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ABSTRACT 

A GENETIC ALGORITHM FOR THE SENSOR LOCATION PROBLEM 

Di Zhang 

July,21st,2011 

We study a sensor location problem that minimizes the total 

number of sensors to install at road intersections in a 

transportation network so that the traffic flows on the 

entire network are uniquely determined. We employ the 

concepts of hidden network and incremental flow in analyzing 

the problem, and propose a genetic algorithm for its solution 

for large-size networks. The algorithm is programmed in 

Matlab and tested on randomly generated network. Numerical 

results suggest the algorithm is efficient. 
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CHAPTER I 

INTRODUCTION 

Today, traffic congestion is a pressing issue for society and 

a major concern for urban planners. The 2007 Urban Mobility 

Report (2007) states that congestion in the U.s. caused 4.2 

billion hours of travel delay and 2 . 9 billion gallons of wasted 

fuel for a total cost of $78 billion in 2005. Evidently, 

traffic management and control in urban transportation 

networks becomes an important function of our society. The 

recent concept of congestion pricing aims to shift traffic 

volumes to alternative routes or times via certain pricing 

policies. This requires monitoring flows on the 

transportation network in order to accurately estimate the 

traffic volume on all roads of the network. With the advent 

of communication technologies such as sensors and vedio 

cameras, traffic engineers are capable of monitoring traffic 

networks in real time. However, as often is the case with 

congested metropolitan areas, the transportation networks 
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are large enough that only part of the network can be monitored 

due to the high installation and maintenance costs associated 

with monitoring devices (e.g., passive and/or active sensors, 

vedio cameras). Thus, a relevant problem facing traffic 

engineers is to determine sensor locations that will better 

estimate the traffic flows on the entire network at the minimum 

cost. 

In this thesis, we study the Sensor Location Problem (SLP) 

that minimizes the total number of sensors required so that 

the traffic flows on the entire network are uniquely 

determined. Note that the decisions include not only the 

minimum number of sensors but also their locations in the 

network. Specifically, we make similar assumptions as most 

other related works in the literature. We assume that the 

network is symmetric and the sensors are place at nodes, i. e. , 

road intersections. 

In the operations research and transportation science 

literature, Bianco et al. (2001) study the SLP and present 

some theoretical resul ts as well as heuristic methods. However, 

Morrison (2008) shows a counterexample to point out that the 

theorem in Bianco et al. (2001) is not true in general. In 

2010, Rubin (2010) develop the concepts of "hidden network" 

and "incremental flow" in an attempt to solve the problem via 

integer linear programming approach. He proposes an exact 
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solution method to be solved by general purpose solver such 

as CPLEX (2010). In our numerical experiments, CPLEX failed 

to solve problems with even 20 nodes. 

Therefore, the focus of this thesis is to develop a heuristic 

method for the sensor location problem that can solve 

real-size problems in reasonable CPU time. using concepts 

such as turning ratio and turning factors introduced in 

Morrison (2008) and "hidden network" and "incremental flow" 

in Rubin (2010), we propose a genetic algorithm to solve the 

SLP for large-scale networks. Our numerical study shows that 

the genetic algori thm is efficient at solving real size sensor 

location problems. Furthermore, we layout several possible 

improvements to the algorithm that may expedite the solution. 

For the remainder of the thesis, Chapter 2 offers a review 

of limited Ii terature on the sensor location problem that are 

existant, Chapter 3 formally introduces the problem, Chapter 

4 presents the customized genetic algorithm along with two 

possible improvements, Chapter 5 reports the numerical 

results under various parameters settings and finally Chapter 

6 concludes the thesis with several future directions. 
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CHAPTER II 

LITERITURE REVIEW 

The sensor location problem (SLP) is studied in the literature 

from areas of operations research, graph theory, electric 

engineering and civil engineering, to name a few. An earlier 

paper on the sensor location problem is by Yang and Zhou (1998) . 

Given an origin-destination (O-D) distribution, this paper 

determines the optimal number and locations of traffic 

counting points in a road network. The O-D matrix is the matrix 

wi th potential travel origin along the rows and destinations 

along the columns. The (i, j) entry of an O-D matrix is the 

total number of trips from origin i to destination j taken 

by all commuters in the transportation network. By adopting 

the O-D matrix method the SLP can be solved using linear algebra. 

In the paper, Yang and Zhou propose four rules for determining 

traffic counting locations: 

Rule 1 (O-D covering rule): for observing part of trips 

between any O-D pair, the traffic counting points should 

be located on a road network. 

Rule 2 (maximal flow fraction rule): for a particular O-D 

4 



pair, the traffic counting points on a road network should 

be located at the links so that the flow fraction between 

this O-D pair out of these links is as large as possible. 

Rule 3 (maximal flow-intercepting rule) : the chosen links 

should intercept as many flows as possible under a certain 

number of links to be observed. 

Rule 4 (link independence rule): the traffic counting 

points should be located on the network so that the 

resulting traffic counts on all chosen links are not 

linearly dependent. 

Rule 1 is fundamental that any network should satisfy. Rules 

2 and 3 could be combined in the obj ecti ve function. Therefore, 

each new observed link should produce more information and 

it is preferred to observe those points that could bring as 

more information as possible within the network. Rule 4 means 

that the links which cannot provide any new information should 

be excluded. Note that it can be difficult to satisfy both 

rules 2 and 3, as they often conflict with each other. The 

latter is because roads with high volumes of traffic will 

generally have only two cases: most of the traffic going to 

the same places or traffic going to many different places, 

and these two cases generally do not occur at the same time. 

Thus, Yang and Zhou (1998) combine these two rules as 

parameters in a heuristic search function to find the best 

locations for sensors. 
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In a related paper, Bianco et al. (2001) defines the SLP as 

determining the minimum number as well as locations of 

counting points in order to deduce all traffic flows in a 

transportation network. They study a network G = (N, A) where 

N is a set of nodes corresponding to road intersections and 

A is a set of links corresponding to streets between 

intersections. M is a set of nodes to place sensors. A link 

(v, w) E A goes from its tail-node v to its head-node w, and 

nodes v and ware said to be adjacent. In the set of nodes 

N, the node at which trips originate and/or terminate is called 

a centroid, and the set of centroids is denoted as S. Finally 

a cutset is the set CM = {(v, w) E A: v, w E (M U A (M))}, 

where M is the set of monitored nodes and A (M) is the set 

of nodes adj acent to moni tored nodes. With these notation and 

assumptions, Bianco et al. (2001) present an important 

proposition to construct a necessary condition to uniquely 

determine the nodes and flows in the network. Consequently, 

Bianco et al. (2001) proposed two heuristic methods for 

determining the lower bound and the upper bound for the number 

of sensors that will deduce traffic flows on the entire 

network. 

The computational results in Bianco et al. (2001) show that 

the heuristic methods do not perform well in small networks, 

but have improved as the network becomes larger, i. e. , 

empirically when the number of nodes is more than 200. 
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However, as Morrison (2008) points out, the proposition in 

Bianco et al. (2001) that is important to their heuristic 

algorithms is incorrect. A counterexample is provided in 

Morrison (2008) . In other words, he establishes a network and 

a set of monitored nodes that satisfy Bianco et al.' s 

proposition, but the network is not uniquely determined. 

Furthermore, Morrison (2008) presents a new approach to the 

SLP, which is largely a linear algebra method. In particular, 

Morrison (2008) argues that simply comparing the numbers of 

unknowns and equations in the linear system as did in Bianco 

et al. (2001) does not correctly answer the question: whether 

or not the flows in the digraph are uniquely determined. 

Obviously one reason is that some of the flow balancing 

equations are not linear independent. On the other hand, in 

order to better understand the conditions under which the 

Bianco et al.'s proposition fails, Morrison (2008) examines 

the associated incidence matrix of the SLP, and proposes 

studying an augmented incidence matrix. Finally, perhaps most 

importantly, Morrison (2008) introduces the notion of 

canonical link to make use of turning ratio and tuning factors 

in studying the characteristics of solutions to SLP. Specially, 

Morrison defines the B-path in the network and states a 

conjecture that uses B-path to characterize valid solutions 

to the problem. 

Lastly, we review the most recent work on the sensor location 
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problem by Rubin (2010). Rubin's approach is integer linear 

programming and network flows. Particularly, Rubin (2010) 

works with the same problem as in Bianco et al. (2001) and 

Morrison (2008). Given a network consisting of two types of 

nodes: terminal and transit nodes, Rubin (2010) assumes that 

the ratios between outgoing flows at every node are strictly 

positive. In Morrison (2008)'sterm, the turning ratios (split 

ratios) are positive. Furthermore, Rubin (2010) works on the 

SLP problem where the turning ratios at all nodes are not known 

until the decision is made as to where to place sensors in 

the network. Rubin (2010)' s approach use the following three 

basic facts: 

Fact 1: Conservation of flow (balancing flow) applies at 

all transit nodes. 

Fact 2: Monitoring a node gives complete knowledge on the 

flows on all arcs incident to the node. Thus, it is implied 

that flows entering/leaving the monitored terminal node 

are known. 

Fact 3: If we know the flow on any outward arc at any node, 

we know the flow on all outward arcs of that node via the 

turning ratios. 

Fact 4: If we know the flows on all outward arcs and all 

but one inward arc at a transit node, we can deduce the 

flow on the last inward arc by flow conservation. 
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Instrumental to Rubin's approach is the concept of "hidden 

network," which is derived from the original network for a 

given set of monitored nodes. In words, hidden network 

consists of arcs whose flows cannot be deduced from monitoring 

the given set of monitored nodes, and all nodes that are 

incident to these arcs. We will introduce the formal 

definition of the hidden network in Chapter 4. The benefit 

of hidden network is that it makes solving the SLP more 

systematic and algorithmic. Using the hidden network 

associated with a given set of monitored nodes, Rubin (2010) 

reduces the problem of uniquely determining the flows in the 

original network to the one of proving non-existence of any 

incremental flows in the hidden network. Specifically, 

suppose we arbitrarily select a set of nodes to monitor in 

the network, then the flows on the entire network are uniquely 

determined by monitoring these nodes if and only if the 

associated hidden network has no non-zero flows (named as 

"incremental flows") with turning ratios at all nodes being 

positive. Finally, Rubin (2010) also presents one conjecture 

to determine whether there exists a nonzero, conservative 

incremental flow for the hidden network. 

In the next Chapter, we will formally define network notations, 

introduce terminology specific to the sensor location problem, 

and most importantly, the solution concepts of hidden network 

and incremental flows. Furthermore, we will provide 
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illustrative examples to explain these concepts. Finally, we 

present the mathematical formulation of the sensor location 

problem. 
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CHAPTER III 

PROBLEM STATEMENT 

3.1 Basic Definitions 

As in Morrison (2008) and Rubin(2010), we assume that graph 

is symmetric, i. e., if there exists one arc between two nodes, 

the opposi te arc between the two nodes also exists. In other 

words, the networks we investigate in this thesis are two-way 

directed networks. In addition, we assume that sensors are 

placed at nodes in the network., If one node is monitored, 

then all flows coming from or going to, this node are known. 

Our goal is to deduce the flow on all arcs in the network, 

so some laws about network flows need to be explained. In 

Morrison (2008), the flow conservation law at each node v E 

v is given as follows: 

L Ie - L Ie + Sv = 0, (3.1) 
eev eev+ 

where v- is the set of outgoing arcs at node v, and v+ is the 

set of incoming arcs at node v, and Sv is the balancing flow 
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at node v. Node v is called source node if the balancing flow 

is positive, sink node if the balancing flow is negative and 

transit node if the balancing flow is zero. More formally, 

we have the following definition. 

Definition 3.1.1. If the balancing flow of a node v is zero, 

node v is a transit node. 

Definition 3 .1.2. If the balancing flow of a node v is non-zero, 

node v is a terminal node. 

Here we follow the same definition as in Rubin (2010). (Note 

that in Morrison (2008), terminal nodes are called bounded 

nodes.) In addition, we refer to the nodes with sensor as 

monitored nodes, and denote the set of monitored node by M, 

and the set of transit nodes by T. Note that the monitored 

node could be terminal or transit. 

Finally, we formally introduce turning ratio and turning 

factor as in Morrison (2008). 

For every node v, we associate with each outgoing arc vu a 

real number Cvu E [0, 1], which is the fraction of the total 

outgoing flow from v that leaves on arc vu. That is, 

eel' 
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- -- ------------

Then we can write the flow of all outgoing arcs from v in terms 

of a single selected outgoing arc: 

(3.3) 

For any given node v EN, among all the outgoing arcs, one can 

be designated as the canonical exit arc is defined below. 

Definition 3.1.3 (Rubin, 2010) . The canonical exit arc vw for 

a node v E N is an arbitrarily selected arc (v, w) E A with 

tail v. 

Definition 3.1.4 (Morrison, 2008) . The turning factor of arc 

vu with respect to some arc vw, denoted a vu , is the ratio of 

the turning ratio of arc vu to the turning ration of arc vw 

(in general it will be clear from the context what arc the 

ratio is taken with respect to): 

(3.4) 

Then the equation (3.3) becomes 

Iv" = avulvw (3.5) 
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using the turning factor, the outgoing flows from node v are 

completely determined by the flow fvw on the canonical exit 

arc from node v and the turning factors ~vu. 

The sensor location problem we investigate assumes that the 

turning ratios are known everywhere after placing the sensors, 

and that the turning ratios are evenly distributed. The latter 

implies that the turning factors are always be one. In 

practice, the turning ratios can be different, but the 

methodology we propose in this thesis still apply. 

In the next section, we will use examples to illustrate the 

process of deducing flows for the entire network by using 

turning factors as well as the balancing flow equations at 

transit nodes. 
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3.2 Illustrative Examples 

Figure 1 - Example 1 Network 

Example 1: Suppose that we have a network with 8 nodes as show 

in Figure 1. Note that the nodes in circles represent transit 

nodes at which the balancing flow is zero; and the nodes in 

squares represent terminal nodes that could be sink or source 

nodes. Furthermore, indices for nodes are noted inside the 

circular or square nodes, while those for arcs are noted across 

the arc-shaped arrows. For example, terminal nodes 6 and 7 

are connected by arcs 13 and 14 along opposite directions. 

Suppose the sensor is placed at node 4. First, all the flows 

on the arcs that are incident to node 4 are known immediately, 

and they are f s , f 6' f 7' f s , f 19 , and f 2o • Secondly, using turning 

ratios, we can deduce all the outging flows from nodes 3, 5 
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and 8 respectively. For example, because the outging flow f5 

from node 3 is known, the outgoing flow from node 3 f4 = C4, 

5 * f5 becomes known as well. Similarly, we can deduce outgoing 

flows f9 and f 1S from node 5 by f9 = C9, S * fs and f 1S = CIS, s*fs, 

respectively, because fs is known. Also, flow f16 is known due 

to f16 = C16, 19 * f 19 . Thirdly, observing that node 3 is a transit 

node, we apply the following flow conservation equation: 

(3.6) 

In equation (3.6), f5 and f6 are known from reading the sensor, 

and f4 is deduced as described above. So one can easily 

calculate f3 from equation (3.6). Right now flows on the arc 

3, 4, 5, 6, 7, 8, 9, 16, 18, 19, 20 are known. 

Similarly, we can deduce all the flows in the network and 

finally get the whole network known. Observing that node 8 

is also a transit node, we apply the flow conservation equation 

below: 

(3.7) 

And f 20 , f 19 , f16 are already known above, f15 can be calculated 

easily from equation (3.7). Having f15 known, we can deduce 

the outgoing flow f14' fl7 from node 7 by f14 = Cl4, 15 * f15 and 

fl7 = Cl7, 15 * f 15 . Similarly, having f3 known, f2 can be deduced 
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by f2 = C2, 3 * f3' and observing node 2 which is a transit node, 

fl can be known from the following equation: 

(3.8) 

In the equation (3.8), f4' f3 are known before and f2 is deduced 

above. Then from node 1, we can deduce the f12 using turning 

factor, f12 = C12, 1 * fl. And then observing node 1, fll can be 

known using following equation: 

(3.9) 

In the equation (3.9), f2' f 12 , and fl are known. Finally, 

observing node 6, we can deduce fl3 and flO seperately by fl3 

= Cl3, II * fll and flO = CIO, II * f ll . Rightnow the whole network 

is revealed. 

Example 1 shows that by repeatedly applying the flow 

conservation equation (3.1) at transit nodes and the turning 

ratio equation (3.3) at any node, one can reveal the flows 

on the entire network completely. However, this is not the 

case with the next example. 

17 



/;\ 
8 7 

• I 

7 

4 

/9-
"'-10/ 

~ 

\1~\ 

[1] 

.---13--.. 

'-14~ 
/' 

18 / 

3 

I 17 
I/' 

Figure 2 - Example 2 Network 

--24--- 9 

Example 2: Suppose that we have a network with 9 nodes as shown 

in Figure 2. In this network, nodes 1, 5, 7, 8, and 9 are 

terminal, and nodes 2, 3, 4, and 6 are transit nodes. 

Intuitively, in order to get as much information as possible, 

the sensor should be placed on the node where most arcs are 

incident to. Suppose we place a sensor at node 2 . Immediately, 

we know the flow on that arcs that are incident to node 2, 

namely, arcs 3, 4, 11, 12, 17, 18, 19 and 20. Then, using the 

turning ratio equation at node 1 and flow f3 we can deduce the 

flow on arcs 1 and 6. Then, using the turning factor equation 

at node 3 and flow f 12 , we can deduce the flows on arcs 5 and 

16. Similarly, using the turning factor equation at node 8 

and flow f 2o , we can deduce the flows on arcs 15 and 22. Moreover, 

using the turning factor equation at node 6 and flow f 17 , we 
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can deduce the flows on arcs 14, 21 and 23. 

Thus far, we know the flows on arcs I, 3, 4, 5, 6, II, 12, 

14, 15, 16, 17, 18, 19, 20, 21, 22 and 23. It can be shown 

that without additional sensors, flows on arcs 2, 7, 8, 9, 

10, 13 and 24 will remain unvealed. 

In an attempt to completely reveal the network, Example 3 

places an additional sensor at node 1 as shown in Figure 3 . 

/9------' 
.--13--.. .--23--.. 

5 ~14...--/ 6 
~24----

9 
~", 

--10/ ( 4 /' 

\ \1 
18 / 

~ /~ \~\ I 17 22~ \ 8 7 / 
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11 t , J;2 15~/ ~5~ 
6'--. ~16 

3 

Figure 3 - Example 3 Network 

Example 3: With monitoring node I, the flow on arc 2 becomes 

known now. Consequently, we can deduce the flows on arcs 8 

and 9. But the remaining part of the network, i.e., flows on 

arcs 7, 10, 13 and 24 are still not determined. Indeed, one 

can show that if the second sensor is place at node 5 instead 

of node I, the entire network would be uniquely determined. 
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This makes sense as nodes 1 and 2 are spatially next to each 

other, the added benefit of monitoring node 1 may not be as 

great at monitoring node 5 which is farer from the already 

monitored node 2. 

Examples 2 and 3 show that for some transportation network, 

it is necessary to monitor more than one nodes in order for 

the flows on the entire network to be revealed. Thus, the goal 

in this thesis is to solve the problem that places the minimum 

number of sensors so that the entire network flows are uniquely 

determined. Additionally, Example 3 suggests that when 

placing multiple sensor becomes necessary, keeping these 

sensor fairly dispersed may be effective. 

Finally, it is worth noting that another variant of the sensor 

location problem is to determine where to place a 

pre-determined number of sensors in a transportation network 

so that the number of arcs whose flows are uniquely determined 

is maximal. This is a practical problem when the network 

under consideration is large and the budget only allows for 

a very limited number of sensors to be installed. This variant 

of the problem is similar to maximal-covering location problem, 

we will discuss it in Chapter 6. 

In the next section, we will introduce some network notations 

that are important to our solution approach to the SLP. 
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3.3 Node Arc Incidence Matrix 

The incidence matrix is a standard way of representing a graph. 

Below we state the definition of the node arc incidence matrix 

(NAIM) . 

Definition 3.3.1. The Node Arc Incidence Matrix (NAIM) of a 

directed graph D is a I N I x I A I matrix where the (i, j) th entry 

is -1 if the tail node of arc j is at node i, 1 if the head 

node of arc j is at node i, and 0 if arc j is not incident 

to node i. 

Based on the definition above, the NAIM of Example 1 is as 

follows: 

-1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 

1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 -1 -1 0 0 0 0 0 0 1 0 0 0 1 -1 
NAIM] = 

0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 1 -1 0 0 0 

0 0 0 0 0 0 0 0 1 -1 -1 1 -1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 -1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 

Similarly, the NAIM of Example 2 is: 
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-1 1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 -1 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 1 0 0 0 0 

0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 1 -1 0 0 0 0 0 0 0 0 

1 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NAIM2 = 0 0 0 0 0 0 0 0 1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 0 0 -1 1 -1 
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 -1 1 -1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

From these two node-arc incidence matrices, we observe the 

following properties of such matrices. These properties are 

helpful when we randomly generate networks for our 

computational tests. First, the element of any NAIM should 

be 0, 1 or -1. Second, each row or column cannot be all zeros. 

Third, there must be one and exactly one pair of 1 and -1 in 

any column. Finally, in a symmetric graph, there must be at 

least one pairs of 1 and -1 in each row. 

Similarly, one can use Transit-Node Vector (T) to represent 

the information about terminal versus transit nodes in the 

diagraph. The kth element of this vector is 1 if node k is a 

transit node and 0 if node k is a terminal node. Below is the 

TNV for Example 1: 

r; = (1 1 1 0 0 0 0 1) 

Similarly, the TNV for Example 2 is: 

r; = (0 1 1 1 0 1 0 0 0) 
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Finally, we can use Monitored-Node Vector (M) to represent 

the information about monitored nodes in the diagraph. The 

mth element of this vector is 1 if node m is monitored and 0 

if node m is not monitored. Below is the MNV for Example 1: 

M) = (0 0 0 1 0 0 0 0) 

Similarly, the MNV for Example 2 is 

M2 = (0 1 0 0 0 0 0 0 0) 

and the MNV for Example 3 is 

M3 = (1 1 0 0 0 0 0 0 0) 

Once the diagraph is represented in the NAIM format, it is 

convenient to program our algorithm in Matlab. 

3.4 Hidden Network 

In the literature, Rubin (2010) proposes the concept of hidden 

network as we introduce below. The benefit of studying hidden 

network is that it reduces the sensor location problem, highly 

combinatorial in nature, to a network flow problem. The 

latter can be formulated as a mixed integer linear programming 

problem, and solved to optimality by general-purpose solver 
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such as CPLEX (CPLEX, 2010) when the network size is small. 

Definition 3.4.1. (Rubin, 2010). A diagraph D = (N, A), N is 

the set of nodes and A is the set of arcs. Given a proposed 

monitoring set M!;N, the corresponding hidden network HM = (NM, 

~) !; D consists of those arcs a E A whose flows fa cannot be 

deduced from monitored flows f m, m E M and those nodes n E N 

with at least one "hidden" arc incident on them. 

Based on this definition, the hidden network should be the 

subset of the original network that is unknown. For Example 

1, there is no hidden network because flows on all arcs can 

be deduced from monitoring node 4. For Example 2, the hidden 

network is shown in Figure 4 and it consists of undetermined 

arcs 2, 7, 8, 9, 10, 13 and 24 and nodes that are incidental 

to these arcs, i.e., nodes 1, 4, 5, 6, 7 and 9 . 

/jI 
8 7 

t I 

7 

4 

...--13 ___ 
6 ''--24-----19l 

···· .. · .. ·v··· ...... ·· ... ' 

Figure 4 - Example 2 Hidden Network 

24 



For Example 3, the hidden network is shown in Figure 5 and 

it consists of undetermined arcs 7, 10, 13 and 24 and nodes 

4, 5, 6, 7 and 9. 

....--13--.. 
5 6 9 

4 

.jI 

7 
/ 

7 

Figure 5 - Example 3 Hidden Network 

3.5 Incremental flow and Feasibility Check 

In this section, we introduce the concept of Incremental Flow, 

which is important in reducing the sensor location problem 

to a network flow problem in the hidden network. Suppose we 

are given a monitoring set M, and we have constructed the 

associated hidden network HM. Then, the flows on the original 

network are uniquely determined by monitoring nodes in M if 

and only if there is no non-zero incremental flow in the 

associated hidden network HM. Here the non- zero incremental 

flow in HM has to satisfy two conditions: 

Condition 1: flow conservation at all transit nodes in HM. 
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Condition 2: incremental flows can take on positive, or 

zero, or negative values, but the turning factors for all 

arcs in HM are strictly positive. 

In essence, checking the existence of incremental flows can 

be done in the following way. Arbitrarily select a node no 

in the hidden network and assert an incremental flow of £ >0 

on its canonical exit arc. Therefore, the issue is whether 

that flow can be extended to a feasible incremental flow within 

the hidden network. 

Let on (n E NM) denote the out-degree of node n, and let TM 

T n NM denote the set of terminal nodes in HM. Then Rubin (2010) 

presents the following conjecture. 

Conjecture 3.5.1. (Rubin, 2010) A nonzero, conservative 

incremental flow exists for (a component of) HM only if 

I On ~I NM \TM 1+1 (3.10 ) 
neNu 

Notice that this conjecture uses the degrees of freedom. On 

the left hand side of the inequality (3.10) is the number of 

unknowns, whereareas the right hand side of the inequality 

is the number of equations we could obtain at transit nodes 

plus the flow 1 we impose on the cannocial exit arc. 
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In our algorithm, we use conj ecture 3.5.1 to perform a 

feasibili ty check for a given moni toring set M. In particular, 

for a monitoring set M, if the inequality (3.7) is violated 

then we determine that there does not exist a non- zero 

incremental flow thus the network is uniquely determined. In 

other words, when inquality (3.7) is not satisfied then we 

consider the current monitoring set is feasible. We will 

provide detailed explaination in the next chapter. 
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CHAPTER IV 

A GENETIC ALGORITHM FOR the SENSOR LOCATION PROBLEM 

4.1 Constructing Hidden Network 

To solve the sensor location problem for large size networks, 

we choose to use optimization-based methodology. In 

particular, we employ the concept of hidden network introduced 

by Rubin (2010). In order to construct the hidden network 

HM=(NM,AM) for a given monitoring set M, we need an algorithm 

that essentially processes the network the same way as we have 

done in Examples I, 2 and 3 in Chapter 3. Below is a formal 

description of the algorithm by Rubin (2010). 

1. Initialization: set NM = N, AM A and Q {(i,j)EA:i 

EMU j E M}. Note that Q is a set of arcs to be processed. 

2. While Q * 0: 

a) Select any (i, j) E Q and remove it from both Q and AM. 

b) For each (i, k) E AM (k * j), add (i, k) to Q. 
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c) For k E {i, j} 

i. If node k has both in-degree 0 and out-degree 0, 

remove k from NMi else 

ii. If node k is a transit node with in-degree 1 and 

out-degree 0, with (h, k) E~, add (h, k) to Qi else 

iii. If node k is a transit node with in-degree 0 and 

out-degree ~ 1, add every (k, h) E ~ to Q. 

One can confirm that when applied to the three examples in 

Chapter 3, the above algorithm produces the correct hidden 

networks. 

4.2 Genetic Algorithm 

As mentioned in Chapter 3, the solution concepts of hidden 

network and incremental flow reduce the highly combinatorial 

sensor location problem to a linear integer programming 

problem. The latter allows for the solution for small size 

networks via general-purpose software such as CPLEX (2010). 

However Rubin (2010) reported that when the network size 

becomes medium to large, the mixed integer formulation of the 

SLP cannot be solved efficiently. In fact, our experience of 

solving the associated mixed integer program for the SLP, 

suggested that CPLEX 11.0 failed for networks with 15 nodes. 
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Consequently, a heuristic algorithm that provides "good" 

solutions in reasonable CPU time for medium to large size 

networks is needed. 

In the operations research and optimization literature, the 

genetic algorithm (GA) has been widely accepted as an 

efficient heuristic for global optima. In a nutshell, GA 

imitates the process of natural evolution, and by evaluating, 

selecting, breeding and filtering within randomly generated 

candidate solutions to obtain the optimal solution. In general, 

genetic algorithm has the following basic steps. 

1. Initialization 

At the beginning of the genetic algorithm, a certain number 

of individual solutions are randomly generated and 

together they comprise the initial population. 

2. Evaluation 

After the initial population is created, a fitness score 

will be used to rate each individual solution within the 

population. Such a fitness score should reflect: 1. if the 

solution satisfies the constraints of the optimization 

problem under consideration; 2. how well the solution 

optimizes the objective function. 
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3. Selection 

Once the initial population is created, we have to 

determine which individuals, or, solutions, to be selected 

as parents to reproduce offsprings, i.e., new solutions. 

Inspired by human evolution, one would make those solutions 

with good fitness scores have higher probability to be 

selected for reproduction. Done this way, individuals, or 

solutions, from one generation to next, are likely to 

improve (in terms of optimizing the objective value). 

Ideally, when enough generations are carried over, the best 

solutions of the last generation should converge to the 

optimal solution. 

In short, genetic algorithm often assigns those solutions 

with good fitness score larger probability of being 

selected for reproduction, and those with poor fitness 

score smaller probability. Note that in order to promote 

diversity for reaching global optima, GA usually does not 

assign zero probability to individuals with poor fitness 

scores. 

4. Reproduction 

Once parents are selected, the next step is to generate 

offsprings, i.e., new solutions, to form the next 

generation. The most popular methods of creating 
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offsprings are crossover and mutation. The crossover 

process typically takes a set of alleles from one of the 

parents, and then switching them with the alleles of the 

other parent. It makes a new solution share many 

characteristics of its parents and gathers them into one 

better solution as the offspring. Mutation on the other 

hand simply change some alleles of one of the parents. The 

goal of mutation is to increase diversity of the population, 

which can effectively avoid trapping at local optima. 

In many GA practices, it is not necessary to eliminate both 

parents once they reproduce offsprings. The elitism 

strategy always keep certain percentage of the best 

solutions within current generation to be carried over to 

the next generation. 

5. Termination 

In the genetic algorithm, the process will be repeated 

until the termination conditions the user sets are met. 

Below are some common terminating conditions. 

a) A solution that satisfies some minimum criteria is 

found. 

b) A fixed number of generations is reached. 

c) A fixed amount of computation time is reached. 
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d) Successive iterations no longer produce better 

results. 

4.3 A Genetic Algorithm for the Sensor Location Problem 

In this section we introduce our specific genetic algorithm 

in Matlab for the SLP problem. 

First, we construct a function to randomly generate a 

symmetric network with designated set of terminal nodes. In 

particular, we randomly create a node-arc incidence matrix 

representing a symmetric network, and randomly create a binary 

vector representing the terminal-node vector for the network 

created. Note that such randomly created NAIM should satisfy 

the four properties discussed in Section 3.3. 

Next we will customize GA for the sensor location problem. 

1. Solution encoding: 

A binary vector of length I N I represents a solution, where 

xj=l if node j is monitored, 0 otherwise. For example, the 

solution for example 1 is M J = (0 0 0 1 0 0 0 0) 

2. Initialization: 

Given a randomly generated the diagraph (NAIM, T) , we then 

randomly generate P binary vectors of size I N I, each 

33 



representing a solution to the SLP. Herein, P (P«2 iNi ) is 

referred to as the generation size. These P solutions 

constitute the initial population. 

In our GA, every time a solution x is created we check whether 

it is indeed a feasible solution, i.e., the monitoring set 

M associated with solution x will uniquely determine the 

flows on the entire network. Particularly, we use 

conjecture 3.5.1 for this feasibility check. If inequality 

(3.7) is violated, then it is suggested that there is no 

non- zero incremental flow in the hidden network. Thus, the 

flows on the entire network are uniquely determined. If 

inequality (3.7) holds, we simply replace the infeasible 

solution(s) with new randomly generated solution(s) and 

check the feasibility again. This process repeats until all 

initial solutions are feasible. 

3. Evaluation: 

Once initial solutions are obtained, we need to evaluate 

their fitness scores. These fitness scores are used in 

ranking all solutions within the population. Because the 

objective is to minimize the total number of sensors, we 

first rank the solutions in ascending order based on the 

number of sensors required in the solution, i. e., s; = z>; . 
Then we assign the the i-th ranked solution a fitness score 

(fi) is calculated as follows: 
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r = IO(P-i) 
J; P-I 

(3.11) 

where P is the population size. One can see that (3.10) 

ensures that the first-ranked solution has a fitness score 

of 10, and the last-ranked solution has a fitness score of 

O. If several solutions are tied in the ranking based on 

s, then all of them will be counted as one individual and 

ranked together. Consequently, they will have the same 

fitness score. 

4. Selection: 

We employ the roulette wheel selection method to choose 

solutions as parents to mate and produce offsprings. The 

roulette wheel selection method probabilistically selects 

individuals according to their fitness scores. The 

probability of an individual being selected (Fi) is given 

by following equation: 

F=~ ; p (3.12) 

If: 
;=1 

where fi is the fitness score of the i-th ranked individual. 

Clearly, equation (3.11) ensures that solutions with higher 

fitness scores have higher probability to be selected as 

parents. Intuitively, this is desired because these 
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solutions tend to produce better offsprings. Furthermore, 

it should be noted that the roulette wheel selection method 

assigns low but not zero probability for solutions with low 

fitness score to be selected to breed. This is important 

to diversify among solutions and help the algorithm to reach 

global optima. 

5. Crossover: 

After parents are selected, we apply single point crossover 

to each pair of parents. In our algorithm, we make the 

crossover happen at each allele with equal probability. 

Once the crossover point is selected on both parents' 

strings, and all alleles after that point in ei ther parent 

is swapped each other. Figure 6 illustrates this basic type 

of crossover. 

I 

Figure 6 - Single Point Crossover 

The single point crossover process may have three results: 

1. it creates two new offsprings; 2. it creates one new 

offspring and one offspring that is the same as one of the 

parents; 3. it creates two offsprings that are the same as 

the parents. To minimize the possibility of cases 2 and 

3 , we use the binary "mask" in conj ection with the single 
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point crossover. For example, suppose two parents are Xl 

= (1, 0, I, 0, 0, 1) and X2 = (0, 0, I, I, 0, 0). Then we 

randomly select one node, say, node 3, and randomly generate 

a mask, say, (0, 0, I, I, I, 1). The single point crossover 

process will make two offsprings Sl and S2. In creating Sl, 

if maski = 0, then Sl (i) follows parent Xl, i. e. , Sl (i) = Xl (i) . 

On the other hand, if maski = I, then Sl(i) follows parent 

X2, i.e., Sl(i)= X2(i). Therefore, Sl=(l, 0, I, I, 0, 0). 

Similarly, increatingoffspringS2, ifmaski = 0, thenS1(i) 

follows parent X2, i. e., Sd i) = X2 (i). On the other hand, 

ifmaski=l, thenSdi) follows parent Xl, i.e., Sdi)=Xdi). 

Then S2= (0, 0, I, 0, 0, 1). 

6. Mutation: 

When offsprings are created from parents, and we apply 

mutation on them in order to increase diversity within the 

population and to ultimiately reach global optima. Each 

allele of each new solution has the equal probability to 

mutate. In particular, we randomly select a node j, and 

change its current Xj from 0 to 1 or from 1 to o. 

From the crossover and mutation processes, it is likely that 

the new solution is infeasible. So checking feasibility 

again is necessary. Once a solution is found to be 

infeasible, we replace it with a new (randomly generated) 

solution. This indeed is similar to the immigration 
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strategy in the GA literature. 

7. Elitism: 

Once offsprings are created and mutation is operated, we 

again rank the new generation. The bottom 10% individuals 

of this new generation is replaced with the top 10% 

individuals of the previous generation. This is an 

exercise of the so-called elitism strategy in GA. 

4.4 Several Improvements 

In this section, we offer some preliminary thoughts on further 

improvements of the GA described in Section 4.3. 

The first improvement is a screening procedure for any 

feasible solution. The idea is to use shortest path algorithm 

to calculate the distance between any two nodes, and to make 

sure that sensors are placed at nodes that are at least 2 units 

away from each other. In other words, we would eliminate any 

solutions that suggest to place sensors at adjacent nodes. 

Below is the outline of this screening process. 
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A Distance-based Screening for Feasible Solutions 

For each binary solution X, 

for i = 1 to n 

if Xi 1 then 

for j 1 to n 

if (j * i) and (Xj = 1) then 

if distance(i, j) 1 

then Xj = 0 

endif 

endif 

endfor 

endif 

endfor 

Again, here distance(i, j) is the shortest path between node 

i and j. (we assign travel cost between any two nodes to be 

1.) For instance, in Example 3, distance(l, 2) = 1 and 

distance (1, 5) = 2 (the shortest path uses links 1 and 9 instead 

of links 3, 18 and 14) . 

The second improvement is a neighborhood search process to 
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convert an infeasible solution to a feasible solution. In 

particularly, we add a sensor at the node with the highest 

outdegree. We call this a insertion type of neighborhood 

search. Below is the outline of this search process. 

A Neighborhood Search for Converting infeasible to feasible 

solutions 

Step 1: choose the terminal node j with the highest outdegree 

in the Hidden Network, let Xj = 1 and update the solution X. 

Step 2: Update the Hidden Network with new vector X. 

Step 3: Run the conjecture with the updated X and obtain the 

new Hidden Network. If the X is feasible, then stop and keep 

the solution X. Otherwise, go to Step 1. 
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CHAPTER V 

NUMERICAL RESULTS 

In this chapter, we report numerical results on randomly 

generated networks for the proposed genetic algorithm for the 

sensor location problem. We note that the present thesis only 

implements the customized GA for the SLP introduced in Section 

4.3. The further advancements discussed in Section 4.4 are 

to be implemented and investigated in future research. 

As discussed in Section 3.3, random (symmetric) networks are 

generated via the construction of the associated node-arc 

incidence matrices that satisfy four properties. In order to 

study the scalability of the algorithm we vary the network 

size in several ways. First, we change the number of nodes 

in a network. Secondly, we change the arc density (in 

percentage) in a network. Particularly, if a network has a 

fixed number of nodes, say n, then the maximum number of arcs 

is nx(n-l). Then, for example, a 20% arc density calls for 

0.2nx (n-l) arcs within the network. Thirdly, we change the 

percentage of terminal nodes in the network. 

In testing the proposed GA, our evaluation of the method 
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consists of two parts. One is the computational time in CPU 

seconds, the other is the convergence quality at the 

termination. Particularly we calculate the percentage of the 

best solution in the final generation and consider that 90% 

or above is a good convergence quality. 

Because genetic algorithms generally have many parameters to 

fine tune, we study the effect of these parameters on solution 

time as well as solution quali ty. The parameters we consider 

include: 1. generation size, which is the number of 

generations our GA is allowed to run before termination; 2. 

population size, which is the number of solutions in each 

generation; 3. crossover rate, which is the probability of 

the occurrence of crossover at each allele; 4. mutation rate, 

which is the probability of the occurrence of mutation at each 

allele; 5. elitism rate, which is the percentage of top ranked 

solutions that are automatically kept from one generation to 

next. 

Finally, the genetic algorithm proposed in Section 4.3 was 

programmed using Matlab, and the CPU time reported herein were 

from a computer platform with a 2.0 GHZ Intel Core 2 Duo CPU 

and 2GB of RAM. 
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5.1 Effects of Network Size and GA Parameters on the CPU 

Time 

In this section, we first study how GA parameters including 

population size and generation size affect the solution time 

of the proposed GA. Secondly, we evaluate how the network 

configuration including the number of nodes, the arc density 

and the percentage of terminal nodes, affects the solution 

time. 

To ease presentation, we use the following notation throughout 

the chapter. 

P=population size for GA; G=generation size for GA 

N=number of nodes in the network 

AD=arc density in the network 

PT=percentage of terminal nodes in the network 

Table 1 

CPU Time for Variable Population Size 

Example 
Population Size 

50 lOO 200 500 lOOO 

l 3.432 7.3944 l5.039 37.955 79.67 

2 3.54l2 6.864 l4.07l 37.035 75.052 

3 3.588 6.6768 l4.2l2 36.473 75.3l7 

4 3.8532 8.0653 l5.85 40.56 82.l97 

5 3.7752 7.44l2 l5.538 39.64 80.668 

6 3.54l2 7.3476 l3.962 37.003 72.447 

Average 3.62 7.30 l4.78 38.ll 77.56 

Table 1 displays the CPU time for various population sizes 

50, 100, 200, 500 and 1000, with other parameters fixed as 
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G=50, N=15, AD=20% and PT=20%. For each population size, we 

run six instances and report the individual as well as the 

averageCputimes. From the Table 1, we observe that the average 

CPU time is 3.62 seconds for the population size of 50, and 

it increases to 7.3 seconds with the population size doubles . 

When the population size is set to be the highest 1000, the 

average CPU time amounts to 77.56 seconds, slightly over 1 

minute. 

In summary, Figure 6 plots the relation between the population 

size and the CPU time. It clearly shows that the average CPU 

time increases with the population size, approximately, in 

a linear fashion. 

CPU Time vs. Population Size 
90.00 

I 80.00 77.56 
I 70.00 

I 60.00 

50.00 

40.00 -+-Average CPU Time 

30.00 

20.00 

10.00 

0.00 
50 100 200 500 1000 

Figure 6 - CPU Time for Variable Population Size 
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Table 2 

CPU Time for Variable Generation Size 

Generation Size 
Example 

50 lOO 200 300 500 lOOO 

l 7.3944 l4 . 649 27 . l6 43.602 69.888 l32 . 835 

2 6 . 864 l3 . 635 26.879 40.264 67.l9 l33.l78 

3 6.6768 l3.276 27.l29 40 . 467 65.988 l32.679 
4 8.0653 l5.l32 30.093 44.32 74.834 l53.552 

5 7.44l2 l3.93l 26.629 40 . 888 68.406 l38.903 

6 7.3476 l3.635 26 . 395 43.899 73.009 l39 . 949 

Average 7.30 l4 . 04 27 . 38 42.24 69.89 l38 . 52 

Table 2 displays the CPU time for various generation sizes : 

50, 100 , 200, 300, 500 and 100, with other parameters fixed 

as P=lOO, N=15 , AD=20% and PT=20%. As in the first test, we 

also run 6 instances for each generation size, and calculate 

the average CPU time. From Table 2, we can see that the average 

CPU time increases from 7.3 seconds to 69.89 seconds and then 

to 138.52 seconds (over 2 minutes) as the generation size 

increases from 50 to 500 to 1000. Furthermore, Figure 7 below 

shows that not only the CPU time increases with the generation 

size, but it increases at a more rapid rate than it does with 

the population size. 
r - - ---- - ------- ----
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-+-Average CPU Time 
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Fiqure 7 - CPU Time for Variable Generation Size 
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Next we study the effect of network size, i.e., the number 

of nodes on the CPU time. Table 3 displays the CPU time at 

various network sizes: 10, 15, 20 and 30, with other parameters 

fixed as P=100, G=50, AD=20% and PT=20%. From the Table 3, 

we observe that the CPU time increases sharply from 7.3 seconds 

to 166.56 seconds (nearly 3 minutes) to 2028.25 seconds (more 

than 30 minutes) when the number of nodes increases from 15 

to 30 to 50. 

Table 3 

CPU Time for Variable Network Size 

Network Size 
Example 

lO l5 20 30 50 
l l.6536 7.3944 24.695 l68.7775 l.98E+03 
2 l.l856 6.864 24.258 l64.0039 2.08E+03 
3 l.4664 6.6768 27.503 l68.559l 2.00E+03 
4 l.2948 8.0653 24.757 l68.5279 2.0lE+03 
5 l.4664 7.44l2 24.6l7 l68.949l 2.06E+03 
6 l.3728 7.3476 23.977 l60.5406 2.03E+03 

Average l. 4l 7.30 24.97 l66.56 2028.25 

CPU vs. Network Size 
2500.00 

2000.00 +--------------'1"--/,,-028.25 

1500.00 
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I 1000.00 
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1.41 7.30 24.97 

0.00 
10 15 20 30 so 

Figure 8 - CPU Time for variable Network Size 
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Addi tionally, Figure 8 shows that effect of the network size 

on the CPU time is significantly increased when the number 

of nodes exceeds 30. 

Table 4 displays the CPU time for variable arc densi ties 10%, 

15%, 20%, 30% and 50%, with other parameters fixed as P=100%, 

G=50%, N=15 and PT=20%. Clearly, Table 4 shows that increase 

in the number of arcs leads to increase in the CPU time. But 

comparing Tables 3 and 4, one can see that the effect of the 

number of arcs or arc density on the CPU time is not as strong 

as that of the number of nodes. The comparison between Figures 

8 and 9 confirms this observation. 

Table 4 

CPU Time for Variable Arc Density 

Arc Density(%) 
Example 

10% 15% 20% 30% 50% 
1 2.9172 4.4148 7.3944 14.181 33.774 

2 2.496 4.0872 6.864 14.961 38.173 

3 3.1356 4.2744 6.6768 13.151 35.911 
4 2.886 4.4616 8.0653 14.633 38.111 

5 3.2604 5.0388 7.4412 14.914 38.283 

6 2.6208 4.602 7.3476 13.962 37.409 

Average 2.89 4.48 7.30 14.30 36.94 
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Figure 9 - CPU Time for Variable Arc Density 

Finally, Table 5 and Figure 10 collectively show that the 

percentage of terminal nodes in the network has little effect 

on the CPU time. This is a bit surprising, as the number of 

terminal nodes generally affects the size of the hidden 

network. However, it is envisioned that the percentage of 

terminal nodes will affect the solution quality of the 

proposed GA. 

Table 5 

CPU Time for Variable Terminal Node Density 

Terminal Node Density ( %) 
Example 

lO% l5% 20% 30% 50% 

l 6.9888 6.66l2 7.3944 6.942 6.6l44 

2 7.ll36 7.2696 6.864 7.l76 6.7704 

3 6.7548 6 . 708 6.6768 6.9888 6.4584 

4 7 . 2228 6 . 7392 8.0653 6 . 3804 6.4584 

5 7.l9l6 7 . 0356 7.44l2 6.6456 7.6752 

6 6.864 6.9732 7 . 3476 6 . 80l6 6 . l62 

Average 7.02 6.90 7.30 6.82 6.69 
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Figure 10 - CPU Time for Variable Terminal Node Density 

5.2 Effects of Network Size and GA Parameters on Solution 

Quality 

In this section, we will study the quality of our genetic 

algorithm. Particularly, we use the percentage of the "best 

solution" in the final population. We consider the GA 

converges well if such percentage is 90% or above. Similar 

to Section 5.1, we vary GA parameters including generation 

size, population size, mutation rate and etilism rate, and 

see how they affect the solution quality. In addition, we vary 

network size including the number of nodes, arc density and 

terminal percentage to see their respective effects on the 

solution quality. 
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Table 6 

Quality for Variable Generation Size 50 

Network Size 
G = 50 

lO l5 20 30 50 
l lOO% lOO% lOO% 95% 69% 
2 lOO% lOO% lOO% lOO% 78% 

3 lOO% lOO% lOO% lOO% 72% 

4 lOO% lOO% 98% lOO% 7l% 

5 lOO% lOO% lOO% lOO% 83% 

6 lOO% 99% lOO% lOO% 77% 

!Average lOO% 99.83% 99.67% 99.l7% 75% 

Table 6 shows the average solution quality for various network 

sizes: N=10, N=15, N=20, N=30 and N=50, when other parameters 

are fixed as G=50, P=100, AD=20% and PT=20%. From Table 6, 

one can see that the proposed GA converges well for network 

size of 30 or smaller with an average percentage of "best 

solution" (in the final population) being approximately 100%. 

When the network size becomes 50, the average percentage of 

"best solution" drops to 75%. This suggest that we may need 

to increase the generation size in order to achieve better 

convergence. Figure 11 depicts how the network size affect 

the percentage of "best solutions" in the final population. 
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11 - Quality for Variable Generation size 50 

In order to investigate if increasing generation size helps 

achieve better convergence, we repeat the same experient as 

done in Table 6 except that the generation size is 100. The 

results are presented in Table 7 and Figure 12. Interestingly, 

the average percentage of "best solution" for the network size 

50 drops, instead of increases, slightly from 75% to 73.67%. 

Furthermore, the average percentages for other networks sizes 

are the same or slightly increased. Comparing Tables 6 and 

7 suggests that for larger networks, simply running our GA 

for more generations may not be helpful to achieve global 

solutions. More work is needed to improve the algorithm 

itself. 
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Table 7 

Quality for Variable Generation Size 100 

p Network Size 
= lOO 

lO l5 20 30 50 
l lOO% lOO% lOO% lOO% 65% 

2 lOO% lOO% lOO% 96% 70% 

3 lOO% lOO% lOO% 96% 76% 

4 lOO% lOO% 99% lOO% 83% 

5 lOO% lOO% lOO% lOO% 69% 

6 lOO% lOO% lOO% lOO% 79% 

~verage lOO% lOO% 99.83% 98.67% 73.67% 

The Percentage of Optimal Solutions 
in the Final Generation(100th) 

120% 
100% 100% 99.83% 98.67% 

100% 

~ 80% 
~ 73.67~ The Percentage of 

60% Optimal Solutions in 
the Final 

40% Generation(100th) 

20% 

0% 

10 15 20 30 50 

Figure 12 - Quality for Variable Generation Size = 100 

Tables 8 and 9 are to investigate if increasing population 

size helps achieve a better convergence. In particular, Table 

8 displays the average percentages "best solutions" for 

various network sizes when the population size is 50, while 

Table 9 displays similar information when the population size 

is 100. Both tables are parameterized as G=50, AD=20% and 

PT=20%. Study Tables 8 and 9 (or Figures 13 and 14) collectively, 

we observe the following. First, the proposed GA can solve 
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small network sizes 10, 15, 20 and 30 with an average percentage 

of "best solution" being 90% or higher. Second, network size 

50 still poses a difficult instance of SLP. The proposed GA 

(P=50) only has 67% percent of the solutions in the final 

population that are the "best" incumbent. Third, as the 

population size increases from 50 (Table 8) to 100 (Table 9) , 

this percentage increases from 67% to 75%. This suggests that 

increasing the population size is more effective in achieving 

better convergence than increasing the generation size. 

-------------------------------------------------------------------, 

The Percentage of Optimal Solutions 
in the Final Generation 

120% 
100.00% 100.00% 100% 

Q.o.83%-100% --........ 80% 
~ 67% 

..... The Percentage of 
60% Optimal Solutions in 

40% the Final 

20% 
Generation(50) 

0% 

10 15 20 30 50 

Figure 13 - Quality for Variable Population Size 

Table 8 

Quality for Variable Population Size 100 

Network Size 
p = 100 

10 15 20 30 50 
1 100% 100% 100% 95% 69% 

2 100% 100% 100% 100% 78% 

3 100% 100% 100% 100% 72% 

4 100% 100% 98% 100% 71% 

5 100% 100% 100% 100% 83% 

6 100% 99% 100% 100% 77% 

jAverage 100% 99.83% 99.67% 99.17% 75% 
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14 - Quality for Variable Population Size 100 

Table 10 studies how mutation rate affects the convergence 

of the proposed GA. Particularly, the table gives the average 

percentage of "best solution" for various mutation rates 2%, 

2.5%, 3%, 3.5% and 4%. As can be seen in Table 10 and Figure 

15, the convergence decreases from 99.17% to 81% to 66.17% 

as the mutation rate increases from 2% to 3% to 4%. It suggests 

that 2% mutation rate is a good choice. 

Table 9 

Quality for Variable Mutation Rate 

Mutation Rate 
Example 

2% 2.50% 3% 3.50% 4% 

l 95% 78% 72% 74% 67% 
2 lOO% 93% 75% 67% 59% 

3 lOO% 93% 87% 72% 74% 

4 lOO% 89% 80% 73% 6l% 

5 lOO% 88% 93% 85% 67% 

6 lOO% 86% 79% 70% 69% 

!Average 99.l7% 88% 8l% 73.50% 66.l7% 
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120.00% .,.---------------
99.17% 
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20.00% +--------------

0.00% +---,------,----,----,----, 
2% 2.50% 3% 3.50% 4% 

Figure 15 - Quality for Variable Mutation Rate 

On the other hand, Table 11 and Figure 16 show that crossover 

rate does not have significant impact on the convergence of 

the proposed GA. We recommend to use crossover rate of 70% 

when implementing the proposed GA . 

Table 10 

Quality for Variable Crossover Rate 

Crossover Rate 
Example 

30% 40% 50% 70% 
1 96% 100% 99% 95% 
2 98% 100% 100% 100% 
3 100% 100% 100% 100% 
4 98% 100% 100% 100% 
5 91% 92% 98% 100% 
6 97% 100% 97% 100% 

Average 96.67% 98 . 67% 99.00% 99.17% 
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Figure 16 - Quality for Variable Crossover Rate 

Finally, we study how the elitism rate affects the quality . 

Table 12 shows that the average percentage of "best solution" 

is about 74% when the elitism rate is 5%. When we increase 

the elitism rate from 5% to 8% and 10%, the average percentage 

increases to 100%. 

Table 11 

Quality for Variable Elitism Rate 

Example 
Elitism Rate 

5% 8% 10% 

1 75% 100% 100% 

2 71% 100% 100% 

3 69% 100% 100% 

4 49% 100% 100% 

5 80% 100% 100% 

6 100% 100% 100% 

Average 74.00% 100.00% 100.00% 
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Figure 17 - Quality for Variable Elitism Rate 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

We study a sensor location problem that minimizes the total 

number of sensors to employ at road intersections in a 

transportation network so that the traffic flows on the entire 

network are uniquely deduced. The problem is highly 

combinatorial in nature, we propose a network flow based 

approach for its solution. Adopting the ideas of "hidden 

network" and "incremental flow" in Rubin (2010), we develop 

a genetic algorithm to solve large-scale sensor location 

problems. 

Our numerical results suggest the following conclusions. 

First, the network size, i.e., the number of nodes in the 

network, has the most significant impact on the solution time 

of the proposed GA. Emprically, we observe that network size 

of 50 requires approximately 30 minutes of CPU time. 

Second, the arc density has some limited effect on the solution 

time. On one hand, the computational time increases when the 

arc density changes from 10% to 50% due to the increase of 

the network size. On the other hand, as the number of arcs 
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increases, the number of arcs adj acent to moni tored nodes also 

increases. The latter implies that we would have more 

knowledge on the network flows, which may help us to deduce 

the flows on the rest of the network. Consequently, the sensor 

location problem becomes easier and requires less CPU time. 

Third, the terminal node density has little impact on the 

solution of the GA. It is our speculation that the distribution 

of the terminal nodes would have more effect on the CPU time 

than does the number of terminal nodes. 

Finally, in terms of recommendations of the GA parameters, 

we see a tradeoff between the solution quality and the CPU 

time. Our numerical results suggest that for small to medium 

size networks with 30 or fewer nodes, population size of 50 

and generation size of 50 work well. For larger networks with 

50 or more nodes, we recommend to use population size of 100 

and generation size of 50. Furthermore, in all cases, we 

suggest to use crossover rate of 70%, mutation rate of 2% and 

elitism rate of 10%. 

Overall, the proposed based genetic algorithm is efficient 

at solving the sensor location problem. On average, for 

networks with 20 nodes, it can be solved in less than half 

minute, with 30 nodes in less than 3 minutes, and with 50 nodes 

in less than 30 minutes. For networks with 30 or fewer nodes, 
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more than 90% of the final solutions are the "best" incumbent 

solution found by the solver. For networks with 50 nodes, the 

solution quality drops to as low as 70%. 

Several improvements can be made in future research. First, 

in Section 4.4 we propose a "distance-based" method for 

additional screening of any feasible solution that will make 

sure sensors are spreaded out from each other. However, this 

has yet been implemented in the GA. We would like to 

investigate how this screening process helps to expedite the 

algorithm. Second, a neighborhood search method is also 

proposed in Section 4.4 to convert an infeasible solution to 

a feasible solution by adding sensors at proper locations. 

This has not been implemented in the current GA either. We 

plan to investigate the benefit of such neighborhood search 

in future works. 

Third, our current approach checkes the feasibility of a 

candidate solution through a conjecture in Rubin (2010). We 

would like to prove it theoretically. Fourth, we also like 

to investigate a network-flow based approach to determine if 

there exists non- zero" incremental flow" in the hidden network. 

In particular, we would like to check if one can push a unit 

flow between any two selected terminal nodes in the hidden 

network without violating the requirement of positive turning 

factors. This may be related to path identification methods 
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in network flows. Finally, another related problem that is 

relevant in large (telecommunication) networks is to place 

a given number of sensors appropriately on the network so that 

the information gained is maximized. 
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