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The dissertation incorporates a series of investigations relating to the design of 

coherence states for stationary, random sources, and correlation functions of spatially 

random, stationary media, for modulation of far fields radiated or scattered from them to 

the far zone, and, hence, for structuring of any observable statistical properties. In 

particular, we reveal how the coherence states of sources affect their far-zone radiated 

properties, including the spectral density, the scintillation index, and the intensity 

correlation function. Furthermore, we also present results that address how the spatial 

structuring of the refractive index correlation function of a three-dimensional (3D) 

medium influences the far-zone scattered spectral density of light. In so doing we have 

developed several novel, bona fide mathematical models for random stationary sources 

and media. 

The first part of this thesis is dedicated to modeling of stationary 3D media. Our 

major contributions include modeling of media that produce a strongly peaked intensity 

profile off the scattering axis. Further, by extending the 2D laser coherent modes to those 

of a 3D medium, the Deterministic Mode Representation (DMR) method is introduced 

based on the eigenmode expansion of a broad class of stationary random media. This 



 
 

method is envisioned to find applications to fine modeling and matrix-based 

reconstruction of correlations of spatially random media. 

The second part of this thesis attributes to modeling of several novel classes of 

beam-like, partially coherent, stationary sources of Schell class, including Lorentz-

correlated, Fractional Multi-Gaussian-correlated, and crescent-like sources. Specifically, 

we investigate, both analytically and experimentally, the evolution of beams radiated 

from the above-mentioned sources passing through the ABCD optical systems and 

atmospheric turbulence. The detailed synthesis procedures of these sources with the help 

of the Spatial Light Modulators (SLM) are outlined. In addition, we also achieve 

experimental realization of the Im-Bessel-correlated beam via superposition of its 

coherent modes by using an SLM. These results are of importance for beam shaping, in 

Free Space Optical Communications and LIDAR sensing. 

The third and the fourth parts of the thesis are concerned with two important natural 

media - atmospheric turbulence and soft biological tissues - being particular examples of 

the refractive index correlation functions that can influence the light statistics in a certain, 

well-defined manner. The third part of the thesis discusses sensing of correlation 

properties of the boundary-layer, non-classic atmospheric turbulence by laser light, in a 

single pass. In particular, a robust method is proposed to assess the anisotropy 

information of turbulence by using the two-point intensity correlation function of the 

optical beam obtained from experiments. The possibilities for sensing of non-classic, 

anisotropic turbulence via the Enhanced-Back Scatter (EBS) mechanism of collimated 

laser light in double passage mono-static link with a retro-reflector are also 

experimentally examined.  



 
 

The final portion of the thesis includes in-depth investigations of laser light 

interaction with soft biological tissues, modeled as turbulent-like, stationary media. Since 

such media have been little explored so far for light propagation problems we first 

examine the important issue of a threshold depth at which the transition from weak to 

strong optical turbulence occurs, by examining the scintillation index of a plane wave. 

We also study the scintillation index of a spherical wave and of a Gaussian beam. 

Furthermore, an analytical method is introduced to solve both direct and inverse 

problems of weak scattering of light from a soft biological tissue. The results are of 

importance to optical sensing techniques for soft tissue diagnostics. 
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1 

Chapter 1 

Introduction 

During the last several decades there has been a rapid development of the research field 

relating to coherent and partially coherent beam propagation through and scattering from 

deterministic and random media [1]. The coherence theory of stationary fields first 

proposed by Zernike [2] and further developed by Wolf, Thomson, van Cittert, Mandel, 

Glauber, Gamo, Gori, Goodman, and others has become an effective approach for 

complete characterization of the optical field observable properties on their propagation 

and interaction with various media [1-5]. Numerous methods have been devised to study 

statistical properties of coherent and partially coherent beams, including optical 

diffraction theorem [6], beam radiation theorem [7], angular spectrum representation [8-

9], Wigner function method [10], as well as optical speckle theorem [11]. All these 

studies greatly inspired scientific interests to explore the effects of coherence and 

polarization of stationary random sources on their propagation or scattering properties 

[12-13]; and to examine the effects of media correlation on the light’s scattered properties 

[14]. However, there is still a lack of studies that can completely utilize the intimate 

relations existing between a source’s coherence state and the generated light’s 

propagation properties, as well as between a medium’s correlation state and the light’s 

scattered characteristics. The specific aim of this thesis is to employ these relations in a 

detailed manner. 

The thesis is organized as follows. In Chapter 1, we review the weak scattering 

theory of light from either a deterministic or random medium and introduce the 

fundamental nomenclature for dealing with stationary random sources and their 
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propagation properties through a variety of random media, including atmospheric 

turbulence and soft biological tissues. Moreover, we also review the mode decomposition 

theory of partially coherent random sources being an important theoretical frame for 

carrying out our work. Experimental synthesis procedures of random source generation 

are also reviewed for later use in our work. In Chapter 2, via modeling of two types of 

media’s correlations to satisfy the non-uniform or Fractional Multi-Gaussian (FMG) 

functions, we show that the far-zone properties of generated light can be flexibly tuned 

by source parameters. We also introduce the Deterministic Mode Representation (DMR) 

of a 3D random medium and analyze the spectral density scattered to its far zone, under 

the assumption that the medium’s spatial correlation is Gaussian. In Chapter 3 we present 

the methods for tuning the beams radiated from spatially random sources with the degree 

of coherence being Fractional Multi-Gaussian (FMG) and azimuthally non-symmetric 

types. We show that, through design of the source coherence states, the far-zone spectral 

densities of the radiated beams can be tuned to strongly focused and crescent-like profiles. 

Furthermore, we also develop the synthesis method of a classical random vortex beam via 

combinations of coherent modes. The method of measuring anisotropy of atmospheric 

turbulence is proposed in Chapter 4, and the experimental approach for producing the 

EBS effect is presented in the same chapter. Chapter 5 presents the solution to the direct 

and inverse scattering problems from soft biological tissues. We also investigate the 

scintillation index behavior of a plane wave, a spherical wave and a Gaussian beam in 

soft biological tissue. Then an analytic approach is proposed to determine the parameters 

of soft biological tissues. 
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1.1 Classical Theory of Weak Scattering 

We start by reviewing the weak scattering theory of light waves from either a spatially 

deterministic or random medium. Weak scattering of light from a stationary, random 

medium indicates a situation in which a light wave first interacts with a medium transmits 

and then scatters far away from it. The scattering medium, in principle, can be spatially 

deterministic or have random nature, being either a single particle or collection of 

particles [15, 16]. First let us consider a scalar, monochromatic wave being a single 

component of the electric field vector: 

( ) ( , ) ( , )exp( ),iU t U i t  r r                                         (1.1) 

where r represents position vector, t and ω are time- and angular-dependent frequency, 

respectively. The optical field represented by Eq. (1.1) satisfies the Helmholtz differential 

equation [3] 

     2 2 2, , , 0,U k n U    r r r                                   (1.2) 

where k=ω/c is the wave number, n(r, ω) denotes the spatially varying refractive index of 

medium, c is the speed of light in vacuum. We also define the scattering potential of the 

medium as a function of its refractive index, i.e., 

   2 21
, , 1 .

4
F k n 


   r r                                        (1.3) 

Next, we may further assume that the total field  ( ) ,tU r  produced on scattering can be 

represented as the sum of the incident field,  ( ) ,iU r , and scattered field,  ( ) ,sU r :  

     ( ) ( ) ( ), , , .t i sU U U   r r r                                  (1.4) 
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At the same time, the incident field  ( ) ,iU r  itself satisfies the Helmholtz differential 

equation 

   2 2 ( )+ , 0.ik U  r                                                 (1.5) 

Based upon Eqs. (1.2), (1.4) and (1.5), one can further obtain the following expression for 

the total field by assuming that the scattered field is an outgoing spherical wave [Eq. (14) 

of [3], section 6.1] 

         ( ) 3, , , , , ',i

D
U U F U G d r      r r r' r' r - r'                   (1.6) 

where D is the scatterer’s volume and  ,G r - r'  is the outgoing free-space Green 

function of the form 

   exp
, .

ik
G  

r - r'
r - r'

r - r'
                                          (1.7) 

To obtain a more compact form for the scattered field, we suppose that the scattering 

between the incident wave and the medium is extremely weak, indicating that the 

magnitude of the scattered field is sufficiently small compared with that of the incident 

field, namely 

         ( ) ( ) ( ) 3, , , , , '.t i i

D
U U F U G d r      r r r' r' r - r'            (1.8) 

By comparing Eqs. (1.4) with (1.8) we may readily represent the scattered field as  

       ( ) ( ), , , , .s i

D
U F U G    r r' r' r - r'                        (1.9) 

Equations (1.8) and (1.9) are the well-known first-order Born approximation to the 

integral equation of potential scattering. Let the initial light field be a monochromatic 

plane wave at frequency ω, incident on the medium along direction specified by unit 
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vector s0. Then in the far zone of the medium the Green’s function in Eq. (1.7) can be 

approximated as [Eq. (19) of [3], section 6.1] 

     exp
, exp ,

ikr
G ik

r
   r - r' s r'                                   (1.10) 

where unit vector s describes the scattered wave direction. By these assumptions, it 

follows that the scattered field takes form 

       ( ) exp
, , ,s ikr

U r a F k
r

     0s s - s                             (1.11) 

where F  is introduced as the 3D Fourier transform of the scattering potential: 

      3, , exp '.
D

F k F ik d r        0 0s - s r' s - s r'                   (1.12) 

Equations (1.11) and (1.12) indicate that the far-zone scattered field is proportional to the 

3D spatial Fourier transform of the scattering potential, meanwhile the field’s amplitude 

is highly dependent of the scattered wave direction in the far zone. 

 

1.2 Random, Stationary Fields 

The original studies on random optical fields were made in the space-time domain. 

Suppose an optical field is scalar, occupies a finite region in the 2D space. Then it can be 

characterized by complex analytic signal U(r, t). The spatio-temporal correlation of the 

field is then characterized by the mutual coherence function which is the second-order 

statistical moment of field at two positions r1, r2 and two-time moments t1, t2 [17] 

     *
1 2 1 2 1 1 2 2, ; , ; ; ,

t
t t U t U t r r r r                                 (1.13) 
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where the ensemble average is taken over a sufficiently long-time interval, and the 

asterisk denotes the complex conjugate. If the optical field is assumed to be random, 

wide-sense statistically stationary, Eq. (1.13) can be rewritten as [17] 

     *
1 2 1 2, ; ; , ,

t
U t U t     r r r r                                  (1.14) 

where Δτ is the time delay between two moments. The mutual coherence function (1.14) 

satisfies a pair of partial differential equations [17] 

   2
1 22

1 2 2 2

, ;1
, ; 0,j c





  

    

r r

r r
      

( 1,2),j                  (1.15) 

where 2
j  is the Laplacian operator taken with respect to position vector rj. On taking the 

2D Fourier transforms with respect to the two-time instants, Eq. (1.13) can be re-

formulated to represent the wide-sense statistically stationary fields in the space-

frequency domain. Then the so-called Cross-Spectral Density (CSD) function defined at 

two position vectors r1 and r2 and angular frequency ω can be obtained, being the Fourier 

transform of the mutual coherence function with respect to lag Δτ. It can be understood as 

the ensemble average over the field’s monochromatic realizations at frequency ω 

     *
1 2 1 2, ; ; ; ,W U U


  r r r r                                   (1.16) 

and used as the second-order correlation function in space-frequency domain. Moreover, 

the Fourier transform of Eq. (1.15) implies that the CSD function given in Eq. (1.16) 

satisfies the Helmholtz equation: 

   2 2
1 2 1 2, ; , ; 0,jW k W   r r r r      (j=1, 2).                       (1.17) 

It has been shown that the CSD function of a stationary field must obey certain 

conditions [18]. First, it must be square-integrable over frequency ω, i.e., 
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  2

1 20
, ; .W d 


  r r                                              (1.18) 

Secondly, a CSD function should be continuous with respect to changes of its spatial 

variables 

  2 2 2
1 2 1 2-
, ; .W d r d r

 

 
   r r                                     (1.19) 

Besides the conditions (1.18) and (1.19), the following two conditions should also be 

fulfilled for any arbitrary CSD function of planar source 

   *
1 2 2 1, ; , ; ,W W r r r r                                      (1.20) 

and 

     
+ + * 2 2

1 2 1 2 1 2- -
, ; 0.W f f d rd r

 

 
  r r r r                            (1.21) 

Equation (1.20) indicates that any CSD function must be quasi-Hermitian, while Eq. 

(1.21) that must hold for any function f(rj), is known as non-negative definiteness 

condition. In addition, according to the Bochner’s theorem, any CSD function of a 

stationary source must have the following representation [18] 

       * 2
1 2 2, ; ; , ; , ; ,W p H H d v   




   1r r v r v r v

              
(1.22) 

where H is an arbitrary function, p(v) is a non-negative function of variable v.  

 

1.3 Mode Decomposition of Random, Stationary Source 

The mode decomposition of a random, stationary source is based upon classical optical 

coherence theory. By employing the classical description, we assume that U(r, t) 

represents a fluctuating scalar source localized within finite domain D. Here r denotes 

position vector of a typical point and t represents time. The fluctuations are supposed to 
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be characterized by a stationary ensemble. Let Γ denote the cross-correlation function of 

a source distribution U(r, t), as formulated by Eq. (1.14). We further assume that Γ 

function falls off sufficiently rapidly with Δτ so that it is absolutely integrable with 

respect to Δτ. Consequently, the following Fourier pair holds true 

   1 2 1 2

1
, ; , ; ,

2
iW e d   


 


  r r r r                               (1.23) 

where W is the CSD function of the source which satisfies the square-integrable, 

Hermitian, and non-negative definiteness properties, as shown by Eqs. (1.19)-(1.21). 

According to the Mercer’s theorem, it admits a uniformly and convergent expansion [19] 

       *
1 2 1 2, ; ; ; ,n n n

n

W       r r r r                             (1.24) 

where ϕn is the eigenfunction and λn is the eigenvalue of the Fredholm integral equation 

       3
1 2 1 1 2, ; ; ; .n n nD

W d r       r r r r                         (1.25) 

We stress that Eqs. (1.24) and (1.25) are valid whenever the set of the eigenfunctions ϕn(r) 

is complete in the Hilbert space of functions that are square-integrable throughout the 

domain D. Since each term in the right hand of Eq. (1.24) is factorized with respect to the 

variables r1 and r2 Eq. (1.24) represents the CSD function of the fluctuating source as a 

linear combination of contributions from spatially completely coherent elementary 

sources. Let us consider the special case of a partially coherent, Gaussian Schell-model 

source whose CSD function has the following form 

     2 22 2
1 2 0 0 1 2 0 1 2, ; exp ,W A p m       r r r r r r                        (1.26) 

with 

2
0 2

0

1
,

8
p


             2

0 2 2
0 0

1 1
,

8 2
m

 
                                   (1.27) 
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where σ0 and δ0 are effective width and coherence length of the Gaussian Schell-model 

source. For such source type, its CSD function can be factorized in the 2D Cartesian 

coordinates (xi, yi), (i=1, 2) 

     *
1 1 2 2 1 1 2 2

0 0

, , , ; , ; , ; ,jh jh jh
j h

W x y x y x y x y     
 

 

                   (1.28) 

where the eigenfunctions are given by [20] 

     
2 2

1/21/2

2
0 0 0 0

1 2 2
, 2 / 2 ! ! exp ,j h

jh j h

x y x y
x y j h H H

v v v v
 

      
              

    (1.29) 

and Hj is the jth Hermite polynomial, while the eigenvalues μjh are of the form 

0 ,j h
jh q      (j, h=0, 1, 2,…).                               (1.30) 

The parameters v0, μ0, and q entering Eqs. (1.29) and (1.30) depend on A0, m0, and p0 in 

the following way 

 0 1/2

0 0

1
,

2
v

m p


    
0

0 2

0 0

= ,
A

m p




   

0 0

0 0

q= ,
m p

m p




                 (1.31) 

where m0 and p0 associated with σ0 and δ0 are given by Eq. (1.27).  

 

1.4 Light Propagation through Spatially Random Medium 

Suppose a scalar beam-like field  ';U r  is generated by a planar source located in the 

plane z=0 at a point with position vector r’. The beam propagates into the half-space (z>0) 

filled with a spatially random medium. If we assume that the fluctuations in the refractive 

index of the medium are weak, the propagating field located at position vector r=(ρ, z) 

satisfies the Helmholtz equation 

     2 2 2; ; ; 0.U k n U    r r r                               (1.32) 
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The solution to Eq. (1.32) can be obtained as the form of the extended Huygens-Fresnel 

integral under the paraxial wave assumption 

       
2

2'exp( )
; '; exp exp ', ; ',

2 2

ik ikz
U U ik d

z z
   



 
      

  


ρ - ρ
r r ρ r     (1.33) 

where Ψ (ρ’, r; ω) is the phase change induced by the random medium. Recalling the 

propagation law for the CSD function given in Eq. (1.16), and on substituting from Eq. 

(1.33) into Eq. (1.16), we find that the CSD function of the beam at distance z takes form 

      2 2
1 2 1 2 1 2 1 2 1 2, ; ', '; , ; ', '; ' ',W W K d d     r r ρ ρ r r ρ ρ             (1.34) 

where K is the propagator given by the expression 

     

   

2 22
1 1 2 2

1 2 1 2

*
1 1 2 2

' '
, ; ', '; exp

2 2

exp ', ; ', ; ,
M

k
K ik

z z




 

       
    

    

ρ ρ ρ ρ
r r ρ ρ

ρ r ρ r

             (1.35) 

where the angular bracket denotes the correlation function of phase perturbation induced 

by the random medium, and the subscript M represents the average over the fluctuating 

medium ensemble. On assuming that the medium satisfies the homogeneous and isotropic 

turbulence (power law) statistics, the correlation function of phase perturbation in Eq. 

(1.35) can be further expressed by the power spectrum Φn(κ) as [21] 

   

      

*
1 1 2 2

12 2
0 1 2 1 20 0

exp ', ; ', ;

exp 4 1 1 ' ' ,

M

nk z J d d

 

       


   

               

ρ r ρ r

r r ρ ρ
   (1.36) 

where J0 denotes the zero-order Bessel function of the first kind. Under the assumption 

that the beam paraxially propagates through the medium, Eq. (1.35) becomes 
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     

       

 

22

1 2 1 2

2 2
2 2

3

0

, , ', '; exp
2 2

exp '
3

.n

k
K ik

z z

k z

d






  


     
    

        
  

1 1 2 2

1 2 1 2 1 2 1 2

ρ ' - ρ ρ ' - ρ
r r ρ ρ

ρ - ρ ρ - ρ ρ ' - ρ ' ρ ' - ρ                (1.37) 

Another method for treating optical beams propagation in random media is known as the 

angular spectrum decomposition [4-5]. The principle of the method is that the incident 

beam field can be decomposed into a series of plane waves having different wave vectors 

and propagating through the medium. The resultant field then can be obtained by 

superposition of the contributing fields from the individual plane waves. It is assumed 

that any beam-like field obeys the integral expression 

     ; ; ; ,U a P d    r u r u                                     (1.38) 

where P(r; ω) is a plane wave, a(u; ω) is the angular spectrum with u being unit vector. 

Then the CSD function of the propagating beam at two position vectors r1 and r2 takes 

form 

         * *
1 2 1 2 1 2 1 2, ; ; ; ; ; .W a a P P du du        r r u u r r          (1.39) 

It is noteworthy that Eq. (1.39) can be alternatively written as 

       *
1 2 1 2 1 2 1 2, ; , ; ; ; ,W A P P du du       r r u u r r             (1.40) 

where  

     *
1 2 1 2, ; ; ;A u u a u a u                                   (1.41) 

is the angular correlation function of the source given by expression 

 
 

     *
1 2 1 2 1 2 1 24

1
, ; ', '; '; '; .

2
A W P P d d     


   u u ρ ρ ρ ρ        (1.42) 
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Within the accuracy of the Rytov approximation, the CSD function of plane waves 

propagating in turbulence can be represented by product [4-5, 21] 

     
       

*
1 2 1 2

(1) (2) (1) (2)
1 1 2 2

, ; ; ;

exp ; ; ; ; .
M

W P P  

       



     

r r r r

r r r r
           (1.43) 

The ensemble average in Eq. (1.43) can be approximated by retaining the terms up to the 

second order 

  221
exp exp .

2
          

                        (1.44) 

With the help of Eq. (1.44), the CSD function in Eq. (1.43) can be further expressed as 

         * (1) (2)
1 2 1 2 1 2 1 2, ; ; ; exp 2 , ; , ; ,W P P E E       r r r r r r r r       (1.45) 

where E(1) and E(2) are given by the integral forms, respectively 

   (1) 2 2
1 2 0
, ; , ,

z

nE k d d       r r κ                            (1.46) 

        (2) 2 2
1 2 0
, ; 2 , exp .

z

nE k d d i z i               1 2 2 1r r κ u - u κ r - r κ (1.47) 

In Eqs. (1.46) and (1.47), ξ is the turbulence scale, Φn represents the power spectrum of 

the refractive index of turbulence, κ is 3D spatial frequency vector. 
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Chapter 2 

Tuning the Scattered Properties of Light by Media 
Correlations 
 
2.1 Deterministic Mode Representation of Stationary Random 

Medium 

As is well known in functional analysis, the Mercer’s theorem indicates that any non-

negative definite, Hermitian operator can be expressed as a convergent summation of 

eigenmodes, being products of mutually orthogonal functions, which are weighted by a 

sequence of positive numbers. As a result, it may be feasible to represent a correlation 

function of a random field specified at a pair of spatial arguments as an infinite sum of 

weighted deterministic modes, each being a product of functions specified at a single 

spatial argument. Coherent-mode decomposition has played an important role in the 

analysis of multimode lasers [22]. The determination of the coherent modes of a given 

correlation function is never a simple task. The coherent-mode decomposition has the 

advantages to effectively reduce the complexity of propagation, diffraction, and 

scattering calculations for a variety of random light fields [23-27], and was used to 

elucidate the structure of non-radiating sources [28]. The modal expansion approach was 

also adopted to investigate a supercontinuum field generated in nonlinear fibers [29]. All 

these researches showed that it is more efficient to handle individual coherent modes 

rather than to solve wave equations for a specified partially coherent field. 

In this section we use Mercer’s theorem not for stationary light fields but rather for 

stationary scattering media that satisfy all necessary conditions. We first introduce the 

Deterministic Mode Representation (DMR) for the correlation function of the scattering 



 14 
 

 

potential for a given medium, and then study the case when the Gaussian Schell-model 

medium type is assumed [30]. The DMR is further utilized to treat the far-field weak 

scattering of light from the medium, while the first-order Born approximation is adopted. 

The corresponding results are concluded, and potential applications of our study are also 

outlined. 

2.1.1 Deterministic Mode Representation of Gaussian Schell-model 

Medium 

We will now outline the method for describing a random stationary medium through its 

DMR. First let us consider a stationary random medium that occupies a 3D volume, and 

let its scattering potential be represented by Fn(r; ω). For such a medium, the two-point 

correlation function of the scattering potential is given by expression [31-32] 

     *
1 2 1 2, ; ; ; .F n n M

C F F  r r r r                               (2.1) 

The correlation function CF is required to satisfy a set of conditions for the Hilbert-

Schmidt kernel, i.e., square-integrability, hermiticity, and non-negative definiteness: 

  2 3 3
1 2 1 2, ; ,FD D

C r r d r d r                                         (2.2) 

   *
2 1 1 2, ; , ; ,F FC C r r r r                                          (2.3) 

     * 3 3
1 2 1 2 1 2, ; ; ; 0.FD D

C f f d r d r     r r r r                         (2.4) 

Here f(r; ω) is an arbitrary square-integrable function, subscript “D” implies that the 

integration is taken over the entire medium volume. In general, the 3D Mercer’s theorem 

stipulates that the correlation function CF can be expressed by a convergent series of 

weighted modes [30] 
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       *
1 2 1 2

0

, ; ; ; ,F n n n
n

C       




r r r r                               (2.5) 

where μn and ϕn are the eigenvalues and eigenfunctions of the homogeneous Fredholm 

integral equation, and 

       3
1 2 1 1 2, ; ; ; .F n n nD

C d r       r r r r                           (2.6) 

The hermiticity and the non-negative definiteness of the correlation function indicate that 

all eigenvalues should be real and non-negative, i.e., 

  0.n                                                           (2.7) 

The eigenfunctions of the medium are orthogonal to each other, i.e., 

     * 3; ; ,m n mnD
d r      r r                                    (2.8) 

where δmn is the Kronecker delta symbol. It is noteworthy that Eq. (2.5) takes the 

alternative form 

     1 2 1 2
0

, ; , ; ,F n n
n

C C   




r r r r                                (2.9) 

where 

     *
1 2 1 2, ; ; ; ,n n nC     r r r r                                    (2.10) 

are the completely correlated modes. The correlation function specified at coinciding 

spatial arguments 1 2 r r r  is named as the strength of the scattering potential, i.e., 

   ; , ; .F FI C r r r                                               (2.11) 

Then, upon substituting from Eq. (2.9) into Eq. (2.11), we can readily obtain 

expression  

     
0

; ; ,F n n
n

I I   




r r                                        (2.12) 
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where 

      2
; , ; ;n n nI C    r r r r                                    (2.13) 

is the potential’s strength of mode n, containing essential information about its intensity 

distribution, while eigenvalue μn(ω) is a weighting factor of mode n, representing its 

maximum strength. By integrating Eq. (2.12) over the 3D volume of the medium, 

changing the order of integration, as well as using the property that 

  3; 1,nD
I d r  r                                                   (2.14) 

one can find from Eq. (2.13) that 

   3

0

; ,F nD
n

I r d r  




                                          (2.15) 

which shows a close relation between the integrated scattering potential strength and the 

summation of all eigenvalues. 

By following similar procedures of the mode decomposition of a random, stationary 

source shown in Chapter 1.3, we will now represent the correlation function of the 3D 

scattering medium in the Cartesian coordinate system. As a result, Eq. (2.5) becomes [30] 

       *
1 2 1 1 1 2 2 2

0 0 0

, ; , , ; , , ; ,F lmn lmn lmn
l m n

C x y z x y z      
  

  

r r           (2.16) 

where l, m, and n are the summation indexes along the x, y, and z axes, respectively. Let 

us now concentrate on a random, GSM medium type whose eigenvalues and 

eigenfunctions have the following forms 

 
 

3/2
3/2 0 0
0 0 3

0 00 0

,
l m n

l m n
lmn

b a
A q A

b aa b

  
 

   
     

                      (2.17) 
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   
3/4

1/2 3/2
0

0

2 2 2

2
0 0 0

2 2
, , 2 ! ! !

2 2
exp ,

l m n
lmn l

m n

x
x y z l m n p H

p

y z x y z
H H

p p p




             
      

              

                   (2.18) 

where 

   
2 20 0

0 0 0 0 02 2 2 2 2
0 0 0 0 00 0 0 0

1 1 1 1
, , , , ,

8 8 22

b a
p q a b

b aa b a b


  


     

 
        (2.19) 

and Hj(.) is the Hermite polynomial with order j. Upon substituting from Eqs. (2.17)-

(2.19) into Eq. (2.16), we can readily obtain the correlation function of the scattering 

potential [30] 

 

 

3/2 2 2 2 2 2 2
0 1 1 1 2 2 2

1 2 2 2
0 0

0 1 1 1

0 0 0 0 0 0

2 2 2

0 0 0

2
, ; exp

/ 2 2 2 2

! ! !

2 2 2
.

F

l m n

l m n
l m p

l m n

x y z x y z
C r r A

p p

q x y z
H H H

l m n p p p

x y z
H H H

p p p




   

  

       
    

   

     
           

     
     

           
     

          (2.20) 

To perform further analysis, we define the Degree of Global Correlation (DGC) of a 3D 

stationary medium  

0 0/ ,gl                                                           (2.21) 

Figs. 2.1(a) and 2.1(b) show the dependence of the eigenvalues of the GSM medium 

on the r.m.s. width of the strength of scattering potential, as well as the r.m.s. widths of 

the degree of correlation of the scattering potential. The eigenvalues consistently decrease 

with the increase of the mode numbers (l=m=n), no matter how σs and δs vary. For a 

medium with larger σs or δs, the corresponding eigenvalues are larger. For a medium with 
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δs =0.1λ, the eigenvalues are sufficiently small and remain invariant with increasing mode 

indexes. 

The distribution of the individual eigenmodes of the GSM medium can be studied 

by using Eqs. (2.13) and (2.18)-(2.19). As shown in Fig. 2.2, the eigenmodes have 

Cartesian symmetry, and they can degenerate to classic Hermite-Gaussian laser modes as 

2D projections onto the (x, y), (y, z) and (x, z) planes. 

 

Fig. 2.1 The eigenvalues of the GSM-correlated medium versus the mode indexes (l=m=n) 

for (a) different potential strength r.m.s. widths: σs = λ, 2λ and 3λ, (b) different r.m.s. 

widths of potential’s correlation: δs = 0.5λ, 0.3λ and 0.1λ. The figures are plotted from 

Eqs. (2.17) and (2.18) (from Fig. 2 of [30]). 
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Fig. 2.2 3D profiles of individual eigenmodes of the medium. The scattering potential 

parameters are chosen as σs=λ, δs=0.2λ. The figures are plotted from Eqs. (2.18)-(2.19) 

(from Fig. 3 of [30]). 

 

2.1.2 Scattering from Random Medium with Deterministic Mode 

Representation 

We now study the problem of far-field weak scattering of light from stationary media. 

First, we assume that a scalar, monochromatic plane wave is incident upon a 3D medium. 
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Then we further consider the CSD function of the scattered field in the far-zone region, 

implying that the Green’s function has the far-zone approximation (see Eq. (1.10), 

section 1) [30]. Then the scattered CSD becomes 
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where  k j j 0K ' s ' s  is the momentum transfer vector [31-32], and lmn  represents the 

Fourier transform of medium mode, i.e., 

      3; , , exp .lmn lmnD
x y z i d r    j jK ' K ' r                        (2.23) 

Based on Eqs. (2.22) and (2.23), the far-zone scattered spectral density at two coinciding 

points contributed by all modes of the medium can be obtained by substituting from 

1 2' ' ' s s s  into Eq. (2.22): 
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Eq. (2.24) indicates that the total spectral density scattered from a 3D medium can be 

represented as the summation of contributions from individual deterministic modes. 

Based upon this result, we can conclude that any desired intensity distribution of the 

scattered field can be generated by appropriately selecting medium’s eigenmodes and 

eigenvalues. Moreover, if we further consider the scattered field in the 3D Cartesian 

coordinate system, Eq. (2.24) becomes 
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 21 
 

 

where ', ', 'jx jy jzs s s  are components of the unit vectors 'js  (j=1,2) in the Cartesian 

coordinates. Further, the Fourier transforms of the individual modes have the form 

      ', ', 1 ' , , exp ' ' 1 ' .lmn x y z lmn x y zD
ks ks k s x y z ik s x s y s z dxdydz                 (2.26) 

When deriving Eqs. (2.25) and (2.26), we have assumed that the incident plane wave 

propagates along the z axis; hence, s0x=s0y=0, s0z=1. Furthermore, if we assume 
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then Eqs. (2.25) and (2.27) result in the CSD of the scattered field, i.e., 

       ( ) *
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  
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1 2 1 2s ' s ' s ' s '             (2.28) 

From Eq. (2.28) it can be observed that the CSD function of the scattered field also obeys 

the DMR form. It is shown that the eigenvalues of the CSD of the scattered field remain 

unchanged, but its eigenmodes are proportional to the Fourier transforms of the 

eigenmodes of the 3D scatterer, except for the coefficient  ( ) / 'ia r  generally being a 

constant. 

2.1.3 Examples and Concluding Remarks 

Based on the equations derived in the previous section, we now investigate how the 

eigenmodes of the medium influence the scattered intensity profiles in the far field from a 

GSM medium. Upon substituting from Eqs. (2.17) and (2.18) into Eq. (2.25) and 

substituting 1 2' ' ' s s s  into the same expression, the spectral density of the scattered 

field can be obtained by performing the Fourier transforms of the eigenmodes of the 

GSM medium, viz., 
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                      (2.29) 

 

Fig. 2.3 3D plots of the spectral density scattered by individual eigenmodes of the 

medium for the same parameters as in Fig. 2.2. The figures are plotted from Eq. 

(2.29) (from Fig. 5 of [30]). 
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Fig. 2.4 3D plots of the spectral density scattered from superpositions of eigenmodes. 

The medium parameters are the same as in Fig. 2.2. The figures are plotted from Eq. 

(2.29) (from Fig. 6 of [30]). 

 

Fig. 2.3 illustrates the spectral densities which scatter from individual deterministic 

modes of the medium, as shown by Fig. 2.2, while its dependence on polar and azimuthal 

angles ϕ and θ in the spherical coordinate are revealed in the figure. 

Fig. 2.4 shows the far-field scattered intensities from the fundamental mode by 

superposition of 2, 10, and 100 deterministic modes, respectively. As of the stretching 

effects along the axes due to Hermite functions appeared in deterministic modes, the 

intensity contributed by the superposed eigenmodes exhibits the nonsymmetric profile, 

being observed extremely evident in Fig. 2.3(b) for ϕ=0 and ϕ=π. It is also interesting to 

note that if 2 or 10 consecutive eigenmodes are superposed to construct a 3D medium, the 

scattered spectral density from such medium satisfies a non-Gaussian profile, exhibiting 

deviations in large scattering-angle regions. By contrast, if sufficiently many modes, e.g., 

100, are superposed for constructing the medium, the scattered intensity gradually 
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converges to the Gaussian profile, being the same as that scattered from the GSM 

medium, despite only a few side lobes emerging in the large scattering-angle regions. 

This result indicates that one can use a certain large number of deterministic modes to 

approximately model a 3D random medium. 

In summary, we have introduced the DMR of a stationary 3D random medium and 

applied it to the case of weak scattering in the far field. The DMR is developed in 

analogy with the coherent mode decomposition of stationary optical fields [19-20] and 

can be adopted for modeling of correlation functions of scattering potentials of various 

media. As an example, we have determined the modal structure of the GSM medium. The 

deterministic modes of a GSM medium can be regarded as the 3D generalizations of  

classic Hermite-Gaussian laser resonator modes. 

 

2.2 Scattering of Light from a Non-uniformly Correlated Medium 

In recent decades, non-Gaussian models for representing a variety of media’s correlation 

functions have been introduced to predict unique properties of scattered fields. As 

representative examples, two spherically symmetric correlation functions [31] are capable 

to produce flat- and ring-like far-field scattered intensity profiles, and the model in [32] 

can lead to square or rectangular patterns. The directionality control of the scattered field 

can be realized by appropriately choosing incident beam properties. For instance, it has 

been shown that a Bessel-correlated beam incident upon a hard sphere can produce a 

cone-like scattered profile with no forward scattering [33-35]. In all these literatures, the 

average refractive index (scattering potential) distribution can be arbitrary since the far-

zone intensity is only influenced by the medium’s degree of correlation. Moreover, the 
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analytic models proposed in [31-32] indicate that the distributions and widths of the 

medium’s degree of correlation were chosen to be uniform in the medium’s volume. 

    In this section, we will introduce an analytic model for representing a 3D scattering 

potential of whose typical width depends on position within the scattered volume. We 

name such a model medium as Non-Uniformly Correlated (NUC). The original idea of 

spatially varying correlations in linear and planar radiating sources was introduced [19, 

36] and further developed in [37-39]. 

2.2.1 Far-zone Scattered Field Properties 

To model such a random medium, we must notice that any correlation function must 

obey realizability conditions including non-negative definiteness, Hermiticity and square 

integrability [17]. Based upon these necessary conditions, we can represent the second-

order correlation function of a NUC medium as [40]  
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where 1 'r  and 2 'r  are 3D position vectors in the scatterer’s volume, ω is angular 

frequency,  the asterisk denotes complex conjugate, F(r’; ω) is the scattering potential, H0 

is arbitrary mode function, i.e., 

     0 ', ; '; exp ,H Q if     r v r r' v                               (2.31) 

where Q is a complex function that evaluates the potential amplitude, being generally 

assumed to be Gaussian. We substitute Eq. (2.31) into Eq. (2.30) and further suppose that 

functions p(v) and H0 have the following formulations 

     3/2 2 2exp / ,p a v a  v                                   (2.32) 
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where a and δ0 are real, positive constants, r0=(x0, y0, z0) is a position with respect to the 

maximum degree of correlation. Substituting from Eqs. (2.32) and (2.33) into (2.30) 

implies that the correlation function of the NUC medium becomes 
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where 2 /c ka  is the correlation width of the medium. To further analyze the 

scattered field properties, we express the CSD function in the far-zone via volume 

integral [17] 
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where integration is performed over the 3D medium volume, G is the Green’s function, s1 

and s2 are unit vectors of the scattered field. In our study we only concerned with the far-

zone scattered field, so that the scattered spectral density (intensity) takes the following 

expression 
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It follows from Eq. (2.36) that the far-zone spectral density of the scattered field has 

neither symmetric nor Gaussian distribution due to the UNC medium effects.  
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2.2.2 Dependence of Scattered Spectral Densities on Shift of Medium 

Correlation 

We now concentrate on the effects induced by weak scattering of a plane wave from the 

NUC medium on the spectral density in the far field. Fig. 2.5 is the schematic diagram 

showing the scattering of a plane wave from a 3D medium. The scattering (azimuthal) 

angle θ and polar angle ϕ are also marked in the diagram, respectively, “⊥” indicates the 

projective line of the green scattering ray onto the X-Y plane, and “O” represents the 

origin within the 3D medium. 

 

Fig. 2.5 Schematic diagram of the scattering geometry showing plane wave scattering 

from a 3D medium.  

 

Fig. 2.6 shows that increasing the shift of the correlation center, results in deviation of the 

peak positions of the scattered spectral densities from the scattering axis. A further 

increase also leads to the emergence of the sidelobes. When the shift of the correlation 

center attains a sufficiently large value, i.e., Δx=40λ, the scattered patterns contain 

sidelobes that have considerable intensity values. According to the reciprocal relations of 



 28 
 

 

light scattering from a quasi-homogeneous random medium, far-zone scattered spectral 

densities should depend of medium’s degree of correlation [18, 41]. Our result extends 

these relations to cases when the medium is not quasi-homogenous.   

 

Fig. 2.6 Scattered intensity profiles with sidelobes beyond focused patterns. The 

correlation width is chosen as δc/δ0=1. (a) ϕ=0, z0=-10λ. (b), (c), and (d) are the contour 

plots of scattered intensities corresponding to solid, dashed-dotted, and dashed curves of 

(a), respectively (from Fig. 3 of [40]). 

 

Fig. 2.7 exhibits the effect of the shift of correlation center in the x-y plane on the 

azimuthal (scattering) angle θmax. The dependence of correlation strength δc/δ0 on θmax is 

also shown in the figure. For all plotted curves the x-axis distribution is shown using 

logarithmic scale. As two extreme cases, δc/δ0=1 indicates that the correlation strength is 

moderate, while δc/δ0=5 corresponds to the case where the correlation strength is high. 

Figs. 2.7(a)-(b) illustrate that a larger shift of correlation center on the x-y plane gives rise 

to a larger θmax, implying that scattered peaks can be generated at a larger azimuthal 
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scattering angle. Furthermore, the azimuthal angle of the peak intensity finally 

approaches a constant value. Another essential result implied from Fig. 2.7 is that a NUC 

medium with stronger correlation leads to the scattered field with larger spreading of 

intensity off the scattering axis. It can be summarized that the positions of the maximum 

scattered intensity depend on two key factors: δc/δ0  and the shift of correlation center of 

the medium. 

 

Fig. 2.7 Effect of the correlation center shift and δc/δ0 on the azimuthal angle of the peak 

scattered intensity. The polar angle is chosen as ϕ=π/3. (a) Effect of the shift along the x 

axis, y0=z0=0. (b) Effect of the shift along the y axis, x0=3λ, z0=λ (from Fig. 4 of [40]). 

2.2.3 Concluding Remarks 

In summary, we introduced a mathematical model for characterizing a class of mediua 

whose degree of correlation obeys the non-uniform profile in the 3D Cartesian 

coordinates. Such medium type can concentrate the spectral density on or off the 

scattering axis. We have found that the peak positions of the spectral density scattered 

from such a medium can be flexibly adjusted by shifting the maximum degree of 

correlation off the medium’s origin centroid. By introducing shifts of the correlation 

center along a certain axis, 1D sidelobes can be produced. These results are applicable for 

flexible control of peak scattered intensity on or off the scattering axis and are beneficial 

to solving the inverse scattering problems where more than one homogeneous medium is 
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involved. Such situation frequently happens in medical diagnostics when light scatters 

from bio-tissues containing normal and malignant components [42]. 

 

2.3 Modeling of a Statistically Stationary Medium for Cusping of 

Plane Waves 

In recent decades numerous approaches have been introduced to produce cusp-like light 

intensity profiles, for example, tight focusing of laser beams by high numerical aperture 

(NA) [43-46], their propagation in double-pass turbulent channel [21], modeling of 

correlations of random sources [23-25, 47], and bending control of solitons in nonlinear 

localized media [48-49]. Besides, it has been well known that random stationary media 

can scatter plane waves to far-field distributions which have tunable shape and size. The 

typical Gaussian Schell-model medium and the Gaussian quasi-homogeneous medium 

can scatter incident plane waves into Gaussian intensity distributions which have 

controllable r.m.s. widths [3]. Recently, a couple of random media models have been 

introduced for scattering of a plane wave to a specific profile, e.g., flat-topped or ring-like 

profiles [24-26], rectangles [50], producing intensity maxima off the scattering axis [31], 

optical frames, cages and azimuthally varying intensity distributions [51]. 

In this section, we will introduce a scattering medium model, namely the Fractional 

Multi-Gaussian Schell-model (FMGSM) scattering medium which can produce a sharply 

peaked intensity in the central region of the far field. Compared with the GSM medium, 

the FMGSM medium has more advantages to produce a much narrower and stronger 

spectral density apex in the far-zone of the scattered field. 
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2.3.1 Fractional Multi-Gaussian Correlation Function 

We first introduce the analytical model for characterizing a 3D Schell-model medium 

whose degree of correlation obeys the FMG distribution with spherical symmetry. To 

model such a medium, we first recall that any correlation function of a 3D medium must 

satisfy one of the realizability conditions, i.e., the non-negative definiteness. Following 

definitions in [27-29] but further generalizing the results from 1D and 2D to 3D case, we 

show that any genuine, second-order correlation function of the FMGSM medium at 

position vectors 1 'r  and 2 'r  must have integral representation (see Eq. (1) of [31, 52]) 
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For a typical Schell-like model medium, H0 in Eq. (2.37) must have the Fourier-type 

profile 

     0 ', ; '; exp ' ,H Q i   r v r r v                                  (2.38) 

where Q is generally a complex-valued function which determines the scattering potential 

amplitude. For simplicity, we assume that the strength of the scattering potential too 

satisfies Gaussian distribution, so that H0 can be represented as 
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where σs is the effective width that may be dependent of frequency. To model the 3D 

FMGSM medium, we assume that p(v) takes form of the spherical FMG function 
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Here the fractional binomial mathematics was applied for deducing the expansion 

coefficients. When M=1, the classic Gaussian Schell-model medium can be obtained. 

Consequently, the degree of correlation of the FMGSM medium can be derived as (see 

Eq. (10) of [52] for detailed information) 
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is the normalization coefficient. 

2.3.2 Far-zone Scattered Intensity from 3D FMGSM Medium 

Based upon Eqs. (2.40)-(2.42) the far-zone scattered spectral density scattered from the 

FMGSM medium becomes 
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where  ,sH K v is calculated from the formula  
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To further compare the spectral density scattered from the FMGSM medium with that 

scattered from the GSM medium, the following normalized formulations of p(v) can be 

chosen for representing two types of media 
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     2 2exp / 2 ,GSM
N sp v v                                         (2.46) 

where C0(M) is the normalization coefficient which is defined as 
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It is found that the scattered spectral density from the FMGSM medium can be 

formulated as  
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where  0arccos  s s  is the scattering angle. For comparison, the spectral density 

scattered from the GSM medium is given by expression 
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Eqs. (2.48) and (2.49) can be used to investigate the scattered intensity profiles from two 

types of media, as shown by Figs. 2.9 and 2.10. In what follows, numerical calculations 

are performed and the parameters are fixed as σs=50λ, δs=5λ, unless stated elsewhere. 

2.3.3 Examples and Concluding Remarks 

Fig. 2.8 illustrates that the intensity distribution of a plane wave scattered from the 

FMGSM medium is narrower than that scattered from the GSM medium, being very 

distinct in profile when mode number M is greater than 2. This is due to the fact the 

degree of correlation of the medium has larger width than that of the GSM medium, even 

though they have the same correlation length. If M is sufficiently large, e.g., M=20, the 
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peak intensity value corresponding to the FMGSM medium is almost twice as large as 

that produced by the GSM medium.  

 

Fig. 2.8 Scattered intensity profiles from the FMGSM medium versus the scattering angle 

θ (dashed curves). The medium’s correlation length δs=5λ. For comparisons, the solid 

curves are for the scattered intensities from the GSM medium with the same correlation 

length. (a) M=2, (b) M=5, (c) M=10, (d) M=20 (from Fig. 2 of [52]). 

 

Fig. 2.9 Scattered intensity profiles from the FMGSM (dashed curves) and GSM medium 

(solid curves). The numerical parameters are the same as those used in Fig. 2.8 except a 

larger correlation length is chosen, i.e., δs=10λ. (a) M=2, (b) M=5, (c) M=10, (d) M=20 

(from Fig. 3 of [52]). 
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Fig. 2.10 Power-in-bucket (PIB) versus the half-aperture angle (HAA) of a detector 

in the scattered field. The dashed and solid curves are for the PIB scattered from the 

FMGSM and GSM media, respectively. The two media share the same correlation length 

δs=5λ. (a) M=2, (b) M=5, (c) M=10, (d) M=20 (from Fig. 4 of [52]). 

 

In Fig. 2.9 the correlation length δs=10λ of the medium is chosen for calculations. 

Compared with Fig. 2.8, it is shown that the FMGSM medium having a larger degree of 

correlation can generate the scattered intensity with narrower distribution. In addition, the 

discrepancy between the scattered intensities produced by two types of media become 

more distinct for increased values of M. 

Fig. 2.10 displays the Power-In-Bucket (PIB) of the scattered power entering a 

circular detector which collects a portion of the total scattered power in the far field. The 

PIBs of the scattered field from two types of media can be analytically derived from Eqs. 

(2.33) and (2.34) by integrating over the scattering angle region (-θD/2, θD/2), where θD is 

the half-aperture angle (HAA) of the detector. For a certain value of HAA the PIBs 

scattered from two types of media show different characteristics. Compared with the 

GSM medium, the FMGSM medium gives rise to a larger PIB if the HAA is sufficiently 
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small, e.g., θD<<0.5 rad. However, if θD achieves a certain large value, e.g., θD=0.5rad, 

the PIBs scattered from both media have the equivalent value denoted by the cross point 

in Fig. 2.10. By further increasing θD, the PIB scattered from the GSM medium exceeds 

that scattered from the FMGSM medium. These results coincide with those shown in Fig. 

2.8. 

In summary, we have introduced a 3D model of weakly random, statistically 

stationary medium whose degree of correlation obeys a FMG function. We find that such 

medium can produce a strongly focused intensity profile along the scattering axis. 

Compared with the GSM medium, the FMGSM medium gives rise to the scattered 

intensity which has a much sharper and higher peak maximum. The PIBs received by a 

detector in the far-zone scattered field are compared between the FMGSM and GSM 

cases. For small HAA values, the FMGSM medium produces larger PIB value in the 

central scattered region, therefore it can be used in applications where strongly localized 

light must be generated. 
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Chapter 3 

Tuning the Observable Properties of Stationary Light Beams 
by Structuring Correlations in Their Sources 
 
3.1 Partially Coherent Random Sources for Cusped Beams 

During the last several decades, partially coherent beams with particularly designed 

correlation functions have attracted great interest owing to their unique features while 

they propagate in free space, pass through optical systems and interact with various 

deterministic and random media [3, 17]. It became apparent that partially coherent beams 

can show interesting phenomena upon free-space propagation, for instance, forming flat-

topped intensity profiles, multi-ring distributions, exhibit self-focusing effect as well as 

lateral peak shift, to name a few. These remarkable beam properties are very essential for 

beam shaping, laser communications and particle guiding. 

Up to now, the only issue that has not been completely addressed so far is the 

mathematical modeling of random sources that can produce beams with narrower spectral 

density distributions if compared with Gaussian. Experimental solution to this issue has 

been recently introduced by using the super-Gaussian function to model far-field spectral 

density [53]. However, the analytical expressions for modeling of source degree of 

coherence (DOC) are cumbersome. In this section, we intend to propose two analytical 

source DOC models that can produce strongly peaked far-field spectral densities on the 

scattering axis. Two beam types are introduced to have the degrees of coherence 

characterized by the rectangular Lorentz-correlated Schell-model (LSM) and rectangular 

Fractional Multi-Gaussian-correlated Schell-model (FMGSM) functions, respectively. 

We show that the two beams can produce highly focused intensity distributions when 
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they propagate to a far field or to the focal plane of a thin lens. The experimental 

synthesis of two beams is achieved by using a transmissive Spatial Light Modulator 

(SLM). 

3.1.1 Lorentz-correlated Schell-model Source 

First, let us introduce the theoretical model for the source and further analyze its radiated 

beam propagating through a stigmatic ABCD optical system. It is assumed that p(v) of 

such a source should be the non-negative exponential function (see Eq. (6) of [47]) 

   2 exp 2 ,x yp v v     v                                    (3.1) 

and, hence, the DOC of such a source takes form 
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where 2 1' ',dx x x  2 1' ,dy y y   and μ(0, 0)=1 should be valid at two coinciding 

arguments. Let us term δ appearing in Eqs. (3.1) and (3.2) the source coherence length. 

Fig. 3.1 shows the DOC of the rectangular LSM source for three different coherence 

lengths, i.e. δ=0.1mm, 1mm, and 2mm. It is found that the DOC distribution becomes 

wider when the coherence length increases. For a sufficiently small coherence length, for 

example δ=0.1mm, the DOC shows as a cusped profile, as denoted by the solid curve in 

Fig. 3.1(d). If we further assume that the LSM source has the Gaussian intensity 

distribution, then its CSD function has the following expression 

 
   

2 2 4
(0) 1 2

1 2 2 2 22 2
0 2 1 2 1

', ' exp .
4

W
x x y y

  
  

 
              

ρ ρ         (3.3) 

By performing tedious but straightforward integrations, the resultant spectral density of 

the beam propagating through an ABCD optical system shows the analytic form [47] 
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is the error function. 

 

Fig. 3.1 Density plots of the intensity distributions of the LSM source in the focal 

plane with different coherence lengths. (a) δ=0.1mm, (b) δ=0.5mm, (c) δ=1mm, (d) 

δ=2mm (from Fig. 1 of [47]). 
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Fig. 3.1 illustrates the intensity distributions of the propagating beam radiated from 

the LSM source at the focal plane z=f. It is noteworthy that the propagating beam retains 

the rectangular profile if its coherence length is sufficiently small, e.g., δ=0.1mm. 

However, its profile gradually gets lost and eventually converts to a circular Gaussian 

distribution when its coherence length approaches certain magnitude, e.g., δ=2mm. 

Recalling the reciprocity relations for partially coherent beams, the propagating intensity 

should be strongly dependent on the source DOC. Because the source produces a strongly 

focused intensity peak in the focal plane, we can classify the LSM as a typical source 

which is capable to produce focused partially coherent beam in far field. 

3.1.2 Fractional Multi-Gaussian-correlated Schell-model Source 

In this section we introduce another class of a random source which can also produce a 

strongly focused intensity peak when the radiated beam propagates to the far field or 

focal plane of a thin lens. To model such a source we should first assume that the 

corresponding p(v) takes the form of the rectangular FMGSM function [47, 54] 
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where δ has been interpreted in Eq. (3.1), M is a non-negative integer. The DOC of such a 

source can be derived by performing the Fourier transform of p(v) in Eq. (3.7), i.e., 
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where 
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is the normalization coefficient. The intensity distribution of the beam radiated from such 

a source propagating through an ABCD optical system becomes 

 
   

   

1
2

1
2 2

10 0

'' 1
2

' 1
2'

' 1 0

1 1 11
, , exp

2 '!

1 1 ' 1
exp ,

2 '' '

nn

m
n

n

nn

m
n

n

m M x
I x y z

C Qnn M

m M y

Qn n M



















           
   

           
   




！

         (3.10) 
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Fig. 3.2 Spectral density of the FMGSM beam at the focal plane. The density plot (a) 

shows the focused intensity produced by the GSM beam, (b)-(c) show the focused 

intensity of the FMGSM beam for M=5 and 10, respectively. For comparison, the cross-

section profiles (d)-(f) show the intensity distributions for M=2, 5, 10 and the GSM beam, 

respectively. As the numerical parameter, the coherence length remains a fixed value 

δ=1.13mm (from Fig. 5 of [47]). 
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Based on Eqs. (3.10) and (3.11), the spectral density of the beam radiated from the 

FMGSM source and propagating through a thin lens in the focal plane can be found. We  

observing from Fig. 3.2 that the FMGSM source has advantages for producing a narrower 

intensity profile in the focal plane. By increasing the values of M the intensity peak value 

can be substantially increased. For M=10 the focused beam pattern looks like a “needle” 

apex in the central region. Furthermore, the peak intensity of the FMGSM beam in the 

focal plane of a thin lens is much larger than that produced by the GSM source beam. 

This comparative result indicates that the FMGSM source can be regarded as a better 

candidate than the GSM source for producing strongly focused intensity in far field of 

optical systems. 

3.1.3 Experimental Generation of Highly Focused Partially Coherent 

Beams 

 

Fig. 3.3 Experimental setup for generating the LSM and the FMGSM beams and 

measuring their focused intensity distributions. NDF: neutral density filter; LP1 and LP2: 

linear polarizers; CA: circular apertures; SLM: spatial light modulator; L1, L2 and L3: thin 

lens; PC1 and PC2: personal computers (from Fig. 6 of [47]). 
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Fig. 3.3 illustrates the schematic diagram for generating the two beams by 

experimental setup. The laser beam emitted from a laser diode (LD, λ=532nm) first 

passes through a neutral density filter (NDF), and then the resultant beam transmits 

through a linear polarizer (LP). The transmitted beam from LP1 subsequently passes 

through a spatial light modulator (SLM, HOLOEYE LC2012) controlled by a personal 

computer (PC1), behaving as a random phase screen for generation of the LSM or the 

FMGSM source beam. The synthesis methods of random phase screens can be indexed in 

[53, 55-58]. The second linear polarizer (LP2) whose the optical axis coincides with LP1 

is placed behind the SLM to block the intensity contributed by other polarization 

components appeared from the scattering from the SLM. Lenses L1 and L2 constitute a 

2f-imaging system, each having the same focal length f=250mm, and a circular aperture 

(CA) is used to filter out the first-order diffraction order from SLM grating. The lens L3 

is inserted after L2 to further focus the generated beam. In the focal plane, a CMOS 

detector (DCC1545M-GL) is placed to capture the focused intensity and further export 

the experimental data to the personal computer (PC2). 

 

Fig. 3.4 Experimental intensity distributions of the focused FMGSM beam at the cross-

section y=0. Comparisons are made between the focused intensities of the FMGSM beam 

with M=5, 10 and those produced by the GSM beam (from Fig. 9 of [47]). 
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The focused intensity distributions of the FMGSM beam and those of the GSM 

source beam are compared in Fig. 3.4. It is found that the focused intensity profile of the 

FMGSM beam has narrower width, and its intensity peak is much higher than that 

produced by the GSM beam which has the same coherence length. In addition, Fig. 3.4 

also shows a good agreement with the theoretical results presented in Figs. 3.2(e)-(f). The 

remarkable self-focusing ability of the FMGSM source beam implies that this beam is a 

better candidate than the GSM beam for some applications, e.g., the material thermal 

process and beam shaping in the focal plane. 

3.1.4 Concluding Remarks 

In summary, we introduce two partially coherent sources whose spectral DOCs obey the 

rectangular Lorentz and the Fractional Multi-Gaussian functions, respectively. 

Propagation properties of two beam families through a stigmatic ABCD optical system 

are derived analytically. We show that both random beam families can produce strongly 

focused intensity profiles in the far field or in the focal plane of a thin lens. For the 

FMGSM beam, the self-focusing intensity distribution looks like a sharp “needle” type. 

Experimental synthesis of two beams are presented and shown to be consistent with the 

theoretical calculation results. These two proposed beams, especially the FMGSM beam, 

can have prospective applications to the material thermal process and beam shaping in 

the focal plane. 
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3.2 Partially Coherent Crescent-like Optical Beams 

An optical beam which propagates through linear random media such as atmospheric or 

oceanic turbulence can experience severe phase fluctuations, giving rise to several effects, 

in addition to the free-space diffraction, scintillations, beam wander, turbulence-induced 

spread, etc. As a result, the performance of optical systems operating in these types of 

media becomes limited. An effective approach to mitigate the perturbations originated 

from these random media is the spatial phase randomization (partial coherence) of the 

beam at the source [59-60]. For instance, statistical properties of partially coherent Airy 

beams have been examined on propagation in the atmospheric turbulence, showing that 

the beam can still radially accelerate up to a certain propagation distance [61]. Another 

type of beams that exhibit gradual off-axis shifts of their intensity maxima upon free-

space propagation utilizes the non-uniform source correlation effect [27]. Being different 

from the Airy beam, the non-uniformly correlated beams can produce off-axis shifts in its  

maximum intensity. When they propagate in free space the emerged shifts in intensity 

maxima can remain invariant at any distance from the source. However, passing through 

isotropic linear random media the shifted maxima gradually retrieve back to their original 

on-axis position at sufficiently large propagation distances [29]. 

In this section, we will introduce a random source that can produce a ring-like 

profile or a “crescent” distribution around the optical axis, while its intensity maximum is 

shifted off axis. Such a beam can be generated by a source that has a Gaussian intensity 

profile and a specifically designed DOC represented by the generalized Laguerre 

polynomials [62]. Based upon the derived expressions, we perform analysis on the 

propagation dynamics of the crescent beam in free space and in linear random media 
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(atmospheric turbulence). We show that the new beam is not the same as the non-

uniformly correlated beams, as its maximum intensity position shifts further from the 

propagation axis when it propagates in free space or turbulence. Furthermore, we also 

find that the increment of the intensity tilt angle of the beam can be slightly suppressed 

by turbulence. 

3.2.1 Fundamentals of Crescent Random Beam 

We start our analysis by introducing the class of random sources which radiates beams 

having crescent-like spectral density in the far field. Recall that profile function p(v) 

determines the intensity distribution in the far field and, therefore, the correlation 

function of the source should satisfy the reciprocal relation. In our case, let us assume 

that p(v) is a function separable in polar coordinates, defined as [63] 
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where n is a positive integer, δ denotes the r.m.s of the coherence length, v = |v|, 

θ=arctan(vy/vx) denotes the azimuthal angle of vector v in polar coordinate system, 

respectively. By performing the 2D Fourier transform of Eq. (3.12), it is found that the 

degree of coherence of the random source takes form [63] 
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where 0
nL  represents the generalized Laguerre polynomial with indices n and 0. Here rd 

and φd are the magnitude and phase of the difference between two position vectors, i.e., 

rd=r2-r1. We need to point out that the DOC shown in Eq. (3.13) is a complex function in 

the source plane, meaning that the far-field spectral density is not an even function, i.e., it 
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eventually loses rectangular or circular symmetry. For free-space propagation of the 

radiated beams, the spectral density of the beam at one position vector ρ results in the 

following form 
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and m
nL  is the associated Laguerre polynomial with order n and radial index m, ρ and θ 

are the radial distance and polar angle corresponding to position vector ρ in the polar 

coordinate system.  

 

Fig. 3.5 Spectral density of the random beam in free space for several propagation 

distances (from Fig. 1 of [63]). 
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Fig. 3.5 shows the spectral density of the random beam at a couple of propagation 

distances in free space, which are plotted by using Eqs. (3.14) and (3.15). The beam 

values of source parameters for the plots are chosen as σ0=50mm, δ=2mm, n=3, λ=532nm, 

unless is specified elsewhere. Results show that the beam’s intensity distribution 

gradually converts from Gaussian at the source plane to a crescent-like profile due to 

effects contributed by the specifically tuned correlation function of the source. For 

sufficiently large propagation distance, the crescent beam retains its far-field shape while 

its spot size expands due to the diffraction effect. 

3.2.2 Synthesis Procedures of Crescent Beam 

 

Fig. 3.6 Schematic diagram of the experimental generation of the crescent beam. LD: 

laser diode; NDF: neutral density filter; SLM: spatial light modulator; LP: linear polarizer. 

The distances between LD and SLM, SLM and lens, lens and iris are 30cm, 30cm and 

26cm, respectively. The CMOS camera is placed 4cm behind the iris to capture 

instantaneous intensity profile of the crescent beam (from Fig. 2 of [63]). 

 

Generation of the crescent random beam can be realized by setting up the LD source 

and using the nematic SLM operating in the transmissive mode. The SLM (HOLOEYE 

LC2012, pixel resolution 1024×768, pixel size: 36μm×36μm) is further connected to 
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the personal computer 1 (PC1) which is placed behind the LD (λ=532nm), the NDF and 

the LP1. To synthesize the partially coherent crescent random source, a sequence of phase 

screens whose correlation functions shown by Eq. (3.13) are generated on the computer. 

The method for generation of the random phase screen with specified correlation 

statistics were discussed in detailed manner in Refs. [58, 64-66]. Then the sequence of 

these phase screens is loaded and cycled on the SLM. The frame per second is set up to 

50Hz. After transmitting through the SLM the beam further passes through the LP2, the 

Lens L (focal length 300mm) and the circular iris I. The polarizers are utilized to 

eliminate the LD’s and SLM’s polarization effects and the iris is adopted to block the 

unneeded diffraction orders produced from the SLM’s grating array. The CMOS camera 

(Thorlabs, Monochromatic, pixel resolution 1280× 1024) captures long-time video 

sequence for obtaining the average intensity distribution of the beam in the focal plane. 

 

Fig. 3.7 Normalized spectral density profiles of the crescent beam propagating through 

thin lens (focal length f=30cm). The coherence length of the beam is kept uniform as 
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δ=2.4mm, and the index number are chosen as (a) n=0, (b) n=2, (c) n=3, (d) n=10 (from 

Fig. 3 of [63]). 

 

Fig. 3.7 exhibits the spectral density distribution of the random beam which has the 

coherence length δ=2.4mm and the mode index values n=0, 2, 3 and 10, respectively. 

With the index n increase the crescent beam profile becomes more pronounced, while the 

intensity maximum position shifts further from the propagation axis. The beam with 

index n=3 is chosen as optimal since it contains a well-pronounced off-axis shift of 

maximum intensity. However, its average intensity does not spread too much. 

 

Fig. 3.8 Normalized spectral density profiles of the crescent beam propagating 

through thin lens (focal length f=30cm). The index number is kept uniform as n=3, and 

the coherence lengths are chosen as (a) δ=4.8mm, (b) δ=2.4mm, (c) δ=1.2mm (from Fig. 

4 of [63]). 

 

Fig. 3.8 shows the source coherence effect on the generated crescent beam which 

has the same index (n=3). As the coherence length decreases the crescent-like distribution 

becomes broader and more pronounced. In our experiment, the coherence length δ is used 

in the computer-generated phase screen for controlling the coherence properties of the 

generated source. The scaling of the beam profile for long free-space propagation 
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distance, as shown in Figs. 3.8(d)-(f), is much larger than that at the focal plane, as 

captured by the experiment, even though the spectral density profiles in two cases are 

almost the same. 

3.2.3 Interaction of the Crescent Beams with Turbulence 

We will now investigate the behavior of the crescent beam, and the changes of its 

intensity maximum position upon propagation in an isotropic, homogeneous atmospheric 

turbulence. To do this, we first assume that the power spectrum of the refractive index 

fluctuations of turbulence obeys the von Karman distribution [21] 

     -11/62 2 2 2 2
00.033 + exp / ,n n mC                                (3.16) 

where 2
nC  is the refractive-index structure constant with unit m-2/3, 0 02 / L   with L0 

being the outer scale of the turbulence, 05.92 /m l   , with l0 being the inner scale of the 

turbulence. In what follows the values of L0 and l0 will be fixed as 1m and 0.01m, 

respectively. The spectral density of the crescent random beam propagating in 

atmospheric turbulence is then given by the formula [63] 
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By using Eqs. (3.17) and (3.18), we show numerical plots for the propagation properties 

of the crescent beam in atmospheric turbulence. Fig. 3.9 illustrates the spectral density of 
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the beam at several propagation distances in turbulence. It is found that when the distance 

is sufficiently small, i.e., less than 1km, the resultant beam profiles are like those in free 

space (see Figs. 3.5(a) and (b)). Nevertheless, when considering larger distances, the 

crescent beam distribution gradually retrieves back to Gaussian due to the turbulence-

induced diffraction effects. 

 

Fig. 3.9 Spectral density of the random beam propagation through atmospheric 

turbulence for several propagation distances. The structure parameter of turbulence is 

2 13 2/35 10nC m    (from Fig. 5 of [63]). 

 

Fig. 3.10 (a) Spectral density of the random beam at the cross-line ρy=0 with the 

propagation distance z=5km for three different values of structure parameters. (b) The 

corresponding spectral density shown in Fig. 3.10(a) with ρx in the range from -1m to 

0.2m (from Fig. 6 of [63]). 
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Fig. 3.10 presents the cross-section (ρy=0) of the spectral density profile at the 

propagation distance z=5km in free space and turbulence, respectively, while different 

refractive index structure constants are chosen for comparison purpose. It is shown that 

the intensity maxima position is much closer to the on-axis point in the presence of 

turbulence, if it is compared with that considered in the free space case. To clearly 

demonstrate the evolution of intensity maxima position, we particularly show in Fig. 

3.10(b) the cross section of the spectral density distribution in Fig. 3.10(a), while 

confining radial distance ρx to range from -1.0m to 0.2m. The vertical black curve notates 

the intensity maxima position for cases with different strengths of turbulence. The 

corresponding intensity maxima positions for these cases is -0.52m, -0.38m and -0.34m, 

respectively, while the refractive-index structure constant is chosen as 2 0,nC 

2 13 2/35 10nC m    and 2 12 2/31 10nC m   , respectively. 

3.2.4 Discussions and Concluding Remarks 

In summary, we have studied the behavior of a class of optical beams, named as 

crescent random beam, which can be generated from uniformly correlated source with the 

complex-valued degree of coherence. We perform detailed investigations on its 

propagation properties in free space and homogeneous atmospheric turbulence, 

respectively. This random source has been shown to be capable of producing an off-axis 

intensity maximum at a certain propagation distance from the source plane. The crescent 

beam is generated experimentally by using a transmissive, nematic SLM.  

We also have found that the crescent beam propagating in turbulence produces the 

increasing shift of maximum intensity positions from its propagation axis when the 
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propagation distance is increased. This means that such a beam can produce a radially 

accelerating maximum average intensity. This result can be compared to the one 

generated from the non-uniformly correlated beam whose shift of maximum intensity 

gradually retrieves back to its propagation axis. This transversally accelerating random 

beam may be of interest for optical systems for operation in curved atmospheric channels 

for security or convenience purposes. 

Although we have introduced one beam type which shows non-symmetric spectral 

density distribution, its acceleration effect that we have highlighted is also similar to 

those produced by other sources, for example, those with the uniformly correlated, 

complex-valued CSD functions. The control of such radial evolution can be achieved by 

appropriately selecting the source type and its parameters. We have the prospect that such 

class of random beams which can exhibit non-linear titling phenomenon can be 

applicable in practical optical systems where it is essential to balance low scintillations 

and intensity maximum locations. In addition, since the maximum intensity of the beam 

traces a curved trajectory upon propagation, it can be also applied in the situations where 

the optical beams should be expected to pass by an obstacle embedded in the random 

medium. 

 

3.3 Im-Bessel-correlated Beam and Its Generation via Coherent 

Modes 

The coherent laser modes have been determined for the 1D and 2D Gaussian correlation 

functions [34, 67-68], the 2D anisotropic Gaussian correlation function [69] and the J0-

Bessel correlation function [70]. The beams radiated from sources which were discussed 



 55 
 

 

in [67-70] are all obey of the Schell type, i.e., their degrees of coherence are solely 

dependent on the difference between two spatial arguments. The Schell-type sources can 

be synthesized by using a laser beam passing through ground-glass diffusers or liquid 

crystals [57, 71]. Nevertheless, some stationary sources which are expressed by 

superposition of coherent modes are not restricted to the Schell type. A typical example is 

attributed to the Im-Bessel-correlated source with a separable phase, which was initially 

introduced by Ponomarenko [72]. Such kind of source can be analytically represented as 

a linear superposition of the Laguerre-Gaussian (LG) modes carrying optical vortices 

[73].  

In order to generate the source modes we use a phase-only SLM providing 

continuous spatial phase control of the incident beam. As a consequence, we generate a 

sufficiently long random sequence of frames that contain the first ten LG modes, each 

occupying the number of entries proportional to its eigenvalue in the coherent mode 

decomposition [72]. It is also shown that the produced coherent modes can carry specific  

Orbital Angular Momentum (OAM) index by phase conjugation approach which uses 

two identical SLMs having the same or opposite OAM indexes. 

 

3.3.1 Eigenmodes and Eigenvalues of Im-Bessel-Correlated Source 

By recalling the approach of deterministic mode decomposition of partially coherent 

random sources, the eigenfunctions of the Im-Bessel-correlated source satisfy the 

following expression [72-73] 
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where (ρ, ϕ) are the polar coordinates of ρ, σ is the beam width at source plane, m is the 

OAM index, m
nL  is the associated Laguerre polynomial with order n, while the 

eigenvalues of such source take the form 


nm
 n! n / n m !.                                            (3.20) 

Accordingly, the CSD function of the source can be represented as [72] 
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In Eq. (3.21), Im is the modified Bessel function of the first kind, and order m. ξ in Eq. 

(3.21) is real coefficient which obeys 0<ξ<1. As two limiting situations, ξ=0 stands for a 

coherent beam, ξ≈1 corresponds to an incoherent beam [72]. Therefore, the spectral 

density function can be obtained from Eq. (3.21) by setting ρ1=ρ2=ρ as 
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3.3.2 Synthesis Principles and Results 

We now focus on the optical system for synthesis of the LG modes and the Im-Bessel 

correlated beams. The schematic diagram of the experimental setup is displayed in Fig. 

3.11. First, we let a laser beam to pass through an SLM whose function is to produce the 

sequence of individual LG modes in the far zone. We then cycle a random sequence of 

phase screens (holograms) generated on the SLM. Each hologram consists of a grating 

which is modulated so that we only utilize the phase of diffracted beam with the first 

diffraction order [74]. The random sequence of phase screens is chosen in such a way that 

the probability of displaying a specific LG mode is proportional to its eigenvalue. It is 
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noteworthy that the ensemble average of all sequence frames is in agreement with the 

source CSD distribution. 

 

 

Fig. 3.11 Experimental setup for (A) generation of the individual LG modes and their 

sequences; (B) validation of OAM indices (from Fig. 1(B) of [75]). 

 

In the optical setup, a 1mm diameter He-Ne laser beam with wavelength 633nm is first 

expanded by 15x telescope T, then passes through a SLM1 (HOLOEYE LC2012) with 

1024×724 pixel array, which is controlled by computer PS1. SLM1 is placed 30cm after 

the telescope. SLM1 acts as a grating which generates a 2D array with multiple 

diffraction orders. The LG modes are picked from the first diffraction order and further 

reflected by mirror M1 placed at distance 200cm after SLM1, being separated from other 

modes by iris A placed at 155cm after M1. The resultant field further passes through a 

thin lens (focal length 50cm, located at 8cm after A) and is captured by a CMOS 

Thorlabs camera C which is at distance 30cm after L. The sequence of modes used for 

ensemble average incorporates 5000 frames. 
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Fig. 3.12 Eigenvalues of the Im-Bessel correlated source for values m and ξ, plotted by 

using Eq. (3.20) (from Fig. 6 of [75]). 

 

 

Fig. 3.13 Laguerre-Gaussian coherent modes (from Fig. 2 of [75]). 

 

Fig. 3.12 shows the dependence of eigenvalues for the Im-Bessel correlated source 

on different pairs of m and ξ, while the mode number n is chosen from 0 to 9. Results 

indicate that the eigenvalues become smaller when the mode number n increases. 

Moreover, the damping ratio of eigenvalues versus n is strongly dependent of ξ. For 
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smaller ξ, the corresponding eigenvalue also gives a smaller value, implying that higher-

order LG mode has less influence on the source CSD distribution. 

Fig. 3.13 exhibits the average intensities of the individual LG modes, which are 

plotted by normalization by their maximum values. Modes with n=0, 1,…,9 are produced 

and used for synthesis of the random source. The system using this particular type of 

SLM is limited to producing modes with n<9 since the outer rings of modes n>9 cannot 

be spatially separated from other diffraction orders. It is also shown that the modes with  

OAMs higher than 0 have the characteristic intensity ring in the center. 

 

Fig. 3.14 Normalized average intensities of Im-Bessel correlated beam with m=2. (A)-(C): 

ξ=0.1, (D)-(F): ξ=0.5 (from Fig. 5 of [75]). 

 

Fig. 3.14 shows the normalized spectral density of the Im-Bessel correlated beam 

recorded by the camera in configuration shown in Fig. 3.11(A). It is shown that the 

experimental result is in good agreement with the theoretical ones in [72]. For larger 

values of ξ and m the spectral density greatly spreads, and particularly, contains an outer 

tail with a larger size. It is also indicated in the outer tails of the higher OAM modes, for 
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example m=2, that the experimental data has a slight artifact. This is because larger than 

10 coherent modes are necessary for precise reconstruction of the spectral density (see 

Fig. 3.12). 

3.3.3 Phase Conjugation for Measuring Orbital Angular Momentum 

 

Fig. 3.15 Validation of the OAM of the beam by phase conjugation method (from Fig. 7 

of [75]). 

 

Fig. 3.15 exhibits the validation of the proper OAM of several synthesized LG 

modes. The first diffraction order with OAM=1, 2, 3 passes through SLM2 on which the 

OAM screen with 1, 2, 3m     is placed, respectively. When the phases on two SLMs 

take opposite signs, the corresponding total OAM is zero due to phase conjugation. 

Therefore, the resultant beam shows a bright spot in the central region, resembling the 

Gaussian beam, shown in Figs. 3.15(A)-(C). Otherwise, when the OAMs on two SLMs 

are the same, the total OAM is their summed value, producing a higher LG mode, i.e., a 

larger ring appears, as shown by Figs. 3.15(D)-(F). 
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3.3.4 Concluding Remarks 

In summary, we showed the novel approach for the experimental synthesis of a random, 

stationary source for the first time, which is generated by superposition of its coherent 

modes passing through an SLM. Since the characteristic coherent time of the He-Ne laser 

source is much smaller than the cycling rate of the SLM, the modes can display random 

phases. It is shown that a temporally randomized, truncated sequence of coherent LG 

modes whose probabilities of occurrence are proportional to their corresponding 

eigenvalues, can be generated to reconstruct the spectral density distribution of the Im-

Bessel correlated beam. The individual LG modes can be generated by letting the He-Ne 

Gaussian laser beam pass through the phase-only SLM. The experimental verification of 

the generated OAM of individual LG modes is realized by using the phase conjugation 

approach. These results can be further utilized to generate random sources with other 

coherent mode distributions or can be applied to situations in which mode distributions 

are known but their CSDs do not have a closed analytic form. Our synthesis approach is 

essential to the free-space communication system operating in natural environments for 

mitigation of turbulent effects. 
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Chapter 4 

Tuning of Properties of Laser Beams in Atmospheric 
Turbulence 
 
4.1 Measurement of Anisotropy Ellipse of Atmospheric Turbulence 

The theory of the Earth’s atmospheric boundary layer was first proposed in 1950s in 

which the existence of anisotropic features of turbulence is established [76]. Then, the 

presence of turbulence anisotropy within several meters above ground has been reported 

by using the relative motion of beam centroids which are parallelly aligned and sent 

through the same turbulence channel [77]. There exists a strong evidence that the 

temperature structure function, as well as the refractive index structure function in 

vertical direction to ground are different from those which are evaluated in horizontal 

direction parallel to ground. A variety of experiments showed that anisotropy of 

atmospheric turbulence can exist in a wide range of altitudes [78-80]. The propagation of 

light through anisotropic turbulence was also introduced for both the vertical and 

horizontal optical channels [81-86]. The numerical simulations for describing light 

interactions with atmospheric turbulence mimicked by phase screens has shown good 

agreement with the theory [87-88]. We have also carried out experimental measurements 

by utilizing single-mode Gaussian He-Ne laser beam propagating close to the Earth’s 

surface, in horizontal direction parallel to ground. 

In this section, we will show the results of conducted experiments which took place 

in a tropical climate during summer season, at a grassy field with different meteorological 

conditions and heights from the ground. The instantaneous intensity of a laser beam was 

recorded by a CCD camera and its statistics were analysed. The beam characteristics 
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were used for evaluating the turbulent anisotropy parameters, i.e., the degree of ellipticity 

and the orientation angle of the anisotropy ellipse. Our results indicate that the two-point 

intensity correlation function of the beam manifests evident anisotropic features, i.e., 

anisotropic coefficient and orientation angle of the ellipse. 

4.1.1 Configuration of Experimental Setup 

 

Fig. 4.1 3D map of the Yaron field at the UM. Red lines denote three atmospheric 

propagation channels. Wind direction was prevalently East-South-East (ESE), links are 

all oriented North-to-South. (b) Schematic diagram of the experimental setup. BE: beam 

expander; L: lens; D: detector; PC: personal computer (from Fig. 1 of [89]). 

 

The instantaneous intensity of the He-Ne laser beam propagating through 

anisotropic turbulence was measured at three different heights and channels, respectively. 

For each channel, the distance between the transmitter and the receiver was chosen to be 

210m, and the distance between channel 1 and channel 2, and between channel 2 and 3 

were chosen as 40mand 32m, respectively. Fig. 4.1(A) shows the top view of the field 
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with three different propagation channels. Fig. 4.1(B) is the schematic diagram of the 

experimental setup. The transmitter includes a He-Ne laser with wavelength 632.8nm and 

a BE. The optical field after the BE obeys a Gaussian distribution 
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where E0 is the initial beam amplitude, k=2π/λ is the wave number, ω0 and F0 are the 

beam waist width and the radius of curvature, respectively. To minimize the beam 

wander effect at the receiver, we carefully adjusted the radius of curvature of the beam by 

via the BE adjustment, controlled by the shear plate interferometer (SPI), so that the 

resultant beam propagates in a slightly divergent manner. The used beam waist width and 

radius of curvature were about 1cm and 30m, respectively. The receiver includes a 

circular lens L with diameter 5cm and focal length 5cm, a CMOS camera and a personal 

computer. A part of the beam was captured by the lens and further received by the 

camera which was located about the focal plane of the lens. A narrow bandpass filter 

(632.8nm, FWHM=3nm) and a couple of neutral density filters were placed on the camera 

aperture to block the background sunlight and meanwhile adjust the intensity level of the 

received beam. The distance between the lens L and the camera was chosen about 46cm 

and the integrated time of the camera was set at 5ms.  

4.1.2 Measurement of Average Intensity and Intensity Correlation 

Function 

Based on the setup of above-mentioned optical links for experiments, we utilized the 

camera to record a sequence of 3000 frames of the instantaneous intensity. Each frame 

can be regarded as one realization of the beam intensity, being represented by a matrix 
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 ( ) ,mI x y  where (x, y) denotes the coordinate values at each pixel. The superscript m 

indicates the number of realizations ranged from 1 to 3000. By recalling the intensity 

correlation function (ICF) of the propagating beam at two points, the discrete formula of 

ICF takes the form [21, 89] 
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stands for the average intensity at position vector ρi. In Eqs. (4.2) and (4.3), ρi=(xi, yi) are 

two points at the focal plane. Therefore, the ICF of the beam results in the following 

expression 
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Based upon Eq. (4.2) or (4.4), we obtained the ICF evaluated at two points ρ1=ρ, ρ2=0, 

and the scintillation index (SI) distribution that can be obtained by setting ρ1=ρ2=ρ.  

 

Fig. 4.2 (a) Average intensity distribution in the output plane. (b) The corresponding 

scintillation index across the beam received at channel 1 (typical for all links). The height 

of the He-Ne laser above the ground is 39cm (from Fig. 2 of [89]). 
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Fig. 4.2 illustrates the normalized average intensity distribution from experiments 

and the SI across the focal plane. The black spots in Fig. 4.2 are owing to some dust on 

filters. Furthermore, the dark and bright regions produced by the interference effects 

between the front and rear surfaces of the protecting window. Both the average intensity 

and the scintillation index show uniform distributions across the beam cross section, 

except for the instability of intensity around the edge, as shown by Fig. 4.2(b). From Fig. 

4.2, we can also find that the turbulence anisotropy cannot be reflected from the average 

intensity and scintillation index distributions. 

 

Fig. 4.3 Experimental results of the ICF distributions in the detector plane at channel 1 

for three different heights of the He-Ne laser above the ground: (a) 39cm, (b) 84cm, (c) 

139cm (from Fig. 3 of [89]). 

 

Fig. 4.3 presents the experimental results of the ICF profiles at the focal plane for 

channel 1. The heights of the He-Ne laser above ground, shown in Figs. 4.3(a)-(c) are 

chosen to be 39cm, 84cm, and 139cm, respectively. It is indicated that the ICF exhibits a 

strong elliptical profile. Moreover, the long axis of the ellipse forms an angle θ with the 

horizontal axis. The values of angle θ for three different heights are almost equivalent 

(θ≈-16°). If we utilize a Gaussian fitting function to the long and short axes of the ellipse 

and evaluate the effect width of the Gaussian distribution, the corresponding degrees of 

ellipticity in Figs. 4.3(a)-(c) are computed as 0.32, 0.33, and 0.38, respectively, which  
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slightly increased with the increase of height. The on-axis scintillation index reduces 

when the height increases, showing that the anisotropy of turbulence becomes weakened 

when the height increases, as expected. 

 

Fig. 4.4 (a) The experimental results of the ICF distributions in the detector plane at (a) 

channel 1, (b) channel 2 and (c) channel 3. The height of the He-Ne laser above the 

ground is 84cm (from Fig. 4 of [89]). 

 

Fig. 4.4 illustrates the ICF distributions measured from experiments for three 

different channels. It is interesting to note that the ICF distributions measured from three 

channels show quite different features. If we consider channels 1 and 2, the 

corresponding tilt angles are around -16° and -20°, and the degrees of ellipticity are 

around 0.35 and 0.64, respectively. The ICFs in Fig. 4.4 are plotted by using the data 

from two different channels; however, the results are the same, despite the background 

noise is different. For channel 3, the degree of ellipticity is around 0.9, indicating for 

almost isotropic turbulence, in the channel close to the building. Furthermore, the tilt 

angle in Fig. 4.4(c) appears to show an opposite direction to those in Figs. 4.4(a)-(b). 

4.1.3 Comparison of Results and Concluding Remarks 

For confirmation of the validity of the obtained results, the numerical simulation based on 

the Wave Optics Simulation (WOS) is carried out for the laser beam propagation in 

anisotropic turbulence. The detailed introduction to the WOS approach for generation of 
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random phase screens can be found in [90]. Here we apply the Von Karman Power 

Spectrum Density (PSD) which satisfies the Kolmogorov power law [21] 
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                      (4.5) 

where 2
nC  is named as the structure constant of refractive index, μx and μy are the so-

called anisotropic coefficients along x and y axes, respectively, κx and κy represent the 

spatial wave numbers along x and y axes, respectively, ( ) ( ) 05.92 / ,mx y x y l  0xl  and 

0yl denote the inner scales, 0 02 / L   with L0 being the outer scale.  

 

Fig. 4.5 Numerical simulation results of the ICFs for different ratios of the anisotropic 

factor μy/μx (a) 0.33, (b) 0.60, and (c) 0.9. The other parameters used in the simulation are 

the same as in Fig. 4.2 (from Fig. 6 of [89]). 

 

Fig. 4.5 presents the numerical simulation results of the ICF distributions at the focal 

plane by considering different values of μy/μx. It is shown that the ICF distribution is 

susceptible to different values of μy/μx. The degrees of ellipticity obtained from Figs. 

4.5(a)-(c) are 0.35, 0.59, and 0.88, respectively, which are close to the ratios μy/μx used in 

the simulation. The tilt angle of the ICF also coincides with the angle θ used in the 

simulation. Moreover, our simulation results (omitted here for saving space) also show 

that both the degree of ellipticity and tilt angle of ICF have no dependence on the strength 
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of turbulence. For the non-Kolmogorov case, specifically, as the power exponent in the 

denominator of Eq. (4.5) changes from 1.5 to 2, the corresponding degree of ellipticity 

and tilt angle of the ICF almost stay invariant. 

Overall, we have shown that the anisotropic features of atmospheric turbulence, 

including the anisotropic coefficient and the angle of ellipse cannot be obtained from the 

average intensity or the scintillation index of the beam, however, the anisotropy of 

turbulence is feasible to be detected out from the two-point intensity correlation 

distribution. In addition, the orientation angle of ellipse needs further investigation, due 

to the unclear physical reasons behind its formation. The numerical simulation of beam 

propagation in anisotropic turbulence for the experimental scenario is also shown and 

further compared with the experimental data to verify its validity. These obtained results 

are essential to design and optimization of optical systems which are operated in the 

presence of anisotropic turbulence. Our discovery can also be applied for determining the 

parameters of anisotropic turbulence. Remarkably, our results reported on anisotropic 

features of atmospheric turbulence have already attracted interest by peers in our field 

who performed their recent studies [91-94] based on parts of our findings published in 

[89]. 

 

4.2 Enhanced Back-Scatter in Double-Pass Channels with Non-

Classical Turbulence 

The spatial redistribution of the receiving power in the double-pass atmospheric 

turbulence channels with mirrors or retroreflectors has been investigated for a couple of 

decades [95-97]. This phenomenon can be observed only when the transmitter and 
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receiver have overlapped field of view, and it vanishes when their fields of view are 

sufficiently separated. For the monostatic case which utilizes the retroreflector the 

corresponding on-axis intensity is stronger than that in the bistatic case, both of which 

produce the Enhanced Back Scattering (EBS) effect. The experimental verification of the 

EBS effect has been done in numerous reports [98-101]. The computer simulations have 

been performed for building the connection between the theoretical and experimental 

frames [102-103]. In most of these studies the statistics of turbulence were considered as 

homogeneous, isotropic and non-stationary (but with stationary increments), 

corresponding to the case of classic Kolmogorov turbulence. However, in a variety of 

practical cases the turbulence channels can be considered to have non-classic 

characteristics. The double-pass optical channels embedded in the non-classic 

atmospheric turbulence have not been considered so far and will become our primary 

investigation target. 

In this section, we will reveal the effects of different types and the locations of non-

classic turbulence in double-pass turbulence channel with 21 meter in length. The weak 

background laboratory environment perturbed by the locally strong turbulence is 

simulated by one of two approaches: by means of a single heat gun which blows hot air 

in a direction toward to the laser beam and by means of a 1.8-meter long turbulent 

chamber which contains spatially partially homogeneous and isotropic temperature. In 

both cases the local turbulence is created and, we aim to find how the location of the 

generated turbulence induces the EBS effect. Furthermore, we also found out the 

differences in the EBS effect due to different locations of turbulence, being produced by 

either heat guns or by the turbulent chamber. 
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4.2.1 Experimental Setup for Measuring EBS Effect 

 

Fig. 4.6 Schematic diagram of the experimental setup used for generation and 

measurement of the beam intensity statistics in the monostatic double-pass link. AP: 

Attenuation Plate; BE: Beam Expander; BS: Beam Splitter; NDF: Neutral Density Filter; 

SPI: Shear Plate Interferometer. The embedded plotted curve shows the average intensity 

captured by the CMOS camera at the cross-section which passed through the maximum 

intensity plot. The NDF and AP were used to guarantee the generated images were not 

saturated (from Fig. 1 of [104]). 

 

To conduct our experiment, we adopted two different methods to synthesize the 

non-classic turbulence along the double-passage turbulence channels, which is shown in 

Fig. 4.6. The first method is to utilize a jet stream produced by a single heat gun (Porter 

Cable, 1500W), which is tuned to the highest temperature (1100°F) and the highest fan 

speed. The second one is to use a parallelepiped-like wooden chamber (15cm×15cm×

180cm in size), which is entirely wrapped by aluminum foil, leaving 9 holes drilled into 
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single lateral side. Either one or three heat guns were placed into these holes, as discussed 

above. When doing each measurement, the heat guns were fired from the same side of the 

channel to ensure consistency for comparison purposes. Fig. 4.6 is the diagram of the 

double-pass channel which can be alternated between the two methods described above. 

All the distances used in the experiment have been labeled in the diagram. First, a He-Ne 

Laser (wavelength 632.nm, average power 2mW) produced a 1mm (in radius) collimated 

beam which passed through an attenuation plate, a 15x beam expander and then a beam 

splitter (5cm side length, 50:50). The BS splits the beam into two perpendicular paths, 

one subsequently passes through the optical channel (21m long in propagation length), 

reflecting from the retroreflector, and going back along the opposite direction. After 

passing through the BS for the second time the backward beam was focused by a thin 

lens (focal length f=50cm) into a CMOS camera (Thorlabs, Color, pixel resolution 1280

×1024). For each measurement the camera captured 1000 image sequence by using 

frame rate 6.55Hz and the exposure time 0.02 milliseconds. 

For easier understanding of the non-classic turbulence produced at different 

locations, we show in Fig. 4.6 the 3D Cartesian coordinate system shown. The sign “⊙” 

indicates that +z axis is pointing outside of the screen. In the experiment either a single 

heat gun or a turbulent chamber was placed at five locations marked by I, II, III, IV, and 

V, which separate the whole turbulence channel into four equal distance (5.25m each). 

Either the heat gun was placed at one location or at the end of the chamber nearest to the 

retroreflector. To guarantee the beam has been well collimated the split beam at the 

second path was passed through the SPI (Thorlabs, SI254) where the interference pattern 

was generated to test whether the propagating beam has been collimated or not. 
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4.2.2 Turbulent Jet-stream and Non-Classical Turbulence Results 

 

Fig. 4.7 Average intensity captured by the camera and calculated for the ensemble of 

1000 frames. The localized turbulence was generated by one heat gun with no chamber. 

The heat gun was located at (a) I, (b) II, (c) III, (d) IV, (e) V, and (f) no heat gun was 

placed (from Fig. 2 of [104]). 

 

Fig. 4.7 displays the average intensity distributions of the focused beam captured by 

the camera. The non-classic turbulence of the jet-stream type that can be produced by 

using a single heat gun, is placed along the +x axis at distance 15cm from the propagating 

beam path. The bright spot at the central region of the beam can be clearly observed 

when the heat gun is fired next to the retroreflector at location I. By contrast, it becomes 

less pronounced when the heat gun is put at location II. The EBS effect entirely 

disappears when the heat gun is placed at location III-V. It is also found that the location 

of the beam centroid in Fig. 4.7(a) does not exactly agree with the EBS position. Besides, 

just like the average intensity distribution in the double-passage channel with no 

turbulence, as shown in Fig. 4.7(f), the average intensity captured by the camera for the 
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cases where the heat gun is placed at locations III and IV can be partially separated into 

two patterns in vertical directions, as shown by Figs. 4.7(c) and 4.7(d). Moreover, if we 

compare Figs. 4.7(e) with 4.7(f), it is interesting to find that the average intensity profile 

obtained for the case where turbulence is generated at location V is similar to the no-

turbulence pattern. The deterioration of the EBS effect in Figs. 4.7(b)-(e) when 

comparing with that shown in Fig. 4.7(a) can be attributed to the presence of considerable 

deterministic phase discrepancy between the emitted and reflected beams. Such phase 

difference is induced by the free space diffraction effect from the propagating beam. 

Fig. 4.8 illustrates the average intensity distributions of the reflected beam captured 

by the camera in the case of chamber-induced turbulence. The chamber turbulence 

produced by using one heat gun inside and placed at three different distances from the 

retroreflector, i.e., locations I, II, and III. The EBS effect can be only observed for 

turbulence at location I. It is shown that the beam centroid greatly shifts from the central 

region of camera for locations II and III, as shown in Figs. 4.8(b) and 4.8(c). This is 

because when the beam propagates through the chamber turbulence the tilt of phase 

generated by the temperature gradient in vertical direction among chamber is stronger, 

which results in a more distinct centroid shift from the central region of camera. 
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Fig. 4.8 Average intensities captured by the camera over 1000 frames. The localized 

turbulence was generated by using a chamber with one heat gun. The chamber is located 

at (a) I, (b) II, and (c) III (from Fig. 3 of [104]). 

4.2.3 Comparisons of Results from Two Types of Turbulence 

 

Fig. 4.9 Average intensities at vertical cross-section captured by the CCD camera over 

1000 frames. The localized turbulence was generated by using either (a) single heat gun 

inside chamber at location I, (b) 3 heat guns inside chamber at location I, (c) single heat 

gun at location I, and (d) single heat gun at location II (from Fig. 5 of [104]). 

 

Fig. 4.9 exhibits the EBS profile at the vertical cross-section of the camera plane for 

the double-pass optical channel embedded in four typical classes of localized turbulence. 

The results indicate that the EBS manifested by bright spots can be observed for these 

four cases. The localized turbulence produced by applying the turbulent chamber with 

three heat guns leads to the strongest EBS effect at the central region, when comparing 

with other three cases. This phenomenon emerges because the chamber preserves the 

flowing heat produced by heat guns, so that three heat guns can produce stronger 

turbulence. Furthermore, the chamber with three heat guns can produce more spatially 
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uniform temperature, as shown by Fig. 4.9(b). Even though, the jet stream generated at 

position II, which is produced by using single heat gun is still able to induce the EBS 

effect at the central region, as shown by Fig. 4.9(d). 

 

Fig. 4.10 Normalized ICF of the EBS intensity captured by the camera. The localized 

turbulence in (a)-(d) were generated in the same ways as that in Figs. 4.9(a)-(d), 

respectively (from Fig. 6 of [104]). 

Fig. 4.10 shows the normalized ICF profiles of the beam captured by camera by 

using different types of non-classic turbulence. Each plot was normalized to the 

correlation at its maximum value at a certain pixel. In such case, the two-point ICF of the 

focused beam can be formulated as [104] 

         1 2 1 2 1 2 max
, / ,NC I I I Ir r r r r r                          (4.6) 

where r1 and r2 are two position vectors specified at the double-pass turbulence channel, 

while the subscript denotes the maximum value of the ICF. Compared with Eq. (4.4), Eq. 

(4.6) defines the normalization regarding to its maximum value, however, Eq. (4.4) 

introduces the normalization with respect to the product of the average intensities at two 

positions. It is clear that the ICF shows circular distributions for the turbulence cases 

when either one or three heat guns were fired inside the chamber. As the comparison, the 
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ICF obtained in double-pass turbulence for the jet stream case shows elliptical profile, 

which indicates that the jet stream can produce very strong anisotropic turbulence [89, 

105], especially when we compare Figs. 4.10(c) and 4.10(d) with Figs. 4.10(a) and 

4.10(b). Furthermore, the effective sizes of the ICF profiles for the turbulent chamber 

cases are much larger than those shown in the jet stream cases which have no chamber, as 

shown by the comparison between Figs. 4.10(c)-4.10(d) and Figs. 4.10(a)-4.10(b). This 

result indicates that the strength of turbulence generated by a single heat gun without 

chamber is much stronger than that any other cases. Our findings are of importance for 

future studies which rely upon using EBS effect to measure statistics of non-classic 

turbulence. 

4.2.4 Concluding Remarks 

In summary, we have conducted laboratory experiments to measure the EBS statistics of 

a He-Ne laser beam in the double-pass turbulence channel containing a retroreflector and 

heat-induced localized turbulence. The results show that in two cases where the 

turbulence is produced by utilizing a highly directional jet stream or by applying an 

enclosed turbulent chamber, the resultant EBS effect is greatly dependent on the input 

turbulence location, while it is the strongest at the position next to the retroreflector. 

Moreover, in both cases, for the heat-gun and the chamber induced turbulence the 

temperature gradient was found to shift the EBS beam spot from the beam centroid in 

two entirely different directions: the centroid moves upward for the chamber case and 

along the direction of air flow from the heat gun for the jet steam case. 
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Chapter 5 

Structuring Light Properties by its Interaction with Soft 
Biological Tissue 
 
5.1 Laser Light Scintillation in Soft Biological Tissue 

In recent decades numerous studies have been performed to reveal the characteristics of 

great variety of optical/infrared beams upon propagation through soft biological tissues, 

e.g., [106-107]. These research works were done by using the extended Huygens-Fresnel 

integral [21] for evaluation of the second-order wave statistics, for example, average 

intensity, state of polarization, spectral distribution, etc. Nevertheless, so far investigation 

of typical distances inside the bio-tissue where coherent beam intensity experiences weak, 

moderate and strong fluctuations has not been tackled [21]. Such type of analysis can be 

made using the Scintillation Index (SI) of a plane wave, which is also named as the Rytov 

variance. The moderate fluctuations of instantaneous intensities occur once the Rytov 

variance reaches unity value [21]. Recently scientists have attempted to investigate the 

behavior of SI of coherent waves propagating in bio-tissues [108-109]. However, the 

former study only handled the tissues with power law 11/3 which coincides with the 

classic atmospheric turbulence, while the later one only confines to the study of the 

spherical wave. Furthermore, the SI of beams passing through other natural random 

media with power-law spectra, e.g., atmospheric turbulence and oceanic turbulence, have 

been also investigated in detail [110-111]. 

In this section, we will reveal the behavior of the SI of a plane wave, a spherical 

wave and of a Gaussian beam upon propagation through a typical soft bio-tissue and 

demonstrate its applicability limits of the Rytov test. 
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5.1.1 Scintillation Indices of Plane and Spherical Waves in Tissue 

First let us concentrate on the SI of a plane wave (Rytov variance) upon propagation 

through bio-tissues to find the applicability limits of the Rytov test: the incident wave 

experiences weak fluctuations induced by tissues when the Rytov variance is smaller than 

unity. For a general Gaussian wave, we start by defining Λ0 and Θ0 as non-dimensional 

parameters relating to its initial source parameters by [21] 

0 01 / ,L F    2
0 02 / ,L kW                                       (5.1) 

where k=2π/λ is the wave number, λ denotes the wavelength, L represents the propagation 

distance, F0 is called wave front radius of curvature of source, and W0 is effective radius 

of source. For such Gaussian beam, its propagation properties at a certain output plane 

can be characterized by a pair of parameters Λ and Θ, i.e. 

 -12 2
0 0 0+ ,     -12 2

0 0 0+ .                                  (5.2) 

Regarding to the cases of plane wave (Λ=0 and Θ=1) and spherical wave (Λ=0 and Θ=0), 

the radial part of SI 2
r  vanishes, while only the longitudinal part of SI 2

l remains [21]. 

For the plane wave case, the radial part of its SI takes the integral form [21] 
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                         (5.3) 

where L is the propagation distance in bio-tissue, Фn is the 3D power spectrum of the 

tissue medium, κ is the spatial frequency amplitude. The normalized correlation function 

and 3D power spectrum of bio-tissues have the following analytical expressions, 

respectively [112-113] 
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By substituting from Eq. (5.5) into Eq. (5.3) and by changing the integral variable 

2 2
0t L , we readily obtain the longitudinal part of SI as the following form 

   
   

2 2 2
02 0

20
0

4 1 1
0, sin .

3 / 2 1 1
l

k L L kL Lt
L dt

L L kt t


  


 
   

         
        (5.6) 

Eq. (5.6) needs further numerical integration to obtain an analytical solution. To this 

effort, in what follows uniform parameters for incident wave and bio-tissue are chosen: 

λ=1.55μm, σ2 =5 × 10-4. Fig. 5.1 illustrates the Rytov variance changes versus 

propagation distance L in (a) and (b); and versus power law constant α in (c). Fig. 5.1(a) 

shows that the Rytov variance becomes larger for small outer scale. Figs. 5.1(b) and 5.1(c) 

reveals the dependence of Rytov variance on α and L0. It is found that the weak regime of 

refractive index fluctuations of bio-tissue is confined to several tens of microns. This 

result indicates that the refractive capacity of bio-tissue induced by large scales weakens 

at this range meanwhile the scattering effects caused by small scales become dominant.  

 

Fig. 5.1 Rytov variance: (a) α=1.78; (b) L0=10μm; (c) L=30μm (from Fig. 1 of [113]). 
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For the spherical incident wave which has propagation parameters Λ=0 and Θ=0, the 

radial part 2
r  of its SI vanishes and its longitudinal part results in the expression [113] 
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Based on Eq. (5.7), further numerical integration can be performed to plot Fig. 5.2 which 

shows the SI of the spherical wave changing versus different parameters of bio-tissues. 

 

Fig. 5.2 SI distributions of the spherical wave: (a) α=1.78; (b) L0=10μm; (c) L=30μm 

(from Fig. 2 of [113]). 

Through comparing Fig. 5.1 with Fig. 5.2 it can be noticed that the primary behavior 

of the SI are the same but the values for the spherical wave case is smaller. 

5.1.2 Scintillation Index of Gaussian Beam in Tissue 

 

Fig. 5.3 On-axis SI of Gaussian beam (r=0) with Λ0=0.1, L=30μm, L0=8μm (from Fig. 4 

of [113]). 
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Fig. 5.4 Off-axis SI of incident Gaussian beam with r=10μm, Λ0=0.1, L=30μm, L0=8μm 

(from Fig. 5 of [113]). 

 

Figs. 5.3 and 5.4 display the dependence of the on-axis and off-axis SI on Θ0 and α, 

respectively, while subfigures (b) show the zoom-in portion of plots in (a). It is shown 

that the SI attains its minimum when Θ0=0 and achieves its maximum value when Θ0=1. 

However, such result no longer holds true when Θ0 increases to even larger values. As 

shown by Fig. 5.4, by choosing r=10μm and W0=12μm, the corresponding SI exhibits a 

singularity when Θ0=0 due to the reason that the propagation distance chosen here is the 

same as the focusing parameter of the beam. Besides, the SI approaches a constant value 

when Θ0 increases to larger values. In general, the SI of the collimated Gaussian beam 

(Θ0=1) is larger than that for focused or defocused beam cases. Remarkably, in both the 

on- and off-axis cases the values of their SI are always larger when α becomes smaller. 

Fig. 5.5 reveals the dependence of the SI of the Gaussian beam on Λ0, while 

collimated beam in (a) and focused beam in (b) are considered, respectively. For the on-

axis case the SI of the collimated beam (r=0) takes minimum value at the region of its 

first Fresnel zone (Λ0=1), while for the case of the diffractive beam edge (r=W) the 

corresponding SI reaches its maximum value at the region of its first Fresnel zone. 

However, considering the cases of near field (Λ0<<1) and far field (Λ0>>1), the SI 
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evaluated at the beam edge diminishes. Regarding the focused Gaussian beam, when 

α=1.78, the SI is almost the same as that from the collimated beam case. By contrast, 

when α=1.53 the peak position of the SI at the beam edge shifts to Λ0≈0.1. 

 

Fig. 5.5 The SI of Gaussian beam: (a) collimated beam (Θ0=1), (b) focused (Θ0=0.8). 

Other parameters are chosen as L=30μm, L0=8μm (from Fig. 6 of [113]). 

5.1.3 Concluding Remarks 

Overall, we have applied the second-order Rytov phase perturbation theory to investigate 

the SI behavior of a Gaussian laser beam propagating in an isotropic and homogeneous 

bio-tissue which has a typical fractal-like power spectrum of refractive index fluctuations 

and a finite outer scale. Our discovery provides deep insight into the interaction 

mechanism between a variety of waves and the bio-tissues, separating the predominantly 

refractive-based regime of weak fluctuations from the scattering regime of moderate and 

strong fluctuations. As a result, the expressions of the SI of the plane and the spherical 

waves are derived, respectively, and are further adopted for determining the threshold 

between weak and moderate fluctuation regimes. Regarding typical tissues and waves 

such distance is verified to be limited to few tens of micrometers. Therefore, the bio-

tissue effects implemented on the waves pertinent to the weak regime can be almost 

omitted when comparing to other types of natural media. Furthermore, we also have 



 84 
 

 

overviewed the spatial power spectra of turbulence for different dimensions. We envision 

that our results may attract interest in medical imaging and diagnostics field. 

 

5.2 Weak Scattering of Light from Quasi-Homogeneous Biological 

Tissue 

It has been well known that the variation of the refractive index of the classic soft 

biological tissues can be regarded as a stationary, homogeneous and isotropic random 

process. Considering most tissues, their average optical statistics, e.g., the mean and the 

variance of the refractive index, the scattering and absorption coefficients have been in-

depth explored [114]. However, some finer structure parameters of bio-tissues, for 

example, their particle size distribution, remains poorly characterized. In the seminar 

work [115] the 2D power spectra of human and animal tissue have been determined from 

the microscopy images and further fitted to the power law curves with a high frequency 

cutoff pertinent to the outer scale of the tissue, i.e., the largest scale which represents the 

constant refractive index in bio-tissues. The smallest scale incorporated in light scattering 

process, which is also named as the inner scale, has not been systematically addressed 

due to the resolution limit of microscopy technique, and, therefore, was not involved in 

the theoretical bio-tissue models. The correlation function of the tissues’ refractive index 

can be determined by using its power spectrum reported in [116] which is interpreted as a 

2D Fourier transform of the correlation function. It is verified to belong to the Whittle-

Matern correlation family [117]. The 1D and 2D statistics of tissues so far have attracted 

great interest since thin tissue slices are frequently in medical diagnostics [34]. 
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5.2.1 Direct Problem of Weak Scattering from Soft Tissue 

In this section, we aim to obtain the correlation function of the 3D biological tissue which 

is characterized by the 3D Whittle-Matern correlation family [118-120] 
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where Km-3/2 denotes the second-order modified Bessel function with order m-3/2, L0 

represents outer scale of bio-tissue, Γ stands for the Gamma function, m is defined as the 

fractal exponent of the 3D tissue medium which takes values between the interval (1.5, 2). 

For such case, we can obtain the CSD function of the far-zone scattered field from a bio-

tissue medium (see Eq. (9) of [119]) 
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where 
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is defined as the 3D Fourier transform of the strength of potential of the biological tissue. 

The spectral density of the far-zone scattered field can be derived from Eq. (5.9) by 

considering r1=r2=r and s1=s2=s 
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where K=k(s-s0) is called the momentum transfer vector of which the magnitude 

 =2 sin / 2 ,K k  K  and  0=arccos    is the azimuthal scattering angle. Eq. (5.11) 

indicates that the spectral density of the scattered field is only dependent of the 

distribution of the tissue’s degree of correlation ηF, and it is only scaled by the maximum 
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value of the Fourier transform of the strength of potential, i.e.,  0; .FI   Such result has 

been well interpreted as the reciprocal relation for any QH media type [120]. Eq. (5.9) 

can be alternatively utilized to derive the degree of coherence of the scattered field by 

applying another reciprocal relation. 

Fig. 5.6 illustrates the dependence of the far-zone scattered spectral density plotted 

by using Eq. (5.11), and using a logarithmic scale, on the scattering angle θ, on the outer 

scale L0, as well as on the fractal exponent m of the tissue, respectively. By assuming that 

the biological tissue is homogeneous within its volume, so that its strength of potential is 

equal to its VRI, i.e.   2';FI n r , and its corresponding Fourier transform is 

  20; ,FI n V   where V is the tissue volume. As numerical parameters, we keep 

fixed the wavelength λ=632.8nm and VRI 2 0.004,n   which are typical values used 

in the previous work [115]. We also setup the amplitude coefficient as unity, i.e.,

 ( ) 2/ 1iS V r  . The result shows that the spectral density of the scattered field 

specified at a certain scattering angle increases with larger values of the outer scale and 

fractal exponent. Specifically, larger values of the outer scale can produce weaker 

scattering effect of tissue. Furthermore, the spectral density of scattered field 

monotonically drops down to zero by increasing the azimuthal scattering angle θ, and it 

eventually approaches zero when the scattering angles is chosen as π/3. 
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Fig. 5.6 The spectral density scattered from a biological tissue (logarithmic scale), plotted 

from Eq. (5.11). The parameters used for the plots: (A) m=1.78; (B) L0=5μm; (C) and (D) 

θ=0 (from Fig. 1 of [119]). 

 

5.2.2 Inverse Problem of Weak Scattering from Soft Tissue 

Let us now address the inverse-scattering problem which aims to determine three 

parameters of the 3D biological tissue: m, L0 and  0;FI   by obtaining the angular 

scattered spectral density in the far zone, as given by Eq. (5.11). As the initial step, the 

maximum spectral density can be obtained by setting θ=0 or K=0 in Eq. (5.11) such that 
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Subsequently, we obtain the normalized spectral density of scattered field at any arbitrary 

scattering angle θ by taking the ratio of Eqs. (5.12) to (5.11) 
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As a result, the fractal exponent m has the following form 
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The typical values of the outer scale L0 indexed in [111] indicate that kL0>>1 should be 

satisfied. Therefore, we can readily get the following approximation from by assuming 

that the scattering angle θ is sufficiently large, i.e. 

   2 2 2 2 2 2
0 01+4k sin / 2 4 sin / 2 .L k L                               (5.15) 

Then  Eq. (5.14) turns out to be 
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where we used m’ and '
0L  to distinguish the reconstructed values from the original ones. 

By performing measurements at two different scattering angles, namely θ1 and θ2, the 

value of m should remain invariant, such that 
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Then the reconstructed value of the outer scale '
0L  can be derived as 
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The reconstructed value of the fractal exponent can be further obtained by substituting 

from Eqs. (5.18)-(5.20) into (5.16) 
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Finally, we can also determine the Fourier transform of the reconstructed strength of 

potential of bio-tissue by using Eq. (5.13) 
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where m’ and '
0L  have been determined from Eq. (5.21) and (5.18), respectively. As a 

particular case, the VRI for a homogeneous tissue with volume V can be derived as 

 2 0; '
' ,FI

n
V


 


                                                      (5.23) 

where volume V of the tissue has been known in advance. Eqs. (5.21)-(5.23) and (5.18) 

can be regarded as the solutions to the inverse-scattering problem. It is shown that to 

determine three parameters of biological tissue it is necessary to take measurements of 

the scattered field along three directions in the far zone: spectral density at any arbitrary 

two directions off the scattering axis, namely θ1 and θ2, and the forward direction spectral 

density θ=0. It can be noticed that the scattered field along the forward direction cannot 

be practically distinguished from the total field beyond tissue medium (Chapter 13 of [1]), 

however, the scattered component of the spectral density can be approximated obtained 

by computing the difference between total field and incident one 

     ( ) ( ) ( )0; 0; 0; .s t iS S S                                       (5.24) 
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When determining tissue’s parameters, it is also assumed that the incident spectral 

density  ( )iS   and distance r from the medium’s origin to reference points located in 

the far field should also be known. Based on such assumption, only two measurements of 

the spectral density of the scattered field along the forward direction with and without the 

bio-tissue, respectively, are needed for running the calculations. 

 

Fig. 5.7 Comparison between the assumed and reconstructed values: (A) and (B) the 

outer scale (L0, L0’); (C) and (D) the fractal exponent (m, m’) for the mouse dermis 

(L0=5μm, m=1.78). The figures are plotted from Eqs. (5.18) and (5.21) (from Fig. 2 of 

[119]). 
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Fig. 5.8 Comparison between the assumed and reconstructed values of (A) and (B) the 

outer scale (L0, L0’); (C) and (D) the fractal exponent (m, m’) for the mouse dermis 

(L0=10μm, m=1.83). The figures are plotted from Eqs. (5.18) and (5.21) (from Fig. 3 of 

[119]). 

 

Fig. 5.9 Comparison between the assumed and reconstructed VRI ( 2n  and 

2 'n  ) of biological tissues: (A) and (B) deep dermis of mouse with L0=5μm, m=1.78; 
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(C) and (D) intestinal epithelium of mouse with L0=10μm, m=1.83. The figures are 

plotted from Eqs. (5.18), (5.22) and (5.23) (from Fig. 4 of [119]). 

 

Plots shown in Figs. 5.7-5.9 specifically compare the original values of tissue 

parameters and their reconstructed values which are determined from Eqs. (5.18), (5.21)-

(5.23): the deep dermis of mouse (L0=5μm, m=1.78), the intestinal epithelium of mouse 

(L0=10μm, m=1.83), and for both types of tissues 2 0.004.n   Results indicate that the 

solution to the inverse problem is valid for various situations where one of two scattering 

angles is sufficiently small, e.g. θ1=π/10. 

5.2.3 Concluding Remarks 

In summary, we apply the 3D correlation function of a soft biological tissue to 

theoretically solve the direct and inverse scattering problems, while the first-order Born 

approximation is utilized to obtain our primary results. We first evaluate the distribution 

of angular spectral density of the scattered field throughout the far zone of tissue, and 

then, propose approaches to use the far-field scattered spectral density to solve the 

inverse scattering problem: two on-axis measurements, each obtained with and without 

tissue medium, and off-axis measurements, each obtained at different scattering angles. 

Based on these measured spectral density values of the scattered field in far zone, we 

further derive the analytical forms for determining three parameters of bio-tissue. 

Through comparing the assumed and reconstructed values of tissue parameters we test 

the validity of our method. These obtained results have potential applications in medical 

diagnostics as we have provided analytical determination approach to estimate these 
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parameters of soft biological tissues from several intensity measurements in far-zone 

scattered field. 
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Chapter 6 

Summary 

Throughout all the chapters we have explored several approaches to flexibly tune 

statistical properties of partially coherent optical fields when they propagate through or 

scatter from a variety of random media. By appropriately designing either the degree of 

coherence of a planar source or a correlation function of a 3D medium, we demonstrated 

the capabilities of modulating the desired far-zone beam properties, including the average 

intensity distribution, the two-point CIF profile, as well as the scintillation index. The 

major contributions by the author to the optical community included in this thesis are 

outlined as follows: 

1. Mathematical models are introduced for the class of media which have the capacity to 

focus the spectral density on or off the scattering axis; or producing a strongly peaked 

intensity profile along the scattering axis. With suitable design of the correlation 

function of the medium, a variety of intensity profiles in the far-zone scattered field 

can be generated. Furthermore, we also introduce the DMR method which can be 

effectively employed for design of media correlation functions from coherent modes. 

2. Three partially coherent beam families are proposed for the first time and their 

propagation properties through an ABCD optical system and atmospheric turbulence 

are investigated. By using an SLM and coherent He-Ne Laser beam we 

experimentally generated these beams. Moreover, we also conducted the very first 

experiment on synthesis of a random, stationary light beam from a laser via 

superposition of its coherent modes produced on passage through an SLM. These 
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results are of importance for applications of partially coherent beams in free space 

optical communications. 

3. We present a simple method for measuring the anisotropic factor and ellipse angle of 

anisotropic turbulence from the two-point light intensity correlation. The method is of 

importance for designing and optimizing optical systems operating in the presence of 

anisotropic turbulence: it can be used as a simple technique for determining the 

parameters of anisotropic turbulence. In addition, we provide experimental 

verification of observation of the EBS effect of the He-Ne laser beam in the double-

passage channel with retroreflector and the heat-induced atmospheric turbulence. 

These studied situations may appear in a variety of non-classic atmosphere regimes 

and are of importance for free-space optical communications with retro-modulation. 

4. The SI properties of a Gaussian laser beam propagating in an extended isotropic and 

homogeneous bio-tissue with fractal-like power spectrum of refractive index 

fluctuations and a finite outer scale are investigated. We have overviewed the spatial 

power spectra of turbulence for different dimensions envisioning that our study might 

be of interest in medical imaging and diagnostics. Besides, we also introduced 

analytical solutions to both the direct and the inverse far-field light scattering 

problems from a soft biological tissue. This method may be of importance in medical 

diagnostics providing a simple technique for measuring the parameters of soft 

biological tissues. 
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