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Light modulation is a vital component in optical communications, imaging and

sensing systems. It imparts information on the optical wave carriers and establishes

the reliability of the communication links. In imaging systems, a modulated light

source has the potential in exceeding the diffraction limit and achieving better con-

trast in images. Improving the performance of light modulating devices such as

Spatial Light Modulators (SLMs), multiplexers, couplers and polarization controllers

can substantially benefit optical sensing and signal processing. Phase modulation

of light, as an important format of light modulation, has gained appreciably more

attention than its amplitude modulation due to its remarkable sensitivity and close

relation to spectrum, coherence and polarization of light.

This dissertation focuses on active (artificial) and passive (natural) phase modu-

lation of light including light source generation, light propagation in biological tissues

and light scattering from deterministic or random media. For genuine light source

generation, two aspects of phase modulation are discussed. One deals with modeling

the complex degree of coherence for 1D and 2D sources. A straightforward sliding

function method is first presented and simple conditions on the sliding function are

derived. The other contribution consists of the experimental method of stationary

beam synthesis from its coherent modes. As an example, the Im-Bessel correlated



beam with a separable vortex phase is experimentally generated. Moving on to light

propagation in biological tissues, the spectral density and the coherence state evo-

lution in isotropic and anisotropic samples are explored and the light scintillation is

examined. Finally, light scattering from hollow and semi-hollow 3d scatterers with

ellipsoidal, cylindrical and Cartesian symmetries is presented. Interesting intensity

patterns coming off these scatterers can lead to prospective applications in inverse

problems. The Probability Density Functions (PDFs) of the instantaneous Stokes pa-

rameters on weak scattering are also calculated for random stationary scatterers with

Gaussian statistics and Gaussian spatial correlation function. The illustrated sensi-

tivity of the Stokes parameters’ PDFs to incident light polarization and the scatterers’

statistics is of importance for developing novel sensing, communication and imaging

schemes operating in the presence of particulate collections.
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CHAPTER 1

Introduction

1.1 The significance of statistical optics

The state of nature is fundamentally random and almost nothing in nature can be

predicted precisely. For instance, uncertainty principle in quantum mechanics states

that the photons of the same spin state (same polarization) belonging to a cell of

phase space (counterpart in classical coherence theory known as coherence volume)

are intrinsically indistinguishable. Each quantity in nature has its own probability

density function. When measurements occur, the state of the quantity collapses to

the eigenstate of the measurement, hence it is impossible to obtain the state of the

quantity before the measurement. In addition, experimental devices used for optical

measurements involve even more complex statistics of light interacting with matter,

leading to extremely complicated probability density functions.

As an example to illustrate the importance of statistical optics, let us consider an

imaging system. The goal of an imaging system is to retrieve and record information

about samples using the interaction of light and matter. First of all, the illumina-

tion in imaging systems has its statistical properties. The state of the illumination is

random and the optical waves that it emits are randomly fluctuating. Then the light

1
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wave travels to the sample and interacts with it. This process can be extremely com-

plicated, it might involve a number of linear and/or nonlinear interactions. Moreover,

certain interactions might result in generation of secondary light fields oscillating at

different frequencies. After scattering, the perturbed light waves arrive at measur-

ing devices which involve another light-matter interaction. Along the path from the

source to the measurement instrument, the light waves propagate through an ambient

medium which adds more unknown statistics to the perturbed light. Furthermore,

light passing through lenses and other optical elements will accumulate more errors.

In summary, all steps in the imaging system including illumination, transmission,

interaction, detection, and image reconstruction involve different random processes.

Therefore, it is paramount to understand the statistical properties of optical fields at

each step in order to improve the imaging system.

1.2 Basic concepts of coherence theory and Van

Cittert-Zernike theorem

In the second-order space-frequency domain coherence theory, the cross-spectral

density is an important function characterizing correlations in stationary wavefronts.

It is known to be the Fourier transform of the mutual coherence function Γ(r1, r2, τ)

in space-time domain according to the generalized Wiener-Khintchine theorem [1].

For a fluctuating stationary field U(r, ω), the cross-spectral density functionW (r1, r2)

at any pair of points is defined as the ensemble-averaged correlation of the electric

field

W (r1, r2;ω) = 〈U∗(r1, ω)U(r2, ω)〉. (1.1)
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Here r1 and r2 are positions of two points anywhere within the field, oscillating at

angular frequency ω, star stands for complex conjugate, and the angular brackets

denote an average taken over the ensemble of monochromatic realizations.

In order to serve as a genuine correlation function, the cross-spectral density

function W should satisfy the following conditions:

1. W must be square-integrable with respect to ω, i.e.,∫ ∞
0

|W (r1, r2;ω)|2dω <∞. (1.2)

2. If W is a continuous function of its spatial arguments then∫∫
|W (r1, r2;ω)|2d2r1d

2r2 <∞ (1.3)

3. W must be quasi-Hermitian, in the sense that,

W (r1, r2;ω) = W ∗(r2, r1;ω) (1.4)

4. W must be non-negative definite, i.e., for any square-integrable function f(r),∫∫
W (r1, r2;ω)f ∗(r1)f(r2)d2r1d

2r2 ≥ 0. (1.5)

However, it is not an easy task to prove the validity of a correlation function espe-

cially due to condition (1.5). The Bochner’s theorem of functional analysis provides a

simple alternative condition: a valid correlation function W must have representation

of the form [2]

W (r1, r2;ω) =

∫
p(v;ω)H∗(r1,v;ω)H(r2,v;ω)d2v, (1.6)

where H is an arbitrary function, p is a non-negative Fourier-transformable function.
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The most frequently measurable quantity in an optical experiment, spectral-

density, is just the cross-spectral density function calculated at two coinciding po-

sitions, r = r1 = r2,

S(r;ω) = W (r, r;ω). (1.7)

The cross-spectral density function contains information about both the spectral-

density and the coherence state of the field, the complex degree of spectral coherence

is defined by expression

µ(r1, r2;ω) =
W (r1, r2;ω)√

S(r1;ω)
√
S(r2;ω)

, (1.8)

with its magnitude ranging between 0 and 1, i.e.,

0 ≤ |µ(r1, r2;ω)| ≤ 1. (1.9)

In 1934 van Cittert and later Zernike derived a very important relation in coher-

ence theory

µ(r1, r2) =
1√

S(r1)S(r2)

∫∫ ∞
−∞

S(0)(X)
eik[|r1−X|−|r2−X|]

|r1 −X||r2 −X|
d2X, (1.10)

which provides a bridge between planar source spectral-density and the complex de-

gree of coherence at any two points in the field radiated from the source. Here r1, r2

are two points in the radiated field, S(0)(X) is the spectral-density at point X in the

source plane and k is the wave number of light, k = 2π/λ. If we calculate the com-

plex degree of coherence in the far-field regime, then with Fraunhofer approximation

Eq.(1.10) reduces to

µ(r1, r2) =
1√

S(r1)S(r2)

∫∫ ∞
−∞

S(0)(X)eikX·(r1−r2)/rd2X, (1.11)
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where |r1| ≈ |r2| = r. Moreover, if the source is of Schell-model type, i.e., the

complex degree of coherence only depends on the separation between r1 and r2, then

we have

µ(rd) =
1√

S(r1)S(r2)

∫∫ ∞
−∞

S(0)(X)eikX·rd/rd2X, (1.12)

where rd = r1− r2. From Eq. (1.12) we can see that the correlation function (cross-

spectral density) in the radiated field and the spectral-density in the source plane are

essentially Fourier transform pair. More generally this relation can be understood as

a reciprocity between the spectral density and the coherence state at two planes that

are Fourier transform conjugates to each other. This relation will be employed in the

sliding function method that we will introduce for spatial structuring of coherence

states.

1.3 Coherent mode decomposition

From the conditions for the cross-spectral density function W mentioned in section

1.2, it is implied that W is a Hilbert-Schmidt kernel. The cross-spectral density can

then be expressed in the form of the Mercer’s series [3]

W (ρ1,ρ2, ω) =
∞∑
n=0

λn(ω)ψn(ρ1, ω)ψn(ρ2, ω), (1.13)

widely known as the coherent mode decomposition. Here λn and ψn(ρ, ω) are the

eigenvalues (weights) and the eigenfunctions (coherent modes) of decomposition. The

Hermiticity and the non-negative definiteness of W ensures that all the eigenvalues

are real and non-negative, i.e.,

λn(ω) ≥ 0. (1.14)
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The eigenfunctions with different indexes are mutually orthogonal, i.e.,∫
ψ∗n(ρ, ω)ψm(ρ, ω)d3r = δnm. (1.15)

Moreover, the spectral degree of coherence for each mode is given by the expression

µn(ρ1,ρ2;ω) =
ψ∗n(ρ1, ω)ψn(ρ2, ω)

|ψn(ρ1, ω)||ψn(ρ2, ω)|
. (1.16)

It is evidently unimodal, hence the modes are termed coherent. The coherent modes

has played a crucial part in understanding the laser resonators [4] and partially coher-

ent beam interaction with random media [5]. Apart from their application to optical

radiation they can also be applied to other random structures, for instance, random

scattering media [6].

The benefit of coherent mode decomposition method is in the versatility in struc-

turing diverse types of beams, not limited to the Schell-model type. Using this

method, we will illustrate the construction of Im-Bessel correlated beams carrying

optical vortices. Beams with helical wavefronts carry orbital angular momentum

which may induce torque on an electric dipole. Any pair of points symmetric with

respect to the beam axis have phase difference of π, leading to a phase singularity in

the center of the beam. These properties propel the technologies known as optical

trapping/tweezers, broadly adopted in biological manipulation and micro electrome-

chanical systems.

Let us choose eigenfunctions ψn(ρ, ω) in Eq. (1.13) to be the Laguerre-Gaussian

(LG) modes [7]

ψmn (ρ;ω) =

(√
2ρ

σ

)m

Lmn

(
2ρ2

σ2

)
exp

(
−ρ

2

σ2

)
exp[−imφ], (1.17)
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Figure 1.1: Eigenvalues for values m and ξ used in Figs. 2.13-2.14. (From Ref. [40])

where (ρ, φ) are the polar coordinates of vector ρρρ, σ is the spot size at the waist of the

beam, m is the OAM index, also known as the topological charge. Further, Lmn is the

associated Laguerre polynomial of order n. According to the mutual orthogonality of

the eigenfunctions, the eigenvalues λnm can be obtained as follows

λnm =
n!

(n+m)!
ξn. (1.18)

The distribution of the eigenvalues with different m and ξ is presented in Fig. 1.1. It

is clear that the eigenvalues (weights) decrease extremely fast for smaller values of ξ,

implying that beams with larger degree of coherence need fewer coherent modes to

generate. We can also see that beams with larger OAMs need fewer coherent modes

than those with smaller OAMs.
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As was shown in Ref. [8], substitution from Eqs. (1.17) and (1.18) into Eq. (1.13)

leads to the cross-spectral density of the form

W (ρρρ1, ρρρ2, ω) =
ξ−m/2

1− ξ
exp

[
−1 + ξ

1− ξ
(ρ2

1 + ρ2
2)

σ2

]
Im

(
4
√
ξ

1− ξ
ρ1ρ2

σ2

)
exp[−im(φ1 − φ2)],

(1.19)

with Im being the modified Bessel function of the first kind, of order m. Parameter ξ

appearing in Eq. (1.19) is real (0 < ξ < 1) defining the effective width of the source

correlation function. ξ ≈ 0 gives coherent beam; ξ ≈ 1 leads to incoherent beam. The

sequence of real non-negative eigenvalues decreasing to zero with increasing values of

n and m defined in Eq. (1.18) determines the effective number of modes needed for

the satisfactory synthesis of the beam. The source spectral density is then obtained

from Eq. (1.19) by setting ρρρ1 = ρρρ2 = ρρρ:

S(ρρρ, ω) =
ξ−m/2

1− ξ
exp

[
−1 + ξ

1− ξ
2ρ2

σ2

]
Im

(
4
√
ξ

1− ξ
ρ2

σ2

)
. (1.20)

Since the LG modes are shape-invariant on propagation [1], the (transverse) far-

zone radiant intensity, specified along three-dimensional vector r = rs (|s| = 1,

|r| = r) has the same profile as that in Eq. (1.20) [8]:

J(rs, ω) =
σ4

4

ξ−m/2

1− ξ
exp

[
−1 + ξ

1− ξ
k2ω2|s⊥|2)

2

]
Im

(√
ξk2σ2|s⊥|2

1− ξ

)
, (1.21)

where s⊥ is the two-dimensional projection of vector s onto the source plane. The

model beam introduced in this section will be experimentally synthesized from co-

herent modes in chapter 2.



9

1.4 Fourth-order Rytov perturbation theory

In this section we will review the Rytov perturbation theory which will be needed

below for studying light evolution in weakly-fluctuating bio-tissues. We will consider

the general case first: a Gaussian beam propagation in weak turbulence, then deduce

two limiting cases: the plane wave and the spherical wave.

A Gaussian beam is a highly directional optical field whose complex amplitude is

given by a Gaussian function. The propagation of a Gaussian wave in 3D space can

be conveniently characterized by the set of two dimensionless parameters [9]. Such

parameters, Λ0 and Θ0, associated with the source plane are defined by expressions

Θ0 = 1− L/F0, Λ0 = 2L/(kW 2
0 ), (1.22)

where L is the propagation distance, F0 is the source phase front radius of curvature,

and W0 is the source radius. Then the wave propagating to the detector plane can

be characterized by a pair Λ and Θ relating to the source parameter pair as

Θ = Θ0(Θ2
0 + Λ2

0)−1, Λ = Λ0(Θ2
0 + Λ2

0)−1. (1.23)

Now consider a scalar optical wave propagating in an unbounded continuous media

with smoothly varying stochastic refractive index. Under the assumptions including

neglected backscattering, neglected depolarization effects, delta correlated refractive

index along the propagation direction, and paraxial approximation, the electric field

U(r, ω) at the point r is governed by the stochastic Helmholtz equation

∇2U(r, ω) + k2n2(r, ω)U(r, ω) = 0, (1.24)

where k is the wave number, n is the refractive index of the medium.
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The Rytov approximation is one of the perturbation approaches to solve the

stochastic Helmholtz equation under weak fluctuation conditions. The Rytov method

expresses the fluctuating field as

U(r, L) = U0(r, L) exp[ϕ(r, L)], (1.25)

where r is the transverse position and L is the propagation distance, ϕ is the complex

phase perturbation due to the turbulence having series expansion

ϕ(r, L) = ϕ1(r, L) + ϕ2(r, L) + · · · . (1.26)

The scintillation index analysis is an indispensable tool in characterizing the global

regime of turbulence (weak, moderate or strong) on the optical waves, whether for

the well studied atmosphere [10], oceans [11] or the bio-tissues. In weak fluctua-

tion regime, the scintillation is proven to have the following relation to the phase

perturbation ϕ [9]

σ2
I (r, L) = 2<[〈ϕ1(r, L)ψ∗1(r, L)〉+ 〈ϕ1(r, L)ϕ1(r, L)〉], (1.27)

where < denotes the real part, the angular brackets stand for the ensemble average

over the realizations of the fluctuating medium. It is convenient to express it as the

summation of the longitudinal and the radial parts as follows [9]

σ2
I (r, L) = [〈I(r, L)2〉 − 〈I(r, L)〉2]〈I(r, L)〉−2

= σ2
l (0, L) + σ2

r(r, L),

(1.28)

where I is the instantaneous intensity. Under the Rytov approximation, the on-axis

and the radial components of the scintillation index for homogeneous and isotropic
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media are given as [9]

σ2
l (0, L) =8π2k2L

∫ 1

0

∫ ∞
0

κΦn(κ) exp

(
− ΛLκ2ξ2

k

)

×
[
1− cos[Lκ2ξ(1− (1−Θ)ξ)/k]

]
dκdξ,

(1.29)

σ2
r(r, L) =8π2k2L

∫ 1

0

∫ ∞
0

κΦn(κ) exp

(
− ΛLκ2ξ2

k

)

×
[
I0(2Λrξκ)− 1

]
dκdξ,

(1.30)

where Φn is the power spectrum, being the spatial Fourier transform of the correlation

function of the refractive index of the medium

Φn(κ) =
1

(2π)3

∫∫∫ ∞
−∞

Cn(R) exp(−iκR)d3R, (1.31)

where κ is the spatial frequency in the Fourier domain.

According to the Rytov theory, the weak regime of turbulence for a Gaussian

beam must satisfy the following inequality ( [9], p.230.)

σ2
RΛ5/6 < 1, (1.32)

where σ2
R is the Rytov variance (the scintillation index of a plane wave).

For the case of a plane wave, Λ = 0 and Θ = 1, the radial part σ2
r vanishes and

the longitudinal part becomes [9]

σ2
l (0, L) = 8π2k2L

∫ 1

0

∫ ∞
0

κΦn(κ)

[
1− cos(Lκ2ξ/k)

]
dκdξ. (1.33)

For the spherical incident wave Λ = 0 and Θ = 0, it follows that the radial part

σr vanishes and the longitudinal part yields

σ2
l (0, L) =8π2k2L

∫ 1

0

∫ ∞
0

κΦn(κ)

[
1− cos[Lκ2ξ(1− ξ)/k]

]
dκdξ. (1.34)
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1.5 Extended Huygens-Fresnel Principle

In this section we will review another widely used method for treating evolution

of light in stationary media. This approach will be applied below for examining the

effects of isotropic and anisotropic bio-tissues on light spectral density and coherence

state. The extended Huygens-Fresnel principle is a powerful approach for solving

stochastic Helmholtz equation which governs the light wave propagation in random

media. It is applicable for first-order and second-order field moments under weak or

strong fluctuation conditions of turbulence.

The solution of Eq. (1.24) is expressed, according to the extended Huygens-Fresnel

integral as

U(r, ω) = −ik exp(ikz)

2πz

∫
U(ρ′, ω) exp

[
ik

(ρ′ − ρ)2

2z

]
exp[Ψ(ρ′, r, ω)]d2ρ′, (1.35)

where Ψ(ρ′, r, ω) is the complex phase perturbation caused by the stochastic refrac-

tive index of the medium. The second-order correlation of the optical wave can be

described by Eq. (1.1).

On substituting from Eq.(1.35) into Eq.(1.1), the cross-spectral density takes form

W (r1, r2, z) =

∫∫
W (ρ′

1,ρ
′
2, ω)K(r1, r2;ρ′

1,ρ
′
2, z)d

2ρ′1d
2ρ′2, (1.36)

where propagator K is given by expression

K(r1, r2;ρ′
1,ρ

′
2, z) =

(
k

2πz

)2

exp

[
−ik (r1 − ρ′

1)2 − (r2 − ρ′
2)2

2z

]
× 〈exp[Ψ∗(ρ′

1, r1;ω) + Ψ(ρ′
2, r2;ω)]〉.

(1.37)
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For the homogeneous and isotropic turbulence the phase function is related to the

power spectrum Φ(κ) by the formula

〈exp[Ψ∗(ρ′
1, r1;ω) + Ψ(ρ′

2, r2;ω)]〉 =

exp

[
− 4π2k2z

∫ 1

0

dt

∫ ∞
0

κdκΦn(κ)

(
1− J0

[
κ

∣∣∣∣(1− t)(r1 − r2) + t(ρ1 − ρ2))

∣∣∣∣])
]
,

(1.38)

where J0 is the Bessel function of the first kind. For the anisotropic turbulence the

phase function takes form

〈exp[Ψ∗(ρ′
1, r1;ω)+Ψ(ρ′

2, r2;ω)]〉 = exp

[
− 2πk2z

∫ 1

0

dt

∫ ∞
0

d2κΦn(κ)

×
(

1− exp

[
(1− t)(r1 − r2) · κ+ t(ρ1 − ρ2) · κ

])]
.

(1.39)

1.6 Weak scattering theory with Born approxima-

tion

Light scattering is a very broad topic and this section will only focus on one type

of scattering: elastic light scattering by a linear, isotropic, statistically stationary

medium with relative refractive index close to unity. This scattering regime is very

convenient for analyzing important problems of light-matter interactions: particle

design for controlling scattered radiation [12], scatterer’s reconstruction by diffraction

tomography method [13], imaging by the quantitative phase microscopy tools [16].

Let the scatterer occupy domain D of a three-dimensional space and be charac-

terized by the scattering potential [3]

F (r′) =
k2

4π
[n2(r′)− 1], (1.40)
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n(r′) being the refractive index at position r′ within the scatterer.

Let us consider the simplest case first: the scalar monochromatic plane wave

U (i)(r, ω) = a(i)(ω) exp[iks0 · r] (1.41)

with amplitude a(i)(ω) is incident from direction s0 (|s0| = 1) onto a deterministic

stationary scatterer with potential given by Eq. (1.40). Then under validity of

the first Born approximation, the far-zone intensity of the weakly-scattered field,

measured along direction r = rs (|s| = 1, |r| = r), can be expressed as [3]

S(s)(rs, ω) =
1

r2
S(i)(ω)|F̃ [k(s− s0), ω]|2, (1.42)

where F̃ is the three-dimensional spatial Fourier transform

F̃ (K) =

∫
D

F (r′;ω) exp [−iK · r′] d3r′, (1.43)

and K = k(s− s0) is the momentum transfer vector.

In the electromagnetic case, the three-dimensional scattered electromagnetic field

along direction r = rs, where s is a unit vector along the direction of vector r, can

be found from double cross product [3]:

E(s)(rs) = −s×

s×
∫
D

F (r′)G(r, r′)E(i)(r′)d3r′

 , (1.44)

where

G(r, r′) =
exp[ik|r− r′|]
|r− r′|

(1.45)
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is the free-space Green’s function. More explicitly, three Cartesian components of the

scattered field have the form:

E(s)
x (rs) = (1− s2

x)Qx(rs)− sxsyQy(rs),

E(s)
y (rs) = −sxsyQx(rs) + (1− s2

y)Qy(rs),

E(s)
z (rs) = −sxszQx(rs)− syszQy(rs),

(1.46)

where

Qi(rs) =

∫
D

F (r′)G(r, r′)E
(i)
i (r′)d3r′, (i = x, y). (1.47)

It is clear that the scattered field depends on coupled incident field components due

to the cross product in Eq. (1.44). This approximation will be used in chapter 4 for

analyzing the PDFs of the instantaneous Stokes parameters and scattered patterns

produced by 3D structured scattering potentials.



CHAPTER 2

Phase Structuring of Complex Degree of
Coherence

2.1 Sliding function method

2.1.1 Background

The spatial coherence state of light, as one of the most important observable

quantities, inspired a variety of applications including singular optics of random

light [14], phase-resolved crystallography [15], quantitative phase imaging of random

structures [16], and structured photovoltaics [17]. From the theoretical standpoint, it

involves modeling of the magnitude and the phase of the Complex Degree of Coher-

ence (CDC).

In the last several years, modeling of the magnitude of the CDC has become a very

well established branch of statistical optics. In particular, it was shown that the mag-

nitude of the CDC leads to radiation of stationary fields with various intermediate-

and far-field spectral density profiles perhaps the most illustrative example being the

flat-top with a Gaussian edge [18]. So far, structuring of the CDC’s phase has been

largely overlooked. However, as a few results indicate, inclusion of the non-trivial

16
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phase distribution in the CDC can break the Cartesian symmetry in the far field [19],

generate twist phase [20], and lead to other interesting features [21].

Modeling the CDC of a statistically stationary source is not an easy procedure due

to a number of constraints including spatial integrability, non-negative definiteness

and Hermiticity (see section 1.2). In this chapter, we introduce a very simple method

for design of the CDCs with non-trivial phase profiles [22]. This method is valid

for the broad class of Schell-like sources (the CDC depends solely on the separation

between two points) and relies on the complex-valued sliding function that obeys very

simple restrictions: Fourier transformability, even magnitude, and odd phase. The

source CDC is shown to be just the auto-convolution of the sliding function.

2.1.2 Theory

Let us start with a one-dimensional (1D) model first. Recall that according to the

Bochner’s theorem the cross-spectral density of a stationary source can be expressed

by Eq. (1.6), for a one-dimensional stationary source it yields

W (x1, x2) =

∞∫
−∞

p(v)H∗(x1, v)H(x2, v)dv, (2.1)

where x1 and x2 are any source points. For Schell-like sources the correlation class

takes the form

H(x, v) = τ(x) exp[−2πixv], (2.2)

making the cross-spectral density factorize as

W (x1, x2) = τ(x1)∗τ(x2)µ(xd), (2.3)
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where τ(x) is the complex amplitude profile, |τ(x)| =
√
S(x), S(x) being the spectral

density. Here µ(xd) is the CDC defined as a function of a difference of two points,

xd = x1−x2, being the Fourier transform of profile function p(v), i.e., F [µ(xd)] = p(v).

Now let us represent p(v) as a product

p(v) =
√
p(v)

√
p(v) = h(v)h(v), (2.4)

for uniquely defined, real-valued function, h(v) =
√
p(v). It must satisfy that∫∞

−∞ |h(v)|dv < ∞, i.e., belongs to the L1(R) space. According to the convolution

theorem, µ(xd) can be expressed as

µ(xd) = F−1[h(v)] ~ F−1[h(v)] = g(xd) ~ g(xd), (2.5)

where ~ denotes one-dimensional convolution and g(xd) = F−1[h(v)] = F−1[
√
p(v)].

We name g(xd) as sliding function, it will play a crucial part in our analysis. It also

needs to be in the L1(R) space, i.e.,
∫∞
−∞ |g(xd)|dxd <∞.

We can conclude from the properties of the Fourier transform that the sliding

function is Hermitian:

g(−xd) = g∗(xd). (2.6)

Indeed, on denoting gR(xd) and gI(xd) the real and the imaginary parts of g(xd),

respectively, it follows that

h(v) =

∫ ∞
−∞

g(xd) exp[2πixdv]dxd

=

∫ ∞
−∞

[gR(xd) + igI(xd)][cos(2πxdv) + i sin(2πxdv)]dxd

=

∫ ∞
−∞

[gR(xd) cos(2πxdv)− gI(xd) sin(2πxdv)]dxd

+ i

∫ ∞
−∞

[gR(xd) sin(2πxdv) + gI(xd) cos(2πxdv)]dxd.

(2.7)
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It is implied from the last line of Eq. (2.7) that in order for h(v) to be real, its

imaginary part must be zero, i.e., gR(xd) must be an even function and gI(xd) must

be an odd function. This condition is equivalent to g(−xd) = g∗(xd), being the

definition of a Hermitian function.

Further, if the sliding function is represented via its magnitude gM(xd) and phase

gP (xd):

g(xd) = gM(xd) exp[igP (xd)], (2.8)

then

gM(−xd) = gM(xd), gP (−xd) = −gP (xd), (2.9)

i.e., the magnitude and the phase of g(xd) must be even and odd functions, respec-

tively. It is worthy of attention that while the integrability condition on g(xd) directly

affects gM(xd), i.e.,
∫∞
−∞ gM(xd)dxd <∞, it does not affect gP (xd).

Now we will generalize this method and apply it for two-dimensional (2D) sources

[23]. We will skip the similar procedure and go directly to the conditions for 2D

sliding functions. Note that all the integrals now are in 2D.

On expressing function h(v) as the 2D Fourier transform of the real and imaginary

parts of function g(rd), namely gR(rd) and gI(rd), respectively, it follows that

h(vx,vy) =

∞∫
−∞

∞∫
−∞

g(xd, yd) exp[2πi(xdvx + ydvy)]dxddyd

=

∞∫
−∞

∞∫
−∞

[gR(xd, yd) + igI(xd, yd)]

× [cos[2π(xdvx + ydvy)] + i sin[2π(xdvx + ydvy)]]dxddyd.

(2.10)
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The imaginary part of h(vx, vy) is given as

=[h(vx, vy)] =

∞∫
−∞

∞∫
−∞

[gR(xd, yd) sin[2π(xdvx + ydvy)]

+ gI(xd, yd) cos[2π(xdvx + ydvy)]]dxddyd.

(2.11)

After applying summation formulas for sine and cosine it has the expression

=[h(vx, vy)] =

∞∫
−∞

∞∫
−∞

gR(xd, yd)[sin(2πxdvx) cos(2πydvy)

+ cos(2πxdvx) sin(2πydvy)]dxddyd

+

∞∫
−∞

∞∫
−∞

gI(xd, yd)[cos(2πxdvx) cos(2πydvy)

− sin(2πxdvx) sin(2πydvy)]dxddyd.

(2.12)

Therefore, in order to have trivial =[h(vx, vy)], the real and imaginary parts of the

sliding function must be even and odd functions respectively, i.e.,

gR(−xd,−yd) = gR(xd, yd), gI(−xd,−yd) = −gI(xd, yd), (2.13)

i.e., that g(xd, yd) is Hermitian in 2D, i.e.,

g∗(−xd,−yd) = g(xd, yd). (2.14)

If the sliding function is represented via its magnitude gM(xd, yd) and phase gP (xd, yd):

g(xd, yd) = gM(xd, yd) exp[igP (xd, yd)], (2.15)

then it immediately follows from Eq. (2.14) that

gM(−xd,−yd) = gM(xd, yd), gP (−xd,−yd) = −gP (xd, yd). (2.16)
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2.1.3 Examples of 1D field

In order to emphasize on the phase structuring of CDC, we set gM as a Gaussian

function with the r.m.s. width δ, i.e.,

gM(xd) =
1√
δπ1/4

exp
(
− xd

2δ2

)
. (2.17)

The first example is the linear phase case of the sliding function

gP (xd) = axd. (2.18)

On substituting Eqs. (2.17) and (2.18) into Eq. (2.5) the CDC has the expression

µ(xd) = exp

(
− x2

d

4δ2
+ iaxd

)
. (2.19)

The Fourier transform of µ(xd) gives the far-field profile function

p(v) = 2δ
√
π exp

[
−δ2(2πv + a)2

]
. (2.20)

Figure 2.1 shows the absolute value, the argument, the real part and the imaginary

part of the CDC and the corresponding far-field profile functions, plotted from Eqs.

(2.19) and (2.20), respectively, for two selected values of parameter a. The linear phase

acts as a tilt. Linear combinations of the CDC with linear phases (with δ =∞) can

be found in coherence gratings [24].

As the second example, we choose Signum function

gP (xd) = sign(xd)a =



−a, xd < 0,

0, xd = 0

a, xd > 0.

(2.21)
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Figure 2.1: Degree of coherence (A), (C) and the corresponding far-field profile function
(B), (D), for the case of linear phase in (2.18). (A), (B) a = 2π/10; (C), (D) a = 2π/3.
(From Ref. [22])
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Figure 2.2: Degree of coherence (A), (C) and the corresponding far-field profile function
(B), (D), for the case of sign phase in (2.21). (A), (B) a = 2π/10; (C), (D) a = 2π/3.
(From Ref. [22])
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After performing the auto-convolution in Eq. (2.5) the CDC takes form

µ(xd) =


exp

(
− x2d

4δ2

)(
1 +

(
1− exp[−2ai]

)
Erf

[
xd
2δ

])
, y ≤ 0

exp
(
− x2d

4δ2

)(
1 +

(
exp[2ai]− 1

)
Erf

[
xd
2δ

])
. y > 0

(2.22)

The corresponding far-field profile function takes the form

p(v) = 2δ
√
π exp[−4π2δ2v2]

(
cos a− Erfi[

√
2πδv] sin a

)2

. (2.23)

Here, Erf and Erfi are the error function and the imaginary error function defined

as

Erf(x) =
2√
π

∫ x

0

e−t
2

dt,

Erfi(x) = −iErf(ix).

(2.24)

Figure 2.2 illustrates µ(xd) in Eq. (2.22) and the corresponding far field profile

in Eq. (2.23). The far field shows two asymmetric peaks and non-zero center for

a 6= π/2. For a = π/2, we can predict that the intensity vanishes at the center

(destructive interference) and two symmetric peaks with respect to the center because

of the π difference of the phase in the CDC.

Our next example involves the higher-order monomials

gP (xd) = axnd , n = 2m+ 1, m = 1, 2, ... (2.25)

for n = 3 the CDC takes the form

µ(xd) = exp

(
− x2

d

4δ2

)
exp

(
iax3

d

4

)
(1− i3aδxd)−1/2. (2.26)

For δ =∞, p(v) = |Ai(v)|2, where Ai is the Airy function of the first kind but cannot

be expressed in the closed form for finite δ.
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Figure 2.3: Degree of coherence (A), (C) and the corresponding far-field profile function
(B), (D), for the case of the cubic phase in (2.25). (A), (B) a = 2π/20; (C), (D) a = 2π/3.
(From Ref. [22])

The results for n = 3 are shown in Fig. 2.3. The far fields radiated by the

source with the cubic-phase sliding function (calculated numerically) resemble those

for coherent Airy beam [25].

The polarization states of random light can be represented on the Poincare sphere

[3], while the coherence states did not have an elegant visual representation so far

(except for coherence clouds relating to speckle analysis [26]). We would like to

introduce a concept of a Coherence Curve (CC) serving as the visual form of the

complex coherence state. As we have seen from the suggested examples, in cases

where the CDC has a varying phase its representation as a set of functions, such as

magnitude, phase, real and imaginary parts, may become overwhelming. Indeed, one

can combine the separate plots into a single parametric plot, with parameter xd, in a
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complex plane. Then it appears natural to set parameter xd vary in the interval [0,∞)

and let the real and imaginary parts of the CDC trace a curve. Since the CDC can

take on values everywhere within the unit circle (boundary included) of the complex

plane and, since its value at xd = 0 is unity, the typical scenario for the CC is to start

from real number 1 and to spiral down to zero, perhaps reversing the trend, locally,

but globally tending to the origin. Since for xd < 0 the curve is just the reflection of

that for xd > 0 with respect to the real line its presence is not necessary.

In Fig. 2.4 we show the CCs for the examples we have introduced earlier. Subplots

2.4(A) and 2.4(B) illustrate the CDC having a linear phase, for a = 2π/10 and

a = 2π/3, respectively. As a increases the spiral converging to the origin appears

to have more loops. We also note that such a CDC [specifically subplot 2.4(B)] is

capable of achieving a negative correlation being very close to −1. Subplots 2.4(C)

and 2.4(D) correspond to the case of the sign phase dependence. The evolution of the

degree of coherence here is much more rapid, and virtually no spiraling is possible.

This is the consequence of the monotonic phase dependence. Sub figures 2.4(E) and

2.4(F) show the CC curves for the cubic phase dependence. In this case, as the value

of parameter a increases the spiral about the origin makes more loops.

Of course, if the information about the xd values must be preserved, the CDC

can also be represented as a 3D parametric curve (with parameter xd) confined in

a semi-infinite cylinder (xd ≥ 0) of unit radius, with its transverse axes being Re[µ]

and Im[µ].
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2.1.4 Examples of modeling with famous curves in 1D field

With the concept of CC curves, it is natural to consider planar curves that be-

came famous in different branches of science and engineering. One of the most fa-

mous curves satisfying these restrictions is a spiral-like cochleoid defined as r(θ) =

a sin(θ)/θ, where r and θ are polar coordinates, and a is a positive constant being

set to unity here due to the required normalization, r(0) = 1. The cochleoid was

first introduced by J. Perks in 1699 [27], and its geometrical properties were further

studied by Bernoulli and Goldbach in 1726. The cochleoid has been heavily used in

engineering since the late nineteen century, in particular for the design of the starting

gear of a steam engine [28]. On choosing xd as a parameter for the polar curve we

can set g(xd) in the form [29]

g(xd) =
sin(xd)

xd
[cos(xd) + i sinxd] exp(−x2

d/δ
2). (2.27)

The first and the second factors in Eq. (2.27) represent the cochleoid parametrized by

xd and the third factor is a Gaussian function assuring the sufficiently rapid decrease of

g(xd) to zero for large values of xd. Its inclusion is not necessary for legitimacy of g(xd)

but rather conveniently controls its width. Figures 2.5A and 2.5B represent g(xd) for

the original cochleoid (δ = ∞) and its truncated version (δ = 10mm), respectively,

as a parametric plot in the complex plane. Figure 2.5C includes magnitude, phase,

real and imaginary parts of g(xd) varying with xd. Figure 2.5D shows magnitude,

phase, real and imaginary parts of µ(xd) varying with xd(for δ = 10mm). Figure 2.5E

demonstrates coherence curve µ(xd), corresponding to Fig. 2.5D. Finally, Fig. 2.5F
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gives the far-field spectral density. The rest of the figures in this section are organized

in the same manner as Fig. 2.5.

One important feature of the cochleoid-based CDC is in the multitude of the 1D

singularities occurring at separations x′d = πn, n = ±1,±2, ..., that are inherited from

those of g(xd). A singularity in the CDC is defined as the coherence state at x′d for

which the CDC’s magnitude vanish and its phase is undetermined [30]. In the 1D

case the CDC’s phase singularity can only be represented by a phase jump, i.e., if

lim
xd→x′d−

Arg[µ(xd)] 6= lim
xd→x′d+

Arg[µ(xd)]. (2.28)

In our example the phase singularities of µ(xd) also occur at the same positions

as those in g(xd), however the directions along which the singularities in µ(xd) are

approached are the opposite from those in g(xd) (see Figs. 2.5C and 2.5D). This is

because that, unlike polar curve g(xd) being entirely in the upper half of the complex

plane for all the positive values of xd, coherence curve µ(xd) crosses the real axis of the

complex plane for some positive xd values (Fig. 2.5E). For our choice of δ the far-field

spectral density p(v) of the cochleoid-based CDC has a flat shape in the center and

a Gaussian decay at the edge, while the whole distribution is shifted from the optical

axis to the left. In the limiting cases when δ → 0 and δ → ∞, p(v) tends to have

Gaussian and square profiles, respectively, similarly to p(v) in Ref. [18].

Our next example adopts a lamniscate, a particular but very well-known member

of the Watt’s family, that was originally introduced by Jakob Bernoulli in 1694, as a

modification of an ellipse and one of the elastica solutions [31]. In polar coordinates

the lamniscate is described as r(θ) = ±a
√

cos(2θ), for some positive a that we set

to unity. Its general properties were studied by Giovanni Fagnano in 1750 and its
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connection to elliptic functions were discovered by Euler in 1751. The lamniscate

is prevalent in quasi-1D models describing the dynamics of solid-state particulate

systems. Using parametrization by xd, g(xd) can be set as

g(xd) =
cosxd

1 + sin2 xd
[1 + i sinxd] exp(−x2

d/δ
2), (2.29)

where the truncating Gaussian function is for ensuring the absolute integrability of

g(xd). Figure 2.6 presents the CDC construction for the lamniscate-like sliding func-

tion with δ = 5mm. The phase of g(xd) is confined to ranges −π/4 < θ < π/4 and

3π/4 < θ < 5π/4 for all xd (Figs. 2.6A-2.6B). It is clear from Figs. 2.6C and 2.6D

that the singularities of g(xd) disappear in the CDC. The resulting coherence curve

(Fig. 2.6E) has a number of changes in directions as it approaches zero for increasing

values of xd, but never crosses the origin. The obtained far-field spectral density (Fig.

2.6F) is a sequence of maxima decaying with larger values of v being symmetric with

respect to the optical axis. However, the minima on two sides of the optical axis are

not symmetric.

Our last example is from a broad family of centered trochoids, formed on tracing a

curve by a point attached to a circle with radius b, at distance d from its center, as the

circle rolls without slipping along a fixed circle of radius a [32]. Centered trochoids

are widely used in engineering for design of rotatory gear pumps, for satellite motion

control, etc. [33]. Generally, this class of curves is defined via parametrization

g(xd) = r1 exp[ixd] + r2 exp[i(ω2/ω1)xd], (2.30)

where r1 = a ± b, r2 = d and ω2/ω1 = 1 ± a/b. If ω1ω2 > 0 then the curve is

epitrochoid (the rolling circle moves outside of the fixed circle) and if ω1ω2 < 0 then



32

(A) (B)

(C) (D)

(E) (F)

Im[g] Im[g]

Im[µ]

Re[g] Re[g]

Abs[g] Arg[g] Re[g] Im[g] Abs[µ] Arg[µ] Re[µ] Im[µ]

r  [mm]d r  [mm]d

Re[µ]

p

v  [mm   ]-1

-0.5 0.5 1.0

-0.5

0.5

-0.5 0.5 1.0

-0.5

0.5

-10 -5 5 10

-3

-2

-1

1

2

3

-10 -5 5 10

-3

-2

-1

1

2

3

-0.5 0.5 1.0

-0.5

0.5

-4 -2 2 4

1

2

3

4

5

6

Figure 2.7: Same as Fig. 1 but for rhodonea. (From Ref. [29])



33

it is hypotrochoid (the rolling circle moves inside of the fixed circle). There are also

three other subgroups: roses or rhodoneas if r1 = r2; centered cycloids if r1ω1 = r2ω2

(equal angular speeds); and trochoids with a meplat if r1ω
2
1 = r2ω

2
2 (equal angular

accelerations).

Let us consider a rhodonea curve as a particular example of a centered trochoid

for g(xd) , expressed in polar coordinates by relation r(θ) = a cos(bθ), where b is a

real number. Rhodonea curves were introduced by Luigi Guido Grandi in 1723 [34].

By setting a = 1, parameterizing it by xd and truncating the result by a Gaussian

function yields

g(xd) = cos(bxd) [cosxd + i sinxd] exp(−x2
d/δ

2). (2.31)

Figure 2.7 represents rhodonea structuring of the CDC, with b = 5mm−1 and

δ = 5mm. It demonstrates that the CDC inherits all the main characteristics of the

sliding function for this family of curves, including the set of its singularities. Such a

source radiates to the far field with two very well pronounced maxima, asymmetrically

positioned about the optical axis, the left maximum being higher than the right one.

The smaller values of parameter b result in tighter spacing between the two peaks.

2.1.5 Examples of 2D field

We again set the magnitude of the sliding function to be Gaussian in order to

retain the attention on the phase modeling of the CDC

gM(xd, yd) =
1

δ
√
π

exp

(
−x

2
d + y2

d

2δ2

)
, (2.32)

with the r.m.s. width set as δ = 1mm.
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Our first example of the non-trivial 2D CDC phase will be obtained with the help

of the Signum function. Let us set

gP (xd, yd) = sign(xd + yd)a =



−a, xd + yd < 0,

0, xd + yd = 0

a, xd + yd > 0,

(2.33)

where a is a real parameter. The CDC µ(rd) and the far-field spectral density p(v)

can be then evaluated on substituting from Eqs. (2.32) and (2.33) into Eqs. (2.5) and

(2.4), respectively. Fig. 2.8 presents the magnitude (top row) and the phase (middle

row) of source CDC as well as the corresponding far field (bottom row), evaluated

numerically for two values of parameter a: a = 2π/3 (left column) and a = π/2 (right

column).

The magnitudes of CDC [Fig. 2.8(A) and Fig. 2.8(B)] has two-fold rotational

symmetry, inherited from the properties of the sliding function g(xd, yd). There are

three lobes in the magnitude distributions among which two regions of the CDC are

completely vanished with a = π/2. The parameter a controls the range of the phase

of the CDC manifested in Fig. 2.8(C) and Fig. 2.8(D). The phase of the CDC has

the value of −π and π respectively in the upper and lower region when a = π/2,

while the phase of the CDC can not cover the whole range of complex plane when

a = 2π/3. There is one new feature appearing around the line y = −x with vanished

phase due to the convolution of g(xd, yd). For the corresponding far field distribution

with a = π/2 [Fig. 2.8(F)], the center shows the completely destructive interference

with two peaks symmetric to the line y = −x. However, the far field distribution
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with a = 2π/3 breaks the symmetry, having one peak much higher in the upper left

than the other peak in the lower right with no destructive interference anymore.

Our next example involves cubic phase which is famous for Airy beams. The

separable cubic phase of g(xd, yd) takes the form

gP (xd, yd) = a[x3
d + y3

d]. (2.34)

The non-separable quadratic phase of the sliding function has the expression

gP (xd, yd) = a[x2
dyd + y2

dxd]. (2.35)

Figures 2.9(A), (C), (E) represent the numerical results from the separable phase

in Eq. (2.34), and Fig. 2.9(B), (D), (F) are the numerical results from non-separable

phase in Eq. (2.9). The separable phase results are similar to the Airy beam case with

some distinctions around the center due to the extra non-cubic phase term resulting

from the convolution of the cubic phase. As for the non-separable case results, the

four long legs in the magnitude of the CDC for the separable phase disappear with

larger coherent area around the center. The center of the corresponding far field

shows a triangular peak and several crescent peaks on the side.

Our next example includes sliding functions with polar arctan phase,

gP (xd, yd) = 2aArctan

[
y2
d

xd

]
. (2.36)

The CDC and the far-field profile for the arctan phase calculated numerically are

given in Fig. 2.10 for two values of parameter a. It is clear that different values of a

govern the distributions for both the CDC and the far field profiles. More separate

regions with phase from −π to π show up in the phase plot of the CDC with larger
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values of a, resulting in more lobes in the source CDC as well as in the far-field

spectral density.

2.1.6 Conclusions

In summary we have represented the CDC of a scalar, Schell-like light as an

auto-convolution of a Fourier-transformable sliding function, shown to be Hermitian,

i.e., having even magnitude and odd phase distributions. Focusing on the phase

structuring of the CDC, we illustrated the procedures to model the non-trivial phase

of the source CDC and the corresponding far-field spectral density. The concept

of the coherence curve as a parametric curve in the complex plane representing the

CDC for 1D fields has been introduced, which can serve as a simple visual tool for

the coherence state. It can also be extended into 2D and 3D scalar fields, as being a

higher dimensional coherence surface.

2.2 Coherent mode decomposition method

In section 2.1, we focused on structuring the phase of the CDC by sliding function

method. However, this method is applicable only for Schell-model beams. In this

section, we will present the coherent mode decomposition method which is applicable

for a variety of beams.

The emerging attention to coherent modes [35], [36], particularly to the LG modes,

is stimulated by the development of the fast free-space optical communications where

each mode can serve as an information channel [37]. With the coherent modes decom-

position, it is convenient to control the weights of the individual modes and therefore

to determine the coherent states of the beam. These extensions help to optimize
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the channel capacity and improve the performance of the communication systems

operating in fluctuating media [38], [39].

In this section, we will show in details how to generate the Im-Bessel correlated

beam from the LG modes experimentally [40]. In particular, we will present the

experimental results of the synthesized spectral density and validate the OAM by

phase conjugation method.

2.2.1 Experimental setup

The experimental setup for generation is presented in Fig. 2.11(A). A laser beam

passes through an SLM with the sequence of random individual LG modes. The

probability of selecting a specific LG mode is proportional to its corresponding eigen-

value, λnm. In this way, the ensemble average of the cycled sequence matches the

distribution of the cross-spectral density, W (ρρρ1, ρρρ2, ω). In details, we use a 1mm

HeNe laser beam (λ = 633nm) expanded by 15x telescope T (with entrance at 5cm

from the laser exit) and then pass it through a nematic phase-only SLM1 (Holoeye

2012) with 724x1024 pixel array, controlled by computer PS1. SLM1 is placed 30cm

from the telescope exit. SLM1 acts as a grating producing a two-dimensional array

of diffraction orders. The LG modes are programmed onto the first diffraction order

which is being reflected by mirror M1 (at distance 200cm from SLM1) and sepa-

rated from other modes by diaphragm A (at 155cm from M1). The resulting field

then passes through lens L (f=50cm, located at 8cm from A) and is captured by the

CMOS Thorlabs camera C (at 30cm from L), being controlled by computer PS2.

Figure 2.11(B) shows the experimental setup for validation of the OAM indexes.

The path of the beam is the same as that in Fig. 2.11(A) up to diaphragm A (now
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Figure 2.11: Experimental setup for (A) generation of the individual LG modes and their
sequences; (B) validation of the OAM indexes. (From Ref. [40])

placed at 30cm from mirror M1), after which it passes through SLM2 (identical to

SLM1, at 150cm from A), controlled by computer PS2. The array of diffraction

orders is reflected by mirror M2 (at 100cm from SLM2) and then is focuses by lens L

(f=50cm, at 20cm from M2) into the CMOS camera (same as in Fig. 2.11(A), at 50

cm from L), controlled by computer PS3.

2.2.2 Results and discussion

The spectral densities (average intensities) of the individual LG modes, normalized

by their maximum values are shown in Fig. 2.12. The first four sub figures show the

modes with m = 0: (A) ψ0
0; (B) ψ0

1, (C) ψ0
3 and (D) ψ0

7. Modes with n = 0, ..., 9

have been successfully generated and used for synthesis of the random beams (not all

shown). The limitation for producing modes with n > 9 comes from their large size:

their outer rings cannot be spatially separated from those of the other diffraction
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Figure 2.12: Laguerre-Gaussian coherent modes. (From Ref. [40])

orders produced by the SLM, including the zeroth-order bright spot (already seen for

n = 7 in Fig. 2.12(D)). The last two sub figures give the modes with higher OAMs:

ψ1
3 in Fig. 2.12(E) and ψ2

3 in Fig. 2.12(F), both having the characteristic ring in the

center, larger ring with m = 2.

The spectral densities (normalized by its maximum value) of the Im-Bessel cor-

related beams recorded by the camera in configuration shown in Fig. 2.11(A) are

presented in Fig. 2.13-2.14. In these figures the left column presents the experi-

mentally synthesized spectral density, the middle column reproduces the theoretical

distribution plotted from Eq. (1.20) (normalized by its maximum value) and the right

column shows the comparison of their one-dimensional cross-sections (y = 0).

In particular, the Im-Bessel correlated beams with m = 0 for two values of param-

eter ξ: ξ = 0.01 (top row) and ξ = 0.1 (bottom row) are presented in Fig. 2.13. For

this range of values only the first several LG modes are required for satisfactory beam
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Figure 2.13: Im-Bessel correlated beam with m = 0.(A)(B)(C)ξ = 0.01 (D)(E)(F)ξ = 0.1
(From Ref. [40])

Figure 2.14: Im-Bessel correlated beam with m = 1.(A)(B)(C)ξ = 0.1 (D)(E)(F)ξ = 0.5
(From Ref. [40])
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Figure 2.15: Validation of the OAM of the beam by phase conjugation method. (From
Ref. [40])

synthesis and the results vary only slightly. The results of the I0-Bessel correlated

beams with m = 1 are presented in Fig. 2.14 with ξ = 0.1 and ξ = 0.5. The spectral

density has a larger ring for larger values of ξ and m, which agrees with the theory

in Ref. [8],

In Fig. 2.15, we validate the proper OAM carried by the synthesized LG mode.

The first diffraction order produced by SLM1 with OAM m = 1, 2, 3 is passed through

SLM2 on which the LG mode with m = ±1,±2,±3 is displayed respectively. The

constructive interference showing a bright spot in the center is observed when the

OAMs on two SLMs have opposite sign due to the phase conjugation. The destructive

interference will be presented if the OAMS on the SLMs have the same sign.
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2.2.3 Conclusions

In summary, the experimental results of the synthesis of Im-Bessel correlated

beams via superposition of their coherent modes are presented. A random sequence

of LG coherent modes with weights proportional to their eigenvalues are used to

construct the beam. The LG modes are produced by passing the HeNe Gaussian

laser beam through the SLM. The validation of the OAM is carried out by phase

conjugation method.

We stress that it is the very first attempt to generate a stationary beam from its

coherent modes and it is an entirely digitized method, meaning that the adjustment

to other beams within the same class and outside can be readily achieved via repro-

gramming of the SLM sequence. The simplicity and the versatility of this method

will contribute largely to the FSO communication and bio-photonics systems.



CHAPTER 3

Light Propagation in Soft Biological
Tissues

3.1 Light scintillation in soft biological tissues

3.1.1 Background

Biological tissues are very complex media for light statistics studies due to their

strong refractive index variations at spatial scales greater and smaller than the wave-

length of light. The turbulent nature of the refractive index variations was first

discovered by Schmitt and Kumar using phase-contrast microscopy in 1996 [41]. The

spectrum of the refractive index variations of a typical soft bio-tissue exhibits a power-

law behavior which has the same form as the Von Karman spectrum for atmospheric

turbulence [9]. However, the variations of the refractive index in bio-tissues can be

9-13 orders of magnitude stronger than those in the atmosphere. Moreover, the outer

scales of biological tissues above which correlations are no longer seen are 4-10 µm

compared to 5-100 m in atmosphere. In these turbid media with sub wavelength struc-

tures, light scattering and absorption is so strong that the penetration depth is only

about tens of microns which impedes the analytical studies of deep tissues [42], [43].

This nature of biological tissues also leads to the difficulties in imaging systems and

46
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furthermore in medical diagnostics [44]. To understand the light behavior within bi-

ological tissues and to extract useful information are essential and fundamental to

bio-optics applications [45].

Until now estimation of typical distances into the bio-tissue at which the coherent

wave experiences weak, moderate and strong fluctuations [9] has not been performed.

Such classification is conventionally treated with the help of the scintillation index,

i.e., the normalized intensity variance, of a plane wave, known as the Rytov variance.

The aim of this section is to provide the complete analysis of the scintillation index

of a plane wave, a spherical wave and a Gaussian beam on propagation in typical soft

bio-tissues and to illustrate the limits of applicability of the Rytov theory [46].

3.1.2 Power spectrum of biological tissues

The power-law (also called fractal or self-affinity) dependence of the tissues’ spec-

tra has been adopted for developing successful techniques for cancer diagnostics [47],

[48]. Some of the bio-tissues were shown to carry multi-fractal characteristics having

values of different power-law slopes for different ranges of spatial scales [49]- [51].

The widely accepted mathematical models for the spatial power spectra and the

spatial correlation functions of the soft bio-tissues’ refractive index in 1D, 2D and 3D,

under the assumptions of their homogeneity and isotropy are summarized in Table 3.1.

Here x, ρ and r are the distances between two points in 1D, 2D and 3D, respectively,

κ is the magnitude of the spatial frequency vector κ, 0 < κ <∞. σ2 is the ensemble

average of the refractive index’s variance, being on the order of 10−3 − 10−4 in most

soft tissues. Further, L0 is the outer scale of the tissue which have values around 4

µm in most tissues.



48

Table 3.1: Normalized correlation functions and refractive-index power spectra of bio-
tissues. (From Ref. [46])

Normalized correlation function Power spectrum α

1D C(x) = 2
Γ(α− 1

2
)

(
x

2L

)α− 1
2

Kα− 1
2

(
x
L

)
Φn(κ) = 2

√
πσ2L0Γ(α)

Γ(α− 1
2

)(1+κ2L2
0)α

0.5 < α < 1

2D C(ρ) = 2
Γ(α−1)

(
ρ

2L

)α−1

Kα−1

(
ρ
L

)
Φn(κ) =

4πσ2L2
0(α−1)

(1+κ2L2
0)α

1 < α < 1.5

3D C(r) = 2
Γ(α− 3

2
)

(
r

2L

)α− 3
2

Kα− 3
2

(
r
L

)
Φn(κ) =

σ2L3
0Γ(α)

π3/2Γ(α− 3
2

)(1+κ2L2
0)α

1.5 < α < 2

First, we adopt the 2D power spectrum for biological tissues [41]. Then according

to the projection-slice theorem, 1D power spectrum is obtained by integration of the

2D power spectrum along one of the directions [52]. Finally, the 3D power spectrum

can be found by the differential relation, Φn(κ) = −dV (κ)/(2πκdκ), where V (κ)

being the 1D power spectrum [9]. The spatial correlation functions are determined

by the Fourier transforms of the power spectrum in the corresponding dimensions.

All the correlation functions in Table 3.1 are normalized to unity at the coinciding

arguments.

3.1.3 Scintillation index of plane and spherical waves

In section 1.4, we have introduced the general expressions governing the scintilla-

tion index of an optical wave in a random, turbulent-like medium. For a plane wave,

on substituting the 3D power spectrum in Table 3.1 into Eq. (1.33), with t = κ2L2
0,

the scintillation for a plane wave becomes,

σ2
l (0, L) =

4
√
πk2Lσ2L0Γ(α)

Γ(α− 3/2)

[
1

α− 1
− kL2

0

L

∫ ∞
0

1

t(1 + t)α
sin

(
Lt

L2
0k

)
dt

]
. (3.1)
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(A) (B)

(C)

Figure 3.1: Rytov variance: (a) α = 1.78; (b) L0 = 10µm; (c) L = 30µm. (From Ref. [46])

(A) (B)

(C)

Figure 3.2: Scintillation index of spherical wave: (a) α = 1.78; (b) L0 = 10µm; (c) L =
30µm. (From Ref. [46])
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This integral does not have analytical solution, hence we will present the numeral

calculation results. The fixed parameters for the following examples are: λ = 1.55µm,

σ2 = 5 × 10−4. Figure 3.1 shows the Rytov variance dependence on propagation

distance L in (a) and (b); dependence on power law constant α in (c). It illustrates

that the Rytov variance increases really fast, resulting in that the weak regime of

tissue refractive index fluctuations is limited to only several tens of microns. This

implies that the refractive ability of tissue driven by the large scales diminishes at

this range and scattering-like effects caused by small scales become dominant.

For the spherical incident wave Λ = 0 and Θ = 0, therefore, the radial part σr

vanishes and the longitudinal part becomes

σ2
l (0, L) =

8
√
πk2Lσ2L3

0Γ(α)

Γ(α− 3/2)

[
1

2L2(α− 1)

−
∫ 1

0

∫ ∞
0

κ

(1 + κ2L2
0)α

cos[Lκ2ξ(1− ξ)/k]dκdξ

]
.

(3.2)

Figure 3.2 shows the scintillation index of the spherical wave. Comparing with

the results in Fig. 3.1, we can see that the main trends of the scintillation index are

the same but its numerical values for the spherical wave are always smaller.

3.1.4 Scintillation index of a Gaussian beam

We will now present the results of the incident Gaussian beam. Figure 3.3 has the

same structure as Figs. 3.1 and 3.2. The evolution of the scintillation in bio-tissues

is similar because the Gaussian beam reduces to the plane and spherical waves as

limiting cases. Moreover, the scintillation index of the Gaussian beam is always

between higher values of the plane wave and lower values of the spherical wave.
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Figure 3.3: On-axis scintillation index of Gaussian incident beam with F0 = 106µm, W0 =
10µm. (a) α = 1.78 (b)L0 = 10µm (c) L = 30µm. (From Ref. [46])
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Figure 3.4 illustrates the variation of the scintillation index of the Gaussian beam

varying with Λ0, for a collimated beam (a) and a focused beam (b). On the axis

of the collimated beam (r = 0) the scintillation index attains the minimum at the

first Fresnel zone Λ0 = 1, while at the diffractive beam edge (r = W ) it attains its

maximum at the first Fresnel zone. In the near field (Λ0 � 1) and far field (Λ0 � 1)

the scintillation index at the beam edge saturates to constant values. For focused

Gaussian beam, when α = 1.78, the scintillation index is generally slightly larger but

has almost the same trend as that of the collimated beam. However, when α = 1.53

the peak of the scintillation index at the beam edge moves to Λ0 ≈ 0.1.

3.1.5 Conclusion

The power spectra of the refractive index for biological tissues in different dimen-

sion have been summarized. Using the second-order Rytov complex phase perturba-

tion theory, we have discussed the scintillation index of plane waves, spherical waves

and Gaussian waves propagating in isotropic and homogeneous bio-tissues. Our re-

sults provide insight into the interaction process of the waves and the bio-tissues,

separating the predominantly refractive-based regime of weak fluctuations from the

scattering regime of moderate and strong fluctuations. The threshold between weak

and moderate fluctuation regimes is shown to be limited to tens of micrometers for

most types of bio-tissues. This study might be of interest in medical imaging and

diagnostics.
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3.2 Light propagation in soft anisotropic biological

tissues

3.2.1 Background

Optical methods of biological tissue analysis have become a significant part in

medical diagnostics and treatments nowadays [53]- [55]. Quasi-elastic light scattering

[56], optical coherence tomography [57], Mueller matrix polarimetry [58], two-photon

fluorescence microscopy [59] are only a few in the variety of well-established methods

developed for efficient sensing and imaging of biological structures [60], [61].

In reality, some biological tissues may exhibit anisotropy due to their intrinsic

cell composition, for instance, tissues containing fibers, due to external mechanical

stresses, or both [62], [63]. There are two types of anisotropy of bio-tissues. One is

geometrical anisotropy, causing spectral density of the beam to acquire elliptical shape

for sufficiently large propagation distances but not changing the polarimetric content.

The other is electromagnetic anisotropy, in which the random medium perturbs the

electric field components differently and may couple them, resulting in the loss of the

degree of polarization [64] - [67].

In this section we first introduce the geometrical anisotropic power spectrum for

soft biological tissues. Then we apply the extended Huygens-Fresnel integral [9] for

wide-sense stationary light beam propagation in tissues with such power spectra.

In particular, we assume that the beam is generated by a scalar isotropic Gaussian

Schell-model source [68] and analyze the effects of anisotropic tissues for two source

properties: the root-mean-square (r.m.s.) width and the r.m.s. correlation width [69].
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Figure 3.5: Illustration of beam propagation in biological tissues. (From Ref. [69])

3.2.2 GSM beam propagation in anisotropic biological tis-

sues

Suppose that a scalar, Gaussian Schell-Model (GSM) light beam is incident on a

soft anisotropic biological tissue with anisotropy factors µx = µz 6= µy in the plane

z = 0 and propagates through it into the positive half-space z > 0 (see Fig. 3.5).

The cross-spectral density of the GSM beam has the expression [68]

W (0)(r1, r2;ω) = exp

(
−r2

1 + r2
2

4σ2
0

)
exp

(
−|r2 − r1|2

2δ2
0

)
, (3.3)

where r1 ≡ (x1, y1) and r2 ≡ (x2, y2) are two position vectors in the source plane and

ω is the angular frequency of light; σ0 and δ0 denote the initial r.m.s. beam width and

the transverse r.m.s. coherence width, respectively. We suppress the dependence of σ0

and δ0 on angular frequency ω by assuming that the source is quasi-monochromatic.

The 3D geometrical anisotropic power spectrum for biological tissues can be jus-

tified as

Φn(κx, κy, 0) =
(2π)3σ2

nµxµyµz exp(−κ2
x/κ

2
mx − κ2

y/κ
2
my)

κ3
0(1 + 4π2µ2

xκ
2
x/κ

2
0 + 4π2µ2

yκ
2
y/κ

2
0)α/2

, 3 < α < 4. (3.4)
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Here σ2
n is the variance of the refractive index of the bio-tissue, µx, µy and µz are

the anisotropic strength coefficients in each direction, κm = 2π/l0, κ0 = 2π/L0,

l0 and L0 being the inner scale and the outer scale of the bio-tissue (both reported

in [41]). As mentioned above, the inner scale of a typical bio-tissue is smaller than the

wavelength but finite. It was not considered in [41] but is crucial for convergence of

the integrals of interest. The smallest micro-structures participating in the scattering

process from the soft bio-tissues are organelles, being on the order of 0.2-0.5 µm, i.e.

roughly comparable with the half of a typical optical wavelength [42]. Therefore it

is plausible to select the values of the inner scale in this range. We use the Markov

approximation [9] in power spectrum (3.4), implying the delta-correlated fluctuations

in the refractive index at any pair of points along the propagation direction.

Figure 3.6 presents the power spectrum of a typical anisotropic biological tissue

from Eq. (3.4) along the x and y directions. The parameters of the bio-tissue are

chosen as follows: σn = 2 × 10−2, L0 = 5µm, l0 = 0.2µm, µx = 1, µy = 3, µz = 1,

α = 3.5. We can see the clear discrepancy between the spectral lines in the inertial

range, while the two curves merge at both cut-off frequencies, about 0.1 µm−1 and

100 µm−1.

In Chapter 1 section 1.5, we have introduced the extended Huygens-Fresnel in-

tegral method. On substituting the anisotropic power spectrum Eq. (3.4) into Eq.

(1.39), then following the approximation procedure in [70], the complex phase corre-

lation term can be represented as a product of two Cartesian parts:

〈exp[Ψ∗(ρρρ1, r1;ω) + Ψ(ρρρ2, r2;ω)]〉 = exp

[
−π

2k2zT (ξ2
d + ξdxd + x2

d)

3µ2
x

]
× exp

[
−π

2k2zT (η2
d + ηdyd + y2

d)

3µ2
y

]
,

(3.5)
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Figure 3.6: Anisotropic power spectrum of refractive index for bio-tissues. (From Ref. [69])

where

T =
1

µxµy

∞∫
0

κ′3Φ′n(κ′)dκ′, (3.6)

the adjusted spectrum Φ′n(κ′) is obtained from Φn(κ) by changing spatial frequency

vector κκκ = (κx, κy) to κ′κ′κ′ = (κ′x, κ
′
y), where κ′x = µxκx, κ

′
y = µyκy. The expression is

given as

Φ′n(κ′) = (2π)3σ2
nµxµyµz

exp [−|κ′|2/κ2
m]

κ3
0(1 + 4π2|κ′|2/κ2

0)α/2
. (3.7)

Then the term T becomes

T =
µzσ

2
nκ0

4π(α− 2)

[(
2 + 4π2(α− 2)(κm/κ0)2

)
(2π)2−α(κm/κ0)2−α

× exp

[
κ2

0/4π
2κ2

m

]
Γ

(
2− α

2
, (2πκm/κ0)−2

)
− 2

]
,

(3.8)

where Γ(·, ·) is an incomplete Gamma function. Finally, on substituting from Eqs.

(1.37), (3.5), and (3.8) into Eq. (1.36) we find that

W (ρρρ1, ρρρ2, z) = Wx(ξ1, ξ2)Wy(η1, η2), (3.9)
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with

Wx(ξ1, ξ2) =
1√
4x(z)

exp(− ξ2
1 + ξ2

2

4σ2
04x(z)

) exp(−ik(ξ2
1 − ξ2

2)

2Rx(z)
)

× exp

[
−
(

1

2δ2
04x(z)

+
π2k2Tz

3µ2
x

(
1 +

2

4x(z)

)
− π4k2T 2z4

18µ4
x4x(z)σ2

0

)
(ξ1 − ξ2)2

]

(3.10)

and

4x(z) = 1 +

[
1

4k2σ4
0

+
1

k2σ2
0

(
1

δ2
0

+
2π2k2Tz

3µ2
x

)]
z2,

Rx(z) = z +
σ2

0z − π2Tz4/3µ2
x

(4x(z)− 1)σ2
0 + π2Tz3/3µ2

x

.

(3.11)

Factor Wy(η1, η2) has the same form as Wx(ξ1, ξ2).

3.2.3 Numerical examples

We will now discuss two aspects of the beam-tissue interaction problem based on

numerical calculations. First, we analyze how various bio-tissues change the statistics

of light on propagation. We will use different values of power-spectrum parameters

to characterize the bio-tissues: the variance of the refractive index σ2
n, the ratio of

the anisotropic factors along the x and y axes, µx/µy, and the slope α in the inertial

range. On the other hand, we will explore how light beams radiated by sources with

different properties, such as the initial r.m.s. beam width, σ0, and the initial coherence

width, δ0, evolve on passing through the same tissue. For all the examples below

the numerical values of parameters are selected to be: σ0 = 3mm, σ2
n = 4 × 10−4,

λ = 0.6328µm, L0 = 5µm, l0 = 0.2µm, µx = 1, µy = 3, µz = 1, α = 3.5, unless

different values are specified in figure captions.
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Figure 3.7: Spectral density of the coherent GSM beam (δ0 = ∞) propagating in the bio-
tissue at z = 1cm with different anisotropy ratios: (A) µx/µy = 1 : 1; (B) µx/µy = 1 : 1.5,
(C) µx/µy = 1 : 3, (D) µx/µy = 1 : 5. (From Ref. [69])
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Figure 3.8: Spectral density of the coherent GSM beam (δ0 =∞) at z = 1mm with different
α (A) α = 3.1, (B) α = 3.3, (C) α = 3.6, (D) α = 3.9. (From Ref. [69])
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Figure 3.7 presents the effect of different anisotropic factors on spectral density

at a large enough propagation distance from the source (say, 1 cm). As expected,

the smaller ratio µx/µy, i.e. the stronger anisotropy of the tissue results in the larger

ratio of the two semi-axes of the ellipse, approximating such values at sufficiently

large distances.

Figure 3.8 illustrates the effect of power spectrum slope, α, on the evolution

of spectral density of the beam. Due to the fact that smaller values of α [Figs.

3.8(A), 3.8(B)] redistribute more weight to the smaller inhomogeneities, resulting in

more small-scale scattering effects and less refraction-like effects, the spectral density

spreads faster along the propagation path and starts to present the elliptical profiles

at shorter distances from the source. On the other hand, larger values of α[Figs.

3.8(C), 3.8(D)] correspond to the refraction-like effects on the beam and therefore its

spectral density preserves its source plane profile for larger ranges.

Figure 3.9 demonstrates the effect of initial beam width on the spectral density

of the beam. It is clear that in terms of shape-invariance, initially smaller beams

[Fig. 3.9(A), 3.9(B)] are more susceptible to the bio-tissue fluctuations, acquiring

ellipse-like profiles, while initially larger beams [Fig. 3.9(C), 3.9(D)] maintain their

initial circular profiles much better.

Comparing Eq. (3.9) to Eq. (3.3), the r.m.s. beam width and the r.m.s. coherence

width of the GSM source at propagation distance z in bio-tissues are given by the

expressions (see also [70]):

σi(z) = σ0

√
4i(z) =

√
σ2

0 +
z2

4k2σ2
0

+
z2

k2δ2
0

+
2π2Tz3

3µ2
i

, (i = x, y) (3.12)
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Figure 3.9: Spectral density of the coherent GSM beam (δ0 =∞) at z = 1mm with different
initial beam width (A) σ0 = 1mm, (B) σ0 = 2mm, (C) σ0 = 3mm, (D) σ0 = 5mm. (From
Ref. [69])

δi(z) =

[
1

δ2
04i(z)

+
2π2k2Tz

3µ2
i

+
2π2k2Tz

3µ2
i4i(z)

(
2− π2Tz3

6µ2
iσ

2
0

)]− 1
2

, (i = x, y) (3.13)

Figure 3.10 represents the effects of bio-tissue parameters on the evolution of the

r.m.s. beam widths σi, (i = x, y) of coherent GSM beams calculated from Eq. (3.12)

for a fixed ratio of anisotropic factors µx/µy = 1/3. Fig.3.10(A) presents the effects

due to different values of the local strength of fluctuations, σ2
n taken from Ref. [55]. It

is clear that larger values of σ2
n lead to a larger discrepancy between the beam widths

along the x and y directions, and more so at larger distances from the source. Fig.

3.10(B) illustrates the effect of the slope α of bio-tissue power spectrum on the beam

spreading. Smaller values of α result in larger beam expansion. Fig. 3.10(C) and

(D) show the influence of the outer scale L0 and the inner l0 of the power spectrum

on the beam expansion. We can find that the inner scale of the spectrum has bigger
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Figure 3.10: The r.m.s. beam widths σi, (i = x, y) of the coherent GSM beam (δ0 = ∞)
vs. propagation distance z. (From Ref. [69])

effects on the expansion rates than the outer scales. Bio-tissues with smaller inner

scales l0 indicating finer structures contribute stronger scattering effects on the beam,

resulting in a larger expansion rate. Tissues with larger outer scales L0 introduce

slightly smaller expansion rate. It might be explained by the increasing effective

correlation length of refractive index due to the larger outer scales of bio-tissues.

Figure 3.11 explores the effects of source coherence on the beam spread and on the

evolving coherence state. In Fig. 3.11, σi and δi, (i = x, y) are calculated from Eqs.

(3.12) and (3.13), for fairly coherent source [Fig. 3.11(A) and 3.11(B)] with δ0 on the

order of the source width and for nearly incoherent source [Fig. 3.11(C) and 3.11(D)]

with δ0 being on the order of the wavelength. It is clear that the beam expansion is

the same in both cases, i.e. source coherence does not affect the beam size at all. This

is due to the fact that in both cases the source coherence width decreases rapidly with

the propagating distance and attains values smaller than the wavelength of light at
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Figure 3.11: (A), (C) σi, (i = x, y) and (B), (D) δi, (i = x, y) of the GSM beam with (A),
(B) δ0 = σ0 = 3mm; (C), (D) δ0 = λ = 0.6328µm, as a function of propagation distance z.
(From Ref. [69])

distances as little as several µm from the source. Therefore the width and coherence

properties of the beam are dominated by the bio-tissues correlations, in particular by

the ratio of the anisotropic factors µx/µy, as is seen from the two curves emerging in

each of the subplots.

3.2.4 Discussion

In spite of the formal similarities between the power spectra of biological tissues

with those of turbulent atmosphere and oceans, spatial scales and strength of fluctu-

ations carry two essential distinctions. The variance of refractive index of biological

tissues power (around 10−4) is many orders of magnitude stronger than that of the

atmosphere (10−13− 10−17). Moreover, the inertial range of scales in a soft bio-tissue

extends from a fraction of a micron to several microns, compared with millimeters

to tens of meters in atmosphere. The small scales in bio-tissues that are comparable
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with the light wavelength cause predominantly scattering effects of light. Due to these

two features in bio-tissues the parameter T , accounting for the tissue effects on the

beam, is in the range from 0.4 to 7.2 mm−1 compared with 10−17 to 10−13mm−1 for

the atmosphere. The large value of T dominates the beam spreading over the initial

coherence state of the beam and furthermore annihilates the coherence state within

a tiny propagation distance. This can be examined by analyzing Eq. (3.12). The

beam spreading due to the source coherence width δ0 comes from the third term, due

to the bio-tissues arises from the fourth term. On setting these two terms equal, a

propagation distance z at which fluctuations of bio-tissues start dominating the beam

spreading can be estimated,

z2

k2δ2
0

=
2π2Tz3

3µ2
i

. (3.14)

Solving for z gives:

zc =
3µ2

i

2π2Tk2δ2
0

, (3.15)

for typical values of parameters zc has sub-micron values. It is also clear that the

beam expand in inverse proportion with the anisotropic factors because of the forth

term in Eq. (3.12).

3.2.5 Conclusion

Regarding anisotropic biological tissues as statistically stationary random media

described by power spectra with different strengths along the two mutually orthogonal

directions, we have analyzed the propagation of coherent and partially coherent, scalar

light beams. We have applied the extended Huygens-Fresnel method for analytic

evaluation of the beam spectral density and its coherence state, within the validity

of the Markov approximation.
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In conclusion, scattering and diffraction caused by bio-tissues dominate the beam

spreading rather than the diffraction due to the initial coherence state of the source.

The elliptical beam profiles appear at distances on the order of hundreds of microns

to millimeters. Moreover, these effects annihilate the initial coherence state of the

source within propagation distance of microns. This is because of the large fluctuation

in refractive index and small inertial scales in bio-tissues. The results of this section

may be useful in medical diagnostics and optical treatment of anisotropic bio-tissues.



CHAPTER 4

Scalar and Electromagnetic Weak
Scattering

4.1 Scalar weak scattering

4.1.1 Background

In 1908 Gustav Mie developed an analytical solutions to Maxwell’s equations to

describe the scattering of light by homogeneous spherical particles [71]. The predicted

scattered intensity of light is fringe-like pattern with several dark concentric circles

centered about the optical axis depending on the particle size and transparency. Due

to its high accuracy and sensitivity, Mie theory has various applications particularly

in particle size analysis, superior to other particle size analysis methods especially

with particle sizes from light wavelength to 50 microns.

However, Mie theory is limited to only homogeneous spherical particles. The par-

ticles or structures encountered in life are always with more complicated refractive

index distributions. Weak scattering theory can deal with these more complex parti-

cles under the assumption that the refractive index of the particle is close to that of

the surrounding media [3]. The well known application of the weak scattering theory

65
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is diffraction tomography for construction of refractive index distribution for particles

from their scattered fields.

The purpose of this section is to explore the light scattering from hollow and semi-

hollow 3D potentials with ellipse, cylinder and parallelepiped-like shapes by weak

scattering theory under Born approximation. We will analyze the dependence of the

scattered angular intensity distribution on the particle size, shape, edge sharpness and

the shell’s thickness. This study may serve as a fundamental database for scattered

field patterns by a variety of hollow and semi-hollow particles with spherical, elliptical,

cylindrical, and Cartesian symmetries [72].

4.1.2 Spherically symmetric potentials

We start the analysis from the simplest situation when the hollow semi-hard edge

potential is spherically symmetric:

FHS(r;ω) =
1

Cl

L∑
l=1

(−1)l−1

(
L

l

)

×

[
ho exp

[
−lx

2 + y2 + z2

2σ2
o

]
− hi exp

[
−lx

2 + y2 + z2

2σ2
i

]]
,

(4.1)

where ho is the maximum value of the potential, (ho − hi) is the minimum value of

the potential (at the particle’s center) and ho > hi, σo is the radius of the outer edge,

σi < σo, σo − σi defines the thickness of the shell and a normalization factor is

Cl =
L∑
l=1

(−1)l−1

(
L

l

)
. (4.2)

The finite sum of Gaussian functions with alternating signs is known as Multi-

Gaussian, it has been extensively used in optics for modeling of semi-soft structures

(apertures, intensity, coherence states, etc.). Multi-Gaussian functions reduce to

Gaussian for L = 1 and represent hard drop for L→∞.
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Figure 4.1: The potential and the intensity of the scattered plane wave for σo = 20/k,
σi = 5/k, ho = hi = 1, with L = 1 (solid curve), L = 4 (dashed curve), L = 10 (dotted
curve) and L = 40 (dash-dotted curve). (From Ref. [72])

In section 1.6, we have introduced the Born approximation weak scattering theory.

On substituting the spherical potentials Eq. (4.1) into Eq. (1.42), we can find the

scattered field intensity:

S
(s)
HS(rs;ω) =

S(i)(ω)

r2

{
ho

(2π)3/2σ3
o

Cl

L∑
l=1

(−1)l−1

l3/2

(
L

l

)
× exp

[
−k2σ2

o

2l
[(sx − s0x)

2 + (sy − s0y)
2 + (sz − s0z)

2]

]
− hi

(2π)3/2σ3
i

Cl

L∑
l=1

(−1)l−1

l3/2

(
L

l

)
exp

[
−k2σ2

i

2l

× [(sx − s0x)
2 + (sy − s0y)

2 + (sz − s0z)
2]

]}2

.

(4.3)

Since the spectral density is non-negative, the following condition must be satis-

fied,

h0σ
3
o − hiσ3

i ≥ 0, (4.4)

which is indeed the case because of inequalities assumed above.
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Figure 4.2: The potential and the intensity of the scattered plane wave for L = 40 and
different sizes: σo = 1/k, σi = 0.2/k (solid curve); σo = 5/k, σi = 1/k (dashed curve); and
σo = 10/k, σi = 2/k (dotted curve). (From Ref. [72])

Figures 4.1–4.3 show spherically symmetric potentials FHS for different values of

the summation index L, size σo, and shell’s fill factor and the corresponding scattered

intensity distributions. For all the numerical examples we assume that the plane

wave with wavelength λ = 632nm is incident on scatterers centered at x = 0, y = 0,

and z = 0 and ho = 1, along direction s0 with coordinates s0x = sin θ0 cosφ0, s0y =

sin θ0 sinφ0, s0z = cos θ0, where θ0 and φ0 are the polar and azimuthal incident angles

in the corresponding spherical system. The scattered field is then calculated for a

direction specified by a unit vector s with coordinates sx = sin θ cosφ, sy = sin θ sinφ,

sz = cos θ, where θ and φ are the polar and azimuthal scattered angles.

Figure 4.1 presents the effect of different number of terms, L in the summation and

the corresponding scattered far fields. As we can see, L controls the edge sharpness

in the potential and increases the number of fringes.

Figure 4.2 illustrates the dependence of the scattered intensity on the size of the

spherical shell. The selected parameters are L = 40, hi = 1 (completely hollow in the
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Figure 4.3: The semi-hollow potentials and the corresponding intensity of the plane wave
scattered from them for hi = 0 (thick solid curve), hi = 0.25 (dash curve), hi = 0.5 (dotted
curve), hi = 0.75 (dashed-dotted curve) and hi = 1 (thin solid curve). (From Ref. [72])

center), and different values of σo and σi (for all cases σo/σi = 5). As the size of the

shell increases, more fringes in the scattered intensity appear.

Figure 4.3 elucidates the capability of the model to predict the scattered intensity

by semi-hollow particles. The hollowness is controlled by the parameter hi. On fixing

L = 40, σo = 10/k and σi = 5/k and varying hi from 0 to 1, it can be seen that the

number of dark fringes increases as the hollowness decreases.

4.1.3 Hollow ellipsoids

We can construct scattering potential of an ellipsoidal scatterer with adjustable

size, thickness, edge softness and fill factor by the distribution:

FHE(r;ω) =
1

Cl

L∑
l=1

(−1)l−1

(
L

l

){
h0 exp

[
−l
(

x2

2σ2
xo

+
y2

2σ2
yo

+
z2

2σ2
zo

)]

− hi exp

[
−l
(
x2

2σ2
xi

+
y2

2σ2
yi

+
z2

2σ2
zi

)]}
.

(4.5)

The similar condition must be satisfied because of the nonnegative definite poten-

tial and the thickness. So ho > hi, σxo > σxi, σyo > σyi, σzo > σzi.
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(A) (B)

(C) (D)

Figure 4.4: Hollow (A) ellipsoid with L = 1, (B) ellipsoid with L = 20, (C) cylinder with
L = M = 20 and (D) parallelepiped with L = M = P = 20. For all figures σxo = 1/k,
σyo = 1.5/k, σzo = 2/k, σxi = 0.5/k, σyi = 1/k and σzi = 1.5/k. Half-structures are
presented for better visualization. (From Ref. [72])

On substituting this expression into Eq. (1.42) one finds that the corresponding

far field scattered intensity becomes

S
(s)
HE(rs;ω) =

S(i)(ω)

r2

{
ho

(2π)3/2σxoσyoσzo
Cl

×
L∑
l=1

(−1)l−1

l3/2

(
L

l

)
exp

[
−k2

2l
(σ2

xo(sx − s0x)
2

+ σ2
yo(sy − s0y)

2 + σ2
zo(sz − s0z)

2)

]
− hi

(2π)3/2σxiσyiσzi
Cl

L∑
l=1

(−1)l−1

l3/2

(
L

l

)

× exp

[
−k2

2l
(σ2

xi(sx − s0x)
2 + σ2

yi(sy − s0y)
2 + σ2

zi(sz − s0z)
2)

]}2

.

(4.6)

Similarly the following condition must be satisfied.

h0σoxσoyσoz − hiσixσiyσiz ≥ 0 (4.7)

This is also automatically satisfied because of the previous conditions.
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Figure 4.5: Density plots of the scattered intensity of a plane wave from ellipsoidal potentials
with σox = 10/k, σoy = 8/k, σoz = 6/k, σix = 5/k, σiy = 4/k, σiz = 3/k and (A) L = 1,
hi = 0; (B) L = 1, hi = 1; (C) L = 40, hi = 0 and (D) L = 40, hi = 1. (From Ref. [72])

Figures 4.4(A) and 4.4(B) show the hollow elliptical potentials with L = 1 and

L = 20, respectively. Fig. 4.5 presents the density plots of the plane wave scattered

by typical ellipsoidal scatterers of fixed size with solid [4.5 (A) and 4.5 (C)] and

completely hollow [4.5 (B) and 4.5 (D)] centers. Soft-edge case (L = 1, [4.5 (A) and

4.5 (B)]) and fairly hard-edge case (L = 40, [4.5 (C) and 4.5 (D)]) are explored. It

is clear that the hard-edge case lead to increased number of dark fringes compared

with soft-edge. As for the soft-edge case, two dark fringes appear in the center with

the hollow potentials. In the hard-edge case, the hollow potentials result in a reduced

number of dark fringes compared with solid potentials.
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4.1.4 Hollow cylinders

The hollow cylindrical potential can be structured by the subtraction of two prod-

ucts of 2D multi-Gaussian and 1D multi-Gaussian functions. With the cylindrical axis

along z direction, the potential takes the form:

FHC(r;ω) =h0
1

Cl

L∑
l=1

(−1)l−1

(
L

l

)
× exp

[
−l
(

x2

2σ2
xo

+
y2

2σ2
yo

)]

× 1

Cm

M∑
m=1

(−1)m−1

(
M

m

)
exp

[
−m z2

2σ2
zo

]

− hi
1

Cl

L∑
l=1

(−1)l−1

(
L

l

)
exp

[
−l
(
x2

2σ2
xi

+
y2

2σ2
yi

)]

× 1

Cm

M∑
m=1

(−1)m−1

(
M

m

)
exp

[
−m z2

2σ2
zi

]
.

(4.8)

The similar condition must be satisfied as before. Here Cm has the same form as Cl

in Eq. (4.2) but generally different value of upper index. One can easily model the

potential with cylindrical axis along x or y directions by exchanging all the quantities

relating to z direction with those relating to x or y directions in Eq. (4.8).

Figure 4.4(C) depicts the hollow cylindrical potential with L = M = 20. We note

that for L = M = 1 the cylinder reduces to the Gaussian shell in Fig. 4.4(A).
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Figure 4.6: Density plots of the far-field intensity of the plane wave scattered from the
cylindrical scatterers with symmetry axis along the y-direction (perpendicular to the scat-
tering axis) with σox = 10/k, σoy = 8/k, σoz = 6/k, σix = 5/k, σiy = 4/k, σiz = 3/k for (A)
hi = 0 (solid cylinder); (B) hi = 0.1; (C) hi = 0.4; (D) hi = 1 (completely hollow cylinder).
(From Ref. [72])
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On substituting from Eq. (4.8) into Eq. (1.42), the corresponding far-field scat-

tered intensity is given by:

S
(s)
HC(rs;ω) =

S(i)(ω)

r2

{
ho

(2π)3/2σxoσyoσzo
ClCm

×
L∑
l=1

(−1)l−1

l

(
L

l

)
× exp

[
−k2

2l
(σ2

xo(sx − s0x)
2 + σ2

yo(sy − s0y)
2)

]
×

M∑
m=1

(−1)m−1

√
m

(
M

m

)
exp

[
−k2σ2

zo

2m
(sz − s0z)

2

]

− hi
(2π)3/2σxiσyiσzi

ClCm

L∑
l=1

(−1)l−1

l

(
L

l

)
× exp

[
−k2

2l
(σ2

xi(sx − s0x)
2 + σ2

yi(sy − s0y)
2)

]

×
M∑
m=1

(−1)m−1

√
m

(
M

m

)
exp

[
−k2σ2

zi

2m
(sz − s0z)

2

]}2

(4.9)

Figure 4.6 illustrates the scattered intensity by cylindrical scatterers of different

hollowness with cylindrical axis along y direction. It can be seen that the pattern

changes qualitatively from solid to completely hollow cylindrical scatterers.

4.1.5 Hollow parallelepipeds

A hollow soft-edge parallelepiped’s scattering potential can be modeled by a prod-

uct of three 1D multi-Gaussian distributions:
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FHP (r;ω) =h0
1

Cn

N∑
n=1

(−1)n−1

(
N

n

)
exp

[
−n x2

2σ2
xo

]
× 1

Cp

P∑
p=1

(−1)p−1

(
P

p

)

exp

[
−p y2

2σ2
yo

]
× 1

Cm

M∑
m=1

(−1)m−1

(
M

m

)
exp

[
−m z2

2σ2
zo

]

− hi
1

Cn

N∑
n=1

(−1)n−1

(
N

n

)
exp

[
−n x2

2σ2
xi

]
× 1

Cp

P∑
p=1

(−1)p−1

(
P

p

)

exp

[
−p y2

2σ2
yi

]′
× 1

Cm

M∑
m=1

(−1)m−1

(
M

m

)
exp

[
−m z2

2σ2
zi

]
,

(4.10)

where Cn and Cp have the same form as normalization factor Cl in Eq. (4.2) but may

have different values of upper indexes. The similar condition also must be satisfied.

Figure 4.4(D) shows the hollow parallelepiped-like potential with L = M = P =

20. Similar to the cylindrical case, for L = M = P = 1 the parallelepiped shell

reduces to the elliptical soft Gaussian shell in Fig. 4.4(A).

The far-zone scattered intensity distribution can be readily obtained by substitut-

ing from Eq. (4.10) into Eq. (1.42):

S
(s)
HP (rs;ω) =

S(i)(ω)

r2

{
(2π)3/2σxoσyoσzo

CnCpCm
×

N∑
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(−1)n−1

√
n

(
N

n

)
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[
−k2σ2
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2n
(sx − s0x)

2

]

×
P∑
p=1
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√
p

(
P

p

)
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[−k2σ2
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2p
(sy − s0y)

2

]

×
M∑
m=1

(−1)m−1

√
m

(
M

m

)
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[
−k2σ2
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2m
(sz − s0z)

2

]
− hi

(2π)3/2σxiσyiσzi
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×
N∑
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√
n

(
N

n

)
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−k2σ2
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2n
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×
P∑
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√
p

(
P

p

)
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[−k2σ2
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2p
(sy − s0y)

2

]

×
M∑
m=1

(−1)m−1

√
m

(
M

m

)
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[
−k2σ2
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2m
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2
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.
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Figure 4.7: Density plots of the far-field intensity of the plane wave scattered from the
typical parallelepiped-like scatterers with σox = 10/k, σoy = 8/k, σoz = 6/k, σix = 5/k,
σiy = 4/k, σiz = 3/k for (A) hi = 0 (solid parallelepiped); (B) hi = 0.1; (C) hi = 0.4; (D)
hi = 1 (completely hollow parallelepiped). (From Ref. [72])

Figure 4.7 presents the scattered intensity for several parallelepiped-like scatterers

with different hollowness. Similar to cylindrical cases, the patterns are sensitive to

the hollowness of the parallelepiped-like scatterers.

4.1.6 Conclusions

We have established analytical models for the spherical, ellipsoidal, cylindrical

and parallelepiped scatterers by means of multi-Gaussian functions of different di-

mensions. The proposed models have the ability to easily control the size, thickness,

hollowness and edge sharpness of the scatterers. Based on weak scattering theory

and the first-order Born approximation, we have obtained the analytical expressions

for scattered intensities with incident plane waves for all various scatterers. Our re-

sults elucidate that far-field intensity distributions are qualitatively distinguishable
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with different scatterers accounting for size, thickness, hollowness, edge sharpness and

geometrical orientations.

Since the models are entirely based on dimension-separable and easily integrable

and transformable Gaussian functions, they can readily serve as a database for all

kinds of scatterers, for instance it can be extended to the following cases: 1) A

collection of particles with different geometries, 2) Scatterers with different inside

and outside profiles, 3) The nested potentials of the same or various geometrical

profiles.

4.2 Electromagnetic weak scattering

4.2.1 Background

Stokes parameters are one of the most prominent ways to characterize the polar-

ization of the electromagnetic field. The polarization content of the field can change

at various events including propagation, scattering, interference, and interaction with

other particles. In the era of rapidly developing technology, real time analysis of

the electromagnetic field is in demand. Therefore, it is of great significance to un-

derstand the instantaneous Stokes parameters of the electromagnetic field and their

corresponding probability.

In this section we will focus on developing the mathematical analysis of the elec-

tromagnetic field on weak scattering. In particular, we will derive the Probability

Density Functions (PDFs) of the instantaneous Stokes parameters of an electromag-

netic, polarized plane wave on scattering from a weak, statistically stationary, ho-

mogeneous and isotropic medium of Schell-model type with Gaussian statistics. We
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will also study the dependence of the PDFs on the properties of the source and the

scatterer [73].

4.2.2 Scattering of the average and instantaneous Stokes vec-

tors

The scattering scenario is illustrated in Fig. 4.8. An electric vector-field E(i)(r′) =

[E
(i)
x (r′), E

(i)
y (r′)] is incident on a scatterer occupying domain D at position r′. Here x

and y present two mutually orthogonal polarization directions transverse to the optical

axis z. Suppose that the field is polychromatic but let us suppress its dependence on

frequency for brevity.

The scattering potential of the scatterer is given by

F (r′) =
k2

4π
[n2(r′)− 1], (4.11)

where n(r′) is the refractive index at position r′ within the scatterer, k = 2π/λ, is

the wave-number of light, λ being its wavelength in vacuum. Moreover, assume that

the potential obeys Gaussian statistics [26] and that the correlation function has the

expression

CF (r′1, r
′
2) = 〈F ∗(r′1)F (r′2)〉, (4.12)

where angular brackets denote ensemble average within the scatterer.

In section 1.6, we have introduced the weak scattering theory in electromagnetic

case and derived formulas for the scattered electric field components in Cartesian

coordinates. Now we will derive the Stokes parameters for the scattered field in

spherical coordinates. In spherical coordinates the unit vector s has components

sx = sin θ cosφ, sy = sin θ sinφ, sz = cos θ, (4.13)
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Figure 4.8: Illustration of the notation from the scatterer to the far field.

where θ and φ are the polar and azimuthal angles, respectively. In the far zone of the

scatterer the field is transverse with respect to scattering direction s and therefore

can be characterized only by the polar and azimuthal components, Eθ and Eφ, in the

spherical coordinates (see also [74], [76]):

E
(s)
θ (rs) = cos θ cosφE(s)

x (rs) + cos θ sinφE(s)
y (rs)− sin θE(s)

z (rs),

E
(s)
φ (rs) = − sinφE(s)

x (rs) + cosφE(s)
y (rs).

(4.14)

From Eqs. (1.46) and (4.14), the scattered field components in the far zone yield:

E
(s)
θ (rs) = cos θ cosφQx(rs) + cos θ sinφQy(rs),

E
(s)
φ (rs) = − sinφQx(rs) + cosφQy(rs),

(4.15)

where Qx and Qy are given in Eq. (1.47).
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In spherical coordinates the average Stokes parameters of the transverse scattered

field can be defined as [74]

〈S(s)
0 (rs)〉 = 〈E(s)∗

θ (rs)E
(s)
θ (rs)〉+ 〈E(s)∗

φ (rs)E
(s)
φ (rs)〉, (4.16a)

〈S(s)
1 (rs)〉 = 〈E(s)∗

θ (rs)E
(s)
θ (rs)〉 − 〈E(s)∗

φ (rs)E
(s)
φ (rs)〉, (4.16b)

〈S(s)
2 (rs)〉 = 〈E(s)∗

θ (rs)E
(s)
φ (rs)〉+ 〈E(s)∗

φ (rs)E
(s)
θ (rs)〉, (4.16c)

〈S(s)
3 (rs)〉 = i[〈E(s)∗

φ (rs)E
(s)
θ (rs)〉 − 〈E(s)

θ (rs)E
(s)
φ (rs)〉]. (4.16d)

On substituting from Eqs. (4.15) into Eqs. (4.16) and applying the far-zone approx-

imation of the Green’s function,

G(rs, r′) ≈ exp[−iks · r′ + ikr]

r
, (4.17)

the average scattered Stokes parameters have the expressions

〈S(s)
0 (rs)〉 = (cos2 θ + 1)T0(rs)− sin2 θ cos 2φT1(rs)− sin2 θ sin 2φT2(rs), (4.18a)

〈S(s)
1 (rs)〉 = − sin2 θT0(rs) + cos 2φ(1 + cos2 θ)T1(rs) + sin 2φ(1 + cos2 θ)T2(rs),

(4.18b)

〈S(s)
2 (rs)〉 = − 2 cos θ sin 2φT1(rs) + 2 cos θ cos 2φT2(rs), (4.18c)

〈S(s)
3 (rs)〉 = 2cosθT3(rs), (4.18d)

where

Tα(rs) =
1

2r2

∫
D

∫
D

〈S(i)
α (r′1, r

′
2)〉CF (r′1, r

′
2) exp[−ik(s · (r′2 − r′1))]d3r′1d

3r′2,

(α = 0, 1, 2, 3).

(4.19)

Here, 〈S(i)
α (r′1, r

′
2)〉 is the generalized Stokes parameter, i.e., a parameter defined just

like the classic Stokes parameter but depends on a pair of spatial arguments [75].
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From Eqs. (4.18)-(4.19), we notice that whereas the Stokes parameter 〈S3(rs)〉 of

the scattered field depends solely on the corresponding generalized Stokes parameter

〈S(i)
3 (r′1, r

′
2)〉 of the incident field, the other three Stokes parameters have coupled

dependence. This is distinct from free-space paraxial propagation where all four

parameters are independent on propagation [75].

We define instantaneous Stokes parameters of the scattered far field as [77]

S
(s)
0 (rs) = E

(s)∗
θ (rs)E

(s)
θ (rs) + E

(s)∗
φ (rs)E

(s)
φ (rs), (4.20a)

S
(s)
1 (rs) = E

(s)∗
θ (rs)E

(s)
θ (rs)− E(s)∗

φ (rs)E
(s)
φ (rs), (4.20b)

S
(s)
2 (rs) = E

(s)∗
θ (rs)E

(s)
φ (rs) + E

(s)∗
φ (rs)E

(s)
θ (rs), (4.20c)

S
(s)
3 (rs) = i[E

(s)∗
φ (rs)E

(s)
θ (rs)− E(s)

θ (rs)E
(s)
φ (rs)]. (4.20d)

The single-point PDFs of the instantaneous Stokes parameters of the stationary

light field governed by Gaussian statistics have been derived in Refs. [78]- [80] and

take the forms

p[S
(s)
0 (rs)] =

1

P (s)(rs)〈S(s)
0 (rs)〉

{
exp

[
− 2S

(s)
0 (rs)

(1 + P (s)(rs))〈S(s)
0 (rs)〉

]

− exp

[
− 2S0(rs)

(1− P (s)(rs))〈S(s)
0 (rs)〉

]}
,

(4.21)

p[S(s)
α (rs)] =

1√
〈S(s)

0 (rs)〉2(1− P (s)(rs)2) + 〈S(s)
α (rs)〉2

× exp

[
2

S
(s)
α (rs)〈S(s)

α (rs)〉
〈S(s)

0 (rs)〉2(1− P (s)(rs)2)

]

× exp

[
− 2
|S(s)
α (rs)|

√
〈S0(rs)〉2(1− P (s)(rs)2) + 〈S(s)

α (rs)〉2

〈S(s)
0 (rs)〉2(1− P (s)(rs)2)

]

(α = 1, 2, 3).

(4.22)
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Here, P (s)(rs) is the degree of polarization of the field at a given point defined by

P (s)(rs) =

√
〈S(s)

1 (rs)〉2 + 〈S(s)
2 (rs)〉2 + 〈S(s)

3 (rs)〉2

〈S(s)
0 (rs)〉

. (4.23)

It is clear from Eqs. (4.21) - (4.23) that each of the four PDFs is related to all four

average Stokes parameters. In particular, even though the average Stokes parameter

〈S3〉 depends only on the corresponding generalized Stokes parameter of the incident

field, it is not the case for its PDF, i.e., the PDF is associated with all other three

generalized Stokes parameters of the incident field.

4.2.3 An example: polarized plane wave scattered from Gaus-

sian Schell-model medium

Consider a polychromatic, polarized plane wave at position r′,

E(i)
α (r′, s0) = aα exp[iks0 · r′], (α = x, y), (4.24)

incident on the scatterer with direction s0 along z axis. The amplitude ai is generally

complex. The average Stokes parameters of the incident field then take the form

〈S(i)
0 (r′1, r

′
2)〉 = (A2

x + A2
y) exp[iks0 · (r′2 − r′1)], (4.25a)

〈S(i)
1 (r′1, r

′
2)〉 = (A2

x − A2
y) exp[iks0 · (r′2 − r′1)], (4.25b)

〈S(i)
2 (r′1, r

′
2)〉 = 2AxAy<[jxy] exp[iks0 · (r′2 − r′1)], (4.25c)

〈S(i)
3 (r′1, r

′
2)〉 = 2AxAy=[jxy]exp[iks0 · (r′2 − r′1)], (4.25d)

where A2
x = 〈|ax|2〉, A2

y = 〈|ay|2〉, and

jxy = |jxy|eiβxy =
〈a∗xay〉√
〈a2
x〉〈a2

y〉
, (4.26)
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where |jxy| ≤ 1.

Suppose that the correlation function of the scattering potential is Gaussian-Schell

model:

CF (r′1, r
′
2) = C0 exp

[
− 1

2σ2
R

(
r′1 + r′2

2

)2
]

exp

[
− 1

2σ2
r

(
r′1 − r′2

2

)2
]
, (4.27)

where C0 is the maximum potential strength, σR is the r.m.s. potential width and σr is

the r.m.s. correlation width. We also assume the scatterer is quasi-homogeneous, i.e.,

σR >> σr [81]. On substituting from Eqs. (4.25) and (4.27) into Eqs. (4.18)-(4.19),

the average Stokes parameters of the scattered far field yield

〈S(s)
0 〉(rs) =

1

r2

[
(cos2 θ cos2 φ+ sin2 φ)A2

x + (cos2 θ sin2 φ+ cos2 φ)A2
y (4.28a)

− sin2 θ sin 2φAxAy<[jxy]

]
C̃F (−K,K),

〈S(s)
1 〉(rs) =

1

r2

[
(cos2 θ cos2 φ− sin2 φ)A2

x + (cos2 θ sin2 φ− cos2 φ)A2
y (4.28b)

+ sin 2φ(1 + cos2 θ)AxAy<[jxy]

]
C̃F (−K,K),

〈S2〉(s)(rs) =
1

r2
[cos θ sin 2φ(A2

y − A2
x) + 2cosθ cos 2φAxAy<[jxy]]C̃F (−K,K),

(4.28c)

〈S3〉(s)(rs) =
2

r2
cos θAxAy=[jxy]C̃F (−K,K), (4.28d)

where C̃F is the Fourier transform of CF and takes the form

C̃F (−K,K) = (2πσRσr)
3C0 exp

[
−1

2
σ2
rK

2

]
= (2πσRσr)

3C0 exp
[
−2σ2

rk
2 sin2(θ/2)

]
,

(4.29)

with K = k(s− s0) being the momentum transfer vector.

Further, on substituting from Eqs. (4.28) into the PDFs given by Eqs. (4.21) -

(4.23), the distributions of the PDFs for the scattered polychromatic plane wave can
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Figure 4.9: The PDFs of the instantaneous Stokes parameters: θ = 0 (solid curve); θ = π/6
(dotted curve); θ = π/4 (dashed curve) and θ = π/3 (dot-dashed curve). (From Ref. [73])

be obtained. The derivation is straightforward but bulky, therefore we will present

our results numerically. Unless specified for particular figures, the parameters of

the plane wave source and of the scatterer are chosen to be: λ = 0.6328µm, σR =

10/k, σr = 1/k. All the the average Stokes parameters S
(s)
α (rs), (α = 0, 1, 2, 3) are

normalized by the factor (2πσRσr)
3C0/r

2.

Figure 4.9 presents the PDFs of the instantaneous Stokes parameters of the scat-

tered field with different polar angle θ and fixed azimuthal angle φ = π/3. It is also

supposed that the electric field components are uncorrelated: jxy = 0, while Ax = 6

and Ay = 3. As θ increases, the distributions are generally narrower. This implicates

that the polarization states of the scattered field are less stochastic at larger polar

angles. The instantaneous Stokes parameter S0 corresponding to the maximum of

PDF[S
(s)
0 ] gradually shifts to smaller values, while those corresponding to the max-
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Figure 4.10: Contours of the PDFs of the scattered instantaneous Stokes parameters

PDF[S
(s)
α ] vs. S

(s)
α (horizontal axis) and polar angle φ (vertical axis). (From Ref. [73])

imum of PDF[S
(s)
1 ], PDF[S

(s)
2 ] and PDF[S

(s)
3 ] remain zero. Notice that PDF[S

(s)
3 ] is

symmetric about the origin for the uncorrelated field components.

Figure 4.10 illustrates the dependence of the PDF[S
(s)
α ] on the azimuthal angle φ,

with θ = 0. For PDF[S
(S)
0 ], PDF[S

(S)
1 ] and PDF[S

(S)
3 ], we notice that the distributions

are symmetric with respect to line φ = π, while PDF[S
(S)
2 ] has rotational symmetric

with respect to the the center point corresponding to S2 = 0 and φ = π. In adddition,

PDF[S
(S)
3 ] is also symmetric with respect to line S

(s)
3 = 0. It can also be concluded

that the distributions for PDF[S
(S)
0 ] and PDF[S

(S)
1 ] are sharpest at φ = π. However,

the distributions for PDF[S
(S)
2 ] and PDF[S

(S)
3 ] behave like delta function at φ = π/2

and φ = 3π/2. This implies that the polarization states of the scattered field are

most stable at those azimuthal angles.
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Ax = Ay = 4, and θ = π/6, φ = π/3. (From Ref. [73])

Figure 4.11 compares the PDFs for beams with partially correlated electric field

components, with different phases of jxy but the same magnitude of correlation,

|jxy| = 0.6. This suggests that the incident field is elliptical polarized. It can be

seen that different phases of jxy result in different profiles of all the four PDF distri-

butions. This is a surprising result implicating that the PDFs of the instantaneous

Stokes parameters can even detect the phase distinctions in the correlation of the

incident field components.

Figure 4.12 shows the dependence of PDFs on the r.m.s. correlation width σr of

the scatterer, at fixed scattering angles θ = 0 and φ = π/3. All four distributions

acquire sharper profiles as σr increases, suggesting that the scatterers with larger

correlation length lead to less stochastic scattered field.
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4.2.4 Conclusions

In this section, the PDFs of the instantaneous Stokes parameters of the scattered

field scattered by particles with Gaussian statistics at a single point have been derived

analytically. The incident fields can have arbitrary spectrum, coherence and polar-

ization states. As an example, the general expressions have been applied to the case

of the incident polychromatic plane wave with different polarization states scattered

by a quasi-homogeneous and isotropic scatterer with Gaussian-Schell model.

Our results revealed that the PDFs of the instantaneous Stokes parameters are

sensitive to either the variations in incident field or the scatterer. As a result of Carte-

sian to spherical coordinate system transformation, the average Stokes parameters of

the scattered field are coupled to different average Stokes parameters of the incident

light, therefore the PDFs of the scattered instantaneous Stokes parameters have a

much more complex dependence on the polarization state of the incident light.
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The results of this section can be readily extended beyond the quasi-homogeneous

regime, to other types of incident radiation and other two-point correlation function of

the scattering potential. The general expressions may find applications in light-matter

interactions such as biological tissues imaging, material science and thermo-dynamical

systems monitoring.



CHAPTER 5

Summary

Various physical and statistical properties of light fundamentally stem from its

phase modulation. Coherence, polarization, spectral density distribution etc. are

the statistical presentations of the underlying phase distribution of the light source.

The phase of light is modulated whenever light-matter interaction occurs including

light propagation in media, light scattering and light diffraction. In the mean time,

the structured phase of light carries important information about the matter that

it interacts with. To retrieve the information from the structured phase of light

effectively and accurately is the ultimate goal of imaging and communication systems.

The contribution of this thesis comes from two aspects of phase modulation of

light, one is to study active or artificial phase modulation of light leading to novel

statistical properties, the other is to explore passive or natural phase modulation of

light resulting from scattering or propagation in stationary random media such as

biological tissues.

In the respect of active phase modulation of light, we have introduced two meth-

ods: sliding function method and coherent mode decomposition method. In the

sliding function method, we have focused on the phase structuring of the complex

89
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coherence state of light fields. It has been known for decades that coherence states

carry crucial information about a number of observable properties of light, such as

the average intensity, spectrum, polarization and angular momentum. We have es-

tablished a simple theoretical model to design non-trivial complex degree of coherence

for 1D and 2D sources with interesting far zone spectral density distributions. The

sources developed by this method have the potential in optical trapping, imaging and

sensing applications. In the technique of coherent mode decomposition, we have ex-

perimentally generated Im Bessel-correlated beams carrying separable phase with the

orbital angular momentum. The simplicity of this method can be potentially used

for design and fine tuning of a variety of sources.

Regarding passive phase modulation of light, we included two topics: propaga-

tion in biological tissues and scattering from random media. Unlike interaction of

atmospheric and oceanic turbulence with optical fields being a well-explored field,

soft bio-tissues-light interaction is very little understood. It has been shown that

some bio-tissues represent remarkable examples of the turbulent-like system having

very well measured power spectra. In order to clarify the continuous light evolution

through bio-tissues we have first determined the fundamental ranges at which the

transition from weak to strong turbulent regime occurs by considering the scintilla-

tion index of the plane and spherical optical waves and a Gaussian beam. Secondly,

we have predicted evolution of deterministic and random light beams in isotropic and

anisotropic (geometrically, not electromagnetically) soft bio-tissues and, in particular,

showed the direction and the extent of the average intensity deformation caused by

diffusion with and without anisotropy. We have also illustrated that due to the turbu-
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lent scale range limited by several microns the propagation in bio-tissue is practically

insensitive to the coherence state of the illumination.

In the second topic of passive phase modulation, we have investigated the expan-

sion of the sphere-based Mie scattering (weak regime only) to other 3D potentials,

including their shapes (ellipsoids, cylinders, parallelepipeds), edge sharpness and ar-

bitrary fill factor. Such generalization has become possible because of the tractable

mathematical model that we have introduced for the scattering potentials expressed

in terms of finite series of alternating Gaussian functions. We have found that for

non-spherical scatterers the scattering patterns are not sequences of dark rings but

rather a complex net of dark curves depending on the scatterers properties. The

other contribution was in analytical calculation of the probability density functions

(PDFs) of the instantaneous Stokes parameters on scattering of an electromagnetic

plane wave. We have shown the effect of the polarization state of the (deterministic)

incident light on the far-field scattered distribution of the polarization states for the

only type of scatterer (Gaussian single-point statistics and Gaussian two-point cor-

relation function) for which the exact expressions for the PDFs can be obtained. In

both studies the refractive index distribution within the scattering volume affects the

phase content of the incident light resulting in structuring of the far-field scattered

patterns.

We envision that the results presented in this thesis, being fundamental in nature,

will generally find applications in imaging, communication and sensing systems. In

particular, we believe that currently emerging techniques in bio-photonics, for in-

stance, quantitative phase tomography and microscopy will benefit from our findings.
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