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With their existence first proposed in 1930, neutrinos have subsequently proven 

themselves as experts at avoiding detection.  Until early this century, it was not even 

known if neutrinos were massive particles. With the results of neutrino oscillation 

experiments such as Super-Kamiokande and SNO, we now know that neutrinos have a 

non-zero mass. However, these experiments are only sensitive to the difference of the 

square of neutrino mass eigenstates and do not provide sufficient information to resolve 

the neutrino mass hierarchy.  Several complimentary methods are being explored to 

obtain an absolute mass scale, but the most promising model-independent approach is 

high precision spectroscopy of the 𝛽-spectrum endpoint (Q-value). In general, all energy 

from the decay is detected except for that of the neutrino, which results in a correction 

near the endpoint of the spectrum that is related to the neutrino rest mass. To detect this 

difference requires excellent energy resolution. This may be obtained by utilizing a 

scalable approach consisting of microcalorimeter arrays with the 𝛽-decay source 

embedded in the absorber. Two such experiments, Troitsk and Mainz have been able to 

set an upper limit of 2.3 eV on the neutrino mass, but higher precision is needed. MARE 

(Microcalorimeter Arrays for a Rhenium Experiment) is the successor to these 

experiments and plans to obtain resolution in the sub-eV range.  

 



Using an analysis program developed at the University of Miami, we have been able 

to verify the creation of holmium-163 which has a higher activity than rehenium-187. A 

landmark in the MARE project, this higher activity can provide better statistics and 

reduces the live time and array size requirements for a given sensitivity. One of the 

primary limits on the sensitivity of the MARE project, related to the source activity, is the 

pile-up spectrum, which is the result of unresolved double pulses. We have developed a 

platform to explore the efficiency of different algorithms at detecting these difficult to 

resolve double pulses. Using this platform, we characterize the efficiency of two different 

algorithms (one of which we developed for this exact purpose). The resulting analysis 

demonstrates that it is possible to remove a significant fraction of these events with 

minimal false positives. By utilizing these algorithms, MARE will be able to achieve 

improved sensitivity yielding a higher precision neutrino mass value.    
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Chapter 1 

Introduction to Neutrinos and Their Detections 

 

1.1 First Detection 

 

 The existence of neutrinos was first postulated by Wolfgang Pauli in 1930 in 

order to reconcile experimental results with the current model of beta decay. Without 

including the neutrino, a single energy peak is expected for the beta spectrum 

(proportional to the difference of the masses of the parent and daughter particles). 

However, experimental results were in disagreement with this model and demonstrated a 

continuous spectrum with energies up to the expected peak. The existence of a new 

particle that possesses no charge and that caries energy undetected out of the detector 

system was plausible, but it took 20 years until its existence was actually verified. In 

1950, Fred Reines and Clyde Cowan took on the challenge and set out to detect neutrinos 

in what is now known as the Cowan-Reines neutrino experiment. The detection method 

took advantage of the inverse beta decay reaction: 

𝑝+ + �̅�𝑒 = 𝑛0 +  𝑒+  (1.1) 

where a proton and antineutrino interact to form a neutron and a positron. The positron 

quickly reacts with an electron annihilating each other resulting in the detectable release 

of two gamma rays.  
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1.2 Neutrino Flavors and the Standard Model 

 

 With the discovery of muons in 1937 ultimately came the discovery of muon 

neutrinos via observations of muonic decay. More recently, in 2000, the existence of tau 

neutrinos was confirmed by the DONUT (Direct Observation of the NU Tau) 

experiment.1 It is generally believed that there are at least three different types of 

neutrinos. The three experimentally verified neutrinos are each associated with a charged 

lepton and interact via the weak nuclear force. It is possible that there are additional 

neutrino flavors that are not coupled to any charged leptons. These are known as sterile 

neutrinos. 

In the same sense that we consider atoms to be the building blocks of matter, the 

“elements” of the standard model are the building blocks of atoms (as well as the carriers 

of force, excluding gravity). The standard model, finalized in the 1960’s, has been proven 

to be an invaluable tool for particle physicists. Many of the particles were initially 

theoretical and were only later experimentally verified, with The Higgs boson as the last 

remaining unverified element.  

 



3 
 

 
 

 

(Fig. 1.1) Standard model elementary particles and gauge bosons. 
 

The standard model consists of groupings of fermions and bosons along with their 

respective antiparticles (some of which are their own antiparticle). The fermions are 

grouped into three columns, with the first column representing the first generation etc. 

Higher generations (the second and third) are unstable except in very high energy 

environments and rapidly decay into their first generational counterparts. Neutrinos are 

the exception to this. As a result, most of the matter we are familiar with is some 

combination of first generation fermions. The fermions can further be divided into 

generational pairs, or doublets, whose absolute total charge difference is equivalent to the 

absolute charge of an electron. For the quark pairs (𝑢, 𝑑), (𝑐, 𝑠), and (𝑡, 𝑏), the first 

element possesses fractional charge 2/3 and the second element possesses fractional 

charge −1/3. With the possible exception of very high energy environments (early big 

bang) quarks do not exist independently, but rather are bound together in composite 

structures (baryons corresponding to three quark combinations, and mesons 

corresponding to quark-antiquark pairs). For example, the neutron consists of one up and 
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two down quarks (𝑢𝑑𝑑) and thus has zero net charge and a proton consists of two up and 

one down quarks (𝑢𝑢𝑑) and has a net charge of 1. For the lepton pairs (𝜈𝑒 , 𝑒), (𝜈𝜇 , 𝜇), 

and (𝜈𝜏 , 𝜏) the first element is a neutrino and has no charge, and the second elements is 

the associated charged lepton. Each generation of leptons can be referred to by their 

flavor, designated by the name of the associated charged particle. For example, the 

second generation neutrino has muon flavor. 

The bosons are the force carriers for the electromagnetic, strong, and week force. 

If two given fermions can interact via a certain boson, then their interactions are 

characterized by the associated force. For example, fermions that interact via exchange of 

photons are interacting electromagnetically. In the case of neutrinos, the Z and W bosons, 

collectively mediating the electroweak force, are of interest. More specifically we want to 

know the types of interactions that produce neutrinos and the ways in which the resulting 

neutrinos can interact and thus be detected. 

 

1.3 Sources of Neutrino Radiation  

 

• Electron Neutrino (𝝂𝒆) 

 
 Electron neutrinos can be produced from nuclear reactions such as β-decay or 

electron capture. β-decay can further be divided into 𝛽− and 𝛽+-decay. In a fundamental 

sense, 𝛽−-decay is the decay of a down quark to an up quark: 

𝑑(𝑑𝑢) → 𝑢(𝑑𝑢) + 𝑊−; (1.2) 

𝑊− → 𝑒− + �̅�𝑒 . (1.3) 
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The neutron (𝑑𝑑𝑢) decays into a proton (𝑢𝑑𝑢) and emits a 𝑊− boson. The emitted 𝑊− 

boson quickly decays into an electron and an anti-electron neutrino pair. This reaction 

occurs naturally for radioactive elements.  

The 𝛽+-decay on the other hand requires energy input to convert a proton to a 

neutron: 

𝑢(𝑑𝑢) +  𝐸𝑛𝑒𝑟𝑔𝑦 → 𝑑(𝑢𝑑) +  𝑊+; (1.4) 

𝑊+ → 𝑒+ + 𝜈𝑒 . (1.5) 

Again, the emitted 𝑊+ boson (now with positive unit charge) decays into a particle 

antiparticle lepton pair such that electrical charge is conserved.  

The electron capture reaction occurs for proton rich elements and is the result of 

an inner core proton absorbing an inner core electron. Again, this reaction is mediated by 

a W boson and has two interpretations that are equally valid depending on whether the 

proton or the electron emits the W boson. The net effect is: 

𝑢(𝑑𝑢) + 𝑒− → 𝑑(𝑑𝑢) +  𝜈𝑒. (1.6) 

 

• Muon Neutrino (𝝂𝝁) 

 

 Muons are not naturally created by nuclear processes because the energy required 

to produce one is insufficient. They may however be formed as the result of high energy 

cosmic radiation colliding with atmospheric particles (or similarly in a particle 

accelerator).  The resulting particle shower is known as atmospheric radiation. As stated 

previously, fermions in the second generation are unstable and ultimately decay in first 
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generation particles. There are various possible decay modes, but the most probable result 

is the emission of neutrinos (depending on the muon’s charge): 

𝜇− → 𝜈𝜇 + 𝑊− → 𝜈𝜇 + 𝑒− + �̅�𝑒; (1.7) 

𝜇+ → �̅�𝜇 + 𝑊+ → �̅�𝜇 + 𝑒+ + 𝜈𝑒 . (1.8) 

 

• Tau Neutrino (𝝂𝝉) 

 

 Similar to the case of the muon neutrino, the tau neutrino is the result of a tau 

particle decay. These particles require even more energy than what is required to produce 

a muon and as a result have many available decay modes, some of which produce tau 

neutrinos (as well as the other two types). Unique to the charged leptons, tau particles 

have sufficient energy that they may occasionally decay into a hadron (composite quark 

particle). We are not too concerned with the specific modes of decay resulting in tau 

neutrinos and will consider it sufficient to note that they are the result of the tau particle 

decay. 

 

1.4 Neutrino Interactions 

 

 Understanding neutrino interactions is important because they ultimately provide 

us with potential detection channels. Neutrinos possess no charge, are massive (as we 

will show soon) but very light, and only interact via the weak nuclear force. Because of 

this, they are extremely difficult to detect and tend to require massive detectors with long 

live-times. We are restricted to observing them through interactions that ultimately result 
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in a detectable charged particle or the nuclear metamorphosis of elements. These can be 

divided into two types of reactions which are (1) the result of electron scattering, and (2) 

the result of nucleon absorption.  

 Electron scattering is mediated by the electroweak bosons (W & Z), but the net 

effect is an exchange of momentum between the neutrino and an electron previously 

bound to a molecule/atom. This exchange is possible between any of the three neutrinos 

(and their antiparticles), but more likely for the electron flavor.  In the case of an electron 

neutrino, the reaction is simply written as: 

𝑒− +  𝜈𝑒 → 𝑒− +  𝜈𝑒 . (1.9) 

The newly freed electrons tend to have relativistic velocities, which when properly taken 

advantage of, allows detection. 

 There are different ways a nucleon may absorb a neutrino, some of which 

completely absorb the neutrino while the others re-emit it, known respectively as a 

charged current interaction (CC) or a neutral current interaction (NC).  CC interactions 

are mediated by the charged W boson and have different energy thresholds depending on 

which flavor of neutrino is involved. One potential reaction may be written as: 

𝜈𝛼 + 𝑑(𝑑𝑢) → 𝑢(𝑑𝑢) + 𝑙𝛼, (1.10) 

where 𝛼 = {𝑒,𝜇, 𝜏} and 𝑙𝛼 is the associated charged lepton. In most cases, the emitted 

lepton has insufficient energy to produce radiation, but for a sufficiently pure medium, 

the modified elements may be counted in order to determine the integral neutrino flux 

that occurred over the detector live-time. Another potential reaction, involving only 

electron neutrinos, is the CC inverse beta decay: 

𝑝+ + �̅�𝑒 → 𝑛0 +  𝑒+. (1.11) 
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By taking advantage of reactions involving one or both of the resulting daughter particles, 

the electron neutrino may be detected 

NC reactions are coupled with the electrically neutral Z boson and only involve 

an energy transfer from the neutrino to the nucleon. This reaction takes place at the same 

rate regardless of neutrino flavor. In the case of a heavy water nucleus (deutron), this 

interaction breaks up the nucleon into its constituent proton and neutron: 

𝜈𝛼 + 𝐷 → 𝑝+ + 𝑛0 + 𝜈𝛼, (1.12) 

with the same convention as above and with 𝐷 representing the heavy water nucleus.  

 

1.5 The Solar Neutrino Problem and Neutrino Oscillations 

 

 In the 1960’s, the science of detecting neutrinos had advanced to the point where 

detectors were able to resolve neutrinos emitted from the solar core. Results showed 

neutrino fluxes that were one third to one half of what was expected based on calculation 

using the standard solar model. This discrepancy between theory and experimental results 

is known as the solar neutrino problem. Its resolution required revision of our 

understanding of neutrinos or of the solar model (or possibly both)! At the time, the 

physics of solar processes was much better understood than that of neutrinos and it was 

ultimately shown through experimentation that it was our understanding of neutrinos that 

was incomplete (and still is). The solution to the solar neutrino problem lies in a 

phenomenon known as flavor oscillations.  

 Simply stated, neutrino flavor oscillations refer to the ability of neutrinos emitted 

as one flavor to be detected as another. This is a purely quantum mechanical effect that 
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results from the flavor eigenstates (𝜈𝑒 , 𝜈𝜇, 𝜈𝜏) not directly coinciding with the mass 

eigenstates (𝜈1, 𝜈2, 𝜈3). This only occurs if neutrinos are massive (have a nonzero mass). 

Each flavor eigenstate can be represented as a linear combination of the different mass 

eigenstates resulting in a 3 × 3 unitary matrix. The probability of a neutrino emitted as 

one flavor and being detected as another flavor is of particular interest. The calculation of 

this probability for neutrinos traveling in a vacuum is outlined in the paper, “Neutrino 

Mass, Mixing and Flavor Change”,2 and yields the result: 

𝑃�𝜈𝛼 → 𝜈𝛽� =  𝛿𝛼𝛽 − 4∑ ℛ�𝑈𝛼𝑖∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗∗ � sin2 �1.27∆𝑚𝑖𝑗
2 �𝐿

𝐸
��𝑖>𝑗 +

2∑ ℐ�𝑈𝛼𝑖∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗∗ � sin2 �2.54∆𝑚𝑖𝑗
2 �𝐿

𝐸
��𝑖>𝑗 , 

(1.13) 

where ∆𝑚𝑖𝑗
2 ≡ 𝑚𝑖

2 − 𝑚𝑗
2 is in 𝑒𝑉2; 𝐿, the distance the neutrino traveled from emission to 

detection (in the lab frame) is in 𝑘𝑚; 𝐸, the energy of the neutrino (in the lab frame) is in 

and 𝐺𝑒𝑉; ℛ(∗) and ℐ(∗) are the real and imaginary functions respectively; and 𝑈𝛼𝑖  is an 

element from the 3 × 3 mixing matrix mentioned above. The most important aspects of 

eq. 1.13 to note are its dependence on the distance traveled, its energy, the difference of 

the squares of its masses, and the mixing matrix. All of these dependencies must be 

considered when calculating the expected neutrino flux. In particular, if a detector is only 

sensitive to electron neutrinos, it will miss any neutrinos that have decayed to other 

flavors. This result must further be modified to account for neutrinos traveling through 

dense matter (such as the solar core). In this regime, the oscillation probabilities are 

altered by what is known as the Mikheyev-Smirnov-Wolfenstein effect and is the result 

of coherent scattering of the neutrinos.2 Taken together these effects would later explain 

the observed flux deficit. 

 The 3 × 3 flavor mixing matrix is typically parameterized as follows: 
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𝑈 = �
𝐶12𝐶13 𝑆12𝐶13 𝑆13𝑒−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿 𝑠12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 𝑐12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 𝑐23𝑐13

� × 

�
1 0 0
0 𝑒𝑖∅1 0
0 0 𝑒𝑖∅2

�, 

(1.14) 

where 𝑐𝑖𝑗 and 𝑠𝑖𝑗 represent sin (𝜃𝑖𝑗) and cos(𝜃𝑖𝑗) respectively for the mixing angles 

between the mas eigenstates of the same index and the rows and columns represent the 

neutrino flavor and mass eigenstates respectively. The three complex phases are related 

to CP-violation and do not affect neutrino oscillations.  

 In cases where one flavor transition dominates, it is possible to simplify the 

situation to oscillations between one neutrino flavor eigenstate and a quasi-two-neutrino 

(a linear combination of the remaining two flavor eigenstates). The resulting mixing 

matrix (ignoring irrelevant phase factors), becomes: 

� cos (𝜃) sin (𝜃)
−cos (𝜃) cos (𝜃)�. (1.15) 

In this regime, the analog of equation 1.13 gives: 

𝑃�𝜈𝛼 → 𝜈𝛽� = sin2(2𝜃) sin2 [1.27∆𝑚2(𝐿/𝐸)] (1.16) 

With 𝛽 ≠ 𝛼, and 

𝑃(𝜈𝛼 → 𝜈𝛼) = 1 − sin2(2𝜃) sin2 [1.27∆𝑚2(𝐿/𝐸)] (1.17) 

with the same conventions as used in eq. 1.13. Many neutrino experiments are 

parameterized in this way. In the case of atmospheric neutrino oscillations experiments, 

𝑃�𝜈𝜇 → 𝜈𝑒� (based on null results from short baseline neutrino reactor experiments)2 is 

very small so that the quasi-two-neutrino is approximately a tau neutrino. Thus, these 

experiments try to obtain values for 𝜃𝑎𝑡𝑚 =  𝜃23 and ∆𝑚𝑎𝑡𝑚
2 = ∆𝑚32

2 . In the case of solar 
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neutrinos, we are mainly concerned with the probability of an electron neutrino 

oscillating to a different flavor. The quasi-two-neutrino in this case is a linear 

combination of tau and muon neutrinos. These experiments try to obtain values for 

𝜃⊙ =  𝜃13 and ∆𝑚⊙
2 = ∆𝑚31

2 . Currently, the most accurate results for these parameters 

are given in the following table: 

sin2(2𝜃12) = 0.861−0.022
+0.026  ∆𝑚21

2 = (7.59 ± 0.21) × 10−5𝑒𝑉2 

sin2(2𝜃23) > 0.92 |∆𝑚32
2 | = (2.43 ± 0.13) × 10−3𝑒𝑉2 

sin2(2𝜃13) < 0.15 (𝐶. 𝐿 90%) ∆𝑚31
2 = ? 

 

(Table 1.1)3 Summary of current neutrino parameter values. 
 

 Until the neutrino mass eigenstates are resolved, there remains ambiguity as to 

their relative hierarchy. Based on our current knowledge of neutrinos, there remain three 

possibilities. If the mean mass of 𝜐1 and  𝜐2 (associated with solar neutrinos) is less than 

that of t 𝜐3 (associated with atmospheric neutrinos), then the spectrum is said to be 

“normal”, otherwise its hierarchy is “inverted” (see fig. 1.3). An additional possibility, 

known as the degenerate hierarchy occurs when the mass states are approximately equal.  
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(Fig 1.2)4 The neutrino flavor density of the normal and inverted hierarchy for the 
neutrino mass states (assuming conservation of CPT).  
 

 

1.6 Experimental Verification of Neutrino Oscillation 

 

 The first experimental validation of neutrino oscillations (and thus massive 

neutrinos) came in 1998 from the Super-Kamiokande collaboration in Japan. This 

experiment was directionally sensitive to muon flux from atmospheric radiation. To a 

reasonable approximation, the atmospheric neutrino flux is homogeneous. The angle 

relative to the zenith was divided into bins based on the cosine of this angle. After 

analyzing the data resulting from 537 detector live days, a muon neutrino flux deficit was 

found for upwards traveling neutrinos (through the bulk of Earth).  These neutrinos 

traveled a sufficient distance to allow the effects of neutrino oscillations to take place 

which resulted in the flux deficit.5 
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The most convincing evidence for neutrino oscillations came from the Sudbury 

Neutrino Observatory (SNO) in Canada. Similar to other neutrino detectors, SNO 

consisted of a large tank buried deep underground, but varied in its use of heavy water 

(deuterium) as the detection medium. By taking advantage of neutrino scattering 

interactions, SNO was capable of detecting the three neutrino flavors. Elastic scattering 

reactions of neutrinos with water/deuterium may produce Cherenkov radiation (as with 

Super-Kamiokande) whose angular distribution is peaked in the direction of the incident 

neutrino.  Further, the use of deuterium provided two more interactions to detect 

neutrons: neutral current (NC) and charged current (CC) interactions. NC interactions are 

the result of a neutrino separating a deuterium nucleus (deuteron) into its constituent 

proton and neutron. The NC reaction produces a neutron and is not sensitive to direction 

and may be the result of any of the three neutrino flavors. Detection occurs through the 

absorption of the free neutron which results in a gamma ray that generates Cherenkov 

radiation via Compton scattering. CC interactions are the result of interactions between 

an electron neutrino and a deuteron and transform a neutron into a proton emitting an 

electron that may be detected. By combining the three detection methods with statistical 

analysis, SNO was able to detect all three neutrino flavors and demonstrated that the 

deficit of electron neutrino flux was complimented by muon and tau electron flux. 

 Following these experiments, it became very well accepted that neutrinos are 

massive particles. However, neutrino oscillation experiments are only sensitive to the 

difference of neutrino masses squared and thus don’t give any information on actual mass 

of a given neutrino mass state. In order to achieve such results, a new type of approach is 
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needed. In the next chapter, we explore various methods and ultimately lead into the 

MARE experiment which provides a direct, model independent approach.  
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Chapter 2 

Absolute Neutrino Mass Experiments 

 

2.1 Overview 

 

 Experiments such as Super-Kamiokande and SNO have provided evidence for 

massive neutrinos via verification of neutrino oscillations. Even though these 

experiments yield valuable insight into neutrino physics they are only sensitive to the 

difference of the square of neutrino mass eigenstates. To obtain measurements of the 

absolute mass of neutrinos, a completely different approach is required. Promising 

possibilities for obtaining sub-eV resolution of the neutrino mass exist in several forms, 

each with their own pros and cons and fall into three categories: 

• Cosmological methods 

• Measurements on the neutrinoless double 𝛽-decay: 0𝜐𝛽𝛽 

• Measurement of the 𝛽/EC endpoint 

In this chapter we briefly describe all three methods with emphasis on the last, which my 

research falls under.  
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2.2 Cosmological Methods 

 

Cosmological methods for obtaining an absolute scale on the neutrino mass 

involve comparing cosmic microwave background data sets (Planck, WMAP, etc.) and 

galaxy surveys with models that are sensitive to neutrino densities. Such analysis is 

capable of placing a limit on the neutrino mass. More specifically, this method is not 

sensitive to neutrino flavor and only places a limit on the sum of neutrino masses: 

𝑚𝑡𝑜𝑡 = �𝑚𝑖

𝑁

𝑖

 
(2.1) 

where the sum over N allows for the possibility of sterile neutrinos. The current results 

obtained from such methods are however sensitive to model assumptions. Different 

assumptions can lead to results that vary by factors of 2 and 4!6,7 With this in mind, the 

limit of 𝑚𝑡𝑜𝑡 < 2.5𝑒𝑉 (95% confidence) was obtained using constraints set by the CMB 

and 2Df galaxy survey along with several other large scale astrophysical data sets.6 As 

our understanding of the early universe improves and we obtain improved data, so will 

this limit. However other means for determining the absolute scale of the neutrino mass 

exist and are currently being explored.  
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2.3 Measurement of the Neutrinoless Double Beta Decay 

 

 In general there are many double 𝛽-decay modes possible, but the 

existence of a neutrinoless double beta decay (0𝜐𝛽𝛽) is still somewhat uncertain though 

controversially suggested by results from the Heidelberg-Moscow experiment.8 The 

0𝜐𝛽𝛽 reaction: 

𝑁(𝐴,𝑍) → 𝑁(𝐴 + 2,𝑍 − 2) + 2𝑒− (2.2) 

requires that neutrinos are their own antiparticle (Majorana as opposed to Dirac). The 

related double 𝛽-decay (2𝜐𝛽𝛽 ) has been experimentally verified and only differs by the 

additional emissions of two neutrinos: 

𝑁(𝐴,𝑍) → 𝑁(𝐴 + 2,𝑍 − 2) + 2𝑒− + 2�̅�𝑒 (2.3) 

 Assuming the 0𝜐𝛽𝛽 exists, the absolute value of the neutrino mass states is related to the 

half life of elements that undergo such decay. The half life of 0𝜐𝛽𝛽 can be very large, on 

the order of 1025 years9 requiring large amounts of ultra pure source material with very 

high resolution detectors and excellent understanding of systematics. As with 

cosmological methods, the neutrino mass obtained from 0𝜐𝛽𝛽 experiments is a sum of 

the mass eigenstates. In this case, the sum is weighted with elements from the  3 × 3 

neutrino mixing matrix (often referred to as the Pontecorvo–Maki–Nakagawa–Sakata 

matrix or PMNS matrix for short). The resulting value is known as the effective 

Majorana mass and is described by the equation: 
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𝑚𝛽𝛽 = ��𝑈𝑒𝑖2 𝑚𝑖

3

𝑖=1

� 
(2.4) 

where 𝑈𝑒𝑖 represents elements from the PMNS matrix.  Due to the weighing of each mass 

term by 𝑈𝑒𝑖2  (more specifically from the CP phases), there is the possibility of cancelation 

which introduces model dependency into the results.  

 The half life of a potential 0𝜐𝛽𝛽 source is  proportional to the effective 

Majorana mass described above: 

𝑇1/2
0𝜐 ∝

1

�𝑚𝛽𝛽�
2 

(2.5) 

where the constant of proportionality depends on a phase space factor and the nuclear 

matrix element, with the latter introducing additional model dependence. In order to 

obtain this half life, a calorimetric measurement may be performed with the resulting 

energy spectrum yielding a continuous 2𝜐𝛽𝛽 spectrum and a peak from the 0𝜐𝛽𝛽 

reaction, whose width would only depend on the energy resolution (fig. 2.1). By counting 

events in the 0𝜐𝛽𝛽 peak, it is possible to then determine the half life of the source and 

thus perform a measurement on the effective Majorana mass. A successful experiment 

would not only allow determination of the neutrino mass hierarchy but would also verify 

the existence of the 0𝜐𝛽𝛽. 
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(Fig. 2.1)2I Representation of the 0𝜐𝛽𝛽 energy spectrum (right spike) and the 2𝜐𝛽𝛽 
energy which has the same form as eq. 2.2 but with an additional two anti-electron 
neutrinos emitted. 
 

 

 

2.4 Measurement of the 𝜷/EC Endpoint 

 

 This class of experiments attempts to resolve the effects of massive neutrinos near 

the Q-value (end point) of the 𝛽/EC-spectrum. Emitted neutrinos are easily able to escape 

detector systems removing energy in the process. The effect this has on the observed 𝛽-

spectrum is that the end point of the energy spectrum is shifted by an amount related to 

the rest mass of neutrinos given as: 

𝑚𝜈𝑒
2 = �|𝑈𝑒𝑖 |2𝑚𝑖

2
3

𝑖=1

 
(2.6) 
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In this case, there is no possibility for cancellation of mass terms in the sum. This means 

that experiments measuring 𝑚𝜈𝑒
2  through high precision spectroscopy are capable of 

determining the neutrino mass scale in a model independent way.  

 For such experiments, it is obviously desirable to measure the 𝛽-spectrum of a 

source with a high relative count rate near the Q-value. It turns out that the count rate in 

this area is proportional to the inverse cube of the endpoint energy. Three different 

isotopes are particularly favorable due to their very low endpoint energies: tritium ( 𝐻 3 ), 

rhenium ( 𝑅𝑒 
187 ), and holmium ( 𝐻𝑜 

163 ).  Their respective half-lives and Q-values are 

listed in table 2.1 below. 

 Half-life (years) Q-value (keV) 
tritium ( 𝑯 𝟑 ) 12.23 18.6 
rhenium ( 𝑹𝒆 

𝟏𝟖𝟕 ) 4.5×109 2.48 
holmium ( 𝑯𝒐 

𝟏𝟔𝟑 ) 4570 2.2-2.8 
 

(Table 2.1) half-life and Q-value for endpoint measurement candidates. 
 

 Tritium, with the highest decay rate was the first of the isotopes explored for 

neutrino mass experiments, lends itself to large scale detectors that are spatially separated 

from the source. Initial experiments suffered from significant systematic error due to 

interaction with the radiation before detection.  After the systematics involved were better 

understood, two experiments, Troitsk and Mainz, were able to set an upper limit on the 

neutrino mass of 2.3 eV.10,11 The successor to these experiments, KATRIN (Karlsruhe 

Tritium Neutrino experiment), plans to achieve sub-eV resolution of the neutrino mass at 

around 0.2 eV after three years of detector live-time. The approaches used for these 

experiments impose strict scaling laws for which KATRIN is the limit. This means that if 
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the neutrino mass (eq. 2.6) is below the resulting sensitivity achieved by KATRIN, only 

an upper limit will be obtained.  

 Due to their comparatively lower activity, the remaining two isotopes lend 

themselves to a different type of setup with the source embedded in the detector. This 

removes the systematic error problems that tritium experiments must contend with. The 

typical setup relies on arrays of detectors which allow for scalability of experiments. The 

feasibility of using Rhenium has already been demonstrated by the MANU and MIBETA 

experiments which were able to obtain an upper limit on the neutrino mass of about 15 

eV.12, 13 The successor to these experiments is MARE, which will be discussed in the next 

chapter. 
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Chapter 3 

Microcalorimeters Arrays for a Rhenium Experiment (MARE) 

 

3.1 Background 

 

 The goal of MARE (Microcalorimeter Arrays for a Rhenium Experiment) is to 

resolve the perturbation of the 𝛽/EC endpoint caused by massive neutrinos in order to 

obtain the effective mass of the electron anti-neutrino and resolve the neutrino hierarchy. 

This experiment varies dramatically from KATRIN in its systematics but plans to achieve 

a similar sensitivity (around .2 eV) by using detector arrays with embedded sources. The 

use of detector arrays provides the scalability while the embedded source removes the 

spatial separation and that was the source of systematic errors in KATRIN. Despite the 

acronym, both holmium and rhenium isotopes are candidates for this experiment and 

possess different pros and cons. The feasibility of MARE is currently being explored. 

Once the feasibility is sufficiently demonstrated the actual experiment will begin. 

 

3.2 Microcalorimeters 

 

 Microcalorimeters are a type of detector that take advantage of the first law of 

thermodynamics, using heat as a means of measuring the energy of radiation. The theory 
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of “ideal” microcalorimeters was developed in 1984 by Mosley, Mather, and 

McCammon14  and updated in 2003 by Galeazzi and McCammon to include non-ideal 

effects.15 Microcalorimeters are able to obtain the energy of a single event with very high 

resolution. Because of this and their scalable nature, microcalorimeters have been chosen 

for the MARE project. The basic model of a calorimeter is simple and consists of three 

main components: an absorber, a thermometer, and a heat sink (fig. 3.1). The role of the 

absorber, as implied by its name, is to absorb incident electromagnetic radiation (and 

other associated forms of energy for imbedded sources) and to convert it to thermal 

energy where the resulting change in temperature is proportional to the energy of the 

radiation. This temperature change is observed via a thermometer. The weak thermal link 

provides a means to dissipate the energy allowing the system to return to equilibrium. 

 

(Fig. 3.1) Schematic representation of a calorimeter. Note that in the case of MARE, the 
source is embedded in the absorber.  
 

Despite its apparent simplicity, in practice much care must be taken with the development 

of a microcalorimeter. When considering detection of single electron or x-ray (or any 
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other charged particle radiation) the thermal noise of the system must be very low. In 

order to achieve this, the detector must be maintained at a temperature in the 100 µK 

temperature range. By examining the well known relationship: 

𝑄 = 𝐶∆𝑇 (3.1) 

we see that in order to maximize the change of temperature for a given energy, the heat 

capacity must be very small. This may be achieved by using a small absorber and by 

carefully selecting the material used (considering its thermal properties at low 

temperatures).   

 The term thermometer broadly includes any type of sensor that is sensitive to 

changes in temperature. Two potential thermometers for the MARE project are magnetic 

and TES (Transition Edge Sensors) microcalorimeters. Magnetic microcalorimeters 

incorporate a paramagnet whose magnetization is inversely proportional to temperature. 

TES microcalorimeters are detectors biased at a temperature corresponding to the phase 

transition between normal and superconducting where the resistance is very sensitive to 

small changes in temperature. The unitless sensitivity of a detector is defined as: 

𝛼 =
𝑇
𝑅
𝑑𝑅
𝑑𝑇 

(3.2) 

which is clearly very large in the phase transition region for a TES microcalorimeter. 

Typically such detectors are amplified by a SQUID (Superconducting Quantum 

Interference Device); a high gain, low noise signal transducer. Similar to the working 

principals of a voltmeter or ammeter, the typical detector readout circuit (fig 3.2 - top) 

may be voltage or current biased by using a load resistor with a high or low resistance 

compared to that of the sensor. The response in both cases (only varying by a y-axis flip) 
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is a sudden change in voltage/current resulting from the absorption of an event followed 

by a slow decay back to equilibrium (fig. 3.2 - bottom). This shape is what we call a 

“pulse”. The change in voltage/current for a pulse is related to the energy that will need 

to be extracted from each pulse (this process is described in the next chapter).  

 
 

 
(Fi.g 3.2) Top: tyical readout circuit for a TES sensor (voltage biased with 𝑅𝐿 ≫ 𝑅). 
Bottom: Typical response of a current biased detector (𝑅𝐿 ≪ 𝑅, with the current 
converted to a voltage by the readout electronics). 
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3.3 MARE Systematic Limitations  

  

In order to show the feasibility of MARE, we need to understand the limits on 

detector sensitivity and how to mitigate them. Three primary limiting factors have been 

identified and are:  energy resolution, pulse pileup, and detector statistics. In this section 

these factors are introduced with a more quantitative description given in the next 

sections. 

 

 

• Energy Resolution 

 

The noise of the detector sets the limit on energy resolution for a 

microcalorimeter. Detector optimization with considerations for a broad range of noise 

sources has been performed,  but to first approximation, the Johnson and thermal 

(phonon) noise dominate.16 The noise of a detector is parameterized as the noise 

equivalent power (NEP), which is the amount of power a detector needs to absorb to 

equal the noise output signal. If the NEP for a detector is known, its energy resolution is 

given as: 

∆𝐸𝑅𝑀𝑆 =
1

�∫ 2𝑑𝜔
𝜋𝑁𝐸𝑃2(𝜔)

∞
0

 (3.3) 

which gives: 

∆𝐸𝑅𝑀𝑆 ≈ �4𝑘𝐵𝑇2𝐶
𝛼  

(3.4) 
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For the Johnson and thermal noise contributions, where 𝑘𝐵 is the Boltzmann constant, 𝑇 

is the working temperature of the detector, C is the heat capacitance, and 𝛼 is the detector 

sensitivity given in equation 3.2.17 Note eq. 3.4 was derived assuming the optimum filter 

described above, is used. Simpler methods for extracting the pulse energy would result in 

decreased energy resolution. 

 

• Pulse Pileup 

 

The next limiting factor for MARE is due to the presence of pulses that occur 

sufficiently close together that they become unresolvable as separate events. The 

resulting shape resembles a single pulse with total energy roughly equal to the sum of its 

constituent pulses.  The result of this is a false spectrum which is added to the 𝛽/EC 

spectrum. This pileup spectrum may be accurately calculated from the actual 𝛽/EC 

spectrum, but since these events are rare, there is significant variation in the experimental 

spectrum making it difficult to remove directly. Additionally, because of its additive 

nature, the pileup spectrum is shifted to higher energies relative to the actual 𝛽/EC 

spectrum. These two effects, despite the rarity of unresolvable pileup events, contribute 

significantly to decreased sensitivity because of the low statistics achieved near the 

endpoint of the spectrum.  

The fraction of unresolvable pileup events is related to response time (rise-time) 

of the detector. This time, in principal, is due to the time lag caused by the rate of heat 

diffusion in the absorber and the thermal coupling between the absorber and 

thermometer. In practice, this occurs sufficiently fast that the rise-time is often set by 
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response time of the readout electronics. The phenomenon and detection of double pulses 

will be explored in more detail in chapter 6. 

 

• Detector Statistics  

 

With the source embedded directly in the detector, there is no way of filtering out 

unwanted energies. The fraction of total events that are near the Q-value is on the order 

of 10-5 which implies that a very large number of events are required to obtain the desired 

sensitivity for MARE. A reasonable balancing of the source activity, the number of 

detectors, and the detector acquisition time is required (with consideration for the effects 

of increased source activity on the pile-up spectrum). This balance is different for 

rhenium and holmium. A more quantitative description is given in the next two sections 

for the specific cases of rhenium, then holmium. 

 

3.4 Rhenium-187 

 

In pure rhenium, the isotope 187Re occurs with a natural abundance of 62.2%. This 

convenience means that natural rhenium may be used without any enrichment.   The 𝛽-

decay reaction is given as: 

𝑅𝑒 
187 → 𝑂𝑠 

187 + 𝑒− + �̅�𝑒 (3.5) 
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with rhenium decaying to osmium.  In order to accurately observe the perturbation caused 

by massive neutrinos near the Q-value, the theoretical spectrum must be well known. The 

available energy to the electron-neutrino system (𝐸0) is the energy obtained from the 

mass difference of the parent and daughter elements: 

𝐸0/𝑐2 = 𝑀𝑎𝑠𝑠( 𝑅𝑒 
187 ) −𝑀𝑎𝑠𝑠( 𝑂𝑠 

187 ) (3.5) 

Because the source is embedded, the nuclear recoil is also detected, but simple 

conservation principles give this energy (ignoring the neutrino) as: 

𝐸𝑅 =
𝐸𝛽

2𝑀𝑐2 
(3.6) 

where 𝑀 is the mass of recoiled body, 𝑐 is the speed of light, and the energies correspond 

to that of the recoil and the energy of the emitted radiation. In the case of rhenium, for the 

largest emitted energy, the associated recoil energy is on the order of 10-9, negligible 

compared to the expected energy resolution of the MARE project (~2 eV). Ignoring the 

recoil energy, the most general 𝛽-spectrum of emitted electrons is given as: 

𝑁𝛽�𝑍,𝐸𝛽 ,𝑚𝜈𝑒� = 

�𝑝𝛽𝐸𝛽�𝐸0 − 𝐸𝛽���𝐸0 − 𝐸𝛽�
2
−𝑚𝜈𝑒𝑐4� 𝐹�𝑍,𝐸𝛽0�𝑆�𝐸𝛽�[1 + 𝛿𝑅(𝑍,𝐸𝛽)] 

(3.7) 

where 𝑝𝛽 and 𝐸𝛽  are the momentum and energy of the emitted electron; the portion in 

curly brackets is the phase space contribution for a three body decay (ignoring nuclear 

recoil); 𝐹�𝑍,𝐸𝛽0� is the Fermi function correction due to the interactions between the 

nuclear charge and the wave function of the emitted electron; 𝑆�𝐸𝛽� is the “form factor” 

which accounts for electro-weak interactions; and 𝛿𝑅(𝑍,𝐸𝛽) is the radiative 

electromagnetic correction (usually neglected due to its minimal contribution). In the case 
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of rhenium crystals, an oscillatory correction must be applied due to interference between 

the electron wave and it reflections off of the regular lattice structure (analogous to the 

extended x-ray fine structure effect).18  

 𝑁𝛽�𝑍,𝐸𝛽 ,𝑚𝜈𝑒� may be integrated strictly near the endpoint of the 𝛽-spectrum to 

yield the approximate percentage of counts in the region of interest 

�
∆𝐸0
𝐸0

�
3

 
(3.7) 

where ∆𝐸0 is the size of the region near the endpoint being considered. A reasonable 

value for this would be 3𝑚𝜈𝑒, but is generally limited by the detectors energy resolution 

(on the order of sing digits). Taking  ∆𝐸0 as 5 eV and using the Q-value of 2.48 keV for 

rhenium, this fraction is of the order 10-9, implying the need to collect a significant 

number of events. However, a high activity must be balanced with the effects of the 

pileup spectrum on the sensitivity. 

In order to optimize the MARE experiment, we need a quantitative understanding 

of the systematics involved. A systematic and Monte Carlo approach at determining a 

calorimetric neutrino mass experiments sensitivity to double pulses was explored by A. 

Nucciotti, O. Cremonesi and E. Ferri.19 In their analysis, they demonstrated that even a 

very small population (~0.01-0.0001% of all events – see fig. 3.3 below) can have 

significant effects on the experimental sensitivity, which demonstrates the importance of 

detecting pileup events for the MARE project. In their paper, they derive an equation for 

the statistical sensitivity (at 90% confidence level) of determining 𝑚𝜈𝑒  in a calorimetric 

experiment as: 
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�(𝑚ν)90 = 1.13�
𝐸03 ΔE

𝐴𝛽𝑡𝑀𝑁𝑑𝑒𝑡
+ 0.3

𝜏𝑅𝐸05

𝑡𝑀𝑁𝑑𝑒𝑡ΔE�
1/4

 
(3.8) 

where 𝐸0  is the endpoint energy; ΔE is the interval below the end point energy being 

considered; 𝑡𝑀 is the measuring time; 𝜏𝑅 is the detector rise-time; 𝐴𝛽 is the single 

detector source activity; and 𝑁𝑑𝑒𝑡 is the total number of detectors. In general a smaller ΔE 

is desirable, but use restricted by the detector energy resolution. Because of the 

dependence on 𝑁𝑑𝑒𝑡
−1/4 we can get a sense of how many detectors are required for a given 

sensitivity. The dependence of the sensitivity on 𝜏𝑅 is related to the effect of rise-time 

double pulses, which are very difficult to detect and provide one of the biggest sources of 

error to calculations of 𝑚𝜈𝑒
 . 

 

 
(Fig. 3.3) Sensitivity of a calorimetric experiment as a function of total statistics for three 
different pileup fractions.  
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3.5 Holmium-163 

 

 The holmium isotope, 163Ho, does not exist naturally in nature and thus required 

production. This added complication is offset by the higher activity which has the 

potential to improve the statistics of MARE (lower live-time and fewer arrays required 

for a given sensitivity). A roadmap for the holmium track of MARE has been outlined 

with four landmarks: 

 
(Fig. 3.4) MARE holmium track roadmap landmarks. 

 

The sensitivity a 163Ho experiment depends strongly on the Q-value. To understand why 

this is the case, we need to obtain the EC-spectrum. The EC reaction: 

𝐻𝑜 + 𝑒− 
163 → 𝐷𝑠 + 𝜈 

163
𝑒 (3.9) 

is caused by the absorption of an inner shell electron in the nucleus. The resulting 

electron hole is filled by an outer shell electron which emits an x-ray in the process. The 

decay rate is thus a sum over the possible shells of the electron capture: 
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𝜆𝐸𝐶 =
𝐺𝛽2

4𝜋2�𝑛𝑖
𝑖

𝐶𝑖𝛽𝑖2𝐵𝑖(𝑄 − 𝐸𝑖)[(𝑄 − 𝐸𝑖)2 − 𝑚𝜈𝑒
2]1/2 

(3.10) 

where 𝐺𝛽 = 𝐺𝐹cos (𝜃𝑐) is the fraction of occupancy of the i-th atomic shell; 𝐶𝑖 is the 

atomic shape factor;  𝛽𝑖 is the Coulomb amplitude of the electron radial wave; and 𝐵𝑖 is 

the atomic correction for the electron exchange and overlap.20 

 From this, the expected energy distribution detectable by a microcalorimeter is 

given as: 

𝜆𝐸𝐶
𝑑𝐸𝑐

=
𝐺𝛽2

4𝜋2
(𝑄 − 𝐸𝐶)�(𝑄 − 𝐸𝐶)2 − 𝑚𝜈𝑒

2�
1
2 × 

�𝑛𝑖
𝑖

𝐶𝑖𝛽𝑖2𝐵𝑖
Γ𝑖

2𝜋
1

(𝐸𝐶 − 𝐸𝑖)2 + Γi2/4
 

(3.11) 

where 𝐸𝑐  is the energy detected by the calorimeter.20 The resulting theoretical spectrum is 

represented in fig. 3.5. 

 
(Fig 3.5)20 Theoretical 163HoEC spectrum. The resonance peaks allow for self calibration 
which is another advantage of using a holmium source.  
 

Typically, EC reactions have a poor count rate near their Q-value. However, in the case 

of 163Ho, the count rate in this region is amplified by the M peak. To better understand 

the potential sensitivity of a calorimetric 163Ho  experiment, an accurate measurement of 
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the Q-value is required. A straightforward approach using a single microcalorimeter with 

about 5 × 105 counts is sufficient to determine the Q-value to better than 20 eV 

accuracy.20  

The second landmark for the holmium track is the production of the isotope. 

There are several different methods that exist for producing holmium of which we 

identify three ideal candidates:20 

• Neutron activation in a nuclear reactor of 162Er 

• α-particle bombardment of 165Ho target 

• γ-particle bombardment of 165Ho target 

A reliable production of 163Ho is required with minimal long-lived contamination, and 

with consideration of ease of production and reproducibility. This requires investigation 

which is in the preliminary stages. Verification of the production method using 162Er has 

been confirmed by the University of Genoa and the University of Miami (this will be 

described in more detail in ch. 5).  

Alongside identifying a reliable production method for 163Ho, the detector 

performance must be explored. There are many variables, though many are similar in 

nature to the rhenium track. One difference arises from the way the source is used in the 

detector. Unlike rhenium, where the source is the absorber, holmium is implanted in an 

absorber. With a comparatively higher count rate there is more freedom in selecting the 

capacitance of the absorber and the activity of the source. This aspect is currently being 

explored at the University of Miami. Additionally, just as with rhenium, the effects of 

pileup spectrum affect the potential sensitivity of this experiment (fig. 3.5). Methods to 



35 
 

 
 

reduce the occurrence of these events are thus fundamental to improving the potential 

sensitivity of this experiment.  

 
(Fig. 3.6) 20 Effects of pileup fraction and detector energy resolution on the sensitivity of 
a calorimetric holmium experiment. 
  

The final landmark for the holmium track is to better understand theoretical 

uncertainties. The bulk of these arise from the derivation of the EC-spectrum. There are 

still atomic and nuclear aspects which are not completely understood. To maintain this 

model independence, additional effects that alter the EC spectrum must be identified an 

implemented in an improved version of eq. 3.11. 
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Chapter 4 

Analysis Program 

 

 

4.1.1 Extracting Pulse Energy 

   

 In order to obtain a high resolution energy spectrum, it is fundamentally important 

to extract the energy of a pulse as accurately as possible. In principal, this can be done by 

just measuring the change in voltage/current, but the accuracy of this method can strongly 

be affected by the presence of noise. An improvement can be achieved by integrating the 

signal, but such an operation has the negative feature that it treats all regions of the pulse 

equally, particularly the baseline which may be noisy in comparison to the pulse 

amplitude. Clearly the presence of noise has a negative effect of our ability to extract the 

energy of a pulse. Because of this, a method that is capable of limiting the noise 

contribution is desirable. This can be done by modifying the integration method with the 

incorporation of a weighting function. This method is called optimum filtering. All that 

needs to be determined then is the weighting function.  
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4.1.2 Optimum Filter 

 

 In the linear regime, the pulse shape of a calorimetric measurement is independent 

of the energy of the absorbed radiation, where that energy is simply a scaling factor: 

𝑉(𝑡) =  𝐸0𝑔(𝑡) (4.1) 

We must also account for the noise, which we assume has a known spectral density: 

𝑒𝑛(𝑓). If we assume that the noise spectrum is not altered in the presence of a pulse, 

which in most cases is a reasonable assumption, it follows that the noise amplitude in 

different frequency bins is uncorrelated. To take advantage of this assumption, we 

perform the derivation of our optimum filter in the frequency domain. We will let 𝑠𝑖 and 

𝑛𝑖 respectively denote the 𝑖𝑡ℎ frequency bin of the (noise-free) signal and the noise. 

Following from the properties of Fourier transforms, each frequency bin of 𝑠𝑖 is 

proportional to 𝐸0 and thus allows an independent estimation of the pulse’s energy.   

 In our case, we can identify that we want to maximize the signal to noise ratio. 

Thus considering a weighting function given by 𝑤𝑖, we may write the energy and noise 

fluctuations as sums over the frequency bins: 

𝐸 = �𝑤𝑖𝑠𝑖
𝑖

 (4.2) 

∆𝐸𝑟𝑚𝑠 = ��|𝑤𝑖𝑛𝑖|2
𝑖

�
1/2

 
(4.3) 

The ratio of these sums is what we would like to optimize. By taking the derivative of 

their ratio with respect to some arbitrary 𝑤𝑘  and setting the result equal to zero, we can 
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solve for 𝑤𝑘  and thus solve for the optimum filter weighting function (in the frequency 

domain). The result obtained is: 

𝑤𝑘 =  
𝑠𝑘

|𝑛𝑘|2 �
(∆𝐸𝑟𝑚𝑠)2

𝐸 � 
(4.4) 

Since the factor in parentheses is constant for any given element, we simply drop it 

(scaling will be accounted for later).  Thus, the optimum filter in the frequency domain is: 

𝑤𝑖 =  
𝑠𝑖

|𝑛𝑖|2
 (4.5) 

This function may be converted back to the time domain via a Fourier transform. The 

relative phase between the weighting function and the pulse may be out of phase, so a 

convolution can be performed to locate the local maximum of the weighted integral.   

 
(Fig. 4.1) Example of a pulse and a weighting function for an optimum filter. 
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4.1.3 Optimum Filter in Practice  

 

 There are two ingredients required to produce the optimum filter: a noiseless 

pulse and the noise spectrum. A perfectly noiseless pulse is impossible to obtain from 

experimental data, but a reasonable approximation may be obtained by averaging a 

sufficiently large number of pulses. The relative signal to noise ratio is better for higher 

energy pulses, so the best results may be obtained by using a subset of all of the pulses 

with higher energies. Typically, this subset corresponds to calibration pulses which from 

a source with known energy (the K-α line from 55Fe with an energy of about 5.9 keV is a 

very common calibration source). The noise spectrum is obtained by averaging noise 

samples in the frequency domain. With these two ingredients, we may now build the 

optimum filter and extract the energy of the pulses.  

We still need to determine the scaling factor to obtain the actual energy spectrum. 

This requires calibration pulses with a known energy. Using the optimum filter created 

above along with the average of the calibration pulses (to minimize the noise 

contribution), we have all the ingredients required to find this scaling factor. By relating 

the energy of the calibration sweeps to their weighted integral we obtain: 

𝐸𝑐𝑎𝑙 = 𝐴�𝑉𝑖,𝑐𝑎𝑙𝑊𝑖
𝑖

 (4.6) 

which we can solve for the scaling factor, 𝐴, where 𝑊𝑖  is the time domain weighting 

function of the optimum filter, 𝑉𝑖,𝑐𝑎𝑙 is the averaged calibration pulses, and 𝐸𝑐𝑎𝑙 is the 

energy of the calibration pulses. The optimum filtered energy for any pulse can then be 

calculated as: 
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𝐸𝑠𝑤𝑒𝑒𝑝 = �
𝐸𝑐𝑎𝑙

∑ 𝑉𝑖,𝑐𝑎𝑙𝑊𝑖𝑖
��𝑉𝑖,𝑝𝑢𝑙𝑠𝑒𝑊𝑖

𝑖

= 𝐴�𝑉𝑖,𝑝𝑢𝑙𝑠𝑒𝑊𝑖
𝑖

 
(4.7) 

These extracted energies may then be used to create an energy spectrum. 

 

4.2.1 Analysis Program (FITSFILTER) 

 

  We have identified that it is important to be able to identify undesirable events 

(e.g. pileup events) and to use an optimum filter to extract pulse energies. The next 

logical step is to develop an analysis program which performs these functions. Such a 

program was developed at the University of Miami in conjunction with the XQC (X-ray 

Quantum Calorimeter) team headed by Dan McCammon. The analysis program was 

dubbed FITSFILTER due to its use of the FITS file format and incorporation of the 

optimum filtering technique (more information on this file format is located in the 

appendix). Through development, we focused on maintaining good portability across 

Linux systems and overall usability.  

 The input for FITSFILTER consist of collections of what we call sweeps. Sweeps 

are the results of converting a continuous data stream into smaller pieces (the sweeps) 

which contain potentially relevant data. This is done via a triggering mechanism which 

identifies events above a threshold then saves the local region. To include noise in the 

sweeps (required to construct the optimum filter) a random trigger is also employed. The 

desirable sweeps contain single events or flat baseline noise. It is important to reject 

sweeps that were incorrectly triggered by glitches in the electronics, noise spikes, or any 

other method.  
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 FITSFILTER is built around subroutines which perform all of the analysis 

required to reject undesirable sweeps, build the optimum filter, extract the pulse energies, 

and plot the results.  The subroutines are sequential requiring the analysis of the previous 

ones. The steps in the analysis chain and their purpose are described in the next sections.  

 

4.2.2 Preprocessing 

  

 The first step in the analysis chain is preprocessing of the data sweeps. In general, 

a sweep is divided into three regions: pre-trigger, rise-time, and decay-time (see fig. 4.1). 

These three qualitatively different regions are used to extract characteristic parameters 

from each sweep. 

 
(Fig. 4.2) Sub- regions of a raw sweep. Note that because the detector is voltage biased, 
the pulse is “upside down”. Also, there is some distortion of the decay time region due to 
the response of the amplifier used (in general it decays smoothly back to the baseline and 
does not overshoot it). Because the energy scale will be calibrated in a later step, we are 
not concerned with the actual scale, only its proportionality. 
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In the pre-trigger region, the baseline voltage and variation are calculated for each sweep 

(fig. 4.3 - top). The baseline voltage is usually removed from each sweep so that the 

voltage of their maxima is the difference in voltage (fig. 4.3 - bottom). The baseline 

corresponds to the DC level and variation corresponds to the noise.   

 

 

 
(Fig. 4.3) Top: visual of parameters extracted from the pre-trigger region of a sweep. 
Bottom: Raw sweep with its baseline voltage removed and inverted so that its maximum 
voltage also relates to its energy. 
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In the event that a sweep is triggered on the tail of another pulse the baseline will be 

skewed. Because the extraction of pulse energies involves an integral over the entire 

sweep, this will modify the energy of the pulse that actually triggered the sweep. These 

parameters allow identification and rejection of such events.  

The rise-time is calculated in the rise-time region along with the software trigger 

(fig. 4.4). The calculations for these parameters are rough but sufficient for our purposes. 

The rise-time is based on the time constant for an exponential curve and is reasonably 

independent of the pulse amplitude. This is calculated from the line that crosses through 

the first points within the region corresponding to 20 and 80% of the pulses maximum. 

The software trigger calculated as the x-intercept of this line. 

 

 
(Fig. 4.4) Rise-time region of a pulse with the baseline removed and inverted. A line is 
built based on the points of the curve that are approximately at 20 and 80% of the pulse 
height. The intercept of this line with zero gives the software trigger. 
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One of the most important parameters, the rise-time is related to the absorption of energy 

in the absorber. Strong variations from the norm of this value indicate problems with the 

absorption of radiation or other related issues and indicate regions of interest which are 

qualitatively different. The software trigger channel identifies the start of a pulse which 

allows them to be properly lined up for averaging and comparison throughout the 

analysis process. As with the rise-time, the decay time is calculated in the decay-time 

region and proceeds very similarly as above to obtain a value (but with no software 

trigger channel analog).  

In addition to these parameters, the maximum and minimum excursions are 

calculated for an entire sweep (fig. 4.4). These values can come from any array element 

where the maximum/minimum occurs. The minimum generally should be similar to a 

noise excursion but if the signal is high-pass filtered (generally as a result of the readout 

electronics used) it may be large due to the dip caused by the amplifier response. The 

maximum amplitude allows us to distinguish between sweeps with noise and sweeps with 

pulses. The minimum amplitude is not as important but may identify undesirable negative 

noise spikes. 

The most important parameter collected is a raw un-scaled approximation of the 

pulse energy (the low-pass filtered amplitude). Unlike the previous parameters this value 

is taken from the same array element of each sweep. Because of the triggering 

mechanism, in well behaved sweeps, all of the peaks should be commensurate yielding a 

parameter that is a good approximation of the pulses energy. In order to minimize the 

effects of noise, the sweeps are first low-pass filtered before this parameter is saved. 

Because it provides a good estimate for the energy, this provides important information 
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about every sweep and can be used to construct a rough energy spectrum (up to a scale 

factor). Once all of the parameters have been extracted from sweeps we continue to the 

next step 

 

 
 

 
(Fig. 4.5) Top: Example of maximum and minimum excursion for a pulse. Bottom: The 
average of all low-pass filtered sweeps (pole = 400Hz) used to select the array element 
that will determine the low-pass amplitude. This value plays the role of a first order 
approximation for the un-scaled energy.  
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4.2.3 Threshold Selection (Setting Limits) 

 

 The second step in the analysis chain is to set limits on the previously acquired 

parameters. For reasonably well behaved data sets (and even for many unruly sets), the 

parameters tend to be clustered together with outliers corresponding to some sort of 

problem. By identifying the clustered regions, thresholds can be set that allow the 

rejection of bad sweeps.  

The first histograms created are built from the maximum and minimum excursion 

parameters. Since these values are comparatively lower for noise sweeps than for sweeps 

with a pulse they allow us to distinguish between the two cases. The histogram derived 

from the maximum excursions is a rough estimate of the un-scaled energy spectrum and 

allows identifications of spectral features such as a calibration peak (fig. 4.6 - top). The 

other histogram’s “spectrum” is a result of the decay-time overshoot and is roughly a 

compressed version of the real spectrum.  
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(Fig 4.6) Histogram of maximum and Minimum excursions. The top plot shows the entire 
spectrum where the calibration peak from 𝐹𝑒  

55  can be seen. The bottom plot shows the 
threshold set on noise. 
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 The next limit set is on the average pre-trigger voltage which establishes the 

acceptable baseline voltage (fig. 4.7). Assuming no problems with the detector this value 

should be fairly constant. This set of data had a fairly high activity which means there are 

many double and even triple pulses. Because of this many sweeps are on the end of a 

pulse resulting in a bad baseline. Because of the decay-time overshoot, there is a 

tendency for bad events to have a lower value. This can be seen by the fatter left side of 

the histogram. Noise spikes also have the potential to widen the main feature. This 

possibility is accounted for with the next limit.  

 
(Fig. 4.7) Limits set on the acceptable pre-trigger voltage (pulse baseline); everything 
outside of the green lines is rejected.  
 

 Next, we look for any abnormal features of the baseline voltages. This is done by 

calculating the maximum and minimum excursions (restricted to the pre-trigger region), 
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and taking their difference (fig. 4.8). For good sweeps, it is consistently small compared 

to sweeps with problems in the pre-trigger region.  

 
(Fig. 4.8) Limit set on the allowed pre-trigger variation; everything to the right of the 
green line is rejected.  
 

 The last histogram used to set limits is on the software trigger channel (fig. 4.9). 

This identifies abnormalities in the rise-time region which alter the effective rise-time. 

Because this trigger channel is set from the largest peak, cases where there is an 

additional pulse of large amplitude are also excluded here because their trigger will occur 

at a location too far up in the array to be in the acceptable range.  
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(Fig. 4.9) Limits on the software trigger channel; everything outside of the green lines is 
rejected.  
 

 The final and most important plot allows regions of interest to be indentified and 

investigated. It is a scatter plot of the rise-time vs. the low-pass filtered amplitude, which 

are the two most descriptive characteristics of a sweep (fig. 4.10). This plot can be used 

to identify regions of interest to verify that the detector and its setup are working as 

intended. This is where the calibration pulses (windowed signals) are selected. Because 

the x-axis provides a rough estimate of the energy spectrum, spectral features can be seen 

in the form of bands which aid in locating the calibration window. 
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(Fig. 4.10) Scatter plot of the rise-time vs. the low-pass filtered amplitude. The red 
square denotes the selection of calibration pulses. These events tend to be the most tightly 
clustered. 
 

 

4.2.4 Sweep Classification 

 

 The third step in the analysis chain is to classify events based on the thresholds 

previously set. In general, four main classes can be identified: noise, pulses, calibration 

pulses, and bad pulses. The first three collectively are considered good pulses, and are 

used to build the energy spectrum. Throughout this thesis, the term “good pulses/sweeps” 

will refer to these classes. The bad pulses are collectively any sweep with a parameter 

that is not in an acceptable range set by the thresholds. These can be the result of detector 

saturation, noise spikes, false triggers, baseline jumps, or any other failure due to 

electronics or detector problems. Many of these events contribute to detector dead time. 

A high fraction of such events generally indicates a problem with the detector or readout 

electronics.  
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4.2.5 Double Pulse Analysis  

 

 The fourth step in the analysis chain is to search for double pulses. The algorithm 

used is based on a method devolved by the XQC team that has proven itself effective. 

This algorithm assumes a detector with a linear response which is not the case for the 

microcalorimeters used for MARE. The modifications to correct for this are covered in 

significant detail in the next chapter. Here, we cover the simple version which assumes a 

detector with a linear response. In this case, a template pulse is built from the average of 

the calibration sweeps. When scaled and subtracted from a sweep with two pulses, only 

the second pulse remains. This pulse will typically have an amplitude larger than the 

noise and thus may be identified (the threshold is typically based on a multiple of the 

RMS voltage of the baseline). This procedure is improved by taking the time derivative 

of the template and the pulse being analyzed before taking their difference. This reduces 

the algorithms dependence on the pulse shape and provides sharper features increasing its 

sensitivity.  

 
(Fig 4.11) Example of a double pulse. 
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(Fig. 4.12) Top: time derivative of double pulse in figure 4.11. Bottom: Above double 
pulse with template subtracted. The threshold is shown in green.  
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4.2.6 Creation of the Optimum/Energy Extraction  

 

 The following two steps of the analysis chain build the optimum filter then extract 

the energies from the pulses as described early in this chapter. 

 

4.2.7 Energy Spectrum Corrections  

 

 The seventh step in the analysis chain corrects for gain drift and nonlinearity of 

the detector (parabolic correction). The gain drift correction accounts for a linear change 

in the voltage baseline over time. The gain drift correction is achieved by fitting a line to 

the scatter plot of good calibration pulses as a function of their trigger time (fig. 4.14 - 

top). The second correction requires a second calibration peak of known energy and 

makes a second order polynomial correction using the baseline and the new and original 

calibration lines (fig. 4.14 - bottom). Considerations of the quality and quantity of data as 

well as the detector used should be considered when applying any of these corrections.  
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(Fig. 4.13) Top: Visualization of the gain drift correction. Bottom: Nonlinear energy 
correction; a second calibration peak of known energy is selected. 
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4.2.8 Energy Spectrum 

 

The final step in the analysis chain is a plotting routine that allows histograms and 

scatter plots of the parameters obtained in previous subroutines. The plot which is most 

important is the energy spectrum obtained from a histogram of the extracted energy with 

any corrections applied in the previous subroutine. In the case where a nonlinear 

correction is not applied (as with this data set), the lower plot of figure 4.13 is an example 

of what the energy spectrum looks like. 
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Chapter 5 

Verification of Holmium Source 

 

5.1 Background  

 

 As described earlier, identifying the best method for producing 163Ho is one of the 

landmarks for the holmium track of the MARE experiment. This process is in its initial 

stages where the most important requirements are to first verify the absence of long-lived 

radioactivity and to then actually verify that 163Ho was produced. The University of 

Genoa obtained a sample produced by neutrino activation of 162Er in a nuclear reactor. 

The sample was isolated for a month to allow the dissipation of short life-time 

contaminants. The absence of long-lived radioactivity was confirmed with a proportional 

counter. The x-rays from the 163Ho EC-reaction are very low energy and are quickly 

attenuated by the atmosphere. To verify the presence of 163Ho, the source was dissolved 

in hydrochloric acid, then deposited by hand onto a microcalorimeter. Once evaporated, 

the presence of 163Ho can then be verified via microcalorimetric measurements. Because 

the source is not embedded in the absorber the results will not be optimal, but should be 

sufficient. Once data was acquired, it was analyzed by FITSFILER at the University of 

Miami. 
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5.2 Holmium Data Analysis 

  

 We first examine the scatter plot of the rise-time vs. the low-pass filtered 

amplitude (1kHz low-pass filter) to identify regions of interest. In fig 5.1 below, 4 

regions of interest can be identified. Most likely the points that are grouped with tighter 

rise-time are acceptable, but this assumption must be verified. In order to do this, sweeps 

from each region must be explored. Included are representative pulses from each region 

(fig. 5.2 and 5.3). 

 

 
(Fig. 5.1) Scatter plot of rise-time vs. the low-pass filtered amplitude. In this plot, there 
are four distinct regions to consider. 
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All the data points near the left end correspond to noise or incompletely absorbed 

radiation and are ignored. In region 1 (fig. 5.2 - top), pulses are consistently oddly shaped 

like s stretched out pulse. This is likely caused by the non-ideal thermal connection 

between the source and absorber, or by some other thermal problem with the detector. 

Pulses in region 2 (fig. 5.2 - bottom) seem to be well behaved and are a good candidate 

for the 𝐻𝑜 
163  spectrum. We will examine these in more detail shortly. The small cluster 

which constitutes region 3 (fig. 5.3 - top) are all voltage jumps, easily identified by 

FITSFILTER via their low rise-time and long decay-time. These jumps are the result of 

the SQUID malfunctioning and shifting the baseline by one flux quantum. Region 4 (fig. 

5.3 - bottom) consists of high energy pulses that saturate the detector. Only region 2 

seems to have viable pulses, so we explore it in more detail. 
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(Fig. 5.2) Representative pulses from regions 1 and 2 defined in the scatter plot above. 
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(Fig. 5.3) Representative pulses from regions 3 and 4 defined in the scatter plot above. 
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(Fig. 5.4) Region 2 with the calibration sweeps selected. We are assuming that these 
pulses correspond to the resonant peak of 𝐻𝑜 

163 , near the end of its spectrum at 2.039 
eV.  
 

 In the close-up of region 2 above, we get a closer look at our 𝐻𝑜 
163  𝛽-spectrum 

candidate. Week bands are visible and look like they correspond to the resonance peaks 

from the electron capture reaction. Using this region, we continue through the analysis 

steps, but ignore the double pulse classification and energy spectrum corrections (recall 

we are just verifying that we are detecting the 𝛽-spectrum of 𝐻𝑜 
163 ). After this is done, 

we obtain the energy spectrum by taking the histogram with bins of size 25 eV, which 

when compared to a theoretical spectrum is a very close match (fig. 5.4). Thus by using 

FITSFILTER, we were able to verify the presence and detection of 𝐻𝑜 
163  using the 

detectors fabricated in Italy.  
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(Fig. 5.5) 20 Observed spectrum and a theoretical spectrum for comparison.  
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Chapter 6 

Double Pulse Detection 

 

6.1 Background 

 

 Double pulses are the result of two pulses appearing in a single sweep. Pulses are 

characterized by their energy, rise-time, and decay-time and spend most of their short life 

decaying back to equilibrium. Because of this, most cases of double pulses consist of the 

second pulse occurring on the tail of the first. These are generally easy to detect with any 

reasonable double pulse algorithm and are not considered here. Alternately, the rise-time 

is very short compared to the length of the sweep and to the decay-time. Thus a small 

percentage of double pulses can be classified as rise-time double pulses. As the maximum 

of the two pulses approach each other, the resulting double pulse looks more and more 

like a single pulse with energy corresponding roughly (depending on how linear the 

detector response is) to the sum of the two constituent pulses. This property makes rise-

time double pulses very difficult to detect and sets the limit on algorithm efficiency and 

on the potential sensitivity of MARE. Unless otherwise stated, the term double pulse in 

this section chapter will correspond to rise-time double pulses.  

 Because we are most interested in the Q-point of the energy spectrum where the 

count rate is very low, the double pulse spectrum can easily become the most significant 

source of error for our experiment (fig. 6.1). Thus it is very important to understand its 

effects and to minimize the possibility of rise-time double pulses.  
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(Fig. 6.1) 19 Simulations of the pileup spectrum and its effects on the Q-value. Top: the β-
spectrum and its associated pileup spectrum. Notice how sharply the true β-spectrum 
ends. Bottom: the β-spectrum with and without the effects of a double pulse. Note how the 
endpoint loses its sharpness with the addition of the pileup events. 
 

 

If we let 𝐴 denote the average count rate for a pixel, let 𝜏𝑅 denote the resolving time, and 

assume a Poisson distribution, we may estimate the fraction of double pulses. In general, 

the probability of k occurrences within a given interval with average occurrence 𝜆, we 

have: 

𝑃(𝑘,𝜆) =  
𝜆𝑘𝑒−𝜆

𝑘!  ,𝜆 = 𝐴𝜏𝑅  
(6.1) 
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It is easier to consider the probability of not having a double pulse in which case k is 

either zero or one.  

𝑃(0,𝜆) =  𝑒−𝜆 (6.2) 

𝑃(1,𝜆) =  𝜆𝑒−𝜆  

Since the sum of all probabilities is one, we have 

𝑃(𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑢𝑙𝑠𝑒) = 1 −  (1 + 𝜆)𝑒−𝜆 (6.3) 

In the case where 𝜆 ≪ 1, this can further be simplified to: 

𝑃(𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒 𝑝𝑢𝑙𝑠𝑒) ≅ 𝜆2 (6.4) 

up to second order. 

We can further calculate the double pulse spectrum if the spectrum is known. Let 

𝑁𝛽(𝐸) denote the energy spectrum, normalized so that its integral over its energy domain 

is 1. Up to a normalization constant, 𝑎, the probability of a double pulse occurring with  

energy 𝐸′ is given by: 

𝑎� 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)
𝐸′

0
𝑑𝐸′′ 

(6.5) 

And the cumulative density function is given by 

𝐹(𝐸) = 𝑎� �� 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)
𝐸′

0
𝑑𝐸′′�

𝐸

0
𝑑𝐸′ 

(6.6) 

with  

𝑎 =
1

∫ �∫ 𝑁𝛽(𝐸′′)𝑁𝛽(𝐸′ − 𝐸′′)𝐸′

0 𝑑𝐸′′�∞
0 𝑑𝐸′

 (6.7) 

Thus the observed spectrum assuming 𝜆 ≪ 1 is: 
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𝑁𝛽,𝑜𝑏𝑠.(𝐸) = (1 − 𝜆2)𝑁𝛽(𝐸) + 𝜆2𝑎� 𝑁𝛽(𝐸′)𝑁𝛽(𝐸′ − 𝐸)
𝐸

0
𝑑𝐸 

(6.8) 

where we have ensured that  

� 𝑁𝛽,𝑜𝑏𝑠.(𝐸′′)𝑑𝐸′′
∞

0
= 1 

(6.9) 

 

 
(Fig. 6.2) A simulated energy spectrum and its associated double pulse spectrum. 
 

 In order to get a sense of how the double pulse energy spectrum is dependent on 

the true spectrum, we created a toy program that generates a double pulse spectrum from 

an input spectrum using a simple Monte Carlo simulation. An input spectrum consisting 

of the sum of three normal distributions was used: {(400,100), (600,5), (1500,30)} for 

pairs of (𝜇,𝜎) and with relative scaling rations of 0.6,1, and 0.3 respectively. The 

resulting spectrums play the role of the energy histograms that would be extracted from 

data using the analysis program and are plotted against an arbitrary energy scale. The 

Double Pulse PDF 

Single Pulse PDF 
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main features to note are how the double pulse spectrum resembles the single pulse 

spectrum smeared out over higher energies, and how narrow peaks have a limited effect 

whereas wide peaks have a significant effect. The smearing effect is particularly apparent 

in the cumulative density functions (CDFs) associated with the spectrums (fig. 6.2). This 

is why the Q-value, which is at the end of the 𝛽-spectrum has such a strong effect. 

 

(Fig. 6.3) The CDFs for the single pulse spectrum and its associated double pulse 
spectrum. 
 

6.2.1 Initial Results 

 

 First, we note that often times the goal is not only to detect double pulses but to 

resolve the energies of their constituent pulses. Due to the low count rate for MARE, the 

probability of rise-time double pulses is sufficiently low that simply rejecting them has 

Double Pulse CDF 

Single Pulse CDF 



69 
 

 
 

no significant effect on the experiment and dead time calculations. Additionally, due to 

the nonlinearity of microcalorimeters, we would not be able to extract their energies if we 

wanted to! This research then strictly focuses on double pulse identification and rejection 

with no concern for extracting their energies. 

 The double pulse algorithms explored rely on templates created from averaging 

good sweeps and are thus very sensitive to their accuracy. For detectors with a very linear 

response, the template is constructed from the calibration sweeps and then used to filter 

the other sweeps searching for double pulses. However, for the detectors we are 

considering, the energy response is nonlinear and requires modification of the above 

process. The nonlinear response of the detector is reflected in varying pulse shapes as a 

function of energy. Thus we may approximate pulses as: 

𝑃𝑢𝑙𝑠𝑒 = 𝑓(𝑡,𝐸) ≠ 𝐸𝑓(𝑡). (6.10) 

To correct for this, the energy spectrum is divided into subsections (based on their low-

pass filtered energy extracted early on in FITSFILTER) where the variation of the sweeps 

in each subsection is acceptably negligible (this is addressed further in the current results 

subsection of this chapter). For each sub-region, all good pulses are averaged to create a 

template which is then used to filter its constituent pulses. If the particular algorithm 

detects any double pulses, this indicates that those bad pulses were used in the creation of 

the template. After the double pulses are classified, the remaining good pulses are used to 

create a more accurate template and the process repeats iteratively until no double pulses 

are detected in the given energy division. 

 



70 
 

 
 

 

 

(Fig. 6.4) Example of a nonlinear detectors response to pulses of different energies (both 
scaled so that their maxima are equivalent). Top: Note how strongly the decay time is 
effected by pulse energy. Bottom: the rise-time is similarly affected by nonlinearity. 
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6.2.2 Experimental Setup 

 

  In order to properly characterize the efficiency of double pulse detection 

algorithms, sweeps with known parameters were generated at the University of Florida. 

They developed a set of tools to simulate the MARE experiment, done in two steps: first, 

a Geant21 Monte Carlo simulation is used to generate a list of events; second, this list is 

used as input for a numerical solver which realistically models a TES detector’s noise and 

nonlinearity. 22 The detector parameters in the simulation are based on microcalorimeters 

developed at the NASA/Goddard Space Flight Center, 23 which are the current baseline 

for a holmium MARE experiment. In our case, the first step is simplified by using a user 

generated set of input values. The sets generated for the preliminary results have an 

energy resolution of 2 eV with an acquisition rate of 1 µs. Double pulses were created 

using pair-wise combinations of the ten energies from the following set with separations 

times of 0.5, 1, 2, and 5µs:  

𝐸𝑛𝑒𝑟𝑔𝑖𝑒𝑠(𝑒𝑉) = {50,100,200,400,700,1000,1400,1800,2200,2700}. (6.11) 

Calibration pulses were created with energies ranging from 100 to 2700 eV in steps of 

100 eV. The range of energies corresponds to a region of interest valid for most 

calorimetric neutrino experiments. For each point in our parameter space described above 

500 sweeps were generated.  

 Corresponding to the 27 different calibration energies used, we divided the energy 

spectrum into 27 subsections. Then each section was analyzed separately using the linear 

version of the detector with the calibration pulses classified as windowed signals (used 

for the algorithm template). This allowed many double pulses to be analyzed with few 
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calibration pulses. This method only becomes unacceptable when a significant fraction of 

pulses are pileup events. The resulting template may be sufficiently corrupted that the 

algorithms efficiency is diminished (this effect is explored in the current results 

subsection of this chapter). This situation requires sources with very high activity which 

is not the case for MARE and thus is not considered in the preliminary analysis. 

 The boundaries for the 27 subdivisions of the energies (based on the 27 energy 

calibrations sets created) were chosen to lie halfway between the average low-pass 

filtered energies of the calibration pulses. The lower limit used is 50 eV and the upper 

limit used is about 2750 eV. The average low-pass filtered energies for the doubles pulses 

was similarly averaged and the resulting value was used to determine which region a 

particular double pulse set would be grouped with. Any combinations that resulted in 

energies above 2750 eV were excluded. The following table shows the groupings used in 

the analysis.  A total of 73 double pulse pairs were used while the remaining 23 were 

excluded. 

Regions (eV) Associated double pulses (eV) 
100 {(50,50),(50,100),(100,50)} 
200 {(100,100),(50,100),(100,50)} 
300 {(100,200),(100,200)} 
400 {(200,200),(50,400),(400,50)} 
500 {(100,400),(400,100)} 
600 {(200,400),(200,400)} 
700 {(50,700),(700,50)} 
800 {(400,400),(100,700),(700,100)} 
900 {(200,700),(700,200)} 
1000 {(50,1000),(1000,50)} 
1100 {(400,700),(700,400),(100,1000),(1000,100)} 
1200 {(200,1000),(1000,200)} 
1300 {None} 
1400 {(50,1400),(1400,50),(400,1000),(1000,400)} 
1500 {(100,1400),(1400,100)} 
1600 {(200,1400),(1400,200)} 
1700 {(700,1000),(100,700)} 
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1800 {(400,1400),(1400,400),(50,1800),(1800,50)} 
1900 {(100,1800),(1800,100)} 
2000 {(1000,1000),(200,1800),(1800,200)} 
2100 {(700,1400),(1400,700)} 
2200 {(400,1800),(1800,400)} 
2300 {(50,2200)*,(2200,50)*,(100,2200),(2200,100)} 
2400 {(400,1000),(1000,400),(200,2200),(2200,200)} 
2500 {(700,1800),(1800,700)} 
2600 {(400,2200),2200,400)} 
2700 {(50,2700),(2700,50),(1400,1400), 

(1000,1800),(1800,1000)} 
 

(Table 6.1) These values are consistent for 0.5, 1 ,2 , and 5 µs. The exception is the two 
symmetric pairs denoted with an asterisk. These pairs lie in the 2200 eV range for the 5 
µs separation. 
 

6.2.3 Standard (XQC) Algorithm  

 

Here, we go over the standard algorithm briefly introduced in the previous chapter 

in more detail. The first portion of analysis for the standard algorithm (XQC algorithm 

for short) involves obtaining a threshold from the noise and is independent of the energy 

subdivision being considered. To reduce the wordiness of this subsection the prefix 𝑑𝑡  

will be used to denote the first derivative with respect to time of the following object 

• Calculate 𝑑𝑡 -noise for good noise sweeps, compute the associated RMS value, 

and average this for all noise sweeps: 𝜎; 

• The threshold, 𝜃, is set as 2𝑎𝑁𝜎, where 𝑎 is initialized with a value of 4, and 𝑁 is 

the minimum multiple of 𝜎 to use as a threshold (for all analysis we use 𝑁 = 5); 

• All good 𝑑𝑡 -noise sweeps are then scanned for excursions above 𝜃; 

• If any such excursions are found their associated noise sweep is reclassified and 

the process repeats in order to calculate a “cleaner” value for 𝜎; 

• If no such excursion are found, then 𝑎 is reduced by 1; 
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• The process is repeated until 𝑎 = 0 in which case, we have the threshold: 𝜃 =

𝑁𝜎. 

Now that we have established a threshold, we analyze each energy division separately as 

follows: 

• Average all calibration sweeps (shifted to line up based on their software trigger) 

and calculate its time derivative to build a template:  𝑇 ; 

• Each sweep being analyzed is shifted (again, based on the software trigger) and its 

time derivative is taken giving us: 𝑃𝑖; 

• The template is normalized so that its maximum corresponds to that of 𝑃𝑖, and we 

take their difference; 

• This difference is scanned for excursions beyond the threshold, 𝜃 = 𝑁𝜎, already 

established by the noise sweeps; 

• The sweep associated with any such excursions is reclassified as a double pulse. 
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(Fig. 6.5)24 Top: comparison of the template and the first derivative of a double pulse 
with pulse energies of 1000 eV and 100 eV and a separation of 1 µs. Bottom: difference 
between the two curves with the threshold in red (horizontal line). 
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6.2.4 Optimum Filter (OF) Algorithm 

 

 The optimum filter algorithm (OF algorithm for short) was our attempt at creating 

an algorithm fine tuned to detecting double pulses. The pulses we are considering have 

two characteristically sharp features corresponding to the first instance of the pulse and 

the rise-time to decay-time transitions (near the pulse maximum). Because of this, the 

second derivative with respect to time is very sensitive to pulses. As with the previous 

section, to reduce the wordiness of this subsection the prefix 𝑑𝑡𝑡  will be used to denote 

the second derivative with respect to time of the following object. If we construct a 

template from averaged 𝑑𝑡𝑡 -pulses and convolve this with its individual constituents (𝑑𝑡𝑡 -

pulses), decay-time double pulses will generally be characterized by two peaks at 

different phases, and rise-time double pulses will be characterized by a distorted, slightly 

fatter peak. Because it is the latter we are interested in detecting, we need to be able to 

distinguish the difference in shape of the convolutions corresponding to single and double 

pulses.  

 It would be beneficial to use a template 𝑑𝑡𝑡 -pulse that is modified to maximize the 

signal to noise ratio. This can be achieved similarly to the optimum filter used in the 

analysis program to extract the energies of pulses in FITSFILTER. The derivation 

assumed a function of the form: 

𝑉(𝑡) = 𝐸0𝑔(𝑡). (6.12) 

The second derivative of a pulse also follows this form: 

𝑉𝑡𝑡(𝑡) =  𝑑
2𝑉(𝑡)
𝑑𝑡2

= 𝐸0
𝑑2𝑔(𝑡)
𝑑𝑡2

= 𝐸𝑔𝑡𝑡(𝑡). (6.13) 
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So long as pulses in a given range do not vary significantly in shape, this is valid. 

However, the noise response varies on a pulse due to the nonlinearity and results in 

correlation of noise in the frequency domain. The resulting optimum filter does not 

maximize the signal to noise ratio as well as possible. Improving this requires considering 

the noise correlations, but this is not practical for our considerations as it would 

significantly increase the analysis time for a single pulse. Thus we consider the resulting 

optimum filter sufficient. 

 Returning to the original goal of discerning rise-time double pulses, we first 

create a template convolution. This is the result of creating an optimum filter from 

averaged 𝑑𝑡𝑡 -pulses (along with 𝑑𝑡𝑡 -noise average in the frequency domain) and 

convolving it with the averaged 𝑑𝑡𝑡 -pulses. The resulting convolution template is 

normalized so its maximum is 1. Similarly, the pulse being analyzed is convolved with 

the optimum filter and normalized to one and shifted so that their peaks coincide. All that 

is required at this point is a measure of the difference of the convolutions and a threshold 

on this measure. A simple measure could be described as: 

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇(𝑡𝑛)− 𝑐𝑆(𝑡𝑛)} (6.14) 

Where 𝐶𝑇 is the template convolution and 𝐶𝑆 is the optimum filtered pulse (this is 

analogous to the measure used for the standard algorithm). However, we are more 

interested in differences near the peak and do not care as much about the other regions. 

Several other measures were explored, but the best results were obtained using: 

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇2(𝑡𝑛)− 𝑐𝑠2(𝑡𝑛)} (6.15) 

This measure exaggerates differences between the two convolutions, particularly near the 

peak as desired. The threshold is chosen via a histogram of the resulting values. If we let 
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characters with a tilde represent Fourier transformed functions (in the frequency domain), 

the process may be outlined as follows (for a given subdivision of the energy): 

• Average good pulses in the time domain, calculate its second time derivative and 

transform to the frequency domain: 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛); 

• Compute 𝑑𝑡𝑡 -noise and average in the frequency domain: 𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛); 

• Create the optimum filter as: 𝐹�𝑜𝑝𝑡(𝑓𝑛) = 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)
𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)

; 

• Create the convolution template as: �̃�𝑇(𝑓𝑛) = �𝐹�𝑜𝑝𝑡(𝑓𝑛)� �𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)�, and 

convert this to the time domain: 𝐶𝑇(𝑡𝑛); 

• Normalize 𝐶𝑇(𝑡𝑛) so that its maximum is 1: 𝑐𝑇(𝑡𝑛); 

• For each pulse, 𝑃�𝑡𝑡,𝑖(𝑓𝑛), to be analyzed, create a template as: 𝐶𝑝,𝑖(𝑡𝑛) =

�𝐹�𝑜𝑝𝑡(𝑓𝑛)� ∗ �𝑃�𝑡𝑡,𝑖(𝑓𝑛)� (this is done in the frequency domain as with the template 

above); 

• Normalize 𝐶𝑆(𝑡𝑛) so that its maximum is 1, and shift so that its peak corresponds 

to that of the template convolution: 𝑐𝑆(𝑡𝑛); 

• Calculate: 𝑚�𝑐𝑇(𝑡𝑛), 𝑐𝑆,𝑖(𝑡𝑛)� = max�𝑐𝑇2(𝑡𝑛)− 𝑐𝑆,𝑖
2 (𝑡𝑛)� = 𝑚𝑖 

• Calculate the average (𝜇) and variance (𝜎) for the resulting set of 𝑚𝑖 and set the 

threshold equal to: 𝜇 + 3𝜎; 

• Pulses corresponding to an 𝑚𝑖 above this threshold are classified as double pulses 
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(Fig. 6.6)24 Top: Comparison between the resulting convolutions for first and second time 
derivatives of an average pulse and their respective optimum filters. Bottom: comparison 
of the convolution template and a double pulse convolution with pulse energies of 1000 
eV and 100 eV and a separation of 1 µs.  
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(Fig. 6.7)5D Difference between the two curves from the bottom plot of fig. 6.6 with the 
lower signal result for a single pulse sweep. The threshold is the horizontal blue line.  
 

6.2.5 Results 

 

  Analysis using both algorithms resulted in similar results for the data sets with 

separation of 0.5 and 5 µs catching roughly nothing and everything respectively. The 

following results are thus restricted to the more interesting 1 and 2 µs sets. In the case of 

holmium, where the Q-value is somewhere in the 2.5 keV range,5D the efficiency of an 

algorithm is critical in this region (and similarly for rhenium).  In the four contour plots 

(fig 6.8,9), this range corresponds roughly to the diagonal from the top left to the bottom 

right. In general the OF algorithm is much more sensitive to double pulses with a low 

energy contribution, but is not quite as efficient as the XQC algorithm in the critical 

region. In the next subsection of this chapter we explore improvements to the setup as 

well as combining the two algorithms to maximize efficiency. 
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(Fig. 6.8) 2 µs contour plots for the optimum filter (top) and standard algorithm 
(bottom). The grey region on the top right corners represents energy combinations not 
considered (above 2750 eV). 
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(Fig. 6.9) 1 µs contour plots for the optimum filter (top) and standard algorithm 
(bottom). 
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6.3.1 Current Results, Experimental Setup 

 

 The goal of this set of data and experiments is to perform the analysis as 

realistically as possible and to verify the effectiveness of the OF algorithm. Again for this 

setup, we use the same energy set to create double with separations of 1, 2, and 5 µs 

(excluding 0.5 now, with the same energy combinations, eq. 6.11). Double pulses with a 

combined energy above 2750 eV are excluded. The templates for both algorithms in the 

initial results were built from single valued calibration pulses. This is unrealistic and may 

result in an artificially increased efficiency and is undesirable. To correct this, a new set 

of calibration pulses were constructed with energies ranging from 50-2750 eV with 500 

sweeps for every 100 eV increment. As before, each sweep consists of 4096 array 

elements with a sampling time of 1 µs. Here we consider parameter space described 

above for 2 eV and additionally for 5 eV resolution. Due to the spread out calibration 

pulses energies, we can also explore the effects of using different numbers of divisions. 

 To allow testing of worst case scenarios, 50 files for both energy resolutions were 

generated each with 12000 calibration pulses representing the entire energy range 

considered, 2190 double pulses (10 of each double pulse combination) , and 500 noise 

sweeps for a total of 14590 sweeps per file. The resulting double pulse fraction of about 

15% is significantly higher than anything we would actually obtain from MARE 

experiments, but provides an excellent test for the efficiency of the algorithms and can 

definitely be considered a worst case scenario!  
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6.3.2 Optimum Filter Modifications 

 

 The original form of the OF algorithm results in different thresholds for each 

energy subdivision considered and uses a nonlinear measure (difference of squares). 

Ideally, we would like a measure that is linear and constant for all energy divisions. The 

benefit of using the original measure (eq. 6.13) was that it biased the results to values 

from the central peak of the convolution where it is most sensitive to rise-time double 

pulses. To get a similar effect with a linear measure, we now consider the measure: 

𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) = max {𝑐𝑇 (𝑡𝑛)− 𝑐𝑠 (𝑡𝑛)}, (6.16) 

where the maximum is taken over a sub-region of the entire convolution. This will be 

referred to as the difference measure in this chapter. For the following development, we 

consider dividing the energy spectrum in to 30 subdivisions.  

 Our first task is to decide what subset of the domain to consider. An obvious 

starting point is to consider elements around the convolution curve before it goes to zero 

on both sides. We first would like to get a sense of where the new measure is maximal for 

calibration and double pulses. To do this, we plot a histogram detailing which array 

element, relative to the convolution template, the maximum value of 𝑚(𝑐𝑇(𝑡𝑛), 𝑐𝑆(𝑡𝑛)) 

occurs. From the top plot of fig. 6.10, we see that most calibration pulses are triggered in 

the left lobe of the convolution. By restricting ourselves to the main central peak, we 

increase the relative difference between double and calibration pulses with double pulses 

tending to have larger measure values (since most calibration pulses don’t have 

maximum measures in this range). In the second plot of fig. 6.10, we see that the 

calibration pulses are maximal on the right wing of the central convolution peak, whereas 
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most double pulses are maximal in the central region. This indicates that we should 

further restrict ourselves to the central FWHM region. 

 

 

 
(Fig. 6.10) Top: histogram detailing where the maximum of the double pulse measure 
occurs (for all divisions) relative to the main region of the convolution template. The 
convolution template included is for reference. Bottom: Similar histogram as top figure 
but with the domain restricted to the central peak. The upper and lower thresholds are set 
at half of the maximum of the convolution template.  
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 The construction of the convolution template involves lining up the pulses based 

on their software trigger. However, the software trigger is not perfect and has some 

amount of spread (see fig. 6.11). When averaging pulses this leads to a slight “blurring” 

of the final average so that it is slightly larger in shape when compared to a single pulse. 

Additionally, the presence of noise in the pulse being filtered its shape relative to that of 

the convolution template. The net result of these effects is a general hierarchy (not a rule) 

of the convolutions being considered (which will further be demonstrated shortly) for: 

𝐺𝑜𝑜𝑑 𝑃𝑢𝑙𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≤ 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 

≤ 𝐷𝑜𝑢𝑏𝑙𝑒 𝑃𝑢𝑙𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

(6.17) 

which is reasonably true in general except for the noisier, low energy pulses where the 

left inequality is more often violated. Because of this general hierarchy, we do not 

consider the absolute value of the difference measure when testing sweeps to determine if 

they are double pulses. In general, we would like this hierarchy to be true of the 

difference measure as well. Suppose we know the cumulative density function for values 

from the difference between the pulse and convolution template, 𝑁(𝑥). If we set: 

𝑦 = max {𝑥1, … ,𝑥2} (6.18) 

Then the CDF of y is: 

𝑀(𝑦) = ℙ(𝑥1 < 𝑦) ∪ …∪ 𝑃(𝑥𝑛 < 𝑦) = 𝑁(𝑥)𝑛 (6.19) 

With a probability density function obtained from its derivative: 

𝑚(𝑦) = 𝑛𝑁(𝑥)𝑛−1𝑛(𝑥) (6.20) 

Where 𝑛(𝑥) is the PDF of x. Fitting intuition, such a distribution tends towards higher 

values the as 𝑛 gets larger. In the case of the difference measure, where a maximum of 



87 
 

 
 

the difference between a pulse convolution and a template convolution a similar effect 

takes place which hides difficult to resolve double pulses.  

 

 

(fig. 6.11) Histograms of the software trigger channel for the 5 eV energy resolution set 
at two different energies ranges (100 and 2700 ± 50 eV). Note the dramatically lower 
range for the higher energy plot. 
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(Fig. 6.12) Comparison of a good filtered pulse and the convolution template at the 
extremes of the energies being considered. 
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To correct the problems involved in taking the maximum of a set of differences, 

we consider each array element in the domain being considered separately. This new 

difference measure can be thought of as a vector now: 

𝒎 = {𝑐𝑇 (𝑡1) − 𝑐𝑠 (𝑡1), … , 𝑐𝑇 (𝑡𝑛)− 𝑐𝑠 (𝑡𝑛)} (6.21) 

where the indices are restricted to array elements within the FWHM region of the central 

peak of the convolution template. Note that due to the variance in shape of convolution 

templates, some subdivisions will have more elements than others. In order to ensure 

consistent results and good statistics, we exclude regions where the number of measure 

values is less than 20% of the total number of pulses being analyzed. An example of 

histograms from array element 2046 is available in figure 6.13 below which demonstrates 

the rough hierarchy described previously.  

 Now that we have an acceptable double pulse measure, all that remains is to 

establish a method for obtaining a threshold. In general it would be ideal to establish a 

single value to use for the histogram associated with each array element considered, but 

each spectrum has a slightly different shape. Note how sharply the calibration pulse 

spectrum ends near zero (fig. 6.13). This feature is common to each spectrum and can be 

taken advantage of. To obtain a threshold, we locate the bin with the highest count rate 

(which is the calibration peak near zero) and then locate the first bin to the right where a 

count that is less than 10% of the maximum. The results using this threshold have very 

good efficiency and a false positive fraction around 0.5%. 
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(Fig. 6.13) Histograms showing the distribution of the double pulse measure for array 
element 2046. Top: Note how the calibration peak tends towards values below zero 
whereas most double pulses have positive measure values. Bottom: the calibration pulse 
spectrum was broken up into its three subdivisions to demonstrate how higher energies 
have lower values. 
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Note that in obtaining the threshold above, where it was set by locating the first bin to the 

right of the maximum that is less than 10% of this maximum, this percentage is 

artificially high due to the large double pulse fraction in each double set. In general this 

fraction should be closer to 1%. In the case where the double pulse threshold is set to 

zero, there is a significant number of false positives (around 15%) but are strictly caused 

by low energy pulses. In cases where the energy spectrum being analyzed does not have a 

high density of low energy pulses, or where there is no concern for low energy pulses (as 

is the case with MARE) this threshold may be ideal. From the analysis performed on this 

double pulse algorithm, we determined that it has a very low false positive fraction. In 

principal this can help when deciding how to set the double pulse threshold for an 

experiment with real data. Assuming the double pulse density is fairly low (as with 

MARE), any threshold that results in a false positive fraction higher than 1% (or lower 

percentages) should definitely be rejected. 

 

6.3.3 Updated Algorithms  

 

 Because of the more realistic data format used, modifications to the algorithms 

originally described in the initial results subsection. Here the new algorithms are listed 

with the altered portions in bold font for convenience.  

Updated Standard (XQC) Algorithm: 

• Calculate 𝑑𝑡 -noise for good noise sweeps, compute the associated RMS value, 

and average this for all noise sweeps: 𝜎; 
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• The threshold, 𝜃, is set as 2𝑎𝑁𝜎, where 𝑎 is initialized with a value of 4, and 𝑁 is 

the minimum multiple of 𝜎 to use as a threshold (for all analysis we use 𝑁 = 5); 

• All good 𝑑𝑡 -noise sweeps are then scanned for excursions above 𝜃; 

• If any such excursions are found their associated noise sweep is reclassified and 

the process repeats in order to calculate a “cleaner” value for 𝜎; 

• If no such excursion are found, then 𝑎 is reduced by 1; 

• The process is repeated until 𝑎 = 0 in which case, we have the threshold: 𝜃 =

𝑁𝜎. 

Now that we have established a threshold, we analyze each energy division separately as 

follows: 

• Average all good sweeps (shifted to line up based on their software trigger) and 

calculate its time derivative to build a template:  𝑇 ; 

• Each sweep being analyzed is shifted (again, based on the software trigger) and its 

time derivative is taken giving us: 𝑃𝑖; 

• The template is normalized so that its maximum corresponds to that of 𝑃𝑖, and we 

take their difference; 

• This difference is scanned for excursions beyond the threshold, 𝟐𝒂𝑵𝝈; 

• If any excursions are found, they are reclassified, the template is 

reconstructed from the remaining good pulses, and the process repeats 

• If no excursions are found in any of the sweeps being analyzed, then 𝒂 is 

reduced by 𝟏; 

• The process is repeated until 𝒂 = 𝟎 in which case, we have the threshold: 

𝜽 = 𝑵𝝈. 
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Updated Optimum Filter (OF) Algorithm: 

• Average good pulses in the time domain, calculate its second time derivative and 

transform to the frequency domain: 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛); 

• Compute 𝑑𝑡𝑡 -noise and average in the frequency domain: 𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛); 

• Create the optimum filter as: 𝐹�𝑜𝑝𝑡(𝑓𝑛) = 𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)
𝑁�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)

; 

• Create the convolution template as: �̃�𝑇(𝑓𝑛) = �𝐹�𝑜𝑝𝑡(𝑓𝑛)� �𝑃�𝑡𝑡,𝑎𝑣𝑒.(𝑓𝑛)�, and 

convert this to the time domain: 𝐶𝑇(𝑡𝑛); 

• Normalize 𝐶𝑇(𝑡𝑛) so that its maximum is 1: 𝑐𝑇(𝑡𝑛); 

• For each pulse, 𝑃�𝑡𝑡,𝑖(𝑓𝑛), to be analyzed, create a template as: 𝐶𝑝,𝑖(𝑡𝑛) =

�𝐹�𝑜𝑝𝑡(𝑓𝑛)� ∗ �𝑃�𝑡𝑡,𝑖(𝑓𝑛)� (this is done in the frequency domain as with the template 

above); 

• Normalize 𝐶𝑆(𝑡𝑛) so that its maximum is 1, and shift so that its peak corresponds 

to that of the template convolution: 𝑐𝑆(𝑡𝑛); 

• Calculate: 𝒎 (eq. 6.21) 

• Create a histograms from the resulting 𝒎𝒊 values to obtain a threshold 

• Pulses corresponding to an 𝒎𝒊 above this threshold are classified as double 

pulses 
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6.3.4 Results: Effects of Double Pulse Contamination 

 

 As noted earlier, it was expected that the single valued energy pulses used to 

construct the templates for the initial results would artificially increase the efficiency of 

the two algorithms considered. This expectation is verified here. To aid in readability the 

resulting contour plots are summarized via their average efficiency (over the double pulse 

amplitudes considered) and their false positive fraction. All contour plots relating to this 

data may be found in the appendix.  

 Here we consider the effects of double pulse contamination on the efficiency by 

dividing analysis into two categories: clean and dirty. In clean sets, only calibration 

pulses are used to construct the double pulse algorithm templates, whereas for dirty sets, 

no distinction is made between double and calibration pulses (this is a worst case scenario 

approximation of real data). The left sides of the plots represent results from the XQC 

algorithm and the right side represents results from the OF algorithm. We see that in 

general, the OF algorithm is much less sensitive to the presence of double pulse 

contamination than the XQC algorithm. For clean sets, they perform similarly except for 

the 1µs separation double pulses and lower false positive fractions where the XQC 

algorithm outperforms for the former and the OF algorithm outperforms in the latter (a 

lower double pulse threshold for the OF algorithm would close this gap by increasing its 

false positive fraction and low energy double pulse efficiency). 
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(Fig. 6.14) Summary of results for clean and dirty sets and 5 eV Energy Resolution. 
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(Fig. 6.15) Summary of results for clean and dirty sets and 2 eV Energy Resolution. 
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6.3.5 Results: Effects of Detector Non-linearity 

 

 Because of the spread out distribution of calibration pulses used, the number of 

energy subdivisions becomes an additional parameter to explore. Here, we consider only 

clean sets with 5,10,15,20,25, and 30 energy subdivisions (equally spaced). From fig. 

6.16, we see that overall, both algorithms are fairly stable over the different numbers of 

energy subdivisions considered with little difference between the 2 and 5 eV energy 

resolution sets considered. Differences do appear though, when we look at how the false 

positive fraction depends on the number of energy divisions (fig 6.17). Of particular note 

is that the optimum filter algorithm is extremely stable whereas the false positive fraction 

of the standard algorithm increases quickly as the number of energy divisions is reduced. 

This is largely due to the way in which the algorithms are constructed. By construction, 

the OF algorithm was made to be sensitive to the sudden changes in voltage associated 

with a pulse. Recall that for a single pulse, there are only two such regions that contribute 

strongly to the second derivative. Other regions do not contribute as strongly making this 

algorithm very sensitive to the separation and sharpness of these two regions and with 

little sensitivity to the overall pulse shape (which changes due to the nonlinearity and to 

which the standard algorithm is more sensitive).  
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(Fig. 6.16) Comparison of efficiency for both double pulse algorithms at 5 eV (top), and 2 
eV (bottom) energy resolution. 
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(Fig. 6.17) Comparison of false positive fraction for both double pulse algorithms at 5 eV 
(top), and 2 eV (bottom) energy resolution. 
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6.3.6 Results: Combining Both Algorithms 

 

 Here we explore the efficiency resulting from combining both algorithms (in both 

orders) on dirty sets. In general, their contour plots show a complimentary efficiency 

where the XQC algorithm is more sensitive to low energy second pulses and the OF 

algorithm is more sensitive to low energy first pulses (see appendix for contour plots). 

Because of this, the resulting efficiency is dramatically increased and become comparable 

to the initial results. From fig. 6.18, we see that the best results are obtained when starting 

with the OF algorithm. This is due in large part to its reduced sensitivity to the presence 

of double pulse contamination in its template. Comparable results are obtained in the 

reverse order, but are slightly less efficient with a higher false positive. The strong 

difference in false positive fractions is caused by the double pulse threshold set in the OF 

filter. When double pulses are removed by first running the XQC algorithm, subsequent 

analysis with the OF algorithm results in a threshold that is a little too low. This can 

easily be changed, but would result in an even lower efficiency relative to the reverse 

order for the algorithms.  



101 
 

 
 

 

 

(Fig. 6.18) Summary of the results from combining the two algorithms in both orders for 
5 eV (top) and 2 eV energy resolution. The left column represents first running the XQC 
algorithm then following with the OF algorithm. The right column represents the reverse 
order. 
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6.4 Summary 

 

Our initial results were very positive, but more realistic analysis is needed. After 

modifications of the experimental setup and the optimum filter algorithm, we were able 

to analyze both algorithms and obtain more accurate results. While some care must be 

taken with setting the threshold for the OF algorithm, it is very tough and stable in the 

presence of high double pulse template contamination and is highly insensitive to 

detector nonlinearity. The XQC algorithm on the other hand, is sensitive to detector 

nonlinearity, but does comparatively better when there is very little double pulse 

contamination in its template. In general, we have found that we can achieve very good 

efficiency for rise-time double pulse detection with both algorithms separately, but the 

best results are obtained by running the two algorithms in series which results in almost 

perfect detection for 5 µs separation double pulses and excellent efficiency for the other 

two separations considered. This reduces the effective rise-time used ultimately results in 

a higher sensitivity for any calorimetric experiment.  
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Appendix A 

FITS File Details 

 

 A problem that often arises in custom created software created in academia is that 

the File format used is custom made for the specific purposes of the project (and thus 

unfamiliar to anyone else). This is acceptable but causes problems when collaborating 

with others. In order to facilitate collaboration a standard File format is preferable. We 

chose the FITS (Flexible Image Transport System) because it is well documented and has 

a library available (CFITSIO) which is compatible with FORTRAN code 

 The FITS File format was developed in the 1970’s to provide a standard for data 

exchange between astronomical observatories. Since that time FITS has become the 

standard File format for most astrophysical data analysis software packages.  FITS Files 

are comprised of a Primary Header Data Unit (HDU) along with a header. The Primary 

HDU contains an N-dimensional array of pixels which may be null (which is the case for 

all of our FITS Files). To this, additional HDUs and their associated headers may be 

added (called extensions). These extensions may be of three types:  

• Image Extension: N-dimensional array of pixels (as with the Primary HDU) 

• ASCII Table Extension: Rows and columns of data in an ASCII character format 

• Binary Table Extension: Row and columns of data in binary form 

The header of each HDU may have any number of comments (up to 80 characters), or 

header entries (each with a descriptive comment up to 80 characters long) which may be 

either integers, floating point numbers, character strings, or logical (Boolean), each 

denoted by a keyword (8 characters, all in caps).  The following are some of the main 



104 
 

 
 

FITSIO calls used in FITSFILTER (all arguments to the right of the “>” are returned by 

the routine). The “status” parameter is used as an error check for FITS routines. It is 

initialized as zero and returned as some other value depending on what type of error 

occurred. 

 

[xbijkefdgcmls]: This is not a routine. Some routines have different names based on the 

type of parameter they read/write. The characters stand for: 

x bit 

b character*1 (unsigned bit) 

i short integer (I*2) 

j integer (I*4, 32-bit integer) 

k long long integer (I*8, 64-bit integer) 

e real exponential floating point (R*4) 

f real fixed-format floating point (R*4) 

d double precision real floating point (R*8) 

g double precision fixed-format floating point (R*8) 

c complex reals (pair of R*4 values) 

m double precision complex (pair of R*8 values) 

l logical (L*4) 

s logical (L*4) 
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Routines to Create a FITS File 

 

• FTGIOU(> unit, status): This routine returns an unused integer (unit) which 

may be used to open a FITS File.  

• FTMAHD(unit, nhdu, > hdutype, status): Assuming the unit is associated with 

an open File, this routine moves to a selected HDU (nhdu, starting with 1 for the 

Primary HDU) and returns its type (not used for our purposes). 

• FTCOPY(iunit, ounit, morekeys, > status): This routine is used to copy the 

current HDU from iunit to the current (necessarily empty) HDU of ounit. The 

morekeys parameter is not used for our purposes, but allows additional space for 

extra keywords. 

• FTPKY[JKLS](unit, keyword, keyval, comment, > status): This routine adds a 

new keyword to the current HDU associated with the open unit along with a 

comment up to 80 characters long. 

 

• FTPKY[JKLS](unit, keyword, keyval, decimals, comment, > status): Same as 

above with an additional parameter, decimals, as the integer number spaces to the 

right of the decimal to use. 

• FTICOL(unit, colnum, ttype, tform, >  status): Each column in a FITS file 

HDU must be initialized by ins column number, type, and form. The parameter 

ttype declares the name of the column (up to eight characters) and tform declares 

the variable type and length. For example a real exponential floating point array 
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of size 2048 would be declared as a character string: ‘2048E’; whereas a single 

integer entry would be decalared as a character string: ‘1I’. 

  

Routines to Read a FITS File  

 

• FTGCV[SBIJKEDCM](unit, colnum, frow, felem, nelements, nullval, > 

values, anyf, status): This routine reads the data from a given row (frow) and 

column (colnum) from the current HDU and return its value. In most cases this 

will be a single parameter, but sometimes an array is read (nelements = ‘size of 

array to be read’) 

• FTOPEN(unit, Filename, rwmode, > blocksize, status): This routine open an 

existing FITS Files with either readonly (rwmode = 0) or readwrite (rwmode = 1) 

access. The returned blocksize argument is obsolete and should be ignored. 

• FTGKEY(unit, keyword, > value, comment, status): This routine is used to 

read a given keyword from the current HDU and returns its value and associated 

comment. Note that this routine does not have different forms associated each 

type of possible variable format, so care must be made to know in advance what 

type of keyword you are reading. 

 

Routines to Edit a FITS File 

 

• FTGCNO(unit, casesen, coltemplate, > colnum, status): This routine searches 

the current HDU for a data column with a given name (coltemplate), and returns it 
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number (starting with 1 from the leftmost column). This routine is used 

extensively throughout FITSFILTER so that no assumptions need to be made 

about what data is in a given column (as long as one exists with the given name). 

This allows additional columns to be inserted in the future without requiring any 

rewriting of the code.  

• FTMKY[JKLS](unit, keyword, keyval, comment, > status): It is possible to 

have multiple entries in a given HDU with the same keyword name. Caution must 

be taken to ensure that any keyword is created in an HDU only once. To modify a 

given keyword, this routine must be called instead. 

• FTMKY[EDFG](unit, keyword, keyval, decimals, comment, > status): Same 

as above with an additional parameter, decimals, as the integer number spaces to 

the right of the decimal to use. 

• FTPCL[SLBIJKEDCM](unit, column, frow, felem, nelements, values, > 

status): This is the workhorse of FITSFILTER and is used to write data to the 

unit associated with the current HDU. Colnum and frow are the column and row 

number for the entry to be modified. Nelements declares the integer size of the 

array, usually just one unless in contains a sweep array in which case it is a power 

of 2. This call has a useful property that if the row does not exist, it will create it 

along with any missing intermediate rows. 

• FTGKY[EDJKLS](unit, keyword, > keyval, comment, status): This routine 

reads a keyword from the header of the current HDU and returns its value in 

keyval along with its associated comment (usually ignored for out purposes). 
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The above list is not exhaustive and some lesser used calls occur in FITSFILTER. To 

find a complete list and description of cfitsio routines, you may visit 

http://heasarc.gsfc.nasa.gov/fitsio/ and download the “Fortran Programmer Reference 

Guide”.  

 The following details cover the files used in fitsfitlter: 

Files:  

• *_SWP.FITS (SWP File): This is the main input File for FITSFILTER and 

contains important data in the header as well as all of the sweeps and related 

information for at least one pixel. 

• *_PUL.FITS (PUL File): This File is created by FITSFILTER and holds 

parameters calculated from the sweeps of analyzed pixels such as rise-time, rough 

amplitude, and trigger channel. 

• *_FIL.FITS (FIL File): This File holds templates created for each pixel 

analyzed. It saves many unused templates for future reference. The main purpose 

of this File is to save the filter template, which maximizes the signal to noise 

ratio. With the aid of a calibration peak, the energy of each sweep is extracted. 

• PARAMETER.FITS: This File holds many customizable parameters used in 

FITSFILTER (especially if it is run in auto mode). This File allows the user to 

change parameters without editing the code and recompiling.  

*_SWP.FITS (SWP File): 

 

 This File is the output of trigger (or other File type conversion programs we have 

created for various purposes) and is where most of the content of the subsequent PUL and 
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FIL File are obtained. The ‘*’ indicates the base name of the File which will be used for 

the associated PUL and FIL Files. Note that when using FV, the HDUs are indexed 

starting from 0 rather than 1, which is the convention used when moving between HDUs 

with the ftmahd call. The header keywords listed are strictly user added and required for 

FITSFILTER to read it properly. Any support keywords which are automatically created 

for the FITS File are ignored (including the keywords associated with the binary data 

column declarations). To avoid confusion, note that the columns are listed in rows – this 

is strictly to allow the entries to be more readable and does not imply that columns have 

been switched with rows on the FITS Files. The SWP File has the following format: 

Primary HDU (HDU 1) 
Header: Empty 
Image: Empty 
 
HDU 2 
Header: 

• SWPLEN: array size of each sweep 
• DELTIME: timescale 
• DELVLT: voltage scale 
• NCHST: trigger channel 
• NSWEEP:  total number of sweeps (from all pixels on File) 
• PIXCOUNT: total number of pixels on the SWP File 

 
Binary Data Columns (one row for each pixel): 

Column Name Type Units 
1  PIXNUM 1J None 
2  NSWEEP 1J None 
3  ACGAIN 1E None 
4  SQUID 1E None 
5  ELCF 1E Hz 
6  UCF 1E Hz 
7  ELP 1J None 
8  UCP 1J None 
9  FWIN 1E None 
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HDU 3 
Header: Empty 
 
Binary Data Columns (number of rows is equal to NSWEEP keyword in HDU 2): 

Column Name Type Units 
1 Pixel_Number 1J None 
2 Pixel_Count 1J None 
3 PULse_Time 1D sec_of_day 
4 Flag 1J bits 
5 PULse_Data (SWPLEN)E ampout_volts 

 

(Table A.1) Sweep file format. 
 

The first HDU is left empty, since it cannot contain a binary table. The first 

extension (HDU 2) contains parameter data for each pixel. Originally many of these 

values were strictly in the header, but in order to increase flexibility and allow for 

different pixels to have different parameter values associated with them, they were 

converted to a table. The columns names and descriptions are as follows: 

 

1. PIXNUM: the pixel associated with the row. This is needed since some formats 

used have pixels unevenly distributed over more than one File resulting in skips in 

the list (e.g. pixels; 1,2,3,4,5,6, 13,14,15,16,17,18 may occur in order with 

7,8,9,10,11,12 on a different File) 

2. NSWEEP: the total number of sweeps for the associated pixel 

3. ACGAIN: the DC gain (amplification) applied to the signal before it is digitized. 

4. SQUID: the amplification of the signal from the SQUID and occurs before the 

gain is applied. When used in subroutine of FITSFILTER, the two are multiplied 

(the null entry should be 1, but this is corrected if it is set to 0 for some reason) 

and stored in the subroutines acgain parameter. 



111 
 

 
 

5. ELCF: the lower corner frequency of the bandpass filter response due to the 

amplifier. 

6. UCF: the upper corner frequency of the bandpass filter response due to the 

amplifier. Obviously, we expect UCF > ELCF. 

7. UCP: the pole (power) of the upper corner frequency and generally has a value of 

1 or 2 (0 if no upper corner frequency is given). 

8. LCP: the pole (power) of the lower corner frequency and has similar (though not 

necessarily equal) values as UCP. 

9. FWIN: a parameter used when windowing a sweep. It is a real number between 0 

and 0.5 and indicates the fraction of each side that will be attenuated. 

 

HDU 3 posses the bulk of the data because it contains the actual sweeps for each 

pixel associated with the File. For data that is hardware triggered, there is no particular 

order for the pixel associated with each successive sweep. This requires additional 

columns for proper ‘book keeping’. The columns names and descriptions are as follows: 

 

1. Pixel_Number: the pixel number for which all data in the row is associated with. 

2. Pixel_Count: the count (starting with 1) of the number of sweeps for a given 

pixel. 

3. PULse_Time: the time associated with the given pixel. 

4. Flag: a hardware flag which is not currently used for the main functions of 

FITSFILTER. 
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5. PULse Data: the sweep associated with current pixel. This contains all triggered 

including ones that were randomly triggered to collect noise. 

 

All together the SWP File can become quite large and bulky. It would be convenient 

to possess a ‘lighter’, more portable File that contains characteristic values for each 

sweep rather than the sweep itself. This is exactly what the analysis performed by 

FITSFILTER does and the resultant File is called a PUL File.   

 

*_PUL.FITS (PUL File) 

 

This File, associated with the input SWP File and shares the same base name. If this File 

does not exist, it will be created upon running FITSFILTER with HDU 2 of the SWP File 

copied to HDU 2 of the PUL File along with additional columns. Using the same 

conventions as with the SWP File, the PUL File has the following format: 

 

HDU 1 
Header: 

• FLOWPASS: Lowpass filter applied in FILCHR.F 
• THRESH1: Fraction of max. to use as a threshold in GNUSEL.F 
• THRESH2: Fraction of max. to use as a threshold in GNUSEL.F 
• THRESH3: Fraction of max. to use as a threshold in GNUSEL.F 
• THRESH4: Fraction of max. to use as a threshold in GNUSEL.F 
• THRESH5: Fraction of max. to use as a threshold in GNUSEL.F 
• THRESH6: Fraction of max. to use as a threshold in GNUSEL.F 
• CALEN: Calibration energy for K-alpha 
• NSIGMA: Multiple of sigma used for min threshold in DBLFIL.F 
• LPPOLE: Pole of lpfilter applied to the optimum filter 
• LPFREQ: Frequency of lpfilter applied to the optimum filter 
• A: Gain drift correction:  
• B: Gain drift correction: 
• C: Nonlinear correction: 
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• D: Nonlinear correction: 
• WINFRAC: Parameter used in window subroutine (utility.f) 
• PRTRG: Fraction used to determine ilzero for pretrigger 
• TRIGGER: F: use hardware trigger; T: use software trigger 

 
Image: Empty 
 
HDU 2 
Header: 

• SWPLEN: array size of each sweep 
• DELTIME: timESCALE 
• DELVLT: voltage scale 
• NCHST: trigger channel 
• NSWEEP:  total number of sweeps (from all pixels on File) 
• PIXCOUNT: total number of pixels on the SWP File 

 
Binary Data Columns (one row for each pixel): 

Columns Name Type  Units 
1 PIXNUM 1J None 
2 NSWEEP 1J None 
3 ACGAIN 1E None 
4 SQUID 1E None 
5 ELCF 1E Hz 
6 UCF 1E Hz 
7 ELCP 1J None 
8 UCP 1J None 
9 FWIN 1E None 
10 NCHST 1E  
11 LOWPASS 1E  
12 NMAX 1J  
13 RTUL 1E  
14 RTLL 1E  
15 RNPKUL 1E  
16 RNPKLL 1E  
17 BASEUL 1E  
18 BASELL 1E  
19 TRIGUL 1E  
20 TRIGLL 1E  
21 ZERLIM 1E  
22 DBASEL 1E  
23 SUMFIL 1E  
24 CALEN 1E  
25 CONVFACT 1E  
26 STNR 1E  
27 FWHM 1E  
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28 SUMSIG 1E  
29 ELC_A 1D  
30 ELC_B 1D  
31 ENLC_C 1E  
32 ENLC_D 1E  
33 FILTPROG 1J  
34 WINSTART 1E  
35 WINEND 1E  
36 prtrg 1E  
37 winfrac 1E  

  
HDU 3 
 
Header: 

• SWPLEN: array size of each sweep 
• DELTIME: timescale 
• DELVLT: voltage scale 
• NCHST: trigger channel 
• NSWEEP:  total number of sweeps (from all pixels on File) 
• PIXCOUNT: total number of pixels on the SWP File 

 
Binary Data Columns (number of rows is equal to NSWEEP keyword in HDU 2): 

Columns Name Type Units 
1 Pixel 1J None 
2 Sweep_Num 1J None 
3 Pixel_Num 1J None 
4 Pusse_Time 1D sec_of_day 
5 Flag  bits 
6 yinit 1E V 
7 rawppk 1E V 
8 rawnpk 1E V 
9 dbase 1E V 
10 dectim 1E V 
11 ristim 1E V 
12 tfb 1E V 
13 lpamp 1E V 
14 iclass 1I Class 
15 Eraw 1E eV 
16 Egdc 1E eV 
17 Enl 1E eV 
18 xmax 1E sec 

    
(Table A.2) PUL file format. 
 



115 
 

 
 

 The header of the primary HDU consists of elements copied from the 

PARAMETER.FITS File and will be covered shortly in that section. HDU 2 copied 

exactly from HDU 2 of the SWP File with lots of additional columns. All of the elements 

in each row can be considered as characterizing the entire sweep data set for their 

associated pixel whereas the binary data array in HDU 3 contains elements that 

characterize each sweep individually. The columns names and descriptions are as follows 

(excluding those covered in the description of the SWP File): 

10. NCHST: the trigger channel indicates the array element where the signal first 

exceeded a threshold i.e. triggered. It is technically an integer and starts out as so, 

but may be replaced by the peak (based on a histogram) of the software triggers 

calculated in FILCHR.F 

11. LOWPASS: the lowpass frequency of a lowpass filter applied to each sweep in 

FILCHR.F to increase the signal to noise ratio. 

12. NMAX: the sweep array element where the maximum of the average of all 

sweeps occurs. 

13. RTUL: upper limit on lpamp in k-alpha window. 

14. RTLL: lower limit on lpamp in k-alpha window. 

15. RNPKUL: upper limit on risetime in k-alpha window. 

16. RNPKLL: lower limit on risetime in k-alpha window. 

17. BASEUL: upper limit on pretrigger average voltage. 

18. BASELL: lower limit on pretrigger average voltage. 

19. TRIGUL: upper limit on PULse trigger. 

20. TRIGLL: lower limit on PULse trigger. 
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21. ZERLIM: maximum excursion allowed for noise sweeps. 

22. DBASEL: maximum allowed pre-trigger variation. 

23. SUMFIL: integral of the optimum filter without the time factor. 

24. CALEN: energy of the calibration peak in eV. 

25. CONVFACT:  calen/sumfil, used as a conversion factor to convert the voltage of 

sweeps to their actual energy. 

26. STNR: best signal to noise ratio for a given sweep. 

27. FWHM: full width half maximum value. 

28. SUMSIG: un-normalized maximum of the average windowed signals and the 

optimum FILter used to calculate calen. 

29. ELC_A: gain drift correction parameter. 

30. ELC_B: gain drift correction parameter. 

31. ENLC_C: nonlinear correction parameter. 

32. ENLC_D: nonlinear correction parameter. 

33. FILTPROG: progress of analysis for a given pixel. 

34. WINSTART: lower time limit of pulse classification limiting range. 

35. WINEND: upper time limit of pulse classification limiting range. 

36. Prtrg: value from parameter File used to determine the pre-trigger region. 

37. winfrac: parameter used in windowing. 

HDU 3 has all but the sweep array column from the SWP File along with a number of 

additional parameters which characterize each sweep. The columns names and 

descriptions are as follows: 

1. Pixel: the pixel number for a given row. 
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2. Sweep_Num: the running count for all pixels. 

3. Pixel_Num: the running count for each pixel separately. 

4. PULse_Time: the trigger time for each pulse in terms of the original stream of 

data. 

5. Flag: is not currently used. 

6. yinit: is the baseline voltage of each sweep. 

7. rawppk: is the maximum positive excursion. 

8. rawnpk: is the maximum negative excursion. 

9. dbase: is the maximum variation in the pre-trigger region. 

10. dectim: is the decay-time. 

11. ristim: is the rise-time 

12. tfb: is the software calculated trigger channel. 

13. lpamp: is the amplitude of the low-pass filtered sweep at the array element 

corresponding to the average maximum position. 

14. iclass: contains information on all classifications of each sweep. 

15. eraw: is the energy calculated using the optimum filter and scaling to the energy 

of the calibration pulses. 

16. egdc: is the gain drift correction applied to eraw. 

17. enl: is the nonlinear correction applied to egdc. 

18. xmax: is the real position of the maximum excursion. 
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*_FIL.FITS (FIL File) 

 

 The FIL File is the last FITS File created by FITSFILTER that is unique to a 

given base name. Its main purpose it to hold the optimum filter template. Additional 

HDUs hold other relevant data arrays relevant to the optimum filter for good measure. 

The columns names and descriptions are as follows: 

 

HDU 1 
Header: Empty 
Image: Empty 
 
HDU 2  
Header:  

• NSIG: Number of windowed signals used to create this array 
 
Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J None 
2 signal 2048E Voltage 

  
HDU 3  
Header: 

• NNOI: Number of noise sweeps used to create this array 
 
Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J None 
2 Noise 2048E voltage 

  
HDU 4 
Header: Empty 
 
Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J 1J 
2  S**2/N**2 2048E voltage 

  
HDU 5 
Header: Empty 
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Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J None 
2 S/N**2,time doma 2048E voltage 

  
HDU 6 
Header: Empty 
 
Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J None 
2 S**2/N**2, time 2048E voltage 

  
HDU 7 
Header: Empty 
 
Binary Data Columns (one row for each pixel): 

Columns Name Type Units 
1 Pixel 1J None 
2 S/N**2, freq do 2048E voltage 

  
(Table A.3) FIL file format.  
 

 HDU 5 contains the template created in FILAVG.F which is used to filter each 

sweep in FILFIL.F to ultimately obtain the energy spectrum. This File is particularly 

useful for sets of data that have poor statistics because the user has the option to filter the 

sweeps using a template from another FIL File (presumably sharing the same 

characteristics as the one being analyzed). 

 

PARAMETER.FITS 

 

 PARAMETER.FITS is the only FITS File that is common to all data sets. It 

contains parameters for many of the automatic features of FITSFILTER and can be 

altered directly, eliminating the need to modify hardcoded parameters and recompile. 
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This File is read when creating the PUL File for the first time and its header elements are 

copied into the primary HDU of the PUL File. Thus, if something is modified in the 

parameter File, the update option in FITSFILTER must be used to overwrite the values in 

the PUL Files header. The format is very simple, containing just one HDU with header 

values. The header keywords and descriptions are as follows: 

• FLOWPASS: Low-pass filter applied in FILCHR.F 

• THRESH[1,2,3,4,5,6]: Fraction of max. to use as a threshold in GNUSEL.F 

• CALEN: Calibration energy for K-alpha 

• NSIGMA: Multiple of sigma used for min threshold in DBLFIL.F 

• LPPOLE: Pole of lpfilter applied to the optimum filter 

• LPFREQ: Frequency of lpfilter applied to the optimum filter 

• A: Gain drift correction:  

• B: Gain drift correction: 

• C: Nonlinear correction: 

• D: Nonlinear correction: 

• WINFRAC: Parameter used in window subroutine (utility.f) 

• PRTRG: Fraction used to determine ilzero for pre-trigger 

• TRIGGER: F: use hardware trigger; T: use software trigger 

 

All together these are the four primary Files used for FITSFILTER. Before we continue 

with a deeper description of FITSFILTER and its subroutines, we will take a small detour 

and cover some concepts which will clarify the reader’s understanding. 
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Appendix B 

FITSFILTER, Technical Details 

 

 This appendix chapter provides an overview of the technical aspects and code for 

FITSFILTER that may be useful for users of the program. 

 

FITSFITLER and its Subroutines 

 

• FITSFILTER.F: This is the main program which controls access to the 

subroutines. It takes the SWP File as input and generates an associated PUL File 

if it does not already exist. The user if given the option of running in manual 

mode (pick a pixel and perform any menu option available), or in auto mode 

which analyzes all pixels in a given SWP File. 

• FILCHR.F: This is the first subroutine that the user may run. It calculates 

parameters from each sweep in the pixel being analyzed and saves them in the 

associated PUL File. 

• GNUSEL.F: This routine reads the parameters created in FILCHR.F and plots 

histograms to select limits on the parameters. This is also where the user selects 

the calibration sweeps (windowed sweeps) and their related energy. 

• FILWIN.F: This program uses the limits selected in GNUSEL.F and classifies 

pulses accordingly. 
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• DBLFIL.F: This program analyzes pulses to identify pulses in sweeps classified 

as noise and double pulses and reclassifies them accordingly. At this point, no 

further automatic changes to classification will occur. 

• PLOTSWP.F: This subroutines may be run at any time. It allows the user to plot 

the sweeps, and if they were classified in FILWIN.F, they may be plotted based 

on class. The user is given the option of custom class changes if desired 

• FILAVG.F: This subroutine reads in noise and calibration sweeps to generate an 

optimum FILter (saved into the FIL file). 

• FILFIL.F: This subroutine read the FIL file (user has the option of using one 

from a different file) and filters all sweeps and scales the results (based on the 

values obtained for the windowed sweeps of known energy) and saves them in the 

PUL file. 

• ESCALE.F: This subroutine provides corrections to the energy spectrum. First it 

performs a gain drift correction by fitting the windowed signals in time to a line. 

The user may also apply a second order polynomial correction if a second 

calibration peak of known energy exists 

• FILPLT.F: This subroutine allows the user to plot any combination of parameters 

saved into the PUL File as either a histogram or scatter plot. The user may save 

the plots or data. The histogram of the energy is ultimately the final result desired, 

but the other options allow the user to check for problems and to identify their 

cause. 

• Utilit.f: This holds most of the subroutines and functions called from 

FITSFILTER and its subroutines such as low-pass filters and linear regressions. 
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• Plot.f: This holds the subroutines that allow for plotting and includes the routine 

that generates histograms. 

 

Each subroutine exists independently, which facilitates swapping of subroutines 

as required by the user. For example, DBLFIL.F, the double pulse detection subroutine, 

may be swapped out with a File that does the same task, but uses a different possibly 

more effective algorithm. In general, this allows other users to easily modify the program 

for their own purposes.  

 

Units 

 

    There are three main stages encountered during the acquisition process of sweeps 

which are all related by a constant factor.  

𝑅𝑒𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙  𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙  𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 

The real signal is the actual output of the detector. This is amplified by a SQUID (or 

some other integrated signal transducer) and then a low noise amplifier. That signal is 

then digitized and becomes the starting point of our analysis. The digital signal is 

recorded in scope units which are generally integers. In order to get the Amplified signal 

from this, you must multiply the Digital signal by the sampling voltage. Assuming the 

SQUID and amplifier gain are known, we may convert the amplified signal to the real 

signal. The three stages are thus related as follows: 

𝑅𝑒𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 = (𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙)/(𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑖𝑛) 

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 = (𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙) × (𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑉𝑜𝑙𝑡𝑎𝑔𝑒) 
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It is important to note that because these three forms are related only by a constant 

factor, in principal we could just pick one and use it exclusively because the final results 

for the energy spectrum are normalized based on a calibration spike of known energy. In 

reality, the digital signal is not used because it is an integer array and analysis is 

performed which requires a real array as input. Thus, either the Real or Amplified signal 

are used. The only time the real signal need be calculated is when we are looking at plots. 

 

Windowing 

 

 Fourier transforms decompose functions into sums of sines and cosines. Because 

these functions are periodic, considerations need to be made when applying a Fourier 

transform to a non-periodic function such as the data being analyzed by FITSFILTER. It 

is ideal to modify the original function as little as possible without causing discontinuities 

(which are handled very poorly in this regime). The standard approach is to use a 

windowing function applied to the data being transformed. The windowing function only 

alters the data at its boundaries where it smoothly pinches to zero. We use a half potato 

shaped function which is just the first half of a sine wave of amplitude one with the 

maximum stretched out. 

 

Fast Fourier Transform (FFT) 

 

The Fast Fourier Transform, or FFT, is an efficient algorithm for performing the 

Fourier Transform on discreet, complex data sets. The version of FFT we use comes from 
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the book, ‘Numerical Recipes in Fortran 77’, where the call to the function is: 

four1(data,N,isign). ‘Data’ is a complex array assumed to be a size that is a power of 2, 

‘N’ is the size of the complex array, and ‘isign’ is +1 for a forward FFT (time to 

frequency domain)  and -1 for a reverse  FFT (frequency to time domain). Note that you 

must manually multiply the output of a reverse FFT by a factor of 1/N because the 

routine does not account for normalization.  Doing so ensures that applying both and FFT 

and a reverse FFT to a data array will return the original.  

    It is important to understand which elements of the output correspond to which 

frequency/time element. For the analog case, if we let h(t) be the signal in the time 

domain and H(f) be the Fourier Transform of h(t), we have: 

ℎ(𝑡) =  � 𝐻(𝑓)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑓
∞

−∞
 

𝐻(𝑓) =  � ℎ(𝑡)𝑒2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞
 

In the discrete case, with a sampling rate of Δ and N samples, we define the discrete 

Fourier transform as foloows: 

ℎ𝑘 =  
1
𝑁�𝐻𝑛𝑒−2𝜋𝑖𝑘𝑛/𝑁

𝑁

𝑛=1

 

𝐻𝑛 =  �ℎ𝑘𝑒2𝜋𝑖𝑘𝑛/𝑁
𝑁

𝑘=1

 

With the following relationship between the discrete and continuous case: 

ℎ(𝑡𝑘) =  
1
∆  ℎ𝑘 

𝐻(𝑓𝑛) =  ∆𝐻𝑛 
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The following chart shows how the time and frequency elements are related for the input 

and output of four1(): 

Element # time frequency 
1 0 0 
2 Δ 1/NΔ 
… … … 
N/2 (N/2-1)Δ (N/2-1)/(NΔ) 
N/2+1 (N/2)Δ ±1/(2Δ) 
N/2+2 (N/2+1)Δ -(N/2-1)/(NΔ) 
… … … 
N-1 (N-2)Δ -2/(NΔ) 
N (N-1)Δ -1/(NΔ) 

 

(Table B.1) FFT accounting. 
 

In general, time and frequency can be written as a function the array element number, ‘n’, 

as follows: 

𝑡(𝑛) = (𝑛 − 1)∆ 

𝑓 �𝑛 ≤
𝑁
2� =  

𝑛 − 1
𝑁∆  

𝑓 �𝑛 ≥
𝑁
2� =  

𝑁 − (𝑛 − 1)
𝑁∆  

For the discrete case of the reverse FFT, note that the summation can be written a 

constant plus the sum over positive frequencies plus the sum over negative frequencies. 

In the case of the Nyquist frequency (1/2Δ) for both the sum over positive and negative 

frequencies, the exponential becomes: 

𝑒±𝜋𝑖𝑡(𝑘)/∆ 

Because t(k)/Δ is an integer it follows that only the even cosine part survives. 

Thus the sign of the Nyquist frequency is ambiguous. In FITSFILTER for all forward 

FFTs, the input is strictly real (the complex portion of the input array is set to zero), so 

the result has the following symmetry:  
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𝐻(−𝑓𝑛) = [𝐻(𝑓)𝑛]∗ 

Because the input array has N real elements   and the output array has N real and 

N complex elements, it is implied that some of the information in the output array is 

redundant.  The above symmetry shows that the negative frequencies are related to the 

positive frequencies.  Specifically, each frequency element is split equally between the 

positive and negative frequencies so when plotting, it suffices to plot the first N/2+1 

elements where all of them except for the 0 and Nyquist frequency are doubled. 

 

FITSFILTER.F 

 

 FITSFILTER.F is the first code called by the FITSFILTER program. It has been 

completely rewritten because the FITS Files data format differs so substantially from the 

original FILter program. When FITSFILTER is initialized it first performs a check to 

ensure that support Files required for the printing routine exists in the working directory. 

If everything is in order, the user is prompted to enter the base name for the sweep File 

and if a File of the form *_SWP.FITS (* denotes the base name) does not exist, the user 

may retry other base names, or exit. When a base name associated with an existing File is 

entered, the user has the option of running in one of two different possible modes:  batch 

or interactive. Listed on the console are the existing pixels on the sweep File. By 

selecting the fictional pixel, ‘-1’ (technically any negative integer) batch mode initialized 

and all existing pixels are automatically analyzed without further user input. If an existing 

pixel is selected, FITSFILTER runs in interactive mode strictly for the selected pixel. 

Should a PUL File associated with the base name not exist, one is created before 
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continuing. In general interactive mode should be the first option exercised on a new data 

set to check that automatically generated parameters are acceptable (and tweak them 

accordingly). Interactive mode is also beneficial for diagnosing problems, which will be 

covered in a later section. The subsequent descriptions of subroutines will assume 

interactive mode. 

 The analysis subroutines exist in a hierarchical order where most will not run out 

of order. This process is controlled by the ‘filtprog’ (filter progress) variable which is 

updated after successful completion at each step of analysis. At this point, in interactive 

mode, the console lists menu options to call subroutines based on the value of filtprog. 

The only subroutines which may be called at any point is the first plotting routine which 

allows any sweep contained on the File to be plotted. Note that filtprog is not regressively 

updated, so any changes resulting from rerunning a subroutine will not automatically 

propagate to the most recently run subroutine with rerunning the intermediate analysis as 

well. The only acceptation to this occurs in the double pulse detection subroutine when 

no windowed signals survive since this will cause misbehavior of subsequent analysis.  

 Note that option: “ (u) update parameters;” is not associated with a subroutines 

and runs within FITSFILTER.F. It checks that the values saved in the primary HDU of 

the PUL Files correspond to the values in the parameter File. If this is not the case the 

values in the HDU are updated with the values in the parameter File. This allows fine 

tuning of parameters without the requiring the user to delete the FIL File and rerun the 

analysis.  
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FILCHR.F 

 

 FILCHR.F is the first of the analysis subroutines required for FITSFILTER. 

Characterizing parameters for each sweep are calculated and added to the PUL File 

which will be refined and ultimately contribute to obtaining an energy spectrum. Before 

analysis proceeds, the console lists some options which allow the user to manually fine 

tune the parameter calculation process. The options given are: 

 

• (0) Another pulse 

• (1) Set new position of maximum 

• (2) Change low-pass frequency 

• (3) Enter pulse number to jump to  

• (4) Proceed with analysis 

 

In addition, the first sweep is plotted with a line indicating which array element contains 

the average maximum of all the sweeps. Option (0) and (3) are used to explore the 

sweeps to make sure that the maximum array element is reasonable. This may not be the 

case if there were a significant number of sweeps triggered by noise or if there is 

microphonic contamination, in which case a new position may be selected by option (1). 

Depending on the amount of noise associated with the data set being analyzed, option (2) 

can be called to change the low-pass frequency to a larger value if there is significant 

noise or a lower value is there is negligible noise. Note that changing the lowpass 

frequency significantly will likely require a new maximum position to be selected since 
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the newly filtered pulses may have a comparably different shape. Once everything is 

satisfactory, all that is left is to proceed with analysis. 

 

GNUSEL.F 

 

 Originally named idlsel.f in the original filter program, GNUSEL performs the 

same tasks but uses gnuplot rather than IDL to provide plots (as do all subroutines in 

FITSFILTER). The main purpose of this subroutine is to plot histograms of the values 

calculated in FILCHR.F to allow limits to be set on will be considered acceptable values. 

The first time this routine runs, the limits are selected automatically (based on values in 

the PARAMETER.FITS File), but each histogram is still plotted allowing further 

modification of the limits. The first four plots have very similar user options: 

 

• (1) Change binning (‘# of bins used’); 

• (2) Mark limits; 

• (3) save data; 

• (4) save plot; 

• (9) continue [default]; 

 

Option (1) allows the resolution to be increased or decreased depending on the amount of 

statistics available. If the current limits displayed are not acceptable, option (2) may be 

selected. Options (3) and (4) save the data (into a *.dat File) or save the plot displayed (in 

postscript format) respectively. The last option will proceed to the next plot.  
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The fifth and final plot displayed in this subroutine is a scatter plot rather than a 

histogram. Each data pair consists of the low-pass filtered raw estimate of the energy 

(lpamp) and the rise-time plotted on the x and y axis respectively. This pair of values 

strongly characterizes each sweep allowing reasonable selection of the windowed signals 

which will be used to calibrate the energy of all sweeps later on. There is more 

information required here than with the histogram plots, so there are more options 

available: 

 

• (1) select k-alpha window; 

• (2) select k-alpha energy;   (‘current energy value’)   

• (3) save data; 

• (4) save plot; 

• (5) count pulses in box; 

• (6) select pulse classification limiting range; 

• (9) continue [default]; 

 

Note that k-alpha just denotes the sweeps which will be used for calibration. The 

window is automatically calculated just as the limits are with the previous histograms, 

and can similarly be refined via option (1) where the window refers to selecting limiting 

values on both the x and y axis forming a window/box. In order to properly calibrate the 

sweeps, the energy of the windowed signals is required (the default/current-selection is 

shown to the right of this option in units of keV). Options (3) and (4) perform the same 

operations as with the histograms. Option (5) counts the total number of calibration 
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sweeps selected. Option (6) is a new addition and was added based on the fact that it may 

not be beneficial to use all of the windowed signals for calibration if there is a region 

with excessive noise (or others problems). For example, in the case of a sounding rocket, 

you may only want to use calibration Pulses detected after the engine has shut off. A plot 

showing the low-pass filtered raw energy for each sweep as a function of time allows the 

user to select a clean region from which to use the calibration sweeps (along with the 

option to remove any selections). After continuing, the option to either redo all of the 

selection or to continue is listed. Upon continuing, analysis with GNUSEL is complete. 

 

FILWIN.F 

 

Based on the limiting values chosen in GNUSEL.F, finwin.f categorizes sweeps 

accordingly with the following binary classification: 

 

• Bit 0: Good sweeps: The default value is zero. All sweeps that are not flagged 

will maintain this value. 

• Bit 1: Windowed signals: Flagged for all pulses that are within the k-alpha 

window selected in the scatter plot of GNUSEL.F. 

• Bit 2: Noise: Flagged for all sweeps whose maximum and minimum excursions 

are below the signal threshold set in GNUSEL.F. 

• Bit 3: Baseline out of range: Flagged for all sweeps where the average voltage 

of the pre-trigger region is outside of the allowed values set in GNUSEL.F. 



133 
 

 
 

• Bit 4: Accidental trigger: Flagged for all sweeps whose software calculated 

trigger channel is outside of the range selected in gmnusel.f. 

• Bit 5: Multiple pulses: This is not determined until the next subroutine 

DBLFIL.F which identifies double pulses. 

• Bit 6: Excessive noise in pre-trigger region: Flagged for all sweeps where the 

difference of the maximum and minimum excursion in the pre-trigger region (the 

pre-trigger variation) is outside of the range selected in GNUSEL.F 

• Bit 7: Bad pulse shape: This is not determined until the next subroutine 

DBLFIL.F. 

  

The variable that stores all of this information for each pulse is the iclass parameter. For 

example, a windowed signal that is a double pulse would have the value: 21 + 25 = 34. 

This allows a single integer to uniquely and completely describe a given sweep. 

Ultimately, in regards to obtaining final results, we are only concerned with sweeps with 

an iclass value no larger than four. These sweeps are generally referred to as “good 

sweeps” whereas sweeps with a higher value are similarly referred to as “bad sweeps”. 

The bas sweeps are useful for identifying potential issues with the detector but otherwise 

are generally not considered meaningful.  

 If in GNUSEL.F, during the scatter plot a pulse classification limiting range was 

selected sweeps outside of this range will be treated slightly different (the description 

above holds for all sweeps within the limiting range). All good windowed signals outside 

of the range are reclassified to zero and all good noise is reclassified to one. The net 
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effect of this reclassification is that these sweeps are still good (iclass is at most four), but 

are not used to create the optimum filter. 

 

DBLFIL.F 

 

 The main purpose of this subroutine is to identify double pulses. The following 

description applies to the “standard algorithm” which is a somewhat modified version of 

the original filter version. It is assumed that the detector used has a relatively linear 

response so that all pulses are very similar to the windowed signals. The shape of pulses 

we are analyzing have characteristically sharp rise times so that when a pulse is detected, 

there is a large voltage change over a small time, thus we use the first derivative of 

sweeps to identify double pulses.  

  For consistency, all sweeps are prepared similarly. The sweeps first have their 

baseline removed and are inverted (so that the maximum excursion of a pulse is positive). 

Then, they are low-pass filtered and their derivative is calculated. The nth element of a 

simple discrete derivative is given as: 

𝑉𝑛+1 − 𝑉𝑛
𝑡𝑛+1 − 𝑡𝑛

 

However, because the denominator is constant for all n and because the overall scale is 

not important we simply just use the numerator. For simplicity, in this section, it is 

assumed that all sweeps analyzed with this algorithm are processed as described above 

even if not explicitly stated.  

 The basic procedure in its simplest representation proceeds as follows: (1) Obtain 

a threshold derived from the prepared noise based on the average RMS value. (2) 
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Average the windowed signals to create a template. (3) Take the difference of this 

template with the signal being analyzed (normalized to the same maximum voltage). This 

difference should be relatively flat and essentially just represent the noise on the pulse so 

that anything above the threshold from step (1) identifies a double pulse.  

However, there may be low energy pulses in the noise or double pulses in the 

windowed signals which may through off the algorithm. In order to avoid this possibility 

step (1) and (2) are performed iteratively. More specifically we read nsigma (originating 

from the parameter File) which denotes the lowest multiple of the RMS noise used as a 

threshold: cutoff. We then use 16 times this value as a threshold and search for any good 

noise sweeps with an excursion above this threshold (since sweeps maximum are 

positive). If any are found they are reclassified as a pulse (iclass is set to 0) and the RMS 

voltage is recalculated and the pulses are reanalyzed with the same threshold. If none are 

detected the threshold is halved and the process is repeated until the threshold is just 

cutoff (which is different than the original value if any pulses were found in the noise 

sweeps). The final result is a cleaner value for the cutoff. For step (2) we precede 

similarly but instead of refining cutoff, we are refining the template by removing double 

pulses in the windowed signals by performing step (3) iteratively on just the windowed 

signals. Finally step (3) is performed on all pulses (except for noise and windowed 

signals since those have already been analyzed) with the cleaner template.  

 

 

 

 



136 
 

 
 

PLOTSWP.F  

 

 This subroutine allows the user to view any of the sweeps on the pixel being 

analyzed. It has two modes: full and limited. If the pulses have been classified (finwin.f) 

then full mode will run otherwise option will be limited. In full mode the available 

options are: 

 

• (1) Plot by class; 

• (2) Select plot range; 

• (3) Remove plot range; 

• (9) Exit; 

 

Option (1) allows the user to explore sweeps based on their classification. This 

can be done inclusively or exclusively. Inclusive will show all plots that have the selected 

classification whereas exclusive shows sweeps that only have the selected classification. 

All of these features are useful to visually confirm whether or not sweeps are being 

properly classified (particularly good windowed signals). Option (2) is very robust and 

allows the user to select the parameters plotted on the x and y-axes of a scatter plot and 

select a windowed region to limit what is shown in option (1). This is particularly useful 

for pixels with very large amounts of sweeps. Option (3) simply removes the range 

selected in option (2) and option (9) returns to the main FITSFILTER menu. In limited 

mode, the user only allowed to plot the sweeps without any additional options. 
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FILAVG.F 

 

 This subroutine is the union of two subroutines distinct in the original filter 

program. The main purpose of this routine is to create the optimum filter, stored in the 

FIL File, which will be used to extract the energy of each sweep. If a FIL File does not 

exist at this point, i.e. this is the first time running FILAVG for a File, it will be created. 

 To create the optimum filter, we need several ingredients. First, the windowed 

signals are averaged in the time domain then converted to the frequency domain. Then 

the noise is converted to the frequency domain, squared (absolute value squared so the 

result has no imaginary component), then averaged. The average signal is divided by the 

squared noise to obtain the template in the frequency domain. Along the way, several 

easily constructed arrays relating to the optimum  filter and the average noise and signals 

are later saved into the FIL File for future reference. 

 Before saving the frequency domain optimum filter, the option is given to apply a 

low-pass filter with a user input frequency and pole. The optimum filter is displayed as a 

visual aid in determining whether or not to apply a low-pass filter. If one is applied, it 

may be saved to File. Finally, the user may display and or save the entire array created. 

All plots displayed may be recovered from the FIL File if desired. 
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FILFIL.F 

 

 The main purpose of this subroutine is to use the optimum filter created in 

FILAVG.F to extract the energy of sweeps. Only the maximum element of the 

convolution of the sweep being analyzed and the optimum filter are required so it is not 

necessary to calculate the entire function. In principal we already know the phase for this 

element, so we simply calculate the convolution explicitly. In reality we may be off 

slightly so we the supposed maximum of the convolution and its neighboring elements. If 

either of it neighbors is larger, this directly indicates that we are not at a local maximum 

and the calculation is performed again with the phase shifted accordingly. Once the 

maximum value is obtained, we have an un-scaled energy for the sweep. This value can 

be slightly improved by assuming it and its two neighbors lie on a parabola and taking the 

maximum of the parabola. 

 To properly scale the energy we use the un-scaled energy from the average 

windowed signal. Because the windowed signals have a known energy (input from 

GNUSEL.F), a scale factor can be created and all other un-windowed pulses, including 

the noise can have their energy extracted. However, further correction may be applied. 

These are handled in the next subroutine. 
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ESCALE.F 

 

 This subroutine applied corrections to the energy calculated in FILFIL.F. The first 

energy correction accounts for gain drift. As the data stream for a given File is read from 

a detector, often times over the total acquisition time, the gain (baseline) slowly drifts. 

This can usually be approximated as linear in nature (other possibilities are not accounted 

for here). In order to measure the gain drift, we examine the energy of the windowed 

signals as function of their time (the time they were trigger in the data stream). Via linear 

interpolation, we fit the data with a line whose parameters are displayed. The user may 

decide to apply the correction or to skip it. Either way, the gain drift energy correction 

column is updated (egdc) is updated since it will be used for the next correction. 

 The next correction that can be applied is the non-linear correction. If there is a 

second calibration peak of known energy, a parabolic correction may be applied. From a 

histogram of the gain drift correction energies, the second calibration peak may be 

selected and its energy inputted. Before applying the correction, a consistency check is 

performed to make sure the entries are physically possible (for example the second 

calibration peak cannot be to the right of the original with lower energy). The user may 

decide to apply this correction or to simply proceed without it. In both cases, the 

nonlinear correction column is updated with the new values or just copied from the gain 

drift correction. Note that in automatic mode, only the gain drift correction is applied.  
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FILPLT.F 

 

 This is the final analysis subroutine called by FITSFILTER.F. It allows the user to 

plot either a histogram or scatter plot with any of the characteristic sweep parameters. 

Further, these plots can be limited based on the sweeps class. In most cases the final 

result desired is a histogram of the nonlinear corrected energy (contains the most precise 

energy even if no correction were applied in which case it is the same as the raw energy). 

The can be plotted with any user inputted range and resolution (binning).  

 

PLOT.F 

 

 This subroutine handles all of the plotting involved with FITSFILTER, for which 

only three functions are used: plotdata, plot2, and killplot. Plotdata handles plots of single 

functions with various options for the x and y-axis and plotting style. Plot2 only differs 

from plotdata in that it allows to different functions sharing an axis to be displayed on the 

same plot. Killplot simply closes the last open plot, but due to the method used, cannot 

close previous plots. Thus any call to one of the plotting functions should always be 

followed by killplot otherwise plots will remain even after ending FITSFILTER.  
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Appendix C 

Contour Plots from Analysis of Chapter 6 

 Due to the large number of contour plots resulting from the analysis on the 

simulated double pulses data, the contour plots will be located here to improve 

readability. The parameter space explored includes two different energy resolutions (2and 

5 eV energy resolution with blue and red contour plots respectively); three different 

double pulse time separations (1, 2, and 5µs); clean vs. dirty depending on whether 

double pulses are allowed to contaminate the template files. The above parameter space is 

considered for the standard and optimum filter algorithm. In addition the efficiency 

resulting from dirty sets when combining both algorithms is explored (in both possible 

orders). The format used for most comparisons will be to have the optimum filter plot 

(top) compared to the standard algorithm (bottom). The list below quickly summarizes 

the content of each figure 

Clean with 5 eV Energy Resolution (compare efficiency of algorithms) 

• Fig. 1: 1µ double pulse separation 

• Fig. 2: 2µ double pulse separation 

• Fig. 3: 5µ double pulse separation 

Dirty with 5 eV Energy Resolution (compare efficiency of algorithms) 

• Fig. 4: 1µ double pulse separation 

• Fig. 5: 2µ double pulse separation 

• Fig. 6: 5µ double pulse separation 
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Clean with 2 eV Energy Resolution (compare efficiency of algorithms) 

• Fig. 7: 1µ double pulse separation 

• Fig. 8: 2µ double pulse separation 

• Fig. 9: 5µ double pulse separation 

Dirty with 2 eV Energy Resolution (compare efficiency of algorithms) 

• Fig. 10: 1µ double pulse separation 

• Fig. 11: 2µ double pulse separation 

• Fig. 12: 5µ double pulse separation 

Comparison of efficiency using both algorithms together at 5 eV Energy resolution  

• Fig. 13: 1µ double pulse separation 

• Fig. 14: 2µ double pulse separation 

• Fig. 15: 5µ double pulse separation 

Comparison of efficiency using both algorithms together at 2 eV Energy resolution  

• Fig. 16: 1µ double pulse separation 

• Fig. 17: 2µ double pulse separation 

• Fig. 18: 5µ double pulse separation 
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Fig. C.1; Clean sets at 1µs pulse separation with 5 eV energy resolution. 
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Fig. C.2; Clean sets at 2µs pulse separation with 5 eV energy resolution. 
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Fig. C.3; Clean sets at 5µs pulse separation with 5 eV energy resolution. 
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Fig. C.4; Dirty sets at 1µs pulse separation with 5 eV energy resolution. 
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Fig. C.5; Dirty sets at 2µs pulse separation with 5 eV energy resolution. 
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Fig. C.6; Dirty sets at 5µs pulse separation with 5 eV energy resolution. 
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Fig. C.7; Clean sets at 1µs pulse separation with 2 eV energy resolution. 
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Fig. C.8; Clean sets at 2µs pulse separation with 2 eV energy resolution. 
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Fig. C.9; Clean sets at 5µs pulse separation with 2 eV energy resolution. 
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Fig. C.10; Dirty sets at 1µs pulse separation with 2 eV energy resolution. 
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Fig. C.11; Dirty sets at 2µs pulse separation with 2 eV energy resolution. 
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Fig. C.12; Dirty sets at 5µs pulse separation with 2 eV energy resolution. 
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Fig. C.13; Comparison of results running both algorithms on the same data set with 1µs 
double pulse separation and 5 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom).  
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Fig. C.14; Comparison of results running both algorithms on the same data set with 2µs 
double pulse separation and 5 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom). 
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Fig. C.15; Comparison of results running both algorithms on the same data set with 5µs 
double pulse separation and 5 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom). 
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Fig. C.16; Comparison of results running both algorithms on the same data set with 1µs 
double pulse separation and 2 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom). 
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Fig. C.17; Comparison of results running both algorithms on the same data set with 2µs 
double pulse separation and 2 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom). 
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Fig. C.18; Comparison of results running both algorithms on the same data set with 5µs 
double pulse separation and 2 eV energy resolution: standard then optimum filter 
algorithm (top); optimum filter then standard algorithm (bottom). 
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