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Abstract

In this thesis, the singular Lagrangian is studied by three approaches. The Hamilto-

nian formalism is treated using both Dirac,s method and Güler method (Hamilton-

Jacobi method ). The third approach is to treat the singular Lagrangian as field

(or continuous) system.

In Dirac,s method, one introduces a primary constraints to the first - class con-

straints which have vanishing poisson brackets. The equation of motion are ob-

tained as total derivatives in terms of poisson brackets.

In Hamilton-Jacobi formulation, which developed by Güler, the equations of motion

are written as total differential equations in many variables. These equations must

satisfy the integrability conditions.

The third approach is the treating of the singular Lagrangian as field (or continu-

ous) system, We mixed both Lagrangian formulation and Hamilton-Jacobi method

to obtain a solvable partial differential equation of second order. The solution of

these equations are obtained easily. These solution satisfied the equations of mo-

tion.

In these three approach, the equation of motion are built for several physical models

and integrability conditions of these equations of motion are discussed. A compari-

son between the results of these approaches is done and it is shown that the results

are the same.
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 ملخص

 
 

في البداية تم  .تعتمد هذه الاطروحة علي دراسة اللاجرانج الاحادي من خلال ثلاث طرق

 ، اما الطريقة الثالثه فتتمثل بمعاملة  معالجة صيغة الهاميلتون باستخدام طريقتين ديراك وجولر

 اللاجرانج الأحادي لنظام متصل ) مجال ( . 

، ويتم (أقواس بوسون بحيث يتم  تلاشي)في طريقة ديراك ، نستخدم أحد القيود الاساسية 

 الحصول علي معادلات الحركة من المشتقات الكليه لإقواس بوسون.

 كمعادلات  تكتب معادلات الحركةاكوبي، التي طورها العالم جولر، في طريقة هاميلتون ــ ج

 ان تحقق شروط التكامل.تفاضلية بمتغيرات متعددة والتي يجب 

 اللاجرانج وطريقة هاميلتون جاكوبي  تم دمج طريقتىفي طريقة المجال المتصل، 

 لحصول علي معادلات تفاضلية جزيئة من الدرجة الثانية، ويتم حل هذه المعادلات ل

 للحصول علي معادلات حركة.

 في  الثلاث طرق توصلنا الي بناء معادلات الحركة لعدة نماذج فيزيائية وتم دراسة شروط 
 

 التكامل  لمعادلات الحركة لكل نظام فيزيائي،  وتمت المقارنة بين نتائج هذه الطرق وتبين
 
 .أنً النتائج متطابقة 
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Chapter 1

Introduction

1.1 Historical Background

The Hamiltonian formulation of singular systems is usually made through the for-

malism developed by Dirac (1; 2). In this formalism, the constraints caused by the

singularity of Hess matrix ∂2L
∂q̇i∂q̇j

, i, j = 1, ..., n, are added to the canonical

Hamiltonian, and then the consistency conditions are worked out, being possible

to eliminate some degrees of freedom of the system. Dirac also showed that the

gauge freedom is caused by the presence of first class constraints. This formalism

has a wide range of applications in field theory and it is still the main tool for the

analysis of singular systems (3; 5). Despite the success of Dirac’s method, it is

always interesting to apply different formalisms to the analysis of singular systems.

The study of another formalisms for singular lagrangians systems may provide

new tools to investigate these systems. In classical dynamics, different formalisms

(Lagrangian, Hamiltonian, Hamilton-Jacobi) provide different approaches to the

problems, each formalism has advantages and disadvantages in the study of some

features of the systems and being equivalent among themselves. In the same way,
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different formalisms provide different views of the features of singular systems, which

justify the interest in their study.

Also in this thesis, we generalize the Hamilton-Jacobi formalism that was devel-

oped by Güler (6; 7). This approach based on Carathéodory’s equivalent Lagrangian

method (8) to write down the Hamilton-Jacobi equations for the system and make

use of its singularity to write the equations of motion as total differential equations

in many variables . The advantage of the Hamilton-Jacobi formalism is that we

have no difference between the first and the second constraints and we do not need

gauge-fixing term because the gauge variables are separated in the processes of con-

structing an integrable system of total differential equation.

In this work we will investigate several models using Dirac and Hamilton-Jacobi

(Güler) approaches. Further more, we will treate these models using Lagrangian

formalism as field systems. In the following three sections we will give brief review

of these formalisms.

1.2 Singular Systems

The singular Lagrangian system represents a special case of a more general dynamics

called constrained system (2). The dynamics of the physical system is encoded by

the Lagrangian, a function of positions and velocities of all degrees of freedoms

which comprise the system . The singular Lagrangian can be achieved by two

formulations, the Lagrangian and the Hamiltonian formulations.

This section serves as an initiation to the concept of singularities in the Lagrange

formalism. We will introduce some basic notions such as constraints arising due

to the singularities and the definition of the canonical momenta. We will start our

discussion of Singular Lagrangian systems with the principle of least action. Any
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physical system can be described by a function L depending on the positions and

velocities (9)

L = L(qi(t), q̇i(t)), i = 1, ..., n (1.2.1)

We assume, for the sake of simplicity, that this Lagrange function exhibits no ex-

plicit time dependence. The abbreviations q(t) and q̇(t) stand for the set of all

positions qi(t) = qi(t) and velocities q̇i(t) = q̇i(t), respectively, with i = 1, ..., n. The

system motion proceeds in a way that the action integral

A =

∫ t2

t1

dτL(qi(t), q̇i(t)), (1.2.2)

becomes stationary under infinitesimal variations δqi(t). Assuming that the end

points are fixed during the variation, i.e. δqi(t1) = δqi(t2) = 0, yields the equations

of motion for the classical path, which is called Euler-Lagrange equation

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (1.2.3)

Executing the total time derivative gives

q̈j
∂2L

∂q̇i∂q̇j
=
∂L

∂qi
− q̇j

∂2L

∂qi∂qj
, (1.2.4)

In this form we recognize that the accelerations q̈i can be uniquely expressed by the

position and the velocities q̇i if and only if the Hess matrix

wij =
∂2L

∂q̇i∂q̇j
, i, j = 1, ..., n, (1.2.5)

is invertible. In other words its determinant must not vanish.

detwij 6= 0, (1.2.6)

Since we are interested in the Hamiltonian formulation, we have to perform a Leg-

endre transformation from the velocities to the momenta. The latter are defined

as

pi =
∂L

∂q̇i
. (1.2.7)
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In the case that the determinant vanishes, the Lagrangian ( 1.2.1) is singular and

some of the accelerations are not determined by the velocities and positions. This

means that some of the variables are not independent from each other. The singular-

ity of the Hessian is equivalent to the noninvertibility of (1.2.5 ). As a consequence,

in a singular system we are not able to display the velocities as functions of the

momenta and the positions. This gives rise to the existence of relations between

the positions and momenta

φm(pi, qi) = 0, (1.2.8)

these relations are called primary constraints in Dirac′s approach. They follow

directly from the structure of the Lagrangian and the definition of the momenta

(1.2.7). The interesting point is that these functions are real restrictions on the

phase space.

1.3 Dirac,s Method

The standard methods of classical mechanics can’t be applied directly to the sin-

gular Lagrangian theories. However, the basic idea of the classical treatment and

the quantization of such systems were presented along time by Dirac (1; 2). And

is now widely used in investigating the theoretical models in a contemporary ele-

mentary particle physics and applied in high energy physics, especially in the gauge

theories(5). This is because the first-class constraints are generators of gauge trans-

formation which lead to the gauge freedom (14) Let us consider a system which

is described by the Lagrangian (1.2.1) is singular if the rank of the Hess matrix

Aij = ∂2L
∂q̇i∂q̇j

, i, j = 1, ..., n, is r = n−m,m < n.otherwise, the Lagrangian will

be regular The singular system characterized by the fact that all velocities q̇i are

not uniquely determined in terms of the coordinates and momenta only. In other
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words, not all momenta are independent, and there must exist a certain set of re-

lations among them of the form (1.2.8) The generalized momenta corresponding to

the generalized coordinates qi are defined as

pa =
∂L

∂q̇a
, a = 1, ..., n− r, (1.3.1)

pµ =
∂L

∂q̇µ
, µ = n− r + 1, ..., n, (1.3.2)

where q̇i stands for the total derivative with respect to t. The Relations (1.3.2)

enable us to write the primary constraint as (1; 2)

H ′µ = Pµ +Hµ = 0. (1.3.3)

In this formulation the total Hamiltonian is defined as

HT = H0 + λµH
′
µ, (1.3.4)

where the canonical Hamiltonian H0 is defined as

H0 = piq̇i − L, i = 1, ..., n, (1.3.5)

and λµ are arbitrary functions. ( Throughout this thesis, we use Einstein’s summa-

tion rule which means that the repeating of indices indicate to summation ). The

equations of motion are obtained in term of Poisson brackets as

q̇i = {qi, HT} = {qi, H◦}+ λµ{qi, H ′µ}, (1.3.6)

ṗi = {pi, HT} = {pi, H◦}+ λµ{pi, H ′µ}. (1.3.7)

The consistency conditions, which means that the total time derivative of the pri-

mary constrains should be identically zero are given as

H ′µ = {H ′µ, HT} = {H ′µ, H◦}+ λµ{H ′µ, H ′ν} ≈ 0, (1.3.8)
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where µ, ν = 1, ..., r. Equations (1.3.6, 1.3.7, 1.3.8 ) may be identically satisfied for

the singular system with primary constraints. These equations may be reduced to 0

= 0, where it is identically satisfied as a result of primary constraints, else they will

be lead to new conditions which are called secondary constraints. Repeating this

procedure as many times as needed, one arrives at a final set of constraints or/and

specifies some of λµ. Such constraints are classified into two types, a) Firstclass

constraints which have vanishing Poisson brackets with all other constraints. b)

Second-class constraints which have nonvanishing Poisson brackets. The second-

class constraints could be used to eliminate conjugated pairs of the p,s and q,s from

the theory by expressing them as functions of the remaining p,s and q,s . The total

Hamiltonian for the remaining variable is then the canonical Hamiltonian plus the

primary constraints H ′µ of the first type as in Eq. (1.3.4), where H ′µ are all the

independent remaining first-class constraints.

1.4 Hamilton-Jacobi Approach

(Güler Method)

The aim is to obtain a valid and consistent Hamilton-Jacobi theory of singular

systems. The main point of the method is to define the equivalent Lagrangian

(variational principle ) and then pass to the phase space. This formulation leads us

to a set of Hamilton-Jacobi partial differential equation (6), (7) and (8).

1.4.1 Construction of Phase Space

The starting point of the Hamilton - Jacobi method is to consider the Lagrangian

L = L(qi, q̇i, t) with the Hess matrix (1.2.5) of rank (n − r), r < n. Then we can
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solve ( 1.3.1) for q̇a in term of qi, ẋµ, pa and t as

q̇a = q̇a(qi, ẋµ, pb; t). (1.4.1)

Substituting (1.3.1) into (1.3.2), we get

pµ =
∂L

∂q̇µ
= −Hµ(qi, ẋµ, pa; t). (1.4.2)

Relations (1.4.2 ) indicate the fact that the generalized momenta pµ are not all

independent which is a natural result of the singular nature of the Lagrangian.

Although, it seems that Hµ are functions of ẋµ , it is a task to show that they do

not depend on it explicitly. The fundamental equations of the equivalent Lagrangian

method read as

p0 =
∂S

∂t
= −H0(qi, ẋµ, pa; t); pa =

∂S

∂qµ
, pµ =

∂S

∂qµ
≡ −Hµ, (1.4.3)

where the function S ≡ S(qi, t) is the action. The Hamiltonian H0 reads as

H0 = piq̇i + pµẋµ|pν=−Hν − L(t, qi, ẋν q̇a), µ, ν = n− r + 1, ..., n. (1.4.4)

Like the functions Hµ , the Hamiltonian H0 is also not an explicit function of ẋµ.

Therefore, the function S ≡ S(qi, t) should satisfy the following set of Hamilton

Jacobi partial differential equation (HJPDEs ) which is expressed as

H ′0

(
t, xµ, qa, pi =

∂S

∂qi
, p0 =

∂S

∂t

)
= 0, (1.4.5)

H ′µ

(
t, xµ, qa, pi =

∂S

∂qi
, p0 =

∂S

∂t

)
= 0, (1.4.6)

where

H ′0 = p0 +H◦, H ′µ = pµ +Hµ. (1.4.7)

Equations (1.4.5) and (1.4.6) may be expressed in a compact form as

H ′α

(
tβ, qa, pi =

∂S

∂qi
, p0 =

∂S

∂t

)
= 0,

α, β = 0, n− r + 1, ..., n, a = 1, ..., n− r,
(1.4.8)
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where

H ′α = pα +Hα. (1.4.9)

The equations of motion are written as total differential equations in many variables

tβ as follows (7)

dqi =
∂H ′α
∂pi

dtα, i = 0, 1, ...n, (1.4.10)

dpa = −∂H
′
α

∂qa
dtα, a = 1, ...n− r, (1.4.11)

dpµ = −∂H
′
α

∂qµ
dtα, α = 0, n− r + 1, ..., n. (1.4.12)

We define

Z = S(tα, qa) (1.4.13)

and making use of Eq.(1.4.8 ) and definitions of generalized momenta (1.4.10, 1.4.11,

1.4.12, 1.4.13 ) we obtain

dZ =
∂S

∂tα
dtα +

∂S

∂qa
dta = (−Hαdtα + padqa) =

(
−Hα + pa

∂H ′α
∂pa

)
dtα. (1.4.14)

Equations (1.4.10-1.4.12) and (1.4.14) are called the total differential equations

for the characteristics. If these equations form a completely integrable set, the

simultaneous solutions of them determine the function S(tα, qa) uniquely by the

prescribed initial conditions. The set of Equations (1.26-1.28) is integrable if and

only if the variations of H ′0 and H ′µ vanish identically

(6; 17; 18) that is

dH ′0 = 0, (1.4.15)

dH ′µ = 0, µ = n− r + 1, ..., n. (1.4.16)

If condition (1.4.15) and (1.4.16) are not satisfied identically, one considers them as

new constraints and again testes the integrability conditions. Hence , the canonical

formulation leads to obtain the set of canonical phase space coordinates qα and pa

9



as functions of ta , besides the canonical action integral is obtained in terms of the

canonical coordinates. The Hamiltonians Hα are considered as the infinitesimal

generators of canonical transformations given by parameters tα respectively (6), (7)

and (8).

1.5 Mixture of Lagrangian and Hamiltonian For-

mulation of Constrained System

1.5.1 Singular Lagrangian as Field System

Singular Lagrangian as field system has been studied in Ref [9]. As a natural

extension of the Hamiltonian formulation we would like to study the Lagrangian

approach of a constrained system. The usual way to pass from the Hamiltonian to

the Lagrangian approach is to use Eqs. (1.4.10-1.4.12) Since there are additional

constraints, Eq (1.4.7 ) given in the phase space, they should also appear as con-

straints in the configuration space. As we have stated before, Eqs. (1.4.10-1.4.12)

and Eq.(1.4.7) allow us to treat the system as a continuous or field system. Thus,

we propose that the Euler-Lagrange equations of a constrained system are in the

form (field system)

∂

∂xµ

(
∂L′

∂(∂µqa)

)
− ∂L′

∂qa
= 0, (1.5.1)

with constraints

dGµ = −∂L′
∂xµ

dt, (1.5.2)

where

L′(xµ, ∂µqa, ẋν , qa) ≡ L[qa, xµ, q̇a = (∂µqa)ẋ], ẋν =
dxν
dt

, (1.5.3)
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and

Gµ = Hµ

(
qa, xµ, pa =

∂L

∂q̇a

)
(1.5.4)

where Hµ is obtained form the Hamilton-Jacobi formalism (1.4.7).

One should notic that variations of constraints should be considered in order to

have a consistent theory. Many physical models has been investigated by Hamilton-

Jacobi approach,(9) -(16). The validity of this methods need further physical ap-

plications.

The thesis is arranged as follows: in chapter two models of Singular Lagrangians

are studied using Dirac,s method. In chapter three also the same models are investi-

gated using Hamilton-Jacobi (Güler) method. The treatment of singular Lagrangian

systems as field (continuous) systems is discussed in chapter four. Chapter five is

devoted to the conclusion of the our study.
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Chapter 2

On singular Lagrangian and

Dirac,s Method

In this chapter, we study some singular Lagrangians from the classical mechanics

of particles and apply Dirac′s method for building the equations of motion. We

will construct the total Hamiltonian HT of the systems and obtain the equations of

motion . The consistency conditions will be discussed.

2.1 The First singular Lagrangian

The First singular Lagrangian is given as (20)

L =
m

2
(q̇1

2 + q̇2
2 + l2q̇3

2 + 2lq̇1q̇3 cos q3 + 2lq̇2q̇3 sin q3) + V (q1, q2, q3) (2.1.1)

The Lagrangian (2.1.1) is singular since the Hess matrix (1.2.5) is of rank two.

The generalized momenta,(1.3.1) read as

p1 = mq̇1 +mlq̇3 cos q3, (2.1.2)

p2 = mq̇2 +mlq̇3 sin q3, (2.1.3)
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p3 = ml2q̇3 +ml(q̇1 cos q3 + q̇2 sin q3). (2.1.4)

Multiplying (2.1.2) by cos q3 and (2.1.3) by sin q3 and then subtracting the sum of

the result from (2.1.5), one gets the primary constraints (1.2.8) according to Dirac

as

φ1 = p3 − lp1 cos q3 − lp2 sin q3 = 0. (2.1.5)

Now, let us rewrite (2.1.2) and (2.1.3) as

p1 −mq̇1 = mlq̇3 cos q3, (2.1.6)

p2 −mq̇2 = mlq̇3 sin q3. (2.1.7)

From Eqs (2.1.6) and (2.1.7) one gets

p1q̇1 + p2q̇2 =
p1

2 + p2
2

2m
+
m

2
(q̇1

2 + q̇2
2)−ml2q̇32. (2.1.8)

The usual Hamiltonian (1.3.5) is

H0 = p1q̇1 + p2q̇2 + p3q̇3 − L. (2.1.9)

Using (2.1.2) , (2.1.3) and (2.1.4) , (2.1.9) takes the form

H0 =
p1

2 + p2
2

2m
− V, (2.1.10)

and using (1.3.4) , the total Hamiltonian is

HT =
p1

2 + p2
2

2m
− V + ν(p3 − lp1 cos q3 − lp2 sin q3). (2.1.11)

Now, the consistency condition reads as

φ̇1 = [φ1, HT ] = V,3 − l cos q3V,1 − l sin q3V,2 (2.1.12)
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where,

V,i =
∂V

∂qi
, i = 1, 2, 3 (2.1.13)

Relation (2.1.12) leads to the secondary constraint which is a relation between the

coordinates

φ2 = V,3 − l cos q3V,1 − l sin q3V,2, (2.1.14)

so one can write the secondary constraint in the form

φ2 = q3 − F (q1, q2). (2.1.15)

Now let us evaluate φ̇2

φ̇2 = [φ2, HT ] = F,1
P1

m
+ F,2

P2

m
− ν(1 + l cos q3F,1 + l sin q3F,2) ≡ 0, (2.1.16)

from which we get the multiplier ν as

ν =
p2F,1 + p2F,2

m(1 + l cos q3F,1 + l sin q3F,2)
. (2.1.17)

The equations of motion (1.3.6) and (1.3.7) read as

q̇1 =
p1
m
− νl cos q3, (2.1.18)

q̇2 =
p2
m
− νl sin q3, (2.1.19)

q̇3 = ν, (2.1.20)

ṗ1 =
∂V

∂q1
, (2.1.21)

ṗ2 =
∂V

∂q2
, (2.1.22)

ṗ3 =
∂V

∂q3
− ν(lp1 sin q3 − lp2 cos q3). (2.1.23)

The set of equations (2.1.18-2.1.23) with (2.1.17) represent a consistent set of ordi-

nary differential equations.

15



2.2 Mittelstaedt,s Lagrangian

The second model is Mittelstaedt,s Lagrangian model (20), which is given as

L =
1

2m
(q̇1 + q̇2)

2 +
1

2µ
q̇3

2 + V (q1, q2, q3). (2.2.1)

As the Hess matrix of the above Lagrangian is of rank two, this Lagrangian is

Singular.

We start with obtaining the momenta (1.2.7), which are given as

p1 = p2 =
1

m
(q̇1 + q̇2), p3 =

1

µ
q̇3, (2.2.2)

The primary constraint is then

φ1 = p2 − p1 = 0. (2.2.3)

The original Hamiltonian becomes

H0 =
m

2
p21 +

µ

2
p23 − V. (2.2.4)

The total Hamiltonian is then

HT =
m

2
p21 +

µ

2
p23 − V + ν(p2 − p1). (2.2.5)

The consistency condition φ̇1 = [φ1, HT ] leads to the constraint

φ2 =
∂V

∂q1
− ∂V

∂q2
= 0. (2.2.6)

This is a relation between q1, q2 and q3 which briefly, is written as

φ2 = q2 − F (q1, q3) = 0. (2.2.7)

We then build the consistency condition φ̇2 as

φ̇2 = [φ2, HT ], (2.2.8)
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from which we find

ν(1 + F,1)−mP1F,1 − µP3F,3 = 0,

(
F,i =

∂F

∂qi

)
(2.2.9)

From Eq (2.31) one allows fixing varible ν as

ν =
mp1F,1 + µp3F,3

1 + F,1
. (2.2.10)

We can now write the canonical equations of motion (1.3.6) and (1.3.7) as

q̇1 = mp1 − ν, q̇2 = ν, q̇3 = µp3, (2.2.11)

ṗ1 = V,1, ṗ2 = V,1, ṗ3 = V,3. (2.2.12)

Eqs. (2.2.11) and (2.2.12) with (2.2.10) represent a set of consistent differential

equations.

2.3 Deriglazov Lagrangian

The third model is Deriglazov Lagrangian which is given as (20)

L = q22 q̇1
2 + q21 q̇2

2 + 2q1q2q̇1q̇2 + V (q1, q2). (2.3.1)

This Lagrangian is singular since the Hess matrix is of rank one. The momenta

(1.3.1) read as

p1 = 2q22 q̇1 + 2q1q2q̇2, (2.3.2)

p2 = 2q21 q̇2 + 2q1q2q̇1. (2.3.3)

Here the momenta p1 and p1 are not independent. The primary constraint is

then

φ̇1 = q1p1 − q2p2 = 0. (2.3.4)
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The original Hamiltonian takes the form

H0 =
p21
4q22
− V (q1, q2), (2.3.5)

and the total Hamiltonian is then

HT =
p21
4q22
− V (q1, q2) + ν(q1P1 − q2p2). (2.3.6)

The consistency condition is

φ̇1 = [φ1, HT ] = q1V,1 − q2V,2 ≡ φ2 = 0, (2.3.7)

where φ2 is the secondary constraint.

Again φ̇2 is

φ̇2 = [φ2, HT ] = 0, (2.3.8)

from which we find

− F,1
p1
2q22
− q1F,1ν − q2ν = 0. (2.3.9)

From Eq.(2.3.9) one allows fixing variable ν as

ν = − p1
2F 2(F + q1F,1)

F,1, (2.3.10)

with

q2 = F (q1). (2.3.11)

Therefore, the canonical equations of motion are

q̇1 =
p1
2q22

+ q1ν (2.3.12)

Substituting Eq.(2.3.10) in (2.3.12) we get

q̇1 =
p1

2F (F + q1F,1)
. (2.3.13)
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The other equation of motion is

ṗ1 = V,1 +
p21

2F 2(F + q1F,1)
F,1. (2.3.14)

One notices that Newton,s equations of motion can be obtained if we let V (x, y) =

x2 + y2 and F (x) = ±x as

2F (F + q1F,1)q̈1 + 2F (2F,1 + q1F,11)q̇1
2 − V,1 = 0 (2.3.15)
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Chapter 3

Hamilton-Jacobi Method

In this chapter we study some singular Lagrangian systems from the classical me-

chanics of particles and apply Hamilton-Jacobi Method to construct Hamilton-

Jacobi Partial Differential Equations (HJPDE),and then we write the equations of

motion.

3.1 Charged Particle Moving in a constant Mag-

netic Field

The motion of charged particle in a plane is described by the singular Lagrangian

(21).

L =
1

2
(q̇1 − q3q2)2 +

1

2
(q̇2 + q3q1)

2. (3.1.1)

The rank of the Hess matrix (1.2.5) is two. Then the singularity of the Lagrangian

enables us to write the generalized momenta (1.3.1) and (1.3.2) as

p1 = q̇1 − q3q2, (3.1.2)

p2 = q̇2 + q3q1, (3.1.3)
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p3 = 0 ≡ −H3. (3.1.4)

We solve (3.1.2) and (3.1.3) for q̇1 and q̇2 in terms of p1 and p2 as

q̇1 = p1 + q3q2 ≡ ω1 (3.1.5)

q̇2 = p2 − q3q1 ≡ ω2 (3.1.6)

The canonical Hamiltonian H0 (1.3.5) is then

H0 = paq̇a + pµq̇µ − L|q̇a≡ωa

=
1

2
p21 +

1

2
p22 + p1q3q2 − p2q3q1.

(3.1.7)

The set of (HJPDE) according to Eq.(1.4.7) is

H ′0 = p0 +
1

2
p21 +

1

2
p22 + p1q3q2 − p2q3q1 = 0, (3.1.8)

and

H ′3 = p3 +H3 = p3 = 0 (3.1.9)

Relation (3.1.8) and (3.1.9) are the constraints that restrict the system. The total

differential equations of motion (1.4.10) , (1.4.11) and (1.4.12) are

dq1 =
∂H ′0
∂p1

dτ +
∂H ′3
∂p1

dq3, (3.1.10)

dq2 =
∂H ′0
∂p2

dτ +
∂H ′3
∂p2

dq3, (3.1.11)

dq3 =
∂H ′0
∂p3

dτ +
∂H ′3
∂p3

dq3, (3.1.12)

dp1 = −∂H
′
0

∂q1
dτ − ∂H ′3

∂q1
dq3, (3.1.13)

dp2 = −∂H
′
0

∂q2
dτ − ∂H ′3

∂q2
dq3, (3.1.14)

dp3 = −∂H
′
0

∂q3
dτ − ∂H ′3

∂q3
dq3. (3.1.15)
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Substituting Eqs.(3.1.8) and (3.1.9) in eqs.(3.1.10-3.1.15), we obtain the total dif-

ferential equations of motion as

dq1 = (p1 + q3q2)dτ, (3.1.16)

dq2 = (p2 − q3q1)dτ, (3.1.17)

dq3 = dq3, (3.1.18)

dp1 = p2q3dτ, (3.1.19)

dp2 = −p1q3dτ, (3.1.20)

dp3 = −(p1q2 − p2q1)dτ. (3.1.21)

To check whether the above set of equations is integrable or not, let us consider the

total variations of H ′0 and H ′3 . If fact

dH ′0 = 0, (3.1.22)

dH ′3 = dp3 = (−p1q2 + p2q1)dτ, (3.1.23)

since dH ′3 is not identically zero. we have a new constraint H ′4,

H ′4 = (p1q2 − p2q1)≡ 0. (3.1.24)

Thus for a valid theory , the total differential of H ′4 is identically zero,

dH ′4 = p1dq2 + q2dp1 − p2dq1 − q1dp2 = 0, (3.1.25)

so the system of Eqs.(3.1.16-3.1.21) together with Eq.(3.1.25) is integrable.
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3.2 The second singular Lagrangian

As a second model, let us consider the singular Lagrangian,

L =
m

2
(q̇1

2 + q̇2
2 + l2q̇3

2 + 2lq̇1q̇3 cos q3 + 2lq̇2q̇3 sin q3) + V (q1, q2, q3) (3.2.1)

where l and m are constants,

The singularity of the Lagrangian enables us to write the generalized momenta in

chapter two Eqs.(2.1.2),(2.1.3)and(2.1.4)

p1 = mq̇1 +mlq̇3 cos q3, (3.2.2)

p2 = mq̇2 +mlq̇3 sin q3, (3.2.3)

p3 = ml2q̇3 +ml(q̇1 cos q3 + q̇2 sin q3). (3.2.4)

Multiplying equation (3.2.2) by l cos q3 and (3.2.3) by l sin q3 one gets the constraint

relation

H3 = p3 − lp1 cos q3 − lp2 sin q3 = 0 (3.2.5)

The canonical Hamiltonian H0 (1.3.5) is then

H0 = paq̇a + pµq̇µ − L|q̇a≡ωa

=
p1

2 + p2
2

2m
− V (q1, q2, q3).

(3.2.6)

The set of (HJPBE) according to Eq(1.4.7) is

H ′0 = p0 +
p1

2 + p2
2

2m
− V (q1, q2, q3) = 0, (3.2.7)

H ′3 = p3 − lp1 cos q3 − lp2 sin q3 = 0. (3.2.8)
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The total differential equations of motion (1.4.10) , (1.4.11) and (1.4.12) are

dq1 =
∂H ′0
∂p1

dτ +
∂H ′3
∂p1

dq3, (3.2.9)

dq2 =
∂H ′0
∂p2

dτ +
∂H ′3
∂p2

dq3, (3.2.10)

dq3 =
∂H ′0
∂p3

dτ +
∂H ′3
∂p3

dq3, (3.2.11)

dp1 = −∂H
′
0

∂q1
dτ − ∂H ′3

∂q1
dq3, (3.2.12)

dp2 = −∂H
′
0

∂q2
dτ − ∂H ′3

∂q2
dq3, (3.2.13)

dp3 = −∂H
′
0

∂q3
dτ − ∂H ′3

∂q3
dq3. (3.2.14)

Substituting Eqs.(3.2.7) and (3.2.8) in Eqs.(3.2.9-3.2.14), we obtain the total dif-

ferential equations of motion as

dq1 =
p1
m
dt− l cos q3dq3, (3.2.15)

dq2 =
p2
m
dt− l sin q3dq3, (3.2.16)

dq3 = dq3, (3.2.17)

dp1 = V,1dt, (3.2.18)

dp2 = V,2dt, (3.2.19)

dp3 = V,3dt− (lp1 sin q3 − lp2 cos q3)dq3. (3.2.20)

From Eq. (3.2.17), one conduces that q3 = constant. The set of equation of motion

(3.2.15-3.2.20) are integrable if the variations of (3.2.7) and (3.2.8) are identically

satisfied, that is

dH ′0 = (V,1lcos q3 + V,2lsin q3 − V,3)dq3, (3.2.21)
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Similarly the variation of H ′3 takes the form

dH ′3 = (V,1lcos q3 + V,2lsin q3 − V,3)dt. (3.2.22)

To be identically satisfied we should choose V (q1, q2, q3) such that

V,3 = V,1l cos q3 + V,2l sin q3 (3.2.23)

3.3 The Mittelstaedt,s Lagrangian

As a third model, let us consider the Mittelstaedt,s singular Lagrangian (20)

L =
1

2m
(q̇1 + q̇2)

2 +
1

2µ
q̇3

2 + V (q1, q2, q3), (3.3.1)

where m and µ are constants.

The singularity of the Lagrangian enables us to write generalized momenta (1.3.1)

and (1.3.2) as

p1 = p2 =
1

m
q̇2 + q̇2, (3.3.2)

and

p3 =
1

µ
q̇3. (3.3.3)

we solve (3.3.2) and (3.3.3) for q̇1, q̇2 and q̇3 interns of p1, p2 and p3 as

q̇2 + q̇2 = mp1 −mp2, (3.3.4)

q̇3 = µp3. (3.3.5)

The constraint relation is

H2 = p1 − p2 = 0 (3.3.6)
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The canonical Hamiltonian H0 takes the form

H0 = paq̇a + pµq̇µ − L|q̇a≡ωa

=
m

2
p21 +

µ

2
p23 − V (q1, q2, q3).

(3.3.7)

The set of (HJPBE) according to Eq(1.4.7) is

H ′0 = p0 +
m

2
p21 +

µ

2
p23 − V (q1, q2, q3) = 0, (3.3.8)

and

H ′2 = p1 − p2 = 0. (3.3.9)

The total differential equations of motion (1.4.10) , (1.4.11) and (1.4.12) read as

dq1 =
∂H ′0
∂p1

dτ +
∂H ′2
∂p1

dq2, (3.3.10)

dq2 =
∂H ′0
∂p2

dτ +
∂H ′2
∂p2

dq2, (3.3.11)

dq3 =
∂H ′0
∂p3

dτ +
∂H ′2
∂p3

dq2, (3.3.12)

dp1 = −∂H
′
0

∂q1
dτ − ∂H ′2

∂q1
dq2, (3.3.13)

dp2 = −∂H
′
0

∂q2
dτ − ∂H ′2

∂q2
dq2, (3.3.14)

dp3 = −∂H
′
0

∂q3
dτ − ∂H ′2

∂q3
dq2. (3.3.15)

Substituting Eqs. (3.3.8) and (3.3.9) in Eqs.(3.3.10-3.3.15), we obtain the total

differential equations of motion as

dq1 = mp1dt− dq2, (3.3.16)

dq2 = dq2, (3.3.17)

dq3 = µp3dt, (3.3.18)

27



dp1 = V,1dt, (3.3.19)

dp2 = V,2dt, (3.3.20)

dp3 = V,3dt. (3.3.21)

The set of equation of motion (3.3.16-3.3.21) are integrable if only if the variations

of (3.3.8) and (3.3.9) are identically satisfied. The variation of H ′0 is

dH ′0 = (V,1 − V,2)dq2, (3.3.22)

which is identically zero since q2 is constant.

dH ′ = dp2 − dp1

= (V,2 − V,1)dt.
(3.3.23)

In order to obtain an integrable system V,1 must be equal to V,2

3.4 The Deriglazov Lagrangian

The last model is the Deriglazov singular Lagrangian (20)

L = q22 q̇1
2 + q21 q̇2

2 + 2q1q2q̇1q̇2 + V (q1, q2). (3.4.1)

This Lagrangian is singular since the Hess matrix is of rank one, and the generalized

momenta (1.3.1) and (1.3.2) read as

p1 = 2q22 q̇1 + 2q1q2q̇2, (3.4.2)

p2 = 2q21 q̇2 + 2q1q2q̇1. (3.4.3)

Here p1 and p2 are dependent. Multiplying Eq. (3.4.2) in q1 and Eq.(3.4.3) in

q2 and solving for p1, we get becomes constraint equation are

p1 =
q2p2
q1

. (3.4.4)
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using (3.4.4), the canonical Hamiltonian H0 (1.3.5) is then

H0 = p1q̇1 + p2q̇2 − L

=
p21
4q22
− V (q1, q2)

(3.4.5)

The Set of (HJPDE) according to Eq (1.4.7) is

H ′0 = p0 +
p21
4q22
− V (q1, q2) = 0, (3.4.6)

The above equation are the constraints restricting the system.

The total differential equations of motion (1.4.10) , (1.4.11) and (1.4.12) are

dq1 =
∂H ′0
∂p1

dτ, (3.4.7)

dq2 =
∂H ′0
∂p2

dτ, (3.4.8)

dp1 = −∂H
′
0

∂q1
dτ, (3.4.9)

dp2 = −∂H
′
0

∂q2
dτ. (3.4.10)

Substituting Eq. (3.4.7) in Eqs.(3.4.7-3.4.10), we obtain the total differential equa-

tions of motion as

dq1 =
p1
2q22

dt, (3.4.11)

dq2 = 0, (3.4.12)

dp1 = V,1dt, (3.4.13)

dp2 = V,2dt. (3.4.14)

The set of equation of motion (3.4.11-3.4.14) are integrable if the variations of

(3.4.6) is identically satisfied, we notice that the variation

dH ′0 = (q2V,2 − q1V,1)dq1 ≡ H ′′0dq1 (3.4.15)

is identically satisfied for a choice V (q1, q2) = q1q2
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Chapter 4

Singular Lagrangian As Field

Systems

The link between the treatment of singular Lagrangian as field system and the

general Hamiltonian approach is studied. It is shown that the singular Lagrangian

as field system are always in exact aggrement with the general approaches (9). The

equations of motion in this treatment are second order partial differential equation

.

4.1 Preliminaries

The Euler-Lagrange equations for field system is given as

∂

∂xµ

(
∂L′

∂(∂µqa)

)
− ∂L′

∂qa
= 0, (4.1.1)

and the constraints relation is defined as

dGµ = −∂L′
∂xµ

dt, (4.1.2)
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where the modified Lagrangian L′ is defined as

L′(xµ, ∂µqa, ẋν , qa) ≡ L(qa, xµ, q̇a = (∂µqa)ẋν), ẋν =
dxν
dt

(4.1.3)

and the constraint relations are

Gµ = Hµ

(
qa, xµ, pa =

∂L

∂q̇a

)
. (4.1.4)

4.2 Examples

In this section , the singular Lagrangians which are investigated in chapter two and

chapter three will be studied. As field systems.(or continuous system).

4.2.1 Example One

As a first example we consider the singular Lagrangian

L =
1

2
q̇21 −

1

4
(q̇22 − 2q̇2q̇3 + q̇23) + (q1 + q3)q̇2 − q1 − q2 − q23. (4.2.1)

Since the rank of the Hess matrix is two, this system can be treated as a continuous

system in the form

q1 = q1(t, q2), q3 = q3(t, q2) (4.2.2)

Now , let us write q̇1 and q̇3 as

q̇1 =
dq1
dt

=
∂q1
∂t

+
∂q1
∂q2

q̇2, q̇3 =
dq3
dt

=
∂q3
∂t

+
∂q3
∂q2

q̇2. (4.2.3)

Substituting (4.2.3) into (4.2.1) ,we get the modified Lagrangian L′ as

L′ =
1

2

(
∂q1
∂t

+
∂q1
∂q2

q̇2

)2

− 1

4
q̇2

2 +
1

2
q̇2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
− 1

4

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)2

+ (q1 + q3)q̇2 − q1 − q2 − q23

(4.2.4)
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The Euler-Lagrange equations (4.1.1)read as

∂

∂t

(
∂L′

∂(∂0q1)

)
+

∂

∂q2

(
∂L′

∂(∂2q1)

)
− ∂L′

∂q1
= 0,

and
∂

∂t

(
∂L′

∂(∂0q3)

)
+

∂

∂q2

(
∂L′

∂(∂2q3)

)
− ∂L′

∂q3
= 0.

(4.2.5)

where x0 ≡ t, x2 ≡ q2.

More explicitly, the second order partial differential equations are

∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2
− q̇2 + 1 = 0, (4.2.6)

∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q3
∂q2
− q̈2 + 2q̇2 − 4q3 = 0, (4.2.7)

Now, we have to check the validity of constraint (4.1.2). As they were defined in

(9). The usual Hamiltonian and the constraint relation are

H0 =
1

2
(p21 − 2p23) + q1 + q2 + q23, (4.2.8)

and

H2 = p3 − q1 − q3. (4.2.9)

Hence,

G0 = H0

(
qa, xµ, pa =

∂L

∂q̇a

)
=

1

2

(
∂q1
∂t

+
∂q1
∂q2

q̇2

)2

− 1

4
q̇2

2 − 1

4

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)2

+
1

2
q̇2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)2

+ q1 + q2 + q3
2,

(4.2.10)

and

G2 = H2

(
qa, xµ, pa =

∂L

∂q̇a

)
= −1

2
q̇2 +

1

2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
+ q1 + q3

(4.2.11)
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Now, we are ready to test whether (4.1.2) are satisfied or not. In fact (4.1.2) for

µ = 0 is

dG0 = −∂L
′

∂t
dt = 0. (4.2.12)

Explicitly

dG0 = [

(
∂q1
∂t

+
∂q1
∂q2

q̇2

)(
∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2

)
− 1

2
q̇2q̈2

− 1

2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)(
∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q3
∂q22

+ q̈2
∂q3
∂q2

)
+

1

2
q̇2

(
∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q3
∂q22

+ q̈2
∂q3
∂q2

)
+

1

2
q̈2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
+
∂q1
∂t

+
∂q1
∂q2

q̇2q̇2 + 2q3

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
]dt = 0.

(4.2.13)

Replacing the expressions in the parentheses from Egs.(4.2.6) and (4.2.7) one gets

dG0 = (q̇2F1)dt = 0, (4.2.14)

where

F1 =
∂q1
∂t

+
∂q1
∂q2

q̇2 +
∂q3
∂t

+
∂q3
∂q2

q̇2 − q̇2 + 2q3 + 1 = 0. (4.2.15)

Since F1 is not identically zero, we consider it as a new constraint . Thus for a valid

theory, variation of F1 should be zero. Thus one gets

dF1 = F2dt = 0, (4.2.16)

where

F2 = q̇2 − 3− 2

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
= 0, (4.2.17)

Again, since F2 is not identically zero, it is an additional constraint and its variation

is

dF2 =

[
q̈2 − 2

(
∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2

)]
dt = 0 (4.2.18)
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But due to Eq(4.2.6), the expression in parentheses is q̇2 − 1 . So (4.2.18) leads us

to the following differential equation for q2 :

dF2 = q̈2 − 2q̇2 + 2, (4.2.19)

which has the following solution :

q2(t) = 2Ae2t + t+ c1. (4.2.20)

Besides, (4.1.2) for µ = 2 is

dG2 =
∂L

∂q2
dt = −dt. (4.2.21)

Hence,

dG2 = [−1

2
q̈2 +

1

2

(
∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q3
∂q22

+ q̈2
∂q3
∂q2

)
+ q̇2

∂q1
∂q2

+ q̇2
∂q3
∂q2

+
∂q1
∂t

+
∂q3
∂t

]dt = −dt.
(4.2.22)

Again the expression in the inner parentheses is replaced by

4q3 + q̈2 − 2q̇2, from (4.2.7). Then (4.2.22) becomes

dG2 =
∂q1
∂t

+
∂q1
∂q2

q̇2 +
∂q3
∂t

+
∂q3
∂q2

q̇2 − q̇2 + 2q3 + 1 = F1dt (4.2.23)

However, the constraint (4.2.23) is the same as (4.2.15). Thus, it does not give an

additional constraint. Now, our problem is reduced to solving partial differential

equations (4.2.6) and (4.2.7) with independent constraints (4.2.15) and (4.2.17).

Making use of these constraints, one gets

∂2q1
∂2q2

= 0, (4.2.24)

which may have a solution in the form

q1(t, q2) = K(t)q2 + T (t), (4.2.25)
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where K(t) and T(t) are functions to be determined. Some simple calculations lead

us to the expressions

K(t) = constant, T (t) = Ae2t −Bt+D. (4.2.26)

Since q2 is determined as a function of t, the expression (4.2.25) can be written as

q1(t) = Q′e2t − t+D′. (4.2.27)

Applying the same procedure to the variable q3 we arrive at the differential equation

∂2q3
∂t∂q2

= 0, (4.2.28)

which has the general solution

q3(t, q2) = C1(t) + C2(q2). (4.2.29)

However, further calculations give

C1 = A′′e−2t +B′C2(q2) = 0. (4.2.30)

Thus, we have

q3(t) = Ae2t +Be−2t + C. (4.2.31)

Eqs (4.2.27), and (4.2.31) are the solution of the system in the phase space q1, q2 and q3.

4.2.2 Example Two

As a second example we consider the singular Lagrangian

L =
1

2
aij(t, qk)q̇iq̇j + bi(t, qk)q̇i − c(t, qk), i, j, k = 1, ..., 6, (4.2.32)

where aij is a 6× 6 symmetric matrix of rank 2, with matrix elements

a11 = a22 = 1, (4.2.33)
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a12 = a21 = 2, (4.2.34)

a1µ = aµ1 = αµ + 2α′µ, (4.2.35)

a2µ = aµ2 = 2αµ + α′µ, (4.2.36)

aµν = aνµ = αµαν + 2(αµα
′
ν + α′µαν) + α′να

′
µ, µ, ν = 3, 4, 5, 6. (4.2.37)

Here αµand α′µ are constants and the functions biand c are

b1 = q2 + α′µqµ, (4.2.38)

b2 = q2 − q1 − (αµ − α′)qµ, (4.2.39)

bµ = αµb1 + α′µb2, (4.2.40)

c = q1 − 2q2 + (αµ − 2α′µ)qµ. (4.2.41)

As in the previous example this system can be treated as a continuous system in

the form

q1 = q1(t, qµ), q2 = q2(t, qµ). (4.2.42)

Thus,

q̇1 =
dq1
dt

=
∂q1
∂t

+
∂q1
∂qµ

q̇µ, q̇2 =
dq2
dt

=
∂q2
∂t

+
∂q2
∂qµ

q̇µ. (4.2.43)
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Relation (4.2.43) can be replaced in (4.2.32) to obtain the following modified La-

grangian L′:

L′ =
1

2

(
∂q1
∂t

+
∂q1
∂qµ

q̇µ

)2

+
1

2

(
∂q2
∂t

+
∂q2
∂qµ

q̇µ

)2

+ 2

(
∂q1
∂t

+
∂q1
∂qµ

q̇µ

)(
∂q2
∂t

+
∂q2
∂qµ

q̇µ

)
+ (αµ + 2α′µ)q̇µ

(
∂q1
∂t

+
∂q1
∂qµ

q̇µ

)
+ (2αµ + α′µ)q̇µ

(
∂q2
∂t

+
∂q2
∂qµ

q̇µ

)
+ (q2 − q1 − (αµ − α′µ)qµ)

(
∂q2
∂t

+
∂q2
∂qµ

q̇µ

)
+

1

2
aµν q̇µq̇ν + (q2 + α′µqµ)

(
∂q1
∂t

+
∂q1
∂qµ

q̇µ

)
+ (αµ(q2 + α′µqµ)

+ α′µ(q2 − q1 − (αµ − α′µ)qµ))q̇µ − q1 + 2q2 − (αµ − 2α′µ)qµ.

(4.2.44)

The Euler-Lagrange equations (4.1.1) read as

∂

∂t

(
∂L′

∂(∂0q1)

)
+

∂

∂qµ

(
∂L′

∂(∂µq1)

)
− ∂L′

∂q1
= 0,

and
∂

∂t

(
∂L′

∂(∂0q2)

)
+

∂

∂qµ

(
∂L′

∂(∂µq2)

)
− ∂L′

∂q2
= 0.

(4.2.45)

where x0 ≡ t, xµ ≡ qµ, µ = 3, 4, 5, 6.,

More explicitly, the equations of motion (4.2.45) are

∂2q1
∂t2

+ 2q̇µ
∂2q1
∂t∂qµ

+ q̇µ
∂2q1
∂qµ∂qν

q̇ν + 2
∂2q2
∂t2

+ 4q̇µ
∂2q2
∂t∂qµ

+2q̇µ
∂2q2
∂qµ∂qν

q̇ν + 2
∂q2
∂t

+ q̈µ
∂q1
∂qµ

+ (2q̈µ + 2q̇µ)
∂q2
∂qµ

+(αµ + 2α′µ)q̈µ + 2α′µq̇µ + 1 = 0.

(4.2.46)

and

2
∂2q1
∂t2

+ 4q̇µ
∂2q1
∂t∂qµ

+ 2q̇µ
∂2q1
∂qµ∂qν

q̇ν +
∂2q2
∂t2

+ 2q̇µ
∂2q2
∂t∂qµ

+q̇µ
∂2q2
∂qµ∂qν

q̇ν − 2
∂q1
∂t

+ q̈µ
∂q2
∂qµ

+ (2q̈µ − 2q̇µ)
∂q1
∂qµ

+(2αµ + 2α′µ)q̈µ − 2αµq̇µ − 2 = 0.

(4.2.47)
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To solve the equations of motion, let us consider the following transformation:

qµ −→ µµ, t −→ t.

Hence, Eqs. (4.2.46) and (4.2.47) are reduced to the following canonical forms (9)

∂2q1
∂t2

= −2
∂2q2
∂t2
− 2

∂q2
∂t
− 1, (4.2.48)

and

2
∂2q1
∂t2

= −∂
2q2
∂t2

+ 2
∂q1
∂t

+ 2. (4.2.49)

Integrating (4.2.48) we get

∂q1
∂t

= −2
∂q2
∂t
− 2q2 − t. (4.2.50)

Substituting (4.2.48) and (4.2.50) in (4.2.49) we obtain

∂2q2
∂t2
− 4

3
q2 = −4

3
+

2

3
t. (4.2.51)

The general solution of the homogeneous equation is

q2(t) = Ae2t
√
3 +Be−2t

√
3. (4.2.52)

Choosing a particular solution as

qpart2 = −1

2
t+ 1, (4.2.53)

and inserting it in (4.2.50) ,we obtain

q2(t) = Ae2t
√
3 +Be−2t

√
3 − 1

2
t+ 1. (4.2.54)

Substituting (4.2.54) in (4.2.50) and integrating the result, q1 is determined as

q1(t) = Ke2t
√
3 + Le−2t

√
3 −Mt. (4.2.55)
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4.2.3 Example Three

Let us consider the singular Lagrangian discussed in chapter two and chapter three

L =
m

2
(q̇1

2 + q̇2
2 + l2q̇3

2 + 2lq̇1q̇3 cos q3 + 2lq̇2q̇3 sin q3) + V (q1, q2, q3), (4.2.56)

where l and m are constants. Since the rank of the Hess matrix is two,

this system can be be treated as a continuous system in the form

q1 = q1(t, q3), q2 = q2(t, q3), (4.2.57)

Now , let us write q̇1 and q̇3 as

q̇1 =
dq1
dt

=
∂q1
∂t

+
∂q1
∂q3

q̇3, q̇2 =
dq2
dt

=
∂q2
∂t

+
∂q2
∂q3

q̇3. (4.2.58)

Relations (4.2.58) can be replaced in (4.2.56) to obtain the following ”modified

Lagrangian” L′ as

L′ =
m

2

(
∂q1
∂t

+
∂q1
∂q3

q̇3

)2

+
m

2

(
∂q2
∂t

+
∂q2
∂q3

q̇3

)2

+
m

2
l2q̇3

2

+mlq̇3cos q3

(
∂q1
∂t

+
∂q1
∂q3

q̇3

)
+mlq̇3sin q3

(
∂q2
∂t

+
∂q2
∂q3

q̇3

)
+ V ′(q1, q2)

(4.2.59)

The Euler-Lagrange equations (4.1.1) read as

∂

∂t

(
∂L′

∂(∂0q1)

)
+

∂

∂q3

(
∂L′

∂(∂3q1)

)
− ∂L′

∂q1
= 0,

and
∂

∂t

(
∂L′

∂(∂0q2)

)
+

∂

∂q3

(
∂L′

∂(∂3q2)

)
− ∂L′

∂q2
= 0.

(4.2.60)

where x0 ≡ t, x2 ≡ q2. More explicitly, the second order partial differential

equations are

m
∂2q1
∂t2

+ 2mq̇3
∂2q1
∂t∂q3

+mq̇2
2∂

2q1
∂q22

+mq̈2
∂q1
∂q3

+mlq̈3cos q3 − 2mlq̇3sin q3 − V,1 = 0,

(4.2.61)
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and

m
∂2q2
∂t2

+ 2mq̇3
∂2q2
∂t∂q3

+mq̇2
2∂

2q2
∂q22

+mq̈2
∂q2
∂q3

+mlq̈3sin q3 + 2mlq̇3
2cos q3 − V,2 = 0,

(4.2.62)

The usual Hamiltonian H0 and the constraint relation H3 are given as

H ′0 = p0 +
p1

2 + p2
2

2m
− V = 0, (4.2.63)

and

H3 = −ml2q̇32 −ml(q̇1 cos q3 + q̇2 sin q3). (4.2.64)

Hence , G0 and G3 defined in (4.1.2) respecify are

G0 = H0

(
qa, xµ, pa =

∂L

∂q̇a

)
=
m

2

(
∂q1
∂t

+
∂q1
∂q3

q̇3

)2

+
m

2

(
∂q2
∂t

+
∂q2
∂q3

q̇3

)2

+
m

2
l2q̇3

2

+mlq̇3cos q3

(
∂q1
∂t

+
∂q1
∂q3

q̇3

)
+mlq̇3sin q3

(
∂q2
∂t

+
∂q2
∂q3

q̇3

)
+ V ′(q1, q2),

(4.2.65)

and

G3 = H3

(
qa, xµ, pa =

∂L

∂q̇a

)
= −ml2q̇3 −mlcos q3

(
∂q1
∂t

+
∂q1
∂q3

q̇3

)
−mlcos q3

(
∂q2
∂t

+
∂q2
∂q3

q̇3

)
.

(4.2.66)

Now we are ready to test whether (4.1.2) are satisfied or not. In Fact (4.1.2) for

µ = 0 is

dG0 = −∂L
′

∂t
dt = 0. (4.2.67)

Explicitly,

mlq̇1q̇3
2sin q3 −mlq̇2q̇32cos q3 + lq̇3cos q3V,1 + lq̇3sin q3V,2 = 0. (4.2.68)
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Equation (4.1.2) for µ = 3 is

dG3

dt
= 0, (4.2.69)

Explicitly,

mlq̇1q̇3
2sin q3 −mlq̇2q̇32cos q3 − lq̇3cos q3V,1 − lq̇3sin q3V,2 = 0, (4.2.70)

Subtracting equation (4.2.68) and (4.2.70) we get

2lq̇3cos q3V,1 + 2lq̇3sin q3V,2 = 0. (4.2.71)

Choosing V = q1 cos q3 + q2 sin q3 equation (4.2.71) becomes

2lq̇3(cos2 q3 + sin2 q3) = 0 (4.2.72)

The solution of equation (4.2.72) is

q3 = constant (4.2.73)

Substituting Eq (4.2.73) in Eq (4.2.61), we get

m
∂2q1
∂2t
− V,1 = 0. (4.2.74)

The solution of Eq. (4.2.74) is obtain as

q1 =
t2

2m
+ At+B, (4.2.75)

where A and B are constants.

Substituting Eq. (4.2.75) in Eq. (4.2.62), becomes

q2 =
t2

2m
+ Ct+D, (4.2.76)

where C and D are constants.
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4.2.4 Example Four

As a last example let us consider the Mittelstaedt,s Lagrangian model (20), which

is given as

L =
1

2m
(q̇1 + q̇2)

2 +
1

2µ
q̇3

2 + V (q1, q2, q3) (4.2.77)

This Lagrangian is singular since the Hess matrix is of rank two.

This system can be be treated as a continuous system in the form

q1 = q1(t, q2), q3 = q3(t, q2), (4.2.78)

q̇1 =
dq1
dt

=
∂q1
∂t

+
∂q1
∂q2

q̇2, q̇3 =
dq3
dt

=
∂q3
∂t

+
∂q3
∂q2

q̇2. (4.2.79)

Relations (4.2.79) with can be replaced in (4.2.77) to obtain following the ”modified

Lagrangian” L′ as:

L′ =
1

2m

[(
∂q1
∂t

+
∂q1
∂q3

q̇3

)
+ q̇2

]2
+

1

2µ

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)2

+ V (q1, q3). (4.2.80)

The Euler-Lagrange equations (4.1)read as

∂

∂t

(
∂L′

∂(∂0q1)

)
+

∂

∂q2

(
∂L′

∂(∂2q1)

)
− ∂L′

∂q1
= 0,

and
∂

∂t

(
∂L′

∂(∂0q3)

)
+

∂

∂q2

(
∂L′

∂(∂2q3)

)
− ∂L′

∂q3
= 0.

(4.2.81)

where x0 ≡ t, x2 ≡ q2.

More explicitly, the second order partial differential equations are

∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2
− q̈2 −mV1 = 0, (4.2.82)

∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q3
∂q2
− µV,1 = 0, (4.2.83)

The quantities H0 and H3 are

H0 =
m

2
p21 +

µ

2
p23 − V (q1, q3), (4.2.84)
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H3 = p3 =
1

µ
q̇3. (4.2.85)

Hence,

G0 = H0

(
qa, xµ, pa =

∂L

∂q̇a

)
=

1

2m

[(
∂q1
∂t

+
∂q1
∂q2

q̇2

)
+ q̇2

]2
+

1

2µ

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)2

− V (q1, q3),

(4.2.86)

G3 = H3

(
qa, xµ, pa =

∂L

∂q̇a

)
=

1

µ

(
∂q3
∂t

+
∂q3
∂q2

q̇2

)
.

(4.2.87)

Now we are ready to test whether (4.1.2) are satisfied or not . In fact (4.1.2) for

µ = 0 is

dG0 = −∂L
′

∂t
dt = 0. (4.2.88)

dG0 =

(
q̇2
∂V

∂q1

)
dt = 0. (4.2.89)

for µ = 3 is

dG3 = −∂L
′

∂q3
dt =

(
∂V

∂q3

)
dt = 0. (4.2.90)

The Eqs. (4.2.82) and (4.2.83) becomes,

∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2

+ q̈2 = 0, (4.2.91)

∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q3
∂q2

= 0. (4.2.92)

Eqs. (4.2.91) and (4.2.92) are second order partial differential equations. From

equations (4.2.79) the second derivatives of q1 and q3 are

q̈1 =
∂2q1
∂t2

+ 2q̇2
∂2q1
∂t∂q2

+ q̇2
2∂

2q1
∂q22

+ q̈2
∂q1
∂q2

, (4.2.93)

q̈3 =
∂2q3
∂t2

+ 2q̇2
∂2q3
∂t∂q2

+ q̇2
2∂

2q3
∂q22

+ q̈2
∂q3
∂q2

. (4.2.94)
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Therefore Eq. (4.2.91) becomes

q̈1 + q̈2 = 0. (4.2.95)

The solution of Eq. (4.2.95) is given as

q1(t) = −q2 + At+B, (4.2.96)

where A and B are constants

The Eq. (4.2.92) becomes

q̈3 = 0, (4.2.97)

with solution given as

q3(t) = Ct+D. (4.2.98)

where C and D are constants.
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Chapter 5

Conclusion

The Hamiltonian and Lagrangian formulations of singular Lagrangian systems are

used to investigate some models of physical systems study to compare these tech-

niques of these formulation.

In the Hamiltonian formulation both Dirac,s method and Hamilton-Jacobi method

(Güler,s method) are used. In the Lagrangian formulation. The technique of treat-

ment the singular Lagrangian as field (continuous) system was used. Besides, the

Hamilton-Jacobi method is unified with Lagrangian formulation.

In Dirac,s method, one introduces primary constraints to construct the total

Hamiltonian, which consists of the primary constraints multiplied by the Lagrange

multipliers added to canonical (usual) Hamiltonian.

The first - class constraints have vanishing poisson brackets. The equation of mo-

tion are obtained as total derivatives interms of poisson brackets.

In Hamilton-Jacobi formulation, which developed by Güler, the equations of

motion are written as total differential equations in many variables. These equa-

tions must satisfy the integrability conditions. If the integrability conditions are

not identically satisfied, then these will be continued until we obtain a complete
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system. Three models of physical system are discussed using these two method.

The result are in exact agreement. In Hamilton-Jacobi method, we did not need to

introduce an unknown multipliers as in Dirac,s method.

In chapter four, the same physical models are discussed as field (continuous)

systems in Lagrangian formulation. We mixed both Lagrangian formulation and

Hamilton-Jacobi method to obtain a solvable partial differential equations of second

order. The Euler - Lagrange equations of motion for field system are used to obtain

the equations of motion.

Simultaneous solution of Euler - Lagrange equations with the constraints equations

gives us the solutions of the dynamical systems.

These constraints equations are obtained from Hamilton-Jacobi approach.

These solutions satisfied the equations of motion that obtained in both Dirac,s

method and Hamilton-Jacobi method.

In fact, this comparison study needs more applications in physical systems in clas-

sical mechanics and field theory.
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[6] Güler Y.(1992).”Canonical formulation of singular systems”. Nuovo Ci-

mento B107, 1389.
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[9] Farahat N. I. and Güler Y.(1995).”Singular Lagrangians as field sys-

tems”. phys.Rev A, .
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