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Complexity seeks to unwrap the mechanisms responsible for collective phenomena

across the physical, biological, chemical, economic and social sciences. This thesis in-

vestigates real-world complex dynamical systems ranging from the quantum/natural do-

main to the social domain. The following novel understandings are developed concerning

these systems’ out-of-equilibrium and nonlinear behavior. Standard quantum techniques

show divergent outcomes when a quantum system comprising more than one subunit is

far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the

metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within inci-

dent light can act as a driving mechanism for an organisms adaptation toward more ordered

structures. The group dynamics of non-identical objects, whose assembly rules depend on

mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with

the cohesion regime reproducing a particular universal pattern commonly found in many

real-world systems. Analyses of covert networks reveal collective gender superiority in the

connectivity that provides benefits for system robustness and survival. Nodal migration in

a network generates complex contagion profiles that lie beyond traditional approaches and

yet resemble many modern-day outbreaks.
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Chapter 1

Introduction

Complexity analyzes phenomena emerging from a collection of interacting objects [1; 2;

3; 4; 5; 6; 7]. Large everyday life phenomena such as market crashes [2; 8], cancer tumors

[9], mass mobilization [10; 11], among others enter into the focus of complexity. There

is no unified theory of complexity. However, emerging phenomena rise from the build-up

of individual ’bricks’ that are somehow connected to each other i.e., they are network-

structured. Hence, graph theory as well as agent-based models become essential tools to

study complex systems [12; 13; 14]. Real-world networks (e.g. protein networks, internet)

show complex, adaptive and self-organized behavior [15; 16]. Two common perspectives

are used in order to study these systems: topology and dynamics. Several studies focus

on only one perspective, and how one affects the other, arguing that dynamics and growth

occur on different time scales. However, new studies point to the evolution of the net-

work to be an interplay between topology and dynamics. Assembling mechanisms based

on topological constrains (e.g. stability) determine the ultimate progression of the system

[17; 18]. The mechanisms behind the interaction among individuals or agents are key to

construct models that quantify and predict the evolution of the system and hence explore

how they influence it at the macro-level. Likewise, exploring connections between systems
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that previously were considered unrelated. For instance, it has been reported that the sever-

ity of violent actions by insurgent groups [19; 20; 21], the size distribution of pockets in

superconducting coherence in fragmented materials [22], the size distribution of neuronal

avalanches [23] and the size distribution of herds of agreeing traders [24], all share the

emergent feature of a 5/2 power-law size distribution of aggregates. Though these systems

are fundamentally different from each other at the single-particle level, they have shown to

exhibit this universal pattern.

Complexity covers a wide variety of systems. However, certain commonalities have

been identified as essential ingredients of a complex system [1]: (i) they are typically non-

Markovian, i.e., memory effects are relevant to their dynamics. (ii) They are open, meaning

that the dynamics is affected by the interaction with an external environment. (iii) The sys-

tem tends to fluctuate between states of order and disorder. (iv) They are far from equilib-

rium. Therefore, fluctuations could give rise to collective effects that would not be predicted

only by the knowledge of the system at the single-particle level. (v) The system is capable

of adaptation. These ingredients are essential in, for instance, biology. Living organisms

have developed over the course of millions of years of evolution, the capacity of adapting to

highly fluctuating environmental conditions. This is the case of photosynthetic single cell

organisms whose apparatuses adapt to different light sources in order to successfully sat-

isfy their metabolic needs [25; 26]. They manage to optimize light absorption and energy

funneling on low light intensity and protect the membrane from photo-damage by boosting

dissipation mechanisms on high light intensity. These highly non-trivial properties have
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been the cause of heated debates in the physical, biological, and chemical communities for

decades. Currently, a detailed atom-based computational description of a photosynthetic

unit is in progress at the University of Illinois in Urbana-Champagne [27; 28; 29; 30]. The

system is comprised of 100 million atoms that account for lipids, proteins, cofactors and

background water where the full photosynthetic vesicle is embedded. The supercomputer

performs nearly 27 quadrillion calculations per second with the goal of simulating 1μs of

molecular processes. Given the size of the system, only the transferring of data could take

days to complete. Though such detailed description could indeed help in the understanding

of some of the processes involved in the photosynthetic apparatus, the method is computa-

tionally very expensive and fails to obtain a big picture of the full photosynthetic process.

The reason is that these processes involve several competing time-scales that range from

1fs to 1s [31; 32; 25; 33; 34]. The path to understand the adaptation to different environ-

mental conditions through this traditional reductionist approach is still dark. Complexity

provides an alternative route to deal with this problem. Caycedo-Soler, et al. [35; 36; 37]

have been able to explain this adaptation by quantifying a dynamical interplay between

energy transfer kinetics and energy processing cycling. They used a stochastic method to

describe the collective processing of light energy packets (photons) by the network of light-

harvesting complexes. In this way, complexity provides a holistic description of the system

that captures the underlying physics responsible for the chromatic adaptation. More on this

in chapter 3.
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In this thesis, we investigate real-world complex dynamical systems from the quan-

tum/natural domain to the social domain. The goal is to unveil the mechanisms behind

their typical non-linear, out-of-equilibrium behavior. The systems are fundamentally dif-

ferent and hence the methodology developed and employed, tends to depend on the specific

system to be studied. However, it does show certain commonalities in terms of the focus

on extreme behavior. In this way, this thesis pushes the field forward in different areas and

as a whole since many of the techniques used are common across the chapters.

In chapter 2, a simple but highly non trivial problem is presented. The quantum process

of thermalization of qubits is studied when the system is far from thermodynamic equilib-

rium. The ultrafast timescales (fs-ps) challenge traditional physical assumptions that the

system can be considered to be isolated [38; 39]. Given that the most fundamental process

for Life on Earth (i.e. photosynthesis) processes excitations on ultrafast scales, has raised

the question of whether we truly understand its dynamics [40; 41; 42]. By employing two

popular approaches, we show that these methods yield to contrasting outcomes when the

number of qubits is greater than one. This divergence highlights the need to establish rig-

orous ranges of applicability for such methods in modeling nanoscale transfer phenomena.

Chapters 3 and 4 are devoted to structural and physical aspects of bacterial photosynthe-

sis. Harvesting of sunlight underpins Life on Earth as well as driving novel energy device

design[26; 31; 43; 44; 45; 25; 35; 36]. Although several experiments suggest that both

photosynthetic excitation energy transport and charge separation [31; 46; 47; 48; 49; 50]
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may benefit from the quantum nature of their dynamics, the effects of spatial coherences

in the incident light have been largely ignored. Here it is shown that spatial correlations in

the incident light likely play an important role in trapping light and adding robustness, as

well as providing a driving mechanism for an organism’s adaptation toward more ordered

structures. Our theory is grounded on empirical inputs, while its output is validated against

testable predictions. The results suggest a key role for the spatio-temporal correlation be-

tween photons, a fundamental property of the quantum world, in understanding early Life

and in improving the design of artificial photosynthetic systems.

Chapter 5 looks at the effects introduced by individual heterogeneity to a simple but

highly non-trivial fission/fusion grouping model. Dynamical grouping underlies myriad

collective phenomena across the physical, biological, chemical, economic and social sci-

ences [51; 52; 53; 54; 55; 56; 57; 58]. Whether the underlying N objects are particles,

people or proteins, the issue of whether they evolve as isolated individuals or aggregates

has significant consequences at the macro-level [57; 58; 59; 60; 61; 62; 63]. A serious

shortcoming is that the underlying objects (e.g. people, cells, animals etc.) are typically

not identical, and it is this heterogeneity that typically dictates their interactions and ulti-

mately their collective behavior. An outstanding question is therefore how this diversity

in individual characters affects the dynamics of groups [64; 65; 66; 67]. And how can this

individual-level heterogeneity be reconciled with the emergent universality observed across

many diverse real-world phenomena? This chapter attempts to address these questions by

adding a simple, continuous ’character’ variable xi to each object i, and then allowing ob-
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jects’ characters to influence how they interact with each other. Analytical and numerical

calculations reveal that different critical points arise for different heterogeneity-dependent

grouping mechanisms. These critical points move in opposite directions as the population’s

diversity decreases. Regardless of the grouping mechanism, cohesion regime follows a

particular universal pattern that is commonly found in real-world systems. Previous work

[68; 69; 67], including in the absence of character, suggests that our main conclusions will

hold for a variety of model generalizations.

In chapter 6, a study of covert networks under pressure is presented. Off-line networks

of Provisional Irish Republican Army (PIRA)[70; 71] and on-line networks of Islamic State

(ISIS) are quantitatively studied and compared with basic elements of graph theory and

agent based modeling. These networks, in addition to being the only operational networks

under extreme pressure for which detailed longitudinal information is known concerning

the links and nodes over time, are also the most successful examples for each genre [71; 72].

Our results point to a collective female superiority in the network’s connectivity that affords

benefits for system robustness and survival [62; 73], despite of women being out numbered

by men. This result challenges the common perception that women naturally play more mi-

nor roles to men as environments become more dangerous and aggressive [74; 75; 76; 77].

Female centered clusters are associated to an increment in the lifetime of neighboring ac-

tors as well as the group’s impact as a whole. A fission/fusion model which captures the

non-monotonic evolution in the connectivity, suggests that women spread a team-oriented

culture which offers benefits to group’s secrecy and autonomy. Findings are tested against



7

null models discarding effects due to noise. Our results propose that the effective disruption

of a extreme network could lie on female-centric approaches where the interconnectivity

of few members is struck as opposed to the majority of men.

Chapter 7 looks at contagion in dynamical networks. Modern-day human contagion

phenomena [78; 79], whether online [80], offline [81], social [82] or disease-based [83;

84; 85; 86; 87; 88; 89]. Unfortunately such modern-day outbreak profiles often lie well

beyond the predictions of standard infection models [82; 84; 90; 91]. Here we show that

the simple human tendency to move through online and offline spaces, such as social sites

or communities, generates novel contagion dynamics that capture outbreak profiles rang-

ing from online pro-ISIS activity to the spread of financial rumors [92] and mass street

protests [10; 11]. Generally speaking, our results reveal a highly nonlinear dependence on

human throughput that offers a less invasive control method for future outbreaks than tradi-

tional approaches [78]. Our findings establish the counterintuitive result that by increasing

throughput of a common online or off-line space, an outbreak’s severity can actually be de-

creased. Even if the number of nodes remains static on average, the mobility of individuals

entering and leaving the common place, impacts the severity of the outbreak. Extension

to multiple common places is subsequently expanded where commonalities with electric

circuits are explored.



Chapter 2

Non-equilibrium quantum systems

The rapid recent development of quantum control, quantum engineering and information

processing at the nanoscale in biological, chemical and condensed matter systems, has led

to a crucial need to improve our understanding of open quantum systems. The typical

physics assumptions of an isolated system, particularly under non equilibrium conditions,

cannot hold for systems probed on the quantum scale at optical pico- and femtosecond

scales [39]. The accurate description of excitation dynamics at these ultrafast scales is

essential for the understanding of fundamental processes for Life on Earth such as pho-

tosyhthesis [40; 42; 41]. For such reasons, theoretical physicists have begun to develop

theoretical and experimental tools to study the dynamical behavior of an open system in-

teracting with its environment. The key lies in identifying an accurate way of removing the

environmental degrees of freedom, and hence obtain a closed equation of motion for the

reduced system of interest [38; 93; 94; 95; 96].

Quantum master equations have been tested for exactly solvable interacting harmonic

systems in thermal equilibrium and nonequilibrium providing reliable results [97]. How-

ever, many systems of interest (e.g. optically probed semiconductor quantum dots, or bio-

logical photosynthetic processes) show fluctuations which are far from equilibrium. More-
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over, recent evidence suggests that excitation energy transfer in biological systems, particu-

larly photosynthetic membranes, might involve some level of quantum coherence [98; 99].

In this chapter, we provide analytic results for the steady state of an open quantum sys-

tem interacting with two reservoirs at different temperatures following local and global

approximations. This mimics the situation in photosynthetic membrane reaction centers

– and elsewhere in natural and artificial systems – in which transfer occurs between few-

level molecular complexes that in turn may be coupled to reservoirs with different effec-

tive temperatures. In both cases we use the same assumptions and the same procedure

– the only difference is the election of the free Hamiltonian and, therefore, the basis set.

The local approach is commonly used to model incoherent transfer phenomena in small

quantum systems [42], while the global approach is a more rigorous way to calculate the

quantum properties such as coherence and entanglement [100; 101]. For the simple case

of an interacting qubit dimer where one of the qubits is coupled with a thermal bath, the

approximations are equivalent only for the case of zero bath temperature [102]. Similar

studies have been performed for two interacting quantum harmonic oscillators under non

equilibrium thermal conditions, where the local approach is found to violate the second

law of thermodynamics for the non-symmetrical case [103] (non identical systems). This

discrepancy represents a serious challenge for modeling of quantum systems. We consider

an open system comprising interacting subunits (qubits), which could provide a simple rep-

resentation of interacting two-level systems in a photosynthetic membrane reaction center.

The question of how to solve the problem can then be addressed in two ways: (i) Diago-

nalize the Hamiltonian of the open system and solve the problem in terms of the diagonal

basis set (i.e. global approach). (ii) Use the direct product of the individual basis set of the
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interacting subunits (i.e. local approach). We here apply both these methods in parallel,

and show explicitly how each formulation leads to a different result when the number of

interacting subunits is greater than one.

This chapter is divided in four parts. In the second part the methods are presented for

an arbitrary system. Analytic expressions for populations and heat current are derived and

applied to a two level system. In the third part, the quantum system is extended to an

interacting qubit dimer where the quantities are calculated. The fourth part is devoted to

analysis and conclusions.

2.1 Formalism

Consider a quantum system under non-equilibrium thermal conditions. Each reservoir is

modeled as an infinite collection of harmonic oscillators in thermal equilibrium at temper-

ature given by βj = 1/kBTj , j = 1, 2. We assume that the coupling strength between

the reservoirs and the central sub system is weak, hence we can express the total density

operator as a direct product of the reduced density operators of the open system ρ̂s and the

reservoirs ρ̂1 and ρ̂2: ρ̂ = ρ̂s ⊗ ρ̂1 ⊗ ρ̂2. The Hamiltonian of the whole system is then

Ĥ = Q̂+ R̂1 + R̂2 + Ŝ1 + Ŝ2 (2.1)

where Q̂ is the Hamiltonian of the open system and the terms R̂j and Ŝj are the reservoir

Hamiltonian and the interaction term associated with the reservoir j, respectively. The

usual route to this problem is to solve directly the second-order expansion of the Liouville

von Neumann equation. This is achieved by obtaining the reduced density operator for the

central subsystem through a partial trace over the reservoirs degrees of freedom. Within
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the interaction picture representation, the dynamics for the whole system is given by

dρ̂

dt
= −i[ĤI(t), ρ̂(0)]−

∫ t

0

dt1[ĤI(t), [ĤI(t1), ρ̂(t1)]] (2.2)

The Hamiltonian in the interaction picture representation is defined as ĤI(t) = Û †
0ĤIÛ0,

where Û0 is the evolution unitary operator of the free system. The free system is considered

as a subsystem whose solutions are well known. For the present work, we use the two

methods to describe the free system: global and local.

2.1.1 Global approach

For this global approach, it is useful to express the interaction term in the form

Ŝj =
∑
μ

V̂j,μf̂j,μ =
∑
μ

V̂ †
j,μf̂

†
j,μ (2.3)

where the operators V̂j,μ act over the open system’s degrees of freedom while the operators

f̂j,μ act on the reservoir j. The operators V̂j,μ are chosen in such a way that they follow the

following commutation relationship:

[Q̂, V̂j,μ] = ωμV̂j,μ. (2.4)

This decomposition is always possible [38; 97; 104]. For instance, for an operator V̂μ =

∣∣i〉〈i∣∣Ŝ∣∣k〉〈k∣∣, where |i〉 and |k〉 are eigenstates of Q̂, it results in ωμ =
〈
i
∣∣Q̂∣∣i〉−〈k∣∣Q̂∣∣k〉.

The dynamics, as was mentioned above, is governed by the Liouville von Neumann equa-

tion of motion dρ̂/dt = −i[Ĥ, ρ̂]. By using the Born-Markov approximation, the dynamics

of the open system in terms of its reduced density operator ρ̂s is given by:

d

dt
ρ̂s = −i[Q̂, ρ̂s]−

2∑
j=1

Lj(ρ̂s) (2.5)
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where Lj is the Lindbland super-operator associated to the reservoir j [100]

Lj(ρ̂s) =
∑
μ,ν

J (j)
μ,ν(ων)

{
[V̂j,μ, [V̂

†
j,ν , ρ̂s]]− (1− eβjων )[V̂j,μ, V̂

†
j,ν ρ̂s]

}
(2.6)

where the indices μ and ν run over the complete range of operators and J
(j)
μ,ν(ων) is the

spectral density is defined by [97; 100; 104]

J (j)
μ,ν(ων) =

∫ ∞

0

dτeiωντTrRj

{
ρj f̄

†
j,ν(τ)f̂j,μ

}
(2.7)

where f̄j,ν(τ) = e−iR̂jτ f̂j,νe
iR̂jτ is the interaction picture representation of the reservoir

operator f̂j,ν . For each selection of the open system, a new set of operators {V̂j,μ} is found.

2.1.2 Local approach

Similarly, the problem can be addressed by using a free Hamiltonian which is formed by

summing all zero-point Hamiltonians of each subunit. For a simple subunit such as the

qubit, the Hilbert space is spanned by two states with energy gap of ε, and the Hamiltonian

can be written in terms of the 2 × 2 pauli matrices as Q̂ = (1/2)σzε. For instance, for

the case where the open system is composed by a linear chain of N qubits and considering

an XX-like interaction between them, the Hamiltonian of the open system can be written

as Q̂ = Q̂0 + Q̂I , where Q̂0 =
∑N

q=1
1
2
εqσ

z
q is the contribution of each sub system and

Q̂I =
∑N−1

i=1 Kiσ̂
+
i σ̂

−
i+1 + h.c. describes the inter-qubit interaction. Consequently, the free

Hamiltonian Ĥ0 and interaction Hamiltonian ĤI can be identified as

Ĥ0 = Q̂0 + R̂1 + R̂2 (2.8)

ĤI = Q̂I + Ŝ1 + Ŝ2 . (2.9)
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Hence in the interaction picture representation, the Hamiltonian can be written as

ĤI(t) = Q̄I(t) + S̄1(t) + S̄2(t) (2.10)

Q̄I(t) =
N−1∑
i=1

Kiσ̂
+
i σ̂

−
i+1e

i(εi−εi+1)t + h.c. (2.11)

S̄j(t) =
∑
k

g
(j)
k âk,jσ

+
λ e

i(ελ−εj,k)t + h.c. (2.12)

where â†k,j creates an excitation in mode k of reservoir j with a coupling strength of g
(j)
k and

energy εj,k. The subindex λ labels the subunit interacting with the reservoir j, i.e. λ = 1

when j = 1 and λ = N for j = 2. Note that for the energy associated to the central system

we use only one subindex, e.g. ελ, while for the energy associated with one mode of the bath

we use two, e.g. εj,k. We use the commutation relations for Pauli operators ([σ+, σ−] = σz

and [σz, σ±] = ±2σ±), and for bosonic operators ([âk, â
†
k′ ] = δk,k′). As a result of this

transformation, we can use equation 2.2 to solve the problem. Specifically, we take the

partial trace over the reservoirs and use the Born-Markov approximation. Furthermore,

we take the continuous limit for the reservoir energies and the wide band limit on the

interaction with the central subsystem. This procedure yields to a delta function in the

energies (δ(ελ − εj,k)) that collapses all the energy spectra of reservoit j into the energy of

the subunit λ. Under these conditions, the quantum optical Master equation for a chain of

qubits whose endpoints (λ = 1 and λ = N ) interact with bosonic reservoirs, is given by

dρ̂c
dt

= −i[Q̄I(t), ρ̂c] +
2∑

j=1

J (j)(ελ)e
βjελ

(
σ̂−
λ ρ̂cσ̂

+
λ − 1

2
{σ̂+

λ σ̂
−
λ , ρ̂c}

)

+J (j)(ελ)

(
σ̂+
λ ρ̂cσ̂

−
λ − 1

2
{σ̂−

λ σ̂
+
λ , ρ̂c}

)
(2.13)

where J (j) denotes the spectral density function associated with the interaction between

the qubit λ and the reservoir j given in terms of the spontaneous emission rate γj and the
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Bose-Einstein distribution N̄j(ε) = (eβjε − 1)−1

J (j)(ε) = γjN̄j(ε). (2.14)

For simplicity, we consider γj = 1.

2.1.3 Observable: thermal energy

As a test observable, we use the steady state thermal energy transferred from the reservoir to

the quantum system given the non-zero thermal bias. The steady-state heat flux is defined as

the trace of the product of the Liouvillian super-operator with the subsystem Hamiltonian:

Qj = Tr{Q̂Lj} (2.15)

The resultant expression for the heat flux in the global approach can be written in the

following compact form:

Qj =
∑
μ,ν

ωμJ
(j)
μ,ν(ων)

{〈
V̂ †
j,νV̂j,μ

〉
− eβjων

〈
V̂j,μV̂

†
j,ν

〉}
. (2.16)

In a similar way, the result for the heat flux in the local approach is found to be

Qj = ελJ
(j)(ελ)

{〈
σ̂−
λ σ̂

+
λ

〉− eβjελ
〈
σ̂+
λ σ̂

−
λ

〉}
. (2.17)

As expected, the formula (2.17) gives a zero flux value when the reservoirs are set at the

same temperature. Furthermore, it can be seen that the global and local approaches lead

to the same result when applied to a single qubit under non-equilibrium thermal conditions

where the system operators are the same, V̂
(†)
j,μ = σ̂+(−). The steady-state population of the

excited state n of one qubit system with energy gap ε is found to be

n =
〈
σ̂+σ̂−〉 = 1

2
e(ε) (2.18)
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where ej is a simple universal function defined as

e(ωj) =
N̄1(ωj) + N̄2(ωj)

1 + N̄1(ωj) + N̄2(ωj)
≤ 1. (2.19)

Furthermore, the heat flux for this system is found to be

Q1 = εJ (1)(ε)J (2)(ε)
eβ2ε − eβ1ε

J (1)(ε)(1 + eβ1ε) + J (2)(ε)(1 + eβ2ε)
. (2.20)

=
ε

2
(1− e(ε))

(
N̄1(ε)− N̄2(ε)

)
(2.21)

As can be seen, the formula 2.21 leads to a zero value when the thermal bias is set as zero.

In addition, note the heat flux is always positive for positive bias (N̄1 > N̄2) and negative,

otherwise.

2.2 Divergence for a dimer

We consider a dimer composed of two interacting qubits, where each quit is connected to

a different reservoir in thermal equilibrium at temperature Tj (j = 1, 2). Figure 2.1 shows

schematically the system to be studied. The Hamiltonian of the qubit dimer is

Q̂ =
1

2
ε1σ̂

z
1 +

1

2
ε2σ̂

z
2 +K(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 ) (2.22)

where σ̂1 = σ̂ ⊗ I and σ̂2 = I ⊗ σ̂, with I as the 2 × 2 identity matrix. In addition, we

assume that the qubit labeled as j interacts with the bath labeled as j only, for j = 1, 2.

Hence the interaction Hamiltonian between the dimer and the reservoirs can be written as

Ŝj =
∑
k

gk,jσ
+
j âk,j + h.c. (2.23)

The operators σ̂±
j do not commute with Q̂, so for the global approach it is necessary to find

a transformation that allow us to write the interaction Hamiltonian in the form of Equation
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Figure 2.1: Extended quantum system interacting with two thermal reservoirs.

(2.3), so that the condition (2.4) is fulfilled. The eigenstates and eigenenergies of Q̂ are

|s1〉 = |0, 0〉 (E1 = − ε1+ε2
2

), |s2〉 = |1, 1〉 (E2 = ε1+ε2
2

), |s3〉 = c3,1 |1, 0〉 + c3,2 |0, 1〉

(E3 = α), and |s4〉 = c4,1 |1, 0〉+ c4,2 |0, 1〉 (E4 = −α) where the amplitudes and constants

are given by:

c3,1 =
K√

2α2 − αΔε
, c3,2 =

α−Δε/2√
2α2 − αΔε

c4,1 =
K√

2α2 + αΔε
, c4,2 = − α +Δε/2√

2α2 + αΔε
(2.24)

α =

√
K2 +

Δε2

4
, Δε = ε1 − ε2 . (2.25)

The transformation of the coupling operators from the individual qubits basis set into the

dimer diagonal basis set, can be calculated as

σ̂j =
4∑

p=1

4∑
q=1

|sp〉 〈sp| σ̂j |sq〉 〈sq| (2.26)
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Figure 2.2: Steady state populations n1 (left) and n2 (right) as a function of the temperature of the

reservoir 1 for both approximations. The solid lines represent the local approach while the dashed

lines represent the global approach. In all cases, the temperature of reservoir 2 is set as zero, K = 1
and ε = 1.5.

With this transformation, the condition (2.4) is fulfilled
[
Q̂, |sp〉 〈sq|

]
= (Ep−Eq) |sp〉 〈sq|.

In this way, the operators can be found to be

V̂j,1 = [c3,2δj,1 + c3,1δj,2] |s2〉 〈s3| , ω1 = E2 − E3

V̂j,2 = [c4,2δj,1 + c4,1δj,2] |s2〉 〈s4| , ω2 = E2 − E4

V̂j,3 = [c3,1δj,1 + c3,2δj,2] |s3〉 〈s1| , ω3 = E3 − E1

V̂j,4 = [c4,1δj,1 + c4,2δj,2] |s4〉 〈s1| , ω4 = E4 − E1 (2.27)

For simplicity we consider the symmetric case where the energy gap of each qubit is the

same: ε1 = ε2 = ε. In particular, we have that ω1 = ω4 = |ε − K|, ω2 = ω3 = ε + K

and the amplitudes are c3,1 = c3,2 = c4,1 = 1/
√
2, and c4,2 = −1/

√
2. The steady-state

populations can be calculated for each of the qubits

n1 =
〈
σ̂+
1 σ̂

−
1

〉
= ρ

(G)
22 +

1

2

(
ρ
(G)
33 + ρ

(G)
44 + 2Re

{
ρ
(G)
34

})
(2.28)

n2 =
〈
σ̂+
2 σ̂

−
2

〉
= ρ

(G)
22 +

1

2

(
ρ
(G)
33 + ρ

(G)
44 − 2Re

{
ρ
(G)
34

})
(2.29)
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where the matrix elements ρ
(G)
ij = 〈si|ρ̂s|sj〉 are calculated in the diagonal basis. For the

weak-coupling case (ε > K), the populations are found to be (K = 1):

ρ
(G)
11 =

(
1− e1

2

)(
1− e2

2

)
, ρ

(G)
22 =

e1
2

e2
2

ρ
(G)
33 =

(
1− e1

2

) e2
2
, ρ

(G)
44 =

e1
2

(
1− e2

2

)
(2.30)

where ej = e(ωj). For the steady-state, the matrix element ρ
(G)
34 is zero, therefore the

populations take the simple form of n1,2 = (e1 + e2)/4. In a similar way the populations

for the local approach can be derived by solving equation (13) forN = 2 leading to n1(2) =

ρ
(L)
11 + ρ

(L)
22(33), where the matrix elements ρ

(L)
ij are calculated in the local basis, i.e. ρ

(L)
11 =

〈11|ρ̂s|11〉, ρ(L)22 = 〈10|ρ̂s|10〉, and ρ
(L)
33 = 〈01|ρ̂s|01〉. The following results follow:

n1 =
2K2e(ε) + (1 + 2N̄2(ε))N̄1(ε)

4K2 + (1 + 2N̄1(ε))(1 + 2N̄2(ε))
(2.31)

n2 =
2K2e(ε) + (1 + 2N̄1(ε))N̄2(ε)

4K2 + (1 + 2N̄1(ε))(1 + 2N̄2(ε))
(2.32)

In Figure 2.2 we can see how the populations change as the temperature of the reservoir

1 changes while the temperature of reservoir 2 is set to be zero. The two approaches for

n1 converge when kBT1 >> ε. On the other hand, the population n2 decays in the local

approach as kBT1 >> ε while the global approach predicts an asymptotic growth to the

mixed state of 1/2. This divergence in predictions suggests that one of the approaches is

not correct.

Another way to see this discrepancy is by looking at the heat flux. Using the system oper-

ators (2.27), the steady state heat flux (2.16) for reservoir 1 is:

Q1 =
2∑

i=1

ωiJ
(1)(ωi)J

(2)(ωi)
eβ2ωi − eβ1ωi

(1 + eβ1ωi)J (1)(ωi) + (1 + eβ2ωi)J (2)(ωi)
(2.33)

=
ω1

2
(1− e1)(N̄1(ω1)− N̄2(ω1))− (1 ↔ 2) (2.34)
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The heat flux is expressed as a sum over the energy channels ω1 and ω2 that depend on

the inter-qubit coupling K and qubit energy gap ε. The flux is always positive for positive

thermal bias. On the other hand, the steady state heat flux from the reservoir 1 to the qubit

1, calculated in the local approach for the symmetric case, can be found to be

Q1 =
εJ (1)(ε)J (2)(ε)(eβ2ε − eβ1ε)

J (1)(ε)(1 + eβ1ε) + J (2)(ε)(1 + eβ2ε)

4K2

4K2 + J (1)(ε)J (2)(ε)(1 + eβ1ε)(1 + eβ2ε)

=
[ ε
2
(1− e(ε))

(
N̄1(ε)− N̄2(ε)

)] 4K2

4K2 + J (1)(ε)J (2)(ε)(1 + eβ1ε)(1 + eβ2ε)
(2.35)

The local approach for the dimer leads to an expression for the heat flux expression equal

to the one for the monomer weighted by a positive function that depends on the interqubit

coupling K and the reservoirs’ temperature. This function ensures that the flux tends to

zero as the inter-qubit coupling decreases and remains finite for largeK. This is reasonable

since the qubits are weakly coupled (i.e. K → 0), and therefore the heat transferred should

decrease. However it also shapes the flux in such a way that an optimal value is found,

i.e., the heat flux exhibits a maximum with the temperature and then decays to zero as the

thermal bias grows. This behavior is not found for either the monomer or the dimer in the

global approach.

As an illustration, Figure 2.3 shows the observable Q1 for both approximations and

three different values of the qubit energy gap ε, as a function of the temperature difference.

To simplify the presentation, we have set the temperature of the second reservoir to be close

to zero and have depicted the flux as a function of kBT1. We can clearly see the maximum

of Q1 for a specific value of the energy kBT1 in the local approach, while the result for the

global approach grows asymptotically to ε as the thermal bias increases.
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Figure 2.3: Dimer heat flux Q1 as a function of the temperature of reservoir 1 in both approx-

imaions. The solid lines represent the local approach while the dashed lines represent the global

approach. The steady state heat flux is calculated for three different values of the qubit energy gap

ε: Left top ε = 1.001K, Right top ε = 2.5K, Bottom ε = 10K. In all the cases we have set the

temperature of the reservoir 2 as zero and K = 1.
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The dimer system thus provides the simplest non-trivial physical scenario where a quan-

titative comparison of quantum non-equilibrium thermal quantities can be performed: those

obtained within a rigorous global approach and results coming from a less rigorous, and

hence restricted in validity, local approach. Furthermore, our results as tested in simple

systems show that some physical magnitudes calculated within the local framework could

be misleading. This work suggests various future avenues of research, one of which con-

cern the systematic analysis of the scaling of the divergence ’distance’ between different

approach results as the system size (complexity) and the separation from equilibrium in-

crease.

2.3 Summary of chapter 2

We have shown that even in the symmetrical case, the problem of an open quantum system

interacting with two reservoirs at different temperatures leads – within local and global

approximations – to different results when the number of interacting subunits in the open

system is greater than one. The formulations are equivalent and identical for the monomer.

By contrast, the results for an interacting dimer open several urgent questions about the

range of applicability of the underlying approximations and hence methods. In the global

approach, the populations for both qubit are identical in the steady state. On the contrary,

the local approach predicts that the population of the qubit interacting with the cold reser-

voir is always smaller than the population of the other qubit. Second, the local approach

predicts a maximum in the heat flux as a function of the temperature gradient, followed by

a gradual decay to zero as the thermal bias grows. By contrast, the global approach predicts

a saturation of the flux as the bias increases. Finally, we note that the outcome of the local
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approach in the strong inter-qubit coupling limit concludes that the dimer can be modeled

as a single qubit which resembles the properties of a classical system. Future work with

larger numbers of qubits will elucidate the differences in these approaches, as will a careful

comparison to future experiments which are able to distinguish between the divergence in

their predictions.



Chapter 3

Generalities and modeling of bacterial photosyn-
thesis

Photosynthesis, the remarkable process in which light energy is transformed into chemical

energy, is responsible for most of the metabolic processes underlying Life on Earth [26; 31;

43; 105; 45; 106; 107; 108; 109; 34; 44; 110]. Photosynthetic organisms are conventionally

grouped into two classes: oxygenic and anoxygenic organisms. Higher plants, algae and

cyanobacteria are characterized to use oxygenic photosynthesis which produces oxygen

through the reduction of carbon dioxide and the oxidation of water molecules[25]. On

the other hand, anoxygenic photosynthesis does not produce oxygen since water is not

used for carbon dioxide reduction [31]. Despite of the many hypotheses about the origin

of photosynthesis, there is little certainty about its earliest origin. Analyses of meteorites

reveal a rich organic composition [111; 112; 113] which has led to speculation that some

life forms could have resulted from the chemical development of organic material provided

from outer space [114]. This raises the question as to whether Earth-like life forms might

have developed elsewhere – and as a corollary, whether existing Earth-like lifeforms would

survive near more alien light sources, where we define an ’alien’ light source as one with

temporal correlations that are qualitatively different from those experienced on the Earth

due to the Sun.

23
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In this chapter, the reader will find an overview of the biological structure of photosyn-

thetic purple bacteria together with the physical processes involved in bacterial photosyn-

thesis. Findings from atomic force microscopy imaging connect the illumination conditions

with structural aspects of the photosynthetic apparatus such as antennae stoichiometry and

architecture. In order to quantify these remarkable findings, a detailed dynamical model of

the photosynthetic process is introduced and explained. The model considers the processes

underlying bacterial photosynthesis such as light absorption, excitation transfer, dissipa-

tion and reaction center cycling. A simple analytic approach is proposed in order to verify

the accuracy of the model and it is shown that it captures some of the structural varia-

tions connected to the light intensity conditions. Finally, an anlysis on how variations on

the statistics of the temporal photon arrival potentially influence the well functioning and

hence survival of the photosynthetic organism, is presented.

3.1 Overview of bacterial photosynthesis

Bacterial photosynthesis is arguably the oldest form of photosynthetic life [115; 111]. Its

structural simplicity, as compared with higher organisms like algae or plants[31], makes

it an ideal focus for research. In particular, purple bacteria is known to sustain their

metabolism in anaerobic environments such as deep waters (e.g. lagoons, streams and

ponds), hence green and far red (¿750nm) components of sunlight spectra are used as its

energy source. There are several studies on bacterial photosynthesis that go into a deep

description of the structure, organization and dynamics of the photosynthetic apparatus

[31; 25]. The building blocks of the photosynthetic apparatus are the chlorophyll pigments

which are present in all light driven organisms. They are responsible for the absorption,
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Figure 3.1: Schematic representation of photosynthetic apparatus of purple bacteria. The antennae

complexes LH2 (blue ring) and LH1 (green ring) absorb incoming photons at a rate γA. They

transfer the electronic excitation (red arrows) to the reaction center (yellow cylinder) where a series

of charge separations produce quinol (QBH2) from quinone with two cytoplasmatic photons (pink

arrows). Quinol molecules migrate to bc1 complex (purple cylinder) where it is reverted to quinone

by a proton gradient that expels protons (pink arrows) to ATPase (Red cylinder) where ATP is

synthesized. Meanwhile, remaining electrons and quinone at bc1 are taken back to the reaction

center through the cytochrome c2 (green arrows) so the RC neutrality is reestablished and the cycle

starts from the beginning.

transfer and early stages of light energy processing. In bacteria they are known as bacte-

riochlorophills (BChls) which are found throughout the chromatophore vesicle that lies in

the bacteria cellular membrane.

The components of the chromatophore vesicle and the basic photosynthetic cycle are

shown illustrative in Fig.3.1. Incoming photons with energy �ω are absorbed by antennae

complexes LH2 and LH1 creating an electronic excitation by pigment molecules such as

BChls and Carotenoids (Car). The excitation is subsequently transfered to the reaction cen-

ter (RC) where a charge separation process is initiated when charge carriers are available.

The electron in the RC reduces a quinone (QB) which uses a cytoplasmic proton to form



26

a hydrogen atom that is added to it. The resulting hole from the charge separation is filled

with a periplasmic electron provided by a protein called cytochorme c2 reestablishing the

neutrality. A second excitation is therefore received at the RC to repeat the process form-

ing quinol (QBH2) with the reception of the second hydrogen atom. Subsequently, quinol

detaches from the RC and diffuses to a protein complex called cytochrome bc1. The quinol

is reverted to quinone at bc1 where the electrons are later moved back to the RC through c2

to fill the holes resulting from the charge separation. The resulting proton gradient is used

by the protein complex ATP synthase (ATPase) in the last stage of the process, to phospho-

rilate adenosine diphosphate (ADP) to adenosine triphophate (ATP) which is a very stable

form of energy used for all living organisms.

3.1.1 Light harvesting complex 2

Pigments molecules, BChls and Car, absorb maximally in the far red and green, respec-

tively. They are embedded in protein helices called α and β which form a ring-like struc-

ture known as Light Harvesting Complex (LHC). Most species of purple bacteria contain

two types of LHC, named Light Harvesting 1 (LH1) and Light Harvesting 2 (LH2). LH2

complexes contains 9 pairs of BChls in the inner ring and 9 chromophores in the outer ring,

that absorb maximally at 850nm (B850) and 800nm (B800) respectively (see Fig.3.2(a)),

together with 9 Car that absorb maximally at 500nm. LH2 complexes are found largely

(100− 400) on the chromathophore increasing the vesicle’s absorption cross section. This

is particularly crucial for purple bacteria, given that they live in environments where the

light intensity is low (Intensity ∼1-10W/m2). An excitation is easily transferred from Car

to BChls within 100 femptoseconds (fs) given that energetically it is inexpensive [25; 116].
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Figure 3.2: Pigment arrangement for (a) light harvesting complex 2 and (b) light harvesting com-

plex 1 and reaction center core complex. Bactriochlorophyls are represented by colored circles

while carotenoids by thick curved lines. Organic pigments B850 (blue circles) and B800 (purple

circles), are embedded on a circular arrangement of 9 helix protein dimer α-β (not shown). Anal-

ogously for pigments B875 (green circles) with 16 dimers. Special pair dimer (yellow circles) at

the reaction center is responsible for charge separation and release of an electron to the pigment

bacteriopheophytin (brown circle) which transfer the electron to a quinone molecule (red circles).

Pigment molecules at the reaction center are bound to protein subunits (not shown).

The typical fluorescence lifetime of light-driven molecules is 1 nanosecond (ns). Therefore

the excitation needs to be transfered to neighboring complexes on smaller timescales in

order to avoid exceptional loss.

3.1.2 Light harvesting 1 - Reaction center core complex

The core complex LH1-RC (Fig.3.2(b)) is responsible for receiving excitations from neigh-

bor LH2, photon absorption as well as of initiate charge separation process. LH1 complexes

contain 32 BChls arranged on 16 bi-chromophore units that absorb maximally at 875 nm

(B875). Similar to LH2 complex, LH1 forms a ring-like structure but with a larger radius

which surrounds the RC. Species like Rhodospirillum (Rsp.) viridis and Rsp. photomet-

ricum display monomeric core LH1-RC while species like Rhodobacter (Rb.) sphaeroides

and Rb. blasticus dimeric, where the helix protein PufX induces its dimerization. The RC

is composed by four BChls molecules, two bacteriophaeophytin molecules, and quinones

A and B. Excitation from the LH1 is transferred to the RC that produce ionization of BChls
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dimer known as the special pair. An electron is transferred to the bacteriophaeophytin

molecule which moves it to the quinone A and subsequently to quinone B. As mentioned

above, a second electron repeats the cycle to create quinol which detaches from the RC and

a new quinone molecules replaces it while electrons from cytochrome c2 fill the holes from

the charge separation, and the cycle repeats from the beginning.

3.2 Physical processes involved in bacterial photosynthesis

3.2.1 Photon absorption

Pigment molecules BChls and Car absorb incoming photons at a rate proportional to its

cross section. The absorption rate for a specific complex can be calculated as the product

of the spectral density of the incident light as a function of its wavelength nγ(λ) and the

complex cross-section. Francke and Amezc [117] reported a cross-section for BClhs effec-

tively measured in vivo of 2.32 Å2 at the wavelength of maximum absorption[32]. Since

each protein pair α-β holds 3 BClhs, and a specific number of protein pairs α-β are found

on LHC complexes, the effective cross-section for the full ring σLH1 and σLH2 can be cal-

culated. The photon spectrum normalized to the total light intensity of a representative

environment for Rb. sphaeroides of 18W/m2, is used to estimate the rate of absorption. For

instance the absorption rate for LH1, that counts with 16 protein pair α-β, can be estimated

as [32]

γ1 =

∫
dλnγ(λ)σLH1(λ) = 18s−1 (3.1)

Analogously for LH2 the absorption rate can be estimated as 10s−1. If the spectrum is

normalized to 1W/m2, the absorption rate for LH1 and LH2 complexes is γ1 = 1s−1 and

γ2 = 0.55s−1. Therefore, for vesicles containing N1 LH1 complexes and N2 LH2 com-
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plexes at a light intensity of I , the total absorption rate (γA) can be calculated as [35]

γA = I(γ1N1 + γ2N2). (3.2)

3.2.2 Excitation transfer

General theory

Excitation transfer between an excited donor and unexcited acceptor chromophores occurs

via Coulomb interaction between corresponding electrons [25]. The wave functions asso-

ciated with the initial and final states within the Born-Oppenheimer approximation can be

expressed as a product of the electronic wave function and the vibrational wave function

ΨD∗ΨA = ψD∗ψAχ(w
∗
D)χ(wA) (3.3)

ΨDΨA∗ = ψDψA∗χ(wD)χ(w
∗
A), (3.4)

where wD(D∗) and wA(A∗) describe the continuum of vibrational and bath states associated

with the ground (excited) states for the donor and acceptor, respectively. For an electronic

coupling VDA so that the inter and intra molecular relaxation processes are faster than

the excitation transfer, and using the Condon approximation [25], the transfer rate can be

written as

kDA =
2π

�
|UDA|2JDA (3.5)

where UDA depends only on the electronic part while JDA depends only on the vibrational

states. The latter is defined as

JDA =

∫
dEGD(E)GA(E) (3.6)

where GD(E) and GA(E) are known as the Frank-Condon weighted and thermally aver-

aged combined density of states [25]. The former is related with the Coulomb interaction
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as

UDA = 〈φD∗φA|VDA|φDφA∗〉. (3.7)

The interaction energy in the donor-acceptor pair is formally given by

VDA =
1

2

∑
m,n,p,q
∈ID∪IA

∑
σ,σ′

〈φmφn|V |φpφq〉c†mσc
†
pσ′cqσ′cnσ (3.8)

where c†mσ and cnσ are the fermion creator and annihilation operators associated to electrons

with spins σ and σ′ in the mutually orthogonal basis of atomic orbitals φm and φn and

IA(D) is the set of atomic orbitals associated to the donor (acceptor) molecule. The bracket

〈φmφn|V |φpφq〉 is the Coulomb integral given by

〈φmφn|V |φpφq〉 =
∫ ∫

d�r1d�r2φ
∗
m(�r1)φp(�r2)

e2

|�r1 − �r2|φ
∗
n(�r1)φq(�r2) (3.9)

Intra-molecular contributions arise where m,n, p, q are either all donor or all acceptor

states. On the other hand, intermolecular contributions occur through two types of mecha-

nisms. If φm and φp are states from the donor, and φn and φq are states of the acceptor, the

mechanism is direct Coulomb interaction. It is related to the de-excitation of an electron

in the donor molecule D, which immediately excites an electron on the acceptor A. By

contrast, if φm and φn describe states of the donor and φp and φq states of the acceptor,

the mechanism is called exchange interaction. In this case, excitation is transfered when

the excited electron of the donor is exchanged by a non-excited electron of the acceptor.

Using anti-commutation relationships of fermions the interaction can be separated in two

contributions for each transfer mechanism:

VDA =
∑
i,j∈ID

σ

∑
k,l∈IA

σ

[
〈φiφj|V |φkφl〉c†iσcjσc†kσ′clσ′ − 〈φiφl|V |φkφj〉c†iσcjσc†kσ′clσ′

]
(3.10)
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Inter complex transfer rates

An effective Hamiltonian description agrees with the spectrum of B850 where individual

BChl Qy excitations are taken into account [25]. The state |j〉 describes the 2N BChl

system where the j-th molecule is excited, while the rest are in the ground state. This

formulation allows the construction of the completely delocalized exciton state |ñ〉 as a

linear combination of individual excitations |j〉:

|ñ〉 =
2N∑
j=1

añ,j|j〉 (3.11)

The effective Hamiltonian presents diagonal elements 〈j|H|j〉 = ε corresponding to the

excitation energy of the Qy state. The nearest neighbors matrix elements 〈j|h|j + 1〉 for

pigments within the same α-β protein dimer is denoted as ν1 and for neighbors of different

dimers ν2. For non-nearest neighbors pigments j and k, a dipole-dipole approximation is

used

〈j|H|k〉 = C

(
�dj · �dk
r3jk

− 3(�rjk · �dj)(�rjk · �dk)
r5jk

)
. (3.12)

The parameters that reproduce the exact spectrum for B850 hexadecamer of LH2 from Rs.

molischianum are ε = 13242cm−1, ν1 = 790cm−1, ν2 = 369cm−1 andC = 505644Å3cm−1

[25]. Within the time-scale of inter-complex energy transfer (a few picoseconds), exciton

states thermalize. Therefore they become a statistical ensemble characterized by the density

operator

ρ =
1∑

m̃ e
−Em̃/kBT

∑
m̃

e−Em̃/kBT |m̃〉〈m̃|. (3.13)
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from / to LH1 LH2 RC

LH1 20ps 15.5ps 15.8ps (30-50 ps)

LH2 7.7ps (3.3ps) 10ps -

RC 8.1ps (8ps) - -

Table 3.1: Theoretical estimation and experimental measurements (in brackets) of inter complex

transfer times. Dashes indicate that the value is not available.

Hence, the net inter-complex interaction can be calculated to be

UDA = Tr{ρVDA}

=
1∑

m̃ e
−Em̃/kBT

∑
ñ,m̃

e−Em̃/kBT 〈m̃|VDA|ñ〉. (3.14)

Finally, the matrix elements 〈m̃|VDA|ñ〉 associated with interactions of exciton states from

different complexes can be calculated from the individual chromophore inter-complex in-

teraction as

〈m̃|VDA|ñ〉 =
∑
i,j

an,ia
∗
m,j〈i|H|j〉. (3.15)

Hence, equations (3.5), (3.15) and (3.14) allow to estimate transfer times from different

complexes. Table 3.1 shows estimated transfer times which show to be in good agreement

with pump probe spectroscopy experiments (in brackets) [118; 33; 119; 120].

3.2.3 Dissipation

In chromophores there are two main mechanisms of dissipation: fluorescence and internal

conversion. As mentioned above, fluorescence is presented on a time scale of hundred

of picoseconds to a few nanoseconds and is the result of spontaneous emission due to

interaction with the electromagnetic vacuum [121]. Internal conversion is the decay of the

electronic excited state to the ground stated due to overlap with the molecule’s vibrational
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10nm 10nm

 L  (a) (b)

Figure 3.3: Representation of real-world membranes from AFM images grown at different light

intensity conditions. (a) High Light Intensity (100W/m2) and (b) Low Ligh Intensity (10Wm2).

Blue rings represent LH2 complexes while green rings represent LH1 complexes. Yellow dots

represent the reaction center.

degrees of freedom. Calculations have estimate a dissipation rate of 1ns−1 including both

mechanisms [25].

3.3 Evidence from atomic force microscopy

During the last decade, experimentalists have been devoted considerable effort to study the

membrane structure through Atomic Force Microscopy (AFM) imaging, revealing a rich

organization of the photosynthetic apparatus. Two remarkable findings are of particular

importance for this document. The first one is related to the differences found in the ratio

of LH2 to core complexes (i.e. stoichiometry, s0) when membrane are grown under dif-

ferent light intensity conditions. The second is related to the organization of the antennae

complexes within the membrane where several architectures are found for different species

and growth environmental conditions.
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(b)(a)

10 nm

Figure 3.4: Representation of real-world membranes from AFM images.(a) Low-light adapted

native membrane of Rsp. photometricum displaying LH2 hexagonal packing from [124] (b) Rb.
sphaeroides from [125] showing high core-core clustering.

3.3.1 Chromatic adaptation

In 2005, it was reported for Rsp. Photometricum an interesting relationship between the

membrane’s stoichiometry and the light intensity during the growing stage [26]. Under

high-light intensity (HLI) (I ≈ 100W/m2), membranes grow with a ratio of LH2 to core

complex of s0 ≈ 3.5-4, while membranes under low-light intensity (LLI) conditions (I ≈

10W/m2) express a ratio of s0 ≈ 7-9. Fig.4.2(a) and Fig.4.2(b) show a representation of

real membranes for HLI and LLI, respectively. Further experiments have confirmed this

link in other types of bacterial systems such as Rps. Palustris [122] and Rb. sphaeroides

[123]. This chromatic adaptation is of particular importance to the well functioning and

survival of the organism. It optimizes the capture of photons under low-light conditions by

expressing a large amount of LH2 antennae complexes, while preventing damaging effects

due to over exposure for high-light intensity conditions.
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3.3.2 Antennae organization

Additional details regarding the organization of antennae complexes are shown in Figure

3.4. In reduced light intensity conditions, it is found that LH2-only regions are formed

on a hexagonally packed domain (Fig.3.4(a)). This is considered to be a response arising

from the chromatic adaptation to low light [124]. A particular case of honeycomb crystal

architectures of identical harvest found in R. rubrum is reported in Ref.[126]. Variations

from a perfect hexagonal configuration are found among species and sample preparation

methods. In addition, in species like Rb. blasitcus and Rb. sphaeroides, where dimerization

of core complexes is found[127], are observed to exhibit a linear alignment of core-core

dimers surrounded by LH2 antennae (Fig.3.4(b)). Interestingly, membranes displaying

core-core clustering are also found on species that do not display dimerization, that is the

case of high-light adapted Rps. photometricum[44]. Qualitative explanations are proposed

to support these findings. For instance, it is expected that core-core clustering may assist in

the transfer and processing of excitations to the RC by reducing the effective path and hence

avoiding dissipation [128]. In chapter 4 it will be shown that this statement is quantitatively

correct and spatial correlations play a fundamental role in the degree of enhancement of the

photosynthetic efficiency.

3.4 Photosynthetic membrane model

3.4.1 Stochastic approach

The proposed model uses a stochastic approach to the classical rate equations for a large

number of LHC (≈400). The advantage provided by a stochastic method is the level of
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Figure 3.5: Schematic representation of photosynthetic process. Radiation from a thermal source

(e.g. our Sun) is absorbed by LHC complexes 1 (blue rings) or 2 (green rings) at a combined rate

γA. The resulting excitation is transfered from complex i to complex j at a specific rate tij or it is

dissipated at a rate λD. At the reaction center, the double excitation of the special pair P yields to

the formation of quinol (QBH2) molecule in a cycle that lasts a few milliseconds.
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detail that can be achieved despite of the large number of complexes typically present on

a photosynthetic vesicle. Accounting for two states (occupied and unoccupied) for each

complex, the dimension of the matrix to be solved grows as 2N × 2N , being N the total

number of complexes. Therefore, a master equation approach is not practical for a realistic

vesicle. Moreover, a stochastic description provides detailed time series of every step of

the process that become indicators to further investigate the system.

Figure 3.5 shows the schematics of the model. It accounts for photon absorption, photo-

excitation transfer and RC cycling for a given architecture and light statistics. At each

time-step (δt ≈ 0.025ps), incoming photons following a specific arrival statistic, are being

absorbed by the antenna complexes LH1 and LH2 with absorption rate γA = I(γ1N1 +

γ2N2), where γ1(2)andN1(2) are the absorption rates [32] and number of LH1(2) complexes,

respectively. This means that on a timestep corresponding to absorption, a random complex

of type i is chosen to absorb the photon with probability

pi =

∑
k σ

LHi
k

σT
, i = 1, 2, (3.16)

where σT is the total cross-section of the membrane. At the same time, present photo-

excitations diffuse throughout the membrane in search for an open RC according to transfer

rates resulting from experiments [118; 33; 119; 120]. Some of these excitations will be dis-

sipated through fluorescence or internal conversion at constant rate λD [32]. The excitation

transfer from the complex i to any of the {j} possibilities (transfer to other neighboring

complex or dissipation) occur with a probability

Pi→{j} = δt
∑
j

γij (3.17)
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The exact acceptor j is determined if a generated pseudo-random number a lies in the

interval

γijδt

Pi→{j}
≤ a <

γi(j+1)δt

Pi→{j}
, (3.18)

and the sum is performed including the dissipation path of constant rate λD. Meanwhile,

closed RCs are processing the excitations that have already been received. Once an open

RC has received two photo-excitations, it is set closed and no other photo-excitation is al-

lowed to enter. After a time τRC has elapsed from the moment in which the second photo-

excitation has entered, the RC is set open and the cycle starts from the beginning. This

open/close mechanism accounts for the time where two electrons produce quinol (QBH2)

before it undocks and a new quinone (QB) substitutes it. This process lasts a few millisec-

onds and has shown to be key in order to explain the chromatic adaptation of the membrane

stoichiometry (ratio of LH2 to LH1) under different light intensity conditions [35; 36].

Transfer rate measures from pump-probe experiments agree with generalized Förster

calculated rates [25], assuming intra-complex delocalization. LH2→LH2 transfer has been

given as t22 = 10ps [25], while LH2→ LH1 transfer has been measured for R. Sphaeroides

as t21 = 3.3ps [118]. Back-transfer LH1→ LH2 is approximately t12 = 15.5ps while

the LH1→ LH1 mean transfer time t11 has been calculated using a generalized Förster

interaction [106] as 20 ps. Second and third lowest exciton lying states cause LH1→ RC

transfer due to ring symmetry breaking [33], consistent with a transfer time of 35 − 37 ps

found experimentally at 77 K [120; 119]. As proposed by Ref. [129], increased spectral

overlap at room temperature improves the transfer time to t1,RC = 25 ps. The back-transfer

from an RC’s fully populated lowest exciton state to higher-lying LH1 states occurs in a
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calculated time of tRC,1 = 8.1 ps [33], which is close to the experimentally measured 7-9 ps

estimated from decay kinetics after RC excitation [130]. The subsequent passage through

the RC complex depends on whether a charge carriers is available (i.e. the RC is in an open

state), to occur within t+ = 3ps.

3.4.2 Analytic approach

An analytical description of the model is used to verify the validity of its results. The

analytic model considers NE photo-excitations created at the membrane at a rate γA. In

addition, photo-excitations leave the system by either dissipation at rate λD or by entering

into a RC at rate λC . On the other hand, the number of closed RCs per unit time is λCNE/2

and the number of open RCs per time unit is (N1 − NO)/τRC . Therefore the number

of photo-excitations and the number of open RCs is connected via the following pair of

differential equations:

dNE

dt
= − [λC(NO) + λD]NE + γA (3.19)

dNO

dt
=

1

τRC

(N1 −NO)− 1

2
λC(NO)NE (3.20)

The rate of entering to a RC λC depends on the number of open RCs NO. When there is

no RC available λC = 0, and it takes the maximum value (λ0C) when all RCs are open. We

can assume a linear relation between λC and NO to be a good approximation due to the fast

photo-excitation hopping compared to the cycling time, i.e., λC ≈ λ0CNO/N1. Moreover,

the efficiency is given by η = λCNE/γA, the steady state solution to Eqs. (1) and (2) is
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Figure 3.6: (a) Photosynthetic efficiency from stochastic simulation (symbols) and analytic approx-

imation (lines) as a function of the RC closing time τRC . Diamonds (and corresponding line) are

calculated for light intensity of 100W/m2 while crosses (and line) are for light intensity of 10W/m2.

Model prediction (curves) for stoichiometry s0 as a function of light intensity for several values

of quinol production rate W [35; 36]. Dots are experimental results for reference [26] (black) and

[131] (green).

[35]:

η =
1

2γAλ0Cτ

{
2N1(λ

0
C + γD) + γAλ

0
Cτ

−
√
4n2

1(λ
0
C + γD)2 + 4N1γAλ0C(γD − λ0C)τ + (γAλ0Cτ)

2
}

(3.21)

Figure 3.6(a) compares results from the analytic model and numerical simulation. It il-

lustrates the photosynthetic efficiency as a function of the closure time τRC for high and

low light intensity conditions. The agreement between the formulations is noteworthy. As

expected, for short cycling times (τRC < 5ms) membranes grown on high light intensity

experience a larger efficiency than LLIM given the larger number of RC’s. However, for

larger cycling times, the situation is overturned. For τRC > 5ms, LLIM experience a larger

efficiency regardless of their reduced number of RC’s. This behavior talks about the mech-

anism that better benefits the organism for a given light intensity environment. For high

light intensity, the system exploits the dissipation mechanism in order to avoid overexpo-
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sure and potential damage, which results in a lower photosynthetic efficiency. On the other

hand, for low light intensity environments, the system develops more LH2 antennae in or-

der to capture most of the incoming light and hence increasing overall efficiency.

The good agreement is used to explore additional implications related to the chromatic

adaptation. Under the hypothesis that adaptations occur so that the system meet metabolic

needs, an expression for the quinol production rate W is derived in terms of the stoichiom-

etry and the light intensity. The result is: [35; 36]

2W (s0, I) =
γA(s0, I)

2
+

1

B(s0)

(
1 +

λD
λ0c

)

+

√(
γA(s0, I)

2
+

1

B(s0)

(
1 +

λD
λ0c

))2

+
γA(s0, I)

2B(s0)
(3.22)

where B(s0) = τRC(s0)(A1 + s0A2). Figure 3.6(b) compares contour curves of W as

a function of light intensity and stoichiometry with real-world membranes grown under

different light intensities and displaying different ratios of LH2 to LH1 complexes [26;

131]. The agreement is remarkable and predicts that the vesicle could express extreme

values of stoichiometry for very low light intensity conditions.

3.5 Implications of photon arrival statistics

The validity of the model allows us to investigate potential implication of statistical vari-

ables on the overall dynamics of the system. Let us consider the statistical properties of

photon arrival to the photosynthetic membrane (input) together with those of the quinol

production in the RC (output). Following Ref. [37; 132] the focus is on two statistical

properties to characterize the output of quinol production φ(t) from the reaction centers.

The specific focus is the burstiness B and memory M of this time-series γ(t) [133]. A
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Figure 3.7: Schematic diagram showing the process of photosynthetic harvesting of inci-

dent light (e.g. sunlight or other alien light source) which is a priori temporally correlated.

Our results analyze how these correlations in the incident light affect the ultrafast physics

up to, but not including, the slow chemical processes following reaction center conversion.

Excitations (excitons) are produced (γ(t)) and migrate across a large network containing

light-harvesting complexes. Excitations are then processed at reaction centers (RC) pro-

ducing quinol output (φ(t)) for chemical metabolism.

Poisson process corresponds to (M,B) ≈ (0, 0) which is the approximate result expected

for photosynthetic organisms which live (and hence survive) on Earth. Values of B and M

that deviate significantly from (0, 0) correspond to a quinol production that is very differ-

ent from that experienced by the organism on Earth, and hence would likely kill it [37].

Recently, there have been observations of extreme value statistics in phenomena such as

optical Rogue waves and coherent anti-Stokes Raman scattering in silicon [134]. These

sources emerge from physical processes allowed throughout the universe and they are not

restricted to a BM value close to zero, hence they open new roads of research.
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Figure 3.8: Time series characterized by different BM measures. (a) Long inter-event times are

followed by short and vice-versa. (b) Periodic series. (c) Two state model. In active state the system

generates events at a higher rate than the inactive state. The system changes from active to inactive

randomly. (d) Poisson process.

3.5.1 Burstiness and memory

The temporal characteristics of both the input photon arrival and the quinol output are

quantified using the two statistical measures B and M , which were introduced in Ref.

[133] and employed in references [37; 132]. A random process is characterized by a time

independent probability for events (e.g. photon absorption) to occur. The inter-event time

Δt between consecutive events obeys a Poisson distribution. The burstiness B measures

how far a distribution is from that emerging out of a Poisson process, i.e.,

B ≡ (σΔt −mΔt)

(σΔt +mΔt)
(3.23)

where mΔt and σΔt are the mean and standard deviation of the inter event time series, re-

spectively. For a Poisson process the mean is equal to the standard deviation, therefore a

Poisson process presents zero burstiness B. Periodic signals present small standard devia-

tion that yields to a burstiness value of −1. The memory M between consecutive intervals
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is defined as:

M ≡ 1

(nΔt − 1)

nt−1∑
i=1

(Δti −m1)(Δti+1 −m2)

σ1σ2
, (3.24)

where nΔt is the number of intervals and m1(2) and σ1(2) are the mean and standard devi-

ation of the Δti(Δti+1)’s respectively (i = 1, ..., nΔt−1) [133]. As an illustration, Fig.3.8

illustrates four different artificial time series that yields to different values ofB andM mea-

sures. Series (a) is constructed so that a short inter-event time is followed by a long one and

subsequently followed by a short one again. This series generates both B and M measures

negative. Series (b) is periodic, therefore presents M near to one while B close to −1.

Series (c) corresponds to a two state model proposed on Ref.[133] where the ground state

excecutes independent events with long inter-event times while the excited state performs

correlated events with higher frequency. The system changes from ground (excited) state

to excited (ground) state with an independent (correlated) probability. The resulting series

is therefore bursty (positive B) but memoryless. Finally, series (d) represents a Poisson

process whose values of B and M lie near to zero.

3.5.2 Potential survivability under extreme light

Although some inputs may have values of B and M that are very different from zero, and

hence very unlike the experience on Earth, the quinol production output may end up lying

very close to (B,M )≈(0, 0). This arises from the non-linearity of the membrane processing

of excitations (Fig. 3.7) which signals potential survivability of the corresponding organ-

ism under these extreme alien light conditions.

Figure 3.9 shows an updated version of our preliminary results from Ref. [37]. It iden-

tifies the regions in the B −M space that fulfill the requirement of survivability. As an
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Figure 3.9: BM measurements for two types of photon arrival time series: bunched (a) and power

law (b). The large colored circles are the BM values for the input while the trajectories represent

the quinol production output for different values of RC closed time τRC . The gray regions are

forbidden for the specific input time series. The red region shows the values where the output for

the organism is bursty and likely to be too toxic. The white region produces output trajectories close

to zero within the margin of 0.05 (orange square), and therefore correspond to survival in principle,

i.e. these are the regions of survivability.
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illustration, we have chosen the bunched (a) and power law (b) input for the photons be-

ing absorbed (see Fig.3.7). The circles represent B − M values for the incident photon

absorption time series (input), while the trajectory of the same color illustrates the quinol

production output for different values of closed time τ . We assume that all (or a constant

fraction) of the arriving photons get absorbed and hence that the time series of absorbed

photons is statistically equivalent to that of the incident light. The gray region represents

the forbidden values of B and M for this type of time series. The red region illustrates the

region in the B −M plane where the output is bursty and therefore potentially damaging

for the metabolism of the photosynthetic organism. The white region shows the region

where the quinol production output resembles the one on Earth and therefore the survival

of the bacteria. The time series are generated in such a way that they preserve the average

intensity regardless of their inter-event statistics, hence preserving the temperature of the

system.

Our results in Fig.3.9 confirm that even though certain inputs of incident light may be very

unlike that experienced by photosynthetic bacteria on Earth, their metabolic quinol pro-

duction output may end up lying very close to that required for survival. The reason lies

in the non-linearity of the membrane processing of excitations (Fig. 3.7). This means that

they could potentially survive under these extreme alien light conditions. We hope our

results encourage the experimental study of bacteria under such unusual light sources as

characterized by their temporal correlations.
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3.6 Summary of chapter 3

In this chapter the problem of light harvesting in bacterial organisms has been introduced.

An overview of the photosynthetic process was presented where details about the structure,

functionality and environmental effects were explained. Subsequently, a detailed micro-

scopic model for bacterial photosynthesis was bestowed. It accounts for light absorption,

excitation transfer, dissipation and RC cycling for large architectures and arbitrary light

intensity and statistics. The model is able to explain the chromatic adaptation of photosyn-

thetic vesicles under different light intensity conditions as an interplay of excitation transfer

and RC cycling. The functionality of the model allows to exploration of potential implica-

tions of abnormal photon arrival statistics. Using the statistical measures of burstiness and

memory, extreme light sources different from our Sun, showed not to be harmful for the

photosynthetic organism. This opens the possibility for bacterial life to survive in habitats

with illumination conditions very different from Earth’s.



Chapter 4

Thermal photon spatial coherence favors photo-
synthetic life

The nature and possible uses of the quantum mechanical correlations within light, con-

tinue to generate heated debates. While the photoelectric effect establishes that light trans-

fers energy to materials through the capture of individual energy packets (photons), ex-

periments probing Bell inequalities and Hanbury-Brown-Twiss effects [135; 136] show

that photons can also exhibit highly non-trivial spatial correlations – even within natural

sunlight[137; 138; 139]. A fundamental open question concerns the extent to which Nature

might exploit such correlations[140; 141]. The study of coherent effects in biologically

relevant systems has attracted increasing attention due to the observation of long-lasting

oscillatory signals measured with time-resolved techniques [46; 47; 48; 142; 50; 49]. This

has been followed by a wave of theoretical work concentrated on these systems’ exciton

and vibrational properties, [143; 144; 145], and recently on the role of electronic coherence

in the process of light absorption [146].

Spatial correlations of thermal light have attracted attention for their nontrivial con-

sequences such as sub-wavelength interference [139], ghost imaging [147] and photon-

number correlations [147; 148]. In this chapter we explore the potential implications

48
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that spatial correlations may have in bacterial photosynthesis and the way these organ-

isms might have exploited them. With this in mind, it is considered the simplest possible

setup for a photosynthetic system: sunlight incident on N antennae complexes that can

absorb a photon and transfer the energy to neighboring complexes. Sunlight is described

as thermal light and on occasions it be could referred to as radiation from a blackbody

emitter [149]. The first two sections are devoted to the basic theory of optical coherence

where the main definitions and general formalisms are presented and limiting cases de-

scribed. Subsequently, the formalism is applied to primitive clusters of molecular antennae

where it is found that specific motif architectures, (similar to the ones found on real-world

membrane), profit from spatial coherence by maximizing the probability of photon absorp-

tion. Further analysis on arbitrary detection time demonstrates that the findings are robust

for times which are comparable and even larger than the coherence time associated to the

incoming radiation. Finally, the full photosynthetic model introduced in the previous chap-

ter is implemented to account for spatial correlations on absorbing photons. It is found

that the clustering of core complexes LH1-RC provides greater sensibility to spatial cor-

relations than disordered membranes which increases the overall photosynthetic efficiency

when compared with non correlated light.

4.1 Generalities and definitions in optical coherence theory

The theory of optical coherence is formulated to describe the properties of fluctuating elec-

tromagnetic fields [149; 121]. Optical coherence phenomena are manifestations of the

correlation between these fluctuations. Every electromagnetic field in nature presents fluc-

tuations; being phenomena of interference the simplest manifestation of correlations in
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Figure 4.1: (a) Michelson interferometer simplified setup. The source is identified as σ, D is the

beam divider, M1 and M2 are mirrors and P is the observation screen. (b) Young’s interference

experiment. A source σ with dimension Δs. A plane Q located at a distance R from the source and

has two pinholes P1 and P2. If the pinholes are close enough to the symmetry axis, fringes will be

formed at the screen P .

fluctuating optical fields. For a thermal field, fluctuations originated from a beam at some

space-time coordinate is the result of a large number of contributions which are indepen-

dent from each other, and their superposition can be described on statistical terms. Even

well established lasers present some degree of random fluctuation, given the presence of

spontaneous emission phenomena. Although optical fluctuations are not evident, appropri-

ate experiments are able to determine their existence and potential involvement on different

optical phenomena [150] (e.g. light absorption on photosynthesis).

4.1.1 Coherence time and area of coherence

Figure 4.1(a) shows a Michelson interferometer where a light beam from a quasi monochro-

matic source sigma is divided into two beams by a beam splitter denoted as D. The beam

is said to be quasi-monochromatic given that the bandwidth Δν is much smaller than the

mean frequency ν̄. The beams are then reflected on the mirrors M1 and M2 and reunited on

the screen P . If the path difference Δl = cΔt (with c being the speed of light in vacuum) is
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small enough, interference fringes are formed on P . Experiments show that the formation

of fringes is restricted by the relation ΔtΔν̄ ≤ 1. Therefore, the formation or absence of

fringes in the screen P is a manifestation of the coherence or lack of coherence of the inci-

dent field, respectively. The maximum value for the time delay Δt = 1/Δν ≡ τc is known

as the coherence time of the beam. Similarly, the maximum path difference Δl = cτc ≡ lc

is called the longitudinal coherence length.

Figure 4.1(b) illustrates another of interference experiment; the Young’s double slit ex-

periment. Consider a thermal source σ of dimension Δs radiating quasi-monochromatic

light through the pinholes P1 and P2 of the plane Q. The plane is located at a distance R

from the source and an angle of Δθ characterizes the separation between P1 and P2 with

respect to the source. If the distance between the pinholes P1 and P2 is much smaller than

R, fringes are observed at the screen at the axial point P . This phenomena is said to be

a manifestation of the spatial coherence between two light beams at P from the pinholes

P1 and P2. It is found experimentally that if R is large enough, fringes are formed at P if

ΔθΔs ≤ λ̄, where λ̄ is the mean wavelength of the incoming field. This implies that the

region on the plane Q where the pinholes P1 and P2 must be located cannot exceed an area

ΔA given by ΔA ∼ (RΔθ)2. This region is known as the coherence area associated to the

source [149].

The area of coherence associated to sunlight is estimated to be ΔA ≈ 3.67 × 103μm2,

by Wolf et.al. [151]. This is compatible with the estimate of its coherence length rc ∼

�c/kBT ∼ 400nm for blackbody radiation at the Sun’s surface temperature T � 5700K.

Photosynthetic membranes lie within this length-scale range, therefore they are expected
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to experience the effects of spatial coherence. The striking question is how they cope with,

adapt to and even profit from, such correlations in the incident light.

4.1.2 Coherence function and degree of coherence

Let us now consider that the pinholes P1 and P2 of Figure 4.1(b) are located at the coordi-

nate �r1 and �r2, respectively. The fluctuating field V (�r, t) (e.g. a cartesian component of the

electric field) at a point �r on the screen P can be expressed as a superposition of the fields

originated in the pinholes as [149]

V (�r, t) = K1V (�r1, t− t1) +K2V (�r2, t− t2) (4.1)

where ti is the time needed for the light to go from the pinhole Pi to the screen P , and

Ki is a constant factor that depends on the geometrical properties of the pinhole i. The

instantaneous field intensity at the point P is defined as

I(�r, t) = V ∗(�r, t)V (�r, t). (4.2)

The ensemble average intensity associated to the field in the point P , under the assumption

of ergodicity and stationarity is given by

〈I(�r, t)〉 = |K1|2〈I(�r1, t)〉+ |K2|2〈I(�r2, t)〉

+2Re{K∗
1K

∗
2Γ(�r1, �r2, t1 − t2)} (4.3)

where the function Γ(�r1, �r2, t1, t2) is the cross-correlation function associated to the random

process V (�r1, t) and V (�r2, t) defined as

Γ(�r1, �r2; t1, t2) = 〈V ∗(�r1, t1)V (�r2, t2)〉 (4.4)
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The cross correlation function is called the mutual coherence function and it constitutes the

central quantity on the elementary theory of optical coherence. It is convenient to define

the normalized cross correlation function

g(�r1, �r2, t1 − t2) =
Γ(�r1, �r2, t1 − t2)

[〈Γ(�r1, �r1, 0)〉]1/2[〈Γ(�r2, �r2, 0)〉]1/2

=
Γ(�r1, �r2, t1 − t2)

[〈I(�r1, 0)〉]1/2[〈I(�r2, 0)〉]1/2 . (4.5)

This quantity is called the second order degree of coherence associated to the field vi-

brations at the points P1(�r1) and P2(�r2). For any set of values of �r1, �r2 and t1 − t2,

|g(�r1, �r2, t1 − t2)| is defined only within the interval [0, 1].

4.1.3 Functional formalism for photoelectric counting distribution

Investigations of the statistical behavior of fluctuating light beams are done through photo

counting statistical techniques [152; 153; 154]. The photo count distribution can be ob-

tained from the momentum generating function. Consider an incident radiative random

field over a set of N detectors located at single points �r1, �r2, ..., �rN on a detection time in-

terval τ . The multidimensional generating function associated to an incident field can be

written as [152]:

G(s1, s2, ..., sN ; τ) =

〈
N∏
k=1

exp (−skJk)
〉

(4.6)

where sk is the expanssive parameter associated to the random function Jk which is given

by

Jk = αk

∫ τ/2

−τ/2

|V (�rk, t)|2dt, (4.7)

αk is proportional to the quantum efficiency of the kth detector and the incident field on a

point �rk is V (�rk, t). The generating functionG(s1, s2, ..., sN ; τ) = G({sk}; τ) is connected
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to the joint probability P (n1, n2, ..., nN) that nk photo-excitations are registered by the k-th

detector (k = 1, ..., N ) through the relation [152; 153]

P (n1, n2, ..., nN) =

{
N∏
k=1

(−1)nk

nk!

∂nk

∂snk
k

}
G ({sk})

∣∣
{sk=1}. (4.8)

The average ensemble in equation (4.6) is calculated over the set of random variables

Vk = V (�rk, t). The probability functional W [V ∗
1 , V

∗
2 , ..., V

∗
N , V1, V2, ..., VN ] = W [V ∗, V ] is

therefore 2N dimensional, and the multidimensional generating function is given by

G(s1, s2, ..., sN ; τ) =

∫
W [V ∗, V ] exp

(
−

N∑
l=1

slαl

∫ τ/2

τ/2

V ∗
l Vldt

)
N∏
l=1

dV ∗
l dVl. (4.9)

It is convenient to work with the characteristic function Φ, which is known for some fields

and under some conditions, it represents the 2N dimensional Fourier transform of W . The

general form is

Φ[ζ, ζ∗] = exp

{
i

∫
ζ(�r, t)V ∗(�r, t)d�rdt+ i

∫
ζ(�r, t)∗V (�r, t)d�rdt

}
(4.10)

The function ζ(�r, t) is then a complex vector field whose Fourier expansion contains posi-

tive frequency amplitudes. For a set of N point detectors, we choose ζ(�r, t) to be

ζ(�r, t) =
N∑
k=1

δ(�r − �rk)ζk(t), (4.11)

where the function ζk(t) vanishes outside of the interval (−τ/2, τ/2). The probability

functional W can therefore be written in terms of its inverse Fourier transform as

W [V ∗, V ] =

∫
Φ[ζ, ζ∗] exp

(
−i
∑
k

(ζk, V
∗
k )− i

∑
k

(ζ∗k , Vk)

)

×
N∏
l=1

d

(
ζl
2π

)
d

(
ζ∗l
2π

)
(4.12)
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where we have used the notation for scalar products

(V ∗
l , Vl) =

∫ τ/2

−τ/2

V ∗
l (t)Vl(t)dt. (4.13)

Finally, after performing the integration over V ∗
l and Vl, the final form of the multidimen-

sional generating function is

G(s1, ..., sN ; τ) =

∫
Φ[
√
α1s1ζ1, ...,

√
αNsNζN ,

√
α1s1ζ

∗
1 , ...,

√
αNsNζ

∗
N ]

× exp

(
−

N∑
k=1

(ζk, ζ
∗
k)

)
N∏
l=1

d

(
ζl
2π

)
d

(
ζ∗l
2π

)
. (4.14)

For a stationary thermal field, the characteristic functional is given by [152]

Φ[ζ, ζ∗] = exp

{
−

N∑
k,l=1

∫ τ/2

−τ/2

ζk(t1)Γk,l(t1 − t2)ζ
∗
l (t2)dt1dt2

}
(4.15)

where Γk,l(t1 − t2) = 〈V ∗
k (t1)Vl(t2)〉 is the mutual coherence function. It is convenient to

define the kernel

Dk,l(t1 − t2) =
√
skαkΓk,l(t1 − t2)

√
slαl + δk,lδ(t1 − t2) (4.16)

and the generating function takes the following form

G(s1, ..., sN ; τ) =

∫
exp

{
−1

2

N∑
k,l=1

∫ τ/2

−τ/2

∫ τ/2

−τ/2

ζk(t1)Dk,l(t1 − t2)ζ
∗
l (t2)dt1dt2

}

×
N∏
l=1

d2
(

ζl√
2π

)
(4.17)

The integration results on the inverse of the determinant of Dk,l that corresponds to the

product of the inverse of the eigenvalues of the following set of integral equations

N∑
l=1

∫ τ/2

−τ/2

√
skαkΓ

∗
k,l(t1 − t2)

√
slαlφ

(μ)
l (t2)dt2 + φμ

k(t1) = λμφ
(μ)
k (t1), k = 1, ..., N

(4.18)
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And the final form for the generating function associated to thermal light can therefore be

written as

G(s1, ..., sN ; τ) =
∏
μ

λ−1
μ . (4.19)

4.2 Fully coherent limit and incoherent limit

The generating function can be calculated explicitly if we consider photo-excitations aris-

ing in a time interval (τ ) that is shorter than the coherence time of the light (τc). However,

our main findings are robust to detection times that are a factor of 10 or more higher than

τc. Under this condition on τ the integral equation (4.18) can be solved explicitly given that

the functions do not change considerably within the interval [−τ/2, τ/2]. The generating

function can be expressed as:

G({sk}; τ) = |ΔN |−1
(4.20)

with |ΔN | being the determinant of the N ×N matrix

(ΔN)i,j = δi,j +
√
〈ni〉sigi,j

√
〈nj〉sj. (4.21)

The second-order degree of coherence associated to thermal light between detectors located

at �ri and �rj is gi,j and 〈ni〉 is the average number of photo-counts at the i-th-detector. The

latter is directly connected with the mean intensity through the relation 〈ni〉 = αi 〈Ii〉 τ ,

where αi is the quantum efficiency of the i-th-detector. It is known from Rsp. photomet-

ricum purple bacteria [107], which are among the first examples of photosynthetic mem-

branes formed on Earth, that a typical � 200 nm wide photo-receptive harvesting vesicle

will be entirely contained inside the coherence area of sunlight.
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The probability of detection of n photons regardless of the specific counting record of

any individual detector:

P (n) =
∑
{ni}

δ

(
n−

N∑
i=1

ni

)
P (n1, n2, ..., nN) (4.22)

which can be formally obtained from Eq.(4.21)) by putting 〈ni〉 si → 〈n〉s, yielding to

P (n) =
(−1)n

n!

∂n

∂sn
{det ∣∣1̂ + 〈n〉 s ĝ∣∣}−1

s=1 (4.23)

where 1̂ and ĝ are the identity and the second-order degree of coherence N × N matri-

ces, respectively. Two limiting cases illustrate the important impact of spatially correlated

photons.

4.2.1 Full spatial coherence

This limit is characterized by situations where the area contained by theN antennae is much

smaller than the coherence area of the thermal light (gi,j = 1 for any pair of detectors). For

this limit we obtain:

P (n) =
(−1)n

n!

∂n

∂sn

[
1

1 +N 〈n〉 s
]
s=1

=
ñn

(1 + ñ)n+1
(4.24)

which corresponds to the Bose-Einstein distribution (BED) for an average photon number

ñ = N 〈n〉, a single parameter distribution Pñ(n).

4.2.2 The totally uncorrelated limit

At this limit the second order degree of coherence yields to the N × N identity matrix

(gi,j = 0 for any pair of detectors, i �= j), and corresponds to situations where the distance
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between any pair of detectors is larger than the spatial coherence length of the thermal light.

The result is

P (n) =
(−1)n

n!

∂n

∂sn

[
1

(1 + 〈n〉 s)N
]
s=1

=

(
N + n− 1

n

)(
1

1 + 〈n〉
)N ( 〈n〉

1 + 〈n〉
)n

(4.25)

which is the so-called negative binomial or Pólya distribution (a two parameter distribution

PN,〈n〉(n)) with
(
a
b

)
denoting a binomial coefficient. Notice that in theN = 1 case Eq.(4.25)

reduces to Eq.(4.24), i.e. a BED with ñ = 〈n〉, as it should be since a single point detector

is always within the thermal coherence area for any finite coherence length. On the other

hand, Eq.(4.25) can be rewritten as

PN,ñ(n) =
ñn

n!

Γ(N + n)

Γ(N)(N + ñ)n

(
1 +

ñ

N

)−N

(4.26)

which in the limits N → ∞ and 〈n〉 → 0 with ñ = N 〈n〉 = constant, reduces to the

Poisson distribution

Pñ(n) = lim
N→∞

PN,ñ(n) =
ñn

n!
e−ñ (4.27)

again, a single parameter distribution. A Poisson distribution of detected photons in pho-

tosynthetic membranes has been always taken for granted. However, this assumption must

be seen as highly questionable when thermal light is used and the area spanned by the set

of point detectors is smaller than the coherence area of the radiation field (specially for

counting times smaller than or of the order of τc for which biochemistry individual pro-

cesses in the membranes occur). According to Ref. [155] the mean photon number 〈n〉
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Figure 4.2: Probability of detection of one photon P (1) as a function of (a) intensity 〈n〉 for

a cluster of N = 100 molecular antennae, and (b) number of molecular antennae (N ) for

a fixed intensity (〈n〉 = 0.4). Red lines correspond to full spatial coherences, i.e. gi,j = 1.

Black lines correspond to no spatial coherence, i.e. gi,j = 0 with i �= j. Dashed lines

indicate the crossing point of the fully coherent and incoherent description at (a) 〈n〉 = 0.03
and (b) N = 7. Insets show the probability for detecting pairs, P (2).

in a coherence volume of thermal light (blackbody radiation) is of the order of 1, showing

that thermal light is on the borderline between classical and quantum regimes. The fact

that the probability distribution with full spatial coherence is greater than that of no spatial

coherence (see Fig. 4.2) across essentially the full range of ñ, proves that the coherence of

sunlight will increase the photon detection.

Figure 4.2 shows explicitly how the incident light’s spatial correlations impact the prob-

ability of photon detection by the N molecular antennae. Different light intensities are

particular to the specific environment of the photosynthetic organism. For example, purple

bacteria Rsp. photometricum initiates specific light intensity adaptations when subject to

growth intensity variations [35; 36; 26] from 10 to 100 W/m2 in laboratory. However, the

light intensities in natural environment can decrease as low as 1 W/m2. For small light

intensities (〈n〉 > 0.03 in Fig. 4.2(a)) and for molecular antennae that are clustered within

the coherence radiation area as in realistic photosynthetic membranes (N > 7 in Fig. 2(b)),
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the probabilities for 1 and 2-photon detection are consistently higher for spatially coherent

light than for fully incoherent light. These probabilities are also fairly insensitive to fluc-

tuations in 〈n〉 and N and hence offer robustness protection to the underlying membrane

against atmospheric variations and the recurrent photo-bleaching of pigments.

4.3 Primitive clusters of molecular antennae

To analyze the effect of spatial coherence on simple antennae architecture motifs, the ex-

pression for the second order degree of coherence associated to thermal light as registered

by detectors located at �ri and �rj , gi,j , is given by [154]

gi,j =
2J1(ui,j)

ui,j
(4.28)

where J1(k) is the Bessel function of the first kind, ui,j = κ|�ri − �rj| is the effective ratio

between the detectors’ separation and the spatial coherence length, where κ depends on the

average wavelength, the size of the source and the source-detector separation. Figure 4.3

illustrates the photo-count statistics for a configuration of five detectors and three values

of light intensity. The configuration consists of three molecular antennae in an equilateral

triangle and a fourth one at the center. The probabilities of detecting n = 1, 2, 3 and 4

photons are calculated as a function of the position of the fifth detector.

The configuration of photo-detectors (Fig. 4.3) that maximizes the probability of ab-

sorbing a specific number of photons, is remarkably similar to the honeycomb architecture

found in several species of purple bacteria [156; 122; 124; 126], completely analogous

to the hexagonal unit cell ’honeycomb’ configuration. The number of photons n, whose

probability is maximized, is directly related to the light intensity. Importantly, for low in-

tensity (〈n〉 = 0.5), the honeycomb architecture maximizes the probability of detecting one
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Figure 4.3: Results from numerical evaluation of the full joint probability for N = 5
molecular antennae. The value of P (n) is plotted as a function of the position of the

5-th detector in the x-y plane, with the remaining 4 detectors fixed in space (large black

dots). Results are shown for spatially coherent light at low intensity (a-d), medium intensity

(e-h) and high intensity (i-l). Similar results follow for different geometries (see SI). The

dimensionless distance between nearest neighbor detectors is fixed to u = 1 (see Eq.(4.28))

and all distances in the x− y plane are measured in terms of this inter-detector distance.
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Figure 4.4: Spatial coherence effects on a system presented in Fig.4.3. Probability of

detecting n = 1 photon is shown as a function of the position of the fifth detector for

radiation whose intensity is proportional to 〈n〉 = 0.5. (a) With spatial coherence. (b) No

spatial coherence.

photon (Fig 4.3.[a]). Similarly, for medium (〈n〉 = 1) and high (〈n〉 = 2) light intensity,

the honeycomb architecture maximizes the probability of detecting two (Fig 4.3.[f]) and

four photons (Fig 4.3.[l]) respectively. This suggests that for a given light intensity, the or-

ganism positions antennae detectors such that the spatial coherence can better support the

metabolic needs by either maximizing absorption or protecting the membrane from dam-

age due to overexposure. For example in environments where the light intensity is high,

an organism could express a non-symmetric architecture as a defense mechanism from the

light – while for low light intensity environments, the system could express a symmetric

architecture (e.g. honeycomb) in order to maximize the absorption of incoming photons.

Intermediate configurations could maximize the absorption probability of a specific num-

ber of photons given the metabolic needs of the organism. These statements are consistent

with the observed chromatic adaptation of the antennae complexes to the light intensity

during the growing stage [26; 122]. However, our findings suggest that the photosynthetic
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apparatus adapts to both the incident light’s intensity and correlations. By contrast, in the

case of no spatial coherence, there is no preferred position for the fifth detector and hence

the light offers no guiding organizational principle as shown in Fig. 4.4.

4.4 Arbitrary detection times

The previous results were calculated under the assumption of detection times τ shorter

than the coherence time of light τc. Here we extend the conclusions obtained previously

for systems where the underlying assumption does not necessarily apply. To that end we

consider that the radiation generated by the superposition of beams preserve the spectral

distribution of the original source. This property is known as cross spectral purity [152;

153] and allows to further simplify the set integral equations (4.18). The coherence function

can be separated into a product of the spatial contribution and the temporal contribution.

gi,j(t− t′) = gi,j(0)g(t− t′) (4.29)

gi,j(0) = 〈Ii〉−1/2 〈Ij〉−1/2 Γi,j(0). (4.30)

Using this condition and introducing the matrix Bk,l =
√
skαk 〈Ik〉gk,l(0)

√
slαl 〈Il〉, the

equation (4.18) yields to:

L∑
l=1

Bk,l

∫ τ/2

−τ/2

g(t1 − t2)φ
(μ)
l (t2)dt2 + φ

(μ)
k (t1) = λμφ

(μ)
k (t1). (4.31)

A unitary transformation to the matrix Bl,k brings it to its diagonal form where each diag-

onal element constitutes an eigenvalue bk of Bl,k

N∑
m,n=1

Uk,mBm,nU
−1
n,l = bkδk,l (4.32)
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Multiplying by Uk,m to the left of (4.31), introducing an identity operator
∑N

n=1 U
−1
n,l Un,l to

the left of Bk,l, and summing over m, the equation (4.31) results in

bk

∫ τ/2

−τ/2

g(t1 − t2)ψ
(μ)
k (t2)dt2 + ψ

(μ)
k (t1) = λμψ

(μ)
k (t1) (4.33)

where

ψ
(μ)
k (t) =

N∑
l=1

Uk,lψ
(μ)
l (t), k = 1, ..., N (4.34)

The temporal dependence of (4.33) is 1-fold, therefore the eigenvalues can be expressed as

λμ = 1 + ωνbk, where ων’s are the eigenvalues of the 1-fold temporal integral equation

∫ τ/2

−τ/2

g(t1 − t2)fν(t2)dt2 = ωνfν(t1), (4.35)

and the eigenfunctions fν(t) are proportional to ψk(t) by a time independent vector ψk.

The generating function (4.19) is therefore written as a double product

G(s1, ..., sN ; τ) =
∏
ν

N∏
k=1

(1 + ωνbk)
−1 (4.36)

Notice that in the case where the detection time τ is much smaller than the coherence time

of incoming light τc, the integral equation (4.35) yields to a single eigenvalue ων = τ ,

hence the generating function is fully determined by the spatial contribution of the kernel

which is equivalent to Eq.(4.20).

G(s1, ..., sN ; τ) =
N∏
k=1

(1 + τbk)
−1 = [det|1̂ + s 〈n〉 γ̂|]−1, (4.37)

where 1̂ and γ̂ are the N × N identity and second order degree of coherence matrix, re-

spectively. Let us now consider a particular case where the thermal source is characterized

by a Lorentzian of line width 1/τc whose kernel is given by

g(t, t′) = exp[−|t− t′|/τc]. (4.38)
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Figure 4.5: Comparison between numerical approximation (symbols) and exact result

(solid line) for the generating function for the case of a single detector, (N = 1). The

parameter νmax is the number of terms evaluated in the product over ν of the equation

(4.36). Parameters: β = 1 and 〈n〉 = 2.

For this kernel, it can be shown that the eigenvalues ων of the equation (4.35) are given by

[157]

ων =
2βτ

β2 + 4χ2
ν

, β ≡ τ/τc, (4.39)

where χν are the roots of the transcendental equations χν tanχν = β/2 and χν cotχν =

−β/2. For the simple case of one detector (N = 1), the generating function takes the

compact form [152; 153]

G(s; β) =
eβ

cosh z + sinh z( β
2z

+ z
2β
)
, (4.40)

where z = (2β 〈n〉 s+β2)1/2 and 〈n〉 = α 〈I〉 τ is the mean number of detections on a time

interval τ . In this way the generating function is fully determined by the parameters β and

〈n〉. For an arbitrary configuration of detectors, a numerical calculation is more suitable if

we are looking for finite and nonzero values of β. For the limit of large β, the roots χν can

be approximated to integers multiples of π/2, and the generating function can be calculated

explicitly as

G(s; β) =
N∏
k=1

β sinh βcsch
√
β2 + 2βτbk√

β2 + 2βτbk
, (4.41)
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P (n) Exact νmax = 5 νmax = 10 νmax = 103

P (0) 0.248552 0.271604 0.259346 0.248652

P (1) 0.260658 0.260819 0.260961 0.260663

P (2) 0.187893 0.181122 0.184725 0.187863

P (3) 0.119955 0.113937 0.11707 0.119928

Table 4.1: Probability values associated with the detection of n photons by one detector.

Values calculated by an exact calculation and numeric approximations for different number

of terms on the product of equation (4.36). Parameters: β = 1, 〈n〉 = 2 and N = 1.

and taking the limit for β → ∞, the expression takes the well known Poisson generating

function

G(s; β) =
N∏
k=1

e−τbk = e−s〈n〉N . (4.42)

At this limit, the probability distribution only depends on the number of detectors N in-

dependent from their location in space. For finite non-zero values of β it is required to

construct the set χν and numerically calculate the generating function.

On the other hand, for the case where the coherence time of light and the detection time

are comparable (β ≈ 1) we need to use the formal expression given by Eq.(4.36) with the

appropriate coefficients ων given by Eq.(4.39). Since the analytic solution is known for the

case of N = 1, we could estimate the number of zeros of the transcendental equation to

accurately calculate ων . Figure 4.5 compares the exact generating G(s; τ) and numerical

approximations for the particular case of β = 1 and 〈n〉 = 2. The number of coefficients

required to obtain a good estimate for the generating function is 1000. Larger values of β

require larger number of coefficients. Table 4.1 shows the numerical values of the proba-

bility of detecting n = 0, 1, 2, 3 photons from the different approximations.

Figure 4.6 summarizes the finding of the effects of spatial coherence on photo-count statis-

tics for different values of detection time β. For simplicity, it is presented the curve of the
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increment on the probability of detecting 1 photon by the configuration if the fifth detec-

tor lies on a line at y = 1 as defined in Fig.4.6(a). Notably, the triple maximum effect

observed previously which supports a honeycomb architecture as optimal, is preserved for

finite values of β which gives robustness to the original result. However, the increment

in β results on a reduction on ΔP (1) as shown in Fig.4.6(b). This is consistent with the

result for the limit of β → ∞ where the Poisson limit was found. In addition, it provides

a temporal measure on which coherent effects are relevant for the system only if it is fully

contained on the area of coherence of light. The small effects on the probability should not

be considered negligible since it is known that even small increments on overall measures

(e.g. photosynthetic efficiency) could be determined in order to keep the metabolic cycle.

These results are consistent with architectures found in real species that are particularly

grown under low light intensity conditions (extreme environments).

4.5 Full architecture model

Having established the impact of light’s spatial coherence for highly primitive geometric

motifs, we examine results for actual architectures in purple bacteria (e.g. Fig. 3.4(b) cor-

responding to Rsp. Photometricum). We consider a simple model for photo-bunching by

spatially correlating the absorption of two consecutive photons by the photosynthetic mem-

brane. The maximum transverse distance between antenna complexes where two consec-

utive absorptions occur, is defined as r. The site is determined stochastically with specific

probabilities weighted by the complex’s cross section based in turn on an individual pig-

ment’s cross-section which yields to 2.32 Å2. When the neighborhood’s radius r is large

enough to cover the whole membrane, we recover the limit of random arrival.
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Figure 4.6: Variation in the photo-detection probability P (n = 1) (ΔP (1) as defined in (a)) for a

configuration of four fixed detectors arranged on an equilateral triangle (black dots) as a function of

the location of the fifth detector, for different values of β � 1, β = 1, 10, 102, 103. The curves (b)

illustrate the green path highlighted in the contour plot (a) for y = 1 as a function of x.
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The validity of our detailed theoretical model of the membrane’s excitation dynamics

[35; 36; 25], which inputs empirical excitation transfer times (see chapter 2), is verified

by its demonstrated prediction of structural preferences in purple bacteria as a function of

light intensity [35; 36] together with the close agreement between its output and an analyt-

ical version based on coupled Master Equations. Recent empirical work also demonstrated

its applicability in other primitive bacterial systems such as Rps. Palustris [122] and Rb.

sphaeroides [123]. The functional relevance of the correlated absorption can be quantified

in terms of the excitations that successfully initiate charge separation in the RC. After such

an event, the RC is then is closed for a few milliseconds before an available charge car-

rier establishes its neutrality within a time τRC . We calculate the relative efficiency of the

photosynthetic process as a function of the RC closure time τRC and correlation distance

r for two architectures with the same number of complexes (N = 400) and stoichiometry

(NLH2/NLH1 ≈ 8.09), but different levels of core-core clustering. The efficiency (η) is

defined as the ratio of photo-excitations that produce charge separation at an RC, to the

total number of absorbed photons. Similarly, we define the random arrival efficiency ηRA

to be the value when spatial correlations are not present. This value is equivalent to the

photosynthetic efficiency in the limit when the correlation parameter r is much greater than

the membrane length. Finally, the relative efficiency is defined as the ratio of the mem-

brane efficiency to the random arrival efficiency, η/ηRA. The clustering is quantified by

the mean number of RC-LH1 neighbors for a given RC-LH1 core complex. Consequently,

high clustering relates to high numbers of RC-LH1 complex neighbors while low clustering

means low numbers of core complex neighbors. Our calculations consider two contrasting

levels of organization: (i) High Core-Core (HCC) clustering with mean number of RC-
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Figure 4.7: Architectures of the antenna complexes (a) HCC and (b) LCC. They are ob-

tained as local minima in a large-scale Monte Carlo energy minimization, and are hence

realistic as (locally stable) minimum energy structures. Blue rings represent LH2 anten-

nae and green rings are core RC-LH1 complexes. (c) Photosynthetic relative efficiency as

a function of the correlation parameter r for architectures HCC (triangles) and LCC (cir-

cles). Dashed black line illustrates the result without light correlation. Symbols represent

the result from our model while lines correspond to the fitting of our simulation points. (d)

Analogous to (c) but for negative correlation. The RC closure time is τRC = 12.5ms.

LH1 neighbors as 3.4, which corresponds to the maximally core-core clustering observed

in Rsp. photometricum [44]; (ii) Low Core-Core (LCC) clustering which is characterized

by an average of 0.31 RC-LH1 neighbors for each core complex.

Figure 4.7(c) shows the striking result that for high core-core (HCC) clustering, the

structure benefits from the specific range of correlation distances within the incident sun-
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light. The left panel illustrates the LHC network for our two sample architectures: HCC

(Fig.4.7(a)) and LCC (Fig.4.7(b)) while the right panel displays their photosynthetic rela-

tive efficiencies from our model. By contrast, there is no such peak enhancement for the

membrane with LCC clustering. Our simulation uses an RC closure time of 12.5ms, in

agreement with the average time for quinone release [158]. However we have shown that

values up to 50ms preserve this peak enhancement. This novel finding suggests that the

organism may group the core-complexes to make the most of the spatial correlations in

the incoming light. In particular, our simulations reveal that the aggregation of core com-

plexes reduces the lifetime of excitations that produce charge separation on the RC, which

indicates a reduction in the number of complexes visited before ionization takes place.

Therefore, LH1-RC core aggregation helps reduce the mean path of excitations and hence

their probability of being dissipated. This could indeed be the case for Rb. blasticus and

Rb. sphaeroides[125; 124] where the presence of the helix protein PufX induces dimer-

ization of core-complex [127], as well as Rsp. photometricum[44] and R. rubrum [126].

We have checked that other incident light inputs with different inter-photon arrival time

statistics (e.g. Poisson, power-law and periodic) but the same light intensity, show minimal

difference – hence the effect is purely spatial nature. For negative spatial correlation in the

incident light (i.e. opposite of natural sunlight), the peak disappears as shown in Fig.4.7(d).

As mentioned above, the increment in efficiency showed on Fig. 4.7(c) should not be con-

sidered as negligible. It has been demonstrated that on these organisms large structural

variations occurred as a result of ’small’ metabolic benefit. For instance, Rsp. acidophilia

which, under low illumination condition, is known to gradually replace complexes LH2 by

LH3 whose absorption maximum is shifted to 820nm. This modification increases the fun-
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neling toward LH1 and hence increasing its efficiency. However, this expensive structural

adaptation yields to only 3-4% of increment [106].

These results also speak to open questions about the purpose of membrane organization

[125; 156; 159], showing that it allows the system to harvest not only the light’s energy,

but also to profit from its spatial correlations. While other energetic and metabolic factors

may ultimately dictate a given membrane’s architecture in a given environment, this work

shows for the first time that spatial correlations in sunlight potentially play a key role, and

should not be ignored.

4.6 Summary of chapter 4

This chapter provides quantitative evidence that (i) the organization of the antennae com-

plexes within a photosynthetic membrane complements the spatial correlations naturally

present in sunlight; (ii) either an ordered or disordered antennae structure is favored de-

pending on the availability of light and its metabolic needs, yielding high-efficiency photon

absorption for low light-intensity environments and protection for high light-intensity en-

vironments; (iii) the macro-molecular aggregation of harvesting structures displays a high

sensitivity to spatial correlations which then affects the exciton migration and subsequent

change separation at the reaction center (RC); (iv) high core-core clustering membranes

yield an enhancement of the photosynthetic efficiency that is not observed for membranes

with low core-core clustering; (v) the complementarity between the spatial correlations

in the incident light and the evolved biomaterial structure not only enhances photon cap-

ture and efficiency, but can also guide the organization (Fig 3.4.[a]) and types of antennae

(Fig 3.4.[b]) to better serve the organism’s metabolic needs. Previous work has discarded
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spatial correlations in the incident light as negligible and hence overlooked these five con-

sequences.



Chapter 5

Character-driven transition in dynamical group-
ing

The understanding of emerging collective phenomena is a challenge encompassing disci-

plines such as physics, chemistry, economics and social sciences [51; 52; 53; 54; 55; 56;

57; 58]. Whether the individual objects are particles, proteins or people, the impact at the

macro-scale is determined by their evolution as aggregates or isolated individuals [57; 58;

160; 60; 161; 162; 63]. Phenomena of super-radiance results from the coherent coupling

of two-level systems with a bosonic model [163]; several neuro-degenerative diseases are

driven by protein aggregation [164]; large market movements are driven by traders’ herd-

ing [24; 165; 166]; insurgencies are driven by illicit human grouping [167; 168; 169; 170];

collective neuronal avalanches is an aspect of brain activity [23].

Despite the innate heterogeneity of these real-world systems, an emergent universal-

ity has been reported when looking at the size distribution of aggregates [19; 20; 167].

Specifically, a power-law with exponent of 5/2 is documented for: (i) the size distribu-

tion of pockets of superconductive coherence in fragmented materials [22]; (ii) the size

distribution of neuronal avalanches, once the probability of avalanche initiation from a ran-

dom neuron is corrected (i.e. k · k−5/2 = k−3/2[23]); (iii) the size distribution of herds of

agreeing traders and the price movements that they inflict [24]; (iv) the size distribution of

74
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insurgent groups and therefore the severity of attacks inflicted over a civilian population

[167; 170]. The challenge is to reconcile the observed universality with the innate diversity

of the individuals.

This chapter attempts to address this challenge by discussing a model of aggregation

and fragmentation of heterogeneous individuals. An internal variable called ’character’

is introduced to account for individual heterogeneity among agents. The mechanism for

breaking and forming groups is proposed be character-driven. Two contrasting mecha-

nisms are presented where either similarity or dissimilarity between individuals is favored

in order to form and break groups. It will be demonstrated (through simulations and ana-

lytic approach) that the introduction of the heterogeneity preserves the 5/2-exponent size

distribution for the different character-driven mechanisms. In addition, the group mech-

anism and the diversity distribution dictate a dynamical transition between isolation and

group cohesive regime. In particular, different critical points arise for the various group

mechanisms (favoring similarity or dissimilarity) which move in opposite direction as the

population’s diversity decreases. Finally, a combined infective-based mechanism is de-

veloped and it is shown that it correctly predicts the non-monotonic time evolution in the

connectivity of a real-world system.

5.1 Model description

Consider a system composed by N individual objects. Each object can establish a non-

directed link to any of the N − 1 remaining individuals. Connected objects form a cluster.

Over time, clusters can grow by establishing links with other clusters as well as fragment

into individual pieces (Fig.5.1). A parameter p is introduced to be the probability that a
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FragmentationCoalescence

Figure 5.1: Processes carried out by the model. Coalescence: two objects establish a link and

forming a new larger cluster. Fragmentation: a cluster shatters into individual pieces.

time step corresponds to one that an object considers to form a link with another object,

furthermore 1− p is the probability that a time step corresponds to one that an already es-

tablished link is chosen so that the whole cluster where the link belongs to may fragment.

We assume that each agent carries a unique and fixed character value x which is assigned

randomly at the beginning of the simulation. For simplicity, we consider the characters

{xi} to be real numbers uniformly distributed between 0 and 1, but in general they can fol-

low any distribution q(x). We define the similarity Si,j between objects i and j is defined

as 1 − |xi − xj|. In this way, objects with character values alike have Sij near unity while

objects with character values dissimilar (or complementary) produce Sij near zero.

Character-based group formation is studied. For this reason the probabilities of coales-

cence (c) and fragmentation (f ) depend directly on the similarity. We study four types of

formation mechanisms that favor similarity, complementarity, intermediate and character

free models. The initial conditions are set so that all the N objects are isolated. A flow

diagram applicable to all the model variations is presented in Fig.5.2.
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Type of timestep

Coalescence Fragmentation

Randomly select actors i and j

A new link is established 
between i and j

Nothing 
happens

An existing link is randomly selected

The whole cell that 
belongs to dissolves

Nothing 
happens

( ) 1 ( ) ( ) 1 ( )
= +

1   

Figure 5.2: Flow diagram describing the formation and fragmentation process of our model in-

cluding heterogeneity among the abjects.

5.1.1 Mechanism favoring similarity (M1)

For timesteps in which clusters coalesce: An object i is picked randomly from the collec-

tion of N objects. The object i can be part of a cluster or can be isolated. Similarly, a

second object j is picked randomly from the collection. With a probability c = Sij , a new

link is established between object i and object j and hence a new cluster is created. The

size of the new cluster is the sum of the sizes of the clusters that object i and object j belong

to. If the objects were isolated, the new cluster’s size is two. A link between object i and

object j will not be formed with a probability of 1−Sij . In turn, this mechanism promotes

connection between objects with similar characters.

For timesteps in which clusters fragment: An existing link is randomly chosen. The end

objects of that link contain character values xi and xj . With a probability of f = 1 − Sij

the whole clusters where the link belongs to fragments. With a probability of Sij the clus-
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ter will not fragment. Here, the similarity serves as a measure of the link’s strength. A

connection between actors with different character values is weak and hence easy to break.

5.1.2 Mechanism favoring complementarity (M2)

For timesteps in which clusters coalesce: An object i is picked randomly from the collec-

tion of N objects. The object i can be part of a cluster or can be isolated. In the same way,

a second object j is picked randomly from the collection. With a probability c = 1 − Sij ,

a new link is established between object i and object j and hence a new cluster is created.

The size of the new cluster is the sum of the sizes of the clusters to which object i and

object j belong. If the objects were isolated, the new cluster’s size is two. A link between

object i and object j will not be formed with a probability of Sij . This mechanism therefore

promotes connection between objects with dissimilar (or complementary) characters.

For timesteps in which clusters fragment: An existing link is randomly chosen. The end

objects of that link contain character values xi and xj . With a probability of f = Sij the

whole cluster to which the link belongs fragments. With a probability of 1−Sij the cluster

will not fragment. Now, the similarity serves as a measure of the likelihood of the link to

be broken.

5.1.3 Additional mechanisms M3 & M4

Mechanism M3 is proposed to be an intermediate set of grouping rules between M1 and

M2. Clusters are formed favoring similarity among objects, c = Sij , while the fragmenta-

tion process supports complementarity. Therefore, a connection with dissimilar character

values is strong, f = Sij . Finally, we consider a character-free mechanism (M4) where
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the objects coalesce and fragment independently from their character. The probability of

coalescence and fragmentation is in all cases equal to one (f = c = 1).

5.2 Analytic treatment

5.2.1 Mean field probabilities for coalescence and fragmentation

The analytic description is a mean field approximation. Let F be the probability that two

randomly chosen objects coalesce, while Q is the probability of fragmenting a cluster con-

taining an arbitrarily chosen link. At first approximation, the quantities F and Q are con-

stants.

Consider the model under M1 rules. For a uniform distribution of xi, the probability den-

sity function (PDF) of y = Sij , k(y) is k(y) = 2y with y ∈ [0, 1]. The probability F that

two objects will be connected is

F =

∫ 1

0

k(y)ydy =
2

3
. (5.1)

Similarly, the PDF of y associated with links is g(y) = 3y2, hence the probability Q that a

randomly selected link breaks is

Q =

∫ 1

0

g(y)(1− y)dy =
1

4
(5.2)

On the other hand, for a group under M2 rules, let us define z = 1 − Sij . The PDF

k(z) = 2(1 − z) while the PDF for links is g(z) = 6(1 − z)z, and the probabilities F and

Q are given by

F =

∫ 1

0

k(z)zdz =
1

3
(5.3)

Q =

∫ 1

0

g(z)(1− z)dy =
1

2
. (5.4)
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Figure 5.3: Distribution of links with similarity g(Sij) for M1 (e.g. kinship, shown in blue) and

M2 (e.g. team, shown in orange). Charts represent a snapshop of the numerical simulation in the

steady state for N = 104 individuals and solid curves are functions g(Sij) from the mean field

approximation.

c f pc (mean field theory) pc(numerical) F Q

M1 (e.g. kinship) Sij 1−Sij 3/11 0.10 2/3 1/4

M2 (e.g. team) 1−Sij Sij 3/5 0.51 1/3 1/2

M3 intermediate Sij Sij 9/17 0.49 2/3 3/4

M4 character-free 1 1 1/2 0.50 1 1

Table 5.1: Values associated with different grouping mechanisms.

Figure 5.3 illustrates the distribution of similarity for the group mechanisms M1 (blue) and

M2 (orange). It reflects the tendency of M1 and M2 to favor similarity and dissimilarity,

respectively. Solid lines are PDF, g(y), associated with link formation from our mean field

approach. The agreement at first approximation is noteworthy, specially for large values of

p. The differences are due to neglect of higher order correlations.

5.2.2 Distribution of size of clusters nk

The coupled differential equation for the number of clusters size k, nk, can be constructed

as follow: the two master equations are:
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For k ≥ 2,

∂nk

∂t
= −P (size k group fragments) + P (smaller groups combine to size k)

−P (size k groups joins other groups); (5.5)

while for k = 1,

∂n1

∂t
= −P (single actor joins other group) + P (big group fragments). (5.6)

Mathematically, the equation for k ≥ 2 becomes

∂nk

∂t
= −(1− p)Q

(k − 1)nk∑∞
r=2(r − 1)nr

− 2pF
knk

N2

∞∑
r=1

rnr

+ pF
1

N2

k∑
r=1

rnr(k − r)nk−r. (5.7)

The equation for k = 1 becomes

∂n1

∂t
= −2pF

n1

N2

∞∑
r=1

rnr + (1− p)Q

∑∞
k=2 k(k − 1)nk∑∞
r=2(r − 1)nr

. (5.8)

In the steady state, the left-hand side of each of these equations becomes zero. Using

∑∞
r=1 rnr = N and (k − 1)nk ≈ knk, we get from Eq.(5.7) that

knk =
pF (N − n1)

N [Q(1− p)N + 2pF (N − n1)]

k∑
r=1

rnr(k − r)nk−r

≡ γ

k∑
r=1

rnr(k − r)nk−r (5.9)
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Let g(w) =
∑∞

r=2 rnre
−wr, hence

g(w)2 =(2n2e
−2w + 3n3e

−3w + 4n4e
−4w + · · ·)(2n2e

−2w + 3n3e
−3w + 4n4e

−4w + · · ·)

=(3n1n3 + 4n2
2 + 3n1n3)e

−4w + (4n1n4 + 6n2n3 + 6n2n3 + 4n1n4)e
−5w + · · ·

− 6n1n3e
−4w − 8n1n4e

−5w − · · ·

=
4∑

r=1

rnr(4− r)n4−re
−4w +

5∑
r=1

rnr(5− r)n5−re
−5w + · · · − 6n1n3e

−4w − · · ·

=
1

γ
[2n2e

−2w + 3n3e
−3w + 4n4e

−4w + 5n4e
−5w + · · · − 2n2e

−2w − 3n3e
−3w]

− 2n1e
−w(2n2e

−2w + 3n3e
−3w + 4n4e

−4w + · · · − 2n2e
−2w)

=
1

γ
[g(w)− 2n2e

−2w − 3n3e
−3w]− 2n1e

−w[g(w)− 2n2e
−2w] (5.10)

From Eq.(5.9), 2n2 = γn2
1 and 3n3 = 4γn1n2, so Eq.(5.10) becomes

g(w)2 −
[
1

γ
− 2n1e

−w

]
g(w) + n2

1e
−2w = 0 (5.11)

For w = 0, g(0) =
∑∞

r=2 rnr = N − n1, hence we get g(0) = γN2 and

n1 = N − g(0) = N(1− γN). (5.12)

Note that γ is itself a function of n1. Equation (5.12) can be solved for n1. The solutions

are

n1 = N or n1 =
pF + (1− p)Q

2pF
N . (5.13)

The smaller root is kept as the physical solution. Under the condition that
pF+(1−p)Q

2pF
≥ 1,

i.e.,

p ≤ Q

F +Q
, (5.14)

n1 becomes N , indicating that there are only isolated actors in the system. Note that the

model undergoes a transition from a regime of isolated objects (n1 = N ) to a regime of
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cluster formation n1 = N [pF + (1− p)Q]/2pF . Since the mean field probabilities F and

Q are taken to be constant, the critical value can be determined to be pc = Q/(F + Q).

Consequently, for p ≤ pc system is on a isolation regime and for p > pc the system is on a

group cohesion regime.

Consider now the case of any general value of w. The quadratic equation Eq.(5.11) can be

solved to give

g(w) =
1

2γ
− n1e

−w ± 1

2γ

√
1− 4γn1e−w (5.15)

The solution with the negative sign in the square root is kept. Using the property that

√
1 + x =

∑∞
k=0

( 1
2
)!

k!( 1
2
−k)!

xk, we have

g(w) = − 1

2γ

∞∑
k=2

(1
2
)!

k!(1
2
− k)!

(−4γn1e
−w)k

=
∞∑
k=2

knke
−kw . (5.16)

Therefore, the group size distribution for k ≥ 2 is

nk = − 1

2γk

(1
2
)!

k!(1
2
− k)!

(−4γn1)
k (5.17)

This is the full (exact) form of the group distribution {ns}. Note that this expression also

holds for n1, i.e., plugging in k = 1 gives the previous n1. Using the property of the gamma

function,

(
1

2
− n)! = Γ

(
1

2
− n+ 1

)
=

(−1)n−12n−1
√
π

(2n− 3)!!
. (5.18)

For n = 0, (1
2
)! =

√
π
2

. The (2n− 3)!! term can be expressed as

(2n− 3)!! =
(2n− 2)!

2n−1(n− 1)!
. (5.19)
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Therefore,

1

k

(1
2
)!

k!(1
2
− k)!

=
2(2k − 2)!

(−1)k−1(k!)24k
. (5.20)

Substituting into Eq.(5.17) and using the Stirling approximation

ln(z!) ≈ 1

2
ln 2π + (z +

1

2
) ln z − z , (5.21)

we have for large k that lnnk is given approximately by the expression

k ln(γn1) + (2k − 3

2
) ln(2k − 2)− (2k − 2)

−2(k +
1

2
) ln k + 2k − 1

2
ln 2π − ln γ . (5.22)

Taking 2k − 2 ≈ 2k, we have

lnnk ≈ k ln(γn1) + (2k − 3

2
) ln(2k)− 2k

− 2(k +
1

2
) ln k + 2k − 1

2
ln 2π − ln γ

= k ln(γn1)− 5

2
ln k + 2k ln 2− 3

2
ln 2− 1

2
ln 2π − ln γ

= k ln(4γn1)− 5

2
ln k − 2 ln 2− 1

2
ln π − ln γ . (5.23)

Therefore

nk ∼ 1

4γ
√
π
(4γn1)

kk−5/2 =
N

2
√
π

p(1− pc)

p− pc

[
1−

(
pc(1− p)

p(1− pc)

)]k
k−5/2. (5.24)

This approximate result for the distribution of clusters of size k presents the power-law be-

havior with exponent −5/2 and exponential cutoff, which is consistent with the empirical

results. Therefore, introducing the heterogeneity among the objects retains the empirical

observed feature. Another key point is that the result is independent of the formation mech-

anism. Groups that are created favoring similarity, dissimilarity, intermediate or character-
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(a) (b)

Groups favor similar 
character – M1 

Groups favor dissimilar 
character – M2 

Figure 5.4: (a) Groups favoring similar character (e.e kin) illustrated by similar colors. Underneath,

group size distribution nk showing simulations (symbols) and analytical (lines) results for different

p values. (b) Same as (a) but now groups favoring diverse characters (e.g. team).
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Figure 5.5: (a) show 〈λ〉 versus p for N = 104 objects. Blue points: grouping mechanism M1

favoring similar characters (e.g. kinship). Orange points: grouping mechanism M2 favoring diverse

characters (e.g. team). Purple points: M3 intermediate between M1 and M2. Black points: M4

character-free. (b) Rate of change. Symbols on (a) and (b) are calculated numerically for an uniform

distribution of character values q(x) while the lines correspond to the fitting of our simulation points.

(c) pc for M1 (bottom, blue) and M2 (top, orange), M3 and M4 (horizontal) versus inverse standard

deviation (σ−1) of gaussian character distribution q(x) centered on μ = 0.5.
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Figure 5.6: 〈λ〉 as a function of p for a gaussian character distribution q(x) centered at μ = 0.5
and different values of standard deviation σ, the limit σ → ∞ is equivalent to the uniform character

distribution q(x). Left: M1 (e.g. kinship). Right: M2 (e.g. team). Simulations calculated for

N = 105 objects.

free tendencies are prompted to be described by our fission-fusion model. Figure 5.4 con-

trasts numerical simulations and analytic results from equation 5.24, for several values of p

and formation mechanisms M1 and M2. As seen in figure 5.3, small differences arise in the

neighborhood of the transition point pc, the agreement for large p is noteworthy. Numerical

results are averages from simulations with N = 104 objects. Each simulation is comprised

of 105 timesteps and data collected in the steady state.

5.3 Transition from isolation regime to group cohesion regime

As mentioned on the previous section, the model undergoes a transition from a regime

where all objects are isolated to a regime of group cohesion. The group cohesion regime is

characterized by a common macroscopic order; the cluster size distribution nk. Since the

critical point pc only depends on the mean field probabilities F and Q, all the mechanisms

M1-M4 experience these transition. In our simulations, the transition behavior is captured
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Figure 5.7: Regime diagram illustrating the parameter range corresponding to isolation and group

cohesion. Curved regime boundary is our mean-field analytical result p ≡ pc = Q(F +Q)−1. Di-

amonds show pc for uniform character distribution q(x). Stars show numerical results for gaussian

q(x) from Fig. 2(c). M1 blue, M2 orange. Arrows illustrate that the critical point pc for M1 moves

on the opposite direction of M2 as the diversity (σ) is reduced.
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by calculating the average number of links per object 〈λ〉 as a function of p. Figure 5.5(a)

shows that even for a uniform character distribution q(x), rich behavior emerges. As p

increases, 〈λ〉 increases from zero, indicating that groups spontaneously form from a pop-

ulation of individuals. Figure 5.5.(b) shows the corresponding rate of change. Values of

pc from mean field approach and numerical simulation are summarized in Table 5.1. The

value of pc and the shape of the curve depend on the particular mechanism, where M1 is

less abrupt and requires low values of p, while M2 requires higher values of p to create

groups. This suggests that for a population with high diversity, team formation needs to be

encouraged by externally incrementing the probability p > pc, while for kinship formation

arise naturally for very small p.

This implications could be seen more clearly by decreasing the diversity among individu-

als. Consider a character distribution q(x) that follow a gaussian distribution centered at

μ = 0.5 and arbitrary standard deviation σ. Figure 5.5.(c) and 5.6 show that pc’s indeed

shift in opposite directions, (M1 opposed to M2) as the heterogeneity of the underlying

population is reduced. Therefore, kinship groups require an even lower p to form as the

population becomes more homogeneous. By contrast, teams require an even higher p to

form, and eventually as the homogeneity increases, the population will be comprised by

mostly isolated objects.

Figure 5.7 shows the corresponding regime diagram. It marks the regions where the model

yields to isolation of individuals or group cohesion. The boundary is the analytic curve

Q/F = pc(1 − pc)
−1 from the mean field approach. Diamonds indicate the mechanisms

M1-M4 for a uniform distribution of clusters q(x). Interestingly, for a gaussian distribution

with mean μ = 1/2 and variable standard deviation σ denoted as stars into the diagram, lies
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remarkably close to the analytic curve. This fact provides further support to the mean field

approach. In addition, the transition point pc for M1 and M2, shifts in opposite directions

as the diversity decreases, as indicated by arrows.

5.4 Team culture spreading over kinship

In this section we explore a variation on the model mechanism through contagion. Up un-

til now we have considered the system to evolve, using only one mechanism. However,

real-world organizations can undergo changes over time (e.g. to adapt to their chang-

ing environmental conditions). Provisional Irish Republican Army (PIRA), which is the

best-known insurgency network to date [70], is a a good example of this sort of structure

reorientation. PIRA operated in Northern Ireland from 1969 to 1998 and constitutes the

most successful and innovative organization in history in terms of inventing, developing,

planting and detonating improvised explosive devices (IEDs). PIRA started as a formal

homogeneous army. However it experienced a bottom-up transition from the end of 1970s

to beginning of 1980s, where the group operated as self-organized clusters of teams. The

result of this transition was an increase in the productivity measured as number of attacks

whose civilian casualties where negligible. A deeper discussion regarding other aspects of

the group will take place in the next chapter.

We therefore test our model with the available data from PIRA. For that purpose, the

model is modified as follows: In the initial state (i.e. birth of PIRA) N agents are uncon-

nected since, by definition, PIRA was not yet involved in any IED attacks. In each time step

(δt ∼ 1 day) a new connection may be created or an old cluster may be fragmented with

equal probability. N − 1 actors initially follow M1 (i.e. susceptible) while one individual
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Generative model: spreading of team vs kinship culture
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Randomly select actors i and j
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between i and j
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happens
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The whole cell that 
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= +

Are i or j infective agents? Does belongs to an infected cluster?
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If i or j are infective, the whole 
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Figure 5.8: Flow diagram of generative multi-agent model.
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Figure 5.9: Our model’s prediction vs. actual PIRA temporal variation for (top two curves) the

fraction of isolated individuals (n1/N ), and (bottom two curves) the ratio between the total number

of links in the network and the total number of individuals λ. PIRA data from Ref. [70]. The model

considers equally formation and fragmentation time steps (p = 0.5). At t = 0, most of the actors

follow M1 rules and only one object follows M2. However, this object spreads M2 rules as it joins

other groups. The spreading overturns the formation rules from M1 to M2, just like the bottom-up

transition from homogeneous to team-like structure experienced by PIRA. A timestep in the model

corresponds to a day in real data
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is a team oriented (M2) actor (i.e. infected). An actor is further labeled by its character

xi that was sampled from a uniform distribution q(x). Susceptible (infected) agents follow

M1 (M2) formation rules. In each time step, we randomly choose either the coalescence or

fragmentation scenario with equal probability (p = 0.5). In the case of coalescence, a pair

of agents i and j are randomly picked. If one of the agents is infected, M2 grouping mech-

anism apply, preferably linking actors with low similarity. In turn, M1 group mechanism

links actors with high similarity. Essentially, infective agents can spread the team culture

to the clusters where they join, which is not the case for susceptible agents. This uses the

fact that team structure improved PIRA’s efficacy and therefore got strengthened over time

from ground local level. In the case of fragmentation, an existing link λij between agents

i and j is randomly picked. If λij belongs to an infected cluster, M2 mechanism applies.

Otherwise, M1 group mechanism applies, with a high probability of dissolving all links in

the underlying cluster if similarity is low. Figure 5.8 presents the flow diagram associated

to the underlying process.

Figure 5.9 compares the outcome of the model with the measure for the average number

per links per actor λ as well as the fraction of isolated actors n1/N associated with PIRA,

over time. Notably, our combined model rightfully predicts the non-monotonic behavior

of network connectivity with a detailed precision of a day and, this being the sole model

parameter. In addition, it is worth mentioning that the features are not fully related (i.e.

λ + n1/N �=const) and still our model is able to capture the dynamics. Finally, individual

formation mechanism fails to produce these features. Unfortunately the data is insufficient

to have detailed dynamics. The collected data are aggregated over time in the resolution of

a year which limits our study.
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5.5 Summary of chapter 5

In summary, introducing an internal character variable to individuals in a population yields

rich transition behavior. The critical points depend on the character-driven mechanism

and the distribution of character values (population’s diversity) within the community. In

addition, both simulation and analytic approximation preserve the group size universality

despite large differences in the underlying objects and the grouping mechanisms. Finally,

a simple combination of group mechanism was proposed and it showed to be in a good

agreement with the non-monotonic time evolution of the connectivity of a real-world sys-

tem.



Chapter 6

Network analysis in covert organizations

The quantitative understanding of terrorist organizations constitutes a challenge for today’s

scientists and government leaders [19; 20; 171]. The lack of high resolution data on covert

organizations restricts the thoroughness of the studies and leaves several questions unan-

swered. New efforts on acquiring detailed data have been pursued by government organi-

zations and universities in a multi-disciplinary effort to unfold the mechanisms that make

illicit organization successful [172; 72]. Recently, the International Center for the Study of

Terrorism (ICST) conducted a 42-month project where 28 years of Improvised Explosive

Device (IED) activity in Northern Ireland [70] was investigated. Detailed open source data

were collected for a two-year period with specific information on Provisional Irish Repub-

lican Army (PIRA) IED attacks, militant structure and strategies against counter-terrorist

actions. This effort constitutes the best available data to date [70]. PIRA is a paramilitary

organization whose main goal was to separate Northern Ireland from the United Kingdom

and reunite Ireland. Despite the efforts of the British government to control trade of mate-

rials for IED, PIRA managed to find new machinery and components to continue its illicit

activity. Nowadays, PIRA is known to be responsible of the greatest innovation in the con-

struction, development and planting of IED.

95
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PIRA was created in 1969 as an offshoot from the IRA and operated until 1998 where

peace and political power were finally attained. Within this 29 year period, five different

phases of the conflict have been identified [70]: (i) Between 1969 and 1976 indiscriminant

violent acts were performed by both sides (PIRA and British government). Throughout the

conflict, civilians represented the greatest casualties. (ii) From 1977 to 1980 the network

underwent a structural transition toward a decentralized group of clusters which facili-

tated the secrecy of their activities. (iii) Between 1981 and 1989 PIRA gained political

strength. In addition, the number of attacks increased steadily while attacks become more

strategic,defining targets and causing less collateral casualties. (iv) From 1990 and 1994

negotiations opened the pathway toward peace. Finally, from 1995 and 1998 the cease of

fire occurred together with the gain of political power by the IRA.

In this chapter a quantitative study of the networks associated with PIRA’s IED attacks

is presented. This study attempts to unfold key information about the network dynamical

structure that other non quantitative approaches fail to unveil. Basic graph theory, statistics,

agent based models along with other quantitative tools are utilized. The findings reveal that

female minorities emerge with stronger collective network connectivity which provides

benefits for system robustness and survival. These findings are further supported by anal-

ogous ongoing studies of recently aquired data from the current illicit organization known

as Islamic State (IS).

6.1 PIRA’s structural transition in the late 1970’s and early 1980’s

The transition carried out in the late 1970s’ and early 1980s’ brought important contri-

butions to the ongoing IED activity of PIRA. While the activity during the of 1970s was
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Figure 6.1: Number of PIRA IED attacks before (a) and after structural transition (b). Civil (green)

and insurgent (red) casualties resulting from from British government activity, before (c) and after

structural transition (d).
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very intense, the IED attacks were sparse and highly fluctuating in both accuracy and fre-

quency (Fig.6.1(a)). In addition, retaliation from the British government during that period

(Fig.6.1(c)) was similarly intense which resulted on the largest number of casualties of both,

civilians and insurgents, for the whole length of the conflict. By contrast, from 1982 on-

ward, the trend of IED events shows a remarkable steady increase over time which speaks

about a growth in the group’s productivity within that term (Fig.6.1(b)). Moreover, as

shown in Fig.6.1(d), effective activity from the British government decreased enormously

when compared with the previous period. Also, government retaliation affected both, civil-

ians and insurgents in a similar way. This talks about the level of uncertainty on government

activities, and high secrecy of PIRA’s actions.

An interesting question is: What are the key factors that contributed to this increment

of productivity? Here, an initial answer is put forward by looking at the available data

from PIRA’s activities and members. Networks regarding PIRA’s IED activity are aggre-

gated over a one year period. Any two actors that were associated to an IED event have

a link for that particular year. Individuals were identified from published news outlets

such Irish Times and LexisNexis. First, global quantities are analyzed followed by specific

network calculations on different aspects of member features. Agent-based models will

subsequently provide insights about the transition on group’s connectivity by reproducing

the time evolution of basic network features as well as collective connectivity. Comparison

with other networks will be presented at the end.
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(a) (b)

Figure 6.2: (a) Illustrative temporal snapshots of the PIRA network after self-organized restructur-

ing at the end of 1970s. (b) Number of total (black) and new (blue) actors over time.
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6.1.1 Global quantities

During the whole active period, PIRA always operated as a small group counting with 1240

members aggregated over time but with only, on average, 140 active members every year.

This fact favored secrecy, given that individuals could be targeted by security forces and

imprisoned, or killed by opposing paramilitary groups. Threats could also be extended to

their families and children. Therefore, the risk was enormous and to keeping the number

of members small was crucial [72; 71]. Figure 6.2(a) illustrates temporal snapshots of the

PIRA network after the self-organized transition at the end of the 1970s. In addition to

the large cluster, there are several small operational units that are evidence of the group’s

significant autonomy [72; 71; 173; 174]. Fig.6.2(b) shows the number of actors (total and

new) that took active role in the group’s activities. The decreasing trend in total members

rejects a potential claim pointing to an increase in PIRA membership in order to explain the

increase in PIRA productivity in Fig.6.1(g). Additionally, the recruitment (i.e. new actors)

remains roughly stable in time which is not a clear indicator of increased productivity.

Every stage of PIRA’s illicit activities was carefully prepared [70; 72; 173]. Specialized

roles were assigned to particular individuals in order to trade arsenal and ammunition ma-

terials, manufacture explosives, select target and planting IED. Available information on

PIRA actors allows for a comparison based on gender. Figure 6.3 shows the number of

actors broken down by both, role (a) and gender (b). Fig.6.3(a) Illustrates that even though

the role population fluctuates in time, the tendency where bomber dominates in number

followed by gunrunner, gunman, bomb maker, officer and other is preserved. In addition,

as shown in Fig.6.3(b) the network is dominated by men where only approximately 6%
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Figure 6.3: Number of PIRA actors over time per role (left) and per gender (right).

of its members are women. This general information does not provide any insight of the

dynamical transition nor the increase in productivity.

6.1.2 Centrality measures

Degree and Betweenness

Given that there is no clear association of the number of actors, we look at the role of the

node within the network by calculating centrality measures. In graph theory, centrality

measures quantify the importance of a node or group of nodes. Since there are many

possible way in which a node can be significant, there are several centrality measures for

networks. Degree centrality measures the number of links that a particular node has with

neighboring nodes. This is a basic indicator and is often used as the first step in network

analysis. The degree centrality CD associated to the node i is formally defined as [175]:

CD(i) =
N∑
j �=i

Aij (6.1)
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Figure 6.4: Degree centrality broken down by actor’s role (left) and actor’s gender (right)

where N is the total number of nodes and Aij is the matrix element of the adjacency matrix

A whose elements are defined as xij = 1 if node j is connected to node i, and xij = 0

otherwise. A high degree centrality speaks of the popularity or leadership that the underly-

ing node has. It is also connected to the likelihood of neighboring nodes to be influenced

by the high degree node. For instance, a scientific paper that has been cited several times

presents a high degree centrality (more exactly a high in-degree since citation is a directed

network). A straightforward extension of degree centrality is eigenvector centrality which

measures the importance of a node by looking at the importance of its neighbors. Figure

6.4 shows the degree centrality

A crucial measure in covert networks is related to the capacity of a node to serve as

bridge for communication, flow of resources or ideas, and brokerage. This measure is

called betweenness centrality and measures the fraction of shortest (i.e. geodesic) paths
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that connect any two nodes that pass through a specific node. A particular actor with high

betweenness centrality improves the channels of communication. Hence, its removal could

cause the disruption of the network. The betweenness centrality CB associated to the node

i is formally defined as

CB(i) =
∑
s�=i �=t

σst(i)

σst
(6.2)

where σlm is the total number of shortest paths from node l to node m and σlm(i) is the

number of these paths that pass through node i [175]. Betweenness is particularly useful

for the analysis of innovation networks where secrecy and fast communication are crucial

[172; 176; 177]. Figure 6.4 and 6.5 show results for degree and betweenness centrality

broken down by actor’s role and gender, respectively. For betweenness, it is calculated with

the common normalization where the value is further divided by (N − 1)(N − 2)/2, where

N is the size of the giant component of the underlying network. While degree centrality

shows a rather noisy behavior with a not so well defined trend, betweenness centrality
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shows: (i) officers to carry a higher betweenness than other roles and (ii) a remarkable

steady increment in women’s betweenness centrality when compare to men’s during the

same period when PIRA’s productivity in IED attacks increased (see Fig.6.1(b)). Although

it could be argued that the increment in women’s betweenness is connected to them being

officers, the acquired data dispels that connection since (1) only one woman is identified as

officer which is only present on one particular year (1992) and with negligible betweenness

centrality and (2) women with high betweenness were not assigned to particular role, rather

they are found to occupy several different roles within the network.

One could argue that the small number of women explains why they happened to present

a high betweenness during that period, i.e. they were somehow exceptional and therefore

more likely to be central. That argument was refuted by subject matter experts John Horgan

and Paul Gills, who worked first-hand on the data collection project [70]. A random list

of PIRA women was given to them with the request to rank them in terms of relative

importance. Most women with high betweenness did not rank high on the expert’s list.

These are three examples of women with high betweenness centrality and did not appear

on the expert’s list. Only name initials are provided since some of them are still alive:

• MC: Age of recruitment 18. Occupation gunman. No university education. No

notable other education. not married. No children. A simple Google search of her

name, with or without PIRA added to the search, shows no hits connected to her

• DR: Age of recruitment 29. Occupation unknown (Other). No university education.

No notable other education. not married. No children. A simple Google search of

her name, with or without PIRA added to the search, shows no hits connected to her
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• HR: Age of recruitment 70. Occupation housing meetings (Other). No university

education. No notable other education. not married. No children. A simple Google

search of her name, with or without PIRA added to the search, shows no hits con-

nected to her

• FM: Age of recruitment unknown. Occupation unknown (Other). No university ed-

ucation. No notable other education. not married. No children. A simple Google

search of her name, with or without PIRA added to the search, shows no hits con-

nected to her

By contrast, several women with low betweenness centrality ranked high on the expert’s

list and appear on Google searches as former PIRA volunteers. Therefore, the hypothesis

that women occupying a particular role or ’exceptional’ (i.e. notorious to experts or web-

search) are responsible for high betweenness centrality can be rejected.

Null hypothesis and fission/fusion model

In order to dispel the possibility that the results of high betweenness for women happened

by chance, a null model is proposed. While keeping the network architecture and the total

number of men and women intact, the gender of the nodes is randomly assigned. For each

realization, the normalized betweenness for men and women is calculated and the proce-

dure is repeated 10000 times. Then, the average and standard deviation is calculated and

compared with the original dataset. The results are shown in Figure 6.6 where it can be seen

that the null approach lies far from the original result. To further check this result a p value

is calculated. It represents the probability that the test point is at least as extreme as the one

generated by the null model. For this calculation it has been assumed that the null model
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Figure 6.6: Left: contrast of betweenness centrality of PIRA women (Red) with null model (gray)

and the corresponding averaged results obtained by randomizing the position of women in the PIRA

network 10,000 times. The corresponding standard deviations are small while the mean expected

values are distant to the observed values, allowing us to reject the hypothesis that the increase of

women’s centrality was a random process. Right: Generative fission/fusion model introduced in

chapter 4 comparing network features such as number of isolated actors n1 and mean degree λi.

Shadow on top is the betweenness centrality of the seed of infection.

obeys a normal distribution (Normal p value). Calculations for p values for each year yield

to numbers smaller than 0.05. By convention, this indicates that the null hypothesis can be

rejected and hence the high centrality for women did not happen by chance.

We further analyzed the fission/fusion model introduced in Chapter 4 which reproduces

the non monotonic temporal evolution of connectivity features such as fraction of isolated

actors n1/N and mean degree λ. The results of betweenness motivates the formulation of

the hypothesis that women introduced a team-oriented type of connection different from

the homogeneous kinship-like of men. In addition, it is assumed that men actors are sus-

ceptible to women’s team culture. Once a connection is established, the team-like culture

is preserved. These assumptions are go in line with the model’s predictability of a high

betweenness centrality of the seed which spreads team-oriented group formation. Figure
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Detection 

Disruption 

(b)(a)

Figure 6.7: (a) Main mechanism for death of an individual is due to individual targeting by an

opponent. (b) Statistical association whereby actors directly connected to women have a longer

lifetime on average, i.e. they survive longer. This is in contrast to the null model results as shown,

where the gender of the actor was scrambled and the average (lighter symbols) over 5000 realiza-

tions were calculated

6.6 illustrates the results of the model where betweenness of the seed is represented by the

shadow, in good agreement with the findings of PIRA. Therefore, the results suggest an in-

nate ability of women to mediate teamwork. This allows them to, on average, assume more

central positions than men in the underlying network. The importance of a team culture

compared to kinship is consistent with studies of online covert networks in online gam-

ing [178], which also allows gender anonymity. The simulations also support a bottom-up

transition which otherwise would be costly by manipulating ∼ N2 links. This is highly

unlikely for an organization who wants to remain under the radar.

Analysis at a local-level points to a benefit that self-organized positioning of women, on

average, produce to its nearest neighbors. The main mechanism for death of an individual
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in an extreme network under pressure is being targeted by an opponent. Figure 6.7 shows

that women’s connection have superior longevity to men’s which is consistent with women

being better embedded in the network. In addition, the results of the null model where the

actor’s gender is scrambled over 5000 realizations, demonstrates that it did not occur by

chance.

6.2 Comparison with other networks

6.2.1 Academia and industry

The innovative skill developed by PIRA in which women appear to be in more central po-

sitions than men could be contrasted with other gender studies. In particular, we look at the

work of Prof. Kjersten Whittington at Reed college which studied academic and industrial

networks, environments where innovation is essential. For university and biotechnology

firm data, we utilized the Boston subset of 89 inventors at top tier US universities and in-

ventors from 482 biotechnology firms [179]. Covering a period from 1980 to 2000, actors

were connected if they filed for a patent together. The percentage of women in the uni-

versity and biotech-industry dataset was roughly 27% and 34% in a given year. A focus

on gender leads to Fig. 6.8, with women emerging as significantly more centrally located

than men in the covert PIRA environment. Determining the ratio of the mean betweeness

centrality b of women and men, r = bw/bm, we observe that the women’s average be-

tweeness centrality eventually rises to more than four times the men’s corresponding value.

In the two non-covert innovation environments, the ratio fluctuates around bw/bm ∼ 1 for

industry, while men occupy more central positions than women in the university setting
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Figure 6.8: Ratio of betweenness centrality of women bw and men bm, where r = bw/bm (vertical

axis), for PIRA (yellow), as compared to industry (green) and academia (red) over the same period.

(bw/bm < 1).

Indeed the academic and industrial environment are very different from that of an illicit

group. Academia is highly hierarchical and patent production is usually linked to individual

faculty contributions, which suggest that men are more centrally located than women (as

seen in Fig.6.8). By contrast, biotechnological companies are less individual-oriented and

the innovative success is attributed to the company. This suggests a team-oriented approach

which we have hypothesized to be driven in higher likelihood by women, and is interest-

ingly supported by a higher women’s betweenness as shown in Fig.6.8. Though, there are

indeed several other sociological factors that influence the positioning of individuals on the

networks, we note that for these examples (academia and industry) the secrecy, level of ag-

gression and physical danger are far smaller than in PIRA. Hence, we suggest that women

are likely to emerge with superior network connectivity in extreme environments that offer
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benefits such as survival. In addition to PIRA, the next example provides support to this

claim.

6.2.2 Online support network of Islamic State

There has been an unexpected online support for Islamic State in social media.Though sev-

eral media sites such as Facebook turn down any pro-ISIS activity quickly, other social

websites act slower. This is the case of VKontakte (www.vk.com) where our team within

the complexity initiative has been able to monitor the evolution of pro-ISIS groups until

they are detected and shut down (Fig.6.10(a)). The network is comprised by > 105 indi-

viduals, which are free to provide gender information, that share pro-ISIS material such as

videos, prayers, PDF files, etc. Given that the network is bipartite (follower → group) we

analyze the unweighted projection over the followers, i.e., followers of a particular group

form a fully connected cluster among them.

The summary of the findings for online pro-ISIS network is presented in Fig.6.9. Daily

snapshots of the network re shown in Fig.6.9(a-c). We looked at betweenness centrality

(Fig.6.9(d)) over time where women, despite of the fluctuations, are found to be on con-

sistently higher betweenness position than men’s (showed by orange rings). We attributed

fluctuations to the dynamics of followers entering and leaving groups as well as the sudden

death of a particular group due to a shut down. In addition, by looking at the aggregated

network over two months, women’s degree centrality (vertical dashed line) is also higher

than men’s and it distances for more than 4 standard deviations from a null model (his-

togram) where nodes’ gender are scrambled over 105 realization (Fig6.9(e)).The ratio of

women to men followers is higher than PIRA (∼ 0.7) hence the potential claim that the
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Figure 6.9: (a-c) Illustrative temporal snapshots of a subset of the global online network containing

> 105 pro-ISIS followers. Followers (circles) aggregate spontaneously around online pages such

as organizational accounts (squares), e.g. on Vkontake (www.vk.com) as shown. (d) Betweenness

centrality (BC) over time for women and men in follower network. Orange rings show days when

betweenness centrality of women bw is superior to that of men bm. Orange lines connect the subset

of these days where signal exceeds noise ( ¿σ). (e) Left: Degree centrality of female followers

(vertical line) in time-averaged follower network is more than 4σ (i.e. Z¿4) larger than the distribu-

tion of null model results in which the gender of all nodes is repeatedly scrambled. Right: Degree

centrality of male followers (vertical line) is more than 4σ (i.e. Z¿4) smaller than the null model

result. For subset of followers without declared gender, which likely contains a similar number of

women and men, the degree centrality is statistically indistinguishable from the null model result,

as expected.
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Detection 

Shut down 

(b)

Figure 6.10: (a) Main mechanism for death of a group in an extreme network under external

pressure (e.g. ISIS or PIRA) is fragmentation due to being detected and hence shut down by an

opponent. (b) As the ratio of women to men increases, there is an association with an increase in

the group lifetime in ISIS, i.e. group survives longer

fewer females makes them exceptional can be dispelled. The network’s size and density

(41 thousand of followers creating nearly 130 million links) makes it nearly impossible for

an up-to-bottom coordination to manipulate the structure.

A global-level advantage afforded by women’s position was found when looking at the

lifetime of a group. Online pro-ISIS groups where the ratio of women-to-men is high, tend

to survive longer which can be associated to the local-level advantage found in PIRA where

women’s connections tend to survive longer than those of men’s. The results are presented

in Figure 6.10(b).
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6.3 Summary of chapter 6

We analyze different dynamical networks (off-line and on-line) using several quantitative

tools. Global features, centrality measures and agent-based models were used to analyze

the internal dynamics and outcome (i.e. IED activity) of PIRA network. The findings point

to a transition to a self-organized network where a female minority collectively emerged

with higher connectivity than men. A fission/fusion model is able to capture the non mono-

tonic behavior of some network features by gradually introducing a team-oriented culture

with an infection-driven mechanism over a more homogeneous kinship culture. The model

captures an increasing betweenness centrality of the seed which supports the hypothesis

that woman are more likely to embrace and spread a team-oriented behavior. The over-

all results revealed that, although men dominate numerically, women emerge with higher

connectivity than men when the environment is extreme. This collective feature is associ-

ated with benefits to the network in their local and global level in terms of longevity. The

results were contrasted with null models which rejected the hypothesis that the position-

ing of individuals within the network happened by chance. These findings suggest that

female-centric approaches can be adopted for disrupting extreme networks, by focusing on

the interconnectivity of these few women as opposed to the majority of men.



Chapter 7

Anomalous contagion in dynamical networks

Despite the high diversity of epidemiological models [78; 82; 180; 181], there is little quan-

titative understanding on how the dynamics of individuals affect the overall features (e.g.

severity, duration, etc.) of outbreaks. Unexpected rise on activities such as online support

for social and military causes (e.g. ISIS), on-street giant protests at the level of a coun-

try, sudden changes on global currency trade prices, along with others, exhibit profiles that

hardly resemble traditional approaches (e.g. SIR model)[182]. This creates a need to ex-

plore additional mechanisms which accounts for unexplored aspects of modern-day human

contagion.

The digital era opened a new level of human interaction which does not require indi-

viduals to be at the same physical location to reach out. Chat rooms, websites, cell phones,

among others, allow a temporary connection among individuals and hence transmit infor-

mation (e.g. rumors, ideologies) that could result into outbreaks of collective activity. On-

line social media has become an excellent vehicle for promoting, planning and scheduling

large mass events. Individuals entering and leaving online sites continuously throughout

the day, create communities whose nodes change frequently in time [78; 79; 183; 184].

During the online period, nodes are exposed, increasing the chance for infection. However,

114
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there is the off-line period in which the individual is exempt from external influences. The

on-line/off-line dynamics becomes a key mechanism that provides explanation to modern-

world infection patterns.

In this chapter a new model of contagion is presented. It accounts for the dynamics of

individuals on a common space where contagion is possible and an outside region where

they are unexposed to the infection. The addition of the dynamics to the contagion model

is able to reproduce specific infection profiles’ features that traditional approaches (e.g.

SIR) fail to explain. In particular, the results reveal a non-linear dependence of dynamical

features (e.g. mobility) with extensive observables such as duration and severity. Interest-

ingly, the model predicts that the severity of an infection could be reduced by increasing the

mobility of the individuals which challenges traditional understanding of epidemiological

processes. The model is tested against real-wold data from different domains such as online

pro-ISIS groups, on-street civil unrest protests in Latin America and global online currency

trading. Data from pro-ISIS online communities is the result of efforts of the complexity

initiative at University of Miami, which both manual and computer-based techniques were

used. First, online groups were identified manually through the VK (http://www.vk.com)

search options such as hashtags with key explicit supporting words (e.g. ISIS, islamicstate,

khilafah, caliphate, fisyria, etc.) and/or publishing ISIS-related propaganda. Subsequently,

information of the followers was used in order to capture the extent of the network and

hence the extent of the infection spreading. Later, the resulting data was cross-checked

manually by subject matter experts which excluded non related groups and followers that

were not explicitly supporters of ISIS. The process was then automatized and performed
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on a daily basis at the same time of the day. The data set counts for ∼ 40000 individuals

at any one time with ∼ 130 million links in less than two months. Data for civil unrest in

Latin America is discussed in Ref [185] while data of currency exchange is discussed in

[82].

The chapter is divides as follows: Section 1 is devoted to the basic description of the

model. An initial comparison with the different real-world data sets is then presented. In

section 2 extensive features of the infection profile (e.g. severity and duration) are con-

trasted with those of the data sets highlighting the lack of explanatory power of traditional

approaches such as the SIR model. In section 3 the model is expanded to two connected

communities expanding the boundaries of the single community model. Finally, a compar-

ison based on electric circuit is developed while looking for similarities and generalizations

for multiple connected communities. A summary of the chapter is presented at the end.

7.1 Single CSC model

The Common Space Contagion (CSC) model is a generalization of a standard SIR process

to account for objects entering and leaving a dynamical group (common space) where they

could become infected. The SIR model describes the spreading of an infection over a

population over time. SIR stands for Susceptible (S), Infective (I) and Recovered (R),

which are the three possible states that an object (agent) within a population can have.

The mechanism of infection is through direct contact between a susceptible agent and an

infective agent with a probability qi per timestep. Once an agent is infected, there is a

probability qr to recover per timestep and then it becomes immune i.e., it can no longer get
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infected. It is convenient to define an infection’s contact rate as λ = qi/qr. Every object

that is outside of the group has a probability per unit time pj to enter into it. Similarly,

objects inside the group have a probability per unit time of pl to leave the common space

(see Figure 7.1[a]). The equation of motion that describes the population dynamics within

the common space, where Ng is the number of objects inside of the group at a given time

t, can be written as

dNg

dt
= −plNg + pj(N −Ng). (7.1)

In the steady state (dNg/dt = 0), the mean number of agents within the common space

〈Ng〉 is given by

〈Ng〉 = N
pj

pj + pl
= Nγs (7.2)

In addition, the mobility μ, which is the sum of agents joining and leaving the space in a

unit time can be calculated as

μ = (N − 〈N − g〉)pj + 〈Ng〉pl = N [(1− γs)pj + γspl]

= N
2plpj
pl + pj

= Nγm (7.3)

where γm = μ/N is the mobility per unit object. The single CSC model integrates the SIR

model with the dynamical component. Consider N agents (initially set as S) joining and

leaving a common space with probability pj and pl, respectively. The agents outside the

group are isolated, while the agents inside are able to interact with one another (e.g. fully

connected network). Once the system of susceptible attains the steady state, an agent is ran-

domly selected within the group and it becomes infected. Consequently, the infected agent

is able to poison other agents within the group with a probability qi as well as get recov-

ered with a probability qr. Under these circumstances, only within the common space, the
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infection can be transmitted to other individuals, while the recovery process takes place ev-

erywhere. The dynamics of the model is studied by a discrete (simulation) and continuous

(differential equations) approach.

7.1.1 Simulation and dynamical equations

The simulation is a discrete time description of the model. It considers that, at each time

step, all the agents undergo an SIR process, followed by the dynamics of leaving and join-

ing. The number of susceptible, infected and recovered agents is traced over time. When

the number of infective agents drops to zero, the epidemic ends. On the other hand, the

differential equations consider a continuous time and continuous population approach of

the system. We have six variables since we describe the populations inside and outside

the common space. We use S(t), I(t) and R(t) to be the number of susceptible, infected

and recovered agents in the whole system, respectively and sg(t), ig(t) and rg(t), to be the

respective quantities inside the common space. The differential equation for each of these

quantities is given by:

dS

dt
= −qisgig

dI

dt
= qisgig − qrI

dR

dt
= qrI

dsg
dt

= −qisgig − pl(sg − qisgig) + pj(S − sg)

dig
dt

= qisgig − qrig − pl(ig + qisgig − qrig) + (1− qr)pj(I − ig)

drg
dt

= qrig − pl(rg + qrig) + pj((R− rg) + qr(I − ig)) (7.4)
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Figure 7.1: Outbreak profiles in real-world systems. (a) our common space theoretical model.

Common space (blue cloud) can be an online site or chatroom, a network community or group, a

physical place etc. and the transmission can range from information or rhetoric to a real virus. An

individual outside (or inside) the common space has a probability pj (or pl) to enter (or leave) at

each timestep. Infected individuals (i.e. activated: red) inside the common space have a probability

qi to infect other susceptibles (green) inside the common space. Infecteds both inside and outside

recover (black) with probability qr. λ = qi/qr. (b)-(d) illustrates the qualitatively distinct outbreak

profiles predicted by our model, with the corresponding parameter regime. Black line is simulation,

colored line is from integrating the coupled differential equations (see SI). (e)-(g) shows how these

theoretical profiles capture various modern-day outbreak profiles: (e) pro-ISIS activity online 2014

matches (b); (f) protests on-street in Brazil 2013 matches (c); (g) global online currency trading

during transmission of rumour of re-evaluation of Yuan, matches (d). Profile shows the variation of

all major currency exchange rates[92]. For (e)-(g), similar profiles appear repeatedly in our datasets

(see Fig. 2) confirming that the I(t) variation is a reproducible signal, e.g. for (g) an almost identical

profile occurred several months later when the same rumour circulated again[82; 92].
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Figures 7.1(b-d) illustrates the dynamics of the infective population for three set of mi-

croscopic parameters for a total number of 1000 individuals. The smooth colored lines

result from the numerical integration of the differential equations (7.4), while the black

curves represent a typical time discrete simulation. As shown, the results of simulations

are in good agreement with the differential equations. The infection dynamics reveals

qualitatively different behavior depending on the parameters. The red curve (Fig.7.1(b))

undergoes a rapid increase followed by a slow decay. The green curve goes through a grad-

ual increase and a slow decay (Fig.7.1(c)), and the blue curve (Fig.7.1(d)) experiences a

revival after the gradual rise and decay. Figures 7.1(e-g) shows typical infection profiles

from real-world systems. As shown, they do not exhibit an exponential decay as in SIR

type of models together with features such as slow increase and revivals. Interestingly, the

sensitivity of the CSC model serves to reproduce these features by modifying the infection

and mobility parameters. Figure 7.1[g] (match of Fig.7.1(b)) illustrates the pro-ISIS online

activity of a typical group that explicitly express support for and circulates pro-ISIS related

documents (e.g. news, propaganda). Even though not all the members are active (infected),

the actual number of infected is proportional to the group’s size where all the members

present the same probability of becoming active. Figure 7.1(f) (matching Fig.7.1(c)) shows

off-line activity in Brazil starting in mid-June of 2013. The vertical axis quantifies the

number of on-street protests taking place in several cities and supporting a wide variety

of civil-unrest causes [185], where the peak of infection occurs nearly at the center of the

burst. Fig.7.1(g) shows online global currency trading rates through the course of rumor

spreading of Yuan re-evaluation[82]. Time for peak, duration and revival are in good agree-

ment with the parameter set of the CSC model as shown in Fig.7.1(d).
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Figure 7.2: Infection profiles form the numerical integration of the equations (7.4) for different

values of infective probability qi. Left: γm = 0.018 and λ = 0.1. Right: γm = 0.0018 and

λ = 0.022.

Additional observations of the model’s infection profiles allow us to understand how the

microscopic parameters affect the dynamics. For instance, the infective probability qi is

directly related with the growth rate of the infected population. This is supported by Figure

7.2 which shows the dynamics of the infective population for different values of infection

probability qi, and for two sets of the parameters γm and λ. The outcome confirms the

previous affirmation about the parameter qi. Interestingly, the high growth rate does not

imply a high infection peak. In fact, as shown in the left panel of Fig.7.2, there is an op-

timal value of qi that results in a highest infected peak. Another key point is that the total

duration of the infection gets longer for a small infection probability as well as its time to

peak. Equally important, the oscillatory behavior is exclusive for small mobility γm and

small infection contact rate λ. This is depicted in the right hand side of Fig.7.2, where the

frequency of the oscillation increases with the infection probability.
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Figure 7.3: Extensive quantities of the infection profiles (from left to right: T , Tm, H/N and

A/N ) as a function of γm and qi. For γs = 0.1 and four values of λ (from top to bottom: 0.022,

0.15, and 0.5).

7.2 Profile features: duration, time to peak and severity

We characterize the profile differences by looking at extensive features of the infection

profiles. This becomes particularly useful when comparing with real complex systems

where the information of the microscopic parameters is usually unknown. We set T to

be the duration of the epidemic, H to be the peak of infection i.e., the moment where

the number of infected is maximum, Tm to be the time where the maximum (i.e. H) is

attained, and the area below the curve of the infection dynamics, denoted as A. Fig.7.1(f)

illustrates these macroscopic quantities associated to an infection profile. Figure 7.3 shows

the behavior of the extensive quantities by integrating numerically Eqs.7.4. Profile features

are shown as a function of the mobility γm and infection probability qi for six different
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values of the infection’s contact rate λ. The relationship between the duration, time to

peak, and area becomes evident by showing the similar qualitative results for a given value

of λ. These are some key points to highlight: (1) As λ grows, the times (duration and time

to peak) and area become independent from mobility. (2) As qi increases, the times and

area become smaller. (3) By increasing the parameter λ the maximum height grows. (4)

The highest severity value of H shows a linearity with γm and qi ( i.e., qi = e3γm). (5) The

regions on the qi-γm space where the maximum height is located change from low mobility

and high infection probability, for small λ, to the region of low infection probability and

high mobility, for large λ. The transition between these two limits can be seen to occur

around λ = 0.15. (6) For small values of λ, the times and area follow the linearity on their

maximum value with γm and qi. Before the transition point at λ = 0.1, the linearity is lost.

7.2.1 Effects of the initial seed

As mentioned above, the initial conditions consider an infected individual on the common

space where the spreading process initiates. However, in real systems some infections are

controlled or naturally dissipated before a large-scale spreading is reached. The numeric

simulation accounts for these types of situations. Figure 7.4 illustrates the distribution of

infection’s duration for 1000 different realizations and different initial conditions which

varies in the number of initially infected objects (seed s). Each run leads to a slightly dif-

ferent dynamics whose mean values are well captures by the equation of motion. For small

values of s, the probability of having a short outbreak (T ≈ 0) is very high in compari-

son with realizations for larger values of s. For this illustration, the recovery probability

is selected to be approximately 50 times greater than the infection probability. Hence, the
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Figure 7.4: Distribution of duration of infection for different values of initial seed s. Parameters:

λ = 0.022, qi = 0.002, γm = 0.0018 and N = 103.
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distribution for small s shows a large probability of a short infection, i.e., for most of the

runs, the few infected agents get recovered faster than they can spread the infection. On

the contrary, as s increases, the probability of short durations decreases and the distribution

gets populated on a duration that is similar for all the values of s. Interestingly, the point

where the distribution is maximum (after the short duration peak for small s) is only slightly

shifted to shorter times as s grows. It becomes more evident in the right hand side of figure

7.4 by looking at the difference between s = 5 and s = 10. This time shift can be explained

as the time interval where the s − 1 agents got infected from the first infected agent. The

duration that resembles the result from the differential equations which is around T ≈ 400

(see blue curve in figure 7.1), has a very low probability for all s values. In turn, for this

selection of parameters, the simulation is far from the mean field approach i.e., differential

equation result.

7.2.2 Contrast simulation and differential equations

As an illustration, figure 7.5 depicts the result for the extensive quantities of the infection

profile as a function of mobility contrasting the results from the differential equations (solid

curve) with the mean value from the simulations (dotted curve). The results show that

for small values of mobility, the duration predicted by the differential equations is greater

than the mean from simulation, in agreement with the previous finding. Interestingly, the

affirmation is valid for the area and time to peak but it is false for maximum height. The

latter displays, for small γm, a good agreement between the simulations and the equations.

In contrast, as the mobility is increased the previous affirmations are no longer accurate for

the duration and maximum height. For instance, the simulation result grows with a smaller
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Figure 7.5: Extensive quantities as a function of mobility from numerical integration of differential

equations (solid curve) and mean values of 104 simulations (dotted curve). The quantities are dura-

tion (top left), area (top right), severity (bottom left) and time-to-peak (bottom right). Parameters:

λ = 0.1, qi = 0.005, γs = 0.1 and N = 104.
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rate than the differential equation for the maximum height while the agreement between

the results for duration grows as the mobility is increased.

7.2.3 Comparison with empirical outbreaks

The mobility γm introduces non linear effects to the infection profiles different from com-

monly used zero-mobility or well-mixed approximations. These effects allow to remark-

ably shape different modern-day contagion phenomena as shown briefly on Fig.7.1. A

larger illustration of this statement is shown on Fig.7.6 where modern-day outbreaks are

compared with theoretical results. Triangles represent the empirical data of online pro-

ISIS activity. While circles depict civil unrest outbreaks in Latin America between 2012

and 2014 [10]. The black thick curve is the result from standard SIR model which shows

a limited range of applicability. By contrast, the results from the model (colored curves)

cover a much wider range than SIR, which reproduces most of the empirical outbreaks.

Each curve is generated by a different value of mobility which increases the diversity in the

infection profiles.

7.3 Multiple CSC model

Here, a simple extension of the model to two communities is presented. Inspired by electric

circuits, two variations are proposed: series and parallel. The parallel model (Fig.7.7(a))

considers that after entering to the common space, there are two available but mutually

exclusive sub spaces where agents can migrate. The series model (figure 7.7(b)) considers

that each agent must go across two consecutive sub spaces before leaving the group. The

motivation behind this extension (besides academic purposes) is to find broader infection

profiles that single communities fail to produce. Moreover, it is interesting to explore poten-
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Figure 7.6: Empirical and theoretical results as a function of severity (H), duration (T ) and time

to peak (Tm). Colored triangles are empirical data from pro-ISIS online groups. Circles are civil

unrest outbreaks across Latin America between 2012-2014. Theoretical results (colored lines) ob-

tained from integrating the six coupled differential equations in our model, for different values of

throughput γm (red line, γm = 0.001; orange line, γm = 0.005; yellow line, γm = 0.01; green line,

γm = 0.02; cyan line, γm = 0.05; blue line, γm = 0.1; purple line, γm = 0.2). The same quantities

are also calculated for the standard SIR model (black line). The same population size (N = 1000) is

being used in all cases, and the same infection probability (qi = 0.002). Each trajectory starts near

the origin for λ ≡ qi/qr = 10−3 and grows until λ = 1 in steps of δλ = 10−3. Inset: Two typical

empirical profiles for online outbreaks of pro-ISIS activity, identified as club81567093 (blue) and

interes.publics (green). Black line shows that even a best-fit standard SIR curve with the benefit of

freely varying parameters, fails to capture the overall I(t) profile
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Figure 7.7: Multiple common space contagion model in parallel (a) and in series (b)

tial equivalences between the extensive profile quantities with the well-known formulas for

electric resistors and capacitors in series and parallel. Furthermore, in real-world systems

the model could capture insights about the influence of different sources on a susceptible

population over time.

7.3.1 Parallel model

As before, it is considered N agents joining and leaving a common space with probability

pj and pl, respectively. The common space is divided into two separate sub spaces arranged

in parallel. This feature adds to the dynamics an extra probability of ωp to migrate to the

first subspace and a probability of 1 − ωp to migrate to the second one. The probability to

leave the common space, from each subspace is the same. First, we find the equilibrium

population for each common space by considering the master equation of the system. Let

Ni be the population of the sub space i and Nout be the population outside the common

space. From this, the constrain of the system is N = Nout +N1 +N2.

dN1

dt
= −pls1 + pjωpNout (7.5)

dN2

dt
= −plN2 + pj(1− ωp)Nout (7.6)



130

The equilibrium solutions are given by solving equation 7.5 and 7.6 for dN1/dt = 0 and

dN2/dt = 0, respectively. The equilibrium values can be written as 〈Ni〉 = γs,iN , for

i = 1, 2, and the parameter γs,i is given by

γs,1 =
pj

pj + pl
ωp

γs,2 =
pj

pj + pl
(1− ωp) (7.7)

Inside the common space, the agents undergo an SIR process with contagion types to be

person to person, broadcast, or a combination of them with probability qi to get infected.

The infected agents outside the common space may get recovered with a probability qr. The

dynamical equations for the parallel model undergoing person to person type of contagion

are given by

dS

dt
= −qi (s1i1 + s2i2)

dI

dt
= qi (s1i1 + s2i2)− qrI

dR

dt
= qrI (7.8)

where the capital letters S, I and R represent the total number of susceptible, infected and

recovered agents, respectively. The lowercase letters with sub index k = 1, 2 represent the

agents inside the first and second sub space, respectively. The dynamical equations for the

agents inside the common space are

dsk
dt

= −qiskik − pl(sk − qiskik) + pjωk (S − s1 − s2)

dik
dt

= qiskik − qrik − pl (ik + qiskik − qrik) + (1− qr)pjωk (I − i1 − i2)

drk
dt

= qrik − pl (rk + qrik) + pjωk ((R− r1 − r2) + qr(I − i1 − i2)) (7.9)

for k = 1, 2 and where ω1 = ωp and ω2 = 1− ωp.
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Infection profiles for parallel model

In figure 7.8 we find the numerical solution of the differential equations (7.8) for the total

infection dynamics as a function of the parameter ωp, and for three sets of microscopic

parameters. First of all, we can see that at the boundaries, that is, when ωp → 1 or ωp → 0,

we recover the profile of the single common space contagion model. Secondly, it is inter-

esting to find that for green and blue parameters, there is a drop on the infection profile as

ωp approaches the value of 1/2 from either left or right. For red we have a slow reduction

of the peak followed by a revival that reaches its maximum at ωp = 1/2. This behavior

can be understood by looking at the infection rate value qi for each configuration. If the

infection rate is small, as well as the number of susceptible agents within the sub space,

the number of newly infected decreases. In addition, the point where the distribution of

the agents makes that the population is the smallest at both subspaces simultaneously is for

ωp = 1/2. The configuration that presents the highest infection rate qi is red and that for

green and blue is one fifth and less than one half of red. Moreover, the rate of decaying of

the infection peak with ωp is slower at blue than green, given that the infection rate for blue

is twice than the infection rate in green. Another reason however, for the rapid decay in

green is the value of the mobility. Since the SIR process takes place in full at the common

space, a slow mobility may help on the infection spreading. The green configuration expe-

riences the highest mobility value, which makes shorter the effective time for a susceptible

agent to get infected and which combining it with the low infection rate qi, reduces the

infection profile for small number of agents on both sub spaces. Therefore, the essential
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Figure 7.8: Parallel Burst Profiles. Dynamical behavior of the infected population as a function

of the parameter ωp for the three sets of microscopic parameters: Red (qi = 0.005, λ = 0.1,

γm = 0.009), Green (qi = 0.001, λ = 0.1, γm = 0.018) and Blue (qi = 0.002, λ = 0.022,

γm = 0.0018), respectively.

ingredients to have an infective population for small number of agents on both sub spaces

(ωp → 1/2) are a small mobility and a large infection rate value.

7.3.2 Series model

Let us now consider the spaces to be arranged in series. In this case, the journey of each

agent consists of two main steps. Generally, any agent outside the common space joins the

space 1 with a probability pj . However, the agent has to pass through space 2 in order to

leave the common space. For each agent in space 1 there is a probability ωs to join space

2. Finally, any agent in the space 2 is able to leave the common space with a probability of

pl. Hence, the differential equation for the population on each subspace is given by

dN1

dt
= −ωsN1 + pjNout (7.10)

dN2

dt
= −plN2 + ωsN1. (7.11)

As in the parallel case, the steady state solutions for the populations can be calculated by

setting dNj/dt = 0 and solving for the populations. The results can be written as a function
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of the parameter γs of the single common space model as

〈N1〉 = Nγs

(
ωs

pl
+

pj
pl + pj

)−1

〈N2〉 = Nγs

(
1 +

pl
ωs

pj
pj + pl

)−1

. (7.12)

The equilibrium populations vary with the relationship between the parameters ωs, pl and

pj . For instance, for ωs � pl, the equilibrium population of subspace 1 tends to N/(1+κ),

where κ is the ratio of ωs to pj , while the equilibrium population for subspace 2 vanishes.

On the other hand, for ωs � pl, the population of subspace 1 decays to zero while for

subspace 2 we recover the equilibrium population for the single common space contagion

model. Finally, the populations are identical only for ωs = pl. Inside the common space,

the agents go through an SIR process, and outside infected agents may get recovered. The

dynamical equation for the total quantities S, R and I are the same as the parallel model

dS

dt
= −qi (s1i1 + s2i2)

dI

dt
= qi (s1i1 + s2i2)− qrI

dR

dt
= qrI. (7.13)

Additionally, for the first common space the quantities are given by

ds1
dt

= −qis1i1 − ωs (s1 − qis1i1) + pj (S − s1 − s2)

di1
dt

= qis1i1 − qri1 − ωs (i1 + qis1i1 − qri1) + (1− qr) pj (I − i1 − i2)

dr1
dt

= qri1 − ωs (r1 + qri1) + pj ((R− r1 − r2) + qr (I − i1 − i2)) , (7.14)
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(a) (b) (c)

Figure 7.9: Series Burst Profiles. Dynamical behavior of the infected population as a function

of the parameter ωs for the three sets of microscopic parameters: Red (qi = 0.005, λ = 0.1,

γm = 0.009), Green (qi = 0.001, λ = 0.1, γm = 0.018) and Blue (qi = 0.002, λ = 0.022,

γm = 0.0018), respectively.

while for the second space we have

ds2
dt

= −qis2i2 − pl (s2 − qis2i2) + ωs(s1 − qis1i1)

di2
dt

= qis2i2 − qri2 − pl (i2 + qis2i2 − qri2) + ωs (i1 + qis1i1 − qri1)

dr2
dt

= qri2 − pl (r2 + qri2) + ωs (r1 + qri1) . (7.15)

Infection profiles for series model

Figure 7.9 depicts the burst profiles for the series model and a function of the parameter

ωs. We find that the profile experiences the greatest variations for small ωs, where the peak

of infection is notably greater than for larger values of ωs. This feature is independent of

the other parameters sets. Moreover, this is in agreement with the equations (7.12), where

for ωs � pl the population of agents on the first sub space grows to the limit of the total

population N for ωs = 0. In this way, the large number of agents located at the sub space

1 will be more prompted to get infected and consequently to infect other actors. On the

other hand, as ωs grows, the population on the second sub space approaches to the single
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Single space Double space in series
(a) (b)

Figure 7.10: Non-linearity of the outbreak time-to-peak Tm as a function of duration T , for dif-

ferent values of mobility γm. Each dot represents an average value over 1000 realizations and

changes as λ grows in steps of 10−2. (a) Single common space model with person-to-person con-

tagion mechanism. (b) Series model where first sub space undergoes person-to-person contagion

mechanism while the second one broadcast.

CSC model while the population of the first sub space decays to zero. The series infection

profile therefore, reproduces the single CSC model under the condition of ωs � pl.

7.4 Model variations and predictability power

7.4.1 Contagion mechanisms

Variations of contagion mechanisms preserve a strong nonlinear dependence on mobility.

For instance, consider that every individual within the common space has a constant prob-

ability to get infected, independently of the number of infected individuals present in the

common space. This mechanism of contagion is known as broadcast , and shows contrast-

ing behavior when compared with person-to-person mechanisms or when combined with

person-to-person on a multiple space system. Figure 7.10 compares single and series mul-

tiple space by looking at the duration and time-to-peak as a function of λ and mobility γm.
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The contagion mechanism for the single space and the first sub space of the series model

is person-to-person, while for the second sub space is broadcast. The motivation behind

studying this particular combination for the series model is two-fold. (1) It produces a

largest ratio Tm/T when compared with the single space or other type of series combina-

tion. A ratio Tm/T > 0.5 has been observed on real-world outbreaks such as civil unrest.

(2) The multi-stage model (i.e. series) resembles multiple source of information that may

influence individuals such as radio news stations (broadcast) and online forum (person-to-

person). Notably, a series combination as showed in Fig.7.10(b), on average, preserves the

ratio Tm/T for small values of mobility at a value ≈ 0.55. By contrast, for the single model

the ratio is preserved for large values of mobility but it is not larger than 0.45.

Another key point is to note that these values are averages over 103 realizations. Therefore,

larger values of Tm/T can be obtain by the combined series model on a case-by-case basis.

This is shown on Fig.7.11 where a wider range of civil unrest outbreaks are positioned on

a Tm vs T plane. The gray region delimits the outbreaks that could be obtained by the

single model where the ratio Tm/T is near zero (red curve). Outbreaks in the boundary of

the gray and white region, (i.e. Tm/T ≈ 0.5) can be described by either the single model

or the averaged combined series model (green curve). Finally, for outbreaks whose peak

of severity is located near the end of the burst, a combined model is better suited (black

simulation). The latter case is still problematic since no model combination can produce,

on average, a profile with these characteristics.
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Figure 7.11: Real-world outbreaks exhibit extreme profiles (e.g. ratio Tm/T of time-to-peak to

duration) represented by colored circles. Though these lie beyond standard SIR model and single

model, they can be explained using series combined model. Illustrative infection profiles are shown.
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Figure 7.12: Comparison between parallel CSC model and single CSC model by using the area

below the I/N curve as a function of ωp and the infection rate λ. The area of each sub space is

denoted by ai. The light blue plane represents the quantity a1a2/(a1 + a2) while the gray plane is

a1+a2. The colored planes (red, green and blue) are the result from the single CSC model for these

type of parameters.
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7.5 Possible Correspondence with RC circuits

We address this by calculating the extensive quantity a for each sub space independently

and comparing it with the single CSC model. Given the architecture of the multiple CSC

model, an interesting question is how we can relate the results of the model with an elec-

tric circuit. Is this quantity resistor-like or capacitor-like and under what conditions? We

address the question by calculating the extensive quantity Q for each sub space indepen-

dently and comparing it with the single CSC model. Given the previous results, we know

how to recover the single CSC model while working with the double CSC model in series

or in parallel. For instance, the parallel model for ωp → 0 or ωp → 1 is equivalent to the

single CSC model. Therefore, we can conclude that any extensive quantity behaves like a

capacitor, since for these limits one of the extensive quantities values is equal to zero and

the remainder reproduces the single CSC model. In the same way, we may conclude that

the series model behaves like resistors for the cases where ωs � pl. For the other values of

ωp and ωs, the comparison is made with the extensive quantity associated to the common

space only, i.e., infective agents outside the common space will not be included.

Figure 7.12 compares the single CSC model and the parallel two spaces CSC model by

using as an extensive quantity the area below the I/N curve for three sets of parameters

as a function of the infection rate λ and the parameter ωp. The light blue plane represents

the sum of the individual areas associated with the parallel CSC model. The Blue plane

is the outcome by adding the inverses of the individual areas and taking the inverse. And

the upper colored planes represent the single CSC model result. The results reveal that

there is no direct relation between the areas through a circuit analogy other than the trivial
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Figure 7.13: Comparison between series CSC model and single CSC model by using the area

below the I/N curve as a function of ωs and the infection rate λ. The area of each sub space is

denoted by ai. The light blue plane represents the quantity a1a2/(a1 + a2) while the gray plane is

a1+a2. The colored planes (red, green and blue) are the result from the single CSC model for these

type of parameters.

result when the parallel model reproduces the single model (ωp → 0, 1). Other values of

ωp generate different results independently of the value of λ.

On the other hand, the outcome from the series CSC model reveals a richer behavior.

Figure (7.13) depicts the area relations as a function of ωs and λ. In addition to the known

result for large ωs, we find coincidences between the capacitance relation of the areas and

the single CSC model for specific values of λ and ωs. The coincidences correspond to the

curve where the light blue plane (capacitance relation between areas) and the colored ωs in-

dependent plane (single CSC model result) intersect. In other words, the single CSC model

can be mapped by a series CSC model where the areas are modeled as capacitors and the
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Figure 7.14: Curves on the λ− ωs plane where the area of the series model show a capacitor-like

behavior.

values of λ and ωs lie in the curve where the planes meet. Figure 7.14 illustrates the curves

on the λ − ωs plane where the areas of the series CSC model behaves like capacitors for

the three sets of parameters studied before. The curves reveal an exponential-like behavior

between the quantities λ and ωs.

7.6 Summary of chapter 7

An agent-based model of contagion including the human tendency of moving through on-

line and off-line spaces was presented. The dynamical component allows greater flexibility

to capture a wider variety of extensive features of modern-day outbreaks that other tra-

ditional approaches (e.g. SIR) lack. In particular, civil-unrest activity in Latin America,

global on-line trading and pro-ISIS online support lie on the range generated by the model.

Results reveal a high non-linear dependence on mobility that yield to the counter-intuitive

prediction that by increasing the flow of individuals through a region of contagion (on-line
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or off-line), the infection’s severity could be decreased. Extension to multiple regions of

contagion, together with variations on the contagion mechanisms, are explored and wider

ranges of profile features have been found.



Chapter 8

Summary and perspectives

The results provided in this thesis constitute a series of steps forward into the understand-

ing and modeling of complex dynamical systems. While traditional approaches focus on

asymptotic behavior, quasi-static transitions and nearly infinite number of particles, many

real-world systems lie beyond the scope of these assumptions. On the other hand, reduc-

tionist approaches aim to describe the microscopic details at a fundamental level, and hence

might fail in capturing the big picture of the system. This thesis aims for a midway. We use

a holistic approach in order to capture the underlying mechanisms that generate emerging

out-of-equilibrium behavior. This approach has allowed us to analyze additional implica-

tions that may lie beyond the empirical data available.

For example, the stochastic model for bacterial photosynthesis bestowed in chapter 3

has been verified by its demonstrated prediction of structural preferences [35; 36]. This em-

pirical ground opens the gate to explore potential implications. For example, the impact of

abnormal photon arrival times and hence, examine conditions for survival in environments

different from Earth’s. In addition, our approach was able to provide quantitative under-

standing of the complementarity between the macro molecular aggregation of light har-

vesting structures in primitive photosynthetic organisms, and spatial correlations naturally

143
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present in sunlight. Either an ordered or disordered antennae assembly is favored depending

on light availability and the organisms’ metabolic needs, yielding high-efficiency photon

absorption for low light-intensity environments and protection for high light-intensity en-

vironments.

Following this line of thought. Having identified the grouping mechanisms that pro-

duce the emergent feature of a 5/2 power-law size distribution of aggregates, a step forward

has been taken by eliminating the serious shortcoming which assumes that the underlying

objects are identical. We have demonstrated that the introduction of objects’ heterogene-

ity, where it typically dictates their grouping rules and hence their collective behavior,

preserves the universally observed feature while revealing rich transition behavior. Addi-

tionally, the implementation of a character-driven fission-fusion mechanism, mimics con-

nectivity features and produces sparse networks which are quantitatively similar to those

observed empirically. These commonalities give us insights about the orientation-type of

grouping which drives the evolution of a dynamical adaptive network.

We analyzed additional quantitative measures to study contrasting real-world networks

from several social domains. Interestingly, for networks where the environment becomes

more aggressive and dangerous, we have found a remarkable emerging superiority of a fe-

male minority in terms of network connectivity. This trend is statistically associated with

benefits to the network in the local and global level, in aspects such as longevity. Our

findings raise more general questions about who the important members of a network ac-

tually are in terms of an organization’s development. As a result, we suggest to investigate
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whether the contributions of female members would be better appreciated if measured in

terms of collective connectivity, as opposed to measures favoring individual connectivity.

Finally, we looked at the problem of contagion in dynamical networks. We developed

a simple but highly non-trivial model that, by introducing a modern-day tendency of pass-

ing through a common place of interaction (e.g. social media), leads to a wide variety

of infection profiles that resemble those found in several real-world systems. In addition,

the results revealed the anti-intuitive outcome which states that the severity of an epidemic

could in fact decrease if the mobility of individuals entering and leaving the contagion re-

gion increases. Additional developments of the model, accounting for multiple places of

interaction were advanced. These expansions have shown to increase the applicability to

real-world outbreaks when compared to the single common space model.

There are several possible avenues of research. A vision for the future accounts for the

following:

1. Integrate the quantum dimer with the stochastic model to study the influence of quan-

tum dynamic effects (e.g. entanglement) in the photosynthetic reaction center and

how they impact the overall efficiency of the photosynthetic process.

2. Explore the usage of stochastic methods to charge migration modeling on particular

types of novel light-driven organic materials, and examine how spatial coherence

could guide the engineering on their light detectors.
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3. Study the robustness of the 5/2 distribution of aggregates by a generalization of our

heterogeneous fission/fusion model to account for a variable number of individuals.

4. Investigate commonalities of the isolation/cohesion transition with the defect forma-

tion equivalent to the Kibble-Zurek effect [186] and explore potential phenomeno-

logical usage on coupled quantum systems (e.g. Dicke model).

5. Examine potential physical applications of the common space contagion model. In

particular, the two-state model SIS where infected agents relax to a susceptible state

instead of a recovered state. This model can be implemented on two-level systems

where, for instance, particles can change their state due to active interaction (S+I →

I + I) on a subset, or due to passive relaxation (I → S).

6. Explore generalizations of multiple common spaces that can be re-normalized to a

single ’dressed’ common space and mapped into an effective electric circuit.
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