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Optical beam propagation through oceanic waters is explored using a recently 

proposed model for the refractive index fluctuations in oceanic turbulence. The model 

provides an accurate depiction of the ocean through the inclusion of both temperature and 

salinity fluctuations to the index of refraction. Beam characteristics of fundamental 

importance to communication links, remote sensing, and laser radar links are explored 

including intensity, degree of coherence, and scintillation.  Theoretical values of these 

parameters are found through the use of classical Rytov theory and compared to those 

found using a numerical optics random phase screen simulation. The impact of the 

oceanic turbulence is compared with that found in atmospheric turbulence as well as 

other random media such as biological tissue. The results presented serve as a foundation 

for the study of optical beam propagation in oceanic turbulence comparable to the widely 

studied area of propagation through atmospheric turbulence. 
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Chapter 1

Introduction

The study of light propagation through random media is a perpetually important

topic for its many applications in the atmosphere, biological tissues, and the ocean.

While much has been done both theoretically and experimentally in the atmosphere

and in bio-tissues, the ocean has not received as much attention. This text explores

optical beam propagation through ocean waters using a recent optical turbulence

model that incorporates contributions from both temperature and salinity [1]. In the

study, scattering and absorption by particles are not considered, but instead the focus

is on the effects of optical turbulence alone. In Chapter 1 the oceanic turbulence to

be studied is characterized alongside a review of traditional optical turbulence theory

and the extension into the oceanic model. Chapter 2 outlines traditional approaches

to beam propagation through turbulence, such as the Rytov small perturbation

method and the extended Huygens-Fresnel integral method, including free space

propagation. The following chapters use these methods to investigate the beam

propagation through the ocean in terms of its scintilllation, average intensity, and

coherence in Chapter 3. Chapter 4 deals with the changes in the spectrum of a

scalar stochastic beam followed by an investigation into the polarization properties

1



2

Figure 1.1: Cascade of energy from large-scale turbulent eddies to small-scale eddies
in a turbulent mixture. From Ref. [2]

of an electromagnetic stochastic beam on propagation through oceanic turbulence in

Chapter 5. A numerical multiple phase screen simulation is used in Chapter 6 as an

alternative method to investigate intensity and scintillation properties of a coherent

beam transmitted through oceanic turbulence followed by concluding statements in

Chapter 7.

1.1 Oceanic Turbulence

The ocean, much like the atmosphere, is in a constant state of irregular and highly

unpredictable motion throughout. It is by nature a chaotic process that complicates

the understanding of all aspects of the ocean. We can however identify several intrinsic

characteristics of the ocean that will enable us to describe and ultimately quantify

the turbulence in all areas, from just beneath the surface to great depths.

We will start with the idea that the energy necessary for the turbulent mixing in

the ocean is supplied at a large scale, creating large scale eddies. These large eddies

go on to “cascade”, or disperse their energy into smaller and smaller eddies until

finally dissipating their kinetic energy into heat. Figure 1.1 shows this structure of
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small-scale eddies forming out of large-scale eddies. This figure also highlights the

question that the turbulence may have some anisotropy in the larger scaled eddies.

When the energy is provided for the turbulence as a result of, among other things,

tidal forces from the gravitational attraction of the Moon and Sun, atmospheric

interaction at the surface, and even geothermal vents in the deep ocean, it can have

some directional asymmetry. It has been found in practice that this asymmetry is

diminished as eddies interact with one another, and cascade their energy, yielding

many regions of the ocean that do show isotropic turbulence [7]. We will use this

assumption of isotropic turbulence, as is common in the study of the atmosphere as

well, from this point forward.

A further important assumption necessary for our analysis is that our turbulence

can be characterized without the need for any time dependence through the use of

the Taylor’s hypothesis of frozen turbulence. This hypothesis states that as eddies

are transported past a fixed point, they remain fundamentally unchanged, or frozen.

With this in mind, we can evaluate the time taken for eddies of different sizes to pass

by a fixed point and translate that time into spatial measurements of wavenumbers

of the eddies, given by ke = 2π/l with l being the size of the eddy, through the

average velocity of the motion. With T = l/V being the time it takes for an eddy

of size l to pass a fixed point, and its corresponding frequency σ = 2π/T , one can

substitute in to find a spatial frequency given by σr = kV . From here we are able to

see that the influence of differently-sized turbulent eddies can be directly related to

velocity fluctuations without an explicit time dependence. It was Kolmogorov who

first showed that the energy of homogeneous and isotropic turbulence is distributed
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as a function of the wavenumber of eddies. Using that, along with a dimensional

analysis of the velocity fluctuations, he was able to describe the one-dimensional

spectral kinetic energy density of the velocity fluctuations given by [3]

Φ(κ) = qǫ2/3κ−5/3, (1.1)

where q is a non-dimensional constant and ǫ is the rate of dissipation of kinetic energy.

It is from this equation that we establish a three-dimensional model for the power

spectrum described in section 1.2 that serves as a basis for all other models that follow.

We will show in detail in Chapter 2 how this spectrum, which gives the distribution

of energy as a function of eddy size, allows us to analyze the propagation of an optical

beam through the turbulence.

In our analysis, we will be interested in several additional characteristics of the

ocean that will help us more accurately describe the turbulence. In particular we will

be heavily interested in ǫ, the rate of dissipation of kinetic energy, χT , the rate of

dissipation of mean squared temperature variance, and w, the density gradient ratio.

The dissipation of kinetic energy, ǫ, is the dissipation of the kinetic energy per

unit mass that is lost through viscosity to heat. In the case of isotropic turbulence,

which we assume in our study, it can be written as [7]

ǫ = (15/2)v〈(∂u/∂z)2〉, (1.2)

where v is the kinematic viscosity and u is the velocity in the z-direction. Here the
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z-direction is chosen for convenience, and functions to show that the derivative should

be taken in only one direction, as all directions will be equal due to the isotropy.

Practically, measurement of ǫ can be done with the assumption of isotropy and has

values which range from 10−4 m2/s3 in the most active turbulent regions of the ocean,

to 10−10 m2/s3 in the more calm, deep waters [8].

Paramter χT is a measure of the dissipation rate of temperature variance that,

with the assumption of isotropic turbulence, is given by the expression

χT = 6KT 〈(∂T ′/∂z)2〉, (1.3)

where T is temperature and KT is the eddy diffusivity of temperature. Parameter

χT has been shown to vary on the range 10−4K2

s
to 10−10K2

s
[8]. Here the parameter

KT , representing the eddy diffusivity of temperature, has been introduced. This

parameter not only appears in the derivation of χT but will be important later when

the assumption is made that the eddy diffusivity of temperature and salt (KS) are

equal. This assumption has been widely used in many aspects of the measurement

and interpretation of small-scale turbulence and its effects in the ocean and we will

use it in our analysis as well. However, several recent studies have shown that it

may not be appropriate in all cases [9], [10]. Although these studies do show that

the ratios of eddy diffusivity of temperature and salinity may not be exactly equal in

regions of weak turbulence, the assumption is appropriate in the regions of stronger

turbulence investigated in the later chapters.
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Finally, w is the density gradient ratio given by [1]

w =
α(dT/dz)

β(dS/dz)
, (1.4)

where α = 2.6×10−4 liters/degree and β = 1.75×10−4 liters/gram are the coefficients

of expansion for temperature and salinity. This ratio of contributions of the vertical

temperature and vertical salinity gradients to w, gives a value less than zero for the

so called “doubly stable” regime that we will be interested in. This region is one

where salinity increases with greater depth in the water while temperature decreases,

which is the most common scenario. Typical values for w in this region fall between

0 and −5 with 0 being heavily salinity dominated and −5 being heavily temperature

dominated [1].

1.2 Optical Turbulence

When we speak about optical turbulence we are interested in the random index-of-refraction

fluctuations that affect the beam as it travels through a medium. With knowledge

of the properties of any given medium we aim to create a three dimensional power

spectrum for the optical turbulence to use in our analysis. In the atmosphere these

index-of-refraction fluctuations are commonly associated only with the small temperature

changes caused by the constant motion as other properties are negligible in comparison.

If we consider the random fluctuations to be statistically homogeneous and isotropic,

the most well-known and widely used model for the atmosphere is the Kolmogorov
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Figure 1.2: Power spectrum of the refractive index fluctuations in oceanic turbulence
due to temperate fluctuations (solid curve) and salinity fluctuations (dashed curve)
normalized by the Kolmogorov power law spectrum. From Ref. [6].

spectrum defined by the formula [3]

Φ(κ) = 0.033C2
nκ

−11/3. (1.5)

This is the three-dimensional extension to the spectrum shown in equation 1.1. Here

C2
n is the refractive index structure constant and κ is the scalar spatial wave number.

While this model is very good for analyzing the atmosphere, it does not feature the

small rise in high wave numbers shown by Champagne et al. [4], and does not account

for the salinity contributions necessary for oceanic studies.

Individual power spectra that include this high wave number ”bump” for both

temperature and salinity in the ocean have been known for some time [5], but it

was only recently that an analytical model combining the two has appeared [1].

Figure 1.2 shows the individual spectra for temperature and salinity-based refractive
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index fluctuations in the ocean normalized by the Kolmogorov power law spectrum

highlighting the high wave number bump in each. A single spectrum accounting for

both factors is crucial in our analysis of oceanic light propagation. With this model

we assume clear water, that is to say we only are interested in optical turbulence

effects, and will not consider absorption and scattering by particles. We also limit

our discussion to the case where eddy thermal diffusivity (KT ) and the diffusion of

salt (KS) are equal. We then have [1]

Φn(κ) = 0.388× 10−8ε−1/3κ−11/3[1 + 2.35(κη)2/3]f(κ, w, χT ), (1.6)

where η is the Kolmogorov micro scale (inner scale). Here also

f(κ, w, χT ) =
χT

w2

(

w2e−AT δ + e−ASδ − 2we−ATSδ
)

,

with AT = 1.863× 10−2, AS = 1.9× 10−4, ATS = 9.41× 10−3, and δ = 8.284(κη)4/3+

12.978(κη)2. Figure 1.3 shows a plot of the spectrum defined in equation 1.6 normalized

by the Kolmogorov power law spectrum. Here we highlight the effect of w, the

parameter relating the relative strength of temperature and salinity fluctuations on

the shape of the spectrum. Parameters χT and ε are not shown but contribute to the

relative height of the spectrum.
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1.6 and normalized by the Kolmogorov power-law κ−11/3, for w = −0.1 (solid curve),
w = −2.5 (dotted curve), w = −4.9 (dashed curve).



Chapter 2

Beam Propagation Through Random

Media

2.1 Scalar Beam Propagation Theory

The equation governing the propagation of one of the scalar components of the electric

field with wavelength λ, denoted by U(r, λ), into the half-plane z > 0, is the scalar

stochastic Helmholtz equation [11]

∇2U(r, z) + k2n2(r, z)U(r, z) = 0, (2.1)

where n(r, z) is the index of refraction, k = 2π/λ is the wave number and r is a vector

in the plane perpendicular to propagation, which for our case will be the x-y axis as

shown in Figure 2.1. The explicit dependence of U(r, z) on the wavelength λ has

been omitted for brevity where appropriate. Beginning with the case of free space

propagation, where in this equation n(r, z) = 1, we can make the usual paraxial, or

small-angle approximation that leads to the paraxial wave equation [11]

1

r

∂

∂r

(

r
∂V (r, z)

∂r

)

+ 2ik
∂V (r, z)

∂z
= 0, (2.2)

10
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Figure 2.1: A graphical description of the vector geometry associated with
propagation throughout the paper

where V (r, z) = U(r, z) exp[−ikz] and i is the unit imaginary number. One solution

to the paraxial wave equation is through the Huygens-Fresnel integral approach. This

solution takes the form of the field at a distance z along its propagation path U(r, z)

given by

U(r, z) = −2ik

∫∫

∞

−∞

G(ρ, r, z)U(ρ, 0)d2ρ, (2.3)

where U(ρ, 0) is the field in the source plane, and G(ρ, r, z) is the free-space Green’s

function, which under the paraxial approximation is given by the expression

G(ρ, r, z) =
1

4πz
exp[ikz +

ik

2z
|ρ− r|2]. (2.4)

Here ρ is a vector in the source plane as shown in Figure 2.1.

When we do include random fluctuations in the index of refraction it is possible

to solve Equation 2.1 resulting in the extended Huygens-Fresnel integral [11]. In this
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case we find that

U(r, z) = − ik

2πz
exp[ikz]

∫∫

∞

−∞

U(ρ, 0) exp[
ik|ρ− r|2

2z
+ ψ(r,ρ)]d2ρ, (2.5)

with ψ(r,ρ) being the random part of the complex phase of a spherical wave propagating

in the turbulent medium.

While it has been shown that equation 2.5 is valid for the first and second-order

field moments under weak or strong fluctuations of the medium, it has not been

demonstrated that it is accurate for the fourth-order moment. These moments of the

field are what allows us to investigate the ensemble averaged properties of the beam

we will be interested in later. The second moment will allow us to calculate both

the average intensity distribution of the beam, and its degree of coherence while

the fourth order moment enables us to calculate the scintillation index essential

for applications such as communication links and laser radar links. Moreover, the

scintillation index conventionally serves as a tool for separating the regimes of weak

and strong fluctuations in the medium and determines which propagation methods

can be employed for certain links. Due to this, we shall turn our attention to another

solution to equation 2.1 with fluctuations in the index of refraction included given by

the Rytov approximation that will allow us to calculate the fourth moment as well.
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2.2 Rytov Approximation

The method for solving equation 2.1 using a perturbational approach developed by

Rytov [12] has been applied to the problem of wave propagation in random media

as early as 1953 [13], [54]. Following the classical Rytov method we assume that the

field at a distance L from the source can be represented by the series [11]

U(r, L) = U0(r, L) exp[ψ(r, L)]

= U0(r, L) exp[ψ1(r, L) + ψ2(r, L) + ...],

(2.6)

with U0(r, L) being the result of free-space propagation of the initial beam field given

through the Huygen-Fresnel integral, (see equation 2.3), and ψ(r, L) representing the

total complex phase perturbation of the field due to the optical turbulence. ψ1(r, L)

and ψ2(r, L) are then first and second-order perturbations, respectively.

With this representation, we can begin to investigate the second and fourth-order

statistics of our propagated beams. The second-order correlation function, or cross-spectral

density, of the scalar field U is defined as

W2(r1, r2, z) = 〈U∗(r1, z)U(r2, z)〉

=

∫∫

U∗(ρ1, z)U(ρ2, z)K(r1, r2,ρ1,ρ2, z)d
2ρ1d

2ρ2,

(2.7)

where the brackets denote the ensemble average over the realizations of the random

medium and ∗ denotes the complex conjugate. Here ρ1 and ρ2 are vectors in the

source plane and the propagator K is derived from the free-space Green’s function
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as in equation 2.4 as well as including the correlation function of the complex phase

and takes the form [11]

K(r1, r2,ρ1,ρ2, z) = (
k

2πz
)2 exp[−ik (r1 − ρ1)

2 − (r2 − ρ2)
2

2z
]

×〈exp[ψ∗(r1,ρ1, z) + ψ(r1,ρ2, z)]〉m.
(2.8)

The correlation function of the complex phase, 〈exp[ψ∗(r1,ρ1, z) + ψ(r1,ρ2, z)]〉m

will be solved explicitly in later chapters for different sources. When considering

an electromagnetic field, the cross-spectral density W2 must be extended to a 2 × 2

matrix W2,ij given by the formula

W2,ij(r1, r2, z) = 〈Ei(r1, z)Ej(r2, z)〉, (2.9)

where Ex and Ey are the mutually orthogonal components of the electric field.

Returning to the scalar case, with the expression for the cross-spectral density in

hand, we find that to solve for the average intensity at a given position, we need to

evaluate W2 at the same position for both arguments, that is r1 = r2 = r, giving us

[11]

I(r, z) = W2(r, r, z). (2.10)

At this point we are also prepared to calculate the complex degree of coherence defined

as

µ(r1, r2, z) =
W2(r1, r2, z)

√

W2(r1, r1, z)W2(r2, r2, z)
=

W2(r1, r2, z)
√

I(r1, z)I(r2, z)
. (2.11)

The complex degree of coherence is a measure of the statistical similarity of the light
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field at two points r1 and r2 that falls between 0 <= |µ(r1, r2, z)| <= 1. For the lower

bound of 0 the light is said to be completely incoherent, as opposed to case of fully

coherent light when |µ(r1, r2, z)| = 1.

It will also be important to analyze the fourth-order statistics, in particular the

scintillation index, which is the normalized variance of intensity fluctuations, through

the use of the fourth order cross-coherence function given by

W4(r1, r2, r3, r4, z) = 〈U(r1, z)U∗(r2, z)U(r3, z)U
∗(r4, z)〉, (2.12)

which can be expressed as

W4(r1, r2, r3, r4, z) = U0(r1, z)U
∗

0 (r2, z)U0(r3, z)U
∗

0 (r4, z)

× 〈exp[ψ(r1, z) + ψ∗(r2, z) + ψ(r3, z) + ψ∗(r4, z)]〉
(2.13)

Again, the exact evaluations of the correlation of complex phase fluctuations will be

done later for specific sources. Using this, we can define the scintillation index as

σ2
I (r, z) =

〈I2(r, z)〉 − 〈I(r, z)〉2
〈I(r, z)〉2 , (2.14)

where again I(r, z) is given by equations 2.10 and 〈I2(r, z)〉 is the second moment of

the irradiance found by setting r1 = r2 = r3 = r4 = r in the fourth order coherence

function, equation 2.12, that is

〈I2(r, z)〉 = W4(r, r, r, r, z) (2.15)
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2.3 Beam Sources

In our analysis we will investigate the effect of oceanic turbulence on several different

beam sources. The most basic source examined in Chapter 3, is a scalar unit-amplitude

Gaussian beam that at the source plane z = 0 is defined as

z = 0; U0(ρ, 0) = exp(− ρ2

W 2
0

− ikρ2

2F0

), (2.16)

whereW0 and F0 are the beam radius and phase front radius of curvature, respectively.

We will investigate this beam starting with its scintillation properties and go on to

investigate intensity and coherence as well.

The second beam source we will encounter is the scalar Gaussian Schell-Model

beam with an explicit dependence on wavelength defined by its cross spectral density

in the source plane as

W2,0(ρ1,ρ2;λ) = I0(λ) exp

[

−ρ
2
1 + ρ

2
2

4σ2

]

exp

[

−(ρ1 − ρ2)
2

2δ2

]

, (2.17)

Here I0 is the initial spectral composition consisting of a single Gaussian spectral

line, i.e.

I0(λ) = exp
[

−(λ− λ0)
2/(2Π2)

]

, (2.18)

which is centered at wavelength λ0 with an r.m.s. width of Π. In addition we have

that σ is the r.m.s. width of the intensity, and δ is the r.m.s. width of the correlation

function. This beam has a source plane intensity and degree of coherence that both
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have Gaussian forms where the initial intensity is

I0(ρ1,ρ2, λ) = I0(λ) exp

[

−ρ
2
1 + ρ

2
2

4σ2

]

, (2.19)

and the initial degree of coherence is seen to be

µ0(ρ1,ρ2) = exp

[

−(ρ1 − ρ2)
2

2δ2

]

. (2.20)

The two limiting cases of such a beam with respect to its coherence are when σ << δ

giving a fairly coherent beam, and σ >> δ giving a nearly incoherent beam.

The final beam source we will use in our investigation is the electromagnetic

version of the Gaussian Schell-model source (EMGSM) that will consider both the x

and y components of the field. This vectorial generalization of the scalar Gaussian

Schell-model beam has been studied extensively in previous literature for both free

space [23]-[26], and in atmospheric turbulence [27]-[28].

We start by defining the cross spectral density matrix of an EMGSM beam at two

points in the source plane, ρ1 and ρ2, by

W2,ij(ρ1,ρ2, 0) = AiAjBij exp

[

−
(

ρ
2
1

4σ2
i

+
ρ
2
2

4σ2
j

)]

exp

[

−(ρ1 − ρ2)
2

2δ2ij

]

, (i, j = x, y),

(2.21)

Here Ai are the spectral amplitudes, Bij are the correlation coefficients of the x and

y components, σi,j is the r.m.s width of the intensity along the x and y components,

and δi,j are the r.m.s. widths of the correlation functions of the x and y components.
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All of these parameters are assumed to be independent of position.

To create a physically realizable EMGSM beam we must impose certain restrictions

on these parameters. Following [29], section 4.3.2, we find that

Bxx = Byy ≡ 1, (2.22)

due to the fact that the diagonal components of the matrix represent the scalar cross

spectral density functions. We also find from the quasi-Hermiticity property of the

cross-spectral density matrix that [27],[30]

δxy = δyx, (2.23)

Bxy = B∗

yx. (2.24)

Further, as a result of the non-negative definite condition on the cross spectral density

matrix, we must have as a necessary and sufficient condition [27]

|Bxy| ≤ 1, |Byx| ≤ 1. (2.25)

It was shown in [24] that additionally a sufficient condition for a physically realizable

field takes the form
√

δ2xx + δ2yy
2

≤ δxy ≤
√

δxxδyy
|Bxy|

. (2.26)

Finally, we find that in order to create a beam-like field, the diagonal elements of the
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cross spectral density matrix must satisfy the inequalities [31]

1

4σ2
x

+
1

δ2xx
<<

2π2

λ2
,

1

4σ2
y

+
1

δ2yy
<<

2π2

λ2
. (2.27)

Given that we have specified the source in terms of its cross spectral density we will

need to modify the propagation equation 2.7 slightly giving for the scalar case

W2(r1, r2; z, λ) =

∫ ∫

W2,0(ρ1,ρ2;λ)K(r1, r2;ρ1,ρ2; z, λ)d
2ρ1d

2ρ2, (2.28)

and for the electromagnetic case

W2,ij(r1, r2; z) =

∫ ∫

Wij(ρ1,ρ2; 0)K(r1, r2;ρ1,ρ2; z)d
2ρ1d

2ρ2, (i, j = x, y),

(2.29)

where in each formula, the propagator K again follows from equation 2.8.

2.4 Strong Turbulence

To this point, the equations discussed are only valid in the regime of weak turbulence

fluctuations. For the Gaussian beam, this regime is defined by restrictions on the

parameter q = L/kρ2pl where ρpl is the spatial coherence radius of a plane wave, i.e.

the 1/e point of the degree of coherence at a propagation distance L. The inequalities
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that define the strength of the turbulence have the form

q < 1 and qΛ < 1, (weak turbulence),

q >> 1 or qΛ >> 1, (strong turbulence).

(2.30)

It will become clear when investigating the scintillation properties, that it is necessary

in the case of oceanic turbulence to extend this theory into regions with strong optical

turbulence through the use of effective beam parameters [14]-[15]. Following [11], we

will define Λ0 and Θ0 as the input plane beam parameters that relate to the beam

radius and phase front radius of curvature through

Λ0 =
2L

kW 2
0

, Θ0 = 1− L

F0

, (2.31)

Subsequently, we are able to define output plane beam parameters

Λ =
Λ0

Λ2
0 +Θ2

0

, Θ =
Θ0

Λ2
0 +Θ2

0

, (2.32)

that will allow us to simplify the mathematical expressions for the random phase

correlations for different sources. We can see here that for the particular cases of

Λ0 = 0,Θ0 = 1 we have a plane wave, and Λ0 = 0, Θ0 = 0 gives us a spherical wave.

The method of effective beam parameters maybe used to extend these following

formulas into the strong regime by replacing Λ and Θ by their effective beam parameters

[11]

Λe =
Λ

1 + 4qΛ/3
, Θe =

Θ− 2qΛ/3

1 + 4qΛ/3
. (2.33)



Chapter 3

Laser Beam Propagation Through

Oceanic Turbulence

3.1 Scintillation Index

We begin our investigation by determining the fourth-order statistics of a propagating

beam and in particular the scintillation index, or normalized variance of the fluctuating

intensity . The scintillation index is crucial in many applications such as communication

links and laser radar and will be an important part of understanding oceanic turbulence.

As mentioned in section 2.3, we choose to study the scintillation properties first as

it will enable us to categorize the turbulence as being in either the weak or strong

regime. This determination will affect the way we calculate the other properties of

the beam as we go forward and will necessitate the use of the method of effective

beam parameters.

In this chapter we begin by considering a scalar beam-like field U(ρ, 0) propagating

in a linear random medium at a point with the position vector r = (x, y) and

propagation distance z, from the source plane z = 0 into the half-space z > 0.

Assuming the beam is generated by the lowest order Gaussian source of unit amplitude:

z = 0; U0(ρ, 0) = exp(− ρ2

W 2
0

− ikρ2

2F0

), (3.1)

21
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whereW0 and F0 are the beam radius and phase front radius of curvature and k is the

wave number. At this point, having specified explicitly our source we can calculate

the correlation function of the complex phase as in equation 2.8 for this particular

case of a scalar Gaussian beam. For beam, it has been shown that we can write the

complex phase correlations as [11]

〈exp[ψ∗(r1,ρ1, L) + ψ(r1,ρ2, L)]〉m

= exp[2E1(0, 0) + E2(r1, r2)],

(3.2)

where we have for a Gaussian beam

E1(0, 0) = −2π2k2L

∫

∞

0

κΦn(κ)dκ, (3.3)

and

E2(r1, r2) = 4π2k2L

∫ 1

0

∫

∞

0

κΦn(κ)J0{κ([1− Θ̄ξ]p− 2iΛξr)} exp[−ΛLκ2ξ2

k
]dκdξ.

(3.4)

Here p = r1 − r2,r = (r1 + r2)/2 are the sum and difference vectors, L is the

propagation distance, ξ is a normalized distance variable ξ = 1 − z/L, and J0 is

the zero order Bessel Function. Φn represents the power spectrum of the turbulence,

and Θ̄ = 1−Θ. We also recall that Λ and Θ are the output plane beam parameters



23

given in equation 2.32. This gives us a final expression for the cross spectral density

W2(r1, r2, L) = 〈U∗(r1, L)U(r2, L)〉

=

∫∫

U∗(ρ1, 0)U(ρ2, 0)(
k

2πL
)2 exp[−ik (r1 − ρ1)

2 − (r2 − ρ2)
2

2L
]

× exp[2E1(0, 0) + E2(r1, r2)]d
2ρ1d

2ρ2.

(3.5)

We will also need to calculate the fourth order coherence function defined in equation

2.12 for the specific case of the scalar Gaussian beam. It has been shown that we can

write this as [11]

W4(r1, r2, r3, r4, L) = U0(r1, L)U
∗

0 (r2, L)U0(r3, L)U
∗

0 (r4, L)

× 〈exp[ψ(r1, L) + ψ∗(r2, L) + ψ(r3, L) + ψ∗(r4, L)]〉

= W2(r1, r2, L)W2(r3, r4, L) exp[E2(r1, r4) + E∗

2(r3, r2)

+ E3(r1, r3) + E∗

3(r2, r4)].

(3.6)

Here we add another equation given by [11]

E3(r1, r2) = −4π2k2L

∫ 1

0

∫

∞

0

κΦn(κ)J0[(1− Θ̄ξ − iΛξ)κ|p|]

× exp[−ΛLκ2ξ2

k
] exp[− iLκ

2

k
ξ(1− Θ̄ξ)]dκdξ.

(3.7)

Recall that we define the scintillation index as

σ2
I (r, L) =

〈I2(r, L)〉 − 〈I(r, L)〉2
〈I(r, L)〉2 , (3.8)

with I(r, L) given by equation 2.10 and 〈I2(r, L)〉 given by equation 2.15. We are
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now able to calculate the correlation of the complex phase in the fourth order for the

specific case of the Gaussian beam, yielding

〈I2(r, L)〉 = W4(r, r, r, r, L)

= 〈I(r, L)〉2 exp(2 Re [E2(r, r) + E3(r, r)]).

(3.9)

By inserting equations 3.4 and 3.7 into equation 3.9 and subsequently into equation

3.8, we find that the scintillation index of a Gaussian beam can be represented by

its longitudinal, or on-axis component, σ2
I,l(0, L) and radial component σ2

I,r(r, L) [11],

i.e.

σ2
I (r, L) = σ2

I,l(0, L) + σ2
I,r(r, L), (3.10)

where

σ2
I,l(0, L) = 8π2k2L

1
∫

0

∞
∫

0

κΦn(κ) exp

[

−ΛLκ2ξ2

k

]

×
{

1− cos

[

Lκ2

k
ξ(1− (1−Θ)ξ)

]}

dκdξ,

(3.11)

and

σ2
I,r(r, L) = 8π2k2L

1
∫

0

∞
∫

0

κΦn(κ) exp

[

−ΛLκ2ξ2

k

]

× [I0(2Λrξκ)− 1] dκdξ, r = |r|.

(3.12)

Here I0(x) is the modified Bessel function of order zero and with Λ and Θ given

by equations 2.31 and 2.33. We are now able to substitute the oceanic turbulence
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spectrum, equation 1.6, directly into equations 3.11 and 3.12 to calculate the scintillation

of propagating beams.

We will start by investigating the scintillation index of a plane wave, known as the

Rytov variance [11], which we will use to distinguish the strong and weak turbulence

regimes, as well as the case of a spherical wave. For this we will chose Λ = 0,Θ = 1

for the case of a plane wave, and Λ = 0,Θ = 0 for the case of the spherical wave. In

these two specific cases the radial component of the scintillation index, equation 3.12,

vanishes. Due to the sensitivity of the numerical integration including the limit used

to approach the +∞ upper bound on the integral in equation 3.11, some reproductions

of these results may differ slightly from those presented here. This can change slightly

the affect that propagation distance has on the separation between weak and strong

turbulence regimes.

Figure 3.1 plots the scintillation index of both a plane wave and spherical wave as

a function of propagation distance for several values of χT , the rate of mean-squared

temperature variance dissipation [17]. The difference in absolute scintillation between

the plane and spherical waves is approximately one order of magnitude. This is a

much larger difference than what we find for the traditional Kolmogorov spectrum of

atmospheric turbulence which gives a ratio of approximately 0.4 [11]. Drawn on Figure

3.1(A) is a line marking the separation between regions of weak and strong turbulence.

Traditionally in atmospheric turbulence the Rytov variance, or scintillation index of a

plane wave, is used as the threshold where σ2
R << 1 is said to be weak turbulence and

σ2
R >> 1 is the strong regime. We see that the onset of this strong turbulence regime

begins as soon as about 10m and as late as perhaps 100 meters with certain values
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Figure 3.1: The scintillation index of (A) plane wave and (B) spherical wave vs.
propagation distance L [m] for several values of χT : χT = 10−8 K2/s (solid curve),
χT = 10−7 K2/s (dashed curve), χT = 10−6 K2/s (dotted curve), χT = 10−5 K2/s
(dash-dotted curve). ω = −2.5, ε = 10−5 m2/s3. From Ref. [17]
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Figure 3.2: The scintillation index of (A) plane wave and (B) spherical wave vs.
propagation distance L [m] for several values of ω: ω = −0.1 (solid curve); ω = −0.5
(dashed curve); ω = −1 (dotted curve), ω = −4.9 (dash-dotted curve). χT = 10−6

K2/s, ε = 10−5 m2/s3. From Ref. [17]

of χT . Dependence on the parameter ε is not plotted as it is evident from equation

1.6 that it is monotonic and inverse to that of χT . Figure 3.2 shows the dependence

of plane and spherical wave scintillation on the parameter w. We see clearly that

for values closer to w = 0, that is heavier salinity dominated fluctuations, we have a

higher scintillation than for temperature dominant fluctuations with values closer to

w = −5.

Figure 3.3 plots the ratio of the scintillation index of a spherical wave to that
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Figure 3.3: The ratio of the scintillation indexes of a spherical to a plane waves vs.
propagation distance L [m] for several values of ω: ω = −0.1 (solid curve), ω = −1
(dashed curve), ω = −4.9 (dotted curve). χT = 10−6 K2/s, ε = 10−5 m2/s3. From
Ref. [17]

of a plane wave vs. propagation distance [17]. In this figure we can see that the

ratio starts at roughly 0.1 and grows with propagation distance, which is in contrast

to atmospheric turbulence with the Kolmogorov spectrum where it is approximately

constant at 0.4. This ratio is independent of χT and ε but does vary slightly with w

as seen from the three separate curves.

Figure 3.4 [17] shows the scintillation index of a Gaussian beam normalized by

that of a plane wave. It is plotted as a function of Λ0, the initial width of the

beam normalized by the first Fresnel zone defined in equation 2.31. Functionally,

this represents the near field when Λ0 << 1 and the far field when Λ0 >> 1. This

normalized value of scintillation does not depend on χT or ε. The impact of the

parameter w is shown in the plot. For on-axis scintillation w does not impact the

normalized scintillation appreciably but does have noticeable impact on the values

on the beam edge, that is the point where r = (Λ2 + Θ2)1/2. For Λ0 = 1 the ratio
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Figure 3.4: Scintillation index of a collimated Gaussian beam normalized by the
scintillation index of the plane wave at r = 0 and r = W , the parameters are the
same as in Fig. 3.2. From Ref. [17]

can be larger than 20, which is considerably larger than that found typically in the

atmospheric case where the ratio tends to be approximately 4-5.

3.2 Average Intensity Characteristics

Given what we know now about the scintillation and the very early onset of the

strong turbulence regime, we can proceed to calculate the second order statistics,

including the intensity profile, using the method of effective beam parameters outlined

in Chapter 2.3. Recall that the intensity at a propagation distance L and point in

the x-y plane r is defined as

I(r, L) = W2(r, r, L). (3.13)
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By substituting the oceanic turbulence spectrum, equation 1.6, directly into equations

3.3 and 3.4, and finally into equation 3.5 we can directly calculate the intensity profile.

In the following figures χT = 10−7m2

s3
, ε = 10−5K2

s
, λ = 0.417 × 10−6m, initial beam

size W0 = 0.01m, and F0 = ∞ unless specified otherwise.

Figure 3.5 shows the intensity profiles of a Gaussian beam propagating through

several different distances of oceanic turbulence with several different values of w,

the parameter relating the relative contributions of temperature and salinity to the

turbulence [18]. These plots show that with a value of w closer to 0, the upper

limit representing the case where salinity fluctuations are dominant, the intensity is

degraded much faster than for values approaching the lower bound of w = −5, the

case when temperature fluctuations are more prominent.

In these plots recall that we have only taken into account the influence of optical

turbulence on the beam, and not absorption. For the wavelength chosen, 0.417 ×

10−6m, the absorption coefficient of pure water has been found to be aw = 0.00441m−1

[16]. Using this we can calculate the drop in intensity due to absorption using the

well known Beer’s Law formula

I(r, L) = I0(ρ, 0) exp[−awL]. (3.14)

At propagation distances of L equal to 10, 30, and 70 meters this leaves 95.66%,

87.55%, and 73.34% of the original intensity. If we compare these results with

the figures, we can see that the on-axis intensity change due to optical turbulence

alone can be significant and in some cases larger than that of absorption. Salinity
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Figure 3.5: Intensity profiles of a Gaussian beam as a function of radial distance
from the beam axis for different propagation lengths and w values. All plots have
χT = 10−7m2

s3
, ε = 10−5K2

s
, L = 10m (solid curve), L = 30m (dashed curve), and

L = 70m (dot-dashed curve). From Ref. [18]
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Figure 3.6: Intensity distribution vs. radial distance from the beam axis for several
different wavelengths with w = −1. λ = 400nm (solid black curve), λ = 500nm
(dashed black curve), λ = 600nm (dot-dashed black curve), λ = 700nm (solid gray
curve), λ = 800nm (dashed gray curve). From Ref. [18]

dominated fluctuations can result in much more beam degradation than that due to

the absorption from pure water.

Figure 3.6 examines the dependence of the intensity distribution on the wavelength

of the source beam at a propagation distance of 50 meters. We see that across the

visible spectrum, from 400nm to 800nm, higher wavelengths are affected more by the

turbulence, if only slightly.

3.3 Coherence Properties

Along with intensity we can investigate the coherence properties of propagating beams

using the second order cross spectral density W2, given by equation 3.5. Again we

recall that the degree of coherence is given by the formula [11]

µ(r1, r2, z) =
W2(r1, r2, z)

√

W2(r1, r1, z)W2(r2, r2, z)
=

W2(r1, r2, z)
√

I(r1, z)I(r2, z)
. (3.15)
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In this study we will choose points r1 and r2 that are directly opposite each other

with respect to the beam axis for all calculations. Figure 3.7 shows the degree of

coherence profile of Gaussian beams under several different values of the turbulence

parameter w and several propagation distances [18]. Highlighted in the subplot of

Figure 3.7a we can see that the coherence profile becomes wider at 70m that it

is at 30m. This property of the beam is consistent with results for atmospheric

turbulence [11] and can be seen more clearly in Figure 3.8a. This figure fixes the

parameter w = −0.2 and plots the coherence radius, that is the 1/e point of the

degree of coherence as a function of propagation distance for a plane wave, spherical

wave, and Gaussian beam. The increase in coherence radius at further propagation

distances can be seen for the Gaussian beam (dashed plot), agreeing with Figure 3.7a.

These plots begin at a 10m propagation distance due to shorter distances being more

computationally intensive and not offering any additional value.

Figure 3.8b shows the coherence radii of a spherical wave and a Gaussian beam

normalized by that of a plane wave and is readily compared to the atmospheric case

shown in Figures 7.2 and 7.4 in [11]. While the ratio of spherical to plane waves stays

rather consistent, with only a small downward slope, the ratio for the Gaussian beam

starts at 1:1 but then saturates at large propagation distances to that of the spherical

wave. We have used a smaller value of w, here w = −0.2, to exaggerate this effect

due to the smaller value causing stronger turbulence.
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Figure 3.7: Degree of coherence profiles of a Gaussian beam as a function of separation
distance for different propagation lengths and w values. All plots have χT = 10−7m2

s3
,

ε = 10−5K2

s
, L = 10m (solid curve), L = 30m (dashed curve), and L = 70m

(dot-dashed curve). From Ref. [18]
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Chapter 4

Spectral Changes in Stochastic Light

Beams in Oceanic Turbulence

Often times when measuring the spectrum of light from a distant source, it is

taken for granted that the normalized spectral distribution at the detector is the

same as that of the source. It has been shown that this is not true for all sources,

and in fact the spectrum of light can change even upon propagation in a vacuum [37].

For this spectral shift to occur we must insure that the source generates a highly

directional, partially coherent beam with a narrow initial spectrum. Sources such as

unbounded sun light or a monochromatic laser beam would not allow this shift to

occur. In addition to these changes occurring in a vacuum, it has been seen that the

spectrum of partially coherent beams can exhibit even more complex behavior when

propagating through random media, such as atmospheric turbulence or human tissue

([38], [39],[40]). This topic is critical as the spectral composition of beams can be used

as a carrier of information in communications or remote sensing ([41],[42]) and it has

been shown that it can often times be helpful to use a partially coherent beam rather

than deterministic when working in a random media ([43], [44]). If we intend to study

beam propagation through oceanic turbulence we must take this spectral shift into

account, particularly due to the varying absorption rates for different wavelengths of

light in the ocean [16].
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4.1 Spectral Properties

We will begin this study with an scalar Gaussian Schell-Model (GSM) beam with an

explicit dependence on wavelength in the source plane given by

W2,0(ρ1,ρ2;λ) = I0(λ) exp

[

−(ρ1)
2 + (ρ2)

2

4σ2

]

exp

[

−(ρ1 − ρ2)
2

2δ2

]

, (4.1)

previously described in Chapter 2.3.

Beginning with this source plane cross spectral density, we can insert it into

equation 2.28 to calculate the result in the observation plane. For this we will need

to explicitly calculate the propagator K defined in equation 2.8 for the case of the

scalar GSM beam. Following [11] we see that we can express the correlation of the

complex phase as

〈exp[ψ∗(ρ1, r1) + ψ(ρ2, r2)]〉m =

exp



−4π2k2z

1
∫

0

∞
∫

0

κΦn(κ)[1− J0[|(1− ξ)(r1 − r2) + ξ(ρ1 − ρ2)|κ]]dκdξ



 ,

(4.2)

Recalling that J0 is the 0
th order Bessel function, if the fluctuations in the source are

much stronger than those in the random medium, it is possible to approximate the

Bessel function by its first two terms, i.e. J0(x) ≈ 1− 1
4
x2 and we can then write the

propagator K as ( [20] - [22] )

K(r1, r2;ρ1,ρ2; z, λ) =

(

k

2πz

)2

exp

[

−ik (r1 − ρ1)
2 − (r2 − ρ2)

2

2z

]
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× exp



−π
2k2z

3
[(r1 − r2)

2 + (r1 − r2)(ρ1 − ρ2) + (ρ1 − ρ2)
2]

∞
∫

0

κ3Φn(κ)dκ



 . (4.3)

From here we can directly insert equation 4.3 into equation 2.28 to find ([22] ,

W2 (r1, r2; z, λ) =
I0(λ)

∆2(z)
exp

(

−(r1 + r2)
2

8σ2∆2(z)

)

× exp

(

−
[

1

2∆2(z)

(

1

4σ2
+

1

δ2

)

+M(1 + σ2)− M2z2λ2

8π2σ2∆2(z)

]

(r1 + r2)
2

)

× exp

(

iπ(r22 − r21)

λR(z)

)

,

(4.4)

with

∆2(z) = 1 +

(

zλ

2πσ

)2 (
1

4σ2
+

1

δ2

)

+
Mz2λ2

2π2σ2
,

M =
4π4z

3λ2

∞
∫

0

κ3Φn(κ) dκ, R(z) =
4π2σ2∆2(z)z

4π2σ2∆2(z) +Mz2λ2 − 4π2σ2
.

(4.5)

It then follows that the wavelength dependent intensity, evaluated as in equation 2.10

can be expressed as

I(r, λ) =
I0(λ)

∆2(z)
exp

[

− r2

2σ2∆2(z)

]

. (4.6)

For the analysis here it will be of interest to evaluate the normalized intensity given

by [29]

IN(r;λ) = I(r;λ)/

∞
∫

0

I(r;λ) dλ, (4.7)

Further, we will be interested in the new central frequency of the beam found with

[38]

λ1(r) =

∞
∫

0

λI(r;λ) dλ/

∞
∫

0

I(r;λ) dλ. (4.8)
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Using this new central frequency, we can establish a normalized spectral shift

̺(r) =
λ1(r)− λ0

λ0
, (4.9)

which shows a blue shift when ̺ takes negative values, and a red shift for positive

values. In the figures that follow, λ0 = 0.5435 × 10−6 m, Π = λ0/6; σ = 0.01 m;

δ = 0.0001 m.

4.2 Numerical Results

Figures 4.1 and 4.2 show density plots of the actual spectral shift overlapped with

contour plots of the normalized spectral shift of a beam on propagation [45]. Figure

4.1 and its four subplots show the dependence of both the position of a point relative

to the center of the beam, (on the y-axis), and that of varying the value of χT .

The four plots have values of (a) χT = 10−10 K2/s, corresponding to very weak

turbulence, (b) χT = 10−5 K2/s, (c) χT = 10−4 K2/s, and (d) χT = 10−2 K2/s,

corresponding to very strong turbulence. We see in Figure 4.1a that for the case of

very weak turbulence, the beam undergoes a blue shift after propagation while in the

plots highlighting stronger turbulence, this shift is suppressed, and indeed ends up

reconstructing its original spectrum. In the case with the strongest turbulence, the

turbulence serves to suppress any source induced spectral changes almost completely,

and the very minor change that does occur happens very near the source, on the order

of 10 meters.
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Figure 4.1: Density plots of actual spectral shift λ1 overlapped with contour plots
of normalized spectral shift ̺ = λ1−λ0

λ0

as a function of z (horizontal axis, in meters)

and r (vertical axis, in meters) for (a) χT = 10−10 K2/s; (b) χT = 10−5 K2/s, (c)
χT = 10−4 K2/s; (d) χT = 10−2 K2/s; ε = 10−4 m2/s3, w = −4.5. From Ref. [45]
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Figure 4.2 highlights the on-axis impact of the three major parameters of oceanic

turbulence, (a) rate of dissipation of mean-square temperature χT ; (b) density gradient

ratio w and (c) energy dissipation rate ε. Figure 4.2a shows that for values of χT

higher than 10−5 reconstruction of the initial spectrum can occur. At this point

the turbulence is strong enough to suppress the source correlation induced spectral

changes. Figure 4.2b shows a similar property pertaining to the density gradient ratio

parameter w, that is, we must have a value very close to 0, indicating salinity dominant

fluctuations and thus stronger turbulence, in order to suppress the changes. Figure

4.2c shows the effect of ǫ which follows similarly to χT albeit in an inverse manner

and without as significant an effect.
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Figure 4.2: Density plots of actual spectral shift λ1 overlapped with contour plots
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Chapter 5

Polarization Properties of Stochastic

Beams in Oceanic Turbulence

5.1 Electromagnetic Stochastic Beam Propagation

We have so far been interested in only cases involving a scalar beam, but we will

now switch to investigating the case of an electromagnetic beam. We start by

introducing a beam with its source located in the plane z = 0 defined by E(ρ, λ) =

[Ex(ρ, λ), Ey(ρ, λ)] where Ex and Ey are the mutually orthogonal components of the

electric field fluctuating with wavelength λ. Here ρ is again the two-dimensional

vector ρ = (ρx, ρy) in the source plane. We can now describe the second-order

correlation properties of this electromagnetic beam at two points, ρ1 and ρ2 using

the cross-spectral density matrix defined by [19]

W = [Wij(ρ1,ρ2;λ)], (i, j = x, y), (5.1)

where

Wij,0(ρ1,ρ2;λ) = 〈E∗

i (ρ1;λ)Ej(ρ2;λ)〉, (i = x, y; j = x, y), (5.2)

is the familiar scalar correlation function of the fields averaged over the ensemble of

realizations.

43
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Following the assumption that the fluctuations in the index of refraction are small

in comparison to the wavelength of light, the components of the electric field Ei at

any point r satisfy the wave equations of the form

∇2Ei(r, z, λ) + k2n2(r, z)Ei(r, z, λ) = 0, (5.3)

where k = 2π/λ is the wave number of the light, and i = x, y, z. In this study, we

will only be interested in beam like fields, and therefore can neglect the z-component.

Additionally, any and all correlation between the x and y components of the electric

field will occur through initial conditions in the source plane, and not upon propagation

in the medium.

We recall from equation 2.29 that upon propagation we have,

W2,ij(r1, r2; z, λ) =

∫ ∫

Wij,0(ρ1,ρ2;λ)K(r1, r2;ρ1,ρ2; z, λ)d
2ρ1d

2ρ2, (i, j = x, y),

(5.4)

with K the propagator now being defined by equation 4.3. For the following analysis

of the polarization properties we will be investigating the electromagnetic Gaussian

Schell Model (EMGSM) beam defined in Chapter 2.4 whose source was given as

Wij,0(ρ1,ρ2, λ) = AiAjBij exp

[

−
(

ρ
2
1

4σ2
i

+
ρ
2
2

4σ2
j

)]

exp

[

−(ρ1 − ρ2)
2

2δ2ij

]

, (i, j = x, y),

(5.5)



45

5.2 Polarization Properties

The focus of this section will be on the evolution of the polarization properties of

an EMGSM beam traveling through oceanic turbulence. In the interest of providing

a complete view of the evolution of the beam, the change in spectral density of the

beam will be shown along with the polarization characteristics. The spectral density

of an electromagnetic stochastic beam is defined by the expression

S(r;λ) = Tr[W(r, r;λ)]. (5.6)

The polarization of the beam can be characterized by the spectral degree of

polarization which is defined by the formula [19]

P (r;λ) =

√

1− 4Det[W(r, r;λ)]

Tr[W(r, r;λ)]2
, (5.7)

and the spectral polarization ellipse defining the state of polarization of the fully

polarized portion of the beam. In Eqs. 5.6 and 5.7 Tr and Det stand for trace and

determinant of a matrix. Figure 5.1 shows the notation relevant to the polarization

ellipse we will use in exploring the characteristics of the beam by expressing them

as functions of W , the cross spectral density matrix [32]. The polarization angle,

denoted ψ gives the angle of the polarization and can be expressed by [19]

ψ(r, λ) =
1

2

∣

∣

∣

∣

arctan

(

2Re[Wxy(r, r, λ)]

Wxx(r, r, λ)−Wyy(r, r, λ)

)∣

∣

∣

∣

. (5.8)
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The semi-axes of the ellipse will also be important in our analysis and can also be

related to the cross-spectral density as follows,

ς1,2(r, λ) =
1√
2

[

√

(Wxx −Wyy)2 + 4|Wxy|2 ±
√

(Wxx −Wyy)2 + 4[ReWxy]2
]1/2

.

(5.9)

Here the + and − signs on the right side of the formula correspond to the major

semi-axis ς1 and minor semi-axis ς2 of the ellipse, respectively. With these now fully

defined, we can describe the ellipticity, or shape of the ellipse, by the ratio

ǫ(r, λ) =
ς2(r, λ)

ς1(r, λ)
. (5.10)

When ǫ = 0 the polarization state is linear, and for ǫ = 1 the polarization state

becomes circular. We are now able to describe the state of the beam as it propagates

through oceanic turbulence fully. In the following results, unless specified to be

otherwise, the parameters of both the beam source and oceanic turbulence are taken

as λ = 0.633µm, σx = σy = σ = 0.01m, δxx = 0.0005 m, δyy = 0.004 m , δxy = 0.005

m, Ax = 1.3, Ay = 1 and Bxy = Byx = 0.1, Bxx = Byy = 1, χT = 10−6, ε = 10−7,

w = −2.5

Figure 5.2 shows the typical evolution of the polarization ellipse upon propagation

[33]. Each of the four plots, that show four different propagation distances, display

the values of the spectral density, normalized by that at the source. It is apparent

from these figures that the beams polarimetric properties change in a non-monotonic

manner. We also see that at large propagation distances the polarization begins to



47

x

y

ς1

ς
2

ψ

χ

Figure 5.1: Notation relating to the parameters of polarization ellipse.

return to having the same properties as those at the source. This self reconstruction

phenomenon is similar to that seen in atmospheric turbulence ([28], [34]), but different

from that in human tissues ([35], [36]).

Figures 5.3 - 5.6 are all organized with the spectral density S in plot (a), degree

of polarization P in plot (b), orientation angle ψ in plot (c), and degree of ellipticity

ǫ in plot (d), with the propagation distance z on the horizontal axis, in meters.

We start by looking at the dependence of the polarization properties on the beam

source parameters. Figure 5.3 shows the dependence on δxx, the source correlation

property. The three curves represent δxx = 0.0005m (solid curves), δxx = 0.001m

(dotted curves), δxx = 0.005m (dashed curves) while the two other r.m.s. correlation

widths δyy and δxy are kept fixed. Here we see that while the spectral density is

not affected largely by changes in the source correlation, the polarization properties
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Figure 5.2: Typical evolution of the polarization ellipse of a stochastic beam in oceanic
turbulence (on-axis).
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Figure 5.3: Variation of the statistical properties of the beam with distance z
(horizontal axis, in meters) for several values of the r.m.s. correlation coefficient
δxx of the source.

change considerable and vary more drastically for smaller values of δxx.

Figure 5.4 shows the dependence of the beam on the r.m.s source width σ which

in the figure takes values of σ = 0.005m (solid curves) σ = 0.01m (dotted curves),

and σ = 0.05m (dashed curves). In this case we do see a dependence of the spectral

density on σ, being affected more for smaller values. Smaller σ values also lead to

larger changes in the polarization properties occurring closer to the source.

Figures 5.5 and 5.6 show the dependence of both the spectral density and polarization

properties on the different oceanic turbulence parameters. Figure 5.5 shows the

dependence on the parameter χT for values equal to 10−2 (solid curves), 10−6 (dotted

curves), 10−10 (dashed curves). We have seen already that larger values of χT
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Figure 5.4: Variation of the statistical properties of the beam with distance z
(horizontal axis, in meters) for several values of the r.m.s. width σ of the source.
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Figure 5.5: Variation of the statistical properties of the beam with distance z
(horizontal axis, in meters) for several values of the mean square temperature
dissipation rate χT .

correspond to stronger turbulence and that is apparent again in Figure 5.5. The

larger values correspond to a larger decrease in spectral density occurring earlier

along the propagation path, as well as significantly smaller changes in polarization

properties of the beams. Indeed, when we take the extreme case of χT = 10−2 (solid

curves), we see that all the polarization properties remain essentially constant along

the propagation path. In this case, the extremely strong turbulence acts to suppress

any polarization changes due to the source very early on in the propagation path.

We have omitted explicitly showing the dependence on ǫ as again it will function

similarly to that of χT albeit in an inverse way, i.e. larger values of ε will give weaker

turbulence as opposed to stronger.
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Figure 5.6: Variation of the statistical properties of the beam with distance z
(horizontal axis, in meters) for several values of the temperature-salinity balance
parameter w.

Finally, Figure 5.6 shows the depends on the density ratio w. Here the values

taken are w = −0.1 (solid curves), w = −2.5 (dotted curves), and w = −4.9 (dashed

curves). We have seen in our analysis in Chapter 3, when w takes values closer to

0, meaning a more salinity dominated turbulence, we have stronger turbulence. This

trend continues here as the solid curves, w = −0.1 give us the fastest drop in spectral

density as well as smaller changes in the polarization properties occurring closer to

the source.



Chapter 6

Phase Screen Simulation of Oceanic

Turbulence

In our investigation thus far in Chapters 2-5 we have taken a statistical approach

using classic Rytov theory and the extended Huygens-Fresnel principle to study beam

characteristics in oceanic turbulence theoretically. We will now use a numerical wave

optics random phase screen simulation method to compare the results. Modeling

of beam propagation in turbulence through the use of multiple computer-generated

phase screens has been used for some time now [46]-[48]. The results of this technique

are well documented in relation to atmospheric turbulence [49]-[50] and have been

more recently used to study propagation of partially coherent beams [51]-[52]. As we

have seen, analytical evaluation using the recent spatial power spectrum of refractive

index fluctuations for the ocean given in [1] can be incredibly complex if feasible at

all. The numerical wave optics simulation approach may therefore be preferable for

certain situations as its calculations are not as complex.

In our simulation, we model the propagation of a wave through the ocean as the

discrete case of propagation through a series of phase screens separated by free space

as shown in Figure 6.1. This figure shows phase screens labeled A(1), A(2), ..., A(n) each

separated by an equal distance of free space as well as the propagation path of the

beam. This situation, where the continuous random medium is broken up into a series
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Figure 6.1: Graphic representation of the geometry used in simulating propagation
via numerical phase screen approach.

of independent slabs, each representing weak turbulence on its own, is equivalent to

the Markov approximation used in analytical studies [54]. To propagate the beam

along this path we will need to alternate between sections of free space propagation,

and passage through a thin phase screen whose characteristics are defined by the

spatial power spectrum ΦN .

The propagation through the sections of free space is accomplished through the

Huygens-Fresnel integral [55]

U(r, L, λ) = −2ik

∫∫

∞

−∞

G(ρ, r, L)U0(ρ, 0)d
2ρ, (6.1)

where U0(ρ, 0) is the optical field in the source plane, k is the wave number, and

G(ρ, r, L) is the free-space Greens function given by

G(ρ, r, L) =
1

4πL
exp[ikL+

ik

2L
|ρ− r|2]. (6.2)

For practical purposes, it will be convenient to recognize that equation 6.1 has the
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form of a two dimensional Fourier transform, allowing us to write it as [56]

U(r, L, λ) = F−1[F(U0(ρ, 0, λ))H(κ)], (6.3)

where here κ is the spatial frequency, F is the Fourier Transform, and F−1 is the

inverse Fourier transform. H(κ) is the free space propagation transfer function given

by [57]

H(κ) = exp[iπL(
2

λ
− λκ2)]. (6.4)

We will use this process to propagate the beam through the sections of free space that

fall between the phase screens created to model the turbulence. The passage through

the nth phase screen at position z is done simply by

Un+(r, z
+, λ) = Un−(r, z

−, λ) exp[−iθ(r)], (6.5)

where θ(r) is the turbulence induced phase whose generation is outlined in the

following section.

6.1 Phase Screen Generation

In order to pass the beam through this system of phase screens we first need to

generate phase screens that have the same properties as the random medium we

desire. For our purposes, we require the same statistics as that of the refractive-index

power spectrum given in equation 1.6. We begin again by making the assumptions of

statistically homogeneous and isotropic turbulence and we assume that no amplitude
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change occurs when the beam passes through a phase screen, that is, each screen

introduces an independent random contribution to the phase only. To relate back

to our refractive-index spectrum Φn we begin by specifying the statistics of a single

phase screen. We see that we can write the phase correlation function as [47]

Bθ(ρ1,ρ2) = k2
∫∫ δz

0

〈n(ρ1)n(ρ2)〉d2ρ, (6.6)

where here ρ1 and ρ2 are vectors in the plane of the phase screen, Bθ is the correlation

between the phases arriving at two points, and n(ρ1) is the refractive index at point

ρ1. We can write the correlation function of refractive index variation as

〈n(ρ1)n(ρ2)〉 = An(ρ1 − ρ2). (6.7)

It can also be shown that the correlation of refractive-index fluctuations is related to

the spatial power spectrum Φn as [54]

An(ρ) = 2π

∫∫

∞

−∞

Φn(κ)exp[iκ · ρ]d2κ. (6.8)

This gives us a relationship between the phase spectrum and the refractive index

spectrum of

Φθ(κ) = 2πk2δzΦn(κ). (6.9)

We are now able to construct a phase screen, denoted θ using the well-known method

using Gaussian noise to create a random phase screen with the same statistics as the
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random media we desire [48],[58]. Each individual phase screen is given by

θ(j∆x, l∆y) =
Nx
∑

n=0

Ny
∑

m=0

[a(n,m) + ib(n,m)]× exp[2πi(jn/Nx + lm/Ny)]. (6.10)

Here Nx and Ny are the dimensions of each phase screen, ∆x and ∆y are the grid

spacings in the x and y coordinates, and a(n,m) and b(n,m) are zero-mean Gaussian

random numbers with

〈a2(n,m)〉 = 〈b2(n,m)〉 = ∆qx∆qyΦθ(κ), (6.11)

where ∆qx = 2π/(Nx∆x) and ∆qy = 2π/(Nx∆y) are the grid size of the simulation

in spectral space. Inserting the spectrum for oceanic turbulence Φn from equation

1.6 into equation 6.9 and then into equation 6.10 gives us the desired phase screens

with the same statistics of the oceanic turbulence we intend to study. Figure 6.2

shows several different typical phase screens generated for differing oceanic turbulence

parameters using the above method. The color difference from white to black signifies

a phase difference running from 0 to 2π.

6.2 Simulation Results

In the results that follow, each plot shows the result of 16 phase screens placed

at even intervals along the propagation path. Each phase screen, as well as the

source plane contain 512x512 points of analysis and have square sides 10cm in length.

Unless otherwise specified, all the parameters are identical to those used in Chapter 3,
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(a) w = −0.1 (b) w = −1

(c) w = −5

Figure 6.2: Typical phase screens for different values of the density gradient ratio w.
All screens are for propagation distances of 1 meter, with χT = 10−7 and ǫ = 10−5.
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including beginning with a unit amplitude Gaussian source, so that direct comparisons

may be made. In particular, we choose a wavelength of λ = 0.417× 10−6m, an initial

beam size of W0 = 0.01m, χT = 10−7m2

s3
, and ε = 10−5K2

s
. Figure 6.3 shows the

intensity distribution in the source plane, as well as the observation plane of both

a single realization, and for an average of 2000 realizations after propagation of 30

meters with a w parameter equal to −0.2 to show the effects of the turbulence. In

the plots following this, we will be interested in average statistics of the beam at the

receiver, and thus we choose to average a total of 2000 realizations to get accurate

results. The opinion in the literature about the correct number of realizations to

average to ensure reliable results for both intensity and scintillation properties is

varied. Some suggest 100 realizations is enough [59], several find that 500 realizations

is sufficient ([56], [60], [61], while another prefers 2000 [62]. We have chosen 2000 in

what follows to ensure reliable results.

Figure 6.4 shows the intensity profiles averaged over 2000 realizations for several

propagation lengths and values of the density gradient ratio w. As expected, these

plots show the now familiar trend of salinity dominant fluctuations, that is w closer

to 0, giving high beam degradation over the same propagation length as compared

to temperature dominant fluctuations, as w approaches −5. These figures can be

directly compared to Figure 3.5 and we see that they agree quite well. In the case of

w = −0.2 we see that the values found using the multiple phase screen approach are

slightly lower than those found using Rytov theory along with the method of effective

beam parameters in Chapter 3. On the contrary, when w = −1 and w = −2 we find

slightly higher values using multiple phase screens. This slight discrepancy between
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(a) Source Intensity (b) Intensity of one realization after 30
meters of propagation with w = −0.2

(c) Averaged intensity of 2000 realizations
after 30 meters of propagation with w =
−0.2

Figure 6.3: Intensity profiles of both the source plane, as well as the observation plane
after propagation of 30 meters with w = −0.2
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the two methods is to be expected as both methods use some assumptions that could

cause slight differences in practice. On the large part we see very good agreement

between the two methods.

Figures 6.5 and 6.6 display the scintillation properties for a Gaussian beam. In

these figures we have calculated the scintillation using [11]

σ2
I (r, L, λ) =

〈I2(r, L, λ)〉 − 〈I(r, L, λ)〉2
〈I(r, L, λ)〉2 , (6.12)

where the average is over the 2000 propagation realizations. In Figure 6.5, we see

typical scintillation profiles across the beam for propagation distances of 30m and

70m with w = −1. We have omitted the 10m propagation image as, as we will see in

Figure 6.6, it is very flat across the beam area. This feature, as well as the appearance

of both images in Figure 6.5 can be explained by the trend highlighted in Figure 3.4.

We see that at short propagation distances, as in the 10m case, the scintillation index

on the beam center is almost equivalent to that on the beam edge. This gives us the

almost flat profile for scintillation for all the cases of 10m propagation. In the case of

30 and 70 meters of propagation we begin to see the trend of the beam edge having

much higher scintillation than on the beam center.

Figure 6.6 shows the scintillation profile across the beam cross section for the

usual three values of the density gradient ratio w = −0.2, w = −1, and w = −2.0 for

three different propagation distances. The most notable difference from the expected

occurs in Figure 6.6a, where the scintillation values of 30m exceed that of 70m.

The other cases studied follow the expected trend of stronger turbulence and longer
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Figure 6.4: Intensity profiles as calculated via multiple phase screen approach of a
Gaussian beam for several propagation lengths and w values. All plots have χT =
10−7m2

s3
, ε = 10−5K2

s
, L = 10m (solid curve), L = 30m (dashed curve), and L = 70m

(dot-dashed curve).
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(a) L = 30m

(b) L = 70m

Figure 6.5: Scintillation profiles across the beam area. Images have χT = 10−7m2

s3
,

ε = 10−5K2

s
and w = −1.
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propagation distances leading to higher scintillation values. Due to the incredibly

strong nature of the turbulence after 70 meters of propagation with w = −0.2, the

beam is degraded by such extreme amounts, as highlighted in the intensity profiles

of both Figures 3.5 and 6.4 for the 70 meter propagation path, that it no longer

keeps the same scintillation trends. The extreme turbulence has taken the intensity

profile from Gaussian in nature, to almost flat across the area. The combination of

an almost flat intensity profile, along with the very low absolute intensities, allow for

the scintillation reduction from the 30 meter to 70 meter case.

Aside from this one outlying case, we see that the other plots follow exactly the

trends outlined in Figure 3.4. For the initial beam size of 1 centimeter we have chosen,

the three propagation distances 10, 30, and 70 meters correspond to values of the

Fresnel ratio Λ0 =
2L
kW 2

0

used in Figure 3.4 of 0.0133, 0.0398, and 0.0929 respectively.

At these values we will not see the ratio of scintillation on the beam edge to the beam

center approach the values of 20 or higher possible with a Fresnel ratio of 1, but we

do find similar ratios to those predicted in Figure 3.4. At 10 meters of propagation,

or Λ0 = 0.0133 we expect the beam edge to be approximately equal to that of the

beam center, and we find that for all three w values. After 70 meters of propagation,

Λ0 = 0.0929 we expect a ratio of approximately 3.5 − 4 which is only slightly larger

than what we have found in practice for w = −1 and w = −2. Overall, the form

of the scintillation profiles seen using the multiple phase screen approach agree with

those found in Chapter 3 using the extended Rytov theory.
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Figure 6.6: Scintillation values vs. radial distance from the beam center in meters
for several values of w and propagation distance L. Other parameters have the same
values as in Figure 6.5



Chapter 7

Conclusions

Throughout the text we have explored many critical properties of an optical beam

propagating through oceanic turbulence with the aid of a new and more complete

model for the random fluctuations in the index of refraction of the ocean [1]. Applications

such as remote sensing, laser radar links, as well as wireless communication channels

all will benefit from this study. Due to the complicated and expensive nature of setting

up optical networking equipment underwater, it is crucial to have a solid theoretical

understanding of the environment we want to work in beforehand. The text studies

a range of some of the more widely studied beam sources including a fully coherent

Gaussian beam, a partially coherent scalar Gaussian Schell-model beam, as well as a

partially coherent electromagnetic Gaussian Schell-model source. Several approaches

to calculating statistics are used and the results are compared to find a very good

agreement between the classic Rytov theory and the numerical wave optics approach

through the use of multiple phase screens.

The inclusion of the both salinity and temperature fluctuations to the spectrum

of fluctuations of the refractive index is essential in an accurate study of the oceanic

environment. We have shown that when salinity fluctuations dominate, much stronger
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turbulence is created. Studies using only temperature fluctuations for the ocean

neglect this effect and cannot account for its impact. We have seen throughout

the text the importance of its inclusion in all beam properties from intensity and

coherence, to polarization and spectral shift.

We have found that in general, beam statistics including spectral shift and polarization

properties behave in much the same way, qualitatively, as that found in atmospheric

turbulence, albeit occurring at much shorter propagation distances in the ocean.

Many of the trends seen occur at propagation distances as much as two or three

orders of magnitude smaller in the ocean. We have also shown that for certain cases,

beam intensity degradation due to optical turbulence alone can contribute equally,

or even more so than that of absorption showing the importance of considering the

optical turbulence for all practical uses.

The results presented here establish a solid foundation for much future work in

the area of optical beam propagation in oceanic turbulence. Further studies are

continually being produced that follow from the basis outlined in this text including

work on the wave structure function [63], as well as work on other, less widely studied

beam sources [64],[65]. As with the much wider studied atmospheric turbulence,

further study may prove fruitful in establishing classes of beam sources that prove

more robust while propagating through oceanic turbulence. Additional studies on bit

error rate of a communication channel, enhanced backscatter in laser radar systems,

as well as the inclusion of particulate scattering [66] can all be done as an extension

of the work presented here.
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