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Quantitative understanding of mechanism in complex systems is a common 

“difficult” problem across many fields such as physical, biological, social and economic 

sciences. Investigation on underlying dynamics of complex systems and 

building individual-based models have recently been fueled by big data resulted from 

advancing information technology. This thesis investigates complex systems in social 

science, focusing on civil unrests on streets and relevant activities online. 

Investigation consists of collecting data of unrests from open digital source, featuring 

dynamical patterns underlying, making predictions and constructing models. A simple 

law governing the progress of two-sided confrontations is proposed with data of activities 

at micro-level. Unraveling the connections between activity of organizing online and 

outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, 

through which adversarial groups evolve online and hyper-escalate ahead of real-world 

uprisings. Based on the patterns found, noticeable improvement of prediction of civil 

unrests is achieved. Meanwhile, novel model created from combination of mobility 

dynamics in the cyberworld and a traditional contagion model can better capture the 

characteristics of modern civil unrests and other contagion-like phenomena than the 

original one. 
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CHAPTER 1 Introduction 

 

1.1 Motivation 

Complex Systems are becoming more and more researched in both the natural and 

social science 1. And complexity refers to the dynamical patterns in complex systems, 

which pervades many natural and social fields. For instances, patterns in a sediment bed 

2–4, emergence of crescent-shaped dunes 5, growth of river meander loops 6, spread of 

financial rumors 7, patterns in fatal human confrontations 8 and mass protests on streets 

9,10. The existing definitions of Complex System, however, are still vague, lacking 

specialty and conciseness. Nonetheless, it is still agreed by many researchers that 

complexity is a manifestation of a series of key characteristics 5, which imply that there 

are such things as complex systems distinguishing from simple systems. Though not as 

unique as those in hard core mathematical systems, the following serve as typical signals 

of complexity: feedback and adaptation by the exchange of energy, material or 

information at macroscopic/microscopic level 11, self-assembly among individuals 12, and 

strong coupling with the environments 13. Quantitatively understanding the dynamical 

patterns in complex systems is said to be a remarkable revolution. Because it can lead to 

valuable predictions for those systems that have been proven difficult to forecast and 

control so far 1. 

Like the many-body problems and subsequent collective phenomena in solid state 

physics 14, physicists in the Complex System field have emphasized the novel non-linear 

(e.g. fat-tail distribution) patterns observed in many real-world complex systems, such as 

animal aggregations (e.g. school of fish) 15, large-scale epidemics 16, massive civil unrests 



2 
 

 
 

17 and global financial markets 18. These non-conventional patterns can generally be 

divided into two stages. On the first stage, collective behavior emerges from self-

organization that reduces the massive number of degree to a much smaller number of 

independent dynamical variables 19. On the second, these variables interact and evolve to 

yield diverse, potentially emergent, phenomena 20,21. Good examples are presented in 

chapter five and six of this thesis. In these two chapters, I show that individuals are self-

assembled in online aggregators without evident leaders and the development of the 

organizations uncover several interesting results, including an innovative transition from 

unrests online to events on the streets. 

Physicists are keen on looking for the complexity patterns and subsequent models of 

complex systems. In natural science, many theory and models have been successfully 

built to explain patterns of complex systems 19,22–25. In social science, however, there are 

less achievements. The reason why it is so hard for previous investigations in sociology is 

that only collective statistical data was available before. Nowadays, fortunately, the 

technology advances bring the entire human into a cyberworld, where tracking 

individuals’ activity and storage of tons of data become practical for common 

researchers. Good examples like Google trends and Facebook logs can provide very 

detailed time, location and contents of human activity at individual level 26.  

Hence recently quantitative patterns for complex systems in social science and 

corresponding application have been explored a lot by researchers from physics, 

computer science, sociology and other disciplines 27–30. What occur in all investigations, 

however, is that the such type of patterns is systematically complicated 13, with little 

resemblance to known elementary laws of dynamics. In comparison to physics, many 
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theory and models of complex systems (e.g. many-body and non-linear problems) have 

been successfully built to explain the behaviors of individual particles and macroscopic 

features, as a consequence of well-investigated microscopic law governing the particles 

and micro-structures. For example, spin glass 31, superconductivity 32, quantum 

mechanics 33 and high energy physics 34. 

Therefore the work of our group is to investigate complex systems in social science. 

The focus is on finding some basic patterns which govern the individual behavior at 

microscopic or mesoscopic level. Furthermore, we try to develop a model with the help 

of these patterns to mimic specific non-conventional complex systems in social science. 

These patterns and models in social science are potential extremely beneficial to 

economy, military and society, just as indicated by works of other group members’. For 

example, finding dynamical patterns in guilds forming within massive multiplayer online 

(MMO) game  35 leads to better prediction of life of a game; Discovering underlying 

pattern in insurgent and terrorist activity is of importance in military to prevent fatality 

36,37; Unveiling the dynamical patterns characterizing the trajectories humans follow daily 

38 can contribute a lot to public health 39, city planning 40, traffic engineering 41 and 

economic forecasting 42. In addition, the work on civil unrests, introduced in this thesis, 

can give rise to better prediction of massive protests and thus less violence and loss 

resulting from the unrests 10,17,43. The detailed contents and further discussion of the civil 

unrest work are represented in the following chapters. 
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1.2 Overview 

This research lies on the basis of big datasets of civil unrests which unprecedentedly 

increase the accessibility to precise and reliable analysis on Complex System on the 

microscopic level. The content and history of civil unrests are described in chapter 2 that. 

Understanding the dynamics of groups of people in complex systems and the prediction 

on collective behavior becomes the focus of this research. At the beginning of this series 

of projects, our research group was perplexed on how the large systems evolve, how the 

development of groups is along with time, how rumors/information spread among the 

systems. As time, energy and curiosity are devoted to the projects, the profiles of the 

complex systems of civil unrests are gradually emerging to the surface. Finally, the vital 

question that “can collective behavior be predicted”, is touched on and productively 

addressed by us. Several successful and practical predictions consistent with empirical 

data are accomplished which will be of great significance in preventing potential 

conflicts, fierce violence and economic loss.  

One basic premise behind the study of complex systems is that local non-trivial 

interactions yields the complex collective behavior. However, at the beginning stage of 

projects, the research group had not got a good understanding of characteristics of the 

local interaction and thus led the study to direct analyzing the macroscopic signals, such 

as Google Trends on relevant words of protests and category of current signals by 

machine learning of history. As work proceeding, it was discovered that this direction 

cannot lead to insights on the underlying dynamics. As a consequence, the group failed to 

generate reliable predictions that can beat null model of history replication.  
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The unsuccessful attempts to directly analyze macroscopic features enlightened our 

team the importance of investigating the fundamental dynamical law governing the 

behavior at microscopic level. Meanwhile in another project, data of insurgent and 

terrorists’ activity in Mid-East was studied and a simple mathematical law under the base 

of human confrontations was surprisingly found. With the discovery of this mathematical 

law, the group proceeded to research the civil unrests in Latin America. A covert 

development stage of civil unrests, which takes place online and has a non-stationary 

escalation, are then uncovered. In order to generalize the finding, an innovative two-

phase scheme of the civil unrest in cyberworld is provided, with a phase transition 

governed by an equation identical to the divergence in percolation theory. Subsequently, 

we have generated successful prediction on the time of possible outburst in Brazil and 

Venezuela. 

Finally, a new model is proposed, capturing the mobility characteristics of individuals 

from online to offline. It involves a common space of information sharing and a private 

space where individuals are isolated, mimicking modern people’s alternation of online 

media and offline life in digitally driven world. Therefore, this model can be considered a 

new type of “contagion” model in which motivated people are the infectives and ideas 

spreading online are the virus. Additionally, the consistence with empirical data from 

online aggregators of Islamic State and civil unrests in Latin America provides big 

support for the reliability of the newly-discovered model.  
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CHAPTER 2 Modeling Civil Unrests: A General Survey 

 

2.1 Background Overview 

The hard core of civil unrests: political violence, civil wars, and terrorism are all 

complex social problems, which involve dynamical interactions among individuals, 

groups or communities and evolving process in exogenous factors (terrorism, inter-state 

wars) as well as endogenous factors (civil wars, social unrest) 9. In standard social 

science, the conditions under which protest, wars, terrorism, and other forms of 

conflicts occur are persistent themes in the field. Even an unequivocal definition 

of this field still remains elusive, as there are widely different opinions among 

academics as to which aspects of civil unrest should be the main focus. Many 

researchers focus on the explanations of the reason and consequences of unrests, 

while others are focused on the strategies of key leaders. Generally speaking, 

theoretical approaches emphasize the explanation or prediction to causes of violence 

by addressing its underlying micro/macro achievements. 

Our interest is ignited by the complex nature of eruptions of civil unrests, and the 

novel approaches from a physics perspective are made practical by growing 

availability of event-level datasets. Actually, the first ever work aimed at quantitative 

understanding across conflicts was done about 100 years ago by a physicist, Lewis 

Fry Richardson 9. Richardson failed to construct a beautiful quantitative scheme of 

social unrests in his years. Because he suffered a lot from lacks of availability of 

event-level datasets, which is now accessible to many investigators.  
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 These big datasets include manually-coded data on civil unrests, such as protests, 

political conflict and inter-state wars. In existing studies, the data adopted usually 

come from non-academic sources like newspapers, televisions, blogs and other social 

media open to public. A considerable amount of work has been done to employ these 

datasets with technology from agent-based modeling, logistic regression and machine 

learning 44–48. However, these research failed to clarify quantitative algorithm or 

pattern inside the complex civil unrests, and consequently, subsequent predictions 

have no good performance. As perceived by this research group, an important reason 

leading to such results is that the big datasets used in previous research contain only 

collective statistics of the civil unrests, thus the insight on micro-structure of civil 

unrests are failed to be generated. 

Fortunately, updated event-level datasets with higher precision become available 

to researchers since the onset of bursts of information technology and devices. The 

advanced information technology (e.g. aggregated data from use of the Internet) 

provide larger volume of storage, longer time of monitoring, precise geolocations 

and boosted calculation/analysis. Meanwhile the spread of usage of smart devices, 

such as cellphone, tablet and laptop, and the access to internet makes it possible to 

record individual-level activity.  Therefore, an increasing number of physicists are 

being drawn to this field, together with strikingly growing multidisciplinary teams 

investigating political conflicts.  
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2.2 Quantitative Approaches to Social Unrests 

We focus on the methods and theoretical tools associated with different instances of 

civil unrest and political conflict. The field is vast and has evolved from many disciplines 

ranging from political science and economics to sociology—and more recently ecology 

and biology. As a result, there are several definitions of political conflict; from the field 

of contentious politics and social movements focusing on protests and strikes, to conflict 

defined as violence. In addition, the field offers a wide variety of methods to account for 

collective action; its occurrence, how it spreads, and how it might even be predicted. The 

sections in this review comprise a discussion of some relevant works on social 

movements and the studies of diffusion or contagion processes of social movements; 

studies on illicit organizations such as insurgencies and terrorism; studies on political 

violence; and finally the analysis of civil wars. In all cases, there are typically extreme 

asymmetries of power between social actors and the state—however, figuring out the 

reasons of these asymmetries and bridging the differences is still to be accomplished.  

For those studying social movements, the aim of actors is usually policy change or 

political inclusion and the means are more often than not peaceful 49. On occasion, the 

target of claims for social movements is not government but private enterprises or other 

organizations such as universities. Nonetheless, these interactions for the most part can 

also be characterized as peaceful; the goals and tactics are also similar. On the other 

hand, for insurgents and terrorism organizations, the goals are regime change or territorial 

control and the means by which these goals are to be accomplished are extremely violent. 

However, in these cases, one still observes a dynamic relationship between the state, 

social actors, and civil society. 
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2.3 Diffusion and Contagion of Social Unrests 

An interesting feature of social unrest has been its contagion or diffusion. As a group 

is able to mobilize, episodes of contention tend to spread throughout geographical 

areas—not inevitably bound by the nation-state— or in temporal spaces. Social 

movement scholars have long observed that mobilization occurs in waves but the 

mechanisms by which these waves unfold or develop remains a promising research topic. 

Analysis of these mechanisms is still a field of interest to many researchers 50,51. As 

scholars are concerned to the dynamics of contention, mechanistic explanations are the 

one that reached general consensus 52,53. 

Recently, the use of power laws has become more popular in this field, as many 

researchers have uncovered that seldom observed events may not be random but in fact 

follow a power-law distribution. This is an important contribution as it provides grounds 

for the non-trivial prediction of rarely observed events. In parallel, many of the social 

science network approaches inspired by Granovetter (Ref.54), are now moving towards a 

dynamic picture of networks. Hence social science is moving towards computational field 

of agent-based modeling, with the goal of addressing how nodes and links evolve in time 

and so ultimately unveiling the connection between network structure and function 
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CHAPTER 3 Context Matters: Improving Forecast Civil Unrest with Big Data 

 

3.1 Perspectives of Civil Unrests Prediction  

Civil unrest is a key problem of social science and has complex dynamical patterns in 

development. Various events of civil unrest have led to significant political, cultural, 

economic and societal changes to the entire world. Social unrests in recent years, like the 

Arabic Spring in Mid-East and the rebellion in Syria, have rattled the world. The 

contagion of civil unrest occurs when stress of the society accumulate gradually, then the 

outbreak of stress comes out spontaneously in the form of social unrest within a short 

time scale, spreading from nearest to long-range neighborhood that are also susceptible to 

the stress  55. Although they have been a characteristic of state-society relations 56 for a 

long time, the organization methods, spreading mode and their impact are boosted by 

technological advances in such a cyber world 57,58. Despite the exceptional favorable 

conditions created by information technology for the unrest, open source of data offer a 

new way to investigate how information flows generate human behavior in such events. 

Exploring how these data source help predict behavior leading to civil unrest, is currently 

one of the core questions in exploiting the potential power of Big Data. The analysis in 

this chapter is based on the data from Google Trends (GT) and the predictions produced 

by our model were compared to a database of civil unrest events collected by an 

independent agency authority from several major news sources. Our work mainly 

emphasizes the advantage of introducing big data to the traditional sociology methods. 

The database of events were human-coded by the agency authority and we refer to it in 

the following text as a Gold Standard Report (GSR), which establishes an independent 
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version of the ground truth or null model. Our prediction from the model will be checked 

against the GSR. 

The current challenge of stepping into the explored terrain “big data” is now not 

accessing and collecting data/information, but figuring out effective ways to make use of 

it 59. Our prediction model is to target the type of events to be forecast within a time-

frame in a specific geolocation based on the big data. For this purpose, we firstly classify 

the data by their source of countries and tune them for idiomatic differences and 

contextual information. The key algorithm of our model for prediction relies on a search 

in volume of event-related terms and corresponding momenta.  

 

3.2 Data Characteristics and Processing 

The data used in this chapter is from GT aggregated on a weekly basis and the 

database of events from GSR. As there is a big variation in the volume of cases of 

complex civil unrest 60, we then feed our model with the data specifically located in 

Spanish-speaking countries in Latin America.  

The GT data which is provided by an independent agency authority contains the 

volume of search of different words serving as the features of target. Although all 

countries are Spanish-speaking, there are idiomatic variations regarding to uses and 

spelling of some words. The GSR provides a sequence of events cases that are regarded 

as the ground truth of our prediction. Each GSR event has the following key features that 

will be adopted in this study:  

i. category number (e.g. 011 for unrests related to employment) 

ii. geolocation of the event, comprising of (country, state, city) 

iii. Date of the events 
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Despite we have the GSR data with a resolution to city, the model of this study runs 

country by country as the lowest resolution of geolocation. For each country, a list of 

event-related words are selected manually and the volume of search of enlisted words 

throughout that country are extracted. The selection of words was conducted by two 

sociologist: Nicolas Velesquez and Ana Morgenstern. For example, the list of event-

related words for Argentina is introduced as “Protesta, Huelga, Manifestacion, Marcha 

and Paro.” As iterated before, although Latin American countries share many common 

features, the word lists for different countries have necessarily nuances and salience of 

issues is various. For example, Venezuela were fraught with mobilizations in recent 

electoral periods, while in Chile the most salient issue was resulted from education 

reform. 

 

3.3 Warning Generating 

 
3.3.1 Binary Decision Tree: Optimization of Combination of Words 

Binary decision tree method is a simple but popular method in binary classification. 

For each input feature, the decision tree assigns a value threshold to that feature. If the 

value of specific feature exceeds the threshold, it yields a prediction of +1, otherwise -1. 

In our case, binary label (+1, -1) is “events will occur” and “events will not occur”, while 

features are the search volume of relevant words in Google. With pre-selected word lists 

and related data, the model of this study reads the volume of search of all the words, 

aggregated biweekly. Afterwards, the momenta of each words is calculated. Say if there 

are n words, 2n features will be presented in the model. It is necessary to give two 

definitions of prediction score, which are commonly used in other fields: term and 
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threshold. Term refers to the combination of volume of search, whereas threshold is the 

value above which the terms in model will generate a warning of events regardless the 

types of them. 

The criterion of the prediction is based on the three following parameters: 

𝐵𝐵1 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁
  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝑇𝑇1 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 
  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 

𝑇𝑇0 =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇
  𝑆𝑆𝑝𝑝𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 

 𝑆𝑆0 = 𝐵𝐵1 + 𝑇𝑇1 + 𝑇𝑇0 (3.1) 

 

In the above equations, TP, TN, FP and FN are abbreviations for True Positive, True 

Negative, False Positive and False Negative, respectively. True Positive value has an 

increment of one under the condition that one warning from model of this research and a 

real event happened at the same time step, bi-weekly in our case. False Positive means 

invalid warning, i.e. no event occurring at that time range of the warning. In addition, 

True Negative refers to the number of false warnings, and the False Negative represents 

times that event is failed to be predicted. 

With selected word lists and data, our model will try out all the combinations of key 

terms and thresholds for changes in volume for two consecutive time steps above a 

specific threshold and word pairings. Detailed process are as follows. First, the system 

runs all combinations, i.e. one key term and one value of threshold, that maximize the 

score of accuracy. Secondly, the model drops out combinations that are unable to yield 

maximum sensitivity from the subset. Finally, the subset resulted from the previous steps 

are concentrated by maximum specificity. In cases the model generates more than one 
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combinations, the first one will be selected. In practical process, we generate parameters 

pair (B1, P1, P0) for each combination and sort the combination by their B1, P1 and P0 

values in literal order.  

Additionally, it is found during the process of experimenting that pairing one term 

with another unrest terms will yield the best results. The pairing means that now there are 

two terms and two value of thresholds and will yield warnings if and only if the momenta 

of both terms exceed their thresholds. The pairing will obviously reduce the number of 

warnings including wrong warnings. Thus, it has a tendency to reduce TP but also FP 

and FN. As a result, the numerator and denominator of B1 are both reduced. The final B1, 

however, has a better results from the pairing according to test. 

The Fig.3.1 illustrates the terms volume, real events and warnings from our model 

along the time axis for Mexico and Venezuela. The warnings, manifested as black dots in 

the figure, are optimized among a list of words and pairing. Meanwhile, the green dots in 

the figure stand for GSR events. As explained in the previous subsection, the TP, TN, FP 

and FN value can be counted in Fig. 3.1. When a black dot appears at the same position 

where a green dot locates, the TP is increased by one. Similar process can be applied to 

the other three variables. 

The binary decision tree is not static but evolving with time, reading latest events 

report and yielding prediction daily. Because the optimizing process depends on the 

“training” of previous events sequence, e.g. the events occurred one year before “today”. 

On a specific date, the tool reads all events one year before that date, optimizes the 

thresholds, and generate prediction in the next day based on the search volume of words 

and momenta occurring on this specific date. Hence the model evolves as time flows. 
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Figure 3. 1 Civil Unrest occurrences for Mexico and Venezuela. The cases shown 
here covers period from January, 2011 to March, 2012. Green dots mean varied 
types of civil unrest occurrences, and black dots show predictions. A dot both in 
green and black shows an accurate prediction. 

 

Fig.3.2 shows the result of pairing of terms. Five words (Protesta, Huelga, 

Manifestacion, Marcha and Paro) for each country has two out of five (equals ten) 

combinations of words from itself. Each panel of Fig.3.2 shows the performance of our 

model for one country. Underneath the x-axis shows marks for pair selection. The light 

blue bars inside Fig. 3.2 are already the results optimized from threshold, meanwhile, the 

three sub-bars represent the accuracy, sensitivity and specificity respectively. The number 

inside the yellow box is the S0 score of each combination and the maximum of which is 

marked by green. At last, the pair of optimized terms are written in green and located at 

the left head of the panel. The optimized pair may not generate the B1, P1 and P0 all at 

maximum, but it has the best performance in comprehensive score S0, as the green 

number marked. 
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Figure 3. 2 Evaluation of measure’s thresholds. Ten groups of bars correspond to all 
possible combinations. The number in parenthesis underneath x-axis show the index of 
the pair. And three sub-bars inside each group represent the accuracy, sensitivity and 
specificity. Green texts show the words used and green number indicates the maximum 
value of score. 
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In general, context-specific adjustment will enhance uses of big data for prediction of 

events. We demonstrate a trial of applying relevant words to the mining of data (GT), and 

obtain a relatively good score for prediction of events. However, the method in this 

subsection can only give a binary prediction of events: whether there is an event 

tomorrow. In order to obtain a prediction of event with probability (e.g. 50% chances to 

have event tomorrow), a new prediction tool involving the optimizing result of word 

combination is introduced. 

 

3.3.2 Prediction with Support Vector Machine 

In previous subsection 3.3.1, we demonstrate the optimized combination of words as 

well as corresponding momenta of them. After Support vector machine (SVM) is a 

machine-learning mechanism of solving pattern recognition problems [61], [62]. In the 

method, the machine maps the features of data into a high dimensional input space 

(dimensions equals number of features) and constructs an optimal hyperplane separating 

those input points in this space [63]. Different optimizing parameters generate various 

type of core function of SVM. The basic version of SVM deals only with binary label of 

points in high dimensional space. For example, if we want to recognize the sexuality of 

one person from his/her other biotic data, features input into the machine can be like 

height of brow ridge and waist-to-hip ratio, while the label of each point is binary: female 

or male.  

To be more general, the simple binary SVM is a problem in mathematic of finding an 

optimized p-1 dimensional hyperplane in a p dimensional hyperspace. The criteria of 
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optima is achieving a minimum sum of geometric margins of the points to that 

hyperplane. Mathematic form of the optimization algorithm is as followings [63], [64]: 

 

 

 

 

(3.1) 

In equation 3.1, (xi) is the vector of feature values and yi is the binary value for label 

(+1, or -1). Function φ(x), which is usually linear function, rescales the value of features 

and yield the coordinates in the hyperspace. Vector w and γ define the hyperplane, while 

w is called weighting vector. Variable ξi is called slack variable and is able to eliminate 

the influence of outliers collaborating with constant C. Slack variable and constant C is 

tuned to fit the data systematically well, reducing influence of several outliers. As 

indicated in figure 3.3, points in a hyper-space are labelled by two color: black and blue 

and many hyperplane in this space can divide the points into two sets by three 

hyperplanes L1, L2 and L3, among which L3 is the one that SVM seeks for. That is why 

the optimized hyperplane is usually called boundary. Among all points, nearest points 

from the boundary are referred to as support vector. 
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Figure 3. 3 Scheme of Classification in SVM. Hyperplane L1 does not separate the 
black and blue points correctly. Hyperplanes L2 and L3 both separate the points, but sum 
of square of distance from the points to L3 (black dashed line) is less than the one to L2 
(grey dashed line) 

 
For the results below in this chapter, LIBSVM, developed by Prof. Chih-Chung Chang 

and Chil-Jen Lin, is employed. Its detailed mathematic process including slack variables 

tuning, weight vector calculation and probability assessment can be found in Ref. [64]. 

The LIBSVM 2.2 with interface in Python was downloaded at 

“https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download”, and used to predict the 

probability of warnings for those civil unrest in Latin America contained in GSR. 

To find the optimized hyperplane yielding least sum of margin, different tools of SVM 

have their own mathematic algorithm of parameters tuning to have best performance. In 

our work, slack variable and constant C are tuned automatically by the software 

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/#download
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LIBSVM, details in Ref.[65]. After calculation of the hyperplane, the model is trained by 

all input data of features. Then the model is able to give out whether a new point in the 

hyperspace fall into domain of either +1 or -1. Also the model can produce a probability 

associated with this classification, based on the margin from the new point to the 

hyperplane. When the margin of new point is larger than the one of support vector, the 

probability is usually one. The assessment methods of probability on the margin are 

different for different realization of SVM.  

Below is the flow diagram of SVM prediction on civil unrest events in GSR. Firstly 

features of point – status of social unrest on each date – are determined by the result from 

previous subsection 3.3.1. For example, when training with events history in Venezuela, 

combination of search volume of “Huelga” and “Paro” (Green words in Fig. 3.2) as well 

as their momenta serves as the coordinates of point in hyperspace, i.e. all components in 

vector X. The subscript i denotes the time of the input vector in unit of one day. Sequence 

{yi} is binary variable: +1 for events occurring on that day, otherwise -1. 
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Figure 3. 4 Flow Diagram of Prediction with SVM. Input google trend {xi} is provided 
by the optimized combination of terms. Miscellaneous Options include the range of 
parameters searching, upper-limit of trial time, resolution of grid search and etc.  

 
Firstly, the time sequence is divided into two parts of “train” and “test”, the prior of 

which is input into the LIBSVM for training the model. LIBSVM employs a method 

calling grid search with cross validation to search the parameter of C and ξi [65]. There 

are also miscellaneous options include the range of parameters searching, upper-limit of 

trial time, resolution of grid search and etc. SVM generates a series of probability that 

there is an event happening on each date. However, a threshold of probability should be 

defined to decide whether a warning of civil unrest will be sent out, required by the 

funding agency IARPA. The threshold, of course, is optimized to achieve best 

performance score B0 from training part. That is all the process of training part. 
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Figure 3. 5 Prediction from SVM. Different from method in subsection 3.3.1, SVM 
gives probability of events happening and a threshold can be made. Terms for Mexico are 
“manifestacion” and “huelga” as well as their momenta. Terms for Venezuela are 
“huelga” and “paro” as well as their momenta. Warning is omitted only when the 
probability is higher than the threshold. Black dots mark the probability of events 
happening on that day, green dots mark real event and red dots mark the warning we send 
out. 
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Secondly, the test part is input into the trained SVM model to generate warnings and 

corresponding probability, as illustrated by figure 3.5. The data used are the events in 

GSR and Google Trend of optimized combination of words in November 2011. We 

assess the prediction with identical score criteria in previous subsection 3.3.1 (accuracy, 

sensitivity and specificity). Additionally, a probability of events happening is assigned to 

that warning. 

 
3.4 Results and Summary 

 
In this chapter, a trial to forecast civil unrest events is made by two methods: binary 

decision tree and support vector machine (SVM). The prior method tests all the 

combination of relevant words to achieve a relatively good score for predictions. Thus the 

binary decision tree method provides the optimized words combination for each country. 

Furthermore, a SVM model is built in the hyperspace of the optimized words 

combination in order to generate probability for each warning. According to the score of 

B0, these two methods have similar output performance.  

However, the key question is still unsolved that when there will be an outburst of 

unrests, because the two methods both generate warnings only one day ahead. With a 

deeper insight into the algorithm of both methods, it is the nature of Google Trend that 

impedes predictions earlier than several days. The search volume of words reflects only 

the activity of people at present time. It provides little information about the development 

stage of those events. Therefore, a new project is conducted with different sight of angle, 

seeking for the dynamical pattern of development of those civil unrests. 
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CHAPTER 4 Human Confrontations Benchmarked by Simple Mathematic Law 

 

4.1 One Type of Human Confrontations: Red-Blue Conflict 

Human confrontations, causing many high-profile societal problems, involve an 

individual or group repeatedly attacking another – from one-to-one fights 39,61,62 through 

to collective civil unrests 63, mass violence 64 and even online aggregations 65. These 

detrimental phenomena currently has caught the interest of many sociologists; however, 

the understanding of the dynamics at the event-by-event level remains uncertain 66. For 

example, in the scenarios introduced in last chapter:  the protestors’ repeated attacks 

against a government or a child’s incessant cry-attack against the parent 62,67,68, each side, 

usually referred as “Red” and “Blue”, is engaged in a complex conflict of adaptation and 

counter-adaptation.  

While ‘big data’ has shed a light to approaches to non-confrontational human activity 

53,69–72, one characteristic of the confrontations obstructs copying those methods to 

confrontations: agility and secrecy can boost the ability to launch attacks 73,74. And as 

indicated by Ref.75, incomplete or biased analysis of event records for a particular 

confrontation can hardly be avoided, due to the presence of aggression and danger.  

These consideration makes us motivated to collect and analyze a broad spectrum of 

heterogeneous events data, from independent sources across multiple disciplines 76–78. 

Our data sources are listed in the Appendix 4.1, ranging from local to global geolocations 

and in both real and cyber world. The distribution of the severity of events and the trend 

in the timing of events, are characterized by heavy-tailed distributions, which can be 

found in many complex systems. For instance, Zipf’s law in describing the frequency and 

occurrence of words 79, Pareto’s law in describing the wealth of nations 80 and more 
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recent scale-free topologies distributions of complex networks 81. Such distributions is 

typically attributed to the rich-gets-richer principle according to the latest opinions, since 

models growing with some degree of preference are usually the first approach to simulate 

heavy-tailed distributions 82,83.  

In accordance to the rich-gets-richer principle, the expected growth speed of a firm, 

group or social activity is proportional to its size by Gibrat’s law 42,84–86. However, in 

spite of some exceptions 26,53,87, existing research generally paid less attention to the time 

evolution of complex systems. Analysis in this study uncovers a simple mathematical law 

as a good benchmark of the rich-gets-richer principle, specifically on the intervals of 

events in developing stage. This simple law can contribute to the need to quantify the 

likely severity and timing of human confrontations and shed light on likely perpetrators 

88. 

In this chapter, three major contents are presented by the research group: the combined 

analysis of multiple datasets, the simple mathematical law that can benchmark them all, 

as well as the derivation of this benchmark and its interpretation. Quantitative predictions 

of future attacks can be provided by this simple mathematical law of progress curve, thus 

it is helpful to develop a tool detecting common perpetrators and abnormal behaviors 88. 

Further work on this mathematical law is still undergoing within this research group led 

by Dr. Johnson, and hopefully it will be the starting point for cross-disciplinary theorized 

aggression of human confrontations at the individual and group level in both real and 

cyber worlds. 
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4.2 Data Characteristics and Preprocess 

 

4.2.1 Data for Infant-Parent Interaction 

Data for the infant-parent dyads comes from the Department of Psychology in 

University of Miami, obtained by Dr. Daniel Messinger’s group from their laboratory 

experiments. A brief description of the data set is provided here. The data consists of 

several subjects and each of them is performed separately with different time and 

prohibited inter-participant communication to assure the independence of data derived 

from subjects. An event is taken into account as the infant presents a cry-face and 

regarded as ending when the infant stops that cry-face. Each subject has one unique 

infant-parent dyad where the parent is instructed to temporarily keep still-face. the cry-

face is identified by the modern recognition technology of human facial expression, while 

the intervals between successive infant cry-face attacks is recorded by digital monitoring 

in a unit of millisecond. For details of the experiment, including the recognition 

technology, information of dyad, structure of the data and etc. Details please consult 

Cohn and Ekas’s articles in Ref. 89,67 

In this experiment, the baby side is referred as “Red” while the parent side as “Blue”. 

Baby attacks the parent by sporadically presenting a cry-face to obtain the care of its 

parent, in other words, to protest the lack of interaction with its parent under the 

circumstance that parent-baby interaction is refrained by researchers. One point worth 

mentioning here is that the attacking baby may not be looking at the parent’s face nor 

knowing the reaction of the parent. Thus it is called unconscious attacks that the Red is 

unable to know the reaction of its counterpart, i.e. Blue. In the study introduced in this 
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chapter, both types of attacks are treated and recorded as events equally. In further 

projects, attacks evidently targeting the Blue are filtered and only this type of events are 

recorded for the analysis in the next steps.  

 

4.2.2 Data for Flash Trading 

Flash trading refers to the events in stock market that predatory high-frequency traders 

(Red) abruptly offend slower market participants (Blue), the durations of which are far 

beyond the normal reaction time of human (<650ms for price dips, <950ms for spikes of 

price) 18. Each subject of the data comes from a particular U.S. financial institution’s 

stock. The time range of this dataset is in the period prior to the 2008 global financial 

crash, which evokes a lot of interest of people. Terms as “dip” or “spike” has various 

definitions since it is not a completely objective feature. In economics and finance field, 

popular definition of such term is the value of stock price with Z-score larger than 3. 

 This dataset can be explicitly found in charts on NANEX website: www.nanex.net. 

And we are extremely grateful to Eric Hunsader of NANEX for his help with this data. 

And the steps to access the data manually on NANEX website is: 

1. Go to http://www.nanex.net 

2. Click on “Nanex Research” 

3. In column “Research” on left hand side, click “Micro Flash Crashes” 

4. This web page contains all the events implemented in the study.     
http://www.nanex.net/FlashCrashEquities/FlashCrashAnalysis_Equitites.html  

5. Simply download the files, unzip and start viewing 
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4.2.3 Analysis and Results 

For wide range of human confrontations, the time consumed to finish a challenging 

project decreases with successive repetitions, following an special heavy-tailed 

distribution – power law progress curve 90–94. Thus, analyzing dataset of this study in a 

similar way is highly inspired. The scheme of analysis method and the results for the 

interval of individual events involving face-to-face confrontations are illustrated in Figure 

4.1 and 4.2, respectively. The successive interval points from each subject, i.e. an infant-

parent dyad or a financial institution, are fitted into a power-law equation as shown in 

Fig.4.1 (B) 

 𝜏𝜏𝑛𝑛 = 𝜏𝜏1𝑆𝑆−𝛽𝛽 (4.1) 

where the τn is the interval between the (n-1)th and nth events, as illustrated in Figure 4.1 

(A). As briefly mentioned in subsection 4.2.2 here: the events for infant-parent data are 

defined as the baby showing a cry-face recognized by software; meanwhile, for ultra-fast 

trading data, the meaning of events are the operationalized by price dip/spikes whose 

durations are far beyond the normal reaction time of human (<650ms for dips, <950ms 

for spikes) 18. With respect to the interval τn between two successive events, it is counted 

from the end of previous event and the beginning time of the next event, and n is its 

ordinal index, e.g. interval between first and second events is called τ1 . Parameter β is 

the escalation coefficient, which is the results from the power-law curve fitting tool in 

software OpenOffice.org Calc manufactured by Apache Inc 8, with logarithm base as 10. 
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Figure 4. 1 from Ref. 8 (A) Scheme of the interval between successive events in time 
sequence. (B) Scheme of the power law fit of τn vs. n in log-log scale, the intercept of the 
fitted straight line is the value of τ1 and slope of it is negative β.  

 

For each timeline of the events, a pair value of τ1 and β can be captured from fitting 

trend in inter-event times. Since there is a set of subjects in dataset of infant-parent and 

the ultra-fast trading, multiple feature points (logτ1, β) for either set is able to be obtained. 

The points from infant-parent and ultra-fast trading are plotted in Figure 4.2 (A) and 

Figure 4.2 (B), respectively. Each point corresponds to one timeline of events from one 

subject, most of which show escalation (β>0) with some de-escalation (β<0). Non-

stationary behavior, rather than how, why or when each individual confrontations ends, is 

the concentration of this research. Therefore, the relationship between the escalation 

coefficient (non-stationary process) and the initial performance (time from first event to 
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second event) is carefully investigated. This gives rise to the simple mathematical law 

that benchmark the pattern of human confrontations, as indicated in the chapter name. 

 

 

Figure 4. 2 Event-timing benchmark across domains from Ref. 88 (A) Each point 
denotes a unique dyad of infant-parent, obtained from the progress curve features of 
itself. Underlying events are infant (Red) attacks parent (Blue) with cry-face. The details 
of experiment is described in Ref.67. (B) Each point denotes a particular U.S. financial 
institution stock, obtained from NANEX. Underlying events are ultrafast predatory 
traders (Red) attacks the market of slower investors (Blue). Both panels show a good 
linear relationship among the points, with R2 larger than 0.8 

 
In Figure 4.2, simple linear regression is applied to estimate the coefficients and 

goodness of fit between the variables of β and log τ1. The R2 of them are 0.74 and 0.80, 

respectively. Moreover, the progress curves of non-stationary confrontations are from 

different subject in various regions, e.g. dyad of infant-parent are randomly selected and 

financial institutions is throughout the U.S. Therefore, characteristics of their progress 

curve can be assumed as independent from each other. However, in Figure 4.2, the 

feature points from the same dataset forms an approximate linear relationship between 

the escalation coefficient β and τ1. This fact implies that within each domain the 

confrontations with initial events tend to slow down their development speed with a high 
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frequency over time (β even negative when τ1 is small), whereas the events sequence will 

accelerate if initial events started slowly (β large positive when τ1 is large). 

Based on the fact that the subjects in either dataset are relatively independent from 

each other, the simple linear relationship between the features of progress curve β and log 

(τ1) is particularly remarkable, especially for the infant-parent dyad. Due to possible 

cooperation and communications among the financial institutions, the simple 

mathematical law may be attributed to some incorporating strategy in business. The good 

fit of linear regression among dyads, however, highlights the existence of a universal 

simple law within human confrontations as the dyad is comprised of different and 

random infant and parent. In addition, the parents in experiments come from various 

locations and races 67, which reduces possible interference among them. Therefore a null 

model hypothesis is produced in the next subsection, involving a Monte-Carlo process in 

which the interval between Red attacks are in Poisson distribution. 

 

4.2.4 Null Model and Hypothesis Test 

In this subsection, the null hypothesis test of the argument of that simple mathematical 

law is shown in 4.2.3. The null statement is that the linear relationship between points in 

Figure 4.2 (A) and (B) are yielded by randomness. Hence stochasticity (randomness) to 

the event times is to be added and the probability of a good linear-dependence happening 

from a Poisson distribution will be calculated: 

 
𝑝𝑝(𝑘𝑘) =

𝜆𝜆𝑘𝑘

𝑘𝑘!
𝑆𝑆−𝜆𝜆 

(4.2) 
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The steps are as follows: 

a) For each dyad i, calculate the total times Ti as the time spanning the whole 

events sequence. 

b)  For that dyad i, record the number of events ni and divide it by Ti . This is the 

average time of intervals between two successive events. According the 

statistics knowledge, the average of intervals is an unbiased estimator of the 

expected value of interval for Poisson Process, which equals the scale 

parameter λ in Poisson distribution. 

c) Generate a random series of intervals {τ} by a random number generator in 

Matlab 2013a that are in an exponential distribution. The scale parameter λ is 

in the same value as the one in part (b). And the number of intervals for each 

dyad should be the same with ni. Hence the synthetic time-series produced by 

the random generators are obtained, with restriction of having the identical 

number of events and also the correct duration on average. 

d) For each sequence of intervals, fit them with the same software tool to the 

same power law equations in section 4.2.3. And each sequence thus gives rise 

to a point of (β, log τ1). Repeat part a), b), c) and d) for all the dyads in order to 

get a bunch of simulated points of (β, log τ1). And plot them down. 

e) Calculate the R2 of the best linear regression of the points in part d). 

f) Part (a) – (e) comprise a round of simulation in Monte Carlo process. We need 

to generate a lot of rounds with different seed of the random machine, to have 

a statistical view of the value of R2 
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g) Calculate the mean and standard deviation for the R2 distribution obtained in 

last step. Empirically, the distribution is approximately Gaussian in our test. 

h) Assuming that the distribution of R2 as Gaussian, we can estimate the p-value 

of obtaining a value of R2 not less than the empirical value given by real data 

of infant-parent dyads.  

The hypothesis test results for the two domains we discuss in this chapter are as 

follows: 

Infant-Parent p = 0.0089 R2
real = 0.74 Mean R2

rand = 0.36 

Ultrafast Trading p = 0.0087 R2
real = 0.80 Mean R2

rand = 0.45 

The comparison between the R2 from real world and Monte Carlo Simulation shows 

that the linear-dependence that benchmark the human confrontations can only be resulted 

from random process with a probability not larger than 0.01 (p-value). Hence we can 

reject the null hypothesis at the threshold of 1%, which is good enough to prove the 

existence of the universal mathematical law underlying human confrontations. 

Besides the infant-parent and ultra-fast trading, other types of confrontations are also 

been investigate in this research, such as protests versus government in Colombia, fatal 

death of insurgence in Mid-East, and social movements in Ireland etc. All of them 

represent a similar mathematical law benchmarking all timing of events from 

independent groups, institutions, members and so on. More examples and details can be 

found in the original paper Simple mathematical laws benchmarks human confrontations 

88. 
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4.2.5 Linear Dependence for Timing is Non-trivial 

In this subsection, it is demonstrated that the benchmark of linear-dependence for 

timing of events is only valid in confrontations where face-to-face attacks (Red to Blue) 

occur. This mathematical law is particularly non-applicable to benchmarking data from 

real world experiments in which active Blue opponent is not available. 

It is necessary to recall the main characteristics of human confrontations discussed in 

the above subsections to have a comparison. All of them should contain the conflict 

between two sides: Red and Blue and the conflict involves adaption process in both sides. 

There is, however, other kinds of human tasks in which participants are facing an 

effectively static Blue side or even a one-sided task. Thus it is argued that there is no 

need to deal with the counterattacks from the opponents (Blue), or an evolving Red side 

when engaged in such activity, such as proof-reading, solving a puzzle, or purchasing 

something online. 

As shown in figure 4.3 below, it is recalled in panel (A) the scheme of power law fit 

for escalation rate and intercept. Figure 4.3 (B) below shows a table summarizing the 

classic results of escalation rate (β) and intercept (logτ1) when completing given type of 

task addressed by Crossman 95. The weak dependence between these two parameters is 

possibly due to the heterogeneity of human behaviors (Red). In figure 4.3 (C), it is 

presented that this lack of linear dependence is also true for other kinds of human 

behaviors, like passing cyber tasks, the navigation of different websites. The data in panel 

(C) is from Ref.96, and the entire compiled figure is from the Supporting Information of 

Ref. 88. Additionally, the escalation rate is referred to by its common alias – escalation 

parameter in following chapters. 
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The picture indicates that human (Red) completing one-sided tasks without an 

active/adaptive opponent (Blue) tend not to have systematic linear dependence between 

escalation rate and the intercept, compared to confrontations described in figure 4.1 and 

4.2. Hence it becomes evident that benchmark is not applicable to a general category of 

completing tasks, but more likely to be valid to human confrontation with two active and 

competing sides. Human activity involving static opponent or one-sided tasks is prone to 

lack this systematic linear dependence. 

 

Figure 4. 3 from SI of Ref.88 (A) Scheme of the fitting procedure described in section 
4.2.3. The slope is the negative value of escalation rate. (B) Existing empirical results in 
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the literature for passive tasks. There is no systematic linear relationship found for two 
sided confrontation, in contrast to figure 4.2. (C) Results for one-sided activity of 
searching internet sites. Still there is no evident linear dependence, in contrast to Figs 4.2.  
Data sources are both given in above texts. 

 

4.2.6 Demonstration of Prediction of Future Events 

In this subsection, the accuracy of out-of-sample predictions will be introduced with 

the timings benchmark in this chapter for future fatal attacks on Blue, i.e. coalition 

military in Afghanistan. This part is majorly done by Dr. Johnson and Dr. Guannan Zhao, 

but it is important to verify the significance of the mathematical law. 

The sole input is the time intervals data τ1 between the first two attacks recorded in a 

given region X (e.g. Kabul) that was previously peaceful. The previous stability in tested 

region is an important control variable to exclude the interference from previous attacks 

and to assure recorded τ1 is the real first interval. In the absence of any benchmark, it 

would be impossible to forecast the future time intervals of attacks since one point is 

insufficient to prediction with regression. However, simple linear relationship between β 

and logτ1 throughout all regions that have had attacks can be applied, as long as assuming 

that the Red underlying the attacks in these regions are the homogenous. Obviously, the 

data of region X is excluded in the linear regression for intercept and slope since it is the 

target of prediction test.  

The next step is to estimate the linear relationship among the points of (β,logτ1) from 

other regions, especially the slope (-β) and intercept (logτ1), just like in Figure 4.3 (A). 

So we then use the actual interval between first and second events as an estimate of the 

intercept, and then calculate the escalation rate β from the linear relationship. Afterwards, 

the interval time of future events can be predicted using the progress curve (Equation. 
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4.1), as illustrated in Figure 4.4 (b). And hence a predicted time line of future attacks can 

be obtained, shown as orange dots and line in Fig.4.4 (a), (c) and (d). The comparison 

between real timeline and predicted timeline for three regions is illustrated in figure 4.4 

(from SI of Ref.88) below. 

 

 

Figure 4. 4 from SI of Ref.88  Results for prediction of time of attacks in the future, 
using only one point as input (i.e. initial time-interval). (a) Successive attacks in 
Kandahar against coalition forces (Blue dots and line). Symbol n is the number of events 
and Tn is the total time counted from first event. Orange dots and line are from prediction. 
(b) Plot of intervals between successive events with n, in log-log scale. Blue dots are 
from real events captured in all regions except the test region X, and the blue straight line 
is the fitted line. The Orange dots are predicted τn from input intercept logτ1 and 
calculated slope as negative β. (c) Similar results for Kabul. (d) Similar results for Farah.  

 

 

 



39 
 

 
 

4.3 Summary and Discussion 

In this chapter, the focus of discussion is on the confrontations that follow the 

benchmark behavior featured by a linear dependence between escalation rate and 

logarithm of initial interval of events. They generally consist of a side of Red actors (e.g. 

ultra-fast predatory traders, infant) who is in principle faint in strength compared to their 

Blue counterpart (respectively, global stock holders, parents). Nonetheless, the Red side 

manages to launch up a series of escalating (escalation rate β) sporadic attacks. Taking 

dyad of infant-parent and ultra-fast trading as examples, it is shown that both the 

severities and the timings of events follow a power-law functional form. The model 

developed in this chapter provides an explanation of the underlying dependence of 

escalation rate on the state of initial events, which is hardly found in conflict with static 

opponent (Blue) or one-sided actions.  

Next, consider there are several events of a confrontation that is known sporadic and 

involving active Red-Blue sides, as well as a series of events initiated by the same Red 

side in other places, institutions or times. Fitting the events series with power law 

equation (4.1),  a bunch of escalation rate (β) and intercept of logarithm of first interval 

(𝜏𝜏1) can be obtained. The linear regression of those points, together with the interval of 

real events, can generate the predicted time of next events in the future. Applying it to the 

insurgencies data in Afghanistan, a relatively good prediction result is generated and the 

forecast application of the model is well-evident.



 
 

40 
 

CHAPTER 5 Facebook Activity Leading to Real Unrest in Brazil 

 

5.1 Modern Civil Unrests: Relying More on the Cyberworld 

In Chapter 4, the mathematical law that benchmark the human confrontations with 

two active sides (Red and Blue) is elaborated, as well as its preliminary function of 

prediction. In this chapter, the concentration is on a further development of the 

benchmark law, which can handle dynamics of escalation and forecast the phase 

transition stage of evolving. After a through interpretation of the benchmark law, this 

paper will illustrate its remarkable application using the example of a real social unrest 

event occurred in Brazil, 2013. 

 

5.1.1 Digitally Driven Uprisings Rattling the World 

As widely-recognized, numerous unexpected social unrests have rattled the world in 

recent years, some of which lead to tremendous society, political, humanism and 

economical disasters 97–99. Among the worst of them are the Arabic Spring, rebellion in 

Syria and Libya, and uprisings in Latin America. Researchers suspected that advanced 

information technology (e.g. modern social media) helps accelerate and amplify the idea 

spreading, protests planning and mass mobilization of people during the entire period of 

unrest 57,58. For instance, in 2009 a new phrase ‘Twitter revolution’ was created to 

describe mass mobilizations driven by social media in Iran 58 and Moldova 57 in response 

to the scandal of fraudulent election.  

From 2009 and later on, the method of aggregating people using online approaches 

such as social media has widely been adopted by various organizations. In 2010, the 
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revolutionary movement called Arab spring spreading in the Arab world involved a huge 

volume of online streaming of information. During that event, people sent messages of 

demonstrations, protests, riots and civil wars via Facebook, Twitter, BBS and other 

digital social media. Similarly, social media played a key role in uprisings in Egypt and 

Tunisia as well, where 90% claimed that they organized protests and spread awareness 

via Facebook 100. Meanwhile, 30% indicated that blocking Facebook by government 

significantly damped or disrupted their communications and activities 100.  

 

5.1.2 Data Mining of Social Media 

The key feature of digitally enabled social unrests is the unprecedented huge stream of 

information. News from mainstream sources can now be accessed and analyzed globally. 

Many governments offer free online publications. Social media also present an 

inclination of booming, for example, there are more than 500 million tweets posted on 

Twitter every day, with the volume notably increasing 101. Similarly, people can easily 

share messages, have discussion, spread video and speeches on Blogs and online forums. 

With respect to this tremendous stream of information, researchers who are interested in 

these unrest started to develop statistical and machine learning methods, aiming at mining 

information stream and thus predicting future events as well as the collective behavior of 

people 101–104. Despite the important role the social media played in uprisings, the 

mechanisms underlying are unexplored, especially how it helped protestors to mobilize 

and leaded to a critical mass of outburst. Although results are not yet fully demonstrated, 

most researchers, including this research team, believe that those digitally driven events 

are in a way endogenous to the system and a prediction method can be achieved 104. 
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5.1.3 Prevalent Phase Transitions in Real Complex Systems 

Phase transition stage is another intriguing aspect among mining of the digital 

information. It is becoming increasingly clear that lots of complex systems have a 

phenomenon of so-called tipping points, a critical threshold where the system shifts from 

one state to another (static or non-static) 105, such as abrupt shifts in global/local climate 

and ocean circulation in the Earth system 106, catastrophic shifts in fish populations in 

ecosystem 107,108. This phenomenon is also applicable in global finance market to the 

worldwide concern about flashing and systematic crashes arises after several crisis in 

recent years 109,110. In biology and medicine, there are spontaneous systemic failures like 

asthma attacks 111 or epileptic seizures 112,113. Even in some cyclic and chaotic systems, 

some transitions usually associated with different classes of bifurcation can still be found 

114. Notably, it is difficult to predict such critical transitions because the model of 

complex systems are usually not accurate enough to forecast reliably where and when 

critical thresholds may occur 105. However, as shown in many other researchers, the 

dynamics of complex systems near a tipping point have generic properties, regardless of 

the details of each system 115. Therefore, it is highly encouraging to find a criterion of the 

sharp transitions in a range of complex systems, i.e. the early warning signal about a 

catastrophic transition. 

 

5.1.4 Precursors of Transitions from Dynamics 

The capability to forecast the abrupt shift, i.e. phase transition in dynamics, is 

particularly intriguing to scientists in many fields. As a result, there have been numerous 
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investigations about the precursors of transitions, most of which are based on the analysis 

of dynamics of complex system. For instance, critical slowing down’ is the most 

important indicator of whether a system is approaching a critical threshold 116. The 

phenomenon of it usually results in three possible warnings in the dynamics of a system 

which is getting close to the tipping point: slower recovery from perturbations, increased 

autocorrelations and increased variance 105. In addition, the asymmetry of fluctuations 

may occur and become increasingly larger as getting close to a catastrophic transition, 

which leads to the skewness and flickering before transitions 117. The skewness of the 

distribution of states, however, is not expected to happen only approaching transition 

point, but also occur when the system is driven closer to the basin boundary by an 

increasing perturbation 117. Besides, particular spatial patterns can also serve as early-

warning signals 118,119, especially in the field of sociology. 

These new observations of precursors of transition are all notably meaningful, 

however, this chapter presented an innovative two-phase paradigm for those uprisings 

driven by digital technology, featuring an online gestational phase that precedes any 

uprisings on street by several months. To prepare for the practical basis of investigation 

of the underlying mechanism, detailed data of uprising events on the streets of Brazil is 

collected and obtained through a systematic press review of Brazil’s main media outlets. 

Two group members, Nicolas Velasquez and Ana Morgenstern, monitored the 

mainstream press’s coverage of date, geolocation and approximate size of significant 

demonstrations, and unrests and/or protests in Brazilian main cities from 2011 to 2013. 

The details of peer review and information extraction will be shown in next sections. 

Remarkably, within this time range this paradigm managed to observe an outburst of civil 
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unrest events that came out in many cities of Brazil in June 2013 simultaneously. These 

outburst is called “Brazil Winter” by researchers, and dynamics of online groups’ 

development in this series of event comprise the main body of the first phase where 

organizations evolve online.  

 

5.2 Data Collection and Preprocess 

 

5.2.1 Social Unrest Data and Weakness of Epidemic Model 

In order to investigate the underlying mechanisms that lead to transition from online 

unrest to social uprisings, an independent source of data set of social unrest events is 

employed from MITRE, a non-profit research centers sponsored by the federal 

government. The organizations of MITRE collect most of the reports about civil unrest 

events in Latin America from mainstream press reports and list the earliest appearance  of 

an unrest event in their “Gold Standard Report” (GSR) 26,120. In particular, some reliable 

news media outlets such as O’Globo, BBC and other national/ international sources were 

harnessed to identify time and location of protests that were manually double-checked by 

subject matter experts (mainly by Nicolas and Ana) 17. The report is provided via the 

third party of HRL Laboratories, LLC, located in Malibu, California. The whole data is 

originally the part of a project aiming at forecasting future unrests by data of online 

media, funded by an independent agency authorities IARPA. This major project is called 

open source indicator (OSI), aiming at establishing a series of forecasting tools based on 

open source information online. 
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Furthermore, unrest data with the number of protesters, as reported by local press, is 

augmented by this research group via manually checking. Meanwhile, more details are 

added to the GSR report as shown in Figure 5.1:  

 

 

Figure 5. 1 GSR events in Venezuela from Jan.2013 to Feb.2014. The upper panel 
shows the accumulated number of events in every states of Venezuela. The darker of the 
color, the more events there are. The bottom panel is the trend curve of GSR events along 
with time axis, among which GSR activity in the month of February is marked in Red. 
The inset in the upper-right corner is the pie plot of the percentage of sub-codes of GSR: 
011, 012, 013 … 

 

Focusing on the GSR events in “Brazil Winter”, this research group have generated an 

illustration of events in Brazil during 2013 as shown in Figure 5.2. The bottom panel 

shows the time trend of GSR around “Brazil Winter”, with vertical horizon denoting the 
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number of events on that day. In the figure, it can be observed that there is no evident 

escalation of events on the real world ahead of the spike covering June 2013.  

 

 

Figure 5. 2 Burst of social unrest on the streets of Brazil. (a) Snapshots of protest 
events in Brazil from March to June 2013 indicate limited localized activity in large 
cities, before the number of unrest events as well as their attendance drastically increase 
all over Brazil in mid-June of 2013. (b) The number of all events along with time line in 
Brazil, from 2011 to 2013. There is no noticeable precursor signal prior to the large burst 
of social unrest activity in mid-June of 2013, from the events on streets. 

 
The absence of noticeable precursor in the GSR profile around the “Brazil Winter” 

implies that the traditional models of contagion among events may not be accountable to 

the process from build-up to transition and then to outburst. At the same time, however, 

analysis of social media sites required by that project (OSI) has indicated that spikes of 

online interactions can precede major events in a revolutionary process 121. Therefore, it 

is encouraging to hinge the unexpected and volatile social uprisings on a convert build-up 
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in social media, specifically in a country like Brazil where there are highly developed 

digital infrastructure and devices. 

Although most of the previous research assume macroscopic events as the 

consequence of individual action, just like the epidemic models, the potential 

microscopic mechanisms across social media is considered in this study. In particular, 

online interaction between individuals allowing them to switch opinions through pairwise 

social relationships should be taken into account. As mentioned in Ref. 122, there are three 

weak points of epidemic model when applied to social structure and information 

spreading online. First, the epidemic models implicitly fail to capture key features of this 

kind of highly non-stationary process, in spite of their ability to capture general patterns 

of social influence that govern dynamics of information spreading. Second, the structure 

of underlying social relationships among individuals online may vary significantly prior 

to an uprising, while the models of epidemic type adopt a relatively constant information 

space. Furthermore, with respect to such models, there is an absence of awareness of the 

existing collective dynamics between multiple individuals, whereas they have strong 

emphasis on the role in interactions between individual actors. The collective dynamics 

can support the emergence of mesoscopic groups during the uprising process, as 

indicated by Amir Ali 97.  

 

5.2.2 Collection of Information of Organizations on Facebook 

Accurate and detailed structural evolutions of social interactions online and the 

formations of virtual groups should be explored and investigated before analysis of 

potential mesoscopic dynamics. Hence, a long-term plan is set up to monitor the 
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emergence of organizations and communities. Self-developed script in Python 

implementing the Facebook API has provided the automatic engine to pull data and store 

it. Facilitated by some manual corrections, this research group have built up a dynamical 

software tool to collect the essential information about online groups. 

As shown in Figure 5.3, many ad-hoc organizations have various pages open to public 

on Facebook, probably to attract followers. They are transient entities where people who 

may have never met are self-organizing around causes and issues. Although the term 

“organization” is usually the choice of groups on Facebook profile, they are actually self-

organized clusters consisting of users/followers whose membership fluctuates over time 

17. Similar patterns are found in the dynamics of re-Tweets of organizations’ messages, 

which is in the build-up to a transition 76. In this research, Facebook profiles of online 

organizations with a political agenda are identified first, then those not active in 

coordinating protests for certain period are filtered. Later, this research group queried the 

Facebook platform with the API offered by Facebook to obtain the complete records of 

those profiles. Through this process, essential features of the group can be recognized, 

including the title, organizations name, and date of creation, mission and ideals, the 

number of likes, events created/co-created and geographical location in some cases. 

Further polishing work has to be done in order to get a more accurate and cleaner 

database of the activity of online organizations. More details and relevant discussions can 

be found in the subsection 5.5 in this chapter. 
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Figure 5. 3 Example of a typical Facebook organization, from SI of Ref.17. Pages of 
ad-hoc organizations are invariably publicly accessible, which is probably due to the fact 
that they desire to attract followers and participants in future planned events. In this way, 
we have managed to build up a dynamical picture of the creation and evolution of 
Facebook ‘organizations’ prior to visible appearance of new episodes of instability and 
unrest, as indicated in Figure 5.4. Since the structure of Facebook pages is the same for 
all users, our methodology is in principle applicable to any city, country, region or 
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language. Upper panel is the whole home page of an opposites of government. And in 
bottom panel, left and right parts show two examples of features recognizing and 
extracting. 

   

5.3 Analysis of Underlying Dynamics and Result Presented 

 

5.3.1 Non-Stationary Escalation of Organization Creation 

As indicated in the above two sections, the emergence, development and evolution of 

organizations relevant to civil unrest activity is considered as a potential precursor signal 

source which can be tapped to predict the date of possible transition to outburst of events. 

Based on the data collection work done in section 5.2, the timeline of creation of such 

organizations on Facebook is observed and plotted in Figure 5.4 (A). Noticeable 

escalation of such kind of activity quantitatively plotted in Figure 5.4 (B) is found in the 

lead-up to the onset of civil unrest outburst in Brazil. The observed pattern of “seismic” 

activity online mimics Moore’s Law of development, which is consistent with both 

theory of organizational development and contentious politics 123. Particularly for 

quantitative analysis of escalation, we employ the progress curve equation 4.1 introduced 

in previous chapters: 𝜏𝜏𝑛𝑛 = 𝜏𝜏1𝑆𝑆−𝑏𝑏, capturing the basic fact that the time intervals between 

creation date of organizations are systematically decreasing. The definition and content of 

each variable is reiterated: τn is the time interval between two successive creation of 

organizations within a specific time window which are assigned an ordinal number n and 

n+1, respectively. τ1 is the interval between first and second creations within the time 

window, and n is the ordinal label of the τn . 
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Figure 5. 4 A two-phase paradigm of dynamical process describing the life of the 
uprising. (a) The emergence of a list of non-stationary actors through large Facebook ad 
hoc “organizations”. Each dot labels the date when a given organization initiated its 
online activity on Facebook, whose name is denoted on the right vertical axis. The 
vertical green line marks a transitional tipping point deduced from curve fitting, which 
coincided with a beginning of burst in Brazil in June 2013 (on June 11st). Furthermore, 
this line indicated a transition that separates a phase of online organizational dynamics 
(left side) from an outburst of protests on the streets. Meanwhile we can observe that the 
transition to protests on the streets are followed by decreasing of online activity (right 
side of the line). (b) Blue line shows the locally fitting result of the interval between the 
initiations of different organizations on Facebook from February to July 2013. 
Remarkably, the escalation parameter was best fit with a power equation whose exponent 
is 1.0 (dashed line), following the observed curve of b value closely. In contrast, same 
escalation analysis of time-series of GSR events during the same time period in Brazil 
(marked by red curve) did neither fit the observed b value curve well, nor generate any 
precursor signal. 

 
The progress curve introduced before assumes a stationary process of development so 

that the escalation rate β or in other words escalation coefficient b is a constant 
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quantitative parameter during the time range of escalation. For the dynamics of online 

activity in social media, however, the value of escalation coefficient b can fluctuate due 

to the non-stationary nature of online dynamics. The hard point is that b could turn 

negative as a result of a momentary de-escalation of online discussion and activity of 

groups. It can be convincingly expected that the escalation coefficient b depends on the 

ordinal number n, and as a consequence b can be written in a function of time in the case 

of emerging uprisings. As illustrated in Figure 5.4 (b), escalation coefficient b is obtained 

as a function of time by locally optimized weighted estimation of scatterplot smoothing 

(LOWESS, details see section of Methods, subsection 5.5.2). In the bottom panel, 

negative escalation rate (temporary de-escalation part) are dropped out by setting those 

points at line b=0. Details of how to fit the escalation rate locally can be found in the 

Methods section 5.5.2. The segment of data of online activity of organizations on 

Facebook is the result out of the entire fitting result, which ignores those noise patterns 

but keeps only the long-run escalation part of non-stationary process. 

The preliminary results in bottom panel of figure 5.4, indicates that the escalation 

coefficient b has a steady zero position at the beginning of the time range, implying that 

there is a short period of de-escalation from February to April. Then the escalation rate 

becomes positive and gradually increases before the sudden outburst in the ‘Brazil 

Winter’. Specifically, the b value diverges as the uprising approaching in an inverse 

algebraic way (𝑇𝑇𝑐𝑐 − 𝑆𝑆)−𝛼𝛼, where Tc is the critical time and the power exponent α = 1.0 ± 

0.10 (Fig. 5.4 bottom panel, see Methods section 5.5.3.1). Moreover, the coefficient b 

actually serves as an order parameter in the lead-up to a transition, beginning from the 

phase of online activity whose key feature is organizational “many body”. The kind of 
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transition strongly resembles transitions in dynamical networks and percolation 105,124, as 

well as a broad category of complex systems with “many body” phase and interaction 

between bodies prior to the transition 78. 

On the contrary, when the same locally fitting method is applied to the time series of 

real events on the streets of Brazil in the same time range, the red curve in figure 5.4 (b) 

is obtained. The result from real events fails to provide a noticeable precursor signal prior 

to the transition to outburst. Consistent with the guess we have from figure 5.2, such a 

failure strongly implies that events on the street are insufficient to forecast any future 

unrest events. Instead, it highlights the essence and importance to investigate the convert 

build-up process occurring within social media, i.e. the “Dark Side” of our understanding 

of social movement.  

 

5.3.2 Predicted Phase Transition Date 

From the divergence equation of escalation rate b prior to transition, a prediction of 

the time to transition can be generated, i.e. critical time Tc in that inverse algebraic 

equation. Vice versa, the critical time Tc can serve as a testable prediction of our theory 

for the non-stationary dynamics and onset of unrest activity in a particular country or 

region. Assuming we are at the time before the outbursts of unrest and are monitoring the 

activity of all online organizations which are related to civil unrest on Facebook, the 

intervals of creation of organizations are thus fed in one by one. As a result, as more 

information is derived and accumulated, it should be possible to generate a prediction 

approximately self-consistent, meaning the predicted transition time approximately equal, 

and of more accurate. 
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In particular, at least three points is needed on the escalation curve fed in to begin 

the prediction of critical time. Also, with the exponent assumed as one, the fitting of 

predicted transition time can be simplified as the opposite number of ratio of intercept 

and slope from a linear regression. Under the condition of given data points, the joint 

distribution of numerator and dominator are a bivariate Student’s t-distributions. The 

predicted transition time, therefore, is in a t-Ratio distribution 125. Maximum Likelihood 

Estimation (MLE) method is adopted to estimate Tc. A 95% Confidence Interval (CI) is 

calculated subsequently by numerical approximation as to obtain the uncertainty of 

estimated Tc. In addition, the left boundary of CI, of course, have to be truncated at the 

position of “Today” when doing predictions, just as the shaded area in the four panels of 

figure 5.5 shows. For more details, please see section 5.5 - Methods. 

Figure 5.5 illustrates the estimates of the critical time Tc as a function of time, 

narrower confidence interval (pink area) with more events information fed in. In this plot, 

the critical time is incredibly self-consistent: all on June 11th, 2013. The uncertainty of 

the prediction is shrinking remarkably as the time flows – more information of online 

activity is implemented into the transition equation. It is vital to point out here that all 

parameters and the prediction rely only on information from “history” and “today”, so 

this model is not inapplicable when used for forecasting transition from online phase to 

the on-street phase.  
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Figure 5. 5 Out-of-sample prediction of transition. Panel (A) shows a prediction made 
on 23 May of the date (vertical green line) and its uncertainty (pink shaded area) for the 
predicted upcoming transition; Panel (B) shows corresponding predictions made on 3 
June, and Panel (C) shows them for 8 June. The last panel shows on 10 June the 
uncertainty nearly converges on the predicted transition time. These predictions are made 
by setting the order parameter exponent equal to 1 as for a wide class of percolation 
systems. The percolation is of organizational development in Facebook (Figure 1) not 
individuals in some contagion process. The unit of time measurement is one day. 

 

Having provided a theory of the transition based on a mesoscopic order parameter b, a 

microscopic mechanistic model is now provided to complete the generative picture. It is 

acknowledged that other models may be possible just as in physical systems where the 

microscopic generative theory (Cooper pairs) underlying the mesoscopic order-parameter 

transition (Landau-Ginzburg) may not be unique, e.g. superconducting phase transition. 

However, the dynamical network model presented in this paper is innovative and based 
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on the acknowledged tendency of people to make and break links with organizations and 

hence with each other 126 as mimicked by the clustered network snapshot shown in Figure 

5.4 corresponding to a famous subversive organization. The transition details can be 

described in the format as(𝑇𝑇𝑐𝑐 − 𝑆𝑆)−1, which is common for a percolation type model. It is 

stressed that, however, here the percolation is among organizations with variable 

membership, not a simple contagion among people. A more complex generative model 

can be built in which a network of agents evolves with adaptive random process and peer 

attraction. It shows a similar divergence which arises as the links form and dissolve, 

making it a novel type of dynamical network transition. 

 

5.3.3 Applying the Pattern to Other Countries 

The paradigm introduced above describes the social uprisings as a two-phase process: 

successive phases consisting of covert build-up of organizations online and a burst of 

social unrests on the streets. We, furthermore, identify the phase transition stage of these 

two phase as the one from a broad class of models involving percolation, based on an 

inverse algebraic equation of transition:  

 𝑏𝑏 = 𝐴𝐴(𝑇𝑇𝑐𝑐 − 𝑆𝑆)−1. (5.1) 

Because the Facebook over the world has a universal structure and our model relies 

only on internal interactions, not exogenous pressure from outside environment, we can 

reasonably expect our approach is language agnostic. Hence we also collect organizations 

with a political agenda in Venezuela from 2013 to 2014, totally 37 relevant Facebook 

groups as shown in Figure 5.6. The collection method is the same as what we use in the 

case of Brazil, which is introduced in the Methods section. 
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Figure 5. 6 Emergence of organizations and communities in Venezuela in 2014, from 
SI of Ref.17. Analogously to Figure 5.2 in the section 5.2.1, we collected organizations 
with a political agenda in Venezuela. In contrast to Brazil, the Venezuelan government 
suppressed those protests and thus disrupted the divergence toward a transition to 
outburst. Because of such retaliation from the government, the label ‘community’ was 
adopted in favor of ‘organization’. 

 
As the Venezuelan government usually strongly suppresses the protests thus pushes 

back any relevant activity online, the divergence of escalation rate towards transition is 

inevitably influenced by the government actions. Consequently, it is unable to observe a 

divergence curve of escalation coefficient (b value) as smooth as the one acquired in 

“Brazil Winter”. Yet, a reasonable prediction of the onset of social outbursts in 

Venezuela is still accessible if resume the use of the previously observed mathematical 

equation governing the phase transition prior to an outburst. Figure 5.7 illustrates the data 
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of creation date of community (more political related) to our model, obtaining the non-

stationary escalation rate/coefficient/parameter points (t, b).  

In figure 5.7, an escalation parameter curve (blue points and curve) can be observed 

which is continuously pushed back compared to figure 5.4. Recall the nature of covert 

build-up, it is a self-evolved process with not only individual interaction but collective 

dynamics of cluster of individuals. Therefore, exogenous perturbation/suppression will 

definitely interrupt the normal build-up process, leading to a contorted dynamical build-

up or even a failed attempt. 

 

Figure 5. 7  Temporal development of escalation coefficient b based on the 
Venezuela data. The blue points mark the dynamical escalation parameter b, along with 
the time. The green dash line is the fitted curve from last five points, by the inverse 
algebraic equation. And the green bold line denotes the predicted critical date. Notably, 
we observed a sharp contrast compared to the smooth divergence observed in Figure 5.4 
that we found in the Brazil data. Although data appear scattered, we predicted an onset of 
protests on the street in Venezuela, matching closely the observed start of nationwide 
protests on Feb. 12th.   
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On the left-hand side of figure 5.7, the blue points and curve shows an escalation 

parameter, fluctuating at the beginning and being oppressed at the end. That is a failed 

covert build-up online, possibly due to exogenous suppression from the government. 

Following the cease of the escalation there is a long peaceful time or de-escalation 

period. Meanwhile, on the right-hand side of figure 5.7, it is a diverging build-up of 

escalation parameter but with heavy noise. Although not smooth, this segment consisting 

of six points still can be utilized to make a prediction of transition date just as for “Brazil 

Winter". After fitting those points to the transition equation, a forecast could be made on 

Feb. 7th 2014 that an estimated nationwide protests would take place on Feb. 9th, 2014 

with a 95% confidence interval of ±5 days. This is indeed close to the actual eruption of 

social unrests on the streets of Venezuela - Feb. 12th, 2014.  

The inferior performance when analogously dealing with data from Venezuela 

indicates potential limitations of this model. It has been noticed that outbreaks in cities 

without significant volume of online media (e.g. Montevideo) seem to follow a distinct 

and slower process, with just one or two organizational events coordinated through 

existing union structure (e.g. teachers) or agricultural collectives (e.g. coffee and potato 

growers protests in Colombia in 2013). In these situations, the online social media that 

does exist plays the role of passively recording events as opposed to generating the two-

phase process shown in Figure 5.4. Similar patterns has been found for the Arab Spring, 

suggesting that these countries were not sufficiently digitally enabled to exhibit the two-

phase process. Given the rapidly growing ubiquity of social media, it is expected that 

most future uprisings will follow Figure 5.4 rather than the Arab Spring. As a final check 

of proposed generative mechanism, recognized socioeconomic percentages is utilized to 
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estimate the number of people in a given city involved in the Facebook organizational 

development phase, hence to estimate the number of people likely mobilized in future 

street protests. See section of Methods and Further Discussion for the example of Sao 

Paulo, which yields excellent agreement for the actual number hence confirms the value 

of the analytic sociology analysis proposed by Hedstrom 127. 

 

5.4 Summary and Conclusion 

 
In the previous sections, an innovative two-phase paradigm was introduced to analyze 

the outbursts of civil unrest in Brazil, 2013. The paradigm is proposed as the weakness of 

prevalent contagion algorithm has been found in forecasting and explaining modern 

uprisings. It is significantly inspiring to find a new model since the OSI project using the 

traditional approach of contagion failed to construct a valid prediction tool for civil 

unrest. Figure 5.2 demonstrates the GSR events profile in lower panel and shows that 

there is no evident precedent signals prior to the big outburst, known as “Brazil Winter”. 

The key difference of this battery of unprecedented sudden uprising is that their 

activities of organizing, communicating and experimenting took place through 

tremendous virtual activities online rather than in real world. A huge volume of 

information and great amounts of users in social media boost and augment the 

preparation needed in initiating social unrests. Sharing ideas has never been this 

convenient in a cyber world, since one click can send messages to millions of people in 

the same region. The content of propaganda has never been as diverse thus its power and 

accessibility has achieved the historical maximum as video, music, words, speeches and 

many other forms can be used to persuade people.  



61 
 

 
 

Online activity is referred as covert phase of our two-phase model in this study and the 

phase transition time is of the most interests. Hence, it is necessary to analyze the 

dynamics of online activities and to find a theory to support the results of this study. To 

collect the data of online organizations relevant to the unrests, we keep monitoring the 

Facebook and recording the features, content and activities by key word searching 

together with manually filtering. Emphasis is placed on the non-stationary process of 

organization creation for the sake that the development of new organizations is the signal 

of information spread and people aggregation. Meanwhile, it can be analogized to the 

previous work in this study of insurgencies in Afghanistan and the general law of human 

confrontations. The theory of progress curve is augmented with local weighted regression 

(LOWESS) to fit the non-stationary dynamics of online creation. 

A smooth curve of escalation rate versus time has been obtained for the case of “Brazil 

Winter”. It well resembles the transition curve found in many complex systems in a 

power law equation. Notably, the exponent of the transition, obtained from best fitting, 

coincides the one found in high dimensional percolation (D≥6): 1.0. Thus the large-scale 

uprisings can be described as a systematically wide cluster in percolation. Also the 

development process can be viewed as the work of “opening edges” in lattices (see 

details in Methods section in this chapter). Even more excitingly, the order parameter 

value of 1.0 is homogenous to percolation in all space whose dimensions are no less than 

six. Hence, the heterogeneous structure of nodes can be neglected in online space for 

most of the users have more than 2*6 connections that definitely fall into the domain of 

high dimensional percolation. 
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Given the dynamics of transition, the escalation rate of any sequence of events can 

thus be monitored and the possible time of transition to the next phase can be predicted. 

This dynamical pattern is firstly applied to the original data, i.e. creation date of 

organizations online in Brazil, 2013. 

Looking back at three months before the outburst (June.11 2013), this research group 

conduct simulation of forecasting by feeding the event one by one as time flows. On May 

23, three points are discovered in the curve of order parameter which meets the minimum 

requirement for linear regression. Accordingly, the transition date has been predicted in 

advances of 18 days, whereas the uncertainty of this prediction is significant and unable 

to serve as a valid warning. Furthermore, the following events are recorded and achieve a 

narrower confidence interval while keeping the prediction date. In figure 5.3, it is shown 

that affirmative warning of large outburst is obtained two days before the actual uprising. 

This is authentically a remarkable achievement of our model that encourages us to devote 

to further investigations. 

However, the limitation of this model in serving the society has be found before long. 

The theory basis of progress curve lays on the Red-Blue competition scheme of 

confrontations, while in some country, such as Venezuela, the Blue side (government) 

has very strong power to suppress the activities of Red side (protestors) in covert phase 

manifested by shutting down the network, monitoring the cellphone and messaging, and 

blocking the website etc. As a result, the escalation rate curve in these places has more 

noise and severer fluctuations, which undoubtedly damps the functionality of prediction 

of our model. Therefore, a curve as smooth as the case of Brazil is not able to be plotted 

but the predicted date of onset of unrests is still proportionately reliable: the date of 
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unrests from online to on streets is Feb. 09, 2014, while the real outburst is Feb. 12, 2014. 

In other countries where access to internet or cellphone is limited, this model is not the 

best fit for predicting social unrests. 

This model of online development is generally the advanced version of the previous 

work of this research group, i.e. mathematical law of human confrontations. They both 

target the underlying dynamics of human confrontations in which a Red-Blue sides 

competing is present. Red side refers to someone who are using sporadic attacks to 

weaken the Blue and raising himself, while the red side is usually recognizably weaker 

than the blue side but good at making use of advantages in information, hiding in the dark 

or disguising in the public. This model implements new aspects of analysis of non-

stationary progress, covert phase prior to real confrontations, and phenomenon of phase 

transition. 

A simple mathematical law benchmarking confrontational behavior has been found by 

Dr. Johnson and his student several years ago. Now the work of this author in this project 

adds quantitative analysis of non-stationary dynamics of progress, especially those 

activities online. Digitally driven activity has a more aggressive development path, 

facilitated with modern information devices. Hence the development of online activity 

can serve in a covert phase as preparation to real confrontations and perform an 

increasing “escalation rate” in this phase. Additionally, it can be found in many other 

complex systems the divergence of order parameter in covert phase near the stage of 

transition to next phase, and a classical power law equation can fit it well. The transition 

equation of percolation in high dimensional space has a surprising coincidence to the 

divergence equation of escalation rate. Therefore, prediction of date of transition can be 
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administered with power exponent fixed and the underlying dynamics can be explained 

with percolations in lattices.  

The future work on this model will be augmenting it for better accountability of 

underlying algorithm of development and phase transition in other fields, including 

finance, information spreading and behavioral economics. Next step will probably be 

applying this model in finance since some work has been done in previous chapters to 

analyze the ultra-fast trading in global financial market. Phase transition phenomenon is 

also pervasive in finance, for example, the forecast of shifts in global financial markets. 

The prediction in this field, however, differs greatly in other confrontations in that the 

discovery of predictability quickly annihilating the predictable pattern, as profit can be 

made from subsequent arbitrage 105. As a result, although there is still some predictable 

quantities that can be used for forecasting by smart or lucky specialists 128,129, overall 

financial markets are notoriously unpredictable 130. Nonetheless, evidences have been 

found to support the argument that dynamics in financial market may contain information 

presaging major events 131–133. For example, some events are signaled by the growing 

spread between the value of put options and call options 131,132, and a shrinking or 

peaceful volatility surface can also be observed before the onset of abrupt change 131. 

Moreover, research also addresses possible systematic relationships in variance and first-

order autocorrelation 134.  

All of above are of great interests to our research group; meanwhile, empirical 

challenges that will be encountered could enhance insights of two-sided human 

confrontations of this model. Hopefully, the new light shed on the confrontations in 
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financial market will improve the understanding and prediction of more transition 

phenomena.  

 

5.5 Methods and Further Discussion 

 

5.5.1 Facebook Organizations Monitoring 

To identify Facebook profiles of organizations with a political agenda, key word 

search is firstly employed on the Facebook platform’s search engine. After the 

recognition of profiles of Facebook organizations, private profiles belonging to 

individuals are discarded while profiles of public organizations are kept by “calling such 

a curated collection the Know Organizations Repository” (KOR, see figure below) 17. 

The last step is to monitor the activities of organizations in the KOR. If a new 

organization “liked” an organizations that is already in our KOR or has interaction in 

coordinating further protests, it will be added to the KOR as illustrated by figure below. 

The automatic parts of the tool is done by Facebook Query Language (FQL), developed 

by Nicolas. The manual parts are finished by Nicolas and Ana. 
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Figure 5. 8 Methodology to generate a list of active organizations. A) We call this list 
Knowable Organizations Repository (KOR) that can be generated for each city, country 
or region of interest. B) Information about the activities of organizations in our KOR’s 
are retrieved and assembled using FQL (Facebook Query Language). 

 
5.5.2 Determination of Order Parameter b 

In reality, the observed time-interval values are scattered around the best-fit progress 

curve just as mentioned at the beginning. The escalation parameter/rate b is dynamical, 

fluctuating when events occurring. Now it’s shown as an essential element for the locally 

weighted scatterplot smoothing (LOWESS) analysis. 

The trend in time to formation of next organization is given by equation 4.1 𝜏𝜏𝑛𝑛 =

𝜏𝜏1𝑆𝑆−𝑏𝑏 In other words, if the nth organization has just been formed, we will wait on 

average 𝜏𝜏1𝑆𝑆−𝑏𝑏 until the next one is formed. However, in practice, a series of, say N 

“things”, will need to fall into place happening before online Facebook users can form 

themselves into the next organization (n+1). Each of these steps may “fail” which makes 
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the creation of the next organization delayed or ahead of the trend. Following 

multiplicative degradation processes in engineering, it is assumed each of these steps 

multiplies the expected time interval by factor (1 + 𝜀𝜀𝑗𝑗) where the 𝜀𝜀𝑗𝑗’s are Gaussian 

distributed i.i.d. stochastic variables which mimic these exogenous factors. Therefore, the 

observed time interval is given by 𝜏𝜏𝑛𝑛 = 𝜏𝜏1𝑆𝑆−𝑏𝑏 ∏ (1 + 𝜀𝜀𝑗𝑗)𝑁𝑁
𝑗𝑗=1 . Taking the logarithm of 

both sides, and assuming 𝜀𝜀𝑗𝑗 ≪ 1 gives log 𝜏𝜏𝑛𝑛 = log 𝜏𝜏1 − 𝑏𝑏 log𝑆𝑆 + ∑𝜀𝜀𝑛𝑛 on a log-log plot 

since log(1 + 𝜀𝜀𝑛𝑛) is approximately 𝜀𝜀𝑛𝑛 if it is small. This is a straight line fit (maximum 

likelihood) on a log-log plot as assumed by LOWESS, and with Gaussian-distributed 

i.i.d. residuals. 

In this project, a robust version of LOWESS methods given by the function lowess in 

Matlab 2013a is used to estimate the trend, with data-factions of f = ¼ and number of 

steps = 2. Within the time window, LOWESS is applied to the scattered data points thus 

the corresponding smoothed value is obtained as shown in the following figure. The latest 

monotonically decreasing part of the smoothed curve is taken out and a simple linear 

regression is conducted on this partial sequence of intervals. Thereby the escalation value 

for specific time window is figured out.  

When a new event happens, the time window is expanded to include it and a new 

finite size time window is initiated. The corresponding escalation value of that time 

window together with the date of the new event constitutes one point in Figure 5.9.  
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Figure 5. 9 LOWESS Fitting of Interval Points . Blue points are the interval 𝝉𝝉𝒏𝒏 and 
ordinal label n in log-log scale, whose logarithm base is 10. The black curve is the 
fitted line as a result of LOWESS. We can see that the curve is in a systematic trend 
of escalation (𝝉𝝉𝒏𝒏 decreasing), but with fluctuation, somewhere even as de-escalation.  

 

How to deal with the fluctuating b values? We care only about those latest parts that 

are in escalation stage. Hence when a new events (actually corresponding interval) occur, 

we put in a new point of (logτn ,logn), and check if the last point is in an decreasing 

segment. If not, it is the beginning of a de-escalation and the b value at that date is set as 

zero. If in escalation stage, the segment containing the last point is taken out and the b 

value from simple linear regression of that series of points is calculated, yielding a point 

in bottom panel in figure 5.4. Seven points are all obtained in the transition stage of the 

case of Brazil (from the first non-zero point to the peak point). 
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5.5.3 Dynamical Progress Curve: Fitting Curve of Escalation Rate 

 

5.5.3.1 Fitting Exponent of Transition α 

To fit the distribution of exponent α, the transition equation b = A (Tc - t)-α is 

transformed to a linear equation as ln b = -α ln (Tc-t) + ln A (A is constant, natural 

logarithm as base). In the next step, a trial is adopted to and test method to search the 

critical time optimized for the best linear fitting. Defining a domain of Tc whose length is 

30 days with a left boundary that is on the next day of the last moment of t series, Tc is 

taken from the beginning of the domain, and the exponent α and a subsequent confidence 

interval of 95% is estimated by a simple linear regression. Increasing the pre-assigned Tc 

by steps of 0.1 day until the end of the domain, it can be obtained a series of estimation of 

exponent α and corresponding R square value of the linear regression. The optimized 

estimation yields the highest R square value, leading to a result of 1.0 ± 0.10. The 

deviation 0.10 is from the standard error of linear regression of slope. 

 

5.5.3.2 Prediction of Transition Time Tc  

Figure 5.4 suggested that the best fit for the underlying data is  

 𝑏𝑏 = 𝐴𝐴(𝑇𝑇𝑐𝑐 − 𝑆𝑆)−1. (5.1) 

We can easily rewrite this equation in a linear form  

 
𝑏𝑏−1 =

𝑇𝑇𝑐𝑐
𝐴𝐴
−

1
𝐴𝐴
𝑆𝑆. 

(5.2) 
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Assuming simple linear regression, the coefficients of equation (2) are both t-

distributed with identical degrees of freedom. The format of the underlying equation 

indicates that the ratio of the intercept TcA-1 and the slope  A-1 is simply Tc, allowing us to 

consider Tc as a t-ratio distribution 3 with a degree of freedom denoted as n. In other 

words, we need to estimate the probability distribution of the ratio of the underlying two 

distributions to estimate Tc. The t-ratio distribution describes a random variable that is the 

result of the ratio of two other random variables that follow a t-distribution with equal 

degrees of freedom. Denoting these random variables by u and v, their joint distribution 

can be written as 3: 

 𝑆𝑆𝑛𝑛(𝐴𝐴, 𝑆𝑆)

=
𝑆𝑆
𝑛𝑛
2 �𝑆𝑆2� |𝑯𝑯|

1
2

𝜋𝜋[𝑆𝑆 + ℎ11(𝐴𝐴 − 𝜃𝜃𝑢𝑢)2 + 2ℎ12(𝐴𝐴 − 𝜃𝜃𝑢𝑢)(𝑆𝑆 − 𝜃𝜃𝑣𝑣) + ℎ12(𝑆𝑆 − 𝜃𝜃𝑣𝑣)2]
𝑛𝑛+2
2

 

(5.3) 

Where 𝑯𝑯 is a 2 × 2 symmetric matrix, usually called the scaled matrix defined as 

 
𝑯𝑯 ≡ 𝑻𝑻′𝑻𝑻 = �ℎ11 ℎ12

ℎ12 ℎ22
� ,                𝑻𝑻 = �

1 𝑆𝑆1
⋮ ⋮
1 𝑆𝑆𝑛𝑛+2

� 
(5.4) 

Where 𝑻𝑻′is the transpose of the matrix 𝑻𝑻, which denotes the (n+2) × 2 matrix of 

regressors. In addition, h11 and h12 are elements of 𝑯𝑯, and θu and θv are constants defined 

as:  

 
ℎ11 = 𝑆𝑆 + 2,   ℎ12 = �𝑆𝑆𝑖𝑖

𝑛𝑛+2

𝑖𝑖=1

  
(5.5) 
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�
𝜃𝜃𝑢𝑢
𝜃𝜃𝑣𝑣
� ≡

𝑆𝑆

�(𝑩𝑩− 𝑻𝑻�̂�𝛽)′(𝑩𝑩− 𝑻𝑻�̂�𝛽)
�̂�𝛽 

(5.6) 

 �̂�𝛽 = (𝑻𝑻′𝑻𝑻)−1𝑻𝑻′𝑩𝑩 (5.7) 

Where  

 
𝑩𝑩 = �

𝑏𝑏1
−1

⋮
𝑏𝑏𝑛𝑛+2

−1
� 

(5.8) 

A new random variable w, is constructed as the ratio of random variables u and v. For 

suitability, we define a linear variable x of w as   

 
𝑥𝑥 =

ℎ11
|𝑯𝑯|1/2 𝑤𝑤 +

ℎ12
|𝑯𝑯|1/2. 

(5.9) 

Similarly, we define four constants, mx, my, k1, k2, and consider two quantities, q and 

Q: 

 
𝑚𝑚𝑥𝑥 = ℎ11

1/2𝜃𝜃𝑢𝑢 +
ℎ12
ℎ11
1/2 𝜃𝜃𝑣𝑣                𝑚𝑚𝑦𝑦 =

|𝑯𝑯|1/2

ℎ11
1/2 𝜃𝜃𝑣𝑣 

(5.10) 

 
𝑘𝑘1 =

1

𝜋𝜋(1 +
𝑚𝑚𝑥𝑥
2 + 𝑚𝑚𝑦𝑦

2

𝑆𝑆 )𝑛𝑛/2
               𝑘𝑘2 =

√𝜋𝜋𝑆𝑆
𝑛𝑛+2
2 𝛤𝛤(𝑆𝑆 + 1

2 )

2𝛤𝛤(𝑆𝑆 + 1
2 )(1 +

𝑚𝑚𝑥𝑥
2 + 𝑚𝑚𝑦𝑦

2

𝑆𝑆 )−𝑛𝑛/2
 

(5.11) 

 𝑞𝑞 = −
𝑚𝑚𝑥𝑥𝑥𝑥 + 𝑚𝑚𝑦𝑦

(1 + 𝑥𝑥2)
1
2

                    𝑄𝑄 = (𝑚𝑚𝑥𝑥
2 + 𝑚𝑚𝑦𝑦

2 + 𝑆𝑆 − 𝑞𝑞2)1/2 (5.12) 

The probability density function of x can therefore be written as3 
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𝑆𝑆𝑛𝑛(𝑥𝑥;𝑯𝑯,𝜃𝜃𝑢𝑢,𝜃𝜃𝑣𝑣,𝑆𝑆) =

𝑘𝑘1
1 + 𝑥𝑥2

�1 +
𝑘𝑘2𝑞𝑞
𝑄𝑄𝑛𝑛+1 �2𝐹𝐹𝑛𝑛+1 �

𝑞𝑞√𝑆𝑆 + 1
𝑄𝑄

� − 1�� 
(5.13) 

while the density function of w is 

 
𝑔𝑔𝑛𝑛(𝑤𝑤;𝑯𝑯,𝜃𝜃𝑢𝑢, 𝜃𝜃𝑣𝑣,𝑆𝑆) =

ℎ11
|𝑯𝑯|1/2 𝑆𝑆𝑛𝑛(

ℎ11
|𝑯𝑯|1/2 𝑤𝑤 +

ℎ12
|𝑯𝑯|1/2). 

(5.14) 

The function Fn+ 1 in equation (13) represents the cumulative density function of 

standard Student’s t-distribution with n+1 degrees of freedom. The domain of variable w 

is (-∞, +∞), and we assume that h11 is non-negative in the result. Since w is the density 

function of the ratio of two random variables, we easily see that  

 𝑝𝑝(𝑇𝑇𝑐𝑐) = 𝑔𝑔𝑛𝑛(𝑤𝑤;𝑯𝑯,𝜃𝜃𝑢𝑢, 𝜃𝜃𝑣𝑣,𝑆𝑆). (5.15) 

Recalling equation (2), we can consider it in matrix notation as a linear regression 

problem. After obtaining the density function, we can estimate the critical time and the 

95% confidence interval with a Maximum Likelihood Estimator. Specifically, the 

maximum of the distribution refers to Tc. To numerically approximate the 95% 

confidence interval, we utilize the following algorithm: 

1. Calculate the maximum of  𝑝𝑝(𝑇𝑇𝑐𝑐), which is 𝑇𝑇𝑐𝑐. Then select one value t1 on the x-
axis on the left side of the peak. 

2. With the aid of the density function, find another point on the x-axis on the right 
side of the peak, t2, satisfying 𝑝𝑝(𝑆𝑆2) = 𝑝𝑝(𝑆𝑆1). 

3. The integral value α of density function p(t) from t = t1 to t = t2 indicates  the 
probability of a random variable T falling into this range. Testing a different value 
of t1 in the range of (-100, Tc) we considered the range (t1, t2) that yields an α 
nearest to 0.95 as 95% confidence interval of the predicted transition time Tc. 

 

(In particular, we used the FindRoot function in the software Mathematica 9 in the 3rd 
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step to find the appropriate t1.) 

 

 

 

Figure 5. 10 Example of t-ration Distribution of Predicted Tc . The curve is the 
density function of the predicted critical time. The blue shadow represents the 95% 
confidence interval and the bold dash line marks the maximum likelihood of Tc 

 

5.5.4 Sociological Survey Supporting Our Data 

The following figure shows that, taking socioeconomic data from surveys etc. and 

following the elements of our organizational development, the predicted number of 

participants is actually the correct order of magnitude observed for protestors: 
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Figure 5. 11 The estimated actual attendance to protest in Sao Paulo, Brazil, from 
the census of city and Facebook. 

 

It supports our scheme of two-phase development that people possibly influenced by 

Facebook is in the same order of observed protestors. At least it confirms that the number 

of people influenced by the Facebook are able to onset a protests as strong as observed on 

the streets in Sao Paulo, Brazil. 

 

5.5.5 Simple Introduction of Percolation Theory 

In previous sections, we mention that the exponent α in transition equation coincides 

the exponent in percolation in high-dimension space (dimensions larger than six). Now 

here we present an introductory explanation of the reason. 

Percolation theory, commonly used in statistical physics and mathematics, describes 

the behavior of self-connection of nodes in a random graph. And it has many applications 
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to materials science and other domains. Let us start with the easiest example of square 

lattice in 2D space, which is a special case of bond percolation. The following figure is 

the work of Dr. Michael Gastner of Imperial College London, available at website: 

http://wwwf.imperial.ac.uk/~mgastner/percolation/percolation.html 

 

Figure 5. 12 (a) The square lattices are randomly popped up, i.e. one Black square 
replaced by White Square at each step. At the beginning, there are only a few white 
squares, clusters of white are too small to connect two opposite sides of the square lattice. 
(b) When there are a lot of white sites, it is possible to connect the top and the bottom of 
the lattice with white sites, for example the highlighted path (denoted by red arrow). 

 
Just as figure 5.12, the site percolation is physically described as follows 

1. Begin with a n×n square lattice, where the squares are usually called “sites”. 

2. The sites may be destroyed (turning to white) with probability p, or restored 
(turning to black) with probability 1-p. A white site will allow liquids to flow 
through, while the black site does not. The event of opening/closing a site is in 
independently identical distributions. 

3. We care about the probability Ppath , which denotes the probability of the 
event: there is a path from the top to bottom allowing the liquid to flow 
through. For example, the red curve in Figure 5.12 
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The Ppath is a function of size n and opening probability p. Under the limitation of 

infinite size, Ppath depends only on p. And it has a critical phenomenon, as illustrated 

below (from http://wwwf.imperial.ac.uk/~mgastner/percolation/percolation.html) 

 

Figure 5. 13 The Phase Transition in Percolation. The probability of a path emerging 
from top to bottom Ppath , has a transition phenomenon, depending on “opening 
probability” p. There is a critical threshold of p, beyond which Ppath comes close to 1. 
Near the critical point, the Ppath has a divergence relationship to p. 

 
The behavior of systematic characteristics of percolation are diverged around the 

critical probability pc ,  usually in a power law equation with a critical exponent. 

 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝ℎ ∝ (𝑝𝑝𝑐𝑐 − 𝑝𝑝)−𝛽𝛽 

. 

(5.16) 

And the expected size of largest cluster during percolation C also has a divergence 

performance near the transition point 𝐶𝐶 ∝ (𝑝𝑝𝑐𝑐 − 𝑝𝑝)−𝛼𝛼 

http://wwwf.imperial.ac.uk/%7Emgastner/percolation/percolation.html
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The probability p or equivalently the existing open edges in lattices is proportional to 

the time in our case of online organizations, assuming the successful rate of opening an 

edge is constant. So we can get the transition equation of b 

 𝑏𝑏 = 𝐴𝐴(𝑇𝑇𝑐𝑐 − 𝑆𝑆)−𝛼𝛼. (5.17) 
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CHAPTER 6 Common Space Contagion Model 

 

6.1 New Contagion Dynamics in the Cyberworld 

 

In chapter 5, the weakness of traditional contagion models for real unrests events are 

indicated, as its application to “Brazil Winter” is insufficient to explain the underlying 

algorithm. The covert phase online is pointed out as the key difference of modern unrests 

to traditional ones. Although a simple model capturing the non-stationary dynamical 

pattern called hyper-escalation of online activities is found, there is still no clear model to 

simulate the whole scheme.  

Meanwhile, new digitally driven unrests take places in many regions throughout the 

world. For example, ISIS (Islamic State) has recently got an unexpected rise with online 

support 135, which highlights the urgency to quantify modern-day human contagion 

phenomena 71,136. However whether they are online 137, offline 138, social 11 or disease-

based 16,139–150, it is unfortunate that all of them lie well beyond the predictions of 

standard infection models 11,140,151,152.  

Here it is shown in this chapter that adding a simple mobility module of individual’s 

alternation of online and offline spaces, gives rise to contagion dynamics that differs a lot 

to Susceptible-Infected-Recovered (SIR) model. Contagion in our model involves not 

only epidemics, but a list of more general items. For instance, the propagation of a rumor, 

idea, message or virus through a population, online or offline 11,39,136,140,144.  

Traditional SIR model is used extensively for such outbreaks with mechanisms 

described by the three generic differential equations for susceptible S(t), infected I(t) and 
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recovered R(t), including specific social network topologies and rewirings, geographical 

features, birth-death processes and super-spreaders 11,71,136,137,142. As illustrated in figure 1 

(e)-(g), however, modern style contagion profiles can be notably different from the 

standard SIR model. Those profiles are usually characterized by a fast time-to-peak (Tm), 

slow non-exponential decays, subsequent long duration T as well as small ratio of Tm/T 

and occasional revivals (Fig.6.1). 

Aiming at solving those un-matches of SIR, this research group develop a novel 

contagion model called common space contagion model (CSC), which can be viewed as 

combination of mobility from online/public space to offline/private space and the SIR 

process. The new feature of mobility from public space to private space features the fact 

that people online are more open to “virus” and thus easier to be “infected”, whereas 

people offline is relatively hard to be susceptible to other “epidemics”. This mobility 

structure is adopted in order to replicate the characteristics of modern style contagions.  

Another creative job done by this research group is using technology of data mining 

and science to collect automatically the logs of ISIS aggregates, the data of their activity 

and their opponents, which has not yet been done by other researchers. This data is the 

latest example of contagions in cyber world – modern style contagion that are digitally 

driven. As a consequence, the novel contagion model developed by our group is able to 

capture the modern-style contagion dynamics online, from online pro-ISIS activity to the 

spread of financial rumors 7 and from online organizations to massive street protests 9,10. 

Surprisingly, our result of the model is counter-intuitive such as that increasing the 

throughput of a common/public space, the severity can on the contrary be decreased. 
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In the following sections, the details of our innovative model is demonstrated, as well 

as how well it fit the data from ISIS activity, mainly on aggregates serving as ad-hoc to 

recruiters and new members. The work is a result of multidisciplinary cooperation from 

computer science, sociology and physics. As it is still undergoing, the results shown here 

is preliminary. 

 

6.2 Structure of Common Space and Its Contagion Profile 

 

 Each example (Fig.6.1 (e)-(g)) recurs frequently in the corresponding datasets 

(Details in methods section 6.6) and hence is unlikely to be dictated by one-off 

exogenous factors. Rather than issues such as potential power-law decays 151,152, the focus 

here is on the overall profile shape, i.e. the peak value H, time-to-peak Tm and duration T 

since these play a critical role in planning. The three panels of Fig. 6.1 (e)-(g) are from 

bursts in real world and correspond to the three representative infection profiles: red, 

green and blue. It supports that the infection profiles generated by CSC model are not just 

fiction but are able to replicate some outbreaks in real world. Red type of profile has a 

sharp rise and decays slowly, while green type has a relatively slower rise but decay 

faster. With respect to the blue type, it has a recursive peak which is usually smaller than 

the initial one. 
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Figure 6. 1 Outbreak profiles in real-world systems and CSC model. (a) Common 
space theoretical contagion model. Common space (blue cloud) can be an online site, a 
network group, a physical place etc. and the transmission can range from information or 
rhetoric to a real virus. An individual outside (or inside) the common space has a 
probability pj (or pl to enter (or leave) at each time step. Infected individuals (i.e. 
activated: red) inside the common space have a probability qi to infect other susceptibles 
(green) inside the common space. Infecteds both inside and outside recover (black) with 
probability qr, λ=qi/qr (b)-(d) illustrates the qualitatively distinct outbreak profiles 
predicted by our model, with the corresponding parameter regime. Black line is 
simulation, colored line is from integrating the coupled differential equations (see 
Methods section 6.6). (e)-(g) shows how these theoretical profiles capture various 
modern-day outbreak profiles: (e) pro-ISIS activity online 2014 matches (b); (f) protests 
on-street in Brazil 2013 matches (c); (g) global online currency trading during 
transmission of rumor of re-evaluation of Yuan, matches panel (d). Profile shows the 
variation of all major currency exchange rates 7. For (e)-(g), similar profiles appear 
repeatedly in our datasets 
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(see Fig. 6.2) confirming that the I(t) variation is a reproducible signal, e.g. for (g) an 
almost identical profile occurred several months later when the same rumor circulated 
again 7,11. 

 
6.3 Feeding Islamic State Data in CSC Model 

 

Figure 6.2 confirms this wide variability in modern-day infection profiles, using 

detailed datasets (see Methods section) for contagion activity surrounding online pro-ISIS 

support (color triangles) and on-street civil unrest (circles). The pro-ISIS data were 

obtained from the Russian-language equivalent of Facebook called VKontakte 

(www.vk.com) during 2014, and double-checked by subject-matter experts. VKontakte 

provides an ideal platform for study since many of its users are of Chechen origin 

focused in the Caucasus near ISIS' main area of influence. It regularly featured infection-

like outbreaks of pro-ISIS rhetoric prior to the shutdown campaigns that started in late 

2014, with the copying and spreading of material (e.g. for recruitment) becoming an 

essential part of ISIS' online power and global threat. The civil unrest data were obtained 

during a unique multi-year, national research project in which exhaustive event analysis 

was carried out across an entire continent, with resolution at the level of individual cities 

10,26.  

Bursts of activity were recognized using the methods of Ref. 153 and cross-checked 

manually by subject experts. For each burst of events, its best-fit profile I(t) is obtained 

and hence its features (H, Tm, T) value (e.g. Fig. 6.1(f)). Even if its parameters are 

allowed to vary freely, the standard SIR model (black line, Fig.6.2) cannot capture this 

range of profiles. Figure 6.2 inset illustrates the underlying pro-ISIS infection profiles 
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(I(t)) with the corresponding color triangles. Again, the best-fit SIR profile provides a 

poor description.  

 

 

Figure 6. 2 Empirical versus theoretical results as a function of infection features: 
peak H, time-to-peak Tm and duration T. Empirical data are outbreaks of online pro-
ISIS activity (colored triangles); and on-street civil unrest (circles) across Latin American 
during 2012-2014 national project 26. See text for details. Theoretical results (colored 
lines) obtained from integrating the six coupled differential equations in our model, for 
different values of throughput γm (red line, γm =0.001; light green line, γm =0.01; blue 
line, γm =0.1). The same quantities are also calculated for the standard SIR model (black 
line). In all simulations the population size is identical (N=1000), and the same infection 



84 
 

 
 

probability qi = 0.002). Each trajectory starts near to the origin for 𝝀𝝀 ≡ 𝒒𝒒𝒊𝒊/𝒒𝒒𝒓𝒓 and grows 
until 𝝀𝝀 = 𝟏𝟏 in steps of 𝛅𝛅𝝀𝝀 =  𝟏𝟏𝟏𝟏−𝟑𝟑. Inset: Two typical empirical profiles for online 
outbreaks of pro-ISIS activity, named as club81567093 (blue) and interes.publics (green). 
Colors match corresponding triangle. Black line shows that even a best-fit standard SIR 
curve with the benefit of freely varying parameters, fails to capture the overall I(t) profile 
-- as is also the case in Figure 6. 1(e)-(g). 

 
This theoretical model (scheme as Fig. 6.1(a)) allows the number and membership in a 

common space to change on a timescale which may be fast, slow or comparable to the 

intrinsic timescales of the transmission and recovery process. The Common Space can be 

an online social media site such as a chatroom, an online community or group, an offline 

place such as popular bar, airport or workplace, or even a well-defined cluster within a 

dynamic network. To reflect the increased chance of infection within the confines of the 

common space (i.e. transmission of a call to protest, an idea or information etc.), viral 

transmission can occur between people inside, but not outside, the common space. Figure 

1(a) mimics how individuals may sporadically connect online (i.e. enter the cloud) and 

hence interact with others (e.g. through a spiritual site sympathetic to ISIS as in Fig.6. 

3(a)); then become infected by a particular rhetoric that starts circulating and hence join 

an activist group online (e.g. pro-ISIS in Figs. 6.2 and 1(e)) or on-street (Fig.6.1(f)). The 

real-time analysis of VKontakte shows that this is indeed the mechanism through which 

ISIS manages to spread recruitment material and files, audio lectures, new prayers and 

official ISIS videos. Even if not all infected participate, the actual numbers will be 

proportional to the profile of infected individuals I(t), assuming each individual has a 

similar probability to participate. As an example of other applicable contexts, foreign 

exchange traders in trader chatrooms 7 can become infected by a given rumor that is 

circulating and hence become active in trading particular currencies, thereby moving 

prices as in Fig. 6.1(g).  
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Though more elaborate variants of this theoretical model are possible, they would all 

necessarily feature the same fundamental competition between the timescales of 

throughput, transmission and recovery. Hence, the simplest possible variant is presented. 

At each time-step t, each individual leaves or joins the common space with probabilities 

pl and pj. Any correlated leave-join behaviors is ignored for simplicity. In the steady 

state, the total number of people leaving and joining the common space, e.g. a group or 

community, per time-step is 𝑁𝑁𝛾𝛾𝑚𝑚 on average, where 𝛾𝛾𝑚𝑚 = 2𝑝𝑝𝑗𝑗𝑝𝑝𝑙𝑙/(𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑙𝑙) (see Methods 

section). 𝛾𝛾𝑚𝑚 is the throughput parameter. The mean number of people in the common 

space is: 

 〈 𝑁𝑁𝑔𝑔〉 =
𝑁𝑁𝑝𝑝𝑗𝑗

𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑙𝑙
= 𝑁𝑁𝛾𝛾𝑠𝑠 where 𝛾𝛾𝑠𝑠 = 𝑝𝑝𝑗𝑗/(𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑙𝑙)  

(6.1) 

Varying 𝛾𝛾𝑚𝑚at fixed 𝛾𝛾𝑠𝑠 amounts to changing the throughput while keeping 〈𝑁𝑁𝑔𝑔〉 fixed. 

The system evolution is described by six coupled equations involving (S(t), I(t), R(t)) and 

(Sg(t), Ig(t), Rg(t)) for the susceptible, infected, and recovered sub-populations in the 

entire system and common space respectively (see Methods section 6.6).  

For I(0) - initial infected individuals - in the system, not necessarily inside the 

common space, the criterion for an initial increase in I(t) is  

 𝜆𝜆 𝛾𝛾𝑠𝑠2 𝑆𝑆(0)  > 1 (6.2) 

If instead the infection starts with one infected agent inside the common space, the 

criterion is  

 𝜆𝜆 (𝑁𝑁 𝛾𝛾𝑠𝑠  − 1)  >  1 (6.3) 
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As shown in Figs.6. 1(b)-(d) and Fig.6. 2, the resulting dynamics reproduce the wide 

range of empirical values as well as detailed shapes (e.g. Figs. 6.1 (e) vs. 6.1(b), and the 

revivals in Figs. 6.1(g) and 6.1(d)).  

 

6.4 Empirical Value of Mobility Parameters 

 

Figure 6.3 shows that the key throughput parameters pl and pj have remarkably similar 

dependencies for two of the most important current examples of online common spaces. 

Figure 6.3(a) is derived from our dataset of online groups that are sympathetic to ISIS. 

Since these groups are largely spiritual as opposed to being reactionary to exogenous 

events, each has a fairly constant size over time and hence represents a steady-state 

common space of size ∼  𝑁𝑁𝛾𝛾𝑠𝑠.  From the average number joining and leaving per day, as 

well as the total number of followers, we deduce pj and pl values. To check the validity 

of our common space picture, we then use these values to determine the average group 

size and find the predicted values remarkably close to the observed ones. Following the 

injection of an individual(s) with a contagious item (e.g. rhetoric or story), the resulting 

infecteds (I(t)) then vent their pro-ISIS stance in particular chatroom groups (e.g. Fig. 6.2 

inset and 1(e)). Figure 6.3(b) shows that the massively multiplayer online role-playing 

game World of Warcraft (WoW) features similarly self-organized groups (guilds) which 

also act as a common space, producing a similar dependence to ISIS in Fig. 6.3(a). WoW 

is the world's largest, most-subscribed and most popular online game with more than 100 

million accounts created 35. Despite their different online origins, the similarity of Figs. 

3(a) and (b) suggests a robust pattern. This means that for a group of a given average 
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size, the likely profile characteristics of a future outbreak can be estimated by reading pj 

and pl off from Fig. 6.3, calculating 𝛾𝛾𝑚𝑚 and  𝛾𝛾𝑠𝑠, and then reading off the results in Fig.6. 

2. Using 𝑝𝑝𝑗𝑗 ∼  10−3 and 𝑝𝑝𝑙𝑙 ∼  10−2 for ISIS as in (a), yields  𝛾𝛾𝑚𝑚 ∼  2 × 10−3 which 

predicts (Fig. 6.2) outbreaks of ISIS activity with small Tm/T profiles as indeed observed 

(Fig.6. 2 inset and Fig. 6.1(e)). 

 

 

Figure 6. 3 Empirical pj and pl values across different online systems. The left and 
right panels show a common monotonic dependence as a function of community (i.e. 
group) size. Examples shown are (a) online pro-ISIS groups and (b) groups in the 
massively multiplayer online role-playing game World of Warcraft, in which groups are 
known as guilds 35. In (a), shaded ellipse includes 6 groups who are news-based (e.g.  
imandela) and hence attract people infected by  new information or material that they 
wish to spread quickly. They are not spiritual groups. Hence their pj values for joining 
fluctuate significantly in time but are largely independent of group size, meaning that 
their time-averages will not follow the same monotonic variation as the other groups, all 
of which approximate a steady-state common space. 

 
6.5 Diverse Behavior of Infection Profiles 

Figure 6.4 shows the highly nonlinear dependence that emerges on the throughput 

parameter γm, which is missing from standard SIR models. Figure 6.4(a) shows there is a 
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critical value of the throughput 𝛾𝛾𝑚𝑚 crit for which the peak intensity H is a maximum.  For 

𝛾𝛾𝑚𝑚 < 𝛾𝛾𝑚𝑚crit, infections are confined mainly within an initial group in the common space, 

while for 𝛾𝛾𝑚𝑚 > 𝛾𝛾𝑚𝑚critpeople can be swept in and out of the common space before they 

have had a chance to be infected.   

 

Figure 6. 4 Nonlinear effect of infection profile parameters on throughput 𝜸𝜸𝒎𝒎. (a) 

The panel shows infection peak H normalized by N as a function of  𝜸𝜸𝒎𝒎 and qi, for 
different values of 𝝀𝝀 =  𝒒𝒒𝒊𝒊/𝒒𝒒𝒓𝒓. (b) shows SIS version of model. 𝑰𝑰(∞)/𝑵𝑵 is the 
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normalized fraction of infecteds in the long-time limit, shown as a function of 𝜸𝜸𝒎𝒎. N = 
1000, qi = 0.0005, qr = 0.015. The condition of 𝒑𝒑𝒋𝒋  + 𝒑𝒑𝒍𝒍  =  𝟏𝟏 is satisfied, i.e. 𝜸𝜸𝒎𝒎  =
 𝟐𝟐𝜸𝜸𝒔𝒔(𝟏𝟏 − 𝜸𝜸𝒔𝒔). Inset shows as function of 𝜸𝜸𝒔𝒔. Lines are from integrating the coupled 
differential equations, symbols are simulation results. 

 

Also, the peak intensity H the time-to-peak Tm and the total number of infected 

individuals R(∞) can all decrease with an increase in throughput 𝛾𝛾𝑚𝑚. This contradicts 

conventional wisdom that in order to reduce the severity of an outbreak, one should 

always increase the isolation of the common space (e.g. school, pro-terrorism website) 

and hence decrease 𝛾𝛾𝑚𝑚. 

From Fig. 4(a), 𝛾𝛾𝑚𝑚crit ∝  𝑞𝑞𝑖𝑖 (specifically 𝛾𝛾𝑚𝑚crit ∼ e3 𝑞𝑞𝑖𝑖) for a range of λ values. The 

above findings are robust to different N due to intrinsic scaling. The lack of throughput in 

the standard SIR model can be partially corrected by re-normalizing its parameters. This 

could prove useful given the wealth of existing machinery and intuition surrounding the 

standard SIR model. We start with the discrete time version of d𝑆𝑆𝑔𝑔/d𝑆𝑆 given by: 

 𝑆𝑆𝑔𝑔(𝑆𝑆 + 1)  =  𝑆𝑆𝑔𝑔(𝑆𝑆)  −  𝑞𝑞𝑖𝑖 𝑆𝑆𝑔𝑔(𝑆𝑆)𝐼𝐼𝑔𝑔(𝑆𝑆)  −  𝑝𝑝𝑙𝑙�Sg(𝑆𝑆) − 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔(𝑆𝑆)𝐼𝐼𝑔𝑔(𝑆𝑆))

+ 𝑝𝑝𝑗𝑗(𝑆𝑆(𝑆𝑆) − 𝑆𝑆𝑔𝑔(𝑆𝑆)) 

 

(6.4) 

From 𝑑𝑑𝑆𝑆/𝑑𝑑𝑆𝑆 =  − 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔(𝑆𝑆)𝐼𝐼𝑔𝑔(𝑆𝑆), we have 𝑆𝑆(𝑆𝑆 + 1) = 𝑆𝑆(𝑆𝑆) − 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔(𝑆𝑆)𝐼𝐼𝑔𝑔(𝑆𝑆). The 

approximation 𝑆𝑆𝑔𝑔(𝑆𝑆 + 1)  = 𝛾𝛾𝑠𝑠𝑆𝑆(𝑆𝑆 + 1) yields  

 �1 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑙𝑙�𝑆𝑆𝑔𝑔 + �𝑝𝑝𝑗𝑗 − 𝛾𝛾𝑠𝑠�𝑆𝑆 − (1 − 𝑝𝑝𝑙𝑙 − 𝛾𝛾𝑠𝑠)𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 = 0 

 

(6.5) 

This equality holds at all times only if pj+ pl=1 which says that the probability for the 

individuals outside the common space not to enter (i.e. (1-pj)) should be equal to the 

probability of those inside the common space to leave. Under this condition, the full 
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differential equations (see Methods section) collapse to the three standard SIR equations 

for a well-mixed population but with an effective infection probability of 

𝛾𝛾𝑠𝑠2𝑞𝑞𝑖𝑖 and an effective recovery probability of qr. The reason that high 𝛾𝛾𝑚𝑚happens to 

approach the standard SIR model in Fig. 6.2 is simply because large γm mimics a well-

mixed limit. Similarly strong nonlinear dependences on throughput 𝛾𝛾𝑚𝑚 emerge from other 

disease models (e.g. SIS in Fig. 6.4 (b)) and also from multiple, interacting common 

spaces. Person-to-person transmission can also be replaced by a simple broadcast 

mechanism, to mimic situations where everyone is watching or reading the same news 

bulletin. 

 

6.6 Methods and Supplement Information 

 

6.6.1 SIR and CSC Model 

CSC model (Common Space Contagion, Fig. 6.1(a)) is a generalization of a standard 

SIR process to take into account individuals passing through a dynamical group (common 

space) where they can become infected. The SIR model describes the spreading of an 

infection on a population over time. SIR stands for Susceptible (S), Infective (I) and 

Recovered (R), which are the three possible states that an individual within a population 

can have. The mechanism of infection is through direct contact between a susceptible 

agent and an infected agent with a probability qi per time-step. Once an agent is infected, 

there is a probability qr to recover per time step and hence become immune i.e., it can no 

longer get infected. It is convenient to define an infection's contact rate as 𝜆𝜆 = 𝑞𝑞𝑖𝑖/𝑞𝑞𝑟𝑟 . An 

agent outside the common space has a probability pj per unit time to join the space, while 
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an agent inside has a probability pl per unit time to leave the space. The equation of 

motion that describes the population dynamics within the common space, where Ng is the 

number of individuals within the common space at a given time t, can be written as 

 𝑑𝑑𝑁𝑁𝑔𝑔/𝑑𝑑𝑆𝑆 = −𝑝𝑝𝑙𝑙𝑁𝑁𝑔𝑔 + 𝑝𝑝𝑗𝑗(𝑁𝑁 −𝑁𝑁𝑔𝑔) (6.6) 

In the steady state (i.e. 𝑑𝑑𝑁𝑁𝑔𝑔/𝑑𝑑𝑆𝑆 = 0) the mean number of agents within the common 

space <Ng> is given by:  

 〈𝑁𝑁𝑔𝑔〉 = 𝑁𝑁
𝑝𝑝𝑗𝑗

(𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑙𝑙)
= 𝑁𝑁𝛾𝛾𝑠𝑠 

(6.7) 

To quantify the turnover in the common space, the sum of the mean number of agents 

joining and leaving the space in a unit time is given by:  

 

𝜇𝜇 = �𝑁𝑁 − 〈𝑁𝑁𝑔𝑔〉�𝑝𝑝𝑗𝑗 + 〈𝑁𝑁𝑔𝑔〉𝑝𝑝𝑙𝑙 = 𝑁𝑁�(1− 𝛾𝛾𝑠𝑠)𝑝𝑝𝑗𝑗 + 𝛾𝛾𝑠𝑠𝑝𝑝𝑙𝑙� 

 
= 𝑁𝑁

2𝑝𝑝𝑙𝑙𝑝𝑝𝑗𝑗
𝑝𝑝𝑙𝑙 + 𝑝𝑝𝑗𝑗

= 𝑁𝑁𝛾𝛾𝑚𝑚 
(6.8) 

where 𝛾𝛾𝑚𝑚 = 2𝑝𝑝𝑙𝑙𝑝𝑝𝑗𝑗
𝑝𝑝𝑙𝑙+𝑝𝑝𝑗𝑗

 is the throughput parameter referred in section 6.3. 

 

6.6.2 Simulation and Analytic Equations 

It is found that remarkably close agreement between the integration of our six coupled 

differential equations is present, as well as a discrete time simulation of our model. For 

the simulation, initially all the agents are susceptibles and the system run the common 

space process until the average size reaches its equilibrium value. Then an individual in 

the common space (group) is randomly picked and made infected.  In the next time step, 
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this infected individual will carry out the SIR process and the co-evolution of the 

throughput and SIR begins.   

The six coupled differential equations that describe the process are: 

 𝑑𝑑𝑆𝑆𝑔𝑔
𝑑𝑑𝑆𝑆

= −𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑝𝑝𝑙𝑙�𝑆𝑆𝑔𝑔 − 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔� + 𝑝𝑝𝑗𝑗(𝑆𝑆 − 𝑆𝑆𝑔𝑔) 
(6.9) 

 𝑑𝑑𝐼𝐼𝑔𝑔
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑞𝑞𝑟𝑟𝐼𝐼𝑔𝑔 − 𝑝𝑝𝑙𝑙�𝐼𝐼𝑔𝑔 + 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑞𝑞𝑟𝑟𝐼𝐼𝑔𝑔� + (1 − 𝑞𝑞𝑟𝑟)𝑝𝑝𝑗𝑗(𝐼𝐼 − 𝐼𝐼𝑔𝑔) 
(6.10) 

 𝑑𝑑𝑅𝑅𝑔𝑔
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑟𝑟𝐼𝐼𝑔𝑔 − 𝑝𝑝𝑙𝑙�𝑅𝑅𝑔𝑔 + 𝑞𝑞𝑟𝑟𝐼𝐼𝑔𝑔� + 𝑝𝑝𝑗𝑗 ��𝑅𝑅 − 𝑅𝑅𝑔𝑔� + 𝑞𝑞𝑟𝑟�𝐼𝐼 − 𝐼𝐼𝑔𝑔�� 
(6.11) 

 𝑑𝑑𝑆𝑆
𝑑𝑑𝑆𝑆

= −𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 
(6.12) 

 𝑑𝑑𝐼𝐼
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑞𝑞𝑟𝑟𝐼𝐼 
(6.13) 

 𝑑𝑑𝑅𝑅
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑟𝑟𝐼𝐼 
(6.14) 

   

From the above six equations, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝

= 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑞𝑞𝑟𝑟𝐼𝐼. Hence an initial 𝑑𝑑𝐼𝐼 𝑑𝑑𝑆𝑆� > 0 will 

yield an epidemic. For I(0) initial infected people in the system, no matter in the common 

space or private space, the initial S(0) can be assumed to be randomly distributed and thus 

at the well-mixed limit. As a consequence, 𝑆𝑆𝑔𝑔(0) = 𝛾𝛾𝑠𝑠𝑆𝑆(0) and 𝐼𝐼𝑔𝑔(0) = 𝛾𝛾𝑠𝑠𝐼𝐼(0). The 

restriction that both variables in the right hand side implies the criterion 𝜆𝜆𝛾𝛾𝑠𝑠2𝑆𝑆(0) > 1. 

For our simulation, we set the initial seed of infection as one infected individual in the 

common space, which requires 𝜆𝜆(𝑁𝑁𝛾𝛾𝑠𝑠 − 1) > 1 for initial increase of the infected.  

For a special case of 𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑙𝑙 = 1, the differential equation of three sizes variables are 

simplified to the following effective SIR equations: 



93 
 

 
 

 𝑑𝑑𝑆𝑆
𝑑𝑑𝑆𝑆

= −𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 = −
𝑞𝑞𝑖𝑖(𝑁𝑁2𝛾𝛾𝑠𝑠2𝑆𝑆𝐼𝐼)

𝑁𝑁2 = −𝛾𝛾𝑠𝑠2𝑞𝑞𝑖𝑖𝑆𝑆𝐼𝐼 
(6.15) 

 𝑑𝑑𝐼𝐼
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑖𝑖𝑆𝑆𝑔𝑔𝐼𝐼𝑔𝑔 − 𝑞𝑞𝑟𝑟𝐼𝐼 = 𝛾𝛾𝑠𝑠2𝑞𝑞𝑖𝑖𝑆𝑆𝐼𝐼 − 𝑞𝑞𝑟𝑟𝐼𝐼 
(6.16) 

 𝑑𝑑𝑅𝑅
𝑑𝑑𝑆𝑆

= 𝑞𝑞𝑟𝑟𝐼𝐼 
(6.17) 

6.6.3 Data Collection and Details 

The data for online ISIS support are obtained as follows. Both manual and computer-

based techniques are used by this research group. First, as a pilot study groups of 

followers that support ISIS are manually selected by searching ISIS-related hashtags 

through the VK search option, e.g. popular hashtags are: ISN, isn, ISIS, khilafah, 

islamicstate, IS, shamtoday, fisyria, IslamicCaliphate, IslamicState, caliphate, 

DaulahIslamiyah. Relevant groups of followers were then selected based on the following 

criteria: a) They must explicitly express support for ISIS by publishing ISIS-related news 

and/or other propaganda. b) Their messages must contain calls for jihad in Syria (Sham). 

Once the groups of followers supporting ISIS were identified, an additional search is 

performed using followers and groups to whom they are linked, and to whom the links 

are linked etc. The search stopped when any new groups of followers that has been come 

across was already in our database. Thus even though its completion cannot be proved, 

our data is at least a highly representative sample. Moreover, once automated, it went 

through a rigorous process of cross-checking and occasionally augmentation manually 

using random sampling by subject matter experts. This research group logged into 

VK.com on a daily basis at the same time of the day and manually searched for new 

batches of followers by:  
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a) Analyzing posts and reposts in the known groups of followers,  

b) Following selected individual profiles that actively publish ISIS news as well 
as analyzing the groups they follow, if any. 

 Since the goal of these followers and ISIS is to spread the message across the social 

network, they constantly publish links to related material on their pages. The manual 

content analysis assisted the automated process by helping identify new groups of 

followers every day. The automated version of this process is as follows: The data 

collection script was written in Python and was hosted on our servers. Followers were 

found both automatically (and cross-checked manually) online on vk.com and 

documented in a CSV file that served as input to the data collection script.  

Among the statistics collected were (1) the date that posts were created, (2) who 

posted the post, including gender, (3) the receiver of the post, including gender. Our time 

resolved ISIS data is obtained by setting up automated API's that run continually, 

together with manual cross-checked lists. Individuals are linked when they form part of 

the same online aggregate (group) supporting ISIS. For ISIS, there are typically >40,000 

actors at any one time, with more than 100 million actual links in less than two months. 

 

6.6.4 Bursts Features of Civil Unrest  

The bursts of civil unrest we collected from Latin America have information on: 

category of events, location and date (as shown in Figure 6.5). The key to extract burst 

features (H, T, Tm) from events sequence is to construct the infection profile(s) from the 

events sequence. First, a long sequence of unrest events is segmented by a pre-specified 

threshold d (usually 3 days). That is, if interval between two consecutive events is not 

larger than d, the latter event is in the same segment with the prior. Second, the curve of 
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infection is built based on one segment of events, by making the reciprocal of intervals 

between events as vertical value and time step as horizontal value. Then the features of 

that infection curve can be extracted, just as figures 6.6 show. 
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Figure 6. 5 Bursts of civil unrest in Fig. 6.2. Left column indicates the country where 
the burst occurred. Middle column shows start time of the burst and right column shows 
end time. 

 

 
Figure 6. 6 Corresponding positions in Fig. 6.2. Result of the bursts features of civil 
unrest extracted from sequence in Fig. 6.5. The number inside the circle is the index of 
bursts, the same with row number in Figure 6.5. The circles mark the ratio of Tm/T and 
H/N.  

 
In the two figures above, it is shown that bursts of events from different countries 

can have diverse distribution of their feature points, which is hard to explain by the 

standard SIR model and other agent-based models with only contagion process. 
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