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Abstract 
 

Propagation of electromagnetic waves in linear and nonlinear media 

has received an increasing attention from researchers in the optoelectronics 

field. 

 

A great attention is nowadays  paid to optical waveguide sensors 

because they offer many advantages such as: small size, low price, safe 

when used in aggressive environments and mechanically stable. 

 

Many theoretical studies concerning analysis of dispersion equations 

were introduced for many planar waveguide structures, and some authors 

have proposed scaling rules and universal dispersion analysis. 

 

Homogeneous sensors are mainly used in concentration 

measurements while surface sensors are used in detecting of adsorbed 

layers . 

 

The type of waveguides mostly used in chemical and medical 

sensing is the planner optical waveguide structure with normal asymmetry 

(i.e. the substrate refractive index being greater than that of the cover ).  

 

Sensitivity of measuring the physical or chemical quantities 

appearing in the cover region depends on the strength and distribution of 

the evanescent field in that cover. Sensitivity optimization requires suitable 

choice of the guiding layer  thickness and the materials from which sensor 

layers are constructed, so that the sensor may exhibit its maximum 

sensitivity . 
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Scientists have proposed various types of these sensors and 

theoretically analysed them and suggested solutions for constructing highly 

efficient sensors. 

 

In this thesis, we investigate nonlinear waveguide sensors when the 

guiding layer is a Left- Handed material (LHM) for both transverse electric 

(TE) and transverse magnetic (TM) waves. We consider the case when the 

analyte homogenously distributed in the cladding, i.e., homogenous 

sensing. The proposed structure consists of a left-Handed material (LHM) 

as a guiding layer sandwiched between a linear substrate and a nonlinear 

cover with an intensity dependent refractive index. 

 

The dispersion relation of the proposed structure is derived and the 

sensitivity of the effective refractive index to variations in the refractive 

index of the cladding is obtained. The condition required for the sensor to 

exhibit its maximum sensitivity is presented. The variation of the 

sensitivity with different parameters of the structure is studied and 

explained. The power flow through the sensor layers is also considered 

because the fraction of total power flowing in the covering medium is 

related to sensitivity. 

With respect to planar optical waveguide sensors, the main remarks 

gained from our investigations can be summarized as follows: 

 

• There is a close connection between the fraction of total power 

propagating in the covering medium and the sensitivity of the sensor. In 

most cases, they may be regarded as nearly identical thus the enhancement 

of the fraction of total power flowing in the cladding is essential for sensing 

applications. 
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• As the nonlinearity of the cladding increases, the wave crest is displaced 

towards the cladding and as a result the sensitivity of the optical waveguide 

sensor is enhanced. 

 

• Cladding to film permittivity ratio should be as high as possible but 

substrate to film permittivity ratio should be as low as possible to increase 

the evanescent field tail in the cladding and to reduce it as possible in the 

substrate. The inversion of the conventional waveguide symmetry is 

strongly recommended if possible. In some cases it is not possible 

especially when the analyte is air. 
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  ملخص البحث
  

تحظى مسألة انتشار الموجات الكهرومغناطيسية في الأوساط المختلفة الخطية منها و 
اللاخطية باهتمام متزايد من قبل الباحثين في حقل الالكترونيات البصرية في الآونة الأخيرة ، 
 ولقد عمد الكثير منهم إلى حل معادلات ماكسويل في عدة طبقات ، واقترح آخرون صيغ عامة

 ).(multi-layer planner waveguides تا على نبائط مؤلفة من عدة طبقايمكن تطبيقه
  

أنها أساس في  ) optical waveguides( إن من أهم استخدامات المسالك الموجية 
يث يتم تحويل صناعة المجسات الضوئية وبخاصة في أبحاث الاستشعار الكيميائي الحيوي بح

 –بروتين ( يميائي أو حيوي أو الناتجة عن ترسيب طبقات معينة تفاعل كلالتغيرات المصاحبة 
إلى نبضة يمكن قياسها اعتمادا على التغيرات الحاصلة في ... )  مضادات حيوية –بكتيريا 

  .الصفات الضوئية في طبقات المجس
  

يتمتع هذا النوع من المجسات بأهمية خاصة بسبب ما تتميز به من صغر حجمها و 
اتها الكيميائي والميكانيكي عادة وإمكانية استخدامها في المناطق الخطرة دون رخص ثمنها وثب

  .خطر الانفجار ونحوه 
  

وبناء على ما تقدم ، اقترح العلماء نماذج عديدة لهذه المجسات وقاموا بتحليلها نظريا 
نوع وقدموا حلولا لبناء مجسات ذات كفاءة عالية ، إلا أن غالبية هذه الأبحاث ركزت على ال

  .الخطي فقط ، ولم تتعرض باستفاضة إلى المجسات اللاخطية 
  

 وذلك عندما يكون المسلك الأساسي لقد تم في هذه الأطروحة دراسة المجسات اللاخطية     
(guiding film)ة  من مواد يساري (LHMs) الكهربيعكل من المسالك الموجية ذات الطابفي  

 حد سواء على  المستعرض والمغناطيسيالمستعرض

)transverse electric and transverse magnetic waves( ، وتركزت الدراسة على
  . )homogeneous sensing( الاستشعار المتجانس 

  
بارة عن طبقة المجس المقترح يتعامل مع ثلاثة أوساط على شكل شرائح مختلفة وهي ع

   .ن أسفل بوسط خطي محاطة من أعلى بوسط غير خطي وم(LHMs) ةوسطى من مواد يساري
  

لقد تم تطبيق معادلات ماكسويل في الطبقات المختلفة للمجس وعرض الحلول المناسبة 
لها ثم طبقت الشروط الحدية والتي من خلالها تم الحصول على معادلة التشتت للنظام قيد 

  .الدراسة والتي أمكن من خلالها تقديم شكل رياضي يحكم حساسية المجس 
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ورها أخضعت لمعالجات رياضية للحصول على الشرط اللازم لكي هذه الحساسية بد
تكون حساسية المجس أكبر ما يمكن ، وتم تقديم نموذج نظري لهذا المجس حدد فيه سمك الطبقة 

  .الذي يجعل استجابة المجس أكبر ما يمكن  )   wave guiding film width( الوسطى 
  

عبر طبقات المجس وذلك من أجل )  power flow( وتم كذلك دراسة تدفق الطاقة 
تفسير ما عرض لنا من نتائج وتأكيد وجود تلك النهاية العظمى في تصرف الحساسية مع تغير 

  .سمك الطبقة الوسطى 
  

تبين من الدراسة أن ثمة صلة وثيقة بين الجزء الضئيل من إجمالي الطاقة التي تتدفق 
 معظم الحالات يمكن اعتبارها متطابقة تقريبا في الطبقة العلوية وحساسية أجهزة الاستشعار وفي

 تعزيز نسبة إجمالي الطاقة المتدفقة في الطبقة العلوية أمر أساسي لتطبيقات  فإنوبالتالي
  .الاستشعار 
  

بالتالي  وعلويةمة الموجة نحو الطبقة ال انزاحت قعلويةزادت اللاخطية في الطبقة الكلما 
  .ازدادت حساسية المجس 

  
 الطبقة الوسطى يجب ان تكون عالية ما امكن بينما نسبة إلى ياة الطبقة العلنسبة سماحي

سماحية الطبقة السفلية الى الطبقة الوسطى يجب ان تكون في الحد الأدنى لزيادة نسبة المجال 
المضمحل في الطبقة العلوية وتقليله ما أمكن في الطبقة السفلية، لذلك فإن المجس الضوئي 

sc(معكوس التماثل  nn  ( حصول على هذا يوصى به بشدة في الحالات التي يمكن فيها ال
  .التماثل المعكوس
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SUMMARY 
 

For the last two decades, planar optical waveguides have been 

 

studied intensively as sensor elements [1-

 

4]. Optical sensors utilize the 

modification of chemical measurands to optical properties such as 

intensity, phase, frequency and polarization of an input optical signal. 

Optical chemical sensors have immunity to electromagnetic interference, 

have no danger of ignition, field resistant, small size, s afe when used in 

 

aggressive environments and mechanically stable [5,6]. Moreover, optical 

sensors based on integrated optics (IO) add some other advantages as a 

better control of the light path by the use of optical waveguides, a higher 

mechanical stabilit

 

y and a reduced size [7]. Such kinds of sensor are useful 

for highly sensitive analysis and monitoring of hazardous environments.  

 

A waveguide sensor is an evanescent field sensor for which the 

waveguide mode is the sensing feature. The guided electromagne tic field of 

the waveguide mode extends as an evanescent field into the cladding and 

substrate media and senses an effective refractive index of the waveguide. 

The effective refractive index of the propagating mode depends on the 

structure parameters, e.g., the guiding layer thickness and dielectric 

permittivity and magnetic permeability of the media constituting the 

waveguide. As a result, any change in the refractive index of the covering 

medium results in a change in the effective refractive index of the  guiding 

mode. The basic sensing principle of the planar waveguide sensor is to 

measure the changes in the effective refractive index due to changes in the 

refractive index of the covering medium.  

 

The essential part of a waveguide sensor consists of a hi gh refractive 

index waveguiding film sandwiched between a substrate and the sample 
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medium to be analyzed, sometimes called the "analyte". In most cases the 

substrate is a solid material, which has a refractive index lager than that of 

the analyte. Such a sensor is called normal symmetry sensor. For the sake 

of power enhancement in the covering medium and hence sensitivity 

 

enhancement, sensors of reverse configurations were introduced [8,9] for 

which the refractive index of the substrate is chosen to be less  than that of 

the analyte. The recent introduction of reverse symmetry waveguides has 

resulted in high sensitivity sensors.  

 

Optical evanescent wave sensors have been widely used for various 

 

purposes such as humidity sensing [10,11], chemical sensing [6,12], 

 

biochemical sensing [13,14] and biosensing [15].  

 

 

O. Parriaux et al. [16-

 

20] presented an extensive theoretical analysis 

for the design of evanescent linear waveguide sensors and derived the 

conditions for the maximum achievable sensitivity for both tr ansverse 

electric (TE) and transverse magnetic (TM) polarizations. R. Horvath et al. 

 

[8, 9, 15] demonstrated the design and implementation of a waveguide 

sensor configuration called reverse-symmetry in which the refractive index 

of the aqueous cladding is higher than that of the substrate material. The 

reverse symmetry waveguide has been tested for bacterial and cell 

detection and it showed a considerable high sensitivity compared with the 

conventional waveguide sensor. Optical waveguide sensors utilizing 

s

 

urface plasmon resonance (SPR) phenomenon have been studied [21-

 

23]. 

SPR sensor consists of a four layer structure: a substrate, a guiding layer, a 

metal layer, and the analyte as a cladding. SPR sensors have been found to 

have relatively high sensitivity in chemical and biological sensing due to 

the strong localization of the electromagnetic field. Another type of optical 

sensors based on an Anti-Resonant Reflecting Optical Waveguide 
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(ARROW) was presented [24,25]. ARROW sensor generally includes four 

layers or more. The simplest one comprises a substrate, a film, a first 

cladding, and a second cladding. In these waveguides the field is confined 

by two cladding layers on either side of the film form high-reflectivity 

Fabry-

 

Perot mirrors. M. Shabat et al. [26-

 

28] have investigated the 

sensitivity of nonlinear waveguide structure where one or more of the 

layers of the waveguide structure are considered to be nonlinear medium.  

  

The main aim of this thesis is to propose novel planar optical 

waveguide sensors utilizing a new type of metamaterials called Left-

Handed Materials with simultaneously negative electric permittivity and 

negative magnetic permeability.  

 

This thesis is divided into five chapters starting in chapter one with a 

basic introduction to electromagnetic theory, concepts of planar 

waveguides, and fundamental equations required for analyzing slab 

waveguides. 

   

In chapter two we investigate history, properties, and applications of 

Left-Handed Materials. We also explore the basic effect of optical 

waveguide sensor. A three-layer conventional linear sensor is presented.  

 
 

In chapter three TE polarized waves in a Left-Handed material as a 

guiding layer surrounded by a nonlinear clad and a linear substrate are 

presented for sensing application with a focus on the sensitivity of the 

sensor. The variation of the sensitivity with different parameters of the 

structure is plotted and explained. The optimum structure that corresponds 

to the highest sensitivity is also provided.  
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In chapter four p-polarized waves (TM) are considered to flow in the 

same waveguide structure presented in chapter three. The sensing 

sensitivity is derived and plotted with different structure parameters. Power 

flow through the waveguides layers and its relation with the sensitivity i s 

presented.  

           

  At the end of the thesis, chapter five presents conclusion remarks for 

the whole work. 
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CHAPTER ONE 

BASIC WAVEGUIDE EQUATIONS 

 

This chapter is intended to establish the fundamental concepts and 

the basic background of guided waves. It also presents the basic equations 

needed to analyze optical slab waveguide structure. A brief review of 

Maxwell's equations, wave equation, total internal reflection, and power 

considerations is given. The concepts of TE and TM polarizations and 

waveguide modes are also presented.  

 

 

1.1 Introduction: 

The analysis of dielectric waveguides requires the understanding of 

electromagnetic field theory in dielectric media. Maxwell developed the 

electromagnetic theory of light and the kinetic theory of gases. Maxwell's 

successful interpretation of electromagnetic field resulted in four field 

equations that bear his name. Maxwell's equations predict the existence of 

electromagnetic waves that propagate through space at the speed of  light c 

 

[29,30]. The discovery of electromagnetic waves has led to many practical 

communication systems, including radio, television, radar, and 

 

optoelectronics [31]. On the conceptual level, Maxwell unified the subject 

of light and electromagnetism by developing the idea that light is a form of 

electromagnetic radiation.  

 

Electromagnetic waves are transverse waves. They are generated by 

time-varying currents and charges. Once created, these waves continue to 

move with a finite velocity independent of the  source that produced them. 

 They carry energy and momentum and hence can exert pressure on a 

surface.  
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1.

 

2 Maxwell's Equations:  

The governing equations for the electric and magnetic fields are well 

known over a century ago. Before Maxwell began his work in the field of 

 

electromagnetic theory, these equations are written as [29-

 

31]:  

                         





l s

d
t

emfd s
B

lE .
'

.'   (Faraday's law)                   

 

(1-

 

1) 

                        
l s

enc dId sJlH .'.'    (Ampere's law)                     

 

   (1-

 

2) 

                        
s v

venc dvQd sD .'      

 

(Gauss's law)                          (1-

 

3) 

                        
s

d 0.' sB      (conservation of magnetic flux)               

 

(1-

 

4)   

where E' is the electric field intensity, H' the magnetic field intensity, D' 

the electric flux density or electric displacement vector, and B' the 

magnetic flux density. The parameter ρv is the volume charge density and J' 

is the electric current density. The notation used above, E', H',… denotes 

general time varying fields. We will use the notations E, H, … later for the 

complex vector fields that are function of space coordinates only . The flux 

densities D' and B' and the current density J' are related to the fields E' and 

H' by the constitutive relations. For linear, isotropic and homogeneous 

media, the constitutive relations are given by :  

                                   '','','' EJHBED   ,                                        

 

(1-

 

5) 

where  ,   and   is the dielectric permittivity, the magnetic permeability 

and the conductivity of the medium respectively. 

 

Eq. (1-

 

2) represents Ampere's law for time-invariant currents. To be valid 

for time-varying currents, we must replace J' in it by (
t

 '' DJ

 

) [29,30], so 

that the generalized form of Ampere's law has the form: 
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                                       





l s

d
t

d s
D

JlH ).
'

'('.                                            

 

(1-

 

6) 

 

This is the fundamental contribution of Maxwell, which can be 

interpreted as follows: the displacement current produces a magnetic field 

according to the same law as normal current.  

 

Eqs. (1-

 

1), (1-

 

3), (1-

 

4), and (1-

 

6) are called Maxwell's equations in integral 

form. Recalling Stokes's and the divergence theorems: for any vector A, we 

have:   

              
l s

dd sAlA ..             (Stokes's theorem)              

 

(1-

 

7) 

and  

                    
s v

dvd AsA ..           (divergence theorem)             

 

(1-

 

8) 

 

Applying Stokes's and the divergence theorems to Maxwell's 

equations in inte

 

gral form given by Eqs. (1-

 

1), 

 

(1-

 

3), (1-

 

4)

 

 and (1-

 

6), we 

get Maxwell's equations in differential form which can be written as : 

                 
t




'
'

B
E  

 

(1-

 

9) 

                 
t




'
''

D
JH  

 

  (1-

 

10) 

                 v '. D  

 

  (1-

 

11) 

                 0'.  B  

 

  (1-

 

12) 
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We can specialize Maxwell's equations for the type of media we will 

 

be faced with when treating dielectric waveguides [31]. For charge free 

lossless media, where ρv and J' vanish, Maxwell's equations have the form: 

                                          
t




'
'

B
E                                            

 

(1-

 

13) 

                                          
t




'
'

D
H                                               

 

(1-

 

14) 

                                          0'.  D                                                     

 

(1-

 

15) 

                                          0'.  B                                                     

 

(1-

 

16) 

To derive the wave equation of E'

 

 we take the curl of Eq. (1-

 

13) and 

make use of the constitutive relation '' HB  , we get: 

                                       
t




'
'

H
E                              

 

(1-

 

17) 

Using the vector identity 

                                       AAA
2).(                      

 

(1-

 

18) 

 

and considering Eqs. (1-

 

14) and (1-

 

15) and the constitutive relation 

'' ED  , we obtain a plane wave equation in a homogeneous medium as: 

                                               0
'

'
2

2
2 






t

E
E                                

 

(1-

 

19) 

 

Taking the curl of Eq. (1-

 

14) and then substituting Eqs.

 

 (1-

 

13) and 

 

(1-

 

16) leads to the wave equation for H' similar to (1-

 

19) as:  

                                              0
'

'
2

2
2 






t

H
H                                

 

(1-

 

20) 
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1.3 Time Harmonic Fields  

 

Suppose that we have fields that vary sinusoidally in time as [31]:  

                                          )Re(),,,(' tjetzyx 
EE                                   

 

(1-

 

21) 

                                          )Re(),,,(' tjetzyx 
HH                                  

 

(1-

 

22) 

                                          )Re(),,,(' tjetzyx 
DD                                  

 

(1-

 

23) 

                                          )Re(),,,(' tjetzyx 
BB                                   

 

(1-

 

24) 

Where   is the angular frequency. 

  

We are now able to work directly with space coordinate-dependent 

vectors E, H, D, and B. 

To write Maxwell's equations for time harmonic fields which called 

sinusoidal steady state Maxwell's equations, we take the explicit derivative 

of B' and D'

 

 with respect to time. Eqs. (1-

 

13) –

 

 (1-

 

16) can be rewritten as:  

                                                   HE j                                   

 

(1-

 

25) 

                                                   EH j                                     

 

(1-

 

26) 

                                                   0.  E                                              

 

(1-

 

27) 

                                                   0.  H                                              

 

(1-

 

28) 

 

 

Eqs. (1-

 

25) to (1-

 

28) represent Maxwell's equations for time harmonic 

fields in free charge lossless media. 

 

Taking the curl of Eqs. (1-

 

25) and (1-

 

26), we get Helmholtz 

equations,  

                                            2 2 0    E E                                     

 

(1-

 

29) 

                                            2 2 0    H H                                   

 

(1-

 

30) 
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Eqs. (1-

 

29) and (1-

 

30) are called Helmholtz equations or wave equations  

for time harmonic fields. 

 

 

1.4 Theory of Waveguides:  

The simplest optical waveguide structure is the step-index planar 

 

slab waveguide. The slab waveguide, shown in Fig. 1-

 

1, consists of a high-

refractive index dielectric guiding layer, sometimes called the film, 

surrounded by two lower-refractive index materials. The slab is infinite in 

extent in the yz plane, but finite in the x direction. The refractive index of 

the film, nf, must be larger than that of the cover material (cladding), nc, 

and the substrate material, ns, in order for total internal reflection to occur 

at the interfaces. The refractive index of the cladding is always less than 

that of the substrate, a case which is called the conventional case. When the 

cladding and the substrate have the same refractive index, the waveguide is 

called symmetric; otherwise the waveguide is called asymmetric. The 

symmetric waveguide is a special case of the asymmetric waveguide. The 

slab waveguide is clearly an idealization of real waveguides, because real 

 

waveguides are not infinite in width [32]. 

                                                 

                                               

                                 Cover (Cladding) 

                                                  nc     

  

                                 Film (guiding layer)    
                                                  nf                  t           

                             

                                          Substrate  
                                                  ns 

 

 

Figure 1

 

.1. Planar slab waveguide consisting of a thin film of thickness t 

and refractive index nf, sandwiched between cover and substrate 

materials with indices nc and ns.  

 

Z 

X 

X 

y 



 - 11 - 

 

1.4.1 Total internal reflection:  

An important physical process in guided wave optics is total internal 

reflection. An understanding of the topic of total internal reflection of an 

incident wave at a plane dielectric boundary gives one important physical 

insight into the operation of a dielectric waveguide. The principle of optical 

confinement into a waveguide is based upon the phenomenon of total  

 

internal reflection [33]. To illustrate the concept of total internal reflection 

we consider an obliquely incident wave upon a boundary going from a 

denser medium of refractive index 1n  to a less dense medium of refractive 

index 2n

 

 as shown in Fig. 1.2. 

 

 

    Total internal reflection will occur at certain angles of incidence greater 

than an angle known as the

 

 critical angle. The angle of transmission θ2 is 

 

related to the angle of incidence by Snell's law [33,34]: 

                                 
1

2

11

22

1

2

2

1

)sin(

)sin(

n

n

k

k









                               

 

(1-

 

31) 

Where k = 
2


 = 
c


 is the propagation constant 
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We here consider nonmagnetic materials for which µ1 = µ2 = µ0. For 

n1 > n2 as we increase θ1 we will reach an angle θ1 = θc where θ2 

 

= π/2, that 

is: 

                                                  
1

2)sin(
n

n
c                                              

 

 (1-

 

32) 

 

For angles of incidence greater than θc, total internal reflection 

 

occurs, i.e., no propagating wave in medium 2 and hence the wave will be 

totally internally reflected

 

 in medium 1. The light beam, once it is totally 

internally reflected, is trapped and confined in the guiding layer. This case 

 

corresponds to a guided mode of propagation [35]. 

 

 

1.4.2 Basic equations 

 

Consider the general waveguide structure shown in Fig 1.

 

3. Our 

purpose in this section is to develop the mathematical model that will 

enable us to analyze and design a waveguide structure. This general model 

can be applied to obtain the "modes" in a dielectric slab waveguide and in a 

round optical fiber. A mode is an allowable field configuration, for a given 

waveguide geometry, that satisfies Maxwell's equations (or the derived 

wave equations) and all of the boundary conditions of the fields.  

Our wave optics model will yield a complete description of the 

fields, that is, expressions for the amplitude and components of the 

propagation vector of the fields associated with a mode.  

 

We will assume that our design objective is to create a dielectric 

waveguide that propagates energy in a given direction. We define th e 

longitudinal axis of our waveguide as the z axis and design it such that 

energy is propagating in the guide in the z direction with a longitudinal 
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propagation constant   (   is the longitudinal component of propagation 

vector k). We will assume that the permittivity ( , )x y  does not depend on 

z but can vary with x and y. This special case of an inhomogeneous 

medium in which   is independent of one space coordinates is an excellent 

representation of an optical fiber. 

 

 

 

 

 

 

 

 

 

Figure 1.3. An arbitrary-shaped waveguide structure in which the z-axis serves as the 

longitudinal axis.  

    

 

The expanded form of Eq. (1-

 

25) gives; 

                                            


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(1-

 

33) 

 

In a similar manner, the expanded form of Eq. (1-

 

26) gives; 

                                           






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
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


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
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
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
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x
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x

H
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H

z

H
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z

H

y
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(1-

 

34) 

 

 

 

 1 ,x y  
2
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For time harmonic fields, the electric and magnetic fields can be written as : 

ˆ ˆ ˆ( , , , ) [ ( , ) ( , ) ( , ) ]x x y y z z

j z
x y z t E x y a E x y a E x y a e


  E                       

 

(1-

 

35) 

ˆ ˆ ˆ( , , , ) [ ( , ) ( , ) ( , ) ]x x y y z z

j z
x y z t H x y a H x y a H x y a e


  H                    

 

(1-

 

36) 

 

The derivatives with respect to z can be evaluated explicitly. After 

 

substituting these derivatives into Eqs . (1-

 

33) and (1-

 

34) and rearranging 

we can write the transverse components (Ex,  Ey,  Hx,  Hy) in terms of the 

longitudinal components (Ez, Hz). The result takes the form:  

                                 )(
22 x

E

y

Hj
E zz
x













 


                              

 

(1-

 

37) 

                                )(
22 x

H

y

Ej
E zz
y













 


                               

 

(1-

 

38) 

                                )(
22 y

E

x

Hj
H zz

x












 


                               

 

(1-

 

39) 

                                )(
22 x

E

y

Hj
H zz

y












 


                               

 

(1-

 

40) 

 

The waves in the slab waveguide will be traveling in the z- direction.   

The guide is infinitely extended in the y direction. As a result of this infite 

extension, there is no variation in the field distributions in the y direction 

 

[31].  

Mathematically the limitation imposed by the waveguide symmetry 

can be expressed as 0




y

 

. Then Eqs. (1-

 

37) to (1-

 

40) can be rewritten as:  

                                        

















x

Ej
E z
x 22 


                                         

 

(1-

 

41) 
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42) 
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z
y

Hj
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x



   

 
  
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(1-

 

43) 

                                        
2 2

z
y

Ej
H

x



   

  
  

  
                                   

 

(1-

 

44) 

 

 

1.4.3 Modes of planar slab waveguides: 

There are different types of field patterns or configurations inside a  

waveguide. Each of these distinct field patterns is called a mode. There are  

two important modes in the analysis of slab waveguides.  

 

1. When 0zE   and 0zH  , this solution corresponds to a transverse 

electric wave (TE). 

 

2. When 0zE   and 0zH  , this solution corresponds to a transverse 

magnetic wave (TM). 

 

 

1.4.3.1 Transverse electric field (TE) 

For TE waves, 0zE   and 0zH 

 

. Using Eqs. (1-

 

41) to (1-

 

44) to 

find the nonzero field component. Only three components exist for TE 

modes: Ey, Hx, and Hz. The electric and magnetic field can be written as: 

                                     zj

yy eaxEzx  ]ˆ)([),(E                                         

 

(1-

 

45) 

                             zj

zzxx eaxHaxHzx  ]ˆ)(ˆ)([),(H                               

 

(1-

 

46) 

 

 

and Helmholtz equation given Eq. (1-

 

29) can be modified to have the form: 

                                              0)( 22

2

2





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y
E

x

E
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(1-

 

47) 
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The nonzero components of the magnetic field as a function of Ey 

can be written as: 

                                                   yx EH



                                         

 

(1-

 

48) 

                                                 
x

Ej
H

y

z




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(1-

 

49) 

 

 

1.4.3.2 Transverse magnetic field (TM) 

For TM waves, 0zH  and 0zE . The nonzero field components for 

this mode are Hy, Ex, and Ez. The electric and magnetic field can be written 

as: 

                                 zj

zzxx eaxEaxEzx  ]ˆ)(ˆ)([),(E                         

 

(1-

 

50) 

                                         zj

yy eaxHzx  ]ˆ)([),(H                                

 

(1-

 

51) 

 

In this case, the wave equation (Helmholtz equation) for H is similar 

 

to Eq. (1-

 

47) with Hy replaces Ey.   

Ez and Ex can be written in terms of Hy as:  

                                                 yx HE



                                           

 

(1-

 

52) 
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z






                                         

 

(1-

 

53) 
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1.4.4 Power Considerations 

A useful concept for characterizing electromagnetic waves is the 

measure of power flowing through a surface. This quantity is called 

Poynting vector, defined as:  

                                                          '' HES                                    

 

(1-

 

54) 

 

It represents the instantaneous intensity (W/m
2
) of the wave. The 

Poynting vector points in the direction of power flow, which is 

perpendicular to both E and H fields. The time average intensity for a 

 

harmonic field is often given using phasor notation [32]: 

                                                  *]Re[
2

1
HES  ,                           

 

(1-

 

55) 

 

where Re is the real part and H* is the complex conjugate of H. The 

total electromagnetic power moving into a volume is determined by a 

surface integral of the Poynting vector over the entire area bounding the 

volume.  

Thus, for TE modes we have:  

                                               zy aE ˆ
2

2




S                                  

 

(1-

 

56) 

In a similar manner for TM waves  

                                               zy aH ˆ
2

2




S                                  

 

(1-

 

57) 

For a multilayer waveguide, the power flowing through the structure 

can be evaluated using: 
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CHAPTER TWO 

OPTICAL SENSING AND METAMATERIALS   

 

In this chapter we present an overview of materials with negative 

electric permittivity and negative magnetic permeability. The differences 

between theses materials and natural materials are discussed. The non-

communication application of optical slab waveguides as optical sensors is 

also presented.  

 

 

2.1 INTODUCTION 

Materials with simultaneously negative permittivity ε and negative 

permeability µ are called Metamaterials (MTMs). These materials are not 

naturally occurring materials but were made by composing an array of 

metallic wire and split ring resonators.  A substantial amount of research 

has been made in different phases for both fundamental electromagnetic 

and practical applications of these unusual materials in different frequency 

ranges from radio to optical frequencies. Unusual electromagnetic 

phenomena of MTMs had been predicted theoretically by Veselago such as 

reversals of Doppler shift and the Vavilov-Cerenkov effects, reversal of 

 

radiation pressure to radiation tension, and negative refraction [36].  All of 

these phenomena are direct results of the group velocity inversion of 

electromagnetic waves propagating in such media.  For this reason, 

Veselago named the MTMs as left handed material (LHM). 
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2.2 OPTICAL SENSING 

One of the most important applications of planar waveguides is 

waveguide sensors. Sensing is performed by the evanescent field in the 

 

covering medium [16,23]. The effective refractive index of a waveguide 

structure depends on film thickness and refractive indices of both film and 

surroundings. Thus if the chemical or biological changes result in changing 

the effective refractive index, then the new properties give information 

about the refractive index of the analyte or the thickness of the adsorbed 

layer. Sensing process is then the measure of change in effective index due 

to either changes in cover refractive index or adding an ultra-thin film on 

surface of the guiding film. 

 

Optical sensor is the noncommunication application field where 

integrated optic technology is expected to play an increasing role and 

 

where it is already successful commercially [17]. The type which is most 

currently used is the slab structure with a step-index profile. The sensing is 

performed by the evanescent tail of the modal field in the cover medium. 

This sensing operation consists of measuring the change of the effective 

index of a propagating mode when a change of refractive index takes place 

in the cover. The waveguide characteristic equation or/and a calibration 

allows the retrieval of the index change from the measured change of the 

effective index. The sensitivity of the measurement of physical or chemical 

quantity present in the cover depends on the strength and the distribution of 

the evanescent field in the cover. The main design task is therefore to find 

the waveguide structure which maximizes the sensitivity on the quantity to 

be measured. The analysis differs somewhat if the measurand is 

homogeneously distributed in the cover (afterwards refered to as 

homogeneous sensing) or it is an ultra thin film at the waveguide–cover 

interface (surface sensing). The two cases are illustrated schematically in 
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Fig.2.1. It is assumed hereafter that the cover medium is a liquid or a gas, 

which implies that the contact zone between the cover and the waveguide 

surface is of zero thickness and does not exhibit an air film or bubbles. So 

far, planar evanescent-guided wave sensors have mostly been used for the 

detection of ultrathin biological molecular layers immobilized on the 

surface of a guiding layer (surface sensing ). Such a sensing scheme is 

currently the subject of keen interest in pharmaceutical such as 

imunoassays. It is also of interest in chemical sensing schemes where the 

opto-chemical transducing mechanism involves an ultrathin surface layer. 

 

The sensitivity in such a configuration, illustrated in Fig.2.1(b), is related to 

the squared field magnitude at the waveguide-cover interface. Optimizing 

the sensor sensitivity requires a suitable choice of the waveguide and 

substrate index 
f
n  and sn , respectively, as will as the waveguide 

thickness t relative to the wavelength  , which maximize the squared 

modal field at the surface. Evanescent wave sensing of a chemical or 

physical quantity which is homogeneously distributed in the semi-infinite 

waveguide cover (homogeneous sensing) refers to a different 

electromagnetic condition. The sensitivity is now related to the integral of 

the squared evanescent field in the cover material. This sensing scheme is 

used in concentration monitoring, for measuring traces of chemicals by 

means of a thick selective membrane, and, more generally, for measuring 

all physical/ chemical quantities whose variation corresponds to a change 

of index. 

    Optical sensing, in general, is any method by which information that 

occurs as variations in the intensity, or some other property, of light is 

translated into an electric signal. This is usually accomplished by the use 

of various photoelectric devices. In one method, known as optical 

character recognition, a computer is given the capability of “reading” 
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printed characters. Reflected or transmitted light from the character strikes 

an array of photoelectric cells, which effectively dissect it into light and 

dark areas. By analysis of these areas the computer is able to recognize the 

character, with some tolerance for less than perfect and uniform printing. 

Optical sensing is also used in various pattern-recognition systems, e.g., in 

military reconnaissance and astronomical observation; it is also used in 

photographic development, to enhance detail and contrast. 

 

 

 

 

 

 

 

 

 

Fig.  2.1. Schematic representation of (a) slab waveguide homogeneous sensor and 

(b) surface sensor. 

t          Waveguide   
f
n  

      Waveguide   
f
n  
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2

 

.2.1 Uses and applications 

Planar optical waveguide sensors are used in many aspects: detecting 

and measuring the thickness of any layers such as metals, metal 

compounds, organic, bio-organic, enzymes, antibodies and microbes. They 

are also used in measuring concentrations of liquids and detecting small 

traces in chemicals. 

 

One of the important uses of such sensors is in radiation dosimeters 

and protective masks or clothing when they can readily identify and give 

scanning data about any change in exposure or lack in protection. They are 

of great benefit in detecting drug vapors. More specifically, planar optical 

sensors are also used in any chemical, biological or physical processes 

accompanied with changes in strength and distribution of the evanescent 

field strength. 

 

 

2.2.2 Homogeneous sensing  

If the properties are homogeneously distributed in the waveguide 

cover, then the process of detecting changes of these properties is called 

homogeneous sensing. 

Here sensitivity is defined as the change in the effective refractive 

index through the cover medium, e

c

n
S

n





 

 

[17 ]. 

 

 

2.2.3 Surface sensing  

If changes of optical properties are due to adsorption of some 

molecules that construct an ultra-thin film on surface of the guiding thin 

film, then the process of detecting the adsorbed molecules is said to be 

surface sensing. 



 - 24 - 

In such configurations, the sensor consists of a guiding film over 

which sets a sensing layer. Electromagnetic waves propagating along the 

sensing element are attenuated due to the additional adsorbed film or 

analyte concentration. 

Mathematically, surface sensing is defined as the change of effective 

refractive index with respect to change in adlayer width, enS
w





 

 [17]. 

 

2.2.4 Sensor modeling and sensitivity optimization 

For commercial sensors to be efficient to practical applications, a 

sensor must accomplish these properties: small size, low price, optical, 

mechanical and chemical stability, design flexibility that enables higher 

complexity on one chart and sensitivity as high as possible. Planar 

waveguide sensors are the choice. 

 

To maximize sensitivity, appropriate choice of sensor layers and 

waveguide width must be realized so that changes in the effective refractive 

index are maximum. The wave guiding film is to some extent arbitrary but 

its width is of great importance. This means that the main task in designing 

sensors is to find out the waveguide width that maximizes sensitivity.  

 

 

2.3 Metamaterials 

A metamaterial (or meta material) is a material that gains its 

properties from its structure rather than directly from its composition. The 

 

first metamaterials were developed by W.E. Kock in the late 1940's with 

metal-lens antennas and metallic delay lenses. The metamaterial term is 

most often used when the material has properties not found in naturally-

formed substances. The term was coined by Rodger M. Walser of the 

 

University of Texas at Austin in 1999, and he defined the term as follows 

 

in 2002: macroscopic composites having a manmade, three-dimensional, 
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periodic cellular architecture designed to produce an optimized 

combination, not available in nature, of two or more responses to specific 

excitation. 

Metamaterials are of particular importance in electromagnetism 

(especially optics and photonics), where they are promising for a variety of 

optical and microwave applications, such as new types of beam steerers, 

modulators, band-pass filters, lenses, microwave couplers, and antenna 

radomes. 

In order for its structure to affect electromagnetic waves, a 

metamaterial must have structural features at least as small as the 

wavelength of the electromagnetic radiation it interacts with. In order for 

the metamaterial to behave as a homogeneous material accurately described 

by an effective refractive index, the feature sizes must be much smaller 

than the wavelength.  

Metamaterials usually consist of periodic structures, and thus have 

many similarities with photonic crystals and frequency selective surfaces. 

However, these are usually considered to be distinct from metamaterials, as 

their features are of similar size to the wavelength at which they function, 

and thus cannot be approximated as a homogeneous material. 

A Russian physicist, V. G. Veselago

 

 in 1968, theoretically predicted 

several extraordinary electromagnetic phenomena of materials with 

 

simultaneously negative permittivity and permeability [36], which were a 

sign change of group velocity, reversals of the Doppler and the Vavilov-

Cerenkov effects, negative refraction, and a reversal of radiation pressure 

to radiation tension. However, his ideas were forgotten until the 

experimental verification was made by Shelby et al

 

. in 2001 [37] because 

these exotic materials were thought not to exist in nature at all. This 
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experimental verification of simultaneously negative permittivity and 

permeability ignited the present explosive research worldwide in various 

phases for both fundamental electromagnetic phenomena and practical 

applications of these unusual materials in various frequency ranges from 

radio to optical frequencies. Usually, these materials are called 

metamaterials (MTMs ). Although the term MTM has not been strictly 

defined yet, it is generally admitted to refer to an artificially designed 

electromagnetic structure with unusual electromagnetic properties that are 

rarely found in nature. “Meta ” is a Greek prefix meaning “beyond, ” so 

MTMs can be understood as materials that exhibit an extraordinary 

electromagnetic response . In the MTMs , the directions of the electric field 

(E),  the magnetic field (H), and the wave propagation vector (k) obey the 

left-hand rule instead of the right-hand rule in ordinary dielectric materials, 

so MTMs are also commonly refered to as left-handed materials (LHMs) 

.The reversals of the phase and the energy propagations in MTMs due to 

the left- handedness lead to backward wave propagations with opposite 

directions of the phase and the group velocities , i.e., negative phase 

velocity or negative group velocity. Since refraction is reversed when 

electromagnetic waves are incident on LHM, they are also called materials 

with negative refractive index or negative index media. As explained 

above, LHMs are media with simultaneous negative permittivity and 

permeability at a given frequency, so they are also called double-negative 

media. Due to the double negative property, the electromagnetic wave 

propagations along these exotic media are quite extraordinary. 

 

 

2.3.1 Negative refractive index 

The main reason for investigating metamaterials is the possibility of 

creating a structure with a negative refractive index because this feature is 

not a available in natural materials. Almost all materials encountered in 
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optics, such as glass or water, have positive values for both permittivity ε 

and permeability μ. However, many metals (such as silver and gold) have 

negative ε at visible wavelengths. A material having either (but not both) ε 

or μ negative is opaque to electromagnetic radiation. 

Although the optical properties of a transparent material are fully 

specified by the parameters ε and , in practice the refractive index n  is 

often used. n  may be determined from the relation n . All known 

transparent materials possess positive values for ε and . By convention the 

positive square root is used for n. 

However, LHMs have 

 

ε < 0 and 

 

μ < 0; because the product εμ is 

positive, n is real. Under such circumstances, it is necessary to take the 

negative square root for  n. Physicist Victor Veselago proved that such 

substances can transmit light

 

 [36]. 

Metamaterials with negative n have numerous startling properties: 

 Snell's law (n1 sinθ1 = n2 sinθ2) still applies, but as n2 is negative, the 

rays will be refracted on the same side of the normal on entering the 

material.  

 The Doppler shift is reversed: that is, a light source moving toward 

an observer appears to reduce its frequency.  

 Cherenkov radiation points the other way.  

 The time-averaged Poynting vector is antiparallel to phase velocity. 

This means that unlike a normal right-handed material, the wave 

fronts are moving in the opposite direction to the flow of energy.  

For plane waves propagating in such metamaterials, the electric field, 

magnetic field and Poynting vector (or group velocity) follow a left-hand 

rule.  
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2.3.2 Theoretical models 

 Left-handed materials (LHMs) were first introduced theoretically by 

Victor Veselago 

 

in 1968 [36]. J. B. Pendry 

 

 [37] was the first to theorize a 

practical way to make a left-handed metamaterial (LHM). Pendry's initial 

idea was that metallic wires aligned along propagation direction could 

 

provide a metamaterial with negative permittivity (ε<0). Note however that 

natural materials (such as ferroelectrics) were already known to exist with 

negative permittivity. The challenge was to construct a material that also 

 

showed negative permeability (µ<0)

 

. In 1999, Pendry demonstrated that an 

open ring (C-shape) with axis along the propagation direction could 

provide a negative permeability. In the same paper, he showed that a 

periodic array of wires and rings could give rise to a negative refractive 

index.  

The analogy is as follows: Natural materials are made of atoms, 

which are dipoles. These dipoles modify the light velocity by a factor n (the 

refractive index). The ring and wire units play the role of atomic dipoles: 

the wire acts as a ferroelectric atom, while the ring acts as an inductor L 

and the open section as a capacitor C. The ring as a whole therefore acts as 

a LC circuit. When the electromagnetic field passes through the ring, an 

induced current is created and the generated field is perpendicular to the 

magnetic field of the light. The magnetic resonance results in a negative 

permeability; the index is negative as well.  
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CHAPTER THREE 

CHARACTERISTICS OF TE OPTICAL WAVEGUIDE 

SENSORS USING LEFT-HANDED MATERIALS 

 

In this chapter, an extensive theoretical analysis of a novel 

waveguide structure as an optical sensor is carried out. The waveguide 

sensor structure considered here consists of a Left -Handed material (LHM) 

as a guiding layer sandwiched between a linear substrate and a nonlinear 

cladding with an intensity dependent refractive index. The sensitivity of the 

proposed optical waveguide sensor is derived. The variation of the 

sensitivity with different parameters of the waveguide structure is studied. 

The condition needed for the sensor to exhibit the maximum sensitivity is 

also discussed. This condition allows the designer to find the right 

dimensions of the proposed structure. Experiments with the above concepts 

could be demonstrated and carried out for future versatile sensors.  

 

 

3.1 Introduction:  

Optical waveguide sensors are considered as a rapidly growing field 

of research. Integrated optical waveguides are widely used for designing 

optical sensors which are very important mainly because of their miniature, 

high sensitivity, small size, immunity to electromagnetic interference and 

 

low price [5,6]. Homogeneous sensing is mainly used in concentration 

monitoring, measuring traces of chemicals and studying all physical and 

chemical properties that change in accordance with changes in refract ive 

 

indices [17]. The type of waveguides currently used in biochemical and 

medical sensing is the planar optical waveguide structure.  

One of the first applications of the Left-Handed materials (LHMs) 

 

was reported by Pendry [38], who demonstrated that a slab of a Left-
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Handed material (LHM)  can provide a perfect image of a point source. A. 

 

Grbic et al [39] verified by a simulation the enhancement of evanescent 

waves in a transmission-line network by using a Left-Handed material 

(LHM). 

 

 

3.2 Mathematical Evaluations 

 

3.2.1 Characteristic Equation  

The structure of our waveguide sensor is presented

 

 in Fig. 3.1 where 

the waveguide film is embedded into a linear substrate and a nonlinear 

cover with an intensity dependent refractive index whose dielectric 

function 

 

[40-

 

43] of the electric field is expressed as:  

 

                x 
                              Nonlinear dielectric cladding  

                                  
2

nl c yE    ,  0x   

            0x    
             
                              Guiding layer metamaterial 

                                      Film ,  0t x    

                                   ,m m   both negative 

 

                                                   
                               linear dielectric substrate 

                                           x t  

 

 

Fig.3.1 :The waveguide structure under consideration 

 

 

   
2

nl c yE                                                                                 

 

(3-

 

1) 

where 0 2c ccn   is the nonlinearity constant, c the speed of light 

and 2cn is the nonlinearity coefficient

 

 [41]. 

 

y 

x t   z 
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The guiding film (f) of thickness (t) fills the region 0t x   and the 

two dielectrics substrate and cladding fill the regions x t  and 0x  , 

respectively. The waves are assumed to propagate along the   z  axis and 

guiding surfaces are parallel to the yz plane. 

 

The electric field for TE waves propagating in the   z-direction is 

expressed as: 

   
 

0, ,0
j t z

yE E e
 

                                                                      

 

(3-

 

2) 

where 0 ek n   

Helmholtz equation takes the form:  

2

2 2

2

 

( ) 0
y

y

E
E

x
 


  


                                                                     

 

(3-

 

3) 

   

We assume the cladding and substrate to be non magnetic materials  

0c s     where 1r   is the relative permeability . 

 

Equation (3-

 

3) in the three layers can be written as:   

2

2

2

2 2 2

02

 

( ) 0
y

f e y

E
k mn n E

x


  


,  0t x   ; film  

 

(3-

 

5) 

          Where 
0

mm  with m and 0  are the guiding layer and free space 

permeabilities respectively.  

3

3

2

2 2 2

02

 

( ) 0
y

e s y

E
k n n E

x


  


,  x t ; substrate   

 

(3-

 

6) 

For the sake of simplicity we consider: 

 2 2

c e cq n n  , 2 2

s e sq n n  , 2 2

f ep mn n   

We solve Helmholtz equations in the three layers to get " yE " in 

each layer 

 

[41]. 

1

1 1

2

2 2 2 2 3

0 02

 

( ) 0
y

e c y y

E
k n n E k E

x



   


, 0x  ; cladding                          

 

(3-

 

4) 
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1

0 0

2

cosh[ ( )]

c

c

y

q

k q x x
E





,  0x       

 

(3-

 

7) 

where 0x  is a constant related to the power propagating in the 

waveguide. More specifically, the field peaks at x = xo

 

 [41].  

3
exp[ ( )]y e o sE D k q x t  ,  x t      

 

(3-

 

9) 

The electric field at the clad-film interface is obtained by substituting 0x   

in Eq. 

 

(3-

 

7), we get 
1

2

 

( 0)
cosh( )

c
o y

o c o

q
E E x

k q x
   which can be 

written as: 
2

2 20

 

(1 tanh ( ))
2

c o c o

E
q k q x


  , where 

2
0

2

E
is called clad-film 

interface nonlinearity or optical power density at the interface. 

 

Making use of Eqs.(1-

 

48) and (1-

 

49), we can calculate the nonzero 

components of the magnetic fields. 

 11

0 0

0 0

2

cosh

e e c

c

x y

k n k n q
H E

k q x x  

 
   

    

 

 

(3-10) 

2 2

0 0
0 0[ cos( ) sin( )]e e

y e ex

k n k n
H E B k px C k px

 
    

 

(3-

 

11) 

 
3 3

0 0
0exp ( )e e e

y sx

Dk n k n
H E k q x t

 
    

 

(3-

 

12) 

   1

1

20
0 0 0 0

0

2
sec ( ) tanh ( )c c c

y

z

E jkj
q h k q x x k q x x

x
H

   

 
   



 

    

 

(3-

 

13) 

2

2

0

0 0

0 0

[ sin( ) cos( )]
e e

y

z

Ej jk p
B k px C k px

m x m
H

   


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
     

 

(3-

 

14) 

3

3

0
0

0 0

exp[ ( )]s e
s

y

z

Ej jk q D
H k q x t
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
  


     

 

(3-

 

15) 

 

2
cos( ) sin( )y e o e oE B k px C k px  ,  0t x           

 

(3-

 

8) 
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Applying the Boundary conditions at 0x   and  x t . The 

tangential components yE and zH  are continuous. The continuity of yE  

gives:  

 0 0

2

cosh

c
e

c

q
B

k q x
    

 

(3-

 

16) 

0 0cos( ) sin( )e e eB k pt C k pt D     

 

(3-

 

17) 

The continuity of zH gives: 

   22
sec tanhc e

p
q h C C C

m
     

 

(3-

 

18) 

   0 0sin cose e s e

p
B k pt C k pt q D

m
 
 

   

 

(3-

 

19) 

where C=koqcxo  

With some mathematical treatment and rearrangement of Eqs. 

 

(3-

 

16) 

to 

 

(3-

 

19) we obtain the characteristic equation;  

1

0

1 tanhtan ( ) tan ( )s cpt Cmx mx Nk     

 

(3-

 

20) 

where ,ss

q
x

p
  c

c

q
x

p
 , and  

 
0,1,2,N  … is the mode order 

It's straight forward to show that xc and en can be written in terms of xs as:  

2 2 ( ) ( )

( )
c c s

c s

s

a m a a
x x

a m

  



,         

2

21
s s

e f
s

a mx
n

x






 

 

(3-

 

21) 

where 
2

2
c

c

f

n
a

n
  and 

2

2
s

s

f

n
a

n
 . 

 

3.2.2 Evaluation of the Sensitivity 

In homogeneous sensing, sensitivity (S) is defined as the rate of 

change of the modal effective index  en  with respect to the change of the 

 

cover index [27,28], i.e. e

c

n
S

n





.  
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Applying this to the characteristic equation given by Eq. 

 

(3-

 

20) and 

after some arrangements, the sensitivity can be expressed as: 

  

  
 
 

2

2

2 2 2 2

2 2

 

1 tanh

1

 

1 tanh
1

c c m

se
c c c c e

s s

a x H C

xT
x a mx m x C G

m x m x

S
 


 

    
  

 
      

 

(3-

 

22) 

Where; 

 2

0 0 2

 

1 tanh
1

s
m c f

s

m a
H k x x C

x



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
    

 

(3-

 

23) 

   1 1

0 tan tan tanhe s cT k pt mx mx C N          

 

(3-

 

24) 

 
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tanh 1

 

1 tanh
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e

c c

H C x
G

x m x C

 



    

 

(3-

 

25) 

If the covering medium is linear, then  tamh C equ

 

als 1 and 

equation 

 

(3-

 

22) will coincide with the published results given in literature 

 

[17]. 

 

3.2.3 The condition of maximum sensitivity 

In designing sensors, we seek to bring the sensor to its maximum 

sensitivity provided a certain configuration. That is at a given configuration 

of constant c , f and s , the condition for maximum sensitivity is 

achieved when the derivative of S with respect to the guiding layer 

thickness t

 

 vanishes [17,27]. Differentiating Eq. 

 

(3-

 

22) with respect to sx  

and using the identity 0s

s

S S x

t x t

  
 

  
 to obtain the condition of 

maximum sensing sensitivity. For the sake of simplicity we define :  

0 0 21
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26) 

2
 

1 tanh C       
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27) 

 1

 
1 2 tanhC C       
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 
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x
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31) 
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The condition now can be written as:  
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Where ; 
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1
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3.2.4 Power flow within the three layers 

The energy flux of the guided-wave modes per unit length is given 

 

by Eq. (1-

 

58). Applying the power expression given by Eq. (1-

 

58) to the 

solutions of Helmholtz equation in the three layers given by  Eqs. 

 

(3-

 

7) to 

 

(3-

 

9) .  

Carrying out this integration, one can finally have:  
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Where ; 
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The total power through the three-layer structure is given by: 
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where ; 
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For sensing applications, the most important parameter is the fraction 

of total power flowing in the cladding which is given by :  
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52) 

 

 

3.3 Results and Discussion 

The mathematical argument above constructs a complete set of 

equations capable of determining all of the parameters needed for the 

sensor to exhibit its maximum sensing sensitivity. Given the asymmetry 

parameters ac and as and substituting for xs

 

 from Eq. (3.21), then Eq. (3-

 

38) 

turns to be a function of xc only and is easily solved. Substituting these 

 

values in the characteristic equation Eq. (3-

 

20), we can compute the 

waveguide widths ensuring maximum sensitivity. The values of these 

maxima are calculated through substituting the last values in the expression 

of the above sensitivity

 

 Eq. (3-

 

22). Plotting these results against ac and as, a 

 

designer ends with a 3D chart from which all parameters required for 

maximization of such sensors may be 

 

derived [17,27,28]. 

Although expressions above are valid for any order of TE modes, the 

discussion to follow is restricted only to the fundamental mode (N

 

 =0) 

w

 

hich has the highest sensitivity[10]. 

A typical way to proceed is as follows: 

The cover material is chosen according to the proposed usage of the 

sensor thus giving the refractive index nc. The choice of substrate 
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(consequently ns) is controlled by cost requirements, mechanical stability 

and temperature. As for the guiding material, chemical and optical 

stabilities are considered. Thus the optogeometrical parameters as and ac 

are determined. The designer will look at the chart representing xs as a 

function of as and ac to find the value of xs which provides the highest 

sensitivity. Introducing the solution found for xs    into  

 

Eqs. (3-

 

21) to find 

the optimum normalized parameter xc and effective index (ne).The optimum 

guiding layer thickness is obtained by substituting these values into the 

 

dispersion relation given by Eq. (3-

 

20). Substituting these values into Eq. 

 

(3-

 

 22), the maximum sensitivity achievable is calculated. 

A computer program was generated 

 

using maple 9 to solve the 

characteristic equation for the effective refractive index and to calculate the 

sensitivity. This enables us to plot the results and to study the variation of 

the sensitivity with the different parameters of the structure.  

 

In Figs. 3.2 and 3.3 the sensitivity of the proposed sensor was plotted 

versus the asymmetry parameter ac. It is clear that the sensitivity increases 

with increasing ac. This is a normal behavior since the sensing operation is 

performed by the evanescent optical field extending from the thin guiding 

film into the nonlinear covering medium. To obtain high sensitivity, it is 

essential to get as much of the optical power as possible to propagate in the 

nonlinear cladding medium. In this sense, increasing ac will enhance the 

power fraction flowing in the cladding. The optimum geometry is expected 

to be obtained by the so called reverse symmetry waveguides [9,15]. In 

principle, this configuration allows most of the optical power to present in 

the covering medium which is contrary to the conventional waveguide 

 

geometry, where typically less than 10% of the total power is present in the 

 

cladding medium [44]. Despite this fact, we will keep assuming that our 

system has the normal symmetry because it is the case of most practical 
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cases and our interest here is dedicated to the effect of nonlinearity on the 

sensitivity. A comparison between the proposed sensor and the thr ee-layer  

 

linear sensors is shown in Fig. 3.3. As can be seen the proposed 

sensor is recommended for large values of ac. 

 

 

 

Figure 3.2. Sensitivity versus the absolute value of the asymmetry parameter ac for the 

proposed optical waveguide sensor.  

 

 

 

Figure 3.3. Sensitivity with the absolute value of the asymmetry parameter ac for the 

proposed sensor (solid line) and for the conventional three-layer sensor (dashed line). 
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The behavior of the sensitivity with the absolute value of the 

asymmetry parameter as is opposed to that with ac

 

. Fig. 3.4 shows that the 

sensitivity of the proposed waveguide configuration decreases with 

increasing as. As as increases the evanescent field in the substrate is 

enhanced thus the part of field in the cladding is redu ced. As a result, the 

sensitivity of the optical sensor decreases.  

 

 

 

 

Figure 3.4. Sensitivity versus the absolute value of the asymmetry parameter as for the 

proposed optical waveguide sensor. 

   

 

Figure 3.5 shows the 3D representation of the condition of maximum 

sensitivity given by Eq. 

 

(3-

 

38) from which the designer can extract the 

information required to build the optimum structure of the proposed 

waveguide structure as illustrated at the beginning of this section.  
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Figure 3.5. Normalized effective refractive index xs versus as and ac ensuring maximum 

sensitivity for homogeneous sensing. 

 

 

In Fig. 3.6 the sensitivity of the proposed sensor is shown as a 

function of the absolute value of m where μm = mμo. As can be seen, for 

small values of m  the sensitivity approaches zero due to the high 

confinement of the guided mode in the guiding layer. In the other limit, all 

the power of the mode propagates in the substrate. Consequently, the 

sensor probes the substrate side only and the sensitivity of the effective 

refractive index to variations in the index tends to zero. Betw een these two 

limits, there is a maximum in the sensitivity curves representing an 

optimum where a relatively large part of the total mode power propagates 

in the cladding. 
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m where 
0

mm



  

 

Figure 3.6. Sensitivity of the proposed sensor versus the absolute value of m where μm = 

mμo for different values of ac and as = -

 

0.67. 

 

The variation of the sensitivity with the term tanhC which arises 

from the nonlinearity of the cladding is p

 

lotted in Fig. 3.7. As the term 

tanhC

 

 goes to unity in Eq. (3-

 

20), we obtain the well known characteristic 

 

equations for linear waveguides [16]. Fig. 3.7 shows the sensitivity to have 

its minimum value as tanhC goes to one, the linear cladding. Thus we 

conclude an optical sensor with nonlinear cladding can enhance the 

sensitivity of conventional linear sensors.  
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The non linearity term (tanhC) 

      

 

Figure 3.7. Sensitivity of the proposed optical waveguide sensor versus tanhC.  

 

 

Fig. 3.8 verifies the close connection between the fraction of total 

power propagating in the cover medium (Pc/Ptotal) and the sensitivity of the 

sensor. In most cases, they may be regarded as nearly identical  to the 

theoretical consideration thus the enhancement of the fraction of power 

flowing in the clad is essential for sensing applications . 

 

The fraction of total power flowing in the cladding. (Pc/Ptotal) 

 

Figure 3.8. Sensitivity of the proposed optical waveguide sensor versus the fraction of 

total power flowing in the cladding. 
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Fig. 3.9 shows the sensitivity of the proposed sensor as a function of 

clad-film interface nonlinearity for ac = -

 

0.65,as = -

 

0.75.. The sensitivity 

increases with increasing the clad-film interface nonlinearity. This behavior 

is attributed to the following considerations: as the no nlinear coefficient α 

increases for self-focused nonlinearity case the permittivity of the cladding 

increases hence the fraction of total power flowing in the cladding is 

enhanced. Moreover as the squared field magnitude at the clad -film 

interface (it represents the intensity at the clad-film interface) increases the 

evanescent tail in the cladding increases and the sensitivity of the sensor 

also increases. 

 

The clad-film interface nonlinearity 2

2
oE 

 
 

 

 

Figure 3.9 Sensitivity versus the clad-film interface nonlinearity for ac = -

 

0.65, 

 as = -

 

0.75. 

Finally the resulting sensitivity curve as a function of the permittivity 

 

of the LHM as a guiding layer is shown in Fig. 3.10. There is an optimum 

value of  εf  at which the fraction of total power flowing in the nonlinear 

cladding is maximum and the sensitivity of the optical waveguide sensor is 

also maximum. 

S
en

si
ti

v
it

y
 (

s)
  



 - 45 - 

 

 

 

 

 

 

 

 

 The guiding layer permittivity  (εf) 

 

Figure 3.10. Sensitivity of the proposed sensor versus the guiding layer permittivity for t 

 

= 100nm, λ

 

 = 1550nm, and µm = -µo (m = -

 

1). 
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CHAPTER FOUR 

HOMOGENEOUS TM NONLINEAR WAVEGUIDE 

SENSORS USING LEFT - HANDED MATERIALS 

 

This chapter is devoted to nonlinear p-polarized waves propagating 

in a waveguide structure as an optical sensor. Here we consider the 

structure discussed in chapter three with a different light polarization.  

Sensitivity of this configuration is discussed and the condition required to 

maximize the sensing sensitivity is determined. The fraction of total power 

flowing in the covering medium is shown to be related to sensitivity.  

 

 

4.1 Dispersion equations 

 To deduce the dispersion equation, we must first solve Helmholtz equation 

and determine the form of the fields in each layer of the proposed sensor. 

The sensor under consideration is a thin metamaterial film sandwiched 

between a linear substrate and a nonlinear cover with an intensity 

dependent refractive index. The guiding film fills the region 0t x   and 

the two dielectrics substrate and cladding fill the regions x< -

 

t and x>0 

respectively. Waves propagate along the z-axis and the guiding surfaces are 

fabricated parallel to the  yz-plane. A schematic diagram of this sensor is 

shown

 

 in figure 4.1. 
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2

'nl c yH    ,  0x   

              0x    

             

                                       Guiding layer metamaterial 

                                              Film ,  0t x    

                                             ,m m   both negative 

           

       z 
                                       linear dielectric substrate 

                                                    x t  

 

 

Fig.4.1 :The waveguide structure under consideration 

 

The magnetic and electric fields of TM waves propagating in the z -

direction are expressed as: 

   
 

,0,
j t z

x zE E E e
 

             

 

(4-

 

1) 

   
 

0, ,0
j t z

yH H e
 

     

 

(4-

 

2) 

where 0 ek n   

 

For the case under consideration Eq. (1-

 

47) can be written as : 

 
2

2 2

2
0

y

y

H
H

x
 


  


 

 

(4-

 

3) 

We have confined our attention to p-polarized waves propagating in 

a thin film that exhibits no nonlinearity. The covering medium has an 

intensity-dependent dielectric constant εnl of Kerr-type
2

cnl
    E , 

where α is the nonlinear constant and εc is the linear part of the permittivity. 

To solve the nonlinear wave equation for the nonzero magnetic  field 

component Hy, one can write εnl

 

 as [45,46] : 

y 

x t   

x 

Nonlinear dielectric cladding 
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2
'c ynl
H      

 

(4-

 

4) 

 

Where 2 2' / c oc    , where c  is the speed of light in vacuum, 

0
  is free space permittivity.  

 

Equation (4-

 

3) in the three layers takes the form : 
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3
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H
k n n H

x


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(4-

 

7) 

We recall the parameters qc, qs, and p given by: 

2 2

c e cq n n  , 
2 2

s e sq n n  ,
2 2

f ep mn n   

 

Exact solutions of Eqs. (4-

 

5) t

 

o (4-

 

7) are given by: 
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
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8) 

 

2 0 0cos( ) sin( )m myH B k px C k px  ,  0t x    (film)   

 

(4-

 

9) 

 

3

0 ( )
m

s
y

k q x t
H D e


 ,  x t   (substrate)  

 

(4-

 

10) 

 

The nonzero components of the electric field can be obtained using    

 

Eqs. (1-

 

52), (1-

 

53). They are given by: 
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Matching the tangential components of  E and  H  At 0x  , and x t  , 

we get:  

 

2
secc mq hC B
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20) 

 

    With some mathematical treatment of these relations, the following 

dispersion relation is obtained as : 

1 1
0 tan tan tanhs c

s c

x x
k pt C N

a a
    
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(4-

 

21) 

 

Where N is the number of modes. 

 



 - 50 - 

 

4.2 Evaluation of the sensitivity 

 

Differentiating the dispersion relation given by Eq . (4-

 

21) with 

respect to ne  to obtain an expression for the sensitivity of the sensor. As a 

result we get:  
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Where: 
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4.3 The condition of maximum sensitivity 

Given a configuration of constant c , f and s , the condition of 

maximum sensitivity means what is the optimum thickness of the guiding 

layer at which the sensitivity of the proposed optical waveguide sensor has 

the highest value. This condition is achieved when  the derivative of S with 

respect to t

 

 (the film width) vanishes [17,27,28] or 0s

s

S S x

t x t
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 
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Applying this methodology to Eq. (4-

 

22) we get : 
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4.4 Power flow within the layers for TM modes 

       For TM-

 

waves, the energy flux per unit length is given by Eq. (1-

 

59). 

 

Using Eqs. (4-

 

8) to (4-

 

10), the power flow through each layer can be 

obtained as follows : 
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 The total power in the whole structure is given by:  
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The fraction of the total power flowing in the cladding is given by:  
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4.5 Clad-Film interface nonlinearity 

In chapter three, 
2

2

oE
 was defined as the clad-film 

interfacenonlinearity. In a similar manner we can define for TM modes 

2

2

oH 
as clad-film interface nonlinearity, where H0 represents the 

magnetic field at the clad-film interface (x

 

 = 0). In homogeneous 

sensing procedure, the material to be detected is uniformly distributed 

in the covering medium. As a result we will be concerned with clad-

film interface nonlinearity.  The magnetic field Ho is obtained by 

substituting x

 

 = 0 in Eq. (4-

 

8), we get: 
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Equation (4-

 

49) can be written as: 
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One can substitute for tanh C

 

 from Eq. (4-

 

50) into Eq. (4-

 

22) to 

obtain an expression for the sensitivity of the proposed sensor as a 

function of the clad-film interface nonlinearity. 

 

4

 

.6 Results 

The argument above offers a set of equations sufficient for 

determining all the parameters needed to design the sensor and bring it to 

its maximum sensing sensitivity. This can be achieved as follows:  

given the asymmetry parameters ac and as, one can substitute for xc from Eq. 

 

(3-

 

21) into the condition of maximum sensitivity given by Eq . (4-

 

27) to end 

with a function of xs  only thus having the optimum value of xs.   

Substituting these values in the characteristic equation, we can 

compute the waveguide widths ensuring maximum sensitivity. The values 

of these maxima are calculated through substituting the last values in the 

expression of sensitivity. The surface xs (as,ac

 

) is shown in Fig. 4.2.  

 

 

Figure 4.2. Normalized effective refractive index xs versus as and ac ensuring maximum 

sensitivity for homogeneous sensing.

 
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Fig. 4.3 and Fig. 4.4 show the variation of the sensitivity of the 

proposed waveguide sensor with the asymmetry parameter ac and with the 

asymmetry parameter as respectively. The sensitivity increases with 

increasing ac and decreases with increasing as. This behavior is attributed to 

the power considerations. Increasing ac and decreasing as enhance the 

power fraction flowing in the cladding medium which leads to 

enhancement of the optical sensitivity of the sensor . 

 

The absolute value of the asymmetry parameter 

 

Figure 4.3. Sensitivity versus the absolute value of the asymmetry parameter ac for the 

case of TM waves, for different values of as ( -

 

0.6, -

 

0.75). 
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The absolute value of asymmetry parameter  

 

Figure 4.4. Sensitivity versus the absolute value of the asymmetry parameter as for the 

case of TM waves, for different values of ac (-

 

0.55, -

 

0.7). 

 

     The variation of the sensitivity of the proposed sensor with m  is 

 

shown in Fig. 4.5. As can be seen, for small values of m  the sensitivity 

approaches zero due to the high confinement of the guided mode in the 

guiding layer. In the other limit, all the power of the mode propagates in 

the substrate. Consequently, the sensor probes the substrate side only and  

the sensitivity of the effective refractive index to variations in the index 

tends to zero. Between these two limits, there is a maximum in the 

sensitivity curves representing an optimum where a relatively large part of 

the total mode power propagates in the cladding. 
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m  where 
0

mm



  

 

Figure 4.5. Sensitivity of the proposed sensor versus the absolute value of m where μm = 

mμo. 

 

 

In Fig. 4.6 and Fig. 4.7 we study the variation of S with the nonlinear 

term arising from the nonlinearity of the cladding (tanhC) and with the 

fraction of power flowing in the cladding respectively.  

As tanhC approaches one, the linear cladding case, the sensitivity 

goes to its minimum values. The relation between S and Pc/Ptotal is a 

straight line emphasizing the fact that the high degree of confinement in  the 

guiding layer in the case of sensing applications is not recommended.  
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The nonlinearity term (tanhC) 

 

Figure 4.6. Sensitivity of the proposed optical waveguide sensor versus tanhC. 

 

 

 

The fraction of total power flowing in the cladding    (Pc/Ptotal) 

 

Figure 4.7. Sensitivity of the proposed optical waveguide sensor versus the fraction of 

total power flowing in the cladding. 
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The sensitivity of the proposed nonlinear sensor versus the clad-film 

interface nonlinearity 
2'

2
oH

 

 is shown in Fig. 4.8. The sensitivity increases 

with increasing the clad-film interface nonlinearity. As mentioned in 

 

chapter 3, as the clad-film interface nonlinearity increases the evanescent 

tail in the cladding increases and the sensitivity of the sensor is enhanced.  
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Figure 4.8 Sensitivity versus the clad-film interface nonlinearity 
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CHAPTER FIVE 

CONCLUSION 

 

The main purpose of this thesis was to propose new structures of 

optical waveguide sensors. We have presented comprehensive analytical 

studies on nonlinear optical waveguide sensors when the guiding layer is 

made of a Left-Handed material. A nonlinear cladding and a linear 

substrate were considered. Moreover, we investigated s-polarized waves 

(TE) and p-polarized waves (TM).  

With respect to planar optical waveguide sensors, the main remarks 

gained from our investigations can be summarized as follows:  

  

 There is a close connection between the fraction of total power 

propagating in the covering medium and the sensitivity of the sensor. 

In most cases, they may be regarded as nearly identical thus the 

enhancement of the fraction of total power flowing in the cladding is 

essential for sensing applications.  

 

 As the nonlinearity of the cladding increases, the wave crest is 

displaced towards the cladding and as a result the sensitivity of the 

optical waveguide sensor is enhanced. 

 

 The sensitivity increases with increasing the clad-film interface 

nonlinearity since increasing the nonlinear coefficient α will enhance 

the permittivity of the cladding. Hence the fraction of total power 

flowing in the cladding is enhanced. Moreover as the squared field 

magnitude at the clad-film interface increases the evanescent tail in 

the cladding increases and the sensitivity of the sensor also increases.  
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 Cladding to film permittivity ratio should be as high as possible but 

substrate to film permittivity ratio should be as low as possible to 

increase the evanescent field tail in the cladding and to reduce it as 

possible in the substrate. The inversion of the conventional  

waveguide symmetry is strongly recommended if possible. In some 

cases it is not possible especially when the analyte is air  

 

 For small values of m  the sensitivity approaches zero due to the 

high confinement of the guided mode in the guiding layer. For high 

values all the power of the mode propagates in the substrate. 

Consequently, the sensor probes the substrate side only and the 

sensitivity of the effective refractive index to variations in the index 

tends to zero. Between these two limits, there is a maximum in the 

sensitivity curves representing an optimum where a relatively large 

part of the total mode power propagates in the cladding.  The 

optimum value of µ for the Left-Handed Material is found to be near 

the free space permeability. 
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FUTURE WORK 

 

The following thoughts are assumed to be put to research in the 

future: 

 The study of nonlinear reverse asymmetry for it is reported that this 

configuration has promising properties. A sensor with ac higher than as  

will be considered and the analysis carried out in this thesis will be 

shifted to this configuration. 

 Analytical study of (all nonlinear) sensing pads, i.e. sensors with all 

layers being nonlinear special interest  will be paid to the case of 

uniform field profile 

 A more intensive point of view on the relation between power flowing 

in the sensor layers and its response will be set to test.  

 An approach to more realistic metallic waveguide sensors will be set to 

research, a case when the current density J is considered.  
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