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Quantifying the behavior of complex systems arguably presents the common “hard”

problem across the physical, biological, social, economic sciences [1]. Individual-based

or agent-based models have proved useful in a variety of different real world systems:

from the physical, biological, medical domains through to social and even financial

domains. There are many different models in each of these fields, each with their

own particular assumptions, strengths and weaknesses for particular application ar-

eas. However, there is a lack of minimal model analysis in which both numerical and

analytic results can be obtained, and hence allowing different application domains to

be analyzed on a common footing.

This thesis focuses on a few simple, yet highly non-trivial, minimal models of

a population of interacting objects (so-called agents) featuring internal dynamical

grouping. In addition to analyzing these models, I apply them to a number of distinct

real world systems. Both the numerical and analytical results suggest that these

simple models could be key factors in explaining the overall collective behavior and

emergent properties in a wide range of real world complex systems. In particular, I

study variants of a particular model (called the EZ model) in order to explain the

attrition time in modern conflicts, and the evolution of contagion phenomena in such



a dynamically evolving population. I also study and explain the empirical data ob-

tained for online guilds and offline gangs, leading to a team-based model which cap-

tures the common quantitative features of the data. I then move on to develop a

resource competition model (i.e. the so-called El Farol model) and apply it to the

carbon emissions market, mapping the different market factors into model parame-

ters which enable me to explore the potential market behaviors under a variety of

scenarios.
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CHAPTER 1

Introduction

1.1 Motivation

Complex Systems - together with their dynamical behavior known as Complexity

- are thought to pervade much of the natural, informational, sociological, and eco-

nomic world [2]. A unique, all-encompassing definition of a Complex System is lacking

- worse still, such a definition would probably end up being too vague. Instead, such

Complex Systems are better thought of in terms of a list of common features which

distinguish them from “simple” systems, and from systems which are just “compli-

cated” as opposed to being complex. Although a unique list of Complex System

properties does not exist, most people would agree that following would typically

appear: feedback and adaptation at the macroscopic and/or microscopic level, many

(but not too many) interacting parts, non-stationarity evolution, coupling with the

environment, and observed dynamics which depend upon the particular realization

of the system. Understanding the functionality of Complex Systems is of paramount

importance, from both practical and theoretical viewpoints.

In a similar way to how many-body physics [3] developed to explain novel collec-

tive phenomena in solid state physics, physicists in the Complex Systems community

have focused on explaining the appearance of novel non-Gaussian (e.g. power-law)

1
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statistical distributions which have been observed in many real-world, candidate com-

plex systems (e.g. financial markets, conflict, traffic). In particular, the fact that such

a distribution has not developed the typical Gaussian form of the Central Limit The-

orem, means that it is natural to assume that rather non-trivial interactions and feed-

back must be at work on the microscopic level. Within mathematics, much headway

into understanding the possible effects of clustering within a population (i.e. beyond

mass action) have been obtained by adding functional response terms to differential

equation descriptions of population models [4]. Within physics, the emphasis has

instead been on looking for many-body type models inspired from condensed matter

in which the output is a statistical distribution which is consistent with the observed

empirical data. Two general types of model have been presented within the Physics

community to deal with such strong internal correlations, or group dynamics: the

first type, upon which most of this thesis focuses (Chaps. 2-5), is one in which agent

interactions lead to a dynamically evolving set of internal groups. Members of a

given group may then share opinions, viruses etc.. They may therefore imitate each

other and thereby seem to act as a crowd. Such a crowding has been termed “herd

formation” in the Physics literature. The second type is the EL Farol model (which

is used in Chapter 6) in which it is assumed that the individual objects, or “agents”,

do not share any local information. The crowds are now global and unintentional

in the sense that any agent may suddenly became a member of particular crowd via

the strategy he is using, rather than because he decides to join that crowd per se -

i.e. crowding results in strategy space. Irrespective of the type of model, our goal

throughout this thesis is to build minimal yet justifiable models which are consistent

with observed phenomena.

In a broader context, it is interesting that many different disciplines across the
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biological and social sciences face a “many-body problem” in one form or another, in

which it is necessary to provide a framework for understanding the collective behavior

of assemblies of interacting particles. As all fields would concur, the study of such

a collection of particles is in general extremely complicated [2] with the emergent

phenomena often bearing little resemblance to the underlying elementary laws. In

Physics, many-body theory has been successful in synthesizing the behaviors which

govern the macroscopic realm – in part, because the microscopic laws governing indi-

vidual particles are so well known. Starting with Boltzmann [5], the idea of “emergent

phenomena” has existed in physics for a long time, ranging from solid state physics [6]

(e.g. spin glass [7], superconductivity [8]), quantum mechanics [9] through to high en-

ergy physics [10]. Many analytical and computational methods have been developed

to attack the many-body problem [3].

Here in this thesis, the idea is to apply a similar philosophy to attack non-

conventional real-world systems (see the following chapters). Instead of elementary

particles, there could be proteins, polymers, human beings, groups, computers, web-

sites, and so on. In addition, the microscopic interactions are in general much more

versatile and complicated (e.g. history dependent). For example, a student in a dis-

cussion session, is interacting with the classmates and professor, while at the same

time, the cell phone and internet enable him/her to interact with basically anybody in

the university, country or even the whole world – and the way these interactions play

out can depend on the specific point in time and the previous days’ events. Moreover,

when the class is over, some of interactions stop while other interactions (e.g. personal

links) get established. Such dynamics is a core theme of this thesis – in particular,

the grouping dynamics. The novel feature of such a complex system for a physicist, is

that it represents a many-body system of interacting particles (or so-called “agents”)
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which may or may not identical and whose interactions may now depend on time

and space. The agents are typically alive and have some primitive ability to evolve,

adapt, and hence think, learn, and decide, according to either the local and/or global

information or interactions. These distinguishing features of agents will add a new

level of heterogeneity into the system beyond that of a typical physical system.

One could argue that the behavior of complex systems presents the common

“hard” problem across the physical, biological, social, economic sciences [1]. To add

to the level of complexity, many, if not most, complex systems are influenced by some

underlying network structure [11]. Early research on the networks made great strives

into understanding the properties of static, equilibrium networks, such as grid lattice

with constant or Gaussian distributed connectivity [12]. It is only recently that the

study of “complex network” has become a major research area within the physics

community. The explosion of research within the physics literature has led to the

realization that similar network structures appears across a wide range of biological

and social systems [11,13–19]. The theoretical work to date has been rather abstract,

and in the explicit case of complex networks, has focussed on the static, macroscopic

structural properties of networks [20, 21]. On one hand, many works have been de-

voted to the studies of static (or semi-static with slow rewiring) lattice type networks,

a multitude of measures have been developed, distinguishing and characterizing the

various topological properties of complex networks: random [12,22], small-world [15]

or scale-free networks [13,14]. On the other hand, much research has been performed

using mean-field type mass action models, where the underlying population is as-

sumed to be well mixed [23,24].

Unfortunately, these previous studies offer relatively little insight into the dy-

namical properties of the networks associated with real-world complex systems. In
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particular, for networks associated with a population of interacting objects, it is how

this network structure is affected by the dynamical behavior of the population, and

how the population’s behavior then feeds back on this network, which is of impor-

tance. For example, from a biological perspective, knowing that a given complex

system network is scale-free is not, per se, that interesting. Instead it is the micro-

scopic dynamics that lead to the macroscopic behavior, which is important. In short,

it is how agents function with each other, and how the population evolves, that mat-

ters. So far, the precise nature of the interplay between dynamics and structure in

complex network-based systems remains largely a mystery. These shortcomings in

the current state of understanding of the dynamical properties of complex systems

and networks provide the motivation for the research presented in this thesis.

1.2 Overview

Our main research interest lies in understanding the dynamics of groups in com-

plex systems, and the effect on collective behavior. How do large systems evolve

locally? How do different grouping dynamics change the overall shape of systems

(e.g. cluster size destruction)? How do rumors, information, or viruses spread among

the systems? Answers to these questions are vital to a range of application areas from

forming efficient teams, through to helping prevent potential conflicts, recognizing the

activities in financial market and detecting disease outbreaks. A basic premise behind

the study of complex systems is that local and/or global interaction leads to complex

collective behavior. We study, through several real-world cases from different fields,

how group dynamics affect the evolution of large complex systems, and the emergent
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complex behavior. The following is an outline of the chapters in this thesis, which

are all based on our published papers:

In Chapter 2, we start by studying the theoretical coalescence-fragmentation mod-

els, which are now of great interest across the physical, biological, and social sciences.

They are typically studied from the perspective of rate equations, at the heart of

which are the rules used for coalescence and fragmentation. The model is also some-

times referred as a local interaction model. Here we discuss how changes in these

microscopic rules affect the macroscopic cluster-size distribution which emerges from

the solution to the rate equation. Our analysis elucidates the crucial role that the

fragmentation rule can play in such dynamical grouping models. We focus our discus-

sion on two well-known models whose fragmentation rules lie at opposite extremes.

In particular, we provide a range of generalizations and new analytic results for the

well-known model of social group formation developed by Egúıluz and Zimmermann

[V. M. Egúıluz and M. G. Zimmermann, Phys. Rev. Lett. 85, 5659 (2000)]. We de-

velop analytic perturbation treatments of this original model, and extend the analytic

analysis to the treatment of growing and declining populations.

A remarkable recent application of the same coalescence - fragmentation has re-

cently appeared in the physics community. In particular, it is able to explain a myste-

rious recent finding concerning quantum many-body effects in the high-temperature

superconducting (SC) cuprate system La2CuO4+y. [25, 26]

• “Relating the microscopic rules in coalescence-fragmentation models to the

cluster-size distribution”, Eur. Phys. J. B 72, 289 (2009), B. Ruszczycki,

B. Burnett, Z. Zhao, and N. F. Johnson.

• “Dynamical Clustering as a Generator of Complex System Dynamics”, Math-
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ematical Models and Methods in Applied Sciences, 19, Suppl. 1539 (2009),

Zhenyuan Zhao, Andy Kirou, B. Ruszczycki, Neil F. Johnson.

• “Modeling the self-assembly dynamics of macromolecular protein aggregates

underlying neurodegenerative disorders”, Journal of Computational and Theo-

retical Nanoscience 6, 1 (2009), Zhenyuan Zhao, Rajiv Singh, Arghya Barman,

Neil F. Johnson, and Rajeev Prabhakar.

In Chapter 3, we adapt the grouping dynamic model study to social systems – in

particular, modern human conflicts, such as those ongoing in Iraq, Afghanistan and

Colombia, which typically involve a large conventional force (e.g. a state army) fight-

ing a relatively small insurgency having a loose internal structure. Here we adopt this

qualitative picture in order to study the dynamics – and in particular the duration

– of modern wars involving a loose insurgent force. We generalize a coalescence-

fragmentation model from the statistical physics community in order to describe the

insurgent population, and find that the resulting behavior is qualitatively different

from conventional mass-action approaches. One of our main results is a counterintu-

itive relationship between an insurgent war’s duration and the asymmetry between

the two opposing forces, a prediction which is borne out by empirical observation.

• “Anomalously Slow Attrition Times for Asymmetric Populations with Internal

Group Dynamics”, Phys. Rev. Lett. 103, 148701 (2009), Zhenyuan Zhao, Juan

Camilo Bohorquez, Alex Dixon, and Neil, F. Johnson.

• “Statistical Physics and Modern Human Warfare”, invited book chapter, in

Mathematical Modeling of Collective Behavior in Socio-economic and Life-

sciences, Alex Dixon, Zhenyuan Zhao, Juan Camilo Bohorquez, Russell Denney,

and Neil Johnson.
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In Chapter 4, we study the diffusion/spreading on the dynamic model in order to

shed light on the role of network dynamics on the evolution of processes on a net-

work. Despite the many works on contagion phenomena in both well-mixed systems

and heterogeneous networks, there is still a lack of understanding of the intermediate

regime where social group structures evolve on a similar timescale to individual level

transmission. We address this question by considering the process of transmission

through a model population comprising social groups which follow simple dynami-

cal rules for growth and break-up. Despite the simplicity of our model, the profiles

produced bear a striking resemblance to a wide variety of real-world examples – in

particular, empirical data that we have obtained for social (i.e. YouTube), financial

(i.e. currency markets), and biological (i.e. colds in schools) systems. The observa-

tion of multiple resurgent peaks and abnormal decay times is qualitatively reproduced

within the model simply by varying the timescales for group coalescence and fragmen-

tation. We provide an approximate analytic treatment of the system and highlight a

novel transition which arises as a result of the social group dynamics.

• “Effect of social group dynamics on contagion”, Phys. Rev. E 81, 056107

(2010), Zhenyuan Zhao, J.P. Calderón, Chen Xu, Guannan Zhao, Dan Fenn,

Didier Sornette, Riley Crane, Pak Ming Hui, and Neil F. Johnson.

• “Strong dependence of infection profiles on grouping dynamics during epidemi-

ological spreading”, Complex Sciences First International Conference, Com-

plex 2009, Shanghai, China, Lecture Notes of the Institute for Computer Sci-

ences, Social Informatics and Telecommunications Engineering, ISSN 1867-8211

(2009), Zhenyuan Zhao, Guannan. Zhao, Cu Xu, Pak Ming Hui, and Neil F.

Johnson.
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In Chapter 5 we further generalize the multi-agent model to quantify the human

group dynamics. Unlike animals and other biological systems, humans form groups

in both real (offline) and virtual (online) spaces from potentially dangerous street

gangs populated mostly by disaffected male youths, through to the massive global

guilds in online role-playing games for which membership currently exceeds tens of

millions of people from all possible backgrounds, age-groups and genders. We have

compiled and analyzed data for these two seemingly unrelated offline and online

human activities, and have uncovered an unexpected quantitative link between them.

Although their overall dynamics differ visibly, we find that a common team-based

model can accurately reproduce the quantitative features of each simply by adjusting

the average tolerance level and attribute range for each population. By contrast, we

find no evidence to support a version of the model based on like-seeking-like (i.e.

kinship or “homophily”).

• “Human group formation in online guilds and offline gangs driven by common

team dynamic”, Phys. Rev. E 79, 066117 (2009), Neil F. Johnson, Chen Xu,

Zhenyuan Zhao, Nicolas Ducheneaut, Nicholas Yee, George Tita, Pak Ming Hui.

In Chapter 6, we investigate a global interaction model, and apply it to the prob-

lem of controlling global carbon emissions. We explore quantitatively how different

control schemes affect the collective emission dynamics of a population of emitting

entities. We uncover a complex trade-off which arises between average emissions (af-

fecting the global climate), peak pollution levels (affecting citizens’ everyday health),

industrial efficiency (affecting the nation’s economy), frequency of institutional in-

tervention (affecting governmental costs), common information (affecting trading be-

havior) and market volatility (affecting financial stability). Our findings predict that
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a self-organized free-market approach at the level of a sector, state, country or conti-

nent, can provide better control than a top-down regulated scheme in terms of market

volatility and monthly pollution peaks.

• “Self-organized global control of carbon emissions”, Physica A 389, 17, 3546

(2010), Zhenyuan Zhao, Dan Fenn, Pak Ming Hui, and Neil F. Johnson.

• “Competitive carbon emission yields the possibility of global self-control”, J.

Comput. Sci. (2010 in press), Daniel J. Fenn, Zhenyuan Zhao, Pak Ming Hui,

and Neil F. Johnson.



CHAPTER 2

Simple Model of An Interacting
Dynamical Population

2.1 Background

The challenge to understand the dynamics of Complex Systems is attracting in-

creasing attention, particularly in the socio-economic and biological domains [27, 28,

54–57,59–72]. For example, the recent turmoil in the financial markets has created sig-

nificant public speculation as to the root cause of the observed fluctuations. At their

heart, all Complex Systems share the common property of featuring many interact-

ing objects from which the observed macroscopic features emerge. Exactly how this

happens cannot yet be specified in a generic way – however, an important milestone

in this endeavor is to develop a quantitative understanding of any internal cluster-

ing dynamics within the population. Coalescence-fragmentation processes have been

studied widely in conventional chemistry and physics [73–94] – however, collective

behavior in social systems is not limited by nearest neighbor interactions, nor are

the details of social coalescence or fragmentation processes necessarily the same as

in physical and biological systems. The challenge for a theorist is then twofold: (1)

to provide a model which accounts correctly for the observed real-world behavior —

e.g., in the case that power-laws are observed empirically, the model should be able to

11
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reproduce the power-law dependence itself, the value of the corresponding power-law

exponent, and possibly also the form of the truncation; (2) the rules invoked in the

model need to make sense in the context of the real-world system being discussed.

In this chapter, we discuss coalescence and fragmentation problems with a focus

on social systems. In particular, we consider interactions which are essentially inde-

pendent of spatial separation in order to mimic the effect of modern communications

etc. Much of our discussion is focused around fragmentation processes in which an

entire cluster breaks up into its individual pieces – thereby mimicking a social group

disbanding – as opposed to the more typical case studied in physical and biological

systems of binary splitting. We limit our discussion to the steady-state behavior

corresponding to a constant population, or a steadily growing/declining population.

In Sec. 2.1.2, we lay out a general formulation of such coalescence-fragmentation

problems. In order to understand the quantitative effects of a particular choice of

fragmentation rule, Sec. 2.2 then compares two well known coalescence-fragmentation

models, with fragmentation rules which lie at opposite extremes of the spectrum. One

of these is the well-known physics-inspired model of social group formation introduced

by Egúıluz and Zimmermann [28] while the other is a standard model in mathemat-

ical ecology due to Gueron and Levin [54]. The explicit comparison between the two

models allows us to elucidate the subtle differences in their microscopic rules that

make their macroscopic distributions differ, and leads us to a better generic under-

standing of the crucial role that the fragmentation rule can play. We then proceed

to focus on the physics-based model of Egúıluz and Zimmermann, generalizing it in

several ways and providing new analytic results (Sec. 2.3). We analyze a perturbed

version of the Egúıluz-Zimmerman model where spontaneous cluster formation is

present (Sec. 2.3.1), as well as generalized versions in which there is a steadily grow-
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ing (Sec. 2.3.3) or declining population (Sec. 2.3.3). Further realistic modifications of

the Egúıluz-Zimmerman model are discussed in Sec. 2.3.4.

There is of course a huge volume of work in the mathematics, physics and chem-

istry literature on the topic of clustering within a many-body population of inter-

acting particles [95]. The Smoluchowski coalescence equation is arguably the most

famous and well-studied example [73–75]. Many of the existing studies of coalescence-

fragmentation models, however, focus on distinct fragmentation mechanisms to the

present EZ one studied in this chapter. This is because applications have focused

on chemical kinetics, where the likely fragmentation of a polymer containing s units

is simply to lose one monomer and hence produce an s − 1 polymer – or where the

polymer breaks into two identical pieces, or two pieces of general size (e.g., Gueron

Levin Model discuessed in this chapter). Reference [95] provides an excellent recent

review of coalescence-fragmentation models in physical and chemical systems from a

mathematician’s perspective – however we note that the socially-inspired models that

we focus upon in this article are not discussed. Many previous studies have tended

to focus on generic mathematical issues such as existence, uniqueness, mass conserva-

tion, gelation and finite size effects (see Refs. [76–80] and references therein). When it

comes to Complex Systems – and in particular, social systems – the more pressing goal

is to understand the emergent features of the population. In contrast to physical and

chemical systems in which collision energetics play a crucial role in guiding the spec-

ification of microscopic coalescence and fragmentation rules, the precise microscopic

rules in social systems are unknown – however, the overall macroscopic emergent phe-

nomena such as cluster size distribution can be measured relatively easily. In financial

markets, the collective dynamics of the population of traders is registered directly by

means of the price. Indeed, as many prior works have shown, such collective behavior
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in social systems tends to produce near scale-free (i.e. power-law) networks and/or

cluster sizes in a variety of real-world situations. For example, the distribution of

transaction sizes follows a power-law with slope near 2.5 for each of the three major

stock exchanges in New York, Paris and London [96]. In addition, it has been shown

that the distribution of the severity of violent events inflicted in conflict by insurgent

groups, and by terrorist groups, follow a power-law near 2.5 [56,57,59,97]. The model

of Egúıluz and Zimmermann [28], which is the starting point of much of the paper’s

discussion, is therefore an attractive candidate model for such social systems. In ad-

dition to its intrinsic theoretical interest because of its non-binary fragmentation rule,

which mimics the disbanding of social groups, it also happens to produce a robust

power-law distribution of cluster sizes with slope 2.5 [28].

2.1.1 Modeling Social Systems

Many social systems seem to comprise a large number of dynamically evolving

clusters. Over time, and in an apparently self-organized way, clusters either coa-

lesce with each other to form even larger clusters, or fragment to form a collection of

smaller ones. In addition to everyday social situations, these characteristics seem con-

sistent with common sense notions of the dynamical connectivity within a community

of financial traders [28], or even a loosely connected insurgent population or terror-

ist/criminal network [56,59]. Figure 2.1 illustrates the generic situation of interest in

many recent works on coalescence-fragmentation models [28, 54, 60–72]. As a result

of coalescence and fragmentation processes over time, the population of N objects

undergoes dynamical partitioning into clusters i, j, k, . . . of size si, sj, sk, . . . , where

both the number of clusters and their membership are typically time-dependent. We

have denoted the N objects in human form, but of course they could be animals,
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Figure 2.1: Schematic diagram indicating the presence of coalescence and fragmen-
tation processes, for a population of N = 15 objects dynamically partitioned into
clusters. The size of cluster i is si = 2, while the size of cluster j is sj = 6 etc. The
fragmentation process exhibits the richest range of possibilities, given the combina-
torial number of ways in which a cluster can in principle be divided. There are many
possible realizations of the objects themselves, e.g. humans, animals, macromolecules,
though for simplicity we show them as humans.
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macromolecules or other indivisible entities. Earlier studies tended to focus on sit-

uations in which the interactions between clusters might be expected to decay with

physical separation – as in a simple solution of molecules interacting through Van der

Waals interactions for example. However in modern-day social applications, where

long-distance communication is as commonplace as communication with neighbors,

it makes more sense to have interactions over all lengthscales, with the interaction

probability effectively independent of physical separation. These are the type of in-

teractions that we discuss here.

Of the two processes in Fig. 2.1, i.e. coalescence and fragmentation, the coa-

lescence process is likely to be the simpler and more generic. Suppose we have a

particular partition of a population of N objects into clusters as in Fig. 2.1, and that

a cluster i of size si = 2 is to coalesce. It is unlikely to undergo three-body collisions

and/or interactions, and hence its most likely coalescence event is to join with a single

other cluster j. Given that the size of a cluster measures the number of objects in it,

it is therefore reasonable to imagine that the coalescence probability should increase

as the size of the clusters themselves increase. In a more human setting, the more

objects that a cluster contains, the more likely it is that something will happen to

one of its members in order to induce such an event, and hence the probability will

increase with the size of the cluster. We therefore adopt size-dependent coalescence

probabilities in this work. We note that although we are using the term “cluster”

throughout this chapter for convenience, it can also be taken to mean a “community”

in the language of network science [106] since it denotes a subset of the population

who have very strong links between them, while the links between clusters are negli-

gibly weak. We note also that the term “cluster” need not necessarily mean physical

connection – instead it could represent a group of objects whose actions happen to be
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coordinated in some way. Hence the coalescing of two clusters, however distant in real

space, can mean an instantaneous alignment of their coordinated activities, as one

might expect in a financial market [55], organized crime or insurgent warfare [56,59].

In such a situation, a common fragmentation event would then likely be a sudden

disruption of this coordination – hence it is this type of fragmentation rule that forms

the focus of our work. Although we do not explore the details of real-world applica-

tions such as financial markets or insurgent warfare here, it is useful to keep them in

mind when we discuss the consequences of the different fragmentation rules later in

the chapter.

As mentioned earlier, the distinct feature of many real-world systems is the exis-

tence of scale-free behavior in the time-averaged cluster size distribution [28, 55, 56,

59, 96, 98, 99], such that in the first instance these systems can be characterized by

the exponent of their power law and by the range of its scale-free behavior. One

may therefore ask: Which ingredients of the coalescence-fragmentation models, or

combinations of ingredients, turn out to control the various observable aspects? It is

this general question that motivates the present work.

2.1.2 General Formulation

Once the probabilities specifying the coalescence and fragmentation are given, the

cluster size distribution may be computed either by a direct simulation of the model or

in a mean-field theory approximation by solving an appropriate set of rate equations,

often numerically. The rate equations are typically non-linear. The non-trivial ques-

tion of existence and uniqueness of the time-independent solution therefore arises, and

is addressed in seminal works such as Refs. [94, 102, 103]. For the social/economical

models of current interest, the uniqueness and existence can be shown at the level of
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the rate equations, and verified by direct simulations. We consider mostly “steady-

state” models, in which there is some form of robust long-time behavior.

The number of clusters of size s at time t is ns(t), and N is the total number of

members (i.e. the population size). We will drop the explicit time-dependence for

simplicity, since it will be clear from the context whether we are discussing ns(t) or

its steady-state time-averaged value. In order to characterize a general system, we

need to prescribe the following two functions, each of dimension [time]−1:

• The coalescence function C(s, s′) which is the rate describing the process by

which two clusters of sizes s and s′ merge. We only consider coalescence which

depends on the details of a pair of clusters, and hence exclude the possibility

that 3 (or more) clusters are involved in the merging process.

• The fragmentation function FR(s;m1,m2, . . . ,ms−1) which is the rate describ-

ing the process by which a cluster of size s fragments into a configuration which

contains m1 clusters of size 1, m2 clusters of size 2, etc.

The functional form of the above two functions is taken to be time-independent. If we

consider general fragmentation processes, we see that a large number of parameters

are necessary to characterize the fragmentation. However in order to write down the

rate equations and hence calculate the cluster size distribution, we do not need com-

plete knowledge of the fragmentation function (i.e. we do not need knowledge about

all possible partitions). It is sufficient to know the reduced fragmentation function

F(s, s′,m), defined as the rate at which a cluster of size s fragments into a configura-

tion which contains m clusters of size s′ plus any other clusters with sizes different to

s′. In addition to F(s, s′,m) we need to know the rate that the fragmentation of any

given cluster of size s occurs, which we denote as f(s). In principle we can calculate
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it by summing the complete fragmentation function over all partitions of the frag-

mentation products. By prescribing the deduced fragmentation function F(s, s′,m)

we do not characterize uniquely the fragmentation of the system and in general we

may not be able to calculate f(s) – yet it is possible in specific cases to do so once the

assumption regarding the fragmentation products has been stated. Looking at the

average number of clusters of size s that in unit time undergo the various processes

(see Fig. 2.2), we may introduce the following notation:

• LF (s): loss due to fragmentation, the number of clusters of size s that fragment

• LC(s): loss due to coalescence, the number of clusters of size s that join with

other clusters

• GC(s): gain from coalescence, the number of clusters of size s created from the

merging of clusters of size smaller than s

• GF (s): gain from fragmentation, the number of clusters of size s created from

fragmenting clusters of size larger than s

Symbolically the rate equations for any s are written as

∂ ns

∂ t
= −LF (s) − LC(s) +GC(s) +GF (s) (2.1)

which explicitly reads as

∂ ns

∂ t
= −f(s)ns−ns

N∑
s′=1

ns′C(s, s′)+
1

2

s−1∑
s′=1

ns′ns−s′C(s′, s−s′)+
N∑

s+1

ns′

[N/s′]∑
m=1

mF(s′, s,m) .

(2.2)

The last term represents the gain in the number of clusters of size s coming from frag-

mentation of other clusters of size s′ > s, in such a way that among the fragmentation

products we have m clusters of size s. We are summing over all possible values of m
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Figure 2.2: The various processes of cluster coalescence and fragmentation which give
rise to LF , LC , GF , GC for any particular value of s. The bottom figure represents
the appearance of new clusters of size s, the top one represents their loss. In the
interests of simplicity, the fragmentation into two clusters has been depicted and only
a few processes are shown.

and s′. Note that we sum over s′ which is here the first (not the second) argument of

F . An explicit form for f(s) is discussed above. It is convenient to formally define

F̃(s, s′) =

[N/s′]∑
m=1

mF(s, s′,m) . (2.3)

We write therefore the last term of Eq. 2.2 as

N∑
s′=s+1

ns′F̃(s′, s) .

2.2 Role of the fragmentation function

A logical first step in the quest to understand classes of models which differ in

their cluster fragmentation process, is to look at extreme cases. One such case is the

Egúıluz-Zimmermann (E-Z) model [28]. In the E-Z model, fragmentation of a cluster

of size s always produces s clusters of size 1, i.e. the cluster breaks up into individual
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objects. At the other extreme, is the famous Gueron and Levin (G-L) model [54] in

which fragmentation of a cluster yields two smaller pieces, i.e. the original cluster

splits into two clusters. The original G-L model is formulated in terms of continuous

distributions – however, since our aim is to analyze the effects of these rules on the

same footing, we will focus on the discrete version of the G-L model, returning to the

continuous formulation later on. The G-L model is in fact identical to Smoluchowski’s

coagulation-fragmentation model with binary fragmentation.

The common feature of the models that we discuss, is the presence of a separable

coalescence function:

C(s, s′) = α a(s) a(s′) . (2.4)

In principle, the multiplicative constant may be absorbed into a(s), however we prefer

to keep it explicitly and adopt a dimensionless a(s). This class of model is further

specified by introducing a coalescence mechanism on the microscopic scale, namely

that two clusters merge when any member from one cluster connects to any member

from the other cluster. In a macroscopic description, this is equivalent to assuming

that a(s) = s. We note that Gueron and Levin [54], having the solution of the rate

equations for a(s) = s, considered explicitly the other cases a(s) = 1 and a(s) = 1/s

by means of the substitution ns → a(s)ns – however, this substitution affects the

form of the fragmentation function F(s, s′,m).

2.2.1 Fragmentation function

Assuming that the cluster may only split into two pieces still does not uniquely

specify the fragmentation, since we still need information about the probability dis-

tribution for the sizes of the fragments. In the G-L model, it is stated that the

conditional distribution for fragments is uniform [54], i.e. the fragmentation of a
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cluster occurs with a probability which is independent of the way in which the cluster

breaks. The reduced fragmentation function for s > 1 is therefore

FGL(s, s′,m) = β b(s) [2 δm,1(1 − δ2s′,s) + δm,2δ2s′,s] (2.5)

where we have accounted for the fact that if 2s′ = s, the cluster breaks into two

fragments of equal size. Using Eq. 2.3 one obtains immediately

F̃GL(s, s′) = 2β b(s) . (2.6)

The fragmentation probability is calculated as follows:

fGL(s) =
1

2

s−1∑
s′=1

FGL(s, s′,m = 1) +
s−1∑
s′=1

FGL(s, s′,m = 2) = β (s− 1) b(s) , (2.7)

where the factor 1/2 in the first term appears in order to avoid double-counting, and

the second term represents splitting into two equal parts. In the E-Z fragmentation

scheme, the cluster of size s can only break up into individual objects and there is

only one mode of fragmentation, hence

FEZ(s, s′,m) = β b(s)(1 − δs1)δs′,1δm,s . (2.8)

Using Eq. 2.3 we have

F̃EZ(s, s′) = βs b(s) (1 − δs1)δs′,1 . (2.9)

The fragmentation probability is

fEZ(s) =
s−1∑
s′=1

FEZ(s, s′,m = s) = β (1 − δs1)b(s). (2.10)

There is no double-counting problem here. A peculiar feature of the E-Z model is

that the corresponding set of rate equations is semi-recursive, i.e. any k-th equation

depends only on values of ns′ for s′ ≤ k and on a global constant depending on all
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ns. This is a feature by which it is easy to show the existence and uniqueness of the

solution and also to solve the system numerically.

It is the common feature of both G-L and E-Z type models to assume that a(s) =

b(s). Mathematically, this acts to restrict the space of all possible solutions, otherwise

the diversity of general solutions would be overwhelming. In physical terms, the

justification for this assumption is that there is interest in the specific case a(s) =

b(s) = s, since this describes the case of fragmentation of the cluster being triggered

by a single member – hence the proportionality to s. Similarly the likelihood that two

groups would become coordinated and hence act as a single unit (i.e. they coalesce)

would be proportional to the size of each of the groups, if the underlying mechanism

involved one member from each initiating the process by forming a link followed by

all the other members.

With the assumptions made so far, it turns out that each system is described by

three constants: α, β and the total population size N . For the time-independent

system we need just two constants, and since α and β are of dimension [time]−1 then

only their ratio α/β should appear. The steady-state rate equations are as follows.

G-L system:

−β(s2 − s)ns − α sns

N∑
s′=1

s′ns′ +
α

2

s−1∑
s′=1

s′ ns′ (s− s′)ns−s′ + 2β
N∑

s′=s+1

s′ ns′ = 0 .

(2.11)

E-Z system:

−βs (1 − δs1)ns − α sns

N∑
s′=1

s′ns′ +
α

2

s−1∑
s′=1

s′ ns′ (s− s′)ns−s′ + βδs,1

N∑
s′=s+1

s′2 ns′ = 0 .

(2.12)
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Egúıluz and Zimmermann [28] explicitly used the following constants:

α =
2(1 − ν)

N2
, β =

ν

N
. (2.13)

We see that both sets of equations 2.11 and 2.12 simplify if we express them in terms

of ks = s ns, i.e. the number of agents contained in clusters of size s. Note that for

general a(s), we need to substitute ks = a(s)ns.

2.2.2 Equilibrium in Gueron-Levin model: Continuous for-

mulation

Gueron and Levin’s solution [54] to the G-L model, was obtained for the system

with continuous cluster density which we denote as n(s). In terms of k(s) = s n(s),

the integral rate equation corresponding to Eq. 2.11 with no limit on the maximum

size of a cluster, is given by:

0 = −β s k(s) − α k(s)

∫ ∞

0

ds′ k(s′) + α
1

2

∫ s

0

ds′k(s′) k(s− s′) + 2β

∫ ∞

s

ds′ k(s′) .

(2.14)

Looking at this equation, we guess that the solution is obtained by substituting an

ansatz which satisfies k(s + s′) ∝ k(s)k(s′). The first form to try is k(s) = Ae−μ s.

With this ansatz we obtain

0 = −Aβ s e−μs − A2α/μe−μs + A2α/2 se−μs + 2Aβ/μ e−μs . (2.15)

There are two types of terms, of the form ∼ e−μs or ∼ s e−μs. Eliminating the overall

exponential factor we have

0 = s
(
−Aβ + A2α

2

)
+

2

μ

(
Aβ − A2α

2

)
. (2.16)

Both terms in parentheses vanish if we choose

A = 2
β

α
. (2.17)
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The scale factor μ in the exponent is determined to be μ = 2β/Nα by normalization.

The solution to Eq. 2.14 is just an exponential function which was obtained by Gueron

and Levin by means of a Laplace transform.

We notice here a remarkable curiosity: If we take the actual solution of Eq. 2.14,

then for any s the following equalities hold exactly:

LF (s) = GC(s), LC(s) = GF (s) . (2.18)

This is in effect the detailed balancing. In other words, the following holds for the G-L

model: The average loss of clusters of size s due to the cluster fragmentation, is equal

to the average gain obtained from the coalescence of clusters of sizes smaller than s.

Also the average loss of clusters of size s due the coalescence with other clusters is

equal to the average gain obtained from the fragmentation of clusters of sizes larger

than s.

In addition to its mathematical interest, this identity (which is not satisfied for

the E-Z model as discussed below) shows up a fundamental feature of the G-L model,

which arises in turn from the microscopic rules which characterize it. This symmetry is

also revealed if we look at the behavior of the system with time flowing backwards.(In

general, one does not obtain a stochastic system by time-reversing the recorded history

of a second non-equilibrium stochastic system. Although this becomes an issue for

discrete systems due to the presence of fluctuations, we may still discuss it from the

perspective of the average quantities describing the equilibrium state). With the

reversed time perspective, the coalescence of clusters is observed as fragmentation

and vice-versa, but the average cluster size distribution remains unaltered in the

equilibrium state. As far as this average quantity is concerned, the system is therefore

invariant under an interchange of coalescence/fragmentation processes – and in the

specific case of G-L model, the time-reversed processes are exactly the same as the
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original ones.

2.2.3 Cluster size distribution: The exponential cutoff

We now return to the discrete formulation. For the discrete version of the G-L

system, it may be verified by direct computation that the steady-state value

ns = 2
β

α
s−1 exp (−μ s) (2.19)

is also a solution of Eq. 2.11, once we make an approximation of extending the sum-

mation limits to infinity. Here the normalization condition is N =
∑∞

s′=1 s
′ n(s′), from

which we calculate

μ = ln

(
2β

αN
+ 1

)
. (2.20)

Thus we have

ns = 2
β

α
s−1

(
2β

αN
+ 1

)−s

. (2.21)

It is advantageous to consider β/α ∝ N , thus the exponent is independent of N and

ns is just proportional to N . If we use here the same constants (Eq. 2.13) as the

original E-Z model, the solution is

G-L : ns = N
ν

1 − ν
s−1 (1 − ν)s . (2.22)

The solution to the E-Z model rate equations may be approximated as [61]

E-Z : ns ∼ Ns−2.5

(
4(1 − ν)

(2 − ν)2

)s

. (2.23)

In order to compare the cluster size distribution for both models, we will for

convenience characterize both using the same parameters N and ν. This means that

they will have the same coalescence function, and their fragmentation functions will

agree for the splitting of clusters of size s = 2. The difference between the two models
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then lies in the fragmentation of larger clusters. This allows them to be compared on a

similar footing, focusing just on the effect of their respective fragmentation functions.

The cluster size distribution for both models is of the form ns ∝ s−κ e−μs. The

scale of s at which the exponential cut-off becomes relevant, can be identified by

looking at the ratio

ns+1

ns

= e−μ (s+ 1)−κ

sκ
= e−μ

(
1 − κ

s
+O

(
1

s2

))
. (2.24)

We assumed that μ� 1 which is the regime in which such models exhibit power-law

behavior. The exponential cutoff becomes dominant at the scale where a ≈ (1 − κ
s
),

hence we may define

scutoff ≡ κ

1 − e−μ
. (2.25)

For the models of interest in this chapter with μ� 1, and therefore ν � 1, we have

G-L : scutoff = ν−1 , E-Z : scutoff =
5

2

(
2 − ν

ν

)2

≈ 10ν−2 . (2.26)

It is clear (see Fig. 2.3) that the range of cluster sizes for which one observes the

power-law, is several orders of magnitude larger for the E-Z model than for the G-L

model. We may also verify that the special equilibrium result mentioned earlier for the

continuous G-L model (see statement in italics) is also a property of the corresponding

discrete model, once the upper limits in the sums are extended to infinity. It also

holds that

G-L model : LF (s) ∼= sνLC(s) , E-Z model : LF (s) ∼= ν

2
LC(s) . (2.27)

We see therefore that for the G-L model we can always find a value of s for which

LF (s) ≈ LC(s) – in particular, it is the scale of the cluster size over which the

exponential cutoff becomes apparent. By contrast, in the E-Z model for ν−1 � 1

(i.e. for the wide range over which there is power-law behavior) we have LF (s) �
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Figure 2.3: Scale of exponential cutoff for the E-Z model (solid curve) and for the
G-L model (dashed curve) described by the same parameter ν. The range of cluster
sizes for which one observes the power-law, is several orders of magnitude larger for
the E-Z model than for the G-L model.

LC(s) ≈ GC(s). If we again compare both models, we find that the LF (s) function is

usually much larger for the G-L model than for the E-Z model. Figure 2.4 illustrates

this finding for a particular set of parameters.

2.2.4 Reservoir model: Fragmentation into fixed size clusters

So far we have looked at the cases in which the total population size N is treated

as one of the parameters defining the model. Specifically, we considered a constant

population such that the constraint N =
∑N

s=1 sns(t) strictly holds at every instant in

time. This highly idealized situation might not be realized in a particular real-world

problem – however we can formulate a “reservoir model” version in which the total
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Figure 2.4: LF (s), loss due to fragmentation for the E-Z model (solid curve) and for
the G-L model (dashed curve) with parameters ν = 0.1 and N = 1000. The overall
scale is determined up to a multiplicative constant (i.e. the scale of time). The graphs
show that LF (s) for the G-L model is usually much larger than LF (s) for the E-Z
model.

population size is no longer a parameter defining the model, but instead becomes

a dynamical variable whose averaged equilibrium value is determined by the model

itself: N ≡ ∑∞
s=1 s〈ns(t)〉. We introduce a constant supply of individuals from a

system reservoir, with γ denoting the rate at which single individuals are added.

The products of the fragmenting cluster are then moved back to the reservoir. An

equivalent interpretation is that a cluster stays in the system but ceases to interact

(i.e. it does not merge with other clusters).

Here we discuss the case which in the remainder of the dynamics resembles the

terms in the E-Z model, with βs being the rate of removing a cluster of size s and
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αss′ being the coalescence rate. This particular reservoir model is therefore described

by three parameters α, β, γ, with only two parameters required for the steady-state

cluster size distribution. The master equations are

−βs ns − α sns

∞∑
s′=1

s′ns′ +
1

2
α

s−1∑
s′=1

s′ ns′ (s− s′)ns−s′ + γδs1 = 0 . (2.28)

By summation of Eq. 2.28, the average number of participants is obtained as

〈N〉 =

√
β2 + 2αγ − β

α
. (2.29)

The cluster size distribution has the same form as for the E-Z model Eq. 2.23, if

expressed in terms of 〈N〉 and α/β. In this case there is no approximation made

in extending the summation limit to infinity, and the solution in Eq. 2.23 is exact

from the mean-field theory point of view. There is no limit on the maximum size

of a cluster, which in principle may exceed 〈N〉 when the effect of fluctuations is

non-negligible.

We note that the E-Z model changes very little if we consider the case where a

cluster fragments into a set of smaller clusters, each of fixed size s0. For the discrete

system, there is naturally a divisibility problem regarding fragmentation of clusters of

sizes which are not a multiple of s0. Since we are interested in steady-state behavior,

we may assume that such clusters do not fragment. Whatever the initial configuration

is after a sufficiently long time, the system in equilibrium will consist almost entirely of

clusters that are a multiple of s0 in size. It turns out that the cluster size distribution

has the same form as the E-Z model in Eq. 2.23, if we re-express it in terms of s0 as

the basic unit, i.e. if we substitute s→ s/s0.
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2.3 Generalization of the E-Z model

We now open up the above discussion to a broader class of coalescence-fragmentation

models. The variety of coalescence-fragmentation-type processes which have been

employed to describe physical, biological and social systems in the literature is enor-

mous [27,28,54,60–63,65–72]. Here we focus on the E-Z model [28] given its potential

relevance to understanding the empirical distributions observed in financial markets

and insurgent behavior [56, 57, 59, 96, 97]. In particular, we will investigate the effect

of variations in the rules, and perturbations, on the cluster size distribution.

2.3.1 Spontaneous cluster formation

Our first generalization mimics the situation in which a small number of clusters

are allowed to spontaneously form from the population, as opposed to arising from

the merger of two smaller clusters. In practice this is most simply viewed as the spon-

taneous formation of clusters from previously single agents/clusters of unit size. (The

exact mechanism is unimportant). Let γs represent the rate of formation of clusters

of size s by the non-hierarchical method. The value of γ1 is implicitly defined by the

requirement that the size N of the population remains constant, i.e.,
∑∞

s=1 sγs = 0,

therefore γ1 < 0. The rate equation is given by

∂ns

∂t
= −βsns

+
1

2
α

s−1∑
r=1

rnr (s− r)ns−r

−αsns

∞∑
r=1

rnr + γs

for s � 2, and

∂n1

∂t
= −αn1

∞∑
r=1

rnr + β

∞∑
r=1

r2 nr + γ1
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for s = 1. In the steady state this may be written as

sns = A

(
1

2
α

s−1∑
r=1

rnr (s− r)ns−r + γs

)
,

where A is defined by

A =
1

β + α
∑∞

r=1 rnr

.

In deriving these results, we have extended the summation of appropriate low-order

terms to infinity by introducing the approximation
∑∞

r=1 rnr ≈ N . The generating

function g[y] is now introduced:

g[y] ≡
∞∑

r=2

rnry
r. (2.30)

Taking the square of this function and using previous equation yields

0 = (g[y])2 − 2

(
1

Aα
− n1y

)
g[y]

+n2
1y

2 +
2

α
χ[y], (2.31)

where χ[y] ≡∑∞
r=2 γry

r. Using the fact that g[1] =
∑∞

r=1 rnr − n1, gives

n1 =
1 − A2 (β2 + 2αχ[1])

2Aα
. (2.32)

Solving Eq. (2.31) for general y and expanding the resulting radical using Taylor’s

theorem yields

g[y] = Aχ[y] +
1

Aα

∞∑
k=2

(
(2k − 3)!!

(2k)!!

× [2Aα (n1y + Aχ[y])]k
)
. (2.33)

We will assume that the gamma term is small enough to be treated as a perturbation,

i.e. Aχ[y]
n1y

� 1 and hence a first-order binomial expansion of the exponential term in
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Eq. (2.33) may be performed. In this case

g[y] ≈ Aχ[y]

+
1

Aα

∞∑
k=2

(
(2k − 3)!!

(2k)!!

×
{

[2Aαn1y]
k

+k
A

n1

[2Aαn1]
k

∞∑
r=2

γry
r+k−1

})
.

Comparing terms with Eq. (2.30) yields

n2 =
1

2
Aγ2 +

1

4
Aα(n1)

2

for s = 2. For large s, Stirling’s approximation yields

ns ≈
(

e2

2
√
πAα

){
1 − A2

[
β2 + 2αχ

]}s
s−5/2

+A

[
γs +

e2

2
√
πn1

s−1∑
r=2

({
1 − A2

[
β2 + 2αχ

]}r
r−1/2γs−r+1

) ]
s−1, (2.34)

where X ≡ χ[1]. Since A is constant for a given population, the general form of the

above equation is

ns ∝ κss−5/2 + Z[s]s−1, (2.35)

where κ ≡ 1−A2(β2 +2αX) and Z[s] is a function whose form depends on the details

of the perturbation induced by the γs terms.

2.3.2 Step perturbation

We now analyze a highly simplified example from the class of perturbations which

die off as s increases. In particular, we consider a step function perturbation:

γs =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ

q−1
, for 2 � s � q;

0, for s > q;
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where q is an arbitrarily chosen cluster size and Φ > 0. Using the original E-Z

parametrization of Eq. 2.13 and Eq. 2.34, we obtain the cluster size distribution as

n1 ≈ N
1 − Φ

2 − ν
,

n2 ≈ 1

2(2 − ν)

[
Φ

q − 1
+

1 − ν

(2 − ν)2
(1 − Φ)2

]
,

ns ≈ N
(2 − ν)e2

4
√
π(1 − ν)

[
4(1 − ν)

(2 − ν)2
(1 − Φ)

]s

s−5/2

+N
1

2 − ν

Φ

q − 1
s−1

+
e2

2
√
π

Φ

(1 − Φ)

1

q − 1

×
{

s−1∑
r=2

[
4(1 − ν)

(2 − ν)2
(1 − Φ)

]r

r−1/2

}
s−1,

for 3 � s � q, and

ns ≈ N
(2 − ν)e2

4
√
π(1 − ν)

[
4(1 − ν)

(2 − ν)2
(1 − Φ)

]s

s−5/2

+
e2

2
√
π

Φ

(1 − Φ)

1

q − 1

×
{

q∑
r=2

[
4(1 − ν)

(2 − ν)2
(1 − Φ)

]r

r−1/2

}
s−1

for s � q + 1. Examples of the resulting ns distribution are plotted in Fig. 2.5.

Interestingly the greatest effect of the perturbation is found at high s, whereas

the perturbation’s definition means that it only directly affects the clustering at low

s. This is because the perturbation creates small clusters by non-hierarchical means,

which then serve as effective nucleation sites for the formation of larger clusters. The

perturbation therefore greatly accelerates the formation of large clusters whereas, by

contrast, the small clusters fragment sufficiently fast that their presence is hidden on

the graph at low s. Figure 2.6 shows the predicted distribution of ns for different
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Figure 2.5: Predicted distribution of cluster sizes for the perturbed system described
in Section 2.3.2, using N = 1000, ν = 0.1 and Φ = 0.01. The dot-dashed line shows
the unperturbed population, while the dashed line shows q = 10, the dotted line
shows q = 100, and the solid line shows q = 1000.
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signs of the perturbation (±Φ), together with the unperturbed result. Note that in

the case of a negative sign, it is necessary that

Φ <
ν2

4 (1 − ν)
(2.36)

in order that ns remain finite as s → ∞. The analytic predictions for the perturbed

populations are quantitatively reliable for a wide range of s values. With primed

quantities referring to the −Φ case, and usingN = 10000, Φ = 0.001, ν = 0.1 and

q = 500, we find that the effect of the perturbation is as follows:

n1

n′
1

= 0.998,

n500

n′
500

= 0.39,

n1000

n′
1000

= 0.14.

As claimed earlier, this small, low-s perturbation can be seen to have a very significant

effect across a wide range of s, in particular at high s. We note that the interpretation

of the perturbation is that statistically a cluster of size 500 or less spontaneously

forms/fragments for +/−Φ cases respectively once in every 1000 timesteps, where a

single timestep corresponds to any particular fragmentation or coalescence event in

the system.

2.3.3 Variable population size

Only a small subset of real-world problems correspond to populations with a

fixed size N , or with a fixed time-averaged size N . In this section, we develop an

analytic treatment of a model which is analogous to the E-Z model, but which treats

the case of a population whose size varies with time according to a simple law. As

mentioned earlier, several real-world systems seem to have power-law behavior with
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Figure 2.6: Predicted cluster size distribution for the +Φ case (dotted) and the −Φ
case B (dashed) compared with the unperturbed model (solid). Parameter values:
N = 10000; Φ = 0.001; ν = 0.1; q = 500.

exponent around 2.5. which is the same behavior as the unperturbed E-Z model –

for example, the distributions of size of trades in markets, and the size of attacks in

conflict and terrorism [55–57,59,97,98]. Such real-world observations could therefore

conceivably be attributed to the E-Z model – however this identification would be

far more believable if the E-Z model’s assumption of constant N did not have to be

made. It is known that as the years pass in an active war, an insurgent population will

generally increase in size as previously passive people become recruited. Likewise as a

market grows, previously inactive individuals tend to join the trading. Hence a model

with increasing N (or decreasing N for mature wars or markets that are dying off) is

of interest. Real-world examples of declining populations are also known [100], [101].

We now look at a version which can be treated analytically under the assumption

that the coalescence processes are negligible. Although this makes it arguably more

restricted than our previous versions, the advantage is that the equation retains linear
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temporal dynamics and admits a novel solution. Including all coalescence terms would

make it non-linear, and intractable.

Our model considers a population containing N [t] agents instantaneously divided

into M [t] clusters, as in the E-Z model. First we focus on the number of agents

increasing in time, and introduce the following E-Z-like rules:

1. In a single timestep, with probability p[t], L[t] new agents are added to a single

cluster of size s, the cluster being selected with probability proportional to s.

2. Alternatively, with probability q[t] = 1 − p[t], a randomly selected cluster frag-

ments (selection of this cluster is independent of cluster size).

If the change in the number of agents is negative, then the model runs as follows:

1. In a single timestep, with probability p[t], L[t] agents are removed from a single

cluster of size s, the cluster being selected with probability proportional to s.

If the selected cluster has s < |L[t]| then nothing occurs.

2. Alternatively, with probability q[t] ≡ 1 − p[t], a randomly selected cluster frag-

ments, with selection of this cluster independent of cluster size.

The rationale for adding or subtracting from a single cluster is that in many situations

of interest, only a single cluster will likely be involved in an external event which

changes the population size. As with all these generalizations, more realistic rules can

of course be explored – but one runs the risk of obtaining increasingly complicated

results.
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Increasing population size: L[t] > 0

The model proposed above leads to the rate equations

∂ns

∂t
=

p[t]

N [t]

(
(s− L[t])ns−L[t] − sns

) − q[t]

M [t]
ns

for s > L[t],

∂ns

∂t
= − p[t]

N [t]
sns − q[t]

M [t]
ns for 2 � s � L[t],

∂n1

∂t
= − p[t]

N [t]
n1 +

q[t]

M [t]

∑∞
r=2 rnr for s = 1,

with resulting totals

dN

dt
= p[t]L[t], (2.37)

dM

dt
= q[t]

(
N [t]

M [t]
− 1

)
. (2.38)

The solution of the above equations clearly depends on the forms of L[t] and p[t]. As

a simple example, we take both to be constant: L[t] ≡ L and p[t] ≡ p for all t. In this

case, it can be seen that for times t� N [t=0]
pL

, Eq. (2.37) yields the linear solution

N [t] = pLt.

If we assume a similar asymptotically linear form for M [t] at large t, M [t] = σt, we

can go on to deduce from Eq. (2.38) that

σ =
q

2

(√
4
p

q
L+ 1 − 1

)
.

We now assume a linear form for all ns: ns[t] = cst. In this case, one obtains the

solution

c1 =
q

σ

L

L+ 1

∞∑
k=1

(1 + kL)c1+kL =
q

σ

L

L+ 1
(pL− c1) .

Therefore

c1 =
pq

σ

L2

L(1 + q/σ) + 1
,

c1+kL =
pq

σ

L2

L(1 + q/σ) + 1

ρ!(L)(1 + (k − 1)L)!(L)

(ρ+ kL)!(L)
, (2.39)
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for k = 1, 2, 3,. . . , where

ρ ≡
( q
σ

+ 1
)
L+ 1,

and we have used the multifactorial function, defined recursively by

m!(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 0 � m < n;

m(m− n)!(n), if m � n.

Clearly cs = 0 for s �= 1 + kL. Via a generalization of Stirling’s approximation,

ln(n!(b)) ∼ 1

b
(n lnn− n).

Applying this to Eq. (2.39), we obtain our solution:

c1+kL ≈ pq

σ

L2

L(1 + q/σ) + 1

e(L−1)/Lρρ/L(1 + (k − 1)L)k−1+1/L

(ρ+ kL)k+ρ/L
(2.40)

for integer k � 1. If we take a snapshot of this system at any given time, the observed

cluster size distribution will be given by Eq. 2.40, modulo a multiplicative constant

which grows linearly with time. The leading k-dependent behavior of Eq. (2.39) is

(kL+ (1 − L))1−L

(kL+ ρ)ρ (kL)−(ρ+L−1) . (2.41)

Decreasing population size: L[t] < 0

For simplicity in the following analysis, we do not allow complete annihilation

of clusters (i.e. we do not allow the removal of all of a cluster’s members from the

population). The rate equations for L[t] < 0 are as follows:

∂ns

∂t
=

p[t]

N [t]

(
(s+ |L[t]|)ns+|L[t]| − sns

)− q[t]

M [t]
ns

for s > |L[t]|,
∂ns

∂t
=

p[t]

N [t]
(s+ |L[t]|)ns+|L[t]| − q[t]

M [t]
ns

for 2 � s � |L[t]|,
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and

∂n1

∂t
=

p[t]

N [t]
(1 + |L[t]|)n1+|L[t]| +

q[t]

M [t]

∞∑
r=2

rnr

for s = 1, with resulting totals

dN

dt
= −p[t]|L[t]|

N [t]

∞∑
r=1+|L|

rnr, (2.42)

dM

dt
= q[t]

(
N [t]

M [t]
− 1

)
. (2.43)

As above, we can obtain a solution by assuming that p and L are both constant, and

then introduce a linear trial solution of the form

N [t] = N0 − γt,

M [t] = M0 + σt,

ns[t] = Cs − cst.

This approximation can only hold as long as the changes in each ns are small compared

to the size of the respective Cs. In this case (i.e., for t not too large) we obtain

σ ≈ q

(
N0

M0

− 1

)
,

γ ≈ p|L|
N0

∞∑
r=1+|L|

rCr,

and for the cs we obtain:

c1 ≈ − p

N0

(1 + |L|)C1+|L| − q

M0

(N0 − C1)

for s = 1,

cs ≈ q

M0

Cs − p

N0

(s+ |L|)Cs+|L| for 2 � s � |L|,

cs ≈
(

q

M0

+
p

N0

s

)
Cs − p

N0

(s+ |L|)Cs+|L|

for s > |L|.

With a suitable choice of initial conditions and a large population, one can therefore

infer the small-t behavior of the system.
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Decreasing population: proof of concept

As a simple example, we take L < 0 and a starting population of the form

ns[t = 0] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1 − φs, if s < C1

φ
;

0, if s � C1

φ
.

In this case our equations from Section 2.3.3 yield

N0 =
1

6
C1

[(
C1

φ

)2

− 1

]
,

M0 =
1

2
C1

(
C1

φ
− 1

)
,

γ ≈ p |L|

⎧⎪⎪⎨⎪⎪⎩1 − |L| (1 + |L|) (3C1 − φ− 2|L|φ)

C1

[(
C1

φ

)2

− 1

]
⎫⎪⎪⎬⎪⎪⎭ ,

σ ≈ (1 − p)

3

(
C1

φ
− 2

)
.

This leads to an expression for n1 of the form

n1[t] ≈ C1 +

[
p

N0

(1 + |L|) (C1 − φ (1 + |L|))

+
q

M0

(N0 − C1)

]
t,

with corresponding ns of the form

ns[t] ≈ C1 − φs−
[(

q

M0

C1 − |L|p
N0

C|L|

)
−
(
p

N0

C2|L| +
q

M0

φ

)
s+

p

N0

φs2

]
t

for 2 � s � |L|, and

ns[t] ≈ C1 − φs−
[(

q

M0

C1 − |L|p
N0

C|L|

)
+

(
2 |L| p
N0

− q

M0

)
φs

]
t

for s > |L|. Figure 2.7 shows a plot of this model using illustrative parameter values.
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Figure 2.7: Predictions of the model of Section 2.3.3, using parameter values C1 =
1000, φ = 14, p = 0.3 and L = −30. This yields population size parameters of
N0 = 850173 and M0 = 35214. Line styles reflect different values of the parameter
t: dot-dashed (t = 0), dotted (t = 5000), dashed (t = 10000) and solid (t = 15000).
Beyond t = 15000 it can be seen that the approximations made in the derivation of
Section 2.3.3 become inaccurate.
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2.3.4 Heterogeneity of members

In many real-world systems – in particular, biological or social systems – the popu-

lation is heterogeneous. In addition to the basic question of whether approximating a

heterogeneous system by a homogeneous model is justifiable, there is the deeper issue

of how to formally introduce heterogeneity into coalescence-fragmentation systems.

As we have seen in this chapter, small changes in coalescence-fragmentation rules can

sometimes yield dramatic changes in the cluster size distribution, and vice versa. In

other words, the “devil may be in the detail” in terms of the emergent phenomena

that can be expected from a given set of microscopic rules. Our limited goal here is to

explore some encouraging developments in this area, highlighting the circumstances

in which the heterogeneity of the population allows an accurate description in terms

of an effective homogenous model.

Reference [70] introduces a “character” to each object by means of anm-dimensional

normalized vector which is formed from m-bit binary strings. The scalar product of

any two such characters then becomes the argument of a function which controls

the coalescence and fragmentation processes. The general case requires numerical

simulation. Interestingly, however, this model produces a power-law over part of its

range with a 2.5 slope which is identical to the homogenous E-Z model. Instead of

the power-law exponent, it is the form of the exponential cut-off which turns out to

depend on the heterogeneity of the population. We recently explored another type of

heterogeneous E-Z-like model, showing that it can bridge the gap between the power-

law slope of magnitude 2.5 for clusters in the E-Z model (and hence 1.5 for price

returns) and the empirical value of financial market price returns which is typically

closer to 4 [107]. A simple version of the vector model is provided via a fascinating

recent variation proposed by Hui [104] in which the heterogeneity is represented by
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a character parameter ρk ∈ [0, 1] which is assigned to each object in the entire popu-

lation, where objects are numbered by k = 1 . . . N . The probability that an agent i

and another agent j form a link (and therefore for the inequivalent clusters to which

these members belong to merge) depends on the value |ρi − ρj|. In principle it may

be a general symmetric function p(ρi − ρj). The fragmentation of a cluster may also

depend on the characters of the members that form the particular cluster. One way

of introducing this is by a mechanism in which fragmentation of the whole cluster

is triggered by breaking any single link that belongs to it [104]. Since a weaker link

is easier to break, it is assumed that the probability that the link breaks is propor-

tional to p(ρi − ρj) which may be interpreted as a measure of the strength of the

link formed between members i and j. If p(ρi − ρj) is a function which is sharply

peaked at 0, we will have a situation where the newly formed clusters consist only

of members of very similar character, and the whole system may be considered as a

mixture of several homogeneous population subsystems which do not interact which

each other. Each of these subsystems is described by the cluster size distribution

of the form in Eq. 2.23 with constants determined by the distribution of characters

across the population. The cluster size distribution for the whole system (regardless

of the character) is then a sum of the distributions for the subsystems – therefore

we still observe a scale-free behavior with variation in the form of the cut-off (i.e.

diversity in the heterogeneity of the population induces diversity in the constants de-

scribing the subsystems, and hence lengthens the tail of the cluster size distribution).

In the opposite limiting case, the function p(ρi − ρj) does not vary sharply over its

argument, e.g. p(ρi − ρj) ∝ 1− |ρi − ρj|, thereby yielding homogeneous mixing. The

the distribution of characters across different clusters is uniform and the system can

therefore be described as an effectively homogeneous one by Eqs. 2.12 and 2.23. The
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presence of the heterogeneity changes only the value of α/β in Eq. 2.12.

2.4 Conclusions and Implications

We have examined various coalescence-fragmentation systems, with the goal of

elucidating how subtle changes in their underlying rules can affect the resulting dis-

tribution of cluster sizes. In the process, we have managed to connect the rules of

coalescence and fragmentation with terms in the corresponding rate equations, and

have identified the specific ways in which they affect the resulting distribution of clus-

ter sizes. The connections are not always direct, but we have offered various insights

which help establish a more direct link. In each case studied, the system senses the

fragmentation function in two ways: the appearance of new clusters coming from the

fragments of the fragmented cluster (represented by GF (s)), and the disappearance

of clusters that fragment (represented by LF (s)).

As a result of our analysis, we can better understand what factors dictate when a

power-law is likely to emerge, and what tends to control its exponent. We conclude

that: (1) it is the substantial contribution of LF (s) in the equilibrium condition

(Eq. 2.1) which may prevent the size distribution from showing a power-law behavior.

(2) The presence or absence of GF (s) (i.e. the appearance of fragmentation products

of new clusters) influences strongly the value of the power-law exponent itself, in

cases where the power-law emerges. In the case where the parameter controlling the

fragmentation is small but finite, it is hard to identify a common limiting case for

the various systems studied – however, the form of the fragmentation function does

influence the cluster size distribution regardless of the value of this parameter. Note

that if the fragmentation rate tends to zero, the system cannot be clearly described
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using mean-field theory, since it performs quasi-oscillatory behavior associated with

the build-up of one supercluster containing essentially the whole population, and this

supercluster’s eventual break-up. Whatever the mode of fragmentation, the exponent

of the power-law may be controlled by altering the power of the cluster size s which

is involved in the fragmentation and coalescence function. Specifying it realistically

requires some detailed understanding of the system at the microscopic level. The

most common mechanism of coalescence is created by building random links between

the population members, yielding a coalescence function of the form ∼ ss′.

If we adopt a point of view in which the system is considered as an evolving net-

work, the clusters represent disconnected components. Depending on the particular

rules, the fragmentation process now corresponds to breaking links. If the discon-

nected component in a network breaks predominantly into single members, it might

be still interpreted in terms of the fragmentation being triggered by a single mem-

ber, provided we allow some kind of link-breaking virus to spread rapidly throughout

the entire disconnected component. Somewhat counter-intuitively, we have also seen

that the behavior of the heterogeneous system does not substantially differ from the

behavior of the homogeneous one. This results from two effects: the homogeneous

mixing effect, and the coexistence of several non-interacting populations whose dis-

tinct “characters” lie hidden in the cluster size distribution.

Although we have mentioned various possible applications, we finish by noting a

new one. Many of the neurodegenerative disorders associated with aging, for example

Alzheimer’s disease, are thought to be associated with the large-scale self-assembly

of nanoscale protein aggregates in the brain [72]. Protein-aggregation has of course

attracted much attention over the years in both the chemistry and physics literature –

however, the problem of protein aggregates in neurodegenerative diseases is known to
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be much harder than traditional polymer problems, because of the complexity of the

individual proteins themselves [72]. Given the wide range of possible heterogeneities

in vivo within a cell, there is typically insufficient knowledge to specify either (i)

a specific diffusion model and its geometry and boundary conditions, as a result of

geometrical restrictions and crowding effects [105], or (ii) a specific reaction model for

the binding rates, given the wide variety of conformational states in which molecules

may meet. It therefore makes sense to assign some probabilities to the aggregation

process – and in particular, coalescence and fragmentation probabilities to describe

the joining of an n-mer with an n′-mer to give an n′′-mer, where {n, n′, n′′} ≡ 1, 2, 3, ...,

and its possible breakup. The precise details of the coalescence and fragmentation

rules now takes on a critical importance, since subtle changes in these rules can alter

the resulting size distribution of the n-mer population. The practical question of

how fatal a given realization of the disease will be in a particular patient, becomes

intertwined with the question of whether the distribution of cluster sizes is a regular

one in terms of its fluctuations – e.g. a Gaussian or Poisson distribution which both

have a finite variance – or it is a power-law which may then have a formally infinite

variance. Although in practice a cut-off always exists, a power-law with an exponent

α < 2 has (in principle) an infinite mean and infinite standard deviation; a power-law

with 2 < α < 3 has (in principle) a finite mean but an infinite standard deviation;

and a power-law with α > 3 has a finite mean and finite standard deviation. The

implication is that a coalescence-fragmentation process producing a power-law with

α < 3 as in E-Z-type models where α ∼ 2.5, has a significant probability of forming

very large n-mers because of its (in principle) infinite standard deviation. Suppose for

the moment that an n-mer of size n ≥ n0 can produce a neurodegenerative disorder,

then the fraction of such dangerous n-mers in a soup of self-assembling polymer
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aggregates, will be non-negligible if α < 3. In the highly crowded, heterogeneous n-

mer population expected in the human body, the resulting value of any approximate

power-law slope α could therefore be a crucial parameter to estimate. The possibility

of engineering this α value such that large aggregates are unlikely, through subtle

changes in the coalescence and fragmentation processes, then takes on a very real

possibility. It also adds direct medical relevance which justifies further work on this

topic in the future.



CHAPTER 3

Anomalous Slow Attrition Times in
Interacting Dynamical Populations

3.1 Motivation

It is now more than fifty years since Richardson first uncovered empirical similar-

ities in the total number of casualties for different wars [112]. Building on this, we

presented some preliminary empirical analysis several years ago [113] which suggested

a common power-law pattern in the frequency distribution of casualties within two

individual wars, Iraq and Colombia. Specifically, our preliminary findings suggested

that the probability that a violent intra-war event (i.e. a violent incident occurring

within a war between the two opposing populations) produced x casualties, is well

approximated by the power-law form p(x) = Cx−α with C a positive constant and

α ∼ 2.5. Intriguingly, this same approximate value α ∼ 2.5 was also identified by

Clauset et al. for the dataset of global terrorist events [114]. Power-law behavior is

known to be widespread across many physical and social systems [115,116], however

it was a surprise to find it describing individual events within a single war.

Here we explain how coalescence-fragmentation models from statistical physics can

be adapted to understand this observation, and hence to develop promising quantita-

tive descriptions of insurgent warfare. In the rest of Section 3.1, we present a simple

50
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model and discuss its attractiveness as a first-order approximation to a modern insur-

gency [28,55]. Section 2 and beyond examines multiple population variants including

different rules-of-engagement, with a focus on the war’s duration. Comparisons to em-

pirical data for duration of wars and casualties are encouraging, suggesting that this

novel application of statistical physics to human conflict could have a very productive

future.

3.1.1 Simple one-population model of insurgent dynamics

We refer to our basic one-population insurgent model as the “EZ” model [28,

55, 113]. Consider an insurgent force comprising many “agents”, which are each

casualty causing units. In the simplest case each agent is just a single fighter, but the

definition also covers equipment such as explosives, or even information. We make the

reasonable assumptions that (i) the insurgency does not have any external controller,

(ii) groups of agents may spontaneously form and/or break up over time. These

groups are neither fixed in size nor in number, and we will use the terms “group”

and “cluster” interchangeably. A given group can merge with other groups to form

larger groups, or it may fragment into single agents. We define the “attack strength”

of a given group to be the average number of people who are killed or injured as

a result of an attack involving that group. Each agent is taken to have an attack

strength of 1, so that a cluster of size s has an attack strength of s. The number of

clusters with a given attack strength is denoted by ns, and the total attack strength

of the population (which is equal to the total number of agents in it) is taken to

be a constant, N =
∑
sns. At each timestep in the model, a cluster (including

those containing single agents) is selected with probability proportional to its size

s. Equivalently, we could choose an agent at random from the population and then
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select the cluster to which it belongs. The probability of any cluster of size s being

selected is therefore P (s) = sns

N
. With a probability ν the group selected fragments

into single agents. Otherwise, with a probability (1 − ν), a second group is selected

with probability proportional to its size and the two clusters coalesce into a single

group with size equal to the sum of the two constituent group sizes. The process then

repeats at every subsequent timestep. For small fragmentation probability ν � 1,

this ongoing fragmentation and coalescence process results in a steady-state cluster

size distribution [28,118] featuring a power law with exponential cut-off:

ns ≈ N

(
4(1 − ν)

(2 − ν)2

)s

s−5/2 . (3.1)

For small ν, the dominant s dependence is the power law with slope 5/2 = 2.5 in

agreement with the preliminary empirical observation in Ref. [113] for the wars in Iraq

and Colombia, and the empirical observation of Clauset et al. for global terrorism

events [114].

3.2 Two-population conflict model

We now add a second population comprising type B agents, with similar internal

cluster dynamics. The second population comprises ps clusters of size s and a total

size
∑
sps = P . A cluster is picked from this total population, N+P , with probability

proportional to its size. In what follows, we will interchangeably refer to population

A as having total size NA or N , and population B as having total size NB or P

respectively – the specific choice will be clear from the context. The cluster then

fragments with a fragmentation probability dependent on its population type, νA or

νB. If the cluster does not fragment then a second cluster is selected from the total

population, with probability proportional to its size. If the two clusters are of the
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Figure 3.1: Flowchart of a two-population EZ model (TPEZ).

same type (A or B) they coalesce; if they are of different types then they interact.

We start by employing very simple rules-of-enagagement for interactions, in order to

illustrate the basic results. In an interaction, we assume that the smaller cluster is

destroyed and the larger cluster is reduced in size by an amount equal to the smaller

cluster’s size. If they are both of the same size (but opposite type) then both clusters

are destroyed. In this way, both populations lose the same amount of agents in any

given interaction. These lost agents are then removed from the model. A flowchart

of this model (referred to as TPEZ) is contained in Fig. 3.1. The initial A and B

populations at timestep t = 0 are N0 and P0 respectively.

3.2.1 Numeric simulation results

A typical result from a numerical simulation is shown in Fig. 3.2. It shows the

average cluster distribution (i.e. number of clusters of size s versus s) for both pop-
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Figure 3.2: Cluster distribution for populations A and B at different timesteps in the
TPEZ model. The A distribution has been rescaled by a factor of 5 for clarity. Initial
conditions were N0 = 6000, P0 = 4000, νA = νB = 0.01, and all agents were initially
single. The distribution is an average over 104 simulations.

ulations at various timesteps. The A distribution has been rescaled (displaced up

the y-axis) to separate it from B for clarity. The larger A population develops into a

power-law distribution, and this dependence remains as agents are destroyed. Both

distributions continue to move towards the origin at higher timesteps, until no type B

agents remain. From this point onward, the total A population stays constant as does

its distribution. As both populations have their sizes reduced by the same amount

in any interaction, the final A population is equal to the difference between the two

initial populations. The power law exponent for both distributions is approximately

2.5, which is the same value as for the single population EZ model’s steady-state

distribution. The A population also exhibits the finite size effects observed in the

EZ model; the power law becomes distorted as the cluster sizes reach the limit im-

posed by the total population size. This behavior is typical within the model, and is

independent of the initial population sizes and fragmentation probabilities (νA, νB).
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However, the the amount of time taken for the smaller population to be destroyed by

the larger population (i.e. the war’s duration) does depend on all of these variables.

It is this duration that now becomes the focus of our discussion.

3.2.2 Analytic derivation of a war’s duration

The time taken for one population to be destroyed (i.e. the time to extinction, or

duration of the war) can be derived as follows. The probability QAB that any cluster

of population A is selected and interacts with one of population B is the sum of the

probabilities for an A cluster of size s to interact with any B cluster, qAB(s). The first

factor in qAB(s) is the probability for a cluster of type A and size s to be selected,

the second the probability for this cluster not to fragment, and the third factor is the

probability for any cluster of type B to then be selected:

QAB =
∑

s

qAB(s) =
∑

s

sns

N + P
(1 − νA)

∑
r rpr

N + P
=

NP

(N + P )2
(1 − νA) (3.2)

using the fact that
∑
sns = N ,

∑
rpr = P . The probability QBA of selecting a B

cluster and it interacting with an A is given by a similar expression, with νA replaced

with νB. After an interaction, each population A and B is reduced by an amount

equal to the size of the interaction (which is the size of the smallest cluster in the

interaction). Introducing an average interaction size c, and starting from timestep

t = 0, the populations then become N = N0 − c, P = P0 − c. After i interactions

the populations will be N = N0 − ic , P = P0 − ic. Therefore the probability for an

interaction between A and B after i previous interactions is

Q(i) = QAB +QBA =
(N0 − ic)(P0 − ic)

(N0 + P0 − 2ic)2
(2 − νA − νB) (3.3)

To reduce N0 (and P0) by c will take 1/Q timesteps on average. The total time to

reduce one population to 0 is the sum of the timesteps required for each destructive
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interaction, until there are no agents left in the population. Taking P0 to be the

smaller population, it will require P0/c interactions to destroy it, so the final inter-

action will happen after P0/c − 1 previous interactions. Hence the war’s duration is

given by

T =

P0
c
−1∑

i=0

1

Q(i)
=

P0
c
−1∑

i=0

(N0 + P0 − 2ic)2

(N0 − ic)(P0 − ic)(2 − νA − νB)

=
1

(2 − νA − νB)

⎛⎝4
P0

c
+

P0
c
−1∑

i=0

(
N0 − P0

P0 − ic
+
P0 −N0

N0 − ic

)⎞⎠
=

N0 − P0

c(2 − νA − νB)

⎛⎜⎝ 4P0

N0 − P0

+

P0
c∑

i=1

1

i
−

N0
c∑

N0−P0
c

+1

1

i

⎞⎟⎠ .

Using the standard result [119] that the harmonic series can be expressed as∑n
1

1
i

= γ+ψ0(n+1),where γ is the Euler-Mascheroni constant and ψ0 the digamma

function, and the fact
∑n

a+1 =
∑n

1 −
∑a

1 allows us to express the duration T in this

TPEZ model as

T =
N0 − P0

c(2 − νA − νB)[
4P0

N0 − P0

+

(
γ + ψ0(

P0

c
+ 1) − (ψ0(

N0

c
+ 1) − ψ0(

N0 − P0

c
+ 1))

)]
.(3.4)

This gives the war’s duration in terms of the initial larger (N0) and smaller (P0)

populations, their fragmentation probabilities (νA and νB) and the average size of

a destructive interaction, c. Note that the interaction does not happen for each

timestep, so c is not simply the average cluster/group size – however the variation

from 1 is found from numerical simulations to be small and approximately linear, i.e.

c ≈ 1 + 0.2(P0/N0)(1 − νB)(1 − νA).



57

 0  100  200  300  400  500  600  700  800  900 1000

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 1000

 2000

 3000

 4000

 5000

 6000

 7000
Time to extinction, T

Lines: Analtic prediction
Surface: Numerical simulation

Initial A population, N
Fragmentation 
 probability, �A

Time to extinction, T

0  100  200  300  400  500  600  700  800  900 1000

 0 100
 200 300 400 500

 600 700 800
 900 1000 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
Time to extinction, T

Lines: Analytic prediction
Surface: Numerical simulation

Initial A population, NInitial B population, P

Time to extinction, T

Figure 3.3: Time to extinction (T ) in the TPEZ model as a function of initial pop-
ulations (N , P ) and fragmentation probability (νA), from numerical simulations and
the analytic theory. Each data point is an average of 103 simulations.

3.2.3 Numeric simulation of a war’s duration

Figure 3.3 shows the results from numerical simulations of the TPEZ model, to-

gether with the predicted analytic result from from Eq. 3.4. The agreement is good in

all cases. T increases with fragmentation probability since interactions between the

populations only occur when a cluster is selected and doesn’t fragment, and interac-

tions are required to destroy agents. T also increases with total population N0 + P0

since more agents require more time to be destroyed. The dependence of T on the

ratio of N0 to P0 is in stark contrast to the expected behavior from mass-action the-

ory [120], which would have instead suggested that a strong opponent would destroy

a weaker one more quickly than if the two sides were of comparable strength. The

numerical simulations and the analytic theory show that the opposite is actually true:

The larger the relative imbalance in strengths, the longer the fight lasts. A popula-

tion of 100 and 900 agents takes considerably longer to decay to extinction than two

equal populations of 500. This surprising result can be understood by looking at the

average number of “events” that occur in a given model war as a function of initial

A population (keeping total population constant, so B population P0 = 1000 −N0),
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Figure 3.4: Average number of events as a function of relative initial populations
within the TPEZ model, with N0 + P0 = 1000, νA = νB = 0.1.

see Fig. 3.4. The events are:

FRAG – Type A cluster selected and fragments

COAL – Type A cluster selected and coalesces

KILS – Opposite type clusters selected, A bigger

KILD – Opposite type clusters selected, B bigger

DRAW – Opposite type clusters selected, same size

and END, which is not an event but the final A population.

The number of type A coalescences and fragmentations (inter-population activity)

increases rapidly as A become the majority population. (Note the logarithmic scale).

At the same time the number of destructive interactions (KILD, KILS, DRAW) be-

tween the populations decreases. As the probability for any cluster being selected is

proportional to its size, the probability for any population being selected is propor-

tional to its total size. For unequal populations there is a greatly increased probabil-
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Figure 3.5: Frequency count of the time intervals between reactions. Left panel is
a log-linear plot for N0 : P0 = 5 : 5, while the right panel is a log-log plot for
N0 : P0 = 7 : 3.

ity for the larger population to self-interact (i.e. the same population being selected

twice) as compared to equal populations where the probability for self and opposite

interaction is the same. The larger population effectively gets in the way of its own

search for the smaller population. As destructive events only occur with opposite

interactions, this results in an increase in the time between agents being destroyed in

asymmetric populations. This is not offset by the decrease in time due to fewer agents

to destroy, leading to a net increase in the time required for extinction. Numerical

simulation shows that the distribution of time intervals between interactions of A and

B clusters shifts from exponential to power law, as the portion of N0 : P0 changes

(see Fig. 3.5). While the result is unexpected, remarkably it reflects the empirical

observation in Fig. 3.6 that asymmetric wars take longer to resolve than those in

which the sides are of comparable strength [121].

3.2.4 Comparison of model and real war durations

In Fig. 3.6, the upper thick curve shows the theoretical T while the lower two

curves show the mass-action predictions. The mass-action equations that we em-
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Figure 3.6: Adapted from Ref. [120]. Duration T of human conflicts as a function of
asymmetry x between the two opposing military populations. x = |N0−P0|/(N0+P0).
Data are up to the end of 2008; hence, final data points for the three ongoing wars
will lie above the positions shown, as indicated by arrows. The lower two lines are
the mass-action results. The upper thick curve [i.e., Eq. 3.4] is generated using
νA = νB = 0.7 and N0 + P0 = 1000 fixed. Changing νA and νB changes the height of
the theoretical peak but leaves qualitative features unchanged.

ploy are those traditionally used for wars of attrition [122–128]: (1) dN(t)/dt =

−aN(t)P (t), and dP (t)/dt = −aN(t)P (t) called Lanchester’s undirected mass-action

model, and (2) dN(t)/dt = −bP (t), and dP (t)/dt = −bN(t), called Lanchester’s di-

rected mass-action model, where a and b are constants. We take World War II as the

dividing point between “old” wars and “new” wars. “Old” wars are well described

by the mass-action models, while “new” wars are closer to our model prediction,

implying an absence of grouping dynamics in “old wars” [129,130].
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3.2.5 Model variants
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Figure 3.7: Duration T of model war. For (a) and (b), groups fragment into two
randomly-sized groups. In (a), group is picked proportional to its size, while in (b)
picking is independent of the group size. For (c) and (d), the rules follow the basic
model, except that picking for (c) is independent of group size, while in (d) the
destroyed agents are replaced by inactive members so that the total population in the
system remains a constant.

We start with two explicit variations in the rules, before looking at more general

model variants: (1) a group fragments into two random-sized groups [54]; (2) the

group is picked independent of its size. Figure 3.7 shows the dependences. With

the exception of Fig. 3.7(d), all variants (a), (b) and (c) retain the main features

of the basic model, no matter how the group fragments or is picked. However, if
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we replenish the destroyed population by inactive members in order to keep the

population constant, the curve reverts to the classic mass-action shape, i.e. maximum

at symmetric point x = 0, as the lower two curves in Fig. 3.6. For the basic model

as well as no-replenishment models, two opposing populations actively seek to fight

with each other – by contrast, adding an inactive population to keep a constant total

population, mimics the situation where the size of the space in which they are fighting

is fixed. In short, this inactive sub-population now acts like a solvent that separates

or delays the clashes and hence the conflict.
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Figure 3.8: Effect of different allocations of 100 peacekeepers in the TPEZ model.

Peacekeeper variant

One topically pertinent model variant can be generated by adding a third species

(population C). Like a peacekeeping force, C can block interactions. For simplicity,

we assume the NC members of C are permanently arranged into nC groups, each



63

with sC permanent members. A group is selected as in the original model. If it is of

type A or B, then it can fragment as usual with a probability νA or νB. If it doesn’t

fragment, then a second cluster is selected. If this cluster is A or B then coalescence/

fighting proceeds as before. If this second cluster is C, then a third cluster is selected.

If this cluster is of the same type as the first, then they coalesce. If it is the opposite

(A or B) type, then the C cluster is compared to the size of the selected A and B

clusters. If it is greater than or equal in size, then there is no clash – otherwise, the

A and B clusters fight as before. Figure 3.8 shows that if C comprises only a few

large groups, then T decreases irrespective of the asymmetry. Having a few large C

groups means that some sizable battles can be blocked; however, it also allows the

buildup of sizeable groups of both A and B, which in turn makes the typical size of

interactions bigger. By contrast, if C comprises many small groups, T can be much

larger, showing a huge increase around the symmetric populations case (i.e. x = 0).

If real-time management of the C population is possible, this duration profile T can

be manipulated even further.

Minority advantage variant

We next consider a class of model variant in which we change the behavior in

the case of a draw (i.e. when two clusters of opposite species but the same size

are selected). Previously both clusters were destroyed – but now, only the cluster

belonging to the larger total population is destroyed. This could mimic a particular

“home advantage” for a cluster from the minority population B, when faced with an

equal-sized cluster of the invading army A. The first difference in the results from

the original model is that the larger population does not always win any more. It

has a larger probability of winning, but it isn’t guaranteed. The larger population
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(a) (b)

Figure 3.9: Left: Minority advantage variant, showing average populations as a func-
tion of time. Right: time to extinction (T ) as a function of the initial A population
(N0) N0 + P0 = 1000.

loses members at a faster rate than the smaller, as shown in Fig. 3.9(a). The total

initial population in the graph is constant at 1000, so the 600 and 400 groups are

part of the same simulation as the 700 and 300. If the smaller population has enough

members for it to last until the two populations are the same size (e.g. 600 : 400 case)

then both populations decrease at the same rate until they are both destroyed. If

the smaller population is destroyed before it reaches the same size as the larger (e.g.

700 : 300), then the larger population remains at the end on average. It is possible in

the 700 : 300 for the two populations to reach the same size and both be destroyed.

However, this is very unlikely – in contrast to the original model where it was simply

not possible. Despite the difference in the rules as compared to the basic model, the

graph of T (Fig. 3.9(b)) has a similar shape. This gives us further confidence that

the results of the basic model are robust. The major difference is the sudden change

in gradient which occurs at around N0 = 350 and N0 = 650. Between 0 and 350, A is

too small to have any significant chance of becoming the same size as B, so B remains

in the final state. Between N0 = 350 and 650, A does have a high probability of
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catching up with B (or vice versa above 500), with both populations being destroyed.

Above 650 then it is the same as below 350 but reversed; A cannot be caught up by

B so it remains at the end. These effects determine T .

(a) (b)

(c) (d)

Figure 3.10: With minority advantage (a) duration dependence on fragmentation
probability, N0 = 750, P0 = 250; (b) final state population dependence on fragmenta-
tion probability, N0 = 750, P0 = 250; (c) duration dependence on initial population
and fragmentation probability, N0 + P0 = 1000, νB = 0.1; and (d) final state popula-
tion dependence on fragmentation probability, N0 + P0 = 1000, νB = 0.1.

The duration T depends on fragmentation probability in a similar way to before;

if either ν is higher then there are less fatal interactions and so the war lasts a longer

time, leading to a large peak at νA, νB ≈ 1. The dependence isn’t quite symmetric

though since the time actually depends more strongly on the minority population’s

fragmentation probability. This is because if νA is high then A is mostly single and
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(a) (b)

Figure 3.11: Both correspond to the minority advantage variant: (a) Probability for
majority population to remain and (b) probability for minority population to remain.

many draws occur, reducing A until it is the same size as B. Both populations then

reduce to 0 quite quickly. If νB is high though then B will be mostly single and can

be killed off by A. Killing off a smaller population takes longer than two-equally sized

populations, and even longer in this model because draws don’t reduce the smaller

population. The final state population (Fig. 3.10(b)) varies strongly with νA (majority

rate) and slightly with νB. This is for the same reasons as T ’s variation. If νA is high

then there are lots of single A agents, so lots of draws and both populations go to 0.

If νA is low, then A kills off B effectively so it remains at the end. The νB dependence

is similar but less important: If there are lots of single B (high νB) then there are

more draws, and A and B become of the same size and both effectively disappear.

The graph of initial population and fragmentation probability versus T (Fig. 3.10(c))

is similar to the previous model, with two differences. First, while the center section

(N0 ≈ 300 to 700) is the same, the “wings” are much higher. This is because the

dominating process for removing agents is draws. If the minority population is too

small to be able to reach the majority (which happens at around N = 300) then there

are still lots of draws which reduce the majority population but not the minority. This
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leads to an increase in time to destroy the minority: It can’t win but all the draws

slow down the process. The other major difference is the huge peak as N0 ≈ 900

and νA ≈ 0.9. The high fragmentation rate means that A is mostly single, while

the lack of B agents means they don’t get a chance to coalesce. In this case in the

basic model, draws would occur and kill off B. In this model however, draws just

reduce the much larger A population. In order for B to be destroyed there needs to

be a “big A meets small B” event, which is very rare with these distributions, so the

time required is very large. The final state population of the A is also lower than

for lower νA values, as all the draws reduce A. The final state populations reflect

these differences (Fig. 3.10(d)). When A is the minority the final B population is a

straight line, it does not depend on νA. When A is the majority population though,

the amount of fragmentation in A has an effect: The final population is slanted, with

higher νA leading to lower final populations. A majority population having a low

fragmentation probability (forming large clusters) leads to the quickest removal of B,

with the most agents left. For the minority population, having a larger ν (forming

single agents) is the best plan, since this has the highest chance of destroying the

other population along with yours, and also takes the longest for you to be destroyed.

There are three possible outcomes to the model; either the majority A population

only, the minority B population only or neither population remains at the end. The

probability for the majority win outcome is shown in Fig. 3.11(a) as a function of

fragmentation probability, for a fixed initial concentration of N0 = 750, P0 = 250.

The probability at the same conditions for the minority win outcome is shown in

Fig. 3.11(b). As the probability for the minority win is very small, the probability

for no population to remain is the inverse of Fig. 3.11(a). The position and shape of

the boundary depends on initial population concentrations.
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Figure 3.12: Flowchart for peacekeeper with minority advantage variation. “AB m”
means minority advantage.

Peacekeepers with minority advantage

This variation adds a third species (population C) to the minority advantage model

as described in flowchart 3.12. The evolution of the system to a steady state with

one, or both, populations becoming extinct proceeds as before. The presence of the

third population C does increase the time required for a population to be destroyed

however. This time increase is most dramatic in the region where N and P are close

enough together for both to be destroyed, as shown in Fig. 3.13(a). This graph is

for NC = 100 or 0, N0 + P0 = 1000. The increase in duration time T with NC is

displayed in Fig. 3.13(b). All C agents were single, and there was no “test” for C, i.e.

it always blocked an interaction if it was present. The large increase in time with C

when both populations become extinct, can be explained. In these cases both N and

P become very small, while NC remains constant. As the probability for a particular

population being chosen is proportional to its total size, the most likely event is then
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Figure 3.13: (a) Time to extinction (i.e. duration T ) and (b) final population for
N0 + P0 = 1000, and νA = νB = 0.1 with peacekeeper and minority advantage.
However, there is no “test”, i.e. whenever C is picked, there is no fight.

two C’s being selected, leading to nothing happening for that time step. The next

most likely process involves a C and any other two clusters – since C blocks any fatal

interaction with which it is involved, nothing then happens. By contrast when one

population remains at the end, this population still has a probability comparable to

C of being selected, so the probability of agents being removed is not reduced by the

same magnitude.

3.3 Encounter fragmentation model

The EF model also involves two populations of agents, the same as TPEZ, which

can group together to form clusters within their populations. On each timestep a

cluster is selected from the total population (A+B) with uniform probability, so each

cluster has the same chance of being selected. A cluster is then selected out of the

total population with probability proportional to its size, resulting in each agent

having the same probability of being selected. The two clusters are then compared; if
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fragmentation (EF) model. Total population N + P = 105 is constant, and each
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Table 3.1.

they are of the same type (A or B) they coalesce. If they are of different population

type then the smaller cluster fragments and the larger is unaffected, or if they are the

same size both clusters fragment.

3.3.1 Numerical simulation results

Numerical simulations of the model show that the steady state involves the larger

population coalescing into a single massive cluster, with size equal to its total popu-

lation. The smaller population in contrast is distributed into a range of cluster sizes

in the steady state, with the distribution given by a power law with an exponent

depending on the relative initial population sizes. We find that the steady state is

independent of the initial conditions – for example all agents could start single or

both populations could start in a single cluster. Figure 3.14 shows the cluster dis-

tributions obtained for various initial populations, along with power law fits to the

data. Note the presence of finite size effects distorting the power law for cluster sizes
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nearing the population limit, similar to the case in the EZ model. This limit can be

raised by using larger populations, albeit at the expense of computation time. Using

well established methods [113, 114] the power law coefficients can be robustly deter-

mined. As power laws diverge as x → 0 then distributions of the type p(x) = Cx−α

only exist above some minimum value xmin [116]. Above xmin, α can be found using

a maximum-likelihood function: α = 1 + n
[∑n

i=1 ln
(

xi

xmin

)]−1

where xi is a single

measurement (i.e. in our case a single cluster of size s) and n the total number of

measurements above xmin (the total number of clusters). The Kolmogorov- Smirnov

goodness-of-fit test is used to compare the distribution Cx−α with the simulation data,

and by minimizing the D-statistic from this test, xmin (and hence α) is found. As a

check α is also estimated using least squares regression. Table 3.1 summarizes the

coefficients determined for different initial population ratios (as power laws are scale

independent, α is independent of the total population). The confidence intervals of

α determined from the maximum likelihood method were calculated using bootstrap

re-sampling [132] of the distribution with 1000 replications. The limits stated are at

the 0.95 confidence level. The uncertainties given for the least-squares regression α

are the fit standard errors. The estimated and calculated values for α agree in all

cases to at least two significant figures (except 5 : 15, where all three values differ by

approximately 0.1, suggesting that the low upper cut off in cluster size at s ≈ 300 is

adversely affecting the statistics). Least squares regression is known to be unreliable

in this application [133], and the analytic value is technically only valid for N → ∞,

accounting for the minor discrepancies between the results. For comparison, the val-

ues obtained for the standard single population EZ model (analytic value −5/2) are

α1 = 2.66, α2 = 2.60 [28].
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N :P α1 α− α+ α2 αe xmin

10:10 2.3261 2.3250 2.3267 2.3498(1) 2.3333 21
9:11 2.3919 2.3907 2.3929 2.4007(1) 2.4337 23
8:12 2.5384 2.5374 2.5398 2.5197(1) 2.5625 24
7:13 2.7463 2.7444 2.7479 2.7020(2) 2.7316 27
6:14 3.0360 3.0328 3.0396 3.0075(7) 2.9608 25
5:15 3.5311 3.5240 3.5393 3.423(3) 3.2857 30

Table 3.1: Encounter fragmentation model cluster distribution coefficient, as de-
termined from numerical simulations, α1 using maximum likelihood (ML) and
Kolmogorov-Smirnov test and α2 using least squares regression and analytic solu-
tion αe, see Sec. 3.3.2. The value in parenthesis is the error in the last digit. Also
shown is the minimum x value above which the power law holds (determined by K-S
test). α+ and α− are the 95% confidence limits for the ML estimate, determined by
bootstrap resampling.

3.3.2 Analytic solution

We present an outline derivation of the steady state cluster distribution of the

smaller population, with full details in the Appendix A. Defining ns and ps as the

number of clusters with size s from population A and B respectively, we can construct

equations describing their change between timesteps. For s ≥ 2:

dns

dt
= − ns∑

ns′ +
∑
ps′

∑
s′≥s s

′ps′∑
s′ns′ +

∑
s′ps′

−
∑

s′≥s ps′∑
ns′ +

∑
ps′

s′ns′∑
s′ns′ +

∑
s′ps′

− ns∑
ns′ +

∑
ps′

s′ns′∑
s′ns′ +

∑
s′ps′

−
∑

s′≥s ns′∑
ns′ +

∑
ps′
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s′ns′ +

∑
s′ps′

+

∑s−1
s′ ns′(s− s′)ns−s′

(
∑
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∑
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∑
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(3.5)

and for s = 1:

dn1

dt
= − n1∑

ns′ +
∑
ps′

∑
s′ns′∑

s′ns′ +
∑
s′ps′

−
∑
ns′∑

ns′ +
∑
ps′

n1∑
s′ns′ +

∑
s′ps′

+

∑
s′=2 s

′ns∑
ns′ +

∑
ps′

∑
r′≥s′ r
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∑
s′ps′

+

∑
s′=2 ps′∑

ns′ +
∑
ps′

∑r′≤s′
r′=2 r

′2nr′∑
s′ns′ +

∑
s′ps′

Similar equations hold for population B. The first two terms on the RHS of Eq. 3.5

are due to a cluster selecting (being selected by) a larger cluster of the opposite
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population, which causes it to fragment. The next two terms are due to a cluster of

size s selecting any other cluster from the same population and coalescing with it.

The final term is due to two clusters joining together to form a new cluster of size s.

In Eq. 3.6 the first two terms correspond to a single agent being selected to coalesce,

and the last two terms with a larger cluster fragmenting into single agents. Since we

know that the steady state involves the larger population forming a single cluster,

then taking B to be the larger population (P > N , where N and P are A and B’s

total populations) we can simplify the above equations by using the fact that in the

steady state
∑
ps′ = 1,

∑
s′ps′ = P ,

∑
s′ns′ = N . We also make the approximation

that
∑
ns′ � 1, so that the probability of a B cluster being picked first is negligible,

which is valid for large N . As derived in detail in the Appendix A, the steady-state

solution to these equations is:

ni = n1

(
N
P

+ P
N

+ 3
)
!(

(N+P )3

N2P+2NP 2

)
!
e(

P
N

N
P+2

+2)i−( P
N

P
N+2P

+2) (3.6)

which is valid for i� 1 and P > N . This gives a power law cluster distribution of the

form ns = Cs−α with C an irrelevant constant and α dependent only on the initial

population sizes, N and P .

3.3.3 Variants and modifications

We now describe several ways in which the encounter fragmentation (EF) model

can be extended.

Casualty variation, EFF

The EF model is altered to include a fighting element in interactions between op-

posite populations. This results in agents being destroyed (removed from the system)
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Figure 3.15: War duration dependence T on initial populations in EF model (with
casualties). Initial total population N + P = 1000.

when an A and B cluster are selected. Previously the smaller cluster would have

fragmented, but now the smaller cluster loses half its agents before fragmentation

occurs. The larger cluster loses an amount of agents equal to the number lost by the

smaller cluster, but does not fragment.

Numerical simulations show that the end state of the system involves the initially

smaller population being completely destroyed, while the other population remains in

a single cluster with size equal to the difference between the initial populations. This

is reminiscent of the result of the two population EZ model discussed in Sec. 3.2, and

indeed the time required for one population to be destroyed follows a similar depen-

dence on the initial populations as that model. As shown in Fig. 3.15, for a constant

total population, the duration T is much greater for an asymmetric population (e.g.

900 : 100) than for a more even population (e.g. 600 : 400).

Civilian population variation, EFC

A third “civilian” population is introduced into the EF model. This population

(type C) can only be selected in the second selection step, and is selected in this step

with probability proportional to its size, the same as for the A or B population. Note
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that as the C population can only be selected second it cannot interact with itself

(coalesce), only with the A or B population. If an interaction with the C population

occurs, C takes damage equal to the size of the A or B cluster selected first, whereas

this cluster is unaffected. The size of the damage, and the population which inflicted

it, is recorded. The C population has no effect on the behavior of the model. The

distribution of damage event sizes reflects, in the steady state, the distribution of

the population causing the damage. The size of the C population scales this event

distribution, but otherwise has no effect. Therefore provided that the C population

is large enough so it cannot be wiped out, then it makes no difference if C agents are

actually destroyed in interactions.

Recruitment variation, EFR

In this variant agents are added to one or both populations at the start of each

timestep. The mechanism used to do this can be one of several; new agents can be

created singly, or can be attached to an existing cluster selected at random or with

probability proportional to its size. New agents can also either be added at a constant

rate, or created whenever the population is below its initial level. Additionally, all the

above can be done with agents removed instead of added. Without any mechanism for

destroying agents then this system cannot achieve a steady state. However, provided

the rate of adding new agents is not too fast (less than 1 per timestep) the effect is

simply to change the overall population size, regardless of which actual mechanism

is used to attach the new agents. The minority population remains distributed in

a power law, with an exponent which depends on the ratio of populations. As one

(or both) population sizes are changing, then this power law also changes with time.

The same is also true if agents are removed, except in this case one population will
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Figure 3.16: Distribution of B population damage to C in EF model with casualties,
for different initial A and B populations. The graph is an average of 104 simulations.

eventually become extinct.

Army variation, EFA

As it is observed that the larger initial population invariably forms a single maxi-

mum sized cluster, we may take this population (conventionally the A population) as

being constantly distributed in one or more large clusters, rather like a conventional

army. The model operates as previously, except that now A no longer fragments or

coalesces, and as such starts and ends in large groups. The variation produces the

same power law distribution of the B population as before, while the A population re-

mains in its initial distribution. The duration T is insensitive to whether the majority

population exhibits internal grouping or not [120].

3.3.4 Combination of variants

Casualties and civilian population

This is a combination of the EFF and EFC variants. While the cluster distribution

of the two populations does not become stable when both populations are losing
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agents, the distribution of the size of damage inflicted upon the C population in an

interaction does. This event distribution, the number of events which cause a given

amount of damage to C, is shown in Fig. 3.16 for several different initial A and B

populations. Again, it is the ratio between the population sizes which is important,

any change in total population just alters the scale. The graph shows the distribution

of events between the minority (B) population and C; the distribution of events

between the majority population (A) and C is a power law which varies only from

−2.1 (the value for equal populations, shown on the graph) to −2.0 as A becomes

larger than B. Interestingly, the distribution of the number of agents killed in an

interaction between A and B (the AB event distribution) is identical to the BC event

distribution, except for its scale.
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3.3.5 Army, reinforcement and casualties

This is a combination of the EFA, EFR and EFF variants. The A population

is now explicitly a conventional army, as such its distribution does not change. In

fighting interactions then the A population does not lose agents, however B (the

insurgent population) does as normal. This can be interpreted as the army reinforcing

its units to full strength after any clash. The B population in contrast is replenished

as in the reinforcement variation; with a probability r each timestep it receives a new

agent, which is added to an existing cluster selected with probability proportional to

its size. The effect of agents being both introduced and destroyed is that the system

achieves a steady state. The distribution of the B population in the steady state is

shown in Fig. 3.17. As can be seen it is a power law with an exponent which depends

only on the rate of new agents being recruited. The A population distribution is fixed,

and the distribution of fatal interaction events between A and B is identical to the B

cluster distributions shown in the figure (except for the scale). In the steady state,

the size of the A population has no effect at all on the AB event distribution, and no

effect on the B cluster distribution except for determining the total population size

at which B will be stable, so that the ratio of N to P is fixed for a given value of r.

3.3.6 Comparison with Conflict Data

The final model developed has many features in common with guerrilla warfare.

Guerrilla armies are known to organize from the ground up [134], with small groups

forming and then joining up with other groups. In encounters with a larger force

they also tend to fragment and withdraw [134]. Recruitment can also be erratic,

with new members almost always recruited into existing groups (new guerrillas are

unlikely to just appear and start attacking). Larger groups are also likely to be
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more successful at recruiting, or simply be easier for new members to find or hear

about. Recalling that agents can represent not only people but also equipment, larger

groups are again more likely to be able to acquire more. This is exactly the same

in the model, where a new agent is added to a group with probability proportional

to its size. A conventional army on the other hand tends to have rigidly organized

units. These units operate independently and do not tend to just join together upon

meeting, nor do they generally fragment unless they take heavy losses [135]. The

conventional army is also assumed to have sufficient resources to be able to reinforce

its units immediately in the case of losses: This assumption is generally true as

armies engaged in ongoing active war have reserves to draw upon. If the army is

starting to lose substantial numbers that cannot be replaced to the insurgents, then

the conflict is likely to either develop into conventional warfare or end, either of

which are not covered by this model. The first cluster selection process also gives

each cluster an equal chance of action, which means each group acts as a single

unit, and also gives the initiative to the population with more groups; this is almost

always the insurgents. The second cluster selection picks a cluster with probability

proportional to its size: This means that the first cluster selected is more likely to

encounter/interact with larger clusters. This makes sense, as apart from the fact that

larger groups occupy more area, they are also easier to detect. In the following, the

final EF model variant (EFA+EFR+EFF, with A explicitly an army, B insurgents,

and casualties and recruitment occurring) is compared with casualty data for two

conflicts using data from CERAC [136]. The model’s casualty event distribution

from AB interactions is compared, but the distribution would be exactly the same if

we used interactions involving a civilian population. In order to minimize inaccuracies

and statistical fluctuations in the data and computer simulation, both are plotted as
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Figure 3.18: Comparison of model with Iraq data at two different time points. The
first set of data and model have both been rescaled for clarity.

cumulative distribution functions, P (X ≥ x). This is defined as the probability that

an event is greater than or equal to a given size, x.

Iraq: 14/03/03 - 23/10/05

The data available is divided into two periods, one from the start of the war to

01/05/03, and the second from then up to 23/10/05. Shortly after the war started

there were substantial numbers of insurgents (remnants of the army, Ba’athists etc.)

already in place, and subsequently more insurgents have been recruited (foreign fight-

ers, nationalists etc.) [137]. The model was therefore started with a large initial B

(insurgent) population, a relatively large A (coalition army) population, and a con-

stant recruitment rate for insurgents. The numbers used are: N0 = 4500, P0 = 8500,

r = 0.45. The distribution of events (casualty sizes between A and B) during two

different time periods are plotted, along side the corresponding data from Iraq, in

Fig. 3.18.

As can be seen the correlation in both cases is good for all values except for events
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Figure 3.19: Comparison of model with Colombia data

of size 1 and 2. The model has almost reached a steady state by t = 250000, and while

we cannot know if the data has reached a steady-state with only two time points, it

has been suggested elsewhere [113] that α (the slope) has varied smoothly between

these two time points and is tending to a constant value. This is identical to the

model, further validating it and the choice of parameters.

Colombia: 01/01/88 - 31/12/04

For the case of Colombia the guerrilla war has been ongoing for a long period of

time, so a steady state model distribution is appropriate. The initial B population

in this case does not matter, the recruitment rate was set at a lower rate than Iraq

(r = 0.35), as was the army population (N0 = 4000). The result of this distribution

in the steady state is shown in Fig. 3.19. The match is again good except at very

low s values. The power law coefficient (α) is known to fluctuate with time in this

conflict [113], for this reason the effect of altering the recruitment rate in the steady

state to two different values is also shown in the figure. The result of this is to vary

α as observed.
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3.4 Outlook

We hope that the present chapter has given an indication of what statistical

physics might have to offer to the daunting challenge of quantifying human conflict.

This field is new, in the sense that new insurgent warfare is not within the standard

military modeling approach using mass-action partial differential equation approaches

(e.g. Lanchester). There may also be other areas in which these models could poten-

tially be useful, e.g. the battles of the immune system fighting invading pathogens.

Much remains to be explored in these fields, and many exciting new results undoubt-

edly await discovery.



CHAPTER 4

Transmission Theory of Dynamical
Population

4.1 Overview

The world recently witnessed a baffling variety of global outbreak phenomena:

the huge fluctuations across the world’s financial markets, driven in part by the rapid

global spread of rumors [139]; an unexpected global outbreak of swine flu [140], driven

in part by rapid social mixing (e.g. within schools [141]); and even the sudden rise

to global fame of an unknown Scottish singer, driven in part by word-of-mouth shar-

ing [142–144]. To understand how such phenomena might arise, consider the follow-

ing: The number and identity of the people with whom we are each in instantaneous

electronic or physical contact – and with whom we can therefore instantaneously

exchange information, rumors or viruses – can change slowly or rapidly within any

given day, according to the activities which we undertake and hence the instanta-

neous social groups within which we happen to find ourselves. Even on the shortest

plane journeys, for example, passengers find themselves momentarily confined in an

enclosed space with complete strangers for up to an hour or more, enabling the ex-

change of respiratory pathogens. On the blogosphere and on the Web, ephemeral

groups form around topics or content and exchange information, opinions and social

83
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contacts before flickering out of existence. The transient transnational nature of on-

line discussion groups and chat-rooms, as frequented by financial traders or YouTube

users [139, 143, 144] provides a vivid illustration. A full description of such specific

transmission processes would likely require rather sophisticated epidemiological mod-

els which incorporate system-specific details and considerations (e.g. spatial topology,

differential susceptibility). There are indeed many sophisticated epidemiological mod-

els already under construction and study in the literature [145–154]. Some of these

focus on the well-mixed (i.e. mass-action) limit, some of these focus on the limit of

heterogeneous networks [148,151–154] – and some attempt to move between the two

by adding patch-like structure to mass-action models, or dynamical link rewirings to

network models.

In this paper, we focus on the less well understood dynamical regime where the

group-level dynamics and individual-level transmission processes can evolve on the

same timescale, and hence the number and identity of a given individual’s contacts

can change abruptly at any given moment in time (see, for example, Fig 4.1(a) and

(b)). In Sec. 4.2, we introduce and analyze a simple model which mimics the dynam-

ical processes of social group formation/break-up and person-to-person transmission

of a virus or information, allowing them to co-exist on comparable timescales. By

varying the probabilities of group coalescence (νcoal) and fragmentation (νfrag) relative

to the standard SIR (Susceptible→Infected→Recovered) probabilities [145, 150] for

person-to-person transmission (p) and individual recovery (q), the entire range of rel-

ative timescales can be easily explored – from a very slowly changing social network

structure (i.e. essentially a static network with infrequent rewirings) through to a

rapidly changing social network structure (i.e. essentially a well-mixed population).

Most importantly, this includes the complicated intermediate regime where both pro-
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cesses co-exist on the same timescale. Figure 4.1 illustrates this intermediate regime,

while Fig. 4.2 shows how an associated infection profile I(t) is qualitatively very dif-

ferent from the two limiting cases of the static (or quasi-static) network, and the

well-mixed population. Instead, the interplay of the group dynamics and individual-

level transmission generates epidemic profiles which exhibit a rich structure (e.g.

multiple resurgences and abnormal decay times, see Fig. 4.2). It turns out that such

profiles are strikingly similar to real-world outbreaks across the social, financial and

biological domains (see Fig. 4.3, and Sec. 4.3). While it is conceivable that infection

profiles similar to Fig. 4.3 can also be obtained using alternative, more sophisticated

epidemiological models (e.g. by adding spatial topology or differential susceptibility),

such models will typically have more parameters and be more system-specific. By

contrast, our model only has four stochastic parameters for the probabilities (and

hence timescales) of the individual level transmission and group dynamics, i.e. p, q

for the SIR process, and νcoal and νfrag which describe the probability of social groups

coalescing or fragmenting. We find it intriguing that the qualitative shapes of such a

wide range of empirical profiles (Fig. 4.3) can be reproduced simply by varying these

relative timescales. While we cannot prove that the empirically observed profiles in

Fig. 4.3 are indeed generated by such a simple model as ours, it seems that more com-

plex models are not required in order to reproduce their main features. In Sec. 4.4,

we offer an approximate analytic analysis of the properties of our model. Although

a detailed theoretical description of the infection profiles I(t) remains an open future

challenge, we find that the overall properties can be captured by making a mean-field

approximation of the behavior of connected pairs within the population. In Sec. 4.5,

we comment on how our results also suggest a minimally-invasive dynamical method

for controlling outbreaks (see Fig. 4.5). Section 4.6 extends the discussion to other
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types of viral transmission models which are widely studied in the literature (e.g.

SIS). Section 4.7 provides a summary and outlook.

4.2 Our model

There are many plausible rules for generating human group dynamics [155]. The

grouping process that we choose involves simple cluster dynamics at each timestep.

In terms of the viral model, our focus will be on individual-level transmission via SIR

because of its dual relevance to real virus transmission and to the spread of rumors

and information in a social system. Here SIR means the viral process Susceptible →

Infected → Recovered, the person-to-person transmission probability at each timestep

is p and the individual recovery probability at each timestep is q, as described in the

previous section. Provided that the choice of social dynamics permits similar intrinsic

self-amplification and suppression processes by sporadically injecting infected individ-

uals into susceptible groups (see Fig. 4.1(b) and bottom of Fig. 4.3), the resulting

epidemic profiles from alternative choices of cluster mechanism should exhibit similar

characteristics – in particular, multiple resurgences and abnormal decay times (see

Figs. 4.2 and Fig. 4.3). In Sec. 4.4 we extend this SIR focus by presenting quantitative

results for other commonly studied viral processes (e.g. SIS).

Our choice of cluster mechanism features the coalescence and fragmentation of

groups as described below, and illustrated in Fig. 4.1(b). There is a huge volume of

work in the mathematics, physics and chemistry literature on cluster models within a

many-body population of interacting particles [156]. For modern social systems, one

is typically interested in mechanisms which mimic the long-range interactions that

people can have (either through transport in the case of transmission of viruses, or
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Figure 4.1: (Color online) a: Schematic of dynamical grouping of traders or YouTube
users on the Internet b: Schematic of our model, featuring spreading in the presence
of dynamical grouping via coalescence and fragmentation. Vertical axis shows number
of groups of a given size at time t. c: Instantaneous network from Fig. 1b at each
timestep. d: Weighted network obtained by aggregating links over time-window T .
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communications in the case of transmission of a rumor or information). We choose the

rate of coalescence of two groups of size n1 and n2 respectively to be proportional to

the combinatorial number of pairwise encounters between individuals, one from each

group, i.e., the rate of coalescence is equal to νcoal · (n1/N)× (n2/N), where νcoal ≤ 1

is a coalescence probability. Similarly, a given group of n individuals may break up

(i.e. completely fragment) with a total rate equal to νfrag · (n/N), where νfrag ≤ 1 is

a fragmentation probability with νfrag + νcoal ≤ 1, reflecting the increasing fragility of

large groups (i.e. standard size effect). The implementation of this social dynamics

is essentially the same as Ref. [28], with the generalization that the coalescence and

fragmentation probabilities are general (i.e. νfrag + νcoal ≤ 1 but νfrag is otherwise

unrelated to νcoal, in contrast to Ref. [28]). This specific cluster process has real-

world relevance for several reasons. First, it embodies the rare but dramatic changes

of contact networks that can occur, as mentioned in the introduction. Second, it

produces a distribution of group sizes which is power-law with exponent 2.5 for νcoal �

νfrag when time-averaged, as shown in the related model for financial markets [28,55].

This theoretical model is therefore consistent with the observation of Gabaix et al. [96]

who found that the distribution of transaction sizes follows a power-law with slope

near 2.5 for each of the three major stock exchanges in New York, Paris and London.

Third, this power-law exponent 2.5 is also consistent with the distribution of group

sizes inferred for terrorists and insurgent groups based on an analysis of casualty

figures [113]. Fourth, the model is structurally robust in that the group dynamic rules

can be generalized to different positive power exponents α �= 1, β �= 1, γ �= 1, with

coalescence and fragmentation rates given by νcoal ·nα
1 ×nβ

2 and νfrag ·nγ, respectively,

without losing the main qualitative features of the dynamics of the number I(t) of

infected individuals.
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Individual connectivities within our model may change significantly on the same

timescale as the SIR process, thereby mimicking individuals participating in YouTube

viewing, financial systems, and schools, who sometimes exhibit rapid moves among

peer groups either online or in real space, while simultaneously picking up and spread-

ing rumors or pathogens. A discrete illustration of our model over six time steps

is shown in Fig. 4.1b and c. Fig. 4.1d contrasts the short-time group structure be-

tween individuals with the long-term linkage between them: as time increases without

bound, by ergodicity, all individuals will have eventually been part of some common

group. While the latter long-time network structure is the one usually emphasized in

models of epidemic processes on complex networks, the short-time limited linkage is

essential to understand the competition between individual isolation (which tends to

stop an epidemic) and group coalescence which amplifies its spreading. In short, this

model provides us with a simple framework within which to explore and quantify the

interaction of these group dynamical processes and conventional SIR dynamics.

In the numerical implementation of the model, we run the above coalescence-

fragmentation dynamics until the time-averaged distribution of group sizes has be-

come stationary. Then, at some instant taken at the origin of time t = 0, one group

is selected, and an arbitrary individual in this group becomes infected, and hence the

infection profile unfolds according to the SIR process within each group, with all the

groups undergoing at the same time the coalescence-fragmentation dynamics accord-

ing to the two rates νcoal and νfrag. A typical simulation is shown in Figure 4.2, and is

compared with the popular approach that models spreading on static networks: (i) an

instantaneous network (T = 1) and (ii) a global network formed by time-aggregating

instantaneous contacts over long times (T → ∞). SIR spreading dynamics on fixed

networks obtained at different intermediate T gives curves that lie in the shaded area
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Figure 4.2: (Color online) Theoretical profile I(t). Thick (blue) curve shows our
dynamical group contagion model, with νfrag = 0.05, νcoal = 0.95, p = 0.001 and
q = 0.001. Using same p and q values, dotted (purple) curve corresponds to stochastic
SIR model on a static network with T → 1, i.e. the t = 0 network in Fig. 1. Thin
solid (green) curve corresponds to stochastic SIR on a T → ∞ network.

of Figure 4.2. Our model can generate not only this type of dynamics, but also

qualitatively new regimes that arise from adjusting the coalescence-fragmentation

rates: the large fluctuations, resurgences, and abnormally long decay time which are

observed in our model (as illustrated in Figure 4.2 (thick curve)) are generated by self-

amplification and suppression processes due to the coalescence-fragmentation group

dynamics at all group-size scales.

4.3 Theoretical and empirical results

Figure 4.3 provides a comparison between two of the empirical profiles that we have

collected from each of three distinct real-world domains, and the theoretical infection

profiles I(t) produced by our model. By providing two empirical profiles for each

real-world system, our aim is to give confidence that the empirical features observed
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Figure 4.3: (Color online) Top two rows: Empirical activity profile I(t) in three
distinct real-world systems. Third row: Results from our model. Dashed line is a
guide to the eye. Left: YouTube download activity. Middle: Currency trading activity
(i.e. absolute value of price-change, hence the excess demand to buy or sell at each
timestep). Different shades correspond to different currencies. See main text. Right:
Fraction of children with colds within a school. Lower panel: Simple example of
the repeated self-amplification and suppression processes which spontaneously arise
within our the model. When replicated at all scales of group size, these processes
generate a unified quantitative description of the empirical I(t) profiles.
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are not simply the result of some irreproducible external noise. We could generate a

number of metrics for comparing the empirical and theoretical profiles (e.g. number

of peaks, time interval between peaks, peak-to-trough ratio) as is our intention for

future studies when additional data is available – but for now, the message that we

wish to convey is a visual one, i.e. that our simple model manages to capture the

main qualitative features for each of these three distinct empirical systems.

The sociological example (left column of Fig. 4.3) shows downloads for two similar

YouTube clips [143,144]. Such downloads are typically driven by YouTube users ab-

sorbing and spreading opinions as they share information in their social groups [144].

The two downloads appealed to similar age-groups, and were measured close to-

gether in time, implying that a similar pool of users accessed them both, in line

with our model’s assumptions. Our model accounts well for the long memory and

aftershock-like decay. The top-left panel corresponds to “Gettin’ Enough” from

http://www.youtube.com/watch?v=AiXxMrkeklg. This video was uploaded to the

site on 8 November, 2006 at 13:33:12 GMT. The first record of a download is 9

November, 2006 at 17:21:35 GMT, with a view count of 5708. The last record is

24 May, 2007 at 21:34:30 GMT, with a view count of 257759. The video’s length is

225 seconds. The middle-left panel shows downloads of music video “Borat” from

http://www.youtube.com/watch?v=b1xXERFt Zg. The video was uploaded to the

site on 3 November, 2006 at 11:04:15 GMT. The first record of a download was 7

November, 2006 at 10:35:57 GMT with a view count of 20745. The last record is 24

May, 2007 at 22:29:25 GMT, with a view count of 254918. The video’s length is 154

seconds. These two music downloads are similar in terms of appeal, age-group, total

number of downloads, and lack of any public/global announcement, news or advertise-

ment, and are hence consistent with spreading through contagion. The bottom-left
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panel shows our model’s output with νfrag = 0.05, νcoal = 0.81, p = 0.001, q = 0.001.

The financial example (middle column of Fig. 4.3) shows foreign exchange move-

ments as a result of a specific rumor spreading among traders concerning revaluation

of the Chinese Yuan currency. This same rumor circulated twice in the space of a

few months. The fact that the currency pairs follow a similar dynamical pattern

in each case, suggests that the same underlying group dynamics developed, in line

with our model. Note that this financial epidemic is characterized by the largest

coalescence rate νcoal and much larger infectivity parameter p among the three exam-

ples, reflecting the efficiency of the information cascade among currency traders. The

top-centre panel corresponds to the CNY (Chinese currency) revaluation rumor as

detected from trader chat-rooms by HSBC bank (courtesy of S. Williams). Specifi-

cally, we show the absolute returns on the timescale of 1-minute intervals for the JPY

(Japanese currency) exchange rates from 08:22 to 08:53 GMT, on 11 May 2005. The

middle-centre panel corresponds to the CNY actual revaluation. Absolute returns on

the timescale of 1-minute intervals are shown for JPY (Japanese currency) exchange

rates from 11:03 to 11:34 GMT, on 21 July 2005. Since the CNY was not one of

the directly traded currencies, its effects on the JPY-X rates (where X is another

currency) are indirect in both cases, suggesting influence through contagion of the

rumor/information. There was no public announcement or global news to trigger

this activity, which also supports spreading through contagion. The bottom-centre

panel shows our model output with νfrag = 0.05, νcoal = 0.95, p = 0.009, q = 0.002.

Since data are on 1-minute scale, but prices can change on 1-second scale, we show

an averaged output by providing value at regular equispaced intervals, mimicking

1-minute.

The biological example (right column of Fig. 4.3) shows incidences of a cold among
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1st grade students in two schools in Bogota, Colombia. These data come from an

ongoing monitoring experiment carried out by members of our team, in conjunction

with the Universidad de Los Andes, Bogota, based on weekly surveys of all students

and staff at Colegio Nueva Granada (CNG) and Marymount School. The schools’

locations at the top of the Andes guarantee that seasonal temperature variations

are minimal. In addition, the student population of each approximates to a closed

system due to local issues of security and social segregation. Given the unchanging

climatic conditions of this part of Colombia, we argue that the microbes responsible

for colds remain present in the environment of children, hence successive bursts can be

expected to follow similar dynamics. Within our approach, the school cold dynamics

are found to be best described by the lowest fragmentation rate νfrag and highest

recovery parameter q, mirroring the more rigid structure of inter-children contacts

and the crucial role of multiple recuperations. The bottom-right panel shows our

model output with νfrag = 0.001, νcoal = 0.5, p = 0.001, q = 0.004. The model output

is smoothed, to mimic fact that data is recorded on the 1-week time interval.

The sociological example corresponds to the regime of νcoal values where the group

dynamics dominate, hence the strong observed clustering effect in I(t). Large values

of νcoal do indeed make sense for social online systems, given the ease and rapid-

ity with which people can now be exposed to new information and rumors through

virtual communities. The financial example corresponds to the regime of large trans-

mission probability per timestep p, thereby promoting both the spread and survival

of the information “virus” and hence leading to persistently noisy (but remarkably

reproducible) fluctuations. The biological example seems to lie in between, since it

has more peaks as compared with sociological example and larger fluctuations as

compared with the financial example. We stress that more complex explanations of
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each empirical profile in Fig. 4.3 are undoubtedly possible – and may even be deemed

as more realistic by specialists within each field. However, our purpose here is to

focus on a minimal description of common dynamical features, and to highlight the

fact that a common minimal description is indeed possible. Although we have only

presented three examples of our model’s output, each of which has a quite distinct

visual form, it turns out that this subset of three broadly encompasses the full range

of I(t) profile behaviors observed across the entire parameter space of our model. One

might speculate whether other empirical examples chosen from social, financial and

biological domains, might also fall crudely into one of these three classes of infection

profile behavior shown in Fig. 4.3. A casual observation of similar types of empirical

data available on the Web suggests that this might indeed be the case [144,158].

4.4 Approximate analytic analysis

4.4.1 Limiting case relationship with mass-action epidemio-

logical theory

A full analytic description of the I(t) profiles generated by our model represents a

fascinating open challenge for the community. However some important features can

be captured straight away, by suitably generalizing existing epidemiological machin-

ery. A key quantity is the probability ηSI(t) that a particular link instantaneously

exists and that it connects a susceptible and an infected. Thus, out of a potential

totality of N(N − 1)/2 links among N individuals, only ηSI(t) ·N(N − 1)/2 are typi-

cally present. This provides an accurate equation for the number of susceptibles S(t)

in a given epidemic sequence: Ṡ(t) = −p.ηSI(t).N(N − 1)/2, with p is the infectivity

parameter quantifying the probability that a particular S is infected by a particu-
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Figure 4.4: (Color online) Demonstration of accuracy of Eq. (4.1) across a range of
parameter space. Solid line is theoretical expression from Eq. (1), while discrete
points are numerical simulation results. Population size (a) N = 10, (b) N = 100,
(c) N = 1000 and (d) N = 10, 000. Left panel for each N value: P value obtained
by tracking all pairs over time for the illustrative case (νcoal + νfrag) = 1, and also
for specific values νcoal = 0.1 and 0.5. Left panel of (d) additionally shows result of
tracking just 100 pairs over time, demonstrating that the same results are obtained
as long as the time window is sufficiently long. Right panel for each N value: P as a
function of νfrag/νcoal on a log-log scale. Data corresponding to different systems fall
onto the same curve as predicted by Eq. (4.1).
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lar I to which it is linked. We rewrite this in the conventional mass-action form

Ṡ(t) = −pPSI(t)S(t)I(t), where PSI(t) is equivalent to ηSI(t)N(N −1)/[2S(t)I(t)] and

hence now incorporates the complex dynamics which are so hard to capture analyti-

cally. We now approximate PSI(t) by a constant term P , which is the time-averaged

probability that any two arbitrarily chosen nodes belong to the same cluster indepen-

dent of SI-infection status. This approximation throws out the dynamical details of

I(t), but can provide useful insights, as shown below on the non-spreading to spread-

ing transition, provided that several coalescence-fragmentation processes occur over

the timescale of the entire outbreak. In order to develop a more detailed analytic

analysis, we start with the identification of P as the average value of Pi,j, where Pi,j

means the probability that specific nodes i and j are connected (i.e. i and j are in

the same cluster). Our numerical simulations enable us to track individual pairs and

hence deduce numerical values for P as a function of νcoal, νfrag and N .

Figure 4.4 presents P values taken from the numerical simulation, which suggest

that P has a remarkably simple functional form. Results are shown for populations

of size N = 10 (Fig. 4.4(a)), N = 100 (Fig. 4.4(b)), N = 1, 000 (Fig. 4.4(c)) and

N = 10, 000 (Fig. 4.4(d)), and for different sets of parameters νcoal and νfrag. There

are several ways that one can obtain the quantity P numerically. One could follow a

certain pair of nodes over a very long simulation run of the model, counting how many

timesteps these two nodes happen to be in the same cluster. Alternatively, to reduce

run times, one may follow a certain number of pairs (e.g. 50 or 100) over a particular

time-window. As confirmed by the left-hand panel of Fig. 4.4(d), the results do not

depend on the precise method used. The numerical results in Fig. 4.4 suggest that
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the variation in P can be well described by the following empirical relation:

P =
νcoal

νcoal +Nνfrag

=
1

1 +N
νfrag

νcoal

. (4.1)

This expression contains an explicit dependence on N , the number of nodes in the sys-

tem, and a dependence on the ratio νfrag/νcoal. For each N value in Fig. 4.4, the right-

hand panel shows that different simulations with different parameters (νcoal, νfrag),

yield dependences of P as a function of νfrag/νcoal which all collapse on the same

curve. For Nνfrag � νcoal, Eq. 4.1 reduces to the approximate form

P =
νcoal

Nνfrag

. (4.2)

4.4.2 Analytic derivation of P using Master Equation

Having demonstrated the quantitative accuracy of Eq. 4.1 using quantitative re-

sults from the model simulation, we now turn to the task of trying to understand this

result analytically. Starting with the master equation approach, the dynamics of Pi,j

follow:

dPi,j

dt
= −Pi,j

1

N

∑
k∈{..i.}

Pk,iνfrag + (1 − Pi,j)
1

N

∑
m∈{..i.}

Pm,i
1

N

∑
n�∈{..i.}

Pn,jνcoal . (4.3)

As indicated, the sums are restricted to either the nodes within the cluster containing

node i, or to the nodes outside that cluster. We note that the first term on the

right-hand side can alternatively be written in a completely symmetric way in terms

of i and j, simply by splitting the term into two equal pieces (one in i and one in j)

and adding a factor of one half to avoid double counting. Two particular situations

will significantly affect the value of Pi,j: one situation is where the nodes i and j

are together but are going to break-up at the next timestep. The second situation

is where the node i and j are not currently together, but are going to join together
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at the next timestep. The two terms on the right-hand side of Eq. 4.3 correspond to

these two cases. The first term on the right-hand side of Eq. 4.3 describes the case

where nodes i and j are together (Pi,j) and then one node k is picked ( 1
N

) which is

in the same cluster as i and j (Pk,i) and so the cluster fragments (νfrag). The second

term of Eq. 4.3 describes the case where nodes i and j are not together (1 − Pi,j),

and then one node m is picked ( 1
N

) which is in the same cluster as i (Pm,i), as well

as one node n being picked ( 1
N

) in the same cluster as j (Pn,j). They then coalesce

(νcoal). We stress that the third summation
∑

n�∈{..i.} sums over all the nodes outside

the cluster containing node i, and hence
∑

n�∈{..i.} Pn,j = 1. In the steady-state, we

can write P = Pi,j for all i and j. The remaining two summations over nodes within

the cluster containing node i, then become equal to the average cluster size multiplied

by P . Setting the left-hand side of Eq. 4.3 equal to zero and solving for P , yields

P =
νcoal

νcoal +Nνfrag

=
1

1 +N
νfrag

νcoal

which is exactly Eq. 4.1.

4.4.3 Analytic derivation of P using coupled cluster equa-

tions

The limiting case Eq. 4.2 can also be obtained in the limit Nνfrag � νcoal, by

considering the master equation for the number ns of clusters with size s in the

model:

∂ns

∂t
= −νfragsns

N
+
νcoal

N2

s−1∑
s′=1

s′ns′(s− s′)ns−s′ − 2νcoalsns

N2

∞∑
s′=1

s′ns′ (4.4)

for s ≥ 2, with a similar but truncated form for s = 1:

∂n1

∂t
=
νfrag

N

∞∑
s′=2

(s′)2ns′ − 2νcoaln1

N2

∞∑
s′=1

s′ns′ . (4.5)
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For a steady-state cluster distribution, we have

sns =
νcoal

2νcoal + νfrag

1

N

s−1∑
s′=1

s′ns′(s− s′)ns−s′ (4.6)

for s ≥ 2, while for s = 1 we have

n1 =
νfrag

2νcoal

∞∑
s′=2

(s′)2ns′ . (4.7)

Therefore on average, we obtain:

P =
∞∑

s=2

sns

N

s− 1

N
=

1

N2

∞∑
s=2

(s2ns − sns) =
1

N2

2νcoal

νfrag

n1 − N − n1

N2
(4.8)

where the only unknown quantity is n1. We now define a generating function:

G[y] =
∞∑

k=0

knky
k = n1y +

∞∑
k=2

knky
k = n1y + g[y] . (4.9)

Taking Eq. 4.6 multiplied by ys and then summing from s = 2 to ∞, yields

g[y] =
νcoal

2νcoal + νfrag

1

N
G[y]2 (4.10)

i.e.

g[y]2 − (
2νcoal + νfrag

νcoal

N − 2n1y)g[y] + n2
1y

2 = 0 (4.11)

where g[y] =
∑∞

s=2 snsy
s and g[1] = N − n1. Solving this quadratic equation Eq. 11

gives

n1 =
νfrag + νcoal

νfrag + 2νcoal

N . (4.12)

Substituting into Eq. 4.8, we obtain Eq. 4.2.

4.5 Dynamical control of outbreaks

We now use our numerical model and the approximate analytic analysis of Sec. 4.4,

in order to address the following highly topical question: Will there be epidemic
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Figure 4.5: (Color online) Phase diagrams show theoretically obtained transition (i.e.
pνcoal

qνfrag
= 1, black dashed line) and the numerical result (white solid line) separating

regimes of spreading (i.e. overall number of infecteds exceeds initial group size, hence
R(∞) > N0) and no-spreading (i.e. R(∞) < N0). Population reacts to news of the
initial infection at t = 0 by changing its dynamical grouping from νfrag = 0.001 and
νcoal = 0.99, to the new values shown on the axes. Shading shows the population
(in units of N0) who become infected, and hence recovered, over the lifetime of the
outbreak. Solid triangular shaded region is unphysical since νfrag + νcoal > 1.

spreading in a population in which it is publically known that N0 persons have been

infected with a given pathogen or rumor, but where the precise identity of infected

persons cannot be disclosed? At t = 0, N0 � N individuals of the instantaneously

largest group are infected and news of an infection is announced without disclosing

the infected’s identities. The population reacts by adjusting its group dynamics, i.e.

it adopts a new νcoal and νfrag. Although many further features could be added to

mimic the population’s subsequent adjustment to knowledge of an outbreak, we focus

here on a simple case in order to better understand the effect of the initial reaction.

Numerical results are presented in Fig. 4.5, together with analytic curves for the
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transition threshold, as a function of the new νcoal and νfrag. Our analytic analysis

exploits the generalized SIR equations developed in Sec. 4.4, and builds upon the

theoretical framework discussed in detail in Ref. [150]. The number of susceptibles in

the long-time limit S(∞) with N � 1 is then given by the solution z to the following

generalized form, z = exp[−κ(1 − z)] where z ≡ S(∞)/N and κ ≡ pνcoal/qνfrag where

κ plays the role of the basic reproductive rate. For κ ≤ 1, the only solution is z = 1,

corresponding to a vanishingly small fraction of infected individuals (i.e. total number

of infected R(∞) does not exceed N0 � N). This solution bifurcates at κ = 1 into the

following stable solution z = −(1/κ) ·W (−κ · e−κ) valid for κ > 1, where W (z) is the

Lambert function. For κ > 1.5, z is very well-approximated by z ≈ e−κ/κ. This shows

a rather abrupt transition from non-spreading epidemics for κ < 1 to global infection

of a finite fraction of the population for κ > 1. The form of the epidemic control

parameter κ ≡ pνcoal/qνfrag exemplifies that infectivity and coalescence play together

against recovery and fragmentation in controlling the propagation of the epidemics:

Infectivity and coalescence promote the infection propagation, while recovery and

fragmentation hinders its spread.

Not only is our theory for the spreading threshold (dashed black line in Fig. 4.5) in

good agreement with the numerical results (white solid line), its simple analytic form

suggests an epidemic control scheme based on manipulation of the group coalescence

and fragmentation timescales (i.e. ν−1
coal and ν−1

frag). An imminent epidemic can be

suppressed (i.e. R(∞) < N0) by increasing the timescale for group coalescence with

respect to the timescale for group fragmentation (i.e. decrease νcoal with respect to

νfrag), but it will get amplified if we decrease the coalescence timescale with respect to

the fragmentation timescale (i.e. increase νcoal with respect to νfrag). Not only would

such modest intervention allow the overall system to continue functioning, it does not
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require knowledge of the infected’s identities. There is also no assumption that the

N0 members of the group which carries the initial infected case at t = 0, remain in

that group. In the school setting, schedules could be adjusted to slow down or speed

up classroom use and recess, without the need for disruptive school closures [141] or

the need to test, label or isolate infected children. In particular, the coalescence rate

in a school could be reduced by simply staggering the lunchtimes for separate classes,

as opposed to isolating them entirely. Having individual classes in the cafeteria at

different times does not count as a coalescence event, while a common lunchtime

period would. Hence the coalescence rate can been reduced without removing any of

the daily routine activity. In financial markets, if one wanted to prevent highly noisy

fluctuations of the type observed in Fig. 4.3, similar control might be achieved by

basing the joining and leaving rules of the online chatrooms frequented by financial

traders, on present occupancy. In viral marketing, the attractiveness of the message

or product quantified by the infectivity p can be completely subjugated by suitable

management of the group dynamics (νcoal versus νfrag), as firms using e-commerce and

e-advertisement are now realizing [157]. These findings are potentially applicable to

many other scenarios, given that many real-world activity/infection curves resemble

those in Figure 4.2.

4.6 Results for general infection models

Having focused exclusively on the SIR viral process, we now compare the infection

profiles generated using other commonly studied viral processes. To ease comparison,

the population maintains the same coalescence-fragmentation group dynamics as fea-

tured throughout this paper. We find that a similarly large range of I(t) profiles arise
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Figure 4.6: (Color online) SIR process in presence of the coalescence-fragmentation
group dynamics. (a) Schematic SIR process. (b) Typical individual simulation run
showing I(t) for N = 10000, νfrag = 0.001, νcoal = 0.99, p = 0.001 and q = 0.1.
(c) Typical individual simulation run showing I(t) for N = 10000, νfrag = 0.01,
νcoal = 0.9, p = 0.001 and q = 0.001. (d) Comparison between run-averaged I(t)
(solid curve, red) using the same parameters as (c), and I(t) for a weighted network
(blue dotted curve) in which all nodes are connected with strength P .

for these other viral processes as for SIR, which is understandable given that they

are all being driven by the same background group dynamics. In addition to p and

q, some of the viral processes will use μ which is a birth and death probability rate,

γ which is a probability rate of transition from I to S, and ω is a probability rate of

transition from R to S.

As suggested in the earlier parts of this paper, we might expect the numerical

simulations to exhibit three main classes of behavior for each type of viral process: (1)

group dynamics is much slower than epidemic spreading, hence the virus tends to exist
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only within the initial group; (2) group dynamics is comparable with the epidemic

spreading, hence grouping plays a significant role in suppressing or amplifying the

spreading leading to generic spiky behavior in the infection profile I(t); (3) group

dynamics is much faster than epidemic spreading, in which case analytic theory can

be developed as discussed earlier in Sec. 4.4 for SIR. Figure 4.6 summarizes some

typical results from the SIR process in the presence of group dynamics, as discussed

throughout this paper. As in Fig. 4.3, a broad range of I(t) profiles can be obtained –

in particular those with large resurgences and a long-tailed decay – simply by varying

νcoal, νfrag, p, and q. As shown in Fig. 4.6(d), individual runs cannot be explained

by considering the SIR process on a static weighted network. This is because any

static network model neglects the dynamically changing nature of the transmission

pathways, i.e. the dynamically changing contact structure.

Figure 4.7 presents the SIS viral process which is appropriate for diseases without

immunity. Recovery from infection is followed by an instant return to the susceptible

pool. The slow growth and low stable state (endemic equilibrium) are both due to

suppression by the group dynamics, which only allows a part of the population to

come in contact with infecteds, while others are isolated in different groups. Before

an infected node can contact the whole population and infect them, it may recover

and become susceptible again. Figures 4.7(b) and (c) show how the restoration rate

γ, combined with νfrag and νcoal, affect the stability of I(t) after reaching the endemic

equilibrium. Large γ values yield large jumps, and vice versa, because it leads to

quickly replenishment of the pool of susceptibles. Figure 4.8 presents the SIRS viral

process which is appropriate for diseases in which an infected has a recovery time

and then returns to susceptible status. It appears similar to SIS, but produces bigger

fluctuations than SIS since there is the possibility that infecteds maintain an inert
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Figure 4.7: (Color online) SIS process in presence of the coalescence-fragmentation
group dynamics. (a) Schematic SIS process. (b) Typical individual simulation run
showing I(t) for N = 10000, νfrag = 0.01, νcoal = 0.99, p = 0.01 and γ = 0.0001.
(c) Typical individual simulation run showing I(t) for N = 10000, νfrag = 0.001,
νcoal = 0.99, p = 0.01 and γ = 0.001. (d) Comparison between I(t) (solid curve, red)
using the same parameters as (c), and I(t) for a weighted network (blue dotted curve)
in which all nodes are connected with strength P .
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Figure 4.8: (Color online) SIRS process in presence of the coalescence-fragmentation
group dynamics. (a) Schematic SIR process. (b) Typical individual simulation run
showing I(t) for N = 10000, νfrag = 0.01, νcoal = 0.99, p = 0.01,q = 0.001 and
ω = 0.001. (c) Typical individual simulation run showing I(t) for N = 10000,
νfrag = 0.001, νcoal = 0.99, p = 0.01,q = 0.001 and ω = 0.001. (d) Comparison
between I(t) (solid curve, red) using the same parameters as (c), and I(t) for a
weighted network (dotted curve, blue) in which all nodes are connected with strength
P .
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Figure 4.9: (Color online) SIRD process (i.e. SIR with demography) in presence of the
coalescence-fragmentation group dynamics. (a) Schematic SIR process. (b) Typical
individual simulation run showing I(t) for N = 10000, νfrag = 0.01, νcoal = 0.99,
p = 0.01, q = 0.001 and μ = 0.000001. (c) Typical individual simulation run showing
I(t) for N = 10000, νfrag = 0.01, νcoal = 0.99, p = 0.01, q = 0.001 and μ = 0.001.
(d) Comparison between I(t) (solid curve, red) using the same parameters as (b) but
with μ = 0.001, and I(t) for a weighted network (blue dotted curve) in which all
nodes are connected with strength P .

state (R) for a finite time, which hence allows I(t) to become very small. The net

effect is that the I(t) peak-trough ratio is enhanced as compared to SIS.

Figure 4.9 presents the SIRD viral process which corresponds to the addition of

demography (i.e. births and deaths) to SIR. It assumes that there is a natural mor-

tality μ (i.e. each individual has a lifespan 1/μ). In order to keep the total population

constant S + I + R = N , μ also represents the birth rate of the population. Figure

4.8(b) shows that when the birth-death processes are much slower than infection and
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recovery processes, the infection profile I(t) is essentially the same as SIR model in-

cluding group dynamics. The fact that the endemic equilibrium is not stable can be

solved by increasing μ. However we stress that as in all other cases, the resultant I(t)

profile is different from the corresponding result for a static weighted network (Fig.

4.9(d)).

4.7 Summary and outlook

We have presented and analyzed a simple model of contagion within a population

featuring dynamically evolving connectivity, allowing group-level dynamics and the

individual-level transmission process to co-exist on similar timescales. In spite of the

simplicity of our model, we find that the profiles produced bear a striking resemblance

to a wide variety of real-world examples from social, financial and biological domains.

The common features of multiple resurgent peaks and abnormal decay times are ob-

served both theoretically and empirically. To demonstrate further the generic nature

of the empirical profiles that we show in Fig. 4.3, and hence the relevance of our

theoretical model, we refer interested readers to examine the explicit YouTube pro-

files in Ref. [144], and the wider range of examples in Ref. [158]. In terms of further

justifying the underlying group dynamics that we imposed, we stress that the recent

Ref. [113] shows explicitly that these coalescence-fragmentation group dynamics are

consistent with that observed in insurgencies. Adding in the feature of transmis-

sion, as we do in the present paper, elevates this particular real-world application

to the hotly debated issue of understanding how information and know-how about

IEDs (Improvised Explosive Devices) – in particular innovations in design – spreads

through an insurgency. This latter topic is a very important practical one given the
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recent insurgent preference for IED use in the current wars in Iraq and Afghanistan.

Although it is of course possible that such empirically observed I(t) profiles can

be generated by other more sophisticated models – e.g. more detailed social dynamic

mechanisms, the introduction of spatial heterogeneity, or more elaborate generaliza-

tions of the SIR transmission process – we find it intriguing that our simple analysis

suffices. We hope that these findings stimulate future work on the potential effects of

different social group dynamics (see, for example, Palla et al. [155]) and on detailed

analytic descriptions of the resulting infection profiles.



CHAPTER 5

Adding Degree of Freedom to Individual
Particles

5.1 Background

Quantifying the group dynamics of living objects is a fundamental challenge across

the sciences [54, 159–169]. Humans represent a particularly difficult case to analyze,

since their groups can be formed in both real (offline) and virtual (online) spaces.

Such fascinating sociological challenges have attracted the attention of many physi-

cists in recent years under the heading of Econophysics and Sociophysics [165–170].

Indeed, the Econophysics website provides a rapidly increasing repertoire of such

investigations [171].

Massively multiplayer online games typically allow individuals to spontaneously

form, join or leave a formal group called a guild [172, 173]. The design of the game

encourages players to form such groups by making the most rewarding quests (i.e.,

missions) too difficult to accomplish alone. Millions of people worldwide log on to the

world’s largest online game (World of Warcraft (WoW)) for the equivalent of several

days every week. Indeed, online games are one of the largest collective human activi-

ties on the planet and hence of interest from the perspectives of global commerce [174],

security [175] and even epidemiology [176]. A seemingly unrelated social phenomenon

111
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which is also of great concern, is urban gangs. Urban gangs have been gaining in pop-

ularity among young people both nationally and internationally [177,179,193]. There

are obvious differences in the settings and history of online guilds and offline gangs,

however the empirical datasets that we have compiled enable us to perform a unique

comparative study of their respective grouping dynamics [172,173,179].

Studies of the formation and evolution of groups have long occupied a central

position within the sociological and organizational theory literatures, particularly in

terms of understanding how individual level characteristics (e.g., demographics, skill

sets) shape group dynamics [54,159–163,166–169,180–184]. Proponents of homophily

tend to argue that individuals choose to participate in groups that minimize within-

group heterogeniety, since sameness facilitates communication and reduces potential

conflict [161,185–188]. With respect to stability, previous research has suggested that

members of groups that are most unlike the other members of the group are also more

likely to exit the group [189]. By contrast, some researchers suggested that rather

than minimize diversity among members, members might instead join groups that

maximize the diversity of skills in the group (team) [190, 191] since a wider skill set

might be more efficient in meeting particular goals [168,190,191].

In this paper, we analyze data obtained from street gangs in the offline, real

world [177, 179, 193] and Internet guilds in virtual online worlds within massively

multiplayer online role-playing games [172–174]. We develop and employ a physically

motivated model to analyze these two high profile, yet seemingly unrelated, human

activities. The underlying datasets were obtained from online WoW guilds [172,173]

and urban street gangs in Long Beach, California [179]. They have been separately

compiled by members of our team over the past few years through a combination

of field-work and data compilation, and are believed to be state-of-the-art datasets
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for each respective system. As a result of our analysis, we uncover evidence of a

quantitative link between the collective dynamics in these two systems. Although

the observable group-size distributions are very different, we find that a common

microscopic mechanism can reproduce the observed grouping data for each, simply

by adjusting the populations’ average attribute property. In particular, we find that

the evolution of gang-like groups in the real and virtual world can be explained using

the same team-based group formation mechanism. In contrast to the quantitative

success of our team-based model, we find that a homophilic version of the model

fails. Our findings thus provide quantitative evidence that online guilds and offline

gangs are both driven by team-formation considerations, rather than like-seeking-

like. Interestingly, each server’s Internet Protocol (IP) address seems to play an

equivalent role to a gang ethnicity. Given the current public concern regarding the

social consequences of intensive Internet game-playing, and separately the current

rise in street gangs [177, 179, 193], we hope that the present findings help contribute

to the debate by setting these systems on a common footing.

The plan of the paper is as follows: Sec. 5.2 gives the main empirical results that

are to be modelled. Section 5.3 gives the key ideas and a detailed description of our

self-organized team formation model. The main results comparing the cumulative

group size distributions from our model and real data for both WoW guilds and

LA gangs are also presented, so as to establish the validity of our model. Section 5.4

gives further analysis on the non-cumulative WoW guild size distributions for separate

servers, as well as the group size distributions for LA gangs of different ethnic groups.

These results represent a more stringent test on our model. Section 5.5 defines the

kinship model and demonstrates its inadequacy. Finally, Sec. 5.6 VI provides the

conclusions and discusses the implications.
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Figure 5.1: (Color Online) Internet guilds and street gangs. (a) Empirical data from
World of Warcraft on all servers. (b) Cumulative distribution differs significantly
from a power-law. Inset shows the averaged churn of the guilds. (c) Cumulative
distribution for Long Beach (i.e. “LA”) gangs. Inset shows the underlying discrete
distribution.
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5.2 Main empirical results

Figures 5.1(a) and 1(b) give the guild size distribution N(s) and cumulative guild

size distribution N(s′ > s) for the WoW dataset, using October 2005 as a rep-

resentative month. Overall, data were collected from three different servers, each

representing a different game environment, between June 2005 and December 2005.

There are 76686 agents involved in a total of 3992 guilds spread across three servers:

S1, S2, and S3. The cumulative distributions for the separate servers S1, S2 and

S3 will be shown later (see Fig. 5.3(a)). All three servers are based in the US and

were selected at random, with the servers’ identities anonymized to preserve players’

privacy. The vertical axis N(s) is the number of guilds of size s. Data is shown using

October 2005 as a representative month, however other months show similar behavior

as demonstrated in a later section. Interestingly, the distribution is neither a Gaus-

sian nor a power-law. Figure 5.1B confirms that if we were to insist on power-law

behavior, the supposedly constant slope in N(s′ > s) would vary unacceptably. The

inset in Fig. 5.1(b) shows the averaged churn 〈churn〉 versus the guild size s, where

〈churn〉 describes the monthly guild dynamics as follows: The membership of a guild

is recorded at the beginning and end of each month, with the churn being the number

of players who were members at the beginning of the month but who then left during

that month. For guilds which have the same size at the beginning of the month, we

then average over the churn values and call this averaged quantity 〈churn〉. We have

checked across different months, and have also looked at different measures, in order

to convince ourselves that the data in Fig. 5.1 are typical of the WoW data. Figure

5.1(c) shows our empirical data for the 5214 members of street gangs in Long Beach,

California just outside of Los Angeles. The data are shown for June 2005, but again

other months show similar behavior. For convenience, we label these as “LA gangs”.
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All gangs are included irrespective of their ethnicity (e.g. Latino). The number of

real gangs is much smaller than the number of guilds in WoW. N(s′ > s) for gangs

is not smooth – nor is it a power-law with a well-defined slope, as shown explicitly in

Fig. 5.1(c).

5.2.1 WoW: Monthly Guild Size Distributions and Churn

To demonstrate that the form of the distribution in October 2005 is typical of

the WoW data, we also analyzed the data for all the remaining months. For each

month, we repeat the same exercise of counting the guilds and their sizes for each

server. Here, we show the data for several additional months (i.e. June, August and

December 2005) as well as October 2005. The empirical data shows that the number

of players in each month was 80183 (June), 93127 (August), 76686 (October), and

93322 (December). Figure 5.2 shows N(s) and N(s′ > s) for these four months. The

distributions for different months behave in a similar way. The results indicate that

the guild size distribution measured at any time during the data collection process,

represents a general property of the game during the entire data collection window.

In the inset of Fig. 5.1(b), we showed the values of 〈churn〉 for all the guilds

in the three servers (S1, S2, S3) for October 2005. Here, the data of 〈churn〉 for

June, August, and December 2005 are shown in Fig. 5.3. The data indicate that the

behavior of 〈churn〉 versus guild size is almost the same for every month. Thus, the

behavior 〈churn〉 ∼ s is a general feature of the WoW data. We have also analyzed the

data for separate servers, and the behavior is again nearly the same. Note that there

are necessarily fewer data points for a single server, hence it is more convenient to

show the results corresponding to all servers bundled together. Later, we will compare
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Figure 5.2: (Color Online) (a) WoW guild size distributions N(s) for the months
June, August, October, and December 2005. The total numbers of players in these
months are 80183, 93127, 76686, and 93322, respectively. (b) The cumulative guild
size distributions N(s′ > s) for each of the four months.
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Figure 5.3: (Color Online) The average churn 〈churn〉 (as defined in text) as a function
of guild size in the WoW dataset in a log-log plot, treating the data in all three servers
collectively. Data for the months June, August, October, and December 2005 are
shown.

Figure 5.4: (Color Online) The cumulative gang size distribution N(s′ > s) for LA
gangs of three main ethnic groups. (a) Cumulative gang size distribution for gangs
with ethnicity E1. The total membership is N = 608. (b) Ethnicity E2 with total
membership N = 1504. (c) Ethnicity E3 with total membership N = 2552.
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Figure 5.5: (Color Online) Our generic model of group dynamics. (a) The basic
model setup, without yet specifying the criterion that an agent uses when seeking to
join or leave a group. Two possible extremes are the team-formation model shown
in Fig. 5.2.1(b), where an agent seeks a group with a suitable niche in p-space, and
the kinship model (not shown) where an agent seeks a group having members with a
similar p-value. Details of the implementation and specific rule-sets are discussed in
Sec. 5.3.
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results of N(s) as obtained by our team-formation model with data of separate servers

(see Fig. 5.7).

5.2.2 LA gangs: Different ethnic groups

Our dataset on LA gangs collected in June 2005 consists of the sizes and the eth-

nicity of the gangs. Putting all the data together, there are a total of 5214 members.

The cumulative distribution N(s′ > s) was shown in Fig. 5.1(c). The distribution

shows a similar shape as for the WoW cumulative guild size distribution. From the

information on the ethnicity of the gangs, there are three main ethnic groups that

one can identify. For privacy reasons, we label these groups as E1, E2, and E3, with

membership 608, 1504, 2552, respectively. Figure 5.4 shows the cumulative gang size

distributions N(s′ > s) for the three major ethnic groups. For each of these ethnic

groups, the number of gangs is very small (around 10). For this reason, N(s′ > s)

shows step-like behavior. Comparing with WoW data, the total number of gangs

and the number of members in the LA gang data are both much smaller than the

corresponding numbers in WoW. In a later section, we will compare the results for

our team-formation model with these data of different ethnicity groups (see Fig. 5.8).

5.3 Self-organized team formation model

In this section, we introduce the key ideas and describe in detail our model and

show that our simply model reproduces accurately the quantitative features in empiri-

cal data. As an overview, Fig. 5.2.1(a) shows our generic model of self-organized group

formation which acts as the core setup for implementing specific rule-sets for joining

and leaving a group – for example, team-formation (see Fig. 5.2.1(b)) or homophilic
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kinship. Our generic model (Fig. 5.2.1(a)) creates a heterogeneous population by

assigning an attribute pi to each person (i.e. agent) i. Since people may have a

range of attributes, we assign each agent a spread Δpi around pi. With the goal of

building a minimal model, we choose each pi to be a single number chosen randomly

from a uniform distribution between zero and one. More complicated models can be

built by assigning an array of numbers to describe the attributes of a person. The

values of Δpi’s are random numbers drawn from a single-peaked distribution with

mean 〈Δpi〉 and spread (i.e. standard deviation) σΔp. The Δpi values are shown

in Fig. 5.2.1 as horizontal bars around the corresponding color-coded pi value. We

then assign a tolerance to every agent – for simplicity, we choose the same value τ

for each agent. The tree on the right-hand side of Fig. 5.2.1(a) applies to both team-

formation and kinship versions. In the team-formation version, the group contains

agents with complementary attributes (i.e. a team) while in the kinship version a

group contains agents with similar attributes (i.e. like with like).

The model can be constructed without considering a particular context. It could

represent players in WoW, members in gangs, employees in companies, etc. Fig-

ure 5.2.1(b) describes what happens in one timestep in the team-formation implemen-

tation of Fig. 5.2.1(a), both schematically and mathematically. The kinship model,

described later, essentially corresponds to an opposite set of add-on rules to the team-

formation model. The team-formation model, as we shall see, works better for the

empirical data and we will focus on it in this section. We will use the words “team”

and “group” interchangeably in the following discussion. However we emphasize that

for the portions of the following discussion concerning Fig. 5.2.1(a), the word “team”

can be replaced by “group” since the statements apply equally to the team-formation

model and the kinship model.
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Parameters – Consider a population of N agents or players. The attributes of

an agent i are described by a set of numbers (pi,Δpi, τi), where pi describes the ith-

agent’s mean attribute. Δpi describes the i-th player’s range of attributes around

pi, or equivalently a breadth of skills around the mean skill. The value of Δpi is

independent of the value of pi. Here, τi is a parameter that describes the tolerance

of an agent in deciding whether to leave a group, after he compares how close his

attributes are to the members of the group. In the present model, we have not

included the possible evolution of attributes, although this is an interesting problem

for future studies.

Initialization – Initially, each agent is randomly assigned his attribute parameter

pi, the value of which is chosen randomly from a uniform distribution between 0 and

1. The agents’ Δpi’s are assumed to follow a Gaussian distribution characterized by

a mean 〈Δpi〉 and standard deviation σΔp. Each agent is then assigned a value of Δpi

from this Gaussian distribution. With pi and Δpi, the agent i covers the attributes

pi ±Δpi, for attributes characterized by the range between 0 and 1. The coverage of

attributes is not allowed to go below 0 or above 1, i.e., when pi + Δpi > 1, the upper

bound is set at 1 and when pi − Δpi < 0, the lower bound is set at 0. For simplicity,

the values of τi are taken to be the same for all agents, i.e., τi = τ for all agents. The

total number of agents in the system N can be easily taken from the real data. Thus,

the model is completely characterized by four physically meaningful parameters: N ,

〈Δpi〉, σΔp and τ .

Key Ideas and Model Implementation – In each timestep, an agent i is randomly

picked. The attachment of the agent i to a group then follows the rules below.

(a) For a single agent joining a team – This step is imposed when the agent

i being picked is an isolated agent. In this case, another agent j is randomly
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picked. The agent j belongs to a team labelled J with nJ members. Note

that nJ = 1 if j is an isolated agent. The key idea is that it is a two-way

consideration when an agent i wants to join a team J : the agent must find a

team to which his attributes could contribute, and that team must in turn find

the agent’s attributes acceptable. Moreover, the agent can only see the average

attributes of the team to which he is applying. In other words, when joining

a team, an agent will be guided by general information about the team (i.e.

the average attribute of the team) rather than detailed information about all

its members. This mimics the fact that an outsider cannot be expected to be

aware of all the details of a team’s members before joining, since such knowledge

can generally only be gained after being a member of that team. Once inside

the team, this information can then be gained either through direct access to

insider knowledge, or simply through osmosis.

An agent i therefore assesses a team J of which he considers to join, by looking

at the average attribute PJ of that team:

PJ =
1

nJ

∑
k∈J

pk, (5.1)

where the sum is over all members of team J . The agent i will find the team

suitable if his attributes complement those of the existing members. Therefore,

if his attributes are too close to that of the existing members of the team, he

feels that he could not contribute much and he will not join the team. The

condition that the agent i finds the team J acceptable can thus be modelled by

|pi − PJ | > Δpi.

For the team J , it will consider whether to enroll agent i as a new member.

As an applicant to the team J , the team will know the range of attributes that
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agent i could cover and then assess the potential contribution of agent i to the

team. This can be measured by counting the number of existing members with

attributes in the range of agent i, normalized by the team size nJ . Thus, we

define fi,J as

fi,J =
1

nJ

∑
j∈J

θ(Δpi − |pj − pi|), (5.2)

where the sum is over all members in team J and θ(x) is the Heaviside function,

i.e., θ(x) = 1 for x > 0 and θ(x) = 0 otherwise. In deciding whether to accept a

new member, we define a team’s tolerance by averaging the individual tolerance

of its members, i.e.,

τJ =
1

nJ

∑
j∈J

τj. (5.3)

For τj = τ for all agents, τJ = τ . Note that fi,J is a quantity less than unity.

If fi,J is large, many existing members in team J have attributes that are close

to that of agent i and thus the team tends not to accept agent i as a new

member due to redundance in attributes. Thus, the condition that the team J

will accept agent i as a new member is fi,J < τJ .

Considering joining a team requires two-way consideration, the criteria for an

agent i joining a team J are: |pi − PJ | > Δpi and fi,J < τJ .

(b) For an agent leaving a group, finding a better group, or for groups

merging – This step is imposed when the agent i being picked belongs to

a group labelled I with nI (nI > 1) members. The following attempts are

implemented in sequence.

(i) Agent i decides whether he can tolerate the team – After being a member

of team I for a while, the agent i has the chance to explore the microscopic

details (individual attributes) of the team members. The key idea is that if
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he finds that there are many members with similar attributes to his, he will

leave. To decide whether he can tolerate the team, he looks at the fraction fi

of members in the team with attributes within his range of coverage, i.e.,

fi =
1

nI − 1

∑
k∈I(k �=i)

θ(Δpi − |pk − pi|), (5.4)

where the sum is over all the agents in the team I except the agent i himself.

Note that 0 ≤ fi ≤ 1. If fi is close to 1, then there are too many members

with similar attributes and the agent i will have a higher tendency to leave. If

fi > τi, the i-th agent cannot tolerate the team any more and he leaves the

group to become an isolated agent. If this happens, the timestep ends.

(ii) Another key idea is team switching. If the agent i finds that he can tolerate

the team, it does not necessarily mean that he is very happy with the team. He

will try to find a better (more suitable) team to join. An agent j, who belongs

to a group J , is randomly picked. The agent i will then compare whether the

current team I or the team J is more suitable for him. He intends to join team

J if |pi−PJ | > |pi−PI |. This criterion implies that the agent i finds that he can

contribute more in team J than in team I. Whether team J would accept agent

i as a new member is again determined by the criterion fi,J < τJ , as in step

(a). Thus, the criteria for agent i to switch from team I to team J successfully

are |pi −PJ | > |pi −PI | and fi,J < τJ . If there is group switching, the timestep

ends. We remark that the steps (b)(i) and (ii) are similar to job hunting. If

the job is too bad, then one will simply quit without finding a new job. This is

reflected in (b)(i). However, even if the job is acceptable, one tries to look for a

better job. In job hunting, it is a two-way process: The employer is looking for

someone who can cover the weaker aspects or services in a company, and the



126

employee is looking for a better place. This is reflected in (b)(ii).

(iii) The next key idea is to allow for team mergers. If nothing actually happened

in (i) and (ii), i.e., the i-th agent does not leave the team I, either because

he is happy or because team switching does not work, we consider the pos-

sibility of allowing two teams to merge. Team I to which agent i belongs,

merges with another team J under the criterion |PI − PJ | > ΔPI , where

ΔPI = (1/nI)
∑

i∈I Δpi. Similarly, team J considers merging with team I under

the criterion |PJ − PI | > ΔPJ . That is to say, if |PI − PJ | > max(ΔPI ,ΔPJ),

then teams I and J merge to form a bigger team. Note that there are two ways

to implement mergers. The team J could be the same team that the j-th agent

belonged to in procedure (ii) above, or a new agent j can be picked randomly

when mergers are considered. Results are nearly identical for the two ways.

To summarize, the key ingredients in our team-formation model are: (i) Teams

tend to recruit members to cover a spectrum of attributes; (ii) agent joins a team by

assessing his potential contribution to the team; (iii) agent joining a team only sees

an average of the attributes of a team; (iv) team accepts new member by assessing his

potential contribution; (v) agent leaves a team when there are many members with

similar attributes; (vi) agent always looks for better teams where he could contribute

more; and (vii) team tends to expand by mergers when its membership becomes

stable. Each of these ingredients seems reasonable based on our common knowledge

of how people behave in team situations. We remark that this set of rules allowed

us to produce results that are similar to the real data in both the WoW and gangs

data. If more data are available to put further constraints on the modelling or if we

only want to model a selected behavior in the data, then more rules may be needed
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or some rules may be simplified. For example, the ingredient (vi) is needed to model

the 〈churn〉 in WoW data and the ingredient (vii) is needed to get at the proper sizes

of the bigger groups in real data.

Figure 6 highlights the main modelling results. Figure 5.3(a) shows that excellent

agreement is obtained across the entire range of observed group sizes for N(s′ >

s), between the empirical WoW guild data from Fig. 5.1(b) (dark blue) and the

team-formation model (red) of Fig. 5.2.1. Throughout this paper, the model(s) is

implemented with the observed number of agents as an input. Here τ = 0.69, 〈Δpi〉 =

0.16 and σΔp = 0.022, but we stress that good agreement can be obtained across a

reasonably wide range of parameter choices. The remaining panels (Fig. 5.3(b)-(d))

show the data separated by server. The parameter values used are within 10% of

those quoted above. To calculate 〈churn〉 in the model, we record the membership for

each guild in a run during 0.7 Monte Carlo timesteps (after a transient of 1000 Monte

Carlo steps). A Monte Carlo time step is the duration over which each agent has, on

average, been chosen once for carrying out the dynamics in the model, i.e. each agent

has been given a chance to join or leave a group. We have tried different time windows

so as to obtain the 〈churn〉 in WoW data and found that 0.7 Monte Carlo timesteps

give good agreement. However, we remark that it is different to relate the time scale

in simulations with real time exactly. A similar process is followed for the LA gangs in

Fig. 5.3(e). In an analogous way to the breakdown by computer server in Fig. 5.3(a)-

(d), one can breakdown the LA gang data by ethnicity. The fit by gang ethnicity (see

Sec. 5.4 later) is good even though the numbers are much smaller than WoW and

hence more prone to noise. This surprising connection between ethnicity and server

is consistent with the fact that it is essentially impossible to change one’s real-world

ethnicity or virtual-world server (unless a large fee is paid to WoW in the latter case,
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Figure 5.6: (Color Online) Empirical data and model comparison for (a)-(d) World
of Warcraft and (e) LA gangs. Empirical data are dark blue, and the team-formation
model from Fig. 5.2.1(b) is in red. The kinship model (light blue) produces a poor
fit in both cases.
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and even then it is an irreversible process). It is also intriguing that the best-fit model

parameter values are so similar across WoW servers, and across gang ethnicities. This

suggests a quasi-universal behavior in terms of the way in which people form gang-

like groups online and offline. The small observed server-dependences (and ethnicity-

dependences) can be explained by players on different servers (and gang members

of different ethnicities) perceiving their environments differently, and hence adopting

slightly different tolerances. Our team-formation model thus manages to capture all

the features of the empirical gang and guild dynamics, including the approximately

linear increase of the averaged churn with guild size in WoW. By contrast, the kinship

(i.e. homophilic) version (see Sec. 5.5 later) of the model does not reproduce the

empirical results of either WoW or the gangs, even qualitatively, as demonstrated by

the light blue curves in Fig. 5.3.

5.4 Further analysis

The agreement of our model with WoW data in N(s′ > s) for all and individual

servers (Fig. 5.3(a)-(d)) can be further illustrated by comparing the underlying, i.e.,

non-cumulative, distribution for the guild size distribution N(s). Since N(s) is less

smooth and thus more noisy than the cumulative distribution N(s′ > s), we are

actually executing a more stringent test of the model by carrying out the team-

formation model comparison based on N(s) instead of N(s′ > s).

From the WoW dataset, we count the number of players in all the guilds in each

server, and also the total number of players in all servers. In each case, we take the

number of players as input forN and run our team-formation model. By adjusting the

parameters 〈Δpi〉, σΔp and τ in the model, we obtained the guild size distributions
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N(s) for each of the three separate servers and for the three servers collectively.

Figure 5.7 shows the N(s) for our model obtained from one run in each of these

cases, together with the distribution obtained from the data. The parameters are

given in the figure caption. The results from the team-formation model capture the

essential features in the WoW guild size distributions.

From the parameters for each of the servers, it can be seen that they are very

similar but not identical. This indicates that while the behavior of the players in

different servers are not too different, there are slight differences indicating some kind

of special characteristic of a server or game environment. We will see that similar

features also appear in the LA gang data, when treating ethnicity separately. To the

extent to which the server identity mimics an ethnicity, this seems to open up some

deeper sociological questions which can be explored in future research on guilds and

gangs.

From our attempts in modelling the real data, we now make a few comments on

the model as related to the key features in real data: Step (a) (see Sec. 5.3) that

sets the criteria for an agent to join a team and a team to accept a new member is

the essence of the team-formation model. This is essential in getting the shape of

N(s′ > s). We observed that the shape of N(s′ > s), and thus N(s), is more sensitive

to the parameter τ . In the WoW data, there is a quantity called 〈churn〉. In order to

get reasonable values for 〈churn〉, a mechanism is required for agents to leave a team

or to switch teams readily. Steps (b)(i) and (b)(ii) serve to provide such a mechanism.

In order to get at the largest size of the guilds in real data, we need a mechanism for

guilds to merge. Step (b)(iii) serves this purpose.

If we were to focus only on fitting the guild-size or gang-size distributions, and

hence decided not to care about simultaneously fitting the churn 〈churn〉 in the WoW
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Figure 5.7: (Color Online) The WoW guild size distribution N(s) in October 2005.
(a) Guild size distribution treating all servers collectively. The parameters used for
team formation are N = 76686, 〈Δpi〉 = 0.160, σΔp = 0.022, and τ = 0.69. (b) Guild
size distribution of server S1. The parameters used for team formation simulation are
N = 24033, 〈Δpi〉 = 0.160, σΔp = 0.020, and τ = 0.67. (c) Guild size distribution
of server S2. The parameters used for team formation simulation are N = 24477,
〈Δpi〉 = 0.160, σΔp = 0.025, and τ = 0.75. (d) Guild size distribution of server S3.
The parameters used for team formation simulation are N = 28176, 〈Δpi〉 = 0.161,
σΔp = 0.020, and τ = 0.70. Each simulation result is obtained from one particular
run of the team-formation model. Note that the parameters for different servers are
very similar.
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data, we could construct even simpler versions of our model and yet still obtain group-

size distributions similar to the real data. For example, a model with slower team

switching and more static groups can be used to get at N(s′ > s) similar to real data.

However, with our present team-formation model we have managed to fit these size

distributions and account for the churn. One implication of our work is therefore that

previous grouping models which have been proposed to explain time-averaged group

sizes in real data without churn, should be re-examined once such churn data becomes

available. Fitting churn as well as the group-size distribution presents a stringent

challenge which relatively few candidate models will survive. Performing studies

analogous to our present one, would therefore be a very useful way of reducing the

number of competing models. Likewise our own extensive experimentation indicates

that it would be very hard to identify an alternative model to our team-formation

one, in which equally high quantitative accuracy was obtained and yet the structure

and/or set of microscopic rules were fundamentally different. This gives us confidence

that our analysis has indeed identified a realistic group formation mechanism.

We have tested our model against the empirical data of N(s′ > s) for LA gangs

data, treating all the gangs collectively (Fig. 5.3(e)). Here, we further test our model

for the three major ethnic groups as shown in Fig. 5.4. Treating the ethnicity as

the analogy of servers in WoW, we counted the number of members in the gangs in

each of the ethnic groups. For the three major ethnic groups E1, E2, and E3, there

are 608, 1504, and 2552 members, respectively. These numbers are used as inputs to

our model. We then adjust the parameter values in the model to give a distribution

N(s′ > s) that resembles the empirical data, for each of the three cases. Figure 5.8

shows the results for the ethnic groups E1, E2, E3. It is very encouraging that our

model manages to capture the main features of the empirical data for the LA gangs,
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Figure 5.8: (Color Online) The cumulative gang size distribution N(s′ > s) for LA
gangs of different ethnicity. (a) N(s′ > s) of membership of LA gangs of ethnicity
E1. The parameters used for the team formation model are N = 608, 〈Δpi〉 = 0.150,
σΔp = 0.016, and τ = 0.73. (b) N(s′ > s) of membership of LA gangs of ethnicity E2.
The parameters used for the team formation model are N = 1504, 〈Δpi〉 = 0.142,
σΔp = 0.014, and τ = 0.72. (c) N(s′ > s) of membership of LA gangs of ethnicity E3.
The parameters used for the team-formation model are N = 2552, 〈Δpi〉 = 0.141,
σΔp = 0.016, and τ = 0.72. Each model result corresponds to one run of the team-
formation model simulation. Note that the parameters for different ethnic groups are
very similar, as was the case for different servers in WoW.

even though the individual gang sizes and number of gangs in each ethnic group are

much smaller than for the case of WoW. Note that the parameters (given in the

caption) are quite similar for different ethnic groups. Interestingly, using the value

of N from the empirical data for each of the ethnic groups, the resulting number of

groups in our team-formation model turns out to be similar to that for the empirical

data. From the results of WoW guilds and street gangs, we can see that the role of

server in WoW has a direct analogy with the role of ethnicity in street gangs.

In summary, our team-formation model reproduces the main quantitative fea-

tures of the empirical WoW guild size distribution and the cumulative distribution

(Fig. 5.1(a), Fig. 5.1(b), Fig. 5.2), in the case when the servers are considered col-

lectively (Fig. 5.3(a)-(d)) and in the case when the servers are considered individu-

ally (Fig. 5.7). The model also reproduces the main feature in the group dynamics
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(Fig. 5.3(a)-(d)) observed in the empirical data on churn (Fig.5.1(b) and Fig. 5.3).

Furthermore, the agreement between model and empirical data extents to results in

different time windows (i.e. months). Our team-formation model also reproduces

the main quantitative features of cumulative gang size distributions in empirical data

(Fig. 5.1(c)), taking the ethnicity collectively (Fig. 5.3(e)) and separately (Fig. 5.8).

Thus, our self-organized team-formation model captures quantitatively the features

of the group dynamics resulting from cyber-world interactions, as in the case of WoW

guilds, and real-world interactions as in the case of street gangs.

5.5 Inadequacy of the alternative kinship model

There are lines (in light blue) in Fig. 5.3(b) for WoW server S1 and in Fig. 5.3(e)

for street gangs that show the results for a kinship model. The kinship model is

in many ways the “opposite” of the team-formation model, and was introduced to

explore homophily as a possible alternative group-formation mechanism. In the team-

formation model, the teams tend to recruit members with attributes that spread over

the whole spectrum of attributes, i.e., the attributes of the agents complement each

other. By contrast in the kinship model, groups form around agents with similar

attributes. In short, agents tend to dislike being in a group with agents having very

different attributes. Here, we briefly discuss the mechanisms in this kinship model.

We can readily modify our team-formation model in order to create a kinship

formation model, as follows. The framework in Fig. 5.2.1(a) remains the same, and

so does Fig. 5.2.1(b) in terms of its structure – however we flip the inequalities in

Fig. 5.2.1(b) for the criteria for an agent joining a group and for a group accepting

a member. A kinship model can hence be defined which is diametrically opposite to
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our team-formation model, and yet can be discussed on the same footing. In step (a)

(see Sec. 5.3), the criteria for an agent i joining a group J are: |pi − PJ | ≤ Δpi and

fi,J ≥ τJ . These imply that an agent wants to join a group with an average attribute

close to his own, and a group wants to accept new members having attributes close

to its existing members. In step (b)(i), an agent i cannot tolerate a group I when

he finds the members are too different from him. Thus the agent leaves if fi < τi.

In step (b)(ii), each agent is continually looking for a better group which has a more

similar average attribute to him. So group switching happens if |pi − PJ | < |pi − PI |

and fi,J ≥ τJ . Finally, when membership becomes stable, a group tends to expand

by merging with groups having similar average attributes. Thus two groups I and J

merge if |PI − PJ | ≤ min(ΔPI ,ΔPJ).

In fact, for every team formation model that incorporates the idea of agents with

different attributes tending to form a team, a corresponding kinship model can be

identified, built around the opposite idea of agents with similar attributes forming

groups. However the cumulative distribution function obtained from the kinship

model cannot capture even the basic qualitative shape of the empirical data. The

detailed reason is that the kinship model tends to produce too many groups of small

sizes.

5.6 Conclusions and implications

Our results show that irrespective of their respective settings and origins, the

observed dynamics in two very distinct forms of human activity – one offline activity

which is widely considered as a public threat, and one online activity which is by

contrast considered as relatively harmless – can be reproduced using the same, simple
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model of individuals seeking groups with complementary attributes, i.e., they want

to form a team, as opposed to seeking groups with similar attributes, i.e., homophilic

kinship. Just as different ethnicities may have different types of gangs in the same

city in terms of their number, size, and stability, the same holds for the different

computer servers on which online players play a given game. Our quantitative results

provide a novel addition to the group formation debate by being (i) able to reproduce

the quantitative features of both the dynamical and time-averaged behavior observed

in the empirical datasets, (ii) plausible in terms of the individual-based rules that are

used to describe group membership, (iii) robust in terms of its insensitivity to small

perturbations in the model’s specification and parameter values, (iv) the number of

free parameters in the model is kept to a minimum given the available sets of data

to be modelled, and (v) able to shed light on what mechanistic rules drive people to

join and leave such groups in offline and online situations and provide the basis for

further investigations.

This close relationship between gangs and guilds might be less surprising if it were

true that both are populated by a similar sector of society. However this is not the

case. Online games are played equally by men and women across all age groups,

locations and backgrounds [172–174], while gangs are mostly populated by teenage

urban males from particular backgrounds [177]. Instead, we believe that our results

demonstrate a commonality in the way in which humans form such offline and on-

line groups. Interestingly this echoes recent claims by international law enforcement

agencies concerning the hybrid nature of transnational gangs (“maras”), crime orga-

nizations, insurgencies and terrorist groups, whose interactions and activities are now

beginning to blur the boundaries between real and virtual spaces [177].

Finally we note that this work throws up the interesting challenge of providing
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analytic solutions to accompany the empirical findings and numerical simulations.

Work is proceeding in this direction, though the difficulty of including internal degrees

of freedom, i.e., the model attributes, in general coalescence-fragmentation problems

is daunting.



CHAPTER 6

Effect of Global Interactions

6.1 Motivation

A CO2 emissions level of ≤ 500 ppm [192] would set the probability of a po-

tentially catastrophic 5◦C warming at 3% [192]. At a recent G8 summit, leaders

agreed to “strongly consider” at least halving global emissions by 2050 [193]. How-

ever, there is still no national or international consensus on how these reductions can

be systematically achieved and maintained [194], nor is there any deep quantitative

understanding of the trade-offs which could arise at the local and global level. Given

the recent instabilities in global financial markets and apparent inevitability of hu-

man irrationality [195], it is also unclear whether a free-market approach can ever be

trusted [196].

Here we analyze a simple, yet realistic dynamical model of a competitive emissions

market which allows us to investigate the simultaneous interplay between myriad com-

peting real-world factors. Our model is a non-trivial generalization of the El Farol

bar problem [197] which has attracted much attention among physicists [55,198,199].

In addition to offering the physics community a novel generalization and application

of the El Farol model, we believe that our work provides the first unified, quantitative

discussion of the underlying trade-offs between average emissions, instantaneous peak

138
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X(T) = aggregated emission 

in month T
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x(t) = daily emission
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x(t)   daily emission 

on day t

Figure 6.1: (Color) Schematic diagram of the carbon market model and the resulting
daily time series x(t) for day t = 1, 2, . . . , together with the aggregated monthly
time-series X(T ) for month T = 1, 2, . . . .

pollution levels, market stability, efficiency of production, and common information.

Our model predicts that a completely self-organized emissions market with collective

competition and no top-down management, can offer distinct advantages over a man-

aged system in terms of peak emission values. Although helpful with respect to the

mean monthly emission, top-down monthly management can by contrast induce a far

bigger volatility and hence aggravate the uncertainty in emissions.

6.2 Our emission model

Figure 6.2 shows a schematic describing our generic emissions scenario, comprising

N emitters (e.g. companies) who each decide whether to emit or not during a par-

ticular timestep t (e.g. day). All companies are assumed to have the same emission

capabilities (i.e., one unit of carbon each timestep). The system’s (e.g. national) safe
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emission level is L over some period Δt (e.g. month Δt = 30), with successive periods

(e.g. months) labelled T = 1, 2, . . . . Hence the average emission cap per timestep

(e.g. day) is L̄ = L/Δt. Depending on the top-down management infrastructure

of interest, the emitters could equally well be industries within a sector, companies

within a state, states within a country, countries within a continent, or countries or

continents within some global organization – likewise, the relevant timescales t and

T need not be days and months respectively. From a governmental perspective, the

ideal outcome would be that the total emission each month X(T ) is exactly equal to

L units of carbon pollutants: If X(T ) > L then too much carbon dioxide is emitted

into the atmosphere, while X(T ) < L means that the nation has wasted some of

its allowed production capacity [194]. Companies are rewarded in some generic way

(e.g. favorable public opinion, or a monetary compensation) for choosing to emit on

low-pollution days (x(t′) ≤ L̄) or abstaining from emitting on high-pollution days

(x(t′) > L̄), and receive punishments otherwise. Each day’s outcome is represented

in terms of its collective emission: 1 if x(t′) ≤ L̄ for a given t′ and 0 if x(t′) > L̄.

Companies rely on common, publicly disclosed information when deciding whether

or not to emit at a given timestep. We take this common information to be domi-

nated by the previous m days’ outcomes, a bit-string of length m compromised by 0

or 1, but in principle it could include other information from government, public or

other competitors. The fact that all participants have access to, and use, the same

information, can generate correlations between their actions. A strategy is a specific

prediction 0 or 1 (and hence action, emit or don’t emit) for each of the 2m possible

information bit-strings, hence there are 22m
strategies. Companies randomly select

s strategies from the strategy space with repetitions allowed during the assignment.

Each company uses its best performing strategy at a given timestep, with an indi-
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vidual strategy’s score updated by +1 (−1) at a given timestep, if it would have

made the correct (incorrect) decision. The correct decisions are emitting (not emit-

ting) when the cap is not exceeded (exceeded), and vice versa for incorrect decisions.

Tied best-performing strategies are broken by random choices. Our setup therefore

incorporates the generic complex system features of Arthur’s El Farol problem and

Challet and Zhang’s binary version [55, 197–199]. Most importantly, companies do

not communicate directly among themselves, nor do they need to know the number

of competitors around, nor are they managed by some governmental entity. Instead,

by competing to emit, they interact through the common information that their col-

lective actions create. There is recent independent evidence that groups of human

do indeed employ such general decision-based mechanisms as in Fig. 6.2 [200]. More

generally, our model mimics a simple cap-and-trade scenario in which emitters who

decide to emit on a given day immediately purchase a permit to do so. The less emit-

ters per day, the lower the demand for permits, and hence the lower that day’s permit

price, and vice versa. Hence the time-series of emissions x(t) mimics the time-series

of permit prices.

Figure 6.2 shows that this simple model is capable of reproducing the highly ir-

regular, non-Gaussian distribution of the 2009 EU carbon market to date. The model

parameters and their values have a direct and reasonable interpretation: N = 100

suggests that the actions of approximately one hundred entities (e.g. large compa-

nies) is moving the market in 2009, and hence visibly impacting the overall emissions;

m = 4 suggests that just less than one week of prior outcomes is considered relevant

for making a decision; s = 6 suggests that individual entities are using approximately

six strategies to make a decision about whether to buy a permit and hence emit.

Choosing to emit is equivalent to buying a permit and using it on that day – if less
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Figure 6.2: (Color) The upper panel is the daily time series of the first 176 trading
days’ total volume in 2009 from ECX EUA futures contract, in tonnes of CO2 (EU
allowances). The lower panel shows the empirical frequency distribution of (x −
〈x〉)/σ), as compared to our model m = 4, averaged over 100 runs. Our model is
a good representation of the empirical data, but has the added advantage that it
eliminates the extreme peaks observed in the EU market (indicated by circles in the
top panel). This suggests that our unmanaged free market mechanism would provide
tighter control than the existing EU market.
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people apply on a given day, the permit price is low which means that the time-series

of the number of emitters and the price mimic each other. Hence as a surrogate

of the actual daily emissions, we have taken the daily carbon price to represent the

daily demand for permission to emit, and hence the resulting volume of emissions.

The quantity displayed, (x−〈x〉)/σ, is independent of the number of participants N ,

for large N . We note that our model shows a smaller occurrence of extreme events

than the empirical data, suggesting that our competitive, self-organized setup might

provide better control of large fluctuations than the present EU scheme which is op-

erating. If the distribution were more Gaussian-like as in regular financial markets,

this would suggest that the market should contain many noisy speculators – however,

the multi-modal form in Fig. 6.2 implies that this is not the case.

Figure 6.2 compares the predictions of our model for monthly emissions between

an unmanaged (red curve) and managed (blue curve) system, as a function of the

amount of common information about previous outcomes (i.e. m). The average

daily emissions cap is L̄ = 60. In the managed system, at the end of month T , the

government will reduce or increase the emissions capacity L(T + 1) for month T + 1

by the amount that the aggregated emissions X(T ) was above or below L(T ). In

the unmanaged system, there is no such external control and hence L is constant.

The overall system performance can be assessed through the time-series for monthly

emissions X(T ) (Fig. 6.2): In particular (top to bottom in Fig. 6.2) the mean 〈X〉,

the maximum max(X) (where max(X) is the largest monthly emission value during

the time-window of the numerical simulation) over some fixed period (e.g. a year),

and the standard deviation (i.e. volatility σ(X)) about the mean. An interesting

comparison system is obtained by considering the “random” case of an unmanaged

system in which companies decide to emit by tossing a coin each day. In the absence
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Figure 6.3: (Color) Monthly emissions for our model, for N = 100, s = 6. Top to
bottom: the mean monthly emission 〈X〉, the maximum (i.e. peak) monthly emission,
the monthly volatility σ(X), and the governmental cost of compensation to companies
for not emitting. Red: unmanaged system. Blue: managed system. Green: random
result for learning p = L̄/N .
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of any learning (i.e. the system is non-adaptive) every decision is an independent

coin toss and hence the a priori probability to emit would be p = 0.5. However if the

entities are gradually able to learn from the feedback of the previous experience and

adapt to the ideal ratio L̄/N (at least, at the collective level) then p = L̄/N yielding

the green curves shown in Fig. 6.2.

The mean monthly emission 〈X〉 decreases monotonically as m increases for both

systems. The monthly control exerted in the managed system pulls the value closer

to the capacity limit of 1800 than for the unmanaged system. However, this improved

performance due to top-down management is accompanied by a significantly higher

volatility for m > 6 as well as a significantly higher peak pollution level. Indeed,

the managed system does worse than both the unmanaged system and the random

system with learning. This is because the month-by-month adjustment to L̄ induces

a delayed oscillatory effect which in turn generates significant volatility. A transition

occurs around m ∼ 4 where all the curves seem to cross the green (i.e. random

learning) curve. This m value coincides with the system’s dynamical de Bruijn path

(which has duration 2.2m [201]) becoming equal to the finite duration of the emission

interval (i.e. 30 days, hence 2.2m ∼ 30 which yields m ∼ 4). This precedes a

minimum in the volatility around m ∼ 5 for both managed and unmanaged systems,

which is smaller than for random learning. As for the El Farol problem [55,197–199],

this unintentional collective cooperation emerges as a result of cancellation between

the actions of crowds of emitters using one strategy, and anticrowds using the exact

opposite strategy. The cost result (bottom panel) reflects a simple one-unit payout

given to any company not emitting on a given day. The choice of emitting or not-

emitting becomes essentially cost-neutral to a given company – however for public
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relations reasons, and because they want to stay active in business, each company

still continues to compete. A higher 〈X〉 hence incurs a lower cost.

Figure 6.2 shows the model’s daily emission (Fig. 6.2(a), crosses) and volatility

(Fig. 6.2(b), crosses) as a function of the daily emissions cap L̄. The red shaded area

in Figs. 6.2(a) and (b) is the “learning zone” bounded by the two analytically obtained

limits of no learning (p = 0.5, the probability that a company is going to emit at a

timestep, horizontal red line) and learning (p = L̄/N , red diagonal line in Fig. 6.2(a)

and convex curve in Fig. 6.2(b)). The standard deviation for daily emissions in the

random case, is given analytically by the usual binomial form, i.e. [Np(1−p)] 1
2 . Using

the lower bound value p = L̄/N yields the convex curve [L̄(1−L̄/N)]
1
2 , while using the

upper bound value p = 0.5 yields the horizontal line 0.5N
1
2 = 5. The model’s mean

emission values (crosses) lie within the shaded area in Fig. 6.2(a) but are closest

to the limit p = L̄/N , thereby demonstrating that the unmanaged, self-organized

market collectively learns. For intermediate L̄ values (Fig. 6.2(b)) the corresponding

volatility tends to be smaller than the random value, however it moves above it for

very large or small L̄. For small m values, which corresponds to the crowded regime

of the strategy space, numerical runs can show significantly large volatilities (green

circle).

Figure 6.2(c) explores the implications of our results for the derivative emissions

markets. If emission markets follow the path of the mature non-emission financial

markets, it is likely that such derivatives (e.g. options) markets will become as large,

or even larger, than the primary emissions market itself [55]. In this respect, our find-

ings serve as a warning of the dangers of simply applying standard financial theory for

such derivative instruments [55]. Standard option pricing theory uses the volatility

over a given time increment as the input to the Black-Scholes pricing formula [202].
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Figure 6.4: (Color) Daily emissions for our model with m varying from 2 to 12
(s = 6). Red shaded region is the analytically obtained zone of learning (see text).
(a) Mean emission. Horizontal boundary line corresponds to no learning, diagonal
boundary line (slope of unity) is for learning. (b) Volatility. Horizontal boundary
line corresponds to no learning, convex curve is for learning. Green shaded circle
shows low m, high volatility region due to crowding in strategy space. (c) European
call option prices for different measurements of volatility according to the standard
derivative pricing theory (i.e. Black-Scholes equation). Risk-free interest rate r = 0,
current value x is set to the individual mean divided by 100, and strike price Xs equals
L̄/100. The volatility σ is scaled by 1/

√
100. The time is one day before expiration.

Blue curve uses the results from monthly measurement, while purple one is from daily
measurement. The insert shows the anomalous scaling of volatility of emissions, from
daily to monthly scales. There are 64 runs for each m. The purple crosses are the
standard deviation calculated by taking the daily volatility and multiplying by

√
30,

which would be exactly equal to the monthly volatility if the time-series followed a
random walk.
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This assumes that the market approximates to a random walk and hence that the

monthly volatility over Δt timesteps is simply the volatility over one timestep multi-

plied by
√

Δt. Figure 6.2(c) shows not only that this is incorrect (see inset), but also

that the discrepancy depends on the amount of common information m – and that as

a consequence, the price of a call option (Fig. 6.2(c)) can be mispriced according to

whether daily or monthly volatility estimates are used. This opens up an intriguing

but dangerous situation in the event of any abnormal periods in the market: Follow-

ing some external news event (e.g. collapse of an oil company), it may happen that

the number of previous days’ outcomes that are thought relevant, becomes very small

(i.e. m→ 0). As shown, the corresponding mispricing then becomes huge, leading to

possible financial instabilities.

6.3 Formal analysis of our emissions model

It remains a fascinating and important practical challenge to produce analytic

expressions in close quantitative agreement with the preceeding plots, especially about

the volatility. However, we provide in this section a formal platform on which such

analytic expressions can be built. In particular, this section serves to (1) formalize

the underlying model structure, connecting it to well-known ideas in computational

science such as Hamming distances and binary look-up tables, and (2) develop analytic

expressions for the special case where the resource level is exactly one half the number

of competing agents N . In this case, the problem maps onto the so-called Minority

Game [198]. However, far from being a very isolated special limit, we note that

our numerical simulations show that similar qualitative results are obtained for any

value of resource level L which is not too extreme (i.e. L ∼ N/2). Hence the analytic
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analysis carried out in this paper serves to take us tantalizingly close to a full analytic

expression for the emissions problem.

In order to develop neat closed-form expressions, we will make the notation sym-

metric, by mapping action 0 → −1 and 1 → +1. The emissions cap L is also set

equal to (N − 1)/2 (assuming N is odd, as is the case in the present simulations)

in order to enable analytic progress, although we stress that our simulations show

similar qualitative behaviors for general L values as long as L is not too close to 0

or N . We will focus on calculating the daily volatility, since arguably one of the

most striking results in our earlier figures is the dependence of the fluctuations on the

individual agent memory size m. At timestep t, each agent (i.e. emitting company)

decides whether to emit (1 under the previous notation, which now becomes +1) or

not (0 under the previous notation, which now becomes −1). Recall that the global

information available to the agents is a common memory of the most recent m out-

comes, which are represented as either 0 (e.g. emissions below capacity L) or 1 (e.g.

emissions above capacity L). Hence this outcome history is represented by a binary

bit-string of length m. For general m, the system will therefore move within the space

of P = 2m possible history bit-strings. These history bit-strings can alternatively be

represented in decimal form: μ = {0, 1, ..., P − 1}. For m = 2, for example, μ = 0

corresponds to 00, μ = 1 corresponds to 01 etc. A strategy consists of a predicted

action, −1 or +1, for each possible history bit-string. Hence there are 2P=2m
possible

strategies.

Figure 6.5 shows the history space from Figure 6.2, for the case of individual agent

memory m = 2, while Fig. 6.6 shows the corresponding strategy space. Figure 6.5 is

familiar to computer scientists as De Bruijn graphs, while Fig. 6.6 resembles a look-up

table (Fig. 6.6, left panel) and a Boolean hypercube which is typically used to discuss
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Figure 6.5: History Space for agent memory m = 2. Examples shown for m = 1,
m = 2 and m = 3. The history space in each case takes the form of a De Bruijn
graph. Only certain transitions are allowed because of the finite number of ways in
which the global history can change from timestep t to timestep t+ 1.
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Figure 6.6: Left: the strategy space shown for m = 2, together with example strate-
gies. This strategy space shown is called the Full Strategy Space (FSS) and it contains
all possible permutations of the actions −1 and +1 for each history. There are 22m

strategies in the FSS. Right: the 2m dimensional hypercube shows all 22m
FSS strate-

gies at its vertices. The shaded strategies span a Reduced Strategy Space RSS, which
has 2.2m = 2P strategies. The thick line connects two strategies whose Hamming
distance separation is 4.
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Hamming distances (Fig. 6.6, right panel). Each strategy is a set of instructions

to describe what action an agent should take, given any particular history μ. The

strategy space is the set of strategies from which agents are allocated their strategies.

The strategy space shown is known as the Full Strategy Space (FSS) and contains

all possible permutations of the actions −1 and +1 for each history. As such there

are 22m
strategies in this space. One can choose a subset of 2.2m strategies, called a

Reduced Strategy Space (RSS), such that any pair within this subset has one of the

following two characteristics: (i) Anti-correlated. For example, any two agents using

the (m = 2) strategies (−1,−1,+1,+1) and (+1,+1,−1,−1) respectively, would take

the opposite action irrespective of the sequence of previous outcomes and hence the

history. If we consider the excess demand D[t] = n+1[t] − n−1[t] at timestep t, where

n+1[t](n−1[t]) is the total number of agents choosing action +1(−1) at timestep t,

then their net effect on the excess demand cancels out at each timestep, regardless

of the history. Hence they will not contribute to fluctuations in D[t]. We note that

alternatively we could define the excess demand as the deviation from L, however

since we are focusing on L = (N − 1)/2 the size of the fluctuations are equivalent

in the two cases, apart from an unimportant constant factor. (ii) Uncorrelated. For

example, any two agents using the strategies (−1,−1,−1,−1) and (−1,−1,+1,+1)

respectively, would take the opposite action for two of the four histories, and the same

action for the remaining two histories. If the histories occur equally often, the actions

of the two agents will be uncorrelated on average. Note that the strategies in the

RSS can be labeled by R = {1, 2, ..., 2P = 2.2m}. A tensor Ω can be used to describe

the strategy allocation among the N individual agents. This strategy allocation acts

as a quenched disorder in the system since it is typically fixed from the beginning

of the game. Its rank is given by the number of strategies S that each agent holds.
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Many possible “microstates” describing the specific partitions of strategies among the

agents, correspond to a single Ω “macrostate”. For this reason, the formalism that

we are now presenting, if retained at the level of a given Ω, can describe the set of all

games which belong to that same Ω macrostate. We also note that Ω can be made

symmetric since the agents do not distinguish between the order in which the two

strategies are picked. For this reason, we henceforth focus on S = 2 and employ a

symmetrized version of the strategy allocation matrix: Ψ = 1
2
(Ω + ΩT ).

We now show that the the variation in the size of the fluctuations of the emissions,

as shown in the numerical results of this paper, can vary significantly as the memory

m changes – and that this inter-relation can be understand as a competition between

a crowd and its anticrowd. Consider an arbitrary timestep t during a run of the

game. The excess demand D[t] ≡ D [S[t], μ[t]] = n+1[t]−n−1[t], where S[t] is the 2P -

dimensional score-vector whose R’th component is the virtual point score for strategy

R. We note that strategies gain/lose one virtual point at each timestep, according to

whether their predicted action would have been a winning/losing action. At timestep

t, the current history is μ[t]. Hence for this given run, the standard deviation of D[t]

is given by a time-average for a given set of initial conditions and a given realization

of Ψ. We next introduce the quantity a
μ[t]
R = ±1, which is the action predicted by

strategy R in response to the history bit-string μ at time t. Carrying out a sum over

the RSS yields: D [S[t], μ[t]] =
∑2P

R=1 a
μ[t]
R n

S[t]
R . Here the quantity n

S[t]
R counts the

number of agents at time t using strategy R. We use the notation 〈X[t]〉t to denote

a time-average over the variable X[t] for a given Ψ. Therefore

〈D [S[t], μ[t]]〉t =
2P∑

R=1

〈
a

μ[t]
R n

S[t]
R

〉
t
=

2P∑
R=1

〈
a

μ[t]
R

〉
t

〈
n

S[t]
R

〉
t

where we have employed the property that a
μ[t]
R and n

S[t]
R are uncorrelated. We now



154

focus on the common situation where all histories are visited equally on average,

noting that even if this situation does not hold for a specific Ψ, it may indeed hold

once the averaging over Ψ has also been taken. For example, in the present case with

L = (N − 1)/2, all histories are visited equally at small m and a given Ψ. If we take

the additional average over all Ψ, then the same is also true for large m. Using this

property of equal histories, we obtain:

〈D [S[t], μ[t]]〉t =
2P∑

R=1

(
1

P

P−1∑
μ=0

a
μ[t]
R

)〈
n

S[t]
R

〉
t

(6.1)

=
P∑

R=1

(
1

P

P−1∑
μ=0

a
μ[t]
R + a

μ[t]

R

)〈
n

S[t]
R

〉
t
=

P∑
R=1

0.
〈
n

S[t]
R

〉
t

= 0

where we have used the exact result a
μ[t]
R = −aμ[t]

R
, together with the approximate

result
〈
n

S[t]
R

〉
t
=
〈
n

S[t]

R

〉
t
. This is reasonable since there is no a priori best strategy

typically. When the strategies are distributed reasonably evenly over the agent pop-

ulation, the average number of agents playing each strategy becomes approximately

equal and hence
〈
n

S[t]
R

〉
t

=
〈
n

S[t]

R

〉
t
. In the event that all histories are not equally

visited over time, even after averaging over all Ψ, it may still happen that the sys-

tem’s dynamics is restricted to equal visits to some subset of histories. In this case

one can then carry out the averaging in Equation (6.1) over this subspace of histo-

ries. We note that more generally, the averagings which arise in this formalism can

be carried out with appropriate frequency weightings for each history – indeed, we

can incorporate any non-ergodic dynamics provided we know the appropriate history

path.

The excess demand D[t] has a variance given by

σ2
Ψ =

〈
D [S[t], μ[t]]2

〉
t
− 〈D [S[t], μ[t]]〉2t . (6.2)
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We make the reasonable assumption that the game output is unbiased and therefore

〈D [S[t], μ[t]]〉t = 0. Therefore

σ2
Ψ =

〈
D [S[t], μ[t]]2

〉
t
=

2P∑
R,R′=1

〈
a

μ[t]
R n

S[t]
R a

μ[t]
R′ n

S[t]
R′

〉
t
.

We now employ the exact identities aR.aR′ = P (fully correlated), aR.aR′ = −P (fully

anti-correlated), and aR.aR′ = 0 (fully uncorrelated) where aR is a vector of dimension

P with components a
μ[t]
R for μ[t] = 1, 2, ..., P . This yields

σ2
Ψ =

2P∑
R=1

〈(
n

S[t]
R

)2

− n
S[t]
R n

S[t]

R

〉
t

+
2P∑

R �=R′ �=R

〈
a

μ[t]
R a

μ[t]
R′

〉
t

〈
n

S[t]
R n

S[t]
R′

〉
t

=
2P∑

R=1

〈(
n

S[t]
R

)2

− n
S[t]
R n

S[t]

R

〉
t

. (6.3)

We can equivalently write the sum over 2P terms as a sum over P terms,

σ2
Ψ =

P∑
R=1

〈(
n

S[t]
R

)2

− n
S[t]
R n

S[t]

R
+
(
n

S[t]

R

)2

− n
S[t]

R
n

S[t]
R

〉
t

=
P∑

R=1

〈(
n

S[t]
R − n

S[t]

R

)2
〉

t

≡
〈

P∑
R=1

(
n

S[t]
R − n

S[t]

R

)2
〉

t

.

For each R, the actual values of n
S[t]
R and n

S[t]

R
depend on the precise form of Ψ. We

denote the ensemble-average over all possible realizations of the strategy allocation

matrix Ψ, as 〈...〉Ψ. Employing the notation 〈σ2
Ψ〉Ψ = σ2, gives

σ2 =

〈〈
P∑

R=1

(
n

S[t]
R − n

S[t]

R

)2
〉

t

〉
Ψ

. (6.4)

Analogous expressions for the variances in n+1[t] and n−1[t] can be obtained in a

parallel way.

The time-averaged fluctuations in the excess demand are given by Eq. (6.4). In

order to reduce Eq. (6.4) to some explicit analytic expressions, approximations must

be made. Depending on the level of approximation that one is prepared to make, Eq.

(6.4) can be manipulated in a variety of ways, with the precise form of any resulting
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analytic expression depending on the approximation’s details. Here we adopt one

particular approach which is well-suited to the low m regime. We start by relabelling

the strategies, rewriting the sum in Eq. (6.4) to be over a virtual-point ranking K as

opposed to R. The variation in points for a given strategy, as a function of time for a

given realization of Ψ, will have a ranking (i.e. label) in terms of virtual-points score

which will typically change rather rapidly in time – particularly in the low m regime

of interest where strategies are continually being overturned. The specific identity of

the “K”th highest-scoring strategy’ therefore changes frequently in time, and hence

n
S[t]
R varies considerably in time. In order to proceed, we shift the focus onto the

time-evolution of the highest-scoring strategy, second highest-scoring strategy etc.,

since this should have a much smoother time-evolution than the time-evolution for

a given strategy. With all strategies starting off at zero points, the anticorrelated

strategies appear as the mirror-image, i.e. SK [t] = −SK [t]. We can denote the rank

in terms of strategy score by the label K, i.e. K = 1 is the highest scoring strategy

position, K = 2 is the second highest-scoring strategy position etc. with

SK=1 > SK=2 > SK=3 > SK=4 > ... (6.5)

assuming no strategy-ties. Since SR = −SR (i.e. all strategy scores start off at zero),

it follows that SK = −SK . We can therefore rewrite Eq. (6.4) exactly as

σ2 =

〈〈
P∑

K=1

(
n

S[t]
K − n

S[t]

K

)2
〉

t

〉
Ψ

. (6.6)

In the systems of interest the agents are typically playing their highest-scoring strate-

gies, hence knowledge of a strategy’s relative ranking is the relevant quantity for

determining how many agents will instantanously play a given strategy, not the ac-

tual value of its virtual points score. The quantities n
S[t]
K and n

S[t]

K
will therefore

fluctuate relatively little in time, enabling us to develop the problem in terms of
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time-averaged values. The number of agents playing the strategy in position K at

any timestep t, can be rewritten as some constant value nK plus a fluctuating term

n
S[t]
K = nK + εK [t]. Simulations confirm that there is indeed a suitable constant nK

such that the fluctuation εK [t] represents a small noise term. Therefore

σ2 =

〈
P∑

K=1

〈
[nK + εK [t] − nK − εK [t]]2

〉
t

〉
Ψ

(6.7)

≈
〈

P∑
K=1

〈
[nK − nK ]2

〉
t

〉
Ψ

=

〈
P∑

K=1

[nK − nK ]2
〉

Ψ

.

We have assumed the noise terms average out to be small – as with all our assump-

tions, we have checked that it is well supported by the numerical simulation. Taking

Ψ inside the sum, each term can be rewritten exactly using the joint probability

distribution for nK and nK , which we shall refer to as P (nK , nK). Therefore

σ2 =
P∑

K=1

〈
[nK − nK ]2

〉
Ψ

=
P∑

K=1

N∑
nK=0

N∑
nK=0

[nK − nK ]2 P (nK , nK).

Consider Eq. (6.8) in the limiting case where the averaging over the quenched disorder

matrix is dominated by matrices Ψ which are nearly flat. This is a good approximation

in the “crowded” limit of small m in which there are many more agents than available

strategies, since in this regime the standard deviation of an element in Ψ (i.e. the bin-

size standard deviation) will be much smaller than the mean bin-size. As a result, the

probability distribution P (nK , nK) is sharply peaked around the nK and nK values

given by the mean values for a flat quenched-disorder matrix Ψ. Defining these mean

values as nK and nK , yields P (nK , nK) = δnK ,nK
δnK ,nK

and therefore

σ2 =
P∑

K=1

[nK − nK ]2 . (6.8)

Equation (6.8) has a very simple interpretation, as the sum of the variances for each

Crowd-Anticrowd pair. There is an anticorrelated strategy K for any given strategy
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K. Hence there are nK agents using strategy K who are doing the opposite of the nK

agents using strategy K, regardless of the history bit-string. Therefore the effective

group-size for each Crowd-Anticrowd pair is neff
K = nK − nK , which represents the

net step-size d of the Crowd-Anticrowd pair in a random-walk contribution to the

total variance. The net contribution of this Crowd-Anticrowd pair to the variance is

therefore given by

[σ2]KK = 4pqd2 = 4.
1

2
.
1

2
[neff

K ]2 = [nK − nK ]2 (6.9)

where for a random walk we know that p = q = 1/2. All the strong correlations

have been included (i.e. anti-correlations), therefore we can assume that the separate

Crowd-Anticrowd pairs execute random walks which are uncorrelated with respect

to each other. This follows since the properties of the RSS guarantee that all the

remaining strategies are uncorrelated. The total variance is given by the sum of the

individual variances,

σ2 =
P∑

K=1

[σ2]KK =
P∑

K=1

[nK − nK ]2 , (6.10)

which therefore corresponds exactly to Equation (6.8). In the event that there are

frequent strategy-ties, we have to be more careful about evaluating nK because the

tie-breaking rule may affect its value. This effect will become quite important in

the case of very small m in the presence of network connections, since very small

m naturally leads to crowding in strategy space and hence mean-reverting virtual

scores for strategies. The mean-reversion will be amplified further by the presence of

network connections which increase the crowding, thereby increasing the chance of

strategy ties.

For the important limiting case of small m, we now evaluate the Crowd-Anticrowd

expressions. Crowding effects will be important since there are many more agents
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Figure 6.7: Strategy allocation matrix Ψ with m = 2 and S = 2, in the RSS, shown
schematically. The strategies are ranked according to strategy score, and are labelled
by the rank K. When Ψ is essentially flat, the number of agents playing the K’th
highest-scoring strategy will just be proportional to the number of shaded bins at
that K.

than available strategies. Each element of Ψ has a mean of N/(2P )S agents per

“bin”. The fluctuations in the number of agents per bin will be small compared to

this mean value in the case of small m and hence densely-filled Ψ – therefore Ψ will

look uniform or “flat” in terms of the occupation numbers in each bin. Figure 6.7

provides a schematic representation of Ψ in the RSS with m = 2, S = 2. When Ψ is

flat, any re-ordering due to changes in the strategy ranking has no effect on its form,

hence the number of agents playing the K’th highest-scoring strategy will always be

proportional to the number of shaded bins at that K (see Fig. 6.7 for K = 3). We
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find for general m and S:

nK =
N

(2P )S
[S(2P −K)S−1 +

S(S − 1)

2
(2P −K)S−2 + ...+ 1] (6.11)

=
N

(2P )S

S−1∑
r=0

S!

(S − r)!r!
[2P −K]r

=
N

(2P )S
([2P −K + 1]S − [2P −K]S)

= N.

([
1 − (K − 1)

2P

]S

−
[
1 − K

2P

]S
)
,

with P ≡ 2m. When each agent holds two strategies, i.e. S = 2, nK can be rewritten

as

nK = N.

([
1 − (K − 1)

2P

]2

−
[
1 − K

2P

]2
)

=
(2m+2 − 2K + 1)

22(m+1)
N . (6.12)

Therefore

σ2 =
P∑

K=1

[
(2m+2 − 2K + 1)

22(m+1)
N − (2K − 1)

22(m+1)
N

]2

(6.13)

=
N2

22(2m+1)

P∑
K=1

[2m+1 − 2K + 1]2 =
N2

3.2m
(1 − 2−2(m+1)) .

We have assumed that there are no strategy ties – in particular, we have assumed

that the simulation rules governing strategy ties do not affect the identical forms of

the rankings in terms of popularity and highest virtual points. As a result, we have

underestimated the size of the Anticrowds using low-ranking strategies and overesti-

mated the size of the Crowds using high-ranking strategies. Hence the analytic form

for σ overestimates the numerical value, as shown in Figure 6.8. Despite this, there

is remarkably good agreement between our analytic theory and the numerical results

(assuming L = (N − 1)/2 and L is time-independent, as in the Minority Game). In

exactly the same way, this formal approach can be extended to deal with the impor-

tant complementary regimes of a non-flat quenched disorder matrix Ψ, at small m,
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and a non-flat quenched disorder matrix Ψ, at large m. The resulting agreement for

these regimes is also excellent, as shown in Figure 6.8. Most importantly, the analytic

expressions in Fig. 6.8 capture some of the general qualitative trends seen in Figs. 6.2

and 6.2 for the full emissions simulation.

6.4 Summary

Despite recent skepticism surrounding the stability of free markets, our analysis

predicts that an unmanaged carbon emissions market can provide significant advan-

tages over a managed one. For a given sector, state, country or continent, our model

helps identify the appropriate degree of governmental management such that annual

global emissions targets are achieved, while simultaneously allowing for individual

choice regarding the trade-off between local social issues as listed in the abstract.

Finally, we have checked that our main conclusions are reasonably robust to different

sets of parameter values.
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Figure 6.8: Our formal theory vs. numerical simulation results for the fluctuations
σ in the emissions model with L = (N − 1)/2 as a function of memory size m, for
N = 101 agents, at S = 2, 4 and 8. Analytic forms of σ (i.e. standard deviation
in excess demand) are shown at each S value. The numerical values were obtained
from different simulation runs (triangles, crosses and circles). Figure adapted from
Ref. [55].



CHAPTER 7

Summary and Future Work

7.1 Summary

The theoretical research presented in this thesis has made several new contribu-

tions to the topic of grouping dynamics in Complex Systems. These are summarized

below:

In the first part of the thesis, we investigated a classic group-dynamics model –

EZ model [28], and how changes of microscopic rules affect the macroscopic cluster-

size distribution which emerges from the solution to the rate equation. We then

compared this model to another social group model (Gueron and Levin’s Model [54]).

Our analysis pointed out the crucial role of fragmentation among these dynamical

grouping models. We also extended our analytic treatment to the perturbation, and

varying populations of the basic EZ model.

Based on these theoretical studies, we then applied the dynamic models to different

fields, providing new aspects to the understanding and explanation of complex system

phenomena in different fields. We adapted the generalized coalescence-fragmentation

model to describe an insurgent population, which is qualitatively different from con-

ventional mass-action approaches, and we were able to explain the attrition time

163
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of modern conflict. Our work suggested some new insights in the study of modern

conflict/competition.

Following this line of thought, we also studied diffusion and spreading behavior

in such a dynamical clustering model. In particular, we analyzed the empirical data

from school colds, through to foreign exchange markets and Youtube downloads.

We found that our agent model is capable of reproducing the main features in the

data: long decay, and multiple resurgent peaks. We also looked at the epidemic

threshold. We were able to provide an analytical expression for a novel transition that

we uncovered, which in turn suggested a new strategy for controlling the spreading of

a virus. We then generalized our multi-agent system to a more complicated model,

by adding internal character (i.e. hidden variables) to the particles, and hence could

successfully capture the quantitative features of both online game and on street gangs.

This revealed several counter-intuitive common behaviors.

Apart from the coalescence-fragmentation models (i.e. local interaction models),

we also studied a global interaction model based on a generalization of the El Farol

bar problem [55, 197–199]. Applying the agent model, we proposed a quantitative

framework for studying the emerging carbon emissions market. Our model reveals

some novel underlying relationships between average emissions, instantaneous peak

pollution levels, market stability, efficiency of production, and common information

– and moreover highlights the potential mispricing of the options for carbon markets.

7.2 A vision for the future

As an extension of the work in this thesis, a long-term research goal would be to

harness other similarly large data sets which have not been available until recently, in
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order to understand, predict, and ultimately enhance social and technological systems

across all relevant real-world domains. In turn, this will involve crucially important

collaborations with expert colleagues from different fields, as well as further testing

of the core models presented here.

In the shorter term, directly related to this thesis. I think there are several

promising avenues along which this thesis may be extended:

• Relate our temporal grouping dynamic models to complex networks, i.e. repro-

duce the characteristic parameters (properties) found in the theoretical network

models [18–21] – or better, reproduce the numbers found in the real world sys-

tems.

• Combine the local grouping dynamic models and global interaction models into

a multi-level and more comprehensive model, which would be more realistic and

more capable of attacking the above point.

• More tools need to be developed to analyze the data and compare to the features

emerging from the models. In particular, suitable measures related to burstiness

and memory would be useful.

• Most importantly, I think more work could be done in each of the domains

discussed in this thesis. For example, if one could do a deeper investigation

of the WOW data (i.e. with more complete data), it would be possible to pin

down the optimal structure for a team in the game, which might then provide

a generic method for determining the optimal social group in a variety of real-

world situations.
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APPENDIX A

Derivation of Eq. 3.6

There are two populations A and B. Population A comprises an average of ns

clusters of size s and has a total population N , while population B has ps clusters of

size s and total population P . Each timestep, a cluster is selected at random from

the total population N + P , so the probability of a cluster of size s being selected

is proportional to ns (ps for B). A second cluster is then selected with probability

proportional to its size, sns (sps). The two cluster types (A or B) are compared, if

they are the same the two clusters coalesce, and if they are different then the smaller

of the two clusters selected fragments (both fragment if they are the same size). The

time evolution of the number of clusters of size s, ns , is given for s ≥ 2 by

ns[t+ 1] −ns[t] = − ns∑
ns′ +

∑
ps′

∑
s′≥s s

′ps′∑
s′ns′ +

∑
s′ps′

(A.1)

−
∑

s′≥s ps′∑
ns′ +

∑
ps′

sns∑
s′ns′ +

∑
s′ps′

− ns∑
ns′ +

∑
ps′

∑
s′ns′∑

s′ns′ +
∑
s′ps′

−
∑
ns′∑

ns′ +
∑
ps′

sns∑
s′ns′ +

∑
s′ps′

+

∑s−1
s′ ns′(s− s′)ns−s′

(
∑
ns′ +

∑
ps′)(

∑
s′ns′ +

∑
s′ps′)

and for s = 1 by

n1[t+ 1] − n1[t] = − n1∑
ns′ +

∑
ps′

∑
s′ns′∑

s′ns′ +
∑
s′ps′

−
∑
ns′∑

ns′ +
∑
ps′

n1∑
s′ns′ +

∑
s′ps′

+

∑
s′=2 s

′ns′∑
ns′ +

∑
ps′

∑
r′≥s′ r

′pr′∑
s′ns′ +

∑
s′ps′

+

∑
s′=2 ps′∑

ns′ +
∑
ps′

∑r′≤s′
r′=s′ r

′2nr′∑
s′ns′ +

∑
s′ps′

(A.2)
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Similar equations hold for population B. The first two terms on the RHS are due to a

cluster selecting (being selected by) a larger cluster of the opposite population, which

causes it to fragment. The next two terms are due to a cluster of size s selecting

any other cluster from the same population and coalescing with it. The final term

is due to to two clusters joining together to form a new cluster of size s. The s = 1

equation’s first two terms correspond to a single agent being selected to coalesce, and

the last two terms with a larger cluster fragmenting into single agents. The steady

state of this system is found from computer simulation to have the larger of the two

initial populations forming a single cluster of maximum size. Taking B to be the

larger population, (P > N) then we can simplify the above equations by using the

fact that ∑
ps′ = 1

∑
s′ps′ = P

∑
s′ns′ = N

giving

ns[t+ 1] − ns[t] =
−nsP − sns − nsN − sns

∑
ns′ +

∑s−1
s′ (s− s′)ns′ns−s′

(
∑
ns′ + 1)(N + P )

s > 1

(A.3)

n1[t+ 1] − n1[t] =
−n1N − n1

∑
ns′ + P

∑
s′=2 s

′ns′ +
∑

s′=2 s
′2ns′

(
∑
ns′ + 1)(N + P )

s = 1 (A.4)

We now make the approximation that
∑
ns′ � 1, so that the probability of a B

cluster being picked first is negligible. This is applicable for large N . With this

approximation, in the steady state these equations become

0 =
−ns(P +N + s

∑
ns′) +

∑s−1
s′ n′

sns−s′

(
∑
ns′)(N + P )

0 =
−n1N − n1

∑
ns′ + P (N − n1)

(
∑
ns′)(N + P )

ns =
1

(P +N + s
∑
ns′)

s−1∑
s′
s′ns′ns−s′ n1 =

NP

(N +
∑
ns′ + P )

(A.5)

Introducing the generating function h(ω), and its derivative

h(ω) =
∞∑

r=2

nre
−ωr dh(ω)

dω
= −

∞∑
r=2

rnre−ωr (A.6)
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We note that

−h(ω)
dh(ω)

dω
= e−4ω(2n2n2) + e−5ω(2n2n3 + 3n3n2) + e6ω(2n2n4 + 3n3n3 + 4n4n2) + ...

=
∑
i=4

e−iω

i−2∑
s′=2

s′ns′ni−s′ =
∑
i=4

e−iω

(
i−1∑
s′=1

s′ns′ni−s′ − n1ni−1 − (i− 1)ni−1n1

)

Using Eq. A.5 to replace the inner sum,

−h(ω)
dh(ω)

dω
=
∑
i=4

e−iω
(
ni

(
P +N + i

∑
ns′
)
− in1ni−1

)
=

∑
e−iω

(
ni

(
P +N + i

∑
ns′
)
− in1ni−1

)
− e−2ω

(
n2

(
P +N + 2

∑
ns′
)
− 2n1n1

)
−e−3ω

(
n3

(
P +N + 3

∑
ns′
)
− 3n1n2

)
Comparing to the s = 2 and s = 3 terms of Eq. A.5,

−h(ω)
dh(ω)

dω
=
∑
i=2

e−iωni

(
P +N + i

∑
ns′
)
− n−ω

e

∑
i=2

e−(i−1)ωini−1 + n1n1e
−2ω

= (P +N)
∑
i=2

nie
−iω +

∑
ns′
∑
i=2

inie
−ω − n1e

−ω
∑
i=1

e−iω(i+ 1)ni + n1n1e
−2ω

= (P +N)h(ω) −
∑

ns′
dh(ω)

dω
− n1e

−ω
∑
i=2

e−iω(i+ 1)ni − 2n1n1e
−2ω + n1n1e

−2ω

−h(ω)
dh(ω)

dω
= (P +N − n1e

−ω)h(ω) −
(∑

ns′ − n1e
−ω
) h(ω)

dω
− (n1e

−ω)2 (A.7)

Setting ω = 0, we obtain

h(0) =
∞∑

r=2

nr =
∑

ns − n1
dh(0)

dω
= −

∞∑
r=2

rnr = −N + n1

(N − n1)
(∑

ns − n1

)
= (P +N + n1)

(∑
ns − n1

)
(−N + n1) − n2

1

0 = P
(∑

ns − n1

)
+ (N − n1)

∑
ns′ −Nn1 n1 =

(N + P )
∑
ns

N + P +
∑
ns

Comparing with Eq. A.5 gives

∑
ns =

NP

N + P
n1 =

N + P
N
P

+ P
N

+ 2
(A.8)
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Comparing powers of e−ω in Eq. A.7 Making the assumption that the number of

groups of size 2 is likely to be much smaller than the number of size 1, we can

parameterize the n2 and higher terms by a small value, β. From computer simulations

the group size distribution is expected to be a power law, and so as 1x(i − 1)x >

jx(i− j)x for j < i− 1 and any x, the higher order terms are always smaller than the

n1. With this it can be seen that Iterating this back to n1

ni = ni−2n1
i− 1 + β

(N + P + (i+ 1)
∑
ns)

n1
i+ β

(N + P + i
∑
ns)

n1 = n1

j=i∏
j=2

ni
j + β

(N + P + j
∑
ns)

n1 = ni
1

(i+ β)!

(1 + β)!

1

(
∑
ns)

i−1

(
N+P

ns
+ 1
)

(
N+P�

ns
+ i
)
!

Taking logarithms and applying Stirling’s formula

ln ni = ln

⎛⎝n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!

⎞⎠+ ln(i+ β)! − ln

(
N + P∑

ns

+ i

)
!

= ln

⎛⎝n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!

⎞⎠+
1

2
ln(2π) + (i+ β +

1

2
)ln(i+ β)

−(i+ β) − 1

2
ln(π) −

(
N + P∑

ns

+ i+
1

2

)
ln

(
N + P∑

ns

+ i

)
+

(
N + P∑

ns

+ i

)
+ ...O

(
i−1
)

= ln

⎛⎝n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!

⎞⎠+ (i+ β +
1

2
)ln(i+ β)

−
(
N + P∑

ns

+ i+
1

2

)
ln

(
N + P∑

ns

+ i

)
+
N + P∑

ns

− β + ...O
(
i−1
)

As i becomes large we can neglect the terms of order i−1. Also as
∑
ns = NP

N+P

(Eq. A.8) then N+P�
ns

= N
P

+ P
N

+ 2 and therefore for N and P of the same order of

magnitude, this is a term of order 1. β is defined as a small quantity, so in the i large
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limit we can take the two rightmost logarithms as equal to i.

ln ni ≈ ln

⎛⎝n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!
exp

(
N + P∑

ns

− β

)⎞⎠
+

(
i+ β +

1

2
− N + P∑

ns

− i− 1

2

)
lni

= ln

⎛⎝n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!
exp

(
N + P∑

ns

− β

)
i(β−N+P�

ns
)

⎞⎠
ni = n1

(
n1∑
ns

)i−1

(
N+P�

ns
+ 1
)
!

(1 + β)!
exp

(
N + P∑

ns

− β

)
i(β−N+P�

ns
)

Using the value of n1 and
∑
ns from Eq. A.8 this becomes

ni = n1

(
1 +

NP

(N + P )2

)1−i
(

N
P

+ P
N

+ 3
)
!

(1 + β)!
e(

N
P

+ P
N

+2−β)i(β−N
P
− P

N
−2) (A.9)

The term to the power 1 − i can be seen to approach 1 as P becomes larger than

N , which was one of our initial assumptions. The dominant i dependence is then the

power law with exponent (β−2− N
P
− P

N
). Comparing with the power law coefficients

determined from numerical simulations it can be seen that β ≈ 1.7, confirming our

assumption of it as small compared to i. To remove the β parameter, we can use the

form of Eq. A.9 to substitute into Eq. A.7. Comparing powers of e−ω as before, we

find for the general case

ni =
1

N + P + i
∑
ns

∑
j=1

nj(i− j)ni−j ni =
ni−1

N + P + i
∑
ns

∑
j=1

(i− j)
njni−j

ni−1

Substituting in the form of Eq. A.9, nj = ABjjc with A, B, c constants

ni =
ni−1

N + P + i
∑
ns

∑
j=1

(i− j)
ABjjcABi−j(i− j)c

ABi−1(i− 1)c

ni =
ni−1

N + P + i
∑
ns

∑
j=1

ABjc (i− j)c+1

(i− 1)c

ni =
ni−1

N + P + i
∑
ns

∑
j=1

ABjc(i− 1)

(
i

i− 1
− i

j − 1

)c+1
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As i is large we can take i
i−1

≈ 1 and expand the bracket using the binomial series,

ni =
ni−1

N + P + i
∑
ns

∑
j=1

ABjc(i− 1)

(
1 − (c+ 1)

j

i− 1
+

(c+ 1)c

2!

( −j
i− 1

)2

+ ...

)

As i becomes large we neglect the terms of order i−1 and lower,

ni =
ni−1

N + P + i
∑
ns

∑
j=1

ABjc(i− 1 − (c+ 1)j)

ni =
ni−1

N + P + i
∑
ns

(
i
∑
j=1

ABJ c −
∑
j=1

ABjc − c
∑
j=1

ABjjc −
∑
j=1

ABjjc

)

ni =
ni−1

N + P + i
∑
ns

(
i
∑
j=1

nj −
∑
j=1

nj − c
∑
j=1

jnj −
∑
j=1

jnj

)

which uses the result from Eq. A.9 that B ≈ 1. Then as
∑
jnj = N ,

ni =
ni−1

N + P + i
∑
ns

(
i
∑

ns −
∑

ns − cN −N
)

This is similar to Eq. ??, and it can be iterated in an analogous way to yield

ni = n1

(
N+P�

ns
+ 1
)
!(

N+P�
ns

+ i
)
!

(
i− 1 − cN�

ns
− N�

ns

)
!(

1 − 1 − cN�
ns

− N�
ns

)
!

Applying Stirlings formula in the i large limit as perviously results in

ni = n1

(
N+P�

ns
+ 1
)
!(

− cN�
ns

− N�
ns

)
!
e(

N+P�
ns

+ cN�
ns

+ N�
ns

+1)i−(−N+P�
ns

− cN�
ns

− N�
ns

−1) (A.10)

where c was defined as the power law coefficient of ni, so for self consistency

c = −N + P∑
ns

− cN∑
ns

− N∑
ns

− 1

c

(
1 +

N∑
ns

)
= −N + P∑

ns

− N∑
ns

− 1

c = −N + P∑
ns

∑
ns

N +
∑
ns

− 1

With c determined, we can write Eq. A.10 as

ni = n1

(
N+P�

ns
+ 1
)
!(

N�
ns

N+P
N+
�

ns

)
!
e(

N+P
N+
�

ns
+1)i−(− N+P

N+
�

ns
−1)
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using the value of
∑
ns from Eq. A.8

ni = n1

(
N
P

+ P
N

+ 3
)
!(

(N+P )!
N2P+2NP 2

)
!
e(

P
N

N
P+2

+2)i−( P
N

P
N+2P

+2) (A.11)

ni = n1Ci
−( P

N
P

N+2P
+2) (A.12)

where C is a constant. This is valid for i� 1 and P > N .
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