝑘

1

𝑟

𝑑𝑇

𝑑𝑟
− ℎ(𝑟) 

( 52 ) 

The laser is centered at 𝑟 = 0 with Gaussian flux. The 
𝑑𝑇

𝑑𝑟
 term in the above equation has a 

magnitude on the order of (
1

𝑟2) provided the integral of the radial flux is maintained 

constant.  The assumption that laser flux is equal to direct heat input  ℎ(𝑟) with Gaussian 

distribution can be described as:  

ℎ(𝑟) = 𝑐 𝑒
−

𝑟2

2𝜎2 
( 53 ) 
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Substituting equation 53 into equation 52 and using an order of magnitude analysis along 

with equations 7 and 10 results in equation 54.  

𝜗 (𝑘
𝑑2𝑇

𝑑𝑟2
) = −𝜗 (

1

𝑟2
) − 𝜗 ( 𝑐𝑒

−
𝑟2

2𝜎2) ≈ 𝜗(ℎ2) 
( 54 ) 

This asymptotic behavior can be further exploited to increase efficiency of otherwise 

computationally expensive spatiotemporally periodic problems. The algorithm for 

achieving the increased efficiency is described in the next two sub-sections. A nonlinear 

asymptotic expansion decomposition of this problem has been attempted [112]. 

4.2.1 Fast Sorting Methodologies to Increase Data Transfer Between Meshes 

The algorithm for interpolation of DOF information from a node in a previous spatial 

mesh configuration to the next spatial mesh configuration depends on the implemented 

method. In the present work, an inverse isoparametric interpolation strategy has been used. 

This strategy searches a target element in the next spatial mesh configuration in close 

proximity to the nodes present in the previous spatial mesh configuration. This search is 

expensive to perform though most of the nodes in the coarse mesh have a one-to-one 

correspondence between the present spatial mesh configuration and the next one. 

Henceforth, the number of calls for searching a target element in the next mesh 

configuration is largely reduced. Moreover, the search is not exhaustive in nature. The 

element in the next mesh configuration has defined bounds and the nodes falling between 

those bounds are used for interpolation as shown in the schematic in Figure 21.  
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Figure 21 Schematic showing old (blue elements) and next (red nodes) mesh 

configurations. 

 

Figure 22 Target Element (old mesh configuration) for illustrated nodes (next mesh 

configuration). x and y bounds are shown with local isoparametric target element axes ζ 

and ε. 
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The fast sorting strategy is described using set theory based mathematical equations from 

equations 28 to 37. 

𝑀𝑒𝑠ℎ𝑜 = 𝑓(𝑁𝑜, 𝐸𝑜) 

  𝑀𝑒𝑠ℎ𝑁 = 𝑓(𝑁𝑁, 𝐸𝑁)  

( 55 ) 

where subscript O denotes the previous (old) mesh configuration and subscript N denotes 

the next (new) mesh configuration. Figure 21 shows nodes in two different consecutive 

configurations. 𝑀𝑒𝑠ℎ denotes the connectivity of node (N) and element (E) respectively. 

Each component of the mesh array (𝑀𝑒𝑠ℎ) consists of 1 element number and 8 node 

numbers in a strictly positive triple product sequence. 

𝑐𝑜𝑟𝑑(𝑁) = [𝑋𝑁, 𝑌𝑁 , 𝑍𝑁] ( 56 ) 

where the 𝑐𝑜𝑟𝑑(𝑁) function denotes the 3 dimensional location of a particular node (N) 

consisting of a position vector triplet [𝑋𝑁 , 𝑌𝑁 , 𝑍𝑁]𝑇. 

𝑐𝑜𝑟𝑑(𝑁𝑂) ∩ 𝑐𝑜𝑟𝑑(𝑁𝑁) = 𝐺 ( 57 ) 

𝑁𝐶 = 𝑐𝑜𝑟𝑑−1(G) ( 58 ) 

where node (𝑁𝐶) denotes the common nodes between the previous and next mesh 

configurations. 

𝑓(𝑁𝐶 , 𝐸𝑜) = 𝑓(𝑁𝐶 , 𝐸𝑁) ( 59 ) 

which solves for the elements 𝐸𝐶, common to both previous and next mesh configurations 
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𝐸𝑜 − 𝐸𝐶 = 𝐸𝑁𝐶𝑂 ( 60 ) 

where element (𝐸𝑁𝐶𝑂 ) denotes the uncommon nodes present in the previous mesh 

configuration. 

𝑁𝑁 − 𝑁𝐶 = 𝑁𝑁𝐶𝑁 ( 61 ) 

where node (𝑁𝑁𝐶𝑁) denotes the uncommon nodes present in the next mesh configuration. 

𝐵𝑜𝑢𝑛𝑑(𝐸𝑁𝐶𝑂) = [𝑋𝑖𝑛𝑖,𝑁𝐶𝑂, 𝑋𝑖𝑛𝑖,𝑁𝐶𝑂, 𝑌𝑖𝑛𝑖,𝑁𝐶𝑂, 𝑌𝑖𝑛𝑖,𝑁𝐶𝑂, 𝑍𝑖𝑛𝑖,𝑁𝐶𝑂, 𝑍𝑖𝑛𝑖,𝑁𝐶𝑂] 

∀ 𝑐𝑜𝑟𝑑(𝑁𝑁𝐶𝑁) ∈ 𝐵𝑜𝑢𝑛𝑑(𝐸𝑁𝐶𝑂) : as shown in (figure 22) 

( 62 ) 

There exists a pair s.t. 

𝑃𝑎𝑖𝑟(𝑁𝐶𝑁,𝑁𝐶𝑂) = [𝑁𝑁𝐶𝑁, 𝑇(𝑁𝑁𝐶𝑁)] ( 63 ) 

where  

𝑇(𝑁𝑁𝐶𝑁) ⊂ 𝐸𝑁𝐶𝑂 ( 64 ) 

4.2.2 Efficient Stiffness Matrix Assembly 

The stiffness matrix of the dynamic moving mesh for a particular 𝑖𝑡ℎ mesh 

configuration is generated from the intact course mesh and fine mesh stiffness matrices. 

This will reduce the actual computational time required to assemble stiffness matrices. 

4.2.3 FFD-AMRD thermal FEM algorithm 

In the FFD-AMRD algorithm, the refinement zone is expected to refine and de-refine 

itself as the external spatiotemporal stimulus or response moves. Table 2 explains the 
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intelligent algorithm to efficiently perform such refinement and de-refinement in negligible 

time overhead for FEM mesh regeneration and renumbering along with recalculation of 

FEM matrices. 

Step 1: Mesh Generation: 

Table 2 FFD-AMRD algorithm 

1. Fixed coarse mesh generation  𝒂 × 𝒃 × 𝒄 size prism 

 𝒅𝒊𝒗𝒙 , 𝒅𝒊𝒗𝒚 and 𝒅𝒊𝒗𝒛 ; 2D element connectivity (Matrix: # of Coarse 

Elements (Coarse_el_length)  ×  8) 

 𝒏𝒐𝒅𝒆𝒙 , 𝒏𝒐𝒅𝒆𝒚  and  𝒏𝒐𝒅𝒆𝒛 

 2D mesh for bottom surface -- 2D connectivity (elem) and coordinate 

(coord) arrays  

 Extrude to make 3D mesh -- 3D elem and coord arrays (figure 23) 

 

Figure 23 3D extruded fixed coarse mesh generation 

2. Dynamic fine mesh block  𝑺𝒅 × 𝑺𝒅 size prism 

 Decide mesh divisions 

 Generate bottom surface mesh :      
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i. nodes for the central square box 

ii. nodes for radial boxes 

iii. element connectivity for each block 

 Extrude in 𝑧 direction  

 elem and coord (figure 24) 

 

3. Combined Adaptive Mesh for laser beam at location  𝑟 = 𝑟 𝑞 + 𝑣 𝑡 

 Cut elements  𝒄𝒖𝒕_𝒍𝒊𝒔𝒕(Vector: 𝐸𝑣𝑎𝑐 × 1 ) from coarse mesh 

 Paste finemesh 

 𝑮𝒍𝒐𝒃𝒂𝒍𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚  (Matrix: 𝑁𝑢𝑚𝑒𝑙𝑒𝑚 × 8) array (figure 25) 

 𝑮𝒍𝒐𝒃𝒂𝒍𝑪𝒐𝒐𝒓𝒅   (Matrix: tlnodes× 3) array (figure 25) 

 

Figure 24 3D extruded independent fine mesh 

generation 
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Figure 25 FFD-AMRD mesh, stiffness and specific heat generation matrix 

4. Scan Pattern Generation 

 time 𝒕𝒊 

 key turning points OR Trajectory Points  𝑲𝒕𝒖𝒓𝒏𝒊  (𝑥𝑖 , 𝑦𝑖)   

 Time step  𝒅𝒕𝒊  

 𝒅𝒙𝒊
⃗⃗ ⃗⃗ ⃗⃗   =�⃗⃗�  𝒅𝒕𝒊 

 Discretization between all 𝑲𝒕𝒖𝒓𝒏𝒊 𝒂𝒏𝒅 𝑲𝒕𝒖𝒓𝒏𝒊+𝟏 

 Final array : 𝑳𝒂𝒔𝒆𝒓_𝒍𝒐𝒄 (Matrix: (tsteps+1)×3) 

 𝑳𝒂𝒔𝒆𝒓_𝒍𝒐𝒄 (𝒊, : )  =   [𝒕𝒊  𝒙𝒊  𝒚𝒊] 
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Step 2: Finite Element Simulation with Feed Forward Dynamic Adaptive Meshing 

 

𝐅𝐎𝐑 𝑙𝑎𝑦𝑒𝑟 =  1 𝑡𝑜 #𝑙𝑎𝑦𝑒𝑟𝑠  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠) 

                         Modify: 𝒆𝒍𝒆𝒎 and 𝒄𝒐𝒐𝒓𝒅 for added layer        

                         Decide: dimensions of all arrays like K and C  

                         Generate 𝐾𝑐𝑜𝑎𝑟𝑠𝑒 , 𝐾𝑓𝑖𝑛𝑒 , 𝐶𝑐𝑜𝑎𝑟𝑠𝑒, 𝐶𝑓𝑖𝑛𝑒  

                         Generate 𝐾𝑣𝑎𝑐 𝑎𝑛𝑑 𝐶𝑣𝑎𝑐 

                         FOR offset =1 to #finemesh movements 

                                     from last mesh to new mesh: isoparametric interpolation 

i. DOF Transfer  

ii. State variable  

                                   FOR timestep:  𝑡𝑖 𝑡𝑜 𝑡𝑖+𝑛 

                                            Generate Nonlinear K and C matrices 

                                         𝐾𝑝𝑟𝑒𝑑 = 𝑓(𝐾𝑐𝑜𝑎𝑟𝑠𝑒) + 𝐴[𝐾𝑓𝑖𝑛𝑒−𝑛𝑜𝑟𝑚]𝐵 +

𝑔(𝑇, 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

                                             Simplify in the form of  𝐾𝑝𝑟𝑒𝑑 = 𝐾 + ∆𝐾 
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                                             𝑇(𝑖+1)𝑝𝑟𝑒𝑑 = 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦(𝐾𝑝𝑟𝑒𝑑)𝑇𝑖 

                                         𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓(𝐾𝑐𝑜𝑎𝑟𝑠𝑒) + 𝐴[𝐾𝑓𝑖𝑛𝑒−𝑛𝑜𝑟𝑚−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑]𝐵 +

                                                                       𝑔(𝑇, 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

                                            𝑇(𝑖+1)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑑= 𝑓′(𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 

 

                                           Interpolation to simple regular base grid: For input to DDCP 

FEM 

                                                                           DOF Transfer 

                                                                           State Variable Transfer 

                                END timesteps 

                       END offsets 

 

                FOR 1 to # cooling time steps 

                                       Generate Nonlinear K and C matrices for the fine mesh region 

                            𝐾𝑝𝑟𝑒𝑑 = 𝑓(𝐾𝑐𝑜𝑎𝑟𝑠𝑒) + 𝐴[𝐾𝑓𝑖𝑛𝑒−𝑛𝑜𝑟𝑚]𝐵 + 𝑔(𝑇, 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

                                             Simplify in the form of   𝐾𝑝𝑟𝑒𝑑 = 𝐾 + ∆𝐾 
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                                             𝑇(𝑖+1)𝑝𝑟𝑒𝑑 = 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦(𝐾𝑝𝑟𝑒𝑑)𝑇𝑖 

                                         𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓(𝐾𝑐𝑜𝑎𝑟𝑠𝑒) + 𝐴[𝐾𝑓𝑖𝑛𝑒−𝑛𝑜𝑟𝑚−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑑]𝐵 +

                                                                        𝑔(𝑇, 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

                                            𝑇(𝑖+1)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑑= 𝑓′(𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 

               END time steps 

 END Layers 

 

4.2.4 Comparison of FFD-AMRD algorithm with traditional FEM 

Figure 25 shows that fine mesh box divisions (Fd) of the course mesh are transitioned 

in to the same number of divisions. The zoom in ratio in both x and y directions (Zr) will 

determine the computational complexity when compared with uniform mesh FEM 

analysis. The computational complexity [115] of Cholesky Decomposition for solving (n) 

number of simulation equations is (𝑛3/2). This implies that the time complexity 

comparison of a uniform mesh compared with FFD-AMRD will be exactly (𝑍𝑟6). This is 

based on the fact that the ratio of number of nodes will be equal to (𝑍𝑟2). In the present 

work since Zr equal to 3 is used, the computational complexity ratio between traditional 

FEM and FFD-AMRD will be 729.   

4.3. Problem geometry description and boundary conditions 

   

Two case studies were attempted.  The first is a linear one dimensional FEM analysis 

approximation of spatiotemporally periodic heat input and is referred to as Case Study 1. 
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This analysis will serve as a simplified case for developing a phenomenological 

understanding of various nonlinearities and for testing algorithms. The second case study 

involves a three dimensional FEM simulation using the FFD-AMRD algorithm to simulate 

metal laser sintering and is referred to as Case Study 2. In both case studies heat input 

(machine process) parameters are assumed as follows. 

𝑠𝑐𝑎𝑛 𝑠𝑝𝑒𝑒𝑑: 1200𝑚𝑚/𝑠,  

𝑏𝑒𝑎𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟: 100 μ𝑚 

ℎ𝑎𝑡𝑐ℎ 𝑠𝑝𝑎𝑐𝑖𝑛𝑔: 100 μ𝑚 

Laser power: 180 watts 

 

4.3.1 Case Study 1  

The problem geometry considered here is a one dimensional bar. The assumption of a 

one dimensional bar is valid since the geometry considered is a straight bar with small 

cross-sectional dimensions compared to its length (l). Figure 26 shows the problem 

geometry. 

 

 

 

 

Figure 26 Dynamic boundary condition of the one-dimensional problem 
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The basic equation of heat transfer is 

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
=

𝑘

𝑐𝜌

𝜕2𝑇(𝑥, 𝑡)

𝜕𝑥2
+ 𝑄(𝑥, 𝑡) 

( 65 ) 

where 

 𝑇(𝑥, 𝑡) = Temperature at point x and time t. 

𝑘 = One-dimensional material conductivity 

𝑐 = One-dimensional specific heat of the material 

𝜌 = Density of the bar for a unit cross-section 

𝑄(𝑥, 𝑡) = Inner heat generation at point x and time t.  

Also, we define another variable to incorporate the flux boundary conditions as follows: 

𝑞(𝑥, 𝑡) = −𝑘
𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
 

( 66 ) 

where  𝑞(𝑥, 𝑡) = Flux at point x and time t.  

Further, the spatio-temporal periodicity of the flux boundary is considered as: 

𝑞(𝑥 + 𝑣(𝑑𝑡), 𝑡 + 𝑑𝑡) = 𝑞(𝑥, 𝑡) ( 67 ) 

The Dirichlet boundary condition considered here is constant temperature at the left end of 

the bar as shown in figure 26. The Dirichlet boundary condition is required so that the 

thermal stiffness matrices, namely the conduction and specific heat matrices, become non-

singular.  
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𝑇(0, 𝑡) = 𝑇0 = 353 𝐾𝑒𝑙𝑣𝑖𝑛𝑠 

The time-periodic Neumann boundary condition considered here is the laser flux 

distribution in one dimension: 

𝑞(𝑥, 𝑡) = (
2𝑃

𝜋𝑟𝑙𝑎𝑠𝑒𝑟
2
) exp (

−2(𝑥 − 𝑣𝑡)2

𝑟𝑙𝑎𝑠𝑒𝑟
2

) 
( 68 ) 

where 𝑃 = Laser beam power = 180W 

𝑟𝑙𝑎𝑠𝑒𝑟 = Laser beam spot size incident perpendicular to the length (l =100mm) = 100µm 

𝑣𝑡 = Distance travelled by the laser beam from the left end of the bar with a speed (𝑣 =

1200𝑚𝑚/𝑠) at time instant 𝑡 

The initial condition for the bar considered here is constant temperature 𝑇0. 

𝑇(𝑥, 0) = 𝑇0 = 353 𝐾𝑒𝑙𝑣𝑖𝑛𝑠 

 

4.3.1.1 FEM discretization and FEM formulation 

The bar is discretized into p+1=2000 nodes as shown in the figure 27. All elements are of 

the same length so element matrices such as conduction and specific heat matrices involved 

in FEM will be the same for all elements.  
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Figure 27 1-Dimensional line elements. 

A typical C matrix of an element is as follows: 

𝐶 = [
𝑎 −𝑐𝑜𝑒𝑓𝑓𝑐 ∗ 𝑎

−𝑐𝑜𝑒𝑓𝑓𝑐 ∗ 𝑎 𝑎
] 

A typical K matrix of an element is as follows: 

𝐾 = [
𝑏 −𝑐𝑜𝑒𝑓𝑓𝑘 ∗ 𝑏

−𝑐𝑜𝑒𝑓𝑓𝑘 ∗ 𝑏 𝑏
] 

where 𝑎 is the specific heat capacity of a node when increasing its temperature at a rate of 

1 ˚C/s and 𝑐𝑜𝑒𝑓𝑓𝑐 is the interaction specific heat capacity between the connecting nodes. 

Similarly, 𝑏 is the amount of flux flowing through a node when increasing its temperature 

gradient at a rate of 1˚C/m and 𝑐𝑜𝑒𝑓𝑓𝑘 is the interaction flux between the connecting 

nodes. 𝑐𝑜𝑒𝑓𝑓𝑐 and 𝑐𝑜𝑒𝑓𝑓𝑘 are generally considered 0.5 for the one dimensional case since 

the probability of heat flow is equal on both sides of the node. Since a one-dimensional 

approximation of the three dimensional heat transfer mechanisms of the metal laser 

sintering process are considered in the one-dimensional bar problem, the above mentioned 

coefficients will show drastic reduction in their values. In the current problem, the 

coefficients have been reduced by homogenizing a probability distribution such that it 

allows more heat transfer in the bulk as compared to the surface.  
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4.3.2 Case Study 2 

Detailed descriptions of Case Study 2 have been provided in a prior publication [112].   A 

thermally linear, homogenous and isotropic material behavior has been assumed for the 

Ti6Al4V material. The powder, molten metal inside melt pool and solidified regions have 

been assumed to be distinct homogenous phases.  The geometry of the problem is a solid 

base plate of thickness 25.4 mm and a powder layer of thickness 30 µm. A subdomain of 

full powder bed of size 2𝑚𝑚 × 2𝑚𝑚 has been considered for simulation. 

4.4 Results and Discussion 

4.4.1 Case Study 1 

Two subcases were attempted with constant and temperature dependent thermal 

parameters. They have been described as follows: 

Subcase 1: Thermal material parameters assumed to be constant  

Subcase 2: Nonlinear temperature dependent thermal material parameters [112] are 

considered. 

Temperature Distribution: Figure 28 shows the temperature distribution of the one 

dimensional bar considered here for both the subcases described above and at three 

equidistant time instances of 0.0025s, 0.005 s and 0.0075s. All three time instances are 

plotted when the melt-pool distribution has achieved its steady state over time. 

Temperatures in all cases are normalized by dividing by the maximum temperature in the 

linear case over time. The rationale for doing this normalization is to make results more 

generalized and meaningful to compare the response between the linear and nonlinear 

simulations.   
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Figure 28 Temperature distribution in 1D space 

It can be observed from figure 28 that the temperatures when using nonlinear parameters 

are significantly lower than when using linear parameters. The reason for this behavior can 

be attributed to increased conductivity and volumetric heat capacity near the laser beam 

spot as shown in figures 29 and 30, which leads to faster heat dissipation near the melt pool 

area. As a result, the melt pool diameter is comparatively smaller in subcase 2. 

Thermal Conductivity: The thermal conductivity remains constant as assumed over time 

and space in subcase 1 whereas in subcase 2, it shows a top-hat distribution due to constant 

thermal conductivity at temperatures higher than 1923 K (the melting temperature) as 

shown in figure 29.  
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Figure 29 Thermal conductivity distribution for nonlinear and linear cases of the one 

dimensional problem at three different times plotted against nodes. 

Volumetric heat capacity: The non-linear phenomenon in section 3.3 has led to a reverse 

top hat distribution near the melt-pool as shown in Figure 30.  

 

Figure 30 Volumetric heat capacity (ρc) for nonlinear and linear cases of the one 

dimensional problem at three different times plotted against nodes 
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4.4.2 Three dimensional FEM description of spatio-temporally periodic metal laser 

sintering problem with Ti6AL4V material 

A three-dimensional simulation using the FFD-AMRD algorithm is performed for case 

study 2. Figure 31 shows the surface temperature contours for the stabilized melt pool.  It 

can be seen that melt pool diameter is 125 µm. 

 

4.4.2.1 Microstructural validation 

Microstructural samples were created using a commercial EOS M270 metal laser 

sintering machine. These samples were fabricated using the same set of parameters used in 

the simulation and then cut to illuminate the transverse section. A set of cylindrical samples 

fabricated horizontally in the xy-plane of the machine (normal direction +x) were made. 

The prior beta grain size should be the lesser of the melt pool width or the hatch spacing, 

and the fact that it is equal to the hatch spacing indicates that the melt pool width is wider 

than the hatch spacing as predicted to be 125 µm.  

 

(a) (b) 

Figure 31 Comparison of thermal contours. The melt pool diameter in (b) is 125 µm. 
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4.5 Conclusion 

The developed numerical technique has shown significant potential for efficient and 

high resolution simulation of spatio-temporal problems with rapid time and spatial 

gradients. The magnitude of the temporal temperature gradients are on the order 

of 1050
𝐶/𝑠. Since the temperature profile is approximately Gaussian near the melt pool 

and is moving at the speed of 1200 mm/s, traditional FEM analysis is found be 364.5 times 

slower compared to the FFD-AMRD algorithm derived in section 4.2.3. It is seen in the 

line problem approximation that linear approximation gives higher temperatures and melt 

pool diameters. The prior beta grain size should be the lesser of the melt pool width or the 

hatch spacing, and the fact that it is equal to the hatch spacing indicates that the melt pool 

width is wider than the hatch spacing as predicted to be 125 µm in analysis. Further 

development of nonlinear FFD-AMRD will help give correct temperature distributions 

during processing. 

100 µm 

Figure 32 Optical microscopy image of microstructure showing grain 

boundaries along the melt pool boundary. 
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CHAPTER 5 

A NEW FINITE ELEMENT SOLVER USING 

NUMERICAL EIGEN MODES FOR FAST 

SIMULATION OF ADDITIVE MANUFACTURING 

PROCESSES 

5.1 Introduction 

Additive manufacturing has been on the forefront of innovations in engineering and 

has immense potential to revolutionize manufacturing. The major factors that are critical 

to any manufacturing technology are geometrical accuracy, mechanical properties of the 

produced part and process speed. These factors are important for additive manufacturing 

processes as well and improvement in any of these areas can lead to better optimized and 

reduced cost products. Process optimization based on these factors requires a good 

understanding of the physics and process behavior involved. The process behavior includes 

variation of mechanical and thermal variables across the part domain. Process behavior 

depends on the part geometry and machine parameters. Simulations can help achieve real 

time optimization of process parameters and closed loop control.  However, real time 

optimization requires fast simulations to be able to work at the speed of the machine. In 

the present work a new fast and memory efficient numerical solver for the Finite Element 
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Method (FEM) is presented for processes involving prismatic process domains including, 

for instance, the full powder bed in the case of Selective Laser Melting.  

 

5.2 Selective Laser Melting  

SLM is an important additive manufacturing process in which a laser beam selectively 

melts a powder bed layer-by-layer to build a complex three dimensional geometry (see 

Figure 33). SLM has found many applications in complex aerospace parts and biomedical 

implants. The accuracy and microstructure of the parts manufactured in the process can be 

improved with better control of machine input parameters. Input parameters for SLM 

include geometry, thermal boundary conditions, beam power, scan speed and hatch pattern. 

Optimization of beam power, scan speed and hatch pattern, in particular, affect the thermal 

behavior of the powder bed and the melt pool shape. The Melt pool shape has a significant 

impact on the final geometry of the built part. The thermal behavior of the full powder bed 

is also important from the perspective of thermal cooling rates during solidification, which 

determines the microstructures and phases in the final part. A detailed literature review of 

this area has been performed [116]. A recently developed multi-scale simulation 

framework known as Feed Forward Adaptive Mesh Refinement and De-refinement (FFD-

AMRD) [117,118] is used in the present work for various simulations and is also used as 

a part of the proposed simulation framework. 
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Figure 33 Schematic Diagram of the SLM process [119]. 

 

5.3 Governing equations and boundary conditions 

The finite element formulation [120] for heat transfer in this work is presented in this 

section. Heat transfer in a material with isotropic thermal properties has the following 

governing equation, 

 

−(
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
) + 𝑄 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

( 69 ) 

where qx, qy, qz  are components of heat flow through a unit area. According to Fourier’s 

law 

qx = −k
∂T

∂x
 

𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
 

 

 

( 70 ) 
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𝑞𝑧 = −𝑘
𝜕𝑇

𝜕𝑧
 

where: 

K = thermal conductivity coefficient of media. 

Q = Q(x, y, x)inner heat generation rate per unit volume.  

ρ = material density 

c = heat capacity 

 

Boundary Conditions: 

Specified Temperature:  Ts = T1(x, y, x) on area S1. 

Specified Heat Flow :   qxnx + qyny + qznz = −qs 

 

 

Element Formulation: 

Temperature distribution inside an element is approximated using shape functions.  

 

T = [N]{T} ( 71 ) 

[𝑁] = [𝑁1  𝑁2  𝑁3 … . . 𝑁𝑛 ] ( 72 ) 

T = {T1 T2 T3 …T8} ( 73 ) 

Where Ti = temperature at the ith node of the element. 

 

Temperature gradient can be written as 
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{
 
 

 
 

∂T

∂x
∂T

∂y

∂T

∂y}
 
 

 
 

=

[
 
 
 
 
∂N1

∂x

∂N2

∂x
…

∂N1

∂y

∂N2

∂y
…

∂N1

∂z

∂N2

∂z
…]

 
 
 
 

{T} 

 

( 74 ) 

 

Global FEM Equations:  

The global linear FEM equation for the transient linear problem is: 

 

[C]{Ṫ} + [Kc]{T} = {RQ} ( 75 ) 

where 

𝐶 = ∫𝜌𝑁𝑇𝑐𝑁𝑑𝑉

𝑉

 

[𝐾𝑐] = ∫𝐵𝑇𝑘𝐵𝑑𝑉

𝑉

 

𝑅𝑄 = ∫𝑄𝑁𝑇𝑑𝑉

𝑉

 

 

 

 ( 76 ) 

 Ṫ is a nodal vector of temperature derivatives with respect to time.  

 

Integration of Transient Thermal problem: 

The Crank Nicolson integration scheme [121] or generalized trapezoidal rule is used to 

integrate equation (69). This rule is: 

{𝑇𝑛+1} = {𝑇𝑛} + ∆𝑡 {(1 − 𝛽){�̇�𝑛} + 𝛽{�̇�𝑛+1}}             ( 77 ) 

Where 

 β =
1

2
  is a integration parameter for the Crank Nicolson integration scheme 

∆t = tn+1 − tn 
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Tn = known nodal temperature at time tn 

Tn+1 = temperature at time tn+1 

 

Substituting equation (75) into above equation (77) gives following equation: 

 

(
1

𝛽∆𝑡
[𝐶] + [𝐾]) {𝑇𝑛+1} = 𝑅𝑄 + [𝐶] (

1

𝛽∆𝑡
{𝑇𝑛} +

1−𝛽

𝛽
{𝑓𝑛+1})  ( 78 ) 

 

5.4 Phenomenological Multi-scale Formulation 

The SLM scan pattern generally has a block pattern or continuous scan pattern where 

the geometry is divided into square blocks and each block is scanned subsequently with 

serpentine or helical patterns. A representative scan pattern is shown in figure 34.  

 

 

Figure 34 Scan pattern used in SLM 

The temperature distributions away from the melt pool have much smaller gradients in time 

and space than near the melt pool. This is a multi-scale behavior where near the high 

gradient melt pool region, a higher mesh density is required compared to the rest of the 
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powder bed. In the present work two separate simulations are proposed for full bed 

temperature variation and the sub-domain region as shown in the figure 35. These two 

scales are connected by specifying boundary conditions from one scale to another 

iteratively. The difference in sub-modeling and the proposed two scale model is that it can 

consider the coupling between two scales. The two scales are described separately in the 

following discussion.  

 

 

Figure 35 Multi-scale analysis framework for simulation of the SLM process 
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5.4.1 FFD-AMRD simulation covering fine-scale and fine to coarse scales: 

The detailed description of the FFD-AMRD simulation software and its application to 

SLM were previously described in the literature [117,118]. This model covers simulation 

of serpentine scans in one sub-domain based on the boundary conditions provided by the 

coarse scale model. This model further considers various nonlinearities involved such as 

temperature dependent thermal material properties.  

 

This novel numerical tool has the capability to address multi-scale interactions involved in 

localized spatiotemporal behaviors, for example the thermal response in case of a moving 

weld spot or localized deformation in sheet metal rolling processes. Traditional finite 

element simulations require a very fine refinement to follow the moving localized 

spatiotemporal response with very high spatial and temporal derivatives. This can be 

attributed to the fact that the scale of the localized behavior could be 10𝑛 smaller compared 

to the macroscopic scale response. These two scales are efficiently bridged with FFD-

AMRD software. This software has been compared to the best available commercial 

software and it is found to be 10 to 20 times faster and more memory efficient. The features 

that help this approach achieve this time and memory efficiency are intelligent element and 

node renumbering, efficient data transfer between different mesh domains and mesh 

reassembly techniques.  

 

FFD-AMRD has the ability to model a general hatch pattern read from input files. The 

temperature dependent thermal properties and density data are read from input files. One 

of the challenges in the simulation of the SLM process had been simulation of temperature 
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dependent material properties (for example latent heat of fusion and vaporization). In the 

present software these phenomena are taken care of with mathematically rigorous 

numerical formulations to avoid instability in time integration. The boundary conditions 

taken into consideration are surface convection and constant temperature boundary 

conditions at the base plate or on the sides, and radiation if required. The record of 

simulated thermal history over time leads to evolution of the solidified part geometry and 

phase information in the solidified part, un-melted powder that has seen a phase change, 

and virgin powder in its parent phase. These outputs can help when optimizing machine 

input parameters to achieve better cooling rates and microstructures, resulting in better part 

life with improved mechanical properties.   

 

This model will be used to calculate total heat input in terms of the external flux from a 

laser beam and the heat absorbed by the material while changing phases, including the 

latent heat of vaporization and fusion.  

 

5.4.2 Macro scale simulation 

This simulation framework will deal with global temperature variations in the powder bed 

and will give temperature or flux boundary conditions to the FFD-AMRD simulation. This 

simulation will give the initial temperature of the subdomain and its boundary temperature 

as function of time. The amount of flux and its distribution as a boundary condition depends 

on the various energy consumptive nonlinear mechanisms involved at the fine scale 

behavior inside and near the melt pool. 
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5.4.3 Interaction algorithm between two scale models 

The two scales are connected by the amount of heat flux transferred from the finer scale 

to the macroscopic scale. Flux quantification is important from the perspective of amount 

of heat lost or gained in the material state or phase changes. The boundary conditions and 

initial temperatures given to the fine scale are a function of macroscopic model thermal 

evolution. The coupling and information transfer between two models is shown in figure 

36. 

 

Figure 36 Interaction between two scale models 

5.5 Case Study for Coupling Evaluation between Two Separate Scale Models 

 

The coupling between two different scales is evaluated in this section with emphasis 

on the history dependence of the process. The history dependence is mainly due to the 

slowly evolving macroscopic thermal modes in the macro scale model. In the present work, 

only the effects of macro scale model temperatures on the fine model are evaluated. The 

vice versa effects of fine scale thermal effects on the macro scale model are saved for future 

work. 
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The methodology adopted for this purpose is to give different initial macro scale 

temperatures in FFD-AMRD simulations and find their effect on various variables of 

interest. The macro scale temperatures have slow variations compared to fine scale thermal 

behavior. This slow evolution can be exploited to simplify the analysis as well as to 

evaluate the coupling between two models. The assumption here is that the macroscopic 

thermal distribution has an almost flat distribution at the lower scale. The material 

properties [122] of the stainless steel powder considered for this simulation are taken from 

literature. 

 

5.5.1 Melt pool Diameter 

 

 

Figure 37 : (a) Melt pool diameter variation during a subdomain hatch for the case with 

750K initial temperature. (b) Effect of initial global temperature on melt pool in SLM of 

stainless steel powder. 

Figure 37 shows the variation of the melt pool diameter in the Y direction. The melt pool 

diameter in the case of linear simulations is higher at lower preheating temperatures 
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compared to the melt pool diameter in the nonlinear simulation. The reason behind the 

diameter decrease of about 30𝜇𝑚 for a 650K initial powder bed temperature for nonlinear 

simulation is due to the increased heat loss by heat of vaporization and fusion. These 

diameters are measured at the center of the scan hatch where melt pool diameters and 

profile are stabilized. 

 

 

Figure 38 Cooling rates at different initial powder bed temperatures 

5.5.2 Cooling Rates 

Two sample cooling rate plots are shown in figure 38 (a and b) for powder initial 

temperature of 500K and 400K. The cooling rates in both cases are not significantly 
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different than 0.1% as it can be seen in the figure 38 (c). The effect of global heating is 

seen to be not very significant on the cooling rates. This leads to the conclusion that cooling 

rate is not a significantly coupled function of macroscopic temperature. In order to control 

the cooling rates, local laser characteristics such as laser power and scan speed have greater 

influence. 

 

5.5.3 Macroscopic powder bed cooling rates 

The powder bed of size 5mm square is allowed to cool down from initial temperature 

of 400K. The purpose of this experiment is to compare cooling rates of the macroscopic 

scale compared to local thermal modes near melt pool thermal variations. Figure 39 shows 

Figure 39 Powder bed cooling down through global mode of uniform average temperature. The 

zoomed in picture shows the local fast temporal variation of temperature due to laser beam 

inside fine to coarse model. 



 

85 

 

a schematic concept and the actual quantitative results obtained through the numerical 

experiment.  

 

The temperature variations across the full powder bed are seen to be changing very 

slowly as shown in figure 39 (a) or have low frequencies. Whereas the local modes (figure 

39 (b)) activated due to the laser beam flux have high frequency and that makes them heat 

up very fast and cool down at a similarly fast rate. The local modes have the major 

contribution towards the near Gaussian temperature distribution in the melt pool. The 

global modes are associated with the full powder bed temperature evolution over time.  

 

5.6 Effect of subdomain scan pattern on thermal history 

To determine the effect of scan pattern and the time required to cool down the powder 

around the last melt pool, a numerical experiment has been attempted. This study explores 

the importance of hatch pattern for successive subdomains on the thermal history. Figure 

40 (a) shows the simulated scan pattern. The subdomain on top is hatched first and then 

the subdomain at the bottom is hatched. The influence of first subdomain hatch is evaluated 

indirectly by allowing the powder bed a small time to cool down after its hatch is 

completed. The cool down will reduce the last melt pool spot temperatures towards the 

global average. This will indirectly quantify if there was any significant influence of prior 

neighboring subdomain scan. If significant cooling time is allowed then the effect of last 

melt pool spot will be almost nullified.  
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The maximum temperature at a particular time instance is shown in figure 41. In order 

to compare corresponding temperatures in two cases with respect to laser position, a plot 

with no cooling time is given a blank temperature offset from 0.00253 to 0.0053 second. 

This is to account for the difference in total simulation times between two cases. A cool 

down time of 0.0025 s is given between successive scans.  

 

The effect of heating of the powder due to a previous nearby scan is seen to be almost 

negligible as the maximum and average temperature of the bed has identical variation in 

both cases. The bed almost cools down in a distance of 1mm to the global powder bed 

temperature as shown in figure 40(b). This fast cooling down of the melt pool trace in the 

prior subdomain hatch leads to negligible thermal “cross-talk” in nearby subdomain 

hatches. The cooling times for the melt pool is approximately 0.0005s as shown in figure 

41. 

 

Figure 40 (a) Scan pattern used for two successive subdomains scan (b) Thermal profile 

at particular time in the prior subdomain scan. 
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Figure 41 Maximum Temperature comparison in two cases (with and without cooling 

time between successive scans) 

 

5.6 Beam Theories and Dimensional Reduction 

  

Beam theories were developed over a long period of time, starting with the Euler 

Bernoulli beam theory in 1750. Over time beam theories have evolved into more and more 

accurate formulations. Traditional beam theories have limitations for complicated 

geometries, in which case ad-hoc assumptions in the beam theories lead to incorrect 

structural response predictions.  

A recent development in beam theories is the Variational Asymptotic Method [123] 

(VAM) for dimensional reduction. Dimensional reduction is a term used to describe a 

generalized physics based beam theory used for solving partial differential equations 

involved in various physical phenomena. The main limitation of VAM is the energy based 
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formulation which limits its applications in problems involving nonlinear energy 

dissipative phenomena like plasticity. VAM starts with an order of magnitude analysis and 

order of each term energy expression, which is stress multiplied by strain. Each term is 

evaluated for the order of the magnitude. This helps in solving the equilibrium equation at 

different orders of magnitude and a solution at each order gives a particular mode of 

response in the dimensional reduction.  

 

The accuracy of VAM solutions to Partial Differential Equations is limited by the fact 

that the order of magnitude analysis performed can be limited to a few global macroscopic 

modes which need not be orthogonal, particularly in the case of highly inhomogeneous 

cross-sections. This limitation can be attributed to the fact that in the case of in-

homogeneous domains it is hard to predict variations based on superficial dimensions 

(order of magnitude analysis based on geometric small aspect ratio) of the prismatic 

structure. The local stress or strain concentrations for generalized cross-sectional 

geometries are hard to account for using this strategy. 

 

5.6.1 Dimensional Reduction for a Prismatic Powder Bed 

 

In the present case study a simple square cross-section with 10 times more conductive 

material on one side of the cross-section compared to the bulk as shown in figure 42 is 

considered. In order to simplify the case study a steady state problem is assumed though 
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the mathematical formulation can be extended easily to unsteady problems specifically for 

SLM simulations.  

 

 

Figure 42 Figure 10: Problem geometry and FEM mesh 

5.6.2 Modal Space based Beam Theories Formulation 

The stiffness matrix for the FEM discretization described in figure 42 will have a 

particular pattern of sparsity.  It can be described as shown below with 𝐴𝑖 being a square 

matrix with a size corresponding to the degrees of freedom in one particular cross-section.  

[
 
 
 
 
 
 
 
 
 
𝐴1 𝐵1

𝐵1 𝐴2 𝐵2

𝐵2 𝐴3 𝐵3

𝐵3 𝐴4 𝐵4

𝐵4 𝐴5 𝐵5

.
.

𝐵𝑛−1 𝐴𝑛 𝐵𝑛

𝐵𝑛 𝐴𝑛+1]
 
 
 
 
 
 
 
 
 

�⃗� = 𝐹𝑙𝑢𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

[
 
 
 
 
 
 
 
 
 
 𝑓1⃗⃗  ⃗

𝑓2⃗⃗  ⃗

𝑓3⃗⃗  ⃗

𝑓4⃗⃗⃗  

𝑓5⃗⃗  ⃗

.

𝑓𝑛⃗⃗  ⃗

𝑓𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ]
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In the case of perfectly prismatic geometry and material like a perfect beam, 𝐴𝑖 and 𝐵𝑖 will 

follow the following relation except at the free end.  

𝐴𝑖 = 𝐴 

𝐵𝑖 = 𝐵 

𝐴1 = 𝐴/2 (Free edge stiffness) 

 

     ( 80 ) 

 

Permutations to make the matrix upper triangle will be 

 

𝑃1 = 𝐵(𝐴/2)−1  

𝑃2 = 𝐵(𝐴 − 𝑃1𝐵)−1  

𝑃𝑖 = 𝐵(𝐴 − 𝑃𝑖−1𝐵)−1  

 

 

  ( 81 ) 

These permutations will be operated on both sides of the equation and will create a forward 

wave in the right hand side and an upper triangulation on the left hand side.  

 

𝑓 𝑖+1 = 𝑓 𝑖+1 − 𝑃𝑖𝑓 𝑖 ( 82 ) 

 

These equations have no closed form explicit solution or any straight forward modal space 

solution. This difficulty can be overcome by pre-multiplying the whole equation by 𝐵−1. 

The permutations for the modified system of equations will look like 
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𝑃𝑚1 = (𝐵−1𝐴/2)−1  

𝑃𝑚2 = (𝐵−1𝐴 − 𝑃1)
−1  

𝑃𝑚𝑖 = (𝐵−1𝐴 − 𝑃𝑖−1)
−1  

 

 

( 83 ) 

 

This series of permutations have the same modes for any 𝑃𝑚𝑖. These modes are the same 

as of the modes of 𝐵−1𝐴. This is based on the property of Eigen modes that is 

 The inverse of a matrix has the same Eigen Modes as that of the original matrix 

 Linear equations of matrices with the same vectors have the same Eigen Vectors 

but different eigenvalues. 

 

Writing 𝑃𝑚𝑖 and 𝐵−1𝐴  in the form of modes will lead to following equations. 

 

𝑃𝑚𝑖 = ∅𝑇𝐷𝑖∅ 

𝐵−1𝐴 = ∅𝑇𝐾∅ 

𝑃𝑚𝑖+1 = ∅𝑇𝐷𝑖+1∅ 

 

( 84 ) 

 

∅𝑇𝐷𝑖+1∅ = (∅𝑇𝐾∅ − ∅𝑇𝐷𝑖∅)−1 

 

∅𝑇𝐷𝑖+1∅ = (∅𝑇(𝐾 − 𝐷𝑖)∅)−1 

 

𝐷𝑖+1 = (𝐾 − 𝐷𝑖)
−1 

 

( 85 ) 

 

( 86 ) 

 

( 87 ) 

The last equation describes the evolution of Eigen values for the cross-section modes. 
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5.6.3 Converged Eigen values in the bulk 

The Eigen values will converge asymptotically at some particular value as the 

permutation wave moves towards the bulk. Converged Eigen values will have the 

following governing equation. 

 

𝐷𝑐𝑜𝑣 = (𝐾 − 𝐷𝑐𝑜𝑣)
−1 

𝐷𝑐𝑜𝑣
2 − 𝐾𝐷𝑐𝑜𝑣 + 𝐼 = [0] 

 

This equation has an explicit solution because each matrix in it is diagonal.  

 

Figure 43 First four significant modes for of the powder bed case study c/s 
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Figure 44 5th to 8th significant modes for of the powder bed case study c/s 

𝐷𝑐𝑜𝑣 =
(𝐾 ± √𝐾2 − 4)

2
 

This proves that the minimum Eigen value for a real solution is equal to 1. This is also 

supported by the physics of the problem.  

 

5.6.4 Eigen Modes for the prismatic powder bed: case study 

The Eigen modes ∅𝑇 of the prismatic geometry shown at the start of this section are 

derived based on the above formulation. The first 8 significant modes are shown in figures 

43 and 44. The first mode has an Eigen value equal to 1.00. 
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5.7 Extension of the present mathematical formulation to geometry with dissimilar 

layers 

The assumption in the above formulation was that successive layers have material 

property variation across a cross-section. This assumption can be easily removed by 

evaluation of coupling between successive layers. Considering the number of modes that 

are of interest and the weak coupling between distant modes in the spectrum leads to small 

sized and sparse coupling matrices which need to be solved.    

 

5.8 Conclusions 

 Two separate scales of models for simulation of the SLM process are proposed in 

order to reduce computational complexity involved in simulations.  

 It is seen in the numerical experiments that the two scale model can help in 

developing simple laws for various parameters of interest near the melt pool region. 

These experiments also give a phenomenological understanding of the coupling 

between two scales. 

 The new mathematical formulation for dimensional reduction developed in this 

paper has significant potential for reducing the computational complexity involved 

in simulations involving large number of completed build layers in the analysis. 

 

The phenomenological understanding developed through this work is as following. 

1. Cooling rates are not sensitive to the global mode preheating temperatures or initial 

temperatures. This also means that the cooling rates can be controlled only through 

laser power control.  
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2. The melt pool spot cool down time to near average bed temperatures is 

approximately found to be 0.0005s. 

3. Local modes can be more efficiently influenced by energy input at the local level 

(which will have fast temporal scale and high frequencies). This provides an 

opportunity for localized preheating or post heating in order to control cooling rates 

or residual stresses.  

4. Meltpool diameters in the case of nonlinear thermal simulation are lower compared 

to the diameters simulated through linear thermal simulations.
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CHAPTER 6 

INTELLIGENT CHOLESKY DECOMPOSITION FOR 

EXCLUDING THE COMPUTATIONAL OVERHEAD OF 

INSIGNIFICANT MATRIX MULTIPLICATIONS 

6.1 Introduction 

The Finite Element Method (FEM) is one of the most well-known numerical techniques 

used for solving partial differential equations involved in simulation of many types of 

physical phenomena at a continuum scale. A numerical construct for Gauss point 

integration used during the determination of unbalanced forces makes this technique good 

for solving nonlinear thermomechanical problems. Nonlinear simulations using this 

technique require frequent and iterative updates of the stiffness matrix. For quasi-static 

problems, the stiffness matrix in each iteration of a particular time step may have different 

values but the element connectivity remains the same unless an adaptive scheme is used 

for simulation. Various algorithms used for solving the corresponding simultaneous linear 

equations are Super LU [124], Cholesky decomposition [125] or wavefront solvers [126].  

In general, solvers can be classified into two classes. The first class is based on stiffness 

matrix decomposition and the second is based on successive iterations. The iterative solvers 

work well with the availability of an initially good solution approximation whereas the 
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decomposition based solvers are more reasonable when prior simulation history is not 

available or solutions quickly evolve with time such that iterative solvers result in 

erroneous or slow convergence.  

The decomposition of a parent stiffness matrix results in matrices, such as a lower 

triangulated matrix during Cholesky Decomposition. This matrix involves significant 

changes in its sparsity compared to the parent stiffness matrix.  In literature, attempts have 

been made [127] where numbers were either included or ignored in analysis based on their 

floating point accuracies; but a more generalized or accurate pseudo-asymptotic analysis 

has not been developed. In the presented work, a new algorithm has been developed to 

evaluate the significance of numbers and/or numerical operations involved during 

Cholesky decomposition. In this work, the insignificant values in the corresponding lower 

triangulated matrix are neglected resulting in increased sparsity. The change in sparsity of 

this matrix w.r.t. to the parent stiffness matrix results in reduced FLOating Point operationS 

(FLOPS) required for its computation. The need for an initial lower triangulated Cholesky 

matrix for optimization of future computations using insignificant value filters can be 

eliminated if a certain threshold on the neighborhood of the degrees of freedom involved 

in the problem is prescribed, leading to reduced computations required for computing the 

Cholesky decomposition. 

6.1.1 Variants of Cholesky Decomposition in Literature 

Modifications to Cholesky [128] has been attempted in past to solve symmetric but not 

positive definite matrices. Computational complexity of Cholesky decomposition has been 

reduced with an algorithm named as incomplete Cholesky factorization [129]. This 
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algorithm works similar to other preconditioning methodologies used in literature for 

solving simultaneous equations. Different strategies of Cholesky decomposition with left 

looking or right looking algorithms [130] have been considered to improve computation 

speeds. These algorithms are significant from the perspective of multi-rank updates and for 

improving well known interior point linear programming algorithm by Karmarkar [131].  

A study on number rounding and perturbation bounds [132] has been performed to evaluate 

numerical error in factorization.  

 

6.2 Modified Cholesky Factorization Procedure 

The Cholesky decomposition has the standard form shown in equation 

 ( 88 ). 

𝐴 = 𝐿𝐿𝑇  ( 88 ) 

 

Values in L are determined using the formula shown in ( 89 ). 

𝐿𝑖𝑗 =
1

𝐿𝑗𝑗
(𝐴𝑖𝑗 − ∑ 𝐿𝑖𝑚𝐿𝑗𝑚

𝑗−1

𝑚=1

)          𝑓𝑜𝑟  𝑖 > 𝑗 

( 89 ) 

 

The additional criterion on 𝐿𝑖𝑚𝐿𝑗𝑚 multiplication or significance of 𝐿𝑖𝑚 or 𝐿𝑗𝑚 helps 

reduce unnecessary computational FLOPS. This indirectly leads to many addresses in the 

lower triangulated Cholesky matrix attaining a value equal to zero. Detailed algorithms and 

various alternate insignificant value filtering criteria are listed in the following subsections. 

In addition to insignificant value based numerical filters, a conservative neighborhood 

criterion employed at each nodal degree of freedom in the stiffness matrix has also been 

used for this purpose. 
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6.2.1 Algorithm 

A general algorithm for the proposed intelligent Cholesky algorithm is provided below. 

This algorithm is quite general and could be used for most of the criteria to filter 

insignificant values and numerical operations.  

1. Calculate Stiffness matrix for initial material properties. 

2. Decide an approximate initial tolerance based on existing values in the stiffness matrix. 

3. Use the algorithm provided in Figure 45: Algorithm to determine which values in the E 

matrix have information which are significant to calculate the E matrix. Use different 

criteria listed in the next section to compute each successive value in the Cholesky matrix. 

A matrix E will be computed here which has information of which addresses in 𝐿 are 

significant to compute in the binary format. 

4. Record numerical operations which are insignificant to perform. This will require an 

efficient way to store and retrieve the information about successive significant or 

insignificant numerical operations. 

5. Record the number of FLOPS required with the tolerance used. 

6. Change tolerance and repeat the above-mentioned procedure 1-5 until the error is within 

an acceptable limit in addition to the total number of FLOPS which is at its optimally lowest 

value. 

7. Use the information in the 𝑬 matrix and the information stored about significant numerical 

operations for the next iteration for the same or different stiffness matrices for the same 

mesh with different material properties in case of any nonlinearity.  

6.2.2 Variations of the present procedure 

Different criteria which can be used to calculate the 𝑬 matrix and significant numerical 

operations involved in these computations have been stated below.  
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Criterion 1: Calculate the exact Cholesky decomposition and filter numbers for a 

particular tolerance to determine significant values in the 𝑳 matrix.  

Criterion 2: Neighborhood heuristics where 𝐿𝑖𝑚𝐿𝑗𝑚 multiplications for a particular value 

of 𝑚 in equation (89) are computed only if 𝑚 is within a particular distance away from 

non-zero values in the corresponding row of the stiffness matrix. Application of these 

criteria has been described with an algorithm in Table 3.  

Table 3 Algorithm for Criterion 2 for number filtering 

For i=1 to DOFs 

For j=1 to i-1 

         For 𝑚 = 1 𝑡𝑜 𝑗 − 1 

                            𝑆𝑢𝑚 = 0 

                            𝑉𝑎𝑟 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 𝑖𝑛𝑑𝑒𝑥 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑡ℎ 

𝑟𝑜𝑤 𝑜𝑓 𝐾 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑛𝑑 𝐾𝑖𝑚) 

                            If (𝑉𝑎𝑟 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) 

                                                  𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐿𝑖𝑚𝐿𝑗𝑚 

                         End 

         End 

            

           𝐿𝑖𝑗 =
1

𝐿𝑗𝑗
(𝐴𝑖𝑗 − 𝑠𝑢𝑚)               𝑓𝑜𝑟  𝑖 > 𝑗 

End 

              𝐿𝑖𝑖 = (𝐾𝑖𝑖 − ∑ 𝐿𝑖𝑚𝐿𝑗𝑚
𝑖−1
𝑚=1 )

1/2
      (similar criterions can be used here as well) 

End 

Table 1: Algorithm for Criterion 2 for number filtering 
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Figure 45: Algorithm to determine which values in the E matrix have information which 

are significant  
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Criterion 3: Multiplication criterion: 𝐿𝑖𝑚𝐿𝑗𝑚 multiplications in ( 89 )are computed only if 

the absolute value of the multiplication is above a certain tolerance value.  Variation of this 

criterion includes following the criterion on numerical computations in ( 88 )in order to 

consider a particular 𝐿𝑖𝑚𝐿𝑗𝑚 multiplication. 

𝐿𝑖𝑚𝐿𝑗𝑚

𝐿𝑗𝑗
> 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

Criterion 4: 𝐿𝑖𝑚𝐿𝑗𝑚 multiplications in equation 1 are computed only if the individual 

values 𝐿𝑖𝑚 𝑎𝑛𝑑 𝐿𝑗𝑚 are both above a certain tolerance. 

Criterion 5: Neighborhood heuristics where 𝐿𝑖𝑚𝐿𝑗𝑚 multiplications for a particular value 

of 𝑚 in (Equation ( 89 ) are computed only if 𝑚 is within a particular distance from any 

non-zero values in the 𝑖𝑡ℎ or 𝑗𝑡ℎ row of the stiffness matrix. 

6.3 Case Study: Steady state thermal analysis with intelligent Cholesky algorithm  

In this study, a prismatic geometry subjected to boundary conditions on two opposite 

faces in the z direction is considered. The problem geometry and the boundary conditions 

are shown in Figure 46: Problem geometry and boundary conditions. The dimensions of 

the prismatic geometry are provided below. All units used in this case study are in SI units. 

𝑥_𝑙 = 0.0005 𝑢𝑛𝑖𝑡 

𝑦𝑙 = 0.0005 𝑢𝑛𝑖𝑡    

𝑧_𝑙 = (1.7241 × 10−5) 𝑢𝑛𝑖𝑡 

The constrained boundary condition applied on the bottom surface is as follows: 
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𝑇(𝑥, 𝑦) =0  

A uniform flux boundary condition has been applied on the top surface in the +z 

direction. The total magnitude of the integrated flux on this surface equals 1 𝑢𝑛𝑖𝑡. The 

thermal conductivity has been assumed to be 𝑘 = 6.7 units. 

 

 

Figure 46: Problem geometry and boundary conditions 

The mesh discretizations used in this case study are as follows:  

𝑋𝑛𝑜𝑑𝑒 = 30 

𝑌𝑛𝑜𝑑𝑒 = 30 

𝑍𝑛𝑜𝑑𝑒 = 4 

The problem posed here has been attempted using criteria 2 and 3 as mentioned in 

section 6.2.2. The results obtained using Matlab Cholesky and intelligent Cholesky 

algorithms have been presented in the following subsections.   
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6.3.1 Results with Criterion 2  

In this subsection, criterion 2 has been used for the computation of the lower 

triangulated Cholesky matrix with different tolerance levels between 20 and 160. In Figure 

47, the ratio of maximum error at any DOF, number of FLOPS and total non-zero values 

appearing in the Cholesky matrix in comparison with Standard or Matlab Cholesky 

algorithms are plotted. In Figure 48 and Figure 49, thermal nodal degrees of freedom are 

compared between the neighborhood and insignificant value filtering Cholesky 

decomposition algorithms. 

Figure 47: Comparison between standard Cholesky versus Intelligent Cholesky algorithm 

presented with criterion 2. 
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(a)

(b)

Figure 48 (a) Cholesky matrix computed through the intelligent 

Cholesky algorithm. (b) Comparison of temperatures computed using 

intelligent Cholesky and Matlab Cholesky at a threshold of 80 
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(a

(b

Figure 49 (a) Cholesky matrix computed using the intelligent Cholesky 

algorithm and (b) Comparison of temperatures computed using 

intelligent Cholesky and Matlab Cholesky algorithms at a threshold of 

160. 
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6.3.2 Results with Criterion 3 

In this subsection, criterion 3 has been used for the computation of the lower 

triangulated Cholesky matrix with different tolerance levels between 10-8 and 10-3.5. In 

Figure 50, the ratio of maximum error at any DOF, number of FLOPS and total non-zero 

values appearing in the Cholesky matrix in comparison with Standard or Matlab Cholesky 

algorithms are plotted. It has been found that the number of FLOPS has been reduced to 

less than 5% compared to the results obtained using the Standard Cholesky algorithm. The 

inaccuracy between the computed thermal nodal degrees of freedom using this algorithm 

at around 5% FLOPS and the standard Cholesky algorithm is ≤ 0.1%. 

 

Figure 50: Figure (20). Comparison between standard Cholesky versus Intelligent 

Cholesky algorithm with criterion 3. 
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6.4 Proposed Transform based Cholesky Decomposition 

A sample Fourier transform of a typical row of a Cholesky decomposition matrix has 

been shown in Figure 51. The Fourier transform of other rows is found to follow a 

strikingly similar pattern. In the proposed work, such a pattern could be used for matrix 

data storage along with fast and computationally efficient inner products of any two rows 

of the lower triangulated Cholesky matrix. This can be further extended to row and column 

operations involved in general matrix algebra computations. This will involve numerical 

experiments with various transforms such as wavelet decomposition (involves 

localizations in both frequency and time domains) along with traditional Fourier transforms 

(involves localizations explicitly in the frequency domain). 

 

(a) (b) 

Figure 51 A typical row of the Cholesky decomposition matrix. (b) Fourier transform of the 

typical row of a Cholesky decomposition matrix 
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6.5 Conclusions  

A new modified Cholesky Decomposition algorithm has been developed. The 

computational cost to compute Cholesky decomposition is found to be reduced with the 

proposed Intelligent Cholesky Decomposition involving filtering of small values and 

numerical operations below a certain numerical threshold. Some observations about the 

Intelligent Cholesky decomposition are as follows: 

 Boundary conditions have significant effects on the number of FLOPS which can 

be reduced using the proposed algorithms 

 For dynamic problems, criterion 3 is ideal since it enables filtering of insignificant 

values arriving from matrix multiplications. The number of FLOPS can be reduced 

to less than 5% of the total FLOPS. 

 For cases involving quasi-static problem descriptions in which iterative solution 

schemes are seldom implemented, a neighborhood based criterion such as criterion 

2 is ideal. The number of FLOPS could be reduced to 20% of the total FLOPS 

required in standard Cholesky Decomposition. Improvement to this criterion is 

possible (such as criterion 5) by checking the distance in connectivity for both rows 

which will be involved in an inner product with each other. 

 A Fourier or wavelet transform will be further used to improve the speed of 

computations as well as data storage efficiency for these matrices. 

General applications of the new algorithm are as follows: 

 Fast simulation of linear and nonlinear problems with sparse symmetric positive 

definite matrices. 
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 Fast simulation of transient dynamic problems involving repeated inversion and 

multiplication of matrices.  

 Efficient storage and retrieval of decomposition matrices or corresponding 

inverses. 

 Efficient algorithms for Eigen decompositions of matrices such as 𝐵−1𝐴 where 𝐵 

is a symmetric positive definite matrix and where 𝐴 does not share the positive 

definite property of its matrix structure with 𝐵.
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CHAPTER 7 

AN ENERGY DISSIPATIVE CONSTITUTIVE MODEL 

FOR MULTI-SURFACE INTERFACES AT WELD 

DEFECT SITES IN ULTRASONIC CONSOLIDATION  

7.1 Introduction 

Metal based additive manufacturing processes include both thermally-induced fusion 

processes and solid state processes. Some of the benefits of a solid state process lie in 

unique microstructures made possible because of near room temperature processing and 

the avoidance of solidification cooling induced residual stresses in the built part. These 

benefits can be further exploited if closed loop control of these processes becomes possible. 

The major hurdle in this is the computational complexity of the contact simulations, 

especially at the defect sites and the layer interfaces, involved in solid state processes like 

Ultrasonic Consolidation (UC). The present work is focused on development of a novel 

framework for interface simulations with the capability to include friction and various large 

deformation, nonlocal and geometrical nonlinearities involved in metal deformation.  

7.2 Ultrasonic Consolidation 

Ultrasonic consolidation (UC) is a solid-state additive manufacturing process which 

combines ultrasonic metal welding and milling to produce three dimensional objects. The 
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process uses the high frequency ultrasonic shearing vibration at low amplitude and a 

normal force to break the oxide layers between two foils and then bond them by bringing 

together two nascent foil surfaces. Figure 52 shows a schematic of the UC process. The 

weld quality achieved in the process is sensitive to machine parameters. This sensitivity 

calls for better optimization of machine parameters through well informed computer 

simulations.  

The UC process involves nonlinear plasticity which is inherently multi scale in space 

as well as time. The nonlinear and nonlocal plasticity in the process is dependent on the 

rate of deformation as well as size effects. The phenomenon of acoustic softening during 

UC is governed by these complicated material behaviors along with rate dependent 

dislocation dynamics. Continuum plasticity can be used to model the average phenomenon 

involved but it cannot account for the grain fragmentations or grain structure evolutions, 

which are at the core of the process if the quality of the weld is in question. A computational 

framework involving dislocation density based crystal plasticity [133,134] has been 

developed. The computational cost involved in these simulations can be high and thus 

further work is in order to reduce it by an order of magnitude in order to make it fast enough 

to work with machines for online process control.  

In the present work a novel framework for developing interfacial constitutive models 

is presented to evaluate the macroscopic response of interfaces for various surface 

roughness values and material properties along with homogenization of dislocation 

dynamics near interfacial regions.  
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Figure 52 Schematic of UC process [133]  

7.3 Interfacial Constitutive Model 

The concept of an interfacial constitutive model has been researched for various 

applications like crack growth and propagation. The cohesive zone model [135,136] is 

considered one of the pioneering interfacial constitutive models. The concept of a cohesive 

zone model can be further improved to simulate continuum level constitutive modeling of 

interfacial friction and sliding behavior [137]. Interfacial constitutive model literature is 

discussed in this subsection because it is closely related to the new formulation attempted 

in this work. The Extended Finite Element (XFEM) [138] methodology recently employed 

for multi-material and discontinuity simulations is another important development which 

has the capability to deal with various jump conditions involved at material interfaces. 

XFEM deals with discontinuities by decoupling a macroscopic average problem from the 

discontinuity problem at the FEM point integration level in order to calculate its effect on 

the stiffness matrices and macroscopic unbalanced forces. The decoupling of two problems 

rely on the functional evaluation of the coupling between the average macroscopic problem 

and the discontinuous behavior which could be a multi-scale phenomenon.  
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7.3.1 Elastic plastic interfacial constitutive modeling Literature [137]  

 

Figure 53 Interface between two bodies [137]  

A cohesive interface between two bodies as shown in Figure 53 can be described as a 

contact interface between two bodies with or without any bonding mechanisms present at 

the interface. A constitutive model [137] for such an interface was developed by Su et. al 

and is discussed here to consider its potential application to Ultrasonic Consolidation. 

Consider two bodies 𝛽+ and 𝛽− separated by an interface ℑ. Assume {�̂�𝟏, �̂�𝟐, �̂�𝟑} is an 

orthonormal triad. The basis �̂�1 is aligned with the normal 𝒏 to the interface, and {�̂�𝟐, �̂�𝟑} 

are in the tangent plane at any point �⃗⃗�  in the plane.  

Let 𝛿 denote the displacement jump across the cohesive surface, and 𝒕 the power 

conjugate traction, such that 𝒕�̇� gives the power per unit of the interface in the reference 

configuration. The displacement jump can be decomposed into plastic and elastic 

deformation as follows. 

𝛿 = 𝛿𝑒 + 𝛿𝑝 ( 90 ) 

The applied power per unit area of the interface can be denoted by 
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𝑡�̇� = 𝑡�̇�𝑒 + 𝑡�̇�𝑝 ( 91 ) 

Let 𝜑 denotes the free energy per unit surface area in the reference configuration.  The 

dissipation per unit area can be written as follows. 

Γ = 𝑡�̇�𝑒 + 𝑡�̇�𝑝 − �̇� ( 92 ) 

Plastic deformation produces no stresses. This leads to  

𝑡 = 𝐾(𝛿 − 𝛿𝑝) ( 93 ) 

The yield surface for the interface point can be described as the intersection of two convex 

surfaces corresponding to normal mechanism (∅1) and shear mechanism (∅2) respectively 

as shown in Figure 54. 

∅1 = 𝑡𝑁 − 𝑠1 ≤ 0 

∅2 = 𝜏̅ + 𝜇𝑡𝑁 − 𝑠2 ≤ 0 

( 94 ) 

The evolution of plastic deformation is described mathematically as  

�̇�𝑝 = ∑𝑣𝑖𝒎𝑖

2

𝑖=1

 

𝒎1 = 𝒏 

( 95 ) 
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Figure 54 Schematic of the yield surface for normal and shear mechanisms [137]. 

𝒎2 =
𝒕𝑻

𝜏̅
 

( 96 ) 

This is a non-normal flow rule for the shear response. Finally the required consistency 

condition for plastic deformation is as follows.   

𝑣𝑖∅𝑖 = 0, when ∅𝑖 = 0 ( 97 ) 

The consistency equation helps identify the possibility of plastic deformation. The 

magnitude of plastic deformation has to be further determined based on the evolution of 𝑠𝑖 

as a function of time. The evolution mechanisms for 𝑠𝑖 are in general described as 

hardening and softening and their evolution is a function of dislocation dynamics; and a 

detailed crystal plasticity simulation is required in order to capture them for general loading 

and geometry scenarios with given macrostructure information on both sides of the 

interface. 
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7.4 Applications of the interfacial constitutive models 

This constitutive law will help in simulation of the process at the macroscopic scale, 

which will result in reduced computational complexity.  Other applications for such a 

model include engineering problems such as cohesive modeling of crack interfaces during 

their propagation. The contact problem is also significant from the perspective of bonded 

or unbonded joints in metals. These energy dissipation laws will be also helpful in 

developing constitutive models and new interfacial elements for macroscopic vibration 

simulations.  

The application of such an interfacial model in additive manufacturing other than the 

UC process will include support snapping simulation for Selective Laser Melting (SLM) 

where an initial crack in the lattice will grow and cause support structures failure. In case 

of SLM delamination the possibility of two successive layers built with significant recoat 

time can be also studied in depth. The friction stir surfacing process can be also modeled 

efficiently with the proposed simulation framework. 

7.5 Mathematical Formulation 

The schematic problem description is given in Figure 55. Simple 3D brick elements are 

used for the FEM simulation.   
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Figure 55: Schematic diagram presenting the concept of an interfacial constitutive model 

for a macroscopic interface contact 

The virtual work equation is written in virtual work formulation as  

𝛿𝑉 = ∫(𝛿휀)𝐶 (휀) 𝑑𝑣 + 𝛿𝑊(𝛿𝑢) = 0 
( 98 ) 

휀 = [𝐵]𝒒 ( 99 ) 

The 𝒒 vector is the nodal displacement vector. The equation above leads to the element 

stiffness equation which is 

𝐾𝑒𝑙𝑒𝑚 = 𝐵𝑇𝐶𝐵 ( 100 ) 

The nodal equilibrium in the global coordinate system will lead to a final finite element 

equation which is  

[𝐾𝑔𝑙𝑜𝑏𝑎𝑙]𝒖 = 𝑭𝒈𝒍𝒐𝒃𝒂𝒍 ( 101 ) 
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The traditional approach to assemble a stiffness matrix from local to global coordinate 

systems is of individually substituting each value in the 𝐾𝑒𝑙𝑒𝑚 into 𝐾𝑔𝑙𝑜𝑏𝑎𝑙. The present 

work includes development of a new mapping from local to global coordinate systems 

which will simplify the FEM assembly process in the case of contact problems where 

connectivity is updated as per the updated contact surface configuration.  

[𝐾𝑔𝑙𝑜𝑏𝑎𝑙] = 𝑃𝑒𝑟𝑚 [𝐾𝐿𝑜𝑐𝑎𝑙] 𝑃𝑒𝑟𝑚𝑇 (102) 

In case of changing contact surface configurations this can be modified as follows, 

[𝐾𝑢𝑝𝑑𝑎𝑡𝑒𝑑] = 𝑃𝑒𝑟𝑚 [𝐾0] 𝑃𝑒𝑟𝑚𝑇 (103) 

where [𝐾0] = (Stiffness Matrix) without any contact constraints, 𝑃𝑒𝑟𝑚 =  (Transformation 

matrix) which maps one configuration to another and has the following mathematical form, 

where 𝑅 is a mathematical relation or a second order tensor: 

𝑃𝑒𝑟𝑚 = 𝐴𝑅𝐵 (104) 

where A is a set of all nodes in the initial configuration and B a set of nodes in the final 

configuration.  

The forces also follow a similar map as follows.  

[𝐹𝑢𝑝𝑑𝑎𝑡𝑒𝑑] = 𝑃𝑒𝑟𝑚[𝐹0] (105) 
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7.5.1Contact Surface Constraints and solution of constrained simultaneous equations 

1.0 Slave Nodes 

The contact surface constraints are based on the gap function to evaluate contact which 

is defined as 

𝒈(𝑥, 𝑦) = 𝑢𝑡3(𝑥, 𝑦) − 𝑢𝑏3(𝑥, 𝑦) (106) 

where 𝑢𝑡3(𝑥, 𝑦) is the z-direction displacement of the top surface at point (x,y). Similarly 

𝑏 in 𝑢𝑡3(𝑥, 𝑦) stands for the bottom surface. If the 𝒈(𝑥, 𝑦) = 0 and shear is less than the 

friction resistance, then the top surface node is treated as a slave to the bottom surface. This 

is achieved by providing a constraint based on the shape functions of the bottom surface 

element as follows: 

𝑞𝑡 = 𝑁1𝑞1 + 𝑁2𝑞2 + 𝑁3𝑞3 + 𝑁4𝑞4 (107) 

where 𝑞𝑡 is any x, y or z displacement of a node on the top surface and 𝑞𝑖 are corresponding 

displacements on the bottom target element.  

The constraint equations are solved by splitting the slave node stiffness matrix row into 

different rows. Each split row will be added to the master Degree of Freedom (DOF) row 

based on the 𝑁𝑖 in the constraint equation for the master DOF. This methodology is 

explained in Figure 56. 
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Figure 56 Schematic diagram representing a slave node constraint on a contact surface 

and its solution methodology by splitting slave node stiffness as per the constraint 

equation. 

2.0 Free Nodes 

A node is set free if it is sliding or has lost contact with the bottom surface.  

3.0  (𝒈(𝑥, 𝑦) ≥ 0) condition 

To simplify the algorithm, nodes that are impinging are first allowed to impinge and then 

are forced back to the other surface iteratively. 

7.6 Contact Simulation Algorithm 

The contact simulation algorithm is based on minimizing unbalanced force iteratively 

along with updated contact constraints. First contact constraints are updated which will 

induce some unbalance forces due to shear slip and change in stiffness. These unbalanced 

forces are solved in the new configuration which can further change the gap function and 
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can change the contact constraints. The algorithm is presented in a flow chart format in 

Figure 57. 

 

Figure 57 Flow chart showing FEM algorithm used for contact simulation 

7.7 Case Study 

A simple case of surface to surface contact is considered here. Two prismatic blocks of 

size 0.001 × 0.001 × 0.0005 𝑚3 are in contact with each other as shown in Figure 58. 

The z-direction height of each block is 0.0005m. The boundary conditions include a bottom 

surface fixed in all degrees of freedom and a top surface with slip and normal compressive 

displacement boundary conditions as shown in Figure 58. The details of the boundary 

conditions and material properties are as follows.  

Top Surface:  

𝑢1(𝑥, 𝑦) =slip(t) 
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𝑢2(𝑥, 𝑦) =0 

𝑢3(𝑥, 𝑦) =-0.00001m 

Bottom Surface:  

𝑢1(𝑥, 𝑦) =0 

𝑢2(𝑥, 𝑦) =0 

𝑢3(𝑥, 𝑦) =0 

Sides: No constraint 

Material Properties: Linear elastic  

𝐸 = 2 × 1011𝑁/𝑚2 

𝜇 = 𝑝𝑜𝑖𝑠𝑜𝑛𝑠 𝑟𝑎𝑡𝑖𝑜 = 0.3 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.3 

 

Figure 58 Problem geometry and boundary conditions 
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7.8 Results and Discussion 

The present work is a small case study to verify whether future work deriving 

interfacial constitutive models is merited. The correct boundary conditions for extracting 

constitutive models are outside the focus of this work, as this work focused on formulating 

a FEM framework which can consider different boundary conditions and give high fidelity 

contact simulations. The parameters of interest in this case study are the macroscopic 

aggregate shear resistance and macroscopic strain. 

The shear resistance of the contact surface is defined below. Considering the prismatic 

geometry of the model the total shear resistance for any cross-section will come out to be 

the same.  

 

Figure 59: Macroscopic strain versus shear resistance plot 
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𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 = 𝑆 = ∫ (𝜎13) 𝑑𝑠
𝑐/𝑠  𝑎𝑟𝑒𝑎

 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 = 𝑁 = ∫ (𝜎33) 𝑑𝑠
𝑐/𝑠  𝑎𝑟𝑒𝑎

 

 

 

(108) 

 

The plot of S versus slip given at the top surface is shown in Figure 59. The reason 

behind the fall of the shear resistance with increase in slip is due to contact being lost at 

the extreme left or right points due to the overhanging nodes at the end.  Figure 60  shows 

a plot of macroscopic friction coefficient calculated as a ratio of S and N at each time 

instant during slip loading in the simulation. The reason for a macroscopic friction 

coefficient less than 0.3 of that of the actual interface can be attributed to the fact that the 

shear resistance at each point in the cross-section is not utilized completely in one particular 

configuration or point in time. Another way to explain it is that the 0.3 is the maximum 

upper bound that can be achieved.  

The shear resistance will be totally lost at the overhangs because there is no material 

available on either side for contact friction as seen in the deformed shape shown in Figure 

61.  
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Figure 60: Plot of the macroscopic friction coefficient 

7.9 Conclusions and future work 

A novel framework for an interfacial friction model has been developed in the present 

work. The developed contact simulation framework shows good behavior at the contact 

interface. The novel features of this framework include: 

 Mathematical framework for efficient assembly of FEM matrices 

 Solution of constraint equations exactly without any additional computational cost 

 No addition of penalty springs which can introduce spurious stiffening behavior at 

interface  

The future work in this problem will include addition of the following features to the 

present framework in order to develop interfacial constitutive models or laws: 
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 Nonlinear simulations with crystal plasticity based material constitutive models for 

metals.  

 Inclusion of tangent stiffness at the current configuration (Geometric nonlinearity) 

 Periodic boundary condition considering the case of deriving a constitutive model 

for a point on an interfacial surface. 

 Inclusion of surface roughness  

 

Figure 61: Deformed and un-deformed mesh at a macroscopic shear strain of 0.05
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  CHAPTER 8 

A NOVEL CRYSTAL PLASTICITY AND SURFACE TO 

SURFACE CONTACT SIMULATION FRAMEWORK 

FOR SIMULATION OF ADDITIVE MANUFACTURING 

PROCESSES 

8.1 Introduction 

Surface to surface contact simulations are significant from the perspective of tribology 

and for solid state metal bonding processes such as those based on additive manufacturing.  

A detailed literature discussion of contact analysis and a novel energy dissipative 

constitutive model has been previously introduced [139]. In this paper, application of this 

contact model in conjunction with a detailed material deformation model for metal 

plasticity is introduced.  

Metal plasticity can be simulated as continuum plasticity with yield functions. One of 

the well-known yield functions is a von-Mises surface. The disadvantage of using 

continuum plasticity has been in simulating the rate and texture dependence of the 

deformation. The yield functions have a scalar dimension and lack information of slip 

system orientation with respect to external loading along with detailed computation of 
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lattice rotation as a function of grain orientation. The limitations of yield function based 

continuum plasticity can be overcome with Crystal Plasticity based constitutive modeling 

along with finite element modeling. The following sections include discussion of nonlinear 

finite element algorithms that include crystal plasticity constitutive model formulations 

introduced in the present work. 

8.2 Plastic deformation and FEM implementation 

The plastic deformation gradient can be decomposed into the following form:  

F = FeFp (109) 

where 𝐹𝑒 is elastic deformation and 𝐹𝑝 the plastic deformation gradient.  This elastic 

plastic decomposition implies that plastic deformation occurs before the elastic 

deformation can occur. The elastic 2nd Piola–Kirchhoff stress tensor induced by 𝐹 is: 

𝑃𝐾2 = 𝑪(𝐹𝑒
𝑇𝐹𝑒 − 𝑰) (110) 

where 𝐶 is the stress strain relation between elastic stress and strain for a point inside 

the lattice. The above equation also has implications such that the plastic deformation 

gradient does not induce any stress. The 𝑃𝐾2 stress has its traction directions and area in 

the original reference configuration. This can be corrected by converting 𝑃𝐾2 into Cauchy 

stress as follows: 

𝜎 =
1

𝑑𝑒𝑡(𝐹𝑒)
(𝐹𝑒𝜎𝐹𝑒

𝑇) 
(111) 

The Cauchy stress when resolved on each slip system of the crystal governs plastic 

deformation rate (𝐿𝑝). The stress resolution has been performed in order as follows. 
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1. Stress resolves along the grain lattice orientation using Euler angle information 

available as shown in Figure 62. 

2. Stress resolved in the lattice orientation has been further resolved in the slip plane 

normal direction to determine traction vector on the slip plane. 

3. The traction has been resolved in normal and in the slip direction to determine 

normal stress on slip plane and the resolved shear stress (RSS) for the slip direction. 

 

Figure 62 Schematic representing (a) microstructure global axis and (b) the grain axis 

[140].  

The plastic deformation rate is determined using the following relationship: 

𝐿𝑝 = 𝐹�̇�𝐹𝑝
−1 = ∑ �̇�𝛼(𝑚𝛼 ⊗ 𝑛𝛼)

𝑁

𝛼=1

 

 

(112) 

where 

𝑚𝛼 : slip orientation 

𝑛𝛼 : slip plane normal 
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𝑁 ∶ Total number of slip directions 

�̇� ∶ Slip velocity 

The slip velocity is governed by a flow rule as follows: 

�̇�𝛼 = �́�0𝑠𝑖𝑔𝑛(𝜏𝛼) (
𝜏𝛼

𝑔𝛼
)

𝑚

 
(113) 

where �́�0 and m are slip system material parameters. 𝑔𝛼 has been defined as the Critical 

Resolved Shear Strength (CRSS) of the slip plane. The �̇�𝛼 determines 𝐿𝑝 which has been 

used to determine evolution of 𝐹𝑝 and the hardening or softening of the point as a function 

of evolution of stress at the same point. These evolutions have been used to calculate the 

stress strain relation tensor as derived in the following section.  

8.3 Stress Jacobian Derivation 

The stress Jacobian Derivation is conceptually similar to other work in the literature 

[142]. The approach used in the present work is based on tensorial derivatives, in contrast 

to variational approaches used in the literature. A point is subjected to a deformation 

gradient increment from 𝐹(𝑡)  to 𝐹(𝑡 + 𝑑𝑡). The deformation increment is first applied 

elastically, resulting in complete elastic loading, followed by plastic relaxation as shown 

in Figure 63.   
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Figure 63 Schematic diagram showing elastic loading followed by plastic unloading 

The loading and unloading is represented by a single equation: 

𝜎(𝜏) =
1

𝑑𝑒𝑡(𝐹𝑒)
(𝐹𝑒𝜎𝑡𝑟𝐹𝑒

𝑇) 
(114) 

where 

𝜎𝑡𝑟 =
1

2
𝐶(𝐹𝑒

𝑇𝐹𝑒 − 𝐼) − ∑ 𝐶𝛼

𝑁

𝛼=1

𝛾𝑑𝑡 

(115) 

𝐶𝛼 =
1

2
𝐶(𝐴𝑆𝛼 + 𝑆𝛼𝑇𝐴) 

(116) 

 

𝐴 = 𝐹𝑒
𝑇𝐹𝑒 (117) 

The Jacobian has been derived using tensorial derivatives as follows. 

𝐽 =
𝜕𝜎

𝜕휀
=

𝜕𝜎

𝜕𝐹

𝜕𝐹

𝜕휀
=

𝜕𝜎

𝜕𝐹
(
𝜕휀

𝜕𝐹
)
−1

 
(118) 

The first term in the above chain of derivatives is calculated as follows. 
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Table 4 Plastic deformation finite element algorithm with crystal plasticity based 

constitutive formulation 

 

For step =1 to number of time steps 

 

    Apply external boundary increment: 

    𝛿𝐹 =  𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑜𝑎𝑑𝑖𝑛𝑔  

        For load_unload_cycle = 1 to till convergence 

a)  overall geometry Elastic Loading  

 Retrieve Jacobian information off all integration points in all elements. 

 Calculate stiffness matrix [K] with BBAR integration procedure inside element. 

 Solve [𝐾]𝛿𝑢 = 𝛿𝐹 

 𝑢 = 𝑢 +  𝛿𝑢 

b) Plastic relaxation 

 Retrieve displacement vector for each element 

 Determine 𝑭 at each integration point 

 Calculate Jacobian at integration points with increments in each 𝐹𝑘𝑙 given 𝐶𝑖𝑗𝑘𝑙 .  

 Calculate stress at each integration point using finite strain definition. 

 Calculate internal force in each element using 𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = ∫ 𝐵𝑇𝜎 𝑑𝑣
𝑣

 

 Assemble internal forces and determine unbalanced force vector and save it as 

𝛿𝐹. 

 Determine the 𝐿𝑝 and update 𝐹𝑝 = (𝐼 + 𝑑𝑡(𝐿𝑝))𝐹𝑝 

        end 

end 
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𝑃 𝛿𝐹 =
𝜕𝜎

𝜕𝐹
 𝛿𝐹 

(119) 

Here the 𝛿𝐹 is the direction or perturbation required in tensorial derivatives. 

𝝏𝝈

𝝏𝑭
 𝛿𝐹=−𝑑𝑒𝑡(𝐹𝑒) 

−1𝐹𝑒
−1(𝛿𝐹)𝐹𝑒(𝜎𝑡𝑟) 𝐹𝑒

𝑇
+ 𝑑𝑒𝑡(𝐹𝑒) 

−1(𝛿𝐹)𝐹𝑝
−1 

(𝜎𝑡𝑟)𝐹𝑒
𝑇 + 𝑑𝑒𝑡(𝐹𝑒) 

−1𝐹𝑒 (
𝜕𝜎𝑡𝑟

𝜕𝐹
𝛿𝐹)𝐹𝑒

𝑇
+𝑑𝑒𝑡(𝐹𝑒) 

−1𝐹𝑒(𝜎𝑡𝑟)𝐹𝑝
−𝑇(𝛿𝐹) 

(120) 

𝜕𝜎𝑡𝑟

𝜕𝐹
𝑑𝑒𝑙𝐹 = 𝐹𝑝

−1(𝛿𝐹)𝐹𝑒 + 𝐹𝑒
𝑇𝐹𝑝

−1(𝛿𝐹) − ∑ 𝐶𝛼
𝜕�̇�𝑑𝑡

𝜕𝜎

𝜕𝜎

𝜕𝐹
𝛿𝐹

𝑁

𝛼=1

− ∑ �̇�𝑑𝑡
𝜕𝐶𝛼

𝜕𝐹

𝑁

𝛼=1

 

(121) 

The 
𝜕𝜎

𝜕𝐹
 𝛿𝐹 calculated in the above equations is a function of the 𝛿𝐹 perturbation tensor. 

In order to overcome this difficulty 𝑑𝑒𝑙𝐹 is incremented at each 𝐹𝑖𝑗 separately and then 

combined together to determine the complete 
𝜕𝜎

𝜕𝐹
 as a fourth order tensor. 

8.4 Nonlinear Finite Element Algorithm 

 The nonlinear finite element algorithm is based on the concept of global loading using 

the Jacobian at each point and global stiffness matrix. This step is followed by unloading 

at each point. This algorithm is outlined in Table 4.  

8.5 Case Study 

The formulated viscoplastic constitutive model has been used to simulate a uniaxial tensile 

test. The objective of this study is to demonstrate conceptual accuracy of the mechanics 

and physics involved in the present constitutive model formulation along with a nonlinear 

plasticity algorithm.  Single crystal copper material properties [143] used in the simulation 

are as follows. 
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m      

0.001 𝑠−1 15 16MPa 70.4 MPa 132 MPa 
 

8 MPa 
 

1.4 

 

This simulation framework has been further combined with the interfacial contact 

simulation algorithm previously mentioned [139]. Contact simulations have been 

conducted with problem description same as that of given in Section 7.7. Dimensions of 

the individual block have been assumed to be 0.1𝑚 × 0.1𝑚 × 0.05𝑚. 

8.6 Results and Discussions 

Nonlinear plastic deformation simulations often have trouble finding convergence and 

stability. It has been observed that the algorithm presented here is quite stable and has 

desired convergence characteristics.  

The uniaxial tensile testing simulation has been conducted without hardening in order 

to check solution stability and convergence. The average stress vs macroscopic strain is 

shown in Figure 64. The absence of a hardening mechanism has resulted in plastic yield 

followed by linear variation between average stress and applied macroscopic strain. This 

phenomenon has been attributed to evolution of the Stress Jacobian. The variation of the 

𝐶33 component of the Stress Jacobian with applied macroscopic strain is presented in 

Figure 65. The initial value of 2.22 × 105 represents the elastic region followed by yielding 

which results in a new stabilized value at 2.135 × 105. The plastic deformation increment 

for each time step becomes steady as shown in Figure 66. Similar sets of plots are shown 

for a case of axial displacement controlled loading followed by relaxation in Figure 67, 
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Figure 68 and Figure 69. The simulation here has shown characteristics of viscoelastic 

behavior with a crystal plasticity based constitutive model. 

 

 

Figure 64 Plot of stress vs strain for the case of monotonic uniaxial tensile loading  

 

 

Figure 65 plot of 𝐶33 (indicator of elastic modulus in the z-direction) vs time for the case 

of monotonic uniaxial tensile loading  
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Figure 66 plot of 𝐹𝑝33
 vs time for the case of monotonic uniaxial tensile loading 

 

Figure 67 Average stress vs time plot for the case of elastic-plastic loading followed by relaxation 
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Figure 68 plot of 𝐶33 (indicator of elastic modulus in the z-direction) vs time for the case of 

elastic-plastic loading followed by relaxation 

 

 

Figure 69 plot of 𝐹𝑝33
 vs time for the case of elastic-plastic loading followed by relaxation 
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Figure 70 Plot of various quantities of interest in interface contact simulation with 

plasticity 

A plot of various quantities of interest for interfacial contact simulation has been given 

in Figure 70.  

8.7 Conclusion 

A crystal plasticity constitutive model has been formulated. Simple case studies have 

been used to demonstrate the conceptual accuracy of the mechanics and physics involved 

in the present constitutive model formulation when combined with a nonlinear plasticity 

algorithm. It has been observed that the presented constitutive model and nonlinear plastic 

deformation algorithm are capable of simulating viscoplastic deformation of metals. 

Further the viscoplasticity has been incorporated in an interface friction simulation.  For 

future work, addition of dislocation dynamics to the present model along with realistic 

boundary conditions will make it possible to simulate solid state manufacturing processes 

accurately. 
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CHAPTER 9 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

9.1 Summary 

The present work provides efficient algorithms with reduced computational complexity 

for simulating two classes of additive manufacturing processes: fusion based processes and 

solid state processes. These algorithms are validated with appropriate comparisons to 

established numerical algorithms such as the linear solver library of MATLAB and 

validated against various literature to determine their accuracy. A short summary of the 

present work for each class of processes is as follows. 

9.1.1 Fusion based processing simulations 

 The FFDAMRD numerical technique with adaptive meshing has significant 

potential for efficient and high resolution simulation of spatio-temporal problems 

with rapid time and spatial gradients. It has been established that traditional finite 

element approaches are 364.5times slower compared to the FFD-AMRD algorithm 

developed in this research for multi-scale moving mesh problems. This simulation 

algorithm can provide useful insights such as the temperature gradients shown in 

the case study, which are on the order of 1050
𝐶/𝑠 at a laser speed of 1200𝑚𝑚/𝑠.  

 The Eigenmodes formulation includes derivation of novel FEM based beam 

theories for thermal analysis of a general cross-section. This formulation offers 
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multiple orders of magnitude speed improvement depending upon number of layers 

(𝑁) involved in the simulation. It has been established that for nearly identical 

cross-sections the computational speed improves by order of (𝑁). In the case of 

non-identical cross-sections this methodology works with at least the same 

complexity as that of FEM algorithms.  

 The Cholesky decomposition algorithm has been modified based on observations 

that a major portion of Cholesky matrices involved in FEM are comprised of 

insignificantly small values.  These small values are multiple orders of magnitude 

lower than computationally significant numbers. This algorithm reduces number of 

flops to between 5% and 30% of the flops that would typically be required, 

dependent on the boundary conditions involved.  

 The work in Appendix A shows a nonlinear version of the FFD-AMRD algorithm 

presented in the present text. This algorithm has the ability to simulate temperature 

dependent material properties, latent heat and phase change effects for powder bed 

thermal behavior.  The computational complexity of the Appendix A work and 

Chapter 4 work is the same since both are based on same algorithm except for the 

nonlinear material behavior being assumed linear in the Chapter 4 work. 

9.1.2 Solid state processing simulations 

 A new surface to surface contact simulation framework has been developed which 

solves constraint equations exactly without additional computational overhead. 

This formulation avoids usage of fictitious penalty springs which can induce 

spurious deformation modes in an analysis. It also includes an intelligent stiffness 

matrix assembly algorithm based on mapping points into their respective final 
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location in the mesh. This formulation is capable of performing accurate contact 

simulations with the same or less computational cost than traditional contact 

algorithms. 

 A crystal plasticity constitutive law has been developed with a tensorial analytical 

derivative of stress with respect to strain. A nonlinear plastic deformation algorithm 

works with the analytical deformation along with the novel contact simulation 

framework.  This algorithm inherently simulates the viscoplastic deformation 

behavior of metals. This work provides a novel interface constitutive law which 

will reduce the computational cost of modeling interfaces along with bulk 

responses, resulting in a significantly simplified mesh and reduced computational 

cost. 

9.2 Conclusion   

In the present work new numerical algorithms have been formulated and implemented 

for simple additive manufacturing process simulation case studies.  Each of these 

algorithms are at least an order of magnitude faster than traditional formulations and 

algorithms for FEM simulation. Conclusions derived from the present work are as follows. 

 The developed dynamic meshing algorithm provides significant speed 

improvement for simulation of moving point or line energy sources such as in AM 

processes. It has been observed that these processes have multiple scales of 

response (greater than two) in space and time.  
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 The modified Cholesky algorithm takes advantage of insight into asymptotics 

embedded in the Cholesky matrices with signficant potential for improved 

computational speed and data storage. 

 An interfacial constitutive model formulation has been demonstrated that illustrates 

an efficient strategy to simulate energy dissipative mechanisms at interface between 

two layers in solid state bonding processes.  

 The combination of the presented algorithms with various modal decomposition 

based techniques such as the beam theories developed in the present work has the 

potential to increase the computational speed by multiple orders of magnitude, 

making it possible to simulate AM processes in real time.  

9.3 Future work 

Algorithms in the present work offer a significant advantage over traditional ones used 

in FEM simulations. These algorithms can be further improved or augmented with other 

existing algorithms to increase computational speed and reduce computational complexity. 

Further work possible in this paradigm include: 

 Incorporation of Eigenmode based beam theories with FFD-AMRD to simulate full 

powder bed problems. An alternate approach to this problem could be to couple 

analytical full powder bed solutions with FFDAMRD as discussed in a recent 

publication [144]. 

 To develop an analytical governing equation for Eigenmode based beam theories 

to be able to improve its applicability.  
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 Addition of a dislocation density based constitutive model to the developed crystal 

plasticity simulation framework along with contact simulation. This will enable the 

simulation of any solid state AM process with significantly increased speeds with 

a physics based material constitutive model.  This algorithm will be able to simulate 

texture and microstructural evolution during solid state processing.
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APPENDIX A 

A GENERALIZED FEED FORWARD DYNAMIC 

ADAPTIVE MESH REFINEMENT AND DE-

REFINEMENT FINITE ELEMENT FRAMEWORK FOR 

METAL LASER SINTERING: PART II (NON-LINEAR 

THERMAL SIMULATIONS AND VALIDATIONS) 

Deepankar Pal1,a, Nachiket Patila, Khalid Rafia, Kai Zenga, Alleyce Morelandb, Adam 

Hicksb, David Beelerb and Brent E. Stuckera 

a Department of Industrial Engineering, University of Louisville, Louisville, KY 40292. 

b Mound Laser and Photonics Center, Kettering, OH 45420. 

A.1 Introduction 

Metal laser sintering is a layer-by-layer additive manufacturing process that uses 

3D CAD data in the form of a .stl file as a digital information source and energy in the 
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form of a high powered laser beam to create three-dimensional metal parts by fusing fine  

metallic powders together. A common setup is comprised of a fiber laser heat source and 

a powder bed held over a base plate. The laser scans on top of the powder bed, following 

a prescribed scan pattern, to melt a layer of powdered material based upon the .stl file. 

The layer-by-layer addition of material and selective laser exposure of the powder 

bed leads to fabrication of individual parts with complex geometries. One of the major 

advantages of metal laser melting is the elimination of part-specific tooling and pre-

production costs. The process is also versatile in nature since a variety of metals and their 

constituent alloys such as steels, aluminum, titanium and nickel based superalloys can be 

used for fabrication. Due to its ability to fully melt the exposed regions of the powder bed, 

close to full density-parts are generally fabricated using metal laser sintering [145]. 

Parts fabricated using the metal laser sintering process possess salient features such 

as complex geometries and structures with thin walls and hidden voids or channels. For 

instance, fully dense solid and porous lattice structures can be produced in the same part to 

enable complex biomedical implants such as a hip stem or a knee cup to be produced. Apart 

from the biomedical arena, other areas of application are in fabrication of lightweight parts 

for aerospace applications where manufacturing constraints such as tooling, or cutting tool 

access for material removal and machining leads to significant limitations in design [146].  

Any manufacturing process requires its physics to be understood in order to 

optimize it. Since metal laser sintering involves melting and fusion of fine metallic 

powders, understanding thermal evolution during the process is of great interest: thermal 

history drives microstructural evolution, and microstructure and phase morphology 
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influence in-service performance and longevity of the fabricated part. Many researchers 

have put efforts toward understanding the process [147-151] and formulating models to 

describe thermal evolution [152-157] accurately. Simulation models proved beneficial for 

demonstrating the influence of various input processing parameters. These models provide 

essential tools for identifying optimal parameter combinations without extensive testing 

[157]. The heat transfer mechanisms consist of powder bed radiation, convection between 

the powder bed and environment, and heat conduction inside the powder bed and between 

the powder bed and substrate (or prior layers). The heat transfer mechanisms also involve 

a huge latent heat of fusion since the process involves full melting of portions of the powder 

bed. Complex metallurgical phase changes that occur during processing complicate the 

heat transfer problem as thermophysical properties have a complex, non-linear relationship 

with temperature [158]. 

 

A.2. Problem Description 

A.2.1 Metal laser sintering of Ti6Al4V  

The three dimensional spatio-temperally periodic geometry, boundary conditions 

and material behavior described below represent a mathematical description of the metal 

laser sintering problem. 

A.2.1.1 Reference Geometry and Material Description 

The reference geometry considered here is shown in Figure A1.  A thermally non-

linear, homogenous and isotropic material behavior has been assumed for the Ti6Al4V 

material during processing. The powder and solidified regions have been assumed to be 

distinct homogenous entities.  The geometry of the problem is a solid base plate of 
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thickness 25.4 mm and a powder layer of thickness 30 µm. The temperature dependent 

non-linearity in thermal parameters is the same as that of a bulk Ti6Al4V material [159] 

undergoing metal laser sintering.  

A.2.1.2 Run-time Geometry and Material Updates 

During the course of a simulation, the geometry and material is updated as a 

function of boundary conditions and subsequent solidification. In the case of the laser 

exposing the nth layer, (n-1) layers have been solidified at the regions of laser exposure in 

the previous layers with an α’ microstructure whereas the nth layer is partially solidified 

from the laser initiation location to its current location based on its melt pool formation and 

solidification history. This has been done in order to dynamically capture the physical 

variables such as thermal histories, cooling rates and phase evolutions in the part along 

with deviation of the part dimensions from its desired design geometry. 

 

(a) (b) 

Figure A1: (a) Geometry and (b) boundary conditions for metal laser sintering of Ti6Al4V 

material comprised of a base plate, powder layer and Gaussian laser beam. Forced argon 
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in the chamber causes convection which is also considered a boundary condition for the 

problem, though not shown here. 

A.2.1.3 Governing Equations and Boundary Conditions 

 

The 3 dimensional counterpart of the governing equation is generalized as follows: 

 

where 

 𝑇(𝑟 , 𝑡) = Temperature at a position vector 𝑟  in 3 dimensional space and time t.  

�⃗� ⃗
 
 = Three dimensional material conductivity tensor of order 2 and rank 3 at position vector 

𝑟  

𝑐 = Three dimensional specific heat of the material at position vector 𝑟  

𝜌 = Density of the powder bed at position vector 𝑟  

𝑄(𝑟 , 𝑡)= Inner heat generation at point x and time t.  

Similarly, the three dimensional counterpart of flux is modified as 

𝑞 (𝑟 , 𝑡) = −�⃗� ⃗
 
(∇⃗⃗ 𝑇(𝑟 , 𝑡)) 

(2) 

where 

 𝑞 (𝑟 , 𝑡) = Flux at position vector 𝑟  and time t.  
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The spatio-temporal periodicity of the flux boundary condition in 3 dimensions is modified 

as: 

𝑞 (𝑟 + 𝑣 (𝑑𝑡), 𝑡 + 𝑑𝑡) = 𝑞 (𝑟 , 𝑡) (3) 

The Dirichlet boundary condition considered here is constant temperature at the bottom 

surface of the base plate as shown in Figure A.2. 

𝑇(0, 𝑡) = 𝑇0 = 353𝐾 

The time-periodic Neumann boundary condition considered here is the laser flux 

distribution in one dimension: 

𝑞 (𝑟 |𝑟 .𝑒 𝑧=𝑧𝑚𝑎𝑥 , 𝑡)  = (
2𝑃

𝜋𝑟𝑙𝑎𝑠𝑒𝑟
2
) exp (

−2|(𝑟 − 𝑣 𝑡 − 𝑟 0)|𝑟 .𝑒 𝑧=𝑧𝑚𝑎𝑥|

𝑟𝑙𝑎𝑠𝑒𝑟
2

) 
(4) 

where 𝑃 = Laser beam power=180W 

𝑟𝑙𝑎𝑠𝑒𝑟= Laser beam spot size incident perpendicular to the length (l =100mm) =100µm 

𝑣 𝑡 = Displacement by the laser beam from the left end of the bar with a speed (𝑣 =

1200𝑚𝑚/𝑠) at time instant 𝑡 

𝑟 0 = Initial position vector of the laser spot on the exposed powder surface  

|𝑟 .𝑒 𝑧=𝑧𝑚𝑎𝑥 = Condition for the laser flux to always hit the top surface of the powder bed 

| | =2nd norm of the included vector 

The initial condition for the bar considered here is constant temperature 𝑇0. 

𝑇(𝑟 , 0) = 𝑇0 = 353𝐾𝑒𝑙𝑣𝑖𝑛𝑠  
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Figure A.2: Surface boundary conditions for the metal laser sintering problem which 

includes convection, laser flux and fixed temperature boundary conditions 

A.2.1.4 Element Formulations  

 

Traditional thermal solid brick finite element formulations are provided in the 

literature [160-162]. Latent heats have been added to the brick element as follows: 

Metallic alloys such as Ti6Al4V have a range of temperatures at which the solid to liquid 

transition takes place. These temperatures are in the range of 1877K to 1933K [159]. 

Hence, the global thermal flux vector {𝑅𝑄}𝑝 is modified in the range of these temperatures: 

{𝑅𝑄}𝑝 = {𝑅𝑄}𝑝 − 𝜌𝐿𝑓𝑢𝑠𝑖𝑜𝑛

{𝑀}𝑝

∆𝑡
.∗

({𝑇}𝑝 − 𝑇𝑠)

(𝑇𝐿 − 𝑇𝑠)
 

(5) 

 

where 
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{𝑇}𝑝= Temperature vector for ‘p’ DOFs 

𝑇𝑠 = Solidus temperature of the material =1877K 

𝑇𝐿 = Liquidus temperature of the material =1923K 

{𝑀}𝑝 = 𝑠𝑖𝑔𝑛 (𝑠𝑖𝑔𝑛 (
({𝑇}𝑝−𝑇𝑠)

(𝑇𝐿−𝑇𝑠)
) + 𝑠𝑖𝑔𝑛 (

(𝑇𝐿−{𝑇}𝑝)

(𝑇𝐿−𝑇𝑠)
)) where 𝑠𝑖𝑔𝑛 denotes the signum 

function such that 

𝑠𝑖𝑔𝑛(𝑥) = {

1 𝑓𝑜𝑟 𝑥 > 0
0 𝑓𝑜𝑟 𝑥 = 0
−1𝑓𝑜𝑟 𝑥 < 0

 

 

(6) 

.∗ denotes the direct product (one to one product) vector of two vectors of equal length. 

𝐿𝑓𝑢𝑠𝑖𝑜𝑛 denotes the latent heat of fusion and ∆𝑡 denotes the time increment per time step. 

Vaporization occurs at a temperature of 3533K and is very significant in modeling 

situations where the energy intensity of the laser is high and the speed of the beam motion 

is low (causing a huge amount of energy to be pumped into the beam focal spot). The 

energy is large enough to cause the material to vaporize but not large enough to cause a 

breakdown in thermal continua. 𝐿𝑓𝑢𝑠𝑖𝑜𝑛 in equation 6 is replaced by 𝐿𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 in this 

scenario.  Density (𝜌) has been used as the density of the liquid at the vaporization 

temperature. 

 

A.2.2 Asymptotic approximation for localized spatio-temporally periodic boundary 

condition problems 
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The generalized finite element discretized equation is as follows: 

[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑇)]𝑝𝑥𝑝{�̇�}
𝑝
+ [𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝑇)]𝑝𝑥𝑝{𝑇}𝑝 = {𝑅𝑄}

𝑝
 (7) 

The thermal parameters (specific heat, c, density, ρ and thermal conductivity, k) are 

piecewise linear functions of temperature. The matrices [𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑇)]𝑝𝑥𝑝 and 

[𝐾𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝑇)]𝑝𝑥𝑝 can be expanded in the convergent Taylor series as: 

[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝 = ([𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
+

𝑑[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
({𝑇}𝑝 − 353)

+
𝑑2[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

2(𝑑{𝑇})2
({𝑇}𝑝 − 353)

2

+ 𝒪 (
𝑑3[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

6(𝑑{𝑇})3
({𝑇}𝑝 − 353)3) 

(8) 

 

[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝 = ([𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
+

𝑑[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
({𝑇}𝑝 − 353)

+ 𝒪 (
𝑑2[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

2(𝑑{𝑇})2
({𝑇}𝑝 − 353)

2
) 

(9) 

where 

𝒪 (
𝑑3[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

6(𝑑{𝑇})3
({𝑇}𝑝 − 353)3) → 0 

𝒪 (
𝑑2[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

2(𝑑{𝑇})2
({𝑇}𝑝 − 353)

2
) → 0 

 

(10) 

 

Back substituting equations (8-10) in (7) we get 
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([𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
{�̇�}

𝑝
+

𝑑[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
({𝑇}𝑝 − 353){�̇�}

𝑝

+
𝑑2[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

2(𝑑{𝑇})2
({𝑇}𝑝 − 353)

2
{�̇�}

𝑝

+ ([𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
{𝑇}𝑝

+
𝑑[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
({𝑇}𝑝 − 353){𝑇}𝑝 = {𝑅𝑄}

𝑝
 

(11) 

The prescribed flux vector is: 

{𝑅𝑄}
𝑝

= {𝑅𝑄}
𝑝
𝛿

(
𝑟𝑙𝑎𝑠𝑒𝑟

√2
)
(𝑟 − 𝑟 𝑞 − 𝑣 𝑡) (12) 

Equation (11) can be further grouped for zeroth and higher order terms as follows: 

(([𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
{�̇�}

𝑝
+ ([𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠

{𝑇}𝑝)

+ (
𝑑[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
{�̇�}

𝑝
+

𝑑2[𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

2(𝑑{𝑇})2
({𝑇}𝑝 − 353){�̇�}

𝑝

+
𝑑[𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝

𝑑{𝑇}
{𝑇}𝑝) ({𝑇}𝑝 − 353) − {𝑅𝑄}

𝑝
= {0}

𝑝
 

 

(13) 

The zeroth order problem can be first solved for the entire domain as follows: 

([𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠
{�̇�}

𝑝
+ ([𝐾𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑝𝑥𝑝)𝑇=353𝐾𝑒𝑙𝑣𝑖𝑛𝑠

{𝑇}𝑝 = {𝑅𝑄}
𝑝
 

 

(14) 

Once the temperature vector {𝑇}𝑝 is obtained then the problem is re-solved with a higher 

order corrector for selective {𝑇}𝑝 ≫ 353 since ({𝑇}𝑝 − 353) → {0}
𝑝
 for those {𝑇}𝑝 → 353 

K. 
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It has been observed using the one dimensional analog of the problem that the non-

linear thermal behavior is constricted to the region 𝑟 = 𝑟 𝑞 + 𝑣 𝑡 + 4𝑟𝑙𝑎𝑠𝑒𝑟�̂� where �̂� is the 

superficial arbitrary radial unit vector with origin at the center of the laser spot. Henceforth, 

a FFD-AMRD strategy has been followed with refinement enwrapping the region in the 

near neighborhood of the laser spot centered at 𝑟 = 𝑟 𝑞 + 𝑣 𝑡. 

 

A.2.3 Locally enriched Dynamic Mesh (FFD-AMRD framework)[162]  

 

The locally enriched dynamic mesh has been demonstrated as shown in figures A.3 

and A.4. This meshing strategy provides significant benefits for solving the metal laser  
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Figure A.3: (i) Dynamically enriched mesh at an arbitrary initiation co-ordinate (3,3) with 

its blown-up fine mesh in (ii). The element and node numbers can be automatically 

assigned to the mesh in the developed mesh generation tool. Only the x-y plane is shown 

for clarity. The mesh is 3 dimensional in nature. 
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Figure A.4: (a-f) shows the movement of the dynamic mesh with the laser heat source in 

the x-y plane of the metal laser sintering machine. The arrow shows the direction of heat 

source motion. 
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sintering thermal problem with increased accuracy in the vicinity of laser exposure where 

high gradients are anticipated and with required fidelity as radial distance increases away 

from the point of laser exposure. Figure A.3 shows the multi-scale nature of the mesh and 

figure A.4 illustrates the dynamics of mesh movement. 

 

Figure A.5: Temperature dependent conductivity (𝑘) and volumetric heat capacity (ρc) for 

Ti6Al4V in SI units plotted against temperature in Kelvins. 
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A.2.4 Non-linear thermal variables 

Scalar bulk thermal conductivity (𝑘) and volumetric heat capacity (ρc) vary as a 

function of temperature [163] as shown in figure A.5. Volumetric heat capacity (ρc) 

increases initially with temperature and then goes through a discontinuity in between 900-

1100 K (α’αβ phase transformation) and becomes flat at temperatures in the 1500-

1850 K region. The thermal conductivity also exhibits a similar behavior near 900 K though 

it increases until the material reaches its melting point and thereafter becomes constant. 

Appropriate ratios [163] have been maintained between the bulk and powder thermal 

characteristics. The powder assumes bulk thermal properties after melting at a temperature 

higher than 1923 K (liquidus temperature of Ti6Al4V) 

A.3. Results and Discussion 

A.3.1 Three dimensional spatio-temporally periodic FEM results  

 

The thermal contours for linear and non-linear thermal parameters during metal 

laser sintering of Ti6Al4V are compared in Figure A.6 during a straight pass. It can be 

clearly seen that the melt pool diameter in the linear scenario overestimates the melt pool 

diameter compared to the more accurate non-linear solution. In the non-linear scenario, the 

melt pool diameter is close to the beam diameter (~100 µm). In Figure A.7, stable and 

unstable thermal contours are plotted at various locations within a scan. It can be observed 

that the thermal contours are unstable near turns as the hatch spacing is less than the length 

of the melt pool. 
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(a) (b) 

 

 

(c) (d) 

Figure A.6: Comparison of thermal contours between linear (a,b) and non-linear (c,d)  

scenarios. The melt pool diameter in (b) is 125 µm whereas in (d) it is 107 µm. The spatial 

gradient due to laser spot decays steeply in the y direction is ~230 µm for the non-linear 

case compared to ~353 µm for the linear case. 
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Figure A.7: Stable and Unstable Thermal contours as a function of scan location. 

The martensitic α’ and solidified volume fractions have also been captured as 

shown in figure A.8. In figure A.8(a), the thermal contours have been plotted as a function 

of location in the powder bed. Figures A.8(b) and (d) illustrate the region transformed from 

initial α phase of the powder to α’ phase and total bulk solidified area respectively. In 

figures A.8(c) and (e), the evolution of α’ phase and bulk solidified area as a fraction of 

total domain area are shown. It can be observed from figure A.8(c) and (e) that the area 

fraction of martensitic α’ is slightly greater than the bulk solidified area fraction since the 
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powders at the periphery of the part will be transformed to α’ without fully melting, leading 

to thermally modified but still unmelted powder particles at the periphery of the build slice.  

 

Figure A.8: Plots showing (a) the non-linear thermal distribution, (b) martensitic α’ region 

evolution, (c) martensitic α’ area phase fraction with respect to the total area of the inset, 

(d) solidified region evolution, and (e) solidified area phase fraction with respect to the 

total area of the inset. It can be observed that the solidified area fraction (34.8%) is slightly 

smaller than that of the martensitic α’ area fraction (35.2%).  (Note: the mesh distribution 

in (b) and (d) are a function of the plotting algorithm used and do have a physical meaning 

for the plots shown.) 

In order to illustrate the effect of unmelted particles at the periphery of a build slice, internal 

designed defects have been introduced in a continuously tapered cylindrical build as shown 

(a) (b) 

(c) (d) (e) 
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in figure A.9(a). Figure A.9(b) clearly shows the unmelted particles at the interior periphery 

of the designed defect. The external periphery of the build was accessible for surface 

preparation and hence it has been sand blasted to remove loosely bound unmelted particles. 

The sand blasted external surface is shown in Figure A.9(c).  

 

 

(a) (b) 

  

 

Un-melted particles at the interior 

periphery of the defect 

The un-melted particles have 

been removed by sand 
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(c) 

Figure A.9: (a) Internal defect design, (b) Unmelted particles at an internal surface 

pertaining to the central cylindrical defect of the build and (c) Unmelted particle removal 

using sanding at the external surface of the build [164]. 

The thermal history at the center of the domain held over the base plate has been captured 

and plotted as a function of time and number of build layers in figure A.10. It can be clearly 

observed that the heat doesn’t significantly affect more than three prior layers, as 

temperatures seen by the fourth and consequent layers will be much less than the β transus 

temperature. 

 

Figure A.10: Thermal history at the center-top of the base plate as additional layers are 

built over it.  
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The thermal contours on subsequent layers at the center of the domain held at the topmost 

layer of powder are plotted in Figure A.11. It can be clearly observed that the thermal 

contours become more and more diffused as the +z distance of the powder layer (distance 

from the large thermal mass of the base plate) increases. 

     

(a) (b) (c) 

Figure A.11: Layer-by-layer thermal evolution in metal laser sintering. (a) First layer, (b) 

Second layer and (c) Third layer. 

A.3.2 Thermal and microstructural validations 

 

The thermal contours were found to be in good agreement with experimentally 

observed thermal contours for Ti6Al4V when subjected to a laser beam diameter of 200 

µm and at a scan speed of 5 mm/s. The experiment was conducted on a laser process 

development cell at a research partner facility using a Forward Looking Infra-Red (FLIR) 

camera. The simulated and experimentally obtained thermal contours match for the same 

input processing parameters, and are shown in Figures A12 and A13 respectively. A large 

beam diameter and slow scan speed were chosen to ease the ability of the camera to capture 

the frames smoothly during the experiment. The slow scan speed also provides an 

opportunity for the simulation to show its versatility in both high and low scan speed 
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regimes. The prior beta grain size should be the lesser of the melt pool width or the hatch 

spacing, and the fact that it is equal to the hatch spacing indicates that the melt pool width 

is wider than the hatch spacing as predicted to be 104 µm  as shown in Figure A.14.  

 

 

Figure A.12: Simulated thermal contours at the same location and process parameters as 

those used in the experiment (Figure A.13). Temperature color-bar is shown in Kelvins. 
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Figure A.13: Experimentally obtained thermal contours 

635 µm 

976 µm 
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Figure A.14: Transverse prior β grain diameter (~100 µm).  

 

A.4. Conclusions 

A novel spatial asymptotic approximation has been extended for non-linear problems with 

spatiotemporally periodic localized boundary conditions. A fully three dimensional finite 

element analysis with an FFD-AMRD framework for metal laser sintering modeling were 

developed and used to verify the asymptotic approximation developed in this work.  

The proposed framework has been further extended to incorporate the nonlinear thermal 

behavior of the material along with phase changes such as β α’ during rapid cooling.  

104 µm 
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Furthermore, transformation of powder to solidified bulk and its effects on thermal 

behavior has been tracked. The phase evolution, microstructural predictions, addition of 

layers on-the-fly and generic scan patterns have been implemented and recorded as a 

function of time.  

The thermal behavior of the metal laser sintering process predicted using the FFD-AMRD 

simulations was found to be in good agreement with the thermal images captured using a 

FLIR camera. The microstructural predictions computed were found to be in good 

agreement with the results obtained from these simulations.  

The present computational framework of FFD-AMRD has significant potential for 

increasing the computational accuracy along with reduction in computational time for 

thermal process modeling problems similar to metal laser sintering. Future directions for 

the present work shall be to extend the proposed framework to include a capability to 

predict the final geometry of the finished part along with computation of the residual 

stresses. The proposed methodology has potential to be applied to a wide spectrum of 

problems ranging from additive to traditional manufacturing, problems involving contact 

mechanics, fracture and delamination problems, gear and dynamic multi-body assemblies 

and non-linear wave propagation.    
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