
University of Miami
Scholarly Repository

Open Access Dissertations Electronic Theses and Dissertations

2012-05-03

Data Analysis and Double Pulse Detection for the
MARE Experiment
Jonathan D. Armstrong
University of Miami, j.armstrong3@umiami.edu

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Armstrong, Jonathan D., "Data Analysis and Double Pulse Detection for the MARE Experiment" (2012). Open Access Dissertations.
766.
https://scholarlyrepository.miami.edu/oa_dissertations/766

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_dissertations/766?utm_source=scholarlyrepository.miami.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

UNIVERSITY OF MIAMI

DATA ANALYSIS AND DOUBLE PULSE DETECTION FOR THE MARE
EXPERIMENT

By

Jonathan D. Armstrong

A DISSERTATION

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Coral Gables, Florida

May 2012

©2012
Jonathan D. Armstrong

All Rights Reserved

UNIVERSITY OF MIAMI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

DATA ANALYSIS AND DOUBLE PULSE DETECTION FOR THE MARE
EXPERIMENT

Jonathan D. Armstrong

Approved:

________________ _________________
Massimiliano Galeazzi, Ph.D. Terri A. Scandura, Ph.D.
Professor of Physics Dean of the Graduate School

________________ _________________
Joshua Gundersen, Ph.D. Thomas Curtright, Ph.D.
Professor of Physics Professor of Physics

Tarek Saab, Ph.D.
Professor of Physics
University of Florida

ARMSTRONG, JONATHAN D. (Ph.D., Physics)

Data Analysis and Double Pulse Detection (May 2012)
For the MARE Experiment

Abstract of a dissertation at the University of Miami.

Dissertation supervised by Professor Massimiliano Galeazzi.
No. of pages in text. (162)

With their existence first proposed in 1930, neutrinos have subsequently proven

themselves as experts at avoiding detection. Until early this century, it was not even

known if neutrinos were massive particles. With the results of neutrino oscillation

experiments such as Super-Kamiokande and SNO, we now know that neutrinos have a

non-zero mass. However, these experiments are only sensitive to the difference of the

square of neutrino mass eigenstates and do not provide sufficient information to resolve

the neutrino mass hierarchy. Several complimentary methods are being explored to

obtain an absolute mass scale, but the most promising model-independent approach is

high precision spectroscopy of the 𝛽-spectrum endpoint (Q-value). In general, all energy

from the decay is detected except for that of the neutrino, which results in a correction

near the endpoint of the spectrum that is related to the neutrino rest mass. To detect this

difference requires excellent energy resolution. This may be obtained by utilizing a

scalable approach consisting of microcalorimeter arrays with the 𝛽-decay source

embedded in the absorber. Two such experiments, Troitsk and Mainz have been able to

set an upper limit of 2.3 eV on the neutrino mass, but higher precision is needed. MARE

(Microcalorimeter Arrays for a Rhenium Experiment) is the successor to these

experiments and plans to obtain resolution in the sub-eV range.

Using an analysis program developed at the University of Miami, we have been able

to verify the creation of holmium-163 which has a higher activity than rehenium-187. A

landmark in the MARE project, this higher activity can provide better statistics and

reduces the live time and array size requirements for a given sensitivity. One of the

primary limits on the sensitivity of the MARE project, related to the source activity, is the

pile-up spectrum, which is the result of unresolved double pulses. We have developed a

platform to explore the efficiency of different algorithms at detecting these difficult to

resolve double pulses. Using this platform, we characterize the efficiency of two different

algorithms (one of which we developed for this exact purpose). The resulting analysis

demonstrates that it is possible to remove a significant fraction of these events with

minimal false positives. By utilizing these algorithms, MARE will be able to achieve

improved sensitivity yielding a higher precision neutrino mass value.

iii

To my family and loved ones

iv

Acknowledgements

 I would like to thank everyone who made it possible for me to pursue my passions

in physics and to ultimately complete my Ph.D. at the University of Miami.

 My advisor, Dr. Galeazzi, has guided my research since my undergraduate work

at the University of Miami. From his patience and time grew my understanding.

I would never be where I am right now without the superhuman love and support

I received from my parents. Thank you for the piano lessons, the origami paper, the

fencing lessons, the countless hours invested in my education, and everything else that

has made me the well-rounded, well-adjusted, and happy person I am today.

Thanks to my soon to be wife, Riesa and her family for taking me in with open

arms and for all the love they have given me. My life is so much happier and richer

because of them.

v

TABLE OF CONTENTS

List of Figures ... viii

List of Tables.. xi

1 Introduction to Neutrinos and Their Detection ... 1

1.1 First Detection ... 1

1.2 Neutrino Flavors and the Standard Model ... 2

1.3 Sources of Neutrino Radiation ... 4

1.4 Neutrino Interactions .. 6

1.5 The Solar Neutrino Problem and Neutrino Oscillations 8

1.6 Experimental Verification of Neutrino Oscillation .. 12

2 Absolute Neutrino Mass Experiments ... 15

2.1 Overview ... 15

2.2 Cosmological Methods ... 16

2.3 Measurement of the Neutrinoless Double Beta Decay 17

2.4 Measurement of the 𝛽/EC Endpoint ... 19

3 Microcalorimeters Array for a Rhenium Experiment .. 22

3.1 Background .. 22

3.2 Microcalorimeters .. 22

vi

3.3 MARE Systematic Limitations ... 26

3.4 Rhenium-187 ... 28

3.5 Holmium-163 ... 32

4 Analysis Program .. 36

4.1.1 Extracting Pulse Energy .. 36

4.1.2 Optimum Filter ... 37

4.1.3 Optimum Filter in Practice .. 39

4.2.1 Analysis Program (FITSFILTER) .. 40

4.2.2 Preprocessing .. 41

4.2.3 Threshold Selection (Setting Limits) .. 46

4.2.4 Sweep Classification .. 51

4.2.5 Double Pulse Analysis ... 52

4.2.6 Creation of the Optimum Filter/Energy Extraction 54

4.2.7 Energy Spectrum Corrections .. 54

4.2.8 Energy Spectrum ... 56

5 Verification of Holmium Source .. 57

5.1 Background .. 57

5.2 Holmium Data Analysis ... 58

6 Double Pulse Detection ... 64

6.1 Background .. 64

6.2.1 Initial Results .. 68

6.2.2 Experimental Setup .. 71

vii

6.2.3 Standard (XQC) Algorithm .. 73

6.2.4 Optimum Filter (OF) Algorithm ... 76

6.2.5 Results ... 80

6.3.1 Current Results, Experimental Setup ... 83

6.3.2 Optimum Filter Modifications .. 84

6.3.3 Updated Algorithms ... 91

6.3.4 Results, Effects of Double Pulse Contamination 94

6.3.5 Results: Effects of Detector Non-linearity 97

6.3.6 Results: Combining Both Algorithms ... 100

6.4 Summary .. 102

Appendix

A. FITS File Details .. 103

B. FITSFILTER, Technical Details ... 121

C. Contour Plots from Analysis of Chapter 6 .. 141

References .. 161

viii

List of Figures

1.1 Standard model .. 3

1.2 Neutrino mass hierarchy .. 12

2.1 0𝜐𝛽𝛽 expected spectrum .. 19

3.1 Microcalorimeter model ... 23

3.2 Microcalorimeter readout and response .. 25

3.3 MARE rhenium track analytic sensitivity ... 31

3.4 MARE holmium track roadmap ... 32

3.5 Theoretical 163Ho EC-spectrum ... 33

3.6 MARE holmium track analytic sensitivity ... 35

4.1 Optimum filter ... 38

4.2 Pulse regions.. 41

4.3 Pre-trigger region and pulse energy .. 42

4.4 Rise-time region .. 43

4.5 Pulse max, min, and raw energy ... 45

4.6 Noise limit ... 47

4.7 Pre-trigger voltage limit ... 48

4.8 Pre-trigger variation limit ... 49

4.9 Software trigger channel limit .. 50

4.10 Scatter plot ... 51

4.11 Sample double pulse .. 52

4.12 Algorithm example .. 53

4.13 Energy corrections ... 55

ix

5.1 Holmium-163 analysis, regions of interest ... 58

5.2 Regions 1 and 2 sample pulse .. 60

5.3 Regions 3 and 4 sample pulse .. 61

5.4 Holmium-163 analysis, region 2 closeup .. 62

5.5 Holmium-163 verification .. 63

6.1 Pileup simulations .. 65

6.2 Pileup PDF examples ... 67

6.3 Pileup CDF examples .. 68

6.4 Detector nonlinearity ... 70

6.5 Standard algorithm... 75

6.6 Optimum filter algorithm ... 79

6.7 Optimum filter algorithm cont. .. 80

6.8 2 µs contour plots .. 81

6.9 1 µs contour plots .. 82

6.10 Optimum filter improvement determination ... 85

6.11 Trigger channel spread ... 87

6.12 Optimum filter template and pileup spread ... 88

6.13 Optimum filter distribution sample... 90

6.14 Double pulse contamination – 5 eV .. 95

6.15 Double pulse contamination – 2 eV .. 96

6.16 Nonlinear detector effects on efficiency ... 98

6.17 Nonlinear detector effects on false positives ... 99

6.18 Combined algorithm efficiency and false positive .. 101

x

(Appendix C contour plots)

C.1 Clean sets at 1µs pulse separation with 5 eV energy resolution 143

C.2 Clean sets at 2µs pulse separation with 5 eV energy resolution 144

C.3 Clean sets at 5µs pulse separation with 5 eV energy resolution 145

C.4 Dirty sets at 1µs pulse separation with 5 eV energy resolution 146

C.5 Dirty sets at 2µs pulse separation with 5 eV energy resolution 147

C.6 Dirty sets at 5µs pulse separation with 5 eV energy resolution 148

C.7 Clean sets at 1µs pulse separation with 2 eV energy resolution 149

C.8 Clean sets at 2µs pulse separation with 2 eV energy resolution 150

C.9 Clean sets at 5µs pulse separation with 2 eV energy resolution 151

C.10 Dirty sets at 1µs pulse separation with 2 eV energy resolution 152

C.11 Dirty sets at 2µs pulse separation with 2 eV energy resolution 153

C.12 Dirty sets at 5µs pulse separation with 2 eV energy resolution 154

C.13 Combined, 5 eV energy resolution, 1µs pulse separation 155

C.14 Combined, 5 eV energy resolution, 2µs pulse separation 156

C.15 Combined, 5 eV energy resolution, 5µs pulse separation 157

C.16 Combined, 2 eV energy resolution, 1µs pulse separation 158

C.17 Combined, 2 eV energy resolution, 2µs pulse separation 159

C.18 Combined, 2 eV energy resolution, 5µs pulse separation 160

xi

List of Tables

1.1 Current neutrino mass parameters .. 11

2.1 Isotope half lives and Q-values .. 20

6.1 Double pulse combinations used .. 72

A.1 Sweep file format .. 109

A.2 PUL file format ... 112

A.3 FIL file format .. 118

B.1 FFT accounting ... 126

1

Chapter 1

Introduction to Neutrinos and Their Detections

1.1 First Detection

 The existence of neutrinos was first postulated by Wolfgang Pauli in 1930 in

order to reconcile experimental results with the current model of beta decay. Without

including the neutrino, a single energy peak is expected for the beta spectrum

(proportional to the difference of the masses of the parent and daughter particles).

However, experimental results were in disagreement with this model and demonstrated a

continuous spectrum with energies up to the expected peak. The existence of a new

particle that possesses no charge and that caries energy undetected out of the detector

system was plausible, but it took 20 years until its existence was actually verified. In

1950, Fred Reines and Clyde Cowan took on the challenge and set out to detect neutrinos

in what is now known as the Cowan-Reines neutrino experiment. The detection method

took advantage of the inverse beta decay reaction:

𝑝+ + �̅�𝑒 = 𝑛0 + 𝑒+ (1.1)

where a proton and antineutrino interact to form a neutron and a positron. The positron

quickly reacts with an electron annihilating each other resulting in the detectable release

of two gamma rays.

2

1.2 Neutrino Flavors and the Standard Model

 With the discovery of muons in 1937 ultimately came the discovery of muon

neutrinos via observations of muonic decay. More recently, in 2000, the existence of tau

neutrinos was confirmed by the DONUT (Direct Observation of the NU Tau)

experiment.1 It is generally believed that there are at least three different types of

neutrinos. The three experimentally verified neutrinos are each associated with a charged

lepton and interact via the weak nuclear force. It is possible that there are additional

neutrino flavors that are not coupled to any charged leptons. These are known as sterile

neutrinos.

In the same sense that we consider atoms to be the building blocks of matter, the

“elements” of the standard model are the building blocks of atoms (as well as the carriers

of force, excluding gravity). The standard model, finalized in the 1960’s, has been proven

to be an invaluable tool for particle physicists. Many of the particles were initially

theoretical and were only later experimentally verified, with The Higgs boson as the last

remaining unverified element.

3

(Fig. 1.1) Standard model elementary particles and gauge bosons.

The standard model consists of groupings of fermions and bosons along with their

respective antiparticles (some of which are their own antiparticle). The fermions are

grouped into three columns, with the first column representing the first generation etc.

Higher generations (the second and third) are unstable except in very high energy

environments and rapidly decay into their first generational counterparts. Neutrinos are

the exception to this. As a result, most of the matter we are familiar with is some

combination of first generation fermions. The fermions can further be divided into

generational pairs, or doublets, whose absolute total charge difference is equivalent to the

absolute charge of an electron. For the quark pairs (𝑢, 𝑑), (𝑐, 𝑠), and (𝑡, 𝑏), the first

element possesses fractional charge 2/3 and the second element possesses fractional

charge −1/3. With the possible exception of very high energy environments (early big

bang) quarks do not exist independently, but rather are bound together in composite

structures (baryons corresponding to three quark combinations, and mesons

corresponding to quark-antiquark pairs). For example, the neutron consists of one up and

4

two down quarks (𝑢𝑑𝑑) and thus has zero net charge and a proton consists of two up and

one down quarks (𝑢𝑢𝑑) and has a net charge of 1. For the lepton pairs (𝜈𝑒 , 𝑒), (𝜈𝜇 , 𝜇),

and (𝜈𝜏 , 𝜏) the first element is a neutrino and has no charge, and the second elements is

the associated charged lepton. Each generation of leptons can be referred to by their

flavor, designated by the name of the associated charged particle. For example, the

second generation neutrino has muon flavor.

The bosons are the force carriers for the electromagnetic, strong, and week force.

If two given fermions can interact via a certain boson, then their interactions are

characterized by the associated force. For example, fermions that interact via exchange of

photons are interacting electromagnetically. In the case of neutrinos, the Z and W bosons,

collectively mediating the electroweak force, are of interest. More specifically we want to

know the types of interactions that produce neutrinos and the ways in which the resulting

neutrinos can interact and thus be detected.

1.3 Sources of Neutrino Radiation

• Electron Neutrino (𝝂𝒆)

 Electron neutrinos can be produced from nuclear reactions such as β-decay or

electron capture. β-decay can further be divided into 𝛽− and 𝛽+-decay. In a fundamental

sense, 𝛽−-decay is the decay of a down quark to an up quark:

𝑑(𝑑𝑢) → 𝑢(𝑑𝑢) + 𝑊−; (1.2)

𝑊− → 𝑒− + �̅�𝑒 . (1.3)

5

The neutron (𝑑𝑑𝑢) decays into a proton (𝑢𝑑𝑢) and emits a 𝑊− boson. The emitted 𝑊−

boson quickly decays into an electron and an anti-electron neutrino pair. This reaction

occurs naturally for radioactive elements.

The 𝛽+-decay on the other hand requires energy input to convert a proton to a

neutron:

𝑢(𝑑𝑢) + 𝐸𝑛𝑒𝑟𝑔𝑦 → 𝑑(𝑢𝑑) + 𝑊+; (1.4)

𝑊+ → 𝑒+ + 𝜈𝑒 . (1.5)

Again, the emitted 𝑊+ boson (now with positive unit charge) decays into a particle

antiparticle lepton pair such that electrical charge is conserved.

The electron capture reaction occurs for proton rich elements and is the result of

an inner core proton absorbing an inner core electron. Again, this reaction is mediated by

a W boson and has two interpretations that are equally valid depending on whether the

proton or the electron emits the W boson. The net effect is:

𝑢(𝑑𝑢) + 𝑒− → 𝑑(𝑑𝑢) + 𝜈𝑒. (1.6)

• Muon Neutrino (𝝂𝝁)

 Muons are not naturally created by nuclear processes because the energy required

to produce one is insufficient. They may however be formed as the result of high energy

cosmic radiation colliding with atmospheric particles (or similarly in a particle

accelerator). The resulting particle shower is known as atmospheric radiation. As stated

previously, fermions in the second generation are unstable and ultimately decay in first

6

generation particles. There are various possible decay modes, but the most probable result

is the emission of neutrinos (depending on the muon’s charge):

𝜇− → 𝜈𝜇 + 𝑊− → 𝜈𝜇 + 𝑒− + �̅�𝑒; (1.7)

𝜇+ → �̅�𝜇 + 𝑊+ → �̅�𝜇 + 𝑒+ + 𝜈𝑒 . (1.8)

• Tau Neutrino (𝝂𝝉)

 Similar to the case of the muon neutrino, the tau neutrino is the result of a tau

particle decay. These particles require even more energy than what is required to produce

a muon and as a result have many available decay modes, some of which produce tau

neutrinos (as well as the other two types). Unique to the charged leptons, tau particles

have sufficient energy that they may occasionally decay into a hadron (composite quark

particle). We are not too concerned with the specific modes of decay resulting in tau

neutrinos and will consider it sufficient to note that they are the result of the tau particle

decay.

1.4 Neutrino Interactions

 Understanding neutrino interactions is important because they ultimately provide

us with potential detection channels. Neutrinos possess no charge, are massive (as we

will show soon) but very light, and only interact via the weak nuclear force. Because of

this, they are extremely difficult to detect and tend to require massive detectors with long

live-times. We are restricted to observing them through interactions that ultimately result

7

in a detectable charged particle or the nuclear metamorphosis of elements. These can be

divided into two types of reactions which are (1) the result of electron scattering, and (2)

the result of nucleon absorption.

 Electron scattering is mediated by the electroweak bosons (W & Z), but the net

effect is an exchange of momentum between the neutrino and an electron previously

bound to a molecule/atom. This exchange is possible between any of the three neutrinos

(and their antiparticles), but more likely for the electron flavor. In the case of an electron

neutrino, the reaction is simply written as:

𝑒− + 𝜈𝑒 → 𝑒− + 𝜈𝑒 . (1.9)

The newly freed electrons tend to have relativistic velocities, which when properly taken

advantage of, allows detection.

 There are different ways a nucleon may absorb a neutrino, some of which

completely absorb the neutrino while the others re-emit it, known respectively as a

charged current interaction (CC) or a neutral current interaction (NC). CC interactions

are mediated by the charged W boson and have different energy thresholds depending on

which flavor of neutrino is involved. One potential reaction may be written as:

𝜈𝛼 + 𝑑(𝑑𝑢) → 𝑢(𝑑𝑢) + 𝑙𝛼, (1.10)

where 𝛼 = {𝑒,𝜇, 𝜏} and 𝑙𝛼 is the associated charged lepton. In most cases, the emitted

lepton has insufficient energy to produce radiation, but for a sufficiently pure medium,

the modified elements may be counted in order to determine the integral neutrino flux

that occurred over the detector live-time. Another potential reaction, involving only

electron neutrinos, is the CC inverse beta decay:

𝑝+ + �̅�𝑒 → 𝑛0 + 𝑒+. (1.11)

8

By taking advantage of reactions involving one or both of the resulting daughter particles,

the electron neutrino may be detected

NC reactions are coupled with the electrically neutral Z boson and only involve

an energy transfer from the neutrino to the nucleon. This reaction takes place at the same

rate regardless of neutrino flavor. In the case of a heavy water nucleus (deutron), this

interaction breaks up the nucleon into its constituent proton and neutron:

𝜈𝛼 + 𝐷 → 𝑝+ + 𝑛0 + 𝜈𝛼, (1.12)

with the same convention as above and with 𝐷 representing the heavy water nucleus.

1.5 The Solar Neutrino Problem and Neutrino Oscillations

 In the 1960’s, the science of detecting neutrinos had advanced to the point where

detectors were able to resolve neutrinos emitted from the solar core. Results showed

neutrino fluxes that were one third to one half of what was expected based on calculation

using the standard solar model. This discrepancy between theory and experimental results

is known as the solar neutrino problem. Its resolution required revision of our

understanding of neutrinos or of the solar model (or possibly both)! At the time, the

physics of solar processes was much better understood than that of neutrinos and it was

ultimately shown through experimentation that it was our understanding of neutrinos that

was incomplete (and still is). The solution to the solar neutrino problem lies in a

phenomenon known as flavor oscillations.

 Simply stated, neutrino flavor oscillations refer to the ability of neutrinos emitted

as one flavor to be detected as another. This is a purely quantum mechanical effect that

9

results from the flavor eigenstates (𝜈𝑒 , 𝜈𝜇, 𝜈𝜏) not directly coinciding with the mass

eigenstates (𝜈1, 𝜈2, 𝜈3). This only occurs if neutrinos are massive (have a nonzero mass).

Each flavor eigenstate can be represented as a linear combination of the different mass

eigenstates resulting in a 3 × 3 unitary matrix. The probability of a neutrino emitted as

one flavor and being detected as another flavor is of particular interest. The calculation of

this probability for neutrinos traveling in a vacuum is outlined in the paper, “Neutrino

Mass, Mixing and Flavor Change”,2 and yields the result:

𝑃�𝜈𝛼 → 𝜈𝛽� = 𝛿𝛼𝛽 − 4∑ ℛ�𝑈𝛼𝑖∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗∗ � sin2 �1.27∆𝑚𝑖𝑗
2 �𝐿

𝐸
��𝑖>𝑗 +

2∑ ℐ�𝑈𝛼𝑖∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗∗ � sin2 �2.54∆𝑚𝑖𝑗
2 �𝐿

𝐸
��𝑖>𝑗 ,

(1.13)

where ∆𝑚𝑖𝑗
2 ≡ 𝑚𝑖

2 − 𝑚𝑗
2 is in 𝑒𝑉2; 𝐿, the distance the neutrino traveled from emission to

detection (in the lab frame) is in 𝑘𝑚; 𝐸, the energy of the neutrino (in the lab frame) is in

and 𝐺𝑒𝑉; ℛ(∗) and ℐ(∗) are the real and imaginary functions respectively; and 𝑈𝛼𝑖 is an

element from the 3 × 3 mixing matrix mentioned above. The most important aspects of

eq. 1.13 to note are its dependence on the distance traveled, its energy, the difference of

the squares of its masses, and the mixing matrix. All of these dependencies must be

considered when calculating the expected neutrino flux. In particular, if a detector is only

sensitive to electron neutrinos, it will miss any neutrinos that have decayed to other

flavors. This result must further be modified to account for neutrinos traveling through

dense matter (such as the solar core). In this regime, the oscillation probabilities are

altered by what is known as the Mikheyev-Smirnov-Wolfenstein effect and is the result

of coherent scattering of the neutrinos.2 Taken together these effects would later explain

the observed flux deficit.

 The 3 × 3 flavor mixing matrix is typically parameterized as follows:

10

𝑈 = �
𝐶12𝐶13 𝑆12𝐶13 𝑆13𝑒−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿 𝑠12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 𝑐12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 𝑐23𝑐13

� ×

�
1 0 0
0 𝑒𝑖∅1 0
0 0 𝑒𝑖∅2

�,

(1.14)

where 𝑐𝑖𝑗 and 𝑠𝑖𝑗 represent sin (𝜃𝑖𝑗) and cos(𝜃𝑖𝑗) respectively for the mixing angles

between the mas eigenstates of the same index and the rows and columns represent the

neutrino flavor and mass eigenstates respectively. The three complex phases are related

to CP-violation and do not affect neutrino oscillations.

 In cases where one flavor transition dominates, it is possible to simplify the

situation to oscillations between one neutrino flavor eigenstate and a quasi-two-neutrino

(a linear combination of the remaining two flavor eigenstates). The resulting mixing

matrix (ignoring irrelevant phase factors), becomes:

� cos (𝜃) sin (𝜃)
−cos (𝜃) cos (𝜃)�. (1.15)

In this regime, the analog of equation 1.13 gives:

𝑃�𝜈𝛼 → 𝜈𝛽� = sin2(2𝜃) sin2 [1.27∆𝑚2(𝐿/𝐸)] (1.16)

With 𝛽 ≠ 𝛼, and

𝑃(𝜈𝛼 → 𝜈𝛼) = 1 − sin2(2𝜃) sin2 [1.27∆𝑚2(𝐿/𝐸)] (1.17)

with the same conventions as used in eq. 1.13. Many neutrino experiments are

parameterized in this way. In the case of atmospheric neutrino oscillations experiments,

𝑃�𝜈𝜇 → 𝜈𝑒� (based on null results from short baseline neutrino reactor experiments)2 is

very small so that the quasi-two-neutrino is approximately a tau neutrino. Thus, these

experiments try to obtain values for 𝜃𝑎𝑡𝑚 = 𝜃23 and ∆𝑚𝑎𝑡𝑚
2 = ∆𝑚32

2 . In the case of solar

11

neutrinos, we are mainly concerned with the probability of an electron neutrino

oscillating to a different flavor. The quasi-two-neutrino in this case is a linear

combination of tau and muon neutrinos. These experiments try to obtain values for

𝜃⊙ = 𝜃13 and ∆𝑚⊙
2 = ∆𝑚31

2 . Currently, the most accurate results for these parameters

are given in the following table:

sin2(2𝜃12) = 0.861−0.022
+0.026 ∆𝑚21

2 = (7.59 ± 0.21) × 10−5𝑒𝑉2

sin2(2𝜃23) > 0.92 |∆𝑚32
2 | = (2.43 ± 0.13) × 10−3𝑒𝑉2

sin2(2𝜃13) < 0.15 (𝐶. 𝐿 90%) ∆𝑚31
2 = ?

(Table 1.1)3 Summary of current neutrino parameter values.

 Until the neutrino mass eigenstates are resolved, there remains ambiguity as to

their relative hierarchy. Based on our current knowledge of neutrinos, there remain three

possibilities. If the mean mass of 𝜐1 and 𝜐2 (associated with solar neutrinos) is less than

that of t 𝜐3 (associated with atmospheric neutrinos), then the spectrum is said to be

“normal”, otherwise its hierarchy is “inverted” (see fig. 1.3). An additional possibility,

known as the degenerate hierarchy occurs when the mass states are approximately equal.

12

(Fig 1.2)4 The neutrino flavor density of the normal and inverted hierarchy for the
neutrino mass states (assuming conservation of CPT).

1.6 Experimental Verification of Neutrino Oscillation

 The first experimental validation of neutrino oscillations (and thus massive

neutrinos) came in 1998 from the Super-Kamiokande collaboration in Japan. This

experiment was directionally sensitive to muon flux from atmospheric radiation. To a

reasonable approximation, the atmospheric neutrino flux is homogeneous. The angle

relative to the zenith was divided into bins based on the cosine of this angle. After

analyzing the data resulting from 537 detector live days, a muon neutrino flux deficit was

found for upwards traveling neutrinos (through the bulk of Earth). These neutrinos

traveled a sufficient distance to allow the effects of neutrino oscillations to take place

which resulted in the flux deficit.5

13

The most convincing evidence for neutrino oscillations came from the Sudbury

Neutrino Observatory (SNO) in Canada. Similar to other neutrino detectors, SNO

consisted of a large tank buried deep underground, but varied in its use of heavy water

(deuterium) as the detection medium. By taking advantage of neutrino scattering

interactions, SNO was capable of detecting the three neutrino flavors. Elastic scattering

reactions of neutrinos with water/deuterium may produce Cherenkov radiation (as with

Super-Kamiokande) whose angular distribution is peaked in the direction of the incident

neutrino. Further, the use of deuterium provided two more interactions to detect

neutrons: neutral current (NC) and charged current (CC) interactions. NC interactions are

the result of a neutrino separating a deuterium nucleus (deuteron) into its constituent

proton and neutron. The NC reaction produces a neutron and is not sensitive to direction

and may be the result of any of the three neutrino flavors. Detection occurs through the

absorption of the free neutron which results in a gamma ray that generates Cherenkov

radiation via Compton scattering. CC interactions are the result of interactions between

an electron neutrino and a deuteron and transform a neutron into a proton emitting an

electron that may be detected. By combining the three detection methods with statistical

analysis, SNO was able to detect all three neutrino flavors and demonstrated that the

deficit of electron neutrino flux was complimented by muon and tau electron flux.

 Following these experiments, it became very well accepted that neutrinos are

massive particles. However, neutrino oscillation experiments are only sensitive to the

difference of neutrino masses squared and thus don’t give any information on actual mass

of a given neutrino mass state. In order to achieve such results, a new type of approach is

14

needed. In the next chapter, we explore various methods and ultimately lead into the

MARE experiment which provides a direct, model independent approach.

15

Chapter 2

Absolute Neutrino Mass Experiments

2.1 Overview

 Experiments such as Super-Kamiokande and SNO have provided evidence for

massive neutrinos via verification of neutrino oscillations. Even though these

experiments yield valuable insight into neutrino physics they are only sensitive to the

difference of the square of neutrino mass eigenstates. To obtain measurements of the

absolute mass of neutrinos, a completely different approach is required. Promising

possibilities for obtaining sub-eV resolution of the neutrino mass exist in several forms,

each with their own pros and cons and fall into three categories:

• Cosmological methods

• Measurements on the neutrinoless double 𝛽-decay: 0𝜐𝛽𝛽

• Measurement of the 𝛽/EC endpoint

In this chapter we briefly describe all three methods with emphasis on the last, which my

research falls under.

16

2.2 Cosmological Methods

Cosmological methods for obtaining an absolute scale on the neutrino mass

involve comparing cosmic microwave background data sets (Planck, WMAP, etc.) and

galaxy surveys with models that are sensitive to neutrino densities. Such analysis is

capable of placing a limit on the neutrino mass. More specifically, this method is not

sensitive to neutrino flavor and only places a limit on the sum of neutrino masses:

𝑚𝑡𝑜𝑡 = �𝑚𝑖

𝑁

𝑖

(2.1)

where the sum over N allows for the possibility of sterile neutrinos. The current results

obtained from such methods are however sensitive to model assumptions. Different

assumptions can lead to results that vary by factors of 2 and 4!6,7 With this in mind, the

limit of 𝑚𝑡𝑜𝑡 < 2.5𝑒𝑉 (95% confidence) was obtained using constraints set by the CMB

and 2Df galaxy survey along with several other large scale astrophysical data sets.6 As

our understanding of the early universe improves and we obtain improved data, so will

this limit. However other means for determining the absolute scale of the neutrino mass

exist and are currently being explored.

17

2.3 Measurement of the Neutrinoless Double Beta Decay

 In general there are many double 𝛽-decay modes possible, but the

existence of a neutrinoless double beta decay (0𝜐𝛽𝛽) is still somewhat uncertain though

controversially suggested by results from the Heidelberg-Moscow experiment.8 The

0𝜐𝛽𝛽 reaction:

𝑁(𝐴,𝑍) → 𝑁(𝐴 + 2,𝑍 − 2) + 2𝑒− (2.2)

requires that neutrinos are their own antiparticle (Majorana as opposed to Dirac). The

related double 𝛽-decay (2𝜐𝛽𝛽) has been experimentally verified and only differs by the

additional emissions of two neutrinos:

𝑁(𝐴,𝑍) → 𝑁(𝐴 + 2,𝑍 − 2) + 2𝑒− + 2�̅�𝑒 (2.3)

 Assuming the 0𝜐𝛽𝛽 exists, the absolute value of the neutrino mass states is related to the

half life of elements that undergo such decay. The half life of 0𝜐𝛽𝛽 can be very large, on

the order of 1025 years9 requiring large amounts of ultra pure source material with very

high resolution detectors and excellent understanding of systematics. As with

cosmological methods, the neutrino mass obtained from 0𝜐𝛽𝛽 experiments is a sum of

the mass eigenstates. In this case, the sum is weighted with elements from the 3 × 3

neutrino mixing matrix (often referred to as the Pontecorvo–Maki–Nakagawa–Sakata

matrix or PMNS matrix for short). The resulting value is known as the effective

Majorana mass and is described by the equation:

18

𝑚𝛽𝛽 = ��𝑈𝑒𝑖2 𝑚𝑖

3

𝑖=1

�
(2.4)

where 𝑈𝑒𝑖 represents elements from the PMNS matrix. Due to the weighing of each mass

term by 𝑈𝑒𝑖2 (more specifically from the CP phases), there is the possibility of cancelation

which introduces model dependency into the results.

 The half life of a potential 0𝜐𝛽𝛽 source is proportional to the effective

Majorana mass described above:

𝑇1/2
0𝜐 ∝

1

�𝑚𝛽𝛽�
2

(2.5)

where the constant of proportionality depends on a phase space factor and the nuclear

matrix element, with the latter introducing additional model dependence. In order to

obtain this half life, a calorimetric measurement may be performed with the resulting

energy spectrum yielding a continuous 2𝜐𝛽𝛽 spectrum and a peak from the 0𝜐𝛽𝛽

reaction, whose width would only depend on the energy resolution (fig. 2.1). By counting

events in the 0𝜐𝛽𝛽 peak, it is possible to then determine the half life of the source and

thus perform a measurement on the effective Majorana mass. A successful experiment

would not only allow determination of the neutrino mass hierarchy but would also verify

the existence of the 0𝜐𝛽𝛽.

19

(Fig. 2.1)2I Representation of the 0𝜐𝛽𝛽 energy spectrum (right spike) and the 2𝜐𝛽𝛽
energy which has the same form as eq. 2.2 but with an additional two anti-electron
neutrinos emitted.

2.4 Measurement of the 𝜷/EC Endpoint

 This class of experiments attempts to resolve the effects of massive neutrinos near

the Q-value (end point) of the 𝛽/EC-spectrum. Emitted neutrinos are easily able to escape

detector systems removing energy in the process. The effect this has on the observed 𝛽-

spectrum is that the end point of the energy spectrum is shifted by an amount related to

the rest mass of neutrinos given as:

𝑚𝜈𝑒
2 = �|𝑈𝑒𝑖 |2𝑚𝑖

2
3

𝑖=1

(2.6)

20

In this case, there is no possibility for cancellation of mass terms in the sum. This means

that experiments measuring 𝑚𝜈𝑒
2 through high precision spectroscopy are capable of

determining the neutrino mass scale in a model independent way.

 For such experiments, it is obviously desirable to measure the 𝛽-spectrum of a

source with a high relative count rate near the Q-value. It turns out that the count rate in

this area is proportional to the inverse cube of the endpoint energy. Three different

isotopes are particularly favorable due to their very low endpoint energies: tritium (𝐻 3),

rhenium (𝑅𝑒
187), and holmium (𝐻𝑜

163). Their respective half-lives and Q-values are

listed in table 2.1 below.

 Half-life (years) Q-value (keV)
tritium (𝑯 𝟑) 12.23 18.6
rhenium (𝑹𝒆

𝟏𝟖𝟕) 4.5×109 2.48
holmium (𝑯𝒐

𝟏𝟔𝟑) 4570 2.2-2.8

(Table 2.1) half-life and Q-value for endpoint measurement candidates.

 Tritium, with the highest decay rate was the first of the isotopes explored for

neutrino mass experiments, lends itself to large scale detectors that are spatially separated

from the source. Initial experiments suffered from significant systematic error due to

interaction with the radiation before detection. After the systematics involved were better

understood, two experiments, Troitsk and Mainz, were able to set an upper limit on the

neutrino mass of 2.3 eV.10,11 The successor to these experiments, KATRIN (Karlsruhe

Tritium Neutrino experiment), plans to achieve sub-eV resolution of the neutrino mass at

around 0.2 eV after three years of detector live-time. The approaches used for these

experiments impose strict scaling laws for which KATRIN is the limit. This means that if

21

the neutrino mass (eq. 2.6) is below the resulting sensitivity achieved by KATRIN, only

an upper limit will be obtained.

 Due to their comparatively lower activity, the remaining two isotopes lend

themselves to a different type of setup with the source embedded in the detector. This

removes the systematic error problems that tritium experiments must contend with. The

typical setup relies on arrays of detectors which allow for scalability of experiments. The

feasibility of using Rhenium has already been demonstrated by the MANU and MIBETA

experiments which were able to obtain an upper limit on the neutrino mass of about 15

eV.12, 13 The successor to these experiments is MARE, which will be discussed in the next

chapter.

22

Chapter 3

Microcalorimeters Arrays for a Rhenium Experiment (MARE)

3.1 Background

 The goal of MARE (Microcalorimeter Arrays for a Rhenium Experiment) is to

resolve the perturbation of the 𝛽/EC endpoint caused by massive neutrinos in order to

obtain the effective mass of the electron anti-neutrino and resolve the neutrino hierarchy.

This experiment varies dramatically from KATRIN in its systematics but plans to achieve

a similar sensitivity (around .2 eV) by using detector arrays with embedded sources. The

use of detector arrays provides the scalability while the embedded source removes the

spatial separation and that was the source of systematic errors in KATRIN. Despite the

acronym, both holmium and rhenium isotopes are candidates for this experiment and

possess different pros and cons. The feasibility of MARE is currently being explored.

Once the feasibility is sufficiently demonstrated the actual experiment will begin.

3.2 Microcalorimeters

 Microcalorimeters are a type of detector that take advantage of the first law of

thermodynamics, using heat as a means of measuring the energy of radiation. The theory

23

of “ideal” microcalorimeters was developed in 1984 by Mosley, Mather, and

McCammon14 and updated in 2003 by Galeazzi and McCammon to include non-ideal

effects.15 Microcalorimeters are able to obtain the energy of a single event with very high

resolution. Because of this and their scalable nature, microcalorimeters have been chosen

for the MARE project. The basic model of a calorimeter is simple and consists of three

main components: an absorber, a thermometer, and a heat sink (fig. 3.1). The role of the

absorber, as implied by its name, is to absorb incident electromagnetic radiation (and

other associated forms of energy for imbedded sources) and to convert it to thermal

energy where the resulting change in temperature is proportional to the energy of the

radiation. This temperature change is observed via a thermometer. The weak thermal link

provides a means to dissipate the energy allowing the system to return to equilibrium.

(Fig. 3.1) Schematic representation of a calorimeter. Note that in the case of MARE, the
source is embedded in the absorber.

Despite its apparent simplicity, in practice much care must be taken with the development

of a microcalorimeter. When considering detection of single electron or x-ray (or any

24

other charged particle radiation) the thermal noise of the system must be very low. In

order to achieve this, the detector must be maintained at a temperature in the 100 µK

temperature range. By examining the well known relationship:

𝑄 = 𝐶∆𝑇 (3.1)

we see that in order to maximize the change of temperature for a given energy, the heat

capacity must be very small. This may be achieved by using a small absorber and by

carefully selecting the material used (considering its thermal properties at low

temperatures).

 The term thermometer broadly includes any type of sensor that is sensitive to

changes in temperature. Two potential thermometers for the MARE project are magnetic

and TES (Transition Edge Sensors) microcalorimeters. Magnetic microcalorimeters

incorporate a paramagnet whose magnetization is inversely proportional to temperature.

TES microcalorimeters are detectors biased at a temperature corresponding to the phase

transition between normal and superconducting where the resistance is very sensitive to

small changes in temperature. The unitless sensitivity of a detector is defined as:

𝛼 =
𝑇
𝑅
𝑑𝑅
𝑑𝑇

(3.2)

which is clearly very large in the phase transition region for a TES microcalorimeter.

Typically such detectors are amplified by a SQUID (Superconducting Quantum

Interference Device); a high gain, low noise signal transducer. Similar to the working

principals of a voltmeter or ammeter, the typical detector readout circuit (fig 3.2 - top)

may be voltage or current biased by using a load resistor with a high or low resistance

compared to that of the sensor. The response in both cases (only varying by a y-axis flip)

25

is a sudden change in voltage/current resulting from the absorption of an event followed

by a slow decay back to equilibrium (fig. 3.2 - bottom). This shape is what we call a

“pulse”. The change in voltage/current for a pulse is related to the energy that will need

to be extracted from each pulse (this process is described in the next chapter).

(Fi.g 3.2) Top: tyical readout circuit for a TES sensor (voltage biased with 𝑅𝐿 ≫ 𝑅).
Bottom: Typical response of a current biased detector (𝑅𝐿 ≪ 𝑅, with the current
converted to a voltage by the readout electronics).

26

3.3 MARE Systematic Limitations

In order to show the feasibility of MARE, we need to understand the limits on

detector sensitivity and how to mitigate them. Three primary limiting factors have been

identified and are: energy resolution, pulse pileup, and detector statistics. In this section

these factors are introduced with a more quantitative description given in the next

sections.

• Energy Resolution

The noise of the detector sets the limit on energy resolution for a

microcalorimeter. Detector optimization with considerations for a broad range of noise

sources has been performed, but to first approximation, the Johnson and thermal

(phonon) noise dominate.16 The noise of a detector is parameterized as the noise

equivalent power (NEP), which is the amount of power a detector needs to absorb to

equal the noise output signal. If the NEP for a detector is known, its energy resolution is

given as:

∆𝐸𝑅𝑀𝑆 =
1

�∫ 2𝑑𝜔
𝜋𝑁𝐸𝑃2(𝜔)

∞
0

 (3.3)

which gives:

∆𝐸𝑅𝑀𝑆 ≈ �4𝑘𝐵𝑇2𝐶
𝛼

(3.4)

27

For the Johnson and thermal noise contributions, where 𝑘𝐵 is the Boltzmann constant, 𝑇

is the working temperature of the detector, C is the heat capacitance, and 𝛼 is the detector

sensitivity given in equation 3.2.17 Note eq. 3.4 was derived assuming the optimum filter

described above, is used. Simpler methods for extracting the pulse energy would result in

decreased energy resolution.

• Pulse Pileup

The next limiting factor for MARE is due to the presence of pulses that occur

sufficiently close together that they become unresolvable as separate events. The

resulting shape resembles a single pulse with total energy roughly equal to the sum of its

constituent pulses. The result of this is a false spectrum which is added to the 𝛽/EC

spectrum. This pileup spectrum may be accurately calculated from the actual 𝛽/EC

spectrum, but since these events are rare, there is significant variation in the experimental

spectrum making it difficult to remove directly. Additionally, because of its additive

nature, the pileup spectrum is shifted to higher energies relative to the actual 𝛽/EC

spectrum. These two effects, despite the rarity of unresolvable pileup events, contribute

significantly to decreased sensitivity because of the low statistics achieved near the

endpoint of the spectrum.

The fraction of unresolvable pileup events is related to response time (rise-time)

of the detector. This time, in principal, is due to the time lag caused by the rate of heat

diffusion in the absorber and the thermal coupling between the absorber and

thermometer. In practice, this occurs sufficiently fast that the rise-time is often set by

28

response time of the readout electronics. The phenomenon and detection of double pulses

will be explored in more detail in chapter 6.

• Detector Statistics

With the source embedded directly in the detector, there is no way of filtering out

unwanted energies. The fraction of total events that are near the Q-value is on the order

of 10-5 which implies that a very large number of events are required to obtain the desired

sensitivity for MARE. A reasonable balancing of the source activity, the number of

detectors, and the detector acquisition time is required (with consideration for the effects

of increased source activity on the pile-up spectrum). This balance is different for

rhenium and holmium. A more quantitative description is given in the next two sections

for the specific cases of rhenium, then holmium.

3.4 Rhenium-187

In pure rhenium, the isotope 187Re occurs with a natural abundance of 62.2%. This

convenience means that natural rhenium may be used without any enrichment. The 𝛽-

decay reaction is given as:

𝑅𝑒
187 → 𝑂𝑠

187 + 𝑒− + �̅�𝑒 (3.5)

29

with rhenium decaying to osmium. In order to accurately observe the perturbation caused

by massive neutrinos near the Q-value, the theoretical spectrum must be well known. The

available energy to the electron-neutrino system (𝐸0) is the energy obtained from the

mass difference of the parent and daughter elements:

𝐸0/𝑐2 = 𝑀𝑎𝑠𝑠(𝑅𝑒
187) −𝑀𝑎𝑠𝑠(𝑂𝑠

187) (3.5)

Because the source is embedded, the nuclear recoil is also detected, but simple

conservation principles give this energy (ignoring the neutrino) as:

𝐸𝑅 =
𝐸𝛽

2𝑀𝑐2
(3.6)

where 𝑀 is the mass of recoiled body, 𝑐 is the speed of light, and the energies correspond

to that of the recoil and the energy of the emitted radiation. In the case of rhenium, for the

largest emitted energy, the associated recoil energy is on the order of 10-9, negligible

compared to the expected energy resolution of the MARE project (~2 eV). Ignoring the

recoil energy, the most general 𝛽-spectrum of emitted electrons is given as:

𝑁𝛽�𝑍,𝐸𝛽 ,𝑚𝜈𝑒� =

�𝑝𝛽𝐸𝛽�𝐸0 − 𝐸𝛽���𝐸0 − 𝐸𝛽�
2
−𝑚𝜈𝑒𝑐4� 𝐹�𝑍,𝐸𝛽0�𝑆�𝐸𝛽�[1 + 𝛿𝑅(𝑍,𝐸𝛽)]

(3.7)

where 𝑝𝛽 and 𝐸𝛽 are the momentum and energy of the emitted electron; the portion in

curly brackets is the phase space contribution for a three body decay (ignoring nuclear

recoil); 𝐹�𝑍,𝐸𝛽0� is the Fermi function correction due to the interactions between the

nuclear charge and the wave function of the emitted electron; 𝑆�𝐸𝛽� is the “form factor”

which accounts for electro-weak interactions; and 𝛿𝑅(𝑍,𝐸𝛽) is the radiative

electromagnetic correction (usually neglected due to its minimal contribution). In the case

30

of rhenium crystals, an oscillatory correction must be applied due to interference between

the electron wave and it reflections off of the regular lattice structure (analogous to the

extended x-ray fine structure effect).18

 𝑁𝛽�𝑍,𝐸𝛽 ,𝑚𝜈𝑒� may be integrated strictly near the endpoint of the 𝛽-spectrum to

yield the approximate percentage of counts in the region of interest

�
∆𝐸0
𝐸0

�
3

(3.7)

where ∆𝐸0 is the size of the region near the endpoint being considered. A reasonable

value for this would be 3𝑚𝜈𝑒, but is generally limited by the detectors energy resolution

(on the order of sing digits). Taking ∆𝐸0 as 5 eV and using the Q-value of 2.48 keV for

rhenium, this fraction is of the order 10-9, implying the need to collect a significant

number of events. However, a high activity must be balanced with the effects of the

pileup spectrum on the sensitivity.

In order to optimize the MARE experiment, we need a quantitative understanding

of the systematics involved. A systematic and Monte Carlo approach at determining a

calorimetric neutrino mass experiments sensitivity to double pulses was explored by A.

Nucciotti, O. Cremonesi and E. Ferri.19 In their analysis, they demonstrated that even a

very small population (~0.01-0.0001% of all events – see fig. 3.3 below) can have

significant effects on the experimental sensitivity, which demonstrates the importance of

detecting pileup events for the MARE project. In their paper, they derive an equation for

the statistical sensitivity (at 90% confidence level) of determining 𝑚𝜈𝑒 in a calorimetric

experiment as:

31

�(𝑚ν)90 = 1.13�
𝐸03 ΔE

𝐴𝛽𝑡𝑀𝑁𝑑𝑒𝑡
+ 0.3

𝜏𝑅𝐸05

𝑡𝑀𝑁𝑑𝑒𝑡ΔE�
1/4

(3.8)

where 𝐸0 is the endpoint energy; ΔE is the interval below the end point energy being

considered; 𝑡𝑀 is the measuring time; 𝜏𝑅 is the detector rise-time; 𝐴𝛽 is the single

detector source activity; and 𝑁𝑑𝑒𝑡 is the total number of detectors. In general a smaller ΔE

is desirable, but use restricted by the detector energy resolution. Because of the

dependence on 𝑁𝑑𝑒𝑡
−1/4 we can get a sense of how many detectors are required for a given

sensitivity. The dependence of the sensitivity on 𝜏𝑅 is related to the effect of rise-time

double pulses, which are very difficult to detect and provide one of the biggest sources of

error to calculations of 𝑚𝜈𝑒
 .

(Fig. 3.3) Sensitivity of a calorimetric experiment as a function of total statistics for three
different pileup fractions.

32

3.5 Holmium-163

 The holmium isotope, 163Ho, does not exist naturally in nature and thus required

production. This added complication is offset by the higher activity which has the

potential to improve the statistics of MARE (lower live-time and fewer arrays required

for a given sensitivity). A roadmap for the holmium track of MARE has been outlined

with four landmarks:

(Fig. 3.4) MARE holmium track roadmap landmarks.

The sensitivity a 163Ho experiment depends strongly on the Q-value. To understand why

this is the case, we need to obtain the EC-spectrum. The EC reaction:

𝐻𝑜 + 𝑒−
163 → 𝐷𝑠 + 𝜈

163
𝑒 (3.9)

is caused by the absorption of an inner shell electron in the nucleus. The resulting

electron hole is filled by an outer shell electron which emits an x-ray in the process. The

decay rate is thus a sum over the possible shells of the electron capture:

33

𝜆𝐸𝐶 =
𝐺𝛽2

4𝜋2�𝑛𝑖
𝑖

𝐶𝑖𝛽𝑖2𝐵𝑖(𝑄 − 𝐸𝑖)[(𝑄 − 𝐸𝑖)2 − 𝑚𝜈𝑒
2]1/2

(3.10)

where 𝐺𝛽 = 𝐺𝐹cos (𝜃𝑐) is the fraction of occupancy of the i-th atomic shell; 𝐶𝑖 is the

atomic shape factor; 𝛽𝑖 is the Coulomb amplitude of the electron radial wave; and 𝐵𝑖 is

the atomic correction for the electron exchange and overlap.20

 From this, the expected energy distribution detectable by a microcalorimeter is

given as:

𝜆𝐸𝐶
𝑑𝐸𝑐

=
𝐺𝛽2

4𝜋2
(𝑄 − 𝐸𝐶)�(𝑄 − 𝐸𝐶)2 − 𝑚𝜈𝑒

2�
1
2 ×

�𝑛𝑖
𝑖

𝐶𝑖𝛽𝑖2𝐵𝑖
Γ𝑖

2𝜋
1

(𝐸𝐶 − 𝐸𝑖)2 + Γi2/4

(3.11)

where 𝐸𝑐 is the energy detected by the calorimeter.20 The resulting theoretical spectrum is

represented in fig. 3.5.

(Fig 3.5)20 Theoretical 163HoEC spectrum. The resonance peaks allow for self calibration
which is another advantage of using a holmium source.

Typically, EC reactions have a poor count rate near their Q-value. However, in the case

of 163Ho, the count rate in this region is amplified by the M peak. To better understand

the potential sensitivity of a calorimetric 163Ho experiment, an accurate measurement of

34

the Q-value is required. A straightforward approach using a single microcalorimeter with

about 5 × 105 counts is sufficient to determine the Q-value to better than 20 eV

accuracy.20

The second landmark for the holmium track is the production of the isotope.

There are several different methods that exist for producing holmium of which we

identify three ideal candidates:20

• Neutron activation in a nuclear reactor of 162Er

• α-particle bombardment of 165Ho target

• γ-particle bombardment of 165Ho target

A reliable production of 163Ho is required with minimal long-lived contamination, and

with consideration of ease of production and reproducibility. This requires investigation

which is in the preliminary stages. Verification of the production method using 162Er has

been confirmed by the University of Genoa and the University of Miami (this will be

described in more detail in ch. 5).

Alongside identifying a reliable production method for 163Ho, the detector

performance must be explored. There are many variables, though many are similar in

nature to the rhenium track. One difference arises from the way the source is used in the

detector. Unlike rhenium, where the source is the absorber, holmium is implanted in an

absorber. With a comparatively higher count rate there is more freedom in selecting the

capacitance of the absorber and the activity of the source. This aspect is currently being

explored at the University of Miami. Additionally, just as with rhenium, the effects of

pileup spectrum affect the potential sensitivity of this experiment (fig. 3.5). Methods to

35

reduce the occurrence of these events are thus fundamental to improving the potential

sensitivity of this experiment.

(Fig. 3.6) 20 Effects of pileup fraction and detector energy resolution on the sensitivity of
a calorimetric holmium experiment.

The final landmark for the holmium track is to better understand theoretical

uncertainties. The bulk of these arise from the derivation of the EC-spectrum. There are

still atomic and nuclear aspects which are not completely understood. To maintain this

model independence, additional effects that alter the EC spectrum must be identified an

implemented in an improved version of eq. 3.11.

36

Chapter 4

Analysis Program

4.1.1 Extracting Pulse Energy

 In order to obtain a high resolution energy spectrum, it is fundamentally important

to extract the energy of a pulse as accurately as possible. In principal, this can be done by

just measuring the change in voltage/current, but the accuracy of this method can strongly

be affected by the presence of noise. An improvement can be achieved by integrating the

signal, but such an operation has the negative feature that it treats all regions of the pulse

equally, particularly the baseline which may be noisy in comparison to the pulse

amplitude. Clearly the presence of noise has a negative effect of our ability to extract the

energy of a pulse. Because of this, a method that is capable of limiting the noise

contribution is desirable. This can be done by modifying the integration method with the

incorporation of a weighting function. This method is called optimum filtering. All that

needs to be determined then is the weighting function.

37

4.1.2 Optimum Filter

 In the linear regime, the pulse shape of a calorimetric measurement is independent

of the energy of the absorbed radiation, where that energy is simply a scaling factor:

𝑉(𝑡) = 𝐸0𝑔(𝑡) (4.1)

We must also account for the noise, which we assume has a known spectral density:

𝑒𝑛(𝑓). If we assume that the noise spectrum is not altered in the presence of a pulse,

which in most cases is a reasonable assumption, it follows that the noise amplitude in

different frequency bins is uncorrelated. To take advantage of this assumption, we

perform the derivation of our optimum filter in the frequency domain. We will let 𝑠𝑖 and

𝑛𝑖 respectively denote the 𝑖𝑡ℎ frequency bin of the (noise-free) signal and the noise.

Following from the properties of Fourier transforms, each frequency bin of 𝑠𝑖 is

proportional to 𝐸0 and thus allows an independent estimation of the pulse’s energy.

 In our case, we can identify that we want to maximize the signal to noise ratio.

Thus considering a weighting function given by 𝑤𝑖, we may write the energy and noise

fluctuations as sums over the frequency bins:

𝐸 = �𝑤𝑖𝑠𝑖
𝑖

 (4.2)

∆𝐸𝑟𝑚𝑠 = ��|𝑤𝑖𝑛𝑖|2
𝑖

�
1/2

(4.3)

The ratio of these sums is what we would like to optimize. By taking the derivative of

their ratio with respect to some arbitrary 𝑤𝑘 and setting the result equal to zero, we can

38

solve for 𝑤𝑘 and thus solve for the optimum filter weighting function (in the frequency

domain). The result obtained is:

𝑤𝑘 =
𝑠𝑘

|𝑛𝑘|2 �
(∆𝐸𝑟𝑚𝑠)2

𝐸 �
(4.4)

Since the factor in parentheses is constant for any given element, we simply drop it

(scaling will be accounted for later). Thus, the optimum filter in the frequency domain is:

𝑤𝑖 =
𝑠𝑖

|𝑛𝑖|2
 (4.5)

This function may be converted back to the time domain via a Fourier transform. The

relative phase between the weighting function and the pulse may be out of phase, so a

convolution can be performed to locate the local maximum of the weighted integral.

(Fig. 4.1) Example of a pulse and a weighting function for an optimum filter.

39

4.1.3 Optimum Filter in Practice

 There are two ingredients required to produce the optimum filter: a noiseless

pulse and the noise spectrum. A perfectly noiseless pulse is impossible to obtain from

experimental data, but a reasonable approximation may be obtained by averaging a

sufficiently large number of pulses. The relative signal to noise ratio is better for higher

energy pulses, so the best results may be obtained by using a subset of all of the pulses

with higher energies. Typically, this subset corresponds to calibration pulses which from

a source with known energy (the K-α line from 55Fe with an energy of about 5.9 keV is a

very common calibration source). The noise spectrum is obtained by averaging noise

samples in the frequency domain. With these two ingredients, we may now build the

optimum filter and extract the energy of the pulses.

We still need to determine the scaling factor to obtain the actual energy spectrum.

This requires calibration pulses with a known energy. Using the optimum filter created

above along with the average of the calibration pulses (to minimize the noise

contribution), we have all the ingredients required to find this scaling factor. By relating

the energy of the calibration sweeps to their weighted integral we obtain:

𝐸𝑐𝑎𝑙 = 𝐴�𝑉𝑖,𝑐𝑎𝑙𝑊𝑖
𝑖

 (4.6)

which we can solve for the scaling factor, 𝐴, where 𝑊𝑖 is the time domain weighting

function of the optimum filter, 𝑉𝑖,𝑐𝑎𝑙 is the averaged calibration pulses, and 𝐸𝑐𝑎𝑙 is the

energy of the calibration pulses. The optimum filtered energy for any pulse can then be

calculated as:

40

𝐸𝑠𝑤𝑒𝑒𝑝 = �
𝐸𝑐𝑎𝑙

∑ 𝑉𝑖,𝑐𝑎𝑙𝑊𝑖𝑖
��𝑉𝑖,𝑝𝑢𝑙𝑠𝑒𝑊𝑖

𝑖

= 𝐴�𝑉𝑖,𝑝𝑢𝑙𝑠𝑒𝑊𝑖
𝑖

(4.7)

These extracted energies may then be used to create an energy spectrum.

4.2.1 Analysis Program (FITSFILTER)

 We have identified that it is important to be able to identify undesirable events

(e.g. pileup events) and to use an optimum filter to extract pulse energies. The next

logical step is to develop an analysis program which performs these functions. Such a

program was developed at the University of Miami in conjunction with the XQC (X-ray

Quantum Calorimeter) team headed by Dan McCammon. The analysis program was

dubbed FITSFILTER due to its use of the FITS file format and incorporation of the

optimum filtering technique (more information on this file format is located in the

appendix). Through development, we focused on maintaining good portability across

Linux systems and overall usability.

 The input for FITSFILTER consist of collections of what we call sweeps. Sweeps

are the results of converting a continuous data stream into smaller pieces (the sweeps)

which contain potentially relevant data. This is done via a triggering mechanism which

identifies events above a threshold then saves the local region. To include noise in the

sweeps (required to construct the optimum filter) a random trigger is also employed. The

desirable sweeps contain single events or flat baseline noise. It is important to reject

sweeps that were incorrectly triggered by glitches in the electronics, noise spikes, or any

other method.

41

 FITSFILTER is built around subroutines which perform all of the analysis

required to reject undesirable sweeps, build the optimum filter, extract the pulse energies,

and plot the results. The subroutines are sequential requiring the analysis of the previous

ones. The steps in the analysis chain and their purpose are described in the next sections.

4.2.2 Preprocessing

 The first step in the analysis chain is preprocessing of the data sweeps. In general,

a sweep is divided into three regions: pre-trigger, rise-time, and decay-time (see fig. 4.1).

These three qualitatively different regions are used to extract characteristic parameters

from each sweep.

(Fig. 4.2) Sub- regions of a raw sweep. Note that because the detector is voltage biased,
the pulse is “upside down”. Also, there is some distortion of the decay time region due to
the response of the amplifier used (in general it decays smoothly back to the baseline and
does not overshoot it). Because the energy scale will be calibrated in a later step, we are
not concerned with the actual scale, only its proportionality.

42

In the pre-trigger region, the baseline voltage and variation are calculated for each sweep

(fig. 4.3 - top). The baseline voltage is usually removed from each sweep so that the

voltage of their maxima is the difference in voltage (fig. 4.3 - bottom). The baseline

corresponds to the DC level and variation corresponds to the noise.

(Fig. 4.3) Top: visual of parameters extracted from the pre-trigger region of a sweep.
Bottom: Raw sweep with its baseline voltage removed and inverted so that its maximum
voltage also relates to its energy.

43

In the event that a sweep is triggered on the tail of another pulse the baseline will be

skewed. Because the extraction of pulse energies involves an integral over the entire

sweep, this will modify the energy of the pulse that actually triggered the sweep. These

parameters allow identification and rejection of such events.

The rise-time is calculated in the rise-time region along with the software trigger

(fig. 4.4). The calculations for these parameters are rough but sufficient for our purposes.

The rise-time is based on the time constant for an exponential curve and is reasonably

independent of the pulse amplitude. This is calculated from the line that crosses through

the first points within the region corresponding to 20 and 80% of the pulses maximum.

The software trigger calculated as the x-intercept of this line.

(Fig. 4.4) Rise-time region of a pulse with the baseline removed and inverted. A line is
built based on the points of the curve that are approximately at 20 and 80% of the pulse
height. The intercept of this line with zero gives the software trigger.

44

One of the most important parameters, the rise-time is related to the absorption of energy

in the absorber. Strong variations from the norm of this value indicate problems with the

absorption of radiation or other related issues and indicate regions of interest which are

qualitatively different. The software trigger channel identifies the start of a pulse which

allows them to be properly lined up for averaging and comparison throughout the

analysis process. As with the rise-time, the decay time is calculated in the decay-time

region and proceeds very similarly as above to obtain a value (but with no software

trigger channel analog).

In addition to these parameters, the maximum and minimum excursions are

calculated for an entire sweep (fig. 4.4). These values can come from any array element

where the maximum/minimum occurs. The minimum generally should be similar to a

noise excursion but if the signal is high-pass filtered (generally as a result of the readout

electronics used) it may be large due to the dip caused by the amplifier response. The

maximum amplitude allows us to distinguish between sweeps with noise and sweeps with

pulses. The minimum amplitude is not as important but may identify undesirable negative

noise spikes.

The most important parameter collected is a raw un-scaled approximation of the

pulse energy (the low-pass filtered amplitude). Unlike the previous parameters this value

is taken from the same array element of each sweep. Because of the triggering

mechanism, in well behaved sweeps, all of the peaks should be commensurate yielding a

parameter that is a good approximation of the pulses energy. In order to minimize the

effects of noise, the sweeps are first low-pass filtered before this parameter is saved.

Because it provides a good estimate for the energy, this provides important information

45

about every sweep and can be used to construct a rough energy spectrum (up to a scale

factor). Once all of the parameters have been extracted from sweeps we continue to the

next step

(Fig. 4.5) Top: Example of maximum and minimum excursion for a pulse. Bottom: The
average of all low-pass filtered sweeps (pole = 400Hz) used to select the array element
that will determine the low-pass amplitude. This value plays the role of a first order
approximation for the un-scaled energy.

46

4.2.3 Threshold Selection (Setting Limits)

 The second step in the analysis chain is to set limits on the previously acquired

parameters. For reasonably well behaved data sets (and even for many unruly sets), the

parameters tend to be clustered together with outliers corresponding to some sort of

problem. By identifying the clustered regions, thresholds can be set that allow the

rejection of bad sweeps.

The first histograms created are built from the maximum and minimum excursion

parameters. Since these values are comparatively lower for noise sweeps than for sweeps

with a pulse they allow us to distinguish between the two cases. The histogram derived

from the maximum excursions is a rough estimate of the un-scaled energy spectrum and

allows identifications of spectral features such as a calibration peak (fig. 4.6 - top). The

other histogram’s “spectrum” is a result of the decay-time overshoot and is roughly a

compressed version of the real spectrum.

47

(Fig 4.6) Histogram of maximum and Minimum excursions. The top plot shows the entire
spectrum where the calibration peak from 𝐹𝑒

55 can be seen. The bottom plot shows the
threshold set on noise.

48

 The next limit set is on the average pre-trigger voltage which establishes the

acceptable baseline voltage (fig. 4.7). Assuming no problems with the detector this value

should be fairly constant. This set of data had a fairly high activity which means there are

many double and even triple pulses. Because of this many sweeps are on the end of a

pulse resulting in a bad baseline. Because of the decay-time overshoot, there is a

tendency for bad events to have a lower value. This can be seen by the fatter left side of

the histogram. Noise spikes also have the potential to widen the main feature. This

possibility is accounted for with the next limit.

(Fig. 4.7) Limits set on the acceptable pre-trigger voltage (pulse baseline); everything
outside of the green lines is rejected.

 Next, we look for any abnormal features of the baseline voltages. This is done by

calculating the maximum and minimum excursions (restricted to the pre-trigger region),

49

and taking their difference (fig. 4.8). For good sweeps, it is consistently small compared

to sweeps with problems in the pre-trigger region.

(Fig. 4.8) Limit set on the allowed pre-trigger variation; everything to the right of the
green line is rejected.

 The last histogram used to set limits is on the software trigger channel (fig. 4.9).

This identifies abnormalities in the rise-time region which alter the effective rise-time.

Because this trigger channel is set from the largest peak, cases where there is an

additional pulse of large amplitude are also excluded here because their trigger will occur

at a location too far up in the array to be in the acceptable range.

50

(Fig. 4.9) Limits on the software trigger channel; everything outside of the green lines is
rejected.

 The final and most important plot allows regions of interest to be indentified and

investigated. It is a scatter plot of the rise-time vs. the low-pass filtered amplitude, which

are the two most descriptive characteristics of a sweep (fig. 4.10). This plot can be used

to identify regions of interest to verify that the detector and its setup are working as

intended. This is where the calibration pulses (windowed signals) are selected. Because

the x-axis provides a rough estimate of the energy spectrum, spectral features can be seen

in the form of bands which aid in locating the calibration window.

51

(Fig. 4.10) Scatter plot of the rise-time vs. the low-pass filtered amplitude. The red
square denotes the selection of calibration pulses. These events tend to be the most tightly
clustered.

4.2.4 Sweep Classification

 The third step in the analysis chain is to classify events based on the thresholds

previously set. In general, four main classes can be identified: noise, pulses, calibration

pulses, and bad pulses. The first three collectively are considered good pulses, and are

used to build the energy spectrum. Throughout this thesis, the term “good pulses/sweeps”

will refer to these classes. The bad pulses are collectively any sweep with a parameter

that is not in an acceptable range set by the thresholds. These can be the result of detector

saturation, noise spikes, false triggers, baseline jumps, or any other failure due to

electronics or detector problems. Many of these events contribute to detector dead time.

A high fraction of such events generally indicates a problem with the detector or readout

electronics.

52

4.2.5 Double Pulse Analysis

 The fourth step in the analysis chain is to search for double pulses. The algorithm

used is based on a method devolved by the XQC team that has proven itself effective.

This algorithm assumes a detector with a linear response which is not the case for the

microcalorimeters used for MARE. The modifications to correct for this are covered in

significant detail in the next chapter. Here, we cover the simple version which assumes a

detector with a linear response. In this case, a template pulse is built from the average of

the calibration sweeps. When scaled and subtracted from a sweep with two pulses, only

the second pulse remains. This pulse will typically have an amplitude larger than the

noise and thus may be identified (the threshold is typically based on a multiple of the

RMS voltage of the baseline). This procedure is improved by taking the time derivative

of the template and the pulse being analyzed before taking their difference. This reduces

the algorithms dependence on the pulse shape and provides sharper features increasing its

sensitivity.

(Fig 4.11) Example of a double pulse.

53

(Fig. 4.12) Top: time derivative of double pulse in figure 4.11. Bottom: Above double
pulse with template subtracted. The threshold is shown in green.

54

4.2.6 Creation of the Optimum/Energy Extraction

 The following two steps of the analysis chain build the optimum filter then extract

the energies from the pulses as described early in this chapter.

4.2.7 Energy Spectrum Corrections

 The seventh step in the analysis chain corrects for gain drift and nonlinearity of

the detector (parabolic correction). The gain drift correction accounts for a linear change

in the voltage baseline over time. The gain drift correction is achieved by fitting a line to

the scatter plot of good calibration pulses as a function of their trigger time (fig. 4.14 -

top). The second correction requires a second calibration peak of known energy and

makes a second order polynomial correction using the baseline and the new and original

calibration lines (fig. 4.14 - bottom). Considerations of the quality and quantity of data as

well as the detector used should be considered when applying any of these corrections.

55

(Fig. 4.13) Top: Visualization of the gain drift correction. Bottom: Nonlinear energy
correction; a second calibration peak of known energy is selected.

56

4.2.8 Energy Spectrum

The final step in the analysis chain is a plotting routine that allows histograms and

scatter plots of the parameters obtained in previous subroutines. The plot which is most

important is the energy spectrum obtained from a histogram of the extracted energy with

any corrections applied in the previous subroutine. In the case where a nonlinear

correction is not applied (as with this data set), the lower plot of figure 4.13 is an example

of what the energy spectrum looks like.

57

Chapter 5

Verification of Holmium Source

5.1 Background

 As described earlier, identifying the best method for producing 163Ho is one of the

landmarks for the holmium track of the MARE experiment. This process is in its initial

stages where the most important requirements are to first verify the absence of long-lived

radioactivity and to then actually verify that 163Ho was produced. The University of

Genoa obtained a sample produced by neutrino activation of 162Er in a nuclear reactor.

The sample was isolated for a month to allow the dissipation of short life-time

contaminants. The absence of long-lived radioactivity was confirmed with a proportional

counter. The x-rays from the 163Ho EC-reaction are very low energy and are quickly

attenuated by the atmosphere. To verify the presence of 163Ho, the source was dissolved

in hydrochloric acid, then deposited by hand onto a microcalorimeter. Once evaporated,

the presence of 163Ho can then be verified via microcalorimetric measurements. Because

the source is not embedded in the absorber the results will not be optimal, but should be

sufficient. Once data was acquired, it was analyzed by FITSFILER at the University of

Miami.

58

5.2 Holmium Data Analysis

 We first examine the scatter plot of the rise-time vs. the low-pass filtered

amplitude (1kHz low-pass filter) to identify regions of interest. In fig 5.1 below, 4

regions of interest can be identified. Most likely the points that are grouped with tighter

rise-time are acceptable, but this assumption must be verified. In order to do this, sweeps

from each region must be explored. Included are representative pulses from each region

(fig. 5.2 and 5.3).

(Fig. 5.1) Scatter plot of rise-time vs. the low-pass filtered amplitude. In this plot, there
are four distinct regions to consider.

59

All the data points near the left end correspond to noise or incompletely absorbed

radiation and are ignored. In region 1 (fig. 5.2 - top), pulses are consistently oddly shaped

like s stretched out pulse. This is likely caused by the non-ideal thermal connection

between the source and absorber, or by some other thermal problem with the detector.

Pulses in region 2 (fig. 5.2 - bottom) seem to be well behaved and are a good candidate

for the 𝐻𝑜
163 spectrum. We will examine these in more detail shortly. The small cluster

which constitutes region 3 (fig. 5.3 - top) are all voltage jumps, easily identified by

FITSFILTER via their low rise-time and long decay-time. These jumps are the result of

the SQUID malfunctioning and shifting the baseline by one flux quantum. Region 4 (fig.

5.3 - bottom) consists of high energy pulses that saturate the detector. Only region 2

seems to have viable pulses, so we explore it in more detail.

60

(Fig. 5.2) Representative pulses from regions 1 and 2 defined in the scatter plot above.

61

(Fig. 5.3) Representative pulses from regions 3 and 4 defined in the scatter plot above.

62

(Fig. 5.4) Region 2 with the calibration sweeps selected. We are assuming that these
pulses correspond to the resonant peak of 𝐻𝑜

163 , near the end of its spectrum at 2.039
eV.

 In the close-up of region 2 above, we get a closer look at our 𝐻𝑜
163 𝛽-spectrum

candidate. Week bands are visible and look like they correspond to the resonance peaks

from the electron capture reaction. Using this region, we continue through the analysis

steps, but ignore the double pulse classification and energy spectrum corrections (recall

we are just verifying that we are detecting the 𝛽-spectrum of 𝐻𝑜
163). After this is done,

we obtain the energy spectrum by taking the histogram with bins of size 25 eV, which

when compared to a theoretical spectrum is a very close match (fig. 5.4). Thus by using

FITSFILTER, we were able to verify the presence and detection of 𝐻𝑜
163 using the

detectors fabricated in Italy.

63

(Fig. 5.5) 20 Observed spectrum and a theoretical spectrum for comparison.

64

Chapter 6

Double Pulse Detection

6.1 Background

 Double pulses are the result of two pulses appearing in a single sweep. Pulses are

characterized by their energy, rise-time, and decay-time and spend most of their short life

decaying back to equilibrium. Because of this, most cases of double pulses consist of the

second pulse occurring on the tail of the first. These are generally easy to detect with any

reasonable double pulse algorithm and are not considered here. Alternately, the rise-time

is very short compared to the length of the sweep and to the decay-time. Thus a small

percentage of double pulses can be classified as rise-time double pulses. As the maximum

of the two pulses approach each other, the resulting double pulse looks more and more

like a single pulse with energy corresponding roughly (depending on how linear the

detector response is) to the sum of the two constituent pulses. This property makes rise-

time double pulses very difficult to detect and sets the limit on algorithm efficiency and

on the potential sensitivity of MARE. Unless otherwise stated, the term double pulse in

this section chapter will correspond to rise-time double pulses.

 Because we are most interested in the Q-point of the energy spectrum where the

count rate is very low, the double pulse spectrum can easily become the most significant

source of error for our experiment (fig. 6.1). Thus it is very important to understand its

effects and to minimize the possibility of rise-time double pulses.

65

(Fig. 6.1) 19 Simulations of the pileup spectrum and its effects on the Q-value. Top: the β-
spectrum and its associated pileup spectrum. Notice how sharply the true β-spectrum
ends. Bottom: the β-spectrum with and without the effects of a double pulse. Note how the
endpoint loses its sharpness with the addition of the pileup events.

If we let 𝐴 denote the average count rate for a pixel, let 𝜏𝑅 denote the resolving time, and

assume a Poisson distribution, we may estimate the fraction of double pulses. In general,

the probability of k occurrences within a given interval with average occurrence 𝜆, we

have:

𝑃(𝑘,𝜆) =
𝜆𝑘𝑒−𝜆

𝑘! ,𝜆 = 𝐴𝜏𝑅
(6.1)

66

It is easier to consider the probability of not having a double pulse in which case k is

either zero or one.

𝑃(0,𝜆) = 𝑒−𝜆 (6.2)

𝑃(1,𝜆) = 𝜆𝑒−𝜆

Since the sum of all probabilities is one, we have

𝑃(𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑢𝑙𝑠𝑒) = 1 − (1 + 𝜆)𝑒−𝜆 (6.3)

In the case where 𝜆 ≪ 1, this can further be simplified to:

𝑃(𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑢𝑙𝑠𝑒) ≅ 𝜆2 (6.4)

up to second order.

We can further calculate the double pulse spectrum if the spectrum is known. Let

𝑁𝛽(𝐸) denote the energy spectrum, normalized so that its integral over its energy domain

is 1. Up to a normalization constant, 𝑎, the probability of a double pulse occurring with

energy 𝐸′ is given by:

𝑎� 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)
𝐸′

0
𝑑𝐸′′

(6.5)

And the cumulative density function is given by

𝐹(𝐸) = 𝑎� �� 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)
𝐸′

0
𝑑𝐸′′�

𝐸

0
𝑑𝐸′

(6.6)

with

𝑎 =
1

∫ �∫ 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)𝐸′

0 𝑑𝐸′′�∞
0 𝑑𝐸′

 (6.7)

Thus the observed spectrum assuming 𝜆 ≪ 1 is:

67

𝑁𝛽,𝑜𝑏𝑠.(𝐸) = (1 − 𝜆2)𝑁𝛽(𝐸) + 𝜆2𝑎� 𝑁𝛽(𝐸′)𝑁𝛽(𝐸′ − 𝐸)
𝐸

0
𝑑𝐸

(6.8)

where we have ensured that

� 𝑁𝛽,𝑜𝑏𝑠.(𝐸′′)𝑑𝐸′′
∞

0
= 1

(6.9)

(Fig. 6.2) A simulated energy spectrum and its associated double pulse spectrum.

 In order to get a sense of how the double pulse energy spectrum is dependent on

the true spectrum, we created a toy program that generates a double pulse spectrum from

an input spectrum using a simple Monte Carlo simulation. An input spectrum consisting

of the sum of three normal distributions was used: {(400,100), (600,5), (1500,30)} for

pairs of (𝜇,𝜎) and with relative scaling rations of 0.6,1, and 0.3 respectively. The

resulting spectrums play the role of the energy histograms that would be extracted from

data using the analysis program and are plotted against an arbitrary energy scale. The

Double Pulse PDF

Single Pulse PDF

68

main features to note are how the double pulse spectrum resembles the single pulse

spectrum smeared out over higher energies, and how narrow peaks have a limited effect

whereas wide peaks have a significant effect. The smearing effect is particularly apparent

in the cumulative density functions (CDFs) associated with the spectrums (fig. 6.2). This

is why the Q-value, which is at the end of the 𝛽-spectrum has such a strong effect.

(Fig. 6.3) The CDFs for the single pulse spectrum and its associated double pulse
spectrum.

6.2.1 Initial Results

 First, we note that often times the goal is not only to detect double pulses but to

resolve the energies of their constituent pulses. Due to the low count rate for MARE, the

probability of rise-time double pulses is sufficiently low that simply rejecting them has

Double Pulse CDF

Single Pulse CDF

69

no significant effect on the experiment and dead time calculations. Additionally, due to

the nonlinearity of microcalorimeters, we would not be able to extract their energies if we

wanted to! This research then strictly focuses on double pulse identification and rejection

with no concern for extracting their energies.

 The double pulse algorithms explored rely on templates created from averaging

good sweeps and are thus very sensitive to their accuracy. For detectors with a very linear

response, the template is constructed from the calibration sweeps and then used to filter

the other sweeps searching for double pulses. However, for the detectors we are

considering, the energy response is nonlinear and requires modification of the above

process. The nonlinear response of the detector is reflected in varying pulse shapes as a

function of energy. Thus we may approximate pulses as:

𝑃𝑢𝑙𝑠𝑒 = 𝑓(𝑡,𝐸) ≠ 𝐸𝑓(𝑡). (6.10)

To correct for this, the energy spectrum is divided into subsections (based on their low-

pass filtered energy extracted early on in FITSFILTER) where the variation of the sweeps

in each subsection is acceptably negligible (this is addressed further in the current results

subsection of this chapter). For each sub-region, all good pulses are averaged to create a

template which is then used to filter its constituent pulses. If the particular algorithm

detects any double pulses, this indicates that those bad pulses were used in the creation of

the template. After the double pulses are classified, the remaining good pulses are used to

create a more accurate template and the process repeats iteratively until no double pulses

are detected in the given energy division.

70

(Fig. 6.4) Example of a nonlinear detectors response to pulses of different energies (both
scaled so that their maxima are equivalent). Top: Note how strongly the decay time is
effected by pulse energy. Bottom: the rise-time is similarly affected by nonlinearity.

71

6.2.2 Experimental Setup

 In order to properly characterize the efficiency of double pulse detection

algorithms, sweeps with known parameters were generated at the University of Florida.

They developed a set of tools to simulate the MARE experiment, done in two steps: first,

a Geant21 Monte Carlo simulation is used to generate a list of events; second, this list is

used as input for a numerical solver which realistically models a TES detector’s noise and

nonlinearity. 22 The detector parameters in the simulation are based on microcalorimeters

developed at the NASA/Goddard Space Flight Center, 23 which are the current baseline

for a holmium MARE experiment. In our case, the first step is simplified by using a user

generated set of input values. The sets generated for the preliminary results have an

energy resolution of 2 eV with an acquisition rate of 1 µs. Double pulses were created

using pair-wise combinations of the ten energies from the following set with separations

times of 0.5, 1, 2, and 5µs:

𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑠(𝑒𝑉) = {50,100,200,400,700,1000,1400,1800,2200,2700}. (6.11)

Calibration pulses were created with energies ranging from 100 to 2700 eV in steps of

100 eV. The range of energies corresponds to a region of interest valid for most

calorimetric neutrino experiments. For each point in our parameter space described above

500 sweeps were generated.

 Corresponding to the 27 different calibration energies used, we divided the energy

spectrum into 27 subsections. Then each section was analyzed separately using the linear

version of the detector with the calibration pulses classified as windowed signals (used

for the algorithm template). This allowed many double pulses to be analyzed with few

72

calibration pulses. This method only becomes unacceptable when a significant fraction of

pulses are pileup events. The resulting template may be sufficiently corrupted that the

algorithms efficiency is diminished (this effect is explored in the current results

subsection of this chapter). This situation requires sources with very high activity which

is not the case for MARE and thus is not considered in the preliminary analysis.

 The boundaries for the 27 subdivisions of the energies (based on the 27 energy

calibrations sets created) were chosen to lie halfway between the average low-pass

filtered energies of the calibration pulses. The lower limit used is 50 eV and the upper

limit used is about 2750 eV. The average low-pass filtered energies for the doubles pulses

was similarly averaged and the resulting value was used to determine which region a

particular double pulse set would be grouped with. Any combinations that resulted in

energies above 2750 eV were excluded. The following table shows the groupings used in

the analysis. A total of 73 double pulse pairs were used while the remaining 23 were

excluded.

Regions (eV) Associated double pulses (eV)
100 {(50,50),(50,100),(100,50)}
200 {(100,100),(50,100),(100,50)}
300 {(100,200),(100,200)}
400 {(200,200),(50,400),(400,50)}
500 {(100,400),(400,100)}
600 {(200,400),(200,400)}
700 {(50,700),(700,50)}
800 {(400,400),(100,700),(700,100)}
900 {(200,700),(700,200)}
1000 {(50,1000),(1000,50)}
1100 {(400,700),(700,400),(100,1000),(1000,100)}
1200 {(200,1000),(1000,200)}
1300 {None}
1400 {(50,1400),(1400,50),(400,1000),(1000,400)}
1500 {(100,1400),(1400,100)}
1600 {(200,1400),(1400,200)}
1700 {(700,1000),(100,700)}

73

1800 {(400,1400),(1400,400),(50,1800),(1800,50)}
1900 {(100,1800),(1800,100)}
2000 {(1000,1000),(200,1800),(1800,200)}
2100 {(700,1400),(1400,700)}
2200 {(400,1800),(1800,400)}
2300 {(50,2200)*,(2200,50)*,(100,2200),(2200,100)}
2400 {(400,1000),(1000,400),(200,2200),(2200,200)}
2500 {(700,1800),(1800,700)}
2600 {(400,2200),2200,400)}
2700 {(50,2700),(2700,50),(1400,1400),

(1000,1800),(1800,1000)}

(Table 6.1) These values are consistent for 0.5, 1 ,2 , and 5 µs. The exception is the two
symmetric pairs denoted with an asterisk. These pairs lie in the 2200 eV range for the 5
µs separation.

6.2.3 Standard (XQC) Algorithm

Here, we go over the standard algorithm briefly introduced in the previous chapter

in more detail. The first portion of analysis for the standard algorithm (XQC algorithm

for short) involves obtaining a threshold from the noise and is independent of the energy

subdivision being considered. To reduce the wordiness of this subsection the prefix 𝑑𝑡

will be used to denote the first derivative with respect to time of the following object

• Calculate 𝑑𝑡 -noise for good noise sweeps, compute the associated RMS value,

and average this for all noise sweeps: 𝜎;

• The threshold, 𝜃, is set as 2𝑎𝑁𝜎, where 𝑎 is initialized with a value of 4, and 𝑁 is

the minimum multiple of 𝜎 to use as a threshold (for all analysis we use 𝑁 = 5);

• All good 𝑑𝑡 -noise sweeps are then scanned for excursions above 𝜃;

• If any such excursions are found their associated noise sweep is reclassified and

the process repeats in order to calculate a “cleaner” value for 𝜎;

• If no such excursion are found, then 𝑎 is reduced by 1;

74

• The process is repeated until 𝑎 = 0 in which case, we have the threshold: 𝜃 =

𝑁𝜎.

Now that we have established a threshold, we analyze each energy division separately as

follows:

• Average all calibration sweeps (shifted to line up based on their software trigger)

and calculate its time derivative to build a template: 𝑇 ;

• Each sweep being analyzed is shifted (again, based on the software trigger) and its

time derivative is taken giving us: 𝑃𝑖;

• The template is normalized so that its maximum corresponds to that of 𝑃𝑖, and we

take their difference;

• This difference is scanned for excursions beyond the threshold, 𝜃 = 𝑁𝜎, already

established by the noise sweeps;

• The sweep associated with any such excursions is reclassified as a double pulse.

75

(Fig. 6.5)24 Top: comparison of the template and the first derivative of a double pulse
with pulse energies of 1000 eV and 100 eV and a separation of 1 µs. Bottom: difference
between the two curves with the threshold in red (horizontal line).

76

6.2.4 Optimum Filter (OF) Algorithm

 The optimum filter algorithm (OF algorithm for short) was our attempt at creating

an algorithm fine tuned to detecting double pulses. The pulses we are considering have

two characteristically sharp features corresponding to the first instance of the pulse and

the rise-time to decay-time transitions (near the pulse maximum). Because of this, the

second derivative with respect to time is very sensitive to pulses. As with the previous

section, to reduce the wordiness of this subsection the prefix 𝑑𝑡𝑡 will be used to denote

the second derivative with respect to time of the following object. If we construct a

template from averaged 𝑑𝑡𝑡 -pulses and convolve this with its individual constituents (𝑑𝑡𝑡 -

pulses), decay-time double pulses will generally be characterized by two peaks at

different phases, and rise-time double pulses will be characterized by a distorted, slightly

fatter peak. Because it is the latter we are interested in detecting, we need to be able to

distinguish the difference in shape of the convolutions corresponding to single and double

pulses.

 It would be beneficial to use a template 𝑑𝑡𝑡 -pulse that is modified to maximize the

signal to noise ratio. This can be achieved similarly to the optimum filter used in the

analysis program to extract the energies of pulses in FITSFILTER. The derivation

assumed a function of the form:

𝑉(𝑡) = 𝐸0𝑔(𝑡). (6.12)

The second derivative of a pulse also follows this form:

𝑉𝑡𝑡(𝑡) = 𝑑
2𝑉(𝑡)
𝑑𝑡2

= 𝐸0
𝑑2𝑔(𝑡)
𝑑𝑡2

= 𝐸𝑔𝑡𝑡(𝑡). (6.13)

77

So long as pulses in a given range do not vary significantly in shape, this is valid.

However, the noise response varies on a pulse due to the nonlinearity and results in

correlation of noise in the frequency domain. The resulting optimum filter does not

maximize the signal to noise ratio as well as possible. Improving this requires considering

the noise correlations, but this is not practical for our considerations as it would

significantly increase the analysis time for a single pulse. Thus we consider the resulting

optimum filter sufficient.

 Returning to the original goal of discerning rise-time double pulses, we first

create a template convolution. This is the result of creating an optimum filter from

averaged 𝑑𝑡𝑡 -pulses (along with 𝑑𝑡𝑡 -noise average in the frequency domain) and

convolving it with the averaged 𝑑𝑡𝑡 -pulses. The resulting convolution template is

normalized so its maximum is 1. Similarly, the pulse being analyzed is convolved with

the optimum filter and normalized to one and shifted so that their peaks coincide. All that

is required at this point is a measure of the difference of the convolutions and a threshold

on this measure. A simple measure could be described as:

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇(𝑡𝑛)− 𝑐𝑆(𝑡𝑛)} (6.14)

Where 𝐶𝑇 is the template convolution and 𝐶𝑆 is the optimum filtered pulse (this is

analogous to the measure used for the standard algorithm). However, we are more

interested in differences near the peak and do not care as much about the other regions.

Several other measures were explored, but the best results were obtained using:

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇2(𝑡𝑛)− 𝑐𝑠2(𝑡𝑛)} (6.15)

This measure exaggerates differences between the two convolutions, particularly near the

peak as desired. The threshold is chosen via a histogram of the resulting values. If we let

78

characters with a tilde represent Fourier transformed functions (in the frequency domain),

the process may be outlined as follows (for a given subdivision of the energy):

• Average good pulses in the time domain, calculate its second time derivative and

transform to the frequency domain: 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛);

• Compute 𝑑𝑡𝑡 -noise and average in the frequency domain: 𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛);

• Create the optimum filter as: 𝐹�𝑜𝑝𝑡(𝑓𝑛) = 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)
𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)

;

• Create the convolution template as: �̃�𝑇(𝑓𝑛) = �𝐹�𝑜𝑝𝑡(𝑓𝑛)� �𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)�, and

convert this to the time domain: 𝐶𝑇(𝑡𝑛);

• Normalize 𝐶𝑇(𝑡𝑛) so that its maximum is 1: 𝑐𝑇(𝑡𝑛);

• For each pulse, 𝑃�𝑡𝑡,𝑖(𝑓𝑛), to be analyzed, create a template as: 𝐶𝑝,𝑖(𝑡𝑛) =

�𝐹�𝑜𝑝𝑡(𝑓𝑛)� ∗ �𝑃�𝑡𝑡,𝑖(𝑓𝑛)� (this is done in the frequency domain as with the template

above);

• Normalize 𝐶𝑆(𝑡𝑛) so that its maximum is 1, and shift so that its peak corresponds

to that of the template convolution: 𝑐𝑆(𝑡𝑛);

• Calculate: 𝑚�𝑐𝑇(𝑡𝑛), 𝑐𝑆,𝑖(𝑡𝑛)� = max�𝑐𝑇2(𝑡𝑛)− 𝑐𝑆,𝑖
2 (𝑡𝑛)� = 𝑚𝑖

• Calculate the average (𝜇) and variance (𝜎) for the resulting set of 𝑚𝑖 and set the

threshold equal to: 𝜇 + 3𝜎;

• Pulses corresponding to an 𝑚𝑖 above this threshold are classified as double pulses

79

(Fig. 6.6)24 Top: Comparison between the resulting convolutions for first and second time
derivatives of an average pulse and their respective optimum filters. Bottom: comparison
of the convolution template and a double pulse convolution with pulse energies of 1000
eV and 100 eV and a separation of 1 µs.

80

(Fig. 6.7)5D Difference between the two curves from the bottom plot of fig. 6.6 with the
lower signal result for a single pulse sweep. The threshold is the horizontal blue line.

6.2.5 Results

 Analysis using both algorithms resulted in similar results for the data sets with

separation of 0.5 and 5 µs catching roughly nothing and everything respectively. The

following results are thus restricted to the more interesting 1 and 2 µs sets. In the case of

holmium, where the Q-value is somewhere in the 2.5 keV range,5D the efficiency of an

algorithm is critical in this region (and similarly for rhenium). In the four contour plots

(fig 6.8,9), this range corresponds roughly to the diagonal from the top left to the bottom

right. In general the OF algorithm is much more sensitive to double pulses with a low

energy contribution, but is not quite as efficient as the XQC algorithm in the critical

region. In the next subsection of this chapter we explore improvements to the setup as

well as combining the two algorithms to maximize efficiency.

81

(Fig. 6.8) 2 µs contour plots for the optimum filter (top) and standard algorithm
(bottom). The grey region on the top right corners represents energy combinations not
considered (above 2750 eV).

82

(Fig. 6.9) 1 µs contour plots for the optimum filter (top) and standard algorithm
(bottom).

83

6.3.1 Current Results, Experimental Setup

 The goal of this set of data and experiments is to perform the analysis as

realistically as possible and to verify the effectiveness of the OF algorithm. Again for this

setup, we use the same energy set to create double with separations of 1, 2, and 5 µs

(excluding 0.5 now, with the same energy combinations, eq. 6.11). Double pulses with a

combined energy above 2750 eV are excluded. The templates for both algorithms in the

initial results were built from single valued calibration pulses. This is unrealistic and may

result in an artificially increased efficiency and is undesirable. To correct this, a new set

of calibration pulses were constructed with energies ranging from 50-2750 eV with 500

sweeps for every 100 eV increment. As before, each sweep consists of 4096 array

elements with a sampling time of 1 µs. Here we consider parameter space described

above for 2 eV and additionally for 5 eV resolution. Due to the spread out calibration

pulses energies, we can also explore the effects of using different numbers of divisions.

 To allow testing of worst case scenarios, 50 files for both energy resolutions were

generated each with 12000 calibration pulses representing the entire energy range

considered, 2190 double pulses (10 of each double pulse combination) , and 500 noise

sweeps for a total of 14590 sweeps per file. The resulting double pulse fraction of about

15% is significantly higher than anything we would actually obtain from MARE

experiments, but provides an excellent test for the efficiency of the algorithms and can

definitely be considered a worst case scenario!

84

6.3.2 Optimum Filter Modifications

 The original form of the OF algorithm results in different thresholds for each

energy subdivision considered and uses a nonlinear measure (difference of squares).

Ideally, we would like a measure that is linear and constant for all energy divisions. The

benefit of using the original measure (eq. 6.13) was that it biased the results to values

from the central peak of the convolution where it is most sensitive to rise-time double

pulses. To get a similar effect with a linear measure, we now consider the measure:

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇 (𝑡𝑛)− 𝑐𝑠 (𝑡𝑛)}, (6.16)

where the maximum is taken over a sub-region of the entire convolution. This will be

referred to as the difference measure in this chapter. For the following development, we

consider dividing the energy spectrum in to 30 subdivisions.

 Our first task is to decide what subset of the domain to consider. An obvious

starting point is to consider elements around the convolution curve before it goes to zero

on both sides. We first would like to get a sense of where the new measure is maximal for

calibration and double pulses. To do this, we plot a histogram detailing which array

element, relative to the convolution template, the maximum value of 𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛))

occurs. From the top plot of fig. 6.10, we see that most calibration pulses are triggered in

the left lobe of the convolution. By restricting ourselves to the main central peak, we

increase the relative difference between double and calibration pulses with double pulses

tending to have larger measure values (since most calibration pulses don’t have

maximum measures in this range). In the second plot of fig. 6.10, we see that the

calibration pulses are maximal on the right wing of the central convolution peak, whereas

85

most double pulses are maximal in the central region. This indicates that we should

further restrict ourselves to the central FWHM region.

(Fig. 6.10) Top: histogram detailing where the maximum of the double pulse measure
occurs (for all divisions) relative to the main region of the convolution template. The
convolution template included is for reference. Bottom: Similar histogram as top figure
but with the domain restricted to the central peak. The upper and lower thresholds are set
at half of the maximum of the convolution template.

86

 The construction of the convolution template involves lining up the pulses based

on their software trigger. However, the software trigger is not perfect and has some

amount of spread (see fig. 6.11). When averaging pulses this leads to a slight “blurring”

of the final average so that it is slightly larger in shape when compared to a single pulse.

Additionally, the presence of noise in the pulse being filtered its shape relative to that of

the convolution template. The net result of these effects is a general hierarchy (not a rule)

of the convolutions being considered (which will further be demonstrated shortly) for:

𝐺𝑜𝑜𝑑 𝑃𝑢𝑙𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≤ 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒

≤ 𝐷𝑜𝑢𝑏𝑙𝑒 𝑃𝑢𝑙𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

(6.17)

which is reasonably true in general except for the noisier, low energy pulses where the

left inequality is more often violated. Because of this general hierarchy, we do not

consider the absolute value of the difference measure when testing sweeps to determine if

they are double pulses. In general, we would like this hierarchy to be true of the

difference measure as well. Suppose we know the cumulative density function for values

from the difference between the pulse and convolution template, 𝑁(𝑥). If we set:

𝑦 = max {𝑥1, … ,𝑥2} (6.18)

Then the CDF of y is:

𝑀(𝑦) = ℙ(𝑥1 < 𝑦) ∪ …∪ 𝑃(𝑥𝑛 < 𝑦) = 𝑁(𝑥)𝑛 (6.19)

With a probability density function obtained from its derivative:

𝑚(𝑦) = 𝑛𝑁(𝑥)𝑛−1𝑛(𝑥) (6.20)

Where 𝑛(𝑥) is the PDF of x. Fitting intuition, such a distribution tends towards higher

values the as 𝑛 gets larger. In the case of the difference measure, where a maximum of

87

the difference between a pulse convolution and a template convolution a similar effect

takes place which hides difficult to resolve double pulses.

(fig. 6.11) Histograms of the software trigger channel for the 5 eV energy resolution set
at two different energies ranges (100 and 2700 ± 50 eV). Note the dramatically lower
range for the higher energy plot.

88

(Fig. 6.12) Comparison of a good filtered pulse and the convolution template at the
extremes of the energies being considered.

89

To correct the problems involved in taking the maximum of a set of differences,

we consider each array element in the domain being considered separately. This new

difference measure can be thought of as a vector now:

𝒎 = {𝑐𝑇 (𝑡1) − 𝑐𝑠 (𝑡1), … , 𝑐𝑇 (𝑡𝑛)− 𝑐𝑠 (𝑡𝑛)} (6.21)

where the indices are restricted to array elements within the FWHM region of the central

peak of the convolution template. Note that due to the variance in shape of convolution

templates, some subdivisions will have more elements than others. In order to ensure

consistent results and good statistics, we exclude regions where the number of measure

values is less than 20% of the total number of pulses being analyzed. An example of

histograms from array element 2046 is available in figure 6.13 below which demonstrates

the rough hierarchy described previously.

 Now that we have an acceptable double pulse measure, all that remains is to

establish a method for obtaining a threshold. In general it would be ideal to establish a

single value to use for the histogram associated with each array element considered, but

each spectrum has a slightly different shape. Note how sharply the calibration pulse

spectrum ends near zero (fig. 6.13). This feature is common to each spectrum and can be

taken advantage of. To obtain a threshold, we locate the bin with the highest count rate

(which is the calibration peak near zero) and then locate the first bin to the right where a

count that is less than 10% of the maximum. The results using this threshold have very

good efficiency and a false positive fraction around 0.5%.

90

(Fig. 6.13) Histograms showing the distribution of the double pulse measure for array
element 2046. Top: Note how the calibration peak tends towards values below zero
whereas most double pulses have positive measure values. Bottom: the calibration pulse
spectrum was broken up into its three subdivisions to demonstrate how higher energies
have lower values.

91

Note that in obtaining the threshold above, where it was set by locating the first bin to the

right of the maximum that is less than 10% of this maximum, this percentage is

artificially high due to the large double pulse fraction in each double set. In general this

fraction should be closer to 1%. In the case where the double pulse threshold is set to

zero, there is a significant number of false positives (around 15%) but are strictly caused

by low energy pulses. In cases where the energy spectrum being analyzed does not have a

high density of low energy pulses, or where there is no concern for low energy pulses (as

is the case with MARE) this threshold may be ideal. From the analysis performed on this

double pulse algorithm, we determined that it has a very low false positive fraction. In

principal this can help when deciding how to set the double pulse threshold for an

experiment with real data. Assuming the double pulse density is fairly low (as with

MARE), any threshold that results in a false positive fraction higher than 1% (or lower

percentages) should definitely be rejected.

6.3.3 Updated Algorithms

 Because of the more realistic data format used, modifications to the algorithms

originally described in the initial results subsection. Here the new algorithms are listed

with the altered portions in bold font for convenience.

Updated Standard (XQC) Algorithm:

• Calculate 𝑑𝑡 -noise for good noise sweeps, compute the associated RMS value,

and average this for all noise sweeps: 𝜎;

92

• The threshold, 𝜃, is set as 2𝑎𝑁𝜎, where 𝑎 is initialized with a value of 4, and 𝑁 is

the minimum multiple of 𝜎 to use as a threshold (for all analysis we use 𝑁 = 5);

• All good 𝑑𝑡 -noise sweeps are then scanned for excursions above 𝜃;

• If any such excursions are found their associated noise sweep is reclassified and

the process repeats in order to calculate a “cleaner” value for 𝜎;

• If no such excursion are found, then 𝑎 is reduced by 1;

• The process is repeated until 𝑎 = 0 in which case, we have the threshold: 𝜃 =

𝑁𝜎.

Now that we have established a threshold, we analyze each energy division separately as

follows:

• Average all good sweeps (shifted to line up based on their software trigger) and

calculate its time derivative to build a template: 𝑇 ;

• Each sweep being analyzed is shifted (again, based on the software trigger) and its

time derivative is taken giving us: 𝑃𝑖;

• The template is normalized so that its maximum corresponds to that of 𝑃𝑖, and we

take their difference;

• This difference is scanned for excursions beyond the threshold, 𝟐𝒂𝑵𝝈;

• If any excursions are found, they are reclassified, the template is

reconstructed from the remaining good pulses, and the process repeats

• If no excursions are found in any of the sweeps being analyzed, then 𝒂 is

reduced by 𝟏;

• The process is repeated until 𝒂 = 𝟎 in which case, we have the threshold:

𝜽 = 𝑵𝝈.

93

Updated Optimum Filter (OF) Algorithm:

• Average good pulses in the time domain, calculate its second time derivative and

transform to the frequency domain: 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛);

• Compute 𝑑𝑡𝑡 -noise and average in the frequency domain: 𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛);

• Create the optimum filter as: 𝐹�𝑜𝑝𝑡(𝑓𝑛) = 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)
𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)

;

• Create the convolution template as: �̃�𝑇(𝑓𝑛) = �𝐹�𝑜𝑝𝑡(𝑓𝑛)� �𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)�, and

convert this to the time domain: 𝐶𝑇(𝑡𝑛);

• Normalize 𝐶𝑇(𝑡𝑛) so that its maximum is 1: 𝑐𝑇(𝑡𝑛);

• For each pulse, 𝑃�𝑡𝑡,𝑖(𝑓𝑛), to be analyzed, create a template as: 𝐶𝑝,𝑖(𝑡𝑛) =

�𝐹�𝑜𝑝𝑡(𝑓𝑛)� ∗ �𝑃�𝑡𝑡,𝑖(𝑓𝑛)� (this is done in the frequency domain as with the template

above);

• Normalize 𝐶𝑆(𝑡𝑛) so that its maximum is 1, and shift so that its peak corresponds

to that of the template convolution: 𝑐𝑆(𝑡𝑛);

• Calculate: 𝒎 (eq. 6.21)

• Create a histograms from the resulting 𝒎𝒊 values to obtain a threshold

• Pulses corresponding to an 𝒎𝒊 above this threshold are classified as double

pulses

94

6.3.4 Results: Effects of Double Pulse Contamination

 As noted earlier, it was expected that the single valued energy pulses used to

construct the templates for the initial results would artificially increase the efficiency of

the two algorithms considered. This expectation is verified here. To aid in readability the

resulting contour plots are summarized via their average efficiency (over the double pulse

amplitudes considered) and their false positive fraction. All contour plots relating to this

data may be found in the appendix.

 Here we consider the effects of double pulse contamination on the efficiency by

dividing analysis into two categories: clean and dirty. In clean sets, only calibration

pulses are used to construct the double pulse algorithm templates, whereas for dirty sets,

no distinction is made between double and calibration pulses (this is a worst case scenario

approximation of real data). The left sides of the plots represent results from the XQC

algorithm and the right side represents results from the OF algorithm. We see that in

general, the OF algorithm is much less sensitive to the presence of double pulse

contamination than the XQC algorithm. For clean sets, they perform similarly except for

the 1µs separation double pulses and lower false positive fractions where the XQC

algorithm outperforms for the former and the OF algorithm outperforms in the latter (a

lower double pulse threshold for the OF algorithm would close this gap by increasing its

false positive fraction and low energy double pulse efficiency).

95

(Fig. 6.14) Summary of results for clean and dirty sets and 5 eV Energy Resolution.

96

(Fig. 6.15) Summary of results for clean and dirty sets and 2 eV Energy Resolution.

97

6.3.5 Results: Effects of Detector Non-linearity

 Because of the spread out distribution of calibration pulses used, the number of

energy subdivisions becomes an additional parameter to explore. Here, we consider only

clean sets with 5,10,15,20,25, and 30 energy subdivisions (equally spaced). From fig.

6.16, we see that overall, both algorithms are fairly stable over the different numbers of

energy subdivisions considered with little difference between the 2 and 5 eV energy

resolution sets considered. Differences do appear though, when we look at how the false

positive fraction depends on the number of energy divisions (fig 6.17). Of particular note

is that the optimum filter algorithm is extremely stable whereas the false positive fraction

of the standard algorithm increases quickly as the number of energy divisions is reduced.

This is largely due to the way in which the algorithms are constructed. By construction,

the OF algorithm was made to be sensitive to the sudden changes in voltage associated

with a pulse. Recall that for a single pulse, there are only two such regions that contribute

strongly to the second derivative. Other regions do not contribute as strongly making this

algorithm very sensitive to the separation and sharpness of these two regions and with

little sensitivity to the overall pulse shape (which changes due to the nonlinearity and to

which the standard algorithm is more sensitive).

98

(Fig. 6.16) Comparison of efficiency for both double pulse algorithms at 5 eV (top), and 2
eV (bottom) energy resolution.

99

(Fig. 6.17) Comparison of false positive fraction for both double pulse algorithms at 5 eV
(top), and 2 eV (bottom) energy resolution.

100

6.3.6 Results: Combining Both Algorithms

 Here we explore the efficiency resulting from combining both algorithms (in both

orders) on dirty sets. In general, their contour plots show a complimentary efficiency

where the XQC algorithm is more sensitive to low energy second pulses and the OF

algorithm is more sensitive to low energy first pulses (see appendix for contour plots).

Because of this, the resulting efficiency is dramatically increased and become comparable

to the initial results. From fig. 6.18, we see that the best results are obtained when starting

with the OF algorithm. This is due in large part to its reduced sensitivity to the presence

of double pulse contamination in its template. Comparable results are obtained in the

reverse order, but are slightly less efficient with a higher false positive. The strong

difference in false positive fractions is caused by the double pulse threshold set in the OF

filter. When double pulses are removed by first running the XQC algorithm, subsequent

analysis with the OF algorithm results in a threshold that is a little too low. This can

easily be changed, but would result in an even lower efficiency relative to the reverse

order for the algorithms.

101

(Fig. 6.18) Summary of the results from combining the two algorithms in both orders for
5 eV (top) and 2 eV energy resolution. The left column represents first running the XQC
algorithm then following with the OF algorithm. The right column represents the reverse
order.

102

6.4 Summary

Our initial results were very positive, but more realistic analysis is needed. After

modifications of the experimental setup and the optimum filter algorithm, we were able

to analyze both algorithms and obtain more accurate results. While some care must be

taken with setting the threshold for the OF algorithm, it is very tough and stable in the

presence of high double pulse template contamination and is highly insensitive to

detector nonlinearity. The XQC algorithm on the other hand, is sensitive to detector

nonlinearity, but does comparatively better when there is very little double pulse

contamination in its template. In general, we have found that we can achieve very good

efficiency for rise-time double pulse detection with both algorithms separately, but the

best results are obtained by running the two algorithms in series which results in almost

perfect detection for 5 µs separation double pulses and excellent efficiency for the other

two separations considered. This reduces the effective rise-time used ultimately results in

a higher sensitivity for any calorimetric experiment.

103

Appendix A

FITS File Details

 A problem that often arises in custom created software created in academia is that

the File format used is custom made for the specific purposes of the project (and thus

unfamiliar to anyone else). This is acceptable but causes problems when collaborating

with others. In order to facilitate collaboration a standard File format is preferable. We

chose the FITS (Flexible Image Transport System) because it is well documented and has

a library available (CFITSIO) which is compatible with FORTRAN code

 The FITS File format was developed in the 1970’s to provide a standard for data

exchange between astronomical observatories. Since that time FITS has become the

standard File format for most astrophysical data analysis software packages. FITS Files

are comprised of a Primary Header Data Unit (HDU) along with a header. The Primary

HDU contains an N-dimensional array of pixels which may be null (which is the case for

all of our FITS Files). To this, additional HDUs and their associated headers may be

added (called extensions). These extensions may be of three types:

• Image Extension: N-dimensional array of pixels (as with the Primary HDU)

• ASCII Table Extension: Rows and columns of data in an ASCII character format

• Binary Table Extension: Row and columns of data in binary form

The header of each HDU may have any number of comments (up to 80 characters), or

header entries (each with a descriptive comment up to 80 characters long) which may be

either integers, floating point numbers, character strings, or logical (Boolean), each

denoted by a keyword (8 characters, all in caps). The following are some of the main

104

FITSIO calls used in FITSFILTER (all arguments to the right of the “>” are returned by

the routine). The “status” parameter is used as an error check for FITS routines. It is

initialized as zero and returned as some other value depending on what type of error

occurred.

[xbijkefdgcmls]: This is not a routine. Some routines have different names based on the

type of parameter they read/write. The characters stand for:

x bit

b character*1 (unsigned bit)

i short integer (I*2)

j integer (I*4, 32-bit integer)

k long long integer (I*8, 64-bit integer)

e real exponential floating point (R*4)

f real fixed-format floating point (R*4)

d double precision real floating point (R*8)

g double precision fixed-format floating point (R*8)

c complex reals (pair of R*4 values)

m double precision complex (pair of R*8 values)

l logical (L*4)

s logical (L*4)

105

Routines to Create a FITS File

• FTGIOU(> unit, status): This routine returns an unused integer (unit) which

may be used to open a FITS File.

• FTMAHD(unit, nhdu, > hdutype, status): Assuming the unit is associated with

an open File, this routine moves to a selected HDU (nhdu, starting with 1 for the

Primary HDU) and returns its type (not used for our purposes).

• FTCOPY(iunit, ounit, morekeys, > status): This routine is used to copy the

current HDU from iunit to the current (necessarily empty) HDU of ounit. The

morekeys parameter is not used for our purposes, but allows additional space for

extra keywords.

• FTPKY[JKLS](unit, keyword, keyval, comment, > status): This routine adds a

new keyword to the current HDU associated with the open unit along with a

comment up to 80 characters long.

• FTPKY[JKLS](unit, keyword, keyval, decimals, comment, > status): Same as

above with an additional parameter, decimals, as the integer number spaces to the

right of the decimal to use.

• FTICOL(unit, colnum, ttype, tform, > status): Each column in a FITS file

HDU must be initialized by ins column number, type, and form. The parameter

ttype declares the name of the column (up to eight characters) and tform declares

the variable type and length. For example a real exponential floating point array

106

of size 2048 would be declared as a character string: ‘2048E’; whereas a single

integer entry would be decalared as a character string: ‘1I’.

Routines to Read a FITS File

• FTGCV[SBIJKEDCM](unit, colnum, frow, felem, nelements, nullval, >

values, anyf, status): This routine reads the data from a given row (frow) and

column (colnum) from the current HDU and return its value. In most cases this

will be a single parameter, but sometimes an array is read (nelements = ‘size of

array to be read’)

• FTOPEN(unit, Filename, rwmode, > blocksize, status): This routine open an

existing FITS Files with either readonly (rwmode = 0) or readwrite (rwmode = 1)

access. The returned blocksize argument is obsolete and should be ignored.

• FTGKEY(unit, keyword, > value, comment, status): This routine is used to

read a given keyword from the current HDU and returns its value and associated

comment. Note that this routine does not have different forms associated each

type of possible variable format, so care must be made to know in advance what

type of keyword you are reading.

Routines to Edit a FITS File

• FTGCNO(unit, casesen, coltemplate, > colnum, status): This routine searches

the current HDU for a data column with a given name (coltemplate), and returns it

107

number (starting with 1 from the leftmost column). This routine is used

extensively throughout FITSFILTER so that no assumptions need to be made

about what data is in a given column (as long as one exists with the given name).

This allows additional columns to be inserted in the future without requiring any

rewriting of the code.

• FTMKY[JKLS](unit, keyword, keyval, comment, > status): It is possible to

have multiple entries in a given HDU with the same keyword name. Caution must

be taken to ensure that any keyword is created in an HDU only once. To modify a

given keyword, this routine must be called instead.

• FTMKY[EDFG](unit, keyword, keyval, decimals, comment, > status): Same

as above with an additional parameter, decimals, as the integer number spaces to

the right of the decimal to use.

• FTPCL[SLBIJKEDCM](unit, column, frow, felem, nelements, values, >

status): This is the workhorse of FITSFILTER and is used to write data to the

unit associated with the current HDU. Colnum and frow are the column and row

number for the entry to be modified. Nelements declares the integer size of the

array, usually just one unless in contains a sweep array in which case it is a power

of 2. This call has a useful property that if the row does not exist, it will create it

along with any missing intermediate rows.

• FTGKY[EDJKLS](unit, keyword, > keyval, comment, status): This routine

reads a keyword from the header of the current HDU and returns its value in

keyval along with its associated comment (usually ignored for out purposes).

108

The above list is not exhaustive and some lesser used calls occur in FITSFILTER. To

find a complete list and description of cfitsio routines, you may visit

http://heasarc.gsfc.nasa.gov/fitsio/ and download the “Fortran Programmer Reference

Guide”.

 The following details cover the files used in fitsfitlter:

Files:

• *_SWP.FITS (SWP File): This is the main input File for FITSFILTER and

contains important data in the header as well as all of the sweeps and related

information for at least one pixel.

• *_PUL.FITS (PUL File): This File is created by FITSFILTER and holds

parameters calculated from the sweeps of analyzed pixels such as rise-time, rough

amplitude, and trigger channel.

• *_FIL.FITS (FIL File): This File holds templates created for each pixel

analyzed. It saves many unused templates for future reference. The main purpose

of this File is to save the filter template, which maximizes the signal to noise

ratio. With the aid of a calibration peak, the energy of each sweep is extracted.

• PARAMETER.FITS: This File holds many customizable parameters used in

FITSFILTER (especially if it is run in auto mode). This File allows the user to

change parameters without editing the code and recompiling.

*_SWP.FITS (SWP File):

 This File is the output of trigger (or other File type conversion programs we have

created for various purposes) and is where most of the content of the subsequent PUL and

109

FIL File are obtained. The ‘*’ indicates the base name of the File which will be used for

the associated PUL and FIL Files. Note that when using FV, the HDUs are indexed

starting from 0 rather than 1, which is the convention used when moving between HDUs

with the ftmahd call. The header keywords listed are strictly user added and required for

FITSFILTER to read it properly. Any support keywords which are automatically created

for the FITS File are ignored (including the keywords associated with the binary data

column declarations). To avoid confusion, note that the columns are listed in rows – this

is strictly to allow the entries to be more readable and does not imply that columns have

been switched with rows on the FITS Files. The SWP File has the following format:

Primary HDU (HDU 1)
Header: Empty
Image: Empty

HDU 2
Header:

• SWPLEN: array size of each sweep
• DELTIME: timescale
• DELVLT: voltage scale
• NCHST: trigger channel
• NSWEEP: total number of sweeps (from all pixels on File)
• PIXCOUNT: total number of pixels on the SWP File

Binary Data Columns (one row for each pixel):

Column Name Type Units
1 PIXNUM 1J None
2 NSWEEP 1J None
3 ACGAIN 1E None
4 SQUID 1E None
5 ELCF 1E Hz
6 UCF 1E Hz
7 ELP 1J None
8 UCP 1J None
9 FWIN 1E None

110

HDU 3
Header: Empty

Binary Data Columns (number of rows is equal to NSWEEP keyword in HDU 2):

Column Name Type Units
1 Pixel_Number 1J None
2 Pixel_Count 1J None
3 PULse_Time 1D sec_of_day
4 Flag 1J bits
5 PULse_Data (SWPLEN)E ampout_volts

(Table A.1) Sweep file format.

The first HDU is left empty, since it cannot contain a binary table. The first

extension (HDU 2) contains parameter data for each pixel. Originally many of these

values were strictly in the header, but in order to increase flexibility and allow for

different pixels to have different parameter values associated with them, they were

converted to a table. The columns names and descriptions are as follows:

1. PIXNUM: the pixel associated with the row. This is needed since some formats

used have pixels unevenly distributed over more than one File resulting in skips in

the list (e.g. pixels; 1,2,3,4,5,6, 13,14,15,16,17,18 may occur in order with

7,8,9,10,11,12 on a different File)

2. NSWEEP: the total number of sweeps for the associated pixel

3. ACGAIN: the DC gain (amplification) applied to the signal before it is digitized.

4. SQUID: the amplification of the signal from the SQUID and occurs before the

gain is applied. When used in subroutine of FITSFILTER, the two are multiplied

(the null entry should be 1, but this is corrected if it is set to 0 for some reason)

and stored in the subroutines acgain parameter.

111

5. ELCF: the lower corner frequency of the bandpass filter response due to the

amplifier.

6. UCF: the upper corner frequency of the bandpass filter response due to the

amplifier. Obviously, we expect UCF > ELCF.

7. UCP: the pole (power) of the upper corner frequency and generally has a value of

1 or 2 (0 if no upper corner frequency is given).

8. LCP: the pole (power) of the lower corner frequency and has similar (though not

necessarily equal) values as UCP.

9. FWIN: a parameter used when windowing a sweep. It is a real number between 0

and 0.5 and indicates the fraction of each side that will be attenuated.

HDU 3 posses the bulk of the data because it contains the actual sweeps for each

pixel associated with the File. For data that is hardware triggered, there is no particular

order for the pixel associated with each successive sweep. This requires additional

columns for proper ‘book keeping’. The columns names and descriptions are as follows:

1. Pixel_Number: the pixel number for which all data in the row is associated with.

2. Pixel_Count: the count (starting with 1) of the number of sweeps for a given

pixel.

3. PULse_Time: the time associated with the given pixel.

4. Flag: a hardware flag which is not currently used for the main functions of

FITSFILTER.

112

5. PULse Data: the sweep associated with current pixel. This contains all triggered

including ones that were randomly triggered to collect noise.

All together the SWP File can become quite large and bulky. It would be convenient

to possess a ‘lighter’, more portable File that contains characteristic values for each

sweep rather than the sweep itself. This is exactly what the analysis performed by

FITSFILTER does and the resultant File is called a PUL File.

*_PUL.FITS (PUL File)

This File, associated with the input SWP File and shares the same base name. If this File

does not exist, it will be created upon running FITSFILTER with HDU 2 of the SWP File

copied to HDU 2 of the PUL File along with additional columns. Using the same

conventions as with the SWP File, the PUL File has the following format:

HDU 1
Header:

• FLOWPASS: Lowpass filter applied in FILCHR.F
• THRESH1: Fraction of max. to use as a threshold in GNUSEL.F
• THRESH2: Fraction of max. to use as a threshold in GNUSEL.F
• THRESH3: Fraction of max. to use as a threshold in GNUSEL.F
• THRESH4: Fraction of max. to use as a threshold in GNUSEL.F
• THRESH5: Fraction of max. to use as a threshold in GNUSEL.F
• THRESH6: Fraction of max. to use as a threshold in GNUSEL.F
• CALEN: Calibration energy for K-alpha
• NSIGMA: Multiple of sigma used for min threshold in DBLFIL.F
• LPPOLE: Pole of lpfilter applied to the optimum filter
• LPFREQ: Frequency of lpfilter applied to the optimum filter
• A: Gain drift correction:
• B: Gain drift correction:
• C: Nonlinear correction:

113

• D: Nonlinear correction:
• WINFRAC: Parameter used in window subroutine (utility.f)
• PRTRG: Fraction used to determine ilzero for pretrigger
• TRIGGER: F: use hardware trigger; T: use software trigger

Image: Empty

HDU 2
Header:

• SWPLEN: array size of each sweep
• DELTIME: timESCALE
• DELVLT: voltage scale
• NCHST: trigger channel
• NSWEEP: total number of sweeps (from all pixels on File)
• PIXCOUNT: total number of pixels on the SWP File

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 PIXNUM 1J None
2 NSWEEP 1J None
3 ACGAIN 1E None
4 SQUID 1E None
5 ELCF 1E Hz
6 UCF 1E Hz
7 ELCP 1J None
8 UCP 1J None
9 FWIN 1E None
10 NCHST 1E
11 LOWPASS 1E
12 NMAX 1J
13 RTUL 1E
14 RTLL 1E
15 RNPKUL 1E
16 RNPKLL 1E
17 BASEUL 1E
18 BASELL 1E
19 TRIGUL 1E
20 TRIGLL 1E
21 ZERLIM 1E
22 DBASEL 1E
23 SUMFIL 1E
24 CALEN 1E
25 CONVFACT 1E
26 STNR 1E
27 FWHM 1E

114

28 SUMSIG 1E
29 ELC_A 1D
30 ELC_B 1D
31 ENLC_C 1E
32 ENLC_D 1E
33 FILTPROG 1J
34 WINSTART 1E
35 WINEND 1E
36 prtrg 1E
37 winfrac 1E

HDU 3

Header:

• SWPLEN: array size of each sweep
• DELTIME: timescale
• DELVLT: voltage scale
• NCHST: trigger channel
• NSWEEP: total number of sweeps (from all pixels on File)
• PIXCOUNT: total number of pixels on the SWP File

Binary Data Columns (number of rows is equal to NSWEEP keyword in HDU 2):

Columns Name Type Units
1 Pixel 1J None
2 Sweep_Num 1J None
3 Pixel_Num 1J None
4 Pusse_Time 1D sec_of_day
5 Flag bits
6 yinit 1E V
7 rawppk 1E V
8 rawnpk 1E V
9 dbase 1E V
10 dectim 1E V
11 ristim 1E V
12 tfb 1E V
13 lpamp 1E V
14 iclass 1I Class
15 Eraw 1E eV
16 Egdc 1E eV
17 Enl 1E eV
18 xmax 1E sec

(Table A.2) PUL file format.

115

 The header of the primary HDU consists of elements copied from the

PARAMETER.FITS File and will be covered shortly in that section. HDU 2 copied

exactly from HDU 2 of the SWP File with lots of additional columns. All of the elements

in each row can be considered as characterizing the entire sweep data set for their

associated pixel whereas the binary data array in HDU 3 contains elements that

characterize each sweep individually. The columns names and descriptions are as follows

(excluding those covered in the description of the SWP File):

10. NCHST: the trigger channel indicates the array element where the signal first

exceeded a threshold i.e. triggered. It is technically an integer and starts out as so,

but may be replaced by the peak (based on a histogram) of the software triggers

calculated in FILCHR.F

11. LOWPASS: the lowpass frequency of a lowpass filter applied to each sweep in

FILCHR.F to increase the signal to noise ratio.

12. NMAX: the sweep array element where the maximum of the average of all

sweeps occurs.

13. RTUL: upper limit on lpamp in k-alpha window.

14. RTLL: lower limit on lpamp in k-alpha window.

15. RNPKUL: upper limit on risetime in k-alpha window.

16. RNPKLL: lower limit on risetime in k-alpha window.

17. BASEUL: upper limit on pretrigger average voltage.

18. BASELL: lower limit on pretrigger average voltage.

19. TRIGUL: upper limit on PULse trigger.

20. TRIGLL: lower limit on PULse trigger.

116

21. ZERLIM: maximum excursion allowed for noise sweeps.

22. DBASEL: maximum allowed pre-trigger variation.

23. SUMFIL: integral of the optimum filter without the time factor.

24. CALEN: energy of the calibration peak in eV.

25. CONVFACT: calen/sumfil, used as a conversion factor to convert the voltage of

sweeps to their actual energy.

26. STNR: best signal to noise ratio for a given sweep.

27. FWHM: full width half maximum value.

28. SUMSIG: un-normalized maximum of the average windowed signals and the

optimum FILter used to calculate calen.

29. ELC_A: gain drift correction parameter.

30. ELC_B: gain drift correction parameter.

31. ENLC_C: nonlinear correction parameter.

32. ENLC_D: nonlinear correction parameter.

33. FILTPROG: progress of analysis for a given pixel.

34. WINSTART: lower time limit of pulse classification limiting range.

35. WINEND: upper time limit of pulse classification limiting range.

36. Prtrg: value from parameter File used to determine the pre-trigger region.

37. winfrac: parameter used in windowing.

HDU 3 has all but the sweep array column from the SWP File along with a number of

additional parameters which characterize each sweep. The columns names and

descriptions are as follows:

1. Pixel: the pixel number for a given row.

117

2. Sweep_Num: the running count for all pixels.

3. Pixel_Num: the running count for each pixel separately.

4. PULse_Time: the trigger time for each pulse in terms of the original stream of

data.

5. Flag: is not currently used.

6. yinit: is the baseline voltage of each sweep.

7. rawppk: is the maximum positive excursion.

8. rawnpk: is the maximum negative excursion.

9. dbase: is the maximum variation in the pre-trigger region.

10. dectim: is the decay-time.

11. ristim: is the rise-time

12. tfb: is the software calculated trigger channel.

13. lpamp: is the amplitude of the low-pass filtered sweep at the array element

corresponding to the average maximum position.

14. iclass: contains information on all classifications of each sweep.

15. eraw: is the energy calculated using the optimum filter and scaling to the energy

of the calibration pulses.

16. egdc: is the gain drift correction applied to eraw.

17. enl: is the nonlinear correction applied to egdc.

18. xmax: is the real position of the maximum excursion.

118

*_FIL.FITS (FIL File)

 The FIL File is the last FITS File created by FITSFILTER that is unique to a

given base name. Its main purpose it to hold the optimum filter template. Additional

HDUs hold other relevant data arrays relevant to the optimum filter for good measure.

The columns names and descriptions are as follows:

HDU 1
Header: Empty
Image: Empty

HDU 2
Header:

• NSIG: Number of windowed signals used to create this array

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J None
2 signal 2048E Voltage

HDU 3
Header:

• NNOI: Number of noise sweeps used to create this array

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J None
2 Noise 2048E voltage

HDU 4
Header: Empty

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J 1J
2 S**2/N**2 2048E voltage

HDU 5
Header: Empty

119

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J None
2 S/N**2,time doma 2048E voltage

HDU 6
Header: Empty

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J None
2 S**2/N**2, time 2048E voltage

HDU 7
Header: Empty

Binary Data Columns (one row for each pixel):

Columns Name Type Units
1 Pixel 1J None
2 S/N**2, freq do 2048E voltage

(Table A.3) FIL file format.

 HDU 5 contains the template created in FILAVG.F which is used to filter each

sweep in FILFIL.F to ultimately obtain the energy spectrum. This File is particularly

useful for sets of data that have poor statistics because the user has the option to filter the

sweeps using a template from another FIL File (presumably sharing the same

characteristics as the one being analyzed).

PARAMETER.FITS

 PARAMETER.FITS is the only FITS File that is common to all data sets. It

contains parameters for many of the automatic features of FITSFILTER and can be

altered directly, eliminating the need to modify hardcoded parameters and recompile.

120

This File is read when creating the PUL File for the first time and its header elements are

copied into the primary HDU of the PUL File. Thus, if something is modified in the

parameter File, the update option in FITSFILTER must be used to overwrite the values in

the PUL Files header. The format is very simple, containing just one HDU with header

values. The header keywords and descriptions are as follows:

• FLOWPASS: Low-pass filter applied in FILCHR.F

• THRESH[1,2,3,4,5,6]: Fraction of max. to use as a threshold in GNUSEL.F

• CALEN: Calibration energy for K-alpha

• NSIGMA: Multiple of sigma used for min threshold in DBLFIL.F

• LPPOLE: Pole of lpfilter applied to the optimum filter

• LPFREQ: Frequency of lpfilter applied to the optimum filter

• A: Gain drift correction:

• B: Gain drift correction:

• C: Nonlinear correction:

• D: Nonlinear correction:

• WINFRAC: Parameter used in window subroutine (utility.f)

• PRTRG: Fraction used to determine ilzero for pre-trigger

• TRIGGER: F: use hardware trigger; T: use software trigger

All together these are the four primary Files used for FITSFILTER. Before we continue

with a deeper description of FITSFILTER and its subroutines, we will take a small detour

and cover some concepts which will clarify the reader’s understanding.

121

Appendix B

FITSFILTER, Technical Details

 This appendix chapter provides an overview of the technical aspects and code for

FITSFILTER that may be useful for users of the program.

FITSFITLER and its Subroutines

• FITSFILTER.F: This is the main program which controls access to the

subroutines. It takes the SWP File as input and generates an associated PUL File

if it does not already exist. The user if given the option of running in manual

mode (pick a pixel and perform any menu option available), or in auto mode

which analyzes all pixels in a given SWP File.

• FILCHR.F: This is the first subroutine that the user may run. It calculates

parameters from each sweep in the pixel being analyzed and saves them in the

associated PUL File.

• GNUSEL.F: This routine reads the parameters created in FILCHR.F and plots

histograms to select limits on the parameters. This is also where the user selects

the calibration sweeps (windowed sweeps) and their related energy.

• FILWIN.F: This program uses the limits selected in GNUSEL.F and classifies

pulses accordingly.

122

• DBLFIL.F: This program analyzes pulses to identify pulses in sweeps classified

as noise and double pulses and reclassifies them accordingly. At this point, no

further automatic changes to classification will occur.

• PLOTSWP.F: This subroutines may be run at any time. It allows the user to plot

the sweeps, and if they were classified in FILWIN.F, they may be plotted based

on class. The user is given the option of custom class changes if desired

• FILAVG.F: This subroutine reads in noise and calibration sweeps to generate an

optimum FILter (saved into the FIL file).

• FILFIL.F: This subroutine read the FIL file (user has the option of using one

from a different file) and filters all sweeps and scales the results (based on the

values obtained for the windowed sweeps of known energy) and saves them in the

PUL file.

• ESCALE.F: This subroutine provides corrections to the energy spectrum. First it

performs a gain drift correction by fitting the windowed signals in time to a line.

The user may also apply a second order polynomial correction if a second

calibration peak of known energy exists

• FILPLT.F: This subroutine allows the user to plot any combination of parameters

saved into the PUL File as either a histogram or scatter plot. The user may save

the plots or data. The histogram of the energy is ultimately the final result desired,

but the other options allow the user to check for problems and to identify their

cause.

• Utilit.f: This holds most of the subroutines and functions called from

FITSFILTER and its subroutines such as low-pass filters and linear regressions.

123

• Plot.f: This holds the subroutines that allow for plotting and includes the routine

that generates histograms.

Each subroutine exists independently, which facilitates swapping of subroutines

as required by the user. For example, DBLFIL.F, the double pulse detection subroutine,

may be swapped out with a File that does the same task, but uses a different possibly

more effective algorithm. In general, this allows other users to easily modify the program

for their own purposes.

Units

 There are three main stages encountered during the acquisition process of sweeps

which are all related by a constant factor.

𝑅𝑒𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙

The real signal is the actual output of the detector. This is amplified by a SQUID (or

some other integrated signal transducer) and then a low noise amplifier. That signal is

then digitized and becomes the starting point of our analysis. The digital signal is

recorded in scope units which are generally integers. In order to get the Amplified signal

from this, you must multiply the Digital signal by the sampling voltage. Assuming the

SQUID and amplifier gain are known, we may convert the amplified signal to the real

signal. The three stages are thus related as follows:

𝑅𝑒𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 = (𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙)/(𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑖𝑛)

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 = (𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙) × (𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑉𝑜𝑙𝑡𝑎𝑔𝑒)

124

It is important to note that because these three forms are related only by a constant

factor, in principal we could just pick one and use it exclusively because the final results

for the energy spectrum are normalized based on a calibration spike of known energy. In

reality, the digital signal is not used because it is an integer array and analysis is

performed which requires a real array as input. Thus, either the Real or Amplified signal

are used. The only time the real signal need be calculated is when we are looking at plots.

Windowing

 Fourier transforms decompose functions into sums of sines and cosines. Because

these functions are periodic, considerations need to be made when applying a Fourier

transform to a non-periodic function such as the data being analyzed by FITSFILTER. It

is ideal to modify the original function as little as possible without causing discontinuities

(which are handled very poorly in this regime). The standard approach is to use a

windowing function applied to the data being transformed. The windowing function only

alters the data at its boundaries where it smoothly pinches to zero. We use a half potato

shaped function which is just the first half of a sine wave of amplitude one with the

maximum stretched out.

Fast Fourier Transform (FFT)

The Fast Fourier Transform, or FFT, is an efficient algorithm for performing the

Fourier Transform on discreet, complex data sets. The version of FFT we use comes from

125

the book, ‘Numerical Recipes in Fortran 77’, where the call to the function is:

four1(data,N,isign). ‘Data’ is a complex array assumed to be a size that is a power of 2,

‘N’ is the size of the complex array, and ‘isign’ is +1 for a forward FFT (time to

frequency domain) and -1 for a reverse FFT (frequency to time domain). Note that you

must manually multiply the output of a reverse FFT by a factor of 1/N because the

routine does not account for normalization. Doing so ensures that applying both and FFT

and a reverse FFT to a data array will return the original.

 It is important to understand which elements of the output correspond to which

frequency/time element. For the analog case, if we let h(t) be the signal in the time

domain and H(f) be the Fourier Transform of h(t), we have:

ℎ(𝑡) = � 𝐻(𝑓)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑓
∞

−∞

𝐻(𝑓) = � ℎ(𝑡)𝑒2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞

In the discrete case, with a sampling rate of Δ and N samples, we define the discrete

Fourier transform as foloows:

ℎ𝑘 =
1
𝑁�𝐻𝑛𝑒−2𝜋𝑖𝑘𝑛/𝑁

𝑁

𝑛=1

𝐻𝑛 = �ℎ𝑘𝑒2𝜋𝑖𝑘𝑛/𝑁
𝑁

𝑘=1

With the following relationship between the discrete and continuous case:

ℎ(𝑡𝑘) =
1
∆ ℎ𝑘

𝐻(𝑓𝑛) = ∆𝐻𝑛

126

The following chart shows how the time and frequency elements are related for the input

and output of four1():

Element # time frequency
1 0 0
2 Δ 1/NΔ
… … …
N/2 (N/2-1)Δ (N/2-1)/(NΔ)
N/2+1 (N/2)Δ ±1/(2Δ)
N/2+2 (N/2+1)Δ -(N/2-1)/(NΔ)
… … …
N-1 (N-2)Δ -2/(NΔ)
N (N-1)Δ -1/(NΔ)

(Table B.1) FFT accounting.

In general, time and frequency can be written as a function the array element number, ‘n’,

as follows:

𝑡(𝑛) = (𝑛 − 1)∆

𝑓 �𝑛 ≤
𝑁
2� =

𝑛 − 1
𝑁∆

𝑓 �𝑛 ≥
𝑁
2� =

𝑁 − (𝑛 − 1)
𝑁∆

For the discrete case of the reverse FFT, note that the summation can be written a

constant plus the sum over positive frequencies plus the sum over negative frequencies.

In the case of the Nyquist frequency (1/2Δ) for both the sum over positive and negative

frequencies, the exponential becomes:

𝑒±𝜋𝑖𝑡(𝑘)/∆

Because t(k)/Δ is an integer it follows that only the even cosine part survives.

Thus the sign of the Nyquist frequency is ambiguous. In FITSFILTER for all forward

FFTs, the input is strictly real (the complex portion of the input array is set to zero), so

the result has the following symmetry:

127

𝐻(−𝑓𝑛) = [𝐻(𝑓)𝑛]∗

Because the input array has N real elements and the output array has N real and

N complex elements, it is implied that some of the information in the output array is

redundant. The above symmetry shows that the negative frequencies are related to the

positive frequencies. Specifically, each frequency element is split equally between the

positive and negative frequencies so when plotting, it suffices to plot the first N/2+1

elements where all of them except for the 0 and Nyquist frequency are doubled.

FITSFILTER.F

 FITSFILTER.F is the first code called by the FITSFILTER program. It has been

completely rewritten because the FITS Files data format differs so substantially from the

original FILter program. When FITSFILTER is initialized it first performs a check to

ensure that support Files required for the printing routine exists in the working directory.

If everything is in order, the user is prompted to enter the base name for the sweep File

and if a File of the form *_SWP.FITS (* denotes the base name) does not exist, the user

may retry other base names, or exit. When a base name associated with an existing File is

entered, the user has the option of running in one of two different possible modes: batch

or interactive. Listed on the console are the existing pixels on the sweep File. By

selecting the fictional pixel, ‘-1’ (technically any negative integer) batch mode initialized

and all existing pixels are automatically analyzed without further user input. If an existing

pixel is selected, FITSFILTER runs in interactive mode strictly for the selected pixel.

Should a PUL File associated with the base name not exist, one is created before

128

continuing. In general interactive mode should be the first option exercised on a new data

set to check that automatically generated parameters are acceptable (and tweak them

accordingly). Interactive mode is also beneficial for diagnosing problems, which will be

covered in a later section. The subsequent descriptions of subroutines will assume

interactive mode.

 The analysis subroutines exist in a hierarchical order where most will not run out

of order. This process is controlled by the ‘filtprog’ (filter progress) variable which is

updated after successful completion at each step of analysis. At this point, in interactive

mode, the console lists menu options to call subroutines based on the value of filtprog.

The only subroutines which may be called at any point is the first plotting routine which

allows any sweep contained on the File to be plotted. Note that filtprog is not regressively

updated, so any changes resulting from rerunning a subroutine will not automatically

propagate to the most recently run subroutine with rerunning the intermediate analysis as

well. The only acceptation to this occurs in the double pulse detection subroutine when

no windowed signals survive since this will cause misbehavior of subsequent analysis.

 Note that option: “ (u) update parameters;” is not associated with a subroutines

and runs within FITSFILTER.F. It checks that the values saved in the primary HDU of

the PUL Files correspond to the values in the parameter File. If this is not the case the

values in the HDU are updated with the values in the parameter File. This allows fine

tuning of parameters without the requiring the user to delete the FIL File and rerun the

analysis.

129

FILCHR.F

 FILCHR.F is the first of the analysis subroutines required for FITSFILTER.

Characterizing parameters for each sweep are calculated and added to the PUL File

which will be refined and ultimately contribute to obtaining an energy spectrum. Before

analysis proceeds, the console lists some options which allow the user to manually fine

tune the parameter calculation process. The options given are:

• (0) Another pulse

• (1) Set new position of maximum

• (2) Change low-pass frequency

• (3) Enter pulse number to jump to

• (4) Proceed with analysis

In addition, the first sweep is plotted with a line indicating which array element contains

the average maximum of all the sweeps. Option (0) and (3) are used to explore the

sweeps to make sure that the maximum array element is reasonable. This may not be the

case if there were a significant number of sweeps triggered by noise or if there is

microphonic contamination, in which case a new position may be selected by option (1).

Depending on the amount of noise associated with the data set being analyzed, option (2)

can be called to change the low-pass frequency to a larger value if there is significant

noise or a lower value is there is negligible noise. Note that changing the lowpass

frequency significantly will likely require a new maximum position to be selected since

130

the newly filtered pulses may have a comparably different shape. Once everything is

satisfactory, all that is left is to proceed with analysis.

GNUSEL.F

 Originally named idlsel.f in the original filter program, GNUSEL performs the

same tasks but uses gnuplot rather than IDL to provide plots (as do all subroutines in

FITSFILTER). The main purpose of this subroutine is to plot histograms of the values

calculated in FILCHR.F to allow limits to be set on will be considered acceptable values.

The first time this routine runs, the limits are selected automatically (based on values in

the PARAMETER.FITS File), but each histogram is still plotted allowing further

modification of the limits. The first four plots have very similar user options:

• (1) Change binning (‘# of bins used’);

• (2) Mark limits;

• (3) save data;

• (4) save plot;

• (9) continue [default];

Option (1) allows the resolution to be increased or decreased depending on the amount of

statistics available. If the current limits displayed are not acceptable, option (2) may be

selected. Options (3) and (4) save the data (into a *.dat File) or save the plot displayed (in

postscript format) respectively. The last option will proceed to the next plot.

131

The fifth and final plot displayed in this subroutine is a scatter plot rather than a

histogram. Each data pair consists of the low-pass filtered raw estimate of the energy

(lpamp) and the rise-time plotted on the x and y axis respectively. This pair of values

strongly characterizes each sweep allowing reasonable selection of the windowed signals

which will be used to calibrate the energy of all sweeps later on. There is more

information required here than with the histogram plots, so there are more options

available:

• (1) select k-alpha window;

• (2) select k-alpha energy; (‘current energy value’)

• (3) save data;

• (4) save plot;

• (5) count pulses in box;

• (6) select pulse classification limiting range;

• (9) continue [default];

Note that k-alpha just denotes the sweeps which will be used for calibration. The

window is automatically calculated just as the limits are with the previous histograms,

and can similarly be refined via option (1) where the window refers to selecting limiting

values on both the x and y axis forming a window/box. In order to properly calibrate the

sweeps, the energy of the windowed signals is required (the default/current-selection is

shown to the right of this option in units of keV). Options (3) and (4) perform the same

operations as with the histograms. Option (5) counts the total number of calibration

132

sweeps selected. Option (6) is a new addition and was added based on the fact that it may

not be beneficial to use all of the windowed signals for calibration if there is a region

with excessive noise (or others problems). For example, in the case of a sounding rocket,

you may only want to use calibration Pulses detected after the engine has shut off. A plot

showing the low-pass filtered raw energy for each sweep as a function of time allows the

user to select a clean region from which to use the calibration sweeps (along with the

option to remove any selections). After continuing, the option to either redo all of the

selection or to continue is listed. Upon continuing, analysis with GNUSEL is complete.

FILWIN.F

Based on the limiting values chosen in GNUSEL.F, finwin.f categorizes sweeps

accordingly with the following binary classification:

• Bit 0: Good sweeps: The default value is zero. All sweeps that are not flagged

will maintain this value.

• Bit 1: Windowed signals: Flagged for all pulses that are within the k-alpha

window selected in the scatter plot of GNUSEL.F.

• Bit 2: Noise: Flagged for all sweeps whose maximum and minimum excursions

are below the signal threshold set in GNUSEL.F.

• Bit 3: Baseline out of range: Flagged for all sweeps where the average voltage

of the pre-trigger region is outside of the allowed values set in GNUSEL.F.

133

• Bit 4: Accidental trigger: Flagged for all sweeps whose software calculated

trigger channel is outside of the range selected in gmnusel.f.

• Bit 5: Multiple pulses: This is not determined until the next subroutine

DBLFIL.F which identifies double pulses.

• Bit 6: Excessive noise in pre-trigger region: Flagged for all sweeps where the

difference of the maximum and minimum excursion in the pre-trigger region (the

pre-trigger variation) is outside of the range selected in GNUSEL.F

• Bit 7: Bad pulse shape: This is not determined until the next subroutine

DBLFIL.F.

The variable that stores all of this information for each pulse is the iclass parameter. For

example, a windowed signal that is a double pulse would have the value: 21 + 25 = 34.

This allows a single integer to uniquely and completely describe a given sweep.

Ultimately, in regards to obtaining final results, we are only concerned with sweeps with

an iclass value no larger than four. These sweeps are generally referred to as “good

sweeps” whereas sweeps with a higher value are similarly referred to as “bad sweeps”.

The bas sweeps are useful for identifying potential issues with the detector but otherwise

are generally not considered meaningful.

 If in GNUSEL.F, during the scatter plot a pulse classification limiting range was

selected sweeps outside of this range will be treated slightly different (the description

above holds for all sweeps within the limiting range). All good windowed signals outside

of the range are reclassified to zero and all good noise is reclassified to one. The net

134

effect of this reclassification is that these sweeps are still good (iclass is at most four), but

are not used to create the optimum filter.

DBLFIL.F

 The main purpose of this subroutine is to identify double pulses. The following

description applies to the “standard algorithm” which is a somewhat modified version of

the original filter version. It is assumed that the detector used has a relatively linear

response so that all pulses are very similar to the windowed signals. The shape of pulses

we are analyzing have characteristically sharp rise times so that when a pulse is detected,

there is a large voltage change over a small time, thus we use the first derivative of

sweeps to identify double pulses.

 For consistency, all sweeps are prepared similarly. The sweeps first have their

baseline removed and are inverted (so that the maximum excursion of a pulse is positive).

Then, they are low-pass filtered and their derivative is calculated. The nth element of a

simple discrete derivative is given as:

𝑉𝑛+1 − 𝑉𝑛
𝑡𝑛+1 − 𝑡𝑛

However, because the denominator is constant for all n and because the overall scale is

not important we simply just use the numerator. For simplicity, in this section, it is

assumed that all sweeps analyzed with this algorithm are processed as described above

even if not explicitly stated.

 The basic procedure in its simplest representation proceeds as follows: (1) Obtain

a threshold derived from the prepared noise based on the average RMS value. (2)

135

Average the windowed signals to create a template. (3) Take the difference of this

template with the signal being analyzed (normalized to the same maximum voltage). This

difference should be relatively flat and essentially just represent the noise on the pulse so

that anything above the threshold from step (1) identifies a double pulse.

However, there may be low energy pulses in the noise or double pulses in the

windowed signals which may through off the algorithm. In order to avoid this possibility

step (1) and (2) are performed iteratively. More specifically we read nsigma (originating

from the parameter File) which denotes the lowest multiple of the RMS noise used as a

threshold: cutoff. We then use 16 times this value as a threshold and search for any good

noise sweeps with an excursion above this threshold (since sweeps maximum are

positive). If any are found they are reclassified as a pulse (iclass is set to 0) and the RMS

voltage is recalculated and the pulses are reanalyzed with the same threshold. If none are

detected the threshold is halved and the process is repeated until the threshold is just

cutoff (which is different than the original value if any pulses were found in the noise

sweeps). The final result is a cleaner value for the cutoff. For step (2) we precede

similarly but instead of refining cutoff, we are refining the template by removing double

pulses in the windowed signals by performing step (3) iteratively on just the windowed

signals. Finally step (3) is performed on all pulses (except for noise and windowed

signals since those have already been analyzed) with the cleaner template.

136

PLOTSWP.F

 This subroutine allows the user to view any of the sweeps on the pixel being

analyzed. It has two modes: full and limited. If the pulses have been classified (finwin.f)

then full mode will run otherwise option will be limited. In full mode the available

options are:

• (1) Plot by class;

• (2) Select plot range;

• (3) Remove plot range;

• (9) Exit;

Option (1) allows the user to explore sweeps based on their classification. This

can be done inclusively or exclusively. Inclusive will show all plots that have the selected

classification whereas exclusive shows sweeps that only have the selected classification.

All of these features are useful to visually confirm whether or not sweeps are being

properly classified (particularly good windowed signals). Option (2) is very robust and

allows the user to select the parameters plotted on the x and y-axes of a scatter plot and

select a windowed region to limit what is shown in option (1). This is particularly useful

for pixels with very large amounts of sweeps. Option (3) simply removes the range

selected in option (2) and option (9) returns to the main FITSFILTER menu. In limited

mode, the user only allowed to plot the sweeps without any additional options.

137

FILAVG.F

 This subroutine is the union of two subroutines distinct in the original filter

program. The main purpose of this routine is to create the optimum filter, stored in the

FIL File, which will be used to extract the energy of each sweep. If a FIL File does not

exist at this point, i.e. this is the first time running FILAVG for a File, it will be created.

 To create the optimum filter, we need several ingredients. First, the windowed

signals are averaged in the time domain then converted to the frequency domain. Then

the noise is converted to the frequency domain, squared (absolute value squared so the

result has no imaginary component), then averaged. The average signal is divided by the

squared noise to obtain the template in the frequency domain. Along the way, several

easily constructed arrays relating to the optimum filter and the average noise and signals

are later saved into the FIL File for future reference.

 Before saving the frequency domain optimum filter, the option is given to apply a

low-pass filter with a user input frequency and pole. The optimum filter is displayed as a

visual aid in determining whether or not to apply a low-pass filter. If one is applied, it

may be saved to File. Finally, the user may display and or save the entire array created.

All plots displayed may be recovered from the FIL File if desired.

138

FILFIL.F

 The main purpose of this subroutine is to use the optimum filter created in

FILAVG.F to extract the energy of sweeps. Only the maximum element of the

convolution of the sweep being analyzed and the optimum filter are required so it is not

necessary to calculate the entire function. In principal we already know the phase for this

element, so we simply calculate the convolution explicitly. In reality we may be off

slightly so we the supposed maximum of the convolution and its neighboring elements. If

either of it neighbors is larger, this directly indicates that we are not at a local maximum

and the calculation is performed again with the phase shifted accordingly. Once the

maximum value is obtained, we have an un-scaled energy for the sweep. This value can

be slightly improved by assuming it and its two neighbors lie on a parabola and taking the

maximum of the parabola.

 To properly scale the energy we use the un-scaled energy from the average

windowed signal. Because the windowed signals have a known energy (input from

GNUSEL.F), a scale factor can be created and all other un-windowed pulses, including

the noise can have their energy extracted. However, further correction may be applied.

These are handled in the next subroutine.

139

ESCALE.F

 This subroutine applied corrections to the energy calculated in FILFIL.F. The first

energy correction accounts for gain drift. As the data stream for a given File is read from

a detector, often times over the total acquisition time, the gain (baseline) slowly drifts.

This can usually be approximated as linear in nature (other possibilities are not accounted

for here). In order to measure the gain drift, we examine the energy of the windowed

signals as function of their time (the time they were trigger in the data stream). Via linear

interpolation, we fit the data with a line whose parameters are displayed. The user may

decide to apply the correction or to skip it. Either way, the gain drift energy correction

column is updated (egdc) is updated since it will be used for the next correction.

 The next correction that can be applied is the non-linear correction. If there is a

second calibration peak of known energy, a parabolic correction may be applied. From a

histogram of the gain drift correction energies, the second calibration peak may be

selected and its energy inputted. Before applying the correction, a consistency check is

performed to make sure the entries are physically possible (for example the second

calibration peak cannot be to the right of the original with lower energy). The user may

decide to apply this correction or to simply proceed without it. In both cases, the

nonlinear correction column is updated with the new values or just copied from the gain

drift correction. Note that in automatic mode, only the gain drift correction is applied.

140

FILPLT.F

 This is the final analysis subroutine called by FITSFILTER.F. It allows the user to

plot either a histogram or scatter plot with any of the characteristic sweep parameters.

Further, these plots can be limited based on the sweeps class. In most cases the final

result desired is a histogram of the nonlinear corrected energy (contains the most precise

energy even if no correction were applied in which case it is the same as the raw energy).

The can be plotted with any user inputted range and resolution (binning).

PLOT.F

 This subroutine handles all of the plotting involved with FITSFILTER, for which

only three functions are used: plotdata, plot2, and killplot. Plotdata handles plots of single

functions with various options for the x and y-axis and plotting style. Plot2 only differs

from plotdata in that it allows to different functions sharing an axis to be displayed on the

same plot. Killplot simply closes the last open plot, but due to the method used, cannot

close previous plots. Thus any call to one of the plotting functions should always be

followed by killplot otherwise plots will remain even after ending FITSFILTER.

141

Appendix C

Contour Plots from Analysis of Chapter 6

 Due to the large number of contour plots resulting from the analysis on the

simulated double pulses data, the contour plots will be located here to improve

readability. The parameter space explored includes two different energy resolutions (2and

5 eV energy resolution with blue and red contour plots respectively); three different

double pulse time separations (1, 2, and 5µs); clean vs. dirty depending on whether

double pulses are allowed to contaminate the template files. The above parameter space is

considered for the standard and optimum filter algorithm. In addition the efficiency

resulting from dirty sets when combining both algorithms is explored (in both possible

orders). The format used for most comparisons will be to have the optimum filter plot

(top) compared to the standard algorithm (bottom). The list below quickly summarizes

the content of each figure

Clean with 5 eV Energy Resolution (compare efficiency of algorithms)

• Fig. 1: 1µ double pulse separation

• Fig. 2: 2µ double pulse separation

• Fig. 3: 5µ double pulse separation

Dirty with 5 eV Energy Resolution (compare efficiency of algorithms)

• Fig. 4: 1µ double pulse separation

• Fig. 5: 2µ double pulse separation

• Fig. 6: 5µ double pulse separation

142

Clean with 2 eV Energy Resolution (compare efficiency of algorithms)

• Fig. 7: 1µ double pulse separation

• Fig. 8: 2µ double pulse separation

• Fig. 9: 5µ double pulse separation

Dirty with 2 eV Energy Resolution (compare efficiency of algorithms)

• Fig. 10: 1µ double pulse separation

• Fig. 11: 2µ double pulse separation

• Fig. 12: 5µ double pulse separation

Comparison of efficiency using both algorithms together at 5 eV Energy resolution

• Fig. 13: 1µ double pulse separation

• Fig. 14: 2µ double pulse separation

• Fig. 15: 5µ double pulse separation

Comparison of efficiency using both algorithms together at 2 eV Energy resolution

• Fig. 16: 1µ double pulse separation

• Fig. 17: 2µ double pulse separation

• Fig. 18: 5µ double pulse separation

143

Fig. C.1; Clean sets at 1µs pulse separation with 5 eV energy resolution.

144

Fig. C.2; Clean sets at 2µs pulse separation with 5 eV energy resolution.

145

Fig. C.3; Clean sets at 5µs pulse separation with 5 eV energy resolution.

146

Fig. C.4; Dirty sets at 1µs pulse separation with 5 eV energy resolution.

147

Fig. C.5; Dirty sets at 2µs pulse separation with 5 eV energy resolution.

148

Fig. C.6; Dirty sets at 5µs pulse separation with 5 eV energy resolution.

149

Fig. C.7; Clean sets at 1µs pulse separation with 2 eV energy resolution.

150

Fig. C.8; Clean sets at 2µs pulse separation with 2 eV energy resolution.

151

Fig. C.9; Clean sets at 5µs pulse separation with 2 eV energy resolution.

152

Fig. C.10; Dirty sets at 1µs pulse separation with 2 eV energy resolution.

153

Fig. C.11; Dirty sets at 2µs pulse separation with 2 eV energy resolution.

154

Fig. C.12; Dirty sets at 5µs pulse separation with 2 eV energy resolution.

155

Fig. C.13; Comparison of results running both algorithms on the same data set with 1µs
double pulse separation and 5 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

156

Fig. C.14; Comparison of results running both algorithms on the same data set with 2µs
double pulse separation and 5 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

157

Fig. C.15; Comparison of results running both algorithms on the same data set with 5µs
double pulse separation and 5 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

158

Fig. C.16; Comparison of results running both algorithms on the same data set with 1µs
double pulse separation and 2 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

159

Fig. C.17; Comparison of results running both algorithms on the same data set with 2µs
double pulse separation and 2 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

160

Fig. C.18; Comparison of results running both algorithms on the same data set with 5µs
double pulse separation and 2 eV energy resolution: standard then optimum filter
algorithm (top); optimum filter then standard algorithm (bottom).

161

References

1K. Kodama et al., Phys. Rev. D 78, 052002 (2008).

2B. Kayser, arXiv:hep-ph/0211134v1

3K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial

update for the 2012 edition (URL: http://pdg.lbl.gov). (Neutrino Mass, Mixing, and

Oscillations)

4P. Stephen, Proceedings of the 3rd International Workshop on NO-VE: Neutrino

Oscillations in Venice, Venice, FERMILAB-CONF-06-248-T (1996) pp. 115-125.

5Y. Fukuda et al.,arXiv:hep-ex/9812014v2

6S. Hannestad et al., arXiv:1004.0695.4

7M.C. Gonzalez-Garcia et al., arXiv:1006.3795

8H. Klapdor-Kleingrothaus, I.V. Krivosheina, Mod. Phys. Lett. A21 (2006) 1547-1566

9H. Klapdor-Kleingrothaus, A. Dietz, and I.V. Krivosheina, Fnds. Of Phys. 32 no. 8

(2002)

10C. Kraus, et al., Eur. Phys. J. C40 (2005).

11V. Lobashev, et al., Nucl. Phys. B (Proc. Suppl.) .

12F. Gatti, Nucl. Phys. B Proc. Suppl., 91, 293 (2001).

13M. Sisti, et al., Nucl. Instr. and Meth., A520, 125 (2004).

162

14S.H. Moseley, J.C. Mather, and D. McCammon, J. Appl. Phys. 56, 1257 (1984).

15M. Galeazzi, and D. McCammon, arXiv:astro-ph/0304397v1

16J.W. Appel and M. Galeazzi, arXiv:physics/0507011v2

17K. Irwin, Appl. Phys. Lett., 66, 1998 (1995)

18A. Monfardini et al., AIP Conf. Proc., 882 (2007).

19A. Nucciotto, O. Cremonesi, and E. Ferri AIP Conf. Proc. 1185, 689 (2009); doi

10.1063/1.3292435

20F. Gatti et al., J. of Low Temp. Phys., 151 (2007); doi 10.1007/s109090-008-9716-7

21S. Agostinelli, et al., Nucl Instr. andMeth. A506, 250 (2003); IEEE Transactions on

Nuclear Science 53 No. 1,270 (2006).

22M. Galeazzi et al., AIP Conf. Proc. 1185, 558 (2009); doi 10.1063/1.3292403

23T. Saab, et al., J. Appl. Phys. 102, 104502 (2007).

24J.D. Armstrong, J. of Low Temp. Phys.; doi 10.1007/s10909-012-0570-2

	University of Miami
	Scholarly Repository
	2012-05-03

	Data Analysis and Double Pulse Detection for the MARE Experiment
	Jonathan D. Armstrong
	Recommended Citation

	1_Cover_sig_abstract
	DATA ANALYSIS AND DOUBLE PULSE DETECTION FOR THE MARE EXPERIMENT
	ARMSTRONG, JONATHAN D. (Ph.D., Physics)
	Abstract of a dissertation at the University of Miami.

	JDA_thesis-2of3
	JDA Thesis

