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ABSTRACT 

SIMULATION-BASED OPTIMIZATION OF MITIGATION STRATEGIES FOR 

PANDEMIC INFLUENZA 

Arsalan Paleshi 

January 27, 2015 

Millions of people have been infected and died as results of influenza pandemics 

in human history. In order to prepare for these disasters, it is important to know 

how the disease spreads. Further, intervention strategies should be implemented 

during the pandemics to mitigate their ill effects. Knowledge of how these 

interventions will affect the pandemic course is paramount for decision makers. 

This study develops a simulation-based optimization model which aims at finding 

a combination of strategies that result in the best value for an objective function of 

defined metrics under a set of constraints. Also, a procedure is presented to solve 

the optimization model. 

In particular, a simulation model for the spread of the influenza virus in case 

of a pandemic is presented that is based on the socio-demographic characteristics 

of the Jefferson County, KY. Then, School closure and home confinement are 

considered as the two intervention strategies that are investigated in this study and 

the simulation model is enhanced to incorporate the changes of the pandemic 
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course (e.g. the number of ill individuals during the pandemic period) as results of 

the establishment of different scenarios for the intervention strategies.  

Finally, an optimization model is developed that its feasible region includes 

the feasible scenarios for establishment of intervention strategies (i.e. home 

confinement and school closure). The optimization model aims at finding an 

optimal combination of those two strategies to minimize the economic cost of the 

pandemic under a set of constraints on the control variables. Control variables 

include time, length of closure for schools, and the rate of home confinement of 

the individuals for home confinement strategy. This optimization model is 

connected to the pre-mentioned simulation model and is solved using a simulation-

based optimization procedure called NSGS.  

Where the results of the analysis show both home confinement and school 

closure strategies are effective in terms of the outputs of the model (e.g. number 

of illness cases during the pandemic), they show home confinement is a more cost 

effective one. 
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CHAPTER I 

 INTRODUCTION 

1.1. Motivation 

Every year, millions of people are infected by influenza. As a result, some of them 

are hospitalized and/or die. Sometimes this virus affects communities on a world 

wide scale and therefore infects a large proportion of the population in several 

countries. This situation is called pandemic influenza.  

Three major influenza pandemics have occurred in recorded history. The 

first one, the infamous Spanish flu, occurred from 1918-20 and killed 40,000,000 

people while infecting 200 million persons, which makes it the most disastrous 

pandemic influenza in history. The second pandemic, Asian flu, occurred during 

1957 and 1958 and killed 68,900 people just in the United States. The third 

influenza pandemic, Hong Kong flu, occurred during 1968 and 1969 and 33,800 

people died as a result in the US (Gatherer, 2009 and Hilleman, 2002).  

The ill effects of pandemic influenza are not limited to mortalities; their 

economic costs are significant as well. These economic costs are a result of 

workforce absenteeism, interruption in school educational programs, and 

healthcare related costs, such as hospitalization of patients, and vaccination.  
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During the course of a pandemic influenza, healthcare systems encounter 

large flows of patients. As a result, there is typically a need for significant quantities 

of resources (e.g., beds, medicine). Healthcare systems are typically not able to 

support all patients. Developing emergency preparedness plans to manage the 

chaos during a pandemic is of great importance. Mitigation of the ill consequences 

of pandemic influenza can decrease the pressure on healthcare systems and the 

number of people infected during the course of a pandemic.         

1.2. Problem Statement 

Developing mitigation plans to decrease the spread of the disease can reduce the 

numbers of ill persons, mortalities and hospitalizations caused by the influenza 

pandemic. Intervention strategies such as school closure, and home confinement 

plans, can decrease the ill effects of a pandemic. In order to establish these 

intervention strategies in the case of a pandemic, their effects on the course of the 

pandemic need to be evaluated.  

Researchers have developed various methods to reach this goal. These 

methods include the use of simulation models of the influenza pandemic outbreak. 

These models can also represent intervention strategies (e.g., school closure, 

home confinement, vaccination) to evaluate the effects of these strategies on the 

spread of the pandemic. Then, the output of the simulation models for the baseline 

scenario (i.e. without intervention strategies) and for the scenarios with intervention 

strategies can be compared.  
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Elveback et al. (1976) were among the first researchers to take this path to 

evaluate the intervention strategies and compare the effects of school closing and 

vaccination plans with each other and the baseline scenario. Ferguson et al. 

(2003), Longini et al. (2005a), Ferguson et al. (2006), Das et al. (2008), and 

Aleman et al. (2009a) were some other studies that addressed this problem. Since 

these studies, other models have been developed and these models have become 

more detailed and consider more realistic socio-demographic characteristics of the 

targeted population.  

The effectiveness of the intervention strategies can be evaluated with 

respect to performance measures, such as the numbers of ill, hospitalized, and 

dead persons. Also, by changing the values for some of control variables, the 

effects of the intervention strategies on the performance measures vary. For 

example, for a school closure strategy, the closure threshold (i.e., the maximum 

percentage of the students that can be ill on a particular day before the school is 

to be closed) and the length of closure are some of the control variables. Various 

combinations of the values for control variables result in different scenarios for the 

establishment of intervention strategies. 

A literature review of research in this area shows that these studies usually 

consider a limited number of intervention scenarios, establish them and evaluate 

their effects on the number of infected or ill people during a pandemic. For 

example, for school closure, Haber et al. (2007) assumed that whenever 5%, 10%, 

or 20% of the students in a school are ill, that school is closed for one, two, or three 
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weeks. Analyzing a limited number of mitigation scenarios does not necessarily 

give the most effective combination of the intervention strategies.  

In addition, the literature usually focuses on the effects of the intervention 

strategies on the number of ill people during the pandemic. However, another 

metric that should be considered is the highest attack rate (i.e. the percentage of 

people that get ill) of the virus in a short time period, such as a day. This factor 

allows us to estimate the required medical resources at healthcare centers (e.g., 

hospitals) for curing the patients during the pandemic. A smaller daily attack rate 

of the pandemic results in a lower pressure on the medical system.  

This research involves the combination of simulation and optimization for 

the development of mitigation strategies. An optimization model with the objective 

of minimizing the ill effects (e.g., number of ill persons) of the pandemic while 

considering various combinations of control variables (i.e. different scenarios) will 

be developed. A discrete optimization via simulation (DOvS) methodology will be 

developed to solve the presented optimization model.  

1.3. Expected Outcomes 

This dissertation focuses on developing intervention strategies to mitigate a 

pandemic influenza’s ill effects. The expected outcomes of the dissertation are 

presented in this section. 

A simulation-based optimization model is presented for the establishment 

of home confinement and school closure intervention strategies during a pandemic 

influenza. This model aims at finding an optimal combination of those two 
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strategies to minimize the economic cost of a pandemic under a set of constraints 

on the control variables. Control variables include time, length of closure for 

schools, and the rate of home confinement of the individuals for home confinement 

strategy.  Further, the socio-demographic data for Jefferson County is used to 

investigate the presented model in a real world case. The simulation-based 

optimization model is solved using NSGS procedure. Finally, the impact of the 

starting point in time for establishment of these strategies on the course of 

pandemic is analyzed. 

1.4. Research Outline 

The remainder of this dissertation is as follows.  

Chapter 2 provides a comprehensive literature review of the disease spread 

simulation models and the intervention strategies established to mitigate the ill 

effects of pandemics. A review of DOvS methods is also presented. In addition, 

the contribution of this research to the literature is explained. Chapter 3 explains 

the details of the disease spread model presented in this dissertation. Also, it 

presents the sub-sections of the simulation program and its most important 

variables, and a pseudo code for the main components of the simulation program. 

Chapter 4 presents the socio-demographic data for Jefferson County, such as zip 

code population, number of schools, and number of households in each zip code. 

Then, the simulation models presented in chapter 3 are used to simulate the 

pandemic influenza for a real world case (i.e. Jefferson County) and establish the 

intervention strategies. Chapter 5 explains the simulation-based optimization 

methodology used in this research to evaluate the effects of the intervention 
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strategies and compare them. Similar to the previous chapter, Jefferson County is 

used as the target community for the application of this methodology. Chapter 6 

presents the conclusion and guidelines for future studies. 
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CHAPTER II 

LITERATURE REVIEW 

2.1. Introduction 

This chapter contains seven sections. Section 2.2 presents a review of the 

influenza virus types and major pandemic influenzas. Section 2.3 reviews the 

studies that explore the disease spread models. Mitigation strategies for pandemic 

influenzas are explained in Section 2.4. In Section 2.5, the key works on DOvS 

methods are reviewed. Section 2.6 presents the contribution of this study to the 

literature. Finally, section 2.7 presents a summary of chapter 2. 

2.2. Influenza 

2.2.1. The Influenza Virus 

Influenza viruses are live organisms made of Ribonucleic acid that cause an 

infectious disease called the flu, or influenza. This disease can have symptoms 

such as fever, sore throat, headache, and muscle pain.  A review of the papers 

that investigated the possible models for the transmission of influenza virus shows 

that possible ways of transmission are direct contact, indirect contact, droplet, and 

airborne. Close range contact is the main mode of transmission (Brankston et al., 

2007 and Nicholls, 2006). 
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There are three kinds of the influenza viruses: A, B, and C. These three 

viruses are similar in overall structure, but influenza virus A has attracted more 

attention than the other two. While influenza A is the most virulent type, which 

causes severe symptoms and can even result in death, influenzas B and C usually 

do not have very severe symptoms, and are not much to worry about.  

Influenza A is made up of eight segments or genes. One of these segments 

produces hemagglutinin (HA). Another gene encodes neuraminidase (NA). HA 

and NA are two proteins that play an important role in the structure of the virus. 

Epidemiologists have found 16 HA (H1 to H16) genes and 9 NA (N1 to N9) genes. 

A minor change in the characteristics of these two proteins is referred as antigenic 

drift, while a major change in the properties of them can result in an antigenic shift 

(Nicholls, 2006).  

Influenza B does not mutate as frequently as influenza A and is genetically 

less diverse. It does not have the potential to cause a pandemic influenza. 

Influenza C is less common than influenza A and B, and can only cause a mild 

disease in children. 

2.2.2. Influenza Pandemics 

Every year, seasonal epidemics occur in different regions of the world causing 

medium-scale fatalities and economic losses. However, the world has also 

witnessed influenza pandemics affecting all of the continents in a large-scale. 

Webster (1998) stated that 10 to 20 pandemics have occurred over the past 250 

years. The world encountered three major pandemics in the 20th century; all of 
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them were caused by influenza A viruses. These deadly disasters are known as 

the Spanish, Asian, and Hong Kong flues, which occurred in 1918, 1957, and 1968, 

respectively (Korteweg et al., 2010, and Barry, 2005). 

The infamous Spanish flu was the most devastating. This disaster ended in 

1920 and left large-scale losses behind. It affected more than 200 million people 

(Webster, 1998) and killed 40 million people worldwide (Gatherer, 2009). It is 

sometimes referred to as a worst case scenario for an influenza pandemic. 

Researchers declared that the so-called Spanish flu was an H1N1 subtype of the 

influenza A virus (Korteweg et al., 2010, and Webster, 1998).  

The Asian influenza pandemic originated in China in 1957 and lasted until 

1958. This pandemic was caused by the H2N2 virus and killed almost 68,900 

people, in the United States alone (Hilleman, 2002). 

The last major pandemic that occurred in the 20th century was the Hong 

Kong flu, which was an H3N2 subtype of influenza A. The economic cost of the 

pandemic was approximately 3.9 billion dollars in the United States and 33,800 

persons died as a result from 1968 to 1969 (Hilleman, 2002). 

The pandemic of 2009 H1N1 swine flu reminds the policy makers and 

healthcare authorities that the threat of this disaster is not over, due to the virus 

ability to mutate. Serologic and virologic studies show that the influenza virus has 

a potential to mutate and evolve into a new mutant to which the humans are still 

susceptible. New versions of the virus usually evolve in mammals or birds and then 

are transmitted to humans through contact. In some cases, they are not 
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transmittable from human to human, while in other cases, the virus can be 

transmitted from infectious persons to susceptible individuals resulting in 

pandemics (Hilleman, 2002, and Nicholl, 2006). 

2.3. Pandemic Influenza Spread Models 

Mitigating the effects of a pandemic is important. Being able to predict three 

metrics, namely, the numbers of ill, hospitalized, and dead individuals during a 

pandemic outbreak can help authorities plan intervention strategies. Influenza 

spread models help the decision makers estimate these metrics and evaluate the 

effects of intervention strategies on the course of an outbreak.  

One category for influenza spread models is called differential-equation 

based, whose versions include SIR (Susceptible, Infectious, Recovered), SEIR 

(Susceptible, Exposed, Infectious, Recovered), and SEIRS (Susceptible, 

Exposed, Infectious, Recovered, Susceptible), and are explained in this chapter. 

Another category is agent-based simulation models, in which individuals are 

considered as agents and interact with each other in mixing groups.  

2.3.1. A Simple Epidemic Model 

Newman (2002) stated that Reed and Frost were the first researchers to present 

a class of compartmental epidemic models called susceptible/infective/removed, 

or SIR models. Since then, this class of models has been widely studied (Newman, 

2002). An SIR model presented below provides a basic understanding of the 

dynamics of disease spread. The model is general and depicts the dynamics of 



11 
 

the spread of any infectious disease, although not as accurately applicable as 

desired for some situations (Lipsitch et al., 2003). 

Assume a community of people divided into three classes. The first class of 

people is susceptible to the disease; the second class includes infectious 

individuals assumed to be able to spread the disease; and the third class includes 

the people who have been infected and cannot spread the disease as a result of 

death caused by the disease, or isolation from the rest of the population, or 

recovery with immunity. Let 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) denote the number of people in 

each of these three groups at time 𝑡, respectively. One can also assume that the 

natural birth and death rates are negligible. The SIR model can be written as 

follows: 

𝑑𝑆(𝑡)

𝑑𝑡
=  −𝐵(𝑡)𝑆(𝑡)𝐼(𝑡)                                                 (2.1) 

𝑑𝐼(𝑡)

𝑑𝑡
=  𝐵(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝐴(𝑡)𝐼(𝑡)                                   (2.2) 

𝑑𝑅(𝑡)

𝑑(𝑡)
=  𝐴(𝑡)𝐼(𝑡)                                                          (2.3) 

𝐵(𝑡) denotes the rate of infection-transmitting contacts at time 𝑡, and 𝐴(𝑡) 

denotes the exit rate from the second group of people at time 𝑡. The model is 

illustrated schematically in Figure 2-1.  

S(t)

  Β(t) Α(t)
I(t) R(t)

 

Figure 2 - 1: a compartmental epidemic model 
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See Brauer et al. (2001), and Brandeau et al. (2004) for details on this 

model. 

A numerical example of the SIR model presented above is as follows. 

Consider a community of people in which 1000 individuals are susceptible, 200 

are immune to the virus, and 5 individuals are infectious. If 𝐵(0) and 𝐴(0) are 0.002 

and 0.167, respectively, at the end of the first day of the pandemic, the values for 

the numbers of the people in these three groups are calculated as follows. 

𝑆(1) = 𝑆(0) +  
𝑑𝑆(0)

𝑑𝑡
= 1000 −  𝐵(0)𝑆(0)𝐼(0) = 1000 − 0.002 ∗ 1000 ∗ 5 = 990 

𝐼(1) = 𝐼(0) +
𝑑𝐼(0)

𝑑𝑡
= 5 +  0.002 ∗ 1000 ∗ 10 − 0.167 ∗ 5 = 14.165 

𝑅(1) = 𝑅(0) +
𝑑𝑅(0)

𝑑(𝑡)
= 200 + 0.167 ∗ 5 = 200.835 

This SIR model is a simplified illustration of the real world. One may add 

more realistic features to this model. For example, the above model is 

deterministic, but some recent studies have considered the probabilistic nature of 

the problem, and developed more realistic models (Aleman et al., 2009b, and 

Haber et al., 2007). Also, the presented model is homogeneous, while serologic 

and virologic studies have shown that influenza usually does not similarly affect 

individuals in different age groups. As an example, the Spanish flu targeted youths 

more than other age groups. Recent research has addressed this gap between 

reality and epidemic models and considers non-homogeneous mixing groups 

(Lizon et al., 2010, and Shi et al., 2010). 
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2.3.2. Differential Equations Based Models 

The compartmental SIR model, presented by Reed and Frost, gives a foundation 

for all pandemic influenza models (Newman, 2002). This model and its extensions, 

such as SEIR (Earn et al., 2000) and SEIRS (Cooke et al., 1996) are used as the 

bases for the development of other spread models (Wu et al., 2006; Lee and Chen, 

2007). 

Yarmand et al. (2010) developed a first-order system of 16 differential 

equations, which was an extension of the SEIR model for the outbreak of H1N1 in 

2009. The target population was the undergraduate students of North Carolina 

State University. Their proposed model was too complicated to be solved 

analytically; therefore, they used simulation methodology and ARENA simulation 

software (Kelton et al., 2009) in order to find the number of infected individuals 

over 5 months. Due to the short time span of the model, the natural birth and death 

rates were considered to be zero. The proposed model was deterministic. Its target 

population was relatively small and did not consider the heterogeneity of the 

population. 

Araz et al. (2009) used an SEIR-based system of differential equations in 

order to simulate the spread of the avian influenza (H5N1) in the counties of 

Arizona. This model divided the population into five age groups: pre-school, 

elementary school, middle school, high school, and adult. The model predicted the 

number of infected and dead people in these age groups over the course of a 

pandemic influenza. People could travel between counties so that infectious 

individuals might transfer the disease from one county to another, but travel was 
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limited only to adults and the transport matrix was symmetric. In another study, 

Ferguson et al. (2003) developed a deterministic age-structured compartmental 

epidemic model and divided the population into 20 age groups.  

The transmission rate of the influenza virus from an infectious person to a 

susceptible individual might vary throughout the months in a year. A seasonally-

forced deterministic SIR model (which addressed the changes in the transmission 

rate of the virus) was used by Towers and Feng (2009) to predict the course of the 

H1N1 pandemic of 2009.  

They used the data disseminated by the United States Center for Disease 

Control and Prevention (US CDC) from 24th of May, 2009 to 22th of August, 2009. 

Then, they estimated the parameters of the model and predicted a significant wave 

of the pandemic in fall of 2009. In contrast to Yarmand et al. (2010) and Araz et al. 

(2009), this model had a large target population (i.e. the United States). Yet, similar 

to Yarmand et al. (2010), it did not consider heterogeneity of the population. 

Dushoff et al. (2004) addressed antigenic drift in the influenza virus, and 

thus developed a seasonally-forced SIR-susceptible (SIRS) model, which let the 

individuals lose their resistance to the circulating virus after a few years and 

become susceptible to a new version. Dushoff et al. (2004) also mentioned that 

seasonality of an influenza epidemic may be caused by changes in the 

transmission rate. Their study did not deal with influenza pandemics directly, but it 

was helpful to better understand their dynamics. 
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Li et al. (2013) evaluated the effectiveness of a mandatory quarantine that 

the Chinese government established in China during the 2009 H1N1 pandemic 

influenza. The quarantine started in May 2009 and lasted for two months. They 

developed a deterministic SEIR model and considered two scenarios for their 

model, with quarantine and without quarantine. Equations 2.4 to 2.7 show their 

model.  

𝑑𝑆

𝑑𝑡
=  −𝛽 

𝐼

𝑁
𝑆                                                     (2.4) 

𝑑𝐸

𝑑𝑡
=  𝛽 

𝐼

𝑁
𝑆 − 𝛼𝐸                                                (2.5) 

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 −  𝜗𝐼                                                    (2.6) 

𝑑𝑅

𝑑𝑡
= 𝜗𝐼                                                              (2.7) 

where, S, E, I, and R are the susceptible, exposed, infectious, and 

recovered population, respectively. Also, t denotes time and N is the total 

population. Further, “𝛽 is the average number of infected persons per infectious 

subject per unit time, 𝛼 is the reciprocal average latent period, and 𝜗 is the rate of 

recovery”1. 

They limited the target population to Beijing, China, because of the 

heterogeneity of the population in different parts of China. The results of their study 

showed that the quarantine reduced the number of infected individuals at the 

pandemic’s peak month, but the cost effectiveness of it was low. 

                                                           
1 Li et al. (2013) 
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Differential equation-based models provide insight to pandemics’ 

mechanisms and are relatively fast tools for simulating pandemics. However, these 

models largely simplify the reality of the populations and the probabilistic nature of 

the disease transmission process, which affects the accuracy of the models. Also, 

for evaluation of influenza mitigation strategies applied to the population, or some 

sectors of the population, or even some pre-selected individuals, it is necessary to 

consider an individual as independent entity in the model.  

Some studies, especially in recent years, have employed agent-based 

simulation in order to overcome the drawbacks of differential equation-based 

simulation models (Ferguson, et al. 2004 and Das et al., 2008). Section 2.3.3. 

presents a review of disease spread models that use agent-based simulation. 

2.3.3. Agent-Based Simulation Models 

Agent-based modeling and simulation (ABMS) is a relatively new approach for 

simulating the actions and interactions of autonomous agents. The applications of 

this methodology range from modeling the growth and decline of ancient 

civilizations to agent behavior in the stock market and in supply chains. This 

modeling approach was first developed in the late 1940s. However, due to its 

computationally-intensive procedures, researchers did not pay much attention to it 

until the 1990s (Macal and North, 2006). 

In agent-based simulation, an agent has a set of attributes and behavioral 

characteristics, which define what the agent does and how it interacts with other 

agents. As an example, consider a sporting goods customer agent. He or she 

might have attributes such as age, sex, income, and goods preferences, and 
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behaviors such as using products, receiving services, and shopping (North and 

Macal, 2007). 

Credit for developing the first ABS that considers people as agents goes to 

Thomas Schelling (North and Macal, 2007). Shelling’s model was an extreme 

abstraction of people and their interaction in a social system. Furthermore, it 

opened a new way to model one of the most sophisticated systems, namely those 

involving social processes (North and Macal, 2007).  

The models that deal with the spread of influenza in communities of people 

have greatly benefited from an agent-based simulation approach (Eubank, 2005). 

Elveback et al. (1976) were among the first researchers that used ABSM to 

simulate the spread of the infectious disease by human to human contacts. They 

presented a stochastic simulation epidemic model, which categorized the 

population according to five age groups: pre-school, grade-school, high-school, 

young adults, and older adult. People interacted with each other in five mixing 

groups: families, neighborhoods, playground, school, and total community.  

The model was applied to the Asian and Hong Kong pandemic strains of 

influenza A. Their model represented a small suburban community with 1,000 

persons, 254 families, 50 neighborhoods, 30 playgrounds, and one school. 

Susceptible people became infected by having contacts with infectious individuals, 

and went through a latency period that lasted 1.9 days on average. After latency, 

the individual became infectious which lasted 4.1 days on average.  
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Elveback et al. (1976) did not specifically mention agent-based simulation 

in their paper, but their small model benefited from this methodology and has been 

insightful for other research in this area (see Haber et al., 2007).  

Longini et al. (2004) simulated the spread of influenza A within a US 

community with 2,000 people. Demographic characteristics of the population were 

based on the 2,000 census data. The population was divided into four 

neighborhoods and had two elementary schools, one middle school, and one high 

school. They calibrated the model to have illness attack rates (i.e. the percentage 

of the people in each age group that become ill) similar to those of the 1957-1958 

Asian flu. The work by Longini et al. (2004) had many similarities to Elveback et al. 

(1976), but it expanded the population size. 

Longini et al. (2005) considered a rural area in Thailand as their target 

population and simulated close contacts (e.g. contacts in households or 

workplaces) and casual ones (e.g., contacts in temples or shops). Compared to 

Longini et al. (2004), Longini et al. (2005) simulated a larger population (500,000 

persons). Also, they added a single regional 40-bed hospital to the model and used 

a distance function to assign adults to workplaces. Germann et al. (2006) was a 

continuation of Longini et al. (2005), but with a new sample population, the United 

States. They used attack rates from the 1957 Asian influenza and 1968 Hong Kong 

flu to calibrate their model.  

Ferguson et al. (2005) developed a stochastic simulation model to simulate 

the spread of an emerging H5N1 pandemic in Southeast Asia at the beginning of 
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the current century. Their model included 85 million people in Thailand and 100-

Km wide zone of contagious neighboring countries. Due to lack of sufficient data 

on the disease characteristics, they used sensitivity analysis to investigate the 

effects of changing the parameters of the model. Ferguson et al. (2006) applied an 

agent-based simulation model similar to Ferguson et al. (2005) for a novel 

influenza outbreak, using Great Britain and the Unites States as targeted 

populations. 

As mentioned earlier, influenza A has the potential to mutate into new 

versions with different characteristics. In addition, some studies have hypothesized 

that changes in human mixing patterns, environmental humidity, and fluctuations 

in human immunity can cause influenza seasonality in such a way that people are 

more likely to get the disease in some seasons like winter.  

Shi et al. (2010) addressed influenza seasonality and virus mutation in their 

ABSM. Their simulation model showed that a special combination of virus 

characteristics and seasonal effects would lead to one, two, or three separate 

epidemic waves. They used data from the state of Georgia to create a population 

structure of the model and coded the simulation in C++ programming software 

(Oualline, 2003). 

Influenza is mostly transmitted via close contacts (within a radius of 2m) of 

susceptible persons and infectious individuals. The longer the contact time, the 

higher the probability of infection (Wallinga et al., 2006; and Haber et al., 2007). 
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Del Valle et al. (2007) mentioned that the transmission rate of the disease is not 

similar for different age groups.  

Considering these facts, Aleman et al. (2009a) defined the probability of 

infection as a function of contact time and transmission rate between a susceptible 

individual and infectious person. Aleman et al. (2009a) considered the so-called 

SIR model as the basis for their simulation and mentioned that each individual was 

in one of the three states (susceptible, infectious, or removed) and could transition 

from one state to another with a certain probability at each time.  

Figure 2-2 is an illustration of the transition probabilities in the SIR model 

which can be thought of as a Markov Chain. They developed a non-homogeneous 

agent-based simulation model to simulate the spread of influenza. Public transport 

simulation (which had not received much attention in previous studies) was 

addressed in their model. A pilot study of their model was provided for the greater 

Toronto area in Canada. The model was run for 30 days of a pandemic and its 

output (i.e. number of infected and dead individuals) was imported to a geographic 

information system (GIS) software.  

S I R

 

Figure 2 - 2: Markov Chain of transition probabilities in the SIR model 



21 
 

2.4. Intervention Strategies for Containing Pandemic Influenza 

Influenza A is the most dangerous pandemic disease threat to humankind 

compared to its rivals, HIV-1, Ebola, SARS, and pneumonic plague (Gatherer, 

2009). It can potentially infect 30% of the people in the world, and kill around 135 

million worldwide in a matter of months. As a comparison, HIV-1 killed only one 

fourth of this number of people in the last 30 years (Gatherer, 2009). Das et al. 

(2008) stated that in an avian influenza pandemic, 90 million individuals are 

expected to become ill in the United States. Another estimation by Haber et al. 

(2007) mentioned that in the next pandemic influenza, 89,000 to 207,000 people 

might die in the United States and according to CDC, the direct economic cost 

could be 72 to 166 billion dollars. 

The governments at all levels (federal, state, and local) should give high 

priority to preparation plans for a potential pandemic. Developing some strategies 

to mitigate the ill effects of pandemics should be one of these plans (Yarmand et 

al., 2010). Some of these strategies are listed as follows: 

 Antiviral drug usage (Ferguson et al., 2006; and Germann et al., 2006) 

 Vaccination (Longini et al., 2005; and Patriarca and Cox, 1997) 

 School closure (Haber et al., 2007; and Glass et al., 2006) 

 House quarantine (Yarmand et al., 2010) 

 Workplace closure (Ferguson et al., 2006) 

 Restriction on travel (Germann et al., 2006) 
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The models presented in section 2.3. are helpful tools to simulate the 

spread of the virus during a pandemic. However, the main purpose for 

development of these models is to evaluate the effectiveness of the intervention 

strategies during a pandemic. As noted before, most of the studies about the 

mitigation strategies have been evaluated by three main metrics, namely the 

numbers of infected, hospitalized, and dead people during a pandemic. The 

remainder of this sub-section explains the studies that address mitigation 

strategies and their effects on the course of pandemics. 

Elveback et al. (1976)2 evaluated the effects of two intervention strategies, 

school closure and vaccination on the attack rate of a pandemic. They developed 

a small agent-based model with 1000 individuals with the FORTRAN programming 

language (McCracken, D.D., 1972). The model contained 140 individuals in pre-

school, and 320 in school. Also, there were 316 young, and 224 old adults in their 

model. The model simulated the relationship between the individuals in the 

community.  

They showed that in a pandemic with characteristics of the Hong Kong 

influenza, the attack rate of the virus decreased by 27 percent when the schools 

were closed throughout the outbreak. Elveback et al. (1976) also stated that the 

age specific attack rates for the people in preschool, school, young adult, and older 

adult groups decreased by 69, 49, 61, and 56 percent, respectively, as a result of 

vaccination of 50 percent of the people in the school group. 

                                                           
2 See page 17. 
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The basic reproductive number (𝑅0) is defined as “the average number of 

secondary infections caused by a single typical infected individual among a 

completely susceptible population” (Germann et al., 2006). 𝑅0 indicates the 

transmissibility and severity of the influenza strain. The model presented in 

Germann et al. (2006) demonstrated that when 𝑅0 < 1.9, a rapid vaccination could 

limit the number of ill people to less than 10 percent of the population. They showed 

that travel restriction can only delay the time course of the pandemic and does not 

decrease the number of ill people. 

Longini et al. (2005) suggested that vaccination plans concentrate on school 

children because they are the population group most responsible for the 

transmission of influenza. 

Yarmand et al. (2010)3 suggested that at the beginning of an influenza 

pandemic, authorities concentrate on vaccination (because it is a more cost-

effective strategy versus a delayed vaccination), and if the disease continues to 

spread, a self-isolation strategy should be considered. Andradottir et al. (2010) 

suggested a combined strategy of low-coverage reactive vaccination, and limited 

antiviral use in conjunction with social distancing strategies. 

Meltzer et al. (1999) stated that it takes 6-8 months to produce adequate 

vaccines for a new strain of influenza virus. Longini et al. (2004) estimated that in 

order to have a successful mitigation plan using antiviral agents, the United States 

                                                           
3 See page 13 
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requires a stockpile of 1.9 billion doses of antiviral agents4. It is beyond the 

potential of healthcare systems to produce this amount of antiviral agents and 

stockpile them.  

Haber et al. (2007) took the results of Meltzer et al. (1999) and Longini et 

al. (2004) into consideration. They suggested that public officials consider non-

pharmaceutical intervention strategies such as social distancing. Inadequacy of a 

vaccination campaign to mitigate a pandemic flu was shown in another study by 

Towers and Feng (2009) as well.  

Haber et al. (2007) claimed that school closing is an effective mitigation 

strategy. They also considered long-term care facilities (LTCF) (which has not 

been addressed in previous studies specifically) in their study. They added that by 

preventing ill seniors, who live in LTCFs, from making contacts with other 

residents, the numbers of ill people and deaths might be reduced by 60 percent. 

In another study, Aleman et al. (2010) suggested home confinement, as an 

effective social distancing strategy. 

Halder et al. (2014) presented an individual-based simulation model to 

evaluate the effectiveness of a pre-pandemic vaccine. According to their study, a 

newly emerged pandemic virus requires 6 months to find a vaccine and by the time 

that the vaccine is ready the pandemic is already past its peak time. They 

suggested a pre-pandemic vaccination program, even if it is not completely 

                                                           
4 More than one dose of antiviral agents is needed for an individual. 
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successful. They established a simulation model and considered two scenarios for 

severity of the pandemic.  

For the first one, they assumed that the pandemic was going to be a 

moderate one with transmissibility and clinical severity similar to 1957 pandemic. 

For the second one, it was assumed that the pandemic was very severe and had 

the characteristics of the Spanish flu that happened in 1918-1920.  

Further, they considered four scenarios. Scenario one, no pandemic and 

pre-vaccination; scenario two, pandemic and pre-emptive vaccination with 0% 

effectiveness; scenario three, pandemic and pre-emptive vaccination with 30% 

effectiveness; and finally scenario four, vaccination and 75% effectiveness. Their 

agent-based simulation model was based on the 30,000 population of Albany, 

Australia. The results of their simulation showed that pre-emptive vaccination was 

a more effective approach compared to reactive vaccination when the pre-emptive 

vaccination was at least 30% effective.  

Jackson et al. (2014) presented a systematic review on the simulation 

studies that evaluated the effectiveness of a school closing strategy during an 

influenza outbreak. They searched Medline and Embase databases for the studies 

done by October 2012 on the subject. They investigated the effects of the school 

closure on the total and peak attack rate of the influenza outbreak.  

The results of their literature review showed that school closing mitigation 

strategy usually showed more effectiveness on the peak attack rate of the 

pandemic and less effectiveness on the total number of infections during a 
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pandemic. They also mentioned that this strategy was more effective when the 

transmissibility of the disease was higher amongst children than adults. They 

added that some of the studies showed up to 90% reduction in the peak attack rate 

of the pandemic as a result of establishment of the school closing strategy while 

some of the other studies showed an increase in the peak attack rate of the 

pandemic.  

They concluded that while school closing strategies seemed to be an 

effective one, their effectiveness depended on the structure of the target population 

and characteristics of the disease and more studies needed to be done to quantify 

the benefits of the school closing strategy more accurately.  

Similar to Jackson et al. (2014), Cachemez et al. (2014) studied the 

effectiveness of the school closing strategy and when and how it should be applied. 

They investigated different aspects of school closure strategy. According to this 

research, school closure can potentially happen in three ways.  

1. Class Dismissal: where only the students are sent home.  

2. Reactive Closure: where many of the students or staff become ill and as a 

result the school is closed.  

3. Proactive Closure: where only very few number of students or staff become 

ill and as a result the school is closed. 

Cachemez et al. (2014) investigated the consequences of school closing 

and presented three of them; the economic cost associated with school closure, 

the social justice and ethical issues, and the effects on the healthcare system. 



27 
 

According to this study, many underprivileged students especially in industrialized 

countries, rely on free lunch and breakfast programs and if the schools become 

closed, they lose this opportunity which result in ethical issues. Further, school 

closure forces some of the workforce in the healthcare systems to stay home and 

take care of their children which adds pressure on the healthcare systems in a time 

that they need their employees the most. 

Yarmand et al. (2013a) studied the intervention strategies that can be 

applied at a household level in case of an epidemic and identified an optimal one. 

They considered vaccination, antiviral prophylaxis treatment, and isolation. They 

developed a cost-effectiveness and optimization model to find an optimal strategy. 

In addition, they considered a limit for the budget of the household for 

implementation of these strategies. 

They considered a household with four members and assumed one of them 

was initially infectious and then applied the intervention strategies to them. Their 

analysis showed that the most effective strategy that guaranteed none of the 

susceptible individuals became infectious cost about $314 for the household. Also, 

they concluded that when the budget of the household for implementation of the 

strategies was limited, the most effective strategy amongst the four categories of 

the strategies was the vaccination, and as soon as antiviral became affordable for 

the family, the most effective one was using the antivirals. 

While Yarmand et al. (2013a) focused on the intervention strategies in 

household, Yarmand et al. (2013b), on the other hand, investigated the 
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intervention strategies for a relatively bigger population. They considered the 

undergraduate students of the North Carolina State University as their target 

population. They developed a SEIR compartmental model and established various 

vaccination, treatment, antiviral prophylaxis, and isolation strategies. Their goal 

was to find optimal intervention strategies. Figure 2-3 shows the model transfer 

diagram presented in this paper. 

 

Figure 2 - 3: model transfer diagram5  

Their study showed that when vaccination was combined with self-isolation, 

an optimal policy was created. Their model created a framework to compare 

several mitigation strategies. 

Table 2-1 presents a list of the papers that concentrated on the intervention 

strategies for mitigation of the effects of the pandemic influenza. It categorizes the 

                                                           
5 Reference: Yarmand et al. (2013b) 



29 
 

papers based on the simulation model approach (differential-equation-based or 

simulation-based) used in them, and the intervention strategies applied. 

Table 2 - 1: Categorization of papers based on the intervention strategies and simulation 
model  
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Halder et al.(2014) *           

kelso et al. (2013) *           

Smieszek et al. (2011)             

Mao et al. (2011)     *       

Ridenhour et al. (2011)   *         

Ventresca et al. (2013) *           

Potter et al. (2012)   *         

Aleman et al. (2009a)             

Aleman et al. (2009b)             

Andradóttir et. al. (2010) * * *   *   

Dibble et al. (2010) *           

Elveback et al. (1976) * *         

Ferguson et al. (2005) * * *   *   

Ferguson et al. (2006) * * *   *   

Germann et al. (2006) * * * * *   

Glass et al (2006)   * *       

Haber et al. (2007)   * *       

Longini et al. (2004) *       *   

Longini et al. (2005) *   *   *   

Kasaie et al. (2010)             

Lizon et al. (2010)             
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Yarmand et al. (2013a) *   *   *   

Yarmand et al. (2013b) *   *   *   

Li et al. (2013)     *       

Araz et al. (2013)   *         
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Carrasco et. Al.(2014)         *   

Matrajt et al. (2013) *           

Chong et al. (2012)       *     

Haimar et al. (2014)             

Tracht et al. (2012)           * 

Lunger et al. (2012) *           

Xue et al. (2012)   *         

Modchang et al. (2012)   *         

Araz et al. (2009)   *         

Carr et al. (2010) *       *   

Cooke et al. (1996)             

Dushoff et al (2004)             

Earn et al. (2000)             

ferguson et al. (2003) *       *   

Lee et al. (2007)         *   

Newman et al. (2002)             

Yarmand et al. (2010) *   *   *   

Mills et al. (2004)             

N
o

 M
o

d
e

l 
 

Al-Tawfiq et al. (2013)     *     * 

Garza et al. (2013)   *         

Berera et al. (2013)         *   

Chowel et al. (2012)         *   

 

2.5. Discrete Optimization via Simulation 

Optimization via simulation (OvS) is a methodology by which the expected value 

of some output of a stochastic simulation is maximized or minimized. When the 

decision variables are discrete, the methodology is called discrete decision-

variable OvS.  

In particular, discrete optimization via simulation addresses problems which 

aim to optimize a stochastic performance measure when the system is so complex 



31 
 

that it cannot be tractable analytically and numerically. The general form of the 

problems, which are solved via this methodology, is as follows (Nelson, 2010). 

 

min  {𝑐(𝑋) = 𝐸𝑋[𝑌(𝑋)]}                                                (2.8) 

𝑋 ∈  𝜃 =  ∅ ∩  𝑧𝑑                                                         (2.9) 

𝐸𝑋[𝐻𝑖(𝑋)] ≤ 𝑚𝑖, 𝑖 = 1, 2, … , 𝑤.                                    (2.10) 

  𝑌(𝑋) is the distribution of the performance measure, which is a function of 

the decision variable 𝑋, where 𝑋 is a vector of d integer-ordered decision variables 

in a feasible region ∅ ⊂  𝑅𝑑, where 𝑧𝑑 denotes all d-dimensional vectors with 

integer components. Constraints (2.10) include the expected values of additional 

output performance measures, 𝐻1(𝑋), 𝐻2(𝑋), … , 𝐻𝑤(𝑋) and we want to keep them 

below a certain level m. 

  As stated in chapter one, this study aims at developing an optimization 

model for establishment of strategies to mitigate pandemic influenza, which can 

be formulized as a DOvS problem.  

  In the case of a disease spread model, 𝑋 is a vector of control variables 

such as the length of school closure, and 𝑌(𝑋) is a performance measure such as 

the number of ill persons during the pandemic. Also, an example of 𝐻(𝑋) is a 

performance measure such as the number of the hospitalized persons during the 

pandemic. An optimization model for the establishment of intervention strategies 

for pandemics is presented in chapter five.  
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  Among the algorithms to solve these problems, some simulate every 

feasible solution and are called ranking and selection algorithms (R&S) (Chen et 

al., 1997).  

  Ranking and selection techniques are developed for problems with 

relatively small |𝜃|. Another type of algorithm, called adaptive random search 

(ARS) techniques, are developed for situations where |𝜃| is relatively large. DOvS 

research can be categorized as follows (Andradottir, 2006). 

 Solution sampling: the algorithms can use point-based (from one 

solution to the next), set-based (from solutions in an eligible set), or 

population-based (combining components from a set of solutions) 

sampling solutions. 

 Type of simulation: algorithms can be applied for finite-horizon or infinite-

horizon simulation. 

 Feasible region: whether or not 𝜃 is finite and small enough to exhaust, 

or large and integer ordered. 

 Guarantee: Algorithms can guarantee convergence to an optimal 

solution, or a probability of correctly selecting the optimal solution, or 

none of the above. 

  As mentioned, ranking and selection algorithms exhaust |𝜃| (i.e. simulate 

the system for all of the feasible solutions). In R&S methods, experimental design 

and analysis techniques are used for selecting the solution with the best (i.e. the 

largest or smallest) mean performance. Some statistical guarantees are given 
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about the quality of the solution after simulation of all the feasible solutions (Hong 

and Nelson, 2007).  

  There are two basic categories of R&S techniques: Indifference zone 

(frequentist) and Bayesian procedures. Indifference zone is a sequential 

procedure that guarantees, with confidence level greater than or equal to 1−∝, 

that the solution selected has the smallest mean (in a minimization problem), if the 

mean of the best solution is at least 𝛿 better than the second best solution. There 

are two categories of Bayesian procedures (Branke et al., 2007): value of 

information procedure (VIP) and optimal computing budget allocation (OCBA) 

procedure.  

  Nelson et al. (2001) developed an indifference-zone (IZ) selection 

procedure called NSGS which is capable of solving problems too large for older 

ranking and selection procedures.  

  Boesel et al. (2003) addressed the problem of finding the simulated system 

with the best expected performance, using an extension of the NSGS procedure 

which is called a cleanup procedure. This cleanup procedure takes the solutions 

simulated by the DOvS algorithm, eliminates without any additional simulation, the 

ones that are not statistically competitive, and performs just enough additional 

simulations on the remaining solutions. 

  These procedures are compared with others in the literature to estimate 

their efficiency, controllability, robustness, and sensitivity measurement. Branke et 

al. (2007) presented a thorough numerical comparison of the IZ, OCBA, and VIP 

procedures on a large variety of selection problems. 
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  As opposed to R&S procedures, adaptive random search (ARS) are used 

to solve the problems with relatively large |𝜃|. ARS procedures can be globally or 

locally convergent. Norkin et al. (1998) developed a stochastic branch and bound 

(SB&B) method as a globally convergent ARS method.  

  Similar to the deterministic branch and bound algorithm, the feasible region 

in SB&B is partitioned into a compact subset. However, the SB&B uses stochastic 

upper and lower estimates of the optimal value of the objective function in each 

subset. Hong and Nelson (2006) designed a framework called convergent 

optimization via the most-promising-area stochastic search (COMPASS) for locally 

convergent DOvS algorithms.  

2.6. Research Contribution 

Simulation models have been used to show the spread of the influenza virus in the 

communities of people and compare the effectiveness of the mitigation strategies 

on the spread of the disease and its ill effects in previous researches. However, 

these researches usually address a very limited number of scenarios for 

establishment of the intervention strategies. For example, Haber et al. (2007) 

considered only limited scenarios for home confinement and school closure 

strategies and established them separately to evaluate their effects on the number 

of ill, hospitalized and dead persons during a pandemic.  

Another shortcoming of the research in this area is that usually the number 

of ill, hospitalized, or dead people are the concentration of the simulation models 

for comparison of the presented scenarios, not the economic impact of the 

intervention strategies. For example, they don’t consider the economic impact of 
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home confinement (i.e. cost associated with the individuals who can’t go to work 

because of home confinement). 

As mentioned in chapter one, healthcare systems might encounter a 

shortage of the resources during pandemic influenza, especially when the 

pandemic reaches to its peak weeks. As a result, those resources might not suffice 

for the needs of the patients. The impact of a mitigation strategy on the reduction 

in the daily needs of healthcare resources throughout the influenza outbreak can 

be as important as the effects of them on the reduction of the total number of ill, 

hospitalized and dead individuals and needs to be addressed.  

This research presents a model that addresses a combination of these 

drawbacks.  

 In this study, home confinement and school closure strategies are 

established together and a large number of different scenarios for their 

establishments are presented and then compared. Simulation-based 

optimization methods are used for comparison of the scenarios to find the 

best one (i.e. scenario with the lowest cost).  

 Also, the objective function for comparison of the scenarios goes beyond 

the number of ill, hospitalized or dead individuals and considers the 

economic costs associated with these three metrics (e.g. cost of a 

hospitalization).  

 Furthermore, applying the intervention strategies such as school closing 

and home confinement have some economic cost associated with them. 

For example, in home confinement strategy, when an individual does not 
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have severe symptoms of disease, he or she might decide to go to work, 

but under the home confinement strategy he/she stays home during the 

illness period and as a result won’t get paid. The amount of these costs can 

have effects on the likeness of a strategy to be chosen as the best one. This 

study take these costs into consideration and adds them to the performance 

measures and eventually the objective function of the model.  

 This research considers the daily number of the hospitalized persons during 

the pandemic (which is a main source of pressure on the healthcare 

system). 

 Another main advantage of the presented model is that it gives the decision 

makers (i.e. healthcare authorities) the capability to subjectively create a 

long list of mitigation scenarios in case of a pandemic and compare them to 

find an optimal one. Further, since this simulation-based optimization model 

is an agent-based model, it enables the healthcare authorities to develop 

plans for a smaller area (e.g. develop mitigation plans for small population 

segments or schools or daycares that are located in a particular zip code in 

the community). 

 Finally, the impact of the starting point in time for establishment of mitigation 

strategies on their effectiveness is analyzed. 

2.7. Summary 

A literature review of the models for influenza spread and associated mitigation 

strategies reveals that these researches mainly focus on simulation of the progress 
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of the pandemic over time. These simulation models are then used to evaluate the 

presented mitigation strategies.  

  The main goal of our study is to present a simulation-based optimization 

model to find the best combination of intervention strategies under a set of 

constraints. The optimization model minimizes performance measures such as the 

economic cost of ill persons during the pandemic. A DOvS methodology will be 

used to bridge between simulation and optimization models and solve the 

presented optimization model.  
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CHAPTER III 

DISEASE SPREAD MODEL 

3.1. Introduction 

In this chapter, a disease spread model is described for a generic urban 

community. First, an explanation of the population structure, disease progress 

within the body of infected person, and the transmission of the disease from an 

infectious person to a susceptible one is described. Then, the structure of the 

simulation model developed to mimic the disease spread is explained in detail. For 

the simulation program, an agent-based simulation approach is used, which 

enables us to track detailed levels of connections between individuals in a 

population. Furthermore, the simulation model is expanded to include the 

establishment of the intervention strategies.  

3.2. Disease Spread Model 

The model consists of three components. First, population structure; second, the 

disease characteristics and progress of the disease within individual; and third, the 

transmission of the disease between people. These concepts are explained below 

in detail. 
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3.2.1. Population Structure 

People are categorized into four age groups: pre-school children (less than or 

equal to 4 years old), students (between 5 and 18 years old), adults (between 19 

and 64 years old) and seniors (65 years old or older). Each person can be a 

member of up to five different mixing groups: households, schools, daycare 

centers, workplaces, and community (e.g. stores, theaters). Each individual 

belongs to a household and interacts with other people in the community. Pre-

school children go to daycare centers, students attend schools, and adults go to 

workplaces. Figure 3-1 illustrates the mixing and age groups considered in the 

model. 

household
daycare 
center

community

household school community

household work place community

household community

1-4 years old:1-4 years old:

5-18 years old:5-18 years old:

19-64 years old:19-64 years old:

>= 65 years old:>= 65 years old:

 

Figure 3 - 1: Mixing and age group 

3.2.2. Disease Progress within the Body 

The influenza virus enters a susceptible person’s body through contacts with 

infectious people. After the virus enters an individual’s body, there is an incubation 

period, after which the infectious period begins. An infectious person who does not 
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show symptoms is asymptomatic. An individual showing some symptoms such as 

fever and coughing is symptomatic. An asymptomatic individual is 50% less 

infectious than a symptomatic one (i.e. the transmission rate of the disease from a 

symptomatic infectious person to a susceptible individual is twice the transmission 

rate of the disease from an asymptomatic person to a susceptible individual) 

(Haber et al., 2007).  

It is assumed that severe symptoms of the disease could result in 

hospitalization of the patient and even his or her death.  For more information, see 

Longini et al. (2005). Figure 3-2 illustrates the progress of the disease within the 

body of a patient after he or she is infected due to contact with an infectious person. 

Susceptible

Infectious

Incubation

Symptomatic

Asymptomatic

Hospitalized

Die

Become 

immune 

 
Figure 3 - 2: Progression of the disease in a susceptible person, as a result of contact with 
an infectious individual (Paleshi et al., 2011) 

3.2.3. Disease Transmission Process 

Transmission of the disease occurs via contacts between a susceptible individual 

and an infectious one. It depends on parameters such as the number and duration 

of contacts that a person has with infectious persons as well as age specific 
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transmission rates of the disease from infectious individuals. Haber et al. (2007) 

presented a formulation for deriving a probability of getting the disease on a day. 

Notations 

Indices and Sets 

𝑖 ∈ 𝐼 ∶ Set of age groups 

𝑘 ∈ 𝐾 ∶ Set of mixing groups 

𝑤 ∈ 𝑊 ∶ Set of types of day6 

𝑡 ∈ 𝑇 : Set of pandemic days 

Parameters 

λij : the rate of transmission per minute of contact from an infectious person in age 

group j to an individual who is in age group i  

dijkw : the duration of contact that happens in mixing group k between a person in 

age group i and another persons who is in age group 𝑗 on a day of type w 

I ≡  (1, 2, 3, 4) 

K ≡ (1, 2, 3, 4, 5) 

W ≡ (1, 2) 

𝑇 : total duration of the pandemic 

Inputs 

𝐴𝑀 : a particular susceptible individual who is in age group M 

 

                                                           
6 A day can be of one of two possible types, weekday or weekend day. 
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Variables 

Bjkwt : the infectious individuals who are in age group j and make contacts with 

individual 𝐴𝑀, in mixing group k, on a day type w, and on day t 

𝑏 : an individual who is a member of Bjkwt 

Then, the probability of becoming infected on day t for this particular 

individual (i.e. 𝐴𝑀) is: 

        P(𝐴𝑀) =  1 − ΠkΠjΠ𝑤Πbϵ𝐵𝑗𝑘𝑤𝑡
exp(−λMjdMjkw)                                  (3.1) 

  This probability potentially varies for other individuals who are in the same 

age group as this particular (i.e. 𝐴𝑀), because normally they don’t meet the same 

individuals that individual 𝐴𝑀meets on day t.  

  As shown in equation 3.1, the transmission rate of the disease changes, 

when there is a change in the age group of infectious or susceptible persons. Also, 

contact durations depend on the mixing and age groups of the infectious and 

susceptible individuals and whether the contact occurs on a week day or a 

weekend.  

  In this section, the spread of influenza virus among a small number of 

people is explained. This is the basic structure of the spread of the influenza 

pandemic in a community. In this small community, there are 10 individuals, 

residing in three households. 

  The individuals in the first age group go to a daycare center, the individuals 

in the second age group go to a school, and the individuals in the third age group 
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go to a workplace. All the individuals participate in the contacts in the community 

mixing group (e.g. shops, restaurants).  

  Figure 3-3 shows the contacts of the individuals in the households. Each 

circle in Figure 3-3 represents a household. Each one of the rectangular shapes 

inside the circles represents an individual. There are three households in this 

community; Household 1 has three individuals, household 2 has two individuals, 

and household 3 has five individuals.  

The individuals are identified based on three characteristics, their 

household, their age group, and the number of individuals in the household. For 

example, individual H1G2P1 is in household 1 (H1), age group 2 (G2), and he is 

the first individual in the household (P1).  

The number of individuals in the household doesn’t have anything to do with 

the possibility of getting the disease and is added to the name of the individual to 

give him a different name than other individuals in the same household. The lines 

that connect the individuals demonstrate the contacts between them. The blue 

lines show contacts between the individuals in the same age group and the red 

lines show the contacts between the individuals in different age groups.  
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After making contacts in the households, and with household members, the 

individuals (based on their age groups) go to daycare, school, or workplace and 

make contacts in those mixing groups, too. Figure 3-4 shows the individuals in 

their mixing groups in daycare, school, and workplace. 

 

 

 

H3G3P4 
H3G3P3 

H3G2P1 

H3G2P2 

H3G1P5 

H1G2P1 

H1G3P3 

H1G1P2 

H2G4P2 

H2G4P1 

Household 2 

Household 1 

Household 3 

Figure 3 - 3: Contacts of the individuals in the households 
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Finally, the individuals make contact with others in the community mixing 

group and Figure 3-5 shows these contacts for these individuals.   

It is assumed that amongst these individuals (on this particular day), 

H1G1P2, has the disease, but doesn’t show any symptoms. Further, individuals 

H3G2P1, and H3G2P2 are symptomatic infectious. All the other individuals are 

susceptible. 

 

H3G1P5 

H1G1P2 

Daycare 

H3G3P4 

H3G3P3 

H1G3P3 

Workplace 

H3G2P1 

H3G2P2 H1G2P1 

School 

Figure 3 - 4: Contacts of the individuals in the daycare, school, and workplace 
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Since the contact network of the individuals for all the mixing groups are 

available, it is possible to calculate the possibility of getting the disease for each 

individual. These calculations are based on the equation 3.1. 

 

 

 

 

 

 

 

 

Here, these calculations are presented for one sample individual, H1G2P1. 

By using the equation 3.1, the data provided in Tables 3-3., 3-4, and 3-5, 

and the network of contacts presented in Figure 3-3, 3-4, and 3-5, the probability 

of getting the disease at the end of the day for this particular individual is 

calculated. 

Individual H1G2P1: 

Household: in the household, this individual has contacts with individuals 

H1G1P2, and H1G3P3. The only individual in the household that has the disease 

H1G2P1 
H1G3P3 

H1G1P2 

H3G3P4 

H3G3P3 

H3G2P1 

H3G2P2 

H2G4P2 

H2G4P1 

H3G1P5 

Figure 3 - 5: Contacts of the individuals in the community 
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is individual H1G1P2. So, the probability of getting the disease from individual 

H1G1P2 is 𝛼 = 1 − exp (−0.00062 ∗ 60 ∗ 0.5). 

School: Since individual H1G2P1 is in the second age group, he goes to 

school. Both of his classmates have the disease and show symptoms. So the 

probability of getting the disease from his classmates is 𝛽 = 1 − exp(−0.00061 ∗

392) ∗ exp (−0.00061 ∗ 392). 

Community:  Finally this individual has contacts with individual H3G2P1, 

and H3G1P5 in the community. These two individuals are not infectious, so the 

probability of getting the disease from them is zero. 

Finally, based on the equation 3.1, the probability of getting the disease for 

this individual and on this day is  𝛾 = 1 − (1 − 𝛼) ∗ (1 − 𝛽) ∗ 1 = 0.39. 

3.3. Simulation Model 

This sub-section first presents the parameters that are used in the disease spread 

simulation model. These parameters include transmission rates of the disease, 

number of days that an infected person spends in incubation and infectious period, 

amongst others. Then, the sub-sections of the simulation model and connection 

between them and the disease spread model are explained. Further, the variables 

of the simulation model are explained.  

  As mentioned before, the simulation model is developed using JAVA (Wu, 

2004; Liang, 2003). JAVA is an object-oriented programming language that makes 

the development of agent-based simulation easier. It is platform independent, 

robust, secure, and multithreaded.  



48 
 

3.3.1 Parameters of the Model 

As noted in section 3.2, each infected person goes through an incubation period 

during which he or she is not infectious yet. After this period, the individual 

becomes infectious which might include some symptoms of the disease (i.e. 

illness) or might not have symptoms and just be infectious. The number of days 

that an infected person is in incubation and infectious periods have associated 

distribution as presented in Table 3-1 and 3-2, respectively (Longini et al., 2005). 

 
Table 3 - 1: Number of incubation days’ distribution 

Incubation days Probability 

1 0.3 

2 0.5 

3 0.2 

 

Table 3 - 2: Number of infectious days’ distribution 

Infectious days Probability 

3 0.3 

4 0.4 

5 0.2 

6 0.1 

 

  One of the parameters used in the equation 3.1 was λ. It is the transmission 

rate of the disease from an infectious person to a susceptible one. The value of 

this parameter differs when the age group of either of the two parties changes. 

Table 3-3 summarizes the value of this parameter for all 16 possible combinations 

(see Haber et al., 2007).      
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Table 3 - 3: Transmission rate of disease 

 Age group of susceptible person (m) 

Age group of infectious person (k) 0-4 5-18 19-64 >=65 

0-4 0.00059 0.00062 0.00033 0.00080 

5-18 0.00058 0.00061 0.00033 0.00080 

19-64 0.00057 0.00053 0.00032 0.00080 

>=65 0.00057 0.00054 0.00029 0.00102 

 

  Individuals make contacts with other individuals in their households. The 

length of these contacts depend on the age groups of both persons having 

contacts (Haber et al., 2007). Table 3-4 shows the lengths of contacts in the 

household categorized by the age groups of individuals.  

  The number of contacts and their durations in the community mixing groups 

(e.g. stores, theaters, and restaurants) depend on the age groups of the individuals 

on both sides of the contact. The numbers and durations of contacts for individuals 

in each of the four age groups are categorized in Table 3-5 (see Haber et al., 2007). 

Table 3 - 4: Total duration of contacts with household members (min/day) 

Age group 0-4 5-18 19-64 >=65 

0-4 120 60 120 60 

5-18 60 120 120 60 

19-64 120 120 120 120 

>=65 60 60 120 120 

 

Table 3 - 5: Number of contacted persons and total duration of contacts in community 
(min/day) 

Age group 0-4 5-18 19-64 >=65 

0-4 2,60 1,30 0,0 0,0 

5-18 1,30 2,60 0,0 0,0 

19-64 0,0 0,0 2,60 2,60 

>=65 0,0 0,0 2,60 2,60 
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  As mentioned in Chapter 1, some of the ill individuals might end up going 

to a hospital or die as a result of the severity of the disease. The probabilities of 

hospitalization and death for an infected person are illustrated in Table 3-6 (Haber 

et al. 2007). 

 
Table 3 - 6: Probability of hospitalization and death given influenza infection 

Age group Hospitalization Death 

0-4 .00810 .00005 

5-18 .00091 .00003 

19-49 .00227 .00007 

50-64 .00907 .00148 

65-69 .02442 .00530 

70-74 .04125 .00928 

75-79 .05539 .01805 

80-84 .0816 .03529 

>=85 .15357 .09583 

3.3.2 Structure of the simulation model’s codes 

The simulation program is coded with JAVA and contains six main sub-sections 

(i.e. classes). These classes, the connection between them, and the main 

variables defined in each one of them are explained in this sub-section. Figure 3-

6 shows the relationship between these classes. 
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data1

data3

data2

data4

simulation

person

 

Figure 3 - 6: Relationship between the 6 classes of the simulation model 

  The simulation methodology used in this study is an agent-based simulation 

and the individuals are the agents of the model. Each one of these individuals have 

some attributes such as age, household that they belong to, the school they attend 

(if they are a student) amongst other attributes. These attributes have impacts on 

the disease spread model at an individual level. The attributes of the individuals 

are defined in a class called person. Here is a list of these attributes.  

 age : age of the individual 

 householdid: the household number to which the individual is assigned  

 probability: probability of not getting the disease on each day  

 contactDuration (1, 2, 3, 4): duration of contact with another member of the 

household who is in the first, second, third, and fourth age groups, 

respectively 
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 transmissionRate (1, 2, 3, 4): the rate of transmission per minute of contact 

with a household member belonging to the first, second, third, and fourth 

age group, respectively 

 contactDurationInDaycareCenter: duration of contact in daycare center with 

another pre-school child 

 contactDurationInSchool: duration of contact in school with another student  

 contactDurationAtWorkplace: duration of contact at workplace with another 

co-worker 

 contactDurationInCommunity (1, 2, 3, 4): duration of contact in the 

community, with an individual in the first, second, third, and fourth age 

group, respectively 

 daycareno: the number of the daycare center to which the individual in the 

first age group is assigned  

 daycarezip: the zip code that the daycare center the individual goes to is 

located at 

 schoolno: the number of the school to which the individual in the second 

age group is assigned  

 schoolzip: the zip code that the school the individual goes to is located at 

 workplaceno: the number of the workplace to which the individual in the 

third age group is assigned to 

 workplacezip: the zip code that the workplace the individual goes to is 

located at 



53 
 

 daycareg: the group in a daycare center to which the pre-school child is 

assigned 

 schoolg: the group in a school to which a school student is assigned 

 workplaceg: the group in a workplace to which an adult is assigned 

 symptomatic: it is equal to 1 if the individual is infectious and symptomatic 

and 0.5 if the individual is infectious and asymptomatic 

 sever: a 0-1 variable which is equal to 1 if the individual has severe 

symptoms; 0 otherwise 

 hospitalization: a 0-1 variable which is equal to 1 if the individual is 

hospitalized after exhibiting severe symptoms and 0 otherwise. 

 dead: a 0-1 variable which is equal to one if the individual dies after 

hospitalization 

 sickDay: the day on which the individual is infected 

 infectiousDayStart: the day on which the infectious period of the individual 

begins 

 infectiousDayFinsihish: the day on which the infectious period of the 

individual ends 

 numberOfIncubationDays: duration of the incubation period for individual 

 numberOfInfeciousDays: duration of the infectious period for individual 

 status: daily status of each individual: susceptible, in incubation period, 

infectious and asymptomatic, infectious and symptomatic, infectious with 

severe symptoms, hospitalized, and dead. 
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 nog: equal to 0 when the person’s age is less than 65 and doesn’t go to a 

daycare, or a school, or a workplace, otherwise 1 

 EC: equal to 2 when the individual is infectious and nog is equal to 0 and it 

is a weekday, otherwise 1 

  As mentioned before, the population structure, disease progress within the 

body, and transmission of the disease from an infectious individual are important 

parts of the disease spread model. Some parts of the data about these three 

components of the model need to be imported to the simulation model as inputs. 

Four of the six previously mentioned classes, namely, data1, data2, data3, and 

data4 are imported from four text files named input1, input2, input3, and input4, 

respectively. 

a) Input1: Table 3-7 shows the data in data1 and explains them. This data is 

used as input for other input files. 

Table 3 - 7:  data1 file 

data Explanation 

nozipcode Number of zip codes fully or partially located in the targeted area 

maxzipp Max. population amongst zip codes 

maxnodaycare Max. no. of daycares in a zip code 

maxnoschool Max. number of schools in a zip code 

maxnoworkplace Max. number of workplaces in a zip code.  

maxnohouse Max. number of households in a zip code 

maxnodaycareg Max. number of daycare classes (i.e. groups) in a daycare center 

maxnoschoolg Max. number of school classes in a school 

maxnoworkplace
g Max. number of workplace groups in a workplace 

maxhousem Max. number of  persons in a house 

maxdaycarem Max. number of children in a daycare group 

maxschoolm Max. number of students in a school class 

maxworkplacem Max. number of persons in a workplace group 

maxzage1p Highest number of persons in the first age groups in a zip code 
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maxzage2p 
Highest number of persons in the second age groups in a zip 
code 

maxzage3p Highest number of persons in the third age group in a zip code 

maxzage4p Highest number of persons in the fourth age group in a zip code 

totalage1p Total number of persons in the targeted area in the first age group 

totalage2p 
Total number of persons in the targeted area in the second age 
group 

totalage3p 
Total number of persons in the targeted area in the third age 
group 

 

b) data2: the number of daycares, schools, and workplaces for each zip code 

are imported by this class. This is a list of the imported data. 

nodaycare[i]: Total number of daycares in zip code i 

noschool[i]: Total number of schools in zip code i 

noworkplace[i]: Total number of workplaces in zip code i 

c) data3: in this file the population of the zip codes and the four age groups for 

each zip code are imported. In addition, the population of each daycare, 

school, and work place is imported to the simulation program.  

zippop[i]: population of the zip code i      

zipage1p[i]: population of the 1st age group in zip code i  

zipage2p[i]: population of the 2st age group in zip code i  

zipage3p[i]: population of the 3rd age group in zip code i  

zipage4p[i]: population of the 4th age group in zip code i  

zipdaycarep[i][j]: number of children that go to daycare center j in zip code i 

zipschoolp[i][j]: number of students that go to school j in zip code i 

zipworkplacep[i][j]: number of adults that go to workplace j in zip code i 

d) data4: in this class the number of households categorized by the household 

size are imported to the program. These are the imported data: 
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house1[i]: the number of households with 1 member in zip code i 

house2[i]: the number of households with 2 members in zip code i 

house3[i]: the number of households with 3 members in zip code i 

house4[i]: the number of households with 4 members in zip code i 

house5[i]: the number of households with 5 members in zip code i 

house6[i]: the number of households with 6 members in zip code i 

house7[i]: the number of households with 7 members in zip code i 

    The sixth class in the model is called simulation and is the main one amongst 

them. All the other five classes provide inputs to the simulation class and then this 

class is run. 

    Here is a step by step explanation of the details of the simulation class. 

1. The data captured by the classes class1, class2, class3, and class4 are 

imported to the simulation class. For example, the total number of zip codes 

in the target community or the population of each one of these zip codes 

are imported. 

2. Based on the population of the community imported in the previous step, 

individuals (i.e. agents) are created. These individuals are the fundamental 

units of the simulation and the progress of the simulation is reliant on them 

and the contacts that they make with each other in the mixing groups. 

3. The individuals are assigned to zip codes and their age groups in that zip 

code. For example, individual A is assigned to age group1 (i.e. kids) in zip 
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code number 4.  Also, age related attributes of the individuals are assigned 

to them.  

4. The individuals are assigned to households, daycare centers, schools, 

workplaces. For example, individual A is assigned to household 258, in zip 

code 4. Since this individual is a kid, so he or she is assigned to a daycare 

center, for example daycare center number 3 in zip code number 8. Further, 

the individual needs to be assigned to a particular class in that daycare, for 

example daycare center group 2 in daycare center number 3 in zip code 

number 8.   

5. In order to start the pandemic, five individuals are made infectious, because 

the default value for the status of the all individuals is 2 which means 

susceptible. So, five individuals are chosen from the whole population and 

their status are changed to infectious, so that as a result of the contacts 

between them and other susceptible individuals, the spread of the virus in 

the community starts. 

6. The step time of this simulation is a day. In other words, the contacts 

between the individuals happen during a day and then at the end of the day 

the change in status for each individual is calculated. The simulation model 

starts with making five randomly chosen individuals infectious. First, 

individuals make contacts in their households with their household 

members. Then, the probability attribute is updated for every individual. 



58 
 

7. Individuals who go to daycare, school, or workplace make contacts with 

other individuals in their mixing groups and their probability attributes are 

updated. 

8. For all individuals who make contacts in the community mixing groups such 

as stores, the probability attributes are updated after making contacts. 

9. For the last three steps, the simulation model only keeps track of the 

contacts that only one side of the contact is infectious and the other one is 

susceptible. Also, the duration of contacts are different in week days versus 

weekends, and the simulation model takes this into consideration. 

10. In the last step of the simulation model, based on the last updated value of 

probability attribute for each susceptible individual and comparing that value 

with a random number between 0 and 1, the simulation model decides that 

the individual becomes infected or not. For example, if the probability 

attribute’s value is 0.2 for individuals A, and the random number generated 

is 0.3, (since 0.3 is greater than 0.2) the individual becomes infected. Then, 

based on the previous attributes assigned to the individuals such as being 

symptomatic or asymptomatic in case of infection, or having severe 

symptoms, or being hospitalized, or dead, the individuals’ status attribute 

changes to symptomatic, asymptomatic, symptomatic with severe 

symptoms, hospitalized or dead.  
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Variables 

There are a number of variables and arrays that are defined and used in the 

programs. 

This is a list of the most important variables:  

nodaycareg[i][j]: number of classes (daycare groups) in daycare center j in zip 

code i 

noschoolg[i][j]: number of classes (school groups) in school j in zip code i 

noworkplaceg[i][j]: number of classes (workplace groups) in workplace j in zip 

code i 

nohouse[i]: number of houses in zip code i 

houseOb[i][h][j]: jth individual who lives in house h in zip code i 

houseCo[i][h]: number of individuals who reside in house h in zip code i 

daycareOb[i][d][j][k]: the kth person who goes to class j in daycare d in zip code 

i 

daycareCo[i][d][j]: number of children that go to class j in daycare d in zip code 

i 

schoolOb[i][s][j][k]: kth person who go to class j in school s in zip code i 

schoolCo[i][s][j]: number of children that go to class j in school s in zip code i 

workplaceOb[i][w][j][k]: kth person who go to workplace group (i.e. class) j in 

workplace w  in zip code i 

workplaceCo[i][w][j]: number of adults that go to group (i.e. class) j in workplace 

w in zip code i 

infectedP[i][j]: jth infected person on a particular day during simulation in zip 

code i 
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infectedC[i]: total number of infected individuals in zip code i on a particular day 

infectedpeople[i]: total number of infected people on day i 

symptomatic[i]: total number of ill people on day i 

hospitalized[i]: total number of hospitalized people on day i 

deadpeople[i]: total number of dead people on day i 

     A high level flowchart of the sub-sections of the simulation class explained 

above is shown in Figure 3-7. As mentioned before, this is the main class of the 

simulation model. 

3.4. Pseudo code 

In this section, a pseudo code for the main part of the simulation model is 

presented. The pseudo code contains the daily contacts of the individuals on each 

day in the mixing groups (i.e. household, daycares, schools, workplace, and 

community). Also, it shows how the status of the individuals are updated as a result 

of having contacts with infectious individuals. Further, it shows how the number of 

ill, hospitalized, or dead individuals are recorded at the end of each day, so that 

they can be used for further analysis by the program.  
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start simulation

Import data from 
data1, data2, data3, 
data4, and person

Create individuals (i.e. 
agents)

Assign individuals to 
the zip codes. Also, 
assign age related 
attributes to the 

individuals. 

Assign individuals to 
their households, and 
daycares, schools, and 

workplaces

Make some individuals 
infectious

Time =1 Time =Time+1

Make contacts 
between individuals in 

the 4 mixing groups 
(e.g. households)

Update the probability 
attribute of susceptible 

individuals

Update the status 
attribute of individuals

Any infected 
individuals left

Output the end results
End simulation

No

Yes

 

Figure 3 - 7: Flowchart of the simulation class sections 
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******Pseudo code 

For each day of the simulation 

***update the status attributes of the individuals 

   For each individual in the population 

       Update the status attribute of the individual based on the results of the contacts of the 

individual with other individuals that had contact with the individual last day 

List of possible status: Hospitalized, Dead, Ill with severe symptoms, Ill without severe 

symptoms, in incubation period, Infectious but not ill, Susceptible, Recovered 

   For all zip codes of the targeted area 

      For all the infectious individuals residing in the zip code 

***Contacts in households 

         For all of the susceptible individuals that live in the same household as the infectious   

individual 

            Update the probability attribute of the susceptible individual 

***Contacts in daycare centers 

         If the infectious individual is less than five years old and goes to a daycare center 

            For all susceptible individuals that go to the same daycare class as the infectious 

individual 

               Update the probability attribute of the susceptible individual 

***Contacts at schools 

         Else If the infectious individual is less than 18 years old and goes to a school 

            For all susceptible individuals that go to the same school class as the infectious 

individual 

                 Update the probability attribute of the susceptible individual 

***Contacts at workplaces 

         Else If the infectious individual is less than 65 years old and goes to a workplace 
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            For all susceptible individuals that go to the same workplace group as the infectious 

individual 

                Update the probability attribute of the susceptible individual 

***Contacts in the community 

         For all the susceptible individuals that have contacts with the infectious individual 

            Update the probability attribute of the susceptible individual 

*** Calculation of the probabilities at the end of the day 

For all the susceptible individuals in the population 

   double r = Math.random(); 

   If r > value of the individual’s probability attribute 

      Individual’s incubation period starts from tomorrow 

      Increase the number of infected individuals by one 

      IF individual’s hospitalization attribute is equal to one 

         Increase the total number of hospitalized individuals by one  

      IF individual’s dead attribute is equal to one 

        Increase the total number of dead individuals by one  

      IF individual’s symptomatic attribute is equal to one 

         IF individual’s sever attribute is equal to one 

           Increase the total number of outpatient individuals by one 

         ELSE 

          Increase the total number of onlyill individuals by one 
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3.5. Intervention Strategies 

In Chapter 1 several intervention strategies were introduced that might be helpful 

during the course of pandemic influenza. In this research, we focus on two of these 

strategies, namely home confinement and school closure, which are explained as 

follows. 

3.5.1. School Closure 

According to this strategy, whenever the percentage of ill students in a school 

reaches to a threshold, that school is closed for a predefined number of weeks 

(e.g. two weeks). During school closure, household contact durations of the 

students are equal to the weekend values of those parameters. Duration of 

contacts in the household and community on weekends are twice their values on 

weekdays. Also, the number of contacts in community on weekends are twice their 

values on weekdays. However, household contact duration between these 

students and their household members who continue to go to a daycare center, a 

school and a workplace do not change.  

3.5.2. Home Confinement 

Based on this strategy, an infectious person with symptoms stays home until he or 

she recovers. Home confinement begins one day after showing symptoms. 

Duration of contacts between the confined person and his or her household 

members who stay home and do not go to work or school are equal to the weekend 

values of those parameter. 
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CHAPTER IV 

 DISEASE SPREAD SIMULATION FOR JEFFERSON 

COUNTY 

4.1. Introduction 

In this chapter an agent-based simulation is presented for an influenza disease 

spread in Jefferson County, Kentucky. The objective of this simulation is to 

demonstrate the pattern of the disease spread amongst the persons in a society 

using the socio-demographic data of Jefferson County.  

In addition, three metrics of the effects of the pandemic on the target 

population, and the numbers of ill, hospitalized, and dead persons during the 

course of pandemic are evaluated. Then, two intervention strategies, school 

closing and home confinement that were mentioned in Chapter 3 are applied 

during the course of the pandemic in the simulation model to evaluate their effects 

on the three pre-mentioned metrics.  

The influenza pandemic model consists of three components as described 

in Chapter 3. First, population structure; second, the disease characteristics and 

progress of the disease within the body; and third, the transmission of the disease 

between people. The same structure for these three components is considered for 

the models in this chapter.  
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The parameters of the simulation models such as the number of incubation 

days’ distribution or transmission rate of the disease are the same as the ones in 

Chapter 3. 

4.2. Socio-Demographic Data of Jefferson County 

Jefferson County is used as a real world case to demonstrate the pandemic 

influenza spread. Hence, socio-demographic data of Jefferson County is needed 

for the input of simulation and this section summarizes and explains this data. It is 

based on 2010 US Census and Department of Education database. 

According to 2010 US Census the population of Jefferson County is 

741,096. Further, 6.6%, 16.3%, 63.3%, and 13.8% of this population are in the 

first, second, third, and fourth age groups, respectively.  In addition, there are 40 

zip codes completely or partially located in this county. The population residing in 

these zip codes varies from a maximum of 45291 in zip code 40214 to a minimum 

of 59 in zip code 40025 with an average of 19749. A list of these zip codes and 

their populations are presented in Table 4-1. The total population of these 40 zip 

codes is 789977 which is more than the population of Jefferson County, because 

some of them are not completely within the borders of the county.      

One of the data sets needed as the input of the simulation is the number of 

households in each zip code. Table 4-2 summarized the total number of 

households in each zip code and seven categories by household size; which range 

from one person in the household to seven and more persons in it. There are 

326749 households as a total in these 40 zip codes, with a maximum of 18573 

households in zip code 40214. 
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Table 4 - 1: zip codes completely or partially located in Jefferson County 

Zip code Population Zip code Population 

40214 45291 40218 31658 

40258 26465 40223 22011 

40203 19694 40228 15743 

40204 14236 40243 10210 

40209 360 40207 29745 

40216 40746 40222 21359 

40205 23678 40210 14822 

40206 18865 40202 6772 

40208 13227 40023 4118 

40280 303 40245 30109 

40219 38032 40059 16708 

40211 22612 40299 38371 

40212 17685 40047 19345 

40217 12507 40291 35427 

40041 286 40229 36852 

40220 33109 40118 9724 

40215 22287 40272 37394 

40213 16796 40109 1990 

40242 10930 40177 1463 

40025 59 40241 28988 

 

Table 4 - 2: Total number of households categorized by household size in every zip code 

 Number of Households (by Household size) 

Zip code total 1 2 3 4 5 6 >= 7  

40214 18573 5604 5868 3214 2315 1001 339 232 

40258 10405 2650 3431 1881 1456 636 234 117 

40203 9173 4841 1959 1049 666 365 151 142 

40204 7417 3497 2497 795 418 133 52 25 

40209 151 49 45 28 17 6 3 3 

40216 16768 5113 5402 2789 2033 888 341 202 

40205 10614 3944 3833 1422 979 321 81 34 

40206 9488 4326 3125 1045 653 230 88 21 

40208 5336 2279 1700 623 396 183 84 71 

40280 91 16 53 11 7 4 0 0 

40219 15331 4472 4946 2665 1869 849 334 196 

40211 9064 3005 2477 1550 1020 557 258 197 

40212 6839 2065 1945 1176 812 464 207 170 

40217 5932 2317 2006 840 505 166 57 41 

40041 151 133 17 0 0 0 1 0 

40220 14512 4891 5023 2233 1502 581 191 91 

40215 8786 2759 2518 1531 981 514 293 190 

40213 7342 2442 2427 1225 735 329 119 65 

40242 4665 1410 1716 693 534 211 68 33 

40025 26 3 16 4 3 0 0 0 
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40218 13533 4863 4031 2114 1414 687 262 162 

40223 9208 2705 3299 1368 1143 468 155 70 

40228 6238 1649 2001 1114 912 375 125 62 

40243 4595 1577 1602 677 483 193 44 19 

40207 13905 5175 4858 1785 1343 556 139 49 

40222 9898 3717 3591 1239 846 358 108 39 

40210 5901 2153 1528 962 616 310 167 165 

40202 2631 1775 592 173 57 23 1 10 

40023 1446 156 593 269 264 104 39 21 

40245 10749 1947 3773 1899 1996 828 226 80 

40059 6086 1074 2210 989 1138 501 138 36 

40299 15222 3745 5338 2608 2263 879 268 121 

40047 7255 1399 2514 1416 1285 460 135 46 

40291 14124 3363 5152 2503 1890 832 258 126 

40229 13753 2924 4456 2696 2252 920 326 179 

40118 3772 933 1223 738 494 234 99 51 

40272 14240 3269 4817 2643 2061 921 338 191 

40109 756 138 301 149 86 52 18 12 

40177 617 177 216 113 59 39 9 4 

40241 12201 3543 4344 1857 1622 608 173 54 

Another data set is the zip codes and the number of people in each of the 

four age groups in these zip codes that are shown in Table 4.3. 

Table 4 - 3: number of people in age groups 1, 2, 3, and 4 in every zip code 

Zip 
code 

zipage1p zipage2p zipage3p zipage4p 

40214 2989 7382 28669 6251 
40258 1747 4314 16752 3652 
40203 1300 3210 12466 2718 
40204 940 2320 9011 1965 
40209 24 59 228 49 
40216 2689 6642 25792 5623 
40205 1563 3860 14988 3267 
40206 1245 3075 11942 2603 
40208 873 2156 8373 1825 
40280 20 49 192 42 
40219 2510 6199 24074 5249 
40211 1492 3686 14313 3121 
40212 1167 2883 11195 2440 
40217 825 2039 7917 1726 
40041 19 47 181 39 
40220 2185 5397 20958 4569 
40215 1471 3633 14108 3075 
40213 1109 2738 10632 2317 
40242 721 1782 6919 1508 
40025 4 10 37 8 
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40218 2089 5160 20040 4369 
40223 1453 3588 13933 3037 
40228 1039 2566 9965 2173 
40243 674 1664 6463 1409 
40207 1963 4848 18829 4105 
40222 1410 3482 13520 2947 
40210 978 2416 9382 2046 
40202 447 1104 4287 934 
40023 272 671 2607 568 
40245 1987 4908 19059 4155 
40059 1103 2723 10576 2306 
40299 2532 6254 24289 5296 
40047 1277 3153 12245 2670 
40291 2338 5775 22425 4889 
40229 2432 6007 23327 5086 
40118 642 1585 6155 1342 
40272 2468 6095 23670 5161 
40109 131 324 1260 275 
40177 97 238 926 202 
40241 1913 4725 18349 4001 

 

4.3. Verification  

In this section, verification of the simulation model is done. Three categories of 

input parameters of the simulation model are changed, and the simulation program 

is run for each one of the three altered models, separately. Then, the outputs of 

the simulation runs are examined and compared with the baseline simulation 

model. Scenarios for changing the input parameters are as follows: duration of 

contact with household members (scenario 1), transmission rate of the disease 

between infectious and susceptible people (scenario 2), and hospitalization rate of 

the infected individuals (scenario 3).  

Duration of contact with household members 

Table 3-4 shows the duration of contacts with other household members for each 

person depending on his/her age group. These values are decreased by 5% and 
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the simulation is run for 10 replications. Then, the number of ill individuals for this 

scenario is compared with the baseline model results (see Table A-1 and A-2 in 

Appendix A for the detailed results of simulation runs for baseline scenario and 

scenario 1). Table 4-4 shows the result of t-test for comparison of the means for 

the number of ill individuals for the two scenarios. The results of t-test show that 

the average number of ill individuals slightly decreased as a result of the 5% 

decrease in the duration of the contacts between individuals in the households. 

Table 4 - 4 : two sample t-test results for comparison of the average number of ill 
individuals for baseline scenario and scenario 1. C2 and C7 represent baseline scenario 
and scenario 1, respectively. 

Two-sample T for C2 vs C7 

 

     N    Mean  StDev  SE Mean 

C2  10  260458   1052      333 

C7  10  256417    832      263 

 

 

Difference = μ (C2) - μ (C7) 

Estimate for difference:  4042 

95% CI for difference:  (3147, 4937) 

T-Test of difference = 0 (vs ≠): T-Value = 9.53  P-Value = 0.000  DF = 17 

 

Transmission rate of the disease 

Table 3-3 shows the transmission rate of the disease between an infectious 

individual and a susceptible one, depending on their age groups. These values are 

increased by 5% and the simulation is run for 10 replications. Then, the number of 

ill individuals for this scenario is compared with the baseline model results (see 

Table A-3 in Appendix A for the detailed results of simulation runs for scenario 2). 

Table 4-5 shows the results of t-test for comparison of the means for the number 

of ill individual for the two scenarios. The results of t-test show that the average 
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number of ill individuals slightly increased as a result of the increase in the 

transmission rate of the disease. 

Table 4 - 5 : two sample t-test results for comparison of the average number of ill 
individuals for baseline scenario and scenario 2. C2 and C22 represent baseline scenario 
and scenario 2, respectively. 

Two-sample T for C2 vs C22 

 

      N    Mean  StDev  SE Mean 

C2   10  260458   1052      333 

C22  10  273445    587      186 

 

 

Difference = μ (C2) - μ (C22) 

Estimate for difference:  -12986 

95% CI for difference:  (-13803, -12169) 

T-Test of difference = 0 (vs ≠): T-Value = -34.09  P-Value = 0.000  DF = 14 

 

 
 
Hospitalization rate of the ill individuals  

Table 3-7 shows the hospitalization rate of the infected individuals for an individual 

depending on his/her age group. These values are decreased by 5% and the 

simulation is run for 10 replications for this scenario (see Table A-4 in the Appendix 

A for the results of the simulation runs for scenario 3). It is expected that changing 

these values should only change the number of hospitalized and dead people 

during the pandemic and not the number of ill people.  

Then, the number of ill, hospitalized and dead individuals during the 

pandemic for baseline scenario and scenario 3 are compared. Table 4-6, 4-7, and 

4-8 show the results of the comparison of the means of the number of ill, 

hospitalized, and dead individuals for baseline scenario and scenario 3, 

respectively.  
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As shown in Table 4-6, the difference between the number of ill individuals 

for baseline scenario and scenario 3 is not statistically significant.  

Table 4 - 6 : two sample t-test results for comparison of the average number of ill 
individuals for baseline scenario and scenario 3. C2 and C27 represent baseline scenario 
and scenario 3, respectively. 

Two-sample T for C2 vs C27 

 

      N    Mean  StDev  SE Mean 

C2   10  260458   1052      333 

C27  10  260409    576      182 

 

 

Difference = μ (C2) - μ (C27) 

Estimate for difference:  49 

95% CI for difference:  (-770, 868) 

T-Test of difference = 0 (vs ≠): T-Value = 0.13  P-Value = 0.899  DF = 13 

 

Table 4-7 and 4-8 show that the number of hospitalized and dead 

individuals are smaller for scenario 3 compared to baseline scenario.  

Table 4 - 7 : two sample t-test results for comparison of the average number of hospitalized 
individuals for baseline scenario and scenario 3. C3 and C28 represent baseline scenario 
and scenario 3, respectively. 

Two-sample T for C3 vs C28 

 

                           SE 

      N     Mean  StDev  Mean 

C3   10    10490    107    34 

C28  10  10007.0   91.0    29 

 

 

Difference = μ (C3) - μ (C28) 

Estimate for difference:  483.1 

95% CI for difference:  (389.2, 577.0) 

T-Test of difference = 0 (vs ≠): T-Value = 10.85  P-Value = 0.000  DF = 17 
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Table 4 - 8 : two sample t-test results for comparison of the average number of dead 
individuals for baseline scenario and scenario 3. C2 and C29 represent baseline scenario 
and scenario 3, respectively. 

Two-sample T for C4 vs C29 

 

                          SE 

      N    Mean  StDev  Mean 

C4   10  5250.2   89.0    28 

C29  10  4999.8   67.7    21 

 

 

Difference = μ (C4) - μ (C29) 

Estimate for difference:  250.4 

95% CI for difference:  (175.4, 325.4) 

T-Test of difference = 0 (vs ≠): T-Value = 7.08  P-Value = 0.000  DF = 16 

 

4.4. Simulation Setup 

In this section, three simulation scenarios, baseline (without intervention strategy), 

school closing, and home confinement are established and the computational 

results of the simulations are analyzed.  

In the school closure scenario, a school is closed for three weeks when the 

threshold for ill students is 3% and in the home confinement scenario 30% of the 

ill persons stay home until recovery. 

  In order to calculate the effectiveness of each strategy, we use  

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
[(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑡𝑒)− (𝑎𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)]

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑡𝑒)
               (4.1) 

For example, if the population of a community is 100,000, and the total 

number of illness cases during a pandemic is 30,000 individuals without 

establishment of interventions strategies, and 25,000 while intervention strategies 

are applied, the effectiveness of the intervention strategies is (30,000/100,000-

25,000/100,000)/(30,000/100,000) = 16.6%.       
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The simulation model is run for 50 replications for each scenario. On the 

first day of the simulation five individuals are set as infectious and the simulation 

continues day by day until there is no more infected individual left in the community. 

4.5. Results of the Simulation 

Tables B-1, B-2, and B-3 in Appendix B show the number of infected, ill, 

hospitalized, and dead individuals for each of the 50 simulation runs for baseline, 

home confinement, and school closure strategies, respectively. Further, Tables B-

4, B-5, and B-6 in Appendix B show the average weekly number of infected, ill, 

hospitalized, and dead individuals for baseline, home confinement, and school 

closure strategy, respectively.   

Figure 4-1 shows the results for ill (symptomatic infectious) people per week 

for the three scenarios. Results of the simulation runs show that 32.97% (32.94%, 

33.00% with 95% CI) of the population were ill during the pandemic for baseline 

scenario. Further, 29.96% (29.93%, 30.00% with 95% CI) and 30.83% (30.71%, 

3094% with 95% CI) of the population were ill during the pandemic when the home 

confinement and school closing strategies were established, respectively (see 

Table 4-9 for more detailed results from Minitab software output). These two 

particular intervention strategies show 9.1% and 6.5% effectiveness regarding the 

number of ill people, respectively.   
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Figure 4 - 1: number of illness cases per week during the pandemic 

The maximum weekly illness cases during the school closure show a 

reduction compared to home confinement and baseline scenarios. The maximum 

weekly illness during the baseline and home confinement scenarios are 69364 and 

68470 persons, respectively, whereas it is 51827 during school closure scenario. 

Table 4 - 9: one – sample T test results for the illness rate of the pandemic for three 
scenarios: C5, C6, and C7 indicate the baseline, home confinement, and school closure 
strategies, respectively. 

Variable   N      Mean     StDev   SE Mean         95% CI 

C5        50  0.329721  0.001057  0.000149  (0.329421, 0.330022) 

C6        50  0.299698  0.001156  0.000163  (0.299370, 0.300027) 

C7        50  0.308304  0.004150  0.000587  (0.307125, 0.309483) 

 

Figure 4-2 shows the weekly number of hospitalized persons during the 

pandemic for the three scenarios. The results of the simulation runs show that 

10472, 9890, and 10404 individuals were hospitalized during the baseline, home 

confinement, and school closure scenarios, respectively. The results of t-test in 

Table 4-10 show statistically significant reduction in the hospitalization when the 
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home confinement strategy was established (see Table B-2 and B-5 in Appendix 

B for more details).         

Table 4 - 10: The output of two-sample t-test for comparison of the means of the number 
of hospitalization cases for baseline and home confinement scenarios. C9, and C10 
indicate the baseline and home confinement scenarios, respectively. 

Two-sample T for C9 vs C10 
 
                          SE 
      N    Mean  StDev  Mean 
C9   50   10472    107    15 
C10  50  9890.4   87.8    12 
 
 
Difference = μ (C9) - μ (C10) 
Estimate for difference:  581.7 
95% CI for difference:  (542.8, 620.5) 
T-Test of difference = 0 (vs ≠): T-Value = 29.74  P-Value = 0.000  DF = 94 

 

Also, the results of t-test in Table 4-11 show statistically significant reduction 

in hospitalization rate for the school closing strategy at 95% confidence level (see 

Table B-3 and B-6 in Appendix B for more details). However, the amount of 

reduction is not as much as the one for home confinement strategy. 

Table 4 - 11: The output of two-sample t-test for comparison of the means of the number 
of hospitalization cases for baseline and school closure scenarios. C9, and C11 indicate 
the baseline and school closure scenarios, respectively. 

Two-sample T for C9 vs C11 
 
      N     Mean  StDev  SE Mean 
C9   50    10472    107       15 
C11  50  10404.4   69.8      9.9 
 
 
Difference = μ (C9) - μ (C11) 
Estimate for difference:  67.6 
95% CI for difference:  (31.7, 103.5) 
T-Test of difference = 0 (vs ≠): T-Value = 3.75  P-Value = 0.000  DF = 84 
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Figure 4 - 2: number of hospitalization cases per week during the pandemic 

Figure 4-3 shows the weekly death rate during the pandemic. Simulation 

results show on average 5241, 4982, and 5207 individuals died during the 

pandemic under the baseline, home confinement, and school closure scenarios. 

The results of t-test in Table 4-12 show statistically significant reduction in the 

death rate when the home confinement strategy was established (see Table B-2 

and B-5 in Appendix B for more details).                    

Table 4 - 12: The output of two-sample t-test for comparison of the means of the number 
of death cases for baseline and home confinement scenarios. C13, and C14 indicate the 
baseline and home confinement scenarios, respectively. 

Two-sample T for C13 vs C14 
 
         N    Mean  StDev  SE Mean 
C13  50  5240.6   61.2      8.7 
C14  50  4982.8   60.3      8.5 
 
 
Difference = μ (C13) - μ (C14) 
Estimate for difference:  257.8 
95% CI for difference:  (233.7, 281.9) 
T-Test of difference = 0 (vs ≠): T-Value = 21.22  P-Value = 0.000  DF = 97 
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Also, the result of t-test in Table 4-13 show statistically significant reduction 

in the death rate for the school closing strategy at 95% confidence level (see Table 

B-3 and B-6 in Appendix B for more details). However, the amount of reduction is 

not as much as the one for home confinement strategy. 

Table 4 - 13: The output of two-sample t-test for comparison of the means of the number 
of death cases for baseline and school closure scenarios. C13, and C15 indicate the 
baseline and school closure scenarios, respectively. 

Two-sample T for C13 vs C15 
 
         N    Mean  StDev  SE Mean 
C13  50  5240.6   61.2      8.7 
C15  50  5207.0   73.4       10 
 
 
Difference = μ (C13) - μ (C15) 
Estimate for difference:  33.6 
95% CI for difference:  (6.8, 60.4) 
T-Test of difference = 0 (vs ≠): T-Value = 2.49  P-Value = 0.015  DF = 94 

 
 
 

 

Figure 4 - 3: number of death cases per week during the pandemic 
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4.6. Sensitivity Analysis 

A sensitivity analysis is conducted on the probability of being symptomatic (PBS) 

when a person is infected with the disease. This value is considered to be equal 

to 67% in the literature. Here, two other values for PBS, 50% and 90%, are 

considered and the illness rates during the pandemic are evaluated for these rates 

and then compared with the baseline scenario with 67% PBS.  

The simulation is run for 50 replications for each of the two values for PBS, 

50%, and 90%. The detailed results of the simulation runs are presented in Table 

1 to 4 in Appendix C. Figure 4-4 shows the weekly number of ill people during the 

pandemic for three scenario, baseline scenario with 67%, 50%, and 90% PBS. The 

total number of ill individuals under the baseline scenario with 67% PBS is 260472 

whereas this value is 186505 and 368172 when PBS is 50% and 90%, 

respectively. The attack rate of the pandemic decreases by 28.3% when PBS 

decreases to 50%, and increases by 41.3% when PBS increases to 90%. The 

results of the simulations show that changes in the value of PBS can have a drastic 

effect on the attack rate of the pandemic. 
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Figure 4 - 4: number of illness cases per week during the pandemic 

4.7. Summary 

In this chapter, an agent-based model was presented that simulates the spread of 

the pandemic influenza in a real world community (i.e. Jefferson County, KY). Two 

intervention strategies, home confinement and school closure were established 

and the effects of them on the number of illness, hospitalization, and death cases 

were compared with the baseline scenario. Both of the intervention strategies show 

a reduction on the number of illness cases during the pandemic.
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CHAPTER V 

SIMULATION-BASED OPTIMIZATION 

5.1. Introduction 

In Chapter 4, a simulation model was presented to evaluate the effects of two 

intervention strategies on the illness, hospitalization, and death rates during a 

pandemic in Jefferson County. The intervention strategies applied in Chapter 4 

were established for particular values of the control variables. For example, the 

length of school closure for school closure strategy was three weeks. However, 

one might change the values for these control variables and find different results 

for the output metrics of the simulation for every set of control variables. 

For home confinement and school closure strategies presented in previous 

chapters, rate of home confinement, length of school closure, and closure 

threshold are the control variables. Depending on the range defined for each of 

these control variables, hundreds of scenarios can be generated for strategies 

which have different effects on the desired output metrics. 

In this chapter, simulation-based optimization models are presented which 

aim at finding a combination of the strategies (i.e. set of control variable values) 

that result in the best value for an objective function of the defined metrics under 
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a set of constraints. Also, a procedure is presented to solve the optimization 

models. 

5.2. Optimization Model 

Illness of an individual in an influenza pandemic can have some cost associated 

with it. This cost is even bigger for hospitalization and death. Meltzer et al. (1999) 

presents the costs associated with illness, hospitalization, and death for an 

individual in case of a pandemic.  

In the following model, the first term of the objective function (i.e. 

∑ ∑ 𝛼𝑔𝐼𝑙𝑙𝑤𝑔
𝐺
𝑔=1

𝑊
𝑤=1 ) includes the cost associated with ill individuals that don’t show 

severe symptoms. An ill person can show severe symptoms of disease and visit a 

hospital or clinic as an outpatient. The second term of the objective function (i.e. 

∑ ∑ 𝜕𝑔𝑂𝑢𝑡𝑝𝑤𝑔
𝐺
𝑔=1

𝑊
𝑤=1 ) includes the cost associated with outpatients. The costs 

associated with hospitalized individuals that are required to stay in the hospital is 

shown in the third term of the objective function (i.e. ∑ ∑ 𝛽
𝑔

𝐻𝑜𝑠𝑤𝑔
𝐺
𝑔=1

𝑊
𝑤=1 ). The costs 

associated with dead individuals is shown in the fourth term of the objective 

function (i.e. ∑ ∑ 𝛾𝑔𝐷𝑒𝑎𝑑𝑤𝑔
𝐺
𝑔=1

𝑊
𝑤=1 ). Applying home confinement and school closure 

strategies have some cost associated with them. For example, in a home 

confinement strategy, if a person is withdrawn from work, the cost associated with 

absenteeism from work might be also under consideration. The last two terms, 

∑  𝛿 ∗ 𝑆𝐶𝐶𝑤/5𝑊
𝑤=1  and ∑ ∑ 휀𝑔𝐶𝐶𝑤𝑔

𝐺
𝑔=1

𝑊
𝑤=1 , of the objective function consider the costs 

associated with establishing the school closure and home confinement strategies, 

respectively. 



83 
 

As shown in Figure 4-1, the maximum weekly values for the number of ill, 

hospitalized, and dead persons for school closure strategy were smaller than these 

in the other two scenarios. The healthcare systems usually encounter scarcity of 

the medical resources and lowering the maximum weekly value of the metrics can 

have a significant impact on the healthcare systems. Constraint 5.5 addresses 

these restrictions. 

Finally, the cost associated with one ill, hospitalized, or dead person is 

different from one age group to another one. In addition, the cost associated with 

home confinement varies in different age groups. These details are considered in 

all parts of the objective function. 

Notations 

Indices and Sets 

𝑔 ∈ 𝐺 ∶ Set of age groups 

 𝑤 ∈ 𝑊  : Set of days of the pandemic  

Parameters 

𝑀𝑆𝐶 : upper limit on the number of weeks that a school is closed in school closure 

strategy 

𝑈𝐶𝑇 : upper limit on the school closure threshold when establishing school closure 

strategy 

𝑈𝐶𝑅 : upper limit on the rate of home confinement when establishing home 

confinement strategy 
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𝑀𝐻𝑅𝑤 : units of medical resources (e.g. beds) available at the healthcare centers 

for hospitalized individuals in day w  

𝜌: units of medical resources needed per hospitalized person 

𝛼𝑔: total cost associated with one ill person without severe symptoms in age group 

g 

𝜕𝑔 : total cost associated with one ill person with severe symptoms in age group g 

𝛽𝑔: total cost associated with one hospitalized person in age group g 

𝛾𝑔 ∶ total cost associated with one dead person in age group g 

𝛿 ∶  total cost associated with one class closed per week 

휀𝑔 ∶  total cost associated with one day home confinement per person in age group 

g 

𝑊: Total duration of pandemics in days 

𝐺 ≡ (1, 2, 3, 4) 

Variables: 

 𝑆𝐶 : length of school closure (in week) 

𝐶𝑅 : rate of home confinement 

𝐶𝑇 : school closure threshold 

Outputs: 

𝐼𝑙𝑙𝑤 : number of persons who got ill in day w  

𝐻𝑜𝑠𝑤 : number of persons who got hospitalized in day w  

𝐷𝑒𝑎𝑑𝑤: number of persons who died in day w  

𝑆𝐶𝐶𝑤: number of classes in closure status on day w  
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𝑂𝑢𝑡𝑝𝑤𝑔 : number of persons who got ill with severe symptoms in age group g and 

day w 

𝐶𝐶𝑤𝑔 : number of person-day confinement in age group g and day w 

 

Objective function: 
 

𝑀𝑖𝑛 𝑍 = 𝐸 ( ∑ ∑ 𝛼𝑔𝐼𝑙𝑙𝑤𝑔

𝐺

𝑔=1

𝑊

𝑤=1

+ ∑ ∑ 𝜕𝑔𝑂𝑢𝑡𝑝𝑤𝑔

𝐺

𝑔=1

𝑊

𝑤=1

+ ∑ ∑ 𝛽
𝑔

𝐻𝑜𝑠𝑤𝑔

𝐺

𝑔=1

𝑊

𝑤=1

+ ∑ ∑ 𝛾𝑔𝐷𝑒𝑎𝑑𝑤𝑔

𝐺

𝑔=1

𝑊

𝑤=1

+ ∑  𝛿 ∗ 𝑆𝐶𝐶𝑤/5

𝑊

𝑤=1

+  ∑ ∑ 휀𝑔𝐶𝐶𝑤𝑔

𝐺

𝑔=1

𝑊

𝑤=1

 )                                                            (5.1) 

Constraints: 

𝑆𝐶 ∈ [1, 2, … , 𝑀𝑆𝐶]                                                                                                                                 (5.2) 

𝐶𝑅 ∈ [1, 2, … , 𝑈𝐶𝑅]                                                                                                                                 (5.3) 

𝐶𝑇 ∈ [ 1, 2, . . . , 𝑈𝐶𝑇]                                                                                                                               (5.4)  

𝜌𝐻𝑜𝑠𝑤 ≤  𝑀𝐻𝑅𝑤  𝑓𝑜𝑟    𝑤 = 1,2, … , 𝑊                                                                                              (5.5) 

 

Constraint (5.2) shows that the number of weeks that a school can be 

closed is limited to 1, 2, …, up to 𝑀𝑆𝐶 weeks. Constraint (5.3) shows that the rate 

home confinement is 1%, 2%,…, up to 𝑈𝐶𝑅 of the population. Constraint (5.4) 

shows that the school closure for a school starts on a particular day after 1% or 

2%, …, up to  𝑈𝐶𝑇 of the population of that school are ill. Constraint (5.5) shows 

that the medical resources available for hospitalized persons on each day is less 

than an upper value amount, 𝑀𝐻𝑅𝑤. 
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5.3. NSGS Procedure 

In order to solve the models presented in previous sections, the NSGS procedure 

(see Nelson et al., 2001a) mentioned in Chapter 2 is used. This approach has 

some advantages compared to the standard ranking and selection procedures. 

Standard R&S procedures are popular because they are easy to apply and 

interpret, but they are usually practical to use when the number of comparing 

systems are relatively small, say less than 20. The NSGS approach presented in 

Nelson et al. (2001a) tackles the problems that have a larger number of feasible 

solutions (e.g. hundreds of solutions) and solve them in a reasonable amount of 

time.  

In this section the NSGS approach is explained in more details. Also, it is 

explained how this procedure makes changes to the standard R&S procedures to 

be practical for solving larger problems. 

 

Procedure NSGS: 

Step 1: Set the below values: 

1-𝛼: the overall desired probability of finding the best strategy where  
1

𝑘
< 1 − 𝛼 <

1 

𝛿 ∶ called indifference zone (IZ) parameter and shows the smallest value that is 

practically significant in the objective function where 𝛿 > 0 

𝑛0 : a common initial number of replication which is typically 𝑛0 ≥ 2 

𝑘: : initial number of competing systems or in other words the number of scenarios 

that are compared with each other. 
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Also set7  𝑡 =  𝑡𝑛0−1,(1−
𝛼

2
)1/(𝑘−1), which is the (1 −

𝛼

2
)1/(𝑘−1) quantile of the 𝑡 student 

distribution with 𝑛0 − 1 degree of freedom. 

Obtain Rinott’s constant8 (ℎ):   ℎ = ℎ(𝑛0, 𝑘, 1 −
𝛼

2
)  

Step 2: take 𝑛0 replication for each scenario and calculate the sample means 

�̅�(𝑋𝑖; 𝑛0)  and variances 𝑆(𝑋𝑖)
2 = (

1

𝑛0−1
) ∑ (𝑦𝑗(𝑋𝑖) − �̅�(𝑋𝑖; 𝑛0))2𝑛0

𝑗=1        𝑓𝑜𝑟  𝑖 =

 1,2, … , 𝑘    

Step 3: calculate the quantity  

𝑊𝑖𝑗 = 𝑡((𝑆(𝑋𝑖)
2 + 𝑆(𝑋𝑗)2)/𝑛0)1/2 

for all 𝑖 ≠ 𝑗. Form the screening subset 𝐼, that contains every feasible solution (i.e. 

scenario) 𝑋𝑖 where 1 ≤ 𝑖 ≤ 𝑘 and 

�̅�(𝑋𝑖; 𝑛0) ≤  �̅�(𝑋𝑗; 𝑛0) +  𝑊𝑖𝑗     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗   

Step 4: if |𝐼| = 1, then the system in 𝐼 is the best solution which minimizes the 

objective function. Otherwise, compute for all 𝑖 ∈ 𝐼, second sample size. 

𝑁𝑖 = 𝑚𝑎𝑥{𝑛0, ⌈(ℎ𝑆(𝑋𝑖)/𝛿)2⌉} 

where ⌈. ⌉ is the ceiling function. 

Step 5:  Take 𝑁𝑖 −  𝑛0 additional replications from all systems 𝑖 ∈ 𝐼 

Step 6: compute the overall sample means �̅�(𝑋𝑖; 𝑛0) for all  𝑖 ∈ 𝐼. 

Step 7: select the system 𝑋𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖
�̅�(𝑋𝑖; 𝑁𝑖) as the best system (scenario) 

that minimizes the objective function. 

                                                           
7 For example, if 𝛼 = 0.05, 𝑛0 = 10, and 𝑘 = 3,  then 𝑡𝑛0−1,(1−

𝛼

2
)1/(𝑘−1) =  𝑡9,(0.975)1/2 = 2.68. 

8 For example, ℎ = ℎ (𝑛0, 𝑘, 1 −
𝛼

2
) =  ℎ(10,3,0.975) = 3.72, when 𝛼 = 0.05, 𝑛0 = 10, and 

𝑘 = 3. 
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The Step 3 in the NSGS procedure is the major change presented by this 

procedure. In other words, Nelson et al. (2001a) presented a simple screening 

procedure that can be used to eliminate the noncompetitive systems after the first 

step (i.e. the first round of simulation that is done for all of the competing systems), 

thereby saving the number of observations that would be taken in the second stage 

of simulation (i.e. Steps 4 and 5). This procedure is the combination of a sub-set 

selection procedures that eliminate competitive solutions, and a ranking procedure 

applied to the competitive systems remaining in the system. 

5.4. Simulation-based Optimization Model 

In this sub-section, the model presented in Section 5.2 is used to establish a 

mathematical model to compare a range of intervention scenarios. After 

developing the mathematical model, a simulation-based optimization model (i.e. 

an integration of the NSGS procedure and the simulation model presented in 

Chapter 4) is established with JAVA. Then, the model is run to compare the 

intervention strategies and find the one with the smallest value for objective 

function.  

The values for cost coefficients in the objective functions are based on 

Meltzer et al. (1999) and are summarized in Table 5-1. There are 102 competing 

scenarios in this model. School closure threshold can have 4 values, 2.5%, 5%, 

7.5%, and 10%9. Length of school closure can have 5 values, 0, 1, 2, 3, or 410 

                                                           
9 10% threshold is considered as a level of severe virus spread in the school in this study 
10 4 week is considered as the maximum tolerable length of school closure (every time a 
school is closed), without too much side effect on the education of the students, in this 
study. 



89 
 

weeks. Finally, rate of home confinement has 6 values, 0, 10, 20, 30, 40, or 50%11. 

Table 5-1 summarizes these values. 

Table 5 - 1: The values for school closure threshold, length of school closure and rate of 
home confinement considered for the model 

 

  According to the health authorities in Louisville Metro Area, one of the main 

healthcare resources at the time of a pandemic is the number of available hospital 

beds. There are approximately 2980 acute care hospital beds in Louisville Metro 

that could be used to treat patients with influenza if hospitalized. This constraint is 

also considered in the model. 

The model presented in Chapter 3 and used in Chapter 4 needs to be 

modified to make a connection between the optimization model and simulation 

program. Figure 5-1 shows a high level view of this connection.  

Optimization model is a class added to the model presented in Chapter 3 

which makes a bridge between the above mathematical model and the simulation 

model (i.e. simulation class) and apply the NSGS procedure. 

                                                           
11 According to one of the Louisville Metro authorities, the maximum level for the rate of 
home confinement applicable in an urban area similar to Louisville is about 50% of the 
population for an influenza outbreak. 

school closure threshold 2.50% 5% 7.50% 10%

length of school closure 0 1 2 3 4

rate of home confinement 0% 10% 20% 30% 40% 50%
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data1

data3

data2

data4

simulation

person

Optimization 
model

scenario

data5

 

Figure 5 - 1: Structure of the JAVA program for the simulation-based optimization model 

There are two more classes that feed data to the optimization model class, 

scenario and data5. Scenario class provides information on the number of 

scenarios that are being compared together and the number of values for the 

control variables. The data5 class provides data on the parameters and variables 

related to the NSGS procedure (e.g. Rinott’s constant) and the coefficients of the 

performance measures of the objective function that are summarized in Table 5-

2. 

 

 



91 
 

Table 5 - 2: cost coefficients’ values in formula (5.1) (values in dollar)12 

𝛼1 197 𝛽
1
 3366 휀1 0 

𝛼2 197 𝛽
2
 3366 휀2 0 

𝛼3 202 𝛽
3
 6842 휀3 100 

𝛼4 327 𝛽
4
 7653 휀4 0 

𝜕1 300 𝛾1 3435 𝛿13 500 

𝜕2 300 𝛾2 3435   

𝜕3 330 𝛾3 7605   

𝜕4 458 𝛾4 8309   

 

The program continues to run for each scenario as long as there is at least 

one infected individual left in the population. 

5.5. Results of Simulation-Based Optimization 

The simulation-based optimization model is run for six replications for the first step 

of the NSGS procedure for each scenario. Table 5-3 summarizes the output of the 

program for the first step of the NSGS procedure.  

The highlighted scenario (i.e. the one with 50% rate of home confinement, 

and no school closure) in Table 5-3 is the only scenario that meets the criteria of 

NSGS procedure to go to the second step. Hence, there is no need for the second 

step and this scenario is the best one. The cost associated with it is $181,577,043.  

 

 

 

                                                           
12 There are four age groups considered in the model. 
13 The cost of one week school closure for a school class is considered equal to the five 
days of pay rate for the teacher. Daily pay rate of a teacher is considered equal to $100 
(see Meltzer et al. (1999) for average daily payment of adults). 
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Table 5 - 3: number of infected, out-patient, ill with no severe symptoms, hospitalized, and 
dead individuals and cost per scenario for the first round of NSGS process 

R
a

te
 o

f 
h

o
m

e
 

c
o

n
fi
n

e
m

e
n
t 

C
lo

s
u
re

 L
e

n
g
th

 (
w

e
e
k
) 

C
lo

s
u
re

 T
h

re
s
h

o
ld

 

In
fe

c
te

d
 

Il
l(
n

o
 s

e
v
e
re

 s
y
m

p
to

m
s
) 

O
u

t-
P

a
ti
e
n

t 

H
o

s
p
it
a

liz
e

d
 

D
e

a
d
 

 C
o

s
t 
 

0% 

0  388859 106599 153890 10476 5258 $  200,515,252 

1 

0.025 389137 106315 154296 10488 5201 $  204,313,970 

0.05 389677 106489 154515 10524 5245 $  204,269,907 

0.075 390110 106666 154596 10468 5225 $  203,294,047 

0.1 389645 106490 154654 10527 5294 $  203,796,570 

2 

0.025 381995 105120 150881 10534 5225 $  206,872,807 

0.05 384332 105629 151802 10499 5206 $  205,216,401 

0.075 386065 105969 152664 10502 5264 $  204,832,821 

0.1 387098 105961 153328 10474 5208 $  203,454,557 

3 

0.025 370492 102605 145565 10395 5176 $  206,702,894 

0.05 377419 104259 148835 10450 5182 $  205,284,644 

0.075 381462 104721 150832 10518 5298 $  205,429,501 

0.1 384075 105519 151633 10406 5180 $  202,840,948 

4 

0.025 364896 101329 143148 10329 5151 $  208,095,195 

0.05 375513 103708 147891 10408 5185 $  206,151,036 

0.075 380113 104636 149932 10428 5213 $  204,549,118 

0.1 383426 105285 151600 10473 5207 $  203,828,611 

10% 

0  376330 102247 149554 10258 5146 $  197,257,240 

1 

0.025 376721 102456 149774 10282 5169 $  202,002,076 

0.05 376305 102351 149615 10245 5094 $  200,176,875 

0.075 377608 102941 150203 10292 5096 $  200,384,478 

0.1 377669 102805 150457 10387 5191 $  201,392,091 

2 

0.025 369568 101280 146364 10292 5147 $  203,951,612 

0.05 370319 101146 146919 10283 5171 $  202,293,712 

0.075 372186 101299 147932 10279 5133 $  201,311,109 

0.1 374337 101891 148760 10284 5131 $  200,692,390 

3 

0.025 356336 98279 140398 10238 5086 $  204,118,364 

0.05 364115 100016 144166 10283 5156 $  202,945,906 

0.075 368973 100744 146402 10347 5167 $  202,447,381 

0.1 371130 101295 147341 10329 5198 $  201,866,517 

4 0.025 352362 97354 138775 10253 5197 $  207,461,289 
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0.05 361953 99381 143145 10302 5150 $  204,302,003 

0.075 367281 100522 145628 10312 5163 $  202,666,510 

0.1 370305 100890 147188 10294 5157 $  201,366,554 

20% 

0  364091 98690 145379 10064 5051 $  194,336,713 

1 

0.025 364832 98716 145856 10144 5079 $  199,690,272 

0.05 363996 98311 145489 10064 5047 $  197,712,707 

0.075 364611 98692 145670 10078 5031 $  197,201,219 

0.1 365762 98883 146148 10151 5083 $  197,965,313 

2 

0.025 353896 96098 140997 10091 5058 $  200,352,690 

0.05 357124 96810 142253 10072 5045 $  198,951,884 

0.075 359351 97624 143222 10128 5070 $  198,715,335 

0.1 361932 98066 144532 10104 5078 $  198,181,061 

3 

0.025 342637 93985 135640 10072 5041 $  201,329,001 

0.05 351432 96121 139437 10086 5043 $  199,659,546 

0.075 356283 96839 141923 10098 5079 $  198,963,950 

0.1 358954 97528 143082 10100 5085 $  198,461,373 

4 

0.025 338035 93230 133378 10005 5020 $  203,329,776 

0.05 349117 95393 138512 10094 5083 $  201,227,993 

0.075 353908 96188 140843 10141 5094 $  199,760,157 

0.1 357347 96683 142816 10125 5059 $  198,319,886 

30% 

0  351587 94455 141116 9888 4934 $  190,866,203 

1 

0.025 350765 94476 140388 9900 4961 $  195,384,879 

0.05 351305 94496 140919 9890 4977 $  194,670,888 

0.075 350903 94234 140733 9895 4933 $  193,657,654 

0.1 351782 94334 141079 9870 4978 $  193,452,104 

2 

0.025 340126 91791 136082 9860 4997 $  196,910,432 

0.05 342828 92552 137042 9853 4938 $  194,911,261 

0.075 346788 93388 138821 9895 4954 $  194,712,445 

0.1 349137 93936 139991 9845 4929 $  193,769,689 

3 

0.025 327368 89043 130112 9774 4929 $  196,706,040 

0.05 337094 91322 134642 9820 4912 $  195,025,254 

0.075 343230 92925 137116 9867 4946 $  194,856,093 

0.1 344115 92623 138020 9848 4911 $  193,369,207 

4 

0.025 324010 88512 128555 9775 4929 $  199,833,114 

0.05 335539 90798 133830 9810 4941 $  196,534,453 

0.075 340469 92010 136205 9867 4995 $  195,517,493 

0.1 344952 93104 138237 9873 4952 $  194,344,717 

40% 

0  339376 90399 137021 9593 4847 $  186,671,909 

1 

0.025 337865 90056 136127 9636 4886 $  191,479,178 

0.05 338226 90305 136325 9567 4838 $  189,745,478 

0.075 338719 90299 136576 9633 4875 $  189,901,112 
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0.1 338990 90227 136834 9656 4874 $  189,706,922 

2 

0.025 325580 87550 130425 9516 4814 $  191,192,061 

0.05 329758 88319 132660 9496 4800 $  189,821,309 

0.075 332516 88996 133687 9591 4840 $  189,853,334 

0.1 335029 89448 135101 9599 4807 $  189,113,645 

3 

0.025 313550 84791 125224 9523 4825 $  192,658,079 

0.05 322681 86780 129404 9595 4878 $  191,412,015 

0.075 328635 88209 132009 9605 4862 $  190,430,310 

0.1 331617 88776 133370 9613 4852 $  189,580,140 

4 

0.025 309705 84046 123533 9444 4757 $  194,478,812 

0.05 322749 86911 129277 9498 4798 $  191,637,413 

0.075 327426 87838 131569 9489 4780 $  189,124,379 

0.1 333017 89294 133804 9571 4844 $  189,860,668 

50% 

0  326471 86408 132388 9304 4706 $  181,577,043 

1 

0.025 323343 85564 131005 9309 4736 $  185,745,926 

0.05 324196 85938 131255 9238 4698 $  184,152,633 

0.075 325681 86396 131917 9315 4716 $  184,588,977 

0.1 325764 85995 132314 9289 4708 $  183,758,220 

2 

0.025 310995 82981 125483 9276 4684 $  186,533,327 

0.05 315404 83913 127452 9301 4719 $  185,717,200 

0.075 318819 84661 129053 9264 4667 $  184,093,127 

0.1 322899 85578 130665 9330 4720 $  184,794,728 

3 

0.025 296953 79829 119065 9135 4658 $  186,230,913 

0.05 310127 82804 124802 9245 4651 $  185,130,891 

0.075 314106 83430 127058 9275 4702 $  184,452,940 

0.1 318169 84352 128846 9316 4747 $  184,646,104 

4 

0.025 296646 79976 118804 9143 4645 $  189,525,443 

0.05 307909 82231 124010 9279 4695 $  186,818,869 

0.075 314465 83867 126815 9267 4651 $  184,585,790 

0.1 318210 84454 128749 9279 4701 $  184,337,850 

 

Table 5 – 4 shows the t-test results for the outputs of the simulation model 

for the optimal scenario. 
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Table 5 - 4: t-test for the results of the simulation for the optimal scenario. C1, C2, C3, C4, 
and C5 are the number of infected, ill (only the ill persons without severe symptoms), out-
patient, hospitalized, and dead individuals for this scenario. 

One-Sample T: C1, C2, C3, C4, C5  
 
Variable    N       Mean         StDev        SE Mean           95% CI 
C1             6        326472      1441           588             (324960, 327984) 
C2             6        86408         647           264              ( 85729,  87087) 
C3             6        132389       405           165              (131963, 132814) 
C4             6        9304.2        38.2          15.6             (9264.0, 9344.3) 
C5             6        4706.0        49.4          20.2             (4654.2, 4757.8) 

 

5.6. Sensitivity analysis 

Table 5-2 shows $3435, $3435, $7605, and $8309 as the costs associated with 

one dead person in age group one, two, three, and four, respectively. These cost 

coefficients include the medical expenses, but don’t consider the future earning of 

the dead person. If the average present value of the life time earning of the dead 

individuals be included in the cost coefficients of the dead persons, the coefficients 

increase to $1,019,536, $1,019,536, $1,045,278 and $74,146, respectively. In this 

section, the effects of adding this portion of death cost is analyzed. The cost 

coefficients of the dead individuals are changed in the objective function of the 

model and then the NSGS procedure is applied to the simulation-based 

optimization model. 

Table 5-5 shows the results of the first step of the NSGS procedure.  
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Table 5 - 5: number of infected, out-patient, ill with no severe symptoms, hospitalized, and 
dead individuals and cost per scenario for the first round of NSGS process 
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0% 

0   388329 106372 153890 10476 5258 $629,130,091  

1 

0.025 387574 105938 154296 10488 5201 $625,738,796  

0.05 388583 106417 154515 10524 5245 $627,645,170  

0.075 389721 106808 154596 10468 5225 $621,579,062  

0.1 389725 106739 154654 10527 5294 $632,633,554  

2 

0.025 390074 106708 150881 10534 5225 $640,223,200  

0.05 390202 106855 151802 10499 5206 $631,382,930  

0.075 388309 106316 152664 10502 5264 $623,134,654  

0.1 382361 105175 153328 10474 5208 $628,875,737  

3 

0.025 384505 105551 145565 10395 5176 $631,726,128  

0.05 386411 105848 148835 10450 5182 $629,755,802  

0.075 387678 106290 150832 10518 5298 $632,584,384  

0.1 389315 106633 151633 10406 5180 $622,951,784  

4 

0.025 371006 102886 143148 10329 5151 $635,500,555  

0.05 377239 103989 147891 10408 5185 $630,274,223  

0.075 381632 104676 149932 10428 5213 $628,619,163  

0.1 383747 105213 151600 10473 5207 $631,755,920  

10% 

0   376420 102409 149707 10311 5137 $610,419,611  

1 

0.025 375678 102232 149774 10282 5169 $617,210,204  

0.05 376477 102457 149615 10245 5094 $613,458,928  

0.075 376955 102541 150203 10292 5096 $619,876,805  

0.1 376409 102337 150457 10387 5191 $621,546,080  

2 

0.025 377088 102448 146364 10292 5147 $622,203,527  

0.05 377818 102647 146919 10283 5171 $620,012,632  

0.075 376484 102420 147932 10279 5133 $621,085,675  

0.1 367741 100614 148760 10284 5131 $618,655,341  

3 

0.025 371157 101372 140398 10238 5086 $618,752,439  

0.05 372511 101563 144166 10283 5156 $612,529,890  

0.075 374954 102123 146402 10347 5167 $621,852,139  

0.1 376061 102437 147341 10329 5198 $608,585,340  

4 
0.025 356577 98208 138775 10253 5197 $616,444,284  

0.05 363740 99582 143145 10302 5150 $612,226,516  
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0.075 368195 100584 145628 10312 5163 $616,323,517  

0.1 370635 100979 147188 10294 5157 $608,841,881  

20% 

0   363030 98063 145241 10138 5098 $601,340,507  

1 

0.025 364885 98982 145856 10144 5079 $601,963,032  

0.05 363621 98367 145489 10064 5047 $594,953,358  

0.075 363948 98382 145670 10078 5031 $601,621,303  

0.1 364037 98435 146148 10151 5083 $606,974,171  

2 

0.025 364517 98459 140997 10091 5058 $606,362,055  

0.05 364887 98763 142253 10072 5045 $604,663,921  

0.075 365010 98861 143222 10128 5070 $596,898,788  

0.1 354540 96522 144532 10104 5078 $603,763,977  

3 

0.025 357448 97091 135640 10072 5041 $604,469,126  

0.05 359440 97502 139437 10086 5043 $600,465,302  

0.075 361175 97737 141923 10098 5079 $597,620,948  

0.1 363552 98293 143082 10100 5085 $602,899,199  

4 

0.025 342706 94032 133378 10005 5020 $597,685,212  

0.05 350212 95482 138512 10094 5083 $606,410,357  

0.075 355882 96891 140843 10141 5094 $604,290,691  

0.1 358226 97312 142816 10125 5059 $599,794,153  

30% 

0   351485 94264 140984 9799 4965 $582,834,561  

1 

0.025 351951 94530 140388 9900 4961 $588,426,900  

0.05 351770 94302 140919 9890 4977 $586,806,699  

0.075 350857 94355 140733 9895 4933 $588,963,515  

0.1 351241 94410 141079 9870 4978 $587,656,196  

2 

0.025 351917 94457 136082 9860 4997 $590,864,418  

0.05 352559 94481 137042 9853 4938 $598,591,606  

0.075 351326 94337 138821 9895 4954 $583,332,340  

0.1 339071 91514 139991 9845 4929 $589,242,146  

3 

0.025 343456 92760 130112 9774 4929 $580,711,820  

0.05 346629 93290 134642 9820 4912 $579,149,776  

0.075 348899 93718 137116 9867 4946 $589,602,116  

0.1 351179 94160 138020 9848 4911 $584,630,878  

4 

0.025 328401 89581 128555 9775 4929 $585,862,739  

0.05 336358 91110 133830 9810 4941 $580,256,775  

0.075 342117 92300 136205 9867 4995 $583,697,195  

0.1 345120 93186 138237 9873 4952 $585,660,134  

40% 

0   339825 90745 137021 9593 4847 $569,354,857  

1 

0.025 338623 90074 136127 9636 4886 $565,094,358  

0.05 338629 90155 136325 9567 4838 $568,390,339  

0.075 337075 90031 136576 9633 4875 $575,706,265  

0.1 337096 89863 136834 9656 4874 $569,883,237  
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2 

0.025 338457 90271 130425 9516 4814 $566,831,544  

0.05 338726 90257 132660 9496 4800 $567,041,238  

0.075 338817 90032 133687 9591 4840 $562,496,219  

0.1 326134 87677 135101 9599 4807 $572,688,490  

3 

0.025 329607 88152 125224 9523 4825 $562,719,029  

0.05 332554 89040 129404 9595 4878 $572,546,584  

0.075 335400 89633 132009 9605 4862 $565,712,400  

0.1 338590 89952 133370 9613 4852 $567,658,993  

4 

0.025 313590 84929 123533 9444 4757 $566,785,101  

0.05 322890 86844 129277 9498 4798 $564,854,846  

0.075 328403 88117 131569 9489 4780 $574,023,486  

0.1 331014 88540 133804 9571 4844 $568,351,648  

50% 

0   327330 86792 132584 9212 4679 $548,944,289  

1 

0.025 326772 86388 131005 9309 4736 $551,143,747  

0.05 326862 86655 131255 9238 4698 $547,031,972  

0.075 323341 85543 131917 9315 4716 $543,917,975  

0.1 324014 85630 132314 9289 4708 $549,984,976  

2 

0.025 324714 85853 125483 9276 4684 $552,990,474  

0.05 325137 85989 127452 9301 4719 $551,269,721  

0.075 327390 86559 129053 9264 4667 $548,883,908  

0.1 310859 82913 130665 9330 4720 $550,604,073  

3 

0.025 314562 83639 119065 9135 4658 $552,747,953  

0.05 318761 84629 124802 9245 4651 $552,072,978  

0.075 321749 85255 127058 9275 4702 $549,951,070  

0.1 326943 86445 128846 9316 4747 $551,353,183  

4 

0.025 298300 80447 118804 9143 4645 $541,338,280  

0.05 309303 82514 124010 9279 4695 $552,340,008  

0.075 315927 84270 126815 9267 4651 $548,538,593  

0.1 317591 84404 128749 9279 4701 $544,212,162  

 

The highlighted scenarios are the ones that go to the second step. All of the 

scenarios that considered 50% for the rate of home confinement are selected to 

go to the second step. The only scenario with a rate of home confinement different 

from 50% that goes to the second step is the scenario with 40% rate of home 

confinement and two weeks of school closure with 7.5% of school closure 

threshold.  
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The results from the second step in the NSGS procedure show that the 

scenario with 50% of the home confinement and 10% of school closure threshold 

and four weeks for school closure length is the best scenario. 

Figures 5-2, 5-3, and 5-4 show the categorized average percent changes in 

the cost of pandemic as a result of applying the scenarios shown in Table 5-3 and 

Table 5-5. Figure 5-2 takes the average cost of all of the scenarios in Tables 5-3 

and 5-5 for which the rate of home confinement control variable is the same and 

shows the percentage of change in cost compared to the baseline scenario. The 

blue line is for the model excluding the value of the life time earnings (VLTE) from 

the dead person’s cost and the red line is for the model including this cost in the 

analysis. For example, the red line in this graph shows that the average reduction 

in the cost across all the scenarios with the rate of home confinement equal to 40% 

is 9.7% compared to baseline scenario. For both cases, the percentage of 

reduction in cost increases as the rate of home confinement increases. 

 

Figure 5 - 2: Percentage of reduction in cost as a result of change in the rate of home 
confinement 
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Figure 5-3 takes the average cost of all of the scenarios for which the length 

of school closure is the same and shows the percentage of change in cost 

compared to the baseline scenario. The model that includes VLTE is more 

sensitive to the length of school closure. 

 

Figure 5 - 3: Percentage of reduction in cost as a result of change in the length of school 
closure 

Figure 5-4 takes the average cost of all of the scenarios for which the school 

closure threshold is the same and shows the percentage of change in cost 

compared to the baseline scenario. The model that include VLTE is more sensitive 

to the school closure threshold. 

As shown in these three graphs, cost function is more sensitive to the rate 

of home confinement compared to the school closure’s control variables. 
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Figure 5 - 4: Percentage of reduction in cost as a result of change in the school closure 
threshold  

5.7. Effect of start time of strategy 

After the influenza outbreak starts, the authorities have the option to respond with 

mitigation strategies. The starting point in time that the authorities apply these 

mitigation strategies can affect the degree of effectiveness of a strategy.  

In this section, the best scenario chosen in section 5.5, starts to apply in 

three point in time, namely at the beginning, with one month, and two months delay 

after the start of the pandemic. The effects of these delays are analyzed and 

summarized in Figure 5-5.   
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Figure 5 - 5: Effect of start time for establishment of strategy on the number of ill persons 

Results of t-student test for one month and two month delay show significant 

difference in the number of ill persons compared to the one with no delay at 95% 

confidence interval. The number of ill persons for the scenarios with one month 

and two months delay increased by 1%, and 16% compared to the scenario with 

no delay, respectively. See Tables 5-6 and 5-7 for more details. 

Table 5 - 6: The results of t-test for comparing the difference of the number of ill individuals 
for two scenarios; C1, the strategy with 50% comply rate for home confinement which 
starts at the beginning of the pandemic and C2, the strategy with 50% comply rate for 
home confinement which starts after one month delay. 

Two-Sample T-Test and CI: C2, C1  
 
Two-sample T for C2 vs C1 
 
    N    Mean  StDev  SE Mean 
C2  5  220513    709      317 
C1  5  218688    456      204 
Difference = μ (C2) - μ (C1) 
Estimate for difference:  1826 
95% CI for difference:  (903, 2748) 
T-Test of difference = 0 (vs ≠): T-Value = 4.84  P-Value = 0.003  DF = 6 
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Table 5 - 7: The results of t-test for comparing the difference of the number of ill individuals 
for two scenarios, C1, the strategy with 50% comply rate for home confinement which start 
at the beginning of the pandemic and C2, the strategy with 50% comply rate for home 
confinement which starts after two months delay. 

Two-Sample T-Test and CI: C3, C1  
 
Two-sample T for C3 vs C1 
 
    N    Mean  StDev  SE Mean 
C3  5  254401    929      415 
C1  5  218688    456      204 
 
 
Difference = μ (C3) - μ (C1) 
Estimate for difference:  35713 
95% CI for difference:  (34524, 36903) 
T-Test of difference = 0 (vs ≠): T-Value = 77.20  P-Value = 0.000  DF = 5 

 

5.8. Summary 

In this chapter a simulation-based optimization model was presented to evaluate 

the effectiveness of the school closure and home confinement mitigation strategies 

for pandemic influenza. The results of the analysis show that a home confinement 

strategy is more effective than baseline and school closure strategies. When the 

rate of home confinement is 50% and the school closure threshold is 10% and the 

length of school closure is 4 week, the cost of the pandemic shows a reduction of 

12.7%.   
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CHAPTER VI 

CONCLUSION AND FUTURE STUDY 

Influenza pandemics are among the most damaging disasters for human being. 

Hundreds of thousands of people become ill, hospitalized, and dead during an 

influenza outbreak, leading to heavy costs to healthcare systems. Economic 

organizations lose billions of dollars as a result of work absenteeism and lower 

productivity of personnel. 

Healthcare authorities are always looking for some preparedness or 

mitigation plans to reduce the ill effects of the pandemics, and vaccination, school 

closure, and home confinement are some of the mitigation strategies that are 

considered. Much research has been done to evaluate the effectiveness of the 

mitigation strategies in the past. 

This research focuses on school closure and home confinement strategies. 

A simulation-based optimization model is presented that compares different 

scenarios for establishment of these strategies under a set of constraints and finds 

the best scenario based on the economic costs associated with them. 
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Jefferson County, KY is the target community in this research and 

considered to develop a real world case for the models presented in this study. 

The results of the models show that home confinement is more effective 

relative to the school closure strategy. The economic costs of the pandemic are 

reduced by 12.7% when the rate of home confinement is 50% and the school 

closure threshold is 10% and the length of closure is four weeks. 

This study expands the knowledge about the mitigation strategies. 

However, the horizon of knowledge in this area can be further expanded and here 

are some of the suggestions for future research: 

 This study presents a framework for combining the optimization and 

simulation for evaluating the mitigation strategies in the case of a pandemic 

influenza. There are two mitigation strategies considered in this research. 

However, other mitigation strategies such as vaccination can be added to 

the considered strategies under this simulation-based optimization 

methodology in combination with home confinement and school closure. 

 For the school closure strategies, only the cost associated with teacher’s 

payment is considered in the analysis. One might consider the indirect 

educational impact of the closure and expand the model from that 

standpoint. 

 In this research, we converted the performance over multiple measures 

(e.g. number of hospitalized or dead individuals) to a scalar measure using 

costs. If cost is not a suitable measure for healthcare authorities to use (for 
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example, if the importance of the lives of the individuals or limiting the 

number of dead people is critical in the decision making process), 

converting multiple performance measure to a scalar performance measure 

using multiple attribute utility (MAU) theory is another way to expand this 

study. 
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APPENDIX A 

Table A - 1 : number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for baseline scenario 

Run infected  ill hospitalized dead 

1 386341 258962 10533 5286 

2 390746 262484 10598 5370 

3 388928 260719 10712 5427 

4 388171 259825 10479 5220 

5 388740 260167 10528 5249 

6 390092 261397 10354 5179 

7 389444 260531 10387 5137 

8 386814 259170 10424 5222 

9 389646 261129 10472 5227 

10 388923 260199 10414 5185 

 

 

Table A - 2: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for scenario 1 

Run infected  ill hospitalized dead 

1 383455 256572 10285 5158 

2 381378 255288 10399 5221 

3 382672 256420 10383 5098 

4 384233 257997 10512 5304 

5 382566 256528 10271 5081 

6 382198 256350 10196 5127 

7 384048 257342 10376 5141 

8 381109 255220 10336 5114 

9 382695 256391 10344 5172 

10 382946 256057 10522 5230 
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Table A - 3: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for scenario 2 

Run infected  ill hospitalized dead 

1 408827 273894 10832 5395 

2 408478 273781 10697 5369 

3 407457 272670 10808 5346 

4 408042 273226 10785 5339 

5 408198 273977 10861 5423 

6 408814 273982 10869 5459 

7 408331 273549 10679 5368 

8 406456 272271 10831 5454 

9 407569 273269 10829 5354 

10 407866 273828 10812 5417 

 

 

Table A - 4: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for scenario 3 

Run infected  ill hospitalized dead 

1 389011 260408 9853 4923 

2 387204 259371 10096 5026 

3 388816 260322 10145 5077 

4 389465 261150 10066 5033 

5 389421 261171 9888 4958 

6 389185 260695 10044 4911 

7 387956 260400 10005 5045 

8 388651 260464 9954 4907 

9 387662 259588 9978 5046 

10 388708 260524 10041 5072 
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APPENDIX B 

Table B - 1: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for baseline scenario 

Run Dead Hospitalized ill Infected 

1 5151 10373 261230 390300 

2 5166 10330 258996 387241 

3 5221 10448 260094 388842 

4 5223 10485 260528 388667 

5 5146 10227 260194 388769 

6 5316 10474 261920 390964 

7 5211 10391 259830 387933 

8 5254 10560 259256 387323 

9 5300 10600 261699 389873 

10 5198 10390 259867 388490 

11 5168 10288 260298 388702 

12 5300 10663 262311 390731 

13 5267 10526 260342 388460 

14 5200 10373 259771 388069 

15 5275 10502 260008 387828 

16 5269 10420 260012 387561 

17 5221 10491 259944 387945 

18 5181 10371 260079 387940 

19 5163 10375 260857 389334 

20 5181 10312 260201 388418 

21 5262 10426 260006 387686 

22 5151 10365 260892 389893 

23 5201 10573 261195 389829 

24 5198 10460 259569 386734 

25 5239 10399 261921 390794 

26 5170 10480 261412 389545 

27 5243 10555 260674 389212 

28 5254 10444 261335 390693 

29 5160 10377 258578 386224 

30 5339 10589 260970 389763 
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31 5322 10556 260380 389056 

32 5222 10486 259883 387837 

33 5340 10572 259815 388070 

34 5265 10512 260457 389502 

35 5229 10457 261286 389855 

36 5237 10537 260621 389272 

37 5159 10302 262305 390765 

38 5235 10422 260473 388687 

39 5264 10534 260389 388379 

40 5223 10444 259411 387169 

41 5312 10475 260628 389262 

42 5297 10609 261127 390057 

43 5173 10336 259821 387710 

44 5272 10484 259402 386850 

45 5254 10508 260247 387755 

46 5367 10635 261857 390565 

47 5397 10736 260160 387756 

48 5327 10666 261143 390403 

49 5236 10518 259779 387639 

50 5273 10545 260437 389426 
 

 

Table B - 2: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for home confinement scenario 

Run Dead Hospitalized ill Infected 

1 4944 9892 236954 354309 

2 4941 9831 235434 351504 

3 4901 9839 236682 353286 

4 4983 9840 237156 354301 

5 5008 9968 237365 354563 

6 5022 9971 237257 353922 

7 4973 9937 236605 353308 

8 4918 9928 237395 354101 

9 4952 9829 237526 354782 

10 4962 9862 237002 353646 
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11 5025 9924 236306 354115 

12 4901 9855 237192 354889 

13 5060 9930 237241 353605 

14 5046 9891 236826 353389 

15 5063 9990 236719 353369 

16 5018 9893 236139 353039 

17 4932 9789 235486 352131 

18 4972 9829 236294 352989 

19 5093 10055 235922 351824 

20 4892 9782 233080 348201 

21 5102 9965 237477 354629 

22 5024 9891 235664 352098 

23 5034 9949 236123 352546 

24 4919 9749 237002 353781 

25 4989 9903 236101 352294 

26 4963 9955 236815 353892 

27 4997 9931 238083 354991 

28 4939 9857 235854 352580 

29 5045 9839 235263 352693 

30 5003 10071 237356 354305 

31 4984 9858 237372 354774 

32 4900 9766 237285 354408 

33 4975 9893 238234 355665 

34 5087 9991 237640 354372 

35 4964 9871 237628 354618 

36 5024 9900 237179 354468 

37 5023 10089 237363 354220 

38 4971 9781 236574 352873 

39 4968 9980 237814 355182 

40 4794 9676 235389 350729 

41 4936 9775 236000 352465 

42 5033 10075 237127 354148 

43 4924 9769 237096 354479 

44 4995 9844 236551 353230 

45 4965 9916 238019 355850 

46 4923 9860 236080 352105 

47 5051 9943 236257 353037 
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48 5054 9928 236955 354224 

49 4941 9824 237041 353998 

50 5009 9834 237809 355107 

 

 

Table B - 3: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for school closure scenario 

Run Dead Hospitalized ill Infected 

1 5149 10362 240423 358954 

2 5206 10324 248791 370675 

3 5169 10364 240829 359620 

4 5307 10496 242474 361444 

5 5303 10518 242505 361957 

6 5163 10371 245270 365496 

7 5164 10323 249004 371570 

8 5248 10385 245969 367591 

9 5206 10384 250074 373045 

10 5267 10520 240643 359261 

11 5241 10445 244591 364775 

12 5105 10351 247527 369248 

13 5187 10324 241224 360255 

14 5348 10437 244905 366109 

15 5058 10366 244722 365438 

16 5232 10461 247558 369238 

17 5081 10338 249662 372428 

18 5284 10386 244238 363916 

19 5168 10361 241046 360214 

20 5243 10391 240567 358863 

21 5245 10348 238722 355935 

22 5267 10498 247519 370337 

23 5114 10352 240617 359683 

24 5262 10493 245805 367790 

25 5278 10442 248146 370581 

26 5216 10317 241227 360109 

27 5412 10521 246002 366893 
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28 5134 10363 242209 361944 

29 5250 10456 239826 357698 

30 5289 10508 243570 363975 

31 5204 10408 241937 361261 

32 5187 10350 240426 359259 

33 5087 10381 249108 372006 

34 5162 10419 243021 362806 

35 5115 10378 242205 361372 

36 5139 10450 241405 360129 

37 5143 10282 240210 359116 

38 5191 10391 242553 362574 

39 5260 10505 245371 366066 

40 5220 10487 240606 359251 

41 5232 10398 241299 360207 

42 5200 10340 239958 358193 

43 5238 10396 244832 365205 

44 5199 10364 241739 360412 

45 5161 10524 247929 369970 

46 5226 10431 248370 371044 

47 5143 10305 237401 354766 

48 5327 10480 240416 358818 

49 5092 10255 241510 360268 

50 5230 10470 241692 361311 

  

 

Table B - 4: Weekly number of infected, ill, hospitalized, and dead individuals for baseline 
scenario 

Week Infected Ill Hospitalized Dead 

1 111.9 76.1 1.0 0.3 

2 834.6 558.3 6.5 2.6 

3 6959.9 4662.4 44.7 19.5 

4 43662.9 29241.7 295.0 125.5 

5 103536.1 69364.4 1385.0 654.4 

6 84098.1 56368.4 3184.9 1633.6 

7 64932.1 43492.9 2996.1 1544.4 
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8 41106.9 27538.7 1501.1 754.4 

9 22029.5 14741.2 604.8 294.0 

10 11144.9 7473.8 250.3 118.2 

11 5431.3 3642.1 110.3 50.9 

12 2604.2 1742.6 49.7 22.8 

13 1232.2 824.3 21.6 10.4 

14 587.9 394.5 11.5 5.7 

15 277.8 185.8 5.0 2.2 

16 124.6 84.3 2.3 1.0 

17 61.8 41.6 1.1 0.3 

18 30.7 20.7 0.6 0.2 

19 15.4 10.0 0.3 0.1 

20 6.5 4.4 0.2 0.0 

21 2.6 1.5 0.1 0.0 

22 1.1 0.8 0.0 0.0 

23 0.9 0.6 0.0 0.0 

24 0.5 0.4 0.0 0.0 

25 0.7 0.4 0.0 0.0 

26 0.3 0.2 0.0 0.0 

27 0.1 0.1 0.0 0.0 

28 0.0 0.0 0.0 0.0 

  

 

Table B - 5: Weekly number of infected, ill, hospitalized, and dead individuals for home 
confinement scenario 

Week Infected Ill Hospitalized Dead 

1 124.8 84.8 1.1 0.5 

2 977.6 654.4 6.8 3.0 

3 8224.5 5502.8 48.9 20.2 

4 49852.0 33395.4 337.7 144.5 

5 102301.1 68470.1 1465.2 701.1 

6 72956.2 48855.9 2932.6 1507.9 

7 52997.8 35504.1 2645.1 1369.8 

8 32541.6 21797.9 1388.1 707.3 

9 17150.0 11478.3 598.0 300.8 
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10 8551.0 5723.1 257.2 125.6 

11 4147.5 2771.0 113.8 55.1 

12 1990.2 1334.8 51.6 25.4 

13 943.4 631.4 24.1 11.6 

14 441.1 294.9 11.0 5.3 

15 200.9 134.4 5.0 2.8 

16 95.3 64.0 2.2 1.1 

17 45.1 30.0 1.0 0.4 

18 22.2 15.1 0.5 0.1 

19 10.6 7.0 0.2 0.1 

20 4.2 2.8 0.1 0.1 

21 1.9 1.4 0.0 0.0 

22 0.8 0.5 0.0 0.0 

23 0.3 0.1 0.0 0.0 

24 0.2 0.2 0.0 0.0 

25 0.1 0.1 0.0 0.0 

26 0.0 0.0 0.0 0.0 

 

 

Table B - 6: Weekly number of infected, ill, hospitalized, and dead individuals for school 

closure scenario 

Week Infected Ill Hospitalized Dead 

1 105.4 69.5 1.0 0.4 

2 785.1 524.3 5.2 2.4 

3 6553.7 4390.1 40.5 17.6 

4 42290.3 28340.3 275.8 115.4 

5 77355.7 51827.5 1305.0 628.9 

6 61192.0 40995.7 2918.8 1506.2 

7 58244.8 39001.3 2846.1 1468.3 

8 43779.6 29336.5 1597.4 809.9 

9 29717.5 19909.8 728.2 349.9 

10 16565.9 11094.0 334.7 155.0 

11 8729.3 5841.8 159.9 72.3 

12 5187.9 3472.2 79.0 35.4 

13 3473.3 2329.0 42.5 19.0 
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14 2335.9 1559.6 23.3 9.3 

15 1604.0 1073.6 13.5 5.0 

16 1165.0 779.4 8.2 3.1 

17 896.3 600.4 5.6 2.2 

18 735.0 489.9 4.4 1.5 

19 609.9 408.6 3.5 1.3 

20 494.0 331.1 2.6 0.9 

21 396.2 265.1 2.1 0.8 

22 325.5 217.0 1.8 0.5 

23 262.8 175.9 1.3 0.3 

24 214.0 143.9 1.3 0.4 

25 169.7 114.4 1.2 0.4 

26 124.7 84.3 0.6 0.2 

27 97.6 64.1 0.3 0.1 

28 77.2 51.5 0.3 0.1 

29 56.4 37.7 0.3 0.1 

30 0.0 0.0 0.0 0.0 

 

 

Table B - 7: number of infected, ill, hospitalized, and dead individuals for baseline, home 
confinement, and school closure scenarios for zip code 40214 

 Infected Ill Hospitalized Dead 

baseline 19610 13147 514 257 

home confinement 17805 11873 469 243 

School closure 18126 12114 500 258 
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APPENDIX C 

Table C - 1: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for when symptomatic rate is 50% 

Run Infected Ill Hospitalized Dead 

1 371004 185212 10157 5102 

2 372647 186330 10071 5127 

3 374132 186601 9999 5000 

4 373734 186779 10205 5126 

5 373301 186586 10138 5074 

6 370637 185093 10037 5046 

7 374668 187076 10166 5114 

8 372347 185495 9968 4943 

9 372685 186707 10059 5081 

10 375284 186839 10030 4937 

11 373736 187500 10077 5050 

12 374294 186807 9971 4981 

13 373270 186504 10074 5049 

14 374751 187297 10159 5019 

15 373889 186996 10124 5112 

16 370505 185267 10098 5010 

17 371602 185967 10189 5092 

18 373437 186161 10022 4948 

19 372532 186447 10149 5104 

20 371419 185427 10119 5032 

21 375060 187420 10259 5103 

22 373125 186921 10261 5141 

23 374635 187260 10180 5130 

24 375416 188399 10427 5183 

25 372925 186435 10032 4971 

26 371483 186068 9898 4968 

27 374228 186856 10044 5068 
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28 375079 187574 10257 5110 

29 372868 186258 10135 5038 

30 374328 187149 10134 5199 

31 374663 187167 9955 5020 

32 373495 186876 10120 5056 

33 371126 185917 10011 4962 

34 373661 186944 10117 4953 

35 372456 186766 10129 5127 

36 373286 186497 10055 5087 

37 372159 186114 10227 5200 

38 372640 185950 10069 4974 

39 373304 186509 10029 5022 

40 371512 185830 9984 4946 

41 371282 185205 10159 5102 

42 372334 186197 10190 5090 

43 376149 188308 10136 5097 

44 371173 185708 10173 5091 

45 374265 187558 10003 4882 

46 372679 186066 10101 5039 

47 371821 186184 10143 5008 

48 371278 185235 10142 5097 

49 373441 186599 10154 5139 

50 371420 186179 10095 5068 

  

 

Table C - 2: number of infected, ill, hospitalized, and dead individuals for the simulation 
runs for when symptomatic rate is 90% 

Run Infected Ill Hospitalized Dead 

1 410751 369631 10807 5420 

2 409333 368200 11020 5510 

3 410461 369350 10777 5356 

4 408238 367349 10809 5318 

5 410588 369545 10879 5444 

6 408555 367918 10871 5385 

7 409336 368125 10949 5503 

8 408604 367622 10835 5406 

9 406050 365632 10787 5329 

10 409391 368640 10826 5314 
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11 409750 369025 10834 5417 

12 410114 368980 10965 5427 

13 408507 367404 10848 5384 

14 411277 370386 10871 5436 

15 410082 369124 11070 5404 

16 409019 367787 10817 5444 

17 408962 367920 10853 5315 

18 407383 366655 10720 5358 

19 410381 369447 10952 5399 

20 410322 369364 10881 5549 

21 410294 369216 10805 5381 

22 410792 369704 10756 5368 

23 409019 368300 11030 5587 

24 408852 367850 10885 5407 

25 409378 368591 10888 5406 

26 408646 367413 11099 5568 

27 408165 367138 10904 5450 

28 408319 367717 10874 5362 

29 410419 369221 10976 5469 

30 409267 368348 10888 5279 

31 410650 369317 10899 5495 

32 409674 368459 10818 5272 

33 409606 368762 10835 5397 

34 407939 367302 10819 5402 

35 407952 367136 10840 5455 

36 409056 368484 10950 5388 

37 408094 366927 10969 5477 

38 409614 368802 10898 5402 

39 408930 367990 10899 5426 

40 408594 367357 10874 5325 

41 408337 367807 11068 5579 

42 407787 366878 11002 5515 

43 408705 367905 10930 5398 

44 408666 367925 10964 5421 

45 408217 367050 10878 5361 

46 406796 365893 10723 5305 

47 410552 369718 11030 5484 

48 408852 367992 10841 5360 

49 410861 369345 10842 5398 

50 407029 365959 10813 5400 

 



135 
 

Table C - 3: Weekly number of infected, ill, hospitalized, and dead individuals when 
symptomatic rate is 50% 

Week Infected Ill Hospitalized Dead 

1 0 0 0 0 

2 100.82 50.18 1.12 0.46 

3 696.52 348.74 5.32 2.76 

4 5741.36 2867.3 33.88 14.26 

5 37641.2 18811.2 216.58 88.48 

6 98947.64 49459.84 1062 492.7 

7 78720.58 39366.22 2673.66 1356.4 

8 61179.3 30557.24 2994.7 1546.42 

9 41740.92 20896.9 1743.44 884.14 

10 23641.88 11814.06 764.8 382.6 

11 12358.68 6179.2 331.46 158.22 

12 6225.92 3112.34 147.34 69.1 

13 3095.66 1553.78 68.24 31.16 

14 1528.72 766.2 33.72 14.94 

15 746.84 374.74 16.3 7.38 

16 365.54 181.84 8.66 3.92 

17 173.04 87.2 3.58 1.52 

18 80.72 39.74 1.86 0.96 

19 38.12 18.54 1 0.56 

20 18.66 9.22 0.44 0.2 

21 9.18 4.66 0.2 0.06 

22 5.1 2.28 0.2 0.06 

23 2.88 1.46 0.06 0.04 

24 1.74 0.86 0.02 0 

25 1.18 0.46 0 0 

26 0.58 0.36 0.04 0.02 

27 0.16 0.04 0 0 

28 0.14 0.06 0 0 

29 0.08 0.06 0 0 

30 0.1 0.04 0 0 

31 0 0 0 0 
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Table C - 4: Weekly number of infected, ill, hospitalized, and dead individuals when 
symptomatic rate is 90% 

Week Infected Ill Hospitalized Dead 

1 0 0 0 0 

2 120.52 108.18 1.72 0.78 

3 902 811.84 8.7 3.86 

4 7397.34 6659.56 59.6 26.82 

5 45565.14 41003.9 382.48 173 

6 106965.3 96264.2 1747.76 845.54 

7 94859.86 85342 3628.04 1856.84 

8 70864.02 63797.26 2970.36 1511.92 

9 41879.16 37674.14 1290.58 635.06 

10 21457 19307.32 478.88 222.68 

11 10324.8 9292.24 185.2 79.68 

12 4787.5 4309.6 75.74 32.4 

13 2185.42 1965.68 31.72 13.46 

14 990 894.08 15 6.24 

15 447.26 402 6 2.42 

16 206.34 185.38 3.26 1.42 

17 93.68 84.96 1.12 0.46 

18 41.74 37.06 0.6 0.26 

19 21.4 19.42 0.42 0.22 

20 9.04 8.02 0.08 0.02 

21 3.88 3.66 0.08 0.02 

22 1.22 1.08 0.02 0 

23 0.42 0.36 0 0 

24 0.26 0.24 0 0 

25 0.02 0.02 0 0 

26 0 0 0 0 

 

 

 

 

 

 

 

 



137 
 

CURRICULUM VITA  

ARSALAN PALESHI 

3325 AUDUBON RIDGE DR, LOUISVILLE, KY, 40213 
Phone: (502)7771328 
paleshi@gmail.com   

EDUCATION 

PhD in Industrial Engineering                       GPA: 3.90/4     2009 –2015 
University of Louisville, Louisville, KY                                                                                                                     

 Dissertation: Simulation-based optimization of mitigation strategies for 
pandemic influenza 

MBA - Entrepreneurship                               GPA: 3.80/4      2014 –2016   
University of Louisville, Louisville, KY                                       

MS in Social Economics System Eng.          GPA: 17.66/20                2006 - 2008                                                                                                                                      
Sharif University of Technology, Tehran, Iran     

 Thesis: Studying the profitability of momentum strategy and its sources in 
Tehran Stock Exchange                                                               

BS in Industrial Engineering                         GPA: 16.33/20         2001 - 2006 
Sharif University of Technology, Tehran, Iran                                                                                                                      

ACADEMIC EXPERIENCE 

Research Assistant; Logistics & Distribution Institute, UofL, KY            2011- 2012 

 Collaboration with a 30 member UofL team of a multi-million dollar 
healthcare project funded by Kentucky Critical Infrastructure Protection 
Program 

 Development of simulation models to forecast the spread of pandemic 
influenza for Jefferson County, KY 

 Establishment of simulation-based optimization models to mitigate 
pandemic influenza for Jefferson County, KY 

Teacher Assistant; Sharif University of Technology, Tehran, Iran  2004- 2006 

FELLOWSHIPS AND AWARDS 

 Industrial Engineering Doctoral Dissertation Award; UofL                           2015 
 Best in Major Award; Engineering Exposition, UofL  2012 
 American Society for Quality Award; The Louisville Section of American Society 

for Quality      2012 
 University Fellowship; UofL  2009  

             

mailto:paleshi@gmail.com


138 
 

PUBLICATIONS 

 Arsalan Paleshi, Gerald W. Evans, Sunderesh S. Heragu, Kamran S. 
Moghaddam, “Simulation of mitigation strategies for a pandemic influenza”, 
Proceeding of the 2011 Winter Simulation Conference, December 2011, 
Phoenix, Arizona 

 Arsalan Paleshi, Gerald W. Evans, Sunderesh S. Heragu, Kamran S. 
Moghaddam, “Disease spread model to evaluate intervention strategies 
during pandemic influenza”, 61th Industrial Engineering Research 
Conference, May 2011, Reno, Nevada 

 Arsalan Paleshi, Trivikram Rao, Gail DePuy, Bulent Erenay, “Spreadsheet 
decision support  tool for a food bank’s inventory management”, 61th 
Industrial Engineering Research Conference, May 2011, Reno, Nevada 

 Trivikram Rao, Arsalan Paleshi, Gail DePuy, Bulent Erenay, “A 
mathematical programming approach for assigning students to schools”, 
61th Industrial Engineering Research Conference, May 2011, Reno, Nevada 

 Arsalan Paleshi, Gerald W. Evans, Sunderesh S. Heragu, Kamran S. 
Moghaddam, “Disease Spread Model to evaluate the effectiveness of home 
confinement strategy during pandemic influenza, 3rd Health and 
Humanitarian Logistics Conference, March 2011, Atlanta, Georgia 

 Hamid Foroughi, Arash Agha Gholizade Khiavi, Shahram Abyari Ali Abad, 
Arsalan Paleshi, “How price fluctuations is influenced by the response of 
intermediaries to different sales methods: A Case study in Automotives”, 
26th International Conference of System Dynamics Society, July 2008, 
Athens, Greece                                                                          

COMPUTER SKILLS 

 Programming: JAVA, VB  Simulation: ARENA, VENSIM 

 Optimization: LINGO, GAMS, 
MATLAB 

 Database Management: MS-
Access 

 Statistical Analysis: MINITAB, 
EVIEWS 

 Risk Analysis & Decision 
Making: DPL 

 Geographic Information 
System: ArcGIS 

 Project Management: MS-
Project 

 Design: CAD 

EXTRA-CURRICULAR ACTIVITIES 

 President, INFORMS Student Chapter, UofL   2011 –2012 
 Vice-President, INFORMS Student Chapter, UofL  2010 - 2011 
 Officer, American International Relations Club, UofL   2010 - 2011 
 Webmaster, INFORMS Student Chapter, UofL  2009 - 2010 
 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2015

	Simulation-based optimization of mitigation strategies for pandemic influenza.
	Arsalan Paleshi
	Recommended Citation


	tmp.1438977011.pdf.l2fvX

