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ABSTRACT 

 
 

In this work, we will consider  the electromagnetic waves  propagation along the 

symmetric cylindrical fiber with left handed material (LHM) as the core layer bounded 

by a semiconductor clad layer. We will study the dispersion properties in the 

considered optical fiber for two cases. In the first case, we consider the leading 

diagonal elements of the semiconductor permittivity tensor are different from each 

other. In the second case , we consider as a special case, the elements are equal to each 

other. 

In the two cases, the fast and slow modes will be studied  in TE, TM, HE and EH mode 

polarizations. The dispersion relations for all modes will be obtained from Maxwell's 

equations. The total power flow in the structure within core and clad layers will be 

calculated in the general and in special cases for TE and TM mode polarizations. The 

dispersion curves for TE, TM, HE and EH modes will be studied for different 

parameters of the structure.  
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CHAPTER ONE    

 

INTRODUCTION TO OPTICAL WAVEGUIDES AND FIBERS 

 

In this chapter, the basic concepts and equations of electromagnetic wave theory 

required in the treatment of optical waveguides are presented. Maxwell's equations, 

wave equations, Boundary conditions and Poynting's Vector are described in section 

1.2.  TE and TM Polarizations are discussed in section 1.3. Optical fiber properties and 

its structure, advantages and disadvantages, Typs of optical fiber, and total internal 

reflection (TIR) are presented in section 1.4. Finally, left handed metamaterial (LHM) 

and their  electromagnetic properties are explained in section 1.5. 

 

1.1. Introduction 
 

Communication implies transfer of information from one point to another. When it is 

necessary to transmit information, such as speech, images, or data, over a distance, one 

generally uses the concept of carrier wave communication. In such a system, the 

information sent modulates an electromagnetic wave such as a radio wave, microwave, 

or light wave, which acts as a carrier. This modulated wave is then transmitted to the 

receiver through a channel and the receiver demodulates it to retrieve the imprinted 

signal. This is due to the fact that, in any communication system employing 

electromagnetic waves as the carrier, the amount of information that can be sent 

increases as the frequency of the carrier is increased. The idea of using light waves for 

communication can be traced as far back as 1880 when Alexander Graham Bell [1] 

invented the photophone shortly after he invented the telephone in 1876.  Hockham [2] 

in 1966 suggested that optical fibers based on silica glass could provide the necessary 

transmission medium if metallic and other impurities could be removed. In 1970 

Kapron et al., [2] had successful by produced silica fibers with a loss of about 17 

dB/km at a wavelength of 633 nm. Since then, the technology has advanced with 

tremendous rapidity. By 1985 [2] glass fibers were routinely produced with extremely 

low losses (< 0.2 dB/km). Along the path of the optical fiber are splices, which are 

permanent joints between sections of fibers, and repeaters that boost the signal and 

correct any distortion that may have occurred along the path of the fiber. 
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1.2. Light Propagation 

 1.2.1. Maxwell’s Equations and Plane Waves 

All the analysis of wave propagation is based on Maxwell’s equations which govern 

the time dependence of the intensity of the electric and magnetic fields E and H, 

respectively. These two field vectors are often used to describe the electromagnetic 

fields. Maxwell’s equations can be written as follows 

1-Faraday’s law [3]  

t




B
E                                                                                                           (1.1) 

2-Ampere’s law with Maxwell’s correction, [3] 

 

J
D

H 





t
                                                                                                          (1.2)    

3-Gauss’s law [3]. 

 

 

D.                                                                                                                  (1.3) 

4- Non existanse of magnetic monopole [3] 
 

0. B                                                                                                                       (1.4) 

 

The quantities D and B are called the electric displacementand the magnetic 

induction,respectively. The quantities   and J are the electric charge density and the 

current density, respectively. In a medium with no free charges (  =0) and no currents 

( J = 0) Eq. (1.2 ) and Eq. (1.2 ) rewritten as: 

 

 

t
H






D
                                                                                                                (1.5) 

 

0. E                                                                                                                    (1.6) 

 

We can also introduce the electric permittivity   and the magnetic permeability  . 

These two parameters characterize the response of the material to an external electric 

and magnetic field as [4]: 
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PED                                                                                                                   (1.7) 

 MHB                                                                                                                  (1.8) 

 

where P and M are the electric and magnetic polarizations, respectively. When an 

electromagnetic field is present in a material, the electric field can perturb the motion 

of electrons and produce a dipole polarization P. The application of a magnetic field H 

to a material can induce a magnetization M. For a plane wave, the electric and 

magnetic fields can be expressed as [5]: 
 

 

et ti ).(),(  rk
0ErE                                                                                                   (1.9) 

 

et ti ).(),(  rk
0HrH                                                                                                  (1.10) 

  

 

where  is the frequency of the field and k is the wave vector, r is the position 

vector, t is the time, and E0  and H0   define the amplitude and the direction of the 

vectors E and H respectively. Now, we substitute Eq. (1.7) and Eq. (1.8) into 

Maxwell’s equations with the use of Eq. (1.9) and Eq. (1.10), Maxwell’s equations 

become [6]: 
 

H
H

Ek  





t
                                                                                         (1.11)  

E
E

Hk  





t
                                                                                          (1.12)                                     

0k.E                                                                                                                      (1.13) 
  

 

0. Hk                                                                                                                     (1.14) 

 

Eq. (1.13) and Eq. (1.14) show that both the electric field vector E and the magnetic 

field vector H are perpendicular to the wave vector k where kE   and kH  .                                                                                         

Also, from Eq. (1.11) and Eq. (1.12) we see that the electric and magnetic field vectors 

are perpendicular to each other, HE . Thus, we obtain that the three vectors E, H, 

and k form a triplet of mutually perpendicular vectors 

By multiplying both sides of Eq. (1.11) by Ek  we obtain 
 

 

  HEk
2222                                                                                                           (1.15)  
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Similarly,  multiplying both sides of Eq. (1.12) by Hk  to obtain 
 

  EεωHk
2222                                                                                                          (1.16)  

 

Dividing Eq. (1.15) by Eq. (1.16), we obtain a relation between the absolute values of 

the intensities of the electric and magnetic fields 

 

HE



                                                                                                                  (1.17) 

 

1.2.2. Wave Equation 

Consider now wave pulse propagating in the x-direction as shown in figure 1.1. It is 

given by the relation  

y=A sin kx                                                                                                                (1.18) 

 

where A  is the wave amplitude.  

 

 

 Figure 1.1  Wave  pulse moving at constant speed. 

 

 

The wave vector can be defined as : 



2
k                                                                                                                    (1.19)  

 

 And some relation to the pulse is given by 

x

y



0

A
kxAy sin
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v
T


                                                                                                                       (1.20)  

T
f

1
                                                                                                                        (1.21)  

f
T




 2
2

                                                                                                       (1.22)  

 

where T is the  periodic time, f  is the frequency,  is the angular  frequency,  is the 

wave length and v  is the speed constant. 

From Eq's. (1.1), (1.5), (1.7), and (1.8), we can derive the wave equation for the 

electric and magnetic fields. Applying the operator ∇×to both sides of Eq. (1.1) we 

get:   

 

  HE 





t
                                                                                           (1.23) 

The left-hand side of Eq. (1.23) can be simplified with use of the identity 
 

    EEE  2.                                                                                              (1.24)  

 

 The right-hand side of Eq. (1.23) can be rewritten using Eq's (1.5) and (1.7 ), finally  

the equation can be written as: 

 

t
2

2
2






E
E                                                                                                       (1.25) 

 

Using Eq. (1.9) into Eq. (1.25) the wave equation is written as [5,8]: 

 

  0
2

2  EE nk                                                                                                     (1.26) 

 

which is called the wave equation of the electric filed E, where n is the refractive index 

n . Similar equation can be obtained for the magnetic field H by applying the 

operator  to both sides of Eq. (1.5)  

 

  EH 





t
                                                                                           (1.27) 

 

 

The left-hand side of Eq. (1.27) can be simplified with use of the identity 
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    HHH  2.                                                                                        (1.28) 

 

 

The right-hand side of Eq. (1.27) can be rewritten by using Eqs. (1.1 and 1.8 ), finally  

we obtain the equation 

 

t
2

2
2






H
H                                                                                                    (1.29)                                                                                    

 

Using Eq. (1.10) into Eq. (1.29) the wave equation is written as [5,8]: 
 

  0
22  HH nk                                                                                                 (1.30) 

 

which is called the wave equation to the magnetic filed H. 

The fields E and H propagate through empty space with ( 1  ) with a speed equal 

to the velocity of light, c. However, in a medium with   and μ different from 1, the 

electromagnetic fields propagate with a velocity v as: 

 

n

cc
v 


                                                                                                         (1.31)                

 

1.2.3. Boundary Conditions at an Interface  

At the interface between two media, the following boundary conditions are satisfied as 

[3,5]: 

  0. 12 BBn


                                                                                                   (1.32) 

 

  0. 12 DDn


                                                                                                      (1.33) 

 

  012  EEn


                                                                                                    (1.34) 

 

  012  HHn


                                                                                                   (1.35) 

 

Here, n


 is the unit vector perpendicular to the plane surface and indices (1, 2) refer to 

the first and (second) medium. The Eq's (1.32)–(1.35) follow directly from Maxwell’s 

equations. They play a key role in our analysis of propgation of electromagnetic waves 

through various structures. From Eqs. (1.34) and (1.35), it follows that the tangential 

components of both E and H are continuous at the interface as [5]: 
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EE tt 21               and           HH tt 21                                                                       (1.36)  

 
 

Similarly, by using equations (1.32) and (1.33) with Eq(1.7) and Eq (1.8), the normal 

components of the electric displacement and the magnetic inductance are continuous at 

the interface as in [5]: 

 

 

DD nn 21             and            BB nn 21                                                                      (1.37) 

 

 

The continuity conditions, given by Eq. (1.36) and (1.37), are very important in the 

analysis of the propagation of electromagnetic waves. 

 

1.2.4. Poynting's Vector 

Poynting’s theorem states that the time rate of flow of the electromagnetic energy per 

unit area is given by the vector S, called the Poynting vector which is defined as the 

cross product of the electric and magnetic fields as [4]: 
 

HES                                                                                                                     (1.38) 
 

Since S has the physical meaning of energy flow, it must be real. Therefore, in          

Eq.  (1.38), only the real parts of all three vectors E, H, and S should be considered: 
 

 

)Re( HES                                                                                                              (1.39) 

 

Here, we are interested only in the propagation of electromagnetic waves where both 

the electric and the magnetic fields oscillate as 
 

e
ti . Therefore, it is more convenient 

to average the Poynting vector S over one period in Eq. (1.22) of the oscillation of 

electric and magnetic fields. From the plane wave in Eq. (1.9 ) and Eq. (1.10), we get: 

 

 

           eeet tititi    k.r
0

k.r
0

k.r
0 E*EEE

2

1
Re                                          (1.40) 

 

           eeet tititi    k.r
0

k.r
0

k.r
0 H*HHH

2

1
Re                                        (1.41) 

 

After substitution of these two expressions into the R.H.S of Eq. (1.39), we get: 
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             eeee
titrkititi    k.r

00
k.r

0
k.r

0 H*HE*ES .

4

1
                             (1.42) 

 

 HE*H*ES 0000 
4

1
                                                                                        (1.43) 

 

 H*ES  Re
2

1
                                                                                                     (1.44) 

 

where * is the complex conjugate of electric and magnetic wave. S can be expressed in 

terms of the complex fields E and H in the form of Eq. (1.44). By using Eq. (1.11) and 

Eq.  (1.12) into  Eq (1.44), we can find the new two relations for poynting vector S as  

 

kE
k

S 0
ˆ

2

1 2


                                                                                                      (1.45) 

 

Also that  

 

kH
k

S 0
ˆ

2

1 2


                                                                                                      (1.46) 

 

1.3. Polarization  

Polarization of light has numerous applications, many of these applications can easily 

be seen through a polarizing film, which selectively passes light with a particular 

direction of the vector E, and for any given direction of propagation there are two 

independent polarization vectors, which can be in any two mutually orthogonal 

directions normal to k. The first case is that in which the vector of the electric field E, 

of the incident wave is parallel to the boundary plane. This case is called transverse 

electric or TE polarization (we will use also the name s-wave). The second case is that 

in which the  vector of the magnetic field H, of the incident wave is parallel to the 

boundary plane. This is called transverse magnetic or TM polarization. This type also 

call the TM polarized wave the (p-wave).  

 

1- S- polarized light  

By definition, in the case of the TE polarization the electric intensity E is parallel to the 

interface, there is no electric field in the direction of propagation. In the notation that 

vector E has only one component, 
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 0,,0 E yE                                                                                                              (1.47) 

and vector H has two components only, 

 H,,H zx 0H                                                                                                           (1.48) 

 

2- P- Polarized light  

For the TM polarization, the magnetic field vector H parallel to the interface and, there 

is no magnetic field in the direction of propagation. therefore, it has only one 

component. 

 00 ,H, yH                                                                                                             (1.49) 

 

The electric field vector E has two components as 
 

 E,,E zx 0E                                                                                                           (1.50) 

 

1.4. Optical Fiber 
 

1.4.1. History and Definition of Optical Fiber  

One of the most important types of waveguides are optical fibers. An optical fiber is 

basically a cylindrical dielectric waveguide with a circular cross section where a high-

index wave guiding core is surrounded by a low-index cladding. Optical fibers are 

usually made of silica SiO2 glass. The index step and profile are controlled by the 

concentration and distribution of dopants. Light propagates in an optical fiber by 

repeated total internal reflection at the core–cladding glass boundary. Optical fibers 

have a phenomenally large capacity to carry information and are able to deliver this 

information to extremely distant locations. They are therefore suitable for optical 

communications and most laser applications in this range of the spectrum. Optical 

fibers made of other materials are also developed for special applications.. In 1870  

John Tyndall [2]  demonstrated that light can travel within a curved jet stream of water 

from a hole made on the side of a water pail. Propagation was based on repeated total 

internal reflection at the air–water boundary. However. In 1936 Carson et al [7] have 

shown that a circular dielectric waveguide can support a hybrid dominant mode with 

no cutoff frequency, it was almost for 30 years until 1966, when Kao and Hockham [2] 

promoted the use of a glass fiber as the transmission medium, that the doors were 

opened for using the principle of total internal reflection as a viable means of 

communication. In 1970 the whole field of optical communication links through 
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optical fibers was awakened by the successful development of low-loss fibers (with 

losses less than 20 dB km)  [7]. 

 

Fiber-optic communication systems possess such advantages as: 
 

    1- Low transmission loss. 

    2- Large capacity of information transmission. 

    3- No electromagnetic interference. 

    4 -Lighter weight than copper. 

    5- No sparks even when short-circuited. 

    6- Higher melting point than copper. 

    7- Practically inexhaustible raw material supply.                   

 

 

On the other hand, the disadvantages are: 

1- Connections and taps are more difficult to make than for copper wire. 

2- Fiber is not as flexible as a copper wire. 

 

 

1.4.2. Types of Optical Fibers 
 

1. Multimode Step-Index Fiber 

In this type the core diameter is 50 m , and the refractive index difference   is equal 

to 0.5–1.0%. The normalized radius V is 30, and the number of modes is on the order 

of hundreds. The advantage of this fiber is the ease of coupling to a source or 

connecting to another fiber because of the large core diameter and large numerical 

aperture (NA) value. But this fiber has a limited capacity for information transmission 

due to mode dispersion and is used primarily for short-distance communication. The 

capacity (bandwidth–length product) is about 65 Mb/s.km with NA = 0.1. 
 

 

2-Single-Mode Fiber 

The core diameter is reduced to 8–10 m , and refractive index difference  0.3–0.5, 

so that the normalized radius V of the fiber is smaller than the cutoff V = 2.4 of the 

mode that is the next higher mode from the dominant mode. Coupling is difficult in the 

single mode fiber, but the information transmission capacity is significantly larger. 
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3- Dispersion-Shifted Fiber 

The dispersion-shifted fiber is not only nominally free from dispersion, but also the 

wavelength of operation is at 1.55 m , The dispersion of the fiber is removed by 

choosing a refractive index distribution such that waveguide dispersion cancels 

material dispersion at wavelength 1.55 m . Transmission loss is about 0.2 dB/km and 

the practical limit on the capacity of information transmission is about a Tb/s.km. The 

refractive index distribution is either one large peak of  0.6–0.9, or a concentric step 

modulation in the cladding layer. 

 

4-Silica Core Fluorine-Added Cladding Fiber 

The cladding glass is normally pure SiO2. Germanium dioxide (GeO2) is usually used 

to raise the refractive index of the core glass with respect to that of the cladding glass. 

The inclusion of GeO2 is an additional inhomogeneity in the core and increase the 

transmission loss of the fiber. 

 

5-Plastic Fiber 

This fiber is made out of low-transmission-loss plastic material. Being made of plastic, 

the diameter of the core can be as large as 1–2 mm and large NA value of 0.5. It is 

primarily used for short-distance communication. Plastic fiber whose core is made of 

poly methyl meth acrylate (PMMA) and whose cladding is made of fluorinated alkyl 

metha crylate copolymer is useful in the region of wave length 0.6–0.8 m  and the 

minimum transmission loss is 20 dB/km at 0.68 m . 

 

6- Holey Optical Fiber (HF) 

Holey optical fiber (HF) is a single material fiber with a periodic array of circular or 

elliptical air holes running in the axial direction of the optical fiber. The effective 

refractive index difference can be achieved from a single material. This type of fiber is 

single mode over an exceptionally wide wave length range from 458 to 1550 nm, as 

determined by measuring the numerical aperture (NA). It was found that the value of 

NA almost linearly increases with wavelength. (NA = 0.13 at  =458 nm, and NA = 

0.36 at  =1, 550 nm. 
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1.4.3. Total Internal Reflection (TIR)  

At the heart of an optical communication system is the optical fiber which acts as the 

transmission channel carrying the light beam loaded with information. As mentioned 

earlier, the guidance of the light beam (through the optical fiber) takes place because of 

the phenomenon of total internal reflection (TIR). We first define the refractive index 

(n) of a medium in Eq (1.31). As you know, when a ray of light is incident at the 

interface of two media (like air and glass), the  ray undergoes partial reflection and 

partial refraction as shown in Figure 1.2 (a,b,c) satisfying the condition: 

 

 2211 sinsin nn                                                                                                  (1.51) 

        

                (a)
  nn 21 ,  c1

                                           (b) nn 21 ,  c1
 

 

 

             (c) 
 nn 21 ,  c1

 (TIR) 

 

Figure 1.2: Light reflection at different cases with  a) nn 21 ,  c1
 and b) nn 21 , 

 c1
 and c) nn 21 ,  c1

 (TIR). 

n1
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The vertical dotted line represents the normal to the surface. The angles 1  is the 

incident angle,  2 is the refraction angle and, r  represents the reflection angle. 

Further, the incident ray, reflected ray, and refracted ray lie in the same plane. In 

(Figure 1.2.a), since nn 21  we must have (from Snell’s law)  21  , i.e., the ray will 

bend toward the normal. On the other hand, if a ray is incident at the interface of a 

rarer medium ( nn 21 ), the ray will bend away from the normal (see Figure 1.2.b). 

The angle of incidence, for which the angle of refraction is 90
o , is known as the 

critical angle  c and is denoted by [6]: 

 









 

n

n
c

1

21
1 sin                                                                                                      (1.52)         

 

902
o . When the angle of incidence exceeds the critical angle (i.e., when  c1

), 

there is no refracted ray and we have total internal reflection  as in Figure 1.2.c 

 

1.4.4. Structure of Optical Fiber 

Light propagates in an optical fiber by repeated total internal reflection at the core–

cladding cylindrical glass boundary. An optical fiber consists of a core and a cladding 

(cylindrical) and is axially symmetric. Since the refractive index of the core is slightly 

higher than that of the cladding, the optical field is  largely confined to the core. The 

corresponding refractive index distribution (in the transverse direction) is given by:  

 

nn 1        for         0 ra  

nn 2        for        ar                                                                                          (1.53) 

where n1  represent the refractive index of core and n2 refractive index of  cladding 

and a represents the radius of the core. The relative index difference or relative profile 

height ,  through the following equations as in [7]:  

 

 

n

nn
2
2

2
2

2
1

2


                                                                                                                (1.54) 
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When 1 (as is indeed true for silica fibers where n1  is very nearly equal to n2 ) 

we may write as in [7]: 

 

 

      

n

nn

n

nn

n
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2
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1

21

2
1
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                                                           (1.55) 

 

 

Now, for a ray entering the fiber core at its end, if the angle of incidence 1  at the 

internal core-cladding interface is greater than the critical angle  c , the ray will 

undergo TIR at that interface. Further, because of the cylindrical symmetry in the fiber 

structure, this ray will suffer TIR at the interface also and therefore be guided through 

the core by repeated total internal reflections. Even for a bent fiber, light guidance can 

occur through multiple total  internal reflections. For transmission of light from one 

place to another, the fiber must be supported. Supporting structures, however, may 

considerably distort the fiber, there by affecting the guidance of the light wave. This is 

avoided by choosing a sufficiently thick cladding. Further, in a fiber bundle, in the 

absence of the cladding, light can leak through from one fiber to another. 

 

 

 

Figure 1.3: Fiber consists of a cylindrical central  core  clad  by a material 

 

a
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Figure 1.4: Light rays impinging on the core-cladding  interface  at an  angle greater   

than  the  critical  angle are trapped inside the core of the fiber 

 

 

1.5. Left Handed Materials (LHM) 
 

1.5.1. Introduction to LHM Materials 

Veselago [8] was the first who theoretically predicted such media. He revealed that a 

material with simultaneously negative dielectric permittivity and magnetic 

permeability is equivalent to a negative refractive- index medium, and investigated the 

electromagnetic wave propagation through such media. Material can be divided 

according to the sign of magnetic permeability   and electric permittivity   into  

many groups as in figure 1.5, the first type have two positive sign values of magnetic  

permeability μ and electric permittivity   be named right handed material  (RHM).  

The second type has positive  sign of magnetic permeability   and negative sign of 

permittivity   called metal. The third type has negative sign values of  magnetic 

permeability   and positive sign permittivity   be called ferromagnetic material, and 

the last type material has two negative sign values  of  magnetic permeability   and 

permittivity   be called left handed material (LHM) or metamaterial. Also we know 

that the refractive index depends of the magnetic permeability  and permittivity   

where n as [9]. Metmaterials (MTMs) are broadly defined as artificial 

effectively homogeneous electromagnetic structures with unusual properties not 

readily available in nature . An effectively homogeneous  structure is a structure whose 

structural  average cell  size p is  much  smaller than the  guided  wavelength 
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Clading
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 g . Therefore, this average cell size should be at least smaller than a quarter of wave 

length, 4/p g
. We will refer to the condition 4/p g

as the effective 

homogeneity limit or effective-homogeneity condition 1, to ensure that refractive 

phenomena will dominate over scattering/diffraction phenomena when a wave 

propagates inside the MTM medium. If the condition of effective-homogeneity is 

satisfied, the structure behaves as a real material in the sense that electromagnetic 

waves are essentially myopic to the lattice and only probe the average, or effective, 

macroscopic and well-defined constitutive parameters, which depend on the nature of 

the unit cell, the structure is thus electromagnetically uniform along the direction of 

propagation. The constitutive parameters are the permittivity  and the permeability 

 , which are related to the refractive index n by  rrn  , where  r and  r are the 

relative permittivity and permeability related to the free space permittivity and 

permeability by 10854.8/ 12
0

  r and 104/ 7
0

  r
, respectively. In the 

sign ± for the double valued  square  root  function  has  been a priority admitted for 

generality.LH materials, as a consequence of their double negative parameters, are 

characterized by antiparallel phase and group velocities, or negative refractive index 

(NRI). LH structures are clearly MTMs, according to the definition given above, since 

they are artificial, effectively homogeneous ( 4/p g
), and exhibit highly unusual 

properties ( 0,  rr ). It should be noted that, although the term MTM has been 

used most often in reference to LH structures in the literature, However, LH structures 

have been by far the most popular of the MTMs, due to their exceptional property of 

negative refractive index . 
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Figure. 1.5:  Permittivity-permeability (ε − μ) and refractive index (n) diagram for all 

materials.  

 

 

1.5.2. Electromagnetic Properties of Left-Handed Materials  

 

A-Wave Equation  

The wave equation for an electromagnetic wave in a medium with ε and μ is given by 

[10]: 

 

0
2

2
2 








 E

c
k


                                                                                                   (1.56) 

 

from which it follows that the plane wave in Eq (1.9) can propagate in the medium if 

the product εμ is positive. This is possible if either both ε and  μ are positive, or both 

parameters are negative. Thus we conclude that  propagation of  electromagnetic waves 

is possible  in a left-handed medium . 
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B-  Left-Handed Rule  

The electric field vector E, magnetic field vector H and wave vector k  follow the right 

handed triplet of vectors, and the Poynting vector S parallel to k. However, if both ε 

and μ are negative, we obtain from Maxwell’s equations that [9]: 

 

HEk                                                                                                         (1.57) 

 

EHk                                                                                                         (1.58) 

 

It is clear that the vectors E, H, and k follow now the left-handed triplet of vectors ,  

and vectors k and  S have opposite orientation as shown  in figure 1.6. 

 

 

 

 

Figure 1.6: Orientation of the electric and magnetic vectors of the intensity of 

electromagnetic fields E and H with respect to the wave vector k and Poynting vector 

S  for LHM and RHM. 

 

 

Note that the direction of the propagation of the electromagnetic wave is determined by 

the orientation of the Poynting vector S, and not by the orientation of the wave vector 

k. The opposite sign of k only means that the phase velocity of the wave inside the left 

handed medium is negative. 
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C-   Dispersion 

The energy of the electromagnetic field  U may be written [10] as: 
 

   

















 HEU 22

8

1










                                                                                   (1.59) 

 

We immediately see that both permittivity ε and permeability  must depend on the 

frequency. Otherwise, the energy U reduces to the relation    8/22
HE U   

which would be negative for both ε and   are negative. On the other hand, the energy 

U is always positive this mean that equation satisfy as [9]: 

 

 
0








             and              

 
0








                                                          (1.60) 

 

The frequency dependence of ε and  means, due to the Kramers-Kronig relations, that 

both the permittivity and permeability must be complex. The nonzero imaginary parts 

of the permittivity and permeability lead unavoidably to absorption losses of the 

electromagnetic wave propagating through the left-handed material. The dielectric 

permittivity and magnetic permeability in some material of LHM become 

simultaneously negative in the frequency range from 4 to  6  GHz. 
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CHAPTER TWO 

 

 GUIDED MODES IN NEGATIVE REFRACTIVE INDEX FIBERS 

 

In this chapter we need to analyze the previous studies represented by A.V. Novitsky 

and L.M. Barkovsy in [25], which including electromagnetic wave propgate along the 

fiber consist of  LHM core and dielectric material in the clad, solution of wave 

equation and Maxwell's equations to the optical fiber in cylindrical coordinate are 

obtained in sections 2.2 and 2.3, the component of electric and magnetic fields with 

),( r  are proved in section 2.4, solution of electric and magnetic fields at z- direction 

in the core and clad regions are described in section 2.5, the expressions value to the  

electric and magnetic fields components in terms of Bessel function for the core and 

clad regions are summarized in section 2.6, dispersion equations for the fast and slow 

mode are defined in section 2.7, dispersion relation for TE, TM, HE, and EH modes in 

the fiber are included in section 2.8. Finally the electromagnetic properties in the fiber 

are studied where the dispersion curves for all modes are plotted in section 2.9.              

 

2.1. Structure Analysis 

A.V. Novitsky and L.M. Barkovsy [11] have studied the properties of electromagnetic 

wave propagating in optical fiber with radius a at the z- direction. The considered 

optical fiber consist of LHM in the core in the region 0 ra  which characterized by 

an electric relative permittivity co  and magnetic relative permeability co
 as [12]: 

 




 2

2

1)(
p

co                                                                                                            (2.1) 






2
0

2

2

1)(




F

co
                                                                                                 (2.2) 

 

where  p  is the plasma frequency in the LHM, 0  is the resonant frequency and F is 

the fractional area of the unit cell. The clad region is filled with dielectric material 

which have an electric relative permittivity  cl  and magnetic relative permeability cl
 

given by [12]: 
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Figure 2.1: Structure of the optical fiber with LHM core and dielectric clad. 

 

 

2.2. Solution of Wave Equations in the Cylindrical Coordinate 

Consider an optical fiber cylindrical  coordinate with core radius a  and refractive 

index core is nco  bounded by cladding layer with  radius b, the assumption of  b  is 

made. The clad  refractive index is ncl  as shown in Figure 2.2.  

 

 

Figure 2.2: Optical fiber in a cylindrical coordinate system  zr ,,  

 

The electric filed E and magnetic filed  H in cylindrical coordinates are written as[2]: 

 

zθrE ˆˆˆ EEE zr                                                                                                     (2.3) 

 

zθrH ˆˆˆ HHH zr                                                                                                  (2.4) 
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To solve the wave equation in Eq. (1.26), in the cylindrical coordinates must use  the 

identity as in [13]: 
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             (2.5) 

 

Using Eq. (2.5) and substituting into  Eq. (1.26) to find the components of the electric 

filed E in the cylindrical coordinates to get: 
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                 (2.6) 

 

Similarly  to solve the wave equation in the magnate field Eq. (1.30), using the same 

way to find  the components of the magnetic filed H in the cylindrical coordinates,  

where that the value of 
2  in the cylindrical  coordinate given by [2]: 
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                                                                               (2.7) 

 

Note that in Eq. (2.6), the  r̂  component contains both Er  and E  likewise with the  

θ̂  component, but the ẑ  component contains only E z . Because of this fact, the z 

component is first solved and then the other components Er  and E  will be obtained 

directly from Maxwell’s equation as we want to explain later in this chapter. 

 

2.3. Solution of Maxwells Equations in Cylindrical Coordinate 

Consider that an electromagnetic wave propagatingalong the z-direction as in [1]: 

 

   
eErE ztj   0,            and                

eHrH ztj   0,                                      (2.8) 

 

where    is the propagation constant. 

 

Using Eq. (2.8) and Eq. (1.8) then substituting into Maxwell equation, Eq. (1.1) 

become 
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HE j                                                                                                     (2.9) 

 

 Eq. (2.9) can be rewritten as in {13]: 
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The expanded for Eq. (2.10) gives that  
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From Eq. (2.8) we find that: 

 

j
z




                                                                                                                    (2.14) 

 

Using Eq. (2.14) and substituting into Eqs. (2.12) and (2.13) we get: 
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                                                                                   (2.16) 

 

Eqs. (2.15), Eq. (2.16) and Eq. (2.13) are the solutions  of Maxwell equation give Eq. 

(1.1) in cylindrical  coordinates. 

Similarly use the same way to solve Eq. (1.2) with no currents (J=0), using Eq. (2.8) 

and Eq. (1.7 ) then substituting into Maxwell equation, Eq. (1.2) as in {13]: 

 

EH j                                                                                                       (2.17) 
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The  expanded form Eq  (2.18) gives 
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                                                                                     (2.20) 
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Using Eq. (2.14) and substituting into Eqs. (2.19) and (2.20 ) in order to get: 

EjHjH
r

rz 


 


1
                                                                                     (2.22) 

EjH
r

Hj zr  



                                                                                      (2.23)  

 

Eqs. (2.22), Eq. (2.23) and Eq. (2.21) are the solution of Maxwell equation give         

Eq. (1.5) in cylindrical  coordinates. 

 

2.4. Expressions For HEHE rr  ,,,  Components 

After solving Maxwell equations it is easy to find the components of electric and 

magnetic fields EHE rr ,,   and H . Using Eq. (2.16) and substituting into Eq. (2.22), 

getting: 
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 22
                                                                 (2.24) 

 

 

Eq. (2.24) represents the value of Er . 

 

Using Eq. (2.15) and substituting into Eq. (2.23) we get: 
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                                                              (2.25) 

 

Eq. (2.25) represents the value of E . . 

 

 

Using Eq. (2.22) and substituting into Eq. (2.16) we get: 
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                                                                  (2.26) 

 

Eq. (2.26) represents the value of H . 

 

 

Use Eq. (2.23) and substituting into Eq. (2.15) getting that: 
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                                                           (2.27) 

 

Eq. (2.27) represents the value of H r  

 

2.5. Expressions of E z  and H z  Components 

Equation (2.6) being a vector equation, each component has to vanish individually in 

order for the vector sum of the components to be zero. Using Eq. (2.7), the z 

component of Eq. (2.6) is expressed as in [2,3]: 

 

  0
22  EnkE zz                                                                                                 (2.28) 
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                                                    (2.29) 

 

The differential equation, Eq. (2.29), is solved by the method of separation of 

variables. as a product of three functions, each zr ,,  letting that as [2]: 

ZFE zrz                                                                                                            (2.30) 
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Inserting Eq. (2.30) into Eq. (2.29) then use the  separation of variables method we 

get:: 

 

0'' 2
 ZZ zz                                                                                                           (2.31) 

 

0'' 2    m                                                                                                             (2.32) 

 

  0
'

''
2

2
222 













 F

r

m
F rkn

r

F
F r

r
r                                                                   (2.33) 

 

 

2.5.1. Solutions In The Core Region 0 ra  

First, the considered solutions of Eq. (2.31) inside the core region is given in [2]:  

 

ebeaZ
zjzj

z
                                                                                                    (2.34) 

 

also, the solution of the Eq. (2.32) is given by [2]: 

 

 c cos m  + d sin m                                                                                        (2.35) 

 

also, the solution of the Eq. (2.33) in terms of Bessel function given by [2]: 

 

)()( KrNfKrJeF mmr                                                                                       (2.36) 

 

where a, b, c, d, e and f  is constant, m is the order of Bessel function, )(KrJ m  is 

Bessel function of the first kind, )(KrNm  is Bessel function of the second kind with  

nn 1 .Since the variation rather than exponential in r is inside the core, a positive 

value as [1,2]: 

 

 
22222

11
2 )(  knK co                                                                             (2.37) 

 

where  K  is the wave number in the core . 

Equation (2.32) consists of forward and backward waves. For the most part, fibers are 

reciprocal. There do exist some nonreciprocal effects that are employed in certain fiber 

sensors, but these are unusual. Reciprocity means that, coupling conditions being  
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equal, it does not matter which end of the fiber is connected to the source. It is 

sufficient to choose one term from the right-hand side of Eq. (2.65) in this case  

 

 

eaZ z
zj                                                                                                                (2.38) 

 

 Equation (2.33) represents two skew rays that are rotating in opposite senses. Mode 

patterns are standing waves generated by oppositely winding skew rays and both terms 

in Eq. (2.66) are needed.  The location of  and  2 are the same. From Eq. (2.33) 

with m
th  order Bessel function The curves of )(xNm are shown in Figure 2.3, )(KrNm  

becomes negative infinity at 0r  and physically cannot be accepted, and f in         Eq. 

(2.33) has to be zero and the solution of Eq. (2.33) become   

 

)(KrJeF mr                                                                                                           (2.39) 

 

 

 

Figure 2.3: Zero- and first-order Bessel functions of the second kind with 1,0m . 

 

 

In the core region 0 ra , E z  and H z are given as in [2]: 

 

   emKrJAE
zj

mz
cos                                                                                      (2.40) 

 

   emKrJCH
zj

mz
sin                                                                                     (2.41) 

 

 

r
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2.5.2. Solutions In The Clad Region ar   

 

The type of solution in the cladding region is one where the value of the function 

rapidly decreases with an increase in r. As mentioned earlier, the solution of Eq. (2.33) 

becomes a decaying function if the value of the square bracket is negative with nn 2  

,  where   is the wave number in the clad as in [1,2]: 

 

 

 kncl
2222

22
22

)(                                                                             (2.42) 

 

The solution for F r  is then 

 

)()( rKfrIeF mmr                                                                                                (2.43) 

 

where the functions )( rIm  are called the modified Bessel functions of the first kind 

and  )( rKm    are modified Bessel functions of the second kind of the order  m.  The 

value of )(xI m increases with an increase in x but that of )(xKm  decreases with an 

increase in x, as shown in Figure. 2.4. Since )(xI m  becomes indefinitely large with an 

increase in r, it is rejected on physical grounds, and in Eq. (2.43) should be zero. 

 

 

 

Figure 2.4: Modified Bessel functions of first )(xI m and the second )(xKm kinds with 

1,0m . 

r
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Then the expressions for  E z  and H z in the cladding region, ar  are 

 

   emrKBE
zj

mz
 cos                                                                                       (2.44) 

 

   emrKDH
zj

mz
 sin                                                                                      (2.45) 

 

2.6. Expressions for E z  and H z Components in Terms of Bessel Function  

From the boundary condition that the tangential filed components ( E z  and H z ) should 

be continues at the core - cladding interface ( ar  ), we obtain the two flowing 

expiration conditions to find the E z  and H z  components in term of Bessel function.  

Then  we  have  defined two parameter  U and W , where U  is the normalized  

transverse wave number in the core is given as in [2]:  

 

 
222

2

2
2  kn

a

U
K co                                                                                              (2.46) 

 

Also,   is the wave number in the clad is given by 

 

 kn
a

W
cl

22 2

2

2
2

                                                                                               (2.47) 

where W  is the normalized  transverse wave number in the clad. 

From Eq. (2.46), we find aUK /  and form Eq. (2.47) we find aW /  then using 

the first boundary condition EE zz 21  at ( ar  ) to get: 

 

 

)(

)(

WK

UJ
AB

m

m                                                                                                         (2.48) 

 

where the function  aUrJ m  describes the longitudinal component of the electric and 

magnetic filed in the core, and the function  aWrKm  describes the longitudinal 

component of the electric and magnetic filed in the clad. 

Using the second boundary condition at ar   that HH zz 21   as in [1,2] we get: 
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)(

)(

WK

UJ
CD

m

m                                                                                                          (2.49)                                                                                                

 

Using Eq. (2.48) and Eq. (2.49) where e
zj  was suppressed, then Eqs. (2.40), (2.41), 

(2.44) and (2.45) can be rewritten to find E z  and H z in the core and clade. 

First the electric filed in the core and the clad E z  become as in [14]:  
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                                                       (2.50) 

 

Also, the magnetic filed in the core and the clad H z  becomesas in [14]:  
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                                                      (2.51) 

 

 

2.6.1. Expressions for HEHE rr  ,,,  In The Core Region 0 ra  

 

By using the Eqs. (2.46), (2.50) and Eq. (2.51) for 0 ra  and substituting into Eqs. 

(2.24) , (2.25) , (2.26)  and Eq. (2.27), we have: 
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                                    (2.52) 
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                                (2.53) 
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                                   (2.55) 

 

2.6.2. Expressions for the HEHE rr  ,,,  in the clad  region  ar   

 

Similarly using Eqs. (2.47), (2.50)  and Eq. (2.51) for ar  and Substituting into Eqs. 

(2.24) , (2.25) , (2.26)  and Eq. (2.27) to get: 
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                          (2.56) 

 

)sin
22

2

(mθ
(W)K

(U)J
)

a

Wr
(K'

a

W
μCω)

a

Wr
(K

r

m
Aβ

W

aj
E

m

m
mmθ 










 

                    (2.57) 
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                          (2.59) 

 

 

2.7. Dispersion Equation of an Optical Fiber 

 

Boundary conditions are applied at the interfase. The tangential components of E and 

H have to be continuous  at ar  . The tangential components of E are E z  and E  and 

those of  H are H z and H .At the first starting with the initial boundary condition 

as[1,2]: 

 

EE 21                 at      ar                                                                                   (2.60) 

 

Using Eq. (2.53) and Eq. (2.57) and substituting into Eq. (2.60) we get: 
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Using the second boundary condition at ar  as in [1,2], we get: 

 

HH 21                at      ar                                                                                  (2.62) 

 

Using Eq. (2.55) and Eq. (2.59) then substituting into Eq. (2.62) we get: 
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Using the relations as in [1] 

 

 r0                                                                                                                (2.64)   

 r0                                                                                                                  (2.65)  

 

Using Eq. (2.64) and Eq. (2.65), and multiplying both Eq. (2.61) and Eq. (2.63)  to 

each other,we obtain that: 
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                     (2.66) 

 

We get the relations as in [6]: 
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Using Eq. (2. 67) then substituting into Eq. (2.66) we get:  
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The LHS of Eq. (2.68) can be rewritten as:  
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From Eq. (2.46) and Eq. (2.47) we get: 

 

aU

nk

U

co

22

22

2

2
1




                                                                                                        (2.70) 
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Using Eq. (2.70) and Eq. (2.62) then substituting into Eq. (2.69), getting that: 
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Using Eq (2.63)  then Eq. (2.68)  rewritten as  
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Dividing both side of Eq. (2.73) by  coco  and using the relation  cococon 2  we get: 
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Taking the L.H.S of Eq. (2.74) to be simplify  
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Rearranging Eq. (2.75) we get: 
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Now  taking the R.H.S of Eq. (2.74) to be simplify we get:  
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                                                        (2.77) 

 

 

Now taking the numerator from the  Eq. (2.77) R.H.S to simplify, using the Eq. (2.46) 

and Eq. (2.47) the first term becomes:  

 

1-  annknnnknknWU clcococlcococo
4222224244422222                                              (2.78) 

 

 

For Eq. (2.77) the second term of the  R.H.S writen as: 

 

2-  annknnnknknWU clcoclclcoclcl
4222224244422222                                                (2.79) 

 

 

By adding the two Eq (2.78) and Eq (2.79) to get: 

 

      annnnknnnnknnknWUnWU coclclcoclcoclcoclcoclco
42424422422224422222222 2           (2.80) 

 

For Eq. (2.77) the third term of the  R.H.S becomes: 

 

3-  nnknnnkanU clcoclclcocl
22222424 4424 2                                                               (2.81)                                                               

 

 

From Eq. (2.77), the last term of the  R.H.S becomes: 

4-  nnknnnkanW coclcococlco
222224244424 2                                                                   (2.82) 

 

 

By adding the two Eq. (2.81) and Eq. (2.82), we get: 

 

      anncoknnnnknnnnnWnU clcoclclcoclcoclcococl
42222242442242242424 4                    (2.83) 

 

Then adding Eq. (2.80) and Eq. (2.83) to get: 

 

  aknWnUnWUnWU clclcocococlclco
42222424222222                                            (2.84) 

 

Using Eq. (2.84) and substituting into Eq. (2.77), now R.H.S read as: 
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Using  Eq. (2.76) and Eq. (2.85) and substituting into Eq. (2.74) to get: 

 

 

 












coco

clclcoco

m

m

co

cl

m

m

m

m

co

cl

m

m

UW

mak

WK

WK

WUJ

UJ

UWK

WK

WUJ

UJ

U 44

22422

)(

)('1

)(

)('1

)(

)('1

)(

)('1 






























        (2.86) 

 

Eq. (2.105) called the  dispersion relation which  satisfy the condition 02 U  this 

mean that the product of  clclcoco   in fast mode. But when the product 

 clclcoco   then 02 U  it has an imaginary value, so leading in this case 

UiU 1  to be 02
1 U . Substituting UiU 1   into Eq. (2.86) and using the relations as 

[12,15]:  
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Using Eqs. (2.87) – Eq. (2.89) then substituting  into Eq. (2.86) we get: 
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After some calculation, Eq. (2.90) becomes:     
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Eq.(2.91) described the dispersion relation to the surface mode for the fiberin slow 

mode with 0m . 

 . 
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2.8. Modes in Optical Fibers 

 

Eq. (2.86)  is a combination of Bessel functions. The solutions of the characteristic 

equation depend of the order m, whether 0m  or 0m . Hence, they will be treated 

in two separate subsections. 

 

2.8.1. Meridional Modes 0m  

 

The characteristic equation is significantly simplified with 0m  the order of the 

Bessel function reduces, and the right-hand side of Eq. (2.86) becomes zero so that Eq. 

(2.86) reduces to the two modes TE and TM mode. Use the relations for the Bessel 

functions as [13,15]:  
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)()('
1 xKxK mm                                                                                                    (2.93) 

 

 

From Eq. (2.92) and Eq. (2.93) then the L.H.S of Eq. (2.91) becomes as [12,13]:  
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2.8.2. Skew Modes: 0m  

 

When 0m , the right-hand side of Eq. (2.86) is not zero and the procedure for 

obtaining the solution of the characteristic equation is much more complicated. This 

means that the solution of the Eq. (2.86) one of them have '+'  sign and another have  '-' 

sign to give two  hybrid  mode HE and EH modes  so there is two solution of   Eq. 

(2.86) and letting that: 
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By using Eqs.(2.96) and (2.97), Eq. (2.86) become:   
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Multiply both side with 
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Adding to the both side of Eq. (2.99)   L
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After some mathmatecal calculation Eq. (2.100) rewritten as:
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Taking the square root to the booth side in the equation (2.101), we get: 
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Eq. (2.102) have two solutions named hybrid mode, one '+' sign EH mode and the  '–'   

sign HE mode as in [12,14]:    
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                                                                                                                                (2.104) 

 

 

2.9. Numerical Results  

 

In the analysis below, Novitsky and Barkovsy [11] considered the propagation of 

electromagnetic wave along circular fiber with core LHM have radius a  bounded by   

a dielectric material in the clad as shown in figure 2.1. The electric permittivity  co and 

magnetic permeabilityco
 in the core are given by Eq. (2.1) and Eq. (2.2). The clad has 

dielectric material with electric permittivity  cl  and magnetic permeability
 
cl

. 

Novitsky and Barkovsy in [11] studied the fast and slow guided modes in the fiber. 
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They also studied the mode properties dependence on the fiber parameters.                

The   fiber parameter in [11], plasma frequency 102/  p  GHz, resonant frequency  

42/0   GHz, fractional area unit cell 56.0F , core radius cma 1 , dielectric 

permittivity 5.2 cl  and magnetic permeability 1cl
. In Figure 2.5,  there are the 

three regions of mode existence in a dispersive fibre. In region (I) the conditions 

02 U ,  clclcoco   hold true and fast guided modes arise, the fast modes 

correspond to two types of dispersion curves. One of themis in region (I) completely 

(curve AB), and the other lies in both regions (I) and (II) (curve CF). Point D divides 

the fast mode from the slow one and satisfies the condition 0U . Therefore, the 

dispersion curve segment CD describes a fast mode and DF a slow one. From figure 

2.6, The dispersion curve of AB-type cannot be a fundamental guided mode and at the 

same time the mode polarizations are arranged in the following way: at 0m  the TE 

mode alternates with the TM one, starting with TE; at 1m  the hybrid EH mode 

alternates with the HE one, starting with EH. From Figure 2.7. The high-order fast 

modes exist at lower frequencies close to the resonant one. However, fast fundamental 

guided modes in a circular left-handed fibre are possible. They appear at 0m  and 

correspond to the dispersion curves of CD-type. There are two fast fundamental 

modes, the first is TE and the second is TM polarized. Region (II) in figure 2.5 is 

characterized by 02 U ,  clclcoco   and includes only slow modes. Dispersion 

curve DF at 0m   corresponds to the HE polarized wave, the TE mode determines 

the asymptotic of lowfrequency  curves of DF-type (at 1m  the dispersion curve 

intersects the TE-mode curve, for 1m  dispersion curves appear at higher frequencies 

than the TE-mode curve), TM mode determines the asymptotic of high-order curves of 

PLtype (all these dispersion curves are higher than the TM mode). The dispersion 

curve PL always corresponds to a slow mode. It can lie in regions (II) and (III) in 

figure 2.5 02 U ,  clclcoco  . The curve GK in region (II) is characterized by EH 

polarization. The dispersion curve -PL  in region (III) is HE polarized. 
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Figure 2.5 : Dispersion curves describing the fast modes (AB cuvre), fast- slow mode 

(CF curve) and slow mode (PL curve). Fiber parameters: cladding ( 5.2 cl , 1cl
) 

with  clclcln  , and fiber radius cma 1 as [11]. 

 

 

 

 
 

Figure 2.6: Fast guided modes with curve AB- type at 1,0m . Fiber parameters : 

5.2 cl , 1cl
, and fiber radius cma 1 as [11]. 
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Figure 2.7: The fast-slow and slow low-order guided modes 1,0m . Fiber parameters 

: 5.2 cl , 1cl
, and fiber radius cma 1 as [11]. 
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CHAPTER THREE 

 

MODES IN OPTCAL FIBERS WITH SEMICNDUCTOR CLADDNG AND  

LHM CORE  

 

In this chapter, the wave propagation characterises in optical fiber consisting of LHM 

core bonded by a semiconductor are investigated theretically. The basic concepts and 

equations, optical and electromagnetic properties for the  semiconductor are presented 

in section 3.2,. Solution of Maxwell's equations in the semiconductor clad will be 

derived in section 3.4. The electromagnetic fields components in the semiconductor 

clad are obtained in section 3.5. The dispersion equations for TE, TM, HE and EH 

modes are proved in section 3.6. Finally, the total power in cases of TE and TM mode 

is explained in section 3.6.                                                                                                    

 

3.1.  Introduction to Semiconductors  

Optoelectronics brings together optics and electronics within a single device. Metals 

are excellent electrical conductors, but do not allow light to travel inside. Glass and 

related dielectric materials can accommodate and guided light waves, like in optical 

fibers, but they are electrical insulators. Semiconductors are in between these two 

material types, as they can carry electrical current as well as light waves.  

Semiconductors can be designed to allow for the transformation of light into current 

and  vice versa. The conduction of electrical current is based on the flow of electrons. 

Most electrons are attached to single atoms and are not able to move freely. Only some 

loosely bound electrons are released and become conduction electrons. The same 

number of positively charged atoms (ions) is left behind; the net charge is zero. The 

positive charges can also move, as valence electrons jump from atom to atom. Thus, 

both valence electrons (holes) and conduction electrons are able to carry electrical 

current. Both the carriers are separated by an energy gap; i.e., valence electrons need to 

receive at least the gap energy Eg  to become conduction electrons. In semiconductors, 

the gap energy is on the order of 1 eV. The energy can be provided, e.g., by light 

having a wavelength of less than the gap wavelength. In the wave picture, light is 

represented by periodic electromagnetic fields with the wavelength. In the particle 
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picture, light is represented by a  term of energy packets (photons) with the energy is

E ph  in [16] 




 h
hc

E ph                                                                                                  (3.1) 

 

where  2 , 2/h  with h is Planck constant.   

The photon energy must be at least as large as the band gap Eg  to generate electron-

hole pair. Vice versa, conduction electrons can also release energy in the form of light 

and become valence electrons. This energy exchange between electrons and photons is 

the key physical mechanism in optoelectronic devices. From an atomic point of view, 

valence electrons belong to the outermost electron shell of the atom, which is fully 

occupied in the case of semiconductors; i.e., no more electrons with the same energy 

are allowed. As these atoms are joined together in a semiconductor crystal, the 

electrons start to interact and the valence energy levels separate slightly, forming a 

valence energy band . Electrons within this band can exchange places but no charge 

flow is possible unless there is a hole. To generate holes, some electrons must be 

excited into the next higher energy band, the conduction band, which is initially empty. 

The concentration N of electrons in the conduction band and the concentration P of 

holes in the valence band control the electrical conductivity a of semiconductors    as 

[16]: 

 

 Pn qPqN                                                                                                       (3.2) 

 

with q  is the elementary charge and the mobility n  and  p
 are the mobility of the 

hole and electrons respecctively. 

 

3.2. Optical Properties of Semiconductor  

 

3.2.1. Electromagnetic Energy 

The flow of electromagnetic energy is given by the Pointing vector as in Eq. (1.42) 

whose time average gives the intensity mcW 2  of the optical wave I opt  as [16]: 

 

EI
opt

opt 0

2

0

0

4


                                                                                                       (3.3) 
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The photon flux density  ph
 is given as  [17]: 

 /Ioptph                                                                                                              (3.4) 

 

The time-averaged local optical energy density  W opt  is given as [17]: 

EW optopt 0

2

0                                                                                                      (3.5)  

 

3.2.2. Maxwell's Equations 

Maxwell's equations are the fundamental basis for the classical treatment of electrical 

and magnetic fields. For high-frequency optical waves and semiconductor waveguides, 

several simplifications are possible as discussed in the following. The charge density 

acts as source of the electrostatic field vector F and it can be neglected in the case of 

high-frequency electric fields vector E. Magnetic field variations in time tH  /  

generate curls E  of the electrical field. Vice versa, electrical field variations in 

time tE  /  as well as generate the current curls H  of the magnetic field. The 

steady-state or low-frequency current density FJ   can be excluded here 

conductivity at low frequencies). The remaining "optical" current density EJ  opt  

depends on the semiconductor conductivity  opt  at high frequencies. This means that 

at high frequencies we get [17]: 

 

0 FJ                                                                                                              (3.6) 

 

EJ  opt                                                                                                                     (3.7) 

 

And for non-magmatic semiconductor 1 . Using Eq. (1.7) and Eq. (1.8) and 

subsisting into Eq. (1.1) to Eq. (1.4) for  =0 and J=0 we get as [18]: 

  

HE  0i                                                                                                   (3.8) 

 

 EH  0optopt i
 
                                                                                       (3.9) 

 

0. 0  E opt                                                                                                    (3.10)
 

 

0. 0  H                                                                                                                (3.11) 
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3.3. Structure Analysis  

We consider  an electromagnetic wave propagating in the optical fiber  along z- 

direction. The structure consisting of LHM in the core with radius a  which is 

characterized by an electric relative permittivity  co  as in Eq. (2.1) and amagnetic 

relative permeability co
 as in Eq. (2.2) bounded by semiconductor material in the 

clad that is characterized by an electric relative permittivity  cl  and amagnetic relative 

permeability 1cl . The semiconductor permittivity tensor can be written as [18,19]:  
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where   xx ,  zz ,  yy ,  xz  and  zx can be written as{19,20]: 

 

 

  




















 









22

2

0 1

ci

ip
zzxx                                                                   (3.13) 

 

 

  




 








22

2

0

c

cp
zxxz

i

i                                                                       (3.14) 

 

 

 





















i

p

yy

2

0 1                                                                                               (3.15) 

 

where   p  the plasma frequency, c is the cyclotron frequency,   is the collection 

frequency and the magnetic relative permeability tensor 1ii . This structure is 

shown in figure 3.1 . 
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                                                                           Clad (semiconductor) 

 

                                                                     Core (LHM) 

 

                         

 

Figure 3.1: Schematic for an optical fiber with LHM core layer  and  semiconductor  

clad. 

 

3.4. Solutions of Maxwell's Equations in Clad Region (Semiconductor) 

 

Maxwell Eq. (1.5)  can be solved with tensor electric relative permittivity  cl  by using 

Eq. (3.12) and substituting  into Eq. (2.17), we get: 
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Taking the expantion of Eq. ( 3.16), we get: 
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Useing Eq. (2.14). and substituting into Eqs. (3.17 – 3.18), we get: 
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Eqs. (3.19 – 3.21) are the solution of Maxwell equation Eq. (1.5) in cylindrical  

coordinates for semiconductor.  
 

 

 

 

3.5. Expressions for HEHE rr  ,,,  in the Semiconductor Clad 

 

After solving the Maxwell's  equation for semiconductor in the clad region as show in 

the previous section we can find Expressions for HEHE rr  ,,,  starting with Er .  

Using  Eq. (2.13) for  1cl  and substituting into Eq. (3.20), the electric filed Er  can 

be written as: 
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Eq. (3.22) represents the value of Er . 

 

 

Using  Eq. (2.15) for  1cl  and substituting into Eq. (3.21), we get: 
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Eq. (3.23) represents the value of E . 

 

 

Using  Eq. (2.16) for  1cl  and substituting into Eq. (3.20), we get: 
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Eq. (3.24) represents the value of H . 

 

Using  Eq. (2.15) for  1cl  and substituting into Eq. (3.21) we get: 
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Eq. (3.25) represents the value of H r . 

 

3.6. Dispersion Relations 
 

3.6.1. TE Mode 

From the  cylindrical waveguide in case of TE polarized, we  have 0/    and the 

electric field parallel to the interface core- cladding along  - direction to give only on 

component this mean there is no electric field in the direction of propagation, but the 

magnetic field perpendicular to interface. This physical meaning become 0Ez , Er  

and H  to be not found, so we have a set of equations as [1]:      

 

0 HEE rz                                                                                                       (3.26) 

 

Here we want to explane the another components of electric and magnetic fields that be 

found in the core and clad regione for TE mode 
 

1-   In the core region ora   

using Eq. (3.26) and substituting into Eq.(2.25) and Eq. (2.27) we get: 
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2-   In the clad region ar   

Using Eq. (3.26)  then Eqs. ( 3.23) , (3.25) can be rewritten as: 

 

  


















r

Hj
E

z

yy




 022
0

                                                                            (3.29) 

  















 H

r

j
H z

yy

r 


2

0

2
                                                                              (3.30) 

 

But to find H z  the wave equation in TE  mode can be rewritten as [1]:  
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Where the magnetic field in the core and cladding expressed as: 
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                                                                               (3.32) 

 

where )(rg  is the arbitrary function describe the longetional magnetic field in the core 

region along the z-direction and )(rh  is the arbitrary function describe the longetional 

magnetic field in the clad region along the z-direction. 

 

The  wave  equation in Eq. (3.31)  for the core field )(rgH z  can be written as in [1]: 

 

0)(
)(1)( 2

2

2


















rgK

r

rg

rr

rg

              

ora                                                 (3.33) 

 

where  K
2  is defined in Eq. (2.46). 

The  wave  equation in in Eq. (3.31)for the clad field )(rhH z  can be written as [1]: 
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where   the wave number in the clad semiconductor along the transversal y- direction. 

 

 The  solutions  of  Eq. (3.33)  for  are )(0 KrJ  and  )(0 KrN  for m
th  order 

Bessel function with 0m , but )(0 KrN  negative infinity at at 0r  as shown 

in figure  2.3. This means that the solution in the core is )(0 KrJ only. 

 The  solutions  of  Eq. (3.34)  for  0m  are )(0 rK   and )(0 rI   but )(0 rI   

becomes indefinitely large at  r  as shown in figure  2.4. This means that 

the solution in the clad  is )(0 rK  ,  

 

Then Eq. (3.32) can be written as: 
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where   
  a

U
K            and          

a

W1                                                                 (3.37)  

with W1  is the normalized  transverse wave number in the clad semiconductor at        

y- direction. 

Using Eq. (3.37) then Eq. (3.36) can be written as 
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From the first boundary condition, the tangential component H z  should be  continuous  

at core- cladding interface ar   where  C and  D are constants given as in [1]: 
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Then Eq. (3.55)  can be written as: 
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Using  Eq. (2.92) for 0m  , Eq. (3.41) and substituting into Eq.(3.27) and Eq. (3.28) 

the  electromagnetic fields for TE mode in the core region ora   are obtained:  
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)(0 r
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Using  Eq. (2.93) for 0m , Eq. (3.41) and substituting into Eq.(3.29) and Eq. (3.30) 

the  electromagnetic fields for TE mode in the clad region ar   are obtained:  
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To find the dispersion equation for TE mode, we use the second boundary condition. 

The tangential component E   should be  continuous  at core- cladding interface  

ar   as: 

 

EE 21                                                                                                                    (3.48) 

 

Using Eq. (2.64), Eq. (3.42) and Eq. (3.45) then subletting into Eq. (3.48) we get: 
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Eq. (3.49) called the dispersion equation which describe the surfes wave and the 

waveguide in TE polarized. 

 

 

3.6.2. TM Mode 

In TM mode, we have 0H z , 0/   , H r and E  have to be not found, this mean 

that magnetic field parallel to the interface core- cladding along  - direction and the 

electric field perpendicular to interface along ar  , so we have set of  equations as [1]: 
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0 EHH rz                                                                                                       (3.50) 

 

The components of electric and magnetic fields that be found in the core and clad regions  

for TM mode become 
 

1-  In the core region ora   

Using Eq. (3.50)  then Eq. (2.24), Eq. (2.26) can be written as:  
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2-  In the clad region  ar   

 Using Eq. (3.50) then Eq. (3.22) and Eq. (2.24) can be written as:  
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To find E z , the wave equation in TM  mode can be written as [1]: 
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magnetic field in the core and cladding expressed as: 
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where )(rf  is the arbitrary function describe the longetional electric field in the core 

region along the z-direction and )(rs  is the arbitrary function describe the longetional 

electric field in the clad region.along the z-direction. 
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The  wave  equation in Eq. (3.31)  for the core field )(rfEz  can be written as in [1]: 
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where  K
2  are defined in Eq. (2.46). 

 

The  wave  equation in in Eq. (3.31) for the clad field
 

)(rsE z   can be written as [1]: 

  

0)(
)(1)( 2

2

2


















rs

r

rs

rr

rs
         ar                                                              (3.58) 

 

With  
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 where   is the wave number in the clad semiconductor along the transversal                  

x- direction. 

 

Eq. (3.58) have two solutions, the first )(0 rI   and the second )(0 rK  . As shown in 

figure  2.4 )(0 rI   becomes indefinitely large at r , this mean the solutions in the 

clad  )(0 rK   in this case.      

 

Then Eq. (3.56) can be written as: 
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where  
  a

W 2                                                                                                        (3.61) 

with W 2  is the normalized  transverse wave number in the clad  semiconductor at       

x- direction. 

 

Using Eq. (2.46) and Eq. (3.61) then Eq. (3.60) can be written as: 
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From the first boundary condition, the tangential component E z  should be  continuous  

at core- cladding interface ar   where  A and  B are constants  as in [1]: 
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Using Eq. (3.64) then Eq. (3.62) can be rewritten as: 
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Using  Eq. (2.93) for 0m , Eq. (3.65) and substituting into Eq.(3.51) and Eq. (3.52) 

the  electromagnetic fields for TM mode in the core region 0 ra  are obtained:  
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Using  Eq. (2.93) for 0m , and Eq. (3.65) then substituting into Eq. (3.53) and Eq. 

(3.54) the  electromagnetic fields for TM mode in the clad region ar   are obtained:  
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To find the dispersion equation for TM mode, we use the second boundary condition. 

The  tangential component  H   should be  continuou  at core- cladding interface   

ar   as 

 

HH 21                                                                                                                  (3.72)  

 

using Eq. (2.65), Eq. (3.67), and Eq. (3.61) then substituting into Eq. (3.72) we get: 
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Eq. (3.73) describe dispersion relation in TM polarized. 

 

 

 

3.6.3. Hybrid Mode 
 

In hybrid mode, the electromagnetic filed components E z  and H z  should not be zero. 

The wave equation for this type for H z  is given by Eq. (3.31),  and the wave equation  

for E z  is given by Eq.  (3.55). The  solutions for Eqs. (3.31) and (3.55) are given by 

the product of m
th

 order Bessel functions and  )cos( m  or )sin( m . E z  and H z  should 

be continuous at ar  .  Where  the solution for  Eq. (3.31) is given by Eq. (2.51), and 

the solution for Eq. (3.55) is given by Eq. (2.50). Also  it is known that rEz  /  and  

 /H z  ( or  /Ez  and rH z  / ) have the same   dependencies. Then the 

component of electromagnetic filed in the core region are expressed by Eqs. (2.52- 

2.55). 

To  find the components of electromagnetic field in semiconductor clad. Using Eq. 

(2.50) and Eq. (2.51) then substituting from Eq. (3.22) to Eq. (3.25), we get 
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To find the dispersion relation, we use the first boundary condition. Using Eq. (2.53) 

and Eq. (3.75) then substituting into Eq. (3.48) we get: 
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         (3.78) 

 

 Applying  the second  boundary condition   at  ar  , Using Eq. (2.55) and Eq. (3.77) 

then substituting into Eq. (3.72) we get: 
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         (3.79) 

 

Multiplying Eq. (3.78) with Eq. (3.79), we get: 
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                                                                                                                                  (3.80) 

From  Eq. (2.65) we get 
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where 
cl
xx is the clad relative permittivity in x- direction, and 

cl
xz  is the clad relative 

permittivity in xz- direction. 

Using Eq. (2..67), Eq. (3.81) and Eq. (3.82), then substituting into Eq. (3.80) we get:  
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Using Eq. (3.59) and Eq. (3.61), we get: 
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Using Eq. (2.70) and Eq. (3.84), we get: 
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Using Eq. (3.85) and dividing  Eq. (3.83)  by  coco where  cococon 2  we get: 
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The R.H.S of  Eq. (3.84)  can be rewritten as:  
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Where  non-magnatic  semiconductor clad
 

1cl
. 

 

Then the  dispersion relation for hybrid mode can be written as 
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                                                                                                                                  (3.88) 

 

 

 

Eq. (3.88)  is the general  dispersion equation for each  1m  in hybrid mode with 

 clcoco   to be fast mode. The Eq. (3.113) describes the dispersion relation for the 

fast mode which satisfys the value of product  clcoco  , this means that  02 U .  

But when the product  clcoco   this means 02 U  so it has an imaginary value. In 

this case, we must let UjU 1  to give 02
1 U . By using Eqs. (2.87 – 2.89) and 

substituting into Eq. (3.88) with UjU 1  to find the new dispersion relation for the 

slow mode, we  get: 
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                                                                                                                                  (3.89)
 

 

Eq. (3.89) is the general dispersion equation for each 0m  in the slow mode with

 clcoco  . 

 

 

3.7. Optical Power for TE and TM Modes 

 

The  averaged pointing vector component along z- axis per unit  area is expressed by 

Eq. (1.38) as in [1,18]: 
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  eH*E z                                                                   (3.90) 

 

where ez  is the unit vector in z-direction. The power  P carried by the optical fiber is 

given by using the relation as in [1,21]: 
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Using Eq. (3.90) and substituting into Eq. (3.91), we find that as [22,23]: 
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The analytical expressions for transmission power in each mode are described in the 

following:  
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3.7.1. TE mode 
 

A-In the LHM core region  0 ra  

The   power in the core for TE mode, from Eq. (3.26) we have 0Er  then substituting 

into Eq. (3.92), we get: 
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where PTE1  is the power in the core for TE mode. Using Eq. (3.43) we find out:  
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Where the integral formula can be written as in [1,15]: 
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Using Eq. (3.42) and Eq. (3.94) then substituting into Eq. (3.93) we find: 
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                                                             (3.96) 

 

 

Using  and Eq. (3.95) for 0m  and substituting into  Eq. (3.96), we get: 
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Using  Eq. (2.2) and Eq. (2.64)  then  substituting into Eq. (3.97), we find the power in 

the core in TE mode are: 
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                                (3.98) 

 

where PTE1  is the power in the core  region for TE mode. 

 

B- In the semiconductor clad region ar   

 

To find the power in the clad region for TE mode, must using Eq. (3.26) for 0Er ,  

and substituting into Eq. (3.92), we get: 
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from Eq. (3.46) we find that: 
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Using Eq. (3.46) and Eq. (3.100) then substituting into Eq. (3.92), we get:' 
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By using the integral formula as [1,15]: 
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Using  Eq. (3.102) for 0m  and substituting into Eq. (3.101), we get: 
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Using  Eq. (2.2) and Eq. (2.64)  then  substituting into Eq. (3.103), to find the power in 

the clad region for TE mode, we get: 
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where PTE2  is the power in the clad region for TE mode. 

 

To find the total power in TE mode, using Eq. (3.98) and Eq. (3.104) as [21,22]: 

 

PPP TETETE 21                                                                                                    (3.105) 

 

where PTE  is the total power in the case of TE mode. 

 

 

3.7.2. TM mode 

 

A-In the LHM core region  0 ra  

To calcolate the power flow in the core region for TM mode PTM1  we have 0E  

from Eq. (3.50), substituting into Eq. (3.92), we get: 
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Using Eq. (3.67) we find: 
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Using Eq. (3.69) and Eq. (3.107), then substituting into Eq. (3.106), we get: 
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Using Eq. (3.95) for 1m and substituting into Eq. (3.108) we get: 
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Using Eq. (2.1) and Eq. (2.65) and substituting into Eq. (3.109 ), we get: 
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B-  In the semiconductor clad region ar   

 

In TM ode we have 0E , The power flow in the clad  region for TM mode PTM 2  

can be found for using Eq. (3.50) then substituting into Eq. (3.92) we get: 
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.Using Eq. (3.70) we find: 
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Using Eq. (3.69) and Eq. (3.112), then substituting into Eq. (3.111) we get::  
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Using Eq. (3.102)  with 1m  and substituting into Eq. (3.113), we get: 
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Using Eq. (2.65) with  
cl
xxxx 0  and Eq. (3.13), then substituting into Eq. (3.114), 

we get 
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But the total power flow for TM mode can be calculated by using Eq. (3.110) and Eq. 

(3.115) as [21,22] 

 

PPP TMTMTM 21                                                                                                 (3.116) 
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CHAPTER FOUR 

 
MODES IN OPTICAL FIBER WITH LHM CORE AND SEMICNDUCTOR 

CLAD: GENERAL CASE 

 
In this chapter,  the progation proptise of waves in optical fiber consisting of  LHM 

core  and semiconductor clad will be studied. The dispersion relations of TE, TM, HE 

and EH mode polarization for the proposed fiber will be investigated in section 4.2. 

The total power transported within the core and clad in case of TE and TM modes will 

be calculated in section 4.3. The dispersion curves and the total power flow will be 

studied for different parameters in section 4.4. 

 

 

4.1.  Structure Analysis 

We consider the electromagnetic wave propagating along the symmetric fiber for 

cylindrical waveguide with LHM as core layer occupying the region 0 ra  which 

characterize by electric relative permittivity  co  given by Eq. (2.1) and magnetic 

relative permeability co  given by Eq. (2.2). The core layer is bounded by the a 

semiconductor material which occupys the region ar   as shown in figure (3.1). The 

clad semiconductor layer is characterized by the electric relative permittivity in the 

three dimensions (
cl
xx , 

cl
yy and 

cl
zz ) and  magnetic relative permeability 1cl , using 

Eq. (2.65) and substituting into Eq. (3.13) and Eq. (3.14) we get:   
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where 
cl
xx  is the electric permittivity in the clad at x- direction, 

cl
yy  the electric 

permittivity in the clad at y- direction and 
cl
zz  the electric permittivity in the clad at z- 

direction. 

In this, case semiconductor permittivity tensor is expressed as: 
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where 

0 zxxz                                                                                                                (4.5) 

 

4.2. The Dispersion Relations 

 

For TE mode, the dispersion equation is given by Eq. (3.49). Also for TM mode the 

dispersion equation is given by Eq. (3.73). To obtain the dispersion equation in the 

hybrid mode in this case, using Eq. (4.5) and subsisting into Eq. (3.88), we get:  
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                     (4.6) 

where W1  are defined in Eq. (3.37) and W 2  in Eq. (3.61).  

Eq. (4.6) is the dispersion equation of the hybrid mode that has two solutions, one of 

them (+) EH mode and the another is (-) HE mode as: 
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4.3. Power Consideration 

 

4.3.1. For TE Mode 

The total power transported with the core and the clad can be calculated in this case by 

using Eq. (3.98) and Eq. (3.104) then substituting into Eq. (3.105), we get:   
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4.3.2. For TM Mode 

In case of TM mode the total power transported between the core and the clad by the 

waveguide can be calculated, using Eq. (3.110) and Eq. (3.115) then substituting into 

Eq. (3.116) to get:  
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4.4. Numerical Results  

 

In the below analysis, we have assumed that the electromagnetic wave propagating 

along the fiber with radius ma 30 , the core to be LHM with range frequency from 4 

to 6 GHz, plasma frequency 102/  p GHz, the resonant frequency 42/0   GHz, 

and fractional area of the unit cell 56.0F . The cladding layer to be a semiconductor 

material with plasma frequency 102/  p GHz, collision frequency  23 GHz, 

the  cyclotron frequency  27c  GHz  and 1cl . Eq. (3.69) and  Eq. (3.94) are  

solved numerically to describe the dispersion relations for TE and TM mode curves 

with different value of fractional area F  and core radius a . In Figure 4.1, the 

dispersion curves for TM polarization are plotted and shows the variation of the 

propagation constant k/ with given frequency and differents value of F . As shown 

in the figure 4.1, the frequency decreases from largest to smallest value with increasing 

the propagation constant k/  because the dispersion equation for TM mode in      

Eq. (3.73) directly generated with electric relative permittivity )(  for the guided 

layer that increases as the frequency increases. The effect of fractional area F clarify 

the different behaviors of TM dispersion curves and the propagation constant k/

increase as the fractional area F  increase, this mean, the largest k/ released at 

largest value of F . Figure 4.2 shows the relation between the propagation constant 

k/ with given frequency and  different value of core radius a , as shown in figure 

4.2 the propagation constant increases when the frequency decreases and the effect of 

the core radius a  has no change in the behaviors of dispersion curves.  This means 

that, that the dispersion curves have the same behaviors with different value of core 

radius a  in case TM polarization. 
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Figure 4.1: Dispersion relation  for TM  mode with different  fractional area F .  Fiber 

parameter 0m ,
 

1cl
, ma 30 , GHzp 102/   , GHz32   and  GHzc 72  . 
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Figure 4.2: Dispersion relation  for TM  mode with different core fiber radius a .  

Fiber parameter 0m ,
 

1cl
, 56.0F , GHzp 102/   , GHz32   and  GHzc 72  . 
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Figure 4.3 presents to study the relation of the propagation constant k/ with 

frequency for different value of F  for TE polarization. As shown in figure 4.3, the  

propagation constant k/ decreases as the F  increases and the propagation constant 

k/  increases with increasing the frequency also, so there is cut of frequency at 

largest value of k/ and smallest value of F  and the physical meaning where the 

dispersion equation for TE mode Eq. (3.49) direct generated with magnetic relative 

permeability )(  which decreases as the frequency increases. Figure 4.4 describes 

the relation between  propagation constant k/ with given frequency as change in 

the core radius a . As shown in figure 4.4, the effect of the  core radius a  dose not 

appear in the dispersion curves i,e  the dispersion curves have the same behaviors for  

different value of core radius a  in the case TE polarization. 
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Figure 4.3: Dispersion relation  for TE  mode with different  fractional area F .  Fiber 

parameter 0m ,
 

1cl
, ma 30 ,

 
GHzp 102/   , GHz32    and  GHzc 72  . 
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Figure 4.4: Dispersion relation  for TE mode with different core fiber radius a .  Fiber 

parameter 0m ,
 

1cl
, 56.0F ,

 
GHzp 102/    , GHz32   and  GHzc 72  . 

 

Eq. (4.7) and Eq. (4.8) are solved numerically to clarify the dispersion relations for HE 

and EH mode curves respectively for different values of F  and core radius a . Figure 

4.5 and figure 4.7 show the variation of the propagation constant k/ with frequency 

for different values of F  for HE and EH polarization, respectively. As shown in figure 

4.5 and figure 4.7,  the dispersion curves for HE and EH modes are plotted where the  

propagation constant k/ increases as the frequency decreases, the largest k/

appears at largest value of F  and the dispersion curves have different behaviors with         

different F . This mean, the  dispersion curves for HE and EH modes behave the same 

dispersion curves for TM mode. Figure 4.6 and figure 4.8 show the variation of the 

propagation constant k/ with frequency and different values of core radius a  for 

HE and EH polarization respectively. As shows in figure 4.6 and figure 4.8, the 

dispersion curves has the same behaviors with  different value of core radius a  in HE 

and EH polarization that behave as TE and TM modes. 
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Figure 4.5: Dispersion relation  for HE mode with different  values fractional area F . 

Fiber parameter, 1m , 1cl
, ma 30 , GHzp 102/   , GHz32   and  GHzc 72  . 
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Figure 4.6: Dispersion relation  for HE mode with different core fiber radius a .  Fiber 

parameter 1m , 1cl
, 56.0F ,

 
GHzp 102/   , GHz32   and  GHzc 72  .                                               
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Figure 4.7: Dispersion relation  for EH  mode with different  fractional area F .  Fiber 

parameter 1m , 1cl
, ma 30 , GHzp 102/   , GHz32  and  GHzc 72  . 
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Figure 4.8: Dispersion relation  for EH mode with different core fiber radius a .  Fiber 

parameter 1m , 1cl
, 56.0F , GHzp 102/   , GHz32   and  GHzc 72  . 
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Eq. (4.9) has been solved numerically to calculate the real part of the total power Re(P) 

and total imaginary part of the total power Im (P) transported within the core and clad 

layers in case of TE polarization. Figure 4.9 and figure 4.10 show the variation of the 

total real  Re (P) and total imaginary Im (P)  power with frequency for different value 

core radius a . As shown in figure 4.9 and figure 4.10 the total real power Re (P) and 

total imaginary power Im (P) have positive value. The total real power Re (P) and total 

imaginary power Im (P) increase when the  frequency decreases to lower value. The 

effect of the core radius appears when the total real power Re (P) and total imaginary 

power Im (P) take different behaviors  with different values core radius a  and the total 

Re (P) power, and the total Im (P) power increases as the core radius a  increases . 
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Figure  4.9:  The total real part of the power flowing through the structure in TE mode 

versus the  frequency with different values of core radius a . Fiber parameter 56.0F , 

1cl , C=1, GHzp 102   , GHz32   and  GHzc 72   

. 
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Figure  4.10:  The total imaginary part of the power flowing through the structure in 

TE mode versus the  frequency with different values of core radius a . Fiber parameter 

56.0F , 1cl , C=1, GHzp 102  , GHzc 72   and  GHz32  . 

 

 

 

Figure 4.11 and figure 4.12 show respectively the total Re (P) and total Im (P)  for 

different values F  with given frequency in case of TE polarization. As shown in 

figure 4.11 and figure 4.12, the Re (P) and Im (P) have positive values increases as the 

frequency  decreases. The effect of F  dose not appear in the curves and the total Re 

(P), Im (P) exhibit the same behaviors  with different values of .F  
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Figure  4.11:  The total real part of the power flowing through the structure in TE 

mode versus the  frequency with different values of F. Fiber parameter, 1cl
, C=1, 

GHzp 102  , GHzc 72   , GHz32   and
 ma 30 . 
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Figure  4.12:  The total imaginary part of the power flowing through the structure in 

TE mode versus the  frequency with different values of F. Fiber parameter, 1cl
, C=1,

GHzp 102  , GHzc 72  , GHz32   and
 ma 30 . 
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In figure 4.13 and figure 4.14, the total  Re (P) and Im (P), respectively, are plotted 

varsus the propagation constant for different value of core radius a , in the case of TE 

polarization. As shown in the two figures, the Re (P) and Im (P) positive that increases 

as k/  decreases. The effect of  core radius a  appears in the curves where the 

largest total Re (P) and Im (P) released at the largest core radius and the total powers 

exhibit the different behaviors  with different value core radius a .                                                                                                 
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Figure  4.13:  The total real part of the power flowing through the structure in TE 

mode versus the  propagation constant with different values of core radius a . Fiber 

parameter 56.0F , 1cl
, C=1, GHzp 102  , GHzc 72   and GHz32  . 
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Figure  4.14:  The total imaginary power flowing through the structure in TE mode 

versus the  propagation constant with different values of core radius a . Fiber 

parameter 56.0F , 1cl , C=1, GHzp 102/   , GHzc 72   and GHz32   

 

 

 

The total power flow are calculated using Eq. (4.10) in case of TM  polarization. 

Figure 4.15 and figure 4.16 clarefy the total Re (P) and Im (P)  with the frequency and 

core radius a . As we can see from figure 4.15, the total Re (P) is negative because the 

poyntings vector S has the from  left-handed triple with the vectors E and H, S and 

wave vector k are in opposite directions. So the Re (P) decreases as the frequency 

decreases, total Re (P) decreases with increasing a  and the curves have different 

behaviors  with different core radius a . As shown in figure 4.16, total Im (P) is 

positive, the power increases as the  core radius increases and the frequency decays 

towards lower values for high values of Im(P) due to the high fields confinement.   
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Figure  4.15:  The total real part of the power flowing through the structure in TM 

mode versus the  frequency with different values of core radius a . Fiber parameter 

56.0F , 1cl , C=1, GHzp 102  , GHz32   and GHzc 72  . 
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Figure  4.16:  The total imaginary part of the power flowing through the structure in 

TM mode versus the  frequency with different values of core radius a . Fiber parameter 

56.0F ,
 

1cl , C=1, GHzp 102  , GHzc 72   and  GHz32  . 
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Figure 4.17 and figure 4.18 are illustrated  the relation between the total real power  

Re(P) and imaginary Im (P) flow with frequency and change in fractional area unit cell 

F  in case TM polarization. As shown in figure 4.17, the total Re (P) is negative as we 

optained the physical meaning from figure 4.15, the curves behave as the same in 

figure 4.15  but the power curves have the same behaviors  for different F . As can see 

from  figure 4.18, the total Im (P) curves have the same as in figure  4.16 but the 

change of fractional area  does not effect in the behaviors that exhibit the same for 

different values of F . 
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Figure  4.17:  The total real part of the power flowing through the structure in TM 

mode versus the  frequency with different values of fractional area F. Fiber parameter, 

1cl , C=1, GHzp 102  , GHzc 72  GHz32   and
 ma 30 . 
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Figure  4.18: The total imaginary part of the power flowing through the structure in 

TM mode versus the  frequency with different value of fractional area F. Fiber 

parameter ma 30 , 1cl
, C=1, GHzp 102  , GHzc 72   and GHz32  . 

 

 

Figure 4.19 and figure 4.20 show the variation total Re (P) and Im (P)  power versus 

the  propagation constant k/  for different core radius a  in case of TM polarization. 

As shown in figure 4.19, the total Re (P) has negative value and has the peak value at 

specific value of k/ , the Re (P) decreases as propagation constant decreases to 

specific value , the  total  Re (P) decreases as the  core radius increases and the Re (P) 

curves exhibit different behaviors  with different value core radius a . As we can see in 

figure 4.20, the total Im (P) positive, the Im (P)  increases as propagation constant 

decreases until  specific value of k/  and the effect of core radius appears where the 

Im (P)  power increases as a  increases.                           
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Figure  4.19: The total real part of the power flowing through the structure in TM 

mode versus the  propagation constant with different values of core radius a . Fiber 

parameter 56.0F , 1cl , A=1, GHzp 102  , GHzc 72  , GHz32  and

ma 30 . 
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Figure  4.20: The total imaginary part of the power flowing through the structure in 

TM mode versus the  propagation constant with different values of core radius a . 

Fiber parameter 56.0F , 1cl
, A=1,

 
GHzp 102  , GHzc 72   , GHz32   and

 

ma 30  
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CHAPTER FIVE 

 

MODES IN OPTICAL FIBER WITH LHM CORE AND SEMICNDUCTOR 

CLAD: SPECIAL CASE 

 

In this chapter, a special case, is studied  where the elements  zzyyxx  . The 

dispersion equations for TE, TM, HE and EH modes for the waveguide fiber will be 

presented in section 5.2. The total power flow in the structure for TE and TM  

polarization will be calculated in section 5.3.  The dispersion curves are plotted for 

different parameters, core radiuse and fractional area unit cell in section 5.4. 

                                                                     

 

5.1. Structure Analysis 

In this chapter, we will limit our study to a special case. We consider that  

electromagnetic waves are propagating in the optical fiber along z- direction where 

LHM in the core with radius a  which characterize by electric relative permittivity  co  

given by Eq. (2.1) and magnetic relative permeability co  given by Eq. (2.2). The 

LHM core of the fiber is bounded by a semiconductor material that is  characterized by 

electric relative  permittivity 
zz
cl   in the special case  given from Eq. (3.13) and the 

magnetic relative permeability 1cl   this mean that: 
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In this special case, the semiconductor permittivity tensor can be expressed: 
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where 
    




0

zzzz
cl                                                                                                        (5.3) 

 

using Eq. (3.12) and comparing with Eq. (5.2) we get: 

 

 zzyyxx 
    

                                                                                                        (5.4) 

And the components of  xz ,    zx to be zero as in Eq. (4.5). 

 

 

5.2. The Dispersion equations  

 

5.2.1. TE and TM Modes 

The dispersion relation for each mode has been derived in chapter three. We have to 

introduce the special case so that  
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where   and   are defined in chapter three. 

From Eq. (5.6) and Eq. (5.7), we get: 
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where   and    are define in Eq. (3.35) and Eq. (3.59). 

Then using Eq. (3.37) , Eq. (3.61) and Eq. (5.6), we get: 
 

 

WWW  21                                                                                                              (5.7) 

 

 

Using Eq. (5.7)  and substituting into Eq. (3.49) the dispersion equation for TE mode 

in this special case is rewritten as: 
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Using Eq. (5.7) and substituting into Eq. (3.73) the dispersion equation for TM mode 

in this special case is written as: 
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          TM mode                                                       (5.9) 

 

5.2.2.  Hybrid Mode (HE and EH) 

 

To obtain the dispersion equation for HE and EH modes, we use Eq. (5.4) and Eq. (4.5) 

then substituting into Eq. (3.88), we get the two type of hybrid mode as: 
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5.3. Power Considerations 

5.3.1.  TE Mode  

In this special case the total power transported between the core and clad for TE mode 

can be calculated by using equation (3.105 ).  

From Eq. (5.7) and substituting into Eq. (3.104)  we get: 
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Using Eq. (3.98) and Eq. (4.12) then substituting into Eq. (3.105), we get: 
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where TPTE  is the total power in TE mode for a special case with  

 
 

aW                                                                                                                       (5.14) 

 

5.3.2.  TM Mode  

Using Eq. (3.110), Eq. (3.115) and Eq. (5.7), then substituting into Eq. (3.116) the total 

power in TM mode becomes 
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TPTM  is the total power in TM mode for a special case with 

 

aW                                                                                                                       (5.16) 
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5.4. Numerical Results : 

 

In the analysis below we have assumed the core layer to be LHM  with co  and  co  

are given by Eq. (2.1 ) and Eq. ( 2.2), and the cladding layer to be  semiconductor 

material with 1 cl  and  cl  that given from Eq. (5.1). We considered the parameters 

102/  p GHz,  42/0   GHz, 22/   GHz, and the  cyclotron frequency 

12 c  GHz.  The dispersion relation, for TE, TM, HE, and EH modes are solved 

numerically and the optical power are calculated using the above set of equations.  

Figures 3.1 shows the dispersion curves for fast and slow modes if the radius of the 

core LHM ma 50  and 56.0F . 
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Figure 5.1: Dispersion curves describing the ( fast- slow ) mode  curve AC ,fast mode 

with  curve DF in the fiber. Fiber parameter 1cl
, ma 50 , fractional area 56.0F ,

GHzp 102  , GHzc 12  and GHz22/  that be devided in two region 

curves. 

 

In Figure 5.1  there are three regions of modes in this case (I, II), and (III).  In the first  

region (I)  the condition 02 U , this means  clclcoco   and the fast mode exists. 

We can see only one type of the  dispersion curves with fast mode lies in  both regions 

I and II ( AC curve ), this curve partial from ( AC curve ) that  ( AB curve ).  Point B 
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divides the fast mode from the slow mode and satisfy that  02 U . In region II and III  

the condition 02 U  is satisfied, this means that only slow mode can exist. There are 

two  dispersion curves of the slow mode one of them is completely in region III  is the  

( DF curve ) and  the other in region II  ( BC curve ). Figure 5.2  and  5.3  describe the 

modes TE, TM , HE and EH modes in the structure. In fact Figure 5.2 shows the (fast- 

slow ) mode in regions (I) and (II) curve AC from figure 5.1, the modes polarization in 

this range arranged in the following way, if  0m  there are two types TE and TM  

mode starting with TM mode  have the largest propagation constant k/ and TE 

mode that exist with smallest  propagation  constant k/ . If 0m  the two types of 

modes HE  and  EH exist, and have the same propagation constant k/  with the 

same frequency between TE and TM  mode where HE dispersion curve is in agreement 

on EH dispersion  curve.   Figure 5.3 also shows the slow mode in region III (curve 

DF) from figure 5.1, the modes polarization in this range arranged as the same way in 

regions I  and  II.  

 

 
 

                                    f  

    k
  

 

Figure 5.2: Fast-slow guided modes (desertion curve of AC type in Fig 2.2) at 1,0m . 

Fiber parameter 1cl
, ma 50 , fractional area 56.0F , GHzp 102  , 

GHzc 12   and GHz22/  . 
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Figure 5.3 : Slow  guided modes (desertion curve of DF type in Fig 2.2) at 1,0m .  

Fiber parameter, 1cl , ma 50 , fractional area 56.0F ,
 

GHzp 102  ,

GHzc 12  and GHz22/  . 

. 

 

Figure 5.4 shows the variation of the  propagation constant k/ versus the frequency 

for various values of  the fractional area  F  in TM mode polarization. As we can see 

in figure 5.4 the propagation constant k/ increases as the frequency decreases, and 

the  dispersion curve have different behaviors  for different values  of F . Figure  5.5 

shows the relation between propagation constant and  frequency with differnt values of 

the core radius  a  in TM  mode. As the figure shows, the propagation constant k/

decreases as the core radius increases, and the dispersion curves are starting at the 

same propagation constant for different  value of the core radius.  
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Figure 5.4: Dispersion relation  for TM  mode with different  fractional area F .  Fiber 

parameter 0m , 1cl
, ma 50 ,

 
GHzp 102  , GHzc 12  and GHz22/  . 
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Figure 5.5 : Dispersionrelation  for TM mode with different  core radius a , 0m  .  

Fiber parameter 1cl , fractional area 56.0F ,
 

GHzp 102  , GHzc 12  and

GHz22/  . 
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Figure  5.6  shows the  effect of the fractional area unit cell  for TE  polarization. As 

we can see from the figure,  there is two regions exist, (I) and (II), the propagation 

constant is plotted respectively versus  to the frequency of the guided mode.  In region 

(I), the propagation constant increases as the frequency increases, and there is cut of  

frequency at largest propagation constant and smallest F. In region (II) the k/  

increases as the frequency decreases, the k/  have largest value at largest F, and the 

dispersion curve exhibit different behaviors  for different values  of F . The change 

between two regions I, II in figure 5.6 lead to the effective )(  and )(  for the 

guided layer in the range of frequency. The dispersion curves are plotted in figure 5.7 

for different core radius a . As shown in figure 5.7 the curves have the same as in 

figure 5.6 but the effect in core radius gives the same behaviors  for different values  of a

.  
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Figure 5.6: Dispersion relationfor TE mode with different fractional area F , 0m .  

Fiber parameter 1cl , ma 50 , GHzp 102  ,
 GHzc 12  and  GHz22/  . 
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Figure 5.7: Dispersion relation  for TE mode with different  core radius  a , 0m  .  

Fiber parameter 1cl , fractional area 56.0F , GHzp 102  ,
 GHzc 12  and

GHz22/  . 

 

 

In  Figures  (5.8, 5.9, 5.10 and 5.11 )  the dispersion curves are plotted for  two types of  

hybrid  mode, HE  and  EH  mode  with different values of  F  and core radius a . As 

shows in figure 5.8 and figure 5.10  with different F   and given frequency in HE and  

EH  polarization, the propagation constant decreases with increasing F , and the 

dispersion curves exhibit different behaviors  for different values of F .  Figure 5.9 and 

figure 5.11 show the relation between the propagation constant k/ with frequency 

and different values of core radius a  for HE and EH polarization. As shown in the two 

figures, the  propagation constant  increases  as the frequency decreases in both HE and 

EH polarization, and the curves are in agreement on each other having the same  

behaviors for different  core  radius.  
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Figure 5.8 : Dispersion relationfor HE mode with different  fractional area F , 1m .  

Fiber parameter 1cl , ma 50 , GHzp 102  ,
 GHzc 12  and  GHz22/  . 
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Figure  5.9: Dispersion relation for HE mode with different core radius  a , 1m  .  

Fiber parameter 1cl , fractional area unit cell 56.0F , GHzp 102  ,

GHzc 12  and GHz22/  . 
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Figure 5.10: Dispersion relation for EH mode with different  fractional area F , 1m

.Fiber parameter 1cl , ma 50 , GHzp 102  , GHzc 12  and GHz22/  . 
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Figure  5.11:Dispersion relation for EH mode with different core radius  a , 1m  .  

Fiber parameter 1cl , fractional area unit cell 56.0F , GHzp 102  ,

GHzc 12  and  GHz22/  .. 
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It is very important to calculate the total power carried by core and the clad,              

Eq. (5.13) solved to gives the total power in TE  mode polarization. Figures 5.12 and 

5.13 shows the total Re(P) and Im(P) respectively, with given frequency and different 

values core radius.  As shown in figures 5.12 and 5.13, total Re(P) and Im(P)  are 

positive, the total powers increases as the frequency increases and increasing core 

radius, and the power curves have different behaviors for different  core  radius. This 

means, the power in the clad region is very larg than power in the guided layer core 

(LHM) which is negative because the the vector S and wave vector k are in opposite 

directions.                                      
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Figure  5.12:  The total real part of the power flowing through the structure in TE 

mode versus the  frequency with different values of core radius a . Fiber parameter 

56.0F , 1cl , C=1, GHzp 102  , GHzc 12  and GHz22/   
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Figure  5.13:  The total imaginary part of the power flowing through the structure in 

TE mode versus the  frequency with different values of core radius a . Fiber parameter 

56.0F ,
 

1cl , C=1, GHzp 102  ,
 GHzc 12   

and  GHz22/  . 

 

 

 

 

The Re(P) and Im(P) and plotted respectively with k/  for different values core 

radius guided layer for TE polarization in figure 5.14 and figure 5.15. As shown in two 

figures, the total Re(P) and Im(P) positive, Re(P) and Im(P) increases as k/  

decreases and increasing core radius and the power curves exhibit different behaviors 

for different  core  radius.   
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Figure  5.14:  The total real part of the power flowing through the structure in TE 

mode versus the  propagation constant with different value of core radius a . Fiber 

parameter 56.0F , 1cl , C=1, GHzp 102  , GHzc 12  and  GHz22/  . 
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Figure  5.15:  The total imaginary part of the power flowing through the structure in 

TE mode versus the  propagation constant with different value of core radius a . Fiber 

parameter 56.0F , 1cl , C=1, GHzp 102  ,
 GHzc 12  and GHz22/  . 
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To study the total power with different parameters for TM mode, Eq. (3.15) must be 

solved. Figure 5.26 and figure 5.17 respectively, show the total Re(P), Im (P) as given 

frequency and different values core radius. As shown in figure 5.16 , the negative total 

Re(P) means, the dependence of the vector S in the core layer LHM in the opposite 

direction for vector k,  Re(P) decreases as increasing a , and the effect core radius 

gives different behaviors. As shown in figure 5.17 the positive total Im (P), means that, 

the Im (P) is very large in the clad region, Im (P) increases as the core radius increases, 

and the change in radius a  exhibit different behaviors in the power curve.     
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Figure  5.16:   The total real part of the power flowing through the structure in TM 

mode versus the  frequency with different value of core radius a . Fiber parameter 

56.0F , 1cl
, A=1, GHzp 102   , GHzc 12   and GHz22/  . 
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Figure  5.17:  The total imaginary part of the power flowing through the structure in 

TM mode versus the  frequency with different value of core radius a . Fiber parameter 

56.0F , 1cl , A=1, GHzp 102  , GHzc 12  and GHz22/  . 

 

 

 

Figres 5.18 and 5.19 represent respectively, the relation between, the total  Re(P), Im (P) 

and the propagation constant with different core radius for TM polarization. As  figure 5.18 

shows, Re(P),  has the negative value, total Re(P) decreases for increases  core radius with 

given k/  and  the increasing a  gives  different  behaviors of  Re(P). As show in figure 5.19, 

Im (P) is positive, Im (P)  has peak value at specific value of k/ , and  Im (P) increases 

with increasing core radius a .  
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Figure  5.18:  The total real part of the power flowing through the structure in TM 

mode versus the  propagation constant with different value of core radius a . Fiber 

parameter 56.0F , 1cl
, A=1, GHzp 102  , GHzc 12  and  GHz22/  . 
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Figure  5.19:  The total imaginary part of the power flowing through the structure in 

TM mode versus the  propagation constant with different values of core radius a .  

Fiber parameter 56.0F , 1cl , A=1, GHzp 102  , GHzc 12  and GHz22/  . 
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In figures 5.20 and 5.21, we study respectively, the effect of the parameter F  with  

frequency for plotted Re (P) and Im (P) in case TE mode. As shown in figure 5.20, the 

Re (P)  behave as the same in figure 5.12 but the power have same behaviors for 

different values F . As we can see in figure 5.21, the total Im (P) described as in figure 

5.13, and the effect of F  does not appear which gives the same behaviors for different 

values F .   
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Figure  5.20:  The total real part of the power flowing through the structure in TE 

mode versus the  frequency with different values of F. Fiber parameter ma 50 , 

1cl , C=1, GHzp 102  , GHzc 12  and  GHz22/  . 
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Figure  5.21:  The total imaginary part of the power flowing through the structure in 

TE mode versus the  frequency with different values of F. Fiber parameter ma 50 ,

1cl , C=1, GHzp 102  , GHzc 12  and GHz22/  . 

 

 

 

 

In figures 5.22 and 5.23, the total Re (P) and Im (P) are plotted respectively, versus the 

frequency for different values of  F  in case TM mode. As shown in figure 5.22, the 

Re (P) described as in figure 5.16 and the curves exhibit the same behaviors for 

different values F . As we can see in figure 5.23  the Im (P)  have the same as in figure 

5.17 but the curves are agreement to others with increasing F .     
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Figure  5.22:The total real part of the power flowing through the structure in TM mode 

versus the frequency with different values of fractional area F. Fiber parameter 

ma 50 , 1cl , A=1, GHzp 102  , GHzc 12  and  GHz22/  . 
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Figure  5.23:-  The total imaginary part of the power flowing through the structure in 

TM mode versus the frequency with different values of fractional area F. Fiber 

parameter ma 50 , 1cl , A=1, GHzp 102  , GHzc 12   and  GHz22/  . 
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CHAPTER SIX 

CONCLUSIONS 

 

In this thesis all modes have been analyzed in an optical fiber with core layer 

consisting of LHM and the cladding layer semiconductor material. 

The dispersion curves are plotted and described for TE, TM, HE, and EH  modes. 

In this structure, it is significant to study the dispersion relation with changing core 

radius a  and the fractional area F  
 

With the dispersion TE, TM, HE and EH modes, the following  observation are 

obtained:  

- The dispersion curves in fast and slow mode for TE, TM, HE, and EH modes 

appear in the structure, TM mode has the smallest propagation constant, TE has 

largest  propagation constant and dispersion curve for (HE, EH) mode agree on 

others. 
 

- In case of TM mode, the dispersion curve exhibit different behaviors with 

different values of fractional area .F  The  propagation constant increases as 

the  fractional area F  increases with given frequency.  

- In case of TM mode, the dispersion curve exhibit the same behaviors with 

different values of core radius a  for given frequency. 
 

- In case of TE mode, the dispersion curve exhibit different behaviors with 

different values of fractional area .F  The  propagation constant decreases as 

the  fractional area F  increases for given frequency and the largest propagation 

constant released at smallest fractional area.  
 

- In the case of TE mode, the dispersion curve take the same behaviors 

agreement on each other as the  core radius a  increase with  given frequency.                                                                                                 

 

- In the case of HE and EH modes, dispersion curves exhibit different behaviors 

with different fractional area F  and the propagation constant increases as the 

fractional area F  increase.  
 

- In the  case of HE and EH modes, the dispersion curves take the same 

behaviors  agreement to each other with different values of core radius a  and 

given frequency.                           
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The total carrying power transported in the core and the clad are described for both 

cases of TE and TM modes only with different variables values, fractional area F and 

the core radiuses a . 

In the case TE mode the, the following observing are obtained 

- The total carrying power Re (P) and Im(P) flow in the core and the clad has 

positive value and takes different behaviors with different core radius a  for 

given frequency. The total power Re (P) and Im(P) increases as core radius a  

increase with given frequency.                       
 

- The total carrying power Re (P) and Im(P) that transported with in core and the 

clad has positive and take different behaviors with different core radius a  for 

given propagation constant. The total Re(P) and Im(P) increase as core radius 

a  increase as given propagation constant. 

 

- The total power Im(P) and Re (P) transported in the core and the clad has 

positive value  and exhibit the same behaviors agreement to others as 

increasing fractional area F  for given frequency.                            . 

 

- The total power Im(P) transported in the core and the clad are larger than total 

power Re(P) as given frequency. The total power Im(P) and Re (P) are equal 

for given propagation constant. 

 

In the case TM mode the, the following observing are obtained: 

- The total carrying real power Re (P) transported in the core and the clad has 

negative value and  exhibit different behaviors as change in core radius a .  The 

total power Re (P) decreases as core radius a  increase for given frequency and 

given propagation constant also.  

 

- The total carrying  power Im (P) transported in the core and the clad has 

positive and  exhibit different behaviors as change in core radius a .  The total 

power Im (P) increases as core radius a  increase for given frequency and given 

propagation constant also.  
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- The total power Re(P) transported in the core and the clad has negative values 

and exhibit the same behaviors in agreement to others as increasing fractional 

area F  for given frequency. 
 

- The total power Im (P) transported in the core and the clad has positive values  

and exhibit the same behaviors in agreement to others as increasing fractional 

area F  for given frequency. 
 

- The total power Re(P) transported in the core and the clad are smaller than total 

power Im(P) for given frequency. The total power Im(P) is larger than Re (P) 

for given propagation constant. 

 

 

Applications: 

In this thesis, the fiber structure have many applications. One of most important as 

fiber-optics communications which transmission the data rates longer distance and 

higher bandwidth between two ends fiber than other forms of communications, it can 

be used as a media for telecommunication and computer networking. In the second  

application for this fiber used as fiber-optics sensors with different wavelength of light 

because no electrical power is needed at the location. In anther way it can be used also 

as fiber illumination application light guides, fiber lasers and imaging optics.    
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Advantages: 

 

1- The amount of data rates transmission between two ends of  the fiber has the 

same with  different fiber core diameter because there is no change in the 

dispersion relation as change in the core radius.  

2- In cases TM, HE and EH modes, the velocity that used to carry the information 

in the fiber increases, because the propagation increases when the  fractional area 

F  increases. 

3- The core-clad fiber gives the same power to transmit data as increasing 

fractional area F  .  

4- In case of TM mode, core –clad fiber gives small power to carry data when 

increasing core radius.     

 

Disadvantages: 

 

1- In case of TE mode, the speed that carry data rates in the fiber decreases 

because the propagation decreases as fractional area increases. 

2- The core –clad fiber gives large power to transmit data in the fiber when the 

core diameter increases for case TE mode 
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