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The rapidly growing fields of spin caloritonics and magnon spintronics have brought on a 

surge of interest in magnetic and thermal transport properties of magnetic insulators. Here 

we present low-temperature measurements of thermal conductivity and spin Seebeck effect 

in the helimagnetic insulator Cu2OSeO3 as functions of temperature, magnetic field, and 

crystallographic orientation. This compound hosts novel spin phases with long-period spin 

modulations, and its magnon thermal conductivity (~70 W/mK near 5 K) is the largest of 

any known ferro- or ferrimagnetic insulator. The magnetic field dependencies of thermal 

conductivity and spin Seebeck effect reveal novel aspects of phonon and magnon transport 

in chiral spin phases, like anisotropic scattering and domain structure. Analysis of the 

temperature dependence of spin Seebeck effect provides insight into the relevant time and 

length scales involved in thermally driven spin current phenomena. 
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Chapter 1. Introduction 

This chapter will summarize the historical development of the field of spin 

caloritonics and provide brief phenomenological descriptions of related concepts and 

effects. 

1.1 Spin Hall Effect 

 
Figure 1.1 (from Ref. [1]). (a) Spin Hall effect: charge current (red arrow) induced a 

transverse spin current (yellow arrow), (b) inverse spin Hall effect: spin current (yellow 
arrow) induced a transverse charge current (red arrow). 

Spin Hall effect refers to a conversion of a charge current density 𝐽: into a transverse 

spin current density 𝐽M as a result of spin-orbit interaction. The inverse effect is also possible 

and can be used to detect spin currents 

𝐸O⃗ PIQJ =
2𝑒
ℏ 𝜃IQ	𝐽M × �⃗�. (1.1) 

where 𝜃IQ is the spin Hall angle, 𝐽M is the spin current, and �⃗� is the spin direction. 

1.2 Seebeck Effect 

The first thermoelectric effect, the Seebeck effect, was discovered by Thomas 

Seebeck in 1821 [2] and involved interactions between heat currents and charge currents. 

Seebeck effect refers to a generation of a charge current in a material in response 

(a) (b) 
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to a temperature gradient. Microscopically, under open circuit conditions charge carriers 

at the hot end diffuse towards the cold end until the electric field within the material is 

established through carrier accumulation and equilibrium is reached (Figure 1.2). Then the 

Seebeck coefficient 𝑆 is defined as  

𝑆 = −
𝑉IJ
∆𝑇. 

(1.2) 

 
Figure 1.2 (from Ref. [1]). Illustration of Seebeck effect. 

This concept found applications in many modern devices like thermometers, 

coolers, power generators, waste heat recyclers and many more. 

1.3 Spin Seebeck Effect 

In spin Seebeck effect (SSE) heat currents interact with spin waves (magnons) and 

inverse spin Hall effect is used to detect these thermally driven spin currents. The simplest 

system involves a ferromagnetic insulator in interfacial contact with a paramagnetic, heavy 

metal. Two configurations are possible: longitudinal and transverse (Figure 1.3). In the 

more straight forward longitudinal configuration, when magnetization is perpendicular to 

the temperature gradient, the temperature gradient produces a magnon spin current that 

results in magnon accumulation at the cold end. Experimentally, the spin accumulation is 

detected by a placement of a thin paramagnetic film on the surface perpendicular to the 
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heat flow. Magnon accumulation pumps spin current into the film, where it is converted to 

an electrically detectable charge current via the inverse spin Hall effect [1], [4]. 

In the transverse configuration (Figure 1.3b), the temperature gradient is applied 

along the x direction. In order to generate an ISHE voltage, the ferromagnet has to be 

magnetized along the direction of the gradient. Therefore, the anomalous Nernst effect in 

the ferromagnet vanishes, since magnetization and ΔT are collinear, enabling an 

unperturbed detection of the transverse SSE in various magnetic materials. The 

characteristic property of the transverse SSE is the sign reversal of the thermally generated 

spin voltage between the lower and higher temperature ends of the ferromagnet. 

 
Figure 1.3 (from Ref.[1], [4]). Two possible SSE configurations. 

Spin Seebeck was first experimentally observed by Uchida et al. in 2008 [3]. The 

measurements were done on thick permalloy (Ni81Fe19) films with platinum strips for SSE 

detection in the transverse configuration.  Subsequently, spin Seebeck was observed in 

insulators [5] and semiconductors [6]. 

(a) 

(b) 
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Xiao et al. [7] provided the first theoretical description of SSE bases on interfacial 

spin pumping driven by the difference between phonon temperature and magnon 

temperature. Agrawal et al. [8] directly measured the temperature of short wavelength 

magnons in YIG with Brillouin light scattering technique.  They observed a difference 

between phonon and magnon temperatures that is much smaller than the one predicted by 

Xiao et al. Kehlberger et al. [93] reported that the thickness dependence of spin Seebeck 

effect in YIG films correlated with the bulk magnon mean free path, suggesting that 

thermally driven magnons in the bulk, rather than the interface, are responsible for spin 

Seebeck effect. This origin of SSE has been corroborated by recent theoretical and 

experimental work [68].
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Chapter 2. Theoretical Background 

This chapter will present brief summaries of theories and models used in the 

analysis of thermal conductivity and spin Seebeck data in Chapters 5 and 6. We will limit 

this overview only to physical phenomena relevant to magnetic insulators, where the only 

energy carriers and phonons and magnons. 

2.1 Lattice Thermal Conductivity 

2.1.1 Phonons 

A phonon is a quantum mechanical representation of a vibrational mode of atoms 

in a periodic lattice. Phonons are the primary quasiparticles that are responsible for thermal 

conductivity of the lattice, so they play a central role in heat transport of insulators [9]. 

Phonons are bosons and obey Bose-Einstein statistics with the equilibrium distribution 

𝑛Y4 =
1

exp ^ℏ𝜔Y𝑘a𝑇
b − 1

. (2.1) 

Phonon group velocity is given by 𝑣Y = ∇Y𝜔Y  and the dispersion relation is 

approximately linear for small wave numbers, 𝜔Y = 𝑣Y𝑘). 

In the presence of a temperature gradient, the distribution drifts away from 

equilibrium at a rate 

d
𝜕𝑛Y
𝜕𝑡 ghijkG

= −𝑣Y ∙ ∇	𝑛Y = −𝑣Y ∙ ∇𝑇
𝑑𝑛Y
𝑑𝑇 , (2.2) 

and in the steady state must be opposite of the change due to phonon scattering, resulting 

in Boltzmann equation
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d
𝜕𝑛Y
𝜕𝑡 gM:>GGnij<@

− 𝑣Y ∙ ∇𝑇
𝑑𝑛Y
𝑑𝑇 = 0. (2.3) 

Two approximations are used to solve this equation. First, only the 𝑛Y4contribution 

is kept in 

Secondly, the relaxation time approximation assumes that when the deviations from 

the equilibrium are small, the scattering term can be expressed by 

d
𝜕𝑛Y
𝜕𝑡 gM:>GGnij<@

=
𝑛Y4 − 𝑛Y
𝜏Y

= −
𝛿𝑛Y
𝜏Y
, (2.5) 

where 𝜏Y is the relaxation time and 𝛿𝑛Y is the phonon number in excess of equilibrium. 

With these approximations, the Boltzmann equation describing phonon dynamics assumes 

the form 

−𝜏Y𝑣Y ∙ ∇𝑇
𝜕𝑛Y4

𝜕𝑇 = 𝛿𝑛Y. (2.6) 

Substituting the result into the expression for the heat current due to a flow of 

phonons gives (summation over phonon branches is implied) 

𝐽q,F =
1

(2𝜋)s
t𝑑s𝑘 𝛿𝑛Yℏ𝜔Y𝑣Y = −

1
(2𝜋)s

t𝑑s𝑘 ℏ𝜔Y𝑣Yu𝜏Y
𝜕𝑛Y4

𝜕𝑇 ∇	𝑇

= −𝜅7∇	𝑇. 

(2.7) 

Thus, assuming linear dispersion 𝜔Y = 𝑣Y𝑘, averaging over the phonon branches 

(𝑣 – averaged velocity), and using the maximum frequency of the vibrational spectrum 

(given by Debye temperature 𝜃v)	one obtains the phonon thermal conductivity  

	
𝜕𝑛Y
𝜕𝑇 ≈

𝜕𝑛Y4

𝜕𝑇 . 
(2.4) 
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𝜅7 =
𝑘a
2𝜋u𝑣

t 𝜔u𝜏(𝜔, 𝑇) d
ℏ𝜔
𝑘a𝑇

g
uYxyz ℏ⁄

4

𝑒
ℏ|
Yx}

~𝑒
ℏ|
Yx} − 1�

u 𝑑𝜔. (2.8) 

With an introduction of a dimensionless variable 𝑥 = ℏ|
Yx}

, this becomes 

𝜅7 =
𝑘a
2𝜋u𝑣 d

𝑘a𝑇
ℏ g

s

t 	𝜏(𝑥, 𝑇)
yz }⁄

4

𝑥�𝑒1

(𝑒1 − 1)u 𝑑𝑥

=
1
3
t 	𝐶(𝑥)
yz }⁄

4
𝑣u𝜏(𝑥)𝑑𝑥, 

(2.9) 

where  

𝐶F(𝑥) =
3𝑘a
2𝜋u𝑣s d

𝑘a𝑇
ℏ g

s 𝑥�𝑒1

(𝑒1 − 1)u (2.10) 

is the contribution to heat capacity from phonons of frequency 𝜔 = Yx}1
ℏ

. In this relaxation 

time approximation, all scattering processes are treated on equal grounds in the context of 

Matthiessen’s rule that says that rates due to different scattering mechanisms 𝜏j�� contribute 

equally to the total relaxation rate 

𝜏�� =�𝜏j��
j

. (2.11) 

2.1.2 Phonon Scattering Mechanisms 

Intrinsic Scattering 

For real crystal lattices the harmonic approximation is not exactly valid, therefore, 

one needs to consider the effects of anharmonic forces, that play a crucial role in the theory 

of thermal transport. Indeed, in a perfectly harmonic, defect-free lattice, there would be no 

scattering mechanisms for phonons, resulting in an infinite thermal conductivity. 

Anharmonicity introduces phonon-phonon scattering into the picture. Generally, only 
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three-phonon processes are relevant at low temperatures. Scattering theory, first introduced 

by Pierels [9], finds that energy and momentum conservation considerations imply the rate 

of change of phonon distribution due to scattering event between three phonons with 

frequencies and reduced wave vectors in the first primitive cell 𝜔j and 𝑘O⃗ j vanishes, unless 

the following conditions are satisfied (in the case of coalescence) 

𝜔� + 𝜔u = 𝜔s 

and                           𝑘O⃗ � + 𝑘O⃗ u = 𝑘O⃗ s, or  𝑘O⃗ � + 𝑘O⃗ u = 𝑘O⃗ s + 𝐾OO⃗  
(2.12) 

where 𝐾OO⃗  is the reciprocal lattice vector. Eq. (2.12) suggests that there are two distinct 

processes, although this distinction depends on the choice of the primitive cell [10]. 

Historically, the 𝑘O⃗  conserving process are called normal processes, while the non-

conserving processes are called Umklapp processes. Peierls has also shown that normal 

processes alone (i.e. no other scattering is present) do not completely relax the phonon 

distribution and, therefore, produce a non-zero heat flux even in the absence of a thermal 

gradient, but together with Umklapp processes they shape the thermal conductivity 

throughout the temperature range. Normal processes help to establish equilibrium between 

low and high frequency phonons, ultimately, slightly changing the phonon distribution and 

having a moderate effect on the overall thermal conductivity at low temperatures in some 

models. Recent ab-initio first principle calculations reveal that even at room temperatures 

a big fraction of thermal conductivity is attributable to low frequency phonons that scatter 

though normal processes [11]. 

The derivation of the intrinsic scattering processes is based on the treatment of the 

anharmonic interaction in the framework of first Born approximation and the calculation 
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of transition probabilities between two phonon states and, therefore, rates of change of the 

phonon distribution [12]. 

In general, the scattering rate for normal processes has the form  

𝜏��� = 𝐴𝜔��𝑇�� (2.13) 

where 𝐴 is a free parameter, 𝛼� = 2, 𝛽� = 3 at low temperatures, and 𝛼� = 2, 𝛽� = 1 in 

the high temperature limit [13]. Various authors calculated or derived from experimental 

data the following form for the Umklapp scattering rate  

𝜏��� = 𝐵𝜔��𝑇��exp	(−𝜃v/𝑏𝑇) (2.14) 

where 𝐵 and 𝑏 are free parameters, 𝛼� = 2, 𝛽� = 3 [14], [15]. 

 

Extrinsic Scattering 

Phonons can scatter from crystal boundaries, lattice defects and impurities, as well 

as other quasiparticles participating in thermal transport.  

The scattering rate of phonons due to crystal boundaries of a rod-like sample is due 

to the original work of Casimir [16] 

𝜏a�� =
𝑣
𝑙4
=

𝑣
2�𝑎 𝜋⁄

, (2.15a) 

𝜅7 = ~
2𝜋u

15 � d
𝑘a𝑇
ℏ g

s

𝑘a𝑣𝑙F� (2.15b) 

where 𝑙4 is the transverse dimension of the rod, 𝑎 is the cross-sectional area, 𝑙F� − phonon 

mean-free path. Phonon thermal conductivity in boundary limited regime (ballistic 

transport) is given in Equation 2.15b. 

The expression for the scattering from impurities or point defects was derived by 

Klemens [17] 
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𝜏j�� = 𝑛
𝑉4
4𝜋𝑣s 𝜔

� �d
∆𝑀
𝑀 g

u

+ 2 �
∆𝐹
𝐹 − 13.44 d

∆𝑅
𝑅 g

u

��, (2.16) 

where 𝑛 is the impurity concentration, 𝑉4 is the unit cell volume, ∆𝑀 is the mass difference 

between host and impurity atom, M is the average molecular mass, ∆𝐹 is the change in the 

force constant, ∆𝑅 is the change in the nearest neighbor distance. In the case of vacancies, 

Eq. (2.16) reduces to 

𝜏?�� = 𝑛
9𝑎s

4𝜋𝑣s 𝜔
� d
𝑀?

𝑀 g
u

, (2.17) 

where 𝑎 is the atomic radius and 𝑀? is the atomic mass of the vacant atom [18]. This 

concludes our overview of most common phonon scattering mechanisms; other 

mechanisms not included here are isotope scattering, sheet like defects, grain boundaries, 

resonant spin scattering, etc. Phonon-magnon interactions will be discussed in more detail 

in Section 2.2.2. 

2.1.3 Beyond the Relaxation Time Approximation 

J. Callaway introduced a model for lattice thermal conductivity that makes an effort 

to better account for the effects of normal scattering processes on thermal conductivity at 

low temperatures [19]. In his model, Callaway follows Ref. [20] and uses the concept of a 

displaced (or “flowing equilibrium”) distribution  

𝑛Y∗ =  exp~
ℏ𝜔Y − 𝜆 ∙ 𝑘O⃗

𝑘a𝑇
� − 1¢

��

= 𝑛Y4 +
𝜆 ∙ 𝑘O⃗
𝑘a𝑇

𝑒ℏ|£ Yx}⁄

(𝑒ℏ|£ Yx}⁄ − 1)u
. (2.18) 

This is the distribution normal processes relax to in the absence of other scattering. 

The rate of change of the distribution due to collisions then takes the form 
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d
𝜕𝑛Y
𝜕𝑡 gM:>GGnij<@

=
𝑛Y4 − 𝑛Y
𝜏Y�

+
𝑛Y∗ − 𝑛Y
𝜏Y�

, (2.19) 

where 𝜏Y� is the relaxation rate due to normal processes, 𝜏Y�is the sum of all momentum 

non-conserving rates, and the combined relaxation rate is 

𝜏¤�� = 𝜏��� 	+ 𝜏���	. (2.20) 

 Substituting this in the Boltzmann equation (Eq. 2.3) and accounting for the 

correction by P. Allen [21] leads to the final expression for lattice thermal conductivity 

𝜅7 =
𝑘a
2𝜋u𝑣 d

𝑘a𝑇
ℏ g

s

t 	𝜏¤(𝑥, 𝑇)
yz }⁄

4

𝑥�𝑒1

(𝑒1 − 1)u 𝑑𝑥
�1 +

𝜏¤(𝑥, 𝑇) 𝜏�(𝑥, 𝑇)⁄¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

𝜏¤(𝑥, 𝑇) 𝜏�(𝑥, 𝑇)⁄¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥�, (2.21) 

where  

𝑓(𝑇)¥¥¥¥¥¥ = t 	𝑓(𝑥, 𝑇)
yz }⁄

4

𝑥�𝑒1

(𝑒1 − 1)u 𝑑𝑥
t

𝑥�𝑒1

(𝑒1 − 1)u 𝑑𝑥	
yz }⁄

4
§ . (2.22) 

2.2 Magnon Thermal Conductivity 

2.2.1 Magnons 

A magnon is a quantum mechanical representation of a collective excitation of 

spins (spin wave) in a periodic lattice. Like phonons, magnons obey the Bose-Einstein 

statistics (Eq. 2.1), but their dispersion relation is approximately quadratic for small wave 

numbers, 𝜔Y = (𝐷/ℏ)𝑘u, where 𝐷 is the spin-wave stiffness. The presence of magnons in 

a magnetic insulator can significantly affect its thermal conductivity as magnons can carry 

energy and contribute to the total thermal conductivity or reduce it by scattering phonons. 

Following the transport theory outlined in Section 2.1.1, the thermal conductivity due to 

non-equilibrium magnons driven by a temperature gradient can be calculated by 
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𝜅9 =
𝑘a
6𝜋u

t 𝑘u	𝜏Y
Yª

4
𝑣Yu

𝑥u𝑒1

(𝑒1 − 1)u 𝑑𝑘 (2.23a) 

𝜅9 =
𝜁(3)𝑘as𝑙9
4𝜋uℏ𝐷 𝑇u (2.23b) 

where 𝑘9 is the maximum magnon wave number under the assumption of a spherically 

symmetric dispersion, 𝜏Y is the relaxation time of magnons with wave number 𝑘, and 𝑥 =

ℏ|
Yx}

. In the boundary-limited regime, magnon heat conduction reduces to Eq. 2.23b [22]. 

Using an approximation for the magnon dispersion relation suitable for large wave 

numbers 𝜔Y = 𝜔¬a(1 − cos𝜋𝑘 2𝑘9⁄ ) and introducing a normalized wave number 

𝑞 = 𝑘 𝑘9⁄  [23], the thermal conductivity becomes 

𝜅9 =
𝜔¬au 𝑘9𝑘a

24
t 𝑞u𝑠𝑖𝑛u ^

𝜋𝑞
2 b 𝜏³

�

4

𝑥u𝑒1

(𝑒1 − 1)u 𝑑𝑞. (2.24) 

2.2.2 Magnon Scattering 

Theory of magnon interactions in the first Born approximation has been studied in 

great detail by Akhiezer et. al. in Ref. [24]. They estimate the scattering rates due to normal 

3-magnon confluence 𝜏s�,:��  and splitting 𝜏s�,M�� as well as 4-magnon scattering events 𝜏���� 

for a magnon with wavenumber 𝑘: 

𝜏s�,:�� (𝑘) ≈ d
𝑔𝜇a𝑀M

2𝜋𝜃¤
g
u 𝑘a𝑇
ℏ 	

𝜃¤
∆ 𝑎𝑘, 

(2.25a) 

𝜏s�,M�� (𝑘) ≈ d
𝑔𝜇a𝑀M

𝜃¤
g
u 𝑘a𝑇
6𝜋ℏ	d

𝜃¤
∆ g

�/u

d
𝜀(𝑘)
∆ − 3g

�/u

, (2.25b) 

𝜏����(𝑘) ≈
𝜃¤
ℏ d

𝑘a𝑇
𝜃¤

g
·/u

(𝑎𝑘)s, (2.25c) 
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where 𝑔 is the gyromagnetic ratio, 𝜇a – Bohr magneton, 𝑀M – saturation magnetization, 𝑎 

– lattice parameter, and 𝜀(𝑘) = ∆ + 𝜃¤(𝑎𝑘)u is the magnon dispersion relation. Forney 

and Jackle [25] used a similar approach to calculate thermally averaged 3-magnon and 4-

magnon normal (𝜏s���, 𝜏����) and Umklapp (𝜏s���, 𝜏����) scattering rates and magnon-impurity 

scattering rate (𝜏j��): 

𝜏s��� = 2.6
𝑘a
ℏ 𝑇hu𝑇n�s/u𝑇�/u, 𝜏���� = 6.1 × 10�

𝑘a
𝑆uℏ𝑇n

�s𝑇�,  

𝜏s��� = 1.4 × 10�
𝑆𝑘a
ℏ 𝑇hu𝑇n��/u𝑇��/u𝑒𝑥𝑝(−12𝑇n/𝑇), (2.26) 

𝜏���� =
2𝑘a
ℏ𝑆u 𝑇n

��/u𝑇s/u𝑒𝑥𝑝(−12𝑇n/𝑇),  

𝜏j�� = 0.4𝑐
𝑘a

u

ℏ 𝑇n�s/u𝑇·/u,  

where  

𝑇h =
(𝑔𝜇a)u

𝑘a𝑎s
, 𝑇n =

2𝑆𝐽
𝑘a
,  

and 𝑆 is the effective spin, 𝐽 is the exchange coupling constant, and 𝑐 is the impurity 

concentration. 

2.3 Spin Seebeck Effect 

This section will outline the bulk magnon spin current theory for the longitudinal 

spin Seebeck effect [26]-[28]. This approach proposes that the thermal flow of magnons in 

the bulk of the insulator creates an accumulation of magnons at the interface between a 

ferromagnetic or ferrimagnetic insulator (FMI) and a metallic layer (ML). The magnon 

accumulation enables the mechanism of spin pumping into the ML layer. Spin pumping 
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creates a spin current, which is converted to a charge current by inverse spin Hall effect in 

the ML layer. The entire process is illustrated in Fig. 2.1. 

 

Figure 2.2 (from Ref. [27]). (a) Schematic illustration of the FMI/ML heterostructure and 
spin-to-charge current conversion in the ML. (b) Diagram showing temperature gradient 
induced and back-flow spin currents in the FMI and the pumped spin current in the ML.  

Using the approach established in Section 2.1.1, the magnon accumulation at the 

FMI/ML interface is defined as the density of magnons in excess of equilibrium 

𝛿𝑛9(𝑟) =
1

(2𝜋)s
t𝑑s𝑘 [𝑛Y(𝑟) − 𝑛Y4]. (2.27) 

The bulk magnon spin current density with polarization 𝑧 is  

𝐽M¾ =
ℏ

(2𝜋)s
t𝑑s𝑘 𝑣Y[𝑛Y(𝑟) − 𝑛Y4]. (2.28) 

Using the Boltzmann equation for magnons 

−𝜏Y𝑣Y ∙ ∇𝑛Y(𝑟) = 𝑛Y(𝑟) − 𝑛Y4 (2.29) 

and plugging into Eq. (2.28) gives two contributions to the spin current 𝐽M¾ = 𝐽I∇}¾ + 𝐽I¿<¾ , 

where 

𝐽I∇}¾ = −
ℏ

(2𝜋)s
t𝑑s𝑘 𝜏Y

𝜕𝑛Y4

𝜕𝑇 𝑣Y(�⃗�Y ∙ ∇𝑇) (2.30) 

is due to temperature gradient driven flow of magnons and 

(a) (b) 
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𝐽I¿<¾ = −
ℏ

(2𝜋)s
t𝑑s𝑘 𝜏Y𝑣Y[�⃗�Y ∙ ∇(𝑛Y(𝑟) − 𝑛Y4)] (2.31) 

is due to spatial variation of magnon accumulation. The first contribution evaluates to  

𝐽I∇}¾ = − À
ℏ

(2𝜋)s𝑇
t𝑑s𝑘 𝜏Y𝑣Y,2u

𝑥𝑒1

(𝑒1 − 1)uÁ ∇𝑇, (2.32) 

where 𝑥 = ℏ|£
Yx}

 and the temperature gradient is normal to the interface (in the +y direction). 

In order to calculate the contribution to the total spin current due to magnon accumulation, 

an approximate solution to Boltzmann equation (Eq. 2.29) is required. The magnon 

distribution function is written as a sum of the equilibrium distribution and a small 

deviation,  𝑛Y(𝑟) = 𝑛Y4[1 + ℏ𝜔Y𝑔(𝑦)], where 𝑔(𝑦) is determined by the solution of the 

boundary value problem. Substituting into Eq. 2.27, the magnon accumulation becomes 

𝛿𝑛9(𝑦) =
1

(2𝜋)s
t𝑑s𝑘 𝑛Y4ℏ𝜔Y𝑔(𝑦). (2.33) 

Plugging the result into Eq. 2.31 gives the spin current due to magnon accumulation 

𝐽I¿<¾ (𝑦) = −ℏ𝐷9
𝜕
𝜕𝑦 𝛿𝑛9

(𝑦), (2.34) 

where 

𝐷9 = t𝑑s𝑘 𝜏Y𝑣Y,2u 𝑛Y4ℏ𝜔Y t𝑑s𝑘 𝑛Y4ℏ𝜔Y§  (2.35) 

is the magnon diffusion coefficient. Since the magnon accumulation relaxes through 

magnon-phonon interactions with a relaxation time 𝜏9F, the conservation of angular 

momentum implies ÃÄ⃗Å
Æ

Ã2
= −ℏ ¿<ª(2)

ÇªÈ
, resulting in a diffusion equation for magnon 

accumulation 

𝜕u𝛿𝑛9(𝑦)
𝜕𝑦u =

𝛿𝑛9(𝑦)
𝑙9u

, (2.36) 
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where 𝑙9 = É𝐷9𝜏9FÊ
�/u

 is the magnon diffusion length. Solving Eq. 2.36 and substituting 

in Eq. 2.34 results in the spin current density 

𝐽I¿<¾ (𝑦) = −ℏ
𝐷9
𝑙9

𝐴𝑒
2
Ëª + ℏ

𝐷9
𝑙9

𝐵𝑒�2/Ëª, (2.37) 

where 𝐴 and 𝐵 are coefficients determined by boundary conditions. 

The next step is to calculate the spin current that enters the ML. In the presence of 

an external magnetic field and spin accumulation at the FMI/ML interface, the 

magnetization of the FMI 𝑀OO⃗  will precess and result in spin pumping into the ML. The 

resulting spin current is given by  

𝐽I
MF(0Ì) =

ℏ𝑔i↑↓

4𝜋𝑀u ~𝑀OO⃗ ×
𝜕𝑀OO⃗
𝜕𝑡 �, 

(2.38) 

where 𝑔i↑↓ is the real part of spin mixing conductance [29], [30]. This spin current can be 

expressed in terms of the spin accumulation as follows 

𝐽I¾(0Ì) = −
ℏ𝑔nkk↑↓

4𝜋𝑀u�𝜔Y(𝑚Y
Ì𝑚Y

�) ≈
Y

−
𝛾ℏu𝑔nkk↑↓

2𝜋𝑀 𝛿𝑛9(0) �
∫ 𝑑s𝑘𝑛Y4ℏ𝜔Yu

∫ 𝑑s𝑘 𝑛Y4ℏ𝜔Y
�. 

(2.39) 

Here 𝑚Y
Ì and 𝑚Y

�are the transverse components of the magnetization of the magnon with 

wave vector 𝑘, 𝑔nkk↑↓  is the real part of the effective spin mixing conductance that accounts 

for the backflow spin current, and the linear approximation 𝑚Y
Ì𝑚Y

� = 2𝑀𝛾ℏ𝛿𝑛Y/𝑉 has 

been used. The conservation of angular momentum current imposes boundary conditions 

that are used to calculate coefficients 𝐴 and 𝐵 in Eq. 2.37. The resulting spin current at the 

interface can be shown to take the following approximate form 
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𝐽I¾(0) = − Ò
𝛾ℏ𝑔nkk↑↓ 𝜏9F

� u⁄

2𝜋𝑀
cosh(𝑡ÔÕ 𝑙9⁄ ) − 1
sinh(𝑡ÔÕ 𝑙9⁄ )

∫ 𝑑s𝑘 𝑛Y4ℏ𝜔Yu
ℏ
𝑇 ∫𝑑

s𝑘 𝜏Y𝑣Y,2u
𝑥𝑒1

(𝑒1 − 1)u
∫𝑑s𝑘 𝑛Y4ℏ𝜔Y ∫𝑑s𝑘 𝜏Y𝑣Y,2u 𝑛Y4ℏ𝜔Y

×∇𝑇, (2.40) 

This spin current enters the ML and generates a charge current in the x-direction as 

a result of the inverse spin Hall effect 𝐽: = 𝜃IQ(2𝑒/ℏ)𝐽I¾ × �⃗�, where 𝜃IQ is the spin Hall 

angle and �⃗� is the spin polarization [31]. Using the more accurate (for big 𝑘) magnon 

dispersion relation 𝜔Y = 𝜔¬a(1 − cos 𝜋𝑘 2𝑘9⁄ ), a normalized wave number  𝑞 = 𝑘 𝑘9⁄  

and normalized relaxation rate 𝜂³ = 𝜏4 𝜏Y⁄ , where 𝜏4 is the relaxation time of 𝑘 ≈ 0 

magnons, and integrating the charge current density one obtains the voltage at the ends of 

the metal layer 

𝑉7IIJ = 𝑅�𝑤𝜆�
2𝑒
ℏ 𝜃IQ𝑡𝑎𝑛ℎ d

𝑡�
2𝜆�

g
𝐵�𝐵M

(𝐵4𝐵u)�/u
F	ρ	𝑔nkk↑↓ ∇𝑇, (2.41) 

where 𝑅�, 𝑡�, 𝑤 are the resistance, thickness, and width of the metal film, and 𝜆� is the 

spin diffusion length in the metal film. Material parameter F, and 𝐵 integrals are given by 

𝐹 =
𝛾ℏ𝑘a𝜏9F

� u⁄ 𝜏4
� u⁄ 𝑘9u 𝜔¬a

8√3𝜋u𝑀
, 

𝐵M = t 𝑑𝑞	𝑞u𝑠𝑖𝑛u ^
𝜋𝑞
2 b

𝑥𝑒1

𝜂³(𝑒1 − 1)u
,

�

4
									𝐵� = t 𝑑𝑞	𝑞u

𝑥u

𝑒1 − 1 ,
�

4
 

𝐵u = t 𝑑𝑞	𝑞u𝑠𝑖𝑛u ^
𝜋𝑞
2 b

𝑥
𝜂³(𝑒1 − 1)

,
�

4
									𝐵4 = t 𝑑𝑞	𝑞u

𝑥
𝑒1 − 1 .

�

4
 

(2.42) 
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Chapter 3. Experimental Methods 

This chapter will focus on multiple experimental techniques, procedures, and 

equipment utilized in preparation and characterization of samples and employed to set up 

and carry out various low-temperature measurements. X-ray diffraction characterization 

techniques will be covered first, followed by a summary of sample preparation techniques. 

Then we will cover the use of dc magnetron sputtering in deposition of thin films on 

surfaces of bulk samples, do an overview of experimental setups employed in various 

transport measurements, and finish by outlining the data collection procedures. 

3.1 X-ray Diffraction (XRD) 

3.1.1 Theory of Operation 

X-rays are electromagnetic radiation of wavelength ranging between 0.1 and 100 Å. The 

most common way to produce X-rays in a lab environment is to use an X-ray tube – a 

vacuum tube with a voltage between the cathode and the anode high enough to accelerate 

the elections and make them collide with the anode (typically made of tungsten, 

molybdenum or copper). If the tube voltage is above the critical value, in addition to 

continuous bremsstrahlung radiation, sharp high intensity peaks, called characteristic lines, 

Figure 3.1. X-ray spectrum of Cu anode. 
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appear in the spectrum. These characteristic lines are the result of 𝐾, 𝐿,𝑀, etc. spectral line 

emissions of the anode material. The 𝐾 series lines 𝐾𝛼�,	𝐾𝛼u, 𝐾𝛽� (see Figure 3.1 for 

copper) have the highest intensity and are most suitable for structural studies [32], since 

their wavelengths are compatible to typical lattice parameters of crystalline solids. Once 

the characteristic X-rays are produced, the beam undergoes a series of optical treatments 

e.g. Söller collimators and the useful wavelengths are filtered out by material filters (Fe, 

Ni, etc.) that are picked to absorb bremsstrahlung and other characteristic lines.  

After that the beam is incident at the surface of the material to be studied, where it gets 

partially absorbed and scattered. Waves scattered elastically from crystalline solids 

produce diffraction patterns described by Bragg’s Law.  Figure 3.2 shows a pair of coherent 

X-rays scattering off two lattice planes separated by distance 𝑑�YË. The ray reflecting off 

the bottom plane travels a longer distance to the detector, thus arriving with a different 

phase ∆𝜙 = 2𝑑�YË sin 𝜃.  

If the phase difference is an integer multiple of the wavelength of radiation, the two 

rays will interfere constructively, creating an intensity peak. Therefore, by rotating the 

detector and finding the peaks one can extract the distance between various (ℎ𝑘𝑙) planes 

of the material. In the cubic case, 

Figure 3.2. Illustration of Bragg’s Law. 

𝑑�YË  𝑑�YË sin 𝜃 𝜃 
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2𝑑�YË sin 𝜃 = 𝑛𝜆 (3.1) 

where 𝑑�YË – distance between (ℎ𝑘𝑙) planes, 𝜃 – angle of scattering,  𝜆 – wavelength of 

radiation, 𝑛 – an integer, representing the order of the diffraction. When the lattice 

parameters and symmetry group of the material are known, formula (3.1) or 

crystallographic simulation software allow for easy identification of Bragg peaks 

determined experimentally. 

3.1.2 Equipment 

All X-ray diffraction studies presented in this work were performed on Phillips 

X’pert Diffractometer. The diffractometer is equipped with a copper (𝜆á�â = 1.54056Å) 

X-ray tube operating in line and point configurations, incident ray optics, 𝜃 − 2𝜃 

goniometer with a sample stage, reflected ray optics, and a Xenon proportional counter 

detector. A detailed drawing of the goniometer is shown in Figure 3.4. 

 
Figure 3.3. Schematic of the 𝜃 − 2𝜃 goniometer with Euler angles labeled. 

In addition to the 2𝜃 angle traversed by the detector, the sample stage rotates 

through angles 𝜔, 𝜙, and 𝜓, thus completing the set of Eulerian angles. Here, 𝜔 is the tilt 

of the sample around the y-axis (the axis perpendicular to the beam in the plane of the 

sample), 𝜙 is the rotation of the sample around the z-axis (axis normal to the plane of the 



21 
 

 

sample), 𝜓 is the tilt of the sample around the x-axis (the axis parallel to the beam in the 

plane of the sample). 

3.1.3 Crystal Orientation 

Precise orientation of single-crystalline samples plays a crucial role in 

measurements focused on anisotropic transport. In addition, transport measurements of 

magnetic materials are very sensitive to exact alignment of external magnetic field with a 

particular crystallographic direction of the sample. X-ray diffraction allows for a precise 

method of sample orientation in virtually any crystallographic direction. If the desired 

direction is in the plane of the sample, the orientation is carried out by finding the three 

goniometer angles corresponding to the Bragg peak of the direction that “covers” the 

sought after in-plane direction and projecting that out-of-plane direction onto the plane. If 

the desired direction is out-of-plane of the sample, the sample needs to be polished or cut 

to create a flat surface that is parallel to the desired direction. 

3.1.4 Characterization Techniques 

In experimental science, consistency and reproducibility are among the top 

concerns, so it is crucial that every sample measured is properly characterized to account 

for variations between samples. X-ray diffraction offers a variety of characterization 

techniques that reveal information about the crystalline quality of the sample, non-

stoichiometry, internal strains, twinning, and defects, crystallographic phases, thickness, 

grain size, and texture in the case of thin films. 
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Determination of Lattice Parameters.  

As was discussed in the previous chapter, Bragg’s Law can be used to obtain 

distances between lattice plains (ℎ𝑘𝑙). Combined with information about the geometry of 

the crystal system [32], this can be used to calculate lattice parameters of the solid. 

Experimentally, one needs to find 2𝜃 angles of a series of Bragg peaks reflected off an 

(ℎ𝑘𝑙) plane. In general, the calculation is challenging, since the order of the reflection is a 

priori not known, but the result can be achieved with structure refinement procedures. Most 

of the times when working with crystals, lattice parameters of the material are already 

known, but may vary between specimens. These variations can influence physical 

properties like transport measurements, thus, we employ an advanced procedure based on 

high angle extrapolation to minimize experimental error in lattice parameter determination. 

In the case of cubic crystals, the extrapolation function for the interplanar distance 𝑑�YË(𝜃) 

has the following dependence on the scattering angle 𝜃: 

𝑑�YË(𝜃) = 𝑎4 + 𝑎4𝐾 ~
𝑐𝑜𝑠u(𝜃)
sin	(𝜃) +

𝑐𝑜𝑠u(𝜃)
𝜃 � (3.2) 

where 𝑎4 is the true value of the lattice parameter and 𝐾 is a constant [32]. 

Crystalline Quality.  

Transport measurements in single crystalline samples are very sensitive to presence 

of various crystalline defects like point defects, small angle domain walls, twinning, etc. 

Therefore, a thorough verification of best crystalline quality is required. Pole figure scans 

allow to identify the presence of low angle domain walls and unwanted domains in the bulk 

of the crystal. To construct a pole figure, 2𝜃 is set to a value corresponding to that of a high 

intensity Bragg peak, and then the sample is rotated through angles 𝜙 and 𝜓. The resulting 

pole figure should match the symmetry of the lattice, and extra peaks at unexpected angles 
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signal the presence of other domains. Another XRD technique that reveals a lot of 

information about lattice defects like dislocations, misorientations, and inhomogeneity is 

the rocking curve scan, which measures the width of the Bragg peak in the 𝜔 plane. The 

rocking curve scan is performed by holding the 2𝜃 fixed and scanning the 𝜔 angle through 

the Bragg peak. 

X-ray Reflectivity (XRR) 

In X-ray reflectivity an X-ray beam is incident on the surface of a thin film at a very 

small angle (grazing incidence). Incident beam creates specular reflections that are 

measured by the detector. The resulting oscillatory pattern contains a lot of information 

about the characteristics of the film like its thickness, critical angle, roughness, density, 

grain size, etc. Figure 3.7(a) shows a typical XRR pattern. Film thickness	𝑡 can be roughly 

estimated as 

𝑡 =
𝜆
2Δ𝜃 (3.3) 

where Δ𝜃 is the width of the fringe in radians, 𝜆 – the wavelength of X-rays. 

A more precise method is to use linear regression based on  

𝑞u =
2𝜋
𝑡
(𝑚 + ∆𝑚)u (3.4) 

where 𝑞 and 𝑚 are, respectively, the wavevector the order of maxima or minima of the 

oscillatory pattern, and ∆𝑚 = 0.5, if the density of the film is smaller than the density of 

the substrate (Figure 3.4(b)). Figure 3.4(c) shows the plot of Pt film thickness as a function 

of deposition times used to calibrate deposition rate of 0.593 𝑛𝑚/𝑠 at a fixed target current 

𝐼G>i = 41	𝑚𝐴 and argon pressure 𝑝èi = 0.08	𝑚𝑏𝑎𝑟. 
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Figure 3.4. (a) XRR pattern of a 9nm Pt film on Si substrate. (b) Film thickness 
calculation based on extrapolation formula (Eq. 3.4). (c) Film thickness vs. deposition 
time. 

3.2 Sample Preparation 

Steady state thermal conductivity and longitudinal spin Seebeck measurements 

produce best results, when the measured sample has a regular parallelepipedal shape with 

faces oriented in specific crystallographic directions. Single crystals oriented by XRD 

undergo a series of cutting, polishing, and orientation verification steps before a desired 

geometry is obtained. Materials with high thermal conductivity require the dimension of 

the sample parallel to the heat flow to be big enough to result in precise measurements of 

the temperature gradient and the magnitude of spin Seebeck voltage depends on the width 

perpendicular to external magnetic field, so one of the challenges of sample preparation is 

to evaluate the shape and orientation of the crystal and make a cut that would maximize 

those dimensions. Cuts are made with a wire saw shown in Figure 3.5a and the orientation 

of the cut plane is reconfirmed by XRD. In situations when the cut is a few degrees off 

from the desired orientation, the cut surface is polished with abrasive grinding papers on a 

lapping machine (Figure 3.5b) at an angle to eliminate the misalignment. The procedure 

outlined above is repeated multiple times until the sample is shaped into a parallelepiped. 

𝑡 = 9.1𝑛𝑚 
(a) (b) (c) 
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Figure 3.5. Equipment used in sample preparation. (a) Wire saw. (b) Lapping machine. 

3.3 Thin Film Preparation 

Spin Seebeck measurements rely on the ability of metals with strong spin-orbit 

coupling (Pt, Ta, W) to convert spin currents to measurable voltages via the inverse spin 

Hall effect. Typically, the diffusion length of spin currents into the metal is on the order of 

a few nanometers [33], [34], therefore a thin film of one of listed materials constitutes an 

excellent spin current detector. In spin Seebeck experiments described in this work, 

platinum films with thickness 8-10 nm have been deposited by DC magnetron sputtering 

onto the face of the sample perpendicular to the direction of the heat flow. The outome of 

a spin Seebeck experiment strongly depends on the quality of the thin film and treatment 

of the surface it’s deposited on [35], [36], so the following sections will outline the 

procedure used to prepare the surface before the deposition and methods employed to 

characterize the deposited film. 

3.3.1 Surface Treatment 

Each sample described in this study underwent the three step surface preparation 

process. First, the narrow rectangular face of the sample was polished with abrasive 

grinding papers of decreasing roughtness on a lapping machine: 1) Silicon Carbide, 25µm; 

(a) (b) 
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2) Silicon Carbide, 5μm; 3) Silicon Carbide, 1μm; 4) Aluminium Oxide, 0.3μm. Due to the 

small dimesions of the sample, it was attached to a copper block with crystalbond, so that 

the polished surface is flush with the copper to minimize the stress on the sample during 

polishing. After that the entire sample was cleaned in an ultrasonic bath and mounted on a 

custom sample holder with crystal bond. Then the surface was treated with the Piranha 

solution (3:1 mixture of concentrated sulfuric acid and 30% hydrogen peroxide) by dipping 

the polished end of the sample in a Petri dish with solution to remove remaining organic 

residue. Over the span of multiple experiments described in this study, treatment times 

have been reduced from 60s to 5s as a result of an observation of a strong etching of the 

sample surface. After the Piranha treatment the sample was rinsed with deionized water 

and dried with air, followed by an immediate transfer to the deposition chamber. 

3.3.2 Magnetron Sputtering 

 
 

Figure 3.6. (a) Schematic of the sputtering chamber. (b) Sample holder and shadow 

mask. 

Magnetron sputtering is a physical vapor deposition process primarily used in 

fabrication of thin films. In the proces, the sputterng gass is ionized, and poitively charged 

ions are accelerated by the electric field towards the cathode, bombarding and ejecting 
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atoms from the target. Ejected atoms then diffuse away from the target and condense on 

the sample (see Figure 3.6a). 

A Cressington 108 sputter coater with platinum target installed was used to deposit 

films on all Cu2OSeO3 samples in this study. Ultra high purity argon was used as the 

sputtering gas and the vacuum chamber was pumped with a diffusion pump. Deposition 

rates were calibrated by performing reflectivity thickness measurements (see Section 3.1.4) 

on a series of Pt/Si samples with increasing deposition times. All other deposition 

parameters like the distance from the target, argon pressure, and target current were not 

varied. 

The thin film deposition procedure consisted of the following steps. Once the 

etched and dried sample was transferred into the deposition chamber, a shadow mask was 

installed on top of the sample holder cap. The shadow mask cut from microscope slide 

cover was designed to expose the narrow polished face of the sample while keeping the 

rest of the sample masked. In addidion, the shadow mask was aligned flush with the face 

of the sample to guarantee complete and uniform coverage (Figure 3.6b). After that the 

vacuum chamber was sealed and pumped with a diffusion pump to the base pressure of 

1 × 10�·	mbar and flushed with argon three times. The argon pressure in the chamber was 

set to 𝑃èi = 1 × 10�u mbar and the platimun was deposited for 80 seconds at the target 

current of 16mA.  

Four thin (0.001" diam.) gold are attached at the two ends of the platinum film with 

silver epoxy (Epo-Tek® EE165) and the sample is annealed in a 250°C furnace for 15 mins 

to cure the epoxy and improve contact resistance. 

a
) 

(a) (b) 
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3.3.2 Film Characterization 

Thin films are characterized with XRR to determine their thickness, roughness, and 

grain size. Other characterization thechniques involve low-temperature measurements of 

resistivity, magnetoresistance, and Hall coefficient (see Section 6.2). 

3.4 Transport Measurements 

Our lab specializes on low temperature transport measurements and a number of 

different measurements were performed in the scope of this work. This section will discuss 

the equipment, experimental techniques, and setups used for the measurements. 

3.4.1 Thermometers and Thermocouples 

Ruthenium Oxide Thermometers 

Ruthenium oxide bare chip thermometers are exellent temperature sensors for 

temperatures below 20K. Their charasteristic feature is that the resistance of the amorphous 

ruthenium oxide film increases very fast with decreasing temperature, so a small change in 

the temperature of the film results in a big change in its resistance, allowing for a very 

precise measurement of absolute temperature.. The resistance of the film is measured using 

the 4-wire configuration, and then converted to absolute temperaure using T(R) calibration 

curves shown in Figure 3.7. Bare chip sensors come uncalibrated, so they need to be 

calibrated against a standard precalibrated thermometer in a separate experiment to obtain 

T(R) data. 
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Figure 3.7. Typical 𝑇(𝑅) calibration data of a bare-chip Ruthenium oxide thermometer 
(circles). Fits based on Eq. 3.5 (lines). 

The data are fit with the piece-wise model and non-linear regression is used to 

determine fit coefficients. 

𝑇(𝑅) =

⎩
⎪
⎨

⎪
⎧ 𝐴� d

𝐵�
(𝑇 + 𝐶�)vâ

g ,			𝑤ℎ𝑒𝑛	0𝐾 < 𝑇 ≤ 1𝐾

𝐴u d
𝐵u

(𝑇 + 𝐶u)vð
g ,			𝑤ℎ𝑒𝑛	1𝐾 < 𝑇 ≤ 3.5𝐾

𝐴u + 𝐵u𝑇u𝐿𝑛(𝑇), 𝑤ℎ𝑒𝑛	3.5𝐾 ≤ 𝑇

 
 

(3.5) 

Thermocouples 

A thermocouple is a temperature sensor that consists of two wires made of metals 

with very different Seebeck coefficients (𝑆� and 𝑆u), that are welded together at one end to 

form a junction. Whenever there is a temperature gradient ∆𝑇 between the junction and the 

ends of the thermocouple, the difference in the Seebeck coefficients 𝑆� − 𝑆u of the two 

metals produces a voltage 𝑉 across the two ends. If the absolute temperature of the ends 

𝑇ink is known, the temperature of the junction 𝑇ñò<:Gj;< can be calculated using the formula 

𝑇ñò<:Gj;< = 𝑇ink +
𝑉

𝑆� − 𝑆u
. (3.6) 

Type E (chromel-constantan) thermocouples are very useful in low temperature 

measurements, because of their hight voltage output at cryogenic temperatures.  
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3.4.2 Resistivity and Magnetoresistance 

The DC resitance measurement that utilizes the 4-wire setup is the most commonly 

used method often empoleyd to measure resistivities of bulk single crystals, thin films, or 

resistances of various resistive devices like thermometers and heaters. This method has a 

number of advantages over the 2-wire setup: current reversal accounts for various offsets, 

resistances of the leads and contact resistances are ignored. Leads A are designed to create 

a uniform current density throughout the specimen. The current 𝐼 is suppled by a Keithley 

220 programmable current source that can output currents in the range between 100nA and 

1A. Leads B are used to measure the voltage drop 𝑉 using a Keithley 2182A, able to detect 

voltages between 3V and 10nV. These instruments then can be used to measure resistances 

in the range from 10nΩ	to 30kΩ. The resistivity of the sample can be calculated using 

𝜌 =
𝑉
𝐼
𝐴
𝑙  (3.7) 

where  𝑉 is the voltage across leads B, I is the current through leads A,	𝐴 is the crossectional 

area of the specimen, and 𝑙 is the distance between leads B. The biggest challenge of this 

method is to ensure that the current density between leads A is uniform, that is why it is 

partucularly important to create contacts of the right shape. The contacts can be hand 

pained on with a conductive silver epoxy, or magnetron sputtering can be used to deposit 

Au or Pt contacs through a shadow mask (see Section 3.3.2). In this work the technique 

was used multiple times in the following situations: resistance of ruthenium oxide 

thermometers was measured and converted to absolute temperature, resistance of chip 

heaters was used to calculate the power output of the heater, resistance of the platinum film 
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was measured as a function of temperature and magnetic field to investigate the effects of 

proximity magnetization on spin Seebeck effect (more in Section 6.2). 

3.4.3 Thermal Conductivity 

There is a number of experimantal techniques that can be used to measure thermal 

conductivity 𝜅, but the most advantageous method for measuring thermal conductivity of 

single crystals with heat flow in a particular crystallographic direction is the steady state 

method. The schematic of the measurement setup is shown in Figure 3.8.  

 

 
Figure 3.8. Schematic of the thermal conductivity measurement setup. 

To achieve the desired configuration, the first step is to cut a rod-like specimen with 

dimensions 𝑙 × 𝑤 × 𝑡 out of an oriented single crystal, so that the length of the rod is 

parallel to the desired crystallographic direction, and the crossection is rectangular and 

uniform (to guarantee a uniform tempertature gradient required for this method). Then the 

sample is attached to a thermally conducting heat sink (typically OFHC copper) with an 

epoxy appropriate for the measurement. The common thermally conducting epoxies are 

silver paint, GE varnish, stycast, E20 silver epoxy, etc, and a number of factors need to be 

considered when choosing the right one, including the temperature range of the 
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measurement, electrical conductivity, ability to adhere to the surface of the crystal, grain 

size/uniformity, and mechanical strength. The third step is to attach the resistive chip heater 

(look up the manifacturer) to the cantilever end of the sample, thus creating a heat flow 𝐽³  

through the sample from the heater to the sink. There are a few options regarding what 

temperature measuring devices to use to measure the temperature gradient and the average 

temperature of the sample, depending on the desired temperature range. At low 

temperatures, 0.1K ≤ T ≤ 20K, Ruthenium Oxide chip thermometers provide the best 

temperature resolution, in addition, their low magnetoresistance makes them really usefull 

for field dependent measurements. For all other temperature ranges, a combination of a 

differential thermocouple and an average thermocouple of type E or K can be used. The 

junctions of the differential thermocouple (or RuO2 thermometers via thick gold wires) are 

attached to the sample at a maximum separation, while the average thermocouple junction 

is placed in between the two. In the steady state method, thermal conductivity is calculated 

by 

𝜅(𝑇>?@) =
𝑉�Gi𝐼�Gi
Δ𝑇

𝑙õ}
𝐴  (3.8) 

where 𝑉�Gi  is the heater voltage, 𝐼�Gi  is the heater current, Δ𝑇 is the temperature difference 

between the points separated by length 𝑙õ}, and 𝐴 = 𝑤𝑡 is the cross-sectional area of the 

sample. The current through the heater 𝐼�Gi  is supplied by the Keithley 220 programmable 

current source, the voltage 𝑉�Gi  is measured with the Keithley 2182A nanovoltmeter in a 

four wire setup. In the case of resistive thermometers, the four wire method is used to 

calculate the resistance of each thermomter, which is later converted to the absolute 

themperature using T(R) calibration curves (see 3.4.1). The temperature difference Δ𝑇 and 

the average temperature 𝑇>?@ are then caluculated by finding the difference and the average 
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of two thermometer readings, respectively. In the case of thermocouples, the two voltages 

𝑉hjkk  and 𝑉Ë>@of the differential and the average thermocouples, respectively, are measured 

by a nanovoltmeter and then converted to the temperature difference and average 

temperature by the method described in 3.4.1). In some situations it is possible to have a 

non-zero temperature gradient along the sample even when the heater is off. In order to 

account for that in the calculation of thermal conducivity, a separate measurement of zero 

heater power (heater off) temperature gradients needs to be performed throughout the 

temperature range, giving a function Δ𝑇4�GiÉ𝑇>?@Ê. Then the true thermal conductivity can 

be calculated by 

𝜅É𝑇>?@Ê =
𝑉�Gi𝐼�Gi

Δ𝑇 − Δ𝑇4�GiÉ𝑇>?@Ê
𝑙õ}
𝐴 .	 (3.9) 

 

3.4.4 Spin Seebeck Effect 

 
Figure 3.9. Schematic of the spin Seebeck effect measurement setup. 
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Spin Seebeck effect in Cu2OSeO3 was measured in the longitudinal configuration 

presented in Figure 3.9. This setup is similar to the one for thermal conductivity 

measurements presented in Section 3.4.3 except for the addition of an 8-10 nm platinum 

(Pt) thin film on the face perpendicular to the heat flow direction. In order to maximize the 

LSSE signal, several considerations regarding sample geometry need to be taken into 

account. 

 First, samples need to be of parallelepipedal geometry that maximizes the length 𝑙 

along the heat flow to produce the maximum temperature difference ∆𝑇1, as LSSE voltage 

is directly proportional to the temperature gradient. Secondly, since LSSE voltage 

originates as an electric field of inverse spin Hall effect integrated along the width 𝑤 of the 

sample, the width needs to be maximized as well. The second condition competes with the 

first, since the geometric factor 𝑔 = Ë
÷G

 ultimately determines the magnitude of the 

temperature difference. Experimentally, it is beneficial to have the biggest possible 

geometric factors for materials with high thermal conductivity to avoid temperature 

differences at the limit of thermometer sensitivity. For majority of the samples, the length 

is determined by the size of the bulk single crystal it is cut from, thus reducing thickness 𝑡 

of the sample while keeping 𝑤 relatively large is the strategy that maximizes the LLSE 

signal. With the heat current 𝐽³  in the 𝑥ø direction and magnetic field 𝐻OO⃗  in the 𝑦ø direction, 

the inverse spin Hall voltage in the platinum strip is expected to be in the �̂�	direction, thus 

four 0.001-inch diam. wires are attached at the two ends of the strip. 



35 
 

 

 

Figure 3.10 (from Ref. [38]). (a) Schematic illustration of the Pt/YIG/Pt sample. (b) 
Experimental configuration for applying ∇T. (c) A schematic plot of temperature profile 
along the z direction. 

The setup described is distinguished from the measurement configurations typically 

used in the studies of LSSE in bulk YIG (Figure 3.10a) but offers certain advantages. Since 

thermal conductivity of YIG is much smaller, wide, short samples are sandwiched between 

two heat baths with sapphire plates on the two sides to produce uniform heat flow. The 

temperature of the two sapphire plates is directly measured and the difference is taken to 

be equal to the temperature difference in the YIG slab. Figure 3.10c shows that this 

approach is prone to erroneous measurements of the temperature gradient as the actual 

temperature profile across the stack is rather complicated due to a finite thermal resistance 

of the contacts between the YIG and sapphire plates. Instead, authors of Ref. [37], [38] 

propose to use platinum films deposited on the two ends as thermometers by calibrating 

the temperature dependence of their resistance. 

This method improves the accuracy of the temperature gradient measurement at 

T > 20K but gives poor results at low temperatures as platinum resistance becomes weakly 
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temperature dependent in the residual resistance regime. Also, this method complicates the 

analysis of magnetic field dependence as separate calibrations over the entire temperature 

range need to be performed to determine the film resistance as a function of field and 

temperature. Therefore, the method described in this section has definite advantages as it 

affords directly measured temperature gradients with sensitive, calibrated (in field) 

thermometers. 

3.5 Data Acquisition 

3.5.1 Equipment 

A wide range of equipement was used to enable fast and reliable measurements and 

recording of the data in the experiments described in this work. A fully automated setup of 

Keithley® 224 programmable current sources, model 182 and 2182 nanovoltmeters, a 

model 705 switch sytem, Lakeshore® 335 temperature controllers, and a model 625 

superconducting magnet power supply, communicating via GPIB interface was used for to 

perform measurements and transfer the results to a PC.  

All low-temperature measurements were performed in the Cryo Industries of 

America, Inc model He3-PRO® dipper probe equipped with a 5T superconducting magnet 

placed in a dewar with liquid helium. The probe’s cooling system is capable of maintaining 

a base temperature of 300 mK for extended periods of time. The key components of the 

cooling system − charcoal chamber, condensation pot (He4 pot), and He3 pot − are shown 

in Figure 3.11.  
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Figure 3.11 (adapted from [39]). Components of He3 probe cooling system and steps of 
operation. 

The principle of operation is based on thermodynamic cycling of He3 gas that 

occurs in the following steps: 

1) The charcoal chamber is heated and the stored He3 gas is released 

2) He3 gas passes though the condensation pot at temperatures below 1.7K and 

condenses in the He3 pot, then charcoal heater is switched off and liquid He3 

provides cooling power for the sample stage 

3) Heat loads on the sample stage evaporate liquid He3 that is physisorbed one the 

charcoal surfaces. 

Sample vacuum space is diffusion pumped and backed by an Edwards®  Model 1.5 

dual stage rotary pump. Pumping on the charcoal chamber and He4 pot is done with an 

Edwards® Model 5 dual stage rotary pump. 
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3.5.2 Software  

The data acquisition was performed using an automated LabView routine designed 

to communicate with digital equipment, coordinate a measurement sequence, and record 

data. Additional features were used to monitor temperature changes of stage thermometers 

and condenser pot thermometers to guarantee excellent temperature stability over the 

course of multiple-hour magnetic field sweeps at fixed temperature setpoints. 
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Chapter 4. Cu2OSeO3 − Overview of Properties 

In this chapter we will go over the physical properties of Cu2OSeO3 and review 

relevant experimental and theoretical work published about this material.  We will also 

develop an understanding of the key properties of Cu2OSeO3 that motivated the study of 

thermal conductivity and spin Seebeck effect in this material. In addition, we will draw 

comparisons with YIG and discuss the avenues the study of Cu2OSeO3 can lead to, 

establishing the potential contributions to the field of spin caloritonics it can bring. 

4.1 Structure 

The first studies of CuO-SeO2 compounds were done by G. Meunier and M. 

Bertaud in 1976 [40]. X-ray analysis of single crystals and powder samples was used to 

determine the cubic lattice system and the space group P213 of Cu2OSeO3. A 1986 study 

by H. Effenberger and F. Pertlik determined the crystal structure, atomic positions, and the 

lengths of Cu-O and Se-O bonds [41]. Bos et. al. [42] grew single crystals of Cu2OSeO3 

by the chemical vapor transport (CVT) method, refined the crystal structure via XRD and 

neutron powder diffraction, and measured thermal expansion, magnetization, ac 

susceptibility, and dielectric constant over a wide temperature range with the focus around 

the Curie temperature Tc ≈ 58K. Further analysis of the structure revealed that, the 

noncentrosymmetric P213 space group implies Cu ions form a distorted, three-dimensional 

pyrochlore lattice of corner sharing tetrahedra (Figure 4.1a). Within the tetrahedra there 

are two inequivalent sites of Cu2+ with different oxygen coordination (Cu1 and Cu2). Cu1 

ions are surrounded by square pyramids of oxygen ligands, while Cu1 ions are surrounded 

by trigonal bipyramids. Magnetization was found to saturate at a value of 0.5µB/Cu2+ which 
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supported the collinear ferrimagnetic alignment of copper spins within the tetrahedra with 

three (Cu2) pointing in the same direction and one (Cu1) antiparallel (Figure 4.1b). The 

absence of spontaneous lattice strain, magnetostructural coupling, as well as anomalous 

behavior of dielectric constant and magnetocapacitance suggested a unique nature of 

magnetoelectric coupling. 

 

 

Figure 4.1 (from Ref. [48]). (a) Crystal structure of Cu2OSeO3. Cu1 in blue, Cu2 in green, 

O in red, Se in grey. (b) Orientation of Cu2+ spins. 

Belesi et al. reported a nuclear magnetic resonance (NMR) study of 77Se nuclear 

spins in Cu2OSeO3 [43]. The NMR effectively probes the electronic moments of Cu2+ 

atoms through the transferred hyperfine and magnetic dipolar interactions with 77Se nuclear 

spins. The study confirmed the ferrimagnetic ordering of Cu2+ spins within the tetrahedra 

and identified anomalous behavior around Tc of spectral lines associated with phonon 

modes responsible for the magnetoelectric effect. 

4.2 Magnetism 

Metallic B20 alloys share the noncentrosymmeric space group P213 with 

Cu2OSeO3 and exhibit chiral helimagnetic order. These B20 compounds were also shown 

to host topological spin vortices − skyrmions. Structural similarities of Cu2OSeO3 with 

transition metal alloys with B20 structure, like MnSi [44], [45], Fe1–xCoxSi [46], and FeGe 

(a) (b) 
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[47] motivated a series of small angle neutron scattering (SANS) and Lorentz TEM 

imaging studies of its magnetic structure. The studies [48], [49],[51] revealed that below 

the transition temperature, competing 𝑆j ∙ 𝑆ñ-like ferromagnetic exchange and 𝑆j × 𝑆ñ-like 

Dzyaloshinskii-Moriya (DM) interactions (favoring parallel and perpendicular spin 

alignment, respectively)  result in helimagnetic ordering of S=1 tetrahedra below Tc and 

are also responsible for the appearance of the skyrmion phase near Tc.  

  

Figure 4.2. (a-c) (from [52]) Spin textures in the helimagnetic, conical, and skyrmion 
phases, respectively. (d) (from Ref. [51]) Magnetic phase diagram. 

Figure 4.2a shows an illustration of the spin configuration in the helical phase; here 

the total spins of the tetrahedra rotate in the plane perpendicular to the propagation vector 

𝑘 = 2𝜋/𝜆�, that is parallel to the <100> crystallographic directions and 𝜆� ≈ 616 ± 45	Å 

is the modulation wavelength. This particular direction of the propagation vector is caused 

by the magnetic anisotropy, while the high symmetry of the cubic lattice results in three 

coexisting <100> domains as confirmed by SANS. As the external magnetic field 

increases, Cu2OSeO3 undergoes a second order phase transition at the first critical field Hc1 

from the helical into the conical phase, where the spins begin to rotate on the surface of a 

cone and the propagation vectors align with the direction of the field forming a single 

domain (Figure 4.2b). Above the second critical field Hc2 the spins of the tetrahedra align 
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parallel with the magnetic field and the material is in the field-polarized (or collinear) 

phase, while maintaining the ferrimagnetic ordering within the tetrahedra at least up to 14T 

[43]. The phase diagram for the magnetic phases described so far is presented in Figure 

4.2d. 

Recently, Qian et al. [53], Chacon et al. [54], and Halder et al. [55] experimentally 

observed two new spin phases of Cu2OSeO3: a low-temperature skyrmion phase and a so-

called tilted conical phase. Both new phases occur exclusively when the magnetic field 

direction is along the [100] crystallographic direction, favored by cubic anisotropy.  The 

tilted conical phase (TC) is characterized by a tilt of the direction of conical modulation 

away from the field direction toward <111> directions, resulting in a multidomain phase 

with temperature dependent tilt angle. The phase occurs at magnetic fields near 0.6·Hc2 and 

is stabilized by competing magnetic anisotropies.  

 
Figure 4.3 (from Ref. [54]). (a) Magnetic phase diagram observed for ZFC/FH and field 
parallel to 〈111〉. (b-d) Magnetic phase diagrams observed for ZFC/FH, FC, and 
HFC/FH, respectively, for field parallel to 〈100〉. Hatched shading represents 
coexistence of skyrmion and TC phases. 

Chacon et al. argued that the observed ring of scattering intensity that is 

perpendicular to the field in parts of the tilted conical phase can be attributed to the presence 

of a triangular skyrmion lattice (LTS). Additionally, they concluded that the transition from 

the conical phase to the TC is second order, while the transition from FP to TC is first 
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order. All transitions to LTS are strongly first order and are additionally protected by 

topology. Figure 4.3 shows the magnetic phase diagram obtained from SANS data for three 

temperature vs field protocols: zero-field-cooled/field-heated (ZFC/FH), field-cooled (FC) 

and high-field-cooled/field-heated (HFC/FH).  

4.3 Heat Capacity 

Recently, magnetic field dependence of specific heat of Cu2OseO3 had been 

reported by Halder et al. [55]. These data turn out to be very useful in the analysis of 

magnetic dependence of thermal conductivity presented in Section 5.3. Figure 4.4 shows 

the change in specific heat ∆𝐶 = 𝐶(𝐵) − 𝐶(𝐻 = 0) at 𝑇 = 2 K as a function of magnetic 

field for three principal crystallographic directions. 

 
Figure 4.4 (from Ref. [55]). Field dependence of specific heat at 2 K for three principal 

directions. Red (blue) circles correspond to increasing (decreasing) field. 

4.4 Crystal Growth 

The bulk single crystal specimens used in this study were prepared by our 

collaborators (group of Tyrel McQueen at Johns Hopkins University) using the seeded 

chemical vapor transport method described in [58]. 
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Figure 4.5 (from Ref. [58]). a) Seeded CVT setup. b) Temperature gradient chosen to 
sigle out the growth of Cu2OSeO3. c) Large Cu2OSeO3 crystals grown by the seeded 
CVT method. 

First, polycrystalline Cu2OSeO3 is synthesized by a direct solid-state reaction of 

CuO and SeO2. Ground up precursors (in a 2:1 molar ratio) are sealed in an evacuated fused 

silica ampule and the temperature is ramped to 600°C at a rate of 100°C/hr. and held at 

600°C for 12 hours, followed by a quench of the tube in water. To grow single crystals 

Cu2OSeO3 powder is sealed in a fused silica ampule with 0.4 mg/cm3 NH4Cl. The tube is 

then positioned between the first two zones of a three-zone tube furnace. The source zone 

is ramped to 640°C and the deposition zone – to 530°C as depicted in Figures 4.5 a, b and 

the temperature gradient is maintained for 6 weeks. The obtained small single crystal 

specimens are then used in the seeded CVT growth, producing large, olive green Cu2OSeO3 

crystals shown in Figure 4.5c. Powder XRD was used to confirm phase purity and back-

reflection X-ray Laue diffraction was utilized to identify crystal faces and verify crystalline 

quality. 
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Chapter 5. Thermal Conductivity of Cu2OSeO3 

We will start this chapter by going over the considerations that drew our attention 

to Cu2OSeO3 and motivated our study of its thermal conductivity. Then the essential results 

of thermal conductivity studies, published by our group [59], [60], will be presented. 

5.1 Skyrmion Thermal Hall Effect 

Originally Cu2OSeO3 drew our attention because of the possibility of an 

observation of skyrmion thermal Hall effect. Recent theoretical work [61], [62] described 

skyrmion dynamics in the presence of a temperature gradient. These studies found that in 

addition to the usual Brownian drift of skyrmions opposite to the temperature gradient, 

there is an overwhelming flow in the opposite direction caused by negative spin transfer 

torques on skyrmions caused by the magnon current induced by the temperature gradient. 

The overall drift is in the direction along the temperature gradient (cold to hot), contrary to 

the intuitive diffusion direction of other carriers and quasiparticles. In addition, the theory 

suggests that the DM interaction in the presence of an external magnetic field results in 

skyrmion drift transverse to the temperature gradient. The heat current produced by this 

motion of skyrmions creates a transverse temperature gradient. 

The first experiments done by our group focused on measuring the proposed 

skyrmion thermal Hall temperature gradient. The measurement setup, displayed in Figure 

5.1, was similar to the thermal conductivity setup described in Chapter 3 with type E 

differential thermocouples measuring the longitudinal and transverse temperature 

differences.



46 
 

 

 
Figure 5.1. Skyrmion thermal Hall effect measurement setup. 

The sample with length 𝑙 parallel to the [111] crystallographic direction and width 

𝑤 perpendicular to [11¥0] was cooled to ~58K and a number of field sweeps in and outside 

of the skyrmion phase were performed. In addition, DC magnetization measurements were 

performed in a PPMS system with ACMS II by our collaborators (group of Sunxiang 

Huang at the University of Miami). Figure 5.2 shows dM/dH and 𝜅12 = 𝜅22
üý}
üþ}

 as 

functions of magnetic field. Evidently, the skyrmion thermal Hall signal is below the level 

of detection, which is determined by the sensitivity of the thermocouple. 

Even though measurement of the skyrmion thermal Hall yielded a null result, 

thermal conductivity in zero field showed a surprisingly high magnitude at low 

temperatures, which motivated further investigation. 
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Figure 5.2. dM/dH	and 𝜅12 as functions of magnetic field in the skyrmion phase (red) 
and above Tc (blue). Shading indicates the skyrmion phase (SkL). 

5.2 Thermal conductivity with heat flow along [111] 

5.2.1 Overview 

This study presents the results of thermal conductivity measurements of Cu2OSeO3 

samples with heat flow 𝐽³||	[111] and external magnetic field 𝐻OO⃗ ||	[11¥0]. Single crystal 

samples were cut from different bulk single crystal specimens and the orientation and 

crystalline quality were verified by X-ray diffraction. The experimental setup used for 

thermal conductivity measurements is described in Section 3.4.3. Temperature-dependent 

thermal conductivity in H = 0 kOe and H = 50 kOe as well as magnetic-field-dependent 

thermal conductivity measurements were performed. Analysis of the data reveals that 

thermal conductivity can be separated into additive contributions from phonons and 

magnons. The extracted magnon thermal conductivity with the magnitude of ~70 W/mK 

at 6K greatly exceeds that measured in any other ferro- or ferrimagnet. Both phonons and 

H SkL FP 
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magnons conduct heat in the boundary-limited regime at low temperatures, while 

Poiseuille flow of magnons in the temperature region 2K < 𝑇 < 10 K was identified. 

5.2.2 Thermal Conductivity in Zero Magnetic Field 

 
Figure 5.3. Temperature dependence of thermal conductivity for three samples with 
varying transverse dimensions 𝑙4 in H = 0 kOe. 

The zero-field thermal conductivity (𝜅) of three samples with differing transverse 

dimensions (𝑙4 = 2�𝑎/𝜋, where 𝑎 is the cross-sectional area) are shown in Figure 5.3 for 

the temperature range 0.5 K	< 𝑇 <	20K and zero magnetic field is shown in Figure 5.3. At 

very low T,	𝜅 scales with the transverse dimension 𝑙4, indicating that scattering from 

boundaries is the dominant relaxation mechanism with mean-free paths approaching the 

value of 𝑙4 as 𝑇 → 0 K (ballistic regime, see Section 5.2.4). The thermal conductivities 

have maxima at ~8 K and reach ~400 W/mK for the largest sample. The magnitude of 𝜅 at 
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the peak is usually determined by defect scattering, therefore slight differences between 

the three samples can be attributed to different defect concentrations. Additionally, at low 

temperatures 𝜅(𝑇) strongly deviates from the T3 behavior expected for lattice thermal 

conductivity of an insulator. This is due a magnon contribution to 𝜅 (see Section 5.2.3). 

5.2.3 Magnetic Field Dependence of Thermal Conductivity 

Magnetic field dependence of thermal conductivity was measured at a series of 

fixed field values from -50 to 50 kOe while keeping the base temperature fixed. The results 

of the measurements from 0 to 50 kOe for samples with transverse dimensions 

𝑙4 = 0.15 mm and 0.31 mm are shown in Figure 5.4.  

The first key feature of the data is the saturation of 𝜅 at low temperatures as 

magnetic field approaches 50 kOe in the field polarized (collinear) phase. In the presence 

of external magnetic field at low temperatures, the magnon dispersion relation can be 

approximated as ℏ𝜔Y = 𝐷𝑘u + 𝑔𝜇a𝐻. An increasing magnetic field suppresses magnon 

population (Eq. 2.1). In the case when magnetic field is strong enough 𝑔𝜇a𝐻 ≫ 𝑘a𝑇, 

thermal conduction by magnons is completely suppressed and the total thermal 

conductivity is determined purely by the lattice contribution. At low temperatures the 

suppression occurs at 𝑔𝜇a𝐻/𝑘a𝑇 ≈ 6, which explains why the saturation is not observed 

in the T = 5.2 K data (lower panel of Figure 5.4a) – the estimated field strength required to 

suppress all magnons is approximately 220 kOe. The suppression at 50 kOe occurs for 

temperatures below 1.2 K. 
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Figure 5.4. Magnetic field dependence of thermal conductivity, average temperature, and 
dM/dH for samples with transverse dimensions 𝑙4 =	0.15mm (a) and 0.31mm (b). 

We assume weak phonon-magnon interactions, that imply simple additive 

contributions to the total thermal conductivity from phonon (L) and magnon (m) systems 

𝜅 = 𝜅7 + 𝜅9. We take the saturation value to be equal to the lattice thermal conductivity	𝜅7 

and compute the magnon thermal conductivity in each spin phase (𝜅9�nË, 𝜅9:;<, 𝜅9:;Ë in Figure 

5.4a) at low temperatures by direct subtraction. 

The second feature is the sharp increase in thermal conductivity at the helical-

conical transition. This jump is unlikely to be caused by changes in the magnetic texture, 

as specific heat does not exhibit similar behavior at the transition (see Figure 4.4), 

therefore, the effect is caused by the change in magnon scattering. It is reasonable to 

attribute the observed behavior to the transition from the multidomain state in the helical 

phase to the single domain conical phase. Evidently, domain boundaries in the helical phase 
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are very effective at scattering magnons and cause a considerable suppression of thermal 

conductivity. Interestingly, the increase of thermal conductivity in the conical phase 

opposes the decrease in specific heat. 

5.2.4 Magnon Thermal Conductivity 

In order to perform the separation of magnon contribution from the total thermal 

conductivity, lattice thermal conductivity at temperatures where the saturation does not 

occur at the magnetic field of 50 kOe was computed using the Calloway model (Section 

2.1.3). The parameters of the model were constrained to satisfy the following conditions:  

1) 𝜅7 fits the low temperature (𝑇 < 1.2K) 50 kOe data, where the direct suppression 

is observed; 

2) 𝜅7 fits the high temperature (𝑇 < 1.2K) zero-field data, where 𝜅 shows negligible 

field dependence; 

3) the maximum in 𝜅9:;< = 𝜅 − 𝜅7 occurs at the same temperature where 𝜅9:;< − 𝜅9�nË 

peaks; 

4) 𝜅7 < 	𝜅. 

Normal and resistive scattering rates were taken to have the form 

𝜏��� = 𝛾𝐴𝑥uT�	. (5.1a) 

𝜏��� =
𝑣
𝑙4
+ 𝐴𝑥uT� exp d

𝜃v
𝑏𝑇g + Cx

�𝑇�, (5.1b) 

where 𝐴, 𝑏, 𝐶, 𝑎𝑛𝑑	𝛾 are free parameters. Figure 5.5 shows the obtained fits to the lattice 

thermal conductivity, while the parameter ranges are summarized in Table 5.1. 
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Table 5.1. Ranges of parameters from Callaway modeling of 𝜅7. 

𝑙4 (mm) 𝑣 (km/s) 𝐴 (104 K-4) b 𝐶 (K-4) 

0.15 2.06 − 2.15 1.8 − 2.0 6.6 − 6.9 10 − 15 

0.31 2.15 − 2.35 1.5 − 1.8 6.0 − 6.6 80 − 110 

0.60 2.06 − 2.3 1.75 − 2.0 6.3 − 6.6 34 − 40 

 
 

 
Figure 5.5. Zero field thermal conductivity from Figure 5.3 (circles) and 𝜅7 computed 
for the two ends of the parameter range (solid and dash-dotted curves). Shaded regions 
correspond to parameter ranges from Table 5.1. 

Magnon thermal conductivity in the conical phase was calculated by subtracting 

𝜅7, computed using the mean values of the ranges from Table 5.1, from the maximum total 

thermal conductivity in the conical phase. Obtained 𝜅9:;< reaches a value of ~70 W/mK at 

the peak near 5K, which is the record high magnitude for magnon thermal conductivity of 

ferro- and ferrimagnetic materials. Moreover, for T > 1K 𝜅9:;< of the two least defective 

samples (blue and green circles in Figure 5.6) grows with temperature at a rate much faster 

than 𝑇u predicted by linear spin wave theory (Eq. 2.23). This temperature behavior can be 

explained by two possible mechanisms: 1) magnon-phonon drag, 2) Poiseuille flow of 
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magnons. The former predicts a much stronger temperature dependence (∝ 𝑇�) [63], so we 

explore the second possibility in Section 5.2.5. 

 
Figure 5.6. Magnon thermal conductivity in the conical phase (circles). Magnon thermal 
conductivity of YIG (squares) from Ref. [64]. 

5.2.5 Ballistic Regime of Phonon and Magnon Conduction 

Figure 5.7 shows the low-temperature thermal conductivity at 𝐻 = 0 kOe and 𝐻 = 

50 kOe. At 50 kOe 𝜅 is proportional to T3, further corroborating the argument that high-

field thermal conductivity is purely due to the lattice at low temperatures (Section 5.2.3).   

The expression for low temperature, boundary-limited thermal conductivity (Eq. 2.15b) 

was used to model the 𝐻 = 50 kOe data, yielding phonon mean-free paths 𝑙F� ≃ 0.16, 0.24, 

0.59 mm, consistent with the effective transverse dimensions of the samples. 

The model for boundary limited magnon thermal conductivity (Eq. 2.23b) was used 

to fit the low-temperature part of Figure 5.6 data, yielding magnon mean-free paths 
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𝑙9 ≃ 0.14, 0.25, 0.28 mm, which agree well with the transverse dimensions except in the 

case of the largest sample, where a single magnetic domain might not be as big as the 

crystal. 

The above results confirm that both magnons and phonons conduct heat in the 

boundary-limited (ballistic) regime at low temperatures.  

 
Figure 5.7. Low temperature thermal conductivity of the three samples from Figure 5.3: 
𝜅(𝐻 = 0 kOe) – circles, 𝜅(𝐻 = 50 kOe) – triangles. Solid lines – fits to Eq. 2.15b. 

5.2.6 Poiseuille Flow of Magnons 

Microscopically Poiseuille flow is characterized by quasiparticle mean-free paths 

greatly exceeding the limits imposed by boundary scattering [65], [66]. Many momentum 

conserving scattering events occur before the particle thermalizes at the boundary, 

effectively resulting in a random walk with step size 𝑙�. This effect is only possible in a 

narrow range when 𝑙� < 𝑙4 2⁄ < (𝑙�𝑙�)�/u and the mean-free path approaches Ë&
ð

�Ë�
≫ 𝑙4. 

The model for Poiseuille flow was developed by Alvarez and Jou [67] 
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𝜅9 =
1
3𝐶9𝑣9

'𝑙�a(1 − Σ) + 𝑙�𝐹(𝐿nkk)Σ), (5.2a) 

𝐹(𝐿nkk) =
1
2𝜋u d

𝐿nkk
𝑙 g

u

*+1 + 4𝜋u ~
𝑙

𝐿nkk
�
u

− 1,, (5.2b) 

where Σ = 1/(1 + 𝑙� 𝑙�⁄ )u, 𝐿nkk = 𝜋𝑙4/2√2, 𝑙 = �𝑙�𝑙�, 𝑙� = (1 𝑙s�⁄ + 1 𝑙��⁄ +

1 𝑙j⁄ )��, 𝑙�a = (1 𝑙4⁄ + 1 𝑙�⁄ )��, and 𝑙s�, 𝑙��, 1 𝑙j⁄  are the mean-free paths corresponding 

to 3-magnon, 4-magnon, and impurity scattering processes. The mean-free paths were 

calculated using the thermally averaged scattering rates from Section 2.2.2 and are 

presented in Figure 5.8a. Magnon thermal conductivities calculated for the three samples 

with different transverse dimensions 𝑙4 using Eq. 5.2a are in good agreement with the data, 

providing support that magnon heat conduction is in Poiseuille regime. 

 
Figure 5.8. (a) Magnon mean-free paths for 3-magnon and 4-magnon normal (3N, 4N), 
umklapp (3U, 4U) processes, elastic impurity scattering (i), and total resistive scattering 
(R). The Poiseuille conditions are met in the shaded region. (b) 𝜅9:;<(T)	for the three 
samples from Fig. 5.3. The solid curves are model predictions (Eq. 5.2a). The dashed 
curve for the 𝑙4	= 0.15 mm specimen represents the spin-wave contribution alone without 
Poiseuille enhancement. Inset: magnon mean-free paths from the model, normalized by 
low-T boundary-limited values, for each sample. 
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5.2.7 Outlook 

Due to its record high magnon thermal conductivity, Cu2OSeO3 is a model system 

for probing long-wavelength magnon dynamics in helical magnets. Studies of magnon heat 

conduction and magnon-phonon interactions are of great importance in the fields of spin 

caloritonics [68] and magnon spintronics [69]. Also, thermal magnon currents are 

important in the field of skyrmion caloritonics because of spin-transfer torques thermal 

magnons induce on skyrmions [70], providing a means of manipulating skyrmions and 

domain walls [62], [71], [72] and giving rise to exotic effects such as topological magnon 

Hall and skyrmion Hall effects [73]. The recent identification of  a previously unknown 

low-T skyrmion phase in Cu2OSeO3 [74] suggests the possibility of observing a magnon 

thermal Hall effect in this material [75], [76]. Yet another interesting effect has been 

proposed by Ulloa et. al for magnon dynamics in the Poiseuille regime [77]. Their 

calculations suggest that a sign change in the non-local spin Seebeck signal in the magnon 

fluid regime can be observed experimentally. 

5.3 Thermal conductivity with magnetic field along [100] and [110] 

5.3.1 Overview 

In this section we present field-dependent thermal conductivity and magnetization 

data for several measurement configurations distinguished by the direction of the heat flow 

and magnetic field. When the field is in the [100] crystallographic direction, magnon 

thermal conductivity displays sharp features attributed to the transitions into tilted conical 

and low-temperature skyrmion phases. These features are explained by the effects of 

domain structure and anisotropic scattering on magnon heat transport. Overall, magnon 
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thermal conductivity measurements offer a great tool for probing spin-phase transitions 

and offer new insight into magnon transport in novel magnetic phases. 

5.3.2 Thermal conductivity with magnetic field along [110] 

 
Figure 5.9. 𝜅, 𝑇>?@, and 𝑑𝑀/𝑑𝐻 vs. field at T~2.3 K for heat flow perpendicular (a) and 
parallel (b) to magnetic field in [110] direction. Helical (H), conical (C), and field 
polarized (FP) spin phases are distinguished by shading. Red (blue) symbols depict 
increasing (decreasing) field magnitude. 

Figure 5.9 presents field-dependent thermal conductivity, average temperature, and 

𝑑𝑀/𝑑𝐻 data for two specimens with magnetic field along the [110] crystallographic 

direction and heat flow perpendicular (a) and parallel (b) to the field. As discussed in 

Section 5.2.3, changes in thermal conductivity with respect to magnetic field above the 

field-suppressed (lattice) value can be attributed to changes of the magnon contribution 

and the sharp increase at the helical-to-conical transition for both orientations corresponds 

to the disappearance of magnetic domain boundary scattering at the transition from a 

multidomain to a single domain phase. A smaller upturn in  𝜅 for the parallel orientation 

of field and heat current (Fig. 5.9b) suggests the presence of anisotropic magnon-phonon 

scattering possibly explained by anisotropic magnetoelastic effects or spin-orbit 
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interactions. Similarly to the [111] case, the behavior of gradual increase of thermal 

conductivity with the field in the conical phase past the H-C transition and suppression in 

high field are also observed for these orientations.  Notable is the absence of hysteresis. 

5.3.2 Thermal conductivity with magnetic field along [100] 

 
Figure 5.10. 𝜅(𝐻)/𝜅(0), 𝑇>?@, and 𝑑𝑀/𝑑𝐻 vs. field at T~2.3 K for heat flow 
perpendicular (a) and parallel (b) to magnetic field in [100] direction. Helical (H), conical 
(C), and field polarized (FP) spin phases are distinguished by shading. 

The [100] crystallographic direction is favored by cubic anisotropy terms for the 

orientation of the helical spiral upon cooling in zero field. The competition between 

anisotropy term and Zeeman terms in applied field is responsible for formations of two 

new spin phases – tilted conical (TC) and low-temperature skyrmion (LTS) – at low 

temperatures (see Section 4.2). When the magnetic field is along [100], thermal 

conductivity displays additional features at fields that coincide with transitions in and out 

of TC and LTS phases. Figure 5.10 shows 𝜅(𝐻)/𝜅(0), 𝑇>?@, and 𝑑𝑀/𝑑𝐻 for this 

orientation of the field and heat flow perpendicular (along [110]) and parallel ([100]) to 

the direction of the field. The absence of a sharp increase in thermal conductivity at the H-

C transition in these orientations can be explained by the conversion of three helical 
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domains into a single helical domain caused by a small external field in the H phase aligned 

with the preferred direction of helical modulation. Since there are no domain rotations, the 

domain wall scattering does not change through the transition.  

 
Figure 5.11. (a) Upper panels: the H > 0 portion of 𝜅 vs 𝐻 from Fig. 5.10. Middle 
panel: SANS intensities for increasing (“up”) and decreasing (“down”) fields (from 
Ref. [55]) for the TC (solid curves) and LTS (dashed curves) phases. Field values for 
the SANS data were calibrated against peaks in 𝑑𝑀/𝑑𝐻. Lower panel: 𝑑𝑀/𝑑𝐻 from 
Fig. 5.10b. 

Strongly hysteretic features in conical, tilted conical, and low-temperature 

skyrmion phases are evident. Figure 5.11 displays thermal conductivity for 𝐻 > 0 plotted 

against SANS intensities and 𝑑𝑀/𝑑𝐻. SANS intensities form Ref. [55] for tilted conical 

and low-temperature skyrmion phases determine phase boundaries in the ascending and 

descending fields and the regions where phases coexist. First, we describe the features that 

distinguish the two orientations of the heat flow. In ascending field thermal conductivities 

in the conical phase exhibit opposite behaviors: 𝜅 for heat flow along [110] increases, 

while it decreases for heat flow along [100]. Opposite trends are also observed in ascending 
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field upon the transition into the tilted conical phase: 𝐽³	|| [110] show a sharp drop, but for 

𝐽³	|| [100] 𝜅 rapidly grows. Then there are some common features for the two directions 

of 𝐽³ . Thermal conductivity keeps growing with ascending field in LTS phase and reaches 

its maximum value before the transition to the FP phase. In descending field 𝜅 in the region 

of TC and LTS phase coexistence is significantly smaller than in the ascending field.  The 

latter features suggest that the domain structure in the region of coexistence of LTS and 

TC is responsible for significantly higher magnon scattering probabilities compared to the 

LTS phase and the region of LTS and TC coexistence.  

Highly hysteretic behavior of the data in the regions of non-zero LTS intensities is 

explained by the strongly first-order character of transitions from all other phases to LTS. 

Topological robustness of the skyrmion lattice is caused by a large energy barrier required 

for creation of pairs of Bloch points (magnetic monopoles) [56],[57]. 

Field dependence of thermal conductivity extended to higher fields (Figure 5.11b) 

reveals that the magnitude of thermal conductivity at the sharp drop caused by the C to TC 

transition is very close to the field-suppressed (lattice) value. Effectively, upon entering 

the TC phase magnon heat conduction practically drops to zero. We propose that this is 

caused by the domain structure in the TC phase that results in highly anisotropic scattering 

of magnons with momenta transverse to the applied field. 

The comparison of field-dependent heat capacity data from Ref. [55] with the 

thermal conductivity data supports our interpretation of changes of magnon scattering 

character across the phase boundaries (Figure 5.11c). Magnon mean path, computed using 

the kinetic theory expression 𝑙9 = 3𝜅9/𝐶9𝑣9, provides additional insight into 

characteristic length scales involved in magnon conduction in domain structures of various 
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spin phases. Notably, the mean free paths in the field polarized phase are equal to the 

transverse dimension of the sample 𝑙4. 

5.3.3 Outlook 

Critical suppression of magnon current at the conical to tilted conical phase 

boundary might be utilized in the design of a spin current switch, as the observed behavior 

suggests that the spin currents associated with thermal flow of magnons can be reduced to 

zero in a very narrow magnetic field range. 

Detailed microscopic pictures of domain structures in new exotic chiral spin phases 

are not well established but might be of great importance for the development of magnonic 

and skyrmionics memory devices. Magnon currents and associated spin currents provide a 

mechanism for domain wall manipulation through spin transfer torques, thus fundamental 

understanding of relevant length scales of magnon transport is crucial in device design. 
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Chapter 6. Longitudinal Spin Seebeck Effect in Cu2OSeO3 

6.1 Overview 

Recent theoretical efforts come to a consensus that spin Seebeck effect has its 

origins in thermal magnon currents [26], [83], suggesting that spin Seebeck is observable 

in magnetic materials with large magnon thermal conductivities. Rich spin phase diagram 

accompanied by substantial magnon thermal conductivity in each phase establishes 

Cu2OSeO3 as an excellent candidate for studies of thermal spin transport in chiral phases 

– a research avenue that has not received a lot of attention, possibly because the majority 

of chiral magnets are metallic, making it difficult to separate pure spin current effects from 

spin polarized charge current contributions.  

 Table 6.1. Sample geometry. 

# 𝑙 
(mm) 

𝐽³  (𝑙.) 
direction 

𝑤 
(mm) 

𝐻OO⃗  (𝑤/) 
direction 

𝑡 
(mm) 

1 5.00 [111] 1.11 [11¥0] 0.26 
2 5.00 [111] 0.86 [11¥0] 0.20 
3 3.68 [111] 0.75 [11¥0] 0.11 
4 0.75 [110] 3.75 [11¥0] 1.43 

 

This chapter presents the results of our studies of longitudinal spin Seebeck effect 

(LSSE) in Cu2OSeO3 when heat flow is parallel to the [111] crystallographic direction and 

magnetic field is along [11¥0]. The experimental setup used for the measurements is 

described in Section 3.4.4. Table 6.1 provides details about the geometries of the samples 

measured. 

We begin the discussion by addressing the concerns of contamination of measured 

signals by various spurious effects. Next the magnetic field dependence of the spin Seebeck 
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coefficient 𝑆7IIJ  in the context of various spin phases is discussed. Analysis of 

temperature dependence of 𝑆7IIJ  presented next provides insight into relevant length 

scales. We conclude by mentioning some interesting effects of surface preparation on 

observed spin Seebeck signal and discuss the peculiar effect Joule heating in the platinum 

film has on thermal conductivity. 

6.2 Platinum Film Characterization 

 
Figure 6.1. Field dependence of Hall resistivity of a Pt film on Cu2OSeO3 at 6 
temperatures in the range 0.4-10 K. The inset shows the linearity of the data near 0T. 

Huang et al. [85] observed effects of proximity magnetization in transport 

properties of platinum films deposited on ferromagnetic insulators caused by the proximity 

to Stoner instability of Pt. Here we present our results of Pt film characterization in an 

attempt to address the concerns of spurious anomalous Nernst effect contaminating LSSE 

signal. For a discussion of platinum film preparation procedures refer to Section 3.3. 

The resistivity of our 8-10 nm Pt films on Cu2OSeO3 of around 3 µΩcm is in good 

agreement with literature values for thin films [85]. Figure 6.1 shows magnetic field 
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dependence of Hall resistivity 𝜌12  for a Pt film on Cu2OSeO3 (crystal #4) at 6 temperatures 

in the range 0.4-10 K. Hall resistivities are linear down to zero field and the fits to data 

pass through the origin – signs that the anomalous Hall effect associated with proximity 

magnetization effect is not present in Pt/Cu2OSeO3 heterostructures. 

Additionally, we analyze the effects of weak localization in the temperature 

dependence of Pt film resistivity. Figure 6.2a presents temperature dependence of  ∆0
0
=

0�0ª12
0

. The logarithmic rise is caused by weak localization effects and obeys  

∆𝑅
𝑅 = −

𝑒u

2𝜋uℏ𝑅⧠
(𝑇4)𝛼}𝑙𝑛 d

𝑇
𝑇4
g, (6.1) 

where 𝑅⧠ is the sheet resistance, 𝑇4 is the temperature of resistance minimum, and 𝛼} is 

the strength of the weak localization effect [86]. The value of 𝛼} = 0.998 (Figure 6.2b) is 

in good agreement with the literature value of 𝛼} =1.01±0.07.  

 
Figure 6.2. (a) Low-T logarithmic-in-T resistance increase for four Pt films. (b) Scaling 
of ln	(𝑇) resistance rise with sheet resistance. 

6.3 Magnetic Field Dependence of Spin Seebeck Coefficient 

As was discussed in Section 3.4.4, the voltage difference between the two ends of 

the platinum film 𝑉FG  is directly measured by a nanovoltmeter. Acquisition of field-
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dependent 𝑉FG(𝐻) is performed using the following procedure: 1) base temperature and 

heater power are stabilized at a desired value and kept constant throughout the 

measurement, 2) 𝑉FG  is measured at a number of fixed field values from	𝐻 = 0 kOe up to 

50 kOe, then down to -50 kOe using the same field setpoints, and back up to zero. 

Eventually, we discovered that the complete field loop does not produce any significant 

hysteresis in the voltage signal, so we measured 𝑉FG  at a series of fixed field values between 

50 kOe and -50 kOe (subsequently referred to as “field sweeps”) in either ascending or 

descending field. For the remainder of the discussion we will focus on experimental data 

obtained for sample #2, that showed the biggest overall spin Seebeck effect. The results for 

other samples agree with the discussion presented below qualitatively. 

 
Figure 6.3. (a) Antisymmetric field dependence of 𝑉FG  for three temperatures. (b) 
Expanded field scale showing boundaries of helical (H) and conical (C) spin phases. 
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Figure 6.3a shows 𝑉FG  vs 𝐻 data for three selected temperatures. Apparent are the 

odd symmetry of the signal and a thermal offset at 𝐻 = 0. The expanded field scale in 

Figure 6.3b reveals sharp asymmetric features of the signal that line up with identified spin 

phase boundaries. 

Further analysis of the data involves the step that eliminates the thermal offset 

voltage, sample geometry dependence, and temperature gradient dependence. 

We calculate the LSSE coefficient 𝑆7IIJ  (Eq. 2.41), a quantity that purely depends 

on properties of the materials constituting the heterostructure and characteristic parameters 

describing the interactions at their interface using the equation 

 
Figure 6.4. Field dependence of 𝑆7IIJ  at temperatures between 1 K and 15 K (circles). 
Signal is absent when the heater is off (squares). 

𝑆7IIJ =
𝑉öG(𝐻) − 𝑉öG(−𝐻)

2𝑤 	
𝑙∆}
∆𝑇. 

(6.1) 
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Figure 6.4 shows the spin Seebeck coefficient as a function of magnetic field for 

several temperatures between 1 K and 15K with the maximum value reaching ~30 µV/K 

in the collinear phase. Also shown in the figure is the spin Seebeck coefficient when the 

heater output is zero (squares in Figure 6.4); in this case 𝑆7IIJ  is negligibly small as 

expected. 

 
Figure 6.5. Field dependence of 𝑆7IIJ  (upper panel) correlated against thermal 
conductivity (lower panel) for T = 3.5K and 5.7K. 

A more fundamental understanding of behavior of spin Seebeck coefficient in field 

is offered by its comparison with thermal conductivity, simultaneously measured with  

𝑆7IIJ . The in situ thermal conductivity measurement is one of the advantages the 

measurement technique in this work offers over conventional LSSE setups (see Section 

3.4.4). Figure 6.5 correlates spin Seebeck coefficient against thermal conductivity for 𝑇 = 

3.5 and 5.7 K. Despite no observation of suppression of 𝜅 in high field (magnetic fields on 

the order of 200 kOe are required to completely depopulate spin waves at presented 

temperatures), the argument (developed in Section 5.2.3), that changes of thermal 

conductivity in field can be attributed to changes in the magnon contribution, still applies 
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here. This presents us with a great opportunity to analyze correlations between heat and 

spin currents associated with a thermally driven flow of magnons. Magnon thermal 

conductivity in the helical phase is finite (~15% of total 𝜅) and does not change in field. 

Spin Seebeck effect in the helical phase starts out at zero and gradually increases before 

making a slight downturn upon approaching the H-C transition. 

This difference in behavior can be explained by the absence of net magnetization 

parallel to the field, required for spin pumping, in the multidomain helical phase, whereas 

the same magnons are still capable of producing a net flux opposite to the temperature 

gradient. Gradual rotations of helical domains in increasing small field could result in a net 

spin current, explaining the rise of 𝑆7IIJ , but seem to have no effect on heat conduction. In 

the conical phase, as the conical angle decreases in increasing field, a bigger component of 

precessing magnetization becomes parallel to the field, resulting in more efficient spin 

pumping. Interestingly, only field sweeps at temperatures below approximately 4 K show 

prominent features related to the C-FP phase transition. Perhaps, this could be explained 

by higher thermal fluctuations of spins smearing a clear boundary between low-angle 

conical and collinear phases (when it comes to the effective component of spin polarization 

parallel to the field). These thermal fluctuations are then suppressed by the increasing field 

in the FP phase eventually resulting in saturation of 𝑆7IIJ  at its maximum value, as spins 

precessing around the direction of the field provide maximum pumping efficiency. Field 

dependence of spin Seebeck effect in high field closely resembles the behavior of thermal 

conductivity, and suppression due to magnon depopulation is not observed at these 

temperatures, though the 0.99 K data in Figure 6.4 appears to show this trend. Generally, 

acquisition of spin Seebeck data at low temperatures is very challenging, since achievable 
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temperature differences are strongly limited by the geometric factor of the sample and spin 

Seebeck voltage becomes rather small and noisy when the gradient is small. 

6.4 Temperature Dependence of Spin Seebeck Coefficient 

6.4.1 Results 

 
Figure 6.6. Temperature dependence of 𝑆7IIJ  at H = 4.5 kOe in the FP phase (circles). 
The peak value of ~30 µV/K occurs at 𝑇 ≈ 6 K. Data is fit with model from Ref. [27]. 

Figure 6.6 depicts the temperature dependence of spin Seebeck coefficient in the 

field polarized phase. 𝑆7IIJ  peaks at a value of ~30 µV/K at 𝑇 ≈ 6 K, which is 

approximately three times bigger than the value of ~9 µV/K of YIG at its peak (𝑇 ≈ 31 K) 

[87]. Bulk magnon theory from Ref. [27] described in more detail in Section 2.3 was used 

to fit the experimental data. Error bars incorporate the uncertainties in the measurement of 

the temperature gradient, noise levels of the Pt voltage, and temperature instabilities during 

field sweeps. 
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6.4.2 Modeling 

 
Figure 6.7. Lowest branch of magnon dispersion. 

Magnon dispersion from Ref. [91], fit with 𝜔Y = 𝜔¬a(1 − cos𝜋𝑘 2𝑘9⁄ ) giving 

𝜔¬a = 	6.9	 × 10�u	𝑟𝑎𝑑/𝑠, 𝑘9 = 1.7× 105	𝑚��, was used in the calculation (Figure 6.7). 

Thermally averaged magnon-magnon scattering rates were calculated using Eq. 2.26 and 

parameters 𝑇n = 	4.2	𝐾, 𝑇h = 0.004K, 𝑆 = 1, 𝑐 = 10	ppm, and the numeric prefactor for 

𝜏���� was increased by 15. Magnon-phonon lifetime was taken to be 

𝜏9F = 	2.5 × 	10�7𝑇�s/u	𝑠.  Other parameters include thickness of platinum film 

𝑡� = 	10 nm, platinum film resistance 𝑅� = 120	Ω, spin diffusion length in platinum 

(value for YIG from Ref. [88]) 𝜆� = 3.7 nm, platinum spin-Hall angle 𝜃IQ = 0.05, 

gyromagnetic ratio 𝛾 = 1.82 × 10��	𝑚/𝐴𝑠 [89], saturation magnetization 4𝜋𝑀M =

1.15 × 10·	𝐴/𝑚, effective spin mixing conductance 𝑔nkk = 	9 × 	10�7	𝑚�u, and magnon 

lifetime of k = 0 magnons 𝜏4 = 6.6 × 10���𝑠. 

6.4.3 Comparison with Magnon Thermal Conductivity 

Figure 6.8 shows temperature dependencies of spin Seebeck coefficient in the FP 

phase and magnon thermal conductivity of the 𝑙4 = 0.6	𝑚𝑚 sample from Figure 5.6, 

separated from the lattice following the procedure outlined in Section 5.2.4. The two 
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closely correlate, suggesting that thermal magnons and magnons responsible for the 

pumping of spin current into the platinum film are of similar energy scale, thus providing 

evidence for thermal magnon origin of spin Seebeck effect in Cu2OSeO3.  

 
Figure 6.8. Field dependence of 𝑆7IIJ  (orange circles) correlated against magnon 

thermal conductivity of sample #1 (blue circles). 

6.4.4 Magnon Diffusion Length 

 
Figure 6.9. Magnon diffusion length vs temperature. 
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We have calculated the temperature dependence of magnon diffusion length 𝑙9 (Eq. 

2.36) using thermally averaged magnon lifetimes. The results displayed in Figure 6.9 show 

that at 2 K 𝑙9 ≈ 3.5	𝜇𝑚, compared to ~10	𝜇𝑚 for YIG [90]. Though unlikely to be probed 

by thickness dependent measurements similar to Ref. [93], measurements of non-local spin 

Seebeck effect might provide additional information about relevant length scales. 

6.5 Outlook 

In this chapter we presented experimental evidence establishing the presence of 

spin Seebeck effect in Cu2OSeO3. The unique measurement setup we employed allowed 

us to gain a lot of insight into the correlations between thermal magnon transport and 

thermal spin currents responsible for LSSE. More detailed analysis of temperature 

dependence based on spectral dependencies of magnon-magnon and magnon phonon 

interactions [94],[95] could contribute to the current discussion of the role of subthermal 

magnons in spin Seebeck effect [96]-[98]. Although the scope of this work was limited to 

only one relative orientation of heat flow and magnetic field, our thermal conductivity 

measurements suggest that further studies of LSSE in other directions will be informative. 

In addition, exploration of spin Seebeck effect in Cu2OSeO3 in the two skyrmion phases 

can provide great insight into skyrmion spin transport and its interactions with thermally 

generated spin excitations and phonons.
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