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ABSTRACT 

OPTIMIZATION OF SUPPORT STRUCTURES FOR SELECTIVE LASER MELTING 

Kai Zeng 

July 20, 2015 

Additive Manufacturing (AM) users rely on experiments and experience to 

predict the performance of AM processes. This trial and error approach for qualifying 

AM parts takes significant time and money.  Simulation tools are an urgent need for 

today’s AM industry.  One area of need is the automatic generation of optimized support 

structures based upon the scan patterns used to produce those structures.  This research 

seeks to develop support structure generation tools based on real scan pattern and thermo-

mechanical simulation tools for Selective Laser Melting (SLM) developed at the 

University of Louisville and being commercialized by 3DSIM, LLC.  

In order to benchmark the 3DSIM thermo-mechanical simulation tool, a thermal 

finite element model has been developed in ANSYS which uses the similar multi-scale 

meshing strategies as 3DSIM. The use of the sub-modeling approach for dynamic 

meshing was verified by comparing it against a uniform fine mesh model. The results of 

the two models match within an acceptable tolerance. Also, a mesh sensitivity analysis 

was carried out in order to show solution convergence as a function of increasing mesh 

density. The results of this analysis were also validated using experiments to show a 

match between experimental and simulated melt pools.  Finally, the ANSYS solution was 
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compared with 3DSIM results.  The result of 3DSIM for a simple represented model is 

validated compared against the ANSYS model. What is more, it was significantly faster 

than their ANSYS counterparts for solving problems using a dynamic mesh. 

A scan pattern generation tool has been implemented to enable the input of real 

scan patterns as it is used in fabrication. The scan pattern is arbitrarily varied using user-

defined parameters including hatching space, orientation angle, scanning start point, etc. 

Several types of scan patterns such as traditional S and chessboard are included in the 

tool.   

A simplified representation of the thermomechanical properties of support 

structures in order to accelerate the simulation of supports has been formulated. The 

effective thermal properties of support structures are represented using thermal 

homogenization. The effective thermal properties of the support structures have been 

found to be a function of their geometry, anisotropy and constituent independent thermal 

properties. The results from this study have been compared against standard models and a 

good match has been found.  

A novel framework for a support structure generation and optimization tool has 

been developed to overcome the difficulty of dealing with support structures in SLM. 

Supports are optimized and designed based on the thermal stress accumulated in parts as 

they are made as well as geometrical rules. The support structure is designed to be 

withstand the thermal stress at locations where it could cause damage to the part and 

support structure, while minimizing the overall need for support structure materials. The 

support structure is designed with non-uniform parameters so as to make it flexible to 
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alter based upon thermal stress. Experiments were conducted to explore the threshold for 

block support structure parameters and results were applied to adjust and verify the tool.   
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CHAPTER 1 RESEARCH MOTIVATION AND PROBLEM STATEMENT 

1.1 Introduction and Research Motivation  

Additive Manufacturing (AM) was first developed in the 1980’s to enable rapid 

prototyping of objects using a layer by layer fabrication technique [1]. AM has 

transformed from its early days in rapid prototyping to find application in industries 

ranging from aerospace to orthodontic [2].  

Figure 1 [3] shows the typical eight steps for fabricating a part from a CAD model 

using AM. AM technologies are able to directly transform a digital CAD file to a real 

product, so creating a CAD file to represent the physical part is the first step in the 

production design and development process.  In the second step, the CAD file is 

approximated using triangles in the STL file format before commencing the layer by 

layer fabrication process. The STL file is thereafter sliced into multiple layers at a 

prescribed thickness. Part slicing is processed in the system software of the AM machine; 

or third party software such as Magics from Materialise can do pre-processing, such as 

for metal melting AM processes. Some general pre-processing includes correcting and 

slicing the STL file, adding support structures, etc. Support structures are necessary for 

printing key features such as overhanging surfaces in photopolymer processes or to resist 

thermal stress induced distortion in powder bed processes. Figure 2(a) shows different 

supporting strategies for building the same part for different orientations and Figure 2 (b) 

is the cross-section of a part using block supports.  Process parameters such as laser
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power, speed and scan pattern are set up in the machine in step 4. The scan pattern shown 

in Figure 3 is a typical type for an EOS M270 machine. After finishing the build in step 5, 

post-processing including removal of the support structure, surface cleaning and heat 

treatment may be done before using a part.  

 

Figure 1 The eight stages of the AM process [3] 

  
Figure 2 (a) Support structure for different building orientations and (b) Cross-section of 

one part with a block support structure 



3 
 

 

Figure 3 Scan pattern from EOS M270 

Although AM technologies have existed for almost 30 years, technical challenges 

related to materials, equipment, process control, modeling and process understanding 

remain [2]. AM users rely on a large number of repeated experiments and experience to 

understand the performance of AM processes. This trial and error approach to producing 

a qualified AM part is costly for both time and money. As seen in Figure 2 and Figure 3, 

scan pattern and support structure are two complex aspects in AM. Therefore, simulation 

tools are critically needed for today’s AM industry to aid understanding and further 

prediction of material behavior and AM part properties. These motivate the research in 
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this proposal to build new tools to investigate the influence of scan pattern on thermal 

stress and to generate optimal support structures for AM processes. 

1.2 Problem Statement 

The Selective Laser Melting (SLM) process involves the moving of a laser beam 

across a powder bed to melt material layer by layer. SLM involves very high laser 

intensity values, on the order of 1010 W/m2 and a Heat Affected Zone (HAZ) that is 

orders of magnitude less than the dimensions of the platform. Comprehensive literature 

review in chapter 2 will show many computational models developed to study 

temperature evolution in SLM. However most of these models are not able to simulate 

the complete problem, but only simulate a small part of the problem with a fine mesh or 

the entire problem using a coarse mesh to avoid the computational burdens of meshing 

the full problem with a fine mesh. A thermo-mechanical simulation tool for SLM 

developed at the University of Louisville is being commercialized by 3DSIM, LLC. It is 

able to simulate the temperature and thermal stress distribution in the SLM process in a 

fine-scale [4]. The model utilizes a spatiotemporal adaptive meshing technique where the 

fine mesh domain moves along with the laser scan path. This tool has been shown to 

provide significant computational enhancements over other solution methodologies and 

makes possible simulating the complete problem for an SLM process.  

In order to adopt this tool as a thermal stress predictor for support structure design 

in SLM, the first goal of this research is to validate the thermal results of the 3DSIM 

thermo-mechanical simulation tools. A finite element method (FEM) model with a 

similar dynamic moving mesh has been developed in the commercialized standard FEM 

software ANSYS. The ANSYS model is used to compare against the 3DSIM model. The 
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second goal of the research is to make the 3DSIM model able to simulate the SLM 

process using the same scan pattern as used in an SLM machine to study the influence of 

various scan patterns on the temperature, stress distribution and microstructure of parts 

made using SLM. A scan pattern generation module has been created and integrated into 

the 3DSIM model. The third goal is to add the influence of support structure into the 

model. An effective thermal conductivity for the support structure has been studied and 

implemented. The fourth goal is to develop a novel framework for a support structure 

optimization and design tool which is able to create optimal support structures based on 

both stress and geometry of the part. The support structure generation tool has been 

focused on optimization of block support structure density for a given part built with a 

specific orientation and scan pattern. What is more, the experiment has been carried out 

to explore the threshold of block support structure parameters which can be applied to the 

model.    
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, an introduction to SLM followed by a comprehensive literature 

review of thermal modeling of SLM technology, scan strategies and support structures is 

presented.  

2.1 Additive Manufacturing 

Additive Manufacturing (AM) technologies have been improved, re-innovated 

and extended tremendously since the idea of layer-by-layer fabrication from a CAD 

model was first developed in the 1970s [3, 5].  There are seven major categories of AM 

technologies according to the ASTM classification as shown in Figure 4 [6]. Figure 4 

also summarizes the materials that different AM technologies are able to process and 

examples of companies that produce AM machines worldwide. AM technologies are 

categorized mainly by the mechanism of processing and each classification has been 

divided into several other processes according to the materials and/or energy source. 

Metals and polymers (including photopolymers) are widely used materials in AM.  As 

shown in Figure 4, AM is being utilized all over the world, with the United States and 

Europe as the main pioneers. 
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Figure 4 Classification of additive manufacturing processes defined by the additive 

manufacturing special interest group (AM SIG)-adapted from ASTM classifications [6] 
* Technology typically associated with turbine blade repair, but also used for AM applications 
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2.2 Selective Laser Melting (SLM) Process 

As seen from Figure 4, SLM is one of the processes under Powder Bed Fusion 

(PBF). SLM is a metal based PBF process and is similar to Selective Laser Sintering 

(SLS). A wide range of metals have been used in SLM, such as stainless steel, titanium, 

cobalt chrome, etc.  

2.2.1 SLM Process  

Figure 5 [7] shows a schematic diagram of a typical SLM process mechanism. It 

consists of the building platform system, powder delivery system and laser system. The 

part is built upon the building plate which is fastened to the build platform and adjusted 

to be horizontal. Then the powder is delivered and spread over the plate by the recoater 

blade. The thickness of each powder layer is usually at least the diameter of the powder 

and can be flexibly set by the user. Laser scanning begins with predefined tracks after the 

powder has been spread over the plate. After layer scanning is finished, the build 

platform is lowered the depth of a layer and new powder is spread over the previous layer. 

The process is repeated continuously and the new layer is built upon the old ones until the 

part has been finished.  

2.2.2 SLM Process Parameters  

In SLM the basic process parameters include laser related parameters and 

geometry/scanning related parameters. Laser related parameters include laser power, 

beam diameter and scanning speed. Geometry/scanning related parameters include hatch 

spacing, beam offset and layer thickness. Besides these, different scan patterns, such as 

strip, chessboard, and skin/contour settings can be selected for the part. Parameter setup 

is usually tedious in the machine, but very critical to the success of the build since the 
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microstructure, mechanical properties, deformation, geometric accuracy and surface 

roughness of the part are influenced by process parameters [8] . 

 

Figure 5 SLM process diagram [7] 

 

2.2.3 SLM Defects   

The highly concentrated laser energy input in SLM results in large thermal 

gradients, which result in thermal stress in the part. Deformation, cracking, internal 

porosity and dimensional inaccuracy are four of the most common defects. A bridge 

structure [9]  and a T-shaped cantilever structure [10] were fabricated using SLM and the 

bending deformation was measured in both cases. The bridge structure shows bending of 

the two ends into the positive vertical direction and the T-shaped cantilever structure bent 

in the negative vertical direction after cooling down to ambient temperature and removal 

of the support structures. A structure with overhanging features on both sides was built in 

the experiment and overhanging structures bent and broke away from the support 

structure because of the thermal stress [11]. Cracks and delamination can occur during 

fabrication of M2 Tool Steel parts in SLM [12]. Pre-heating the base plate and re-melting 
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every layer were studied in order to reduce cracking and delamination.  Cracks were also 

observed in Titanium parts produced with SLM [13].   

2.2.4 SLM Post-processing   

The major work of post-processing in SLM is support removal and finishing. 

There are two types of support materials: (a) material which surrounds the part as a 

naturally-occurring by-product of the build process (natural supports), and (b) rigid 

structures which are designed and built to support, restrain or attach the part being built to 

a build platform (synthetic support) [3]. In SLM, the surrounding powder behaves as a 

natural support and provides support for the part in the build process. The part could be 

easily removed from the loose powder in SLM. In most cases, extra synthetic support 

structures need to be designed and fabricated to reduce deformation caused by thermal 

stress. This type of support structure needs to be removed from the part during SLM post 

processing. Surface finishing is usually required after support removal.  

2.3 Thermo-mechanical simulation studies in SLM  

2.3.1 SLM Thermal Phenomenon 

A high energy density laser beam is applied in SLM to melt the powder material. 

The melt pool solidifies quickly to form the bulk part. Figure 6 [14] shows a schematic 

representation of a laser melting the surface of a powder bed. The laser source moves on 

the top of the powder bed following a prescribed scan pattern. The laser energy is 

dissipated in several ways as shown in Figure 6. A big portion of energy is reflected by 

the powder surface.  In a typical SLM process, such as an EOS M270 machine, the build 

takes place in a closed chamber in which convection across the surface carries away a 
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certain amount of energy. Most of the remaining energy is conducted by the powder and 

 

Figure 6 Schematic representation of heat transfer [14] 

air trapped among powder particles through the powder bed and the base plate.  During 

the heating and cooling process, the material undergoes phase changes from solid to 

liquid and back to solid, and can include solid state phase changes as well. Vaporization 

occurs if the temperature exceeds the material’s vaporization point. In such a situation, 

heat radiation is significant due to the high temperature.   

2.3.2 Governing Equations and Boundary Conditions 

Fourier heat conduction theory is the most common theory used to describe the 

various heat conduction problems. It is also adopted for simulation of the moving heat 
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source problem in order to study thermal evolution in SLM processes. Most researchers 

utilize the heat conduction equation (Equation (1)) as the governing equation [15], 

Equation (2) represents an initial boundary condition of a constant temperature 

throughout the domain and Equations (3) and (4) are example convection and constraint 

boundary conditions respectively. 

λ(T)(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + q = ρ(T)c(T)

∂T

∂t
 (1) 

Initial condition: 

               Initial temperature: 

T(x, y, z, 0) =  T0                                       (2) 

Boundary conditions: 

Surface convection: 

−λ(T)
∂T

∂z
= h(T − Te)                            (3) 

No heat loss at the bottom: 

−λ
∂T

∂z
|z=0 = 0                                             (4) 

In these equations T is temperature, λ conductivity coefficient, ρ density, c heat 

capacity, q internal heat source,  T0  powder bed initial temperature, Te  environment 

temperature, and h convection heat transfer coefficient. The thermal coefficients λ, ρ, and 

c are considered temperature dependent for SLM.  

2.3.3 Laser Beam Approximation Modeling 

Surface Heat Source 
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A laser beam can be assumed to be a point or line source, but this is not in 

conjunction with reality. The Gaussian model, which is the most widely adopted model, 

utilizes a symmetrical distribution of laser irradiance across the beam [14, 16]. There are 

three basic modes for the Gaussian model: TEM00, TEM01, and TEM02 [17].  Equation (5) 

describe the Gaussian laser beam distribution for the fundamental mode TEM00,  

I(r) = I0 e
−
d2

d1
2
 

                                                                 (5) 

where d1 is the beam diameter and corresponds to the point where the irradiance (I0) 

diminishes by a factor of 1/e2, and d is the radial distance of a point from the center. 

The thermal heat flux is defined as the thermal energy per unit area and is 

modeled using Equation (6)[18], 

q(r) =
2P

πr0
2  e

−
2r2

r0
2

 (6) 

where P is the laser power, r0  the spot radius and r the radial distance. Similarly, the 

average heat flux on the laser spot is shown in Equation (7) by using the same definition 

as thermal heat flux,   

qm =
1

πr0
2  ∫ q(2πr)dr

r0

0

=
0.865αP

πr0
2  (7) 

where α is the absorption rate (e.g. laser absorptivity). 

 

Volumetric Heat Source 
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The surface heat source model is commonly assumed for simulation of the laser 

beam in SLM processes. There are also other models which consider laser beam 

penetration into the powder bed due to its porosity.  

A ray tracing (RC) model has been simulated considering the geometry and 

structure of the powder [19]. The laser beam is simulated as a ray and it is reflected and 

absorbed by the surface of powder particles until the energy of the ‘ray’ decays to zero, 

as shown in Figure 7  [19]. Each ray has been traced and the simulation has been run with 

a large number of rays penetrating into the powder bed.  Based on the large number of 

simulation results, the ratio of energy absorption can be calculated.  

 

Figure 7 2D illustration of the RC model: simulation over a depth of 1mm and width of 

1mm of powder bed  [19] 

 

2.3.4 SLM Thermal Modeling Techniques 
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The core problem when simulating heat transfer in SLM is to solve the governing 

Equation (1) under various specific boundary conditions. Analytical solutions and 

numerical method such as the finite element method (FEM) are two ways to find thermal 

results.  

2.3.4.1 Analytical Solutions 

An analytical solution has not been derived from the heat transfer model governed 

by Equation (1) under boundary condition Equations (2), (3), (4) with temperature 

dependent thermal coefficients. However, there are some solutions associated with 

constant coefficients and simplified boundary conditions.  The Rosenthal solution is 

considered the basic formulation for simulating a traveling point heat source in welding 

[20].  Many welding studies focusing on different heat sources and calculation domains 

for one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) problems 

are based on the Rosenthal solution [21].  Rosenthal’s solution plays an important role in 

the study of SLM temperature distribution as well since SLM processes and welding have 

a lot in common.  

The solution for 1D steady state problems with point and line heat sources is 

derived analytically in [22].  The 3D Rosenthal analytical solution has been applied to 

solve the steady state temperature distribution by a moving point heat source in a semi-

infinite plate domain for SLM [3]. A more complicated analytical solution with 

consideration of the Gaussian distribution heat source has also been derived [21, 23, 24]. 

The solution is in a form of an integral without a concise closed form [21].  The 

analytical closed form solution for the maximum temperature of a stationary laser beam, 

an extremely fast moving laser beam and a laser beam with intermediate velocity has 
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been derived [24].  From the literature, there are no analytical solutions for the problem 

with consideration of the nonlinearity of thermal properties.     

2.3.4.2 Numerical Models 

Uniform mesh FEM model 

The effects of volume shrinkage during laser densification processes for ceramics 

have been analyzed using a finite element model [18, 25, 26]. A domain with dimensions 

of 10x6x2mm was created and meshed with element size of 0.25mm in ANSYS [18]. The 

thermal distribution caused by a laser beam with a radius of 0.5mm moving at a speed of 

0.24mm/s has been calculated. The volumetric shrinkage was determined by the changing 

of porosity for powder and liquid which are 40% and 0% respectively. The shrinkage is 

implemented to the model by shrinking the Y coordinates of the fully melted elements. 

The results show that shrinkage has critical effects on the temperature distribution.  

A numerical model of coupled radiation and heat transfer was built to analyze and 

explain observed instability such as ‘balling’ effects for processing 316 L stainless steel 

in SLM [27]. The simulation results suggest that decreasing the scanning velocity, 

reducing the length-to-width ratio of the melt pool and increasing the width of contact 

with the substrate will make the SLM process more stable. Single track scanning was 

simulated and compared against experiment results.  

A heat equation solver using FEM was built in Matlab and the node, element 

information and connectivity matrix was imported from ANSYS [28]. This model was 

used to analyze the temperature distribution in a single metallic powder layer during 

SLM processing. The temperature distribution of a 2D domain with dimension of less 

than 1x1mm was calculated. The domain was divided into 64 elements and four area 
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elements were assumed under the Gaussian laser beam distribution. The temperature 

distribution was compared against experimental results [29] and numerical results [30].  

A cubic specimen with the dimension of 5x0.8x0.1mm and meshed with 40000 

hexahedral eight elements was modeled to study the thermal distribution of 

polycarbonate in Selective Laser Sintering (SLS) [31]. The model simulates the 

temperature distribution of the laser beam scanning the powder bed in the longitudinal 

direction for a total length of 4mm. The density distribution for simulation and 

experimental results were found to be in good agreement.  

An ANSYS model was built to study the temperature distribution and thermal 

stress for laser melting of W-Ni-Fe powders [32]. A powder bed domain with dimension 

of 1x2x0.05mm was built upon a substrate with dimension of 2x3x1.5mm. The powder 

bed was hexahedron meshed with an element size of 0.05mm and the substrate was 

meshed by a free grid tetrahedron. The Gaussian heat flux zone was represented by 2x2 

mesh matrices.  The influences of various process parameters have been investigated 

using the FEM model in order to understand the SLM process. 

A recent SLM model introduces a FEM model to simulate single bead scans of 

Titanium powder [33].  It was used to study the influence of process parameters and thus 

investigate the optimal parameters for fabricating denser Ti64 parts without post-

processing. A powder bed with dimension of 2x1x0.05mm was sintered on a block with 

dimension of 25x10x5mm. Subsequently the solid model was meshed with an element 

size of 5μm for a laser diameter of 34μm.  

Non-uniform mesh FEM model 



18 
 

A 2D model was developed to solve the SLS thermal problem for polymers and 

metals respectively, known as Childs’ model and developed in Fortran [34-37]. These 

models have the ability to solve the transient thermal problem, accounting for various 

material states. It has been used to predict the track mass per unit length melted by the 

laser beam using the thermal and post-processing calculation for M2, H13 tool steels and 

314S stainless steel powder [36] and crystalline polymer [34]. A boat-shaped track with a 

crescent cross-section is simulated by the Childs’ model [35]. Reasonable agreement in 

melt pool shape and dimension with experimental results at low scan speed (0.5mm/s) for 

M2 and H13 tool steel was achieved. The 3D metal version of Childs’s model is known 

as stmet3d [37].  The mesh in that 3D model is coarsened with distance from a heat 

source and it is represented by a 10x10 elements matrix zone. The local fine mesh is 

formed by intensifying the discretization in the heat flux zone. This localized fine 

discretization also inevitably increases the number of elements in the surrounding area.  

The process maps are constructed to relate modelled part qualities to input power, speed 

and hatch spacing, approximately 90 parts were modeled using stmet3d [37].  

A FEM model simulates the temperature and thermal stress distribution of a simple 

geometry block with dimension of 20x20x9mm of H13 hot work tool steel in the SLM 

process. The size of each element depends on the melting depth and track width of the 

fused powder. The melting depth and width are determined experimentally.  In the model, 

the latent heat is ignored because of the small melt pool. The new manner of using 

Element death and birth to deal with the powder deposition was first adopted in the Finite 

Element model in ANSYS [38].  



19 
 

Another coarse-fine mesh FEM model used to study SLM processing of Titanium 

powder was introduced [30]. The computational domain of the model is 5x5x2mm and 

the fine mesh domain is 2x2x0.5mm, in which the associated mesh size is 0.1mm and 

0.01mm respectively. It is able to reduce the number of elements using two types of 

elements: coarse and fine mesh. However, the boundary between fine and coarse mesh 

needs to be coupled, and the associated FE method is non-conforming along the interface 

between the coarsely and finely meshed regions in this case, which is easily built 

compared to conformal meshes[30].   

A recent thermal model using a coarse and fine mesh strategy to simulate the 

temperature distribution in SLM has been developed [14, 39]. The computational domain 

consists of five layers of 1x1x0.03mm Titanium powder deposited on the mild steel 

substrate with dimension of 3x3x3mm. The element type in this model is hexahedron for 

the substrate and powder bed compared against the tetrahedron model in [32]. The 

powder bed is uniformly divided in a fine mesh size of 0.025x0.025x0.03mm. A smarter 

manner was used to reduce the model size. The mesh for areas surrounding the finely 

meshed zone is coarse. And the mesh is coarser and coarser when it is further away from 

the finely meshed zone. The model was also built in ANSYS and the functionality of 

element death and birth is applied for new layer deposition.  

Adaptive moving mesh FEM model 

Adaptive moving mesh FEM is categorized in this dissertation based on whether 

the mesh is updated during the time/calculation steps in the thermal simulation.  There 

are a lot of physical situations where temperature, stress, strain or point of interest is 
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highly concentrated in a tiny local area and changes with time. The thermal problem in 

the SLM process is one such phenomenon.   

There are a series of effective, mesh-adaptation-based approaches aiming to 

numerically solve the mathematical differential equations [40]. There are three main 

mesh adaption strategies: mesh subdivision, local high order approximation, and mesh 

movement, which has not been well studied.  

The commercial software ANSYS Fluent has the functionality for applying 

dynamic and moving meshes for solving fluid dynamics problem. It is used to model 

flows for which the domain is changing with time [41]. Besides ANSYS Fluent, there are 

no other tools fully capable of simulating thermo-mechanical problem in a moving mesh 

fashion so far.  

There are a few models in the literature for using adaptive moving meshes to 

simulate temperature distributions in SLM. A FEM model was developed to simulate the 

melting and solidifying process and calculate the amount of solidified mass during SLM 

processing [42].  The solidified part is assumed to be a hemisphere due to surface tension, 

therefore the mesh for the melted/solidified powder is updated to the assumed shape after 

each heating in the simulation.   

An innovative generalized feed forward dynamic adaptive mesh refinement and 

de-refinement finite element framework for SLM has been established most recently [43-

45]. A fine-coarse mesh strategy is applied to quickly calculate the temperature 

distribution. The heat affected zone (HAZ) is meshed into an ultrafine scale in order to 

capture the temperature under the laser beam. The area surrounding the HAZ is meshed 

using a relatively coarse mesh to reduce the number of elements. The fine mesh 
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representing the HAZ moves at the scanning speed of the laser beam, therefore, the 

global temperature in the SLM process can be calculated using a really fine scale. 

In conclusion most of the works from the literature try to give insights about the 

SLM process through simulation of the simplified problem. Since the traditional uniform 

meshing FEM method are not capable of fully simulating the multi-scale thermal problem 

for an SLM process under normal computational capacity. Non-uniform meshing 

strategies are beneficial to reduce the problem size for solving larger, but still limited, 

problems. However, more effective and smart algorithms such as multi scale dynamic 

meshing are necessary to adopt to dramatically reduce the level of computational burden 

and potentially simulate the SLM process in the near future.   

2.4 Scan Strategies in SLM  

2.4.1 Scan Strategies in SLM processing  

 A study of the sintering and melting behavior of stainless steel 314S powder in 

SLM was undertaken [46]. The study included building tracks from a single layer to 

multiple layers. Single track scanning and traditional raster scanning strategies were used 

in the experiments. A combination of different scan speed and power were applied to the 

experiment and a process map correlated scan speed, power and melt pool shape based on 

a massive experimental data.  

Thermal stress is influenced by both material properties and process parameters, 

such as scanning strategies. In order to optimize the scanning strategy, a closer look was 

taken at the thermal deformation and other mechanism involved in SLM. Six different 

scanning strategies were used in the experiment and performed in the self-developed 

machine at the University of Leuven with a maximum output power of 300W [47]. The 



22 
 

six scan strategies include two parallel line scanning through the X and Y direction and 

other four sector patterns where the part is divided into small square sections as shown in 

Figure 8. Two of the sector patterns have dimension of 5x5mm for the square section. 

And the other two have dimension of 2.5x2.5mm. For the sector strategies, there are two 

scanning orders (1) scanning successively or (2) according to the least heat influence 

(LHI) for the neighboring sectors.  So all the six scanning strategies performed in the 

experiment are (1) line X, (2) line Y, (3) sector 5-suc., (4) sector 5-LHI, (5) sector 2.5-suc. 

And (6) sector 2.5-LHI. Some conclusions are drawn for the six different scan strategies. 

In general, the stresses perpendicular to the scan direction are larger than along the scan 

direction. Scanning along the X/Y-direction results in the smallest curvature in that 

direction, but the largest curvature in the other direction. Sector strategies result in less 

deformation. The same six scan strategies [47] with different square section dimensions 

were used to study their influence on thermal stress. And the experimental results for four 

of the scan patterns were also compared against the residual stress results from a 

theoretical model which was described in the paper [48]. The paper indicated that both 

results have similar tendency although large deviation exists in some area.  

 

Figure 8 Six different scan strategies tested [47] 
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A fine microstructure and controllable texture A1Si10Mg part is obtainable 

through SLM [49].  A modified Concept Laser M1 machine with maximum 200W fiber 

laser was used to fabricate the A1Si10Mg part. A cubical sample with dimensions of 

15x15x15mm was fabricated using five different scan strategies, which are (a) uni-

direction, (b) bi-direction, (c) alternate bi-direction, (d) island with 90° rotation and (e) 

island with 90° rotation and 1mm shift between layers as it shown in Figure 9. The melt 

pool width for sample (a, b) is 170 ± 15μm and (d, e) is 180 ± 30μm. The 

crystallographic texture of samples (a) and (b) are similar and the normalized texture 

difference was calculated to be 0.64%.  However, the overall crystallographic texture was 

reduced significantly by 35% when the scanning direction is rotated by 90° every layer. 

The normalized texture difference between samples (c) and (d) was about 3.5%, and 

about 1% between samples (d) and (e). 

 

Figure 9 Five different scan strategies tested [49] 

Another experiment [9] was performed in order to understand the influence of scan 

strategy on the thermal stress and curling angle from the same research group [47, 48].  

The relative density for a Ti64 part was measured for three different scan strategies: uni-
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direction, bi-direction and alternating bi-direction for two layers. The results showed that 

part scanning using alternating bi-direction achieves the highest relative density. On the 

other hand, the uni-direction scanned part has the lowest density. The experimental 

results also show that re-melting the scanned layer or top surface can improve the density 

and surface quality.  By reducing the scan vector length in bi-direction scanning from 

10mm to 2mm, the thermal stress is improved by 13%.  Also the island scanning strategy 

is able to reduce the curling angle, but island section size did not influence the curling 

angle. When the scanning direction angle is 45° with respect to the x axis, the largest 

improvement for the curling angle is 36%. 

Porosity and layer distortion was compared for four different scan strategies for 

H13 tool steel built in a 550 W pulsed Nd:YAG laser SLM machine [50].  The four 

scanning strategies are: filling, sequential, alternating, and refill. The alternating strategy 

produced specimens with a more uniform temperature and surface quality as shown in 

Figure 10. Alternating strategy specimens show the highest porosity.  The specimen 

fabricated using the refill strategy showed the lowest porosity and volume reduction. The 

spacing change for the strategies showed little influence by cross-section of the sample. 

 

Figure 10 Four different scan strategies tested [50] 
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A consecutive sub-sector scan strategy, also known as a chessboard scan strategy 

[7], has been created and tested for stainless steel 316L inner complex structures in a self-

developed HRPM II SLM machine with maximum 200W laser output [51]. The sub-

sector scan strategy with adjusted short scan vectors shows its advantage for melting 

powder more effectively. 

In the same SLM machine, a new helix scan strategy was tested by fabricating 

316L to reduce thermal deformation [52]. The helix scan strategy was compared against a 

bi-direction scan pattern. The helix scan strategy when fabricating complex geometrical 

parts resulted in a lower maximum deformation. It was also shown that the helix scan 

strategy is not appropriate to for scanning a ring geometry.   

Adjusting the scanning strategy was proposed to control defects such as balling 

effects and thermal deformation caused by thermal gradients in SLM. Four different 

types of scanning strategies were performed to fabricate selected alloy powders such as 

gold and stainless steel 304L in a maximum 100W Nd:YAG laser platform[53]. The four 

selected scanning strategies were: parallel, spiral, paintbrush and chessboard scanning. 

The four scanning strategies showed different influences on part quality. The parallel 

scanning parts normally have balling and cracks on the two sides that are perpendicular to 

the scanning direction even at high speed.  Spiral scanning was able to produce better 

thermal results than parallel line scanning for very high scan speeds.  Spiral scanning was 

able to avoid overheating near the sides perpendicular to the scanning direction, however, 

serious overheat happens in the center of the part. Paintbrush scanning can limit 

overheating and high temperature gradients for both low and high conductivity powder, 

resulting in dense parts.  However, bonding is not perfect for the first layer and 
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delamination is foreseen for tall parts. Chessboard scanning was found to be the best 

among them to reduce thermal gradients and deformation, though it was difficult to create 

suitable CAD files.  

 

Figure 11 Four different scan strategies tested [53] 

In conclusion, the literatures shows that scan strategies do influence thermal 

evolution and result in different deformation behavior in SLM fabricated parts. Better 

scan strategies by reducing the scan length could help to reduce thermal gradients, 

deformation and even improve the density of the part.  

2.4.2 Scan Strategies in Modeling 
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A FEM analysis of temperature and thermal stress of a single layer formed on a 

nickel based alloy powder bed in SLM was investigated [54]. The thermal results for five 

tracks of scanning was simulated for a single layer under a Gaussian laser source.  

According to the simulation results, warping can be reduced by shortening the long 

scanning track and dividing the scanning area into small sections to avoid cracking. 

The influence of two different scan strategies on the temperature distribution and 

thermal stress were tested in a FEM model which allows for nonlinear thermal properties 

[55]. A newly developed fractal scanning pattern was compared against traditional raster 

scanning. A flat nickel plate with dimensions of 60x60x2mm was scanned by a traveling 

laser beam in this FEM model. The temperature distribution was more uniform for the 

fractal scanning plate. The final thermal distortion of the plate was 55.7% smaller than 

the traditional raster scanning plate.   

A combination of a pseudo-analytical model and empirical FEM model built in 

ABAQUS was used to test and validate existing scan strategies [56]. In spiral, out spiral, 

traditional raster and uni-direction scan strategies were first tested in this model. 

According to the ABAQUS and pseudo-analytical results, high temperature was reached 

at the center and edge of the part in the in and out spiral scanning strategies respectively. 

The high thermal gradient and stress appears in the perpendicular scanning direction for 

traditional raster and uni-direction scanning. The interlaced traditional raster and uni-

direction scanning pattern leads to better thermal homogeneity. What’s more, a 

dimensionless parameter θ is calculated for evaluating the thermal results of each 

scanning pattern, however, there is no definition for θ in the paper.  A new grid-based 

scan strategy using a genetic algorithm to create the scanning strategy has been 
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developed in order to reduce thermal asymmetries. The scanning area is divided into 

small squares. The genetic algorithm is used to choose the scan strategy for each unit 

square from the mentioned existing patterns above in order to minimize the 

dimensionless parameter θ as the objective function. The simulation results show that the 

optimized scan strategy produces the best thermal homogeneity among all the scan 

patterns.  

A numerical model was used to evaluate the drawbacks and benefits of different 

scanning strategies [53]. It was concluded that the numerical model could find 

overheating zones. However, the paper does not present many results of simulation but 

instead experimental results.  It also pointed out that genetic algorithms could be 

combined to generate more intelligent scanning strategies.  

2.4.3 Hatching Algorithm 

 A traditional raster scan path was generated for a complex concave polygon using 

the theory of rectangular hull [57]. There is a minimum rectangle area enclosing the 

cross-section of any polygon. The scanning parallel lines intersects with the rectangle 

hull first to find out the hatching segment first. Then these sets of segments are 

intersected with the polyline in the original polygon and form the scanning vectors.  

An intersection points computing algorithm has been developed for generating a 

new sub-sector scan pattern with variable scan lengths in SLM [51]. There are three steps 

for hatching the contours in this algorithm: (1) group the internal and external contours, 

(2) calculate intersection points between contours and parallel lines and (3) break up the 

intersection lines into new paths in sub-sectors. In the first step, all the contours are 

stored in a depth tree in a sliced file in which external contours are indexed in even 
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numbers and internal contours in odd numbers. The geometry with multi internal and 

external contours can be divided into groups with only one external and one/multi 

internals pair. Each group of contours can be further divided into subdomains depending 

on the size of the sub-sector. And hatch lines obtained for the contour group can be 

broken and generated for each sub-sector to implement the consecutive sub-sector scan 

pattern.    

 In order to reduce the scanning time in SLM, an area division scan pattern 

generation algorithm is proposed [58]. All the intersection points between contours and 

scanning parallel lines are found in the first step and each hatch line consists of a start 

and end point. It is not always true that the scanning line will intersect with the internal 

contours for the geometry with holes, a bounding rectangle of loop (BRLp) which 

contains the internal contour exactly is defined. If the scanning line has no intersection 

with the BRLp, the calculation will be ignored so as to improve the efficiency of the 

algorithm.  A concave polygon is selected to test the scan pattern generation algorithm.   

In conclusion the most basic scan strategies were explored most extensively in the 

experiment although simulation tools were also applied to study the behavior of different 

scan patterns in SLM. Restricted by the limited capability of simulation tools for SLM, 

the real scan pattern used in SLM processing has never been implemented in simulation. 

Most of the work were using simplified models with basic scan patterns. However, there 

are well developed algorithms in the field of geometrical modeling which could be 

adopted to build a real scan pattern generation tool.  

2.5 Support Strategies in SLM 

2.5.1 Support Structures in AM Processing 
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As shown in Figure 4, AM processes are generally categorized into seven main 

processes and supports exist in all processes in different forms.  Many AM-produced 

parts can be supported by their surrounding materials such as the powder in the SLS, PBF 

process and sheet material in sheet lamination processes. However, several other AM 

processes, such as extrusion based systems and direct printing, are not be able to be 

supported by surrounding materials. They require extra supports for overhanging 

structures and to connect the part to the build platform. In some cases with large 

distortion, such as when using PBF techniques for metal in SLM, supports are required to 

resist distortion  

2.5.2 Importance of Support in SLM Processing  

 

Figure 12 Cracking and delamination in SLM [59] 

 
Figure 13 Distortion and delamination in SLM processing [60] 

Support structures are critical to successfully finish building a part in many AM 

processes. Besides holding a layer in place, support structures play an important role in 
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resisting the thermal stress. Thermal stress can cause huge deformations to the part and 

can lead to build failure due to delamination of the part from the base plate [61], as 

shown in Figure 12 [59], Figure 13 [60] and Figure 14 [11]. Thermal stress also can 

induce cracks during processing before the part is complete, as shown in Figure 12. The 

part may break without enough supports as shown in Figure 15. A series of articles about 

3D printing of titanium and its inherent challenges was published on 

3dprintingindustry.com [62-64]. One of the articles illustrated an example of the design 

of support structures for one of parts took six iterations in order to build sucessfully, 

however, it was still not a functional prototype to test [64]. The need for support 

structures is described as one of the limitations of the SLM process because it severely 

restricts the geometries that the processes can make, and adds significant time and cost to 

production [65]. 

 
Figure 14 Curling in SLM [11] 
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Figure 15 Overhang failure in SLM  

2.5.3 Cost Estimation for Support Structures   

A generic model has been developed to determine the optimal part orientation and 

build cost [66]. The generic cost model estimates the total cost in three aspects: cost for 

preprocessing, building and post-processing. The preprocessing cost consists of time used 

to setup process parameters, slice the STL file and generate support structures. The 

building cost includes machine running, part building and support building costs. The 

post-processing costs include part removal, cleaning and finishing costs. The model was 

applied to illustrate the cost of both SLA and FDM processes by fabricating simplified 

geometries. A simplified cup fabricated in three orientations was used to test the model to 

estimate the total cost, volume and contact area of supports.  Results showed that the 

support material to total material ratio is 41.818%, 6.705% and 42.342%, and total 

support removal time is 0.27 hours, 0.03 hours and 0.3 hours respectively for three 

orientations in an FDM process. The numbers in the SLA machine are 10.864%, 3.030%, 
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and 6.92% for support material ratio and 0.14 hours, 0.09 hours, and 0.18 hours for 

support removal. 

This model was adapted and extended to SLM and support material and building 

times were also considered in the new cost model [67]. Three parts were built and the 

cost estimation was analyzed for different conditions. The split cost results for each part 

and scenario is showing in Figure 16.  It was found that the total cost per part can be 

significantly reduced by 41% in the presented case study by simultaneously building up 

multiple parts. However, the paper were not aiming to study the cost difference with 

different support strategies. 

 

Figure 16 Cost splitting for each geometry according to the cost model [67] 

In conclusion, there is little work about cost estimation of the SLM process and 

less work for support strategy cost analysis, although this is very crucial in the AM 
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industry. The model which was developed for the SLS process showed that the support 

material and cost could be significantly reduced with better support strategies.  

2.5.4 Support Strategies for SLM    

2.5.4.1 Support Structure Generation Software  

Materialise Magics’ support generation module is one of the most commonly used 

commercial software tools for designing and generating support structures for SLM.  It is 

able to automatically generate support structures based on the 3D model and also provide 

flexibility for users to manually modify support structures. It allows users to choose 

orientation of the 3D model to attach to the support structure. Types and parameters of 

the support structure are also flexible for the user to select. The user can modify and tune 

the support structure for special features to optimize the design. Magics’ support 

generation module provides a broad range of support structure types including block, line, 

point, web, contour, gusset, combi, volume, and cone support structure.  

The software package Bridgeworks by Solid Concepts automatically generates 

support structures. The algorithm used to generate the supports utilize a number of 

parameters, which are well documented in the user manual [68]. The Bridgeworks 

program divides support structures into five categories, Gussets, Projected Features 

Edges, Single webs, Webs and columns.   

Smart3D Supports Generator is a system for generating supports for designing 

and fabricating jewelry in AM machines such as SLA, SLS and SLM [69]. It is able to 

correct an STL file, and recognize and manage the areas to be supported. It runs in Rhino 

5.4 64bit version, which is a software commonly used for industrial, architectural, and 

jewelry design, and is able to build 3D support structures in a 3D CAD environment. 
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2.5.4.2 Types of Support Structure  

As mentioned above, Magics is one of most popular commercial software tools 

for AM. Magics’ support generation module provides a broad range of support structure 

types including block, line, point, web, and contour support structures as shown in Figure 

17 [60]. The support structures generated from Magics consisted of rectangular or 

circular thin walls with a large distance between walls. Among all these types of support 

structures, block supports, as shown in Figure 17 (a), are the most common for SLM.  

 

Figure 17 Different types of Magics’ generated support structures [60] 

There are also other less commonly used types of support structures such as 

gusset, combi, volume and cones available in Magics. The amount of traditional support 

structures is often too large for overhangs on delicate parts, which increases the difficulty 

to remove them and can easily cause small pieces of the part to break off [70].There are 

other support structures designed by researchers shown in the literature [70-72]. A special 

 
(a) Block support                             (b) point support                        (c) web support 

 
(d) contour support                    (e) line support 

 



36 
 

grid support structure shown in Figure 18 [71] has been developed to achieve the 

segmentation support strategy. There is no wall structure and the connection between 

supports and part is via fixation points for the grid support structure. The support 

structure was optimized using the design of experiment (DOE) method.   

Figure 18 and Figure 19 [70] show a novel application of a cellular lattice with 

very low volume fractions to be used as an external support structure for SLM [70, 72]. 

First of all the lattice support structure was shown to be self-supporting [72]. The effect 

of percentage of volume fraction and unit cell size of the lattice structure on the 

manufacturability, build time, weight of support, and resulting part deformation was 

investigated and analyzed [70]. The lattice support structures show good 

manufacturability characteristics, however some of the parts failed during the build due 

to very thin connecting struts and large distances between the adjacent contact points. A 

best compromise between the best combination of cell size and volume fraction could 

enable the future expansion of these structures for supports. 

 
Figure 18 Grid support structure [71] 
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Figure 19 Gyroid and Diamond lattice support structures [70] 

2.5.4.3 Metrics for an Optimum Support Strategy 

The rule of thumb for good SLM support structure design is that it should be the 

minimum amount of supports which avoids the risk of fabrication failure. A good support 

design should also fulfil the following vital functions: restraining the part to a maximal 

amount of distortion and keeping the part from crashing into the blade, avoid breaking of 

the support structure, raise the part off the platform for easy removal, anchor the 

overhanging and floating sections introduced during the build to the platform, and 

strengthen thin and tall parts during the build to prevent them from bending by the forces 

of the powder wiper [70].  

 Too many supports increases the amount of material used and leads to an 

increase in difficulty for removing supports. The orientation of a part with respect to the 

primary build direction significantly affects support generation and removal [3]. The 
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selection of the orientation of the part should balance usage of support material, easy 

removal and least build time.  

Orientation also affects which surface will be attached to the support structure and 

the volume of support material. The surface with the lowest requirement for finish is a 

good option for the bottom surface since the surface attached to the support structure will 

have poor surface finish after removal of the support structure. So a good support strategy 

should also avoid interfering with key geometrical features. Complex parts with features 

like channels, holes, and overhanging structures need careful support structure design and 

modification to make sure these are successfully built in SLM.  

2.5.5 Support Structure Optimization Design 

2.5.5.1 Support Structure Orientation 

A multi-objective function can be used to optimize the number of layers, volume 

and contact-area of support structures as well as build time, and surface finish. An expert 

system-based method has been developed to select the optimal building direction [73]. In 

another paper, several efficient geometric algorithms were developed to solve this multi-

criteria problem and find the optimal build orientation [74].  

An algorithm has been developed to determine the optimal orientation when the 

part will have maximal tensile strength and was tested in a tensile bar experiment [75]. 

The calculated results from the developed algorithm were validated experimentally. The 

experiment showed that optimum part orientation for Polyamide tensile specimens is for 

rotation with respect to the X, Y and Z-axes of 90°, 45° and 90° respectively. A multi-

objective criteria decision making method was suggested as future work for including 

surface finish and build time optimization in the model.  
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A preliminary design rule for selecting the build angle and process parameters for 

fabricating parts with overhanging surfaces in SLM was developed [11]. The critical 

angle is defined when the inclined angle is smaller than the critical angle for which the 

overhanging surface will warp more easily. A large inclined angle means the overhanging 

surface length is long. The overhanging surface has to be smaller than the beam radius in 

order to guarantee a high quality overhanging surface. The inclined angle can be decided 

using the theoretical formula derived from overhanging surfaces for the staircase effect. 

The build orientation of the part has been studied to reduce the need for manually-added 

supports, especially for production of complex parts with overhanging surfaces. By 

adjusting a part’s orientation, the inclined angle for overhanging surfaces can be altered 

as well and the important surfaces can be built without manual support so as to improve 

the surface finish. Therefore, the manual support can be shifted to other surfaces which 

are less important overall.   

2.5.5.2 Support Structure Topology Minimization 

 The potential for using cellular support structures with a low volume fraction to 

reduce the volume of support material and build time in SLM has been investigated [70, 

76]. Two types of cellular structures, Schoen gyroid and Schwartz diamond, were tested 

and experimental results show that they can be used as support structures in SLM.  

A new approach using an implicit mathematical function to generate cellular 

structures has been developed [77]. The approach is able to optimize the build direction 

and create a cellular support structure with minimal support material. 

A specific component segmentation strategy has been developed to minimize the 

support structure based on the method of Design of Experiment (DoE) [71]. The part is 
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divided into critical and non-critical areas first and critical areas are scanned with a 

specific appropriate energy input and optimized supporting strategies. The method of 

DoE is applied to find the optimum value for three normalized process parameters. There 

will be connected layers between the support structure and part. A special lattice support 

structure with optimized connected layers was applied for building the supported 

overhang and unsupported overhang structure (angle between part and horizontal less 

than 20°) in the experiment. The experiment was conducted in a Concept Laser M2 SLM 

machine. Results show that supports can generally be reduced by using this specific 

component segmentation strategy.  

2.5.6 Support Structures in Thermal Modeling  

A T-shaped cantilever model was built in ANSYS and the support structure for the 

cantilever was modeled as small pillars in a FEM model to simulate the temperature and 

thermal stress in SLM [10].  

The influence of support structure parameters such as supporting lattice distance 

on the thermal stress has been analyzed in a similar model [59].  Rather than considering 

the real geometry of block supports, the support structure is defined as a continuum 

model. However, its material properties have been adjusted according to the developed 

and qualified method [10]. A tool steel twin-cantilever structure with dimensions of 

70x15x12mm was modeled. Two block structures support the wings of the cantilever part 

with dimensions of 30x15x8mm. The neutron diffraction method was used to measure 

the thermal stress and verify the simulation results.  What is more, the thermal stress 

relaxation of the cantilever geometry after cutting the support structure has been achieved 

in another FEM model.  
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Another continuum-mechanical FEM model has been built to optimize support 

structures in ANSYS [60, 78]. The block support structure is modeled as a 21/2 

dimensional shell element in the FEM model. Contact elements are used to couple the 

substrate-support structure and support structure-part respectively to overcome the 

discontinuity of element alignment.  An optimization procedure of fractal adaption of the 

support layout has been adopted to optimize the stiffness of the support structure 

according to the thermal stress calculated in the model. The unit cell for block supports is 

divided into two triangles and additional stiffening of each fractal triangle is updated if 

the average stress value of a cell is more than the total value of the whole support 

structure. A typical tilde geometry supported by block structures has been studied in the 

paper.  Two optimization runs of support structure stiffening led to a reduction of thermal 

stress of about 72% which also resulted in an increase of 72% to solidified support 

volume. 

Simulation results have been validated against experimental thermal stress 

measured using neutron diffraction [79]. Both tilde specimens with optimized and 

standard block support structures were fabricated in the experiment and several groups of 

experiments were carried out using different process parameters. The experimental 

results clearly show that the specimens with standard block supports have a higher stress 

level than the optimized support designed specimens.  

2.6 Structural optimization design 

2.6.1 Structural Optimization Design Methods 

Structural optimization is the minimization of mass by varying or determining 

dimensional variables such as shape parameters in the classical sense [80]. The first 
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known attempt to seek the optimal shape of structural elements via a mathematical 

formulation for shape minimization dates back to Galileo [80, 81]. Substantial efforts 

have been made in the development of optimization procedures and strategies since then. 

The classical geometrical optimization problem by changing the size of the shape cannot 

change the topology during the solution searching process. However, the so called 

topological optimization design in literature can change the layout of the structure and 

result in a new topology during the optimization process [82]. 

The general structural optimization problem can be formulated using the typical 

minimization equation with constraint equations [80].  

Minimize        f(x) 

Subject to        gi(x) >= 0   i = 1 to ng 

                                    hj(x) = 0     j = 1 to nh 

where x is a vector of design variables with certain boundaries, f(x) is the objective 

function, and  gi(x)  and hj(x)  are constraint equations.  

 Mathematical programming methods are applied to solve the equations above.  

The optimal solution searching procedure generally starts with an initial design and 

proceeds with small steps intended to improve the objective function. The searching 

process ends when no more significant improvement can be made to the objective 

function. Discretization modeling such as FEM are commonly used in the optimization 

problem when an analytical solution is not available. FEM is utilized to calculate the 

magnitudes of stress and displacement in order to evaluate the objective function, and 

Figure 20 shows the flow chart of a typical optimization problem.  
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Figure 20 Typical optimization design flow chart 

 Geometrical optimization design 

 Traditional structural optimization requires the explicit definition of optimization 

parameters which are dependent variables to be optimized such as thickness and length of 

the structure [83]. The maximization of static stiffness subject to a volume constraint is a 

classical problem in structural design. The objective function of such types of problems 

can be evaluated by an analytical solution or FEM without mesh changing. 

 Topological optimization design 

 Unlike traditional structural optimization, topological optimization does not 

require the definition of design variables. In topological optimization, the material 

distribution function over a body serves as optimization parameters [83]. Since topology 
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is modified in the optimization procedure, if the mesh is still fixed at the one defined for 

the initial model, the finite elements are often distorted excessively, and then the 

continuity of the FEM model cannot maintain good quality.  Adaptive remeshing 

strategies are needed in topological optimization design. However, there are also methods 

which don’t consider the mesh of the topology in the literature.  

The level set method coupled with the topological derivative can be applied to 

shape and topology optimization of structures [84-87]. The level set method is a 

numerical technique for tracking interface and shapes without having to parameterize the 

surface or curvature of these objects [88]. The stress for a cantilever structure bounded by 

three disjoint parts in a rectangular area under a single downward force is minimized by 

only considering the linear elasticity of material [84]. The main idea of topological 

optimization is to test the optimality of the domain by removing a small hole with 

appropriate boundary conditions by taking advantage of the level set method. A 

cantilever structure, L-beam, gripping mechanism and 3-D mast are tested in papers 

based on this method [84-87].  

 Homogenization can be used in topological optimization of a continuous field in 

order to overcome the instability of the numerical optimization method [89, 90]. Plane 

problems [90] and sensitivity analysis of a specific mesh have been tested to compute the 

homogenized elasticity tensor. The mean compliance of the structure is optimized as the 

objective function for the cantilever problem [89, 90].   

 A meshless analysis and independent density field interpolating method has been 

developed to study the geometrically nonlinear structure optimization problem[91]. The 
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method is able to overcome the convergence difficulties in large distortion problems. A 

center loaded planar structure was optimized as a case study.  

2.6.2 Structural Optimization Design in Additive Manufacturing 

  The main challenges and opportunities for topology optimization in AM have 

been summarized [92]. According to the summary, the solid isotropic material with 

penalization approach (SIMP), bidirectional evolutionary structural optimization (BESO), 

homogenization, genetic algorithms and level set methods are the most commonly used 

methods in topological optimization. The paper concluded that geometrical complexity 

caused by topology optimization can decrease the cost of AM. There is a huge potential 

to use topological optimization in design of AM products and to minimize support 

structures [93].  

A topology optimization tool was developed to design customized mesostructures 

in AM [94]. Homogenization and parametric smoothing functions are combined into the 

tool to represent material topology. The designed products using the tool were fabricated 

in SLS and material properties were tested.  

A beam structure for AM technology was optimized using the principle stress 

lines method [95]. The results were compared to the homogenization and ground 

structure methods and showed that the method in the paper was much faster and easier to 

control. 

2.7 Conclusions 

Thermal modeling, scan pattern studies and support structure generation are three 

major focus areas for SLM. A predictable thermal model for SLM can play a critical role 

in better understanding and improving the efficiency of the process. The process of SLM 
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involves the moving of a laser beam across a powder bed to melt material layer by layer.  

However, this procedure is complicated to completely simulate accurately because of the 

multiscale nature of the problem. SLM uses very high laser intensity values, on the order 

of 1010 W/m2, while the melt pool and Heat Affected Zone (HAZ) are several orders of 

magnitude smaller than the dimensions of the powder bed and part. Although many 

computational models have been developed to study temperature evolution in SLM, these 

models only either simulate a small part of the problem with a fine mesh or the entire 

problem using a coarse mesh to avoid the computational burdens of meshing the full 

problem in a really fine mesh.  In order to accurately capture the details of temperature 

evolution anywhere in a full-sized part located anywhere in the build platform, new 

simulation tools are needed.   

Laser scanning during metal laser sintering follows patterns developed by the 

various machine manufacturers. These types of patterns include, for example, parallel 

strips and chessboard scan strategies, such as those used in the popular EOS M270 metal 

laser sintering machines. Besides these, there are several types of scan patterns, which 

include single direction, bi-direction, traditional raster, island and their combinations.  

These are used in custom-developed SLM machines and experiments as well as in 

commercial variants. Variables related to scan strategy include input processing 

parameters such as hatch spacing, beam offset and scanning orientation, which critically 

affect thermal deformation predictions. Since thermal behavior is inhomogeneous during 

SLM, the scan pattern should be generated in such a fashion that the anticipated average 

thermal accumulation of thermal stress should be minimized. A better understanding of 

the influence of scan pattern in the SLM process is needed. Through the literature review, 
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a majority of scan pattern studies have been done using experiments and there are few 

studies performed using simulation tools. 

A support structure is used to support a part in SLM in order to reduce 

deformation while providing convenient ways to remove the part from the build plate 

during post-processing. The support structures generated by support generation modules 

of AM specific design software such as Magics are geometry and pattern driven and do 

not place support structures based upon any knowledge of the thermal stresses generated 

during metal powder bed fusion processes. Thus, support structure generation becomes a 

trial and error process driven primarily by a user’s experience with similar geometries. 

Support structure optimization is an area of great interest to AM researchers and 

designers. Most research has focused on geometrical design without considering the 

constraints of thermal stress and deformation. The minimization of the volume/mass and 

orientation of the support structure have been studied in the literature. There are few 

studies relevant to support structure design when considering thermal stress in SLM.  

The field of structural optimization design is studied extensively and many 

theories are well established. Some work has focused on using structural design theories 

to optimize the topology of AM parts to reduce weight. There is a huge potential for 

using optimization design in AM in the future by taking advantage of powerful 

simulation tools.    
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CHAPTER 3 RESEARCH OBJECTIVE AND DESSERTATION FORMAT 

3.1 Research Objective 

According to the literature review, there is no existing powerful simulation tool 

which is able to accurately simulate the SLM process taking into consideration real scan 

patterns within a reasonable amount of computational time. What’s more, support 

structures have not been an area of major interest in SLM simulation. Since the geometry 

of the support structure can be complex, simulation of the SLM process with detailed 

support structures increases computational time and resources. However, supports have a 

critical impact on the SLM fabricated part. In order to mitigate these problems, the 

following research objectives were proposed. 

Objective 1: Scan pattern generation module development 

A scan pattern generation module capable of providing various real scan patterns 

to the 3DSIM simulation environment will be developed. The scan pattern generation 

module will have the function of creating scan patterns for each layer directly from the 

slice file information (such as *CLI). Scan patterns used in common commercial systems, 

including in particular an EOS M270 machine, will be included. 

Objective 2: Dynamic moving mesh model development in ANSYS  

A dynamic moving mesh model will be developed using similar mesh strategies 

to those being developed by 3DSIM based upon prior work at the University of 

Louisville. The heat transfer, heat convection, material nonlinearity and phase changes 
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will be considered in the model. The model will be able to simulate the global 

temperature distribution of the SLM process with a moving laser heat source.  

Objective 3: 3DSIM against ANSYS Benchmark 

By using the dynamic moving mesh model developed in ANSYS, a validation of 

the thermal results of 3DSIM with respect to accuracy and computational behavior will 

be studied by applying the same parameters and inputs in both models.  

Objective 4: Formulation of effective thermal conductivity for simplified 

modeling of support structures 

In order to consider the influence of support structures on the thermal field in the 

thermal model, an effective thermal conductivity model will be developed. The model 

will reduce the computational complexity caused by the inhomogeneous material 

properties of the support structure. A homogeneous method combined with a 

representative volume element (RVE) is used to study the effective thermal conductivity. 

Objective 5: Support structure optimization and design framework development  

A support structure optimization and design framework will be developed. The 

tool will generate support structures with the minimum volume/mass needed for a given 

part orientation to meet a set of user-specified constraint conditions. A linear 

programming model will be formulated with constraint conditions includes the ability to 

specify maximum allowable distortion in X, Y and Z axes.  The minimum volume/mass 

will be computed based upon the amount of support structure needed to satisfy the 

constraint equations for a computed thermal stress pattern resulting from a user-specified 

combination of process parameters, material, support structure geometry/type and scan 

pattern.  Both analytical solutions and FEM will be applied to design the support 
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structure. The tool will be capable of comparing the effects of part orientation on support 

volume, build time, and thermal stress to enable future multi-objective optimization 

experiments to be conducted.   

Objective 6: Experiments to investigate block support structures for Ti64 

Experiments will be carried out to investigate the block support structure behavior 

for Ti64 in an EOS M270 machine. A threshold for support structure parameters will be 

explored by fabrication of two part geometries: 40x5x2mm and 20x20x2mm. 

3.2 Dissertation Format 

This dissertation is written in the multi-paper format. Four papers are presented 

which implement the identified objectives, present the methodologies and discuss the 

results.   

Chapter 4 is modified from a paper presented in the Solid Freeform Fabrication 

Symposium (2013). A scan pattern generation tool has been implemented in this chapter.  

Chapter 5 is a combination of two papers. One was published in Materials Science 

and Technology (2014) and the other was presented in the Solid Freeform Fabrication 

Symposium (2014).  The dynamic moving mesh model has been developed in ANSYS 

and the 3DSIM is benchmarked against the ANSYS model. 

Chapter 6 is a paper published in Additive Manufacturing (2015). It explores the 

effective thermal conductivity of the support structure.  

Chapter 7 is prepared as a future Journal paper. It describes the methodologies 

applied to develop the framework for support structure design and optimization. 

Chapter 8 is also prepared as a future Journal paper. It investigates the support 

structure design for two specific parts with Ti64 in the EOS M270. 
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Chapter 9 summarizes the work and future work is also proposed.  
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CHAPTER 4 SCAN PATTERN GENERATION 

4.1 Introduction 

Scan related parameters, which includes scan speed, scan spacing and scan pattern, 

is one of the four categories of laser parameters in for the metal laser sintering process [3].  

Figure 21 shows a typical flow chart of operations for a metal laser sintering machine 

such as an EOS M 270.  The STL files for both part and support structure are sliced using 

a pre-defined slicing library which has layer parameters such as layer thickness for a 

specific material and machine. Typical metal laser sintering machines are is able to 

import SLI as the layered file format. In the meanwhile, all the laser and scan parameters 

are set up in the machine. The scan pattern can consist of contour, inner filling, upskin 

and downskin scan strategies. What is more, the scan strategy for the support structure 

and part are different. The default support structure, such as a block support structure in 

an EOS machine, is scanned as a thin wall structure and each wall is scanned only once in 

the two perpendicular directions every other layer.  The part, in contrast to the supports, 

is usually scanned using a raster strategy and the part contour is scanned several times 

followed by a filling scan. A downskin strategy is applied to the layers where part and 

support structure connect and overlap. An upskin strategy is used to improve the surface 

finish of upward-facing layers of the part. Scan pattern variations have a large influence 

on the results of part fabrication.  
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Laser scanning along the path of the scan pattern involves accumulation and 

dissipation of heat. The scan pattern has a critical impact on heat accumulation and 

dissipation during processing. The powder is melted and consolidated when the laser 

passes a region, resulting in material property transformations and phase changes within 

the material. If the laser scanning length is too small, an over-accumulation of heat causes 

very large thermal gradients so as to cause additional thermal stress. What is more, the 

microstructure is also dependent on the thermal gradient and porosity within the part can 

become worse when the scan spacing between adjacent scan vectors is too large.  

Geometrical inaccuracy is induced by bad design of scan patterns as well as bad 

slicing of STL files. Shrinkage and thermal stress-induced deformations are two key 

sources of defects in SLM which can be alleviated by better design of scan patterns.  To 

Figure 21 Steps of operation for a typical metal laser sintering machine 

CAD 
preparation

• Part modeling in CAD and STL export (SolidWorks, etc)

• Support structure design and export as STL file (Magics,etc)

• STL file slicing and CLI/SLI file export (SliView, etc)

Machine 
preparation

• Filter changing, base plate leveling and powder deposition for the 1st
layer, etc

• Process paramters setup including laser power, scan speed, scan
spacing, etc

• Inert gas filling and waiting for oxygen percentage lowering

Machine on

• Laser starts scanning following the prescribed scan pattern until last
layeris processed

• Post-processing including powder cleaning, cutting part from base plate,
part finishing, etc
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accurately predict process outcomes, it is critical to simulate the SLM process using the 

exact same scan pattern as those used during the fabrication process.   

In most AM processes the CAD model is represented by an STL file which is 

sliced into layers thereafer. The Common Layer Interface (CLI) and StereoLithography 

Interface (SLI) files are two layer file formats which store the sliced layer information.  

This chapter starts with introduction of various CAD file formats and geometrical 

modeling theories. Reverse engineering of the primary scan pattern used in an EOS 

machine is described as well as an introduction to CAD file formats.  

4.2 STL File 

4.2.1 STL Format 

The STL file is used in nearly every AM technology today to represent the CAD 

model surface using triangles. The term STL was derived from STereloLithography, 

which was the first commercial AM technology from 3D Systems developed in the 1980s 

[3]. STL simply approximates the surface of the CAD model using triangles. The number 

of triangles is controlled by the maximal size of the triangle, such as maximal length. The 

accuracy of the CAD surface approximation in an STL file depends on the choosing of 

maximal triangle size, which can be controlled in most commercial CAD software. 

Figure 23 is an example of an STL file for the hemisphere structure shown in Figure 22. 

Each triangle is defined by a unit normal vector and three vertex coordinates which are 

ordered using the right hand rule. 

4.2.2 STL File Slicing 

The intersection of a triangle and a plane is calculated using analytic geometry 

theory which is widely used in computer graphics and collision detection such as ray 
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tracing methods. The intersection of a triangle and a plane is determined by first deciding 

the relative position of the triangle’s three vertices against the plane.  Figure 24 [96] 

shows the triangle T intersecting with the plane V0 in line I1I2.  The triangle and plane  

 

Figure 22 Thick hemispherical dome structure 

   

Figure 23 STL model of hemisphere 

intersection problem will be converted to line and plane intersection scenarios eventually. 

Line P1P0 and P2P0 clearly intersect the plane.  However, the distance of a point to a plane 
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must be used to determine that P1 and P2 are on one side of V0 and P0 is on the other side. 

As shown in Figure 25, P0= (x0, y0, z0) is a random point, plane 𝜑 is described by a*x + 

b*y + c*z + d = 0. The distance from point P0 to plane φ is calculated using equation (8).   

d(𝑃0, 𝜑) =  |𝑃0 − 𝑉0| 𝑐𝑜𝑠 𝜃 =  
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑

√𝑎2 + 𝑏2 + 𝑐2
 

(8) 

The distance 𝑑(𝑃0, 𝜑) is a signed value.  For the three vertices in a triangle, 

positive multiplying of either one of the two distances means those two vertices are on 

the same side of a plane.  

 

Figure 24 Intersection of triangles and plane [96] 

 

Figure 25 Distance of point to plane [96] 

 

4.3 Sliced File 

4.3.1 CLI File 
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CLI is short for Common Layer Interface which is a file format developed to be 

the interface between sliced information (such as medical scan data) and additive 

manufacturing machines. There are two types of CLI files: Binary and ASCII. Both of 

their formats are well documented [97]. The CLI file is a 2½ dimension (2½D) 

representation of a model. Layers are cut intermittently along the Z direction by slicing 

using a plane which is parallel to the XY plane of a right hand Cartesian coordinate 

system. A layer is the volume between two parallel slices which are represented by a 

contour and depth (layer thickness). Each contour consists of coordinates of vertex points 

which are connected continuously as a polyline.  Layers are sorted in ascending order 

with respect to the Z direction. In order to distinguish contours for exterior surfaces and 

interior surfaces, clockwise and counter clockwise point orders are used to describe 

internal and external contours respectively. As a result an original model’s characteristics 

in the XY plane for each layer is almost fully kept; however, the Z dimension only has 

layer thickness information, which is why CLI is a 2½D representation of a model. 

4.3.2 CLI and SLI Comparison 

  CLI and SLI file format are commonly used to represent the layer information for 

sliced STL models. Sliced files have the contour information of each layer which 

includes the points’ coordinates, orientation information to distinguish the inner and 

exterior contours, layer thickness and number, and hatches filling the contour.  Different 

machine manufactures use different slicing strategies and file formats which increase 

difficulties for file exchange.  Even though each file format has unique ways to represent 

and store the model information, the data is supposed to be the same regardless of file 

format.  Take the EOS machine, for example; the SLI file format is the default input file 
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format in the EOS software.  Although the SLI file format has no public and standard 

description of its format and structure, a CLI file has an open format and standards which 

makes it convenient for researchers to use.  CLI permits access to the detailed layer 

information and it was posited that CLI file information could help us understand the 

proprietary SLI file. The main question to answer thus became whether the CLI and SLI 

files have the same information for the same model.  In order to test this, the template 

matching method was adopted to answer this question. 

4.3.3 Template Matching Method 

Since there is no way to directly access the SLI file, a comparison of a snapshot of 

the layers produced by EOS software with CLI layers enable one to understand if they are 

comparable.  The steps used in this comparison are as follows: input and display the same 

layer of the SLI and CLI file in CAD software; screenshot the images of the layer; make 

one of the pictures the template and calculate the normalized correlation coefficient of the 

other picture compared to the template.  

Template matching is used to match the two images by calculating the normalized 

correlation coefficient.  The correlation coefficient is described in equation (9) 

ρ𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (9) 

Where  

 𝜇𝑋, 𝜇𝑌 , 𝜎𝑋, 𝜎𝑌 are the mean and variance of X and Y respectively 

The normalized correlation coefficient is showing in equation (10). 

γ(𝑢, 𝑣) =
∑ [𝑓(𝑥, 𝑦) − 𝑓�̅�,𝑣][𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]𝑥,𝑦

{∑ [𝑓(𝑥, 𝑦) − 𝑓�̅�,𝑣]
2
∑ [𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]2𝑥,𝑦𝑥,𝑦 }

0.5 
(10) 
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Where  

 f is the image 

 𝑡̅ is the mean of the template 

 𝑓�̅�,𝑣 is the mean of f(x,y) in the region under the template 

 

 

Figure 26  Points in the cross section of 200th layer from CLI file 

 

Figure 27 Correlation between two cross-sections corresponding to CLI and SLI 

 

4.3.4 Example 



60 
 

Figure 26 shows the points in the cross section of 200th layer of the hemisphere 

structure shown in Figure 23. Pictures of the same cross section from the CLI and SLI 

files were captured. The normalized correlation coefficient of these two pictures is shown 

in Figure 27. The maximum of the correlation coefficient is 1 which means the two 

pictures are identical.  

4.4 Scan Pattern 

4.4.1 Introduction 

The scan pattern and process parameters are key factors for understanding quality 

control in AM processes. Specific details including scanning orientation, hatch spacing, 

and beam offset are able to be extracted from the manufacturing process rather than 

assuming a certain pattern.  Scan pattern plays an important role in thermal evolution, and 

thus deformation.  By using the actual scan pattern rather than assumed pattern, the 

thermal model can produce more reliable simulation results.   

A laser beam is usually given some dimensional shape, such as a Gaussian 

distribution. As shown in Figure 28 [98], the laser beam moves in a pattern which has a 

hatch spacing and velocity. In order to reduce the dimensional error, a beam offset is used 

to account for the effective diameter of the laser beam. When the laser scans the 

boundary, it will increase the dimension of the part by half of the beam’s diameter. So the 

boundary contour is shifted towards the inside of the part by the radius of the beam to 

compensate for dimensional error. 

The scan pattern shown in Figure 28 is the traditional raster pattern with scan 

lines parallel to the boundary. However, commercial AM machines usually scan parts in 

patches. Figure 29 is a real scan pattern picture taken from the EOS machine. Red lines  
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Figure 28 Exposure strategy and process parameters [98] 

in the picture are the boundary contours and green lines represent scan lines. From the 

picture, the scan line is not parallel to either of the boundaries. The discontinuous ‘bold 

lines’ are actually junctions of the scan lines in adjacent patches.  The ‘bold lines’ are an 

illusion of those junctions and ‘lines’ do not actually exist. The upper picture in Figure 29 

indicates there are four strips which are scanned independently. The lower picture is a 



62 
 

magnification of the corner of the upper picture. Hatch spacing, beam offset and scan 

lines are shown in the picture. 

 

Figure 29 Real scan pattern from AM machine 

 

4.4.2 Reverse Engineering of the Scan Pattern  

4.4.2.1 Line Detection: Hough Transform 

In order to extract the quantitative scan pattern from the pictures taken from an 

AM machine, the Hough transform line detection method can be used.  It is well known 

that a straight line can be described using Equation (11) in Cartesian coordinates.  

y = 𝑎𝑥 + 𝑏 
(11) 
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The slope ‘a’ and intercept ‘b’ can characterize an equation. However, when the 

line is parallel to the Y axis, the slope a approaches infinity. The line in polar coordinates 

can avoid this problem which is shown in Equation (12). The line we see in Cartesian 

coordinates is a point in the polar coordinate as shown in Figure 30. What is more, one 

point (x, y) in the Cartesian coordinate gives a sinusoid in Polar Coordinates as shown in 

Figure 31.  A number of m collinear points lying on the line will give the same number of 

sinusoidal curves which intersect at the same point in Polar coordinates. The idea of the 

Hough transform is to discretize the (𝛒, θ) domain shown in Equation (12) and find the 

local point which has the maximal intersects.   

𝜌 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 (12) 

 

         Figure 30 Line representation in Cartesian (left) and Polar  (right) coordinates 
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Figure 31 Point in Cartesian (left) and Polar (right) coordinates 

According to the Hough transform line detection method, the scan pattern from 

one of the pictures snapshotted from an EOS machine is shown in Figure 32. The beam 

offset is 50 microns, the hatch spacing is 30 microns, and the patch distance is 5 

millimeters. As shown in Figure 32, there are four scan patches/strips, and the laser scan 

through these four patches from 1 to 4. The laser beam will scan the boundary contour 

before and the inner scanning at the end to finish one layer. According to a recorded 

video, there will be a 12-14 seconds pause to allow the machine to bring down the 

platform and spread new powder.  

 

Figure 32 Scan pattern extracted from picture 
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4.4.2.2 Rotation Angle Estimation 

It is observed that the scanning orientation is rotated a certain angle in 

consecutive layers in an EOS machine. Eleven consecutive layers of rotation information 

were collected during fabrication and the scan angle with respect to the +X axis was 

calculated. Figure 33 is the plot of angle difference for two consecutive layers. The 

average and standard deviation of the angle difference was 66.914˚ and 1.129˚. Further 

verification of this calculation is carried out using the angle difference between every 27 

consecutive layers. The scanning orientation is supposed to be repeating with an angle 

defense of 9 ˚ in every 27 consecutive layers if the angle difference is around 67˚. Figure 

34 is the plot of angle difference between every 27 consecutive layers. The average angle 

difference is 9.037 ˚ and standard deviation is 0.702 ˚ which matches the assumption.  

 

Figure 33 Angle difference between two consecutive layers 
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Figure 34 Angle difference every 27 layers 

4.4.3 Other Scan Pattern Examples and Applications 

Figure 35 (left) shows the raster scan strategy applied to a crescent structure and 

Figure 35 (right) shows the chessboard scan pattern. The part domain is divided into 

small square units in the chessboard scanning strategy. Each unit is scanned using a raster 

scan strategy in order to reduce the long scan path and thermal gradient especially for 

structures with large surface area per layer. The order of scanning each unit could be 

random or in sequence or using the rule of largest distance between the units.   

 

Figure 35 Scan pattern for a crescent structure and chessboard scan pattern 
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4.5 Conclusion  

A methodology for generation of scan strategies which mimic actual build styles, 

including the scan orientation, scan space, scan pattern, etc, has been developed. Scan 

strategies were based upon a review of typical SLM process steps and empirical 

knowledge of scan strategies in SLM. An STL file is sliced into layers in a predefined 

layer thickness and there are two different slice file formats: CLI and SLI. The 

information stored in CLI and SLI files were compared and found to be fully correlated. 

The CLI file format was chosen for scan strategy generation since it has an open and 

standard format. The traditional raster scan strategy was reversed engineered from an 

EOS M270 machine based on a study of scanning orientation and scan pattern. The 

developed scan strategy generation tool is able to create accurate scan path information 

for simulation. Both traditional raster scan and other strategies such as chessboard are 

available in the tool. Future work should focus on exploring scan strategies in other SLM 

machines as well as new types of scan patterns.  
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CHAPTER 5 COMPARISON OF 3DSIM THERMAL MODELING OF SELECTIVE 

LASER MELTING USING A NEW DYNAMIC MESHING METHOD TO ANSYS 

5.1 Introduction 

Selective Laser Melting (SLM), also known as metal laser sintering, is a widely 

used Additive Manufacturing (AM) process, derived from Selective Laser Sintering (SLS) 

[13, 47]. SLM produces high density functional metal parts and tools. For achieving high 

density functional part fabrication, optimal process parameters are required such that the 

powder bed can melt and solidify while achieving the desired surface roughness, design 

geometry and mechanical properties. Poor parameter selection leads to distortion and 

defects, due to the thermal stresses which result from high thermal gradients. In order to 

avoid these defects, an experimental trial and error method is typically used across a 

range of process parameters.  This is time-consuming and may not include all the process 

parameters of interest since these experiments are expensive. If a set of verified 

computational tools could be built to quickly test process parameter combinations, this 

would greatly aid in the optimization of SLM. 

Various predictive models have been developed and applied to AM processes. 

Most of these studies used numerical methods such as the finite element method.  

Analytical solutions are typically not used as their derivation requires ignoring 

constraints/boundary mismatch and simplifying the model to be too simplistic for real 

problem sets.  Numerical methods which take advantage of high performance computers 

can enable the inclusion of more realistic physics and boundary condition constraints at 
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ever increasing efficiencies, but current simulation tools still only enable very small 

problems to be solved.  

Most SLM machines, such as the EOSINT M 270, focus the laser energy to a 

relatively small spot size of 100 µm with energy intensity values reaching 25kW/mm2 for 

a 200 W source [99]. The material thermal response to the heat source tracks the energy 

source as a function of both space and time. The powder exposed by the laser quickly 

heats up and then cools down due to the dynamics of the process.  Heat dissipation is 

dependent on the thermal conductivity (which increases with temperature) of the 

previously solidified volume, previously solidified scan area lying next to the current 

scan track, the recently solidified portion of the current scan track, support structures and 

the base plate in the –z direction from the melt pool. Regarding heat dissipation, multiple 

evolving solidification regions typically present simultaneously at various locations of the 

build, and generally the base plate thickness (~25.4 mm) is much greater than the layer 

thickness (~10-50 µm), which can significantly affect heat dissipation and counteract the 

solidification related thermal stresses. Thus high energy intensity, short irradiation times 

and small melt pools along with metastable (usually diffusionless transformation) 

microstructures add sharp discontinuities to the non-linear temperature dependent thermal 

property curves (such as thermal conductivity, specific heat and density), making this a 

difficult and computationally expensive process to simulate. For the purpose of this study, 

discontinuities were smoothed to allow convergence of the ANSYS framework, and 

computational time was reduced using a multiscale mesh. 

The concept of simultaneous coarse and fine meshing for the simulation of SLM 

processes using FEM has been shown in the literature [30, 36]. In these prior studies, the 
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fine mesh region remained stationary as a function of laser movement and the entire 

region of laser movement per layer has been fine meshed [44, 45]. However, the ability to 

move meshes as a function of laser movement in an efficient manner (with no 

renumbering of the fine mesh inscribed in its boundaries and intelligent matrix assembly) 

has not been illustrated until recently.  

In this study, similar fine and coarse mesh motifs were used for the ANSYS 

model and the Matlab-based 3DSIM algorithms.  Since intelligent matrix assembly [45, 

100] is not possible in ANSYS, only the Matlab algorithms incorporated this aspect. Thus, 

the main objective of this paper is to study how the computational time to obtain accurate 

and efficient thermal solutions is affected by various types of meshing and matrix 

assembly methods.  In specific, an ANSYS model was compared against the time for 

solving a similar model using Matlab-based algorithms that utilize intelligent matrix 

assembly and dynamic meshing.  This dynamic mesh strategy is also compared against a 

uniform fine mesh model.  Finally, simulation results were compared to experiments to 

ensure that the solution methodology is applicable to SLM.   

5.2 Modeling 

5.2.1 Thermal Phenomena in SLM 

When the laser beam begins moving in SLM, the energy is transferred in four 

major ways: reflection, conduction, convection and radiation. Since metallic materials are 

lustrous in nature, a large part of the incident energy is reflected. Absorptivity depends on 

the material and powder morphology. Heat energy absorbed in the powder is 

subsequently conducted through surrounding previously solidified regions, the powder 

bed and/or the substrate. The ambient environment in SLM includes an inert gas such as 
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Argon or Nitrogen, which results in heat loss due to convection. Heat energy losses due 

to radiation also occur during SLM processing [18]. Heat reflection, conduction and 

convection are considered in this model. The radiation influence is ignored in this work 

since its influence is much smaller compared to other forms of heat loss based on 

conclusions from other literature [101-103].   

5.2.2 Governing Equation and Boundary Conditions (BCs) 

In SLM, the heat transfer process can be described using the Fourier thermal 

Equation (1) [22, 104]. The substrate is preheated to a certain temperature prior to 

fabrication (typically 353K in an EOS M270 machine). The prescribed temperature is 

described in Equation (2) as an initial condition of the problem. Heat convection between 

the powder bed surface and the surrounding environment is described using Equation (3). 

Since the bottom of the base plate is often controlled to a constant temperature, a fixed 

thermal boundary condition has been assumed at the bottom surface of the simulation 

domain which is shown in Equation (4). The x, y and z directions in the above-mentioned 

equations are oriented according to the ASTM F2921 standard for denoting directions 

inside an additive manufacturing machine. 

5.2.3 Material Properties 

In this paper, commonly used Ti-6Al-4V powder has been studied. Material 

properties such as λ, ρ and c are temperature dependent. The latent heat of fusion and 

vaporization are considered during phase changes. The values for thermo-physical 

properties such as density, thermal conductivity, enthalpy and heat capacity of Ti-6Al-4V 

have been adopted from existing literature values [105]. For the powder bed, a ratio is 

used to describe the difference between bulk and powder bed thermal conductivity. This 
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ratio for a powder bed of pure titanium with 30µm diameter particles was reported to be 

0.646 in one study [29] and 0.602 in another study [37]. In this model, the ratio of 0.602 

has been used for simulation purposes. 

5.2.4 Laser Beam Approximation  

Laser beams profiles are generally approximated as Gaussian. The Gaussian 

mathematical form most widely used in the literature [3, 32, 33, 37, 106] is described in 

equations (5), (6) and (7) [14].  

The laser power P and the laser beam radius r are two of the most important 

parameters to characterize the Gaussian model. SLM machines are able to focus the 

energy into a circular region with a diameter of ~100µm.  In order to account for the 

fraction of energy which is absorbed, an absorptivity constant (α) is usually incorporated.  

For this study a value of 0.36 has been assumed [107].   

5.2.5 Sensitivity Analysis of the Number of Elements in the HAZ 

The accuracy and convergence of the finite element method depends on the 

fineness of the element [108]. For non-uniform heat flux, the maximum flux will 

influence the peak temperature and peak temperature will cause thermal phenomena like 

evaporation [107]. Figure 36 shows the convergence tendency comparing the number of 

element divisions in a laser beam to the maximal heat flux. The maximal heat flux 

converges with increasing number of division, but it varies greatly when the number of 

divisions is small. When a Gaussian distribution is applied in the model, the selection of 

the number of FEM element divisions in the heat flux input zone should be carefully 
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considered. 

 

Figure 36 Influence of number of divisions to the maximal heat flux for a Gaussian heat 

source 

 

5.2.6 Dynamic Meshing Method and ANSYS Techniques 

The dynamic meshing method is beneficial for solving problems which require 

improved accuracy in a local region and reduced computational burden. There are a series 

of effective, mesh-adaptation-based approaches for numerically solving mathematical 

models of physical phenomena [40]. The commercial software ANSYS Fluent can apply 

dynamic and moving meshes for flows that change with time [109]. Besides ANSYS 

Fluent, the authors know of no other commercial tools which can fully simulate moving 

meshes for mechanics problems. ANSYS has the functionality for sub-modeling, which 

allows a user to interpolate results between different geometries.  This functionality is 

adopted for the dynamic meshing model in ANSYS.  
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Figure 37 Flow chart for establishing the dynamic model 

Figure 37 shows the flow chart for building this dynamic model in ANSYS. The 

flow chart starts with building the geometry model and setup of input process parameters. 

ANSYS has no functionality for automatically and smoothly connecting two load steps 

with geometry modification in between. In order to maintain this continuity, temperature 

interpolation has been used to keep the same boundary conditions for two different 

geometries. The temperature at the end of the former load step is loaded as the initial 

temperature of the next one. The loop for updating the geometry and interpolating the 

initial condition is shown in the flow chart. The sub-modeling module in the flow chart is 

responsible for the temperature interpolation and initial conditions establishment. Since 
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the modification of geometry in this model is flexible, the material types are able to be 

updated according to the element temperature at the end of each load step rather than 

using the element birth and death. The model ends when laser scanning is finished.    

5.3 Results and Discussions 

5.3.1 Single Time-Step Temperature Distribution Calculation 

In order to verify the simulation results of the dynamic model, two cases were 

investigated. In the first case, the original thermal distribution before and the interpolated 

thermal distribution after fine mesh movement were compared. For the second case, the 

dynamic mesh thermal distribution was compared against its uniform mesh counterpart. 

These checks were performed to ensure that the thermal distributions converge to the 

same value.  

A three dimensional domain with a powder bed to beam diameter ratio of 10 has 

been modeled since the above-mentioned objectives are domain-size independent and a 

smaller domain largely reduces the computational complexity of storage, access, solution 

and post-processing of finite element stiffness matrices and forcing and response vectors. 

Figure 38 (a) shows a cubic domain with dimensions of 1×1×1mm. Figure 38 (b) shows 

the combined fine-coarse mesh of the top surface extruded in the z direction to arrive at a 

3 Dimensional meshed domain. The laser beam diameter is assumed to be 100μm and it 

is accommodated within 4×4 elements marked using a red boundary in Figure 38 (b,c). 

The heat flux flowing into each element is calculated by integrating the Gaussian 

distribution over the element top surface. The inner black box shown in Figure 38 (b,c) 

represents the boundary of the part and the exterior black box represents the entire 

powder bed, which in this case has been assumed to be 1mm2 in area. The blue box in the  
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Figure 4 Temperature contour plot of the first time step of the dynamic model 

 
(a) 3D dynamic mesh model 

       
  (b)Top surface of dynamic mesh model      (c) Top surface of uniform mesh model 

Figure 38 Geometry of physical model 
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dynamic model (Figure 38 (b)) represents the HAZ, which is assumed to represent the 

thermal zone involving non-linear thermal effects. From the point of view of meshing, 

the region inscribed by the blue box also serves as a ‘buffer’ zone smoothly transitioning 

the highly dense mesh region close to the laser beam to a relatively coarser mesh 

surrounding it. This region is also beneficial for improving the accuracy and convergence 

of the solution by avoiding the coupling of two regions with different mesh densities.  

Figure 39 shows the dynamic model results for temperature distribution in the 

first time step for laser scanning. A laser power of 140W and laser velocity of 1250mm/s 

were used to simulate temperature evolution in the model 

5.3.2 Interpolation Results 

An interpolation scheme has been applied for calculating the initial value thermal 

problem when the fine mesh is shifted by one coarse mesh spacing in the scan direction. 

The converged thermal solution at the final time step of the previous fine mesh location is 

posed as an initial thermal solution for the initial time step of the next fine mesh location. 

Thermal solutions are calculated for future time steps recursively based on the prior 

solution and continuous laser movement inside the current fine mesh location.  The fine 

mesh moves by another coarse mesh spacing once the laser movement causes the melt 

pool effects to approach the boundary of the fine mesh box. Since the accuracy of the 

spatiotemporal thermal solution is a function of interpolation, these interpolations must 

not result in significant error accumulation and divergent thermal solutions. To check this, 

the peak temperature at the end of the previous fine mesh configuration has been 

compared with the initiation of the next fine mesh configuration. It has been found that 

the peak temperature is exactly the same before and after but the thermal distribution in 
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the X direction at the next fine mesh configuration varies from its previous fine mesh 

counterpart in the low temperature regime as shown in Figure 40 (a).  The maximal 

variance in the thermal distribution of the Heat Affected Zone (HAZ), which is above 

900K, is about 1%. Figure 40 (b) illustrates the temperature relative error in the Y 

direction.  The small temperature variance during interpolation has a negligible effect on 

the overall solution outcome as these temperature errors do not accumulate and instead 

decay as the laser moves away from the newly solidified region.  

 

Figure 39 Temperature contour plot of the first time step of the dynamic model 
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(a) Temperature distribution relative error in the X direction (scan direction)  

 
(b) Temperature distribution relative error in the Y direction  

Figure 40 Temperature results before and after interpolation 
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(a) Temperature distribution relative error in the X direction (scan direction) 

 
(b) Temperature distribution relative error in Y direction 

Figure 41 Dynamic and uniform mesh model temperature distribution comparison 
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Figure 42 Influence of mesh density on the peak temperature 

5.3.3 Dynamic and Uniform Meshing Model Results 

In order to quantify the accuracy of the dynamic mesh model itself, it has been 

compared against its uniform counterpart. In order to compare the models, the mesh 

density of the uniform mesh has been set to be exactly the same as the mesh density 

within the red box in Figure 38 (b) resulting in a mesh as shown in Figure 38 (c). In both 

the dynamic and uniformly meshed domains the laser beam is concentrated in a small 

region of 4×4 elements bounded by the red box. The thermal distributions from both 

models have been compared against each other at exactly the same laser location and for 

the same time-step. The relative error of the thermal distributions in the X and Y 

directions for the dynamic and uniform meshing scenarios are shown in Figure 41 (a) and 

(b) respectively. It has been found that the relative standard deviation between the peak 

temperatures from both the models is zero. This illustrates that dynamic mesh modeling 
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is an efficient and accurate tool compared to its uniform counterpart [31, 54, 110] for 

modeling the thermal distributions generated by dynamic point heat energy sources. 

The influence of mesh density on temperature error has been investigated and is 

shown in Figure 42. The mesh density is defined by the ratio of the number of elements 

in the fine mesh area in the dynamic meshing model to the same area in the uniform mesh 

model. The relative error of peak temperature for three different fine mesh areas is shown 

in Figure 42. The relative error of peak temperature reaches zero with increasing mesh 

density.  

5.4 Multi time-step temperature distribution calculation 

A Ti-6Al-4V cubic sample with dimensions of 10×10×10mm was built in an EOS 

M270 DMLS machine using input processing parameters of 80W and 360mm/s.  

Identical parameters were supplied as an input for simulating the thermal distribution of 

the above-mentioned geometry using the dynamic mesh strategy. Based upon results 

from the previously discussed sensitivity analysis section, a 16×16 fine element mesh  

 

Figure 43 Scan pattern 
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size was used to capture the Gaussian curvature of the laser beam. The scan pattern 

assumption for these simulations is a raster scanning pattern as shown in Figure 43. A 

hatch space of 100 µm between the consecutive scan tracks was used in the experiments 

and for the purposes of these simulations. 

In Figure 44, thermal contours at different spatiotemporal locations on the XY 

plane are plotted. The thermal contours shown in this illustration are higher than the 

solidus temperature of Ti-6Al-4V and do not capture the entire thermal spectrum, to 

illustrate the size of the melt pool.  

 

Figure 44 Temperature contour plots of melt pools in different locations 



84 
 

       At least three types of melt pool shapes were observed for the traditional raster 

pattern as shown in Figure 45.  Figure 45 (a) shows an enlarged illustration of melt pools 

from Figure 44 Location A. This location has the initiation melt pool which is comprised 

of circular thermal contours and symmetric contours as the laser beam moves to the right.  

The left edge of this figure shows contours as the laser beam turns, which have a right 

aligned tail since the thermal conductivity is higher towards the right side of the tail due 

to adjacent solidified material compared to the semi-insulating powder on the left side of 

the tail. Another type of melt pool occurs during the steady state laser movement in the 

center of the scans (away from the start and end of a scan vector) as shown in Figure 44 

Location B and in its enlarged counterpart shown in Figure 45 (b). The melt pool remains 

symmetric about the y axis in this region with the tail enlarged in the direction behind the 

laser movement. The melt pool also remains constant in shape as a function of its y 

ordinate with respect to the simulation domain. This image shows a constant increase in 

the melt pool head diameter as a function of its y location due to an increase in the 

accumulated solid which causes the melt pool to broaden as a function of amount of 

solidified area compared to the area of the simulation domain. Figure 45 (c) shows yet 

another melt pool shape for laser scan turns on the opposite side of the scanned area, 

which is a mirror image of Location A melt pool shapes. Overall, Figure 45 (b) illustrates 

the most representative melt pools during the SLM process.  Figure 46 (a) shows an 

enlarged view of the melt pool in the XY plane and Figure 46 (b) shows a view of melt 

penetration in the XZ plane for a steady state melt pool from Location B.             

In Figure 44, Figure 45 and Figure 46 only the thermal contours higher than the 

solidus temperatures are shown to illustrate the melt pool shape. In order to obtain 
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complete thermal distribution information in mutually perpendicular axes, Figure 47 

illustrates the thermal distribution along the +X neutral axis and Y axis passing through 

the melt pool center. In Figure 47 (a) the temperature gradient is high on the leading edge 

(the powder side) and is low on the trailing edge of the melt pool.  The trailing, solidified 

side has a higher thermal conductivity compared to the powder side. In Figure 47 (b), the 

temperature is symmetric above the solidus temperature due to liquid material 

homogenization whereas the temperature drop is asymmetric outside the melt pool since 

the left side of the peak has a thermal distribution influenced by the solidified adjacent 

layer (with higher conductivity) compared to the right side portion with lower 

conductivity powder. 

 

Figure 45 Melt pool for locations A,B,C of Figure 44 shown respectively in (a),(b) and (c) 

    

 

 
                          (a)                                                                (b)                                          (c)            
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Figure 46 Melt pool temperature contour distribution 

  

(a) Temperature contour plot in the XY plane 

  
(b) Temperature contour plot in the XZ plane 
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Figure 47 Temperature distribution through the melt pool 

       

5.5 Experimental validation 

Experiments were conducted to study the thermal characteristics of Ti-6Al-4V. 

Two melt pool scan track images are shown in Figure 48 and Figure 49 at different 

magnifications. In Figure 48, it can be seen that the scan track width matches closely with 

the input hatch space of 100 µm. Also it clearly shows the UDU (upward-

 

(a) Temperature distribution in the X direction 

 

(b) Temperature distribution in the Y direction 
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downward-upward) movement of the laser beam similar to the melt pool observations 

made in Figure 44. 

 

Figure 48 Tracks of laser beam on the surface 
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Figure 49 shows a magnified view close to the start-stop location of the scan 

vector. Due to melt-pool overlaps, one-half of the melt pool is clearly visible and shown 

to be approximately 75µm, which corresponds well to the measurements made on 

simulated melt pools in Figure 45 (b). Another important aspect of these simulations is 

the end-of-vector instabilities in the melt pool, which are consistent in shape with the 

simulated melt pools shown in Figure 45.  

 

Figure 49 Melt pool curvature and width 

 

5.6 Computational Expense Analysis 

5.6.1 Computational Time Between Dynamic And Uniformly Meshed Model 
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In Figure 50, a computational cost comparison analysis shows the difference 

between the dynamic and the uniformly meshed models. The runtime of the dynamic 

mesh model is much less compared to the uniformly meshed model by a factor of 5. 

Higher factors of computational savings are anticipated as the total z height of the model 

increases as layers are added. The exact effect of increasing problem size on 

computational time is unclear, since the authors are not sure of the node renumbering 

schemes used in ANSYS as a function of fine mesh movement within the coarse mesh 

spacing. Very large savings in file size are shown in Figure 50, but these differences are 

partly problem dependent as ANSYS by default stores various data streams for the 

uniform mesh but provides options to save only the relevant data for a dynamic meshing 

model. 

 

Figure 50 Computational comparison of dynamic and uniform meshing model 
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5.6.2 Computational Cost Comparison Between an ANSYS Dynamic Mesh Model and 

FFDAMRD 

As mentioned in the introduction, dynamic mesh modeling using ANSYS was 

motivated by a Feed Forward Dynamic Adaptive Mesh Refinement and De-refinement 

(FFDAMRD) algorithm [44, 111]. One major purpose of this study was to compare 

FFDAMRD efficiency as coded in Matlab against a nearly identical ANSYS formulation 

for simulating SLM.  Thermal distribution results and speed efficiency have been 

compared and reported previously [5]. Both models produce similar thermal distributions 

and melt pool shapes.  

Improvements to FFDAMRD are underway. A commercial version of the code is 

being developed by 3DSIM, LLC in C++ along with code porting from CPU (Central 

Processing Unit) to GPU (Graphics Processing Unit).  Early tests indicate this C++ 

version is much faster than the original Matlab code, thus enabling even better 

computational efficiencies.  A much larger GPU-based comparison between ANSYS and 

FFDAMRD using 3DSIM’s code is currently being planned. 

5.6.2.1 Convergence Study 

Figure 51 shows the convergence study using ANSYS and 3DSIM. It runs a 

simulation of a simple model with different number of elements in the Z direction. The 

3DSIM result converged to the same value as it produced in ANSYS.  

5.6.2.2 Computational Time Study 

In this study, the time to simulate the small part shown in Figure 52(a) has been 

estimated based upon results for ANSYS and 3DSIM simulations of sub-portions of the 

part. The part was simulated based upon standard process parameters for Ti6/4 used in an  
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Figure 51 Convergence study for peak temperature comparing 3DSIM and ANSYS 

results 

EOS M270 machine and the use of a block support structure with a 2 mm height. The 

simulations were set up to calculate an additional 1 mm of unmelted powder on each side 

of the part and 1mm of the baseplate, resulting in an FEM model size of 42 mm x7 mm in 

the XY plane and an initial 3 mm Z height, which increases as new layers are added in 

the Z direction. The mesh used for this problem, showing a uniform coarse mesh 

throughout and a fine discretization near the energy source, is shown in Figure 52(b). The 

laser beam diameter has been assumed to be 100 µm and is sub-divided into 8 elements. 

The coarse mesh discretization encapsulating the remaining geometry has a 200 µm 

spatial grid size in the XY-plane. The layer thickness and the Z direction element size 

were assumed to be 30 µm.  The Z-direction element size for the support structure and 

the build plate were set at 125 µm and the existence of the support structure was assumed 

to be already present at time t = 0 with properties representative of a block support 

structure. The initial strip angle for scanning was observed to be 106.15° w.r.t. +X axis 

for an EOS M 270 machine, and this assumption has been replicated in Figure 52(c). All 
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coordinates follow ASTM standard terminology [112]. 

5.6.2.3 Results and Discussion 

A three dimensional model built in ANSYS using the above-mentioned 

discretization and overall dimensions ranges from 204k to 714k degrees of freedom 

(DOFs).  The number of DOFs linearly increase as the number of layers increase. Figure 

53 shows the time to simulate various sub-portions of the model for different layers on a 

Dell Precision T1650 desktop computer with a processor speed of 3.2GHz and 8GB of 

RAM. Each model ran for the first ten laser offsets for each layer of simulation (it was 

not possible to finish running even one layer in an acceptable amount of time).  

 
(a) A plate with dimensions of 40x5x2mm, built on top of a block support structure (in 

red) of 2mm in height 

 
(b) Mesh for the structure 

 
(c) Scan pattern for the structure 

Figure 52 Problem definition showing the part, mesh and scan strategy employed in the 

simulation 
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The way laser offsets are modelled are different in ANSYS versus 3DSIM.  The 

dynamic mesh developed for this problem has a fine mesh region that is stationary with 

respect to the coarse mesh for several time substeps as the laser energy traverses the fine 

mesh.  Once the laser has crossed a pre-determined location in the fine mesh, the fine 

mesh moves in the direction of laser motion so that the melt pool remains within the fine 

mesh region. In the ANSYS model, this is approximated by causing the point of laser 

exposure to remain virtually stationary at the center of the fine mesh between time 

substeps until the laser position should have reached the fine mesh boundary (Figure 52 

(b)) leading to an advancement of the fine mesh by one coarse mesh distance in the 

direction of laser travel.  In the 3DSIM model, the laser exposure changes location within 

the fine mesh region every time substep. The result of this difference is that 3DSIM more 

accurately captures temperature variations.  Since this experiment was designed to test 

the speed difference of 3DSIM versus ANSYS, no detailed analysis of accuracy was 

done. 

In Figure 53(a), the ANSYS execution time is plotted against the number of 

substeps for different DOF scenarios.  In Figure 53 (b), the average ANSYS time per 

substep is plotted against the number of DOFs. In order to predict the time needed for 

larger problems, the execution speed of the model using different computational 

configurations was tested and is shown in Figure 54 for two cases of approximately 204k 

and 510k DOFs respectively. It was observed from these test results that the model runs 

fastest using the combination of 1 GPU and 2 CPU cores. The corresponding results for 

average time spent per substep w.r.t. DOFs is shown in Figure 55. 
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In order to estimate the time for the execution of an entire part model in ANSYS, 

the results shown in Figure 55 have been used for extrapolation. From Figure 55, the time 

to solve an increasing number of DOFs was assumed to be a linear function for DOFs 

  
(a) Running time versus number of substeps 

 
(b) Average time per substep versus DOFs (x105) 

Figure 53 ANSYS sub-model run time on an ordinary desktop computer 
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exceeding 220k, and the data was fitted using a linear function. Using this linear 

estimation methodology, the execution time for ANSYS to fully simulate the small test 

peg model using 321,160 substeps (representing a solution of the laser for every 12.5µm 

of laser travel) would be about 61.5 years.  

 

Figure 54 Different computational configurations comparison 
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Figure 55 ANSYS model running time for multiple GPU processors 

In order to compare the computational speed of the ANSYS model with its 

3DSIM counterpart, a model with three elements in the Z direction was executed using 

3DSIM.  The execution time for finishing one layer with about 200K time steps are 

shown in Table 1 for both 3DSIM and ANSYS. A previous case study reported in SFF 

2013 showed that the Matlab version of 3DSIM’s algorithms was about 66 times faster 

than ANSYS [5]. From the results in Table 1, the initial (non-optimized) C++ 3DSIM 

model used for this study is about 294 times faster.  

Table 1 3DSIM Processing Time for the model with 3 elements in the Z direction 

 
Time steps Offsets s/time step s/offset Total(hours) 

3DSIM 200244 11779 0.2 0.5 12.8 

ANSYS 200584 N/A 67.54 0 3763.2 
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5.7 Conclusions and future work 

A dynamic mesh framework has been developed to provide an efficient 

computational method for simulation and modeling of SLM using ANSYS. This 

framework provides very large computational speed and model size advantages compared 

to other FEM approaches in the literature. The accuracy of interpolation of nodal 

temperatures from one fine mesh configuration to the next has been tested and was found 

to be reliable since the converged thermal field in the previous fine mesh configuration 

matches well with the initial condition thermal field in the next mesh configuration. A 

comparison of ANSYS solutions with experimental results for melt pool size and shape 

indicate the model accurately simulates the process.   

The ANSYS approach to dynamic meshing, however, is still not as fast as 

required due to the node renumbering and reassembly required in ANSYS and the need 

for finer time steps for convergence. ANSYS is arguably the best existing commercial 

tool for solving SLM thermal problems.  Using ANSYS, however, to simulate even a 

relatively small SLM thermal problem requires many years of computational time.  

A comparison between ANSYS and 3DSIM show that both methods can be used 

to accurately simulate the thermal transformations in SLM.  The set of algorithms and 

software tools being developed by 3DSIM show an initial advantage for speed, and thus 

capability, for simulating AM problems. So 3DSIM could be adapted to provide 

temperature and thermal stress results for support structure design and optimization.   
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CHAPTER 6 EVALUATION OF EFFECTIVE THERMAL CONDUCTIVITY 

APPROACHES FOR SUPPORT STRUCTURES 

6.1 Introduction  

Selective laser melting (SLM) is an Additive Manufacturing (AM) technology 

whereby a part is built by melting successive layers of metal powder. The part is typically 

built upon a plate in an enclosed chamber. Support structures are designed during the 

build setup process. These structures are commonly built using process parameters 

different from part fabrication parameters since the objective of their fabrication is to 

withstand the thermal stress due to the part fabrication followed by their easy removal 

post-fabrication. These structures typically resemble a truss-like structure such that the 

material usage can be reduced [3]. Although support structures play a critical role in SLM 

processing, the complexities related to thermal phenomena in SLM and the need for fast 

simulations leads one to consider how to minimize computational time when including 

support structures in a thermo-mechanical model [5, 113].  

Simulations capable of predicting the complex thermal behavior which occurs in a 

SLM process would help design and manufacturing engineers build more optimum 

designs in a reliable manner. A multiscale generalized feed forward adaptive refinement 

and de-refinement (FFD-AMRD solver for 3DSIM) finite element framework for SLM 

has been developed to achieve fast thermomechanical field solutions [45].  Support 

structures fabricated during SLM to overcome thermal stress induced part distortion are a 

key part of the process, and a representation of these support structures in a finite element 
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framework must be considered.  If support structures could be designed with minimal 

material usage while still maintaining an ability to withstand the thermal stresses 

generated during the part fabrication, this would significantly impact industrial use of 

SLM. In order to reduce the computational cost and maintain the speed of the simulations, 

the use of effective thermal properties for support structures is evaluated in this paper 

within the above-mentioned framework. The effective material properties have been 

computed using the Representative Volume Element (RVE) approach.  

The effective thermal properties of support structures can be represented using 

thermal homogenization. The effective thermal properties of the support structures have 

been found to be a function of their geometry, anisotropy and constituent independent 

thermal properties. The results from this study have been compared against standard 

models and a good match has been found. The objective of this work is to derive 

effective thermal property functions which could be directly incorporated in the FFD-

AMRD framework mentioned above to enhance computational speed. 

6.2 Background 

The theory of homogenization was developed in the 1970s [114-117]. This 

method was developed to obtain the effective physical properties of a periodic structure 

using an RVE of the structure such that the property value under consideration converges 

to a specific value as a function of an increasing number of periodic unit cells.  The 

theory of homogenization uses asymptotic expansion and assumes periodicity to 

substitute for differential equations and obtain limiting solutions asymptotically close to 

the original solutions [116, 118].  Replacing the fine spatially detailed model with an 
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equivalent model such as an RVE is a computationally cheap way to dimensionally 

reduce the size of a detailed model. 

 Examples of homogenization based dimensional reduction have been illustrated 

for a variety of computational problems. A finite element based micromechanical model 

was developed to study the compressive deformation response of an RVE designed for a 

truss-based cellular solid [119].  In order to solve this RVE, periodic boundary conditions 

were applied to the fine spatially detailed model. The mechanical parameters of interest 

including the stiffness and strength were studied by changing various inputs such as 

volume fraction and size of the RVE.  Similarly, another example of homogenization is a 

numerical procedure built in ANSYS with a FORTRAN subroutine to parametrically 

change input variables of the simulation. The objective of this work was to study the 

effective material coefficients of piezoelectric fiber composites [120]. Periodic boundary 

conditions were applied to the model to keep each composite RVE in the same 

deformation mode; which means there was no separation and overlap between the 

neighboring RVEs. The opposite surfaces were meshed in such a way that the 

corresponding nodes were coupled with the same number of nodes on both surfaces.  

 There is no prior work reported on effective thermal conductivity for support 

structures in SLM. However, effective thermal conductivity of fiber reinforced 

composites and honeycomb structures similar to SLM support structures in shape, form 

and geometrical aspects have been studied in the literature. A boundary collocation 

scheme for 2D periodic arrays of a composite comprising extrusions with circular and 

square bases has been developed to compute the effective thermal conductivity [121]. 

This led to a study of the influence of inclusion volume fraction and conductivity ratio on 
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the effective thermal conductivity of these composites. Similar to the previous study, a 

2D transverse cross-section of fiber reinforced composites was studied and the effective 

thermal conductivity was computed using four different types of periodic boundary 

conditions applied for a representative FEM [122]. The boundary conditions used for this 

study are (a) prescribed constant boundary temperature on both vertical boundaries, (b) 

prescribed constant temperature and a constant heat flux at the vertical boundaries, (c) 

prescribed constant heat flux at both vertical boundaries and (d) prescribed constant 

vertical boundary temperatures and a linearly varying thermal field in between opposite 

horizontal boundaries. The effective thermal conductivity results computed using FEM 

were compared against available analytical and experimental results for both circular and 

square cross-section fibers.  Another numerical investigation was performed to study 

effective thermal conductivity as a function of monolith honeycomb structures such as a 

hollow hexagon, circle or square periodic arrays coated with washcoat [123] at the 

internal periphery. The axial and transverse effective thermal conductivities were 

computed for these monolith structures and compared against parallel and series spring 

model counterparts.  

6.3 Description of the problem 

Figure 56 shows the most commonly used block support structures for SLM when 

using an EOS M270 direct metal laser sintering machine. Figure 57 shows the physical 

3D model and RVE of the support structures along with the substrate. The substrate is 

usually a one-inch thick plate.  The support structure is scanned, melted and solidified 

during the fabrication process. The fabrication of these structures leaves residual powder 

trapped inside the support channels. Therefore, the fabricated part is held in its desired 
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shape using a mixture of powder and solidified truss-like support structures on top of the 

base plate. It is therefore required to model both the solidified support structures along 

with the powder trapped inside them to arrive at an RVE and efficient thermal properties 

to be directly integrated into a thermomechanical solver. 

 

Figure 56 Support structure built using an EOS M270 machine 

 

Figure 57 3D model with support structure and RVE of support structure 
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Figure 58 View of the XY plane of an example mesh 

A cross-section of the mesh with solidified thin wall geometries and trapped 

powder inside the intercellular space is shown in Figure 58. The support structure domain 

consists of elements with different material properties for solidified material and powder. 

The current FFDAMRD process solver adopts a predefined coarse and fine moving mesh 

strategy to capture the different scales of thermal behavior [43], and inhomogeneous 

material properties of the support structure increase the complexity of the problem. In 

order to avoid this complexity, an effective thermal conductivity for the combined solid-

powder support structure is studied in this paper.  An RVE was designed to replicate the 

combined solid-powder structure with periodic boundary conditions applied to it. The 

influence of volume fraction and the number of unit cells affecting the effective thermal 
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properties was analyzed. Both temperature-independent and temperature dependent 

thermal properties such as thermal conductivity have been used to perform a steady state 

thermal analysis of the RVE. 

6.4 Numerical method 

The addition of support structures made up of solid ribs filled with powder in the 

intercellular spaces into the FFDAMRD finite element framework makes it more 

complicated and increases its computational burden. The main purpose of the method is 

to find a globally homogeneous media equivalent to the original structure, where the heat 

energy stored is approximately the same [124]. Hence an RVE has been designed such 

 

Figure 59 Representative Volume Element for the support structure with defined 

boundary conditions 

that an equivalent model could be derived as a function of support structure geometry, 

volume fractions of the intercellular powder and solidified supports, and thermal loading 

direction. The periodic boundary conditions shown in Figure 59 were applied to the RVE. 

The average heat flux and temperature gradient was evaluated based on the thermal 

results from running the RVE in ANSYS. The equivalent model results in the prediction 
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of an effective thermal conductivity of the support structure in the z-axis by performing a 

finite element simulation with its results validated against a parallel model for springs 

[125].   

6.4.1 Linear Temperature-Independent Material Property Case Study Results 

Figure 59 shows the initially chosen model geometry to represent the support 

structure for evaluating the effective thermal conductivity. A constant temperature of 

100K and 0K were prescribed at the center nodes of the top and bottom surfaces 

respectively as boundary conditions in the finite element model. Other nodes on the top 

and bottom surfaces were constrained to maintain a temperature difference of 100K 

between the top and bottom surfaces. The intent of this simulation was to create a 

representative model and to perform a finite element simulation with periodic boundary 

conditions such that the opposite faces of the model domain perpendicular to the x- and 

y-axis have exactly the same temperatures. The thermal solution has been obtained in 

ANSYS by subjecting the model geometry to the above-mentioned boundary conditions 

and surface constraints. An effective thermal conductivity was then calculated based on 

the heat equation shown in Equation (13) 

𝑞 =  −𝑘 
𝑑𝑇

𝑑𝑧
 

(13) 

where q is the heat flux, k is the thermal conductivity, T is the temperature and z is the 

distance in the z direction.  
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Figure 60 Temperature distribution along the z direction 

The temperature difference in the z direction is 100K, which is predefined as the 

boundary condition. The temperature gradient in the z direction can be obtained through 

an integration of Equation (13). As shown in Figure 60, the temperature distribution 

along the z direction is linearly distributed, thus the temperature gradient could be easily 

calculated in this case.  The heat flux for all elements with different properties (powder 

and solidified sections) through the z direction is stored in the ANSYS result list. The 

total heat flux input in the z direction for the surface is the sum of the result for all 

elements. The effective thermal conductivity is calculated through the z direction by 

using the average temperature gradient available from temperature values in the z-

direction and retrieved heat flux.   

The influence of the total number of cells in the support structure and the volume 

fraction of the solidified material and entrapped powder in the representative volume 

element were studied. According to the literature, series and parallel spring models for 
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studying the effective properties of a composite material are commonly used [125] to 

establish a relationship between average and local thermal conductivities. The parallel 

model was chosen over the series model to verify the numerical model in this study since 

the powder and solidified support structures were lying side-by-side. The effective 

thermal conductivity of the parallel composite described above is shown in equation (14). 

𝐾𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐾𝑠𝑜𝑙𝑖𝑑 ∗ 𝜃 + 𝐾𝑝𝑜𝑤𝑑𝑒𝑟 ∗ (1 −  𝜃) (14) 

where 𝐾𝑠𝑜𝑙𝑖𝑑  and  𝐾𝑝𝑜𝑤𝑑𝑒𝑟  are the thermal conductivity for the solidified support and 

powder respectively and  𝜃  is the volume fraction of solidified support w.r.t. the 

combined structure comprising solidified truss-like geometries and entrapped powder. 

Since the increase in the number of support structure cells does not necessarily 

change the volume fraction of the solidified support material, the effective thermal 

conductivity converges to a constant value regardless of the number of unit cells. The 

effective thermal conductivity does not change with increasing number of support 

structure cells. However, with an increase in the volume fraction of the solidified material, 

the effective thermal conductivity increases, as shown in Figure 61. Both results show 

that the numerical effective thermal conductivity matches the results obtained from the 

parallel spring model.  
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Figure 61 K_effective/K_solidified vs the fraction of solidified material 

6.4.2 Nonlinear Temperature-Dependent Material Property Case Study Results 

 In general, the thermal properties of common materials are temperature dependent 

and nonlinear in nature. In this case, the temperature difference between the central nodes 

at the top and bottom surfaces has been set to be the exact value of the prescribed 

temperature difference with an added constraint that the thermal conductivity of the 

material will change as a function of temperature rather than remaining constant 

throughout the thermal range. When solving a linear material property case problem, 

temperature variation doesn’t influence the results because the thermal conductivity is 

assumed to be temperature independent. However, the temperature at the central bottom 

surface node and the temperature difference between the top and bottom surface are 

required to be selected carefully for nonlinear thermal conductivity scenarios where a 
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change in thermal conductivity across the supports is significant. In order to set the 

boundary conditions, the temperature of the entire domain is assumed to be the same as 

the temperature of the central bottom surface node followed by a temperature difference 

of 1 K between the top and bottom surfaces. This results in the effective thermal 

conductivity of the combined support comprised of the solid and entrapped powder 

material as a function of individual volume fractions, geometry and the base-line 

temperature. The effective thermal conductivity for a critical temperature, such as the 

beta transus temperature or melting point, was evaluated. The procedure to calculate the 

effective thermal conductivity for each selected temperature in this case is exactly the 

same as has been described for the linear material case using Equation (14).  

 

Figure 62  Effective conductivity vs temperature for temperature-dependent Ti64 

properties at various temperature gradients 
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The influence of the temperature difference on the volume fraction of solidified 

material has been studied to gauge the nonlinear effective thermal conductivity as shown 

 

Figure 63 Effective conductivity ratio vs temperature for temperature dependent Ti64 

properties at different temperature gradients 

in Figure 62 and Figure 63 using temperature-dependent properties for Ti64 [105], a 

common SLM alloy. Figure 62 and Figure 63 show the effective thermal conductivity 

with respect to the temperature difference between the top and bottom surface. The 

effective thermal conductivity jump between the temperature regions of 1247~1287K 

shows the beta transus, and the temperature between 1874~1933K is considered the 

melting zone for Ti64 bulk material. Three scenarios have been illustrated in Figure 62 

and Figure 63 with 1, 10 and 100 K temperature difference between the top and bottom 

surface and how they compare against the parallel spring model. These three scenarios 

illustrate the effects of boundary conditions on the effective results. The effective thermal 

conductivity matches well with the parallel spring model for a temperature difference of 
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1K with increasing deviations w.r.t the theoretical spring model as a function of 

increasing temperature difference between the top and bottom surfaces. These differences 

become clearer in Figure 63 which plots the ratio of effective thermal conductivity 

compared to solid thermal conductivity as a function of temperature. The nonlinear 

effective thermal conductivity is calculated for each critical temperature point. This 

illustrates that there is an imprecise transition in the effective thermal conductivity plot 

when temperature difference is large. It can be concluded that the effect of boundary 

conditions such as the temperature difference between the top and bottom surfaces and 

the initial temperature has a huge influence on the effective thermal conductivity if 

thermal conductivities are assumed to be non-linear and temperature dependent.  

 

Figure 64 Effective thermal conductivity vs Temperature for temperature-dependent Ti64 

properties at different support structure space distances 
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Figure 65 Effective thermal conductivity vs Volume fraction for temperature-dependent 

Ti64 properties 

As shown in Figure 61, effective thermal conductivity increases with increasing 

volume fraction of solidified material. Figure 64 shows nonlinear effective thermal 

conductivity w.r.t. varying space distance. The space distance is a representation of the 

distance between the opposite surfaces of the hollow square prism entrapping the powder. 

It can be observed that the effective nonlinear thermal conductivity is proportional to the 

volume fraction of the solidified material. Figure 65 shows the nonlinear effective 

thermal conductivity as a function of volume fraction of the solidified support material at 

different temperatures. It can be observed that at any given temperature, the effective 

thermal conductivity increases as a function of increasing solid volume fraction. 
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6.5 Validation of the results of effective thermal properties 

A comparative study of the temperature distribution between two scenarios is shown 

in Figure 66 and Figure 67. The two scenarios differ from one another by different 

thermal conductivity assumptions which have been applied at the element integration 

point. The original support structure is composed of a solidified wall and trapped power. 

The bulk material properties and the powder thermal conductivities were input to the 

model respectively. The comparison study aims to verify that thermal distribution due to 

effective and the real thermal conductivity are the same. Figure 66 with a linear thermal  

 

Figure 66 Temperature distribution of the RVE for linear material property 

conductivity assumption shows that the thermal distributions resulting from effective and 

original thermal conductivities are identical. On the other hand, in Figure 67 with non-

linear thermal conductivity assumptions, the thermal distributions differ from each other 

by a relative maximum standard deviation of 3.5%. The thermal distribution curve shapes 
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as a function of distance from the top plane in the –z direction show that the curvature 

and order of the effective and original thermal conductivity assumptions match. 

 

Figure 67 Temperature distribution of the RVE for nonlinear thermal conductivity 

6.6 Conclusion and future work 

 The finite element model built in ANSYS successfully illustrated a manner to 

calculate the effective thermal conductivity of support structures in SLM consisting of a 

solidified material and entrapped powder in the intercellular spaces. The theories of 

homogenization and periodic boundary conditions were applied to study the steady state 

thermal behavior of the RVE. Both temperature independent (linear) and dependent 

(nonlinear) thermal property assumptions were studied in the model. The influence of 

volume fraction, number of cells in the RVE and boundary conditions on linear and 

nonlinear thermal assumptions were analyzed. The effective thermal properties of the 

support structure were compared against a parallel spring thermal counterpart and shown 
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to have a good match. The method has thus provided an efficient method for prediction of 

temperature by using an effective thermal conductivity to reduce the complexity of finite 

element analyses.  

 Support structures used for real parts should be optimized such that a minimum 

amount of supports to withstand thermal stress induced distortion should be added to a 

part. This would result in local property variations and anisotropy in the X, Y and Z 

directions. A method to apply an effective thermal conductivity for support structure with 

non-uniform wall thickness and spacing was shown to be accurate and thus merits further 

study.  
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CHAPTER 7 SUPPORT STRUCTURE DESIGN AND OPTIMIZATION 

FRAMEWORK 

7.1 Introduction  

The support structures generated by support generation modules of AM specific 

design software such as Magics are geometry and pattern driven and do not place support 

structures based upon any knowledge of the thermal stresses generated by the thermal 

field in metal powder bed fusion processes. Thus, support structure generation becomes a 

trial and error process driven primarily by a user’s experience with similar geometries.  

This results in a waste of material and machine time. The lead time for successfully 

developing strategies for building parts using SLM is largely increased due to the trial 

and error process of support design and placement. A support structure optimization and 

design framework is being developed to overcome the difficulty of dealing with support 

structure in SLM. This chapter introduces the method and steps for a support structure 

optimization and design framework. Both analytical solutions and FEM are applied to 

optimize the support structure parameters.  

As shown in Figure 68, the support structure generation module will be 

incorporated into the current thermomechanical process solver. The support structure is 

taken into consideration in the thermomechanical solver along with the input of process 

parameters, material properties and scan strategies. The goal is to create a force/strength 

map on the lower surfaces of a part to be built that guides the fitting of an optimized 

support structure to that force/strength map.  One approach that is explored in this chapter 
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includes placing an “initial” support structure into the thermomechanical model along 

with the part geometry. An example of this initially assumed support structure is a block  
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Figure 68 Support structure optimization and design flowchart for incorporation with 

3DSIM 

structure with powder in the intercellular spaces as shown in Figure 56. This block 

structure will be used to support the fabricated part on the substrate. The solidified 
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support and the powder trapped inside the support structure will be modeled using 

appropriate effective thermophysical properties as described in chapter 6. A cross-section 

of the mesh with solidified struts and trapped powder inside the intercellular space is 

shown in Figure 58. This model will be solved using a thermomechanical eigenmodal 

strategy layer-by-layer with a contact model to account for snapping of supports at their 

interface with the baseplate and/or the part. At the end of each simulation, the dimensions 

of the solidified struts will be periodically updated as a function of layer-by-layer buildup 

of the fabricated structure. In the meanwhile, it results in updated element properties from 

powder to solid with an updated total stiffness matrix. 

7.2 The Support Structure Optimization and Design Framework 

Figure 69 shows the framework for support structure optimization and design. It 

consists of two categories of algorithms, CAD operations and stress calculations shown 

in purple and red dotted boxes respectively. As explained in Figure 68, for a given ‘initial’ 

support structure, the thermal stress can be calculated and stored in a file format such as a 

CSV file. The algorithm starts with reading the part and thermal stress information in 

STL and CSV file formats respectively. The appropriate areas where support structures 

are necessary is determined based on some general rules of support structure generation. 

Based on empirical rules or user-directed inputs, a default support structure is calculated. 

Thermally induced stress is calculated using 3DSIM tools and optimized support 

parameters are calculated based on either analytical solutions or FEM. For different types 

of thermal stress, the maximal support structure parameters calculated from each scenario 

are recorded. The final support structure parameters are the maximal value of all 

scenarios and it is updated iteratively.  
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Figure 69 support structure optimization and design framework 

All the steps of the support structure optimization and design framework are 

described in detail in this section.  Both analytical solutions from a square Honeycomb 

structure and FEM are applied to calculate the support structure parameters. The 



121 
 

application of analytical solutions to support structure optimization is introduced in this 

chapter along with the steps of the methodology. The FEM method and its 

implementation is introduced in a new section.  

7.2.1 Supporting Area Detection  

For a given arbitrary part, the location and mass of support structures must be 

determined. Each part has a bounding box defined, as defined by ASTM standard 

terminology for Additive Manufacturing-Coordinate systems and test methodologies 

[126]. The bounding box provides the area for which support structures might be 

necessary and is defines the maximal support region. Some general empirical design rules 

could be used to reduce the support region. The surface angle with respect to the XY 

plane is one possible rule. This could be seen as a criterion and applied to eliminate 

unnecessary support areas.  

The example below is a thick hemispherical dome structure as shown in Figure 22 

and Figure 70 is the STL model in 2D. It is clear that the area to be considered for 

supporting this part is a circular area in 2D, and the dimensions of the bounding box 

varies dependent on the selection of surface angles. The diameter of the bounding area 

for the part is 190.48mm. A surface angle threshold of 45˚ was selected for this example. 

Surfaces having an angle of 45˚and more with respect to the horizontal plane are 

considered not to need support structures and are not included in the supporting area.   

Equation (15) represents a surface in three dimensional space where a, b, c and d 

are the coefficients for coordinates x, y, z and a constant respectively. These are 

determined by solving linear equations using the vertices of the triangles in an STL file. 

The surface angle is calculated using triangle normal n = (a, b, c) subtracted by 90˚. After 
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applying the angle criterion to all the triangles in the STL file, the supporting area is 

reduced to a circular area with diameter of 130mm which can be seen from Figure 70. 

a ∗ 𝑥 +  𝑏 ∗ 𝑦 +  𝑐 ∗ 𝑧 +  𝑑 =  0 (15) 

  

Figure 70 STL file representation of the part in 2D 

 

7.2.2 Support Structure Default Parameters Determination 

The support structure is set to the default parameters so as to decide the location 

of the supporting walls in the first stage. The support structure explored in this paper is 

the commonly used block support structure which is shown in Figure 71 [127] in the 

XYZ coordinate system. The basic structure has three primary parameters: t (thickness), l 

(spacing) and h (height of the structure). The value for parameters t and l is continuous 

with an interval which is defined by the resolution of the machine and the physical 

possibility for material processing. A minimal number of support walls is used to setup 

the default support structure, calculated using the dimensions of the bounding box 

divided by the maximal possible multiplications of t and l in both X and Y directions.  
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Figure 71 Square honeycomb structure [127] 

7.2.3 Support Structure Volume Calculation 

The height of the supporting walls in each cell must be provided in order to 

calculate the volume of the support structure. In addition, the extrusion of the support 

structure also needs the coordinates of the common line which the downward surface and 

the support structure walls intersect. Figure 72 is the flow chart applied to calculate the 

support structure volume. For the block support structure, each cell is a square and the 

supporting walls in one direction are vertical to the other direction. The first step is to 

find all triangle intersects with the current wall. Each triangle has a bounding box using 

the maximal and minimal coordinate of the vertices. The wall is considered to intersect 

the triangle if the coordinate of the wall is in the range of the bounding box. The plane 

and triangle intersection equation shown in Equation (8) is carried out to find the  
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Figure 72. Flow chart for finding the support wall and triangle intersection line 

intersection lines for all the walls in 3D. Since the wall is simplified as a line when it is 

projected in the 2D plane, the line and triangle intersection is used to find the intersection 

line in 2D and the Z coordinate is interpolated based on the X and Y coordinates. 

Possible plane intersections with different lines are shown in Figure 73 (c, d, e, and f).  

The intersection could be also a single point as shown in (a, b).  Different scenarios are 

dealt with independently in the algorithm. All the intersection lines for each triangle are 

sorted and the support wall is formed by connecting the lines sequentially. The support 

structure wall is divided into each cell by using the coordinate in the vertical direction 

since each cell might have a different thickness. 
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Figure 73. Line and triangle intersections 

7.2.4 Non-Uniform Localized Support Design 

The support structure shown in Figure 71 is designed to be uniform in thickness 

and spacing for the walls. However, for the given thermal stress, the force might be not 

uniformly distributed and so the support structure may not be uniform. The primary 

principles are to make sure that the support structure will not fail in large thermal stress 

areas and that the part is not over-supported in small thermal stress areas. Figure 74 

elaborates the idea of non-uniform support structures.  The blue square stands for the 

boundary of the part which could be random in shape. The green and red color defines 

the contour map of the thermal stress. The yellow color is the support structure wall and 

it has non-uniform thickness for the walls in the same X/Y location. The cell in the 

support structure allows for different parameters t1, t2, t3, t4 for the walls. Suppose that the 

thermal stress decreases from the red to the green area. In this case the support structure 

wall thickness should show a similar tendency of reducing the wall thickness from the red 

to the green area.  
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Figure 74 Non-uniform support structure where blue represents the part boundary, 

green/red represent thermal stress contour plot lines and yellow represents the support 

structure walls. 

7.2.5 Linear Programming (LP) Method  

As shown in Figure 74, each element cell has six independent variables, which are 

thickness for each strut t1, t2, t3, and t4 and inter-strut distance d1, and d2 which are 

predefined. Two sets of parameters txi and tyj are defined for struts in both x and y 

directions in order to formulate the problem using an LP method from Equations (16) to 

(25):   

Min:  ∑ ∑ (𝑡𝑥𝑖 ∗ 𝑑𝑦𝑝 ∗ ℎ𝑖𝑝)𝑝𝑖 + ∑ ∑ (𝑡𝑦𝑖 ∗ 𝑑𝑥𝑝 ∗ ℎ𝑝𝑖)𝑝𝑖  (16) 

S.T.  

𝑑𝑚𝑖𝑛 ≤ 𝑑𝑥𝑖+𝑛𝑗 − (𝑡𝑥𝑖+(𝑗−1)𝑛 + 𝑡𝑥𝑖+𝑛+(𝑗−1)𝑛) ≤ 𝑑𝑚𝑎𝑥 

𝑖 = 1, 2, … , 𝑛 ; 𝑗 = 1, 2, … ,𝑚 

(17) 
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𝑡𝑚𝑖𝑛 ≤ 𝑡𝑥𝑖+(𝑗−1)𝑛 + 𝑡𝑥𝑖+𝑛+(𝑗−1)𝑛 ≤ 𝑡𝑚𝑎𝑥 

𝑖 = 3, 4, … , 𝑛 − 1 ; 𝑤 = 3, 4, … ,𝑚 − 1 

(18) 

𝑑𝑚𝑖𝑛 ≤ 𝑑𝑥𝑖+𝑛𝑗 − (𝑡𝑥𝑖+(𝑗−1)𝑛 + 𝑡𝑥𝑖+𝑛+(𝑗−1)𝑛) ≤ 𝑑𝑚𝑎𝑥 

𝑖 = 1, 2, … , 𝑛 ;  𝑗 = 1, 2, … ,𝑚 

(19) 

𝑡𝑚𝑖𝑛 ≤ 𝑡𝑥𝑖+(𝑗−1)𝑛 + 𝑡𝑥𝑖+𝑛+(𝑗−1)𝑛 ≤ 𝑡𝑚𝑎𝑥 

𝑖 = 3, 4, … , 𝑛 − 1 ;  𝑤 = 3, 4, … ,𝑚 − 1 

(20) 

𝑑𝑚𝑖𝑛 ≤ 𝑑𝑦𝑗+𝑚𝑖 − (𝑡𝑦𝑗+(𝑖−1)𝑚 + 𝑡𝑦𝑗+𝑚+(𝑖−1)𝑚) ≤ 𝑑𝑚𝑎𝑥 

𝑖 = 1, 2, … , 𝑛 ;  𝑗 = 1, 2, … ,𝑚 

(21) 

𝑡𝑚𝑖𝑛 ≤ 𝑡𝑦𝑗+(𝑖−1)𝑚 + 𝑡𝑦𝑗+𝑚+(𝑖−1)𝑚 ≤ 𝑡𝑚𝑎𝑥 

𝑖 = 3, 4, … , 𝑛 − 1 ; 𝑤 = 3, 4, … ,𝑚 − 1 

(22) 

𝑑𝑚𝑖𝑛 ≤ 𝑑𝑦𝑗+𝑚𝑖 − (𝑡𝑦𝑗+(𝑖−1)𝑚 + 𝑡𝑦𝑗+𝑚+(𝑖−1)𝑛) ≤ 𝑑𝑚𝑎𝑥 

𝑖 = 1, 2 , … , 𝑛 ;  𝑗 = 1, 2, … ,𝑚 

(23) 

𝑡𝑚𝑖𝑛 ≤ 𝑡𝑦𝑗+(𝑖−1)𝑚 + 𝑡𝑦𝑗+𝑚+(𝑖−1)𝑚 ≤ 𝑡𝑚𝑎𝑥 

𝑖 = 3, 4, … , 𝑛 − 1 ; 𝑤 = 3, 4, … ,𝑚 − 1 

(24) 

∬𝜎𝑞 𝑑𝑥𝑑𝑦

𝑎𝑟𝑒𝑎
≤   𝜎𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒    (25) 

where all the variables are non-negative and m and n are numbers of walls in x and y 

directions respectively. 

The above problem is expressed in matrix format from Equation (26) to (28). 

Min:  𝑓�⃗�     (26) 

S.T:  𝐴�⃗�  ≤ 𝑏    (27) 

         �⃗�𝑚𝑖𝑛 ≤ �⃗�  ≤ �⃗�𝑚𝑎𝑥    (28) 
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Where 

 �⃗� = [𝑡𝑥1, 𝑡𝑥2, … , 𝑡𝑥𝑖+(𝑗−1)𝑛, 𝑡𝑦1, 𝑡𝑦2, … , 𝑡𝑦𝑗+(𝑖−1)𝑚]′   

𝑓 is the coefficient of the objective function with size 2*n*m by 1 

A is the coefficient matrix of the constraint equation with size 2*n*m by 2*n*m 

The dimension of b is 2*n*m by 1 

 �⃗�𝑚𝑖𝑛, �⃗�𝑚𝑎𝑥 are the lower and upper boundaries of the variables.  

The number of variables in this LP problem is 6*m*n which makes it extremely 

difficult to solve when the dimensions of the part becomes large. Even though the LP 

problem is solvable using methods such as Simplex or Interior point [128], the results are 

not consistent with the thermal stress distribution. The anticipated optimized support 

structure result should have a similar distribution to the thermal stress distribution. The 

correlation of support structure parameters and thermal stress distribution for different 

supporting walls is found by using the same ratio of thermal stress. The assumption helps 

to reduce the number of variables in the LP problem to two which are the minimal and 

maximal t/l ratio corresponding to minimal and maximal thermal stress.  

7.2.6 Minimal Cross-Section Area 

Equation (29) is the cross-sectional area of the support structure. If  𝑛𝑥 and 𝑛𝑦 

from Equation (30) are substituted into Equation (29) and then both the denominator and 

numerator are divided by 𝑙2, the cross-sectional area is in proportion to the ratio t/l. The 

minimal cross-section is found when t/l is minimal. 

𝐴𝑟𝑒𝑎 = 𝑛𝑥 ∗ 𝑛𝑦 ∗ 4 ∗ (𝑡 ∗ 𝑙 + 𝑡
2) (29) 

𝑛𝑥 = ⌊
𝐴

𝑡 + 𝑙
⌋ , 𝑛𝑦 = ⌊

𝐵

𝑡 + 𝑙
⌋ (30) 
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The variable Area in Equation 29 is the area of the cross-section, 𝑛𝑥 is the number 

of cells in the X direction, ny is the number of cells in the Y direction, A and B are the 

size of the support structure, the operator ⌊𝑛⌋ is rounded to the nearest integer in the 

negative direction, t is the thickness and l is the length between walls.  

7.2.7 Thermal Stress Mapping to Support Structures 

 The thermal stress is stored in the multi-scale mesh from the simulation. The 

thermal stress is mapped to the cellular support structure using iso-parametric 

interpolation, and the 1st order shape function is applied [4].  

The thermal stress is a numerically distributed force in each node.  As shown in 

Figure 75 [129], the concentrated force and centroid of the force in each cell is calculated 

using Equations (31) and (32). The trapezoidal integration method is applied to evaluate 

the integration in the equations. 

 

Figure 75 Static equivalency for a distributed force on a surface [129] 

      𝐹 = ∬ 𝜎(𝑦, 𝑧)𝑑𝑦𝑑𝑧
𝐴

 (31) 

𝑦𝑐 =
∬ 𝑦𝜎(𝑦,𝑧)𝑑𝑦𝑑𝑧
𝐴

𝐹
,    𝑧𝑐 =

∬ 𝑧𝜎(𝑦,𝑧)𝑑𝑦𝑑𝑧
𝐴

𝐹
 (32) 

 

7.2.8 t/l Ratio Calculation Based on Thermal Stress  

7.2.8.1 Simple Structure Surface (SSS) Method  
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In order to calculate the equivalent force acting in each wall of a cell, the Simple 

Structure Surface (SSS) method is used. The SSS method is widely used in designing 

plane, box or van structure such as vehicle panel/frame structures [130].  It is used to 

convert the concentrated thermal stress F in each cell into four components which are the 

support structure walls. Figure 76 [131] illustrates the force working on the support 

structure and how to calculate the force each walls experiences. Suppose the centroid of 

the force is in the middle of the cell, all the Ki are the same. However, the centroid is 

dependent on the thermal stress distribution and Equations (41), (42), (43), and (44) are 

used to calculate the Ki. The derivatives are described as follows [131].  

 

Figure 76 Load distribution for each wall [131] 

 

Equilibrium & Compatibility equations 

𝛿𝐶𝑟𝑜𝑠𝑠−𝑏𝑒𝑎𝑚 = 𝛿𝑙𝑜𝑛𝑔𝑖−𝑏𝑒𝑎𝑚 (33) 

 

    𝐾1 + 𝐾2 + 𝐾3 + 𝐾4 = 𝐹𝑍𝐿 (34) 

     𝐾1𝑤1 = 𝐾2𝑤2 (35) 

𝐾3𝑎 =  𝐾4𝑏 (36) 
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     𝑤1 + 𝑤2 =  𝑤 (37) 

The moment of the inertia of both beams AB and DE are 𝐼𝐶 and𝐼𝐿. 

         𝐼𝐶 =
ℎ𝑤3

12
+ ℎ𝑤 (

𝑤1 − 𝑤2
2

)
2

 (38) 

𝐼𝐿 =
ℎ𝐿3

12
+ ℎ𝐿 (

𝑎 − 𝑏

2
)
2

 (39) 

And  

   
𝐾1+ 𝐾2

𝐾3+ 𝐾4
=

𝐼𝐶

𝐼𝐿
 (40) 

The solution for Ks are: 

𝐾4 =
𝐹𝑍𝐿

(1 +
𝑏

𝑎
)(1 +

𝑤3+3𝑤(𝑤1−𝑤2)2

𝑙3+3𝑙(𝑎−𝑏)2
)
 (41) 

𝐾3 =
𝑏

𝑎
𝐾4 (42) 

𝐾2 =
1 +

𝑏

𝑎

1 +
𝑤2

𝑤1

∗
𝑤3 + 3𝑤(𝑤1 − 𝑤2)

2

𝑙3 + 3𝑙(𝑎 − 𝑏)2
𝐾4 (43) 

𝐾1 =
𝑤2
𝑤1
𝐾2 (44) 

 

7.2.8.2 Analytical Solutions for Calculation of t/l 

The maximal and minimal support structure t/l ratio is determined using the 

mechanical failure formulations from square honeycomb structures. As shown in Figure 

71, the force in the plane XY is noted as in plane and the plane XZ/YZ is noted as out of 
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plane. The in plane shear force and out of plane tensile and compression forces are taken 

into consideration. 

Tensile strength out of plane (Z direction) [127, 132]  

Experiments and simple analyses have shown that their out of plane elastic 

properties scale linearly with the relative density �̅� [127] which is shown in Equation (45).  

�̅� =
2𝑡

𝑙
 (45) 

The measured true tensile stress versus logarithmic strain response may be 

approximated as an elastic, linearly hardening solid [132]. The ratio of the yield stress 

and material yield strength is in Equation (46):  

𝜎𝑝𝑙
∗

𝜎𝑦𝑠
=
𝜌∗

𝜌𝑠
=
2𝑡

𝑙
 (46) 

where 𝜎𝑦𝑠 is the out of plane plastic yield strength of the cellular structure, 𝜎𝑝𝑙
∗ is the 

solid cell wall material yield strength,  𝜌∗ is the density of cellular material, and 𝜌𝑠 is the 

solid cell wall material.  

Compression strength out of plane (Z direction) [132] 

The peak compressive strength of the honeycomb is governed by a competition 

between elastic buckling and plastic micro-buckling of the cell walls [132]. It is supposed 

that the cell walls are treated as plates and simply supported along their vertical edges. 

The elastic buckling load is as shown in Equation (47). 

𝑃𝑐 =
𝑘𝜋2

6(1 − 𝜈)
𝐺
𝑡3

𝑙
 (47) 
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For simply supported boundary conditions along the top and bottom edges, k ≈ 4 

provided that  
𝐻

𝑙
> 1. H and l are the height of the plate and spacing of the cell. 

When k is chosen as 4, the elastic bifurcation stress 𝜎𝑐
𝑒 of the square honeycomb 

becomes  

𝜎𝑐
𝑒 =

4𝜋2

3(1 − 𝜈)
𝐺(
𝑡

𝑙
)3 (48) 

Shear stress in the plane (XY direction) [127] 

Elastic shear buckling strength of a clamped plate is given by Equation (49) [133]: 

𝜏𝑐 =
k𝜋2𝐸

12(1 − 𝜈)
(
𝑡

𝑙
)2 (49) 

where k varies from 8.99 to 12.88 depending on the ratio of  
𝑡

𝑙
, E is the elastic modulus, 

and 𝜈 is the passion ratio. Note that for a honeycomb with aspect ratio 1, and clamped 

edges along Z = 0 and Z = h, k = 12.28 [127]. 

The maximum allowable shear stress of the square honeycomb made from an 

elastic, ideally plastic solid is described in Equation (50). 

𝜏3𝑛
𝑝 =

{
 
 

 
 𝑘𝜋2𝐸

96(1 − 𝜈2)
�̅�3, 𝑖𝑓 �̅�  <  √

48(1 − 𝜈2)𝜎𝑦

√3𝑘𝜋2𝐸
𝜎𝑦

2√3
�̅�           ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (50) 

The plastic shear buckling stress of clamped plates is estimated from Equation (51) 

where Gs is the secant shear modulus from Equation (52).  

 

𝜏𝑐
𝑝 =

𝑘𝜋2𝐺𝑠
6(1 − 𝜈)

(
𝑡

𝑙
)2 

(51) 
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𝐺𝑠 =
𝜏

𝛾
=
𝜎

3𝜖
 (52) 

The shear strength of the square honeycomb is simplified in Equation (53) 

assuming that the square honeycomb collapse when either the wall parallel to the X axis 

or Y axis plastically buckles.   

𝜏3𝑛
𝑝 =

𝜏𝑐
𝑝

2
�̅� (53) 

7.2.9  t/l Interpolation     

The minimal t/l ratio is calculated for a specific thermal stress as well as the 

interval of the minimal t/l ratio for a given thermal stress distribution.  For each scenario 

described above, the lower and upper bounds for the minimal t/l ratio are calculated and 

the max operation is carried out to find the safest minimal t/l interval.  Since the force K 

in each wall is calculated based on the SSS method, its t/l ratio is interpolated using the 

maximal and minimal t/l ratio and also the corresponding maximal and minimal K.  Once 

the t/l ratio is determined for each support structure wall, the t and l are found by solving 

the two variable linear equations since the sum of t and l is also known.  

7.2.10 Post-processing 

 The value of variable thickness (t) and spacing (l) is constrained by practical 

physical limitations for support structure fabrication. The minimal value of the thickness 

is dependent on the resolution of the machine and diameter of the powder. The maximal 

value is determined by considering difficulties in removal during the post-processing 

stage.  It is necessary to adjust results from interpolation by applying rules based upon 

user-defined or machine-specific boundaries for variables.   
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7.2.11 STL Output 

 The readable file for support structures in SLM machines is an STL file. Each 

wall surface is triangulated and written into an STL file.  

7.2.12 Example 

Distortion results from literature [134] are cited to generate thermal stresses for 

support structure optimization. Figure 77 [134] shows the deformation of a twin 

cantilever structure after cutting from the support structure. According to the curvature of 

the deformation in the plotting, the thermal stress is assumed to be a 1D quadratic 

function in the X direction and constant in the Y direction, as shown in Figure 78.  

The minimal and maximal wall thickness (t) and wall spacing (l) used for this part 

is explored in chapter 8. Based on the calculation, it is assumed that there are 40x5 walls 

in the X and Y directions respectively in this case study. The results for the support 

structure wall thickness in X and Y directions are shown in Figure 79 and Figure 80 

respectively. The wall thickness in the X direction shows a similar distribution to the 

thermal stress except for the edges. However, the wall thickness in the Y direction are all 

the same. This is because the thermal stress is assumed to be 1D and uniform in the Y 

direction.  
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Figure 77 Spreading of the twin cantilever depending on bar thickness (h) and 

measurement point (n) [134] 

 

Figure 78 Assumed quadratic thermal stress 
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Figure 79 Optimized wall thickness in the X direction 

 

Figure 80 Optimized wall thickness in the Y direction  
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7.3 FEM Based Support Structure Optimization 

FEM is applied to simulate part distortion under thermal stress boundary 

conditions. Figure 81 shows the flow chart of FEM analysis for support structure 

optimization. It starts with applying the thermal stress and other boundary conditions. In 

each iteration, the maximal stress/distortion is checked so as to see if it exceeds the 

allowed criterion. The corresponding degree of freedom (DOF) is set to zero on the node 

which behaves as the support structure walls. The location of the node and its stress is 

kept for further configuration of the support structure.  

Start

Record the location of node 

and stress

Find the node with maximal 

stress/distortion

End 

Does the maximal 

Stress/distortion exceed the 

allowed?

Y

N

Constrain the node in the 
corresponding DOF

Apply the residual stress 

and other boundary 

conditions

New FEM analysis 

 

Figure 81 Flow chart of FEM analysis for support structure optimization 
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7.3.1 FEM Formulation 

Support structure optimization for a thin plate structure was analyzed. The 1D, 2D 

and 3D representation of a cantilever beam structure is shown in Figure 82, Figure 83 and 

Figure 84.  

7.3.1.1 1D Formulation 

 

Figure 82 1D representation of the structure 

The 2 nodes beam element is used and element stiffness matrix becomes: 

𝑘 =
𝐸𝐼

𝑙3

[
 
 
 
 
 
𝐴𝑙2/𝐼 0 0
0 12 6𝑙
0 6𝑙 4𝑙2

−𝐴𝑙2/𝐼 0 0
0 −12 6𝑙
0 −6𝑙 2𝑙2

−𝐴𝑙2/𝐼 0 0
0 −12 −6𝑙
0 6𝑙 2𝑙2

𝐴𝑙2/𝐼 0 0
0 12 −6𝑙
0 −6𝑙 4𝑙2 ]

 
 
 
 
 

 (54) 

 

7.3.1.2 2D Formulation 

 

Figure 83 2D representation of the structure 

The 4 nodes bilinear quadrilateral element is used and the shape function becomes: 

𝑁1 = 
1

8
(1 − 𝜉)(1 − 𝜂)     𝑁2 = 

1

8
(1 + 𝜉)(1 − 𝜂) (55) 
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𝑁3 = 
1

8
(1 + 𝜉)(1 + 𝜂)      𝑁4 = 

1

8
(1 − 𝜉)(1 + 𝜂) 

7.3.1.3 3D Formulation 

 

Figure 84 3D representation of the structure 

The 8 nodes hexahedron element is used and the shape function becomes: 

𝑁1 = 
1

8
(1 − 𝜉)(1 − 𝜂)(1 − 𝜍)                   𝑁2 = 

1

8
(1 + 𝜉)(1 − 𝜂)(1 − 𝜍) 

𝑁3 = 
1

8
(1 + 𝜉)(1 + 𝜂)(1 − 𝜍)                   𝑁4 = 

1

8
(1 − 𝜉)(1 + 𝜂)(1 − 𝜍) 

𝑁5 = 
1

8
(1 − 𝜉)(1 − 𝜂)(1 + 𝜍)                   𝑁6 = 

1

8
(1 + 𝜉)(1 − 𝜂)(1 + 𝜍) 

𝑁7 = 
1

8
(1 + 𝜉)(1 + 𝜂)(1 + 𝜍)                   𝑁8 = 

1

8
(1 − 𝜉)(1 + 𝜂)(1 + 𝜍) 

(56) 

 

7.3.1.4 B-Bar Method [135] 

Two Gaussian points were chosen to numerically calculate the integration for the 

2D and 3D FEM formulations. However, various finite element schemes result in poor 

observed convergence rate. This is due to the so called ‘locking’ effect, especially for the 

analysis of elastic problems when the material is nearly incompressible [136]. The B-Bar 

method is to build a new appropriate and approved B matrix by splitting the B matrix into 

dilatational and deviatoric parts.  

The B matrix of the element is: 



141 
 

𝐵 =

[
 
 
 
 
 
𝐵1 0 0
0 𝐵2 0
0 0 𝐵3
0 𝐵3 𝐵2
𝐵3 0 𝐵1
𝐵2 𝐵1 0 ]

 
 
 
 
 

 
(57) 

And the dilatational part of B is: 

𝐵𝑑𝑖𝑙 =
1

3

[
 
 
 
 
 
𝐵1 𝐵2 𝐵3
𝐵1 𝐵2 𝐵3
𝐵1 𝐵2 𝐵3
0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

 (58) 

The deviatoric part B is: 

𝐵𝑑𝑒𝑣 = 𝐵 − 𝐵𝑑𝑖𝑙 (59) 

To achieve an effective formulation for nearly incompressible applications, �̅�𝑑𝑖𝑙. 

is the approved  𝐵𝑑𝑖𝑙 .   

�̅�𝑑𝑖𝑙 =
1

3

[
 
 
 
 
 
�̅�1 �̅�2 �̅�3
�̅�1 �̅�2 �̅�3
�̅�1 �̅�2 �̅�3
0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

 (60) 

So the new B-bar is: 

�̅� = 𝐵𝑑𝑒𝑣 + �̅�𝑑𝑖𝑙  =

[
 
 
 
 
 
𝐵5 𝐵6 𝐵8
𝐵4 𝐵7 𝐵8
𝐵4 𝐵6 𝐵9
0 𝐵3 𝐵2
𝐵3 0 𝐵1
𝐵2 𝐵1 0 ]

 
 
 
 
 

 (61) 

where:  
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B4 =
B̅1−B1

3
, B5 = B1 + B4 , B6 =

B̅2−B2

3
, 

B7 = B2 + B6 , B8 =
B̅3−B3

3
 , B9 = B3 + B8 

(62) 

 

7.3.2 Sensitivity Analysis 

The analytical solution for the maximum deflection for 1D and 2D FEM is shown 

in Equations (63) and (64).  

δmax  =
PL3

3EI
 (63) 

δmax  =
PL3

3EI
+
6PL

5GA
 (64) 

 P is the uniform shearing force for the tip of the beam, L is the length of beam, A is the 

cross-sectional area, E is the elastic modulus, G is the shearing modulus, and I is the 

moment of inertia. 

A thin plate is used to validate the accuracy and convergence of the code. The part 

dimension is: L = 50mm, W = 5mm and t = 2mm. The material properties are: E = 

1.138E11, v = 0.342, and the force P = 4x105N. Three sets of results from Matlab code 

with full integration and B bar method, and ANSYS using default FEM schemes are 

compared. 

 Figure 85 shows the result comparison of ANSYS and Matlab analytical 

integration for the 1D problem. The maximal deflection is 0.04394mm using Equation 

(63) and there is no error for the Matlab code since it is using the analytical integration.  
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Figure 86 shows the result comparison for the 2D problem. The maximal 

deflection is 0.044mm using Equation (64). The full integration result matches ANSYS, 

however, the B bar result has better accuracy than both. The result is converging to the 

maximal deflection with a relative error of 0.45% for the B bar method when the element 

division is 150x6.  

Figure 87 shows the result comparison for the 3D problem. The maximal 

deflection results from Equation (64) were used in the 3D comparison as well. The B bar 

method result matches the ANSYS result which both have better accuracy than the full 

integration result. The B bar result is converging to the maximal deflection with a relative 

error of 1.59% when the element division is 100x10x4.  

 

Figure 85 Sensitivity analysis of 1D FEM result 
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Figure 86 Sensitivity analysis of 2D FEM result 

 

Figure 87 Sensitivity analysis of 3D FEM result 
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7.3.3 Support Structure Optimization Example Based on FEM Results 

 

Figure 88 The uniform distributed force cantilever beam 

In this case study, the dimension of the part is the same as the example above. 

However, the force F with magnitude of 5x107N is uniformly distributed over the top 

surface and the maximal deflection is calculated using Equation (65). 

δmax  =
FL3

8EI
= 2.0595mm (65) 

As shown in Figure 81, the determination of support structures is iteratively 

calculated based on FEM until the deflection of the plate is under the requirement.  

Figure 89, Figure 90, Figure 91 and Figure 92 show steps to find the support 

structure locations for the 1D cantilever problem. The maximal deflection as shown in 

Figure 89 is 2.0603mm. 

Figure 93, Figure 94, Figure 95 and Figure 96 show steps to find the support 

structure locations for the 2D cantilever problem. The maximal deflection as shown in 

Figure 93 is 2.0702mm. 

Figure 98, Figure 99, Figure 100 and Figure 101 show steps to find the support 

structure locations for the 3D cantilever problem. The maximal deflection as shown in 

Figure 98 is 2.0827mm. 
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The location of support structures found from the FEM procedure could be fit into 

the support structure optimization framework in the future. The parameters for each 

support structure wall is determined by the corresponding stress at the specific node. 

 

Figure 89 1st step for a 1D support structure (Unit: mm) 
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Figure 90  2nd step for a 1D support structure (Unit: mm) 
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Figure 91 3rd step for a 1D support structure (Unit: mm) 

  

Figure 92 4th step for a 1D support structure (Unit: mm) 
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Figure 93 1st
 step for support structure design in 2D (Unit: mm) 

 

Figure 94 2nd step for support structure design in 2D (Unit: mm) 
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Figure 95 3rd step for support structure design in 2D (Unit: mm) 

 

Figure 96 4th
 step for support structure design in 2D (Unit: mm) 
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Figure 97 Beam deformation in 3D (Unit: mm) 

 

Figure 98 1st step for support structure design in 3D (Unit: mm) 
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Figure 99 2nd step for support structure design in 3D (Unit: mm) 

 

Figure 100 3rd step for support structure design in 3D (Unit: mm) 
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Figure 101 4th step for support structure design in 3D (Unit: mm) 

7.4 Conclusions 

A general framework for a support structure optimization and design tool has 

been developed. The support structure optimization problem is formulated using an LP 

method and is solved using an alternative way which applies the thermal stress density to 

the support structure wall t/l ratio.  Analytical solutions based on square honeycomb 

structures are used to calculate the boundaries for t/l ratio and interpolated later to the 

overall structure. An FEM based simulation was also developed which searches for 

locations in which a support structure are necessary.  This FEM method can be used in 

the general support optimization framework in future work.   
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CHAPTER 8 SUPPORT STRUCTURE EXPERIMENTS WITH TI64 

8.1 Introduction 

Experiments were conducted to investigate thresholds for support structure 

density in an EOS M270 machine when building parts from Ti64.  A qualitative 

experimental design was utilized based upon observed failure for a large set of support 

structure densities, without replicates. Two part geometries were investigated: 

40x5x2mm and 20x20x2mm part with 4mm support structures respectively. A layer 

thickness of 30µm was utilized, with the support structure scanned once every other layer 

and the part scanned once each layer. The surface quality of the base plate and the 

location of the part on the base plate were neglected as variables.  

For standard support structures, machine parameters such as laser power, scan 

speed and scan strategy can be different than that used for the part. In an EOS machine, 

the support structure is simplified as a line without thickness. Single beam scans every 

other layer using default EOS parameters which are unknown to the user are utilized. For 

non-uniform support structures, the thickness of the support structure is customized and 

an EOS machine no longer considers it as a support structure. It is scanned as a solid part 

using EOS default parameters for Ti64 parts. This difference is not taken into 

consideration in this analysis. 

8.2 Design of Experiment and Observation of Results 

Seven sets of experiments were investigated for a 40x5x2mm thin plate and a 

20x20x2mm part with uniform and non-uniform supports.  
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8.2.1 Experiment 1: Investigation the Support Structure for a 40x5x2mm Part 

8.2.1.1 Experimental Design 

The first experimental design built eight samples with different sets of 

configurations, as shown in Table 2. The layout of the samples is shown in Figure 102. 

The experiment was designed to see the influence of support structure height, large hatch 

space and the difference between cellular and bulk supports. As seen from the experiment 

layout and configuration, two different support structure heights, 5mm and 2mm 

respectively, three different hatch spacing, 0.8mm, 2mm and 12.5mm respectively, and 

two types of support structures, block and bulk, were used in the experiment.  

 

Figure 102 Experiment 1 layout 
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Table 2 Configurations for design of experiment 

          Configuration     

Sample # 

Support height Hatch space Support type 

5mm 2mm 0.8mm 2mm 12.5mm block bulk 

1 √  √   √  

2  √ √   √  

3 √   √  √  

4  √  √  √  

5 √    √ √  

6  √   √ √  

7 √    √  √ 

8  √   √  √ 

 

8.2.1.2 Result observation for experiment 1 

Figure 103 shows defects on bottom surfaces caused by large support structure 

hatch spacing. The support structure with EOS default paramters did not shown any 

defects for the bottom surface. However, the part’s bottom surface has obvious damage 

for hatch spacing of 2mm and 12.5mm, which is worse at larger spacing. A part of the 

bottom surface is nearly detached from the part. Figure 104 shows that the powder 

melting and defects when the laser scans the support structure with 12.5mm hatch 

spacing. Due to the overlarge hatch space, the powder, rather than support structure, is 

underneath the part in large areas when the laser scans the first several layers. The 

strength of the powder and the reduced thermal conductivity results in an accumulation of 

defects in the first few layers as shown in Figure 103. The other samples in the 
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experiment show that the height of the support structure and the types of support do not 

affect the building of the part. As a result, further experiments were designed to focus on 

searching for a threshold for hatch spacing for the same part. 

 

 

 

 

 

 

Figure 103 Defects observed for different support structures 

(Top: EOS default support structure (0.8mm hatch space); middle: 2mm hatch space; 

bottom: 12.5mm hatch space.) 
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8.2.2 Experiments 2&3: Uniform Hatch Spacing Support Structure Design for the 

40x5x2mm Part 

8.2.2.1 Experimental Design  

Figure 105 shows the layout of the uniform support structure design with parts 

built at an orientation of 30˚ with respect to the +X axis. Parts with 0˚ orientation were 

also built. The support spacing was from 0.8 to 10mm and from 0.8 to 2.8mm in the 

length direction and width direction respectively, as shown in Table 3. 

Figure 104 Surface defects during scanning of parts with large hatch spacing 
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Figure 105 Uniform support structure design layout 

Table 3 Support spacing in the length and width direction 

                          Length (mm) 

Width (mm) 
0.8 2 3 4 5 6 7 8 9 10 

0.8 √ √ √ √ √ √ √ √ √ √ 

1.2 √ √ √ √ √ √ √ √ √ √ 

1.6 √ √ √ √ √ √ √ √ √ √ 

2.0 √ √ √ √ √ √ √ √ √ √ 

2.4 √ √ √ √ √ √ √ √ √ √ 

2.8 √ √ √ √ √ √ √ √ √  
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8.2.2.2 Experimental Results 

The main defects from these experiments was support structure cracking where 

the support structure attached to the base plate. Different degrees of failure are shown in 

Figure 106. From part 1 to part 3, the cracking worsens, and one of the ends of part 3 is 

completely detached from the base plate. The crack for part 2 is obviously observable. 

The detached part warps in the +Z direction with large deformations which result in the 

part and blade crashing during the powder delivery and distribution process. The machine 

stopped due to blade crashing, and several parts failed during the build process.  All the 

samples with width direction support spacing from 1.6mm to 2.8mm failed because of  

 

Figure 106 Support structure cracking at the bottom 
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blade crashing. The deformation for the first group of the samples where the width 

direction spacing was 0.8mm was less than the group with 1.2mm spacing. The larger the 

hatch spacing in length direction, the greater the deformation for the part. From the 

experimental results, it was found that parts with hatch spacing less than 1.2mm in both 

width and length directions had no cracks and defects. Parts oriented with an angle of 30˚ 

had much less deformation than parts aligned with the +X axis. So all the parts in the 

further experiment were placed at 30˚ angle and Table 4 has the spacing parameter from 

0.8mm to 1.2mm for all the parts further built.  

8.2.3 Experiment 4: Refinement of Experiments 2&3  

Following experiments 2&3, another set of parts was built to further investigation 

the spacing from 0.8mm to 1.2mm. The layout of the parts in the experiment are shown 

in Figure 107 and Table 4 is the support spacing configuration. 

The experiment showed no obvious cracks and defects for the parts. In conclusion, 

the threshold for uniform support spacing in order to successfully build parts with 

dimension of 40x5x2mm is 1.2mm. 
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Figure 107 Uniform support structure design layout 

Table 4 Hatch spacing in the width and length direction 

                   Width (mm) 

Length (mm) 
0.8 0.9 1.0 1.1 1.2 

0.8 √ √ √ √ √ 

0.9 √ √ √ √ √ 

1.0 √ √ √ √ √ 

1.1 √ √ √ √ √ 

1.2 √ √ √ √ √ 

 

8.2.4 Experiment 5: Non-uniform Supports for a 40x5x2mm Part 

Assume the wall distance an is the arithmetic sequence shown in Equation (66). 

an = a1 + (n − 1)d (66) 
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The 1st parameter a1 is the initial value and the 2nd parameter d is the difference between 

two consecutive terms.  There are a number (n) of default walls put on each end of the 

part to make both ends strong enough to resist the deformation.  

Figure 108 is the non-uniform hatch space support structure design.  Both ends of 

the part have n default supporting walls and the support spacing increases with a value of 

d for consecutive walls. Table 5 shows the configuration of parameters for all the parts in 

the experiment.  a1 is 0.8mm, 1.0mm and 1.2mm, d is set as a1/2 and n is from 1 to 7. 

The experimental results shows that all the parts are built successfully, although a 

few of them showed evidence of crack initiation barely observed by the naked eye. 

Table 5 Parameters for experiment design 

                        n 

a1(d) mm 
1 2 3 4 5 6 7 

0.8(0.4)   √ √ √ √ √ 

1.0(0.5) √ √ √ √ √ √  

1.2(0.6) √ √ √ √ √ √  
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Figure 108 Non-uniform support structure layout 

8.2.5 Experiment 6: Non-uniform Wall Thickness Support Structure for 40x5x2mm 

Part 

8.2.5.1  EOS Default Support Structure Wall Thickness 

The thickness of the supporting structure wall scanned with EOS default support 

structures was measured from previously built samples. 10 samples were collected and 

three sample points for each part were measured. All the collected data is shown in Table 

6.  The average wall thickness was calculated as 0.1963mm. 
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Table 6 Support structure wall thickness measurement data (unit: mm) 

              Part number 

Sample point 
1 2 3 4 5 6 7 8 9 10 

1 0.2 0.21 0.2 0.17 0.2 0.2 0.19 0.21 0.18 0.21 

2 0.18 0.2 0.19 0.19 0.2 0.21 0.23 0.18 0.18 0.2 

3 0.2 0.2 0.2 0.17 0.21 0.2 0.19 0.19 0.19 0.21 

 

8.2.5.2 Experimental Design and Result 

The default wall thickness and wall spacing ratio, t/l, is calculated using the 

measured thickness and the support spacing (0.8mm, 1.0mm and 1.2mm) used in the 

previous experiments. Three different t/l ratios (0.2450, 0.1960 and 0.1634) with respect 

to the three support spacings were investigated. In this design of experiments, spacing 

from 1 to 5mm and the full configuration of parameters is shown in Table 7. Figure 109 

shows the layout of part in the experiment.  

The experimental results showed that all parts were built successfully and none of 

them showed evidence of crack initiation visible to the naked eye. 

Table 7 Parameters for experimental design 

                  l(mm)               

t/l 
1 1.5 2 2.5 3 3.5 4 4.5 5 

0.2450 0.245 0.368 0.49 0.613 0.735 0.858 0.98 1.103 1.225 

0.1960 0.196 0.294 0.392 0.49 0.588 0.686 0.784 0.882 0.98 

0.1634  0.245 0.327 0.408 0.49 0.572 0.653 0.735 0.817 
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Figure 109 Customized support structure design layout 

8.2.6 Experiment 7: Support Structure Investigation for a 20x20x2mm Part 

8.2.6.1 Experimental Design 

 Both uniform and non-uniform support structure spacing was investigated for 

parts with dimension of 20x20x2mm. For the uniform hatch space support structure, 

0.6mm, 0.8mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm and 10mm were 

utilized.  For the non-uniform support structure, the configuration of parameters a1, d and 

n are shown in Table 8.  
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Table 8 Support spacing for the 20mmx20mmx2mm non-uniform support structure parts 

                               n                    

a1(d) mm 
4 

0.6(0.3) √ 

0.7(0.35) √ 

0.8(0.4) √ 

 

8.2.6.2 Experimental Results 

Figure 110 shows some typical failures for part observed from the experiment. 

The uniform hatch spacing support structures showed obvious defects among which the 

part with 0.8mm hatch spacing had the least defects. It was observed from the experiment 

that cracking starts growing from corners as seen in Figure 105. Other severely damaged 

part are circled with a red 2 in the same Figure.  Figure 111 shows the results for non-

uniform hatch support structures, which did not have obvious defects/cracks. 

 

Figure 110 Uniform hatch space support structure cracking at the bottom 
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Figure 111 Non-uniform support structures 

In conclusion, support spacing should be at most 0.8mm in order to successfully 

build the 20x20x2mm part. Since the defects initiate from the corner of the part, it is 

suggested to put dense support structures around the corner, while the rest of the area 

could be supported less densely. The non-uniform support structure experiment indicates 

that loose support structures far away from the corners would have no negative effects on 

a part.  
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8.3 Conclusion  

This chapter focused on support structure experiments to explore the influence of 

support spacing and thickness on the successfully building of two parts with dimensions 

of 40x5x2mm and 20x20x2mm, in an EOS M270 machine made using Ti64. Seven sets 

of experiments were performed and conclusions were drawn as follows:  

 Surface finish is poor and even damaged when using large support spacing for 

parts with a large surface area. 

 For parts with dimensions of 40x5x2mm  

o The failure happens on the short end of the part. The support structure 

detaches from the base plate due to large thermal stress/deformation. 

o The maximal support spacing for uniform support structures for a 

successful part is around 1.2mm. 

o For non-uniform support structures, an arithmetic sequence with 

threshold value for all parameters were found to be a1(1.2mm) and n(6) 

for successfully building parts.  

o For non-uniform wall thickness support structures, the threshold value 

for all parameters are t/l of 0.1634 and l of 5mm for successfully 

building a part.  

 For the part with dimensions of 20x20x2mm 

o The failure initiates from one of the corners of the part and further 

results in cracking and detachment of the edges from the base plate.  

o The maximal support spacing for uniform support structures in order 

to build a successful part is around 0.8mm. 
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o For non-uniform support structures using an arithmetic sequence, the 

suggested threshold value for all parameters are a1 (0.8mm) and n (4) 

for successfully building a part.   
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CHAPTER 9 CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

The goal of this research work was to develop support structure generation tools 

based on real scan patterns and thermo-mechanical simulation tools for SLM developed 

at the University of Louisville and being commercialized by 3DSIM, LLC.  In order to 

achieve the goal, five objectives corresponding to five major parts of the simulation 

required for support structure generation have been achieved.  First of all, the scan pattern 

which is one of the key parameters in SLM is investigated and input to the model in order 

to fully simulate the SLM process. 3DSIM simulation tools are adapted to generate 

residual stress results for the support structure design and optimization, thus 

benchmarking of the 3DSIM against a dynamic thermal model built in commercial 

software ANSYS is successfully compared. The geometry of support structures could be 

complex and it takes much more computational time and resources to simulate SLM 

when considering the support structure. So the problem is mitigated by using an effective 

thermal conductivity approach. The support structure design and optimization framework 

has been developed using two sets of methods which are an analytical solution and FEM. 

In the meanwhile, an experimental investigation of support structures for two specific 

parts has been carried out with Ti64. 

9.1.1 Scan Pattern Generation Tool  

A scan pattern generation module capable of providing various real scan patterns 

to the 3DSIM simulation environment has been developed. The module focuses on 
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generation of the real scan strategies including the scan orientation, scan space, scan 

pattern, etc. The traditional raster scan strategy is reversed engineered from the EOS 

machine based on study of scanning orientation and scan pattern. The scan strategy 

generation tool is able to create real scan path information and is applied to the 

simulation. Both traditional raster scan and chessboard scan strategies are available in the 

tool.  

9.1.2 A dynamic Moving Mesh Model Development in ANSYS and 3DSIM against 

ANSYS Benchmark   

A dynamic mesh framework has been developed to provide an efficient 

computational method for simulation and modeling of SLM using ANSYS. This 

framework provides very large computational speed and model size advantages compared 

to other FEM approaches in the literature. The accuracy of interpolation of nodal 

temperatures from one fine mesh configuration to the next has been tested and was found 

to be reliable since the converged thermal field in the previous fine mesh configuration 

matches well with the initial condition thermal field in the next mesh configuration. A 

comparison of ANSYS solutions with experimental results for melt pool size and shape 

indicate the model accurately simulates the process.   

A comparison between ANSYS and 3DSIM show that both methods can be used 

to accurately simulate the thermal transformations in SLM.  The set of algorithms and 

software tools being developed by 3DSIM show an initial advantage for speed, and thus 

capability, for simulating AM problems. So 3DSIM could be adapted to provide 

temperature and thermal stress results for the support structure design and optimization in 

this study.  
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9.1.3 Support Structure Optimization and Design Framework  

An effective thermal conductivity model has been developed in order to consider 

the influence of support structures on the thermal field in the thermal model. The method 

has thus provided an efficient method for prediction of temperature by using an effective 

thermal conductivity to reduce the complexity of finite element analyses. The effective 

thermal conductivity of support structures is compared with parallel model results and 

both show good match.  

A support structure optimization and design framework is able to generate support 

structures with the minimum volume/mass needed for a given part orientation to meet a 

set of user-specified constraint conditions. Both analytical solutions from square 

Honeycomb structures and FEM have been applied to design the support structure. The 

minimum volume/mass is computed based upon the amount of support structure needed 

to satisfy the constraint equations for a computed thermal stress pattern resulting from a 

user-specified combination of process parameters, material, support structure 

geometry/type and scan pattern. The support structure is exported as an STL file in the 

final stage. 

9.1.4 Experiment to Investigate the Block Support Structure for Ti64 

An experiment has been carried out to investigate block support structure 

behavior for Ti64 in an EOS M270 machine. The threshold of support structure 

parameters has been found by fabrication of two parts: 40x5x2mm and 20x20x2mm 

respectively which could be applied to other materials by considering the material 

properties. 
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9.2 Future work 

The ANSYS approach to dynamic meshing, however, is still not as fast as 

required due to the node renumbering and reassembly required in ANSYS and the need 

for finer time steps for convergence. ANSYS is arguably the best existing commercial 

tool for solving SLM thermal problems. Using ANSYS, however, to simulate even a 

relatively small SLM thermal problem requires many years of computational time. More 

efforts has to be put in order to speed up the model. The thermomechanical model needs 

to be implemented into ANSYS in the future work as well. 

This study of scan pattern is solely reverse engineered from an EOS M 270 

machine. In order to enable simulations using real scan strategies, more efforts should be 

put into issues such as exploring scan strategies in other SLM machines and processes in 

the future work. 

In the effective thermal property study, a method to apply an effective thermal 

conductivity for support structures with non-uniform wall thickness and spacing, requires 

further study and investigations. Support structures used for real parts should be 

optimized such that a minimum amount of supports to withstand thermal stress induced 

distortion should be added to a part. This would result in local property variations and 

anisotropy in the X, Y and Z directions.  

The support structure optimization and design framework has been designed 

based on the assumption of a block support structure. In order to satisfy the needs of 

different support structure types, such as line, point, contour, etc., more efforts and 

research must be done. What is more, the tool should be improved so as to be capable of 

comparing the effects of part orientation on support volume, build time, and thermal 



175 
 

stress to enable future multi-objective optimization experiments to be conducted. The 

framework needs to be implemented into 3DSIM, and proper iteration and termination 

criterion chosen. After the framework is completely implemented into 3DSIM, the results 

have to be validated and more experiments need to be investigated.   
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