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With their first production implemented around 1960’s, lasers have afterwards proven 

to be excellent light sources in building the technology.  Subsequently, it has been shown 

that the extraordinary properties of lasers are related to their coherence properties. Recent 

developments in optics make it possible to synthesize partially coherent light beams from 

fully coherent ones. In the last several decades it was seen that using partially coherent 

light sources may be advantageous, in the areas such as laser surface processing, fiber 

and free-space optical communications, and medical diagnostics.  

In this thesis, I study extensively the generation, the propagation in different media, 

and the scattering of partially coherent light beams with respect to their spectral 

polarization and coherence states. For instance, I analyze the evolution of recently 

introduced degree of cross-polarization of light fields in free space; then develop a novel 

partially coherent light source which acquires and keeps a flat intensity profile around the 

axis at any distance in the far field; and investigate the interaction of electromagnetic 

random light with the human eye lens. 

A part of the thesis treats the effect of atmospheric turbulence on random light beams. 

Due to random variations in the refractive index, atmospheric turbulence modulates all  



physical and statistical properties of propagating beams. I have explored the possibility of 

employing the polarimetric domain of the beam for scintillation reduction, which 

positively affects the performance of free-space communication systems. I also discuss 

novel techniques for the sensing of rough targets in the turbulent atmosphere by 

polarization and coherence properties of light.  

The other contribution to the thesis is the investigation of light scattering from 

deterministic or random collections of particles, within the validity of first Born 

approximation. In the case of a random collection, I introduce and model the new 

quantity (named pair-structure function) describing correlations among particles, the 

knowledge of which is necessary for the rigorous predictions of scattered radiation’s 

statistics. Also, by introducing the multi-Gaussian family of functions for scattering 

potentials, we demonstrate a realistic model for semi-hard edges of particles and bubble-

like particles. 
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Chapter 1

Introduction

1.1 Brief history of classical statistical optics

A single quantitative measure of the coherence properties of a light field, called the

degree of coherence, was introduced by Zernike [1]. It provides the basis for the

development of modern coherence theory. The definition of the degree of coherence

was later extended [2], but the essence of the Zernike’s approach was retained, which

is: the degree of coherence of an optical field is proportional to the visibility of fringes

in double-slit interference experiment. Before the development of lasers in the 1960s,

optical coherence was practically unknown and an underestimated subject. However,

the situation changed once it was realized that the remarkable physical properties

of laser light depended on its coherence properties. The experiments by Hanbury

Brown and Twiss [3] stimulated further interest in optical coherence theory, showing

that correlations between fluctuations of mutually coherent beams of thermal light

could be measured by photoelectric correlation and two-photon coincidence counting

experiments.

In 1970’s and 80’s scalar coherence theory was developed. Among its most in-

teresting findings are the relations between the source coherence state and the field

spectral and diffraction properties [4].

In the last several decades, considerable progress has been made in generalizing

the coherence theory of scalar wave fields to the domain of electromagnetic theory,

which helped reveal the relation between coherence and polarization properties of light

fields [5]. As early as in 1994, James [6] showed that the degree of polarization of

1



2

partially coherent light beams can change even in free space. Afterwards, the number

of studies on the effect of different media on coherence and polarization properties of

light beams increased considerably due to their practical importance. In particular,

the effect of atmospheric and oceanic turbulence as well as of biological media on

random, electromagnetic wave propagation are now under intense research.

1.2 Random optical fields

The discussion in this section is based on the principles of classical coherence theory

of Refs. [2] and [5]. Let us first consider a complex random process z(t) = x(t)+iy(t),

with t denoting the time. This form is called the complex representation of the real

analytic signal x(t). If the real signal x(t) has a narrow bandwidth ∆ω which is

small relative to its mean frequency ω̄ then it is called a quasi-monochromatic signal.

One often represents it in the form x(t) = a(t) cos[ψ(t) − ω̄t] under the condition

∆ω/ω̄ � 1, where a(t), ψ(t), and ω are the amplitude, the phase factor, and the

angular frequency, respectively. The function z(t) may then be identified with a

complex envelope of the narrow-band signal x(t). The statistical properties of the

complex process z(t) are characterized by the sequence of probability densities

p1(z, t), p2(z1, z2, t1, t2), p3(z1, z2, z3, t1, t2, t3), ... (1.1)

Here p1(z, t)d2z (d2z = dxdy) represents the probability that z(t) will take on a

value within the element (x, x + dx; y, y + dy) at time t. These probability density

functions are employed for finding the ensemble average of the process

〈z(t)〉e =

∫
zp1(z, t)d2z, (1.2)

where the integration extends over all possible values of z. The joint probability p2
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allows us to define the ensemble average of the product z∗(t1)z(t2), which is called

the autocorrelation function Γ(t1, t2)

Γ(t1, t2) = 〈z∗(t1)z(t2)〉e =

∫
z∗1z2p2(z1, z2, t1, t2)d2z1d

2z2, (1.3)

where the asterisks denotes the complex conjugate. If the statistical behavior of a

random process does not change with time then such a process is called statistically

stationary. The mathematical meaning of this statement is that the probability den-

sities p1, p2, p3... are time-shift invariant, i.e., 〈z∗(t1)z(t2)〉e = 〈z∗(t1 + T )z(t2 + T )〉e,

for any value of T. Processes in which the statistics are time-shift invariant only up to

the second order are called wide-sense stationary. The mean 〈z(t)〉e is then indepen-

dent of t and the autocorrelation is a function only of the time difference τ = t2− t1,

that is

Γ(τ) = 〈z∗(t)z(t+ τ)〉e. (1.4)

If a process is ergodic an ensemble average can always be replaced by a time

average [2]. From now on we will assume that all the ensembles considered are both

wide-sense stationary and ergodic. Therefore, the subscript e on the angular brackets

will be omitted.

An important property of a stationary random process is its spectral density S(ω).

The spectral density provides a measure of the strength of the fluctuations in every

specific Fourier component of z(t). The Wiener-Khintchine theorem ([7], Ch. 16.4)

states that the autocorrelation function Γ(τ) forms a Fourier-transform pair with the

spectral density S(ω), i.e.,

S(ω) =
1

2π

∞∫
−∞

Γ(τ)eiωτdτ. (1.5)
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Γ(τ) =

∞∫
−∞

S(ω)e−iωτdτ. (1.6)

This theorem is readily generalized from a single random process z(t) to a pair

of random processes z1(t) and z2(t) which are jointly stationary, at least in the wide

sense, i.e. the cross-correlation between the two processes, Γ12(τ) = 〈z∗1(t)z2(t+ τ)〉,

depends only on the time difference τ = t2−t1. This extension is called the generalized

Wiener-Khintchine theorem, and according to it the cross-spectral density W12(ω) for

the pair of processes and its Fourier transform are related as

W12(ω) =
1

2π

∞∫
−∞

Γ12(τ)eiωτdτ. (1.7)

Γ12(τ) =

∞∫
−∞

W12(ω)e−iωτdτ. (1.8)

We can now turn our attention to the fundamentals of scalar coherence theory

for any spatially varying fields. Let V (r, t) be a member of an ensemble {V (r, t)}

representing a component of the fluctuating electric field, where r is the position

vector of a point in space. The cross-correlation function of the spatially varying field

is known as the mutual coherence function:

Γ(r1, r2; τ) = 〈V ∗(r1; t)V (r2; t+ τ)〉. (1.9)

The normalized version of the mutual coherence function is known as the complex

degree of coherence

γ(r1, r2; τ) =
Γ(r1, r2; τ)√
I(r1)

√
I(r2)

, (1.10)

where

I(r) = Γ(r, r; 0), (1.11)
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is the averaged intensity at position r. The magnitude of the degree of coherence can

be shown to be limited as 0 ≤ |γ(r1, r2; τ)| ≤ 1.

It is implied by the generalized Wiener-Khintchine theorem, Eq. (1.7), that the

cross-spectral density function of the time-harmonic field V (r; t) = U(r;ω)e−iωt, with

U(r;ω) being its space-dependent part, is just the Fourier transform of the mutual

coherence function, i.e.

W (r1, r2;ω) =
1

2π

∞∫
−∞

Γ(r1, r2; τ)eiωτdτ. (1.12)

It is also proven ([5], Ch.4) that the cross-spectral density of a statistically station-

ary fluctuating field can be expressed as a cross-correlation function of an ensemble

U(r;ω) of space-frequency realizations

W (r1, r2;ω) = 〈U∗(r1;ω)U(r2;ω)〉, (1.13)

where the angular brackets now represent the average taken over an ensemble of space-

frequency realizations. The normalization of the cross-spectral density function

µ(r1, r2;ω) =
W (r1, r2;ω)√

S(r1;ω)
√
S(r2;ω)

, (1.14)

is called the spectral degree of coherence and has a certain similarity with γ(r1, r2; τ).

Here

S(r;ω) = W (r, r;ω) = 〈|U(r;ω)|2〉, (1.15)

is the spectral density of the field, the average of the squared modulus of the Fourier

frequency components of the fluctuating field V (r; t).

So far we have described coherence theory in the scalar domain. In order to
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explore the polarization properties of light fields one needs to expand the scalar

formulation into vectorial situation. The basic quantity of the electromagnetic theory

of stochastic, statistically stationary beams is the so-called electric cross-spectral

density matrix [Wij(r1, r2;ω)] defined as

←→
W (r1, r2;ω) = [Wij(r1, r2;ω)] =

 Wxx(r1, r2;ω) Wxy(r1, r2;ω)

Wyx(r1, r2;ω) Wyy(r1, r2;ω)

 , (1.16)

where i = x, y, j = x, y. The matrix with elements Wij(r1, r2;ω) is a function of

two spatial arguments capable of elucidating the coherence features, moreover the

components of the matrix can determine the polarization features of the fluctuating

electromagnetic beam. In terms of the electric field we can express the cross-spectral

density matrix as

←→
W (r1, r2;ω) =

 〈E∗x(r1;ω)Ex(r2;ω)〉 〈E∗x(r1;ω)Ey(r2;ω)〉

〈E∗y(r1;ω)Ex(r2;ω)〉 〈E∗y(r1;ω)Ey(r2;ω)〉

 , (1.17)

where Ex(r;ω) and Ey(r;ω) are the mutually orthogonal components of the (complex)

electric field vector, and are members of suitably constructed statistical ensembles.

The difference between the scalar and the electromagnetic degrees of coherence is

that the latter takes into account both components of the electric field being defined

as the normalized trace of the cross-spectral density matrix [5]:

η(r1, r2;ω) =
TrW (r1, r2;ω)√
S(r1;ω)

√
S(r2;ω)

, (1.18)

the spectral density becoming the trace of the cross-spectral density matrix at a single

point, i.e.
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S(r;ω) = Tr
←→
W (r, r;ω) = Wxx(r, r;ω) +Wyy(r, r;ω). (1.19)

While coherence theory considers correlations of the field at two points, polar-

ization is concerned with the correlation of two field components at a single point.

For instance, the main measure for such a correlation is called the spectral degree of

polarization, defined as

P (r;ω) =

√√√√1− 4 det
←→
W (r, r;ω)

[Tr
←→
W (r, r;ω)]2

, (1.20)

where det and Tr stand for the determinant and trace. We note here that the complete

description of polarization properties of the field can be made via the set of four Stokes

parameters [5] which are related to the cross-spectral density matrix of the beam by

the formulas

S0(r) = Wxx(r, r) +Wyy(r, r)

S1(r) = Wxx(r, r)−Wyy(r, r)

S2(r) = Wxy(r, r) +Wyx(r, r)

S3(r) = i[Wyx(r, r)−Wyy(r, r)].

(1.21)

From the knowledge of the Stokes parameters it is possible to evaluate the pa-

rameters of the polarization ellipse which is associated with the completely polarized

portion of the beam. Three parameters are required in order to uniquely specify

the polarization ellipse, for instance, the orientation angle and its minor and major

semi-axes [8]

θ(r) =
1

2
tan−1

[
S2(r)

S1(r)

]
(1.22)
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and

A±(r) =

[
S0(r)±

√
S2

1(r) + S2
2(r)

S3(r)

]1/2

(1.23)

where the choice of ± signs correspond to values of major and minor semi-axes,

respectively.

One can also construct the generalized spectral Stokes parameters [9] via the

elements of cross-spectral density matrix in the following order

S0(r1, r2, ω) = Wxx(r1, r2, ω) +Wyy(r1, r2, ω)

S1(r1, r2, ω) = Wxx(r1, r2, ω)−Wyy(r1, r2, ω)

S2(r1, r2, ω) = Wxy(r1, r2, ω) +Wyx(r1, r2, ω)

S3(r1, r2, ω) = i[Wyx(r1, r2, ω)−Wxy(r1, r2, ω)],

(1.24)

which makes it possible to determine both the coherence and the polarization proper-

ties of an electromagnetic beam. It is evident that the generalized Stokes parameters

reduce to ordinary Stokes parameters when the two points coincide: r1 = r2 = r.

The most tractable and illustrative model for electromagnetic random sources

and fields is the electromagnetic Gaussian Schell-model (EGSM) [10] (see Fig. 1.1

for illustration). It is used in the majority of analytic and numerical calculations

relating to the stochastic electromagnetic beams. Generally, the components of the

cross-spectral density matrix of the EGSM beam in the plane of the source have the

form

Wij(ρρρ
′
1, ρρρ
′
2;ω) = [Si(ρρρ

′
1;ω)]

1
2 [Sj(ρρρ

′
2;ω)]

1
2µij(ρρρ

′
1, ρρρ
′
2;ω), (1.25)

where ρρρ′ is the two dimensional vector in the source plane, Si(ρρρ
′
1;ω) and Sj(ρρρ

′
2;ω)

are the spectral density distributions and µij(ρρρ
′
1, ρρρ
′
2;ω) are the spectral correlation
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coefficients defined respectively by the Gaussian distributions

Sj(ρρρ
′;ω) = Ij exp

[
− ρ
ρρ′2

2σ2

]
, (1.26)

µij(ρρρ
′
1, ρρρ
′
2;ω) = Bij exp

[
−|ρ
ρρ′2 − ρρρ′1|2

2δ2
ij

]
. (1.27)

Here Ij are the squares of the amplitudes of the electric field components, σ2 is the

variance of the intensity distribution across the source, Bij = |Bij|eiϕij is the single

point correlation coefficient, and δ2
ij are the variances of the correlations between the

components of the electric field vector. All of the parameters entering this model may

depend on frequency ω and have to satisfy relations derived in [11] and [12].

On substituting from Eqs. (1.26) and (1.27) into Eq. (1.25) we find the exact

expression for the elements of the cross-spectral density matrix of electromagnetic

Gaussian Schell-model sources:

Wij(ρρρ
′
1, ρρρ
′
2;ω) = (IiIj)

1/2Bij exp
[
−ρ
ρρ′21 + ρρρ′22

4σ2

]
exp
[
−|ρ
ρρ′2 − ρρρ′1|2

2δ2
ij

]
. (1.28)

Figure 1.1: A simulated typical transverse intensity cross-section of a Gaussian Schell-
model beam
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1.3 Huygens-Fresnel integral for light propagation in free

space

In free space each member V (r, t) of the ensemble of wavefields satisfies the wave

equation ([5], Ch. 3.5). By using the Wiener-Khintchine theorem it was proven

that the cross-spectral density satisfies two Helmholtz equations which shows that

the correlation function behaves as a wave, as well [2]. As a result, these correlation

functions in general change on propagation, even in free space. Further, free-space

propagation of electromagnetic beams can be reduced to propagation of scalar light

beams, since no coupling of the field components occur.

Suppose that the electric cross-spectral density matrix of a beam in the source

plane has the form

←→
W (0)(ρρρ′1, ρρρ

′
2;ω) =

 W
(0)
xx (ρρρ′1, ρρρ

′
2;ω) W

(0)
xy (ρρρ′1, ρρρ

′
2;ω)

W
(0)
yx (ρρρ′1, ρρρ

′
2;ω) W

(0)
yy (ρρρ′1, ρρρ

′
2;ω)

 , (1.29)

where

W
(0)
ij (ρρρ′1, ρρρ

′
2;ω) = 〈E(0)∗

i (ρρρ′1;ω)E
(0)
j (ρρρ′2;ω)〉. (1.30)

The propagation of each component of the electromagnetic field is governed by

the formula

Ej(r;ω) =

∫
E

(0)
j (ρρρ′;ω)G(ρρρ− ρρρ′, z;ω)d2ρρρ′, (1.31)

where G denotes the Green’s function for paraxial propagation from the source point

Q(ρρρ′) to the field point P (r), r ≡ (ρρρ, z):

G(ρρρ− ρρρ′, z;ω) =
−ik
2πz

exp[ik|ρρρ− ρρρ′|2/2z], (1.32)
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with the wavenumber k = ω/c, c being the speed of light in vacuum.

On substituting from Eq. (1.32) into Eq. (1.31) we first express the propagating

field via the field in the source plane, then by substituting from Eq. (1.31) into Eq.

(1.17) it can be found that the electric cross-spectral density matrix of the beam at

a pair of points in a transverse plane z > 0 is given by the formula ([5],Ch. 9.4)

←→
W (r1, r2;ω) =

∫ ∫ ←→
W (0)(ρρρ′1, ρρρ

′
2;ω)Kf (ρρρ1, ρρρ2, ρρρ

′
1, ρρρ
′
2, z;ω)d2ρρρ′1d

2ρρρ′2, (1.33)

where

Kf (ρρρ1, ρρρ2, ρρρ
′
1, ρρρ
′
2, z;ω) = G∗(ρρρ1 − ρρρ′1, z;ω)G(ρρρ2 − ρρρ′2, z;ω). (1.34)

Here, the subscript f stands for free space. Equation (1.33) is the general formula

for propagation of beams in free space. By simply dropping the subscripts i and j

one obtains the propagation of scalar fields. However, if there exists three compo-

nents of the initial field then the propagation of such vector fields can not be treated

component by component (see [13] and [14]).

1.4 Extended Huygens-Fresnel integral for light propagation

in turbulent atmosphere

Generally, statistical properties of a partially coherent beam propagating in the tur-

bulent atmosphere are affected by two mechanisms. One is associated with the cor-

relation properties of the source, being called correlation-induced, and the second is

due to the atmosphere itself, which we call the turbulence-induced changes. Since

the combined effect of the correlation-induced and the turbulence-induced changes

on the beam can be controlled to some extent by the choice of the source parameters,

the theory we describe here may have applications in the problems involving sensing
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of random media (the turbulent atmosphere, ocean and objects embedded in such

media), in the development of more efficient schemes for imaging by laser radars and

for free-space optical communication systems, and even in the turbulent models of

biological media [15]-[16].

Suppose again that the light field is a beam-like, propagating from the plane

z = 0 into the half-space z > 0 (close to z-axis), filled with the turbulent atmosphere.

r = (ρρρ, z) is the position vector at a point in the half-space z > 0, ρρρ denoting a

two-dimensional transverse vector perpendicular to the direction of propagation of

the beam. Let E(0)(ρρρ′, 0;ω) represent the electric field vector at the point (ρρρ′, 0) in

the source plane z = 0. The field at any point in the half-space z > 0 at which the

beam propagates can be expressed by the following well-known formula based on the

so-called extended Huygens-Fresnel principle ([17], [18]):

Ej(r;ω) =− ik

2πz
exp[ikz]

∫
E

(0)
j (ρρρ′;ω)

× exp
[
ik

(ρρρ− ρρρ′)2

2z

]
exp[ψ(ρρρ,ρρρ′, z;ω)]d2ρ′,

(1.35)

the integration extending over the source plane, ψ is a random complex phase factor

which represents the effect of the turbulent atmosphere on a monochromatic spherical

wave, and j = x, y.

If the beam is not monochromatic but is polychromatic and partially coherent

then it is described by a correlation matrix (Eq. (1.16)) rather than by the field

vector. The elements of the cross-spectral density matrix at two points (ρρρ1, z) and

(ρρρ2, z) in a transverse plane z = const > 0 may be obtained on substituting from

equation (1.35) into equation (1.17) and one then finds that

Wij(r1, r2;ω) =
( k

2πz

)2
∫ ∫

W
(0)
ij (ρρρ′1, ρρρ

′
2;ω) exp

[
−ik (ρρρ1 − ρρρ′1)2 − (ρρρ2 − ρρρ′2)2

2z

]
× 〈exp[ψ∗(ρρρ1, ρρρ

′
1, z;ω) + ψ(ρρρ2, ρρρ

′
2, z;ω)]〉d2ρ′1d

2ρ′2.

(1.36)
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It is assumed here that the fluctuations in the light beam and of the turbulent

atmosphere are mutually independent. Equation (1.36) can be written in a compact

form as

Wij(r1, r2;ω) =

∫ ∫
W

(0)
ij (ρρρ′1, ρρρ

′
2;ω)Kt(ρρρ1, ρρρ2, ρρρ

′
1, ρρρ
′
2, z;ω)d2ρ′1d

2ρ′2, (1.37)

where

Kt(ρρρ1, ρρρ2, ρρρ
′
1, ρρρ
′
2, z;ω) =

( k

2πz

)2

exp
[
−ik (ρρρ1 − ρρρ′1)2 − (ρρρ2 − ρρρ′2)2

2z

]
× 〈exp[ψ∗(ρρρ1, ρρρ

′
1, z;ω) + ψ(ρρρ2, ρρρ

′
2, z;ω)]〉.

(1.38)

Analytic formulas for the components of the matrix (1.37) can be derived only by

approximating the phase structure function, given by the expression in the angular

brackets in Equation (1.38). One possibility is the following form for the phase

structure function [17]

〈exp[ψ∗(ρρρ1, ρρρ
′
1, z;ω) + ψ(ρρρ2, ρρρ

′
2, z;ω)]〉 =

= exp

−π2k2z

3
(r′1 − r′2)2

∞∫
0

κ3Φn(κ)dκ

 , (1.39)

where Φn(κ) is the one-dimensional power spectrum of atmospheric fluctuations.

1.5 Collins’ diffraction integral for light propagation in opti-

cal systems

Within the last few years considerable attention has been paid to interaction of par-

tially coherent and partially polarized beams with optical systems. This section

formulates propagation of random beams through an aligned paraxial optical ABCD

system.
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The ABCD matrix analysis (also known as ray transfer matrix analysis) is a

ray tracing technique used in the design of any optical systems, particularly lens

systems. It involves the construction of a ray transfer matrix which describes the

optical system; tracing of a light path through the system, and then evaluation of the

beam characteristics by the Collins diffraction formula. More generally, the ABCD

method is capable of analyzing any interaction between light and the system such as

reflection, refraction, diffraction.

The connection between ray optics and diffraction theory was first established by

Collins [19]. According to this theory, the propagation of the source field, E
(0)
j (ρρρ′;ω),

is governed by the following integral

E(r;ω) =
−ik

2πB(z)
exp[ikL0]

∫ ∫
E

(0)
j (ρρρ′;ω)

× exp
[ ik

2B(z)

{
A(z)(ρρρ′2)− 2(ρρρ · ρρρ′) +D(z)(ρρρ2)

}]
d2ρ′,

(1.40)

where L0 is the axial optical distance between the two planes, and A(z), B(z), D(z)

are the elements of the 2× 2 ray transfer matrix of the system

←→
T s(z) =

 A(z) B(z)

C(z) D(z)

 . (1.41)

For example, A(z) = 1, B(z) = z, C(z) = 0, D(z) = 1 in free space.

Propagation of the cross-spectral density matrix of random beams through a

paraxial optical ABCD system, on the other hand, can be obtained by employing
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Eq. (1.40) in Eq. (1.17) [19]-[20], and one obtains

Wij(r1, r2;ω) =

(
k

2πB(z)

)2 ∫ ∫
Wij(ρρρ

′
1, ρρρ
′
2;ω)

× exp
[ ik

2B(z)

{
A(z)(ρρρ′21 − ρρρ′22 )− 2(ρρρ1 · ρρρ′1 − ρρρ2 · ρρρ′2)

+D(z)(ρρρ2
1 − ρρρ2

2)
}]
d2ρ′1d

2ρ′2,

(1.42)

Equation (1.42) can also be written in a compact form as

Wij(r1, r2;ω) =

∫ ∫
Wij(ρρρ

′
1, ρρρ
′
2;ω)Ks(ρρρ1, ρρρ2, ρρρ

′
1, ρρρ
′
2, z;ω)d2ρ′1d

2ρ′2, (1.43)

where the propagation kernel Ks(ρρρ1, ρρρ2, ρρρ
′
1, ρρρ
′
2, z;ω) is given by the expression

Ks(ρρρ1, ρρρ2, ρρρ
′
1, ρρρ
′
2, z;ω) =

( k

2πB(z)

)2

× exp
[ ik

2B(z)

{
A(z)(ρρρ′21 − ρρρ′22 )− 2(ρρρ1 · ρρρ′1 − ρρρ2 · ρρρ′2) +D(z)(ρρρ2

1 − ρρρ2
2)
}]
.

(1.44)

1.6 Weak potential scattering of light

Light scattering is a broad subject; in this section we will only discuss the fundamen-

tals of one type: scattering of scalar light on a linear, isotropic, statistically stationary

medium. We will formulate scattering of both deterministic and stochastic wavefields

on media of both deterministic and stochastic nature. Let us first consider the scat-

tering of an incident monochromatic wave

V (i)(r, t) = U (i)(r, ω)e−iωt, (1.45)

and assume that the total field after the scattering process can be expressed in the

same form

V (t)(r, t) = U (t)(r, ω)e−iωt. (1.46)
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The total field produced on scattering then satisfies the scalar wave equation ([21],

Ch. 13)

∇2U (t)(r, ω) + k2n2(r, ω)U (t)(r, ω) = 0. (1.47)

It is convenient to re-write this equation, extracting the scattering potential, in the

form

∇2U (t)(r, ω) + k2U (t)(r, ω) = −4πF (r, ω)U (t)(r, ω), (1.48)

where the function

F (r, ω) =
1

4π
k2[n2(r, ω)− 1], (1.49)

is called the scattering potential of the medium. In this analysis, we have assumed that

the physical properties of the medium are completely characterized by the refractive

index n(r, ω).

Let us now express the total field U (t)(r, ω) produced on scattering as the sum of

the incident field U (i)(r, ω) and the scattered filed U (s)(r, ω):

U (t)(r, ω) = U (i)(r, ω) + U (s)(r, ω). (1.50)

The second term on the right hand side of Eq. (1.50) can be regarded as the definition

of the scattered field. The incident field is usually a plane wave which satisfies the

Helmholtz equation throughout all space

(∇2 + k2)U (i)(r, ω) = 0. (1.51)

It can be shown using Eqs. (1.48), (1.50), and (1.51) (see also Ch. 13.1.1 of [21])
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that the total field obeys the following integral equation

U (t)(r, ω) = U (i)(r, ω) +

∫
V

F (r′, ω)U (t)(r′, ω)G(r, r′, ω)d3r′, (1.52)

where r′ is a point within the scatterer, and G(r, r′, ω) is the outgoing free-space

Green function of the Helmholtz operator

G(r, r′, ω) =
eik|r−r

′|

|r− r′|
. (1.53)

In order to solve Eq. (1.52) we will now reduce the problem to the weak scattering

condition. Scattering is called weak if there is a slight variation in the refractive index

of the scatterer from unity (n ≈ 1). Weak scattering condition is also known as the

“first-order Born approximation” and assumes that

|U (s)(r′, ω)| � |U (i)(r′, ω)|, (1.54)

throughout the scatterer. Reference [22] provides more information on the validity

regime of the first-order Born approximation. Within the validity of first-order Born

approximation, the integral equation (1.52) then becomes

U (t)(r, ω) ≈ U (i)(r, ω) +

∫
V

F (r′, ω)U (i)(r′, ω)G(r, r′, ω)d3r′. (1.55)

If we take into account Eq. (1.50), and express the second term in Eq. (1.55) as the

scattered field, then we arrive at the formula

U (s)(r, ω) ≈
∫
V

F (r′, ω)U (i)(r′, ω)G(r, r′, ω)d3r′. (1.56)

We will now generalize the above theory to partially coherent waves and illustrate
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it via polychromatic plane waves. Here, we assume, as always, that the fluctuations in

light are statistically stationary, at least in the wide sense. The cross-spectral density

of the incident light may be expressed as

W (i)(r1, r2, ω) = 〈U (i)∗(r1, ω)U (i)(r2, ω)〉, (1.57)

where the angular brackets denote the average over a statistical ensemble of monochro-

matic realizations. The total field, U (t)(r, t), may likewise be expressed via monochro-

matic realizations, and its cross-spectral density function may be represented as

W (t)(r1, r2, ω) = 〈U (t)∗(r1, ω)U (t)(r2, ω)〉. (1.58)

Consider now the total field which was expressed as the incident field plus the

scattered field. When we substitute from Eq. (1.50) into Eq. (1.58) we obtain the

formula

W (t)(r1, r2, ω) = W (i)(r1, r2, ω) +W (is)(r1, r2, ω) +W (si)(r1, r2, ω) +W (s)(r1, r2, ω),

(1.59)

where the scattered cross-spectral density is

W (s)(r1, r2, ω) = 〈U (s)∗(r1, ω)U (s)(r2, ω)〉, (1.60)

while the cross-spectral density of the cross-terms are

W (is)(r1, r2, ω) = 〈U (i)∗(r1, ω)U (s)(r2, ω)〉, (1.61)

and

W (si)(r1, r2, ω) = W (is)∗(r1, r2, ω) = 〈U (s)∗(r1, ω)U (i)(r2, ω)〉. (1.62)
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Let us now simplify the analysis by only considering the scattered part. On

substitution from Eq. (1.56) into Eq. (1.60) we find that the scattered cross-spectral

density is given by the formula

W (s)(r1, r2, ω) =

∫
V

∫
V

W (i)(r′1, r
′
2, ω)F ∗(r′1, ω)F (r′2, ω)

×G∗(r1, r
′
1, ω)G(r2, r

′
2, ω)d3r′1d

3r′2,

(1.63)

being valid for scattering of arbitrary random fields from deterministic media. For

scattering from random media we first define the correlation function of the scattering

potential by the equation

CF (r′1, r
′
2, ω) = 〈F ∗(r′1, ω)F (r′2, ω)〉, (1.64)

where angular brackets denote the average taken over an ensemble of realizations of

the scattering medium, and then we obtain the cross-spectral density of the scattered

field on random media as

W (s)(r1, r2, ω) =

∫
V

∫
V

W (i)(r′1, r
′
2, ω)CF (r′1, r

′
2, ω)

×G∗(r1, r
′
1, ω)G(r2, r

′
2, ω)d3r′1d

3r′2.

(1.65)

Note that if the medium is deterministic then the correlation function reduces to a

product, i.e.

CF (r′1, r
′
2, ω) = F ∗(r′1, ω)F (r′2, ω). (1.66)

The formulas that we have reviewed in this section can be used to elucidate a

wide range of phenomena occurring on scattering of light of any state of coherence,

on a deterministic or on a random media.



Chapter 2

Light Beams in Free Space and Systems

2.1 Motivation

As is well known controllable propagation and modulation of light beams have exten-

sive uses in many practical areas of optics. For example, polarization and coherence

properties of beams can be used in free space communication systems, for increas-

ing their capacity, for improving the sensitivity in medical diagnostics applications

and for material surface processing. Hence, in this chapter, we will examine several

important topics relating to such needs.

In section 2.2, based on the unified theory of coherence and polarization and the

extended Huygens-Fresnel integral, the free-space evolution of the recently introduced

spectral degree of cross-polarization of a stochastic electromagnetic beam is studied.

This is perhaps the only important characteristics of a random beam not previously

investigated in the literature.

Planar, scalar, Schell-model and quasi-homogeneous optical light sources with

correlations which are Fourier transforms of multi-Gaussian functions are introduced

in section 2.3. This development leads to a very special class of beams having flat

intensity profiles around optical axis for all propagation distances in the far zone of the

source. The development of novel model beams, predictions on how their properties

are modified on propagation and passage through systems are of profound current

interest.

In section 2.4 we present the first account of interaction between stochastic light

20
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beams and the crystalline human eye lens. The aim of this investigation is to reveal

the dependence of light propagation within the eye on the statistics of its illumination.

2.2 Free-space propagation of the spectral degree of cross-

polarization

In 2004, Ellis and Dogariu [23] proposed to generalize the concept of the degree of

polarization to two spatial arguments and called the new quantity the mutual degree

of cross-polarization (MDCP) which was meant to provide the measure of statistical

similarity between the ordinary degrees of polarization at two given points. Later,

Shirai and Wolf [24], on deriving the formula for intensity correlations of a stochastic

electromagnetic beam whose fluctuations obey Gaussian statistics, obtained another

quantity, which they called the spectral degree of cross-polarization (SDCP). It is also

a function of two spatial arguments and reduces to the usual degree of polarization

when the two points coincide. The SDCP has a form and meaning very similar to

the MDCP but involves a different normalization factor and therefore has different

bounds (while MDCP takes values from -1 to 1, the SDCP is generally unbounded).

Since the SDCP is a derived quantity entering important expressions for classical

fourth-order interference, while the MDCP is introduced heuristically, we will focus

our attention on the former quantity.

In this section we perform qualitative and quantitative analysis of the evolution

of the SDCP of a typical stochastic electromagnetic beam in free space. Numerous

numerical examples illustrate the changes in this quantity for a number of chosen

typical beams and propagation distances. In particular, we will separately consider

the cases when the electric field components are uncorrelated and partially correlated

in the source plane.
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2.2.1 Theoretical background

As before, we assume that a beam is generated in the plane z = 0 and it propagates

in free space into the positive half-space z > 0, close to the positive z-direction. The

second-order statistical properties of such a beam at angular frequency ω may be

characterized by the 2 × 2 cross-spectral density matrix, Eq. (1.29). On free-space

(paraxial) propagation the relation between the cross-spectral density matrix in the

source plane and that at points (ρρρ1, z1) and (ρρρ2, z2), z1, z2 > 0 is given by the law [2]

Wij(ρρρ1, z1;ρρρ2, z2;ω) =
( k

2π

)2 1

z1z2

∫ ∫
ρρρ′1

∫ ∫
ρρρ′2

W
(0)
ij (ρρρ′1, ρρρ

′
2;ω)

× exp
[
−ik

((ρρρ1 − ρρρ′1)2

2z1

− (ρρρ2 − ρρρ′2)2

2z2

)]
d2ρρρ′1d

2ρρρ′2.

(2.1)

This law is obtained by straightforward use of Eqs. (1.32)-(1.34).

We will now assume that the beam is generated by an electromagnetic Gaussian

Schell-model source. On substituting from Eq. (1.28) into Eq. (2.1), after tedious

integral calculation, we obtain, for the elements of the electromagnetic cross-spectral

density matrix of the beam propagating in free space, the expressions

Wij(ρρρ1, z1;ρρρ2, z2;ω) =
Bij

√
Ii
√
Ij

42
ij(z1, z2)

× exp
[
− 1

8σ2
+ i

z2 − z1

8kσ2

( 1

4σ2
+

1

δ2
ij

) (ρρρ1 + ρρρ2)2

42
ij(z1, z2)

]
× exp

[
− (ρρρ1 − ρρρ2)2

242
ij(z1, z2)

1

4σ2
+

1

δ2
ij

]
exp
[
−i k(ρρρ2

1 − ρρρ2
2)

2Rij(z1, z2)

]
,

(2.2)

where

42
ij(z1, z2) = 1 +

z1z2

k2σ2

( 1

4σ2
+

1

δ2
ij

)
+ i

z2 − z1

k

( 1

2σ2
+

1

δ2
ij

)
, (2.3)
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Rij(z1, z2) =
√
z1z2

[
1 +

k2σ2

z1z2

(
1

4σ2
+

1

δ2
ij

)−1
]
. (2.4)

In particular, when in Eq. (2.2) z1 = z2 = z we obtain the transverse cross-

spectral density matrix (see also [25] where a similar expression is derived for a scalar

beam)

Wij(ρρρ1, z;ρρρ2, z;ω) =
Bij

√
Ii
√
Ij

42
ij(z)

exp
[
− (ρρρ1 + ρρρ2)2

8σ242
ij(z)

]
× exp

[
−(ρρρ1 − ρρρ2)2

242
ij(z)

1

4σ2
+

1

δ2
ij

]
exp
[
−ik(ρρρ2

1 − ρρρ2
2)

2Rij(z)

]
,

(2.5)

where

42
ij(z) = 1 +

z2

k2σ2

( 1

4σ2
+

1

δ2
ij

)
, (2.6)

Rij(z) = z
[
1 +

k2σ2

z2

( 1

4σ2
+

1

δ2
ij

)−1]
. (2.7)

These expressions also agree with those given in [10].

In the other special case, when in Eq. (2.2) ρρρ1 = ρρρ2 = ρρρ, we obtain the longitudinal

cross-spectral density matrix

Wij(ρρρ, z1;ρρρ, z2;ω) =
Bij

√
Ii
√
Ij

42
ij(z1, z2)

× exp
[
− 1

2σ2
+ i

z2 − z1

2kσ2

( 1

4σ2
+

1

δ2
ij

) ρρρ2

42
ij(z1, z2)

]
,

(2.8)

where 42
ij(z1, z2) was given in Eq. (2.3). Note that the phase factor Rij does not

enter the formula in this case.

The spectral degree of cross-polarization of a stochastic electromagnetic beam-like

field at two spatial positions (ρρρ1, z1) and (ρρρ2, z2), at frequency ω, was introduced in
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[24] by means of the formula

P (ρρρ1, z1;ρρρ2, z2;ω) =

√√√√1− 4 det
←→
W (ρρρ1, z1;ρρρ2, z2;ω)

[Tr
←→
W (ρρρ1, z1;ρρρ2, z2;ω)]2

. (2.9)

Combination of formulae (2.1) and (2.9) can now be used for evaluation of the

SDCP at any two positions within the beam.

2.2.2 Uncorrelated electric field components

We will first discuss the cross-polarization changes in the case when the two compo-

nents of the electric field are uncorrelated and hence the cross-spectral density matrix

has no off-diagonal components. We recall that in this case the ordinary degree of po-

larization usually exhibits drastic changes on propagation in free space as compared

to those for beams with partially correlated field components.

In figure 2.1 we show the contours of the degree of cross-polarization P (ρρρ1 =

0, z1 = 1m;ρρρ2 = ρρρ, z2 = z) of the EGSM beam propagating in free space for several

different values of source correlation coefficients δyy, while δxx is chosen to be 0.5 mm,

with Ix = 3Iy . Such contour plots allow illustration of both transverse and longitu-

dinal components of the SDCP at the same time. When the correlation coefficients

δyy and δxx coincide (figure 2.1(b)) the beam is scalar-like and the contour becomes

degenerate. When the correlation coefficients δyy and δxx approach the rms width of

the beam σ, the changes in the SDCP become significant only with a slight change

in δxx (compare figures 2.1(c) and (d)).

In order to illustrate how the initial parameters of the EGSM beam affect its

degree of cross-polarization P (ρρρ1 = 0, z1 = 1m;ρρρ2 = ρρρ, z2 = z) on propagation in free

space more explicitly, the SDCP curves at different planes z = const. are given in

figures 2.2 and 2.3. In particular, one can see from figure 2.2 how the changes in the
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Figure 2.1: The contour of the degree of cross-polarization p(ρρρ1 = 0, z1 = 1m;ρρρ2 =
ρρρ, z2 = z;ω) of the EGSM beam propagating in free space. a) δyy = 0.1 mm, b)
δyy = 0.5 mm, c) δyy = 0.8 mm, d) δyy = 1 mm. The values of the parameters of the
beams are: λ = 632.8 mm, δxx = 0.5 mm, Ix = 3Iy, σ = 5 mm.
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SDCP depend on the initial ordinary degree of polarization, which in this case simply

depends on the ratio of intensities of the two components of the beam:

P (ρρρ) =
Ix(ρρρ)/Iy(ρρρ)− 1

Ix(ρρρ)/Iy(ρρρ) + 1
. (2.10)

For the four ratios Ix(ρρρ)/Iy(ρρρ) of our choice: 1, 5/3, 3 and 19 the degree of

polarization takes values 0 (unpolarized beam), 1/4, 1/2 and 9/10 (almost polarized

beam). We note that even though in the plane z = 1, where the transverse SDCP is

smaller than 1 for all values of ρρρ (see figure 2.2(a)), in other planes it is no longer just

confined to the interval between 0 and 1, and will be generally larger than 1 (see figures

2.2(b) and (c)). It is also seen from figure 2.2 that both the degree of polarization of

the source and the propagation distance affect the degree of cross-polarization.

P(
ρ 

=0
, z

 =
1m

, ρ
 =

 ρ
, z

 =
z)

 

P(
ρ 

=0
, z

 =
1m

, ρ
 =

 ρ
, z

 =
z)

 
P(

ρ 
=0

, z
 =

1m
, ρ

 =
 ρ

, z
 =

z)
 

P(
ρ 

=0
, z

 =
1m

, ρ
 =

 ρ
, z

 =
z)

 P(
ρ 

=0
, z

 =
1m

, ρ
 =

 ρ
, z

 =
z)

 
1 

1 
2 

2 
P(

ρ 
=0

, z
 =

1m
, ρ

 =
 ρ

, z
 =

z)
 

1 
1 

2 
2 

P(
ρ 

=0
, z

 =
1m

, ρ
 =

 ρ
, z

 =
z)

 
1 

1 
2 

2 
P(

ρ 
=0

, z
 =

1m
, ρ

 =
 ρ

, z
 =

z)
 

1 
1 

2 
2 

ρ(m) ρ(m) 

ρ(m) ρ(m) 

ρ(m) ρ(m) 

ρ(m) ρ(m) 

Figure 2.2: The degree of cross-polarization of the EGSM beam propagating in free
space for different values of the initial degree of polarization: a) z = 1 m, b) z = 6
m, c) z = 10 m, d) z = 100 m. The other calculation parameters are: δxx = 0.5 mm,
δyy = 1 mm, σ = 5 cm.
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The influence of the source correlation coefficients and the propagation distance

on the degree of cross-polarization is shown in figure 2.3. In particular, in the general

case, when the correlation coefficients are the same (dashed curves) the SDCP remains

constant for almost the whole range of ρρρ (in figure 2.3(b) variation in SDCP for large

values of ρρρ is due to violation of non-paraxial regime). We also note that in cases

when both correlation coefficients δyy and δxx are small compared to the rms width

of the beam σ, it is clearly seen that the changes in the SDCP not only propagate

with distance z from the source but also spread with radial distance ρρρ from the axis

of the beam (compare the solid curves in all four figures of 2.3(a)(d)).
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Figure 2.3: The degree of cross-polarization of the EGSM beam propagating in free
space for different values of δyy: a) z = 1 m, b) z = 6 m, c) z = 10 m, d) z = 100 m.
The other calculation parameters are: δxx = 0.5 mm, Ix = 3Iy, σ = 5 cm.
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2.2.3 Correlated electric field components

Figures 2.4-2.6 illustrate the behavior of the SDCP in the more general case than

discussed in section 2.2.2, namely when the two transverse components of the electric

field are partially correlated. In this situation the cross-spectral matrix has non-zero

off-diagonal elements. Since the dependence of the SDCP on initial intensities and

correlation coefficients was explored in detail in section 2.2.2, here we will primarily

focus our attention on the dependence of the SDCP on the coefficient Bxy. In the

EGSM beam, this coefficient alone provides the measure of correlation of the x and y

components of the electric field in the source plane. Moreover, if in the source plane

Ix = Iy, then Bxy solely determines the degree of polarization of the source:

P (ρρρ) = Bxy. (2.11)

In figures 2.4-2.6, four values of Bxy (or, equivalently, P (ρρρ)) were chosen: 0, 0.1,

0.2 and 0.3. Higher values of Bxy cannot be applied due to some intrinsic constraints

on the choice of parameters of the EGSM sources [12]. Also we will only consider

in this section the purely transverse or purely longitudinal SDCP, since the general

SDCP was discussed in detail above, and usually polarization properties in transverse

planes or at a fixed radial position but different distances from the source plane are

of most interest.

Figure 2.4 shows the spatial distribution of the transverse SDCP for four afore-

mentioned values of the coefficient Bxy. One can see that the change in Bxy results in

the change in the SDCP especially in the central part of the beam. The same as for

the ordinary degree of polarization, in this case of correlated field components, the

changes in the SDCP are not as dramatic as for that of the beam with uncorrelated

field components.
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Figure 2.4: Contours of the transverse SDCP p(ρρρ1 = 0, ρρρ2 = ρρρ, z1 = z2 = z;ω) of
the EGSM beam propagating in free space. a) Bxy = 0, b) Bxy = 0.1, c) Bxy = 0.2,
d) Bxy = 0.3. The values of the parameters of the beams are: δxx = 0.15 mm,
δyy = 0.225 mm, δxy = δyx = 0.25 mm, Ix = Iy,σ = 5 cm.
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Figure 2.5 illustrates the dependence of the transverse SDCP calculated for a pair

of points in the fixed plane z on the radial distance r. We see that with the increasing

propagation distance the SDCP becomes more uniform across the transverse cross-

section, saturating at certain non-zero values, depending on the coefficient Bxy. This

result is in striking contrast with the behavior of the spectral degree of coherence

which always tends to 1 at sufficiently large distances on free-space propagation.
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Figure 2.5: The transverse degree of cross-polarization of the EGSM beam propagat-
ing in free space for different values of Bxy: a) z = 1 m, b) z = 50 m, c) z = 100 m,
d) z = 200 m. The other parameters are the same as in figure 2.4.

Figure 2.6 illustrates the dependence of the longitudinal SDCP at a pair of points

on the axis of the beam at four values of distance z1 from the source while distance

z2 varies, for several chosen values of coefficient Bxy. We note that the change is pro-

nounced only for relatively small separation distances |z1− z2|; for larger separations

the SDCP saturates at certain fixed values, not necessarily 0. It is also seen that the

longitudinal SDCP changes its shape with distance z1. Parameter Bxy, on the other
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hand, influences the magnitude rather than the shape of the SDCP.
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Figure 2.6: The longitudinal SDCP of the EGSM beam propagating in free space for
different values of Bxy: a) z = 1 m, b) z = 50 m, c) z = 100 m, d) z = 200 m. The
other parameters are the same as in figure 2.4.

2.3 Light sources generating far fields with tunable flat pro-

files

It is well-known in statistical optics that the structure of the correlation function

of a field in the source plane is closely related to the intensity distribution of its

far field ([2], p. 236). Moreover, for some model sources it is possible to obtain

analytic relations between these two quantities. For instance, for quasi-homogeneous

sources the so-called reciprocity relations are known to be of Fourier type ([2], p.

243). For model sources of the Schell type [26], on the other hand, it is possible

to obtain formulas for the major statistical characteristics of the field propagating
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to any distance from the source and to analyze how source correlations gradually

affect the field ([2], p. 276). Surprisingly few analytical models for the planar source

correlation functions have been developed so far: the Gaussian Schell-model (GSM)

sources, the Jn-Bessel correlated sources [27], the In-Bessel-correlated sources [28],

the non-uniform GSM sources [29] and the Lambertian sources ([2], p. 248) might

constitute the full list of models. The difficulty in developing new models stems from

the fact that a genuine correlation function must satisfy a number of restrictions ([2],

Sec. 4.7.1). To alleviate this task a sufficient condition in a simple integral form for

the genuine correlation function was derived in [30] and has already led to a model in

[29]. We will use such a condition to introduce yet another, and very special, model

source and beam.

2.3.1 The model for the source

In this section we introduce a model for the correlation function of a planar source

which is based on the multi-Gaussian family of functions. Such functions have pre-

viously been employed for modeling beam amplitudes [31] and scattering potentials

[32]. Generally, multi-Gaussian functions make it possible to control the width of the

flat center of the profile and the slope of its edge by the choice of two parameters.

But being employed for modeling the correlation, rather than for the field itself, the

multi-Gaussian function can serve as a unique tool for generating far fields with flat

intensity profiles.

Let us set the spectral degree of coherence µ(ρρρ1, ρρρ2;ω), at a pair of points in the

source plane with position vectors ρρρ1 and ρρρ2 and frequency ω in the following form

µ(ρρρ1, ρρρ2;ω) =
1

C0

M∑
m=1

(
M

m

)
(−1)m−1

m
exp

[
−|ρ
ρρ2 − ρρρ1|2

2mδ2

]
, (2.12)
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where C0 =
M∑
m=1

(−1)m−1

m

(
M
m

)
is the normalization factor,

(
M
m

)
stand for binomial coef-

ficients and δ is a correlation width. As is illustrated in Fig. 2.7, the profile function

defined by Eq. (2.12) visually resembles a Bessel-correlated source or a Lambertian

source (see [2], Figs. 5.9 and 5.10), however is given by a different functional form. As

in the case of a Bessel function whose Taylor’s expansion is a sum of sign-alternating

terms, the modified multi-Gaussian function is also represented by a sum of positive

and negative exponentials.
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Figure 2.7: Illustration of the degree of coherence for several values of M .

As is evident from Refs. [2] and [30] not any degree of coherence defines a phys-

ically meaningful random source. For instance, for a Schell-model source, for which

the cross-spectral density function has the form

W (0)(ρρρ1, ρρρ2;ω) =
√
S(ρρρ1;ω)

√
S(ρρρ2;ω)µ(ρρρ2 − ρρρ1;ω), (2.13)

S(ρρρ) being the spectral density at ρρρ, the sufficient condition for the cross-spectral

density to be genuine is that it must be expressed by the integral

W (0)(ρρρ1, ρρρ2;ω) =

∫
p(υυυ;ω)H∗(ρρρ1, υυυ;ω)H(ρρρ2, υυυ;ω)d2υυυ, (2.14)
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where H(ρρρ,υυυ) is an arbitrary kernel and p(υυυ) is a nonnegative, Fourier-transformable

function. Following [30] we assume that function H(ρρρ,υυυ) has the form

H(ρρρ,υυυ;ω) = τ(ρρρ;ω) exp[−iυυυ · ρρρ], (2.15)

and hence W (0) becomes

W (0)(ρρρ1, ρρρ2;ω) = τ ∗(ρρρ1;ω)τ(ρρρ2;ω)p̃(ρρρ1 − ρρρ2;ω), (2.16)

where τ(ρρρ;ω) is a (possibly complex) profile function, tilde denotes the Fourier trans-

form.

The choice of p(υυυ) defines a family of sources with different correlation functions.

On taking the Fourier transform of Eq. (2.12) we arrive at:

p(υυυ;ω) =
δ2

C0

M∑
m=1

(−1)m−1

M

(
M

m

)
exp

[
−mδ

2|υυυ|2

2

]
, (2.17)

representing a family of flat-top profiles (see Fig. 2.8). While it is a Fourier-

transformable function by construction, its non-negativity can be proved as follows.

Equation (2.17) can be represented as

p(υυυ;ω) = − δ
2

C0

M∑
m=1

(
M

m

)
(−x)m =

δ2

C0

[1− (1− x)M ], (2.18)

where x = exp[−δ2|υυυ|2/2] Function p(υυυ) is manifestly nonnegative since 0 ≤ x ≤ 1.

We point out that this form of p(υυυ) is particularly simple, since it is clear that (1−x)

is a saturation function whose slope is controlled by index M.

Let us also set the Gaussian profile for function τ :

τ(ρρρ;ω) = exp[−|ρρρ|2/(4σ2)]. (2.19)
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Figure 2.8: Illustration of the function p for several values of M .

Then, together with the weighting function p(υυυ) given by Eq. (2.17), we obtain

on substituting them into Eq. (2.16) the cross-spectral density function of the form

W (0)(ρρρ1, ρρρ2;ω) =
1

C0

exp

[
−|ρ
ρρ1|2 + |ρρρ2|2

4σ2

] M∑
m=1

(−1)m−1

mM

(
M

m

)
exp

[
−|ρ
ρρ2 − ρρρ1|2

2mδ2

]
,

(2.20)

which may be called multi-Gaussian Schell-model source.

We will now determine the cross-spectral density function of the field radiated by

the source (2.20) to the far zone at two points specified by position vectors r1 = r1s1

and r2 = r2s2, with s2
1 = s2

2 = 1. The field in the far-zone of the source is given by

the expression ([2], p. 240)

W (∞)(r1s1, r2s2;ω) = (2πk)2 cos θ1 cos θ2W̃
(0)(−ks1⊥, ks2⊥;ω)

exp[ik(r2 − r1)]

r1r2

,

(2.21)

where k is the wavenumber of the field, s⊥ is the projection of s onto the source plane,

cos θ = sz, and

W̃ (0)(f1, f2;ω) =
1

(2π)4

∫ ∫
W (0)(ρρρ1, ρρρ2;ω)× exp[−i(f1 ·ρρρ1 + f2 ·ρρρ2)]d2ρρρ1d

2ρρρ2, (2.22)
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is the four-dimensional Fourier transform. On substituting from Eq. (2.20) first

into Eq. (2.22) and then into Eq. (2.21), we obtain for the cross-spectral density

W (∞)(r1s1, r2s2) in the far field the formula

W (∞)(r1, r2;ω) =
1

C0

k2 cos θ1 cos θ2
exp[ik(r2 − r1)]

r1r2

M∑
m=1

(−1)m−1

mM

(
M

m

)
1

(a2
m − b2

m)

× exp[−k2(αms2
1⊥ + αms2

2⊥ − 2βms1⊥ · s2⊥)],

(2.23)

where

am =
1

2

(
1

2σ2
+

1

mδ2

)
, bm =

1

2mδ2
, (2.24)

αm =
am

4(a2
m − b2

m)
, βm =

bm
4(a2

m − b2
m)
. (2.25)

The far-field spectral density can be found by the formula S(∞)(r;ω) = W (∞)(r, r)

and one obtains

S(∞)(r) =
k2 cos2 θ

C0|r|2
M∑
m=1

(−1)m−1

mM

(
M

m

)
exp[−2k2s2

⊥(αm − βm)]

(a2
m − b2

m)
. (2.26)

In order for function W (0)(ρρρ1, ρρρ2) to generate a beam, the spectral density in Eq.

(2.26) must be negligible except for directions within a narrow solid angle about the

z-axis. This is so if ([2], Eq. [5.6-72])

exp[−2k2s2
⊥θ

2(αm − βm)] ≈ 0, (2.27)

for any m = 1, ...,M , unless s2
⊥ � 1, implying that

2k2(αm − βm)� 1, (2.28)
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or, in terms of the source parameters,

1

4σ2
+

1

m

1

δ2
� 2π2

λ2
, m = 1, ...,M. (2.29)

If the inequality holds for m = 1 the rest of the set, for m = 2, ...,M holds

automatically. Thus the beam condition for the multi-Gaussian Schell-model sources

is the same as that for the Gaussian Schell-model sources ([2], Eq. 5.6-73):

1

4σ2
+

1

δ2
� 2π2

λ2
. (2.30)

Another possible class of sources with the correlation function of the form (2.12)

can be introduced with the help of a quasi-homogeneous approximation. Namely, the

cross-spectral density of such a source is of the form

W (0)(ρρρ1, ρρρ2;ω) ≈ S
(
ρρρ1 + ρρρ2

2

)
µ(ρρρ1 − ρρρ2;ω)

≈ S
(
ρρρ1 + ρρρ2

2

)
p̃(ρρρ1 − ρρρ2;ω),

(2.31)

under the assumption that function S is a slow function of its argument compared to

µ. For this type of fields the far-field spectral density is given by ([2], p. 243)

S(∞)(r;ω) =
1

|r|2
(2πk)2 cos2 θF̃ (0)µ̃(ks⊥). (2.32)

We also note that since the multi-Gaussian Schell-model and multi-Gaussian

quasi-homogeneous sources have the same correlation function of type (1) their far

fields are qualitatively similar for M > 1, especially if δ � σ.

Figure 2.9 shows several typical far fields radiated by the source in (2.20) with the

following parameters: λ = 632 nm, σ = 1 mm, δ = 0.1 mm. It is clearly seen that a
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beam with a Gaussian degree of coherence in the source plane monotonically decreases

with the increase of angle θ, while beams with multi-Gaussian source correlations have

flat profiles with different heights and steepness of the edges.
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Figure 2.9: Far-field spectral density of the field generated by the multi-Gaussian
Schell-model source vs. θ(degrees) for several values of M .

2.3.2 The analysis of beam evolution

In this section we explore the behavior of beam-like fields produced by multi-Gaussian

Schell-model sources on propagation to different zones from the source in free space.

More specifically, we will examine the behavior of both the spectral density and

the degree of coherence for such beams at any intermediate distance from the source.

The paraxial free-space propagation law for the cross-spectral density function of a

field to points r1 and r2 of the half-space z > 0 has the form of equation (1.33).

We first point out that for a classic scalar GSM beam, which corresponds to the

case M = 1, the cross-spectral density matrix of the beam at distance z has been
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shown to be [2]

W (r1, r2;ω) =
1

∆2(z)
exp

[
−(r1 + r2)2

8σ2∆2(z)

]
× exp

[
−(r1 − r2)2

2α2∆2(z)

]
exp

[
−ik (r2

2 − r2
1)

2R(z)

]
,

(2.33)

where

α2 =

(
1

4σ2
+

1

δ2

)−1

, ∆2(z) = 1 +
z2

k2σ2α2
,

R(z) = z

(
1 +

k2σ2α2

z2

)
.

(2.34)

These expressions also follow from Eqs. (2.5)-(2.7) on ignoring the indexes i, j. By

noting that the “m”-th term in the sum (2.20) can be evaluated in the same manner

if one treats
√
mδ as a new variance, say δm. Then on summing all M such terms

one obtains the formula

W (r1, r2;ω) =
1

C0

M∑
m=1

(
M

m

)
(−1)m−1

m

1

∆2
m(z)

exp

[
− (r1 + r2)2

8σ2∆2
m(z)

]
× exp

[
− (r1 − r2)2

2α2
m∆2

m(z)

]
exp

[
−ik (r2

2 − r2
1)

2Rm(z)

]
,

(2.35)

where

α2
m =

(
1

4σ2
+

1

δ2
m

)−1

, ∆2
m(z) = 1 +

z2

k2σ2α2
m

,

Rm(z) = z

(
1 +

k2σ2α2
m

z2

)
.

(2.36)

We will first consider the spectral density at any point (ρρρ, z) within the cross-
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section of the beam:

S(r;ω) = W (r, r;ω)

=
1

C0

M∑
m=1

(
M

m

)
(−1)m−1

m∆2
m(z)

exp

[
− r2

2σ2∆2
m(z)

]
.

(2.37)
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Figure 2.10: The transverse cross-section of the spectral density of the MGSM beam
propagating in free space vs. |r| [m], at several distances from the source plane: A)
0.1 m; B) 1 m; C) 10 m, and D) 100 m. Several curves correspond to different values
of M : M = 1 (solid blue curve), M = 4 (dashed red curve), M = 10 (dotted green
curve) and M = 40 (dash-dotted black curve).

In Figure 2.10 we show the contours of the transverse cross-sections of a typical

MGSM beam at several selected distances from the source and several values of index

M. At sufficiently small distances from the source all curves preserve Gaussian shape

(Fig. 2.10(A)), but as the propagation distance grows the transverse intensity profiles

start to depend on the the index M: the larger the value of M the smaller its height

at the beam’s axis and flatter the profile become (Figs. 2.10(B)). At sufficiently large
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distances, when the beam enters the far zone (see Fig. 2.10(C)), all contours with

M > 1 assume the shapes having plateaus around the beam axis. Such plateaus are

preserved but grow in width as the distance from the source is increased even more

(compare Figs. 2.10(C) and 2.10(D)).

Without loss of generality, for the situation when rd = 2r1 = −2r2 we find at

once, on using Eqs. (1.14) and (2.35)-(2.36) that

|µ(rd,−rd;ω)| = |W (rd,−rd;ω)|
S(0;ω)

=

M∑
m=1

(
M
m

) (−1)m−1

m
1

∆2
m(z)

exp
[
− r2

d

2α2
m∆2

m(z)

]
M∑
m=1

(
M
m

) (−1)m−1

m
1

∆2
m(z)

.

(2.38)
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Figure 2.11: The modulus of the spectral degree of coherence of the MGSM beam
propagating in free space vs. |rd| [m], at the same distances from the source plane
and the same values of M as in Fig. 2.10.

Figure 2.11 illustrates the behavior of |µ| on propagation in free space as a function

of transverse difference variable rd for several values of z and M . At relatively small
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distances from the source the profiles of |µ| resemble that in the source plane (compare

Fig. 2.11(A) with Fig. 1 of Ref. [33]). With growing distance, however, the shape of

the curves becomes Gaussian-like while the dependence on M gradually disappears

(Figs. 2.11(A)-2.11(C)). When the beam propagates in the far zone of the source,

all the curves evolve in the same way: they remain Gaussian with monotonically

increasing variance, being subjected to free-space diffraction (compare Figs. 2.11(C)

and 2.11(D)).

2.4 Crystalline human eye lens’ response to stochastic light

Almost always optical fields perceived by a human eye are partially coherent and

partially polarized and in a number of cases have a beam-like nature. It is therefore

crucial to be able to predict how the major properties of stochastic electromagnetic

beams are modified on passing through the eye. Right after the entrance the light

encounters the eye lens, known as the “aquula” (“water”, Lat.) or “crystalline lens”.

Since the refractive power of the crystalline lens is approximately 18 dioptres, being

roughly one-third of the eye’s total power, it is the strongest optical element on the

way of light to the retina and the eye nerve located at the back wall of the eye cavity.

For a recent mini-review of several existing models of the eye lens the reader is

referred to [34]. The optical structure (see Fig. 2.12 for illustration) of this lens

appears to be fairly well known for a long time (cf. [35]). Perhaps, the very first

analytic model for the refractive index profile belongs to [36]:

n(r, d) = −0.0062685(d− d0)2 + 0.0003834(d− d0)3

+ 1.406− [0.00052375 + 0.00005735(d− d0)

+ 0.00027875(d− d0)2]r2 − 0.000066717r4

(2.39)

where r, d and d0 are given in mm. The lens’ total thickness d = 3.6 mm and the
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distance from the entrance plane end to the plane with the highest refractive index

d0 = 1.7 mm. Other models for the refractive index profile of the lens were also

suggested in [37] and [38].

One of the newer models for the crystalline eye lens was introduced in [39] (see

also [40]-[41]). This model is based on the assumption that the variation of the

refractive index in the radial direction is parabolic and, consequently, implies the

ABCD-matrix determination. Namely, the lens is treated as a gradient-index [GRIN]

medium limited either by plane-parallel or curved end faces with quadratic transverse

refractive index, which is given, in the paraxial approximation and for a meridional

section of the lens, by the distribution

n(r, d) = n0(d)
[
1− g2(d)r2/2

]
, (2.40)

where n0(d) is the index along the optical axis d and g(d) is the gradient parameter

describing the evolution of the transverse parabolic distribution.

r (mm) 

d (mm) 

Figure 2.12: A typical distribution of the refractive index in the crystalline lens.

Among several analytical models of the crystalline eye lens, the GRIN lens, being
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a first-order optical system, gained the widest popularity. It was treated in [39] as a

quadratic phase transformer which has led to two versions called “plane-parallel end

faces” and “curved end faces”. Using both models propagation of a monochromatic

lowest-order Gaussian beam was considered. The elements of the ABCD matrix of

the GRIN profile slab lens were later determined by using the parabolic ray-path

approximation in [34].

2.4.1 Beam interaction with the crystalline lens

In order to describe interaction of light with the crystalline lens we will employ the

extended Huygens-Fresnel integral ([19], [20], [42], and [43]), and we will use the

“curved end faces” model. Of special interest is whether the correlation properties of

incident field have any influence on the intensity and polarization distribution of the

light on the eye’s retina.

l

W(r ,r ,z,ω)W(ρ ,ρ ,ω)
  1       2   1   2

d

z

Figure 2.13: Illustration of notations used.

As a model for the initial beam we take the electromagnetic Gaussian Schell-model

beam for which the elements of the cross-spectral density matrix have the form of Eq.

(1.28). Propagation of each component of the correlation matrix through a paraxial

optical ABCD system is given by Eq. (1.42). On substituting from Eq. (1.28) into Eq.

(1.42) and performing integrations over the source plane one finds that the elements
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of the cross-spectral density matrix of the beam in the plane z > 0, takes the form

[20]

Wij(r1, r2, z, ω) =

√
IiIjBij

Qij

exp

[
−|r1|2 + |r2|2

4σ2Qij

]
× exp

[
−|r1 − r2|2

2δ2
ijQij

]
exp

[
−ik(|r1|2 − |r2|2)

2Rij

]
,

(2.41)

where Qij = A(z)2 + (1 + 4σ2/δ2
ij)B(z)2/(4σ4k2), Rij = B(z)Qij/(D(z)Qij − A(z)).

Equation (2.41) provides analytical description for propagation of the cross-spectral

density matrix of the EGSMB through a paraxial optical system. By using Eq.

(2.41) the intensity distribution (1.19) and polarization properties (1.20) of the beam

everywhere within the system can be determined.

In order to carry out numerical evaluation of intensity and polarization character-

istics of the EGSMB we will employ the model for the crystalline eye lens limited by

curved end faces, introduced in [39] and further discussed in [40]-[41]. Because of the

variable refractive index behavior the model is believed of being capable of accurately

representing the optical structure of the eye lens. Following [39], the ray transfer

matrix elements A(d), B(d), C(d), D(d) of the lens are given by the expressions

A(d) =
[
1− g2

ed
2

2
+
dġe
2ge

(
1− g2

ed
2

6

)]
−
Pfd(1− g2

ed
2

6
)

ne
,

B(d) =
n1

ne
d
(

1− g2
ed

2

6

)
, C(d) = −PE(d)

n′1
,

D(d) =
n1

n′1

(
−
[
g2
e +

( ġe
2ge

)2]
d
(

1− g2
ed

2

6

)

+
Pb

[
g2
e +

(
ġe
2ge

)2]
d
(

1− g2
ed

2

6

)
ne

)
,

(2.42)

where the back refractive power or equivalent power PE(d) of the lens is provided by
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the formula

PE(d) = PbHf (d) + PfḢa(d) + PG(d)− PbPfHa(d)

ne

= Pb

[
1− g2

ed
2

2
+

ġe
2ge

d
(

1− g2
ed

2

6

)]

+ Pf

(
−
[
g2
e +

( ġe
2ge

)2]
d
(

1− g2
ed

2

6

))
− ne

[
1− g2

ed
2

2
− ġe

2ge
d
(

1− g2
ed

2

6

)]
−
PbPfd

(
1− g2

ed
2

6

)
ne

.

(2.43)

The total ABCD matrix of the lens with thickness d followed by free space prop-

agation at distance l has the form

 A B

C D

 =

 A(d) + lC(d) B(d) + lD(d)

C(d) D(d)

 . (2.44)

2.4.2 Numerical examples

10 6 10 5 10 4 0.001 0.01

0.001

0.01

0.1

Figure 2.14: The normalized spectral density S(r, z, ω) of the beam vs. propagation
distance l [m] after the lens for: coherent beam, δxx = δyy = δxy = δyx → ∞ (solid
curve); partially coherent beam δxx = δyy = 1.125 × 10−4m (dash-dotted curve),
δxy = δyx = 1.25 × 10−4m, (C) nearly incoherent beam δxx = δyy = 1.125 × 10−5m,
δxy = δyx = 1.25× 10−5m (dashed curve).
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Figure 2.15: The spectral degree of polarization P (r, z, ω) of the beams generated by
the same sources as in Fig. 2.14 vs. propagation distance l [m] after the lens.

Equations (2.42) and (2.43) represent thickness-dependent (i.e. d-dependent)

ABCD matrix elements of the curved end faces model of the GRIN lens. The pa-

rameters, with numerical values given in parenthesis, are, following [39]: ge (0.03775

mm−1) is the gradient parameter, ġe (0.0014 mm−2) is its slope at z = d, ne (1.386)

is the edge index, n1 (1.336) is the refractive index of the media in the object space,

n′1 (1.336) is the refractive index of the media in the image space, Pf is the power of

the front surface of the lens ((nc−n1)/Rf ), Pb is the power of the back surface of the

lens ((n′1 − nc)/Rb), nc (1.406) is the central refractive index, Rf (12.7− 0.058× age

mm) is the variation of the front radius with age and Rb (−5.9 + 0.015× age mm) is

the variation of the back radius with age (age 30 is chosen in this analysis), l = 17

mm. The values of parameters of the EGSMB in the source plane are chosen as [12]:

λ = 550 nm, Ix = Iy = 1, Bxx = Byy = 1, Bxy = Byx = 0.2, d = 4 mm, σ = 0.1 mm.

In Fig.2.14 we show the on-axis spectral density of the EGSMB as a function of

propagation distance l after the crystalline lens, for several values of source correlation

parameters. Figure 2.15 represents the degree of polarization vs. propagation distance

l after the lens. Both the spectral density and the degree of polarization at the retina

are intimately related to the correlation properties of the beam incident on the lens.

We note that after passing through the lens the degree of polarization of the beam
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still changes because of its stochastic nature [5].

2.5 Conclusion

To summarize, several important aspects of random beam analysis on its genera-

tion, free-space propagation, and passage through image forming systems have been

discussed.

In section 2.2 we have derived the expressions for the elements of the 2× 2 cross-

spectral density matrix of an EGSM beam propagating in free space for two arbitrary

points in the beam (not necessarily belonging to the same transverse cross-section)

and then studied the changes in the SDCP. By a number of numerical examples we

have demonstrated the dependence of the SDCP of the propagating beam on all of

the parameters of the source. We considered separately the cases of uncorrelated

and correlated components of the electric field in the source plane and also purely

transverse and purely longitudinal SDCPs. In particular we found that the behavior

of the SDCP of an EGSM beam depends strongly on the (constant) spectral degree

of polarization in the source plane. Unlike the spectral degree of coherence and

the spectral degree of polarization the SDCP may take on any non-negative value.

Unlike the spectral degree of coherence, the transverse SDCP does not tend to 1 for

sufficiently large distances from the source plane. Among the other not too obvious

results is that the longitudinal SDCP saturates at certain (generally nonzero) values

after the beam propagates over a sufficiently long distance in free space.

In section 2.3 we have introduced a family of functions whose Fourier transforms

are multi-Gaussian functions for the source degree of coherence and employed them

in the Schell-model and the quasi-homogeneous model. We have confirmed that such

sources are physically genuine, determined the far fields they generate and showed that

far fields have desirable features representing flat profiles which are useful in beam
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shaping, optical trapping and tweezers. The novel family of correlation functions,

while being visually similar to Jn-Bessel correlations, result in qualitatively different

far-field patterns, possessing a flat intensity profile in the central part with a steep,

adjustable drop at its edge.

In section 2.4 we have analyzed how electromagnetic stochastic beams propagate

through the human crystalline eye lens. Our study revealed that the intensity and

the polarization of light are drastically modified after passing through the eye lens.

Hence the images formed by the eye are very sensitive to correlation properties of the

incoming light. Moreover, since the effective focal length varies with the correlation

properties of the incident light, the quality of the perceived image may also depend

on it. We believe that our work is the very first to address interaction of light

with arbitrary spectral, coherence and polarization properties by a human eye lens,

and will potentially stimulate interest in using electromagnetic stochastic beams in

applications involving eye medicine and cognitive science.



Chapter 3

Propagation of Electromagnetic Random Fields in

the Atmosphere

3.1 Introductory remarks

The topic of interaction of electromagnetic random fields with linear random media,

such as the atmospheric turbulence, has been previously explored to some extent.

Among the most interesting phenomena in the beams in the presence of random

media are the suppression of spectral shifts [44] and drastic changes in polarization

properties ([45]). In this chapter we extend the existing knowledge by investigating

the behavior of higher-order statistics of the beam and exploring the beam behavior

in a double-pass propagation scenario.

The study of fluctuations in Stokes parameters of stochastic electromagnetic

beams on propagation in turbulent atmosphere is presented first. Expressions are

derived for the scintillation indexes (contrasts) of the Stokes parameters and their

versions normalized by the instantaneous intensity in the case when the beam is

generated by the electromagnetic Gaussian Schell-model source with uniform polar-

ization. We illustrate our analytical results by a set of numerical examples.

An active bistatic LIDAR system operating through atmospheric turbulence is

then considered. The illumination field is assumed to be an electromagnetic Gaussian-

Schell model beam. The target surface is modeled as a combination of an isotropic

phase screen governed by Gaussian statistics, to account for its roughness, and a

Gaussian lens to account for its size and radius of curvature. With the help of

50
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a recently developed tensor method for propagation of stochastic electromagnetic

beams through the ABCD systems and random media we examine the evolution of

states of coherence and polarization of the beam. In the case of an unresolved flat

(planar) target we show that by comparing coherence and polarization properties of

the illumination beam and of the return beam it is possible to predict the typical

roughness of the target surface.

3.2 Fluctuations in the instantaneous Stokes parameters of

stochastic electromagnetic beams propagating in the tur-

bulent atmosphere

The possibility of the efficient use of scalar stochastic beams for optical systems which

involve propagation through atmospheric turbulence was pointed out not that long

ago [46]: the scintillation index of a stochastic beam is generally lower than that of

the comparable monochromatic laser beam. Later it was also found [47] that, under

certain conditions, the relative spreading of a stochastic beam might be weaker than

that of a monochromatic laser beam. Based on these predictions an analysis of the

FSO communication systems was made (see the references [48]-[50]) and it was found

that, in fact, for certain atmospheric channels and for well-chosen sources of random

beams the link performance may be significantly improved.

With the development of the unified theory of coherence and polarization [5] it

became evident that the polarization properties of electromagnetic sources may also

influence all the statistical properties of beams on propagation in vacuum and in

random media. In particular, it was analyzed in [51] and [52] how the intensity

fluctuations and fluctuations in the instantaneous Stocks parameters of stochastic

electromagnetic beams evolve on propagation in free space, depending on coherence

and polarization properties of their sources. In [53] it was demonstrated that, gener-
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ally, the scintillation index of an unpolarized beam can be reduced by a factor of two,

at best, compared to that of a polarized beam with the same intensity distribution

and degree of coherence. Recently the possibility of reduction in scintillation with the

help of a non-uniformly polarized monochromatic source (i.e. without use of source

randomness) was also pointed out [54].

In this section we investigate whether in addition to the intensity, all the Stokes

parameters can be used as information carriers. We develop expressions for the scin-

tillation indexes of the instantaneous Stokes parameters of stochastic electromagnetic

beams. For a wide class of stochastic electromagnetic beams we then numerically

examine the behavior of such scintillation indexes and compare them with the con-

ventionally used scintillation index based on fluctuations in the beam intensity. We

assume that the beam propagates in clear-optical turbulence, i.e. depolarization of

the beam due to scattering/absorption by aerosols is neglected.

3.2.1 General expressions for the statistics of the Stokes parameters

We begin by a brief review of the theoretical background relating to sources radiating

stochastic electromagnetic beams. Let us assume that a planar source is located in

the plane z = 0 and radiates a beam-like field propagating close to the positive z-axis

through the atmosphere. Suppose the fluctuations in the beam at the source plane

are wide-sense stationary and then its second-order statistical properties at points r′1

and r′1 and frequency ω may be characterized by the generalized Stokes parameters

(Eq. (1.24)).

With the help of the extended Huygens-Fresnel integral principle adjusted for

propagation in anisotropic and homogeneous atmosphere it can be readily shown, on



53

using Eqs. (1.24) and (1.37), that

〈Sα(r, ω)〉 =
k2

(2πz)2

∫ ∫
〈Sα(r′1, r

′
2, ω)〉〈G∗(r, r′1)G(r, r′2)〉d2r′1d

2r′2,

(α = 0, 1, 2, 3),

(3.1)

where integration is performed twice over the planar source and G(r, r′) is the Green’s

function of a point source. It follows from Eq. (1.38) and (1.39) that the propagation

kernel for homogeneous and isotropic turbulence is:

〈G∗(r, r′1)G(r, r′2)〉 = exp

[
−ik (ρρρ− r′1)2 − (ρρρ− r′2)2

2z

]

× exp

−π2k2z

3
(r′1 − r′2)2

∞∫
0

κ3Φn(κ)dκ

 , (3.2)

where Φn(κ) is the one-dimensional power spectrum of atmospheric fluctuations and

ρρρ is the projection of vector r onto the source plane, i.e. r = (ρρρ, z).

We will be interested in determining the scintillation indexes (contrasts of fluctu-

ations) in the Stokes parameters Sα defined by the expressions

c[Sα(r, ω)] =
〈S2

α(r, ω)〉 − 〈Sα(r, ω)〉2

〈Sα(r, ω)〉2
, (α = 0, 1, 2, 3). (3.3)

Under the assumption that fluctuations in the beam propagating in the atmo-

spheric turbulence are Gaussian it can be shown that [55]

c[S0(r, ω)] =
1

2
[1 + P 2(r, ω)], (3.4)

and

c[Sα(r, ω)] = 1 +
〈S0(r, ω)〉2

2〈Sα(r, ω)〉2
[1− P 2(r, ω)], (α = 1, 2, 3), (3.5)
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where

P (r, ω) =

√
〈S1(r, ω)〉2 + 〈S2(r, ω)〉2 + 〈S3(r, ω)〉2

〈S0(r, ω)〉
, (3.6)

is an alternative formula for the degree of polarization of the beam. We note here

that the Gaussian approximation is legitimate only for strong fluctuation conditions,

i.e. for sufficiently large propagation distances, or strong local fluctuations at points

along the path.

Since usually on propagation in random media the Stokes parameters tend to zero

with growing distance from the source, at the same rate as the spectral density does,

it is also of interest sometimes to determine the contrasts in the normalized Stokes

parameters, i.e. in the quantities

sα(r, ω) =
Sα(r, ω)

S0(r, ω)
, (α = 0, 1, 2, 3). (3.7)

It was shown in [56] that under the assumption of Gaussian statistics the scintil-

lation indexes of the normalized Stokes parameters defined as

c[sα(r, ω)] =
〈s2
α(r, ω)〉 − 〈sα(r, ω)〉2

〈sα(r, ω)〉2
, (α = 1, 2, 3), (3.8)

are given by the expressions

c[sα(r, ω)] =
(1− P )2

qα

2∆[P 2 − Pq2
α]− q2

α[1− P 2]∆2 − 4P 4 + 8q2
αP

2

4P 2 − 4[P − P 3]∆ + [1− P 2]2∆2
, (3.9)

where

∆ = sinh−1

[
P 2 + qα√

[1− P 2][P 2 − qα]

]
+ sinh−1

[
P 2 − qα√

[1− P 2][P 2 − qα]

]
, (3.10)
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and

qα =
〈Sα〉
〈S0〉

. (3.11)

3.2.2 Fluctuations in the Stokes parameters of Gaussian Schell-model

beams

We will now apply the formulas of the previous section for the analysis of the fluctu-

ations in the Stokes parameters of the most versatile class of random electromagnetic

beams, the electromagnetic Gaussian Schell-model beams (see Eq. (1.28)). On substi-

tuting from Eq. (1.28) into Eq. (1.24) we find that the generalized Stokes parameters

of such a source are

〈S0(r′1, r
′
2, ω)〉 = exp

[
−r

′2
1 + r

′2
2

4σ2

](
Ix exp

[
−(r′1 − r′2)2

2δ2
xx

]
+ Iy exp

[
−(r′1 − r′2)2

2δ2
yy

])
〈S1(r′1, r

′
2, ω)〉 = exp

[
−r

′2
1 + r

′2
2

4σ2

](
Ix exp

[
−(r′1 − r′2)2

2δ2
xx

]
− Iy exp

[
−(r′1 − r′2)2

2δ2
yy

])
〈S2(r′1, r

′
2, ω)〉 = 2

√
IxIyRe[Bxy] exp

[
−r

′2
1 + r

′2
2

4σ2

]
exp

[
−(r′1 − r′2)2

2δ2
xy

]
〈S3(r′1, r

′
2, ω)〉 = 2

√
IxIyIm[Bxy] exp

[
−r

′2
1 + r

′2
2

4σ2

]
exp

[
−(r′1 − r′2)2

2δ2
xy

]
,

(3.12)

Further, on substituting from Eq. (3.12) into Eq. (3.1) and after integrating we find

that

〈S0(r, ω)〉 =
Ix

∆2
xx

exp

[
− ρρρ2

8σ2∆2
xx

]
+

Iy
∆2
yy

exp

[
− ρρρ2

8σ2∆2
yy

]
,

〈S1(r, ω)〉 =
Ix

∆2
xx

exp

[
− ρρρ2

8σ2∆2
xx

]
− Iy

∆2
yy

exp

[
− ρρρ2

8σ2∆2
yy

]
,

〈S2(r, ω)〉 =
2
√
IxIyRe[Bxy]

∆2
xy

exp

[
− ρρρ2

8σ2∆2
xy

]
,

〈S3(r, ω)〉 =
2
√
IxIyIm[Bxy]

∆2
xy

exp

[
− ρρρ2

8σ2∆2
xy

]
,

(3.13)
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where

∆2
ij = 1 + αijz

2 +
2Mz2

k2σ2
, (3.14)

with

αij =
1

(kσ)2

[
1

4σ2
+

1

δ2
ij

]
(3.15)

and

M =
1

3
π2k2z

∞∫
0

κ3Φn(κ)dκ. (3.16)

In the case of the Tatarskii’s power spectrum [17] the parameter M takes the form

[57]

M = 0.55C2
nl
−1/3
0 k2z. (3.17)

In these expressions C2
n is the refractive index structure parameter, l0 is the inner

scale of turbulence, and z is the propagation distance. The corresponding expression

for the spectral density derived for scalar field can be found in [58]. On substituting

from Eq. (3.13) into Eqs. (3.4) and (3.5) we finally can find the contrasts of the

fluctuating Stokes parameters. Further, on substituting from Eq. (3.13) into Eq.

(3.9) we can determine the contrasts in the normalized Stokes parameters. Since

the derivation is straightforward and the final expressions are cumbersome we do not

include them here but, instead, analyze the results numerically.

Unless it is stated otherwise we choose for the atmospheric channel the following

set of parameters: C2
n = 10−14m−2/3, l0 = 1mm, z = 1km. The parameters of

the model source are carefully chosen in accord with realizability conditions and

suitability for atmospheric propagation (cf. [59]). In particular, λ = 0.628µm, σ =

2.5cm, Ix = 2.25, Iy = 1, Bxy = 0.2e−iπ/6, δxx = 5mm, δyy = 7.5mm, δxy = δyx =

10mm.

Figure 3.1 demonstrates the evolution of the average Stokes parameters with grow-
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Figure 3.1: On-axis average Stokes parameters of an EMGSM beam propagating in
turbulent atmosphere as a function of distance z[m]. (a) 〈S0(0, ω)〉, (b) 〈S1(0, ω)〉,
(c) 〈S2(0, ω)〉, (d) 〈S3(0, ω)〉.
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Figure 3.2: On-axis scintillation indexes of the instantaneous Stokes parameters of an
EMGSM beam propagating in turbulent atmosphere as a function of distance z[m].
(a) c[S0(0, ω)], (b) c[S1(0, ω)], (c) c[S2(0, ω)], (d) c[S3(0, ω)].
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Figure 3.3: (a) Average Stokes parameter 〈S1(0, ω)〉 and (b) scintillation index
c[S1(0, ω)] as function of propagation distance z[m] for C2

n = 0 (solid curves), for
C2
n = 10−14m−2/3 (dashed curves) and for C2

n = 10−13m−2/3 (dotted curves). Param-
eters differ from the ones given in the text are: Ix = 1.21, Iy = 1.

ing distance z from the source. Figure 3.2 shows the same dependence but for the

scintillation indexes of the four Stokes parameters. It is seen from Figs. 3.1 and 3.2

that even though the average Stokes evolve monotonically the scintillation indexes in

the instantaneous Stokes parameters may have maxima and minima, and, moreover,

tend to infinity at certain location. Especially complicated behavior is exhibited by

c[S1(0, ω)], since it might have zero in its denominator.

In Figure 3.3 we show the dependence of the average Stokes parameter S1 (Figure

3.1(a)) and its scintillation index (Figure 3.1(b)) on the local strength of atmospheric

turbulence (C2
n). We see that with growing strength of turbulence the average Stokes

parameter tends to zero faster and its scintillation index takes on lower values.

3.3 Sensing of semi-rough targets embedded in atmospheric

turbulence by means of stochastic electromagnetic beams

The possibility of using coherence and polarization properties of the source in remote

sensing and in recognition of targets embedded in random media is still a largely

open problem and in majority of publications is confined to scalar treatment [60],

[17]. Only recently a convenient technique which uses ABCD matrices together with
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the extended Huygens-Fresnel integral developed in [61] was adopted to the GSM

beam propagation in active LIDAR systems operating in the atmosphere (source-

atmosphere- target- atmosphere- detector) [62] (see also [63] where a particular case

of a perfectly smooth target was discussed in details). In Figure 3.4 we show a

typical active LIDAR system, i.e. the one in which the properties of illumination

can be adjusted. We also assume the LIDAR system to be bistatic, i.e. having

sufficient separation distance between transmitter and receiver, in order to ignore

possible backscatter amplification effects [17].

According to the tensor technique the source, the propagating beam, as well as

all the optical elements in the system, are characterized by 4x4 tensors. If, as is

assumed here, atmospheric turbulence and the target are isotropic, i.e. they affect

both components of the electric field in the same way, they can be modeled with

the help of scalar correlation functions, otherwise they can also be characterized by

4x4 tensors. We will use the electromagnetic Gaussian Schell-model beams [5] for our

analysis since it is the only model beam introduced so far for which the tensor method

was developed specifically for atmospheric propagation problems. Moreover several

techniques were developed for synthesis of this class of beams in the laboratory (cf.

[64]).

In almost all the previous studies, including [62], only the direct propagation prob-

lem through the LIDAR system has been discussed. In this section we will analyze

the propagation of the spectral degree of coherence and the state of polarization of

the beam, which were not analyzed before, and use the comparison between their

distributions in the source plane and in the receiver plane for identification of some

of the target characteristics, a typical roughness, for instance. In other words, we

will tackle the inverse problem of target identification with the help of two easily

practically accessible properties of the electromagnetic stochastic beams.
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3.3.1 Propagation of an electromagnetic Gaussian Schell-model beam

through the LIDAR system

We begin by a brief review of the theoretical development pertaining to propagation of

the electromagnetic Gaussian Schell-model beam [EGSM] in the atmospheric LIDAR

system. For detailed derivation of the formulas in this section the reader may consult

with Ref. [62].

In the source (transmitter) plane each of the four elements of the cross-spectral

density matrix [5] of an electromagnetic Gaussian Schell beam in its tensor notation

is given by the expression

Wαβ(r̃, 0) = AαAβBαβexp[−
ik

2
r̃TM−1

0αβ r̃], (α = x, y; β = x, y) (3.18)

where r̃ is the 4 × 4 vector such that r̃ = (r1, r2), r1 and r2 being two-dimensional

vectors in the source plane, M−1
0αβ are the 4× 4 matrices of the form

M−1
0αβ =

 1
ik

( 1
2σ2
α

+ 1
δ2
αβ

)I i
kδ2
αβ

I

i
kδ2
αβ

I 1
ik

( 1
2σ2
β

+ 1
δ2
αβ

)I

 . (3.19)

Parameters Aα, Bαβ, σα and δαβ entering Eq. (3.18) are independent of position but,

in general, depend on the frequency. We assume that the realizability conditions [65]

or [66] and the beam conditions [67] for the electromagnetic Gaussian-Schell model

source hold. I is the 2x2 unit matrix. For uniformly polarized sources, sometimes

also called isotropic, one must set σx = σy = σ [67].

The elements of the cross-spectral density matrix of the beam propagating in the

atmospheric turbulence from the source plane to the target plane, located at distance



61

l1 and having focal length f1, are given by the following expressions [62]

Wαβ (̃t, l1) =
AαAβBαβ

[det(Ã + B̃M−1
0αβ + B̃P̃0)]1/2

exp[−ik
2

t̃
T
M−1

1αβ t̃],

(α = x, y; β = x, y),

(3.20)

where t̃ = (t1, t2), t1 and t2 are the two-dimensional vectors in the target plane. Also

in Eq. (3.20) the 4× 4 matrices in the exponential terms have the forms

M−1
1αβ =(C̃ + D̃M−1

0αβ + D̃P̃0)(Ã + B̃M−1
0αβ + B̃P̃0)−1 + P̃0+

(B̃
−1T
− 1

4
P̃
T

0 )(M−1
0αβ + B̃

−1
Ã + P̃)−1P̃0,

(3.21)

where auxiliary 4 × 4 matrices Ã, B̃, C̃ and D̃ can be shown to be given by the

expressions

Ã =

 A 0I

0I A∗

 , B̃ =

 B 0I

0I −B∗

 , C̃ =

 C 0I

0I −C∗

 ,

D̃ =

 D 0I

0I D∗

 ,

(3.22)

matrices A, B, C and D being the elements of the classic ABCD-matrix of the

system:  A B

C D

 =

 I l1I

(−1/f1)I (1− l1/f1)I

 . (3.23)

At this stage the focusing properties of the target are already included in the

analysis via the focal length f1 of a Gaussian lens which is a part of the target model

(see Fig.3.4).
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Figure 3.4: Schematic illustration of an active bistatic LIDAR system operating in
the atmosphere.

Further, in Eqs. (3.20) and (3.21) the 4× 4 matrix P̃0 has the form

P̃0 =
2

ikρ2
o

 I −I

−I I

 , (3.24)

where ρo is the coherence radius of the spherical wave propagating in weak atmo-

spheric turbulence with Kolmogorov power spectrum:

ρ0 = (0.545k2C2
nl1)−3/5, (3.25)

with k being the wave number of the propagating wave and C2
n being the refractive

index structure parameter [17].

The elements of the transverse cross-spectral spectral density matrix of the beam

at the receiver collecting lens located at distance l1 from the target are given by the
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expressions

Wαβ(ṽ, 2l1) =

4πβ2AαAβBαβ

k2[det(̃I + B̃M−1
1αβ + B̃T̃ + B̃P̃1)]1/2[det(Ã + B̃M−1

0αβ + B̃P̃0)]1/2
,

× exp[−ik
2

ṽTM−1
2αβṽ]

(3.26)

where ṽ = (v1,v2), v1 and v2 are the two-dimensional vectors in the target plane

and the 4× 4 matrices M−1
2αβ have the forms

M−1
2αβ = P̃1 + B̃

−1
− (B̃

−1
− 1

2
P̃1)T (M−1

1αβ + T̃ + B̃
−1

+ P̃1)−1(B̃
−1
− 1

2
P̃1). (3.27)

In Eqs. (3.26) and (3.27) the 4 × 4 matrix T̃ represents the combination of the

target size and the correlation function of its roughness, and β is the normalization

parameter. According to the Goodman’s model [68], T̃ is expressed in tensor notation

[62], and has the form

T̃ =

 −2i
k

[
1
W 2
R

+ 1
l2c

]
I 2i

kl2c
I

2i
kl2c

I −2i
k

[
1
W 2
R

+ 1
l2c

]
I

 , (3.28)

with WR being the r.m.s. width of the target and lc is its r.m.s. transverse correlation

width. The model can be used for a wide variety of targets in terms of their roughness

and sizes. In particular, the surface roughness may vary from smooth (β2 = k2/4π,

lc → ∞), to Lambertian (β2 = T 2
0 /πl

2
c , lc → 0), T0 is the r.m.s. target reflection

coefficient; and its size can range from point (WR → 0) to unbounded (WR →∞).
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3.3.2 Sensing by the spectral degree of coherence

In this section we will first investigate propagation of the spectral degree of coherence

of the EGSM beam in the atmospheric LIDAR system and then will use this knowl-

edge for solving one related inverse problem. The spectral degree of coherence at two

spatial positions, say ρρρ1 and ρρρ2, which can be vectors in the source, target, collector

planes as well any other two positions within the LIDAR system, was defined by the

expression (1.14). In this study we will only be interested in the absolute value of

this quantity which represents a fully coherent beam if its value is 1 and incoherent

beam if its value is 0.

In Fig. 3.5. we demonstrate typical evolution of the degree of coherence of the

beam in three planes, transverse to direction of propagation of the beam showing

its modulus: source [Figs. 3.5(A), 3.5(D) and 3.5(G)]; target [Figs. 3.5(B), 3.5(E)

and 3.5(H)] and collector [Figs. 3.5(C), 3.5(F) and 3.5(I)] planes. In the upper row

of the plot [Fig. 3.5(A), 3.5(B) and 3.5(C)] we show the changes in the modulus

of the degree of coherence of a beam generated by a nearly incoherent source. We

see that in this case the degree of coherence only broadens on passage through the

system. In this case among the three competing mechanisms that affect coherence,

source correlations, roughness of the target and atmospheric turbulence, the first

dominates. In the second row [Fig. 3.5(D), 3.5(E) and 3.5(F)] we see the evolution

of the absolute value of the degree of coherence in the case when the beam is initially

partially coherent. We notice that degree of coherence does not change significantly on

passage through the LIDAR, since the effect of turbulence and the target is practically

compensated by the source correlations. Moreover, as we will later show, it is possible

to find, for a given LIDAR setup, the source that generates the beam whose degree

of coherence at the collecting lens plane is the same as in the source plane. In the

third row [Fig. 3.5(G), 3.5(H) and 3.5(I)] we show the case where the source is
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assumed to be almost coherent and the degree of coherence of the propagating beam

can only decrease on passage through the LIDAR due to the cumulative effect of

atmospheric turbulence and source correlations. After considering these three generic

cases, especially the case of a partially coherent source (second row) we can conclude

that: if the degree of coherence remains approximately the same on passage through

the LIDAR system then r.m.s. target roughness is approximately the same as initial

r.m.s. source correlation widths.

Figure 3.5: Evolution of the modulus of the spectral degree of coherence of the beam
passing through the LIDAR system. The source plane (A), (D), (G), the target plane
(B), (E), (H); the collecting lens plane (C), (F), (I). The parameters of the source
and system are chosen to be: λ = 1.55µm, C2

n = 10−14m−2/3, L = 500m, lc = 1cm;
σx = σy = 2.5cm, Ax = Ay = 1. (A), (B), (C): lc = 1cm, δyy = δxx = 1mm, (D), (E),
(F) lc = 5mm, δyy = δxx = 5mm; (G), (H), (I) lc = 1mm, δyy = δxx = 1cm.

We will now employ the information of Fig. 3.5 for solving one inverse problem of

target recognition. We will restrict ourselves to the case when the target is unbounded

and planar, i.e. WR → ∞ and f1 → ∞ and will solely focus our attention on

estimation of the r.m.s. width of target surface lc.
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It will be sufficient to consider the following example. Let us first fix the value

of target roughness parameter, say at lc = 2mm and assume that it is known to the

observer at the transceiver. Then we will compare in Fig. 3.6 the pairs of curves of

the degree of coherence in the source (solid curves) and in the collecting lens (dashed

curves) planes for six sets of source correlation coefficients. The case when the two

curves are the closest to each other must provide an estimate of lc: it should be

approximately the same as the correlation coefficients. In Fig. 3.6(D) the two curves

almost overlap - consequently the correlation coefficient lc ≈ 5mm. Since the actual

value of lc is 2mm we conclude that this fast technique can provide an estimate of

the typical target roughness valid at least on the same order of magnitude. Multiple

simulations that were run for various source, system and target parameters confirm

this conclusion.

3.3.3 Sensing by the state of polarization

We will now turn to a more accurate technique for estimation of target roughness the

one which involves measurement of polarization properties of the beam. Typically,

the polarization state is acquired with the help of a set of four Stokes parameters (see

Eq. (1.21)).

In Fig. 3.7 we demonstrate typical changes that the Stokes parameters of an

electromagnetic Gaussian Schell-model beam undergo on passage through the LIDAR

system. From this figure we notice that, similarly to the spectral density of the beam

[62], the Stokes parameters broaden and the absolute values of maxima at the center

of the beam can only decrease.

In Fig. 3.8 we show a typical evolution of the polarization ellipse (see Eqs. (1.22)-

(1.23)) in the LIDAR system for both types of sources uniformly and non-uniformly

polarized. We notice that in the case of the uniformly polarized source (Fig. 3.8, left
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Figure 3.6: Comparison of the modulus of the degree of coherence in the source
plane (solid curves) with that in the collector plane (dashed curves). The parameters
of the source, system and target are: λ = 1.55µm, C2

n = 10−14m−2/3, L = 1km,
σx = σy = 2.5cm; Ax = Ay = 1, δxx = δyy = δ, Bxy = 0. (A) δ = 0.1mm; (B)
δ = 0.5mm; (C) δ = 1mm; (D) δ = 5mm; (E) δ = 1cm; (F) δ = 5cm.
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Figure 3.7: Propagation of Stokes parameters through a LIDAR system: (A) in the
source plane; (B) in the target plane; (C) Collecting lens plane. Source, system and
target parameters are chosen to be: l1 = 1.5km, f1 = 106m, WR = 1m, lc = 0.1mm,
λ = 0.6328µm, Ax = 1.3, Ay = 1, Bxy = 0.2e−iπ/6, σx = σy = 2.5cm, δxx = 5mm,
δyy = 7.5mm, δxy = 1cm.
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column) the ellipse slightly rotates on passage from the source plane [Fig. 3.8(A)] to

target plane [Fig. 3.8(C)] and then rotates back to its original value on passage from

target to collector [Fig. 3.8(E)]. This effect is similar to line-of sight propagation of

the polarization state of the beam at long distances. In this case the target acts on

the beam the same way as long distance propagation in the atmosphere [69]. We also

notice even though we have started from uniformly polarized beam in the target plane

the polarization ellipses have different orientations; further in the collector plane the

ellipses again acquire the same orientation. The same can be easily verified about the

other normalized polarization properties such as degree of polarization (see also [62])

and the ellipticity of the beam (ratio of the semiaxes).

In the case of the non-uniformly polarized source (Fig. 3.8, right column) the

ellipse typically rotates at a very large angle on a passage from the source [Fig.

3.8(B)] to the target [Fig. 3.8(D)] and does not change on propagation from target to

collector [Fig. 3.8(F)], never returning to its original orientation. Such phenomenon

is in agreement with results obtained for line-of sight propagation of non-uniformly

polarized beams in atmospheric turbulence [70].

We now turn to the solution of the related inverse problem that we have already

treated in the previous section. As we will now illustrate, it is possible in a number of

situations to accurately predict the target surface r.m.s. width lc, from the knowledge

of the initial source correlations and the orientation angle of the on-axis polarization

ellipse in the collecting lens plane. In Fig. 3.9(A), after fixing the source and system

parameters, we plot the on-axis orientation angle of the polarization ellipse of the

beam in the collecting plane, varying with lc. All the correlation widths of the beam

in the source plane were selected in the range from 1mm to 1cm. We can see from the

plot that the orientation angle θ in the collecting lens plane varies only when lc goes

through the same range of values. It is true for different values of C2
n, even though

for stronger turbulence (dotted curve) the range of variation becomes smaller.
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Figure 3.8: Propagation of polarization ellipses through a LIDAR system in case of
a uniformly polarized source (with σx = σy = 2.5cm) (A), (C) and (E) and non-
uniformly polarized source (σx = 2.5cm, σy = 3.5cm) (B), (D) and (F). Figures (A),
(B) source plane; (C), (D) target plane; (E), (F) collecting lens plane. The other
parameters of the source and of the system are the same as in Fig. 3.7.
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In Figs. 3.9(B) and 3.9(C) we show the same setup as in Fig. 3.9(A) but for

different incident beam parameters. In particular, in Fig. 3.9(B) the source corre-

lations are all chosen to be in the range from 0.1mm to 1mm and we see that the

variation of θ with lc occurs exactly in the same range. Similarly for Fig. 3.9(C) the

range of initial source correlations was chosen to be 6cm to 10cm and we find that,

even though very slightly, θ varies in this range. Based on this analysis we can make

the following conclusion: if the source correlation coefficients are approximately equal

to the r.m.s transverse target surface roughness lc polarization properties of the beam

in the collecting lens plane vary sharply with lc. This remark can be now used to

solve the related inverse problem, i.e. the problem of finding lc from the knowledge

of initial beam correlations and changes in polarization state, for instance orientation

angle “theta”.

Let us consider the following example. Suppose the unbounded flat target has

r.m.s. correlation width lc = 2mm, which is not known at the transceiver. We aim

to recover the value of lc by analyzing the variation of the orientation angle θ with

the source correlation parameters. In order to establish an efficient and legitimate

“tuning” of the source correlations we will fix the initial correlations at starting values

δ
(0)
xx = 6 × 10−5m, δ

(0)
yy = 7.5 × 10−5m and δ

(0)
yy = 8.5 × 10−5m. In order to establish

the range of variation of these parameters we will multiply them by parameter u ∈

[1; 1000]. In Fig. 3.10 we show the variation of the orientation angle θ versus u.

We see that when u ≈ 30, which corresponds to the set of correlation coefficients

δxx = 30 × 6 × 10−5 = 1.8mm, δyy = 30 × 7.5 × 10−5 = 2.2mm and δxy = 30 ×

8.5× 10−5 = 2.5mm, the change in θ is the largest. This implies that lc should have

approximately the same values. By recalling that lc was initially chosen to be 2mm

we find that the estimation is, in fact, very precise, and moreover is always exactly

the average value of δxx and δyy, as this and multitude of other runs show.

Although our calculations in Figs. 3.9 and 3.10 pertain to uniformly polarized
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Figure 3.9: Orientation angle of the polarization ellipse at the collecting lens plane
versus r.m.s. target surface roughness lc for free space scenario (solid curve), for
C2
n = 5×10−14 (dashed curve) and for C2

n = 10−13 (dotted curve). Source and system
parameters are: σx = σy = 2.5cm; Ax = 0.1; Ay = 0.9; Bxy = 0.1; λ = 1.55× 10−6m,
l1 = 1km. (A) δxx = 6mm; δyy = 7.5mm; δxy = 8.5mm; (B) δxx = 0.6mm; δyy =
0.75mm; δxy = 0.85mm (C) δxx = 6cm; δyy = 7.5cm; δxy = 8.5cm.
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parameter u. All other parameters of the source and of the system are the same as
in Fig. 3.9.

sources similar results can be obtained in case when the source is non-uniformly

polarized.

3.4 Conclusion

We have derived the expressions for the contrasts (scintillation indexes) of the Stokes

parameters of GSM beams on propagation in turbulent atmosphere, and performed

careful numerical analysis of the results. In particular, we revealed that some of the

Stokes parameters have an undefined scintillation index at certain distances, others

possess different trends compared with the intensity-based scintillation index. Our

predictions can be used for creation of optical communication schemes which use

Stokes parameters as information carriers.

We suggest two methods for estimation of r.m.s. surface roughness, lc, of a target

embedded in the turbulent atmosphere. Both methods are based on correlation-

induced changes in electromagnetic stochastic beams on propagation. The first tech-

nique uses the degree of coherence of the electromagnetic beam which can be directly
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measured [5], [71]. The second technique suggests measurement of the Stokes param-

eters and then calculation of one of the normalized polarization properties, say, the

orientation angle of the polarization ellipse. While the method involving the mea-

surement of the degree of coherence of the beam provides a rough estimate of lc (on

the order of magnitude), the technique based on the polarization state measurement

recovers lc with a remarkable accuracy. In any case the information that stochastic

electromagnetic beams may carry in many circumstances is sufficient for identification

of the nature of the target.



Chapter 4

Scattering of Random Light Beams

4.1 Description

Using the angular spectrum representation of fields and the first Born approximation

we develop a theory of scattering of scalar waves with arbitrary spectral composition

and correlation properties from collections of particles which have either deterministic

or random distributions of the index of refraction and locations. An example illus-

trating the far-field intensity and the far-field spectral degree of coherence produced

on scattering of a model field from deterministic collections of several particles with

Gaussian potentials is considered.

Further, using scattering matrices and the angular spectrum representation of

waves, we develop the analytical theory of scattering of random scalar waves from

random collections of particles, valid under the first Born approximation. We demon-

strate that in the calculation of far-field statistics, such as the spectral density and

the spectral degree of coherence, the knowledge of the pair-structure factor of the

collection is crucial. We illustrate our analytical approach by considering a numerical

example involving scattering of two partially correlated plane waves from a random

distribution of spheres.

A three-dimensional multi-Gaussian function, being a finite sum of Gaussian func-

tions, is adopted for modeling a spherically symmetric scatterer with a semisoft

boundary, i.e. one that has a continuous and adjustable drop in the index of re-

fraction. A Gaussian sphere and a hard sphere are the two limiting cases when the

number of terms in multi-Gaussian distribution is one and infinity, respectively. The

75
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effect of the boundary’s softness on the intensity distribution of the scattered wave is

revealed. The generalization of the model to random scatterers with semisoft bound-

aries is also outlined.

4.2 Scattering of scalar light fields from collections of parti-

cles

In a recent publication [72] a new theory was developed that makes it possible to study

scattering of scalar fields of arbitrary spectral composition and coherence properties

from deterministic and random continuous scatterers. The combination of scattering

matrix theory and the angular spectrum decomposition of fields employed in Ref.

[72] made the treatment of complex phenomenon of scattering complete and sim-

ple. Following Ref. [72] we will first review the theory of scattering of scalar fields

with arbitrary spectral and coherence properties from static deterministic or random

media. Let us first consider a monochromatic scalar field at a point with position

vector r and frequency ω, U (i)(r;ω)e−iωt, propagating into the half-space z > 0. Its

space-dependent part can be represented in the form of the angular spectrum of plane

waves

U (i)(r;ω) =

∫∫
a(i)(u;ω)eik(u⊥·r+uzz)d2u⊥, (4.1)

where integration extends over the ux, uy plane. Here k = ω/c is the wave-number, c

being the speed of light in vacuum; u = (ux, uy, uz) is a unit vector, u⊥ = (ux, uy, 0)

and

uz =
√

1− |u⊥|2, when |u⊥| ≤ 1 (homogeneous waves) (4.2a)

= i
√
|u⊥|2 − 1, when |u⊥| > 1 (evanescent waves). (4.2b)

It was shown in Refs. [72] and [73] that the total field produced on scattering,
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being the sum of the incident and the scattered fields, can be calculated by the formula

U (t)(r;ω) =

∫∫
a(t)(u;ω)eik(u⊥·r±uzz)d2u⊥, (4.3)

where the scattering amplitude of the total scattered field is given by the expression

a(t)(u, ω) = S(u,u′, ω)a(i)(u′, ω), (4.4)

S being the spectral scattering matrix. The positive or negative sign in Eq. (4.3)

must be chosen for forward-scattering and back-scattering portions of the scattered

field, respectively.

If the field incident on the scatterer is stochastic, wide-sense statistically station-

ary, then its second-order, two-point spatial correlation properties (in the frequency

domain) can be characterized by the cross-spectral density function (Eq. (1.57)), or

by its angular correlation function

A(i)(u1,u2;ω) = 〈a(i)∗(u1;ω)a(i)(u2;ω)〉, (4.5)

which can be shown to be the four-dimensional Fourier transform of W (i) [72]. The

cross-spectral density matrix of the total scattered field then becomes

W (t)(r1, r2;ω) = 〈U (t)∗(r1;ω)U (t)(r2;ω)〉

=

∫∫∫∫
M(u1,u2; u′1,u

′
2;ω)A(i)(u′1,u

′
2;ω)

× eik(u2·r2−u1·r1)d2u1⊥d
2u2⊥d

2u′1⊥d
2u′2⊥,

(4.6)

where

M(u1,u
′
1,u2,u

′
2;ω) = S∗(u1,u

′
1;ω)S(u2,u

′
2;ω). (4.7)

is the pair scattering matrix [72].
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Under the first Born approximation the scattering matrix may be expressed in

terms of the scattering potential in a simple manner. Let n(r, ω) be the refractive

index distribution throughout the scatterer. The scattering potential F (r, ω) was

given in terms of the refractive index (Eq. (1.49)), in this situation the pair-scattering

matrix of the total field takes the form

M(u1,u2; u′1,u
′
2;ω) = F̃ ∗[k(u1 − u′1), ω]F̃ [k(u2 − u′2), ω]. (4.8)

where tilde denotes the two dimensional Fourier transform. In the case when the

scatterer is random the expression above generalizes to

M(u1,u
′
1,u2,u

′
2;ω) = 〈S∗(u1,u

′
1;ω)S(u2,u

′
2;ω)〉rm, (4.9)

where 〈·〉rm denotes the average taken over the ensemble of realizations of the scat-

tering medium.

In particular, in the far field of the scatterer the total field U (t) and the cross-

spectral density function W (t) along directions specified by unit vectors u1 and u2

reduce to the forms [72]:

U (t)(ru, ω) ≈ ±2πiuz
k

eikr

r

∫
S(u,u′, ω)a(i)(u′, ω)d2u′⊥, (4.10)

W (t)(ru1, ru2;ω) ≈ ± 4π2

k2r2
uz1uz2

∫ ∫
M(u1,u2; u′1,u

′
2;ω)

×A(i)(u′1,u
′
2;ω)d2u′1d

2u′2.

(4.11)

With the help of the cross-spectral density function W (t)(r1, r2;ω) (Eq.(4.6)) we

may at once determine the spectrum S(t)(r;ω) (Eq.(1.15)) and the spectral degree of

coherence µ(t)(r1, r2;ω) (Eq.(1.14)) of the total field.

Suppose that light is being scattered from a static collection of particles of L
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different types which occupy domain D (see Fig. 4.1). To characterize the response

of such a collection to the incident light the discrete-particle model is then used, in

which the scattering potential F (r, ω) of the collection can be represented by a finite

sum of potentials of individual scatterers, i.e.

F (r, ω) =
L∑
l=1

Ml∑
m=1

fl(r− rm, ω), (4.12)

where rm is the location of a scattering center, fl is the scattering potential of the

scatterer of type l, Ml is the number of particles of type l.

z

u
u'1

u'2
f (r-r  , ω)n

1

2u

Figure 4.1: Notation relating to the scattering of two correlated plane waves from a
collection of particles.

In the case when the collection is static but random one can characterize its

response with the help of the correlation function of the scattering potential which

reduces for the particulate medium to the form [Ref. [5], Sec. 6.3.1]

CF (r1, r2, ω) = 〈F ∗(r1, ω)F (r2, ω)〉rm

=
L∑
l=1

L∑
j=1

Ml∑
m=1

Nj∑
n=1

〈f ∗l (r− rm, ω)fj(r− rn, ω)〉rm.
(4.13)

If all particles in the collection are identical the summations over indexes l and j in
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the expressions (4.12) and (4.13) may be omitted and they become

F (r, ω) =
N∑
n=1

f(r− rn, ω), (4.14)

CF (r1, r2, ω) =
M∑
m=1

N∑
n=1

〈f ∗(r1 − rm, ω)f(r2 − rn, ω)〉rm. (4.15)

In scattering from collections of particles by scalar wave-fields several cases should

be differentiated. The incident field can be either deterministic or stochastic and,

besides, particles can form a deterministic (Sec. 4.2.1) or random collection (Sec.

4.2.3).

4.2.1 Scattering from deterministic collections

We begin by considering the simplest situation when the incident field, say U (i)(r, ω),

is deterministic and it is scattered from a deterministic collection of particles, i.e. the

distribution of the refractive index within particles and their locations are determin-

istic. In this case the scattering potential of the system of n (identical) particles is

given by Eq. (4.14).

In this case, within the validity of the first Born approximation the scattering

matrix takes the form (Ref. [72], Eq. (35))

S(u,u′, ω) = F [F (r, ω)] =
N∑
n=1

F [f(r− rn, ω)]. (4.16)

where F denotes two-dimensional Fourier transform.

On performing Fourier transforms of potentials of individual particles with the
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help of variables Rn = r− rn (n=1...N) we find that

S(u,u′, ω) =
N∑
n=1

e−irn·Kf̃ [K, ω], (4.17)

where K = k(u− u′) is the so-called momentum-transfer vector.

The total scattered field produced on scattering can be found with the help of

Eqs. (4.3), (4.4) and (4.17) to be

U (t)(r, ω) =
N∑
n=1

∫∫
e−irn·Kf̃ [K, ω]

× a(i)(u′, ω)e−ik(u⊥·r±uzz)d2u⊥d
2u′⊥.

(4.18)

In the far-zone of the scatterer the total field reduces to the expression involving

single integral, i.e.

U (t)(ru, ω) = ±2πiuz
k

eikr

r

N∑
n=1

e−ikrn·u
∫
eikrn·u

′
f̃ [K, ω]a(i)(u′, ω)d2u′⊥. (4.19)

We will now consider the case when the field incident on the system of particles is

stochastic and is characterized by the cross-spectral density function W (i)(r1, r2, ω).

The cross-spectral density function of the total scattered field is then given by ex-

pression (4.6). Noting that [see Eq. (4.17)]

S∗(u1,u
′
1, ω)S(u2,u

′
2, ω) =

M∑
m=1

N∑
n=1

e−i[K2·rn−K1·rm]f̃ ∗(−K1, ω)f̃(K2, ω), (4.20)

where Kα = k(uα − u′α) (α = 1, 2), we find, on substituting from Eq. (4.20) into
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Eq. (4.6) that

W (t)(r1, r2, ω) =
M∑
m=1

N∑
n=1

∫∫∫∫
e−i[K2·rn−K1·rm]f̃ ∗(−K1, ω)f̃(K2, ω)

×A(i)(u′1,u
′
2, ω)eik(u2·r2−u1·r1)d2u1⊥d

2u2⊥d
2u′1⊥d

2u′2⊥.

(4.21)

In the far zone of the scattering volume the last equation reduces to the formula

W (t)(ru1, ru2, ω) = ± 4π2

k2r2
u1zu2z

M∑
m=1

N∑
n=1

∫∫
e−i[K2·rn−K1·rm]

× f̃ ∗(−K1, ω)f̃(K2, ω)A(i)(u′1,u
′
2, ω)d2u′1⊥d

2u′2⊥.

(4.22)

4.2.2 Application of the theory to two partially correlated polychromatic

plane waves incident on a deterministic medium

As an application to the theory discussed in Sec. 4.2.1 we consider the incident field

U (i) which consists of two mutually correlated polychromatic plane waves propagating

along directions u′1 and u′2, and scattered from a collection of spheres. The spectral

amplitude a(i)(u′, ω) of the incident field has the form

a(i)(u′, ω) = a(i)(u′1, ω)δ(2)(u′ − u′1) + a(i)(u′2, ω)δ(2)(u′ − u′2), (4.23)

δ(2)(u) being the spherical Dirac delta-function.

On substituting from Eq. (4.23) into Eq. (4.5), we find that the angular correlation
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function of the incident field takes the form

A(i)(u′1,u
′
2;ω) = a(u′1,u

′
1;ω)δ(2)(u′ − u′1)δ(2)(u′ − u′1)

+ a(u′2,u
′
2;ω)δ(2)(u′ − u′2)δ(2)(u′ − u′2)

+ a(u′1,u
′
2;ω)δ(2)(u′ − u′1)δ(2)(u′ − u′2)

+ a(u′2,u
′
1;ω)δ(2)(u′ − u′2)δ(2)(u′ − u′1),

(4.24)

where the angular correlation function a(u′1,u
′
2;ω) is assumed to be Gaussian, i.e

a(u′p,u
′
q;ω) = apqe

− k
2∆2

2
(u′q−u′p)2

(p, q = 1, 2), (4.25)

where apq and ∆ may depend, in general, on frequency ω.

Suppose that the scatterers are spherical centered at points rc = (xn, yn, zn),

having a three-dimensional (soft) Gaussian potential

f(rn;ω) = Bexp

[
−(x− xn)2 + (y − yn)2 + (z − zn)2

2σ2

]
. (4.26)

The variance σ2 is taken to be independent of position but, in general, will depend on

the frequency. On calculating three-dimensional Fourier transform of the expression

(4.26) we find that

F̃ (K;ω) = B(2π)(3/2)σ3e−K
2σ2/2

N∑
n=1

eixnKxeiynKyeiznKz . (4.27)

On substituting from Eq. (4.47) into Eq. (4.8) and setting K = k(u − u′) we find

that, within the accuracy of the first Born approximation, the pair scattering matrix
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has the form

M(1)(u1,u2; u′1,u
′
2;ω) = B2(2π)3σ6

× (e−
k2σ2

2
(u1−u′1)2

N∑
n=1

e−ikxn(u1x−u′1x)e−ikyn(u1y−u′1y)e−ikzn(u1z−u′1z))

× (e−
k2σ2

2
(u2−u′2)2

N∑
n=1

eikxn(u2x−u′2x)eikyn(u2y−u′2y)eikzn(u2z−u′2z)).

(4.28)

When we substitute from Eqs. (4.25) and (4.28) (with the help of Eq. (4.24))

first into Eq. (4.11) and then into Eq. (1.15) we obtain the formula for the spectral

density of the far field

S(t)(ru;ω) =
B2(2π)5σ6u2

z

k2r2
×{

e−k
2σ2(u−u′1)2

(
N∑
n=1

e−ikxn(ux−u′1x)e−ikyn(uy−u′1y)e−ikzn(uz−u′1z)

×
N∑
n=1

eikxn(ux−u′1x)eikyn(uy−u′1y)eikzn(uz−u′1z))a11

+ e−k
2σ2(u−u′2)2

(
N∑
n=1

e−ikxn(ux−u′2x)e−ikyn(uy−u′2y)e−ikzn(uz−u′2z)

×
N∑
n=1

eikxn(ux−u′2x)eikyn(uy−u′2y)eikzn(uz−u′2z))a22+

2e−
k2σ2

2
(u−u′1)2

e−
k2σ2

2
(u−u′2)2

e−
k2∆2

2
(u′2−u′1)2

×Re
{
a12(

N∑
n=1

e−ikxn(ux−u′1x)e−ikyn(uy−u′1y)e−ikzn(uz−u′1z)

×
N∑
n=1

eikxn(ux−u′2x)eikyn(uy−u′2y)eikzn(uz−u′2z))
}}

.

(4.29)

In Fig. 4.2 we show distributions of 1, 2, 5 and 10 spheres that we used for all

our numerical examples (Figs. 3-6). The parameters used for all of the numerical

calculations are: λ = 0.633× 10−6m, B = 1, a1 = 0.6eiπ/7, a2 = 0.9eiπ/6.
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Figure 4.2: The coordinates of the particles, (a) (0, 0, 1m), (b) (0, 3 × 10−7m, 1m),
(0,−3 × 10−7m, 1m), (c) (0, 0, 1m), (0, 3 × 10−7m, 1m), (0,−3 × 10−7m, 1m), (3 ×
10−7m, 0, 1m), (−3 × 10−7m, 0, 1m), (d) (0, 0, 1m), (0, 3 × 10−7m, 1m), (0,−3 ×
10−7m, 1m), (3 × 10−7m, 0, 1m), (−3 × 10−7m, 0, 1m), (0, 0, 1 + 3 × 10−7m), (0, 3 ×
10−7m, 1+3×10−7m), (0,−3×10−7m, 1+3×10−7m), (3×10−7m, 0, 1+3×10−7m),
(−3× 10−7m, 0, 1 + 3× 10−7m).
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In Figs. 4.3-4.5 we illustrate the behavior of the spectral density of the far field

calculated from Eq.(4.29) and normalized by the factor B2(2π)5σ6u2
z/k

2r2. By these

sets of contour-plots we show the dependence of spectral density distribution on

various parameters of the incident field and of the particle system. Angles θ and φ

are the polar and the azimuthal angles of the unit vector u in spherical coordinates,

i.e. ux = cosθcosφ, uy = cosθsinφ, uz = sinθ. Angles θ′1,2, φ′1,2 are the polar and

azimuthal angles of vectors u′1,2 in spherical coordinates. For figures 3-5 we have

chosen the directions of the incident field to be: θ′1 = −π/4; φ′1 = −π/3; θ′2 = π/6;

φ′2 = π/5.

In Fig. 4.3 we show the behavior in spectral density of far fields as a number of

particles in the system grows from 1 to 10 [see Fig. 4.2], provided the size of the

individual particles as well as correlation and directions of the incident plane waves

are kept fixed. One can see that with the increase of the number of particles from

1 to 5 [see figures 4.3(a)-4.3(c)] the distribution becomes more localized around two

centers corresponding to directions of the incident plane waves. However, for larger

number of particles, e.g. 10, [Fig. 4.3(d)], the localization becomes less pronounced

again.

In Fig. 4.4 the spectral density of the far field is shown for four different values

of the scaled size of the particles, kσ. As the size decreases the interference effects

disappear (Fig. 4.4(a)) and the distribution becomes more localized (compare peak

values in Figs. 4.4(a) and 4.4(b)). However with further decrease of kσ the localization

becomes less noticeable [Figs. 4.4(c) and 4.4(d)].

In Fig. 4.5 we compare the changes in far-field spectral density with the scaled

degree of correlation k∆ of the incident plane waves. Figures 4.5(c) and 4.5(d) refer

to 2-particles system. One can readily see that for two-particle system the influence

of k∆ is less evident (compare 4.5(c) and 4.5(d)).
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Figure 4.3: Contours of the spectral density of the far field produced by scattering of
two correlated plane waves on particles with Gaussian potential. The parameters σ
and ∆ are kept fixed: kσ = 1, k∆ = 1, (a) 1 particle; (b) 2 particles; (c) 5 particles;
(d) 10 particles.
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Figure 4.4: Contours of the spectral density of the far field produced by scattering of
two correlated plane waves on two particles with Gaussian potential. The parameter
∆ is kept fixed: k∆ = 1, (a) kσ = 3; (b) kσ = 1.5 (c) kσ = 0.9; (d) kσ = 0.5.
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Figure 4.5: Contours of the spectral density of the far field, produced by scattering of
two correlated plane waves on two particles with Gaussian potential. The parameter
σ is kept fixed: kσ = 1, (a) One particle, k∆ = 10; (b) One particle, k∆ = 0.1; (c)
Two particles, k∆ = 10; (d) Two particles, k∆ = 0.1.



90

On substituting from Eqs. (4.25) and (4.28) (with the help of (4.24)) first into Eq.

(4.11) and then into Eq. (1.14) we now obtain the expression for the spectral degree

of coherence of the far field produced on scattering of two correlated plane waves on

the collection of spheres with Gaussian potentials

µ(t)(ru1, ru2;ω) =
1√

S(t)(ru1;ω)
√
S(t)(ru2;ω)

×{
e−

k2σ2

2
(u1−u′1)2

(
N∑
n=1

e−ikxn(u1x−u′1x)e−ikyn(u1y−u′1y)e−ikzn(u1z−u′1z))

× e−
k2σ2

2
(u2−u′1)2

(
N∑
n=1

eikxn(u2x−u′1x)eikyn(u2y−u′1y)eikzn(u2z−u′1z))a11

+ e−
k2σ2

2
(u1−u′2)2

(
N∑
n=1

e−ikxn(u1x−u′2x)e−ikyn(u1y−u′2y)e−ikzn(u1z−u′2z))

× e−
k2σ2

2
(u2−u′2)2

(
N∑
n=1

eikxn(u2x−u′2x)eikyn(u2y−u′2y)eikzn(u2z−u′2z))a22

+

[
e−

k2σ2

2
(u1−u′1)2

(
N∑
n=1

e−ikxn(u1x−u′1x)e−ikyn(u1y−u′1y)e−ikzn(u1z−u′1z))

× e−
k2σ2

2
(u2−u′2)2

(
N∑
n=1

eikxn(u2x−u′2x)eikyn(u2y−u′2y)eikzn(u2z−u′2z))a12

+ e−
k2σ2

2
(u1−u′2)2

(
N∑
n=1

e−ikxn(u1x−u′2x)e−ikyn(u1y−u′2y)e−ikzn(u1z−u′2z))

× e−
k2σ2

2
(u2−u′1)2

(
N∑
n=1

eikxn(u2x−u′1x)eikyn(u2y−u′1y)eikzn(u2z−u′1z))a21

]
× e−

k2∆2

2
(u′1−u′2)2

}
.

(4.30)

Figure 4.6 shows the behavior of the modulus of the spectral degree of coherence,

|µ(t)(ru1, ru2;ω)|, of the far-field calculated from Eq. (4.30). We assume that the

plane waves are incident on the collection of spheres along directions specified by

polar angles φ′1 = π/2, φ′2 = −π/2 and azimuthal angles θ′1 = θ′2 = 0.3 rad. The

modulus of the degree of coherence of the scattered field was calculated as a function
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of the angle θd = θ2 − θ1, while the other angles were kept fixed: θ1 = 0, φ1 = π/2,

φ2 = π/2.

In Fig. 4.6(a) the behavior of |µ(t)(ru1, ru2;ω)| for four collections of particles (see

Fig. 4.2) is plotted. The appearance of interference effects is obviously seen starting

from the case n = 2. Figure 4.6(b) shows the influence of different values of σ on

scattering from five particles when k∆ = 1. In Fig. 4.6(c) we illustrate the effect

of the scaled correlation parameter k∆ of the incident plane waves on the scattered

spectral density scattered from five particles, while the scaled size of the spheres kσ

is kept fixed.
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Figure 4.6: Modulus of the spectral degree of coherence of the far-field as a function
of θd = θ2−θ1 where θ1 = 0, produced by scattering of two correlated plane waves, (a)
on different number of particles (kσ = 1, k∆ = 1); (b) on five particles, for different
σ values (k∆ = 1); (c) on five particles, for different ∆ values (kσ = 1).
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4.2.3 Scattering from random collections of particles: Pair-structure fac-

tor

In this section we develop the theory of scattering of scalar fields with arbitrary

spectral and coherence properties from random collections of particles (deterministic

potentials, random locations) which we characterize by a pair-structure factor (c.f.

[74]). Pair-structure factor is a generalization of the conventional structure factor

accounting for the change in correlation properties of light at two given directions

of incidence and two given directions of scattering. We stress that the knowledge of

the pair-structure factor makes it possible to predict of not only spectral but also

coherence properties of scattered light, even in case when the incident wave has more

complex structure than a plane wave. In order to deal with scattering of scalar fields

with arbitrary spectral and correlation properties we use their plane wave (angular)

representation. By considering a numerical example we illustrate how the spectral

and correlation properties of scattered radiation depend on spectral and correlations

properties of illumination, as well as on the size and locations of individual particles

and their correlation properties.

Let us consider a collection of N identical particles with scattering potentials

f(r;ω) being deterministic functions of position r = (x, y, z) and frequency ω, but

with centers randomly distributed in scattering volume V . The scattering potential

of each particle is a simple function of the index of refraction n(r), namely Eq. (1.49).

The scattering potential F (r;ω) of the whole collection is then given by the expression

(4.14). Generally, for description of light scattering from random medium a spectral

pair-scattering matrix of the form [75]

M(u1,u
′
1; u2,u

′
2;ω) = 〈S∗(u1,u

′
1;ω)S(u2,u

′
2;ω)〉rm (4.31)
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may be employed, where the angular brackets with subscript ”rm” denote statistical

average taken over the realization of the medium. In this equation S(u,u′;ω) is the

ordinary scattering matrix which describes the change in the amplitude of a plane

wave incident along direction u′ and scattered along direction u. It was shown [75]

that within the accuracy of the first Born approximation the scattering matrix is

related to the scattering potential of the scatterer by the expression

S[K;ω] = F̃ (r;ω), (4.32)

where K = k(u − u′) is called the momentum transfer vector, and the bar denotes

the (spatial) three-dimensional Fourier transform. On substituting from Eq. (1.49)

into Eq. (4.32) we find that

S(K;ω) =
N∑
n=1

f̃(r− rn, ω)

=
N∑
n=1

e−irn·Kf̃(K, ω).

(4.33)

Further, on substituting from Eq. (4.33) into Eq. (4.31) we find that

M(K1,K2;ω) = f̃ ∗(K1, ω)f̃(K2, ω)Q(K1,K2;ω) (4.34)

where

Q(K1,K2;ω) = 〈
N∑
n=1

N∑
m=1

e−i[rm·K2−rn·K1]〉rm (4.35)

is the pair-structure factor of the collection (cf. Ref. [74]). It provides the measure

of correlation (similarity) between waves along transfer vectors K1 and K2. If the

momentum transfer vectors coincide, i.e. if K1 = K2 then the pair-structure factor
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reduces to the ordinary structure factor S(K), viz.

S(K;ω) = 〈
N∑
n=1

N∑
m=1

e−iK[rm−rn]〉rm (4.36)

It is seen from Eq. (4.34) that, in addition to the scattering potential f(r) of

an individual particle, the knowledge of the pair-structure factor is sufficient for de-

termining all the second-order statistical properties of fields produced on scattering

from a collection of particles while the knowledge of the structure factor S(K;ω),

together with f(r), is not. Only in a very restricted number of cases, such as the

determination of the spectrum at a particular direction of scattering of a plane wave,

one can rely solely on the knowledge of S(K;ω) and f(r) [76].

Note that by normalizing the pair-structure factor according to the formula

q(K1,K2;ω) =
Q(K1,K2;ω)√
S(K1;ω)

√
S(K2;ω)

(4.37)

we obtain a complex-valued quantity whose absolute value varies between 0 and 1

and which may be regarded as a degree of angular correlation of the collection of

scatterers. Such measure is similar to the spectral degree of coherence of optical

fields but rather describes the ability of a random medium to ”decorrelate” light.

In order to illustrate the importance of the pair-structure factor for scattering of

random light we now assume, without loss of generality, that it can be described by

a Schell-model, vis.,

Q(K1,K2;ω) =
√
S(K1)S(K2)q(|K2 −K1|) (4.38)

i.e. q depends on the distance between the two momentum transfer vectors. Assume



95

also that

q(|K2 −K1|) = exp

[
−|K2 −K1|2

(kδ)2

]
, (4.39)

where σ2 is the normalized variance of Gaussian distribution. A typical structure

factor of a collection entering Eq. (4.38) can be found in Ref. [77].

We will now recall the general basic equations relating to the statistical properties

of random waves scattered from random media. For more detailed derivation of these

expressions see Refs. [78] and [75]. Let us assume that the incident field U (i)(r, ω) in

the source plane is described with the help of the cross-spectral density function

W (i)(r1, r2, ω) = 〈U∗(i)(r1, ω)U (i)(r2, ω)〉 (4.40)

or its angular correlation function

A(i)(u1,u2, ω) =
k4

(2π)4

∞∫∫∫∫
−∞

W (i)(r1, r2, ω)

× exp[−i(u1r1 + u2r2)]d2r1d
2r2,

(4.41)

where u1, u2 are unit vectors and the integration is performed over the entire source

plane ([2], Sect. 5.6.3).

It was shown in Ref. [78] that the cross-spectral density function of the total

(incident + scattered) field in the far zone of the scatterer is given by the expression

W (t)(ru1, ru2, ω) = ± 4π2

k2r2
u1zu2z

∫∫
f̃(K1)f̃(K2)

×Q(−K1,K2)A(i)(u′1,u
′
2, ω)d2u′1⊥d

2u′2⊥,

(4.42)

where r = |r| and both integrations extend only over the homogeneous part of the

angular spectrum.
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For the spectral density S(t)(ru;ω), and the spectral degree of coherence

µ(t)(ru1, ru2;ω) of the total far field produced on scattering we will use the for-

mulas (1.15) and (1.14), from these expressions and Eq. (4.42) one can see explicitly

that both the spectral density and the spectral degree of coherence of scattered light

depend on the pair-structure factor of the collection.

4.2.4 Application to the pair of correlated plane waves scattered by ran-

dom collection

We will now illustrate our analytical development by considering scattering of two

mutually correlated polychromatic plane waves propagating along directions u′1 and

u′2 by a model random collection.

It was found in Ref. [75] that the angular correlation function of correlated plane

waves has the form of (4.24) with (4.25). Suppose that the scatterers centered at

positions rn = (xn, yn, zn) have three-dimensional (soft) Gaussian potentials given by

Eq. (4.26). The correlation properties of the collection are assumed to be described

by Eqs. (4.38) and (4.39).

In Figure 4.7 the contour plots of the spectral density of the far field produced

on scattering are shown for two values of the variance of pair-structure factor δ. On

the horizontal scale, θ is the polar angle of the far-field and on the vertical scale, φ

is the azimuthal angle of the far-field which are related to components of the unit

vector u by the expression: ux = cosθcosφ, uy = cosθsinφ, uz = sinθ. Figure 4.8

illustrates the modulus of the spectral degree of coherence as a function of difference

(θd = θ1 − θ2) between two directions in the far field. It is clear from figures 4.7 and

4.8 that correlation properties of the scatterers can significantly modify the intensity

distribution and coherence properties of the scattered light.
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Figure 4.7: Contours of the spectral density of the far field: a) δ = 10−7m, b)
δ = 10−6m, The other parameters are: λ = 632.8nm, ∆ = 10−7m σ = 10−7m,
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Figure 4.8: Modulus of the degree of coherence as a function of θd = θ1, when θ2 = 0:
dashed curve δ = 10−7m, dotted curve δ = 5× 10−7m, dot-dashed curve δ = 10−6m.
The other parameters are: λ = 632.8nm, σ = 10−7m; ∆ = 10−7m; θ′1 = −π/4;
φ′1 = −π/3; θ′2 = π/6; φ′2 = π/5; φ1 = π/2; φ2 = π/2.
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4.3 Scattering of light from particles with semisoft bound-

aries

In potential scattering theory of light the distribution of the refractive index within

a spherically-shaped scatterer can be fairly arbitrary, in principle (cf. [21], Ch. 13).

However, in practice only two models for the refractive index distribution are routinely

used: a Gaussian (soft-edge) sphere [5] and a hard-edge sphere [79]. In what follows

we introduce a family of spherically symmetric scatterers with variable rate of change

in the index of refraction at their edges, which we will refer to as “edge softness”.

Needless to say, both the hard-edge model and the Gaussian model, while being

mathematically handy, are only the idealizations: scatterers with semi-soft edges are

more realistic.

The original idea of a profile which has a flat center and an adjustable slope at

the edge belongs to Gori [80] who used, to construct a flat-topped optical beam, a

superposition of several Gaussian functions with different heights and widths. This

idea has also been used for modeling edges in disk read-out systems [81]. Even though

flat profiles can be expressed via various mathematical functions, such as Gegenbauer

polynomials, Fermi-Dirac distribution, or much studied super-Gaussian function [82],

the model introduced in [80] has the advantage of leading to tractable analytical

results.

The other important type of a scatterer that we introduce is a hollow sphere with

adjustable softness of its shell, on both inner and outer sides. Such model can be

employed for instance in problems involving scattering from bubbles. We will show

how a linear combination of 3D multi-Gaussian functions can efficiently serve this

purpose, just like superposition of 2D multi-Gaussian beams has led to an important

class of dark-hollow beams [83].
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In briefly reviewing the potential scattering theory we fully rely on Ref. [5], Ch.

6. When a polychromatic spatially coherent plane wave field

U (i)(r, ω) = S(i)(ω)eiks0·r, (4.43)

with spectral density S(i)(ω), wave number k = c/ω, c being the velocity of light in

vacuum, ω angular frequency, at position r, is incident, from direction s0, on a scat-

terer occupying volume D, then the spectral density of the scattered field U (s)(rs, ω)

in the far-zone of the scatterer along direction r = rs (|s| = 1, |r| = r) can be

expressed as

S(s)(rs, ω) =
1

r2
S(i)(ω)C̃F [−k(s− s0), k(s− s0), ω]. (4.44)

Here C̃F is the six-dimensional spatial Fourier transform:

C̃F (K1,K2, ω) =

∫
D

∫
D

CF (r′1, r
′
2, ω)e−i(K1·r′1+K2·r′2)d3r′1d

3r′2, (4.45)

with K = k(s − s0) and CF being the spatial correlation function of the scattering

potential, Eq. (1.64) for random medium, Eq. (1.66) for deterministic medium.

On substituting from either Eq. (1.66) for deterministic scatterers or from Eq.

(1.64) for random scatterers into Eqs. (4.44)-(4.45) one can determine the angular

distribution of the far-field scattered spectral density.

4.3.1 Models of potentials with adjustable edges

A spherical scatterer centered at a point with position vector r = (0, 0, d), without

loss of generality, and a potential that has adjustable edge softness can be modeled
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much like a multi-Gaussian beam [80] or aperture [81], i.e. via the sum:

F (r;ω) =
B

C0

M∑
m=1

(−1)m−1

M

(
M

m

)
e−m

x2+y2+(z−d)2

2σ2 . (4.46)

with C0 =
M∑
m=1

(−1)m−1

M

(
M
m

)
being the normalization factor. Here variance σ2 can be

a constant or depend on ω. Figure 4.9 illustrates the soft-edge profiles versus radial

distance from the center of the particle for several values of summation index M .
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Figure 4.9: Scattering potential for solid particles calculated from Eq. (4.46) for
several values of M : M = 1 dot-dashed curve , M = 4 dashed curve, M = 10 dotted
curve and M = 40 solid thick curve.

The angular distribution of the spectral density of a plane wave scattered by a

particle with potential (4.46) can be readily found from Eq. (4.44) to have the form

S(s)(rs;ω) =
B2(2π)5σ6s2

z

k2r2C2
0

( M∑
m=1

(−1)m−1

M

(
M

m

)
(1/m)3

× exp
[
−k2σ2(s− s0)2/m

])2

(4.47)

For modeling hollow scatterers with semi-soft boundaries (bubbles, see also Fig.

4.10) it is sufficient to consider the following linear combination of two multi-Gaussian
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functions

F (r;ω) =
B

C0

M∑
m=1

(−1)m−1

M

(
e
−mx2+y2+(z−d)2

2σ2
o − e

−mx2+y2+(z−d)2

2σ2
p

)
, (4.48)

in similarly with the model for the dark-hollow beams [83]. On substituting from Eq.

(4.48) into Eq. (4.44) we find that the spectral density of a plane wave scattered from

a bubble-like scatterer has the form

S(s)(rs;ω) =
B2(2π)5σ6s2

z

k2r2C2
0

( M∑
m=1

(−1)m−1

Mm3

(
e−

k2σ2
o(s−s0)2

m − e−
k2σ2

p(s−s0)2

m

))2

. (4.49)

20 10 10 20

0.2

0.4

0.6

0.8

1.0

F(z;ω)

4σ-4σ

Figure 4.10: Same as in Fig. 4.9 but calculated from Eq. (4.48).

In order to introduce a random scatterer with semi-soft edges we can use for the

correlation function CF in Eq. (1.64) either of the Schell-model form [5],

CF (r1, r2, ω) =
√
IF (r1, ω)

√
IF (r2, ω)µF (r2 − r1, ω), (4.50)

with IF (r1, ω) = CF (r, r, ω) or of the quasi-homogeneous form [5]

CF (r1, r2, ω) = IF

(
r1 + r2

2
, ω

)
µF (r2 − r1, ω), (4.51)
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where µF is the degree of spatial correlation which is assumed to be a function varying

with r2 − r1 much faster than IF varies with r . It has been shown in Ref. [84] that

for spherical sources and, hence, scatterers one should be careful with the choice of

µF , some of the frequently used 2D correlation functions might not be legitimate for

the 3D spherically symmetric model. On the other hand, a 3D Gaussian function

µ
(G)
F (r2 − r1, ω) = exp

(
−|r1 − r2|2

2δ2

)
(4.52)

has been shown to be applicable, for instance. On substituting from Eqs. (4.51)-

(4.52) together with either Eq. (4.46) or Eq. (4.48) into Eqs. (4.44)-(4.45) one

can readily determine the spectral density of the field scattered from the random

scatterer with semi-soft boundaries. We also note that the multi-Gaussian model can

be readily extended to the incident random light waves [72], collections of particles

[85], and elliptically-shaped scatterers.

4.3.2 Numerical examples

For the numerical analysis it is convenient to represent the coordinates of the direction

vector s in the spherical system: sx = cos θ cosφ, sy = cos θ sinφ, sz = sin θ where θ

and φ are the polar and the azimuthal angles, respectively.

We will now illustrate the usefulness of the models introduced by numerical calcu-

lations of the angular distribution of the spectral density of a plane wave scattered to

the far field. In Fig. 4.11 we present the contourplot of the far-field spectral density

(see Eq. (4.47)), depending on polar and azimuthal angles of the unit vector s for

(a) soft-edge M = 1 and (b) semi-soft edge M = 40 solid scattering potential. The

parameters used for numerical curves are: λ = 632nm, σ = 1
2k

, φ′ = 0, θ′ = 0. Figure

4.12 shows the far-field spectral density calculated from Eq. (4.49) for (a) soft-edge

M = 1 and (b) semi-soft edge M = 40 hollow potential and demonstrates that the
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Figure 4.11: Contourplot of the spectral density of the the far field, calculated from
Eq.(4.47), for: a) M=1, b) M=40.
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effect of edge softness is very well pronounced.

4.4 Conclusion

Various aspects of scattering of fields from media confined to a localized volume were

considered here, under a very general assumption that both the incident wave and

the scatterer can be of either deterministic or random nature. The only assumption

that we have made is the one of weak scattering, hence our results are pertinent to

particles whose refractive indexes have values close to unity.

In section 4.2 we have developed the theory for far-field scattering of electromag-

netic fields of deterministic and random nature from collections of discrete particles

which have either deterministic or random locations. It enables scattering of fields

with practically arbitrary spectral and coherence properties from particulate media in

the most rigorous possible manner, while previously the majority of calculations were

done for a single monochromatic or, at best, a polychromatic plane wave. From the

example that we have considered, that involve scattering of two mutually correlated

plane waves on several particles with Gaussian potentials, it is seen how the spectral

density and the state of coherence of the far field depend on directions of the plane

waves, their degree of correlation and, of course, on all the properties of the collec-

tion of scatterers. Although our analysis is limited only to collections for which the

boundaries of the individual particles are soft and multiple scattering effects are ne-

glected. In many practical cases our calculations are very relevant, e.g., in scattering

of a random light beam from a tenuous collection of cells suspended in a solution. If

the size of a cell is on the order of the wavelength then interference effects dominate

multiple scattering effects and the first Born approximation is sufficient for obtaining

an adequate solution.

In section 4.3 we have introduced a model for a scatterer with a flat potential in
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its center and adjustable change in the refractive index at its edge, with the help of a

3D multi-Gaussian function. We have also shown how a linear combination of multi-

Gaussian functions can be used to model shell-like scatterers, also with adjustable

shell thickness. Our numerical examples illustrate that the softness of the boundary

(thickness of the shell) of the scattering medium can significantly affect the angular

distribution of the scattered field. This model could potentially be used to assess

the role of hard boundaries on electromagnetic scattering, as it is known that field

discontinuities at such boundaries can play a significant role [86]. Spherical scatterers

can also readily extended to elliptical, cylindrical and parallelepiped-like shapes which

can be useful in practice (c.f. [87]).



Chapter 5

Summary

In all the chapters included in this dissertation we explore generation and the behavior

of random optical fields on propagation in vacuum, deterministic and random linear

media, whether discrete or continuous, and we develop some of the applications which

benefit from these findings. Among the major contributions of the author to the field

are the following:

• Introduction of a novel class of sources with arbitrary intensity profiles which

form constant-intensity profiles throughout the far zone.

• Analytical prediction of random light evolution in the human’s crystalline lens.

• Development of novel techniques for target sensing in the presence of a random

media by means of random light.

• Tractable modeling of particle’s edges for easy applications of potential scatter-

ing theory.

• The seminal description of the dependence between the correlation properties

of particles in the scattering collection and the properties of the scattered light.

All of the findings are based on the rigorous theoretical foundations involving

Maxwell’s equations and the classical statistical optics. They do not possess any

heuristic or engineering types of modeling. The potential applications of the intro-

duced ideas and techniques range from medicine to communications, from sensing of

the environment to optical material processing.
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