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ABSTRACT

SIMULATION-BASED ANALYSIS AND OPTIMIZATION OF THE

UNITED STATES ARMY PERFORMANCE APPRAISAL SYSTEM

Lee A. Evans

April 13, 2018

From 2010 to 2016, the total number of active duty United States Army personnel

decreased by over 17%. The Department of Defense uses a variety of instruments

to downsize the services, of which the most immediate and impactful is through

decreased promotion rates. The Defense Officer Personnel Management Act of

1980 mandates the termination of officers twice not selected for promotion. As

such, the promotion rates to the rank of lieutenant colonel (LTC) for 2015 and 2016

were the lowest over the past two decades. Central to each promotion board is the

analysis of officer evaluation reports (OERs), the military version of performance

appraisals.

The biases associated with evaluating employees are well documented, par-

ticularly in management literature. These biases can often create a disconnect

between the actual performance level of an employee and the management’s per-

ception of the employee’s performance level. The performance appraisal system in

the United States Army is a forced distribution system that restricts the number

of above average evaluations raters are allowed to give subordinates. This struc-

ture, combined with human behavior and system dynamics, creates an additional

bias not currently addressed in literature.
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Military personnel systems have long been the subjects for manpower modeling,

or workforce planning, due to their size relative to most civilian organizations.

Techniques for manpower modeling include dynamic programming, goal program-

ming, Markovian models, and simulation. These techniques assist policy makers

with matching the supply of personnel with the available jobs. Rather than analyz-

ing the aggregate requirements by occupation and seniority, this study determines

the extent to which the current system promotes the best people into the available

jobs. While this is often a subjective measurement, the use of discrete event sim-

ulations allows us to quantify the effects of the current system and analyze future

policy decisions.

In this dissertation, a discrete event simulation framework is considered to

replicate the dynamics, structure, and regulatory constraints placed on the offi-

cers in the U.S. Army. Using performance appraisal data provided by the United

States Army Human Resources Command, we create a multi-objective response

function in order to quantify the human behavior associated with evaluating sub-

ordinates. We are able to minimize the squared error of our system output with the

multi-objective response function using simulation-optimization techniques. Uti-

lizing simulation-optimization techniques for model validation enables estimating

unknown input parameters, such as human behavior, based on historical data.

Furthermore, the model allows users to analyze the effects of current constraints

on the evaluation system and the effects of proposed personnel policy changes.

The effectiveness of the performance appraisal system is based on its ability to
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accurately evaluate the officers’ performance levels. The model output is analyzed

by the number of misidentified individuals and the severity of the misidentification.

An initial analysis showed that 20.07% of the officers in the system do not receive as

many above average evaluations as their performance level warrants. Additionally,

structural changes such as decreasing the average number of a rater’s subordinates

from fifteen to five increases the number of misidentified personnel by 59.86%.

Ranking and selection methods that include the Kim Nelson (KN) and the Nelson,

Swann, Goldsman, Song (NSGS) procedures assists in determining the optimal

combination of input parameters such as forced distribution constraints placed on

raters, frequency of moves, number of subordinates assigned to each rater, and

rater behavior.

The simulation will serve as a tool for policy analysis to recommend policies

and behavior that maximizes the extent to which the performance appraisal sys-

tem accurately identifies the most qualified employees. Consequently, the results

demonstrate broad applicability of simulation-optimization in the field of man-

power modeling and human resource management.
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CHAPTER 1

INTRODUCTION

1.1 Background

Despite personnel costs comprising nearly half of the Department of Defense’s

$585 billion annual budget, active duty United States Army personnel levels have

rapidly decreased as a result of budgetary constraints and congressional autho-

rizations (Office of the Under Secretary of Defense (2015)). According to the

Defense Manpower Data Center, the number of active duty U.S. Army person-

nel has decreased by nearly 17% since 2010 (see Figure 1.1). The Department

of Defense (DoD) employs a number of techniques such as decreased accessions,

involuntary retirement, separation boards, fewer re-enlistment opportunities, and

lower promotion rates to facilitate this decrease in personnel strength levels. Fig-

ure 1.2 shows the corresponding decrease in active duty promotion rates to the

rank of lieutenant colonel for the Army Competitive Category (ACC). The ACC

includes all branches of the Army with the exception of medical officers, Judge
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Advocate General (JAG) officers, and chaplains. Given the specificity of these

occupations, non-ACC officers go through a separate accession and promotion

process. Henceforth, any reference to evaluation, promotion, attrition, or assign-

ment applies strictly to ACC officers. Traditionally, military manpower modeling

has focused on retaining an optimal mix of skills and experience in order to meet

a future demand with specified degrees of uncertainty. As an organization with

minimal lateral entry opportunities, this approach allows the DoD to set pol-

icy and determine retention incentives for future requirements. While traditional

manpower modeling aids decision makers in determining the number and occu-

pational distribution of the organization’s employees, the emerging field of talent

management seeks to acquire, promote, and develop the right candidates for each

job requirement.

Figure 1.1: U.S. Army active duty personnel strength from 1994 to 2016 (Source:
Defense Manpower Data Center)
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Figure 1.2: U.S. Army active duty lieutenant colonel promotion rate from 1996 to
2016 (Source: U.S. Army Human Resources Command)

Talent management has become a topic of interest for numerous organizations

within the DoD. The U.S. Army Deputy Chief of Staff for Personnel (G1), the U.S.

Army Human Resources Command, the U.S. Army Cadet Command, and the Of-

fice of Economic and Manpower Analysis all have programs or teams dedicated to

studying and implementing talent management within their organizations. The

Office of Economic and Manpower Analysis defined talent management as the pro-

cess that aligns systematic planning with implementation to meet the current and

future talent demands (Wardinski et al. (2010)). This process integrates acquisi-

tion, development, employment, and retention of Army personnel. A considerable

amount of attention has been given to talent management in the civilian sector as

well. McDonnell et al. (2017) noted that despite the volume of research devoted

to talent management, the nature of the field remains disjointed and there is an
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increasing need for nuanced methodological approaches. One nuanced approach

is the use of discrete-event simulation to gain insight into the behavior of the

performance appraisal system.

U.S. Army performance appraisals have undergone nine major revisions since the

introduction of the forced choice officer evaluation system in July of 1947. Upon

inception, the forced choice system established rating pools of 12 to 40 officers

where raters would sequentially evaluate the highest and lowest performing officers

within their assigned pool. Once an officer was rated as the highest or lowest of

the pool, he was removed from the next iteration of the rater’s selections. The

rater would repeat the process until all of the officers under consideration had been

rated, creating a {1,. . . ,n} ranking of the officers (Sisson (1948)). This ranking

was used for the purposes of promotion and reassignment of officers. Officers

not selected for promotion were separated from the service, a practice eventually

codified by the Defense Officer Personnel Management Act (DOPMA), passed by

Congress on December 12, 1980. The Defense Officer Personnel Management Act

provides guidelines for the number of officers at each rank as a function of the total

number Army personnel (Rostker et al. (1993)). Presently, officers are evaluated

by promotion boards in cohort year groups, generally determined by their number

of years of service as an officer. Any officer not selected for promotion to the next

rank is forced to leave the service. There are rare exceptions to the separation

mandate, but DOPMA states that any exception is to be used sparingly, generally

for officers with difficult-to-replace, unique skill sets. The guidelines set forth by

DOPMA create the diminishing rank structure shown in Figure 1.3, commonly

4



referred to as a pyramid structure due a decreasing required number of officers at

higher ranks.

Figure 1.3: Promotion induced attrition pattern prescribed in DOPMA (from
Rostker et al., 1993).

Officers in the U.S. Army face numerous promotion boards throughout their

careers. Unlike many organizations, if an officer is not selected for promotion,

he/she is forced out of the service no later than the first day of the seventh month

after the President of the United States has approved the board results (Rostker

et al. (2011)). The impact of the DOPMA separation mandate is severe due to the

military’s cliff vesting retirement system. That is, officers who leave service with

less than 20 years do so with no retirement benefits. Given the gravity of promotion

board results, officer performance appraisals, or officer evaluation reports (OERs),

are critical in identifying and promoting high-performing individuals. Promotion

boards consist of 17 general officers with little or no personal knowledge of the

officers presented at the board. Each general officer scores the file of each officer

presented at the board on a scale of zero to six, in half point increments. The
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scores are aggregated, officers are placed on a {1,. . . ,n} list, and a percentage of

the officers are selected for promotion based on authorizations. The officer file

consists of a one-page summary known as the officer record brief (ORB), awards,

transcripts, any adverse action or letters of reprimand, and officer evaluations.

The flow of U.S. Army officers through the performance appraisal system is

depicted in Figure 1.4. Officers enter the system when they receive a promotion.

The officers are then assigned into rating pools, or groups of officers of the same

rank with a common rater. Annually, raters give each subordinate officer an

evaluation that is a subjective measurement of the officer’s performance relative

to their peers within the same rating pool. Due to high turnover and frequent

moves in the military, following the evaluation the rated officer either remains in

the same pool, or is reassigned into a new pool. Officers face promotion boards

after a specified time at each rank, five years in the case of Figure 1.4. After each

member of the promotion board scores the officers’ files, the aggregated scores

are used to generate an order of merit list. The officer’s standing on the order of

merit list ultimately determines who is promoted to the subsequent rank and who

is forced to leave military service.
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Figure 1.4: Flow chart of the simulated U.S. Army officer performance appraisal
system

Due to the regulatory constraints placed on the system, human behavior, and

the dynamics of frequent moves, the performance appraisal system is prone to

errors. By simulating system dynamics and rater behavior, we are able to estimate

the misidentification of performance in the current performance appraisal system.

Simulation-optimization allows us to evaluate changes in controllable parameters

in order to reduce this number of misidentifications.

Forced distribution performance appraisal systems, widely abandoned in the

civilian sector, constrain raters and induce error in identifying the top performing

individuals within an organization. By regulation, raters in the Army are allowed

to give up to 49% top evaluations, commonly referred to as “top block”, “above

center of mass (ACOM)”, or “most qualified” evaluations (Department of the

Army (2015)). An excerpt of the Department of the Army Form 67-10-2, the

Army Field Grade Officer Evaluation Report, is shown in Figure 1.5. This shows

that the rater is required to check the block that corresponds to the rated officer’s
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potential, as compared to the potential of the other officers of the same rank.

The top block, or “most qualified”, is limited to no more than 49% of the total

evaluations given by the rater.

Figure 1.5: Excerpt from Department of the Army Form 67-10-2, Field Grade
Officer Evaluation Report (Source: Department of the Army Regulation 623-3:
Evaluation Reporting System)

During the past two years with the rapid decrease in promotion rates to lieu-

tenant colonel, data shows that the number of ACOM evaluations is a strong in-

dicator of whether or not an officer is selected for promotion (see Table 1.1). The

quasi-complete separation of the data prohibits the use of logistic regression, but

the statistics show that officers with three or more ACOM evaluations have a very

high promotion rate, while officers with two or fewer ACOM evaluations are rarely

selected for promotion. Within the DoD, the consequences of misidentifying the

best candidates for promotion carries dire consequences. From an organizational

perspective, a suboptimal outcome of a promotion board compromises national se-

curity capabilities and the ability to confront both state and non-state actors. On

an individual level, officers who have faithfully served their country and deserve

to continue service are forced out of the military, often times with no retirement
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benefits.

Table 1.1: LTC promotion rates by number of ACOM evaluations

Number of ACOM Evaluations
0 1 2 3 4 5

Promotion Rate
2015 0.0% 2.3% 17.3% 73.7% 96.9% 98.2%
2016 0.0% 1.3% 12.7% 80.3% 98.4% 100.0%

1.2 Research Motivation

“Leadership must move from the performance appraisal system to

the appraisal of the performance of the system”

— Ronald D. Moen, Quality Progress

In practice, U.S. Army officers have three opportunities for promotion to each

successive rank: below the zone, primary zone, and above the zone. A below the

zone promotion occurs one year earlier than the majority of the officers’ peers,

those commissioned as officers in the same time frame. Given the limited num-

ber of officers selected for promotion below the zone, only officers not selected

for promotion in the primary zone and above the zone boards face separation

from military service. The majority of promotions occur during the primary zone.

Officers not selected for promotion during the primary zone are afforded one ad-

ditional opportunity for promotion, the above the zone board. While each officer

has up to three opportunities for promotion, Figure 1.6 shows that historically,

the percentage of officers promoted in any board other than the primary zone
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is extremely low. Therefore, primary zone promotions provide the largest sample

when analyzing the effectiveness of the U.S. Army’s performance appraisal system.

Figure 1.6: Promotion rates to the rank of lieutenant colonel by zone of consider-
ation (Source: U.S. Army Human Resources Command)

Within the primary zone, there has been an increasing gap between those officers

considered for promotion and the officers subsequently selected for promotion (see

Figure 1.7). The difference between the solid and dashed lines represents the

number of officers considered, but not selected for promotion. In 2015, there were

588 officers in the primary zone not selected for promotion to lieutenant colonel,

while in 2016 there were 609. What remains unknown is the extent to which the

U.S. Army selected the 1,816 most qualified officers for promotion and not selected

the 1,197 officers least qualified for promotion over the two-year period from 2015

to 2016.
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Figure 1.7: Considered and selected populations to the rank of LTC (Source: U.S.
Army Human Resources Command)

While the gap between considered and promoted population has begun to

widen, the majority of current research has been on developing models for man-

power planning under uncertainty. These models are useful in determining an

appropriate quantity and occupational mix for future authorizations. This is of

particular interest to the DoD because most organizations seeking to align per-

sonnel inventory with workforce requirements treat workforce requirements as a

given. When requirements are taken as variables, simulation-optimization has

been used to determine an optimal, or near-optimal, occupational mix (Henry et

al. (2005), Harper et al. (2010), and Zais (2014)). However, other models incor-

porate human behavior associated with retention incentives in order to minimize

the gap between personnel authorizations and inventory (Hall (2009), Coates et

al. (2010)). Boudreau (2004) identified human resource management systems as
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an important area for manpower modeling. Of particular interest is the emerging

field of talent management that aids organizations in how to recruit, develop, and

retain talented employees based on the knowledge, skills, and attributes required

for current and future demands (Wardynski et al. (2010)). While performance

appraisal systems are an integral part of human resource management systems

and talent management, very little research has been conducted to determine the

effectiveness of performance appraisal systems, particularly in organizations with

uncertain requirements and minimal lateral entry opportunities (Kozlowski et al.

(1998), Coens and Jenkins (2000)). Accuracy of the performance appraisal system

is critical to leader development. Odierno (2015) stated that “as we build cohesive

teams comprised of high-performing individuals with the right talents, we build a

stronger Army.” The motivation of this research is to bridge the gap between talent

management and manpower modeling through the use of discrete-event simula-

tion by determining how the performance appraisal system and human behavior

compromise the ability to accurately evaluate personnel within an organization.

This research contributes to the field of manpower modeling by gaining in-

sight into complex human resource management systems, illustrated through the

following techniques: (1) discrete-event simulation model development that in-

corporates the existing structure and behavior of the U.S. Army performance

appraisal system; (2) model validation using historical data provided by the U.S.

Army Human Resources Command; and (3) using simulation-optimization tech-

niques to adjust controllable parameters in order to improve upon the existing

performance appraisal system. Through this research, we develop techniques to
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determine the misidentification of high performing personnel that is a result of

regulatory constraints, system dynamics, and human behavior. Finally, we apply

simulation-optimization techniques, leading to policy recommendations on how to

improve the system and analyze future personnel policy decisions.

1.3 Organization of this Dissertation

This dissertation proposal is organized as follows. In Chapter 2, we review the

literature on models for military modeling and simulation, performance appraisal

systems, military policy, process modeling, and simulation-optimization. In Chap-

ter 3, we propose a personnel evaluation simulation model that represents the

current evaluation and promotion systems in the United States Army and allows

us to quantify the degree to which the system contributes to a suboptimal out-

come of personnel evaluation. Chapter 4 introduces simulation-optimization tech-

niques and describes their application to performance appraisal systems. These

simulation-optimization techniques include ranking and selection in order to de-

termine ordinal rankings of input parameter configurations. Chapter 5 describes

areas of future research. These areas include model adjustments that provide a

deeper understanding of the effect of organization structure, human behavior, and

policy. Chapter 6 provides conclusions and discussions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Military Manpower Modeling and Simulation

“Operations Research is a scientific method of providing executive

departments with a quantitative basis for decisions regarding operations

under their control.”

— Charles Goodeve, “Operational Research” in Nature

The field of operations research is inherently interdisciplinary with its origins

deeply rooted in improving the efficiency and effectiveness of military operations.

One of the earliest examples of interdisciplinary teams occurred in 1940 when

physicist Patrick Blackett established a team of mathematicians, physiologists,

physicists, astrophysicists, surveyors, and military officers to study techniques for

improving the use of radar in anti-aircraft gunnery (Gass and Assad (2004) and Bu-

diansky (2013)). This team, referred to as ”Blackett’s Circus,” was later credited
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with defeating the German U-Boat fleet by influencing military strategy through

the application of mathematical modeling. An important aspect of operations

research in World War II was that these interdisciplinary teams did not recom-

mend new tools or weapons of warfare. Rather, they used science to recommend

improved application of existing weapon systems in order to gain a competitive

advantage (Morse and Kimball (1951) and Budiansky (2013)). While the field of

operations research has evolved since its inception during World War II, Morse

and Kimball (1951) noted that the general techniques of operations research can

aid executive decisions in both industrial and governmental settings.

The study of military modeling and simulation has played a prominent role in

the field of operations research. One of the most influential fields of defense mod-

eling and simulation is military manpower modeling. Bartholomew and Forbes

(1979) succinctly describe manpower modeling as an attempt to match the supply

of people with the jobs available for them. Military personnel systems have long

been the subject of manpower modeling due to their size relative to civilian organi-

zations, detailed recruitment and attrition data, and clearly defined occupational

specialties. Military manpower systems often provide large enough samples to

draw meaningful conclusions based on aggregated data. Bartholomew and Forbes

(1979) recognized the importance, and inseparable characteristics of the aggregate

and the individual when modeling manpower systems, but conceded that statis-

tical approaches are most directly relevant when analyzing the aggregate level.

Hall (2009) determined that existing literature on military manpower modeling

falls under one of three main topics: dynamic programming, Markovian models,
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and goal programming. While this list is not exhaustive, it shows that the use

of simulation in understanding and modeling complex manpower systems is an

area that has received very little attention. Wang (2005) classified operations

research techniques applied in manpower planning into four branches: optimiza-

tion models, Markov chain models, computer simulation models, and supply chain

management through system dynamics. Wang (2005) discussed simulation as one

of the four operations research techniques applied to workforce planning, how-

ever, he was critical of simulation models, noting that they are good at answering

“what happens if?” questions, but do not provide advice on the “best” workforce

planning policies. In the subsequent sections, we will describe existing literature

on the topic of military manpower planning using the techniques of dynamic pro-

gramming, goal programming, Markovian models, and simulation models.

2.1.1 Dynamic Programming

Dynamic programming is a technique commonly applied to problems that re-

quire sequences of interrelated decisions where exhaustive enumeration of decision

combinations is infeasible or extremely time-consuming. Dynamic programming

problems are structured such that an optimal solution to the main problem can

be determined by finding optimal solutions of its subproblems (Lew and Mauch

(2007)). The optimal value of each subproblem is determined by evaluating a re-

cursive functional equation that can be either deterministic or stochastic. Bellman

(1954), credited with introducing the concept of dynamic programming, gave the
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following basic functional recursion equation for dynamic programming problems:

fN(v) = max
k
fN−1(Tk(v)), N = 2, 3, ..., (2.1.1)

where the system can be described at any time by the M -dimensional vector

v = (v1, v2, ..., vM). The function fN(v) is the return when the stage of the system

is N, and Tk is the transition as a result of choice k. In the case of stochastic

dynamic programming, the transitions have associated probabilities and fN(v)

becomes E[fN(v)]. This makes it possible to determine the optimal set of decisions

or policies one stage at a time rather than enumerating all possible combinations

of decisions. The applications of dynamic programming range anywhere from

long-term investment decisions, to optimal inventory and purchasing decisions, to

workforce scheduling and design.

Workforce design, or manpower planning, typically consists of the combina-

tion of occupations and number of workers over a fixed or infinite time horizon.

These overlapping substructures, each with an optimal solution, lends itself well

to dynamic programming. Early papers on dynamic programming often cited

manpower planning as an area for application. An early example of dynamic pro-

gramming used in manpower models was Dailey’s (1958) research on re-enlistment

rates within the United States Navy. Through his research, he determined that

re-enlistment rates were a function of total size of the Navy. This insight allowed

Dailey to normalize annual re-enlistment rates and provided a benchmark for

comparison of the annual effectiveness of re-enlistment policy. This research also
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provided a predictive model for re-enlistment rates based on force size, quantify-

ing the human behavior associated with re-enlistment. Fisher and Morton (1967)

expanded upon this topic of effectiveness of re-enlistment policy. They developed

multiple models based on retention incentives of a period of multiple years in or-

der to retain technical experts requiring a high level of investment in training.

This included a Cobb-Douglass production function, measuring productivity as

a function of labor and capital, to compare multiple configurations of personnel

strengths and capital investments. Based on the Cobb-Douglass production func-

tion, they were able to provide a framework for human resource decision making

based on an ordinal ranking of configurations.

While early studies of manpower modeling used dynamic programming to evalu-

ate the effectiveness of policy for establishing the number and type of occupational

specialties, more recent research combined dynamic programming with other ana-

lytical techniques to solve workforce planning problems. Ozdemir (2013) employed

stochastic dynamic programming with an analytic hierarchy processing order for

personnel selection processes. The analytical hierarchy process weighed multiple

criteria associated with the hiring process while incorporating the judgment of

multiple decision makers, introduced in the model as relative weights. The multi-

stage approach to dynamic programming allowed employers to evaluate and select

the best candidates at each stage of the hiring process.

McGinnis and Fernandez-Gaucherand (1994) developed a decision model for

optimally scheduling U.S. Army basic training resources based on dynamic pro-
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gramming. Their model examined the size of basic training units, subdivided into

“companies”, the length of training period, and the number of idle companies for

each week of a calendar year. Given the upper bounds on each one of these de-

cision variables, this generated 4.27 × 1020 possible states for each week. While

dynamic programming significantly reduces the amount of enumeration required

to find an optimal solution, their problem was too large to solve using exact meth-

ods, forcing the development of multiple heuristics. The heuristics allowed them

to generate and evaluate multiple training schedules based on maximizing the

quality of training, defined as maximizing the instructor-to-student ratio. This

model enabled decision making regarding quality of the training at each stage, or

week, of the system without having to gauge the uniqueness and performance of

the individuals within the system. This is an example of the Bellman functional

recursion equation, which is a measure of the “return” of the system at each stage.

Researchers have been able to tailor the return measurement to many different

manpower planning models. Rao (1990) used a dynamic programming approach

to minimize the financial costs of manpower systems. Similar to Wagner-Whitin

dynamic lot-size models, costs were associated with recruitment, overstaffing, un-

derstaffing, firing, and retention. While this model did not distinguish between

individuals within the system, its strength was the ability to quantify the costs

associated with manpower planning decisions. This is of particular interest to

an organization such as the United States Army. Zais (2014) noted that within

the Army’s enlisted force alone, an increase of just 1% in the number of required

personnel can have an adverse budget implication in excess of $1 billion.
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2.1.2 Goal Programming

Price and Piskor (1972) developed a goal programming model of the Canadian

military manpower planning system. The objective of this model was to assist in

determining appropriate promotion quotas for various rank levels and occupational

specialties over a three-year planning horizon. Their model penalized deviations

associated with the financial, manpower, and promotion constraints through the

use of slack and surplus variables in the following equations:

min(c+r + c−s) (2.1.2)

Ax + r− s = b. (2.1.3)

The objective function (2.1.2) contains costs, c+ and c−, that are associated with

the slack and surplus variables, r and s, respectively. The matrix A in Equation

(2.1.3) contains the constraint coefficients while the vector b contains the goals

of each constraint in A. This structure allowed the authors to set promotion con-

straints for each rank, while allowing flexibility in the mix of occupations within

that rank. To do this, the costs associated with both the slack and surplus vari-

ables of the total promotion constraint were set to a graduated scale, ensuring

deviations at higher ranks are penalized more severely than deviations at lower

ranks. Meanwhile, the constraints with the occupational specialties had much

lower costs associated with the slack and surplus variables. This gave promotion

boards the flexibility to compensate for unequal distribution of high-performing
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officers across multiple occupational specialties while maintaining an aggregate

number of officers close to the authorized amount, particularly at higher ranks.

Georgiou and Tsantas (2002) used goal programming to develop a model for

businesses to utilize European Union incentives that fund continuing education

programs for hiring and promotion programs. In their model, they examined a

hierarchical organization with k classes of employees. Traditionally, organizations

face a push or pull promotion system. In a pull promotion system, the company

waits for a position to be vacated, then train and promote an employee to fill the

vacant position. In a push system, employees are preemptively promoted to reduce

or eliminate the time of vacant positions. Georgiou and Tsantas (2002) proposed

a system where European Union incentives are used to train additional classes

of existing employees and potential recruits who remain in a standby position for

immediate promotion or hiring within the organization. The goal programming

problem minimized the costs associated with vacant positions, premature promo-

tions, and the training expenses required minus the European Union funding for

the additional standby classes. This novel and effective approach to the traditional

promotion problem relied on the ability to accurately identify the most suitable

employees and recruits for training.

Bres et al. (1980) formulated a goal programming model that differentiated

between Navy officers from multiple commissioning sources with determining spe-

cific continuation rates. Based on the unique continuation rates, their model

evaluated the proportion of officers from each commissioning source through the
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eleventh year of commissioned service. The authors used goal programming to

minimize the weighted deviations from officer strength goals required at each of

the 11 out-years, while ensuring accessions from an appropriate mix of commis-

sioning sources. Their model aggregated the cohort year groups and used histor-

ical attrition rates, focusing on commissioning source continuation rates rather

than occupational continuation rates, simultaneously taking into account annual

training capacity limits and acceptable upper and lower operating limits for each

commissioning source. Similarly, Bastian et al. (2015) created the objective force

model (OFM), a mixed-integer linear weighted goal-programming model that es-

timates the optimal number of hires and promotions for the U.S. Army’s medical

specialists. The OFM was more detailed than the model proposed by Bres et al.

(1980) in that it incorporated continuation rates of multiple occupational special-

ties, allowing flexibility in the occupational mix of each cohort year group. This

occupational imbalance, allowing a slight surplus in certain occupations without

going below a minimum threshold in each occupation, provided latitude in fill-

ing skill immaterial requirements and facilitated the retention of high-performing

individuals by not dictating a strict quota for each required skill.

2.1.3 Markovian Models

Many early Markovian manpower planning models were developed by studying

historical transition rates between jobs, along with hirings and firings within an

organization, in order to predict future requirements. As such, many manpower
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planning models aggregated the workforce into occupations, grades, or total work-

force strength. Wessels and van Nunen (1976) added specificity to the traditional

Markov model approach in order to capture the dynamic behavior of individual

employees. Rather than transition probabilities between grades being based solely

on employees current grade, they were calculated using education, experience,

time in current grade, and age. Even a modest enumeration of the transition

criteria resulted in 900 states. This increased specificity can have ramifications

in terms of usefulness of the model. Bartholomew and Forbes (1979) noted that

as the number of states increases, the stocks and flows between states becomes

smaller and the transition probabilities cannot be estimated with an adequate

precision. Therefore, it is imperative to balance realism with the loss of accuracy

by providing a reasonable amount of aggregation.

Another example of a Markov chain model used for manpower planning was

Zanakis and Maret’s (1980) model formulated for an organization with over 1,000

engineers. This model provided insight into predicting future organization man-

power losses and position level distribution given multiple hiring quotas and growth

rates. This basic application of Markov chains allowed the organization to make

long-range projections, revealing the need to modify current personnel policies.

While the policy decisions were made in terms of hiring quotas and promotion

rates, this work demonstrated that manpower modeling can be an effective tool in

informing policy. Zanakis and Maret (1980) noted that most Markovian manpower

applications cited in literature were from governmental organizations, including

the military, due to their size relative to civilian counterparts. While Zanakis
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and Maret’s (1980) research was focused on a civilian organization, their work,

combined with previous literature, aided future researchers in demonstrating the

ability of Markovian models to influence military policy.

Kinstler et al. (2008) developed a Markovian model for the United States Navy

Nurse Corps to determine the optimal number of new recruits along with the op-

timal mix of commissioning sources. The U.S. Navy faced the issue of overstaffing

at lower officer ranks in order to meet personnel requirements at the higher rank

levels. Since officers from different commissioning sources have different continu-

ation rates, this imbalance can be reduced by altering the mix of hiring sources.

This model showed that adjusting the mix of officers entering the service can re-

duce the overall imbalance by 25 percent. However, the authors acknowledged

that this produced disproportionate shortages at specific senior ranks, which are

unlikely to be acceptable, and that they assumed static promotion rates. Their

recommendation to combat shortage at specific ranks was to hire, or re-hire, offi-

cers at the more senior ranks. The practice of lateral entry, while common in the

civilian sector, is not currently used in military, but some critics have advocated

for its implementation (Kane (2012)). Promotions were relatively constant near

2008, but Figure 1.2 demonstrates that the assumption of static promotion rates

is not realistic in the current operating environment.

Due to the dynamic nature of most organizations, many manpower planning

models incorporate Markov processes into goal programming or dynamic program-

ming. Zais (2014) noted that military manpower modeling plays a critical role
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informing military leadership on system dynamics. These dynamics are often dif-

ficult to understand and translate into policy due to perpetual change. Internally,

the United States military is subject to budgetary constraints, changing authoriza-

tions, and minimal surplus in personnel. Externally, personnel levels are affected

by deployment uncertainties, the stochastic nature of the United States economy’s

impact on retention and accessions, and unknown future requirements. Zais (2014)

referred to the imbalance between meeting current requirements and maintaining

a posture for future requirements as personnel friction. Personnel friction gives

the flexibility to prepare for future requirements at the expense of inducing inef-

ficiencies in meeting current requirements. Zais (2014) modeled the career path

of the enlisted forced as a Markov Decision Process (MDP), with the soldiers’

decision to stay or leave at each rank and years of service. He then incorporated

retention incentives and used dynamic programming to design policy in order to

reduce personnel friction in the United States Army.

Hall (2009) used a Markov Decision Process (MDP) framework to model the

decision of the optimal retirement point for Army officers. This model based the

decision as a combination of pay and promotion opportunities within the service,

pay opportunities in the civilian sector, and a taste factor which is an individ-

ual’s relative preference for military service over similar, or even more lucrative,

opportunities outside of the military. Even varying individual discount rates, it

was shown that the optimal retirement point is at 20 years. Notably, the only

exceptions to this were the times when officers were facing the potential for pro-

motion. In those years, it was more advantageous for an officer to remain in the

25



service for one more year due to the potential increase in pay outweighing the

increased civilian sector potential pay. Therefore, it can be reasonably assumed

that promotion potential is one of the strongest factors that dictates a rational

officer’s decision to remain in the service.

2.1.4 Simulation Models

Of the four predominant methods for manpower modeling, simulation has received

the least amount of attention in scholarly publications. Most military modeling

and simulation is based on agent-based simulation, traditionally used to model

interactions in a kinetic battlefield. However, discrete-event simulation has become

an effective tool in understanding complex interactions and informing decision

makers on a variety of non-combat related topics. Experiments using simulation

often have simple assumptions, but the consequences, or emergent properties of

the system, may not be obvious. Axlerod (1997) stated that, “if the goal [of the

simulation] is to deepen our understanding of some fundamental process, then

simplicity of the assumptions is important and realistic representation of all the

details of a particular setting are not.” In terms of social phenomena, simulation

serves numerous purposes, including (Axlerod (1997)):

• Prediction - taking complicated inputs, processed by by hypothesized mech-

anisms, using the consequences as predictions,

• Education - allowing users to observe principles or relationships,
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• Proof - providing an existence proof, i.e., demonstrating that there exists x

such that conclusion,

• Discovery - using simulation for the discovery of new relationships.

Troitzsck (1997) aggregated the purposes of social science simulation into two gen-

eral categories, explanatory and prediction. Explanatory models, used to account

for past observations rather than predict future observations, must be done prior

to the prediction form of simulation.

Lesinski et al. (2011) used the explanatory, prediction sequential construct when

modeling the flow of Army officers from their commissioning source to their first

operational unit of assignment using discrete-event simulation. Their purpose was

to first verify and validate an officer accessions model in order to determine the

degree to which the current process supports the Army Force Generation (ARFOR-

GEN) model, a 2006 unit readiness model that replaced the previous Cold War-era

model. This model incorporated multiple effectiveness measures that gauge the

degree to which the timing, capacity, and duration of initial officer training sup-

port the enterprise-level unit readiness. After validating the current model, they

induced perturbations in controllable parameters to determine whether there were

noticeable improvements in the measures of effectiveness. Their research led to

a product that allowed Army leaders to evaluate the unique readiness effect of

commissioning and initial training policy.

Policy analysis was the genesis of the research conducted by McGinnis et al.

(1994) when the Army Chief of Staff directed that personnel managers from the
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U.S. Army Personnel Command (PERSCOM) analyze and recommend improve-

ments to the Army’s Officer Personnel Management System (OPMS). In addition

to the required key assignments at each rank, Title IV of the 1986 Department of

Defense Reorganization Act added that in order for officers to be eligible for pro-

motion to colonel, they must complete a joint duty assignment (JDA). A JDA is an

assignment working in a multi-service or multi-national command for a period of

two to three and a half years. Simulation was deemed the most efficient approach

to determine the feasibility of the JDA requirement since a single-period integer

programming led to approximately 3.9 million integer variables, or 117 million

integer variables for a 30-year model. Due to the challenges with dimensionality,

discrete event simulation was a preferable alternative to traditional programming

techniques. Historical point estimates and probability distributions were used for

each stage of officer professional develop and promotion in order to model the

impacts of Title IV of the Department of Defense Reorganization Act versus cur-

rent requirements. The impacts were measured in terms of officer inventory and

time required to complete all of the requirements for promotion to colonel. This

model quantified the impact of policy changes associated with officer professional

timelines and requirements.

Kwinn and Phelan (1996) used simulation as a tool to analyze the effect of

policy on unit readiness and personnel stability. Specifically, they examined pol-

icy related to Permanent Change of Station (PCS) moves between the United

States, Europe, and Asia. LTC James Thomas, Section Chief within PERSCOM,

requested a tool that would allow his staff to conduct analysis of the effects of
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changing personnel policies. Specifically, the model was used to determine the

overall readiness impacts of a decrease in PCS moves and the effect on Korean

unit readiness if European tour lengths were increased from 36 to 42 months.

Given that the personnel system is stochastic in nature, Kwinn and Phelan (1996)

stated that “personnel managers use most models as decision support tools as op-

posed to decision analysis tools.” Therefore, the purpose of manpower simulation

models is twofold: analyzing the current system, but more importantly, using the

simulation output as justification for policy decisions.

2.2 Performance Appraisal Systems

Coens et al. (2000) defined performance appraisal as a practice that is a “man-

dated process in which, for a specified period of time, all or a group of employees’

work performance, behaviors, or traits are individually rated, judged, or described

by a person other than the rated employee and the results are kept by the or-

ganization.” In general, performance appraisal systems are the means of which

organizations assess and improve their employees’ performance.

The use of performance appraisals in the United States Army can be traced back

to 1813 when General Lewis Cass provided an assessment of his subordinate officers

to the War Department (Banner and Cooke (1984)). These assessments were

subjective evaluations in which Cass described each officer as anywhere from “a

good-natured man” to “a knave despised by all.” In 1914, the informal evaluation

system was replaced by a formalized performance appraisal system that introduced
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the original Department of the Army (DA) Form 67, an officer evaluation report

used to assess officers in five domains: physical qualities, intelligence, leadership,

personal qualities, and general value to the service (Wiese and Buckley (1998)).

This assessment turned out to be effective in its ability to provide the basis for

promotion for the nearly three decades, but in 1940 the same method was exposed

as an ineffective tool when the War Department needed to promote 150 generals

to command ground troops (Staugas and McQuitty (1950)). The weakness was

that it assigned each officer an efficiency score that failed to distinguish between

officers in the top half of their peers, labeling each of these officers as superior

(Sisson (1948)).

In 1945, the Army Adjutant General’s office tested a new form of evaluations

known as forced-choice ratings on over 50,000 officers. Using forced-choice ratings,

raters determine how well selected statements describe their subordinate officers.

The responses were collected and compared to survey data from senior leaders

on characteristics they desire in junior officers. While this technique rendered an

officer’s efficiency score obscure to some degree, it reduced the rater’s ability to

produce a desired outcome by choosing characteristic traits that were clearly good

or bad. In 1947, the Army adopted forced-choice evaluations as the new DA Form

67-1 (Sisson (1948)).

Since 1947, the Army has modified the form used for officer evaluations nine

times, with the most current form being the DA Form 67-10 (Department of the

Army (2015)). During this time, the officer evaluation form has evolved into a
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forced distribution performance appraisal where restrictions have been placed on

raters concerning the number of officers who can be rated at the top of their peers.

Raters are given a box check where they rate subordinates relative to their peers

and provide a short narrative to accompany the box check. The DA Form 67-9

originally restricted raters from giving more than 49% of their subordinates above

center of mass evaluations, commonly referred to as a rater’s profile constraint.

From 2004 to 2011, the profile constraint was removed for raters of officers in the

rank of captain and below. When the profile constraint was reintroduced in 2011,

George Piccirilli, Chief of the Evaluation, Selection, and Promotion Division at

the U.S Army Human Resources Command noted, “We’re bringing back honest

feedback both for the rater and the senior rater. It goes back to rater accountability

for fairly and accurately accessing their soldiers” (Lopez (2011)). The DA Form

67-10 implements a 49% profile constraint, now referred to as a most qualified

evaluation, for raters of lieutenant colonel and below. Raters of colonels have a

more detailed stratification where no more than 24% of their subordinates can be

labeled as having “multi-star potential” and between 25% and 49% can receive

the recommendation of “promote to brigadier general” (Department of the Army

(2015)). Piccirilli stated that the implementation of a profile constraint better

informs talent management by providing selection boards with the information

needed to identify the best talent (Lopex (2011)).

There is evidence that supports Piccirilli’s premise about rater accountability

and the role evaluations play in the promotion board process. First, the absence

of a forced distribution evaluation system often results in rater inflation. Bjerke
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et al. (1987) found that the vast majority of evaluations written by commanding

officers in the Navy stated that their subordinates were top 1% officers out of

fear that anything less would undermine a junior officer’s chances for promotion.

Second, promotion boards value rater assessments of an officer’s potential when

selecting officers for promotion. Table 1.1 shows the promotion rates for active

duty Army officers facing promotion to lieutenant colonel based on the number

of above center of mass or most qualified evaluations received as a major for

the boards conducted in 2015 and 2016. Officers receiving three or more top

evaluations were promoted at a rate well over 70%, whereas officers receiving two

or fewer top evaluations were promoted less than 20% of the time. On the surface,

the officer evaluation system appears to have benefits that align with the purposes

of talent identification and promotion potential, but the accuracy of evaluations

is affected by several parameters and regulations.

Carroll and Schneier (1982) divided performance appraisal systems into three

sequential functions shown in Figure 2.1. These three steps form the foundation

for numerous human resource decisions such as compensation, promotion, demo-

tion, training and assignment of personnel. The Civil Service Reform Act (1978)

mandated the use of performance appraisals as a basis for rewarding, reassigning,

promoting, and removing federal employees. Given the weight of performance

appraisals, supervisors are required to establish performance standards that “per-

mit the accurate evaluation of job performance on the basis of objective criteria.”

Performance appraisal systems have been scrutinized, critiqued, and modified for

decades. A 1997 survey by Aon Consulting and the Society of Human Resource
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Management found that only 5% of human resource professionals were “very sat-

isfied” with their performance appraisal system (Imperato (1998)). One of the

main challenges in any performance appraisal system is the ability to obtain an

accurate evaluation.

Figure 2.1: Three sequential functions of performance appraisal systems (from
Carroll and Schneier, 1982)

Inaccuracy within a performance appraisal system refers to the extent that the

evaluation outcome differs from the true distribution of performance levels across

a group of evaluated employees (Carroll and Schneier (1982)). These inaccuracies

can be the result of subjectivity of human judgment, lack of specificity in per-

formance standards, or lack of compatibility of the performance appraisal system

and the organizational structure. Inaccuracies due to human judgment can take

the following forms (Coens et al. (2000), Carroll and Schneier (1982), Kozlowski

et al. (1998)):

• Leniency - rater gives generous ratings in order to foster a more acquiescent

workforce,

• Halo/Horn - rater forms positive (halo) or negative (horn) opinion around

limited number of criteria,
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• Recency - more recent accomplishments or failures are weighted more heavily,

• Severity - rater receiving a poor evaluation and believing it is due to poor

performance of subordinates,

• Self-Serving - raters inflating subordinates’ ratings to make themselves look

better,

• Contrast/Similarity - rating employees relative to each other rather than

performance standards.

While the inaccuracies due to human judgment are well-documented, errors in-

duced by lack of specificity in performance objectives and performance appraisal

system incompatibility with organizational structure are much more difficult to

identify and quantify.

Physicist and mathematician W. Edwards Deming, who labeled performance

appraisals one of the “Seven Deadly Diseases of Management,” used the alge-

braic formula IPO = X + Y X to describe the systemic errors of performance

appraisal systems, where IPO is the individual performance outcome, X is the

individual contribution, and Y is the effect of the system in terms of inputs, struc-

ture, methods, tools, etc. (Elmuti (1992), Coens et al. (2000)). Deming claimed

that performance appraisals attempt to quantify X while ignoring the impact of

Y . There is often inherent conflict between the appraisal system and the organi-

zational structure due to two purposes of evaluation: development and rewards

(Peck (1980)). Highlighting areas for improvement makes employees look less wor-

thy of rewards such as promotion or pay increases (Mohrman et al. (1989)). One
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technique to resolve this conflict is the use of forced distribution or forced ranking

evaluation systems.

Ranking techniques can be used to compare an employee’s performance to those

in a similar position without having identical scores that often result from non-

ranked evaluations, a common outcome from systems that use Likert scales for

performance criteria (Carroll and Schneier (1982)). Ranking techniques include

simple ranking, paired comparisons, and forced distributions. Simple ranking is

a {1, . . . , n} ranking of employees, paired comparisons takes the n employees and

uses [n(n− 1)]/2 pairs presented to the rater in order to determine the {1, . . . , n}

list of ranked employees, and forced distribution typically rates the majority of

employees as average with a small portion recognized as top or bottom perform-

ers. Ranking and forced distribution evaluation systems are commonly used to

avoid inflation, a natural tendency given that 80% of employees view themselves

as above average performers (Meyer (1980)). Ranking is often less desirable be-

cause it provides a relative, rather than an absolute, level of performance. Forced

distribution systems that use extreme categories such as the top 5% or 10% can

be a useful technique since most employees fall near the middle. However, this

system assumes randomness of performance level distribution within an organiza-

tion, which is not usually a valid assumption. Mohrman et al. (1989) also stated

that forced distribution systems are better when applied to a large enough group

of individuals, specifically no less than 50 employees.

Forcing distributions on smaller numbers creates inequities due to the increased
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probability of an uneven distribution of high and low performers. When dealing

with small samples, Lauer (2012) stated that “people observe variations that are

entirely due to random chance and read into them actionable stories.” This is often

seen in the medical field where drawing conclusions from a small sample is widely

prevalent mainly due to publication bias. Nobel Prize-winning psychologist Daniel

Kahneman (2011) noted that humans seek “a view of the world around us that is

simpler and more coherent than the data justify.” Therefore, forced distribution

performance appraisal systems must be designed to evaluate a large enough sample

to obtain an accurate assessment of performance, yet not too large as to challenge

the psychometric properties of the rater, commonly referred to as span of control

(Carroll and Schneier (1982)). Psychometric properties refer to the ability of an

individual to measure personal characteristics or aspects of a subordinate’s job

performance. Despite the challenges associated with a forced distribution evalua-

tion system, a 2010 survey of over 750 senior level-human resource professionals

found that over 30% used a specified ratings distribution (WorldatWork and Sib-

son Consulting (2010)).

The absence of a forced distribution has been shown to create a well-intentioned

distortion of ratings in order to achieve organizational goals, referred to as orga-

nizational context (Kozlowski et al. (1998)). Appraisal distortion, or modifying

evaluations to attain desired outcomes, has been a well-documented problem in

military performance appraisal systems for nearly a century (Sisson (1948), Mc-

Gregor (1957)). Prior to implementing a forced distribution performance appraisal

system, the U.S. Navy saw over 97% of its officers rated in the top 1% (Bjerke
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et al. (1987)). Forced distribution performance appraisal systems have become

common throughout the DoD.

Three of the four services within the DoD use a form of forced distribution

when documenting officer performance or promotion potential. As previously

mentioned, the United States Army Evaluation Reporting System restricts raters

from giving more than 49% of their subordinates “most qualified” evaluations

(Department of the Army (2015)). Raters within the United States Navy are

given a maximum number of Officer Fitness Reports (FITREPs) that can be

labeled as “promote early” or “must promote” (Department of the Navy (2016)).

In the United States Air Force, raters submit Promotion Recommendation Forms

(PRFs) on subordinate officers that have a forced distribution based on promotion

zone, competitive category, and grade (Department of the Air Force (2016)). The

only service that does not use a forced distribution system is the United States

Marine Corps, where raters score a subordinate’s promotion potential, then that

score is shown relative to the rater’s promotion recommendations for all other

subordinates (Department of the Navy (2015)). The policy constraints placed on

raters within each system are just one factor that has the potential to affect the

accuracy of performance appraisals. While it is clear that the absence of forced

distributions has caused rating inflation, rating research has been limited in its

ability to quantify the impact of system structure and organizational context on

the effectiveness of the performance appraisal system (Kozlowski et al. (1998)).

Murphy and Cleveland (1995) posited the benefits to reducing ratings inflation
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may not be worth the costs associated with achieving a more accurate performance

appraisal system. Figure 2.2 illustrates the forces that can influence a rater to

provide accurate of distorted ratings of subordinates. This shows that raters are

likely to distort ratings when there are no rewards given to raters for providing

accurate performance appraisals. Furthermore, if there are negative consequences

associated with low ratings, raters are more likely to distort, or inflate, their

subordinates’ evaluations. Murphy and Cleveland (1995) argued that low ratings

often produce consequences for the rater, consequences for the ratee, negative

reactions leading to decreased productivity in the workplace, and degradation of

the organization’s image. Therefore, if evaluations are strictly used to determine

promotions, improving the accuracy may be detrimental to an organization if it

does not improve the extent to which the organization can sort their employees into

the categories of promotable and non-promotable (Feldman (1986)). In addition

to providing input to promotion boards on officer performance, evaluating officer

performance is the foundation for identifying individuals for a broad range of

operational and educational assignments in the United States Army.

2.2.1 Performance Management

Performance appraisals are typically performance measurement instruments that

are part of a larger organizational performance management system (Smith and

Goddard (2002)). Shutler and Storbeck (2002) stated that there are substantial

opportunities for the field of operations research in analyzing performance man-
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Figure 2.2: Rater motivation to provide accurate or distorted ratings (from Mur-
phy and Cleveland, 1995)

agement since the sole focus on performance measurement can fail to achieve the

overall goals of the organization. A formal definition of performance management

does not exist, but performance management systems are typically comprised of

four fundamental building blocks: formulation of strategy, development of perfor-

mance measurement instruments, application of analytic techniques to interpret

performance measurements, and development of strategies to respond to infor-

mation on performance (Smith and Goddard (2002)). Armitage et al. (2012)

succinctly grouped these performance management aspects into four elements:

alignment, evaluation, sponsorship, and development. These four elements are

further broken down into nine practices, one of which is “measuring the quality of

performance appraisals.”

A 2013 survey conducted by the Institute for Corporate Productivity (I4CP) re-

vealed that only 29% of employees viewed their performance management process

as fair, compared to 71% in 2006 (Stevenson et al. (2013)). Fairness is not typi-
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cally an objective measure. However, employee perception of fairness is a natural

extension of bias inherent to system structure and constraints. The I4CP survey

also showed that only 30% of respondents said their performance management

system had undergone significant changes in the past three years.

2.2.2 Talent Management

Wardynski et al. (2009) defined U.S. Army officer talent as the intersection of

individual knowledge, skills, and behaviors. The authors stated that strategic-

level integration of these three equally important dimensions is the essence of

talent management. This definition is at odds with other traditional definitions

of talent and talent management. Ulrich and Smallwood (2012) limited talent

to the top 10% of individuals within an organization. Sparrow and Makramtahl

(2015) stated that those with talent are a small number of elite employees who

add a disproportionate amount of value to an organization. Definitions vary, but a

common theme in defining talent points to the aspect of high performance (Swailes

(2013)).

The recession of 2008-2009 exposed many organizations’ inability to identify em-

ployees’ skills, capabilities and performance levels as they attempted to downsize

(Cheese (2010)). As a result, there was a renewed focus on developing data-driven

talent management systems that effectively assess an employee’s job performance

and leadership potential. Organizational management has struggled with the de-

fensibility of such systems due to their subjectivity, leading to a number of recent
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talent management publications (Groves (2011)). Figure 2.3 shows the increased

number of talent management articles published by year since 1990, with the

majority published after the recession ended in June of 2009. Analyzing the re-

tention of talent of U.S. Army officers is significant, given that nearly half of all

officers leave the service within six months of the end of their initial commitment

(Wardynski (2010)).

Figure 2.3: Peer-reviewed journal publications on talent management since 1990
(Source: ProQuest)

Dabkowski et al. (2010) noted that measuring officer talent is largely conceptual,

but actual measurements are not necessary to assess the likely policy impacts on

the retention of talent. They quantified the Army’s ability to recruit and retain

talent by assuming a one-dimensional distribution of talent, using historical attri-

tion rates, and hypothesizing promotion behavior. While the normally-distributed

talent score is not tied directly to a defined level of performance, it serves as a
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mechanism for comparison of the impacts of different policies. Due to the complex-

ity of the closed form solution for calculating the expected value of the rth largest

talent score in a sample of n observations, the authors compared the simulation

results with the approximation introduced by David (1981):

E[Xr:n] = Qr +
prqr
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]
(2.2.1)

where pr = r/(n + 1), qr = 1− pr, and Qr is the inverse CDF of the talent score

distribution evaluated at pr. After running simulation for the no attrition scenario,

they calculated a 95% confidence interval for the talent score of the least talented

officer, r = 533, promoted to the rank of colonel. In this scenario, David’s (1981)

approximation fell well within the 95% simulation confidence interval computed

from 1,000 replications. Thus, validating the simulation and providing a baseline

model to evaluate the effect of different patterns of attrition on the retention of

talent. Dabkowski et al. (2010) modeled talent as a normally-distributed variable,

representing a weighted combination of multiple components.

Rather than modeling talent as a single, normally-distributed variable, Dabkowski

et al. (2011) followed up their initial work by redefining officer talent as a combi-

nation of bivariate normal distribution of operational and non-operational talent.

This construct allowed the authors to analyze the pool of officers and their ability

to meet Army requirements at each rank as the requirements shift from an op-

erational majority at lower ranks to a non-operational majority at higher ranks.

While the authors acknowledged that talent can be developed over time, the bi-
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variate normal distribution of talent was treated as raw talent, and therefore static

over an officer’s career. Howe et al. (1998) also determined that a significant part

of talent is innate, but acknowledged talent could be developed through opportu-

nities, training, and practice.

The implementation of current retention incentives suggests that the Army

believes an officer’s performance level talent can be identified early in the accession

process. The Army has developed retention incentives targeting the commissioning

sources with the most stringent screening requirements. Officers commissioning

from the United States Military Academy (USMA), along with three and four-

year scholarship Reserve Officer Training Corps (ROTC) officers, were given the

option to attend graduate schools in return for extending their initial commitment

by three years. Within ROTC, cadets are typically offered two, three, or four-year

scholarships based on their qualifications, with three and four-year scholarships

being the most competitive. Wardynski et al. (2010) showed in Figure 2.4 that this

pre-commissioning assessment is a strong predictor of performance 20 years later

in an officer’s career. The goal of the graduate school incentive was to increase

the number of officers from traditionally high-performing commissioning sources

to continue service beyond their initial obligation, typically five years.
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Figure 2.4: Percent of majors receiving ACOM in first key development (KD)
evaluation, fiscal years 2003-2007 (Wardynski et al., 2010)

2.3 Military Policy

Military policy that governs personnel evaluation and promotion practices comes

from two main sources. The National Defense Authorization Act (NDAA) dic-

tates the number of servicemembers in each branch of the service while Army

Regulation 623-3: Evaluation Reporting System provides regulatory guidance for

anyone conducting an evaluation on a servicemember (114th Congress (2015), De-

partment of the Army (2015)). As part of the overall $515 billion DoD budget,

the NDAA for fiscal year 2016 authorized an active duty Army strength level of

475,000, the largest of the four services. This strength level reflected a decrease

over fiscal year 2015 authorizations, in accordance with the DoD’s efforts to re-

duce its headquarters personnel by 20%. The Army used a host of techniques to
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achieve this reduction, including: selective early retirement boards (SERB), officer

separation boards (OSB), and decreased promotion rates in accordance with the

Defense Officer Promotion Management Act (DOPMA). Central to all of these

boards was the analysis of each officer’s evaluation reports.

Army Regulation 623-3: Evaluation Reporting System prescribes policy for the

Army’s evaluation reports that focus on the assessment of an officer’s performance

and potential (Department of the Army (2015)). The primary function of the

evaluation reporting system is to provide information to the Department of the

Army Headquarters for use in making personnel management decisions. Officers

are evaluated relative to their peers using a forced distribution rating system, a

practice only seen for uniformed federal employees (Office of the Under Secretary

of Defense for Personnel and Readiness, (2016)). Raters are prohibited from giving

more than 49% or their subordinates ACOM evaluations, with the intent that the

performance of the officers receiving an ACOM evaluation exceeds the majority of

the officers within the rater’s population. While the maximum percent of officers

receiving cannot exceed 49%, raters are encouraged to maintain a “cushion” of

available ACOM evaluations to properly account for changing rated populations,

commonly referred to as rating pools (Department of the Army (2015)).

The November 2015 revision of Army Regulation 623-3 introduced the concept of

pooling. Pooling is defined as “elevating the rating chain beyond the rater’s ability

to have adequate knowledge of each soldier’s performance and potential, in order to

provide an elevated assessment protection for a specific group (Department of the
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Army (2015)).” The word “pooling” was used 11 times, noting that pooling runs

counter to the intent of the evaluation system and erodes soldiers’ confidence in the

fairness and impartiality of their leaders. The perception of fairness is constantly

challenged due to the subjectivity of ratings and the multi-criteria amalgam used

in the ranking of subordinates.

Chang et al. (2007) developed a decision support system for military performance

appraisal systems, treating rater evaluations as fuzzy sets. This technique is useful

for ranking personnel given a multiple criteria decision making process. With

the U.S. Army officer evaluation system, fuzzy sets can help explain a rater’s

thought process when evaluating subordinates, much like the intersection of talent

dimensions used by Dabkowski et al. (2010), but does not account for regulatory

constraints placed on subjective forced distribution evaluation blocking.

2.4 Process Modeling

Process modeling is a technique commonly found in decision support literature

with a heavy emphasis on business process modeling. Holt (2009) defined business

process modeling as “any process modeling exercise that is performed in order to

enhance the overall operation of a business.” Hangos and Cameron (2001) proposed

a seven-step process modeling procedure shown in Figure 2.5. The seven-step pro-

cess is recursive in nature, indicating that practitioners will regularly repeat steps

in order to obtain a sufficiently refined model. Despite a priori knowledge of the

structure of the system, the recursive procedure is necessary due to a lack of infor-
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mation on the underlying mechanisms within the system that can only be gleaned

through measurement data using the technique known as process identification

(Hangos and Cameron (2001)).

Figure 2.5: Seven step process modeling procedure (Hangos and Cameron, 2001)

System identification is used for model parameter and structure estimation and

consists of the following four steps (Hangos and Cameron (2001), Zhu (2001)):

• Identification tests or experiments,

• Model order/structure selection,

• Parameter estimation,
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• Model validation.

The identification tests are a structured design of experiments to obtain input-

output data. The model order, or structure, refers to a set of candidate models

that pertain to the particular system. In order to find the best model within

the set of candidates, the user creates a cost function which is typically a sum

of squared residuals of the response. The parameters used to minimize the user

defined cost function, such as the function used by Ikonen and Najim (2002) in

Equation (2.4.1), provide the best estimates for model validation.

J(θ) =
1

K

K∑
k=1

αk[y(k)− θTϕ(k)]2. (2.4.1)

The cost function J(θ) assigns αk weights to the squared differences between K

observed outputs, y(k), and the model predictions, θTϕ(k). The objective is to

find the parameters θ that minimize the cost function J as in Equation (2.4.2):

θ̂ = arg min
θ
J(θ). (2.4.2)

The final step in model validation is to determine whether the parameters, θ̂,

provide a sufficient model for the intended purposes. This is often a subjective

assessment of the response metrics versus a predetermined threshold for the given

model.

48



2.5 Simulation-Optimization

Before discussing simulation-optimization techniques, it is important to first define

what a simulation is and briefly describe the purposes of a simulation. Axlerod

(1997) defined simulation as “driving a model of a system with suitable inputs

and observing the corresponding outputs.” Given this definition, simulation has a

host of diverse purposes:

• Prediction - taking complicated inputs, processed by hypothesized mech-

anisms, and using the consequences as predictions, identification tests, or

experiments,

• Performance - using simulation to perform certain tasks such as speech recog-

nition of medical diagnosis,

• Training and Education - allows users to observe principals or relationships,

• Proof - used to provide an existence proof (i.e., there exists as x such that

conclusion),

• Discovery - using simulation to discover new relationships or principles.

Experiments using simulation often have simple assumptions, but the consequences

may be inconspicuous. The consequences, or large-scale effects of system dynam-

ics, are called emergent properties of the system. Analysis of emergent properties

is done through two forms of simulation modeling, explanatory and forecasting

(Troitzsch (1997)). Explanatory models are used to account for past observations
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rather than predict future observations. However, a validated explanatory model

is a prerequisite for models used for forecasting or prediction. Analysts can manip-

ulate input parameters and system structures in order to estimate the effect on the

system output. Determining a closed-form objective function for the simulation

is often an intractable problem. Therefore, the simulation is used as a function

whose explicit form is unknown, but whose output can be observed for any num-

ber of input variable and parameter settings. The basic structure of simulation

optimization problems is similar to traditional optimization problems (Better et

al. (2008)):

Minimize F (x) (Objective function) (2.5.1)

Subject to Ax ≤ b (Input constraints) (2.5.2)

gl ≤ G(x) ≤ gu (Output measure constraints) (2.5.3)

l ≤ x ≤ u (Lower and upper bounds) (2.5.4)

The explicit form of the objective function (2.5.1) is unknown. Simulation prob-

lems can also contain input constraints (2.5.2), output measure constraints (2.5.3),

as well as lower and upper bounds on the input variables or parameters (2.5.4).

Given the nature of simulations, analysts cannot use deterministic optimization

techniques such as linear, integer, or mixed-integer programming. Rather, re-

searchers have developed techniques specific to simulations, referred to as simula-

tion optimization.

Carson and Maria (1997) defined simulation-optimization as “the process of
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finding the best input variable values from among all possibilities without explic-

itly evaluating each possibility.” The goal of simulation-optimization is not merely

enumerating a finite number of experiments and deeming the optimal inputs the

best of the selected configurations. Rather, simulation-optimization techniques

dictate the sequence of experiments in order to calculate the best input factors

within an acceptable tolerance, or until a procedure has reached the a maximum

search time limit, as shown in Figure 2.6 (April et al. (2002)). Due to the nature

of the stopping criteria used in simulation-optimization and the inability to enu-

merate every combination of input values, the routine cannot guarantee a global

optima. However, techniques such as tabu search and scatter search help overcome

the problem of algorithms getting stalling at a local optimum by searching over a

wide area of the solution space (Better et al. (2008)). Using these procedures, the

optimization strategy takes the output of a validated simulation model, provides

feedback on the progress toward achieving an optimal input parameter setting,

then adjusts the inputs as necessary to improve the output.

Figure 2.6: Basic logic of a simulation-optimization procedure (April et al., 2002)

Carson and Maria (1997) discussed six categories of simulation-optimization tech-

niques shown in Figure 2.7. The following provides a brief description of each of
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the six simulation-optimization categories:

• Gradient Based Search Methods - estimates the response function gradient

to assess the shape of the objective function by employing deterministic

mathematical programming techniques,

• Stochastic Optimization - finding a local optimum for an objective function

whose values are not known, but can be estimated,

• Response Surface Methodology - fitting a series of regression models that

map the input settings to the simulation output variable,

• Heuristic Models - search strategies that balance exploration with exploita-

tion,

• A-Teams - combines strategies for multi-criteria optimization,

• Statistical Methods - sampling methods to gauge performance and compare

alternatives.

Figure 2.7: Simulation-optimization techniques (Carson and Maria, 1997)
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Fu (2001) provided a similar summary of simulation-optimization categories

shown in Figure 2.8. The most common of the four categories are statistical

procedures and metaheuristics. Statistical procedures include response surface

methodology, a metamodeling technique used in experimental design for nearly

a century, and ranking and selection, a multi-stage procedure that screens and

ranks a finite number of input configurations. Multiple comparison techniques

are similar to ranking and selection, but provide an ordinal ranking of simula-

tion configurations while ranking and selection techniques provide a magnitude

of measurement to distinguish between configurations. Metaheuristic procedures

are commonly used in commercial simulation-optimization software packages due

to a combination of their difficulty to program in a general purpose program-

ming language and their goal of finding global extrema, as opposed to local search

techniques such as response surface methodology.

Figure 2.8: Fu’s simulation-optimization techniques (Fu, 2001)

With this discussion, we now proceed to present the analytical contributions of

this dissertation.
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CHAPTER 3

PERSONNEL EVALUATION SIMULATION

MODEL

3.1 Introduction

In this chapter, we develop and analyze a discrete event simulation model for the

United States Army performance appraisal system. The model integrates system

structure, system dynamics, and human behavior in order to estimate the accu-

racy of the performance appraisal system. In the model introduced by McGinnis

et al. (1994), discrete event simulation is used to analyze the feasibility of pro-

posed personnel policy on the U.S. Army officer corps. This model aggregates

officers into cohort years groups, making no distinction between the performance

level of the individual officer when evaluating policy. The effectiveness of policy is

calculated by taking the percentage of officers within each cohort year group that

successfully meet the proposed sequential assignment requirements. The discrete
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event simulation model developed by Dabkowski et al. (2010) is a generalized

model that hypothesizes the talent level of senior leaders based on multiple at-

trition patterns. Their premise is that if the Army can affect the retention of

officers at different points in their career through retention incentives, it can in-

crease the talent level of officers in future years. In contrast, our model quantifies

the effectiveness of the performance appraisal system as a result of regulatory con-

straints placed on actors within the system. This model serves as the foundation

for Chapter 4, in which we assess the impact of changing parameters in the system

via simulation-optimization.

This chapter makes the following specific contributions. First, we present a

discrete event simulation model that represents a forced distribution performance

appraisal system, incorporating the structure, system dynamics, and human be-

havior associated with such systems. Second, we provide a means for parameter

estimation to model human behavior within a complex system. The goal of this pa-

rameter estimation is to analyze human behavior and explore a method for model

validation that captures the role of subordinate seniority in the evaluation process.

This includes simulation experiments that map black-box functions representing

human behavior to simulation outputs. The effectiveness of each behavior function

is based on a multi-objective response function that is the sum of squared error

measuring the difference between model outputs and historical data. Third, we

quantify the theoretical error induced by the United States Army’s forced distri-

bution evaluation system. Finally, we create a response function that incorporates

both the quantity and severity of the misidentifications based on historical pro-
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motion data. This response function serves as the objective function, in lieu of a

closed-form solution, for system analysis.

The remainder of this chapter is organized as follows. In Section 3.2, we present

the performance evaluation discrete event simulation model along with the no-

tations used for this problem. Section 3.3 describes the input analysis for both

measured and estimated model inputs. In Section 3.4, we discuss model verifi-

cation and validations. This includes estimating input parameters for regulatory

constraints and a procedure for the bubble sort algorithm parameter estimation,

simulating human behavior in the system. In Section 3.5, we conduct a prelim-

inary output analysis and run experiments to test the impact of pool sizes and

amount of time spent in each assignment on the output of the simulation. Sec-

tion 3.6 discusses response function development based on the simulation results

and historical data to be used for the simulation-optimization techniques used in

Chapter 4.

3.2 Model Description and Notation

Advanced analytical tools can effectively capture complex system structure and

dynamics, as well as human behavior and their interactions within the U.S. Army’s

performance appraisal system. The hypergeometric distribution provides insight

into the error associated with forced distribution performance appraisal systems

where officers are assigned to rating pools from a finite population. For example,

if 100 officers are separated into ten rating pools, there would be ten pools of
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ten officers. Each rater cannot reward their subordinates with more than 49%

ACOM evaluations, for a maximum of four in each pool size of ten. If the random

variable X ∼ Hypergeometric(K,N, n) where K is the number of successes in a

population size N and n represents the number of draws, we define X ∼ Hyper-

geometric(40,100,10). That is, using an ordinal ranking, there are 40 officers that

fall within the rater’s constraint. Assuming that raters have perfect knowledge of

their subordinates’ performance levels, if the 40 highest performing officers were

evenly distributed into the ten rating pools, all 40 would receive the appropriate

ACOM rating. Conversely, the remaining 60 would appropriately receive an evalu-

ation other than an ACOM. If officers are randomly assigned into rating pools, we

can determine the probability that exactly k of the 40 highest performing officers

are selected in the sample size of ten using the hypergeometric distribution:

P (X = k) =

 K

k


 N −K

n− k


 N

n


,

where k is the number of successes drawn in the sample size n. For a pool size

of ten, P (X = 4) = 0.264, i.e., the probability that a rater receives and rewards

exactly four of the officers deserving an ACOM evaluation is 0.264. Furthermore,

P (X > 4) = 0.361, meaning 36.1% of the time the rater will not have enough

ACOM evaluations to adequately reward his/her subordinates. If officers are

sequentially assigned into pools, the parameters of the random variable X are
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dynamic and dependent on the outcome of previous pool assignments. While the

hypergeometric provides some insight into the potential misidentification of high

performing officers, the performance appraisal system output is affected by many

other factors, thus requiring the use of more advanced analytic techniques.

Due to the tendency of evaluation levels being tied to the position rather than

performance, a trend identified by Kane (2012), we use a data set of functional

area officers. According to the Department of the Army Headquarters (2014),

a functional area is a “grouping of officers by technical specialty or skills other

than an arm, service, or branch that usually requires unique education, training,

and experience.” Kane (2012) observed that officers in key developmental posi-

tions identified by certain branches in which officers are required to serve as a

prerequisite for promotion, often received strong evaluations as a rite of passage,

while those in the queue for key developmental positions were given average per-

formance evaluations. Using functional area data mitigates this effect because

functional area officers do not have key developmental assignments. Therefore,

using a subset of officers that have homogeneity of assignments provides a bet-

ter representation of performance levels, absent the effect of key developmental

assignments.

The notations used in our model is based on previous work by Wessels and

van Nunen (1976) and Bartholomew and Forbes (1979). Wessels and van Nunen

(1976) developed a qualification index, {q : 1, 2, . . . , Q} based on education and

experience. Similarly, we assume that officers enter the system with an initial
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performance percentile, Qi. Bartholomew and Forbes (1979) proposed a model

that uses a conditional probability for promotion based on the number of years in

grade. They state that if it is known a priori that seniority affects the chance of

promotion, then the main opportunity for improving the fit of a model is to choose

the classes or grades with the chance for promotion being relatively constant.

Since the DoD convenes promotion boards based on a cohort’s time in grade, we

incorporate seniority into the rater’s sorting function by adjusting the performance

level as a function of time, making no assumption as to whether the increased

performance level is an actual improved performance level or the rater’s behavior

to evaluate senior officers more favorably.

The algorithm used to rank the officers within each pool, P`, is adapted from

Levitin’s (2003) bubble sort algorithm pseudocode, where each pass i compares

the quality function output of officers j and j + 1. Each P`[0, 1, . . . , n`−1] is the

array of officers’ adjusted performance percentile within each pool P`. The input

is an array of orderable elements (officers) within each pool. The output is an

array P`[0, . . . , n`−1] sorted in descending order:

for i` ← 0 to n` − 2 do

for j` ← 0 to n` − 2− i` do

if P`[j` + 1] > P`[j`] swap P`[j`] and P`[j` + 1].

The number of comparisons is equal to the worst case number of swaps, Sworst,

and is a function of n`:

Sworst(n`) =
(n` − 1)n`

2
∈ Θ(n2

`). (3.2.1)
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Levitin (2003) noted that the brute-force algorithm can be inefficient for a large

n`. Given that the mean n` ≤ 15 for this simulation, minimal modifications are

necessary to achieve an acceptable efficiency. The only added logic is for any pass

i that did not result in any j and j + 1 swaps, the algorithm terminates. Any

pass i that does not result in any j and j+ 1 swaps indicates that the elements in

array P` are in descending order and any additional passes would not change the

ordered array P`.

3.3 Input Analysis

Officers enter the system at a uniform rate and are assigned an attribute, Qi, that

represents the officer’s initial performance percentile where Qi ∼ Uniform(0, 1).

An officer’s initial performance percentile can be a strong indicator of future suc-

cess within the Army. Dabkowski et al. (2010) showed that officers in the top

quarter of their West Point class were promoted to the rank of colonel at a 54%

higher rate than those officers in the bottom quarter of their West Point class.

The initial performance percentile is used as one factor in the evaluation process

described in detail in Section 3.4.2.

Officers are randomly assigned into rating pools for evaluation relative to their

peers. The interarrival times, in days, at which officers arrive into the system is

calculated by the equation:

Interarrival Times =
AveragePoolSize

365
× Number of Pools.
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The Department of the Army Secretariat sequences promotions throughout the

calendar year, creating a uniform distribution of officers entering the system as

a major. While Army Regulation 623-3: Evaluation Reporting System prohibits

pooling and requires that raters abolish the practice, there is currently no pre-

scribed size for rating pools (Department of the Army (2015)). Prior to the

November 2015 revision of Army Regulation 623-3, pool sizes for majors var-

ied as shown in Figure 3.1. The average pool size for the data depicted in Figure

3.1 is 15 officers.

Figure 3.1: Distribution of major pool sizes (Source: U.S. Army Human Resources
Command)

After each evaluation, officers either remain in the same rating pool or are

assigned to a new rating pool, given that they have less than five years in the

system, as depicted in Figure 1.4. The calculation of the annual probability p

that an officer changes pools is shown in Equations (3.3.1)-(3.3.5). The mean
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amount of time a functional area major spent in each assignment over the past

five years is 16.42 months. In order for the discrete event simulation model to

replicate this behavior, we must find the corresponding value of p. The structure

for determining p is similar to the structure presented in Equations (2.5.1) - (2.5.4).

Minimize |T (p)− 16.42| (3.3.1)

Subject to pj = p(1− p)j−1, ∀ j = 1, 2, . . . , 4 (3.3.2)

p5 = (1− p)4 (3.3.3)

T (p) =
5∑
j=1

12j(pj) (3.3.4)

0 ≤ p ≤ 1 (3.3.5)

In Equation (3.3.1), T (p) represents E[Time in Position]. That is, the expected

amount of time an officer spends in each position is a function of the probability

that the officer annually changes rating pools, p. Equation (3.3.2) shows the proba-

bility that an officer stays in the same assignment 1,2,. . .,4 years. For example, the

probability that an officer changes assignments after one year is p(1 − p)1−1 = p.

The probability that an officer remained in the same position for two years is

p(1−p)2−1 = (1−p)p, which is the probability that the officer did not change rat-

ing pools after the first year times the probability the officer changed rating pools

after the second year. The probability that an officer stayed in the same pool for

all five years is shown in Equation (3.3.3). That is the probability the officer did

not change rating pools after each of the first four years. After the fifth year, all

officers exit the system. Equation (3.3.4) is the expected value for the amount of
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time, in months, that an officer spends in an assignment. The probability p that

minimizes Equation (3.3.1) is the optimal parameter for replicating the dynamics

of the Army performance appraisal system. Table 3.1 shows the calculation of

T (p) for the optimal p and the corresponding probabilities that officers stay in the

same assignment j years.

Table 3.1: Calculation of expected time in position for optimal p = 0.730.
Year (j ) 1 2 3 4 5
Months 12 24 36 48 60
pj 0.730 0.197 0.053 0.014 0.005
j × pj 8.757 4.733 1.919 0.619 0.320
T (p) 16.42

3.4 Model Verification and Validation

Model verification is used to determine whether the model functions as intended.

Banks (1998) stated that “the verification process involves examination of the

simulation program to ensure that the operational model accurately reflects the

conceptual model.” Banks (1998) listed seven techniques for model verification

ranging from debugging techniques to the creation of submodels. Kleijnen (2000)

suggested using prior knowledge of the simulated system to determine whether

changes in input values produce corresponding output values in the anticipated

direction. For example, in a queueing problem, an increase in service time should

produce an increase in average queue length.

Since model validation is used to determine whether that model can adequately

substitute for the real system for the purpose of experimentation, simulation model
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validation is both subjective and objective (Banks (2000)). Law (2015) states that

“the most definitive test of a simulation model’s validity is to establish that its

output data closely resemble the output data that would be expected from the

actual system.” Since simulation can be used to model a myriad of systems, the

methods for model validation are numerous. Balci (1998) compiled a list of 75

techniques for model verification and validation. However, the author acknowl-

edged that most practitioners use a hybrid approach that is appropriate for their

specific model.

3.4.1 Regulatory Constraints

According to Army Regulation 623-3: Evaluation Reporting System, raters are

prohibited from giving more than 49% of their subordinates an ACOM evalua-

tion (Department of the Army (2015)). However, an analysis of the majors in

the primary zone for promotion during the years 2015 and 2016 showed that they

received an ACOM evaluation 53.5% of the time. At least two factors explain this

gap between the regulatory constraint of 49% and the observed value of 53.5%.

First, many officers who receive only average evaluations leave the service before

their primary zone for promotion. This leads to officers who have a disproportion-

ately high number of average evaluations leaving the system. Additionally, nearly

70% of officers receive an ACOM evaluation just prior to their primary zone for

promotion according to Figure 3.3, but it is common practice for officers to re-

ceive an average evaluation after the board has convened since that evaluation
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will not be seen by the current board. Therefore, the profile constraint of discrete

event simulation must be greater than the regulatory constraint of 49% in order

to account for 53.5% of ACOM evaluations.

Determining the profile constraint that leads to 53.5% ACOM evaluations can

be solved through brute force trial and error, but a more efficient method is utiliz-

ing the metaheuristics of OptQuest, incorporating tabu search and scatter search

techniques (April et al. (2002)). We begin by running 50 scenarios with the pro-

file constraint varying between 0.535 and 0.600. Given the 50 outputs from the

tested scenarios, we calculate which scenario has the closest to 53.5% of ACOM

evaluations using the Kim-Nelson (KN) procedure, a fully-sequential ranking and

selection simulation optimization method. The profile constraint of 0.568 resulted

in the minimum difference between the simulation model output and the observed

value of 53.5% ACOM evaluations.

3.4.2 Sorting Function Parameter Estimation

This section examines a method for estimating this black-box function using sim-

ulation optimization. We build a discrete event simulation model and modify the

sorting function used to simulate human behavior using OptQuest. Parameters

from multiple functions are evaluated to determine their goodness-of-fit in repli-

cating rater behavior. In order to evaluate the output, we use an adaptation of

the cost function in Equations (2.4.1) and (2.4.2).

The simulation model, developed in Simio, follows the framework of Figure 1.4.
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After officers enter the system with an initial performance percentile, they are

randomly assigned into rating pools. Annually, officers are sorted and given an

evaluation, Xij where:

Xij = rating of officer i in year j , i=1,2,. . . , n, j=1,2,. . . ,5,

and

Xij =


1 if officer i receives top evaluation in year j

0 if officer i does not receive top evaluation in year j .

After each evaluation, the officer changes rating pools with probability p or remains

in the same rating pool with probability 1 − p, simulating the systems dynamics

of officers changing rating pools on a regular basis. After five years of collecting

evaluations, the officers exit the system and their binary performance appraisal

history is recorded in an output file. A truncated simulation output file is shown

in Figure 3.2

A bubble sort algorithm described in Section 3.3 is used as an annually trig-

gered event in order to rank the officers within each rating pool based on their

performance percentile and seniority. Given the data trends in Figure 3.3, the

proclivity for raters to award a top evaluation increases as the officers they are

rating increase in seniority. Therefore, the procedure used to sort the officers uses

a combination of initial performance percentile combined with a function of the

time in the system. We annotate this as Q′i, where Q′i(Qi, t, α) for Equations

(3.4.1) - (3.4.3) and Q′i(Qi, t,α) for Equation (3.4.4), t is the officer’s time (years)
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Figure 3.2: Sample simulation output for 20 entities

in the system, and α is an estimated parameter used to apply a weight to the

officer’s time in the system for Equations (3.4.1) - (3.4.3). The vector α provides

weights to the officer’s time in the system for Equation (3.4.4). Given the rater

behavior, we analyze the goodness-of-fit for the following increasing functions:

Linear: Q′i = Qi + αt (3.4.1)

Exponential: Q′i = Qi + αt (3.4.2)

Power: Q′i = Qi + tα (3.4.3)

Third Degree Polynomial: Q′i = Qi + α1t+ α2t
2 + α3t

3. (3.4.4)

Figure 3.2 shows the simulation output for a given sorting function. The anal-

ysis of each sorting function consists of its ability to replicate the actual data
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Figure 3.3: Distribution of ACOM evaluations by time in grade for U.S. Army
majors in the primary zone of consideration (Source: U.S. Army Human Resources
Command)

Figure 3.4: Distribution of total number of ACOM evaluations for U.S. Army ma-
jors in PZ zone of consideration (Source: U.S. Army Human Resources Command)
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shown in Figures 3.3 and 3.4. This shows that a higher percentage of functional

area officers receive two or three ACOM evaluations than ACC officers. Table 1.1

shows that over the past two years, officers who receive three ACOM evaluations

are at least four times more likely to be promoted than officers who receive two

ACOM evaluations. The data displayed in Figure 3.4 shows that functional area

officers disproportionately represent the number of officers receiving two or three

ACOM evaluations as compared to ACC officers, increasing their vulnerability

to errors that have an impact on promotion. Before optimizing the parameters

for each sorting function, it is necessary to determine a reasonable domain for α.

For Equation (3.4.1), lim
α→0

Q′i = Qi. An α = 0 means that rater’s determination

of ranking within the rating pool is based solely off the officer’s performance per-

centile upon entry into the system and time in the system is not a factor. Likewise,

an α = 0.4 means that the officer’s time in the system is a minimum of 0.4 times

as important as Qi when t = 1 and a minimum of two times as important as Qi

when t = 5 in determining the ranking within a given rating pool. Therefore, we

evaluate 0 < α < 0.4 when optimizing the output for Equation (3.4.1).

The effectiveness of Equation (3.4.2) can also be assessed using similar bounds

for α. However, in Equation (3.4.2), 0 < α < 1 creates a decreasing function with

respect to time in system. Furthermore, for the officer’s time in the system to

carry a minimum of two times the weight of Qi when t = 5, α ≈ 1.148. Therefore,

we limit the domain of α for Equation (3.4.2) to 0 < α < 1.148.

In order to optimize the simulation output, we use a form of the multi-objective
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response function introduced by Ikonen and Najim (2002). The problem is formu-

lated as:

Zik =


1 if

5∑
j=1

Xij = k ∀ k = 0, 1, . . . , 5, i = 1, 2, . . . , n

0 otherwise

(3.4.5)

where

k = total number of top evaluations, k = 0, 1, . . . , 5.

The binary variable Zik in Equation (3.4.5) is used to identify whether each of-

ficer (i) received 0, 1, . . . , 5 top evaluations over the 5-year period in the system.

Equation (3.4.6) measures the squared difference between the percentage of offi-

cers from the simulation with k top evaluations and Ak, where the variable Ak is

the historical percentage of officers receiving k top evaluations. This squared error

is calculated for each value of k in the summation:

T =
5∑

k=0

Wk


n∑
i=1

Zik

n
− Ak


2

. (3.4.6)

Equation (3.4.6) measures the goodness-of-fit of the simulation output compared

to the data shown in Figure 3.4. The total number of top evaluations received by

each officer is one measure of model accuracy. Another measure of accuracy is the

timing of top evaluations each officer receives. This squared error is calculated for
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each year j in the summation:

Y =
5∑
j=1

Wj


n∑
i=1

Xij

n
−Bj


2

, (3.4.7)

where Xij is the rating of officer i in year j, and Bj is the percentage of officers

with a top evaluation in year j. The weights, Wk, in Equation (3.4.6) and Wj in

Equation (3.4.7), allow us to control the weights of the differences between each

simulation output and the actual data. This enables compensating for differences

in relative error as well as the unequal number of data points in Equation (3.4.6)

versus Equation (3.4.7). The value Y in Equation (3.4.7) measures the goodness-

of-fit of the simulation output compared with the data shown in Figure 3.3. The

measures of effectiveness provided in Equations (3.4.6) and (3.4.7) can be combined

into a single weighted performance measure, D = T + Y . Then, the problem

becomes finding the sorting function parameter value of α that minimizes the

objective function D. That is, α̂ = arg min
α
D for Equations (3.4.1) - (3.4.3), or

α̂ = arg min
α
D for Equation (3.4.4).

To estimate the sorting function parameters, we utilize OptQuest, the simulation

optimization routine that incorporates multiple metaheuristic procedures, includ-

ing tabu search and scatter search, into a single simulation optimization search

procedure (April et al. (2002)). The user has the ability to modify the minimum

and maximum number of replications for a specific relative error setting, along

with the maximum number of scenarios. We then ran the KN procedure with an
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indifference zone of 0.001 on the best subset scenarios from the OptQuest routine

in order to determine optimal setting for the parameter α in each sorting func-

tion. A detailed discussion of the KN procedure can be found in Section 4.4 and

in Kim and Nelson (2001). Using the Simio OptQuest add-in, 50 scenarios, with

10 replications each, took between 15 and 16 minutes to execute on an Intelr

Core i5-4300U at 2.50 GHz with 8.00 GB of RAM.

For single objective parameter estimation, we performed two separate experi-

ments to find the parameters for each sorting function that solved:

α̂Y = arg min
α

Y and α̂T = arg min
α

T or

α̂Y = arg min
α

Y and α̂T = arg min
α

T.

In Equation (3.4.7), Bj = [0.368, 0.493, 0.512, 0.582, 0.719], which represents the

historical percent of majors that receive a top evaluation in each year in rank, j.

The parameter α is evaluated in Equations (3.4.1), (3.4.2), and (3.4.3) and the

minimum Y for each sorting function is shown in Figure 3.5.

Given that Wj = [1, 1, 1, 1, 1], each sorting function has a marked improvement

over the baseline case where the performance percentile did not increase as a

function of time in rank and assumed officers were evaluated strictly by this static

performance level. Assuming a constant performance percentile, Ybaseline = 0.0658.

Each sorting function shows a significant improvement over the baseline in Table

3.2.
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Figure 3.5: Simulation results for percent of majors receiving top evaluation by
years in rank

Table 3.2: A summary of the minimum Y with sorting function parameters deter-
mined by simulation optimization.

Sorting Function Minimum Y Percent Improvement
Linear 0.00674 89.75%

Exponential 0.00662 89.94%
Power 0.00985 85.03%

Third Degree Polynomial 0.00506 92.31%

The parameter α is also evaluated in Equations (3.4.1), (3.4.2), and (3.4.3) and

the minimum T for each sorting function is shown in Figure 3.6. In Equation

(3.4.6), Ak = [0.070, 0.119, 0.231, 0.294, 0.223, 0.064], which represents the histori-

cal percentages of officers that receive 0, 1, . . . , 5 total top evaluations as a major,

respectively. Given that Wk = [1, 1, 1, 1, 1, 1], each sorting function indicates a

significant improvement over the baseline case. Assuming a constant performance

percentile, Tbaseline = 0.298 due to nearly 75% of officers receiving either zero or

five top evaluations under the baseline approach. The results of the simulation-

optimization experiments and the improvement over the baseline measurement are

summarized in Table 3.3.
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Figure 3.6: Simulation results for percentages of total top evaluations received by
majors

Table 3.3: A summary of the minimum T with sorting function parameters deter-
mined by simulation-optimization.

Sorting Function Minimum T Percent Improvement
Linear 0.0138 95.37%

Exponential 0.0275 90.77%
Power 0.0175 94.13%

Third Degree Polynomial 0.0174 94.16%

In the single objective parameter estimation, we use separate equations for each

sorting function when determining the minimum T and Y . For the multi-objective

parameter estimation, we use a weighted sum of Y and T . Thus, it is necessary to

determine appropriate Wj and Wk for the response function, D. Equation (3.4.7)

sums the squared error between six simulation outputs and historical data, whereas

Equation (3.4.6) sums the squared error between five data points and historical

data. Therefore, we begin by setting each component of Wk to 5/6 in order to

weight the outputs of T and Y equally. Finally, we factor relative error into Wk.

The mean value of the responses used in Equation (3.4.6) is 0.535, representing

the average percentage of majors receiving a top evaluation in any given year.

74



The mean value of the responses used in Equation (3.4.7) is 0.167, representing

the average percentage of majors receiving each of the six possibilities for a total

number of top evaluations. We compensate for the difference in magnitudes by

multiplying the initial Wk by 3.21 (0.535/0.167) and each component of vector Wk

is 2.675 (3.21×5/6). Therefore, when evaluating D, we use Wj = [1, 1, 1, 1, 1] and

Wk = [2.675, 2.675, 2.675, 2.675, 2.675, 2.675]. Figure 3.7 shows that minimizing

D does not minimize Y or T .

Figure 3.7: Simulation results showing relationship between D, Y , and T for linear
sorting function

The efficacy of our weighted multi-objective approach is illustrated in Figures

3.8 and 3.9. The data labeled “No Time Factor” represents the baseline approach

of a static performance level where D = 0.864. The trade-off between T and

Y illustrated in Figure 3.7 results in a decreased percent improvement from the

single-objective parameter estimation responses summarized in Tables 3.2 and 3.3.

However, Table 3.4 shows that all three optimized sorting functions produce an

output that more closely depicts the actual data over the baseline approach. This
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can be seen in Figure 3.9 where the baseline approach results in over 75% of the

officers receiving either zero or five top evaluations. The exceptions to this are the

officers whose Qi is near the 53.5% of the officers receiving a top evaluation. Due

to the random assignment of officers into pools, officers with Qi near 0.535 can

undeservingly gain top evaluations by being assigned into a pool with a low number

of strong performing officers, or conversely receive a center of mass evaluation due

to an unusually high number of strong performing officers in the same pool.

Table 3.4: A summary of the minimum D with sorting function parameters de-
termined by simulation optimization.

Sorting Function Minimum D Percent Improvement
Linear 0.185 78.59%

Exponential 0.208 75.93%
Power 0.181 79.05%

Third Degree Polynomial 0.183 78.94%

The experiments summarized in Table 3.4 provide insight into the weight that

raters place on the experience or seniority of their subordinates. In each sorting

function, a factor that is a function of time in the system, j, is added to the initial

performance level Qi for the purpose of ranking officers. We can use the function

parameters to determine the added time factor for each function, at each time j.

The results are summarized in Table 3.5.

Table 3.5: The weight of seniority, by year j, in the rater sorting functions.
Year (j)

Sorting Function 1 2 3 4 5
Linear 0.189 0.379 0.568 0.757 0.947
Exponential 1.126 1.268 1.428 1.608 1.810
Power 1.000 1.282 1.483 1.645 1.782
Third Degree Polynomial 0.188 0.361 0.521 0.670 0.810
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Figure 3.8: The effect on Y by minimizing weighted multi-objective response
function D

Figure 3.9: The effect on T by minimizing weighted multi-objective response func-
tion D

The results in Table 3.5 aid in model verification by showing that the optimized

sorting functions produce increasing weights on time in the system. The results

also provide insight as to the behavior of raters in the system and the weight they

place on seniority. By measuring the difference between the year five weight and

the year one weight, we can determine how raters view experienced low performers

versus inexperienced high performers. The average difference between the year five
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weight and year one weight for the experimental sorting functions is 0.711. An

interpretation of this measure is that the highest performing officer, Qi = 1, in

his/her first year is viewed as the equivalent of an fifth-year officer whose Qi =

0.289. The time weights displayed in Table 3.5 also provide a baseline for a discrete

approach to model the rater behavior. Rather than estimating the parameters of

predetermined, continuous sorting functions, we can adjust each officer’s Qi based

on their years in the system using the time independent weights shown in Equation

(3.4.8):

Q′i =
5∑
j=1

Tij(αj + βjQi) ∀ i = 1, 2, . . . , n, (3.4.8)

where

Tij =


1 if officer i is in the jth year in the system ∀ i = 1, . . . , n, j = 1, . . . , 5

0 otherwise

and

α1 < α2 < α3 < α4 < α5.

Table 3.6: Calculations for upper and lower bounds of αj, βj = 1 in Equation
(3.4.8a).

Year (j)
Sorting Function 1 2 3 4 5
Linear 0.189 0.379 0.568 0.757 0.947
Exponential 1.126 1.268 1.428 1.608 1.810
Power 1.000 1.282 1.483 1.645 1.782
Third Degree Polynomial 0.188 0.361 0.521 0.670 0.810
Range 0.938 0.921 0.962 0.975 1.000
αj Lower Bound 0.094 0.269 0.425 0.573 0.710
αj Upper Bound 1.220 1.375 1.580 1.742 1.910
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We establish upper and lower bounds for αj when β is set to zero by identifying

the high and low time weights at each year j in Table 3.5 and adjusting each by

10% of the range for each year. A summary of the upper and lower bounds for

αj is shown in Table 3.6. After setting upper and lower bounds for each αj, we

run the same optimization procedure used in determining the minimum D for the

equations associated with the results in Table 3.4. By setting each βj equal to one,

we are able to replicate the seniority shown in Table 3.5 with Equation (3.4.8).

However, unlike the equations used for the estimations in Table 3.5, Equation

(3.4.8) with each βj set to one is not constrained to continuous functions. This

added flexibility of the sorting function results in an improved accuracy of the

rater sorting function. The optimized parameters of Equation (3.4.8) with each

βj equal to one are shown in the row labeled Equation (3.4.8a) in Table 3.7. The

optimized αj parameters for Equation (3.4.8a) result in an 80.10% improvement

over the baseline case and a 4.97% improvement over the most accurate continuous

sorting function, the power sorting function.

The sorting function proposed in Equation (3.4.8) allows flexibility to the eval-

uation criteria used by raters. Each continuous sorting function and Equation

(3.4.8a) sort officers within each rating pool according to their initial performance

percentile and a function of time, with the time factor being added to the ini-

tial performance percentile. When each αj in Equation (3.4.8) is equal to zero,

as shown in the Equation (3.4.8b) row of Table 3.7, the sorting function is the

product of the initial performance percentile and a scaling factor βj. We add the
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constraint

0 < β1 < β2 < β3 < β4 < β5 < 1

to Equation (3.4.8) to ensure the weight placed on seniority results in an increasing

function similar to Figure 3.4. Given increased range for each unknown parameter,

we run the same optimization routine, but increase the number of scenarios to 500.

The optimal parameter settings for each βj are shown in the Equation (3.4.8b)

row of Table 3.7. Since each βj represents a constant multiplied with Qi at each

year j, the solution for Equation (3.4.8b) is not unique. In fact, any constant

multiple of the optimized parameter vector βj results in the same minimum D.

Finally, we allow Equation (3.4.8) to consist of the parameters αj that provide

an additive factor of time j, and βj that scale the initial performance percentile

according to the officer’s time in the system. Given that the number of unknown

parameters in Equation (3.4.8c) is double the number of unknown parameters in

Equation (3.4.8a) or Equation (3.4.8b), we use an iterative process to determine

the optimal parameters. We begin with the upper bounds of αj as the values

calculated for Equation (3.4.8a) and each βj upper bound to one, and run 500

scenarios using the procedure described for the equations summarized in Table

3.4. We calculate the range of each unknown parameter by using the best subset

of the 500 scenarios, and increasing each unknown parameter range by 10% as

in Table 3.6. We then run 500 additional scenarios using the newly established

limits on each unknown parameter. This process is repeated until the minimum

D improvement is less than the predetermined indifference zone of 0.01. The
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optimized parameters for all three variations of Equation (3.4.8) are shown in

Table 3.7.

Table 3.7: Calculations for optimized time independent, discrete sorting function
parameters αj and βj for use with binary variable Tij and performance percentile
Qi.

αj βj
j 1 2 3 4 5 1 2 3 4 5

Eq (3.4.8a) 0.66 0.89 1.11 1.30 1.41 1.00 1.00 1.00 1.00 1.00
Eq (3.4.8b) 0.00 0.00 0.00 0.00 0.00 0.12 0.156 0.250 0.355 0.800
Eq (3.4.8c) 0.40 0.51 0.70 0.83 0.90 0.31 0.32 0.35 0.45 0.54

All three variations of Equation (3.4.8) with optimized parameters result in

improved performance over the continuous functions used in Table 3.4. Of the

three versions of Equation (3.4.8), Equation (3.4.8c) results in the minimum D

and will be used for the computational experiments that follow. Using the time

independent weights shown in Equation (3.4.8) led to a minimum D in Equation

(3.4.8c) of 0.170, which is a 6% improvement over the minimum D when using

continuous functions to model rater behavior, the power function shown in Table

3.5. The performance of each sorting function is summarized in Table 3.8.

Table 3.8: A summary of the minimum D with variations of Equation (3.4.8)
sorting function parameters determined by simulation optimization.

Sorting Function Minimum D Percent Improvement
Equation (3.4.8a) 0.172 80.10%
Equation (3.4.8b) 0.177 79.51%
Equation (3.4.8c) 0.170 80.32%
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3.5 Computational Experiments

Once the input parameters have been sufficiently estimated, a series of compu-

tational experiments are constructed for the purposes of model verification and

analysis of the initial results. The input parameters estimated in the previous

sections include:

• Rater Profile Constraint - set at 0.568 in order to produce 53.5% of evalua-

tions as ACOMs,

• Probability p of Changing Pools - calculated to be 0.730 in order for the

E[Time in Assignment] = 16.42 months,

• Average Pool Size - currently 15 officers,

• Rater Sorting Function - Q′i = 0.397T1 + 0.510T2 + 0.698T3 + 0.826T4 +

0.904T5 +Qi(0.313T1 + 0.319T2 + 0.347T3 + 0.445T4 + 0.535T5),

• Interarrival Rate of Officers - rate of 1.217 officers/per day produces 300

officers per year entering the performance appraisal system.

By regulation, the rater profile constraint is 49%. That is, raters are not allowed

to give more than 49% of their subordinates ACOM evaluations. However, as

discussed in Section 3.4.1, the majors facing promotion boards do so with 53.5%

of their evaluations as ACOMs. The simulation profile constraint that corresponds

to 53.5% is 0.568. The calculations for the probability p of changing pools and the

average pool size are detailed in Section 3.3. The estimation of the rater sorting
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function is given in Section 3.4.2. The interarrival rate of officers corresponds to

300 officers per year entering the system. This is a reasonable rate for two reasons:

(1) the Army accesses and promotes approximately 300 functional area officers

annually, and (2) these accessions and promotions are dispersed over a calendar

year to ensure a constant flow of officers into each functional area branch. Given

the discrete event simulation with the estimated input parameters, we analyze the

output for model validation. Additionally, perturbations in the input parameters

result in corresponding output that is used for model verification.

3.5.1 Preliminary Results and Output Analysis

The model output consists of rated officers, each with an initial performance per-

centile Qi, and an evaluation vector Xi that consists of the evaluations received by

officer i over the five-year period each officer spent in the evaluation system. We

run 100 replications of the initial simulation to obtain output data on 30,000 offi-

cers. Officers spend five years in the system receiving annual evaluations. There-

fore, the total number of ACOM evaluations received in the system is:

5∑
j=1

Xij = k ∀ i = 1, 2, . . . , n, where {k : 0, 1, . . . , 5}. (3.5.1)

Analyzing the distribution of Qi for each value of Equation (3.5.1) is a critical

step in evaluating the effectiveness of the system. For example, Table 3.9 shows

the distribution of the simulation output as it relates to Equation (3.5.1). The
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empirical distribution shown in Table 3.9 is used to determine E[
∑5

j=1Xij] for each

officer i. For example, ifQ21 = 0.411, the expected number of k ACOM evaluations

is 2 since 0.2592 < Q21 < 0.4412. The lower bound, 0.2592, corresponds to the

percent of officers receiving k < 2 ACOM evaluations and the upper bound ,

0.4412, corresponds to the percent of officers receiving k < 3 ACOM evaluations.

Table 3.9: A summary of the percentage of officers receiving k ACOM evaluations.
k ACOM Evals Percent of Officers (

∑n
i=1

∑5
j=1Xij/n) Cumulative Percent

0 12.16% 12.16%
1 13.76% 25.92%
2 18.19% 44.12%
3 20.85% 64.96%
4 21.33% 86.30%
5 13.70% 100.00%

The simulation output displayed in Figure 3.10 shows an increasing average

Qi for officers as the number of ACOM evaluations increase. This additionally

serves as model verification since officers with a high initial performance level

are more likely to receive a higher number of strong evaluations over a five-year

period. The inner quartile ranges show that with the exception of the officers

receiving four or five ACOM evaluations, the first quartile of each successive subset

is greater than the third quartile of the previous subset. For example, the third

quartile for the Qi of officers receiving two ACOM evaluations is 0.425. The first

quartile for officers receiving three ACOM evaluations is 0.468. This means that

over 75% of officers receiving three ACOM evaluations have a higher Qi than

over 75% of the officers receiving two ACOM evaluations. In a perfect system,

according to Table 3.9, officers with 0.2592 < Qi < 0.4412 would receive two

ACOM evaluations. Graphically, this would be reflected by box plots for of each
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successive group of officers not overlapping in Figure 3.10. However, this can be

misleading since the whiskers represent outliers and do not necessarily reflect the

quantity of misidentifications. The overlap in Figure 3.10 represents the magnitude

of misidentifications of performance levels resulting from the simulation. The

preliminary results showed that 21.00% of officers had a Qi > 0.4412, meaning

21.00% of the officers receiving two ACOM evaluations should have received three

ACOM evaluations. However, officer performance percentile interquartile range

alone does not provide a comprehensive measure of performance appraisal system

accuracy.

Figure 3.10: Box plot showing the distribution of Qi for each number k of ACOM
evaluations received

Tabular representations, such as classification tables, are more effective than

box plots in capturing the magnitude and quantity of misidentifications within the

performance appraisal simulation. The classification table shown in Table 3.10

shows the officers correctly identified and misidentified at each level k of ACOM

evaluations for the current average rating pool size of 15 officers. The values in
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the table refer to the percent of the total population. The columns denote the

number of ACOM evaluations and the percentage of officers receiving each of the

k levels. The rows represent the number of ACOMs the officers in the simulation

deserved based on Table 3.9. The number of ACOM evaluations an officer deserves

is based off the officer’s performance percentile, Qi, compared to the cumulative

percent of officers receiving k ACOM evaluations. The diagonal of Table 3.10

displays the percentage of officers whose performance level was correctly identified

and rewarded in the current performance appraisal system. The classification

table also shows officers whose performance level was misidentified, along with the

severity of the misidentification. For example, in the column of officers receiving

two ACOM evaluations, 3.71% of the officers had a Qi greater than 0.4412, and

deserved to receive three ACOM evaluations. Similarly, 0.21% of the population

received two ACOM evaluations, but had a Qi greater than 0.6496, the equivalent

of those officers deserving four ACOM evaluations. Conversely, this logic is also

extended to the officers receiving more ACOM evaluations than they deserved.

3.5.2 Assessing the Effect of Pool Size

Decreasing the rating pool size results in increased interquartile ranges at each k

level of ACOM evaluations. The November 2015 revision of Army Regulation 623-

3: Evaluation Reporting System provides guidance for establishing appropriate

pool sizes (Department of the Army (2015)). While the regulation does not state

a specific pool size, it directly addresses the issue of pooling, or maintaining pool
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Table 3.10: Classification table of officer misidentification in the current perfor-
mance appraisal system.

ACOM Evaluations Received

0 1 2 3 4 5
A
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lu
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n
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er
ve

d 0 8.98% 3.00% 0.11% 0.00% 0.00% 0.00%

1 2.97% 7.35% 3.37% 0.09% 0.00% 0.00%

2 0.21% 3.26% 10.80% 3.88% 0.20% 0.00%

3 0.00% 0.15% 3.71% 11.75% 4.92% 0.40%

4 0.00% 0.00% 0.21% 4.69% 11.04% 5.24%

5 0.00% 0.00% 0.00% 0.43% 5.18% 8.06%

sizes that are larger than the rater’s ability to adequately assess the performance of

the officers in each rating pool. Assuming adherence to this regulation, this change

will lead to a decrease in average pool size over time. As the pool size changes, we

must recalculate the profile constraint, 0.568 for the current average pool size of

15, for each new pool size experiment in order to maintain approximately 53.50%

ACOM evaluations. Using the procedure outlined in Section 3.4.1, we re-calculate

the profile constraint to be 0.578 for a pool size of ten and 0.649 for a pool size

of five. We run the 100 replications of each simulation to obtain output data on

30,000 officers for each pool size. The results are summarized in Figure 3.11.

Decreasing the pool size has very little effect on the average Qi at each level of

total ACOMs received. However, there is a noticeable increase in the interquartile

range at each ACOM level as the pool sizes decrease. This is a direct result
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Figure 3.11: Boxplot showing the distribution of Qi for each number k of ACOM
evaluations received with varying pool sizes.

of the increased performance level variability due to small sample sizes. The

interquartile range of officer performance percentile when the average pool size

is five is nearly the interquartile range of officer performance percentile when the

average pool size is 15. The greater variance in officer performance at each rating

level for smaller pool sizes leads to an increased number and severity of potential

misidentifications. The increased standard deviation and increased interquartile

ranges are shown Table 3.11.

Table 3.11: The standard deviation and interquartile range of Qi for officers re-
ceiving k ACOM evaluations for pool sizes of 15, 10, and 5.

k
0 1 2 3 4 5

Avg Pool Size 15
Std Dev 0.063 0.091 0.109 0.132 0.135 0.099
IQ Range 0.087 0.125 0.144 0.177 0.196 0.142

Avg Pool Size 10
Std Dev 0.078 0.107 0.131 0.153 0.138 0.103
IQ Range 0.101 0.146 0.170 0.211 0.208 0.144

Avg Pool Size 5
Std Dev 0.106 0.160 0.198 0.201 0.168 0.131
IQ Range 0.114 0.203 0.263 0.298 0.258 0.187

Increased interquartile ranges at each of the k levels leads to an increased number
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of misidentifications in the performance appraisal system. The interquartile ranges

at k = 2 and k = 3 nearly double from the systems with an average pool size of 15

to the systems with an average pool size of 5. The increase in interquartile range

manifests into misidentifications within the system. We use the same methodology

in Section 3.5.1 to sample the errors induced in the system at the k = 2 and k = 3

levels. Table 3.12 shows that 45.80% of the officers receive two ACOM evaluations

of less. Therefore, any officer whose Qi > 0.4580 would receive more than two

ACOM evaluations in a perfect system. However, the simulation output for an

average pool size of five shows that 33.57% of the officer where k = 2 had a Qi >

0.4580. This constitutes a 59.86% increase in the number of misidentifications

over the system with an average pool size of 15.

Table 3.12: A summary of the percentage of officers receiving k ACOM evaluations
for an average pool size of 5.
k ACOM Evals Percent of Officers (

∑n
i=1

∑5
j=1Xij/n) Cumulative Percent

0 9.12% 9.12%
1 16.55% 25.66%
2 20.14% 45.80%
3 23.44% 69.24%
4 21.32% 90.56%
5 9.44% 100.00%

3.5.3 Assessing the Effect of Time in Position

Varying the average amount of time each officer spends in an assignment has

an effect on the accuracy of the performance appraisal system. Similar to Section

3.5.2, where we analyzed the effect of changing the pool size from 15 to five officers,

we can vary the amount of time each officer spends in an assignment by adjusting
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the frequency at which the officers in the simulation change rating pools. Figure

3.12 shows box plots of the performance percentile distribution of the officers

receiving each level k of ACOM evaluations when the time in position is between

one and five years. Increasing the the average time in position results in a slightly

wider interquartile range at each level k. For example, the interquartile range

increases by an average of 2.2% when the average time in position changes from

one to two years. The interquartile range increases an average of 11.6% when the

average time in position increases from one to five years.

Figure 3.12: Boxplot showing the distribution of Qi for varying time in position
and k number of ACOM evaluations received.

Decreasing the amount of time and officer spends in each assignment increases

the accuracy of the performance appraisal system. Table 3.13 shows the stan-

dard deviation and interquartile range of the officer performance percentiles Qi

for varying levels of average time in position. As the average amount of time offi-

cers spend in each assignment decreases from five years to one years, the standard

deviation and interquartile ranges for officer performance percentiles at each level
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k of ACOM evaluations received decreases. This decrease in variability indicates

more accurate performance appraisal. However, the improvement in system ac-

curacy is far less drastic than the improvements due to increases in the rating

pool size. Given that moderate increases in the average time and officer spends

in an assignment does not significantly affect the performance appraisal system

accuracy, decreasing the frequency at which an officer moves can appear to be

an effective cost cutting strategy. In 2016, the Army spent an average of nearly

$19,000 per move for officers, totaling nearly $340 million for officer travel be-

tween duty locations (Deputy Assistant Secretary of the Army - Budget (2017).

However, decreasing the frequency of moving an officer can serve as a hindrance

to professional development. Keeping officers in assignments for longer periods of

time limits the breadth of experiences critical to developing leaders of the future

(Odierno (2015)).

Table 3.13: The standard deviation and interquartile range of Qi for officers re-
ceiving k ACOM evaluations for average time in position (TIP) of 5, 4, 3, 2, and
1 years.

k
0 1 2 3 4 5

Average TIP 5 Years
Std Dev 0.079 0.106 0.131 0.151 0.143 0.115
IQ Range 0.102 0.135 0.167 0.203 0.211 0.163

Average TIP 4 Years
Std Dev 0.074 0.101 0.126 0.147 0.141 0.112
IQ Range 0.097 0.131 0.161 0.200 0.209 0.155

Average TIP 3 Years
Std Dev 0.072 0.099 0.120 0.141 0.138 0.108
IQ Range 0.097 0.131 0.157 0.187 0.202 0.153

Average TIP 2 Years
Std Dev 0.067 0.095 0.114 0.137 0.136 0.103
IQ Range 0.091 0.127 0.152 0.184 0.202 0.146

Average TIP 1 Year
Std Dev 0.063 0.092 0.111 0.135 0.134 0.098
IQ Range 0.089 0.124 0.147 0.184 0.200 0.141
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3.6 Response Function Development

The response function used to evaluate the system is a combination of the number

of misidentifications and the severity of the misidentifications. For example, Table

3.14 shows the percentage of officers at each k that deserved k + 1 or k + 2 top

evaluations for an average pool size of 15.

Table 3.14: A summary of misidentified officers deserving k + 1 or k + 2 ACOM
evaluations for an average pool size of 15.

k Percent Deserving k + 1 Percent Deserving k + 2 (or more)
0 2.97% 0.21%
1 3.26% 0.15%
2 3.71% 0.21%
3 4.69% 0.43%
4 5.18% N/A

The data shown in Table 3.15 are for an average pool size of five. It shows that at

each level of k, with the exception of k = 4, there is a higher percentage of officers

misidentified when compared to a pool size of 15. Equally as important, the officers

going through the system with a pool size of five face a higher number of egregious

misidentifications. The rightmost column in Table 3.15 shows that over 5% of the

officers in a rating pool size of five received two or fewer ACOM evaluations than

their performance percentile dictated. Furthermore, Tables 3.14 and 3.15 only

show the percent of officers who deserved more ACOM evaluations than they

received. To accurately measure the performance appraisal system effectiveness,

we must consider the officers who received more ACOM evaluations than they

deserved, as well as considering the level k at which the misidentifications occur.
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Table 3.15: A summary of misidentified officers deserving k + 1 or k + 2 ACOM
evaluations for an average pool size of 5.

k Percent Deserving k + 1 Percent Deserving k + 2 (or more)
0 3.51% 0.81%
1 4.38% 1.36%
2 4.97% 1.78%
3 5.89% 1.66%
4 4.14% N/A

The consequences associated with performance misidentifications vary across

each level k. According to Table 1.1, officers who receive three or more ACOM

evaluations were promoted at a rate greater than 70% for 2015 and 2016, whereas

officers receiving two or fewer ACOM evaluations were promoted at a rate of

less than 20%. Additionally, in terms of promotion rates, there is very little

difference in promotion rates between officers who receive zero or one ACOM

evaluations. Because of this, we have classified a subset of misidentifications as

critical misidentifications. Critical misidentifications occur when officers deserved

at least three ACOM evaluations, but received two or less, or officers who received

three or more ACOM evaluations, but deserved two or less. The percent of critical

misidentifications for a pool size of 15 is highlighted in Table 3.16.

Experiments where the average rating pool size varies show that there is an

inverse relationship between the number of misidentifications and the average pool

size. Table 3.17 and 3.18 are classification tables that show misidentifications and

critical misidentifications for average rating pool sizes of 10 and five officers. As

the rating pool sizes are decreased, there is a corresponding increase in both the

misidentifications and critical misidentifications contained within the simulation

output. The increased number of misidentifications is a direct result of increased
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Table 3.16: Classification table of officer misidentification in the current perfor-
mance appraisal system with an average rating pool size of 15 officers.

ACOM Evaluations Received

0 1 2 3 4 5
A

C
O

M
E

va
lu

at
io

n
s

D
es

er
ve

d 0 8.98% 3.00% 0.11% 0.00% 0.00% 0.00%

1 2.97% 7.35% 3.37% 0.09% 0.00% 0.00%

2 0.21% 3.26% 10.80% 3.88% 0.20% 0.00%

3 0.00% 0.15% 3.71% 11.75% 4.92% 0.40%

4 0.00% 0.00% 0.21% 4.69% 11.04% 5.24%

5 0.00% 0.00% 0.00% 0.43% 5.18% 8.06%

Misidentifications 42.02%

Critical Misidentifcations 8.24%

variability due to smaller sample sizes (rating pools), but the relationship between

performance appraisal system accuracy and average pool size is non-linear.

Tables 3.16 and 3.17 show that decreasing the average rating pool from the

current size of 15 to 10 officers results in a 19.5% increase in the number of crit-

ical misidentifications. However, comparing Tables 3.16 and 3.18 shows that the

number of critical misidentifications nearly doubles. The non-linear relationship

between system accuracy and average rating pool is shown in greater detail in

Figure 3.13, comparing the misidentifications and critical misidentifications for

average rating pool sizes ranging from five to 15 officers, in increments of two.

Figure 3.13 shows that moderate decreases in the rating pool size are more likely
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Table 3.17: Classification table of officer misidentification with an average rating
pool size of 10 officers.

ACOM Evaluations Received
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d 0 9.62% 3.24% 0.20% 0.00% 0.00% 0.00%

1 3.26% 7.45% 3.42% 0.24% 0.00% 0.00%

2 0.37% 3.66% 9.54% 4.12% 0.32% 0.00%

3 0.00% 0.33% 4.38% 10.82% 5.12% 0.61%

4 0.00% 0.00% 0.46% 5.38% 10.93% 5.07%

5 0.00% 0.00% 0.00% 0.81% 4.94% 5.71%

Misidentifications 45.94%

Critical Misidentifcations 9.85%

to be deemed acceptable by organizational leadership as opposed to drastic de-

creases in rating pool size that greatly decrease performance appraisal system

accuracy. The effect that average rating pool size has on system accuracy is much

more pronounced than the effect of average time in position.

The average amount of time officers spend in each assignment has little effect

on performance appraisal system accuracy. Section 3.5.3 describes performance

percentile interquartile range changes at each level k of ACOM evaluations due

to changes in the average time in position. Changing the average time in position

from one year to five years results in an average Qi interquartile range increase of

2.2%. Although the effect of time in position does not appear to be significant,
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Table 3.18: Classification table of officer misidentification with an average rating
pool size of 5 officers.

ACOM Evaluations Received
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d 0 4.80% 3.50% 0.66% 0.00% 0.00% 0.00%

1 3.51% 7.33% 4.49% 1.03% 0.00% 0.00%

2 0.81% 4.38% 8.25% 5.37% 1.37% 0.00%

3 0.00% 1.36% 4.97% 9.51% 6.50% 1.60%

4 0.00% 0.00% 1.78% 5.89% 9.34% 4.74%

5 0.00% 0.00% 0.00% 1.66% 4.14% 3.01%

Misidentifications 57.76%

Critical Misidentifcations 15.88%

Figure 3.14 shows that there is a 20.5% increase in the number of critical misiden-

tifications when the average time in position is increased from one year (8.18%) to

five years (9.86%). While the average time in position has less of an influence than

average rating pool size on performance appraisal system accuracy, Figure 3.14

shows both misidentifications and critical misidentifications increase when officers

stay in positions for longer periods of time.

The difference in magnitude between the misidentifications and critical misiden-

tifications suggests that the majority of misidentifications are not egregious errors.

In addition to calculating the number of critical misidentifications, giving the sys-

tem an allowable error is a way to gauge the severity of misidentifications. If we
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Figure 3.13: Percent of officer misidentifications and critical misidentifications
when varying the average rating pool size.

Figure 3.14: Percent of officer misidentifications and critical misidentifications
when varying the average time in position pool size.
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consider a 3% allowable error at each boundary Qi cutoff, the number of misiden-

tifications decreases significantly. Table 3.19 shows that for an average rating pool

size of 15 officers, the number of misidentified officers decreases from 42.02% to

29.43% when an allowable error of 3% is applied. Additionally, the number of

critical misidentifications decreases from 8.24% to 5.57%. Therefore, it is a rea-

sonable conclusion that the misidentifications in the current performance appraisal

system frequently occur when an officer’s performance percentile level Qi is near

the cutoff score for each k level of ACOM evaluations.

Table 3.19: Classification table of officer misidentification in the current perfor-
mance appraisal system with 3% allowable error.

ACOM Evaluations Received
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d 0 10.27% 1.69% 0.05% 0.00% 0.00% 0.00%

1 1.79% 9.92% 2.10% 0.03% 0.00% 0.00%

2 0.10% 2.10% 13.24% 2.52% 0.16% 0.00%

3 0.00% 0.05% 2.70% 14.27% 3.75% 0.22%

4 0.00% 0.00% 0.11% 3.72% 13.81% 4.42%

5 0.00% 0.00% 0.00% 0.30% 3.62% 9.06%

Misidentifications 29.43%

Critical Misidentifcations 5.57%

The response function detailed in Chapter 4 combines the number and severity

of misidentifications into a single response function. This response function serves
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as the measure of effectiveness when evaluating system input parameter configu-

rations. While the aforementioned, one factor at a time analysis provides insight

into system behavior with perturbations to select input parameters, multiple sys-

tem input parameter configurations can be evaluated using ranking and selection

methods.
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CHAPTER 4

SIMULATION-OPTIMIZATION

4.1 Introduction

In this chapter, we introduce and analyze simulation-optimization techniques that

can be directly applied to the U.S. Army’s performance appraisal system. Fu de-

fines simulation-optimization as optimization of performance measures based on

outputs from stochastic (primarily discrete-event) simulations (Fu et al. (2005)).

Fu classifies simulation-optimization techniques into the four categories shown in

Figure 2.8. Statistical techniques include sequential response surface methodology,

ranking and selection procedures, and multiple comparison techniques. Meta-

heuristic techniques are generally adopted from deterministic optimization and

include genetic algorithms, tabu search, and simulated annealing. Stochastic opti-

mization includes random search techniques along with stochastic approximation.

Finally, the catch-all bin of the ‘Other’ category in Figure 2.8 includes techniques

such as ordinal optimization and sample path optimization. For solving the prob-
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lem of comparing multiple configurations of performance appraisal system param-

eters for the purpose of making policy recommendations, we employ ranking and

selection statistical procedures.

Given a finite set of system configurations, researchers have developed ranking

and selection statistical techniques for discrete optimization via simulation that

can be used to evaluate multiple system configurations (Rinott (1978), Goldsman

and Nelson (1994), Kim and Nelson (2001), Nelson et al. (2001)). Ranking and

selection methods are statistical procedures that guarantee a pre-specified prob-

ability of correct selection of the best combination of input parameters over a

predetermined set of alternatives. Ranking and selection techniques are gener-

ally classified as multi-stage or fully sequential procedures. In two-stage ranking

and selection procedures, k configurations are considered, and each configura-

tion has an independent, normally-distributed mean response µ` and variance σ2
` ,

` = 1, 2, . . . , k. If the mean responses are ordered such that µ[1] ≤ . . . ≤ µ[k], the

goal of the ranking and selection procedure is to correctly select µ[k], such that

µ[k] − µ[k−1] ≥ δ∗ with the predetermined probability PC∗, where δ is defined as

the indifference zone. The indifference zone represents the performance difference

deemed practically significant. In a two stage procedure, an initial number of

replications n0 is run for each system configuration k. Based on µ` and σ2
` for each

system, an additional number of replications nb − n0, where (nb ≥ n0), are run to

ensure that µ[k] can be correctly identified for a given δ∗ and PC∗. The details of

finding nb are described in Section 4.4.
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Fully-sequential ranking and selection procedures reduce the overall simula-

tion effort when compared to multi-stage ranking and selection procedures. With

fully-sequential procedures, a minimal number of initial replications is run for

each configuration. Statistically inferior configurations are eliminated from the

candidate configurations. At each step thereafter, one replication is run for each

remaining configuration and candidate configurations are removed from remain-

ing configurations until the best candidate is found or the maximum number of

replications is reached. Since inferior solutions are eliminated early in the experi-

ment, fully-sequential procedures reduce the simulation effort required to find the

best solution. However, the efficiency gained can be offset by switching between

alternatives during each replication (Kim and Nelson (2001)).

4.2 Parameter Description and Optimization

Numerous factors contribute to the rating an individual receives in a forced dis-

tribution performance appraisal system. These factors include a rater’s span of

control (e.g., the number of subordinates being rated), the frequency at which

individuals change raters, regulatory constraints pertaining to the number of top

evaluations a rater can award, and the rater behavior. In this section, we describe

a discrete event simulation that incorporates each of these inputs. We then apply

ranking and selection simulation-optimization techniques to evaluate and opti-

mize controllable parameters in the simulated system. Analysis and optimization

of the evaluation model can provide insight for stakeholders making performance
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appraisal policy adjustments or attempting to alter human behavior detrimental

to the accuracy of the system.

Two types of data are used as inputs to the simulation model. Measurable

inputs are parameters including average rating pool size, the frequency at which

officers change rating pools, and regulations such as the profile constraint. On

the other hand, estimated inputs such as performance percentile, Qi, are rather

theoretical and subjective, but based on reasonable assumptions as promotion

and selection boards often use an order of merit list when determining their final

recommendations. Finally, given the data in Figure 3.3, the simulation model

utilizes a behavior function that accounts for each officer’s performance percentile

and seniority when ranked relative to their peers for the purposes of evaluations.

The simulation output consists of officers who have received five annual eval-

uations during their time in the simulated performance appraisal system. Based

on the officers’ performance percentiles and the number of top evaluations they

received in the system, we can determine whether each officer’s performance was

correctly identified by raters in the performance appraisal system, i.e., the num-

ber of top evaluations received is commensurate with the officer’s performance

percentile. For instance, if an officer’s performance percentile is 0.42 and the

number of top evaluations received in the system over a five-year period is one;

however, 39% of that officer’s cohort received either zero or one top evaluation.

This indicates that the officer in question should have received two top evalua-

tions according to the performance percentile of 0.42 and the cumulative percent
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of officers receiving zero or one top evaluations being less than 0.42 (39%). There-

fore, we can estimate the quantity as well as severity of misidentifications in the

performance appraisal system as a result of system structure, system dynamics,

and behavior of the raters.

Table 4.1 shows a sample simulation output with the classifications used in

an objective function for evaluating the accuracy of each performance appraisal

system configuration. The diagonal elements of the classification refer to the per-

cent of officers who correctly received the number of top evaluations corresponding

to their performance percentile. Any off-diagonal elements of Table 4.1 represent

misidentifications, previously separated into regular and critical misidentifications.

In the objective function used for optimization, misidentifications are classified into

three categories: regular misidentifications, severe misidentifications, and critical

misidentifications. Regular misidentifications are instances when officers receive

one more top evaluation than they deserve or one less top evaluation than they

deserve. For example, 3.26% of the population received zero top evaluations, but

deserved one top evaluation. Severe misidentifications are instances when officers

receive at least two more top evaluations than they deserve or at least two fewer

top evaluations then they deserve. An example of this case in Table 4.1 is that

0.37% of the population received zero top evaluations, but deserved two top eval-

uations. Critical misidentifications are displayed in bold in Table 4.1 and occur

whenever the misidentification would likely have an impact on promotion. As

shown in Table 1.1, critical misidentifications occur whenever an officer deserves

three or more top evaluations and receives two or less top evaluations, or when
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Table 4.1: An instance of percents of top evaluations officers deserved and received
for an average time in position of one year, profile constraint of 49%, and a rating
pool size of 10.

Received
Deserved 0 1 2 3 4 5

0 9.62% 3.24% 0.20% 0.00% 0.00% 0.00%
1 3.26% 7.45% 3.42% 0.24% 0.00% 0.00%
2 0.37% 3.66% 9.54% 4.12% 0.32% 0.00%
3 0.00% 0.33% 4.38% 10.82% 5.12% 0.61%
4 0.00% 0.00% 0.46% 5.38% 10.93% 5.07%
5 0.00% 0.00% 0.00% 0.81% 4.94% 5.71%

an officer deserves two or fewer top evaluations and receives at least three top

evaluations.

Initial experiments showed that increasing the average rating pool size from

10 to 15 resulted in a corresponding 8.53% decrease in misidentifications. Larger

rating pool samples reduce the variability of performance percentile for the officers

receiving top evaluations, thereby decreasing the number of misidentifications,

and providing further evidence of model validation. While the simulation results

obtained by changing the rating pool size are intuitive, the size of rating pools is

just one of several variables that affect the accuracy of the performance appraisal

system. Prior to formulating our model, we present the following notations:

Indices and sets

i ∈ I = {1, 2, . . . , 300}: Set of number of officers

j ∈ J = {1, 2, . . . , 5}: Set of years spent in the system

r ∈ R = {1, 2, 3}: Set of sorting functions

Parameters
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Qi: Initial performance percentile for officer i

ωmp: Penalty for misidentified officers

ωsp: Penalty for severely misidentified officers

ωcp: Penalty for critically misidentified officers

Tij: Indicates if officer i is in year j in the system

αjr: Rating function coefficient used for function r in year j

βjr: Rating function constant used for function r in year j

Variables

P : Frequency at which officers change rating pools

C: Profile constraint for raters

D: Average rating pool size

Q′ir: Sorting function r used for officer i

Outputs

Xij: Evaluation for officer i in year j

MISi: Indicates officer i ’s performance percentile is misidentified

SMISi: Indicates a severe misidentification of officer i ’s performance percentile

CMISi: Indicates a severe misidentification of officer i ’s performance percentile

The accuracy of the system is determined by calculating the number of officers

that fall into each of three classifications of misidentifications. Then, a negative
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penalty is assigned to each category of misidentification where ωcp < ωsp < ωmp,

reinforcing critical misidentifications as the least desirable outcome of the perfor-

mance appraisal system. Therefore, we present the following model for evaluating

performance appraisal system configurations:

Max Z = E

[
ωmp

∑
i∈I

MISi + ωsp
∑
i∈I

SMISi + ωcp
∑
i∈I

CMISi

]
(4.2.1)

Subject to

Q′ir =
∑
j∈J

(αjrQi + βjr)Tij ∀ i ∈ I, r ∈ R (4.2.2)

P ∈ [1.0, 0.48, 0.26] (4.2.3)

C ∈ [0.39, 0.49, 0.59] (4.2.4)

D ∈ [5, 10, 15] (4.2.5)

Q′ir ∈ [Q′i1, Q
′
i2, Q

′
i3] (4.2.6)

Equation (4.2.1) is the total penalty function that serves as a basis for compar-

ison between competing system configurations. Constraint (4.2.2) is the sorting

function Q′ir estimated in Section 3.4.2. The piecewise function Q′ir provides the

appropriate amount of weight to seniority and performance percentile when com-

pared to actual rater behavior. This function maps each performance percentile

Qi to a value Q′ir that is used to rank officers within each rating pool. Figure 4.1

shows the three sorting functions listed in Constraint (4.2.6). The function Q′i1 is
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the original function (Q′i) estimated in Section 3.4.2, while Q′i2 reduces the effect

of seniority by 50% for all j 6= 3 and Q′i3 increases the effect of seniority by 50%

for all j 6= 3.

Constraint (4.2.3) varies the annual probability at which an officer changes

rating pools. When P = 1, officers change ratings pools annually. When P =

0.48 and P = 0.26, the E[Time in Position] is 24 and 36 months, respectively.

Constraint (4.2.4) restricts the rater’s profile constraint for the maximum percent

of top evaluations available for each rating pool. By regulation, the current profile

constraint is set to 49%. Finally, Constraint (4.2.5) varies the average rating

pool size. While the current average pool size is 15 officers, the November 2015

revision of Army Regulation 623-3 now requires raters to avoid pooling, which will

likely reduce the size of rating pools over time (Department of the Army (2015)).

Therefore, Constraint (4.2.5) defines the set of evaluated rating pools sizes at, or

below, the current rating pool size.

The results in Table 4.1 are obtained for one particular configuration of the

decision variables shown in Constraints (4.2.3)-(4.2.6). Different combinations of

these decision variables will yield unique simulation outputs. We now describe

two ranking and selection procedures and outline the solution algorithms.
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Figure 4.1: The effect of sorting function Q′ir for an officer with Qi =0.50.

4.3 Nelson, Swann, Goldsman, Song (NSGS) Procedure

A common challenge in simulation is the ability to compare the output of a large

number of simulation configurations. Each configuration has a unique output,

hence it is desirable to develop a technique for ranking the multiple alternatives

and selecting the most preferable, or optimal, configuration. Traditional two-stage

ranking and selection procedures, such as the one developed by Rinott, enable run-

ning a small number of initial replications for each system (Rinott (1978)). Then,

based on the statistical properties of the mean responses, an additional number

of replications is assessed and run for each system that guarantees a user-defined

performance difference significance between competing systems at a specified con-

fidence level. Rinott’s (1978) procedure implements a sample-sample-select al-
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gorithmic structure that is efficient for a relatively small number of competing

systems. Nelson et al. (2001) adapted Rinott’s procedure in order to compare a

large number of competing systems by adding a screening step between the first

and second sampling stages. Their sample-screen-sample-select procedure elimi-

nates statistically inferior system configurations prior to the second sampling stage

which reduces the required number of overall replications for the next stage.

In order to evaluate multiple configurations of the performance appraisal system,

we use the NSGS ranking and selection procedure proposed by Nelson et al (2001).

We define the notations used in the NSGS procedure, then describe the algorithmic

steps as below.

n0: initial number of replications run for each of k competing configurations

PC∗: confidence level (1− α) of selecting the best system, where 1
k
< PC∗ < 1

δ∗: user-defined level of practical significance (indifference zone)

Step 1: Set t = t
(1−α

2
)

1
k−1 ,n0−1

, where t denotes the (1− α
2
)

1
k−1 quantile of the

t-distribution with n0 − 1 degrees of freedom.

Step 2: Calculate Rinott’s constant h where h = h(1− α
2
, n0, k) (Bechhofer

et al. (1995)).

Step 3: Sample M`g, ` = 1, 2, . . . , k; g = 1, 2, . . . , n0.

Step 4: Compute the sample means and variances, M
(1)

` and S2
` , for

` = 1, 2, . . . , k.

Step 5: Let W`g = t
(
S2
`

n0
+

S2
g

n0

) 1
2 ∀ ` 6= g.
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Step 6: Let the subset L = {` : 1 ≤ ` ≤ k and M
(1)

` ≥M
(1)

g − (W`g − δ∗),

∀ ` 6= g}.

Step 7: If L contains a single configuration, it is the best solution. Otherwise,

∀ ` ∈ L compute the required replications for the second stage where

Nb = max
{
n0,
⌈(

hS`
δ∗

)2⌉}
.

Step 8: Take the second stage observations, Nb − n0, from all remaining

configurations ` ∈ L and compute the overall sample means

M
(2)

` = 1
Nb

Nb∑
g=1

M`g.

Step 9: Select the configuration ` ∈ L with the largest M
(2)

` .

Nelson et al. (2001) make use of the probability of correctly selecting the best

system such that µ[k] − µ[k−1] ≥ 1− α using the procedure described as above.

4.4 Kim-Nelson (KN) Procedure

Restricting the number of stages where inferior systems are removed is neces-

sary in large part to prevent switching between a large number of system sim-

ulations. As computing efficiency improved, Kim and Nelson (2001) developed

a fully-sequential procedure that takes a single observation from each competing

system at each stage. The Kim and Nelson (KN) procedure enables elimination of

inferior systems from contention using an indifference parameter and probability

of correct selection similar to the NSGS procedure. Fully-sequential procedures

implement a screening step that evaluates and eliminates system configurations
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after each replication until an optimal solution is found with probability PC∗, or

the experimenter has reached the maximum number of replications. We describe

the algorithmic implementation of the KN procedure below.

Step 1: Let n0 be the first stage sample size, where n0 ≥ 2.

Step 2: Let the subset L = {1, 2, . . . , k} be the set of configurations still in

contention, and let γ2 = 2η × (n0 − 1) and η = 1
2

[(
2α
k−1

)−2/(n0−1) − 1
]

(Kim and Nelson (2001)).

Step 3: Sample M`g, ` = 1, 2, . . . , k; g = 1, 2, . . . , n0.

Step 4: For all ` 6= q, compute the sample variance

S2
`q = 1

n0−1

n0∑
g=1

(M`g −Mqg − [M `(n0)−M q(n0)])
2.

Step 5: Let N`q =
⌊
γ2S2

`q

(δ∗)2

⌋
and N` = max

q 6=`
N`q.

Step 6: If n0 > max`N`, the system with the largest M `(n0) is the best

configuration.

Step 7: If n0 < max`N`, set the replication counter b = n0.

Step 8: Let L =
{
` : ` ∈ Lold and M `(b) ≥M q(b)−W`q(b),∀ q ∈ Lold, q 6= `

}
where W`q(b) = max

{
0, δ

∗

2b

(
γ2S2

`q

(δ∗)2
− b
)}

.

Step 9: If |L| = 1, the configuration in L is the best solution. Otherwise, take

one additional replication M`,b+1 from each system ` ∈ L, set b = b+ 1,

and return to Step 8.
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4.5 Applied Simulation Optimization Results

We implemented the NSGS procedure using the performance appraisal system

evaluation model. A 34 factorial design resulted in 81 configurations of the per-

formance appraisal system simulation where the annual probability of changing

rating pools of 100%, 48%, or 26%, the rater profile of 39%, 49%, or 50%, the

average rating pool size of 5, 10, or 15 officers, and the sorting function of Q′i1,

Q′i2, or Q′i3.

The first stage of the NSGS procedure consisted of 25 replications for each

of the 81 configurations using the Simio simulation software package. After the

first sampling stage, 73 configurations were eliminated from contention as the best

configuration. Table 4.2 shows the input and mean responses of the eight configu-

rations remaining for second stage consideration when ωmp, ωsp, and ωcp are -1, -2,

and -3, respectively. Based on the results in Table 4.2, increasing the profile con-

straint generally reduces the number of critical misidentifications. An increase in

the number of top evaluations awarded results in the distribution shown in Figure

5.1. An increase in the number of officers receiving zero or five top evaluations,

and a corresponding decrease in the number of officers receiving one, two, three,

or four top evaluations, reduces the number of critical misidentifications. Table

4.2 also shows that seven of the eight best system configurations had a average

rating pool size of 15 officers. The larger rating pools provide a more uniform

distribution of performance percentiles that results in fewer misidentifications.
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Figure 4.2: A comparison of misidentifications for the current and proposed per-
formance appraisal systems.

Table 4.3 shows the number of replications and the output from the second

sampling stage of the NSGS procedure. The highlighted configuration refers to

the optimal system with the sorting function Q′i2, officers changing rating pools

every year, a rater profile constraint of 0.59, and an average rating pool size of 15.

The NSGS procedure took a total of 6,179 replications distributed amongst the

81 system configurations in order to determine the optimal configuration.

Implementation of the KN procedure yielded the same optimal configuration as

the NSGS procedure with fewer replications. Table 4.4 shows the total number

of replications for each procedure and the output from the optimal configuration.

The KN procedure required 60.04% fewer replications than the NSGS procedure.

This improved efficiency of the fully-sequential ranking and selection procedure is

consistent with the results found by Kim and Nelson (2001).

114



Table 4.2: Results from the first sampling stage of the NSGS procedure (A: sorting
function; B: annual probability of changing rating pools; C: profile constraint; D:
average rating pool size; E: misidentifications; F: severe misidentifications; G:
critical misidentifications).

Input Output
A B C D E F G
Q′i2 1 0.39 15 73.80 5.60 20.44

0.49 15 74.40 5.92 19.28
0.59 15 70.04 6.20 17.88
0.59 10 85.16 8.60 22.04

0.48 0.39 15 76.80 6.84 23.04
0.49 15 75.16 8.28 21.36
0.59 15 73.68 8.44 20.24

0.26 0.59 15 63.92 12.16 21.08

Table 4.3: Results from the second sampling stage of the NSGS procedure (A: sort-
ing function; B: annual probability of changing rating pools; C: profile constraint;
D: average rating pool size).

Input Replications Output

A B C D Nb M
(2)

`

Q′i2 1 0.39 15 555 -149.68
0.49 15 979 -148.44
0.59 15 423 -139.35
0.59 10 523 -166.08

0.48 0.39 15 588 -156.88
0.49 15 309 -155.09
0.59 15 354 -148.25

0.26 0.59 15 623 -152.37

4.6 Robustness of Responses

The robustness of the results can be determined by calculating the mean re-

sponse for each configuration under varying values of ωmp, ωsp, and ωcp. The

aforementioned ranking and selection procedures involved ωmp, ωsp, and ωcp val-

ues of -1, -2, and -3, respectively. That is, severe misidentifications are penalized

twice as much as regular misidentifications, while critical misidentifications are
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Table 4.4: Comparison of optimal solution found by NSGS and KN procedures
(E: misidentifications; F: severe misidentifications; G: critical misidentifications;

H: mean response value (M
(2)

` for NSGS, M `(b) for KN)).
Total Output

Method Replications E F G H
NSGS 6179 71.33 6.17 18.55 -139.35

KN 2469 70.76 6.39 18.48 -138.96

penalized three times as much as regular misidentifications. The logical, linear

relationship between ωmp, ωsp, and ωcp is in accordance with ωcp < ωsp < ωmp.

In order to assess the robustness of the results, we tested multiple values of the

penalties associated with each form of misidentification.

Each penalty setting PSc, c = 1, 2, . . . , 6, is detailed in Table 4.5. The penalty

for regular misidentifications is fixed at -1 for each of the six penalty settings

tested. This provides a baseline for comparison when determining the penalties

for severe and critical misidentifications. The first three penalty settings (PS1,

PS2, and PS3) maintained a linear relationship between ωmp, ωsp, and ωcp, but had

different magnitudes of the penalties associated with each type of misidentification.

For PS4 and PS5, a non-linear relationship was considered between ωmp, ωsp, and

ωcp. Finally, PS6 penalized each type of misidentification equally.

Table 4.5: Penalty settings (PS) for ωmp, ωsp, and ωcp used in sensitivity analysis.
Penalties PS1 PS2 PS3 PS4 PS5 PS6

ωmp -1 -1 -1 -1 -1 -1
ωsp -2 -3 -5.5 -2 -9 -1
ωcp -3 -5 -10 -10 -10 -1

The optimal configuration shown in Table 4.3 remains unchanged for each of

the six penalty settings. Table 4.6 presents the performance of the five best con-

figurations under the NSGS procedure for varying penalty values. In addition to
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the optimal configuration remaining unchanged, all five of the best configurations

under the NSGS procedure performed well for varying penalty values.

Table 4.6: Configuration rankings under various penalty settings (A: sorting func-
tion; B: annual probability of changing rating pools; C: profile constraint; D:
average rating pool size).

Ranking for
Input Penalty Setting (PS)

A B C D 1 2 3 4 5 6
Q′i2 1 0.39 15 4 3 3 3 4 5

0.49 15 3 2 2 2 2 4
0.59 15 1 1 1 1 1 1

0.48 0.59 15 2 4 5 4 6 3
0.26 0.59 15 5 7 8 7 9 2
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CHAPTER 5

DISCUSSION

5.1 Results

Forced distribution performance appraisal systems produce varied levels of accu-

racy that are a result of system dynamics, system structure, and rater behav-

ior within the system. The optimal performance appraisal system configuration

via the NSGS and KN procedures contains notable deviations from the current

configuration. We describe each of the decision variables listed in Constraints

(4.2.3)-(4.2.6) and their relationship to current system configuration.

The optimal configuration from Table 4.6 has the same average rating pool size

as the current system (15 officers), while the move frequency, profile constraint,

sorting functions are varied. Officers currently spend an average of 16.42 months

in each assignment, and the optimal configuration has officers spending 12 months

in each assignment, the minimal amount of time allowed by Constraint (4.2.3).
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Figure 5.1: The distribution of top evaluations for the current and proposed per-
formance appraisal systems.

The profile constraint of the optimal configuration is 59% as opposed to the cur-

rent 49%, allowing raters to give more top evaluations than currently allowed by

regulation. Finally, the sorting function for the optimal configuration, Q′i2, places

less weight on seniority than prevalent of rater behavior in the current system.

Each combination of performance appraisal system variables produces a unique

distribution of top evaluations received by the officers in the system. Figure 5.1

shows the distribution of top evaluations for the proposed system compared to the

evaluation distribution of the current system. With the profile constraint changed

from 49% to 59% in the optimal configuration, an optimal combination of the

decision variables produced a distribution that is substantially different than that

of the current system. Most notably, over 43% of the officers in the proposed

system receive five top evaluations, compared to 14% in the current system.
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Just as the distribution of top evaluations in the proposed system differs from

that of the current system, the magnitude of each type of misidentification also

varies as the decision variables change. Figure 4.2 shows the annual number of

misidentifications, severe misidentifications, and critical misidentifications for the

current and proposed performance appraisal systems. The proposed system re-

duces the number of annual regular and critical misidentifications by over 23 and

10 officers, respectively, but slightly increases the annual number of severe misiden-

tifications by approximately three officers. However, since the magnitude of the

decrease in critical misidentifications outweighed the magnitude of the increase in

severe misidentifications, the proposed configuration demonstrated an improved

performance across all penalty settings tested in Table 4.5.

Any change to the performance appraisal system to meet the optimal configura-

tion would likely face various levels of difficulty. Changes in the profile constraint

from 49% to 59% can be easily made through regulation. Regulating the average

rating pool size and the mean time spent in an assignment is more challenging

since not all units are homogeneous. That is, an operational unit will have a

different structure than a unit such as the Human Resources Command, and the

rating structure may not logically conform to the recommended 15 officers in each

rating pool. Moreover, decreasing the amount of time in each assignment would

have budget impacts as a result of increasing the frequency of moving officers be-

tween duty locations. Rater behavior in the system is likely to pose a challenge

to policy makers because imposing restrictions on the number of top evaluations

(raters can give in relation to their subordinates’ seniority) would be difficult to
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implement. Evaluating subsets of officers based on their seniority would introduce

additional errors due to a decrease in rating pool sizes. Further, this would also

ignore the prevailing assertion that an officer’s performance increases as a func-

tion of seniority. However, over 70% of the officers in the current system receive a

top evaluation in their final year as a major, resulting in an increased number of

officers receiving two or three total top evaluations, as shown in Figure 5.1, and

subsequently inflates the number of critical misidentifications, as shown in Figure

4.2.

5.2 Future Research

An uneven performance distribution has an effect on the number and severity of

misidentifications within a performance appraisal system. To this point, the re-

sults are based on a random performance distribution between rating pools. That

is, the assignment of an officer to a rating pool is made irrespective of the offi-

cer’s performance level. However, there are units in the U.S. Army that have the

ability to accept or reject officers prior to assignment. These organizations, com-

monly referred to as nominative units, receive a larger number of high-performing

officers than other units. Army Regulation 623-3, which dictates evaluation pol-

icy, does not make concessions regarding the profile constraints of raters within

nominative units. As a result, a disproportionate number of high-performing in-

dividuals within the same rating pool increases the number of misidentifications.

Figure 5.2 shows the effect of 10% of the rating pools accepting only officers whose
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performance is in the top 50% of their peers.

Figure 5.2: A comparison of misidentifications for the proposed performance ap-
praisal system with an even and uneven performance distribution.

The uneven distribution labeled in Figure 5.2 represents the output from a

system with the same parameters as the proposed system in Figure 4.2, with the

exception that 10% of the rating pools are nominative organizations who only

accept officers in the top 50% of their peers. The uneven performance distribu-

tion results in a 26.79% increase in regular misidentifications, a 64.79% increase in

severe misidentifications, and a 9.74% increase in critical misidentifications. Fur-

ther research is required to estimate the performance distribution across rating

pools, but the initial estimation displayed in Figure 5.2 shows that an uneven

distribution of performance levels across units leads to a significant increase in

misidentifications.

Further research is required to accurately model the distribution of rating pool

sizes. Figure 3.1 shows that approximately 10% of the rating pools for majors

facing promotion boards in 2015 and 2016 consisted of 40 or more officers. After
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Army Regulation 623-3 directly addressed this practice of pooling, the number

of large rating pools should decrease over time. Capturing the effect of policy

changes is necessary to validate simulation models for future analysis.

We note that the stated results and conclusions are estimates based on func-

tional area officers, a subset of Army officers, who faced promotion boards in 2015

and 2016. To fully understand the complexities of the U.S. Army performance

appraisal system, future research would need to examine the effect and timing

of key developmental assignments. Furthermore, the most recent change to the

officer evaluation report allows for both a rater and senior rater box check and

implements a profile constraint of 49% for both raters and senior raters. As these

officers face promotion boards, further research is required to determine the effect

of both raters’ assessments on both promotion board results and the accuracy of

the performance appraisal system.
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CHAPTER 6

CONCLUSIONS

The accuracy of an organization’s performance appraisal system enhances or lim-

its the ability to retain and promote the highest performing individuals, a critical

component of manpower planning and more directly, talent management. This

research has addressed the development and analysis of simulation models that

integrate system structure and human behavior in order to estimate the effective-

ness of the U.S. Army’s performance appraisal system. The simulation models

serve as tools for policy analysis to determine the extent to which proposed policy

accurately identifies the most qualified employees. The results show broad appli-

cability of simulation optimization in the field of manpower modeling and human

resource management.

Manpower modeling attempts to match the supply of personnel with the jobs

available for them. Original manpower modeling literature focused on develop-

ing closed form solutions for determining recruitment and promotions for multi-

tiered organizations based on fixed organizational structures and historical attri-
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tion rates. Researchers have applied these concepts to military organizations in

order to develop retention incentives, restructure retirement benefits, and ana-

lyze the military’s ability to respond to future conflicts. Military organizations

provide large enough samples to draw meaningful conclusions from appropriately

aggregated data. However, aggregation does not necessarily mean loss of fidelity

regarding individual characteristics and qualifications.

The proposed methodology is not simply building a discrete event simulation

of the performance appraisal process. Rather, this research provides a framework

to analyze the effect of organizational structure, dynamics, and rater behavior

on the organization’s ability to identify and promote the most qualified individ-

uals for future job requirements. The proposed framework allows leadership to

estimate unintended consequences of policy change by simulating policy changes

and comparing the system output to the current system. Moreover, the framework

provides a method to recommend personnel policy by optimizing input parameters

and regulatory constraints through simulation-optimization techniques.

When applied to the U.S. Army performance appraisal system, this simulation-

optimization approach quantifies the classification errors that individuals have

intuitively believed without understanding the conditions that exacerbate the ef-

fects. The computational results presented using data obtained from the United

States Army Human Resources Command demonstrates the potential to reduce

the number of errors within the performance appraisal by over 26% and reduce

the number of errors likely affecting promotions by over 35%. Incorporating the
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quality employee performance into the decision-making process of manpower mod-

eling is a new thread of increasing importance in the fields of military manpower

planning and talent management.

126



REFERENCES

1. 114th Congress, 1st Session (2015), “HR1735: National Defense Authoriza-

tion Act for Fiscal Year 2016.”

2. April, J., Glover, F., and Kelly, J. (2002), “Portfolio Optimization for Cap-

ital Investment Projects”, Proceedings of the 2002 Winter Simulation Con-

ference, 1546-1554.

3. Armitage, A., Schultz, B., Davis, E., and Lykins, L. (2012), “Performance

Management Playbook: Managing Critical Performance Challenges, Action-

able Strategies Based on Rigorous Research”, Institute for Corporate Pro-

ductivity Technical Report, Seattle, WA.

4. Axlerod, R. (1997), “Advancing the Art of Simulation in the Social Sci-

ences”, Simulating Social Phenomena, eds. R. Conte, R. Hegselmann and

P. Terna, Berlin, Germany: Springer-Verlag, 1, 21-40.

5. Balci, O. (1998), “Verification, Validation, and Testing”, Handbook of Sim-

ulation: Principles, Methodology, Advances, Applications, and Practice, ed.

127



J. Banks, New York, NY: John Wiley and Sons, Inc., 335-393.

6. Banks, J. (1998), “Principles of Simulation”, Handbook of Simulation: Prin-

ciples, Methodology, Advances, Applications, and Practice, ed. J. Banks,

New York, NY: John Wiley and Sons, Inc., 3-30.

7. Banner, D.K., and Cooke, R.A. (1984), “Ethical Dilemmas in Performance

Appraisal”, Journal of Business Ethics, 3(4), 327-333.

8. Bartholomew, D.J., and Forbes, A.F. (1979), Statistical Techniques for Man-

power Planning, New York, NY: John Wiley and Sons, Ltd.

9. Bastian, N.D., McMurry, P., Fulton, L.V., Griffin, P.M., Cui, S., Hanson, T.,

and Srinivas, S. (2015), “The AMEDD Uses Goal Programming to Optimize

Workforce Planning Decisions”, Interfaces, 45(4), 305-324.

10. Bechhofer, R., Santner, T., and Goldsman, D. (1995), Design and Analysis of

Experiments for Statistical Selection, Screening, and Multiple Comparisons,

New York, NY: John Wiley and Sons, Inc.

11. Bellman, R. (1954), “The Theory of Dynamic Programming”, Bulletin of

the American Mathematical Society, 513-515.

12. Better, M., Glover, F., Kochenberger, G., and Wang, H. (2008), “Simulation

Optimization: Applications in Risk Management”, International Journal of

Information Technology & Decision Making, 7(4), 571-587.

13. Bjerke, D.G., Cleveland, J.E., Morrison, R.F., and Wilson, W.C. (1987),

“Officer Fitness Report Evaluation Study”, Technical Report (NPRDC TR

128



88-4), Navy Personnel Research and Development Center, San Diego, CA.

14. Boudreau, J.W. (2004), “Organizational Behavior, Strategy, Performance,

and Design in Management Sciences”, Management Science, 50(11), 1463-

1476.

15. Bres, E.S., Burns, D., Charnes, A., and Cooper, D.D. (1980), “A Goal Pro-

gramming Model for Planning Officer Accessions”, Management Science,

26(8), 773-783.

16. Budiansky, S. (2013), Blackett’s War, Vintage Books, New York, NY.

17. Carroll, S.J., and Schneier, C.E. (1982), Performance Appraisal and Re-

view Systems: The Identification, Measurement, and Development of Per-

formance in Organizations, Glenview, IL: Scott, Foresman, and Company.

18. Carson, Y., and Maria, A. (1997), “Simulation Optimization: Methods and

Applications”, Proceedings of the 1997 Winter Simulation Conference, Pis-

cataway, NJ: Institute of Electrical and Electronics Engineers, Inc., 118-126.

19. Chang, J.R., Cheng, C.H., and Chen, L.S. (2007), “A Fuzzy-Based Military

Officer Performance Appraisal System”, Applied Soft Computing, 7(3), 936-

945.

20. Cheese, P. (2010), “Talent Management for a New Era: What We Have

Learned from the Recession and What We Need to Focus On Next”, Human

Resource Management International Digest, 18(3), 3-5.

129



21. Civil Service Reform Act (1978), Public Law 95-454, S 2640, October 13,

1978.

22. Coates, H.R., Silvernail, T.S., Fulton, L.V., and Ivanitskaya, L. (2010),

“The Effectiveness of the Recent Army Captain Retention Program”, Armed

Forces & Society, 37(1), 5-18.

23. Coens, T., and Jenkins, M. (2000), Abolishing Performance Appraisals: Why

They Backfire and What to Do Instead, San Francisco, CA: Berrett-Koehler

Publishers, Inc.

24. Dabkowski, M.F., Huddleston, S.H., Kucik, P., and Lyle, D. (2010), “Shap-

ing Senior Leader Officer Talent: How Personnel Management Decisions

and Attrition Impact the Flow of Army Officer Talent Throughout the Offi-

cer Career Model”, Proceedings of the 2010 Winter Simulation Conference,

Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc., 1407-

1418.

25. Dabkowski, M.F., Huddleston, S.H., Kucik, P., and Lyle, D. (2011), “Shap-

ing Senior Leader Officer Talent: Using a Multi-dimensional Model of Talent

to Analyze the Effect of Personnel Management Decisions and Attrition on

the Flow of Army Officer Talent Throughout the Officer Career Model”,

Proceedings of the 2011 Winter Simulation Conference, Piscataway, NJ: In-

stitute of Electrical and Electronics Engineers, Inc., 2466-2477.

26. Dailey, J.T. (1958), “Prediction of First-cruise Reenlistment Rate”, Opera-

tions Research, 6(5), 686-692.

130



27. David, H.A. (1981), Order Statistics, New York, NY: John Wiley and Sons,

Inc.

28. Department of the Air Force (2016), Air Force Instruction 36-2406: Officer

and Enlisted Evaluation Systems, accessed June 25, 2017 from http://static.e-

publishing.af.mil/ production/1/af a1/publication/afi36-2406/afi36-2406.pdf.

29. Department of the Army (2014), Department of the Army Pamphlet 600-3:

Commissioned Officer Professional Development and Career Management,

December, 2014.

30. Department of the Army (2015), Army Regulation 623-3: Evaluation Re-

porting System, November, 2015.

31. Department of the Navy (2015), Marine Corps Order 1610.7: Performance

Evaluation System, accessed June 28, 2017 from http://www.marines.mil/

Portals/59/Publications/ MCO%201610.7.pdf.

32. Department of the Navy (2016), Bureau of Personnel Instruction 1610.10D:

Navy Performance Evaluation System, accessed June 26, 2017 from

http://www.public.navy.mil/bupersnpc/reference/instructions/

BUPERSInstructions/Documents/1610.10D.pdf.

33. Deputy Assistant Secretary of the Army - Budget (2017), “Fiscal Year (FY)

2018 President’s Budget Submission”, Army Military Personnel; Justifica-

tion Book, 124-129, accessed August 30, 2017 from

https://www.asafm.army.mil/documents/BudgetMaterial/fy2018/mpa.pdf.

131



34. Elmuti, D., Kathawala, Y., and Wayland, R. (1992), “Traditional Perfor-

mance Appraisal Systems: The Deming Challenge”, Management Decision,

30(8), 42-48.

35. Feldman, J.M. (1986), “Instrumentation and Training for Performance Ap-

praisal: A Perceptual Cognitive Viewpoint”, Research in Personnel and Hu-

man Resources Management, 4, 45-99.

36. Fisher, F.M. and Morton, A.S. (1967), “The Costs and Effectiveness of Reen-

listment Incentives in the Navy”, Operations Research, 15(3), 373-387.

37. Fu, M.C. (2001), “Simulation Optimization”, Proceedings of the 2001 Winter

Simulation Conference, Piscataway, NJ: Institute of Electrical and Electron-

ics Engineers, Inc., 53-61.

38. Fu, M.C., Glover, F.W., and April, J. (2005), “Simulation Optimization:

A Review, New Developments, and Applications”, Proceedings of the 2005

Winter Simulation Conference, Piscataway, NJ: Institute of Electrical and

Electronics Engineers, Inc., 83-95.

39. Gass, S.I., and Assad, A.A. (2005), An Annotated Timeline of Operations

Research, New York, NY: Spencer Science and Business Media, Inc.

40. Georgiou, A.C., and Tsantas, N. (2002), “Modelling Recruitment Training

in Mathematical Human Resource Planning”, Applied Stochastic Models in

Business and Industry, 1, 53-74.

41. Goldsman, D., and Nelson, B.L. (1994), “Ranking, Selection and Multiple

132



Comparisons in Computer Simulation”, Proceedings of the 1994 Winter Sim-

ulation Conference, Piscataway, NJ: Institute of Electrical and Electronics

Engineers, Inc., 192-199.

42. Goodeve, C. (1948), “Operational Research”, Nature, 161, 377-384.

43. Groves, K.S. (2011), “Talent Management Best Practices: How Exemplary

Health Care Organizations Create Value in a Down Economy”, Health Care

Management Review, 36(3), 227-240.

44. Hall, A.O. (2009), “Simulating and Optimizing: Military Manpower Model-

ing and Mountain Range Options”, Ph.D. Dissertation, University of Mary-

land, College Park, MD.

45. Hangos, K.M., and Cameron, I.T. (2001), Process Modelling and Model Anal-

ysis, Academic Press, London, United Kingdom.

46. Harper, P.R., Powell, N.H., and Williams, J.E. (2010), “Modelling the Size

and Skill-mix of Hospital Nursing Teams”, Journal of the Operational Re-

search Society, 61, 768-779.

47. Henry, T.M., and Ravindran, A.R. (2005), “A Goal Programming Applica-

tion for Army Officer Accession Planning”, INFOR: Information Systems

and Operational Research, 43(2), 111-119.

48. Holt, J. (2009), A Pragmatic Guide to Business Process Modelling, London,

United Kingdom: BCS Learning and Development Ltd.

133



49. Howe, M.J., Davidson, J.W., and Sloboda, J.A. (1998), “Innate Talents:

Reality of Myth”, Behavioural and Brain Sciences, 21(3), 399-442.

50. Ikonen, E., and Najim, K. (2002), Advanced Process Identification and Con-

trol, New York, NY: Marcel Dekker, Inc.

51. Imperato, G. (1998), “Tales of Tomorrow”, Fast Company, 17, 147.

52. Kahneman, D. (2000), Thinking Fast and Slow, 1st Edition, New York, NY:

Farrar, Straus, and Giroux.

53. Kane, T. (2012), Bleeding Talent, Palgrave Macmillan, New York, NY.

54. Kim, S.-H., and Nelson, B.L. (2001), “A Fully Sequential Procedure for

Indifference-Zone Selection in Simulation”, ACM Transactions on Modeling

and Computer Simulation (TOMACS), 11(3), 251-273.

55. Kinstler, D.P., Johnson, R.W., Richter, A., and Kocher, K. (2008), “Navy

Nurse Corps Manpower Management Model”, Journal of Health Organiza-

tion and Management, 22(6), 614-626.

56. Kleijnen, J.P.C., and Sargent, R.G. (2000), “A Methodology for Fitting

and Validating Metamodels in Simulation”, European Journal of Operational

Research, 120, 14-29.

57. Kozlowski, S.W.J., Chao, G.T., and Morrison, R.F. (1998), “Games Raters

Play: Politics, Strategies, and Impression Management in Performance Ap-

praisal.”, Performance Appraisal: State of the Art in Practice, ed. J.W.

Smither, San Francisco, CA: Jossey-Bass Publishers, 163-205.

134



58. Kwinn Jr., M.J., and Phelan Jr., R.G. (1996), “Management of Person-

nel Policies to Increase the Stability of Patriot Crew Members and Their

Families: A Simulation Approach”, Proceedings of the 1996 Winter Sim-

ulation Conference, Piscataway, NJ: Institute of Electrical and Electronics

Engineers, Inc., 926-933.

59. Lauer, M.S. (2012), “From Hot Hands to Declining Effects: The Risks of

Small Numbers”, Journal of the American College of Cardiology, 60, 72-74.

60. Law, A.M. (2015), Simulation Modeling & Analysis, 5th ed., New York, NY:

McGraw-Hill Education.

61. Lesinski, G., Pinter, J., Kucik, P., and Lamm, G. (2011), “Officer Acces-

sions Flow Model”, Technical Report (DSE-TR-1103), Operations Research

Center of Excellence, U.S. Military Academy, West Point, NY.

62. Levitin, A. (2003), Introduction to the Design and Analysis of Algorithms,

Boston, MA: Addison-Wesley.

63. Lew, A., and Mauch, H. (2007), Dynamic Programming: A Computational

Tool, Berlin, Germany: Springer.

64. Lopez, C.T. (2011), “Box Check Returns to Company-grade OERs’, Army

New Service, accessed January 28, 2018 from https://www.army.mil/article/

65755/.

65. McDonnell, A., Collings, D.G., Mellehi, K., and Schuler, R. (2017), “Tal-

ent Management: A Systematic Review and Future Prospects”, European

135



Journal of International Management, 11(1), 86-128.

66. McGinnis, M.L., and Fernandez-Gaucherand, E. (1994), “Resource Schedul-

ing for the United States Army’s Basic Combat Training Program”, IEEE

International Conference on Systems, Man, and Cybernetics, 1, 553-558.

67. McGinnis, M.L., Kays, J.L., and Slaten, P. (1994), “Computer Simulation

of U.S. Army Officer Professional Development”, Proceedings of the 1994

Winter Simulation Conference, 813-820.

68. McGregor, D. (1957), “An Uneasy Look at Performance Appraisals”, Har-

vard Business Review, 35(3), 89-94.

69. Meyer, H.H. (1980), “Self-Appraisal of Job Performance”, Personnel Psy-

chology, 33, 291-296.

70. Mohrman Jr., A.M., Resnick-West, S.M., and Lawler, E.E. (1989), Design-

ing Performance Appraisal Systems: Aligning Appraisals and Organizational

Realities, San Francisco, CA: Jossey-Bass Publishers.

71. Morse, P.M., and Kimball, G.E. (1951), Methods of Operations Research,

New York, NY: John Wiley and Sons, Inc.

72. Murphy, K.R., and Cleveland, J.N. (1995), Understanding Performance

Appraisal: Social, Organizational, and Goal-based Perspectives, Thousand

Oaks, CA: SAGE Publications, Inc.

73. Nelson, B.L., Swann, J., Goldsman, D., and Song, W. (2001), “Simple Pro-

cedures for Selecting the Best Simulated System when the Number of Alter-

136



natives is Large”, Operations Research, 49(6), 950-963.

74. Office of the Under Secretary of Defense for Personnel and Readiness (2016),

“Department of Defense Instruction 1400.25: DoD Civilian Personnel Man-

agement System: Performance Management and Appraisal System”, Vol.

431, 11.

75. Office of the Under Secretary of Defense, Chief Financial Officer (2015),

“United States Department of Defense Fiscal Year 2016 Budget Request

Overview”, accessed February 15, 2016 from www.comptroller.gov.

76. Odierno, R.T. (2015), “Leader Development and Talent Management: The

Army Competitive Advantage”, Military Review, July-August 2015, 98-108.

77. Ozdemir, O. (2013), “A Two-phase Multi Criteria Dynamic Programming

Approach for Personnel Selection Process”, Problems and Perspectives in

Management, 12(2), 98-108.

78. Peck, C.A. (1984), Pay and Performance: The Interaction of Compensation

and Performance Appraisal, Research Bulletin no. 155, Conference Board,

New York, NY.

79. Price, W.L., and Piskor, W.G. (1972), “The Application of Goal Program-

ming to Manpower Planning”, INFOR: Information Systems and Opera-

tional Research, 10(3), 221-231.

80. Rao, P.P. (1990), “A Dynamic Programming Approach to Determine Opti-

mal Manpower Recruitment Policies”, Journal of the Operational Research

137



Society, 41(10), 365-381.

81. Rinott, Y. (1978), “On Two-stage Selection Procedures and Related Probability-

inequalities”, Communications in Statistics, A7, 799-811.

82. Rostker, B., Thie, H. Lacy, J., Kawata, J., and Purnell, S. (1993), “The

Defense Officer Personnel Management Act of 1980: A Retrospective As-

sessment”, Technical Report (R-4246-FMP), RAND, Santa Monica, CA.

83. Shutler, M., and Storbeck, J. (2002), “Performance Management”, The Jour-

nal of the Operational Research Society, 53(3), 245-246.

84. Sisson, E.D. (1948), “Forced Choice: The New Army Rating”, Personnel

Psychology, 1, 365-381.

85. Smith, P.C., and Goddard, M. (2002), “Performance Management and Op-

erational Research: A Marriage Made in Heaven?”, The Journal of the Op-

erational Research Society, 53(3), 247-255.

86. Sparrow, P.R., and Makram, H. (2015), “What is the Value of Talent Man-

agement? Building Value-driven Processes within a Talent Management

Architecture”, Human Resource Management Review, 25(3), 249-263.

87. Staugas, l., and McQuitty, L.L. (1950), “A New Application of Forced-choice

Rating”, Personnel Psychology, 3(4), 413-424.

88. Stevenson, C., and DiRomualdo, T. (2013), “Performance Management 2013:

Still Waiting for Real Change”, Institute for Corporate Productivity Tech-

nical Report, Seattle, WA.

138



89. Swailes, S. (2013), “The Ethics of Talent Management”, Business Ethics: A

European Review, 22(1), 32-46.

90. Troitzsch, K.G. (1997), “Social Science Simulation - Origins, Prospects, Pur-

poses”, Simulating Social Phenomena, eds. R. Conte, R. Hegselmann and

P. Terna, Springer-Verlag, 1, 41-54.

91. Ulrich, D., and Smallwood, N. (2012), “What is Talent?”, Leader to Leader,

63, 55-61.

92. Wang, J. (2005), “A Review of Operations Research Applications in Work-

force Planing and Potential Modelling of Military Training”, Australian De-

partment of Defence Science and Technology Organisation Technical Report,

Edinburgh, Australia.

93. Wardynski, C., Lyle, D.S., and Colarusso, M.J. (2009), “Talent: Implications

for a U.S. Army Officer Corps Strategy”, Strategic Studies Institute: Officer

Corps Strategy Monograph Series, Vol. 2.

94. Wardynski, C., Lyle, D.S., and Colarusso, M.J. (2010), “Towards a U.S.

Army Officer Corps Strategy for Success: Retaining Talent”, Strategic Stud-

ies Institute: Officer Corps Strategy Monograph Series, Vol. 3.

95. Wessels, J., and van Nunen, J.A.E.E. (1976), “FORMASY FOrecasting and

Recruitment in MAnpower Systems”, Statistica Neerlandica, 30(4), 173-193.

96. Wiese, D.S., and Buckley, M.R. (1998), “The Evolution of the Performance

Appraisal Process”, Journal of Management History, 4(3), 233-249.

139



97. WorldatWork and Sibson Consulting (2010), “2010 Study on the Current

State of Performance Management”, Technical Report, Washington, DC.

98. Zais, M.M. (2014), “Simulation-Optimization, Markov Chain and Graph

Coloring Approaches to Military Manpower Modeling and Deployment Sourc-

ing”, Ph.D. Dissertation, University of Colorado, Boulder, CO.

99. Zanakis, S.H., and Maret, M.W. (1980), “A Markov Chain Application to

Manpower Supply Planning”, Journal of the Operational Research Society,

31(12), 1095-1102.

100. Zhu, Y. (2001), Multivariable System Identification for Process Control,

Kidlington, United Kingdom: Elsevier Science Ltd.

140



CURRICULUM VITAE

NAME: Lee A. Evans

ADDRESS: Department of Industrial Engineering
JB Speed School of Engineering
University of Louisville
132 Eastern Parkway
Louisville, KY 40292

DOB: San Antonio, TX - December 30, 1977

EDUCATION
& TRAINING: B.S., Engineering Management

United States Military Academy
West Point, NY
1996-2000

M.S., Operations Research
Georgia Institute of Technology
Atlanta, GA
2007-2009

Ph.D., Industrial Engineering
University of Louisville
Louisville, KY
2015-2018

PROFESSIONAL
SOCIETIES: INFORMS

MORS
Alpha Pi Mu
Pi Mu Epsilon

PUBLICATIONS: Evans, L.A., and Bae, K.-H.G. (Submitted 2018), ”U.S. Army
Performance Appraisal Policy Analysis: A Simulation Optimization
Approach,” Journal of Defense Modeling and Simulation.

Evans, L.A., and Bae, K.-H.G. (2018), ”Simulation-
Based Analysis of a Forced Distribution Performance Appraisal
System,” Journal of Defense Analytics and Logistics.

Evans, L.A., Bae, K.-H.G., and Roy, A. (2017), ”Single and
Multi-Objective Parameter Estimation of a Military Personnel
System,” Proceedings of the 2017 Winter Simulation Conference,

141



4058-4069.

Bae, K.-H.G., Evans, L.A., and Summers, A. (2016), ”Lean
Design and Analysis of a Milk-Run Delivery System: Case
Study,” Proceedings of the 2016 Winter Simulation Conference,
2855-2866.

Evans, L.A., Bodenheim, E.H., and Fawson, L. (2013), ”The
Officer Assignment Process: From Science to Art,” 1775: The
Journal of the Adjutant General Regimental Association,
Winter 2013-2014, 50-54.

Evans, L.A., and Weld, C.E. (2011), ”Assessing and Improving
Students’ Fundamental Mathematical Skills,” Mathematica
Militaris, Volume 20, Issue 2, 2-9.

142


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2018

	Simulation-based analysis and optimization of the United States Army performance appraisal system.
	Lee A. Evans
	Recommended Citation


	tmp.1525091933.pdf.fuLDo

