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Hypersonic vehicles generate shocks that can heat the air sufficiently to partially ion-

ize the air and create an electrically conducting plasma that can be studied using the equa-

tions of single fluid magnetohydrodynamics (MHD). Introducing strong applied magnetic

and electric fields into the flow could have beneficial effects such as reducing heat dam-

age, providing a sort of MHD parachute, and generating electric power or thrust in the

vehicle. The Low Diffusion E-CUSP (LDE) scheme with a fifth order WENO scheme has

recently been developed by Zha et al. [1, 2]. The purpose of this work is to incorporate

the low magnetic Reynolds number MHD model and the thermodynamics of high temper-

ature air to the above CFD algorithm so that it can be used to simulate hypersonic flows

with MHD effects. In this work we compare results treating air as chemically frozen, ne-

glecting all high temperature real gas effects with results obtained treating the air as a real

gas in thermodynamic equilibrium, whose thermodynamic properties are changed by the

high temperature. The hypersonic flows at high altitudes considered in this study have low

Reynolds numbers. The Reynolds numbers range from about 2000 to 5000 for Mach 6

flows and reach up to 1.2×106 for Mach 15 flows. Thus, the flows are treated as laminar

for the former cases and as turbulent for the latter using the Baldwin-Lomax turbulence

model.
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Chapter 1

Introduction

1.1 Background

Since early 1960 when X-15, the first manned hypersonic airplane, successfully reached

Mach 5, there have been many efforts to understand the aerodynamics of hypersonic flows

and develop technologies to overcome many technical difficulties that arise in aerospace

engineering.

One of the goals of the studies of hypersonic flows is to find ways to control them so

that safer, more efficient, and more reliable hypersonic flight can be achieved. In general,

there are two ways to control the flows, active and passive flow controls. Regarding active

flow controls, one idea is to utilize the fact that hypersonic flows can have a partially ion-

ized region around the body. Once the characteristics of this ionized region are understood

there are many ways to control the flows by applying electromagnetic forces to this region.

These types of flow controls are collectively called magnetohydrodynamic flow control. It

is well known that it is practically impossible to obtain an analytical solution to the gen-

eral Navier-Stokes equation which governs fluid dynamics. Also, due to the difficulties in

1
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performing experiments with hypersonic flows in a laboratory or in airborne systems, the

use of empirical studies is very limited, too.

Another alternative to circumvent the situation is computational or numerical study.

Computational fluid dynamics have been successfully applied to many different scientific

and engineering disciplines for a long time since the development of digital computers.

Based on how the governing equations are formulated in the numerical method, they are

categorized mainly into three different methods: finite difference method, finite volume

method, and finite element method. Each method has its own advantages and disadvan-

tages depending on the problem of interest. For conservation laws such as the ones oc-

curring in aerodynamics, the finite volume method has many advantages over the other

methods. The most important property among them is that the finite volume methods

automatically fulfill the conservation laws once the governing equations are written in a

conservative form.

Magnetohydrodynamics (MHD) describes conducting fluids such as salt water, liq-

uid metals, or ionized gases. Despite the fact that MHD theory is one of the most prac-

tical methods to describe plasma systems, it is hard to get analytical solutions to many

problems due to its highly nonlinear properties and complex boundary conditions. Thus,

computational MHD is preferred in many cases and air plasma at atmospheric pressure is

one example. However, when the governing equations of MHD are written in conserva-

tion form, they are not completely hyperbolic but are rather a mixed form. This prevents

computational MHD from utilizing some features of conventional computational fluid dy-

namics that have been developed to solve hyperbolic system with strong discontinuities

such as shocks. Fortunately, regarding air plasmas in engineering applications, a few as-
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sumptions can be made to simplify the description of the system so that the conventional

computational fluid dynamics can be utilized to solve hypersonic flows with partially ion-

ized regions. One of them is the so called low magnetic Reynolds number approximation,

which assumes that the ionized air produced in hypersonic flow is a poor conductor and the

induced current density is small enough that the induced magnetic field is much smaller

than the applied magnetic field. The low magnetic Reynolds number approximation en-

ables the original MHD equations to be reduced to the Navier-Stokes equations with MHD

source terms added. With the governing equations written in this form, one can use the

conventional CFD method to solve the problem of air plasmas as long as this assumption

is valid. Examples of the type of systems, to which the low magnetic Reynolds number

approximation can be applied, include hypersonic cruise vehicles, reentry vehicles, and

the internal flow of scramjet engines.

The idea of MHD flow controls began as early as 1950s and developed through 1960s.

However, due to the difficulties in obtaining analytical solutions and experimental mea-

surements, very limited computing power to utilize numerical methods, and unavailability

of strong magnets, it was not until the 1980s that various ideas of MHD flow controls

could be finally studied in their own right thanks to state-of-the-art hypersonic facilities,

tremendous computing power, and availability of strong superconducting magnets. A few

notable original studies are considered below.
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1.2 Brief Survey of Previous Research

One of the earliest studies include the theoretical calculation of hypersonic flow around a

blunt body during reentry by Bush [8]. The flow was assumed to be inviscid with constant

density and conductivity and confined to the stagnation region of the body. The analysis

showed that the application of a magnetic field resulted in an increase in the shock standoff

distance and a decrease in pressure off-axis. The result was presented in terms of the

magnetic interaction parameter being defined as a ratio of Lorentz force to inertial force.

Wu [9] studied a constant viscosity, density and conductivity model for a system

similar to that analyzed by Bush and showed that viscosity had an effect of decreasing the

magnitude of the change in shock standoff distance.

Chuskin [10] analyzed the hypersonic flow around a magnetized sphere and cylinder

using the method of integral relations and numerical techniques. The result showed an

increase in shock standoff distance as Bush’s result showed, but the pressure off axis also

increased contrary to Bush’s result.

One of the most extensive calculations was done by Porter [11]. Using a model

similar to Bush’s, he obtained the numerical solution for the flow field, the shock standoff,

the drag coeffcient, and the pressure field. Also, the Hall effect, the viscosity effect, and

finite magnetic Reynolds numbers effects were considered as well. His result showed that

qualitatively similar but smaller effects as Bush’s could be obtained without the Hall effect,

but an increase in pressure is obtained when the Hall effect is taken into account.

There are also a limited number of experimental studies which include Ziemer [12],

Seeman and Cambel [13], Nowak et al. [14], and Kranc et al. [15].
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More recent studies include Bityurin [16,17], Hoffmann [18–20], Gaitonde and Pog-

gie [21], Fujino and Ishikawa [22], Yoshino et al. [23], and Bityurin and Bocharov [24,25].

Most of these use advanced computational methods and some combined experimental data

obtained from hypersonic wind tunnels or similar facilities. However, depending on the

parameters of the flow conditions used in the research and the assumptions made by the

authors in modeling the flow, not only similar generic features have been obtained but also

contrary results have been reported.

1.3 Objectives

The objectives of the current research is to carry out a numerical study of hypersonic flows

combined with the MHD effect using an advanced computational method to analyze the

characteristics of MHD flow control and assess the applicability of such a technique to

hypersonic flight. The objectives of this study can be summarized as follows: 1) Develop

MHD subroutines that can be incorporated into an existing E-CUSP and WENO based nu-

merical solver. 2) Incorporate the TGAS Simplified Curve Fit method in the new solver to

treat high temperature gas effects. 3) Validate the new MHD solver. 4) Assess applicability

and efficacy of MHD flow control for various atmospheric hypersonic flows.



Chapter 2

Theory

2.1 Magnetohydrodynamics

2.1.1 The MHD Model

Single-fluid magnetohydrodynamics (MHD) describes an electrically conducting but elec-

trically neutral fluid of density ρ , velocity u, pressure p, energy per unit mass e, viscosity

tensor ¯̄τ , and heat flux vector q. The electrical quantities are the magnetic field B, the

electric field E, the current density J, and the electrical conductivity σ . In principle σ

should be calculated from an air chemistry model, such as in Ref. [26], but in this study it

is assumed that σ is given, and the air chemistry is not considered. The plasma is taken to

obey Ohm’s law

J = σ(E+u×B). (2.1)

The magnetic field is advanced in time using Faraday’s law

∂B
∂ t

=−∇×E. (2.2)

6
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The Ampère-Maxwell equation, which could be used to advance E is

µ0ε0
∂E
∂ t

= ∇×B−µ0J. (2.3)

However, MHD describes low frequency phenomena, in which the conduction current is

much greater than the displacement current, that is,

J� ε0
∂E
∂ t

. (2.4)

The displacement current is therefore neglected and we use the pre-Maxwell equation

µ0J = ∇×B, (2.5)

which gives J in terms of B. This means that E is not advanced in time, but is obtained

in terms of B using Eqs. [2.1] and [2.5]. As a consequence of this, MHD cannot describe

the usual type of high frequency electromagnetic waves. However, MHD does describe

three interesting types of waves known as the Alfvén wave and the fast and slow magneto-

acoustic waves. E can be eliminated from Eq.(2.2) and we rewrite it as

∂B
∂ t

=−∇×
( J

σ
−u×B

)
= ∇× (u×B)+

1
µ0σ

∇
2B, (2.6)

which is the equation that advances B in time, and can be written in conservation form as

∂B
∂ t

+∇ · (u⊗B−B⊗u) =
1

µ0σ
∇

2B. (2.7)
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The fluid quantities ρ,u, and e are advanced in time using the usual conservation of mass,

∂ρ

∂ t
+∇ · (ρu) = 0, (2.8)

conservation of momentum,

∂ (ρu)
∂ t

+∇ · (ρu⊗u) =−∇p+∇ · ¯̄τ +J×B, (2.9)

which now includes the magnetic force density J×B, and finally e is advanced with the

equation of conservation of energy,

∂

∂ t

(
ρe
)
+∇ ·

[(
ρe+ p

)
u
]
=−∇ ·q+∇ · ( ¯̄τ ·u)+E ·J. (2.10)

This equation is rewritten using Eq. [2.1] as

∂

∂ t

(
ρe
)
+∇ ·

[(
ρe+ p

)
u
]
=−∇ ·q+∇ · ( ¯̄τ ·u)+ J2

σ
+(J×B) ·u. (2.11)

The system is closed by giving appropriate expressions for e, ¯̄τ,q, and σ in terms of the

other quantities. The specific energy e is given by

e = eint +
1
2

u2, (2.12)

and the pressure is obtained using

eint =
p

(γ̃−1)ρ
, (2.13)
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where eint is advanced using Eq. [2.11], and γ̃ , which equals 1.4 for chemically frozen

air, is calculated using Eqs. [2.19] from the curve fitting method for air in chemical and

thermodynamic equilibrium. In Eqs. [2.9], [2.10] and [2.11], J can be eliminated using

Eq. [2.1].

2.1.2 The Full MHD Model and the Low Magnetic Reynolds Number

Approximation

The flow around a hypersonic vehicle causes a bow shock that heats the air enough to give

it some electrical conductivity. We are interested in describing steady hypersonic flow

around a vehicle that carries a magnet that applies a strong steady magnetic field Ba to the

flow with the intention of reducing surface heating and increasing the drag force. The drag

force increases because the integral of J×B over the fluid volume appears as a reaction

force on the magnet. The vehicle may also have conductors on its surface arranged so as

to generate electrical power by extracting energy from the flow. The vehicle might also

have a steady source of E mf, Ea, and apply a strong electric field Ea, such as in a nozzle,

to produce MHD thrust.

We consider Ba and Ea as independent of time in the reference frame of the vehicle.

The total magnetic and electric fields in the plasma B = Ba +Bi and E = Ea +Ei are the

sum of the applied and induced fields. The applied fields have zero divergence and curl

inside the flow field. The full MHD model presented in Section 2.1.1 advances in time

the eight-dimensional flux vector [ρ,ρu,ρv,ρw,Bx,By,Bz,ρet ], where u,v, and w are the

x,y, and z components of u, using Eqs. [2.8], [2.9], [2.11], and [2.7] in conservation form.

The full MHD 8-dimensional problem is conceptually clear, because only the magnetic
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field is advanced in time. The current J is obtained from the magnetic field using Eq.

[2.5]. Finally the electric field is calculated using the boundary conditions, knowing its

curl from Eq. [2.2], and its divergence from requiring that Eq. [2.1] be compatible with

∇ ·J = 0.

Several authors have treated the full 8-dimensional problem. For example, a nozzle

problem with a generator section to extract power from the incoming flow, and an accelera-

tor section to produce thrust, using a tensor conductivity was treated in Ref. [26]. Ref. [18]

also used the full 8-dimensional MHD model to treat flows around a flat plate and around

a blunt body with zero electric field. The ionized air produced in the hypersonic flow is a

poor electrical conductor. Therefore the electrical current J induced in the plasma is small.

The magnetic field Bi generated by the plasma current is much smaller than the applied

field, and diffuses in a fast time scale, which complicates the numerical simulations. This

allows the use of a low magnetic Reynolds number approximation.

When expressed in dimensionless variables, the electrical conductivity σe enters the

problem via the magnetic Reynolds number

Rem = µ0σeUre f Lre f , (2.14)

where Ure f and Lre f are appropriate reference values of speed and length in the problem.

When Rem is small it is possible to treat the problem in a low Rem approximation, which

neglects the fields Bi and Ei induced by the plasma. In this model only the five fluid quan-

tities in the five-dimensional flux vector [ρ,ρu,ρv,ρw,ρe] need to be advanced in time us-

ing Eqs.[2.8], [2.9], and [2.11], with MHD source terms proportional to J. Refs. [17] - [27]

used the low Rem approximation to study interesting effects, such as the MHD parachute
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and MHD power generation. MacCormack [28] showed that the full MHD solution agrees

with the low Rem solution for flow in a thrust producing nozzle for Rem = 0.17. Damevin

and Hoffmann [19] compared the full MHD solution including air chemistry with the low

Rem approximation in flows over a hemisphere and a cylinder. Khan, Hoffmann and Di-

etiker [20] used the full MHD model to treat flows with zero electric field around a flat plate

and a blunt body and tested for agreement between the solutions of the full MHD model

and the low Rem approximation. They obtained good agreement for values of Rem < 0.125.

2.1.3 Ohm’s Law and Electrical Conductivity Models

The electrical current density J is calculated using a form of Ohm’s law. When the Hall

current and ion slip are important there appear, in addition to the ordinary scalar electrical

conductivity of the electrons, σe, a Hall conductivity σH and a perpendicular conductivity

σ⊥. These involve the electron and ion Hall parameters βe and βi, and the ion slip factor

s = βeβi. The Hall parameters are given by

βe =
ωe

ν̄e
, and βi =

ωi

ν̄i
, (2.15)

where ωe and ωi are the electron and ion Larmor frequencies, and ν̄e and ν̄i are the effective

electron and ion collision frequencies. As discussed in Sutton and Sherman [29] and using

the notation in [26], σ⊥ and σH are given by

σ⊥=
1+ s

(1+ s)2 +β 2
e

σe, and σH =
βe

(1+ s)2 +β 2
e

σe, which give σ⊥≈σH ≈
σe

βe
for large βe.

(2.16)
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Due to the strong magnetic fields and low densities in our simulations we estimate that

βe is large, of the order of 103, and βi is of order 1. We see from Eq.2.16 that in our

case σ⊥ and σH are much smaller than σe. Therefore we neglect effects like Hall current

and ion slip, which greatly simplifies our simulations, and we calculate the current density

with the ordinary electrical conductivity using the simple Ohm’s law of Eq. 2.1. We

consider simple models for σe. The so called equilibrium ionization model assumes the

electrical conductivity of the air is a constant throughout the entire shock layer [21] and

zero elsewhere:

σe =

 σe,re f inside shock layer

0 elsewhere,
(2.17)

where σe,re f is the reference electrical conductivity. However, considering the tempera-

ture variation in the shock layer this assumption is not well justified because σe depends

strongly on the temperature. Other authors, such as in Refs. [30] and [21], consider a better

variable electrical conductivity model based on a power-law.

Because the simple power law model tends to exaggerate the conductivity we modify

this by introducing an onset temperature

σe = σe,re f Θ(T−Tonset)

(
T
T0

)k

(2.18)

where Θ is the Heaviside step function, Tonset is the onset temperature, T0 is the stagnation

temperature, and k is the exponent of the power-law model. We call this power-law-onset

model.

The physical conditions we consider are similar to those in Ref. [27], so we take

σe,re f = 100S/m as the reference electrical conductivity, which is representative of the
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more rigorous results of Ref. [27]. The results for Tonset = 4000K and Tonset = 6000K are

compared in Fig. [9.12]. Also, the results with k=1, 2, and 3, which are called P1, P2, and

P3 respectively, are compared in Fig. [9.5].

2.2 Atmospheric Hypersonic Flows

Although there is no clear cut as to where hypersonic flow regime starts, a flow is usually

considered as hypersonic if the speed of the flow exceeds about Mach 5.

Figure 2.1: Velocity/Altitude parameters for several reentry vehicles, as taken from Bertin
[5].



14

Fig. [2.1] shows a few examples of the flight paths of hypersonic vehicles. The char-

acteristics of different flow regimes experienced by some of the hypersonic vehicles in the

previous figure are summarized in Fig.[2.2]. In the hypersonic flow regime many phenom-

Figure 2.2: Four major classes of hypersonic space-transport vehicles, and major aerother-
modynamics effects, as taken from Hirschel [6].

ena start to develop and these make the flow differ from supersonic flow. One of the basic

characteristics of hypersonic flow is its thin shock layer compared with supersonic flow.

As the Mach number increases the attached shock gets very close to the surface of the body

and extreme conditions develop inside the shock layer. The viscosity coefficient increases

with temperature. When the flow inside the shock layer slows down, a large amount of

kinetic energy is transformed into internal energy. This process makes the temperature

in the boundary layer increase and in turn the viscosity coefficient increases. In addition,

because the pressure in the normal direction through a boundary layer is constant, the in-
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crease in temperature makes the density decrease. As a result, to conserve the mass passing

through the boundary layer, the thickness of the boundary layer increases. Combined with

an increased viscosity coefficient itself inside the boundary layer, this makes the boundary

layer grow rapidly. This thickened boundary layer interacts with the inviscid region of the

shock layer and changes the inviscid region and vice versa. This phenomenon is called

viscous interaction.

The extremely high temperature of hypersonic flow can cause excitation of the vi-

brational energy of air molecules and triggers dissociation of molecules and eventually

ionization of gas. The conditions for this process depends on the altitude. Fig. [2.3] shows

Figure 2.3: Dominant chemical reactions for equilibrium air in the stagnation region, as
taken from Hansen and Heims [7].

dominant chemical reactions on altitude-velocity map for equilibrium air. For air at 1

atm pressure, the oxygen molecules start to dissociate at about 2000K and are completely
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dissociated at about 4000K, where the dissociation of the nitrogen molecules starts. At

about 9000K the nitrogen molecules completely dissociate, and above this temperature

the ionization process begins and the air becomes a partially ionized gas.

2.2.1 Treatment of High Temperature Gas Effects

The high temperature behind the hypersonic bow shock causes molecular dissociation,

chemical reactions, ionization, and other effects that change the equation of state and the

energy equation of the gas. A complete treatment of this requires the inclusion of reaction

rate equations for each chemical species, the inclusion of rotational and vibrational en-

ergy equations, and other effects, possibly with the presence of two or even three distinct

temperatures.

Based on particle densities and collision cross sections we estimate that the molecu-

lar collision times are ∼ 10−7− 10−8 s. In flow regions where the transit time of the air

is much larger than the molecular collision time, local thermodynamic equilibrium may

develop. In the cases considered in this study the free stream speeds are ∼ 5× 103 m/s,

and the shock stand-off distances are ∼ 0.08 m. The transit time of the air over the shock

stand-off distance is then ∼ 1.6× 10−5 s, which is much longer than the collision time.

Therefore, air in chemical and thermodynamic equilibrium is treated using the curve fit

method implemented in the TGAS FORTRAN subroutines developed by Srinivasan, Tan-

nehill, and Weilmuenster [31], and Srinivasan, Tannehill, and Weilmuenster [32]. These

subroutines are good for temperatures up to T = 25,000 K, and particle density from 10−7

to 103 times 2.687×1025 1/m3, which is the particle density of an ideal gas at a pressure

of 1 atm and a temperature of 273.15 K. The authors mention that the subroutines apply
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to air, and other gas mixtures, and include molecular rotation, vibration, dissociation, and

ionization.

The TGAS subroutines give the pressure p and temperature T in terms of an equiva-

lent ratio of specific heats γ̃ in the form

γ̃ = γ̃(eint ,ρ), p = ρeint(γ̃−1), T = T (p,ρ), (2.19)

where ρ and eint are the gas density and specific internal energy.

2.2.2 Baldwin-Lomax Turbulence Model

The flow conditions used in this study are mostly low density due to the high altitude which

make the Reynolds number small enough so that the flows can be treated as laminar flows.

However, some cases have large Reynolds number due to very high speed and relatively

large characteristic size and require turbulence modeling. The Baldwin-Lomax turbulece

model was first proposed in Baldwin and Lomax [33]. It is an eddy viscosity model which

simply adds an additional term to the transport coefficients without solving any additional

equations. In all viscous flow equations, the viscosity µ is replaced by (µ + µT ) and

the thermal conductivity k is replaced by (k+ kT ) where µT and k are the eddy viscosity

and the eddy thermal conductivity, respectively. It is known to yield reasonable results

for a wide range of Mach numbers from subsonic to hypersonic. This model treats the

boundary layer as two split layers, an inner and an outer layer, each layer being described
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by the following turbulence viscosity:

µT =

 (µT )inner y≤ ycrossover

(µT )outer y≥ ycrossover

(2.20)

where y is the local normal distance from the wall, and ycrossover is the crossover point

from the inner to the outer layer. For the inner layer,

(µT )inner = ρl2|ω| (2.21)

where

l = ky
[
1− exp

(
−y+
A+

)]
, y+ =

√
ρwτwy
µw

(2.22)

and k and A+ are two dimensionless constants to be specified. Here, ω is the local vorticity

and is defined, for example, for a two dimensional flow as

ω =
∂u
∂y
− ∂v

∂x
. (2.23)

For the outer layer,

(µT )outer = ρKCcpFwakeFKleb (2.24)

where K and Ccp are two additional constants, and Fwake and FKleb are related to the func-

tion

f (y) = y|ω|
[

1− exp
(
−y+

A+

)]
. (2.25)
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f (y) will have a maximum value along a given normal distance y. This maximum value

and the location it occurs are denoted by Fmax and ymax, respectively. In Eq. [2.24],

Fwake = min[ymaxFmax,CwkymaxU2
di f /Fmax] where Cwk is constant and Udi f =

√
u2 + v2,

and

FKleb(y) =

[
1+5.5

(
CKleb

y
ymax

)6
]−1

. (2.26)

Thus, there are six constants in the model and they are: A+ = 26.0,Ccp = 1.6,CKleb =

0.3,Cwk = 0.25,k = 0.4,K = 0.0168.



Chapter 3

Governing Equations

3.1 3D Navier-Stokes Equations

The governing equations are the spatially filtered compressible Navier-Stokes equations.

The spatial filtering removes the small scale high frequency components of the fluid mo-

tion, while keeping the unsteadiness associated with the large scale turbulent motion. Fol-

lowing the derivation of Knight et al. [34], the filtered compressible Navier-Stokes equa-

tions in Cartesian coordinates can be expressed as:

∂Q
∂ t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂ z

=
1

Re
(
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv
∂ z

) (3.1)

where t is time, Re is the Reynolds number. The variable vector Q, inviscid flux vectors

E, F, G, and the viscous fluxes Ev, Fv, Gv are given as the following.

20
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Q =



ρ̄

ρ̄ ũ

ρ̄ ṽ

ρ̄w̃

ρ̄ ẽ


, E =



ρ̄ ũ

ρ̄ ũ2 + p̄

ρ̄ ũṽ

ρ̄ ũw̃

(ρ̄ ẽ+ p̄)ũ


, F =



ρ̄ ṽ

ρ̄ ṽũ

ρ̄ ṽ2 + p̄

ρ̄ ṽw̃

(ρ̄ ẽ+ p̄)ṽ


, G =



ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄ ẽ+ p̄)w̃


(3.2)

Ev =



0

τ̄xx +σxx

τ̄xy +σxy

τ̄xz +σxz

Qx


, Fv =



0

τ̄yx +σyx

τ̄yy +σyy

τ̄yz +σyz

Qy


, Gv =



0

τ̄zx +σzx

τ̄zy +σzy

τ̄zz +σzz

Qz


(3.3)

The overbar denotes a regular filtered variable, and the tilde is used to denote the Favre

filtered variable. In the above equations, ρ is the density, u,v,w are the Cartesian velocity

components in x,y,z directions, p is the static pressure, and e is the total energy per unit

mass. The τ̄ is the molecular viscous stress tensor and is estimated as:

τ̄i j =−
2
3

µ̃
∂ ũk

∂xk
δi j + µ̃(

∂ ũi

∂x j
+

∂ ũ j

∂xi
), i, j = 1,2,3. (3.4)

The above equation is in tensor form, where the subscripts 1, 2, 3 represent the coordinates,

x,y,z, and the Einstein summation convention is used. The molecular viscosity µ̃ = µ̃(T̃ )

is determined by the Sutherland law. The σ is the subgrid scale stress tensor due to the
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filtering process and is expressed as:

σi j =−ρ̄(ũiu j− ũiũ j) (3.5)

The energy flux Q is expressed as:

Qi = ũ j(τ̄i j +σi j)− q̄i +Φi, (3.6)

where Φ is the subscale heat flux:

Φi =−Cpρ̄(ũiT − ũiT̃ ). (3.7)

The q̄i is the molecular heat flux:

q̄i =−
Cpµ̃

Pr
∂ T̃
∂xi

(3.8)

ρ̄ ẽ =
p̄

(γ−1)
+

1
2

ρ̄(ũ2 + ṽ2 + w̃2)+ρk, (3.9)

where γ is the ratio of specific heats, ρk is the subscale kinetic energy per unit volume.

ρk =
1
2

ρ̄(ũiui− ũiũi) =−
1
2

σii (3.10)

In the present calculation, the ρk in Eq.(3.9) is omitted based on the assumption that

the effect is small.
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In generalized coordinates, Eq.(3.1) can be expressed as the following:

∂Q′

∂ t
+

∂E′

∂ξ
+

∂F′

∂η
+

∂G′

∂ζ
=

1
Re

(
∂E′v
∂ξ

+
∂F′v
∂η

+
∂G′v
∂ζ

)
(3.11)

where

Q′ =
Q
J

(3.12)

E′ =
1
J
(ξtQ+ξxE+ξyF+ξzG) (3.13)

F′ =
1
J
(ηtQ+ηxE+ηyF+ηzG) (3.14)

G′ =
1
J
(ζtQ+ζxE+ζyF+ζzG) (3.15)

E′v =
1
J
(ξxEv +ξyFv +ξzGv) (3.16)

F′v =
1
J
(ηxEv +ηyFv +ηzGv) (3.17)

G′v =
1
J
(ζxEv +ζyFv +ζzGv) (3.18)

where J is the transformation Jacobian. The inviscid fluxes in the generalized coordinate

system are expressed as:
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E′ =



ρ̄U

ρ̄ ũU + lx p̄

ρ̄ ṽU + ly p̄

ρ̄w̃U + lz p̄

(ρ̄ ẽ+ p̄)U− lt p̄


, F′ =



ρ̄V

ρ̄ ũV +mx p̄

ρ̄ ṽV +my p̄

ρ̄w̃V +mz p̄

(ρ̄ ẽ+ p̄)V −mt p̄


, G′ =



ρ̄W

ρ̄ ũW +nx p̄

ρ̄ ṽW +ny p̄

ρ̄w̃W +nz p̄

(ρ̄ ẽ+ p̄)W −nt p̄


where U , V and W are the contravariant velocities in ξ , η and ζ directions.

U = lt + l•V = lt + lxũ+ lyṽ+ lzw̃

V = mt +m•V = mt +mxũ+myṽ+mzw̃

W = nt +n•V = nt +nxũ+nyṽ+nzw̃

(3.19)

l, m, n are the normal vectors on ξ ,η ,ζ surfaces with their magnitudes equal to the ele-

mental surface area and pointing to the directions of increasing ξ ,η ,ζ .

l =
∇ξ

J
, m =

∇η

J
, n =

∇ζ

J
(3.20)

lt =
ξt

J
, mt =

ηt

J
, nt =

ζt

J
. (3.21)

For simplicity, all the overbars and tildes in the above equations will be dropped in the

rest of this thesis. Please note that the Navier-Stokes equations, Eq.(3.11), are normalized

based on a set of reference parameters. The detailed normalization procedure can be found

in [4].



Chapter 4

The Numerical Method

The original numerical method on which this study is based is exactly the same as used

in Wang [35]. Thus, in order to describe the original numerical method as precisely as

possible, most of the following is excerpted from Wang [35].

In this chapter, the numerical methods used to discretize the governing equations

are introduced. The flow governing equations are discretized using the finite difference

method in a fully implicit manner. The inviscid fluxes are discretized using a newly de-

veloped, low diffusion E-CUSP scheme [1,36]. The fifth-order WENO scheme [3] is used

to reconstruct the conservative variables at volume interfaces. A set of fully conservative

fourth-order accurate finite central differencing scheme for the viscous terms is employed

in this research [3]. These central differencing schemes are constructed so that the sten-

cil widths are within the one of the WENO scheme. The structure governing equations

are discretized and solved implicitly in the same manner, to be consistent with the flow

governing equations.

25
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4.1 Finite Difference Discretization Using Implicit Method

The 3D Navier-Stokes equations (3.1) are discretized based on conservative finite differ-

encing, which is implemented by shifting the solution points a half grid interval in each

direction on the computational domain. The solution points are hence located in the cen-

troids of the grid cells in the computational domain (not physical domain). This makes it

possible to use the same code structure of a 2nd order finite volume method. The derivative

of a flux is discretized by a finite difference method. Taking inviscid flux E as an example,

the discretized conservative form of its derivative can be written as the following

∂E
∂ξ
|i =

Ei+1/2−Ei−1/2

∆ξ
, (4.1)

where the inter index denotes the centroid of a cell and the half integer indices denote in-

terfaces of the cells. Since ∆ξ = 1, ∆η = 1, ∆ζ = 1 are used in the generalized coordinate,

the governing Eqs.(3.1) can be written as the following implicit form:

1
∆t

(
Qn+1−Qn)+(Ei+ 1

2
−Ei− 1

2

)n+1
+
(

F j+ 1
2
−F j− 1

2

)n+1
+
(

Gk+ 1
2
−Gk− 1

2

)n+1

=
(

Ri+ 1
2
−Ri− 1

2

)n+1
+
(

S j+ 1
2
−S j− 1

2

)n+1
+
(

Tk+ 1
2
−Tk− 1

2

)n+1
+Dn (4.2)

where n and n+1 are two sequential time levels, which have a time interval of ∆t. The 5th

order WENO scheme with an upwind scheme Riemann solver is used for reconstructing

inviscid fluxes Ei+ 1
2
, F j+ 1

2
and Gk+ 1

2
. A fully conservative 4th order central differencing

scheme is used to evaluate the viscous fluxes R, S, T .
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4.2 The Low Diffusion E-CUSP (LDE) Scheme [2]

The basic idea of the LDE scheme is to split the inviscid flux into the convective flux Ec

and the pressure flux E p. In the generalized coordinate system, the flux E can be split as

the following:

E = Ec +E p =



ρU

ρuU

ρvU

ρwU

ρeU

ρν̃U


+



0

lx p

ly p

lz p

pU

0


(4.3)

where, U is the contravariant velocity in ξ direction and is defined as the following

U = lt + lxu+ lyv+ lzw. (4.4)

U is defined as:

U = lxu+ lyv+ lzw. (4.5)
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The convective term, Ec is evaluated by

Ec = ρU



1

u

v

w

e

ν̃


= ρU f c, f c =



1

u

v

w

e

ν̃


. (4.6)

Let

C = c
(
l2
x + l2

y + l2
z
) 1

2 (4.7)

where c =
√

γRT is the speed of sound. Then the convective flux at interface i+ 1
2 is

evaluated as:

Ec
i+ 1

2
=C1

2

[
ρLC+ f c

L +ρRC− f c
R
]

(4.8)

where, the subscripts L and R represent the left and right hand sides of the interface.
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C1
2
= 1

2 (CL +CR) , C+ = α
+
L (1+βL)ML−βLM+

L −M+
1
2

C− = α
−
R (1+βR)MR−βRM−R +M−1

2

ML = UL
C1

2

, MR = UR
C1

2

αL,R = 1
2 [1± sign(ML,R)]

βL,R =−max [0,1− int (|ML,R|)]

M+
1
2
= M1

2

CR+CLΦ

CR+CL
, M−1

2
= M1

2

CL+CRΦ−1

CR+CL
, Φ =

(ρC2)R
(ρC2)L

M1
2
= βLδ+M−L −βRδ−M+

R

M±L,R =±1
4 (ML,R±1)2

δ± = 1
2

{
1± sign

[1
2 (ML +MR)

]}

. (4.9)

The pressure flux, E p is evaluated as the following

E p
i+ 1

2
=



0

P+plx

P+ply

P+plz
1
2 p
[
U +C 1

2

]
0


L

+



0

P−plx

P−ply

P−plz
1
2 p
[
U−C 1

2

]
0


R

. (4.10)

The contravariant speed of sound C in the pressure splitting of energy equation is

consistent with U . It is computed based on C as the following,

C =C− lt (4.11)
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The use of U and C instead of U and C in the pressure splitting of energy is to take into

account the grid speed so that the flux will transit from subsonic to supersonic smoothly.

When the grid is stationary, as in this thesis, lt = 0, C =C, U =U .

The pressure splitting coefficient is:

P±
L,R =

1
4
(ML,R±1)2 (2∓ML) (4.12)

The LDE scheme can capture crisp shock profiles and exact contact surface discon-

tinuities. Since the scheme uses scalar dissipation, for DES with one extra equation, the

splitting is basically the same as the original scheme. This is an advantage over the Roe

scheme, for which the eigenvectors need to be derived when any extra equation is added

to the governing equations. It is also more computationally efficient than the Roe scheme

as it has no matrix operations.

4.3 The Fifth-Order WENO Scheme [3]

The interface flux, Ei+ 1
2
= E(QL,QR), is evaluated by determining the conservative vari-

ables QL and QR using fifth-order WENO scheme [3]. For example,

(QL)i+ 1
2
= ω0q0 +ω1q1 +ω2q2 (4.13)

where
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q0 =
1
3Qi−2− 7

6Qi−1 +
11
6 Qi

q1 =−1
6Qi−1 +

5
6Qi +

1
3Qi+1

q2 =
1
3Qi +

5
6Qi+1− 1

6Qi+2

(4.14)

ωk =
αk

α0 + . . .+αr−1
(4.15)

αk =
Ck

ε+ISk
, k = 0, . . . ,r−1

C0 = 0.1, C1 = 0.6, C2 = 0.3

IS0 =
13
12 (Qi−2−2Qi−1 +Qi)

2 + 1
4 (Qi−2−4Qi−1 +3Qi)

2

IS1 =
13
12 (Qi−1−2Qi +Qi+1)

2 + 1
4 (Qi−1−Qi+1)

2

IS2 =
13
12 (Qi−2Qi+1 +Qi+2)

2 + 1
4 (3Qi−4Qi+1 +Qi+2)

2

(4.16)

where, ε is originally introduced to avoid the denominator becoming zero and is supposed

to be a very small number. In [3], it is observed that ISk will oscillate if ε is small and

also shift the weights away from the optimum values in the smooth region. The higher

the ε values, the closer the weights approach the optimum weights, Ck, which will give

the symmetric evaluation of the interface flux with minimum numerical dissipation. When

there are shocks in the flow field, ε can not be too large to maintain the sensitivity to

shocks. In [3], the optimized value of ε = 10−2 is recommended for the transonic flow

with shock waves.
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4.4 Implicit Time Integration

4.4.1 Implicit Flow Solver

The time dependent governing equations are solved using a dual time stepping method

suggested by Jameson [37]. To achieve high convergence rate, the implicit pseudo time

marching scheme is used with the unfactored Gauss-Seidel line relaxation. The physical

temporal term is discretized implicitly using a three point, backward differencing as the

following (The prime is omitted hereafter for simplicity):

∂Q
∂ t

=
3Qn+1−4Qn +Qn−1

2∆t
(4.17)

where n− 1, n and n+ 1 are three sequential time levels, which have a time interval of

∆t. The first-order Euler scheme is used to discretize the pseudo temporal term to enhance

diagonal dominance. The semi-discretized equations of the governing equations are finally

given as the following:

[(
1

∆τ
+

1.5
∆t

)
I−
(

∂R
∂Q

)n+1,m
]

δQn+1,m+1 = Rn+1,m− 3Qn+1,m−4Qn +Qn−1

2∆t
(4.18)

where the ∆τ is the pseudo time step, R is the net flux evaluated on a grid point using the

fifth-order WENO scheme.
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4.4.2 Gauss-Seidel Line Relaxation [4]

To enhance diagonal dominance, a first order scheme is used for the implicit pseudo tem-

poral terms. Following the procedure in Hu’s Ph.D. thesis [4], the implicit discretized form

of Eq. (4.2) is written as the following

B̄∆Qn+1
i, j,k +A+∆Qn+1

i+1, j,k +A−∆Qn+1
i−1, j,k +B+∆Qn+1

i, j+1,k

+B−∆Qn+1
i, j−1,k +C+∆Qn+1

i, j,k+1 +C−∆Qn+1
i, j,k−1 = RHSn

(4.19)

RHSn is the summation of all the terms on the right hand side (RHS) of the equation.

RHSn = ∆t
{[(

Rn
i+ 1

2
−Rn

i− 1
2

)
+
(

Sn
j+ 1

2
−Sn

j− 1
2

)
+
(

Tn
k+ 1

2
−Tn

k− 1
2

)]
−
[(

En
i+ 1

2
−En

i− 1
2

)
+
(

Fn
j+ 1

2
−Fn

j− 1
2

)
+
(

Gn
k+ 1

2
−Gn

k− 1
2

)]}
+Dn ·∆t (4.20)

Gauss-Seidel line relaxation is applied in each direction (i, j, k) and is swept one time

step forward and backward in each direction. For example, the equation for Gauss-Seidel

relaxation following lines along direction i with the index from small to large is written as:

B−∆Qn+1
i, j−1,k + B̄∆Qn+1

i, j,k +B+
∆Qn+1

i, j+1,k = RHS′ (4.21)

where

RHS′ = RHSn−A+
∆Qn

i+1, j,k−A−∆Qn+1
i−1, j,k−C+

∆Qn
i, j,k+1−C−∆Qn+1

i, j,k−1 (4.22)
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4.5 Boundary Conditions

To obtain a well posed solution of a given flow problem by solving the Navier-Stokes

governing equation, Eq.(3.11), it is necessary to define the boundary conditions for the

problem. Since the solution points are located at the centroids of the cells, ghost cells are

used to define the boundaries except for the inviscid flux on wall surface for steady state

problems. In other words, most of the boundary conditions are defined by setting up the

values of the variables at the ghost cells. Depending on the scheme order of accuracy to be

used, the number of ghost cells will vary to match the accuracy of the inner points. Several

commonly used boundary conditions are described as the following.

4.5.1 Supersonic Inflow

For supersonic inflow boundary, all the primitive variables are fixed as the initial values of

the flow field at the ghost cells.

ρgst = ρint ,ugst = uint ,vgst = vint ,wgst = wint ,egst = eint (4.23)

where, gst represents the ghost cell and int represents the initial value. In this case, the

initial values are set to the values of the free stream and used to specify the inflow BCs.
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4.5.2 Wall Boundary

Stationary Walls

For inviscid flux, the wall boundary condition is enforced by setting the normal contravari-

ant velocity on the boundary to zero. For example, if a wall boundary is on a η-surface,

the contravariant velocity V is zero on the wall surface, and hence the flux on the wall

surface is calculated as,

Fw =



ρV

ρuV +mx p

ρvV +my p

ρwV +mz p

(ρe+ p)V


w

=



0

mx p

my p

mz p

0


w

(4.24)

The wall pressure is extrapolated from inner points by the following formulation:

1) 1st order extrapolation

pw = p1 (4.25)

2) 3rd order extrapolation

pw =
1
6
(11p1−7p2−2p3) (4.26)

For viscous flux, a no-slip and adiabatic wall boundary condition is constructed by

setting the ghost cell velocity as the negative of the velocity of its inner counterpart based
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on the reflection condition.

ρgst = ρinn,ugst =−uinn,vgst =−vinn,wgst =−winn,egst = einn (4.27)



Chapter 5

Grid Study

The numerical method used in this work utilizes a structured multi-block grid system. This

structured grid system consists of hexahedral cells and there are many ways to construct

three dimensional multi-block grids for the problem.

All the problems considered and presented in this study have axisymmetry and one

of the natural ways to construct a grid taking advantage of this symmetry is to rotate the

two dimensional plane about the axis of symmetry. However, this introduces singularity

problems to the cells along the axis of symmetry or the stagnation streamline because all

those cells then have a wedge-like shape instead of hexahedral shape which makes the area

of one of the surfaces zero. Hence, to construct grid systems that are free of singularity,

two different grids are constructed based on different topologies. Examples are given

below.

37
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5.1 Mixed H-type and O-type Grid

The first type of grid combines O-type grid with H-type grid. The inner block is a cylindri-

cal shaped H-type mesh while the outer block is O-type mesh surrounding the inner block.

The left panel of Fig. [5.1] shows the 3D grid used for a hemispherical blunt body. The

outer region is divided into 32 blocks of 64x64x4 x-y-z cells each that go to 32 processors.

The inner region at the tip of the body, shown magnified in the right panel, is divided into 4

blocks of 64x16x16 cells each that go to 4 processors. Figs. [5.2] and Fig. [5.3] compare

Figure 5.1: Views of the grid for the symmetric blunt body.

the chemically frozen air pressure and temperature along the stagnation streamline, and

along a radial line at 45◦ from the flow direction for different grid densities. The results

agree very well, and we have settled on the grid of Fig. [5.1] for the the presentation of

our other results.
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Figure 5.2: Frozen air pressure profiles for different grid densities. The left panel along the
stagnation streamline and the right panel along a radial line at 45◦ from the flow direction.

Figure 5.3: Frozen air temperature profiles for different grid densities. The left panel
along the stagnation streamline and the right panel along a radial line at 45◦ from the flow
direction.

5.2 Projected H-type Grid

The second type of grid is contructed by projection of a 2 dimensional H-type mesh onto

the axisymmetric body geometry to eliminate the singularity along the axis of symmetry
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and collateral alignment of two adjacent surfaces both of which cause a numerical diffi-

culty. An example of such a grid system is shown in the following. Fig. [5.4] shows a

computational grid comprised of 12 blocks, each of which has 64x8x8 cells. To find out

Figure 5.4: Computational grid.

a suitable cell density for the simulations, three computational grids of 12 blocks with

different cell densities, i.e., 64x8x8, 96x12x12, and 128x16x16 are compared. Note that

the total number of cells in each grid are 64x8x8x12, 96x12x12x12, and 128x16x16x12,

respectively. The grids are used to compute Mach 3 equilibrium flow at an altitude of

40km around a hemisphere with isothermal wall of TW = T∞. The freestream condi-

tions are u∞=951.6m/s, p∞=287.1Pa, T∞=250.35K, and ρ∞ = 3.996× 10−3kg/m3. The

Reynolds number is 2375 with a characteristic length L∞=0.01m and the flow is treated

as laminar. The pressure and temperature distributions computed with [64x8x8]x12 and

[128x16x16]x12 cells are compared in Fig. [5.5]. Both grids result in very similar flow

structures and predict an almost identical shock locations. Although the grid with higher
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Figure 5.5: Comparison of pressure and temperature distributions for different cell densi-
ties.

cell density resolves the shock a little better, the difference is minute. This can be seen

more clearly in Fig. [5.6]. The magnetic effects depend on the magnetic interaction param-

Figure 5.6: Comparison of pressure and temperature profiles for different cell densities.

eter Q, where Q =
σe,re f B2

re f L∞

ρ∞U∞
. The pressure and temperature profiles along the stagnation

streamline are plotted for the non-magnetic case, as well as the magnetic case with Q=4,

based on three different grids. All three grids result in almost identical shock locations
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along the stagnation streamline with less than a 2% difference with respect to the shock

stand-off distance. Thus, considering the large number of simulations to be carried out in

this study, the computational grid consisting of 12 blocks of 64x8x8 cells is used, which

clearly reveals the effects of the magnetic field on the flow structure.



Chapter 6

Validation

The simulations are validated by comparing the results for Mach 5 laminar flow around

a 3D hemisphere at an altitude of 40km with those in the paper by Damevin and Hoff-

mann [19]. The parameters are u∞=1586m/s, p∞=287.1Pa, T∞=250.35K, and L∞=0.01m.

Figure 6.1: Comparison of pressure and temperature distribution for Q=0 and Q=6.

The results for equilibrium air are compared because in this speed regime the use of ideal

air tends to exaggerate the temperature. The magnetic effects depend on the magnetic in-

43



44

Figure 6.2: Shock stand-off distance vs. interaction parameter.

teraction parameter Q. It is important to note from the definition of Q =
σe,re f B2

re f L∞

ρ∞U∞
, that

the same Q is achieved with smaller Bre f when L∞ is large. Fig. [6.1] shows the compar-

ison of the pressure and the temperature distributions for interaction parameters Q=0 and

Q=6. In this case Q=6 corresponds to Bre f =2.706T. This large Bre f is the consequence of

very small L∞. Here it can be seen that the applied magnetic field moves the shockfront

away from the body increasing the shock stand-off distance, and the highest pressure and

temperature regions in the vicinity of the nose of the body are significantly enlarged. Also,

due to the high temperature gas effect, the stagnation temperature is lower than that of a

perfect gas which would be about 6.0. Fig. [6.2] shows the results obtained in this study

for various applied magnetic field strengths, with magnetic interaction parameters from

Q=1 to Q=6, show good agreement with Hoffmann’s result in [21].



Chapter 7

Mach 6 Equilibrium Flow at an Altitude
of 40km

Now we consider Mach 6 equilibrium air flow at an altitude of 40km around a 3D hemi-

sphere. The grid described in 5.1 is used for this computation. At this time, we use the

actual flow condition for 40km, and the Reynolds number is 4750 with L∞=0.01m. The

wall is assumed to be isothermal with the wall temperature TW =1250K, and the magnetic

field strength is set to correspond to Q=4. We survey two ionization models, an equilibrium

ionization model and a power-law-onset ionization model. The so called equilibrium ion-

ization model assumes the electrical conductivity of the air is a constant σe,equil=100S/m

throughout the entire shock layer, but, considering the temperature variation in the shock

layer of the flow this assumption can hardly be justified. So, we introduce electrical con-

ductivity σe,1500K=100S/m above 1500K, and σe,1500K=0 below 1500K. But, we will still

call it an equilibrium model. We introduce a variable electrical conductivity model based

on a power-law. We assume the electrical conductivity of the partially ionized air is ap-

proximated by σe = σe,1500K(
T
T0
)k, where σe,1500K=100S/m, T0 is the stagnation temper-

ature, and k is the exponent of the power-law-onset model. In this study we present

45
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Figure 7.1: Distribution of the x component of the applied magnetic field.

Figure 7.2: Distribution of the electrical conductivity for the equilibrium and the power-
law-onset model with various exponents.

the results with several k, where k=0 corresponds to an electrical conductivity that is con-

stant above the onset temperature. Fig.[7.1] shows the applied magnetic field around the

hemisphere. The magnetic dipole is located at the center of the hemisphere with its axis

aligned with x axis, and the reference point for its strength is at the stagnation point of

the body. Fig.[7.2] shows the distribution of the nondimensional electrical conductivities



47

Figure 7.3: Distribution of the MHD force density for the equilibrium and the power-law-
onset model with various exponents.

Figure 7.4: Comparison of pressure and temperature field for Q=0 and Q=4 for equilibrium
model.

for the equilibrium ionization model and power-law-onset model with different exponents

from k=1 to 4. It can be seen that the electrical conductivity for the equilibrium model is

constant throughout the high temperature region. It is clear that where the temperature

is lower the conductivity diminishes. The conductivity in the outer portions of the flow

diminishes as k increases as expected. Also, the MHD force density distributions for each

models are shown in Fig.[7.3]. Fig.[7.4] compares the pressure and the temperature dis-
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Figure 7.5: Comparison of pressure and temperature fields for Q=0 and Q=4 for power-
law-onset model.

Figure 7.6: Pressure and temperature profiles of equilibrium model and power-law-onset
model with various exponents.

tributions for Q=0 and Q=4 for the equilibrium model. Here, we can see the same effects

observed in the validation case. Fig.[7.5] shows the pressure and temperature distributions

for Q=0 and Q=4 for the exponent k=1. The overall changes in the flow fields are the same

as the equilibrium model. Now, Fig.[7.6] compares two ionization models with various k

values. Here, we can see that the power-law-onset model predicts a smaller effect in shock
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Figure 7.7: Shock stand-off distance vs. exponent k of the power-law-onset.

standoff distance change but with the same stagnation pressure and temperature. Also, as

the exponent becomes larger the change in the shock stand-off distance becomes smaller,

and there is a linear proportionality between the change in the shock stand-off distance

and the exponent k as shown in Fig.[7.7]. Note that there is no net force in the vicinity of

the stagnation point of the body.



Chapter 8

Mach 6 Equilibrium Flow at an Altitude
of 70km

Fig.[8.1] shows the basic flow fields of Mach 6 equilibrium flow at an altitude of 70km

around a hemisphere of radius R=1.0m. The wall is assumed to be isothermal with the

Figure 8.1: Basic flow fields of a Mach 6 equilibrium flow at an altitude of 70km.

wall temperature TW =1098K.

The magnetic interaction parameter is proportional to the characteristic size of the

body, and the magnetic field to achieve the same magnetic interaction parameter is in-

50
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Figure 8.2: X component of the external magnetic field of dipole.

Figure 8.3: Electrical conductivity distribution for equilibrium ionization model and
power-law-onset model.

versely proportional to the square root of the characteristic length of the body. Thus, in-

stead of considering a small body size which requires a very strong magnetic field strength

for a given magnetic interaction, we now consider a meter scale body so that the magnetic

field strength required is more realistic. A magnetic dipole is located at the center

of the hemisphere with its axis aligned with the x axis as before, and its x component

is shown Fig.[8.2]. Here, with L∞=1.00m Q=4 is achieved with the magnetic field of

0.0768T. Fig.[8.3] compares the electrical conductivity distributions based on the equilib-
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Figure 8.4: MHD force density distributions for equilibrium ionization model and power-
law-onset model.

Figure 8.5: Comparison of pressure and temperature distribution for equilibrium model
for Q=0 and 4.

rium and power-law-onset ionization models with different exponent from k=0 to 4. Here,

we assumed the original equilibrium ionization model so that the entire shock layer has a

constant electrical conductivity σe = σe,equil = 100 S/m. The corresponding MHD force

density distributions are shown in Fig.[8.4]. The effects of applied magnetic field can be

seen in the pressure and the temperature distribution Fig.[8.5] and Fig.[8.6] as well as the

pressure and the temperature profiles along the stagnation streamline shown in Fig.[8.7].
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Figure 8.6: Comparison of pressure and temperature distribution for power-law-onset
model with k=1 for Q=0 and 4.

Figure 8.7: Pressure and temperature profiles of equilibrium model and power-law-onset
model with k=1 for Q=0, 4, and 8.

A much larger region is occupied by the constant electrical conductivity of the equilib-

rium model compared to those of power-law-onset model with various k’s, and a different

angular variation of the MHD force density distribution is observed for the equilibrium

model, especially along the off-center, diagonal direction. Fig.[8.8] compares the effect of

the applied magnetic field on the shock stand-off distance for the equilibrium model and
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Figure 8.8: Effect of applied magnetic field on the shock stand-off distance based on
different ionization models.

Figure 8.9: Shock stand-off distance vs. exponent k for Q=2 and 4.
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Figure 8.10: Comparison of aerodynamic drag with MHD drag for equilibrium and power-
law-onset model with k=0 through 4 for Q=0 through 8

the power-law-onset model with various exponents. The shock stand-off distances based

on the different exponents of the power-law-onset ionization model for Q=2 and Q=4 are

given in Fig.[8.9]. The MHD drag forces are compared with the aerodynamic drag forces

for the equilibrium model and the power-law-onset model with k=0 to 4 in Fig.[8.10]. The

aerodynamic drag force for all the cases is concentrated on the top around 400N. This is

not surprising because the aerodynamic force is not supposed to be greatly changed by

the MHD force. It is clear that the MHD drag force diminishes as k increases. Lastly,

the ratio of the MHD drag force to the aerodynamic drag force is compared in Fig.[8.11].

The MHD drag force based on the equilibrium ionization model is predicted to increase

to about 70 percent of the aerodynamic drag force with Q=8. Also, there is a good linear

proportionality between the ratio of the MHD drag force to the aerodynamic drag force
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Figure 8.11: Comparison of ratio of MHD drag to aerodynamic drag for equilibrium and
power-law-onset model with k=0 through 4 for Q=0 through 8

and the interaction parameter Q. On the other hand, the power-law-onset model predicts

considerably smaller ratio between the MHD drag and the aerodynamic drag for all k com-

pared to the equilibrium model, and the slope seems to grow slightly with increasing Q

narrowing the relative difference between the two models.



Chapter 9

Mach 15 Equilibrium Flow at an
Altitude of 40km

In this section a Mach 15 equilibrium air flow at an altitude of 40km around a 3D hemi-

sphere is considered. The second type of grid described in 5.2 is employed for this com-

putation. The actual flow condition of 40km is used. The flow parameters are ρ∞ =

3.996×10−3kg/m3, p∞ = 287.1Pa, T∞ = 250.35K, a∞ = 317.19m/s, and µ∞ = 1.601×

10−5Pa · s. The length of the body is set to one meter (L = 1 m), so the desired Q is

achieved with realistic magnetic filed strengths (Bre f = 0.2706 T). The Reynolds number

is 1.188×106 with L∞=1.00m. The flow is treated as turbulent and the Baldwin-Lomax

turbulence model is used throughout the simulations. The wall is assumed to be isother-

mal with the wall temperature TW = 5×T∞=1252K, and the magnetic field strength is set

to correspond to Q=2, 4, 6, and 8. The multiblock, structured grid shown in Fig. [9.1]

is used throughout the computations. The grid consists of 16 blocks each of which has

64×16×16 cells.

In our Mach 15 simulations the average convergence error is very small, but the

maximum error gives trouble in some locations which are very close to the surface of the
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Figure 9.1: Computational grid.

body. Our grid sensitivity work then consisted of estimating the boundary layer thickness

and putting smaller computational cells in this layer to reduce the maximum error, while

maintaining the same total number of grid cells. The TGAS method is used to simulate

Figure 9.2: Distribution of γ̃ . Figure 9.3: Applied magnetic field.
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Figure 9.4: Electrical conductivity for P1 with Q=2, 4, 6, and 8 at an altitude of 40km.

the high temperature gas effect and Fig. [9.2] shows the distribution of the ratio of specific

heats γ̃ . It can be seen that the ratio of specific heats is about 1.2 for the most part behind

the shock, which is significantly smaller than the value 1.4 it would have been for an ideal

gas. A point magnetic dipole is located at the center of the hemisphere with its axis aligned

with the x axis, and the reference point for its strength is at the stagnation point of the body.

Fig. [9.3] shows By of the applied magnetic field around the hemisphere. The magnetic

field strength corresponding to Q=8 is 1.233T. Figs. [9.4], [9.5], [9.6], and [9.7] examine

the behavior of σe and T under several models and conditions. The electrical conductivity

of the power-law-onset model with k=1 for Q=2, 4, 6, and 8 is shown in Fig. [9.4].

The region with nonzero electrical conductivity for stronger magnetic interaction is larger

than that of weaker magnetic interaction. Note that although the regions with nonzero

electrical conductivity differ for various magnetic interaction parameters, their values are

mostly similar. Also, the variation of the distribution of electrical conductivity is more
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Figure 9.5: Electrical conductivities for different exponents for Q=8.

noticeable around the rear part of the body than the stagnation part. Fig. [9.5] compares

the distribution of the electrical conductivities of the power-law-onset model with different

exponents k=1, 2, and 3 with magnetic interaction parameter Q=8, and Tonset=4,000K.

The electrical conductivity diminishes as k increases. Figs. [9.6] and [9.7] compare the

pressure and the temperature fields of the power-law-onset model with different powers

for Q=8. The strong temperature rise toward the rear of the body is due to the fact that

the fluid is being slowed down adiabatically by the magnetic force. There is basically no

structural difference in pressure and temperature fields except in the thickness of the shock

layer.

The x component of the MHD force density distribution, fMHDx, of the power-law-

onset models with different powers for Q=2, 4, 6, and 8 are compared in Fig. [9.8] and

Fig.[9.9]. Note that there is no net force in the vicinity of the stagnation point of the body

as well as the rearmost part of the body because in those regions the magnetic field and

the current are antiparallel. The highest MHD force density occurs around the middle part
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Figure 9.6: Pressure and temperature fields of power-law-onset model with k=1 and k=2
for Q=8.

Figure 9.7: Pressure and temperature fields of power-law-onset model with k=1 and k=3
for Q=8.

of the body. The changes in shock stand-off distance for the power-law-onset model with

different powers are compared in Fig. [9.10]. It is clear that the shock stand-off distance
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Figure 9.8: MHD force density for k=1 and k=2 with Q=2, 4, 6, 8.

Figure 9.9: MHD force density for k=1 and k=3 with Q=2, 4, 6, 8.

is proportional to the magnetic interaction parameter when k=1, but when k=2 and k=3

the slope is less as Q increases above a certain value. This might be due to the grid in the

neighborhood of the shock as mentioned in Section IX. Also, the overall change in shock

stand-off distance is much smaller for k=2 and 3 compared to k=1 due to the magnitude of
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Figure 9.10: Changes in shock stand-off distance of power-law-onset model with different
exponents.

the electrical conductivity. Fig.[9.11] shows the ratios of MHD drag force to aerodynamic

drag force predicted for different powers for Q=2, 4, 6, and 8. It can be seen that the ratio

is proportional to the interaction parameter for all three powers. The MHD drag force

becomes 14% of the aerodynamic drag force when Q=8 for k=1 while it is reduced to

much less than 10% for k=2 and 3. Therefore, the effect of applied magnetic field on the

shock stand-off distance and the MHD drag force is very sensitive to the power of the

power-law-onset model. If the power is greater than or equal to 2, the overall effect is

expected to be very weak.

For all the previous calculations the onset temperature of the power-law-model has

been set to 4,000K. At this temperature O2 is totally dissociated and N2 begins to be dis-
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Figure 9.11: Changes in the ratio of MHD drag to aerodynamic drag of power-law-onset
model with different exponents.

Figure 9.12: Electrical conductivity of power-law-onset model with different onset tem-
peratures for Q=8.
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Figure 9.13: MHD force densities of power-law-onset model with different onset temper-
atures.

sociated. Next, the power-law-onset model with the onset temperature of 6,000K is con-

sidered. Fig. [9.12] compares the distribution of electrical conductivity of the power-law-

onset model with two different onset temperatures, 4,000K and 6,000K. It can be seen that

the region of nonzero electrical conductivity is dramatically reduced with Tonset=6,000K.

Note that the reduction, however, is not noticeable at the stagnation point throughout the Q

values. The MHD force density for the power-law-onset model with the two different on-

set temperature is compared in Fig.[9.13]. There is almost no MHD force past the middle

part of the body in case of 6,000K onset temperature. The effect of applied magnetic field

on the shock stand-off distance is compared in Fig. [9.14]. Note that in spite of the big

differences in the electrical conductivity and in the MHD force density, the effect of the

applied magnetic field on the shock stand-off distance is almost linear up to Q=6, but the

slope diminishes above that for Tonset = 6,000K. Fig. [9.15] compares the ratio of MHD

drag force to aerodynamic drag force with the two different onset temperatures. In contrast
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Figure 9.14: Changes in shock stand-off distances of power-law-onset model with different
onset temperatures.

to the shock stand-off distance, the ratio of MHD drag force to aerodynamic drag force

behaves very differently in the two cases. It seems that the MHD drag force is very small

compared to the aerodynamic drag force for Tonset=6,000K, and it increases nonlinearly

with Q. If it increases like a convex function, then with sufficiently large Q the ratio of

MHD drag force to aerodynamic drag force of Tonset=6,000K case might be comparable

to that of Tonset=4,000K case. But, it will still need a very strong magnetic field.
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Figure 9.15: Changes in the ratio of MHD drag to aerodynamic drag of power-law-onset
model with different onset temperatures.



Chapter 10

Mach 15 Equilibrium Flow at an
Altitude of 60km

In this section Mach 15 flow at an altitude of 60km is considered. The parameters are

ρ∞ = 3.097× 10−4kg/m3, p∞ = 21.96Pa, T∞ = 247.0K, a∞ = 315.1m/s, µ∞ = 1.584×

10−5Pa · s, and the Reynolds number is 92411. The wall is assumed to be isothermal with

the wall temperature TW = 5×T∞=1235K. A magnetic dipole is located at the center of

the hemisphere with its axis aligned with x axis as before. Here, with L∞=1.00m Q=8

is achieved with the magnetic field of 0.342T due to the lower freestream density. The

electrical conductivity model used is the power-law-onset model with onset temperature

Tonset=4,000K and the power k=1. Fig. [10.1] compares the distribution of electrical

conductivities at 40km and 60km for various Q. They are comparable to each other except

at the rear part of the body where nonzero electrical conductivity region is diminished for

60km compared to 40km. The MHD force density distributions for different altitudes are

compared in Fig. [10.2]. In contrast to the electrical conductivity, the MHD force density

shows very different features for the two altitudes. It has not just a much diminished region

of nonzero MHD force but also much smaller peak values. For example, the peak value

68
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Figure 10.1: Electrical conductivity for Q=2, 4, 6, and 8 at different altitudes.

Figure 10.2: MHD force density distributions for Q=2, 4, 6, and 8 at different altitudes.

of the MHD force density for Q=8 is less than a quarter of the 40km counterpart. Fig.

[10.3] shows changes in the pressure and the temperature profiles along the stagnation

streamline as Q varies at 60km. It shows consistent pressure and temperature throughout
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Figure 10.3: Pressure and temperature profiles for Q=0, 2, 4, and 8 with k=1.

Figure 10.4: Changes in shock stand-off distance at different altitudes.

various Q values even though there is noticeable change in shock stand-off. Fig. [10.4]

compares the effect of the applied magnetic field on the shock stand-off distance at two



71

Figure 10.5: Change in the ratio of MHD drag to aerodynamic drag at different altitudes.

different altitudes. The effect for 60km shows similar tendency just with a little smaller

proportionality. The ratio of MHD drag force to aerodynamic drag force is compared for

the two altitudes in Fig. [10.5]. Again, they behave similarly showing very good linearity

and both altitudes show comparable increase in the ratio. Overall, the applied magnetic

field has similar effects for the two altitudes for a given magnetic interaction parameter.

However, considering the fact that the strength of the applied magnetic field needed to

achieve the same magnetic interaction is much weaker for 60km than 40km, it is more

efficient to apply the magnetic field at higher altitude.



Chapter 11

Conclusions

This work has demonstrated the successful use of the Low Diffusion Energy Convec-

tive Upwind and Split Pressure (ECUSP) scheme with a fifth order Weighted Essentially

Non-oscillatory (WENO) scheme to simulate the magnetohydrodynamic (MHD) effects of

conductivity models on hypersonic flows of high temperature air in thermodynamic equi-

librium in the low magnetic Reynolds number approximation. The same physical effects

that have already been found by the authors cited above were observed. In addition, it has

been numerically shown that the application of magnetic fields of moderate strengths may

be able to cause significant magnetohydrodynamic drag force comparable to the aerody-

namic drag force for a blunt body with the characteristic size of a meter although a blunt

body with a small size requires a strong magnetic field to be applied.

It was observed that in spite of its complicated flow structure the effects on the change

of shock stand-off distance and the magnetohydrodynamic drag force are proportional to

the magnetic interaction parameter and inverse-proportional to the exponent of the power-

law-onset model. Hence, these magnetohydrodynamic effects can be formulated in terms

of these two parameters.
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Comparisons of different powers for the power-law-onset models show that the effect

of applied magnetic field on the shock stand-off distance is flattened as the interaction pa-

rameter increases for powers higher than 1. The power-law-onset model with two different

onset temperatures shows similar efficacy of applied magnetic field on the shock stand-off

distance up to a certain magnetic interaction, however the magnetohydrodynamic drag

force is predicted to be much smaller if the onset temperature is higher.

It is also shown that it is more efficient to apply the magnetic field at higher altitude to

change shock stand-off distance as well as to increase the ratio of magnetohydrodynamic

drag force to aerodynamic drag force in cases of 40km and 60km. Therefore, it is impor-

tant to optimize the magnetohydrodynamic flow control by considering various altitudes

and flow speeds.

The power-law-onset electrical conductivity model is a simple model to study various

effect of applied magnetic field on low magnetic Reynolds number magnetohydrodynamic

flows and it can reveal many interesting features of magnetohydrodynamic flow control.

However, due to its simplicity, better electrical conductivity models are to be used for

further study. Also, computations for nonequilibrium flows, that require the use of chem-

ical reaction kinetic equations, are needed to study various flight trajectories and speed

regimes.



Chapter 12

Future Work

Hypersonic flows show many different aspects depending on the altitude and the speed. As

a result, a good numerical solver for hypersonic flows is desired to have many additional

features and, at the same time, better robustness.

1) To make the numerical solver work better for broader range of applications it is indis-

pensable to incorporate the chemical reactions and even radiation processes to account for

the nonequilibrium phenomena.

2) A very thorough grid study is required to assess and enhance the performance of the

solver for various flow conditions.

3) A systematic comparison study between the full MHD system, which requires a differ-

ent code that advances the magnetic field, and the low magnetic Reynolds number approx-

imation, is needed to avoid improper implications by either numerical results.

4) A study of different magnetic field configurations can be done to reveal more efficient

MHD flow control.
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Journal Papers
1. J. Lee, M. Huerta, and G.C. Zha, "3D MHD Hypersonic Equilibrium Air Flow

Around A Blunt Body Using High Order WENO Schemes", Journal of Spacecraft
and Rockets, 2011 (submitted)

Conference Papers
1. J. Lee, M. Huerta, and G.C. Zha, "Hypersonic 3-D Blunt Body Equilibrium Air Flow

Using High Order WENO Schemes II", AIAA-2011-0903, 49th AIAA Aerospace
Sciences Meeting, Jan. 2011, Orlando, FL.

2. J. Lee, M. Huerta, and G.C. Zha, "Hypersonic 3-D Blunt Body Equilibrium Air Flow
Using High Order WENO Schemes", AIAA-2010-4765, 41st Plasmadynamics and
Lasers Conference, Jun. 2010, Chicago, IL.

3. J. Lee, M. Huerta, and G.C. Zha, "Low Rem 3D MHD Hypersonic Equilibrium Flow
Using High-Order WENO Schemes", AIAA-2010-0229, 48th AIAA Aerospace Sci-
ences Meeting, Jan. 2010, Orlando, FL.

4. J. Lee, M. Huerta, and G.C. Zha, "3D Steady Hypersonic Laminar MHD Flow Using
High Order WENO Schemes", AIAA-2009-3913, 40th AIAA Plasmadynamics and
Lasers Conference, Jun. 2009, San Antonio, TX.

5. J. Lee, M. Huerta, and G.C. Zha, "Low Magnetic Reynolds Number Hypersonic
MHD Flow Using High Order WENO Schemes", AIAA-2009-0459, 47th AIAA
Aerospace Sciences Meeting, Jan. 2009, Orlando, FL.
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