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The author of this thesis discusses two topics in elementary particle physics:
n-ary algebras and their applications to M-theory (Part I), and functional evolution

and Renormalization Group flows (Part II).

In part I, Lie algebra is extended to four different n-ary algebraic structure:
generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor;
though there are still many other n -ary algebras. A natural property of Generalized
Lie algebras — the Bremner identity, is studied, and proved with a totally different
method from its original version. We extend Bremner identity to n-bracket cases,
where n is an arbitrary odd integer. Filippov algebras do not focus on associativity,
and are defined by the Fundamental identity. We add associativity to Filippov
algebras, and give examples of how to construct Filippov algebras from su(2),
bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the
ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep
generating new charges that make the algebra not closed. We also study the Bremner
identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only
example 3-algebra being used in physics is the BLG model with 3-algebra 4,,
describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB

model, is believed to describe infinite M2-branes condensation. Also, there is another



propose for M2-brane interactions, the ABJM model, which is constructed by ordinary
Lie algebra. We compare the symmetry properties between them, and discuss the

possible approaches to include these three models into a grand unification theory.

In Part II, we give an approximate solution for Schroeder’s equations, based on
series and conjugation methods. We use the logistic map as an example, and
demonstrate that this approximate solution converges to known analytical solutions
around the fixed point, around which the approximate solution is constructed.
Although the closed-form solutions for Schroeder’s equations can not always be
approached analytically, by fitting the approximation solutions, one can still obtain
closed-form solutions sometimes. Based on Schroeder’s theory, approximate solutions
for trajectories, velocities and potentials can also be constructed. The approximate
solution is significantly useful to calculate the beta function in renormalization group
trajectory. By “wrapping” the series solutions with the conjugations from different
inverse functions, we generate different branches of the trajectory, and construct a

counterexample for a folk theorem about limited cycles.
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Chapter 1

Introduction of Part I

In this introduction, we motivate and formulate the research questions to be
addressed in Part I of this thesis. First, we introduce the origin of » -ary algebras and
review the development of them within the last forty years. Then we give a short
review of M2-brane and point out that one of the most important research problems of
M-theory is the dynamics between multiple M2-branes and M5-branes. We then go on
to explain the recent connection between 3-algebra and dynamics of multiple
M2-branes through BLG model. We also mention that there is an alternative candidate
for multiple M2-branes theory, and its possible relation to BLG model. These allow us
to formulate the precise questions we want to address in Part I. Finally we go through

the organization of Part I by chapters.

1.1 History of 7-Ary Algebras

About forty years ago, Nambu[l] proposed an elegant generalization of classical
Hamiltonian mechanics, which was an alternative to the canonical formulation. In
Nambu’s formalism, he replaced the usual canonical binary Poisson bracket by

Nambu bracket with three entries. Since this ternary innovated algebraic structure is

1



2

Poissonlike, it is called the classical Nambu bracket, and it is a volume-element
Jacobian determinant in a higher dimensional space. Nambu also considered imposing
various properties on the classical Nambu bracket, but it was not clear at that time[1].
Later, Filippov[2], Takhtajan[3] and many others[4,5,6,7] systematically studied the

original Nambu brackets and made many extensions.

In 80s, Filippov[2] quantized classical Nambu bracket in a conventional Hilbert
space operator formalism, writing it in the form of 3- or 7 -linear fully antisymmetric
commutator. He also imposed a property called Filippov identity (also known as
Fundamental Identity) to the quantized Nambu brackets, formulating the Filippov
algebras, which is the original and the first version of n-ary algebras. Fundamental
identity is considered to be the Jacobi identity in 3- or n-bracket case, and it is the
most critical property when defining Filippov algebras. In 1994, Takhtajan[3] defined
a special class of Nambu brackets, called the Nambu-Poisson brackets. In his system,
Nambu-Poisson bracket can be used to write down the equations of motion with the
advantage that a larger symmetry is kept manifest compared with the canonical
formulation, which requires a gauge fixing condition. Based on Filippov’s work,
many modifications have been made on Filippov algebras, and many other similar
algebras have been generated, like generalized Lie algebra, n -Leibniz algebra,

etc[7,8,9,10,11].

Because of its Lie algebra-like form, many researchers attempted to search Lie
algebra-like properties of n-ary algebras[2,12,13,14]. However, after almost forty

years, we still know little about this new algebraic structure by two reasons. One is
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that there are not many # -ary algebras found so far; the Fundamental identity is so
strong that no matter what kind of the modifications made on it, it still rules out most
n-ary algebra candidates. Besides Fundamental identity, people rarely found other
properties that can be applied to Nambu bracket and »-ary algebras until 1997.
Bremner[15,16,17] found the universal property (Bremner Identity) for all quantized
ternary Nambu bracket, and then Curtright, Jin and Mezincescu extended it to
n -bracket case[18]. Another reason is that people have not found an effective

representation for » -ary algebras.

1.2 What is an M2-brane?

String theory is considered as a candidate to unify all the fundamental
interactions since the early 1970s. During the development of string theory, one
natural question was always asked: can one extend the one-dimensional strings to
higher dimensional objects, like 2-dimensional membranes or, in general
d -dimensional objects? The first study of membranes was back in 1962, even before
the borning of string theory. Dirac[19] proposed that the excited states of a brane-like
object could correspond to the electron and the muon. However, because of the lack
of spin in his theory, the brane idea was not accepted until superysymmetry and

supergravity were studied.

The study of branes was in parallel with string theory, generalizing from the

Green-Schwarz action. The attempts to quantize branes were not successful until 1986,
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when supersymmetry was incorporated to 3-branes theory by Hughes, Liu and
Polchinski[20]. Later, Bergshoe, Sezgin and Townsend[21] wrote down the
Lagrangian describing a single supersymmetric membrane propagating in D

dimensions.

On the other hand, eleven-dimensional supergravity was constructed in 1978[22].
Two different techniques, i.e. the doubled field approach and the method of nonlinear
realization were combined and with their help, people could understand the equations

of motion of the bosonic p -form fields. The eleven-dimensional theory has the

advantage of uniqueness and simplicity. Only three different particles: the gravition,
the Majorana gravitino, and a gauge potential (a third rank antisymmetric tensor), are

contained.

The eleven-dimensional space in strong coupling limit was generalized from two

of the string theories (type IIA and E, x E, heterotic string). At the Strings 95

conference in the University of Southern California, Witten named it M-theory and
proposed that M-theory to be an extension of string theory that would unify all five
string theories via dualities, and the eleven-dimensional gravity is its low energy limit.
In M-theory, the fundamental ingredients are the M2-branes and their solitonic

electric-magnetic duals, M5-branes.

Maldacena’s AdS/CFT[23] correspondence provides an approach to stacks of
M2- and MS5-branes; the gravity side of the correspondence, where these branes are

defined, is a good starting point. In eleven-dimensional supergravity, a stack of
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M2-branes has an A4dS, xS’ geometry, and is dual to a three dimensional conformal

field theory. The gauge theory is of Chern-Simons type and it contains N =8
maximal supersymmetry.

Nowadays, the dynamics of M2-branes and M5-branes is still under a long way

of studying, and M-theory still remains mysterious.

1.3 3-Algebra and Multiple M2-branes

Before 2006, n-ary algebras had already been studied for more than three
decades, but people were still not clear about how to apply it to physics successfully.
While on the other hand, actions describing single M2-brane and single M5-brane had
been known for a long time; however, actions for multiple M2-branes and multiple
MS5-branes dynamics were still mysterious. Fortunately, in 2006, a novel theory
appeared and combined 7 -ary algebras and multiple M2-branes dynamics together.
Bagger and Lamber[24,25,26], and Gustavsson[27] independently proposed an action
describing a pair of M2-branes, based on Filippov 3-algebras, rather than Lie algebras.
This model is called BLG model, and was inspired by the work of Basu and
Harvey[28]. Actually, the equation of motion for multiple M2-branes came before the
action for them. Basu-Harvey equation successfully describes the configuration of
multiple M2-branes ending on an M5-brane, though it does not reply on specific
realization of any 3-algebra like structure. Bagger, Lamber and Gustavsson then

started from Baso-Harvey equation, proposed BLG model.
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BLG model has 3-dimensional maximally supersymmetric gauge theories with
OSp(8|4) superconformal symmetry. This model has successfully described pairs of
M2-branes on an M-fold, and has provided a relationship between M2-branes and

Dp -branes. The Filippov 3-algebra utilized in it is 4-dimensional A4, , which is finite
positive-definite. The Fundamental identity of A, plays a very important role in

BLG model: it implies that BLG model has N =8 supersymmetry. However, BLG
still suffers several disappointing points: first, it describes the dynamics of a pair of
M2-branes on an orbifold rather than a flat space, which does satisfy BPS state very
well. Second, because of gauge symmetry A4, , its gauge group SU(2)xSU(2) only
describes two M2-branes sitting on one another; the action describing low energy

dynamics of an arbitrary finite number of M2-branes remains unsolved.

BLG model initiated a trend of studying the relation between 3-algebras (not just

Filippov 3-algebras) and M2-branes[29,30,31,32]. It seems that the 4, algebra is the

only finite positive-definite metric Filippov 3-algebra, all others are either direct sums

of A, or trivial one-dimensional 3-algebras. So it is almost impossible to modify

BLG model by enriching finite positive-definite metric Filippov 3-algebras. The
condition of “finite positive-definite metric” seems too strong to rule out all other
3-algebras to be applied to this model. To remedy this, “finite” condition can be
abandoned. Filippov algebras are originated from classic Nambu bracket, and classic
Nambu bracket combining with Fundamental identity would generate Nambu algebra.
Nambu algebra is an infinite positive-definite metric algebra, and of course, it is also a

special case of Filippov algebras.
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Bagger and Lambert[26] first suggested to apply Nambu algebra in BLG model,
and others[33,34,35,36] showed the success of this modification. Nambu algebra
gives volume-preserving diffeomorphism group SDiff(S*) for the gauge group of
this modified model. The new BLG-NB model contains N =8 maximal
supersymmetry also, and describes infinite M2-branes condensation. However, how to

describe finite number of M2-branes still can not be answered by this model.

Besides BLG model and BLG-NB model, Aharony, Bergman, Jafferis and
Maldacena[23] proposed another model that is believed to describe an arbitrary finite
number of M2-branes, the ABJM model. ABJM model was constructed using a Lie
algebra, and it has gauge group SU(N)x SU(N) and manifest N =6 supersymmetry.
It was shown that, ABJM model is equivalent to BLG model when N = 2. However,
it is not clear how to enhance the supersymmetry when N is greater than 2, and one
can not expect to directly read off the degrees of freedom from the Lagrangian of
ABJM model. If ABJM model is correct, it should be possible to take the large N
limit to describe M2-branes condensation, which means ABJM model should be
equivalent to BLG-NB model. The unification work between BLG, ABJM and

BLG-NB is still under study.

1.4 Research Questions

In Part I of this thesis, we focus on the properties of n-ary algebras, and how

they are applied to M-theory. The problems we want to confront are:



1. To classify different types of 7 -ary algebras, study the relations between them.

2. To study the restrictions on structure constants of different 7 -ary algebras given
by Bremner identity.

3. To study the relations between Fundamental Identity and Bremner Identity.

4. To study BLG-NB model, and its gauge group SDiff(S*), as well as its relations
to SU(2)xSU(2).

5. To study the connection of ABJM model to BLG model, study supersymmetry
enhancement.

6. To study the gauge theory of ABJM model at large N limit.

1.5 Roadmap of Part 1

In chapter 2, we first review the structure theory of regular Lie algebras and their
representation theory. Then we classify #»-ary algebras into generalized Lie algebras,
Filippov algebras, Nambu algebras and Possion structure. Though there are more
n -ary algebras than we list here, we believe that these four are most closed to physics
and should be of particular interest of research. We attempt to enrich 3-algbras by
calculating ternary versions of Virasoro-Witt algebra, superconformal algebra and
Ladder operator, and find that only Virasoro-Witt algebra can generate 3-algebra
under some certain conditions. We also show a non-computer involved approach of
proving Bremner identity in quantum Nambu 3-bracket case, and extend it to

n -bracket case.
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In chapter 3, we study the formulism of BLG model. We review A4, and see it
plays an important role in supersymmetry invariance and M2-brane number
description. We talk about the success and challenge for BLG model. Then we extend
BLG model to BLG-NB model by substituting 4, with Nambu algebra. The gauge
group of BLG-NB model is SDiff(S’), a conjecture is to decompose the gauge
theory of SDiff(S*) into the direct product of two SDiff(S?) gauge theory. We
give a short review of constructing classical Yang-Mills theories at large N limit, and

believe that this approach would give us the hint of connecting BLG and BLG-NB

model.

In chapter 4, we introduce ABJM model and its connection to BLG model and
BLG-NB model. At N =2 case, ABJM model is believed to be equivalent to BLG
model, but the supersymmetry enhancement is still a problem when N = 2. Also the
gauge theory of ABJM model when N goes infinity is mysterious, and we discuss

the possibility and approaches to unify ABJM model and BLG model.

In chapter 5, we make a conclusion of Part I.



Chapter 2

71 -Ary Algebras

A Lie algebra is an algebraic structure based on Lie bracket operation involving
two entries. The n-ary generalizations of Lie algebra are algebraic structures in
which two-Lie bracket has been replaced by a bracket with n entries. Like Lie
algebras, n-ary algebras also satisfiy a specific characteristic identity which plays the
role of the Jacobi identity for Lie algebra. There are more than one ways to define
n-ary algebras, and different definitions would emphasize different arithmatics and
correspond to different identities. However, no matter how one defines a n-ary
algebra, there are not as many of them as Lie algebras. The characteristic identities

rule out most algebraic structures from being # -ary algebras.

In section 2.1, we briefly review Lie algebras and metric Lie algebras. In section
2.2, we introduce generalized Lie algebras, which emphasize on the associativity of
n -brackets. The characteristic identity of generalized Lie algebras is generalized
Jacobi identity (GJI). And besides GJI, generalized Lie algebras also satisfy Bremner
identity and extended Bremner identity. In section 2.3, we study Filippov algebras
with Fundamental identity, which do not emphasize on associativity. We give several
examples of constructing Filippov 3 -algebras from some well-known Lie algebras.
Section 2.4 talks about Nambu-algebras, which is the infinite dimensional version of

10
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Filippov algebra. Some Filippov 3-algebras given in last section are rewritten in
Nambu-algebra version. We also give the condition at which Bremner identity can be
applied to Nambu algebras. In section 2.5, the Nambu-Poisson tensor is discussed,

and we figure out that Bremner identity would only generate trivial results.

2.1 Lie Algebras

In this section, we summarize some basic concepts of the theory of Lie algebras.
Like many other algebraic structure, a Lie algebra is an object defined as a set in
which one can do some algebraic operations that satisfy certain conditions. A Lie
algebra structure is a vector space with an extra bilinear operation that assigns every

pair of vectors to the third one.

2.1.1 General properties of Lie algebras

Definition 2.1: A Lie algebra is a vector space g together with a bilinear operation
gx g — g, the bilinear operation, Lie bracket [, ]: (X,Y) —>[X,Y] that satisfies

1. Anticommutativity:

[X,Y]=-Y,X], 2.1
2. bilinearity:
[aX +bY,Z]=a[X,Z]+bY,Z], [Z,aX +bY]=d[Z,X]+b[Z,Y], (2.2)
3. and the Jacobi Identity
[X,[Y,Z]]+[Z,[Y, X1 +[Y.[X,Z]]=0, (2.3)

forall x,y,zeg and a,beR.
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A finite example of Lie algebras is the linear transformations of a finite vector

space, which is denoted the general linear Lie algebra g/ ; and an infinite-dimensional

example is the Lie algebra of the vector fields on a manifold M .

If the bilinear operation is defined as associative, then the Lie bracket can be

expressed as [X,Y]= XY —-YX, and this yields the Jacobi Identity necessarily. The
Jacobi Identity can be written as

(XY, Z]]=[[X.Y],Z]+[Y,[X,Z]]. (2.4)

This form is similar to the Leibniz rule of derivative of a product of two functions:

D(fg)=(Df)g + f(Dg). (2.5)

Therefore, a linear transformation D: g — g of the Lie algebra is said to be a

derivation of the Lie algebra. Consider the adjoint map ad,(Y):=[X,Y], then the
Jacobi Identity can be written as

ad ,([Y,Z))=[ad  (Y),Z]+[Y,ad , (Z)]. (2.6)

Hence, by definition, if gis a Lie algebra, the adjoin maps are derivations of it.

Like other algebraic structures, a Lie algebra has a basis {e,} spanning the

vector space g. One can specify the structure constants f,, connecting Lie bracket
and the basis:
le,.e, 1= fae. 2.7)
The structure obeys
Jar == Ssa> (2.8)

and the Jacobi identity can be written in the third form in terms of structure constants:
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Jaea + Foatea* Jiud s =0 (2.9)

2.1.2 Metric Lie algebras
On Lie algebras, we can define the metric and construct scalar products. A Lie
algebra is metric when it is endowed with an invariant, symmetric and nondegenerate
bilinear form < , > : gxg— R, which defines the scalar product in the g
vector space:
[X,<Y,Z>]=<[X.,Y],Z>+<Y,[X,Z]>=0, (2.10)

forall X,Y,Zeg.

The components of this bilinear form in terms of the basis {e,} are

<e,e >=g. . (2.11)

Once the metric is defined, one can raise and lower the indices of structure

constants

fabc :faigdc : (212)

Since our purpose of this section is to review some basic concepts of Lie algebras,
we do not go further about the properties of metric Lie algebras, but only list some
definitions and results here[37]:

Definition 2.2: A metric Lie algebra is said to be indecomposable if it can not be
written as an orthogonal direct sum of metric Lie algebras with dimension greater than

Z€10.
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Definition 2.3: A subspace, %, of elements of a Lie algebra, g, is called a Lie
subalgebra if it is closed under the Lie bracket:
[h.hyleh, (2.13)

forall h,h,ehcg.

Definition 2.4: A subset, /, of elements of a Lie algebra, g, is called an ideal and
denoted 7 < g, ifit is absorbent with respect to the Lie bracket, which means

[/,g]lc 1. (2.14)
The total space g and the element 0 are always ideals of g. All other ideals of g

are called proper.

Definition 2.5: A Lie algebra g is said to be simple if it is not one-dimensional and

it does not contain any proper ideals.

Definition 2.6: A Lie algebra g is said to be semisimple if it is isomorphic to a

direct sum of simple Lie algebras.

2.1.3 Representation theory of Lie algebras

The theory representing Lie algebras is always the most popular topic in Lie
algebras’ research. It contains so much subtopics and properties that it can easily cost
hundreds of pages to talk about. In physics, we are interested in unitary representation
most, because scalar Lagrangians are constructed based on it. Here, we give the

definition of the representation of a Lie algebra:
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Definition 2.7: A representation of a Lie algebra g is alinearmap p: g— gl(V),
where V is a vector space, that preserves the Lie bracket:

pP(X. Y] =[p(X), p(Y)], (2.15)

forall X,Yeg

Definition 2.8: A representation of a Lie algebra g is unitary if it preserves the
scalar product of g:

<p(X),p(Y)>=< XY >. (2.16)

2.2 Generalized Lie Algebras
2.2.1 n-ary algebras

Based on the Lie algebra concepts talked about above, we can extend regular Lie
algebra structure to algebraic structure of brackets with n>2 entries. Generally,

n -ary bracket is constructed from a multilinear operation:

n n
=

——
[ Syt ]: Gx...xG_>G,

where G is generic n -ary algebra.

For all n-ary bracket structure, we require it has similar properties to Lie

bracket:

1. Anticommutativity:

[...,X,...’Y’...] :_[...’Y’...’X,...]’ (217)
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means if we switch the positions of an arbitrary pair of entries while keep the
positions of other entries same, then total sign of the bracket will be changed.

Therefore, n-ary bracket is totally antisymmetric to an arbitrary pair of entries.

2. Multilinearity:

[-,aX +bY,-]=a[---, X, ]+b[---,Y,]. (2.18)

As to the Jacobi identity, there are two interpretations of extending it to »-ary case,

and these lead to two main different generalizations of the # -ary algebras. One is the

antisymmetrization of the nested n -ary brackets, by extending nexted Lie brackets [,

[ , ] 1; the other one is to extend the derivation character of Lie algebra to 7 -ary

case. Generalized Lie algebra[8,9] is generated by the first case, and Filippov

algebra[2] is by the second (we talk about it in next section).

2.2.2 Generalized Lie algebras
For generalized Lie algebras, the Jacobi identity is extended to generalized
Jacobi identity:

For n even, the generalized Lie bracket satisfies the following identity

Z(_l)”(a)[[Xaa) 5"" 'sXa(n) ]9X0'(n+1) 5"" "Xa(2n71)] =0 ) (2.19)

€Sy,
where S, , is 2n—1 order symmetry group, and o goes through all the elements
of §,,,. Curtright and Zachos[4] proved that an arbitrary n(even)-bracket obeys

(2.19), no matter if the entries compose an algebra or not.
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For n odd, it is proved[4] that the right hand side is not zero. The totally
antisymmetrized action of odd n -bracket on other odd n-bracket results in a

(2n—1) -bracket. For example, 3-bracket acting on 3-bracket results:

DEDT X sy s Xy b Xogays Xois) 1 =CLX L X5, X5, X, X51(2.20)

oEeS;s

where C 1is a constant coefficient.

Generalized Lie algebras emphasize on the associativity of the composition of the
elements in their multibracket, so the multibracket of order n can be defined by the

fully antisymmetrized product of its entries, making it similar to regular commutators

-— —1H7 e
[X, .- X, ]:= ZS:( DX, X, (2.21)

In regular Lie algebras, we can always use Levi-Civita symbols denoting Lie

bracket [X,,X, ] :el{‘ifz X, X, ,and we can do the same to generalized Lie algebras:

[X, .---X, ] :e{l'l_'_'_;,f X, e X, (2.22)
Since generalized Jacobi identity restricts that n» must be even, the generalized

Lie algebra is defined as:

Definition 2.9: the n order generalized Lie algebra[8,9] is a vector space G

n

endowed with a  fully  antisymmetric  bracket Gx'-xG—>G

(X, X,)—=>[X,--,X,]€ G, such that the generalized Jacobi identity is fulfilled.

And given a basis {X,}of G (i=1,---,d =dimG ), the structure constants of
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generalized Lie algebra is

(X, X, 1=C,. X, (2.23)

n J

2.2.3 Properties of quantum Nambu brackets

The totally antisymmetrized n -bracket is also known as quantum Nambu
bracket or n-bracket. For even quantum Nambu bracket, (2.19) is the identity they all
obey. And for odd quantum Nambu bracket, (2.20) could be considered as an identity,
but it involves higher order bracket and makes the form complicated. Therefore, we
do not consider (2.20) as an identity for odd quantum Nambu bracket, and there does
exist an identity that can be applied to all odd quantum Nambu bracket—the Bremner

identity.

Bremner[15] showed that
[[4,[b,c.d]el, f,g]l=[[4,b,cl.[d,e, f].g], (2.24)
where A4 is fixed, but it is implicitly understood that lower case entries are totally

antisymmetrized by summing over all 6! signed permutations of them.

When Bremner attempted to prove this identity, he used computer to count and
calculate all the terms on both hand side of (2.24). Here, we give an alternative proof
that does not involve computer. The Bremner Identity can be proved through a
resolution of both left- and right-hand sides as a series of canonically ordered words.
By direct calculation we find

[[4,[b,c,d],el, f,g]=24Abcdefg —36bAcdefg +36bcAdefg — 24bcdAefg

2.2
+36bcdeAfg —36bcdefAg + 24bcdefgA (2:25)
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where all lower case entries are implicitly totally antisymmetrized. Precisely the same

expansion holdes for [[A4,b,c],[d,e, f],g], again by direct calculation. Hence the

identity is established.

That is to say, both [[A4,[b,c,d],el,f,g] and [[4,b,c],[d,e, f],g] can be

rendered as a 7 -bracket plus another 3 -bracket containing 3 -brackets, when

antisymmetrized over lower case entries.

[[4.[b,c,d].e], f,g] =%O[A,bac,d,e,f,g]—%[A,[bacad,],[e,f,g]] =[[4,b,cl.[d,e, f].g]

(2.26)
Thus the Bremner identity amounts to the combinatorial statement, as written, that

there are two distinct ways to present a 7 -bracket in terms of nested 3 -brackets.

With Bremner identity, one would think about extending it to higher order cases.
For odd n -bracket, (2.19) produces the (2n—1) -bracket upon total
antisymmetrization[4]. Apparently, the simplest identity obeyed by odd brackets of
only one type, that does not introduce higher order brackets, requires that they act at
least thrice. For any odd #, a valid relation is the immediate generalization of that
found by Bremner for the case of 3-brackets. To show this, we present two easily

established lemmas. Firstly,

Lemma 2.1:

J
[4,B,,+-,B,1=J!1Y (-1)/B,---B,AB,,,---B, . (2.27)
j=0
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Total antisymmetrization of the B’s is understood. Here we have also used the
convention that an empty product equals 1. Explicitly, B,---B,=1=58,,,---B,, so
that the first and last terms in the sum are 4B,---B, and (-1)’B,---B, A4,

respectively.

Lemma 2.2:

J J=j
[4,B,,--+,B,,Z]= J!Z(_l)'IZ(_l)kBl B ABy, ”'BJ—jZBJ—j-H B,
j=0 k=0
J Iy .
_J!Z(_l)JZ(_l) B, ---B,ZB,,, "'BJ—jABJ—j+1 B,
=0 k=0
(2.28)

Finally, it is rather tedious but fairly straightforward to use both lemmas to prove

Theorem 2.1: For associative products, with implicit total antisymmetrization of the
B’s,

[[Aa[Bl""7BzL+1]9BzL+2a"'aB4L]aB4L+1a"'aBsL] = [[A’Bl’“"BZL]’[BZLH’”"B4L+1]9B4L+2"“’B6L]

(2.29)
Proof of Theorem: The result follows from resolving the left- and right-hand sides
into sums of canonically ordered words, as illustrated above for the case of

3 -brackets. We have

6L
[[AaBla""BzL]a[BzLHa'"’B4L+1]3B4L+2a"'aBéL] = Z(_l)nmil)Bl "'BnABn+1 "'BéLa

n=0

6L
([A[B, By, Byrars s By 1, Bypyseoos B 1 == Z(_l)nmr(z2)Bl B, 4B, B, .

(2.30)

All the coefficients m"”in these two resolutions are manifestly positive integers.
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M

n

The theorem is established by showing that m'” =m'” for all n.
By direct calculation, through the use of the two lemma, we find

mY =m® =Q2L+1)I(2L-1)! xc,, (2.31)

(n+1)(4L-n)/2  for 0<n<2L

¢, ={10L> =6Ln+L+n*> for 2L+1<n<3L . (2.32)
Corn for 3L+1<n<6L

The determination of the m,’s is just a matter of enumerating the ways to obtain a

particular intercalation of 4 amongthe B's.

Consider in more detail some of the calculations involved. As a first step, with

the implicit antisymmetrization, the internal brackets [B,,---,B,,,,] or
[B,1.155 By, ] may be supplanted by products:[By,:-+, B, ;1= (2L+ DB, - B,,,;)
or[B,, ., -, B, ., ] =QL+1)(B,,,, - B,,.). Then we may write, on the one hand,

[[AsBl”"9BzL]’[Bzul""vB4L+1]oB4L+2""’BﬁL] (2.33)
:_(ZL+1)![[A’B1>"'>BzL]>B4L+2""’BsL’(Bzul"'B4L+1)]
In this expression, we may now rename indices, bearing in mind the

antisymmetrization.

[[AaBl""’BzL]’[BZL+15"'sB4L+1]aB4L+2a"'sBeL]

. (2.34)
= (2L + 1)![[A’BZL" ' "B4L—1]aBls' ’ 'sBZL—la(B4L "'BGL )]

Next, we apply Lemma 2.2 for J=2L-1, and identify [4,B,,,---,B,,,] with

Aand (B,,---B,) with Z.
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2L-1 2L-1-j

[AaBla"‘aBzL_laZ] = (2L _1)! Z(_l)j Z(_l)kBl "'BkABk+1 "'BzL—l—jZBzL—j "'BzL—l
=0 k=0

(2.352)
2L-1 2L-1-j .
_(2L_1)!Z(_1)j Z(_l) Bl”'BkABkJrl'”B2L—1—jZB2L—j.“BZL—1
=0 k=0
(2.35b)

To continue, consider first the coefficients m.”where n<2L.

For the determination of m'),,, since Z consists of (2L+1)B’s, it must be
placed to the right of A in the application of Lemma 2.2. otherwise there would be
too many B’s to the left of 4. Thus for m'Y,, we need keep only the first line in
the last relation, (2.35a). To place a total of n B’s to the left of the A4 contained in
A=[A4,B,,,--,B,, ,], with k B’s already to the left as in (2.35a), we then need only
the terms in A with an additional (n—k) B’s to the left of 4. That is to say, from

Lemma 1.1, with J =2L andall Bindices shifted up by 2L-1,

2L
A=[4,B,,,-,By,]= (2L)!2(_1)nBzL "'Bl+2L—1ABl+2L By, (2.36)
1=0

and from this we need only the term with [ =n—k . The net result for m'’,, is

mflls)u =QL+D)ID!I2L-1)! xc,,,, (2.37)
2L-12L-1-j 2L 2 L—1min(n,2L-1-j) (n + 1)(4L _ n)
Cpaap = z Z Ok lh<or.= Z Z 12#- (2.38)
=0 k=0 1=0 =0 k=0

On the other hand, with similar steps, we have

[[Aa[Bla"’aBzLﬂ]aBzL+2a"'aB4L]aB4L+1a"'?BeL]

. (2.39)
= (2L + 1)![[14,81 N 'aBzL—1 9(BZL " 'B4L )]aB4L+1 > "B6L]

We again apply Lemma 2.2 for J=2L-1, but to [4,B,,--,B,, ,,(B,,--B,,;)], so
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now we identify 4 with A, and (B,,---B,,) with Z. As before, consider first only

(

n

(2)

m'? coefficients where n <2L. For the determination of m'’,,, Z must once again

be placed to the right of A, so we need keep only the line (2.35a). We pick up an

additional (n—k) B’s by applying again Lemma 2.1, only this time to the remaining

outside bracket in (2.39). The net result for m'2), is

m®, =QL+D)IQ2L)Q2L-1)! xc

n<2L

(2.40)

n<2L*
With exactly the same expression for c,.,, as before, (2.38). Thus we have shown

O (2)

mn£2L = mn£2L .

Next, consider the coefficients where 2L+1<n<3L . There are still

O

n

contributions to either m” or m'” still turn out to be the same. But in this case the

sums contributing to ¢, give

IS

2L-12L-1-j

L 2L-1-(n-2L) 2L-1-j (4L + 1 _ n)(4L _ n)
51,,171( |2L+1£nS3L = Z 1= 5 .
j=0 k=0 =0 j=0 k=(n-2L)

(2.41)

M

n

Moreover, from applying Lemma 2.2, there are now contributions to either m,’ or

m'*  from the second, (2.35b), where the respective Z’s are placed to the left of the
A’’s. Following steps similar to those above, it is not difficult to see that these other

terms contribute the same amount to either m'" or m'”, for 2L+1<n<3L.

Namely, (2L+1)!(2L)!(2L-1)! x

2L-12L-1-j 2L 2L-1 2L-1-j (n _ 2L + 1)(n _ 2L)
5l,n+j—4L |2L+1SnS3L = z z 1= ) . (2.42)

j=0 k=0 I=0 j=4L-n k=0

Thus the net result in m!" 2) = Q2L+D!ICDICL-D! xcyp 000,

20+1<n<3L = M rii<nsar
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with

Coporncay = %(4L +1-n)(4L—n) +%(n —2L+1)(n—2L)=10I* —6Ln+L+n>, (2.43)

Finally, consider the coefficients for 3L+1<n<6L. These are given by an

@ _ () 2) _ . (2)
. =mg, and m~ =mg, . Thus

n

elementary reflection symmetry: m

m" =m®» = QL+1)!(2L)!(2L-1)! xc,, , for 3L+1<n<6L. (2.44)

As a check, the coefficients must sum to give the number of generic terms that

appear in three nested (2L +1)-brackets (i.e. in either [[[-:-]---]---] or [[---]--:[---]]).

6L
Thatis, »'m, =((2L+1)!)’. Equivalently,

n=0

icn =2L(2L+1)>. (2.45)

n=0

This condition is indeed satisfied by the ¢, given in (2.32).

2.3 Filippov Algebras
2.3.1 Basic properties of Filippov algebras

Extending Jacobi identity with the derivation property generates Filippov
algebras[2], and the corresponding Fundamental identity (also known as Filippov
identity) distinguishes Filippov algebras from the generalized Lie algebras of the

previous section.

The vector where Filippov algebras are defined is the same as the vector we
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define the generalized Lie algebras. For Filippov algebras, we still have the fully

antisymmetric multilinear operation [ ., “~ , ., 1: Gx-xG—>G .

[X,,--,X,]1€G isstill called »-bracket, and we have adjoint map given by

ad, ., Z->[X, X, ,Z], VX,,Z€G, (2.46)

n—1°
which for » =2 reproduces the action of ad, on a Lie algebra. ad XX is a

derivation of the n -bracket, that the following definition holds:

Definition 2.10: ad XX is an inner derivation of the #» -bracket i.e.,

adxl-ux,,,l[Yla"'aYn] = Z[Yla'"aadxl---xn,lYia"UYn]
- (2.47)

:Z[YI,...’[Xp...,)(n_l’yi],...’Yn]

The left hand side of (2.47) can be written as [X,,--- [Y,---,Y 1], and we have

nl’

the Fundamental identity:
[Xla'“,anla[Yla" ]] Z[)/l, " 12 ) nflayj],“'ayn]' (248)

With Fundamental identity, we can easily define Filippov algebras,

Definition 2.11: A Filippov algebra G is a vector space together with a multilinear

n n

fully antisymmetric operation [ , , =7 , , ]: Gx"-:xG— G, such that the

n -bracket satisfies Fundamental identity (2.48).

Fundamental identity also can be written as right multiplication, which means

[[Yl’ ) n] 1° X n— 1] Z[Yla 9 1° "’Xn—l]a"'ayn]' (249)
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Once one chooses a basis {X,}of G (i=1,---,d =dimG), the n-bracket can
be defined by the structure constants,
(X, X, 1= £, X, (2.50)

With structure constants, the Fundamental identity can be expressed as

n
1 s 1 s
f;r"in ‘fjl"'jn—ll o Zf}l"‘jn-lik ﬁl“‘ik—llik+1"'i;1 (251)
k=1

Here we note that the » -bracket in Filippov algebras do not emphasize on
associativity, meaning the realization of the # -bracket may not necessarily take the

form of (2.21).

The structure of the Filippov algebras was first developed by Filippov[2], and
then followed by Kasymov[12,13] and others[38]. Here we do not introduce those
structural properties because we still do not know how to apply them to physics, and

the whole picture of the algebra is still not very clear.

2.3.2 Examples of Filippov algebras

Now we give some examples of Filippov algebras. Since Filippov algebras do
not necessarily have realization in form of (2.21), there are so many different ways to
define the operations of the n-bracket. [7] gives a way to construct a Filippov

algebra with matrix operators.

Example 2.1: Let A4, B,C be square matrices, define 3 -bracket by
[4,B,C]=tr(A)[B,C]+tr(B)[C,A]+tr(C)[4,B]. (2.52)

where #r takes the trace of the matrix, and [ , ] is quantum commutator. This



27

realization obeys antisymmetric condition and Fundamental identity. And it can be
extended to the arbitrary »-case. There are other matrix realizations of 3-bracket

satisfying antisymmetric condition and Fundamental identity, see e.g. [31,39,40,41].

Filippov gave an example of simple Filippov algebra[2] defined on a

n -dimensional real Euclidean vector space, the Euclidean 4 .

Example 2.2: Define three-algebra 4, on four-dimensional Euclidean vector space
V. Let {ebe the basis of V andv®,v¢,v{(a=1,2,3,4)be the coordinates of three

vectors v,,v,,v, € V. The 3-bracket is defined by the ‘vector product’ of v,,v,,v;,

e e e ¢

1 2 .3 4
TS T T |
[VI,VZ,V3]: 1 2 3 4|2 (253)
Vo, Vo Vo W
1 2 .3 4
Vi V3 V3 W

which is antisymmetric and satisfies Fundamental identity. We will come back and

visit 4, in the next chapter. The 4,,, algebra is constructed with the similar form, on

the basis {e,} where i=1,---,n+1. The ‘vector product’ of »n vectors v,,v,,---,v

s Vo

. :
v, =vje,, is defined by the determinant

n n+l
1 1
2 oo
[Visvyseeesv, 1= . (2.54)
1 n n+l
vn vn vn

2.3.3 Constructing Filippov algebras from Lie algebras

So far, besides 4, , other Filippov algebras have rarely been applied to physics,
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most of them are more like a mathematical toys, but rather something we can use to

solve physics problems. We attempted to construct Filippov algebras from some well

known Lie algebras, which means we define the 3 -bracket and FI by
[4,B,Cl=ABC+ BCA+ BAC - ACB—-BAC —-CBA,

filD,E;A,B,C]=|D,E,[4,B,C]]-[ID,E, A],B,C]—-[A4,|D,E,B],C]—[4,B,[ D, E,C]]

(2.55)
and hope these new algebras can be applied to physics someday soon. We call these
algebras quantal ternary algebras. We give several examples in [41]:

Example 2.3: Nambu’s su(2)
Consider Nambu’s application to su(2) .

[(L,.L,L1=LJ[L,,L]+LJ[L L1+L][L L]1=i(L+L +L%). (2.56)
To close this algebra, it is necessary to include the su(2) Casimir. But, having done

s0, one may rescale by a fourth root of the Casimir

L, L, L.
Qx = W ) Qy = — Qz = . (2.57)

And define a fourth charge as that fourth root,

o, =V (2.58)

Then,
[0..0,,0.]1=i¢,,,0". (2.59)
where Epu = +1with a [-1,-1,—1,+1] Lorentz signature. The usual &g identities now

imply that this example is special: The Fundamental identity holds for Nambu’s

su(2) . In fact, this is the only finite quantal ternary algebra that satisfies the

Fundamental identity.
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Toward the end, we note that Nambu’s su(2) has sub-3-algebras that close.
They are easily found. For example,
Qx > Qy > Qz i Qt * (260)

Moreover, each of these subalgebras can be realized in terms of the classical brackets,

which we will talk about in the next section.

Example 2.4: The bosonic oscillator.

The usual four charges 1,a,a*,and N =a*a give the quantal ternary algebra
[LN,al=-a, [LN,a"']=a", [La,a']1=1, [N,a,a*]=—1-N. (2.61)

Three of these reduce to just commutators: [1, N,a]=[N,a], [LN,a"1=[N,a"],

and [l,a,a"]1=[a,a”]. This would suggest that the same algebra might also be

realized as (2.52), except for the fact that the operators at hand are not of trice class.

In any case, the fourth relation in (2.61) is not so simple.

However, if we take linear combinations as

1
R =N, Rzzi(a++a), R, =

7 ﬁi(a+ -a),

then we are back to a variation on Nambu’s theme for su(2) : In this case, s/(2,R).

R, =N+1,(2.62)

[R,.R,,0.1=ic, R’ (2.63)
with €,,,=+1, again with Lorentz metric to raise indices, 7, =[1,1,1,—1]. So, what is

new here?

There are two additional bilinears, a* and a™, whose 3 -brackets give
g
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oscillator trilinears.
[a,a’,a*]=2a+2Na, [a",N,a’]=-2a—Na, [a,N,a’]=-a’,

[a*,a’,a?]=2a" +2a'N, [a,N,a?]1=2a" +a"N, [a",N,a”]=a".(2.64)
Therefore, upon closure, the ternary algebra becomes infinite, and the standard
enveloping algebra for the oscillator is obtained. From Filippov’s perspective, it is
perhaps disappointing that the oscillator enveloping algebra does not satisfy the
Fundamental identity. For example
[[a*,a*a,a*],a,a’]1-[[a",a,a’],a*a,a™]—[a",[a*a,a,a’],a™]-[a",a a,[a™, a,a’]]
=-2

[[a*a,a™,a’],a,a™]—[[a a,a,a™],a"

=20a"

2)(12]_[a+a’[a+2,a’a+2]’a2]_[a+a,a+2’[a2’a’a+2]]

(2.65)
In any case, the Fundamental identity does not hold in this example. But, necessarily,

the associative enveloping algebra does satisfy the Bremner identity.

Example 2.5: Virasoro-Witt 3-algebra
For the oscillator there is a familiar, infinite Lie algebra contained within the

enveloping algebra[134]. Consider
[,==(a")"N, (2.66)
For n>0.Commutators give the well-known Virasoro-Witt algebra.

(l,T, 1=(mn-m), (2.67)

+m 2
For m,n>0. It is less well-known that the corresponding quantal 3 -brackets are

[r,,T .T,]=0. (2.68)

Thus we have a null 3-algebra for an infinite set of non-trivial, non-commuting
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oscillator charges. The Fundamental identity is trivially satisfied in this case, as is the

Bremner identity.

More structure is evident if we slightly modify the oscillator realization of the

Virasoro-Witt algebra. For parameters 3 and y, define and compute,

L =—(a")"(N+y+np), [L,,L,]=(n—m)L (2.69)

n+m *

The parameter gis related to the s/(2,R)Casimir, C = B(1- ). Now we find a

non-null quantal 3 -bracket when 0= g =1.

[L,.L,.L]=BU=p)Yn—m)(m-k)n-k)M,, . (2.70)
where a second sequence of charges has been defined by

M,=(a")". (2.71)
While the Lie algebra of the L’s and M ’s is also well-known[42], their3 -algebra
has been investigated only recently[43]. To close the 3 -algebra, we must consider all
additional 3-brackets involving the M ’s:
(i, Ly M, ] = (k=m)(Ly,,,, +(1=28)nM,..),

[L,,M M 1=n-mM

m? k+m+n >

(M, .M, M, ]=0. (2.72)
While the calculation is involved, the Bremner identity may be confirmed to hold for
this ternary algebra. This result follows from the use of only (2.72) and (2.70), and
does not make explicit use of the oscillator realization employed to obtain
the 3 -algebra. So this algebra is consistent with an underlying associative operator

product no matter how it is realized.
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The modification of the oscillator realization to include the parameter 4 has led to

a larger ternary algebra involving both L ’s and M ’s. But, so enlarged, the algebra as
presented in (2.72) and (2.70) is cumbersome. It may be streamlined by a linear

change of basis, effectively from L, and M, back to the originall, and M, asin

(2.66) and (2.69) . That is to say, let
I =L +(y+np)M,. (2.73)
Regardless of how the algebra is realized, this change of basis simplifies (2.70) and

(2.72). We find a remarkably concise form for the ternary algebra.

[rn’rr

m >

I,]1=0,
[MkaMmoMn]:Oa

[T M, M,]=(n-mM

m? k+m+n >

[Fkﬂrm’Mn]:(k_m)(rk +nM

+m+n k+m+n ) .

(2.74)
All explicit g dependence is thereby removed from the 3 -algebra in this basis, and all

values of the s/(2, R) Casimir. Now, what about the Fundamental identities?

The Fundamental identities fail sometimes. This was discussed in[43], in the
original basis, but it is much more transparent in terms of (2.74). It is trivial to see that
the Filippov condition is satisfied when onlyI"’s, or when only M ’s, are involved:
AT, ;0,0 I)=0 and filM,,M M M, ,M,)=0. The condition is also

m?>

satisfied when their two, three, or four M ’s mixing it up with I"’s. But when one M

is entangled with fourI"’s, the condition fails, in general:
ﬁ(rpﬂrq;rk9rm’Mn) = (p - q)(k - m)(k +m-— p - q)anc+m+n+p+q 4

S@,,M ;0T M) = (n—k)(k—m)(m—n)gM (2.75)

k+m+n+p+q *
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On the other hand, the BI is again seen to always hold. We stress that these results

follow from the use of only (2.74) without explicit use of the oscillator realization.

The situation with the Fundamental identities can be remedied if we perform an
Inonu-Wigner contraction[44]. This produces an algebra that satisfies the

Fundamental identity in all case. The procedure is to rescale
[,,M,—~R, =1"T,,J, =AM, and take the formal limit A — o0 . The result is just

to discard the term M in the last line of (2.74).

k+m+n

[mk’%m’mn]:()

[SRk S S ] = (]’l - m)3k+m+n s

S m> > n

[R,.R,,3, 1=k -mR +n3,,,,0,) - (2.76)

k+m+n
Remarkably, the contracted 3 -algebra so obtained is invariant under the
O(2) transformation
R,,I, >R, cos0+3,s1n0,3T, cosd—-R, sinb. (2.77)
The results in (2.74)-(2.77) provide the whole story, so far as we know it, for the
ternary VW algebra. However, for completeness, we also wish to make contact with
various other results in [43]. By redefinition of the charges of the original basis, it was
observed in [43] that a “classical limit” could be constructed, in which

the s/(2, R) Casimir went to infinity, in such a way that all FIs were OK. In fact, this

also just amounts to a contraction of the ternary algebra. Rescaling

1
p = L, R, =4pA-pM,, 2.78)
% ra-p Waa=s (
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substituting into (2.70) and (2.72) above, and taking the limit # — oo, the resulting
algebra is
[0,,0,, Q1= (n—m)(m=k)(n=k)R,,,,..,
(R, 0, Ol = (m = n)(Qp + 2kR, ,,..,) 5

[Qk > Rm > Rn] = (n - m)Rk+n1+n >

[R.,R, R ]=0. (2.79)

m?>

For finite /A, there would be an additional R term in the second relation. Again,

k+m+n

the contracted algebra obeys the FI's in all cases.

2.3.4 Attempt to construct ternary super-Virasoro algebras

In last section, we successfully construct ternary Virasoro-Witt algebra by
rescaling technique. Virasoro algebras play a very important role in string theory
research, and the generators are bosonic charges. Here, we would like to include some
fermionic charge and extend Virasoro algebra to ternary super-Virasoro algebra. The

first step is to construct super-Virasoro algebra. Define fermionic operators by:
{b,b"} =1, {b,b}z{b*,b+}=0,b+b:]\~/ . (2.80)
We need to add fermionic terms to L ’s and add two more fermion-like charges. The

generator of this super-Virasoro algebra is constructed as

L = a*"(—N—%nﬁ+0m),

F =—a"(b—b"N+2anb"),

S
51—

D =" (b+b"N - 2amb"). (2.81)

"2
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Before defining the ternary algebra, we need to make sure the Lie algebra generated
by these generators is closed. Since we have both bosonic charge and fermion charge,

two types of Lie brackets have to be defined: (a) the commutator [A4,B]= AB—-BA,

where at least one of Aor B must be bosonic charge; (b) the anticommutator

{A,B}=AB+ BA, where both A4 and B have to be fermionic charges. The

commutation and anticommutation relations involving these three charges are as

following:
[Lm’Ln]:(m_n)Ln1+n’ [Lm’Fn]:(%_n)Fm-#n’ {E119Fn}:Lm+11’
[Lm’Dn]z(%_n)Dern’ {Dtil’Dn}z_an+n’ {E71’Dn}z(m_n)(aJr)ern(a—{_%ﬁ)
(2.82)
Besides (2.80), we want to include three more charges, they are
o 1~
N,=a"(a+—=N),
2
E _ La-%—nb-#
n \/5 H
M, =a", (2.83)

where N ’s and M ’s are bosonic charges and E’s are fermionic charges. Together
with (2.84), the whole commutation and anticommutation relations between these

charges are

[Lm ’Ln] = (m_n)l‘m+n9 [Lm’Mn]z_an+n’ [Lm’Nn] =_nNm+l’l’
[Mm’Mn]:O’ [Nm’Mn]:07 [Nm9Nn]:OJ
{E113Fn}:Lm+n’ {Dm’Dn}:_Lm-m’ {Fm’Dn}:(m_n)Nm+n’
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{F'm’En}Z%Mm-m’ {Dm’En}zéMﬂHn’ {Em’En}ZO’
[Lm’Fn]:(ﬂ_n)Fern’ [Lm’Dn]:(ﬂ_n)Dm+n’ [Lm’En]:_(ﬂ-i_n)Eern’
2 2 2
[N F]——lD [N D]——lF [N E]—lE
m>~ n 2 m+n m? n 2 m+n 2 m?>—n 2 m+n?
[MmDFn]szern’ [Mm’Dn]z_mEern’ [Mm’En]zo (284)

Now, the first step is success: the super-algebra is constructed; the second step is to
define the 3-brackets and check if the ternary algebra is closed as well as if the FIs
hold. There are three different ways to define the 3-brackets, depending on the
entries: (a) if at least two of the three entries are bosonic, then we have
bosonic 3 -bracket [4,B,C]= A[B,C]+ B[C,A]+C[4,B]; (b) if two of the three
entries are fermionic, then we have mixed 3 -bracket (suppose 4,B are fermionic)
{A,B;C]= A[B,C]+ B[C, A]+ C{A4, B}; (c) if all three entries are fermionic, then we

have fermionic 3-bracket {4,B,C}= 4A{B,C}+ B{C,A}+ C{A,B}.

(a) Bosonic 3 -bracket
By noticing that the idempotent N* =Nis invariant under the action of all

bosonic operators, i.e. [ﬁ ,N]= [2\7 ,M,]1=0, we can look N as effectively a constant

in bosonic algebra. Make a change by f=1+a— N/2 , where [1is a constant in the
purely bosonic cases, which changes the realization of bosonic charges to
L,=a"(-N+(~Dn),
N, =(+2a-p)M,,

M =a™, (2.85)



37

where N, is just M, times a constant, it is the same as M, . So in the purely

bosonic cases, there are only two charges L and M, .Then we have:

[Li.L,.L,1=(B" = B)k —m)(m—n)(n—k)M,,.,,

[L,,L,,M, 1=(k—m)[L +(1-2p)nM

k+m+n k+m+n]’

(L, ,M, M 1=(n—mM

k+m+n >
(M, ,M, M, 1=0. (2.86)
Therefore the ternary is closed in purely bosonic case. (2.86) allows us to check FI’s,

and except for the four L’s and one M cases, all other FI’s hold. These exceptional

cases give

[L,,L,,[L,.L,, M, 1-[[L,,L,,L,1,L, .M, 1~[L,.[L,.L,,L, 1M, 1~[L,.L,.[L,, L. M,]]
= 4B~ B)— (1=25)Tn(k —m)i — j)(k +m—i~ M, s

(2.87)
and

[M;,L,.[L.L,,L1=[[M;,L;,L,),L,,L,]=[L.IM,,L;,L, )L, 1-[L,L,,[M;,L;,L,]]
=[4(B* = B) = (1=2p) ik = m)(m = n)(n = k)M ;. 1 e

(2.88)
This is the situation studied in [43], and by applying the same technique discussed

there (rescale and take / — fo0) , we can remedy it. So for purely bosonic case, this

algebra satisfies FI’s.

(b) Fermonic 3 -bracket
In purely fermionic case, it is more complicated than the bosonic case. The

3 -brackets involving E s always give closed form
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{Ek’Em’En}zo’ {Ek’En1’Fn}=Ek+m+n b {Ek7Em’Dn}=Ek+m+n’
3 1 1
{Ek’Fm9Fn} :EFkerJrn _EDkerJrn _E(1+4a)(2k+m+n)Ek+m+n >
3 1 1
{Ek’Dm’Dn} :EDk-#m-%—n _EFk+m+n +E(l+4a)(2k+m+n)Ek+m+n ’

{Ek ’Fm’Dn} =%Dk+m+n +%Fk+m+n +%(1+4a)(m_n)E (289)

k+m+n *

But those involving only F ’s or D ’s always generate extra charges, as

1
NG

+[4a’ (mn + nk + km) — a[(n+k)* + (k+m)* + (m+n)*1]p"]

(F.,F,,F}=—=(a")"""[-3Nb+3b"a’a"® + 2a —1)(k +m+n)b+[2(1-2a)(k + m+n)+3p*N

(D,,D,,D,}= —%(w)“m*" [-3Nb—-3b"a’a"® +(2a —1)(k+m+m)b—[2(01-2a)k +m+n)+3p"N |
—[4a* (mn + nk + km) — a[(n+ k)* + (k +m)* + (m+n)*]}p*]
1

V2

+[4a® (mn—nk —km)+2a(mn+k*)}b"*]

{F,,D,,D,}=——=(a")"""[Nb-b"a’a™ +[k+2a(k—m—n)b+dak—m—-n-1)b"N

b
V2

+[4a’ (mn—nk —km)+2a(mn+k*)]p*]

{D,,F,,F}=—(a")""[-Nb-b"a’a™ —[k+2a(k—m—-n)lb+(4ak —m—-n-1)b*N

(2.90)
From (2.89), Nbandb'N are two extra charges. If we include them to close the
algebra, then the 3 -brackets involving them would create more extra charges.
Therefore, the ternary algebra is not closed, and it is obvious that not all FI’s would be

satisfied.

(c) Mixed 3 -bracket
In the mixed case, we need to consider totally 35 different combinations between

bosonic charges and fermionic charges, and nine of them generate extra charges. The
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closed relations are

[Mk,Mm,En]=O 5 [Mk’Mm’Fn]:(m_k)E

k+m+n s

(M,,M, ,D]=—(m—-k)E

k+m+n

1
[MkaNm,Fn]z_ED

k+m+n > k+m+n k+m+n >

[Mk,Nm,En]zéE —%(l+4a)kE

[Mk’Nm’Dn] :_%FkerJrn +%(1+4a)kEk+m+n’ [Nk’Nm’En] :0’

[Nk9Nm3Fn] :%(a+2a2)(m_k)Ek+m+n’
k+m+n >

[Nk,Nm,D,,]=—%<a+2a2>(m—k>E

[Lk,Mm,En]=(§+n—m>E

k+m+n >

(LMo F )= =", = 2D, (4 Ao = mhE -

(LM D)= =500, =+ (4 Ao = Wb,

(L Ly B = =00 K)oy + 0= R, = (o= + PN
[L;,N,,E, 1= iFk+l11+n - %Dkﬂwn - %(1 +4a)ymkE,,,. .,

MENEN =0, IMuEF} =M MGED =M.,

[Mk;Fm,Fn}:L + 3kN . _k(1+4a)Mk+m+n9

k+m+n k+m+n

[M,;D,,D}=—L,. . —3kN_ _ +k(1+4a0)M

k+m+n k+m+n k+m+n >

[M,;F,,D,}=(m—-n)N [N;E ,E }=0,

k+m+n >

[V, F} =5 N

k+m+n k+m+n >

—%a+4am4
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3

[N E Dn}=§N —%(1+4a)Mk+m+n,

m? k+m+n

[N,:F,.D,} = (1+4a)m-mN,.,., omen:

—3(a? +%a)(m —n)M
[L;E, ,E }=0,

UpEWEJ:%L +%MW—MN oo

k+m+n k+m+n

+%[(§—n) —-a(Bn—k—-m)M

k+m+n k+m+n k+m+n *

[Lk;Em,Dn}:%L +%(4n—k)N +%[(§—n)—a(3n—k—m)]M

(2.91)

The non-closed relations are:

1 1 1 n m+k+1
L,L Fl=—m—-k)a )" [-Nb—-=b"a"a’ +[—+a(n—k—-m)lb—- -
+ 2 km 2 2 +
2om]b™ N +[a(2n +7)+a (km +2n° = 2nk —2mn)}b"]
1 1 1 n m+k+1
L,L ,D]=—@m-k)a)"""[=Nb+—b"a"a* +[—+a(n—k-m)b+ -
[Z,.L,,D,] \/5( Na™) [2 7 [2 ( )b +( ’
2an]b* N —[a(2n’ +k7m)+a2(km +2n° —2nk —2mn)]b"]
[L,,N,,F ]= \%(a*)k*”””[;Nb+;b+a”a2 +[%n van—k-mp+("E N
km—k2 2 2 2 +
+[a( =2mn)+a”(km+2kn—2mn+2n~—k~)]b"]
[Lk,Nm,Dn]:\é(a*)"*m*"[;Nb—;b*a”az+[;n+a(n—k—m)]b—(m+k+l—Zan)b*N
km—k2 2 2 2 +
—[a( 5 —2mn)+a” (km+2kn—2mn+2n° —k*)]b"]
T | 3~ k+m+n_ ~ m+n
[N FyFyy = (@) (G =@)N =2 AN +latk-+m-+n) - N —atk+ ")
+a’(m+n)]
T | 3~ k+m+n.~ m+n
[N, Dy D= ~(a") "G = )N = BN +[athk-+m+m) - IN - ak + 220

+a’(m+n)]
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m+n+1)—a(k+m+n)]N+k+r;+nﬁN+[%(k2 +

km + kn

[Lk;Fm’Fn}:(a+)k+m+n[a+2a2 +[(k+

9

2mn) +a(k® = 2km - 2kn)IN +[o*k(m +n) — a(k> + 2mn — N

m+n+1)—a(k+m+n)]N+k+m+nﬁN+[%(k2+

[Li;D,,.D,}=~(a")""[a"a” +[(k+
2

km+ kn

2mn)+ a(k> — 2km — 2kn)]N +[e*k(m +n) — a(k> + 2mn — ;

]l

m-—n

[L,;F,,D }=(a")"""[(n—m)a+ %)N + NN + a(k +m+n)(n—m)]N

+ (%+ aYk(m —n)]

(2.92)
Similar to the purely fermionic case, these extra charges would generate more and
more extra charges if we try to include them. So super-Virasoro algebra can be
extended to purely bosonic ternary algebra, but not involving any fermionic charges,

and it is still not clear how to remedy this problem so far.

2.4 Nambu Algebras
2.4.1 Basic properties of Nambu algebras

The Nambu algebra is the infinite-dimensional version of Filippov algebras,
where 7 -bracket is defined by the Jacobian determinant of » functions on a
n -dimensional manifold, rather than the determinant ‘vector product’ of 7 vectors on

a n+1-dimensional space.

Definition 2.12: Let £, f,---,f, be functions on R" with coordinates

{x'},i=1,---,n. The n -bracket {f,,f,,-:-,f,}, or Nambu bracket, or classical
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bracket is defined by the Jacobian determinant

L . 8(f e f,
Uisforeees Sy im0, 10, 7 = |00 Ta)) (2.93)
a(x ’---,x )
where f, = f.(x',---,x"). Nambu bracket can also be expressed as in terms of
multivector
o foss fb =AMy . df,) (2.94)
where A(n):il/\---/\ 0 .
ox ox”

With Nambu bracket, we can define Nambu algebras on manifold
Definition 2.13: The Nambu algebra, or classical algebra is a set of function

fis /55, f, defined on a n-dimensional manifold, together with Nambu brackets

such that Nambu brackets satisfy FI’s.

Unlike Filippov algebras, all the Nambu brackets satisfy FI’s naturally, and this

can be checked for # =3 case explicitly by applying ‘Schouten identities’[45].

2.4.2 Examples of » =3 Nambu algebras

We give some example of Nambu algebras in this section.

Example 2.6: Classical 3-bracket algebra for exponentials
Consider the infinite set of exponentials,
E, =exp(a-r), (2.95)

and compute the classical bracket,
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{(E,,E,,E}=a-(bxc)E (2.96)

a+b+c *
The indices here are 3 -vectors, with e and xthe usual dot and cross products. This

infinite algebra does satisfy Bremner identity.

It is not known how to realize (2.96) as operator 3 -brackets. Although, there is a
quantal 4-bracket which gives this3-bracket as a classical limit[46]. To see this,
compute the operator 4-bracket [exp(a-r),exp(b-r),exp(c-r),w] where we assume
the exponentials do not involve w, and where we takew and x, and also yand z,
to be independent canonically conjugate pairs of variables, i.e. [w,x]=ih,[y,z]=ih,
but [w,y]=0, etc. The result for the 4-bracket is then given directly by the

commutator resolution[4][48].

[e“,e"" e, w] = 4he' """ (a, sin(%hbl xc,) cos(%h(bl +c,)xa,)

+b, sin(%hcl ><aL)cos(%h(cl xa, )xb )+c, sin(%?’zaL ><bl)cos(%h(aL +b )xc)))

(2.97)

where a=(a,,a,,a.), a, =(a,,a.), a, xb, =ab.-ba_, etc. In the limit 70,

y7z2
this gives the anticipated classical 3 -bracket,

1

ﬁ[exp(a -r),exp(b-r),exp(c-r),wl=a-(bxc)exp(a+b+c)-r+O0H?). (2.98)

Before the classical limit is taken, however, (2.97) does not satisfy the FI: There are

violations at O(%°) and beyond.

Example 2.8: Ternary Virasoro-Witt algebra as in classical bracket

The contracted 3 -algebra obtained above (2.76) is invariant under the
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O(2) transformation (2.77). An interpretation of this symmetry, as well as the validity
of the FI’s, is obvious in the contracted algebra’s realization as a Nambu algebra. That
is
{xe",xe™ ,xe™} = {ye”, ye™ ,ye”} =0,
{xekz’yemz’yenZ} = (n— m)ye(k+m+n)z ,

{ye*, xe™  xe™} = (m —n)xe =, (2.99)

In this realization the O(2) symmetry is nothing but a rotation about the z -axis.

We may also realize (2.79) in terms of Nambu brackets. Explicitly we find
{(x —iky)e® ,(x —imy)e™ ,(x —iny)e™ } = (k — m)(m — n)(k — n) ye* ™
{ye®, (x —imy)e™ ,(x —iny)e™ } = (m — n)((x —i(k + m+ n)y)e” "™ + 2ikye” ™)
{(x—iky)e™, ye™, ye™ } = (n—m)ye” """,

{ye*,ye™,ye”}=0. (2.100)

But suppose we just transform back to the original linear combinations to recover

the classical versions of the L ’s. What is the effect on the algebra? To answer this, let
t,=(x—=(y+np)ye”, p, =ye". (2.101)
We obtain
Wil ol == (k=m)(k =n)(m=n)p,.,.,,
Wil D3 =k =m)Uy iy = 281D 001n) 5
U Do P} =(=m)p s
PP 2,3 =0. (2.102)

This differs from the original, uncontracted quantal algebra (2.70) and (2.72) only in
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the /3 -dependent coefficient on the right hand side. Namely, — 3> appears instead of
p(—-p)and —2f instead of 1-2/4. So, to repeat the observation made in [43], we
may again identify this Nambu algebra with the infinite s/(2,R) Casimir limit,

S — oo, of the quantal algebra.

Example 2.9: Classical Virasoro-Witt algebra is a subalgebra of (2.96)

The may be understood as follows. Clearly, from (2.96), any three exponentials
with co-planar vectors will have a vanishing classical bracket. By representing all the
R’s with a set of such co-planar exponentials, and all the 3J’s with another set of
co-planar exponentials, the first two lines of (2.74) will be satisfied. In general then,
there are two distinct planes: One for theR’s and one for the J3’s. The remaining
challenge, viewed geometrically, is to put these two distinct planes together so that the
last two lines of (2.74) will also be satisfied. An obvious guess is that the two planes
should intersect at right angles. Another, related guess is that the index appearing in

(2.74) should correspond to modes along the line of intersection of the two planes.

Therefore, to play the role of the classical R’s, tale [, =E, . =exp(x+kz),
while for the 3,’s, take p, =E; . =exp(y+kz). Some elementary algebra then
give(x+mz). (p+nz)x(y+kz))=k—-nand (p+k2)x(x+mz)x(x+nz))=m—n
as well as

(x+m2)+(Y+nz)+(p+k2)=(x+y)+y+(k+m+n)z, (2.103)
and (+k)+(x+mz)+(x+nz)=x+p)+x+(k+m+n)z. (2.104)

So, modulo the common spurious vector (x+ y) we have just what we need to
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obtain the contracted algebra from the classical brackets (2.96). Now, if we
incorporate the inverse of this spurious term into the definition of a modified Nambu
bracket, as a multiplicative factor,

_0(4,B,C) i _0(4,B,C) oy (2.105)

{A: Ba C}mod -
o(x,y,z) o(x,y,z)

then we have realized on exponentials the classical, contracted ternary Virasoro-Witt
algebra.
Uislsliimea =05 AP Py 2,3 =0,
Ul pyy=k=m)l s Py P} =(=m)py, . (2.106)

But what effect does the multiplicative factor have on FI’s?

It cannot obviate the FI’s, because we have already verified them for the

contracted algebra. Another way to see this is to note the multiplicative factor is just
the Jacobian for the variable change (x,y,z) (e',e’,z). In terms of these new
exponential variables the realization is

I, =xe*, P, =ve, (2.107)

where these are to be acted on by unmodified Nambu brackets for the

new x, y, z variables.

We may summarize either (2.99) or (2.102) as simply the closure of functions of

the form xf(z)and yg(z)under Nambu brackets. A complementary algebra is given

by the closure of the Nambu brackets for functions of the form Vz f(x,y). This may

be expressed as a two-parameter algebra[47] if we choose f(x,y)=exp(ax+by).
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Again, the FI is guaranteed to hold since only Nambu brackets are involved.

2.4.3 Bremner identity and Nambu algebras

Bremner identity is the essential ingredient for Filippov algebras, would it do the
same to Nambu algebras? In last section, we stated that algebra (2.96) does satisfy
Bremner identity; however, generally Bremner identity is not applicable to Nambu
algebra. By the definition, Nambu bracket has the form (2.93), and for »n =3 case,
Nambu bracket becomes

0(4,B,C)

B = )

€ 0,40,B0.C, (2.108)

where A, B,C are defined on 3-manifold, € is Levi-Civita symbol, and x, y,zare

the coordinates. We find that each Nambu bracket would generate the products of the

first order derivatives of A4,B,C. While the Bremner identity for Nambu bracket
takes the form of
{{4,{B,C,D},E},F,G}={{A4,B,C},{D,E,F},G} (2.109)
where A4 is fixed, and we sum over all 6! signed antisymmetric permutations. The
left hand side of (2.109) is
{{4,{B,C,D},E},F,G}=e*"&" € 0,0,(0,B0,C0,D0,40 ,E)0,F0,G ,(2.110)
and right hand side is
{{4,B,C},{D,E,F},G}=e*"e"e" 9 ,(0,40,B0,C)d,(0,D0,E0 ,F)0,G (2.111)
There are non-trivial third order derivatives about B,C,D in (2.109) (the third order

derivatives about A4,E vanish because of antisymmetrization):

6 et e (0,0,0,B0,C0.D+0.80,0,0,C0,D

(2.112)
+0,B0,Cd,0,0,D)d,40 ,E0,Fd,G
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While (2.111) does not have third order derivatives contained in it. So for an arbitrary
realization of Nambu bracket, Bremner identity does not hold. The realization we give

in Example 1.6 have special property that the functions A4, B defined on 3 -manifold

possess:
(a) o4 oc 0’4 , where #1is an integer. (2.113)
ox  ox"
b 49 where 4+ B. 2.114)

ox oy
Besides the realization with the conditions above, we have not found any other
realizations satisfy Bremner identity. Therefore, differing from Quantal bracket,

Nambu brackets do not have Bremner identity as their essential ingredient.

2.5 Nambu-Poisson Tensor

When we define Nambu bracket in (2.93), we assume that the antisymmetric
tensors before the derivatives are Levi-Civita symbols that they are constant and
independent of the coordinates. Actually, those antisymmetric tensors do not
necessarily have to be constants, and they can be defined as variables of the

coordinates.

2.5.1 Poisson tensor
First, we consider a general Poisson bracket involving an antisymmetric, but
otherwise arbitrary, 2 -tensor ", the Poisson tensor.

{A,B} = ©"0,40,B . (2.115)
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Repeated indices are implicitly summed from 1 to 7. For any @ this is obviously
a derivation: {4,BC}={4,B}C+ B{A,C}. But it is more interesting for physics
purposes that there are situations where the Poisson bracket realizes a Lie algebra.
This is evident if we bracket {4,B} with C to obtain two functionally independent
terms.

{C,{4,B}} = 0" ©"0 ,(0,C0,40,B)+(0,C0,A40,B)* 0 ,00" . (2.116)
The combination that constitutes the Lie-algebra mandated Jacobi ‘identity’ similarly

gives two terms.

(C,{4,B}} —{{C, A}B} —{A,{C, B} } = Q"0 (8,408,B0.C) + Q™ (8,40,B0,C),

(2.117)
where we have defined 4-and 3-tensors
Qahcd = a)cda)ab _a)aca)hd +a)ada)bc
Q" = 00,0 — 0“0 ,0" +©"0,0" . (2.118)

Now the first term on the right hand side of (2.117) always vanishes by symmetry: For

any o“ =-0", the corresponding Q“*is a totally antisymmetric 4 -tensor, and hence
Q"3 (0,46,B0.C) is identically zero. So, for constant ®“ the Jacobi
identity {C,{4,B}} —{{C,A4}B}—{4,{C,B}}=01s indeed an identity for Poisson

brackets.

But, in general, the second term on the right hand side of (2.117) does not vanish
for non-constant 3 -tensors. Hence there is a condition for the Jacobi identity to be
satisfied: Q< =0. When true, we are dealing with a Lie algebra on a Poisson

manifold. If in addition » is even and the 2 -tensor has an inverse, such that
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w,0" =5, then we have a symplectic manifold, and we can construct the 2-form
w=w,dx" ndx’. In this case the condition for the Jacobi identity to hold is easily
rendered to be 0=0,0, +0,0, +0,0,, or equivalently just that the 2-form is closed:

dE =0. While this is at first sight a generalization from the constant 3 -tensor case,
this is somewhat illusory. For such closed 2 -forms Darboux proved the existence of

local coordinates on the manifold such that @, 1is constant.

2.5.2 Nambu-Poisson tensor
Poisson tensor can be easily extended to Nambu-Poisson tensor if Poisson
bracket is substituted by ternary Nambu bracket.
{4,B,C} = ©*0,40,B0,C . (2.119)
With this structure we encounter a few similarities with the Poisson bracket case, but
more importantly, we also encounter some dramatic differences. Just like the Poisson
bracket above, this is a derivation: {4,B,CD}={4,B,C}D+C{A,B,D}. Also like
the Poisson bracket case, the action of one 3-bracket on another produces two

independent terms.

{{4,B,C},D,E} = 0" 0" 8 ,(0,40,B0.C0,D0 E)

: (2.120)
+(0,40,B0,C0,D0,E)o™ 0 0"

But here the differences arise. What is the appropriate analogue of the Jacobi identity?

In general, there is no perfect analogue of the Jacobi identity involving the action
of one 3-bracket on another, or a linear combination of such. To see this we need
only consider the case of constant »** and make use of some elementary group

theory: The symmetrized product of two antisymmetric 3 -tensors does not contain a
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totally antisymmetric 6 -tensor. Indeed, with the standard partition labeling of
symmetric group representations, where the sequence of integers represents the

number of boxes in the rows of a Young frame, we have

(1,11} = {2,LLL1}+{2,2,2}. (2.121)

symmetric
The antisymmetric 6 -tensor is found instead in the antisymmetrized product,

(L1 = {LLLLLL} +{2,2,L1}. (2.122)

antisymmetric
Now, because it is the symmetrized tensor product of two @ ’s that appears in (2.120),
these group properties imply that any linear combination, obtained by permuting the
entries in one classical 3 -bracket acting on another, cannot possibly vanish without
imposing some condition on @“°, and/or on the number of variables n. Neither

partial nor full antisymmetrizations of A4,B,C,D, Ein (2.120) can avoid both of the
tensors on the right hand side of (2.120), and in general

oy ,0,(0,40,B0.C0,D0,E) # 0 # w50 ,(0,40,B0,C0,D0,E) . (2.123)
We emphasize that this is different from the Poisson bracket case, where the group

theory is

{l,l}iymmemc ={LLL1}+{2,2} (2.124)
and {l,l}jnmymmem ={2,LL1}, (2.125)
and where the linear combination of brackets in the Jacobi identity serves to single

out{l,LL1,1} and thus eliminate the @@ term for all antisymmetric 2 -tensors.

Admittedly, there is one very special case where group theory does not impose an
impasse for classical 3-on-3-bracket identities, namely, n =3. When there are only

three independent variables, the {2,1,1,1,1} representation is absent! In this special case

we obtain the FI.
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{{4,B,C},D,E} ={{4,D,E},B,C}+{A4,{B,D,E},C}+{4,B,{C,D,E}}. (1.125)
Of course, for this case there is only one antisymmetric 3-tensor, namely, that of
Kronecker, so o «e® . But, alas, FI for3-brackets does not go willingly into

higher dimensional manifolds.

More generally, if we define a Nambu N -bracket as
{4, 4y, Ay} = 00, A0, 4,---0, Ay - (2.126)
Then the even N cases are like that of the Poisson bracket, while the odd N cases

are like that for the 3-bracket. When N is even, we have {I°"} < {1"}’ so for

symmetric ?
general constant @ ’s the action of one N -bracket on another vanishes when totally
antisymmetrized over the 2N —1 entries in the double bracket. When N is odd, we

have {I*"}c{1"} so for constant @’s the action of any permuted linear

antisymmetric °
combination of one N -bracket on another does not vanish without imposing some

condition on the @ ’s and/or on the number of variables.



Chapter 3

BLG and BLG-NB Model

Though n-ary algebras had been studied for almost forty years, people still
knew little about their applications to physics until recently, Bagger, Lambert and
Guastavsson[24,25,26,27] introduced Filippov 3 -algebra A4, to M2-branes
interaction. 3-algebra plays an important role in the supersymmetric invariance and
the gauge symmetry of their model. Their breakthrough theory achieves a big success,
and leads a huge amount of following works[29, 30, 31, 32, 33, 34] . However, BLG
model still suffers some problems, and motivates others to extend it by replacing

A, with Nambu 3 -algebra[34,35,36,54,55], which gives BLG-NB model.

In section 3.1, we introduce 3 -algebra 4, , and some attempts to construct it. The
Fundament -al identity is too strong that 4, believed to be the only finite
positive-definite 3 -algebra for BLG model, all other 3-algebras would be just the
trivial products of 4, . In section 3.2, we study the formulism of BLG model. We see

that the motivation of BLG model is Basu-Harvey equation[54], and we also discuss
the successes and challenges of BLG model. In section 3.3, we introduce BLG-NB
model based on Nambu 3-algebra. BLG-NB model describes infinite number of

M2-branes condensation. In section 3.4, we give a short review of constructing the

53
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large N limit classical Yang-Mill theories, and hope it would provide the hint for us

to connect BLG gauge theory with BLG-NB gauge theory.

3.1 3-Algebra A4,

In this section, we introduce the 3-algebra used in BLG model and give an

example of how to construct it.

3.1.1 4,

The 3 -algebra used to construct BLG model is four dimensional Filippov algebra
A,[24,25,26,27], with generator 7, a=1,---,4, that is endowed with trilinear
antisymmetric product

[T, T",T]= f“uT", (3.1)
and from which it is clear that £y = f1l;. A, is metric 3-algebra, and the metric
is defined by

h =TrT,T"). (3.2)

The metric is assumed to be positive definite. The trace-form is a bilinear map 7r:
A, x A, — C that is symmetric and invariant:

Tr(T*T")=Tr(T",T°)  and Tr(T*-T",T)=Tr(T*,T°-T"). (3.3)

This allows us to raise and lower indices: f“/ = f“.h*’.

We require two conditions on 3 -bracket, the first is the Fundamental identity
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(7, 7°,[T, 7, T 11 =T, T",T°1,T*, T 1+[T*,[T*,T",T"],T°]

(3.4)
+[T¢, T[T, T",T°]]
Fundamental identity can be written in terms of structure constants
SEaf e = [ "t [Tt [T (3.5)
The second condition is
Tr(T* [T, T¢,T*]) =-Tr(T*,T",T1,T), (3.6)
forall a,b=1,---,4, and this implies that the f“** are totally antisymmetric,
[t = e, (3.7)

As mentioned in section 2.3 that the Filippov algebra does not emphasize on the
associativity, the A, discussed here is a nonassociative algebra. We introduce the
associator

<A,B,C>=(A-B)-C—-A4-(B-C), (3.8)
which would vanishes in an associative algebra. And the 3 -bracket is defined by

[4,B,C]=<A4,B,C>+<B,C,A>+<C,A,B>

. (3.9)
—-<A4,C,B>—-<B,A,C>-<C,B,A>

The associator also implies that

Tr(< A,B,C>,D)=Tr((A-B)-C,D)-Tr(A-(B-C),D)
=Tr(A-B,C-D)-Tr(A4,(B-C)-D) . (3.10)
=-Tr(4,< B,C,D >)

By normalizing the generators, the trace-form of two generator can be reduced to
Dirac &, ie. Tr(T*,T") < 5%, and the structure constant is reduced to Levi-Civita

symbol times some constant
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[ = constx €™ . (3.11)
This kind of structure constants generate the space of all 4x4 antisymmetric

matrices, which form the Lie algebra so(4). In [25], Bagger and Lambert gave an
example of how to construct 4, for the matrix form. They considered the 3-algebra
of hermitian matrices that anticommute with a fixed Hermitian matrix G, with
G’ =1. Define the product between two matrices
A-B=0QA4BQ, (3.12)

Where Q=(1+iG)/~2 . Take trace-form Tr(A4,B)=trace(Q"'AQ™'B) where
trace denotes the standard matrix trace. The associator turns out to be

< A,B,C >=2GABC, (3.13)
and hence

[4,B,C]=2G(ABC + BCA+CAB— ACB—BAC — CBA). (3.14)

Consider the Dirac ymatrices as a realization of 4,. Take y,(i=1,---,4) as
generators, with G=py, and Q= (1+i75)/\/5 . The product 1is then
vy -y" =0yy"Q=yy'y", and one finds that

<y yhr >=2ry "y (3.15)
Thus

[y, 1=2-3ly ™ =2-31e™y 7, (3.16)
And hence [ =12e&”. One can check explicitly that the structure constant like

this satisfies the Fundamental identity.
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3.1.2 Other attempts

The founders of BLG model give an example for 3-algebra, A,; then, an

intuitive question would be asked: do any other 3-algebras exist that can be applied
to BLG model also? Since the day BLG model was born, the search for new
3 -algebras has never stopped, however, we have never found anything that can

substitute 4, in BLG model. Here, we give an example of those attempts.

The realization of 4, described above is based on a fixed Hermitian matrix G,

but that does not seem to be compatible with a conventional Lie algebra interpretation.
[29] gives an attempt to construct seven-dimensional positive-definite 3-algebra by
dispensing with auxiliary matrix and applying the procedure described above to one

of the familiar nonassociative algebras, namely the algebra of octonions.

The generators of the imaginary octonions are denoted by e, with a=12,---,7,
and they have nonassociative multiplication table
€,8, =18 — Oy (3.17)
The totally antisymmetric tensor ¢, has the following nonvanishing components
tog = s =lys = lisy =gy = lgp =173 = 1. (3.18)

t,, can be regarded as an invariant tensor describing the totally antisymmetric

abc
coupling of three seven dimensional representations of the Lie group G,. Let T,
denote a generator of an SO(7) rotation in the ab plane. The so(7) Lie algebra is

[TabaTcd] = T;zdé‘bc - deé‘ac - Tac§bd + Tbcé‘ad . (3.19)

The generators of G, can be described as a 14-dimensional subalgebra of this Lie
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algebra. A possible choice of basis is given by
X, =T, ~-T; and Y, =T,-T; (3.20)
and cyclic permutations of the indices. This gives 14 generators X, consisting of

X, and X, =Y, . The seven-index epsilon symbol, which is an invariant tensor of

so(7), can be used to derive an antisymmetric fourth-rank tensor of G, :

anc 1
f vl = g € abedefy Lofe - (3.21)
This tensor has nonzero components
f7356 = f1467 = f2571 = f3612 = f4723 = f5134 = f6245 =1. (3.22)

abcd

However, the problem of G, is, the structure constants f is not satisfied by

Fundamental identity. Therefore this attempt is not a success.

3.2 BLG Model

The strong coupling limit of Type IIA string theory at the low energy limit of
11-dimensional supergravity gives M-theory[48][49]. M-theory admits a fully
32-supersymmetric solution with the geometry of AdS,xS’ and isometry
group OSp(8|4), and the action of the superconformal gauge theories that is
constructed due to the AdS/CFT correspondence is expected to have worldvolume
d =3 [50]. In M-theory, the fundamental ingredients are the M2-branes (or
membranes). MS5-branes are their solitonic electric-magnetic dual. The action
describing a single M2-brane [21] and the action for single M5-brane[51,52,53] have

been known for a long time. However, the action for multiple M5-branes is still
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unknown, and the action describing multiple M2-branes are proposed[24,25,26,27]
only recently base on 3-algebra structure. BLG-model contain eight d =3 real
scalar fields, coming from the eight transverse coordinates of the M2-brane plus 16
real d =3 Goldstone fermions (the other 16 being removed by x -symmetry) and,

since they have a N =8 supersymmetry, they present a natural SO(8) R-symmetry.

It was also proposed that the gauge fields should be Chern-Simons like.

3.2.1 BLG action

The starting point of BLG action is to provide an action that can satisfied
Basu-Harvey equation[54]. This is contrary to most regular research process in
particle physics—write down the action, then obtain the equation of motion.
Generalizing Nahm’s equation, which was used to describe the analogues
configuration of D1-branes ending on D3-branes, the Basu-Harvey equation was

proposed to describe multiple M2-branes ending on an M5-brane

d£+i£ eMix/, x*,x'1=0, (3.23)
ds 3

where X' (s)’s represent spatial fluctuations of the M2-branes, and s is a worldvolume
coordinate. This equation admits a funnel solution:
X'(s)=f($)R(T"), (3.24)

1

f(S):\/%,

(3.25)

where T' satisfies SO(4) -invariant algebra 4,, and R(T")is any representation of 4, .

A, describes a fuzzy three-sphere with radius » given by

Pt = Z(Xf)2 oc f2(s) KLS (3.26)
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Hence
rt=— (3.27)

for some constant « . The T'’s then represent the Cartesian coordinates of the fuzzy

three-sphere.

The BLG model is given by the worldvolume Lagrangian density

LBLG - _% < D/JXI’D#XI > +é < V’F”Dylf// > _ig < [V:XlaXJ]aFIJl// >

5 { , (3.28)
S XX XXX XK L
2.3 g
where L., is Chern-Simons term with the form
1 LU a Ca 2 4 a C €]
LCS :E‘C"IL p(fahch//hauApd +§fcda‘g efgbA,ubAudApf)7 (329)

and the corvariant derivative is (D,V)* =0,V - f., 4V’ , I1,J,K =3,---10,
1,0,p=012. w is an 1l-dimensional Majorana spinor satisfying the chirality
condition

Ly =-v. (3.30)
The Chern-Simons term was called ‘twisted’ because it does not have the standard CS

expression.

The corresponding action may be split into three terms, as

Iy = [d*xL,, + [d*xL,, +é [dxL , (3.31)

where L,, contains the first two terms on the right hand side of (3.28), and L,

contains the third and the fourth term of (3.28). This action is scale-invariant since the
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gauge fields have length dimension 4= L' and the constant g is dimensionless.
Then, the kinetic terms for the worldvolume matter fields are also scale-invariant with
[X]=L"?and [w]=L", the expected for a d =3 theory with no dimensionful

constants.

For the background with w = 4 =0, a BPS condition should guarantee that[31]
(0,X'T"T, —%[X’,X‘],XK]FUK)E =0, (3.32)

for some constant spinor & .

3.2.2 Gauge and supersymmetry transformations
The BLG action is invariant under both gauge symmetry and supersymmetry; it

has OSp(8|4) superconformal symmetry[29]. Further, the Noether currents
associated with the BLG Lagrangian generate the d =3,N =8 superPoincare
algebra with central charges

{00,003 = =2(r"y") 0" P, + £, 2" + (y" ")y 2,17, (3.33)
where 4 =012;a,=12; p,q=1,---,8. The symmetric central charge is traceless,

5PqZ/(f’q) =0, and this algebra has an obvious SO(8) automorphism group under

which the eight d =3 two-component Majorana supercharges Q7 form a chiral

Spin(8) spinor.

The gauge transformations are given by

5Xla — icddebaXIb ,
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Sy’ =2 v’
S(fon A7) =0, (fr XV +2 0 [ A% AT (3.34)
The gauge group algebra corresponding to these transformations is 4,, which can be

decomposed into A4, =su(2)®su(2). The gauge group for BLG model is thus

SUQ2)x SU(2).

The supersymmetry transformations are given by

5. X' =iel'y,
Sy = DﬂXIF’T[g—%[XI,XJ,XK]F”Kg,

55 (f;dbaA;d) =1 cdba‘ET,uF[chl//d s (335)

1

where the supersymmetry parameter ¢ has standard dimensions[e] = L? . When one
checks the supersymmetry invariance, the Fundamental identity of 4, plays an

important role to close the supersymmetric transformation algebras, and this is why

3 -algebras are so important to generate N =8 supersymmetry.

3.2.3 Successes and challenges

As the first model describing the interaction of multiple M2-branes, BLG model
have already achieved some successes, but also suffered some problems[54]. After
integrating out auxiliary fields and field redefinitions, it was shown[55] that the BLG
action precisely turns into the Super Yang-Mills action for D2-branes, and it can also

give the SYM theory for D p -branes. It provides an approach to the M2-brane

worldvolume theory in a large constant field background[33,36]. However, it was
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soon realized that, BLG model can only describe the interaction between two
M2-branes on so called ‘M-fold’, because of its gauge group. And it is still not clear
about the connection between algebraic properties of a 3-algebra and physical

degrees of freedom of M2-branes.

Also there is an interesting question: what is the Higgs mass in BLG model? One
can apply the Higgs mechanism to BLG potential and obtain the Higgs mass. [71] and
[72] talked about how to use Higgs mechanism to determine the leading

higher-derivative corrections to BLG field.

3.3 BLG-NB Model

The SU2)xSU(2) gauge symmetry of BLG model restricts that it can only
describe the interaction between two M2-branes (N =2). And in Chapter 2, we
mentioned that ‘almost’ all the finite positive-definite Filippov 3-algebras are just
direct products of A, ’s, therefore if one sticks to the condition ‘finite
positive-definite’, there would be no new theories come out. The condition of ‘finite
positive-definite’ and Fundamental identity preclude almost all other Filippov
3 -algebras to this model. However, if we release the ‘finite’ condition, substituting
Filippov 3-algebra with Nambu 3-algebra, we would have a similar model but

describing the low energy limit of a ‘condensate’ of M2-branes.
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3.3.1 Nambu 3 -algebras

Nambu 3 -algebra is defined[56] on a three-dimensional compact oriented
manifold without boundary, and let M, =S’ denote this manifold, hence the algebra
is defined on a 3 -sphere. We define Nambu 3 -bracket by

(B8 (). 8,0} = e ()7 0,4, (1)0,,(»)3,:(¥) , (3.36)
where ¢,(),4,(v),¢,(y)are three functions defined on S°; e is the scalar density;
y' =(',y*,»’) arelocal coordinates on S°.

The generator of this algebra is {e, (»)}, wherea denotes a set of discrete

indices. And the scalar function can be expressed as

#0) =2 e ). (3.37)
which is completed with
<e,(1),€,(y) >= 5, #' =<p()e, () >,
< () >= [ o 1K),

2. (e, () =81, j s HDP(S (1, 1) = ¢, (3.38)

where u(y)=e(y)dy' Ady® ndy’.

By (3.37), the 3-bracket can be written by

(). 4,(0::.(0)} = 2 H ME W () {e, (1), (1)e ()} (3.39)

abc

The structure constants of this Nambu 3 -algebra , referred to the basis {e,(y)} are,

the coefficients f, ' that appear in the expression
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fe, (e, (e (1)} =D funea(») . (3.40)

There the structure constants can be expressed by
Savea =<{€,(¥),€,(¥),e.(¥)},€4(y) >= I 2 H(Ne (y) € die,(1)0,8,(1)0,.(¥)ey ()

(3.41)

3.3.2 BLG-NB model

BLG-NB model is a Nambu bracket extension of BLG model, the transition from
BLG to BLG-NB will be achieved by replacing the 4, 3 -bracket by Nambu
3 -bracket. The matter fields appearing in BLG-NB model depend on
three-dimensional worldvolume Minkowski coordinates x* = (x”,x',x*) as before

but now include the Nambu 3-algebra basis index a. Therefore, these fields have

the coordinate expansions

X' =2 X (e, (0), vy =2 v (0e,(), (3.42)

in which the sum over the index afor A, has been replaced by a sum over the set of

indicesa . The potential field is given by A% (x) = —A4," (x) .

The BLG-NB Lagrangian is given by
1 . i ’
Lyrnp = deye(y)(—EDyXl (x,y)D“ X" (x,y) +5'// (x, NID,y (x,)
SB

—gi{mx,y),X’(x,y>,X’(x,y>}ryw<x,y>
~E X @)X ) X ()} X ) X (), X ()
+lLCS

g



66

(3.43)
where the covariant derivative is given by
D, p(x,y) =0 ,8(x,y) + 5, (x, )0, 4(x, ) , (3.44)
and
su(x,y)=—e"(»)e” Zb:@ea(y)a je (A (x) . (3.45)

The Chern-Simons term can be written in terms of s//j (x,)

Les() = 3o A7 (3) ™ (314 %;ﬂdfﬂ,-gbﬂ () A A% (x) A 47 (x))

9

B _% [ 1)(s* (v, ) A dA, (. ) _%8ijksi(xa PIns'(x ) ast(x, )

(3.406)
where 4™ (x) = A} (x)dx* , and s'(x,y)=s,(x,y)dx" are spacetime one-forms.
This Chern-Simons term was called ‘CS-like’ because it is not entirely written in

terms of the gauge field s'(x,y), it also requires the potential term  4,(x, ).

3.3.3 Gauge and supersymmetry transformations

By using the structure constants, the gauge transformations are determined by

local functions &(x,y) onthe S°[35,56],
X' (x,y) ==& (0, »)0, X" (x, ),
Sy (x,y) ==& (x,0)0,¥ (x, ),
&' (x,y) =d&' (x,y) = &' (x,)0 ;57 (x,y) + 0,5 (x, ¥)s” (x, ), (3.47)
with the condition that 8, (e(y)&*(x,y)) = 0. The gauge group corresponding to this

transfor -mation is called volume-preserving diffeomorphism group, denoted by
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SDiff (S*). It is discussed in [56] that, if one defines the fundamental objects of

Nambu algebra by an inner derivation, meaning the fundamental objects act on the

elements of Nambu algebra by left multiplication, then different fundamental objects
may induce the same element in Nambu algebra. This implies that SDiff(S°) is the
only group satisfying this gauge algebra, all other groups generated by this Nambu

algebra are diffeomorphic to SDiff (S”).

The supersymmetry transformations of matter fields are

0. X" (x,y)=iel'w(x,y),
S,w(x,y) =D, X" (x,)I*T" s - %{Xf (6,90, X7 (x, ), X X (e, )T % e,

k .- ik
8,s,(x,y) =—ige” ()" el ,I'0,X" (x, )0,y (x, ), (3.48)

which ensure manifest N =8 supersymmetry.

3.4 Discussion

The biggest difference between BLG model and BLG-NB model is the gauge
group. The gauge symmetry of BLG-NB model has turned to be the
infinite-dimensional Lie algebra of the volume-preserving diffeomorphisms group
SDiff (S*). The SDiff(S’) gauge theories are called ‘exotic’[34] because they can
not be obtained from an ‘abstract’ Yang-Mills theory, whereas it is possible for

SDiff (S*) gauge theories. The transition from BLG model to BLG-NB model is
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similar to the transition from classical SU(N) Yang-Mills theories to their large N

limits. In Hoppe’s work [57] of study the canonical quantization of a relativistic
spherical membrane of Dirac type in the light cone gauge, his showed that the

SU(N) Lie algebra, when N — o, is isomorphic to the infinite-dimensional Lie

algebra of area-preserving diffeomorphisms of the two-sphere S°.

3.4.1 From SU(N) to SDiff(S?)
Here we give a short review[58] of this transition: suppose we have classical
SU(N) Yang-Mills fields
4,(x)=4,t,, (3.49)
where ¢, ’s are generators of SU(N), and a =1,---,N* -1, 1 =0,1,23, with gauge
transformations
04,=0,0+[4,,0], where o=, (3.50)
and

6F,, =[F, 0], where F,=84,~6,A4,+[4,,4,]. (3.51)

11V

Eventually, we want to replace (3.49)-(3.51) by

4,(x,0,0)=> > A (DY, 0.9), (3.52)
1=l m=—1
oA, (x,0,0) =0 ,0(x,0,p) +{4,,0}, (3.53)
and OF = {F,, @} with F, =6,4,-8,4,+{4,,4,}, (3.54)

where Y, are the spherical harmonics on S*, and the Poisson bracket of two

functions on S? is defined as
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of oOg Of oOg
,gl=—"—° = ° 3.56
-8l ocos@ 0p Op Ocosl ( )

The commutator can be replace by Poisson bracket by

lim N[4,,4,1=14,,4,} . (3.57)

First, we construct the structure constants of SDiff(S*). It is known that the

generators of symplectic transformations of a surface have the local form

A A (3.58)
0o, 0o, 0o, 0o,
which satisfy Lie algebra
(L, Ly ]=Lyy - (3.59)

In the case of S°, the local coordinates are o, =¢ and o, =cos@; and we can
form a basis of generators by choosing f =Y, (6,¢) to be the spherical harmonics

i = Oy 0 _Ofy 0 . (3.60)
ocos@ 0p O Ocosl

Then (3.59) implies that

[le ’Ll'm'] = f}rlr:,’;l"r'n'Ll"m" ’ (361)
where the structure constants . are defined by
{Ylm 4 )]l'm'} = ﬁfr'tv,r;l':n'Yl"m" : (362)

These structure constants have been calculated explicitly in [57] and [59]. If we let

/=1 and m=0,%1, then we reduce (3.61) to the SU(2) Lie group, which are usual
angular momentum generators. The spherical harmonics Y,,(6,9) are harmonic

homogeneous polynomials of degree [/in three Euclidean coordinates x,,x,,x;. They
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are given by

X, =cosgsinf,  x,=singsind, x; =cosd, (3.63)
and
Y, (0.0)= > ax, ox, (3.64)
i=1,2,3
k=1,---,1
where a(”’)./ i1s a symmetric and traceless tensor. Let §,,S,,5;be N x N hermitian

matrices which form an representation of SU(2): [S,,S;]=i¢, S*. The matrix

polynomials

T = Zaf"’{l L (3.65)

=1,2,3

can be used to construct a basis of N?—1 matrices for the fundamental

representation of SU(N), with structure constants

[Z50 T 1= 85 ™ Tl (3.66)

It is proved that, as N goes to infinity, we have

lim £ = g (3.66)
N—>o©

m,l'm Im,!'m' >

which coincides with the structure constants in (3.62).

3.4.2 From BLG to BLG-NB
The great improvement of BLG-NB model from BLG model is that, BLG-NB
model is conjectured as describing infinite M2-branes’ condensation[34]. The gauge

group of BLG mode is Lie group SU(2)xSU(2), and it is believed that the action
with gauge symmetry of gauge group SU(N)x SU(N) shall describe the dynamics

of N M2-branes. Therefore, besides SDiff (S’), SU(0)xSU(w) shall also be a
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gauge group for BLG-NB model, which means
SDiff (S*) gauge theory ~ SU(0)xSU(0) gauge theory. (3.67)
But so far, it is still not clear about how to derive SDiff (S°) from SU(x0)x SU(0).
Also, by last subsection, we see that as N goes to infinity, SU(N) gauge theory
becomes to SDiff(S*) gauge theory. So we conjecture that the relation between
SDiff (S*) gauge theory and SDiff(S*) gauge theory can be expressed as
SDiff (S*) gauge theory ~ SDiff (S*)x SDiff (S*) gauge theory.  (3.68)

We will come back to this relation in next chapter and discuss the possible approaches

to prove this.

As BLG model, BLG-NB model does not give the action describing the
interaction between finite number of M2-branes, it is only the large N limit of a more

general theory. And it still suffers those challenges of BLG model.



Chapter 4

Multiple M2-Branes

BLG model is the first model describing the dynamics of multiple M2-branes,
however it only tells us the interaction between two M2-branes. Its Nambu bracket
extension—BLG-NB model, is proposed to describe infinite number of M2-branes’
condensation. If there does exist a general theory describing multiple M2-branes
dynamics, then both BLG model and BLG-NB model would just be the special cases
for this theory. And this theory should be able to provide the action for finite number
of M2-branes. So far, such theory has not emerged yet; however, there is a proposal
that might help us to achieve this goal. Two years after BLG model first appeared, in
2008, Aharnony, Bergman, Jafferis and Maldacena[23] proposed another action to
describe multiple M2-branes interaction, we call it the ABJM model. This ABJM
model is believed to describe finite number of M2-branes, which can be considered to

fill the gap between BLG model and BLG-NB model.

In section 4.1, we introduce ABJM Lagrangian and its symmetries. In section 4.2,
we discuss the possibility of unifying BLG, BLG-NB and ABJM model in a general
theory. The difficulties lie at the supersymmetry enhancement for ABJM model when
N > 2, as well as the large N limit of gauge symmetry. So far, there is no authentic

way for the supersymmetry enhancement. As to the large N limit, we propose that

72
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using hyperspherical harmonics might be a possible way to construct the structure

constants for the gauge group algebra.

4.1 ABJM Model

The ABJM model is constructed without 3 -algebra structure, it describes the low
energy physics of world-volume of multiple M2-branes in orbifold C*/Z,[23,60,61].

It gives up the full N =8 manifest supersymmetry, and the superconformal
Chern-Simons theories with gauge group U(N)xU(N) and SU(N)xSU(N) are

defined on three-dimensional spacetime.

4.1.1 ABJM Lagrangian

The ABJM action is composed of four complex scalars Z,(4 =1,2,3,4), which
describe complexified eight coordinates transverse to M2-branes world-volume; and
four 3-dimensional spinors  ,, and their adjoints Z, and i,. It has two gauge

fields 4, and A ., that have Chern-Simons kinetic term of level (k,—k) . The matter

fields can be realized with N x N matrices, and transform as (N,N) for Z, and

w,,and (N,N) for Z, and 7,.

Here we give the Lagrangian of ABJM model in the same convention of [60]

except the Hermitian gauge fields

L= LCS + Lkin + LYukawa + Lpotential > (41)
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where
_ ko 0 2 AAd -4 4 233
LCS+Lkin_EE tV(Au uAp_ZEA/J v T Ao p—Hg uto p), (4.2)
-r(D,Z'D"Z, —iy ,y D"y}
2 =4 — B A B—
Yukawa:_Ttr(Z ZAWBV/ _ZAZ l// WB)
27 =4 Br — — =4 B
—Ttr(2Z wPZ i, =27 w,Z w") : (4.3)
2721 ABCD — — 27” A, B—C., D
—-——€ tr(ZAl//BZCl//D)JFTEABCD r(Zy 2 y")
and

4’ Sdr SBry SC . A 5By S

L prensiar = Wtr(ZAZAZBZBZCZC +2'2,2°2,7°Z,. +, (44)
47,2°2,72'72.2° -672,2'2,7°Z,.Z°)

where y ,is two dimensional Dirac matrices, k is Chern-Simons level and the trace is

over N x N matrices of either gauge group and leaves the gauge invariant quantities.

The covariant derivatives are given by
DX, :aHXA —id, X +iX A4,

v A VA S T4, 4
D X zﬁﬂX —lAﬂX +iX Aﬂ, (4.5)

U

where X ,denotes Z,,Z,,y, and y,. The potential part of Lagrangian can be
written in quadratic form as

27
3k?

V= W) (4.6)

with

w,=022,22,-6,2,2°2,-562,Z"7,)
-(22,2°2,-62,2°7,-6:2,Z"Z )
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wit=2z2'2.2"-52,2,72°-5/2"7,7,)

L o _ : (4.7)
-(22°2.2"-6/7,2,2" -6)Z"Z,Z )

We can see there is no 3 -algebra used in the definition, all are done with regular Lie

algebras.

4.1.2 Supersymmetries and gauge symmetries
ABJM model gives up N =8 manifest supersymmetry, but it still has N =6

supersymmetry, whose transformation rules are

27 _ _
54, = 7(77/’37,,ZA1//3 +0,57 W Z),

~

27 _ _
5, =7(77A37,,WBZA + 1,57, 2 "),
oL, = —l'??AB!//B )

4 = 87 = 4 =
&//A = [V#D#ZB _3_k(Z[cZCZB])]773A +3_k(ZBZAZc)773C _3_kgABCD(ZBZEZc)77DE

(4.8)

where #?” is supersymmetry transformation parameter, with 7" =-n*

3

. 1
N = (77AB) :E € 48cD 77CD-

The infinitesimal gauge transformations are given by

84, =D,A=0,A+i[A4,,A],
8, =D,A=0,A+i[4,,A],

SX , =—iAX , +iX A, (4.9)
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with gauge group G =U(N)xU(N) and SU(N)xSU(N).

Also there is a global SU(4) R-symmetry. The fields with lower index label the

4 representation of R-symmetry, and those with upper index label the 4

representation.

One can check that the vacuum moduli space of the ABJM model at the classical

level, i.e., solutions of V' (¢)=0up to gauge transformations. Then (4.7) would lead to
the equation for its minima
Z,22,=7,7°Z, and Z'2.2°=72"72.7". (4.10)
This implies that the Hermitian matrices Z AZ © has to commute with each other, and
similar for Z“Z.. The vacuum solutions are thus given by diagonal Z, up to
gauge equivalence
Z , =diag(z!,--,z}). (4.11)
It means in that point of vacuum moduli space the gauge group U(N)xU(N) is

brokento U(N)", and the gauges fields become to

~

. 1 N . ~1 ~N
A, =diag(a,, --,a,) and A, =diag(a,,,a,). (4.12)

4.2 A Unification Theory?

ABIJM model and BLG model are two candidates for multiple M2-branes

interaction based on different algebraic structure. ABJM uses regular Lie algebra
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while BLG needs the Filippov 3-algebra. Also, there are many differences between
the supersymmetry, gauge symmetry and R-symmetry. Here we list the symmetry

features of ABJM, BLG and BLG-NB model:

Model ABJM BLG BLG-NB
Symmetry
Supersymmetry N=6 N=8 N=8
Gauge Symmetry SU2)xSU(2) SDiff (S*)

SU(N)xSU(N)
R-Symmetry SU@A)xU(1) SO(8) SO(8)
Chern-Simons Level Arbitrary k=1 k=1
M2-brane Number N (finite) 2 0
Table 4.1

Based on the features of these three models, one would intuitively consider unifying
them into one unification theory. It seems every time we facing multiple M2-branes
dynamics, we shall use BLG if the M2-brane number is 2, use ABIM if 2< N <0,
then BLG-NB if N goes to infinity. But before saying this approach is safe, we have
to check if the transitions between these three models are possible and smooth. First,

let us look the connection between ABJM and BLG.

4.2.1 ABJM to BLG
To transit ABJM to BLG, we need to check: 1. if the Lagrangian and

Chern-Simons term are of the same form between these two; 2. how to enhance
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N =6 supersymmetry to N =8 supersymmetry, and enhance SU(4)xU (1) = SO(6)
R-symmetry to SO(8) R-symmetry. At N =2 case, ABJM model is equivalent to BLG
model[23] if the Chern-Simons level is equal to 1. Both theories have SU(2)xSU(2)
gauge symmetry when N =2. ABJM has an SU(4) flavor symmetry, with additional
SU(2) symmetry exchanging the scalar fields. These two symmetries combine to
give an SO(8) global R-symmetry, and this SO(8) symmetry rotates all 8 real
scalars in the (2,2) representation. This implies N =8 superconformal symmetry.

Now we checked that at N =2case, the ABJM model has the same symmetries as

BLG model.

Next, let us check the lagrangian and Chern-Simons term. There are two ways to
do it: one is to rewrite BLG model in terms of regular Lie algebra, and the other is to
rewrite ABJM in 3-algebra form, or using four-index structure constants. The first
way can be achieved by rewriting BLG action in bifundamental representation[62].
For the second way, we have to modify the original Filippov 3 -algebra, and different
modifications generate different forms of the action. Bagger and Lambert[63] give an
example using the complex 3-algebra which has the first two entries antisymmetric
with each other:

[T, T";T )= f“*.T", (4.13)

abc

and require the f“*“; to satisfy the fundamental identity

fefgbfd’ad —ffeabebgd +f*gf17fcegd +f*5§e17fcﬂjd =0 (4.14)
with inner product

W =Tr(T*,T"). (4.15)
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Then the BLG version of the ABJM Lagrangian becomes

_ 2 _
LoDV EID D =W

+ 2ifaba? VJAV/BaZ:ZAE + 5 € 4BcD fade _dA‘VBZ ZD , (4.16)
where
WP = [ 22 25 0 a2 2 T 45 [T 2 2, (1)
and
L =%e‘“”1 ( f"b"’AmbaA = f"“’ fer g padiad)- (4.18)

This form is identical to the Lagrangian of BLG model (3.28) up to some constants.
Therefore, at N =2 case, ABJM model is equivalent to BLG model. [64] gives
another example using Jodan triple systems, and their rewritten ABJM action agrees
with (3.28) also. So we believe that there are more than one forms of ABJM model in

BLG version, depending on how we define the 3 -algebra.

For 2< N < case, one can use the similar method provided by [63] and [64]
to rewrite ABJM action, and it is straightforward to let SU(2)xSU(2) gauge
symmetry go to higher level SU(N)xSU(N) gauge symmetry. But the problem
happens here is we do not know how to enhance supersymmetry in this case. [23]
conjectured that ABJM action shall have an N =8 supersymmetry, but so far no one
gives a rigorous proof yet. [65] gives a suggestion using Hermitian 3 -algebra and

monopole operator to identify new N =2 supersymmetry, and they claim that the
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ABJM potential written with Hermitian 3 -algebra is SO(8) invariant. Though there
are still some relations in their work needed to be checked, we consider they give the
best approach attacking this supersymmetry enhancement so far. As to the

supersymmetry enhancement, one can also check[66, 67].

4.2.2 ABJM to BLG-NB

To connect these two models, we have to show that as N goes to infinity, ABIM
model has the same action and symmetries as BLG-NB model does; or in other words,
at large N limit,

lim ABJIM ~ BLG-NB. (4.19)

N
Though this conjecture looks similar to the case of ‘“ABJM to BLG’, it is more
difficult to achieve. Because first, we still do not know what kind of the Nambu
3 -algebras we shall use to substitute (4.13), then we do not have the BLG-NB version
of ABJM action or Chern-Simons term. Second, we still need to face the
supersymmetry enhancement challenge, which probably can not be circumvented
until one can enhance two extra supersymmetries for ‘ABJM to BLG’ case. Third, we

have not figured out how to connect the gauge symmetries between these two models.

The gauge symmetry group of ABJM model isSU(N)xSU(N), while the one of
BLG-NB is SDiff (S*). What we want to prove is (3.67)

Alfiirgo SU(N)xSU(N) gauge theory =~ SDiff(S*) gauge theory. (4.20)

It is well known that, the symmetry group of three-sphere is SU(2)xSU(2), which

describe the direct product between two two-spheres. And we have also given the
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transition from SU(N) gauge theory to SDiff (S*) gauge theory, so we conjecture
that the ABJM gauge theory can be related to BLG-NB gauge theory by (3.68), which
1s

SDiff (S*)x SDiff (S*) gauge theory ~ SDiff(S’) gauge theory. (4.21)
Actually, the relation

}/im SU(N)xSU(N) gauge theory ~ SDiff(S*)xSDiff (S*) gauge theory (4.22)

is very straightforward by section 3.4.1, but (4.21) is still mysterious. So far, we have

not been able to find the appropriate limiting formula for SDiff(S’) structure

constants. We conjecture that the structure constants of SDiff(S°), might be
calculated from the hyperspherical harmonics of three-sphere, which is similar to
calculating the structure constants of SDiff (S*) from spherical harmonics. However,
because the form of hyperspherical harmonics is much more complicated than

spherical harmonics, it involves a large amount of calculations. And the choice of the

auxiliary function is not clear, now this work is still in process.

The large N limit of ABJM model might involve taking two limits
simultaneously, strong coupling and large N , and they might not commute with each
other[34]. But logically, there is not contradiction between Nambu 3 -algebra and
ABJM model. After the discover of ABJM model, a BPS Wilson loop operator was
constructed[68, 69, 70], and the perturbative calculation of the expectation value was
performed. And the large N behavior of the expection value of the saddle point

equation was studied in [70].



Chapter 5

Conclusion of Part 1

In part I, we first briefly review regular Lie algebras and their properties. Then
we extend Lie algebras to n -ary algebras by substituting Lie brackets by n -brackets.
The Jacobi identity of Lie algebras is extended to generalized Jacobi identiy for
generalized Lie algebras, which focus on the associativity of operators; and
Fundamental identity for Filippov algebras, which do not emphasize on associativity.
Besides generalized Jacobi identity and Fundamental identity, there is a third identity
satisfied by all associative algebras, the Bremner Identity. We successfully extend the
original Bremner identity from n=3 case to n equals to arbitrary odd integer
number cases. We try to construct Filippov 3 -algebras from associative algebras, and
achieve some success. But generally, there are not as many 3 -algebras as Lie
algebras, because the characteristic identities are so strong, that they rule out most
candidates. Nambu algebras are infinite dimensional Filippov algebras, they satisfy

Fundamental identity naturally, but Bremner identity only for some special cases.

3 -algebras play an important role in generating N =8 supersymmetric multiple
M2-brane model. BLG model utilizes A, as its gauge group algebra, which
describes the interaction between two M2-branes. So far A4, is the only finite

positive-definite 3 -algebra can be used in BLG model, all other (finite
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positive-definite 3 -algebras are just direct products of it. One can extend BLG model
to BLG-NB model by replacing A, with Nambu 3 -algebra, which describes
M2-brane condensation. The gauge group of BLG-NB model is volume-preserving
diffeomorphism group SDiff(S*). Unfortunately, multiple M2-branes are not like

D-branes, which can be derived from N =4 Yang-Mills theory.

Besides BLG model, ABJM model is another proposal for multiple M2-brane
theory. ABJM model does not involve any 3-algebraic structures, but it can be
rewritten in terms of four index structure constants, and there are more than one way
to do this. We consider to unify ABJM mode and BLG model, building a unification
theory of multiple M2-branes. We try to build the connections in aspects of action,
Chern-Simons term, gauge symmetry, supersymmetry and R-symmetry. The most
difficult part is the supersymmetry enhancement, so far we have not figure any
effective way to attack this problem. As to the gauge symmetry, we have to calculate
the large N limit of ABJM model gauge group, which is SU(N)xSU(N). We

propose to use hyperspherical harmonics to calculate the structure constants of

SDiff (S*), and then compare the results with the results of large N limit.

BLG model is considered as the first example, which successfully applies n -ary
algebras to physics. It motivates researches on both n-ary algebras and multiple
M2-branes. We believe ultimately, the development of multiple M2-brane theory has

to be connected to the development of 7 -ary algebras.



Chapter 6

Introduction of Part 11

In this chapter, we motivate and formulate the research questions to be addressed
in Part II of this thesis. First we review some history of functional equations, and one
of its special cases — the Schroeder equation. Then we briefly review some basic
concepts about renormalization group theory and the c-theorem. We then go on to
explain the application of functional evolutional methods to renormalization group
equations, and point out that there is a counterexample for the common belief about
limit cycles. These allow us to formulate the research questions we want to address in

Part II. Finally, we go through the organization of Part II by chapters.

6.1 History of Functional Equations and Schroeder’s Equations

Functional equations is one of the most powerful and beautiful fields in
mathematics, and have been widely utilized in natural, social and behavioral sciences.
In mathematical modeling, models exhibit technical failures or inconsistencies on
many occasions, which make them inadmissible. Then functional equations are a tool
that prevents arbitrariness and allows model selection to be based on adequate

constraints[73]. The theory of functional equations is very old, and the method had

84
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been utilized a long time ago by Oresme, Napier, Kepler, and Galileo. It has been
systematically studied since eighteenth century by d’Alembert, Euler, Cauchy, Abel,
and Riemann[74]. In mathematics, a functional equation is any equation that specifies
a function in implicit form. And often, the equation relates the value of a function at
some point with its values at other points. Solving functional equations usually is very
difficult; however by using some common methods, most functional equations are
approachable[75]. The most common method of solving functional equations is
substitution. Also there are many approximate methods which involve computer
programming to solve functional equations numerically, and they are proven to be

effect and fast with appropriate algorithms.

Schroeder’s equation is a functional equation with one independent variable: find

the function (x)such that w(f(x))=sw(x), where f(x)is given. It is, of course,
the eigenvalue equation for the composition operator C,, defined by C =y o f.

Schroeder’s equation was first studied by Ernst Schroeder[76] in the early 1870s, in
his pioneering work on iteration of analytic functions. He tried to understand
Newton’s method in the complex plane, and obtained the idea of using iteration to
find solutions of equations involving analytic functions[77]. He realized that each
univalent solution i established a conformal “conjugation” between the action of
w and the simpler mapping of multiplication by s. Schroeder also studied the
solution of logistic maps in Schroeder equation, and obtained the analytical solution
for s=2 and s=4 cases. He originated the systematic study of iteration as a
means of solving analytic equations, and was the first to use conjugation as a

fundamental tool to understand iteration near an attractive fixed point. Later, in 1884,
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Koenigs published the fundamental existence-uniqueness theory for analytic solution
of Schroeder’s equation near an attractive fixed point[78]. A little more than one
century after Schroeder’s original papers on iteration, Gaughran and Schwartz
established the connection between Schroeder’s equation and the compactness
problem for composition operators on Hardy spaces[79]. Originally, Schroeder only
gave analytical solutions for two special cases of logistic map. The general solutions
to Schroeder’s equation can be difficult to approach, and so far there is not such a
theory that one can follow to obtain the general solutions. However, Curtright and
Zachos[80,81] invented an innovative method, the series and conjugation method,
which can calculate the approximate solutions. And for those which have analytical
solutions, the approximate solutions converge to the analytical solutions by taking the

infinite limit. This method can be applied to many forms of the function i, and there

always exists a solution approachable. For some other readable and informative

accounts of Schroeder’s equation, one can check[82,83].

6.2 Renormalization Group

In theoretical physics, the renormalization group (RG) is defined as a
mathematical apparatus that investigate the changes of a system at different scales. In
elementary particle physics, it reflects the changes in the quantum field theory (QFT)
as the energy scale at which physical processes occur varies, energy/momentum and
resolution distance scales being effectively conjugate under the uncertainty

principle[84]. The renormalization group is related to two invariance: scale invariance
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and conformal invariance, which correspond to scale transformation and conformal
transformation respectively. The idea of scale invariance is dated back to Euclid and
Galileo, and the scale transformation become popular again at the end of the 19th
century because of the turbulence research[85,86]. In late 1940s, the regular
formalism for eliminating the UV divergences in QFT was developed on the basis of
covariant perturbation theory for the scattering S -matrix. This breakthrough is

connected with the establishing of quantum electrodynamics (QED).

The first modern article introducing renormalization is by Stueckelberg and
Petermann, in which[87] they anticipated the idea in quantum field theory, and noted
that renormalization exhibits a group of transformations transferring quantities from
the bare terms to the counterterms. They discovered a group of infinitesimal
transformations related to finite arbitrariness arising the S -matrix elements upon
elimination of the UV divergences. They also introduced a famous function in QED,
which is later called beta function. At the same time, Bogoliubov developed a
technique of supplementing the definition of products of singular
Stuckelberg-Feynman propagators[88] and proved a theorem[89] on the finiteness and
uniqueness of the § -matrix elements in any order of perturbation theory. In 1954, on
the basis of Dyson’s renormalization transformations[90] formulated in the
regularized form, Gell-Mann and Low[91] discovered that the coupling parameter

g(u) atthe energy scale u is effectively given by the group equation

gu) =G ((u/ M)'G(g(M)), (6.1)
for some function G and constant d, in terms of the coupling at a reference scale

M . They then realized that the effective scale can be taken arbitrarily, and can vary to
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define the theory at any other scale

gy =G ((k/ ) G(g(w) = G (kI M) G(g(M)). (6.2)
On the basis of this group equation, Gell-Mann and Low then focused on infinitesimal
transformations, and invented a computational method based on a mathematical flow

function of the coupling parameter g, and determined the differential change of the
coupling g(u) with respect to a small change in energy scale x through a

differential equation, the renormalization group equation

og  _ _
o) w(g)=p(g). (6.3)

where y(g) is flow function.

Perphaps, Gell-Mann and Low did not pay enough attention to the group
character of the analysis, and in any chance they missed a chance to establish a
connection between their results and QCD (Quantum Chromodynamics) perturbation
theory. Bogoliubov and others[92] used the group properties of finite Dyson
transformations for the coupling constant, fields and Green functions, and derived
additional functional group equations for the propagators and vertices in QED in the
general case. In 1970, Callan and Symanzik[93,94] reformulated the renormalization
group theory in particle physics in more practical terms. They use the beta function to
describe the “running of coupling” parameter with scale, and found it amount to the
“canonical trace anomaly”, which represents the quantum-mechanical breaking of

scale symmetry in a field theory.

Later, the conformal symmetry is associated with the vanishing of the beta
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function. This can happen naturally if a coupling constant is attracted, by running

towards a fixed point at which £(g)=0. In QCD, the fixed point occurs at short
distances where g — 0 and is called an ultraviolet fixed point. In string theory, the

conformal invariance of the string world-sheet is a fundamental symmetry. The beta
function is a function of the geometry of the space-time in which the string moves.
This determines the space-time dimensionality of the string theory and enforces
Einstein’s equations of general relativity on the geometry. The renormalization group

is of fundamental importance to string theory and theories of grand unification.

6.3 Functional Equation in Renormalization Group

The renormalization group equation has been bonded with functional method
since the day it was born. The functional renormalization group has in recent years
been successfully applied to a wide variety of non-perturbative problems such as
critical phenomena, fermionic systems, gauge theories, supersymmetry and quantum
gravity[95,96,97,98,99]. Although these systems have different physical natures, they
all share similar flow equations. The formulism established by Stueckelberg and
Petermann, and Gell-Mann and Low has nice mathematical expression in terms of the
functional conjugation methods of Schroeder’s methods. The traditional way to solve
finite renormalization group equation is to integrate a perturbative approximant to its
algebra, the beta function, to obtain the full renormalization group trajectory for scale
not equal to 1. The theory about Schroeder’s equations gives us a different way to

calculate and analyze the renormalization group trajectories, based on the theory of
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functional conjugacy equation. In this conjugacy form, it is more apparent to see the
global self-similar function structure of the renormalization group trajectory. Also, in
conventional local relations, the interaction between continuous and discrete rescaling

is often inaccessible while it can be illuminated in conjugacy form.

In renormalization theory, it has long been presumed that, under mild
assumptions, scale invariance implies conformal invariance. In two-dimensional
spacetime, Zamolodchikov[100] and Polchinski[101] argued and gave a proof that
scale invariance implies conformal invariance for unitary quantum field theories with
finite correlation functions. Zamolodchikov stated that there exists a positive real
function ¢ of coupling constant g in a two-dimensional renormalizable field
theory which decreases monotonically under the influence of a renormalization group
transformation, and this theorem is call c¢-Theorem. Then Cardy[102] extended
¢ -Theorem in two-dimensional spacetime to so called a -Theorem in
four-dimensional spacetime. It seems[103] both c¢-Theorem and «-Theorem point
out that, based on monotonically evolving observables that the underlying couplings
can not have renormalization group trajectories which are limit cycles[104] (closed
curves that is invariant under renormalization). The limit cycle is characterized by a
discrete scaling symmetry: the renormalization group flow executes a complete cycle
around the curve every time the cutoff changes by a multiplicative factor A called
the discrete scaling factor. The discrete scaling symmetry is reflected in log-periodic
behavior of physical observables as functions of the momentum scale[105]. However,

the renormalization group scaling function y, obtained by Schroeder’s method, is

periodic and yields limit cycles even for a real coupling. Actually, back to 2003, the
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“Russian Doll” superconductivity model given by [106,107], gave an example of the
physics repeats itself cyclically in self-similar modules. This model identifies a
two-dimensional field theory whose renormalization involves a renormalization group
limit cycle in apparent contradiction to ¢ -Theorem. Besides providing a
counterexample for limit cycle in renormalization, functional conjugacy methods also
indicate turning points for renormalization group trajectories, and generate multiple

branches for renormalization group equation solutions.

6.4 Research Questions

In Part II, our focus is to establish the solutions to Schroeder’s equations by series
and conjugation method, investigate the convergence property of the solutions, and
construct limit cycle example for renormalization group trajectories. The problems we
want to confront are:

1. To establish an approximate solution to Schroeder’s equations for arbitrary
functional relation.

2. To investigate the asymptotic behavior of approximate solutions, comparing them
with some well known analytical solutions.

3. To study the velocities and accelerations generated by the approximate solutions.

4. To study properties at fixed point and turning point of approximate solutions.

5. To understand the coefficient behaviors for approximate solutions.

6. To construct a counterexample for limit cycle claim.
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6.5 Roadmap of Part 11

In Chapter 7, we introduce Schroeder’s equations and its analytical solutions for
logistic map when the scale s equals to 2 and 4. Then we demonstrate an
approximate solution through series and conjugation method, a solution for sine
function is provided as an example. We derive approximate solutions for

s = 2,4 cases, and calculate the error between them and analytical solutions. At small

x values (x close to 0), approximate solutions agree with analytical very well, but
when x approaches to 1, there is obvious difference between them. The method to
deriving the approximate solution can help us obtain solution for other scale values.
The solutions can be understood as trajectories of particles in classical mechanics, the
geometric properties of the particles’ trajectories are also of interest, the surfaces of

trajectory curvatures seem to have chaotic properties.

In Chapter 8, the beta function is obtained by solving renormalization group
equations approximately. We talk about different behaviors of beta function with
different scales, and also show that the solutions are not unique. For each scale value,
approximate solutions consist of infinite amount of branches, and turning points
connect these branches together. Based on these different branches and turning points,
we give a counterexample of limit cycle in renormalization group theory. The beta
function is established by series and recursive methods, we investigate the coefficients

for each order, and try to find a universal form for the coefficients.

In Chapter 9, we summarize our results for Part II.



Chapter 7

Approximate Methods to Solve
Schroeder’s Equations

7.1 Functional Equations and Schroeder’s Equations

Mathematicians have been working with functional equations since the 14
century, though the strict discipline was built much later than that. Nowadays,
functional equations form a modern branch of mathematics. Topics which are covered
under functional equation include Cauchy equations, Jensen equations, Pexider’s
equations, Abel equations, and functional equations for distance measures[108]. Some
advanced topics involve functional equations in abstract domains like semigroups,
groups, and Banach spaces. When the focus of a function equation is on continuity of
functions and a domain is specified, this becomes a question of topology, in particular
this sometimes becomes questions about the group of homeomorphisms or
diffeomorphisms of a set. In Part II, we do not go through the details of those
common functional equations and their properties, but investigate a special

functional equation with one independent variable, the Schroeder’s equation.

7.1.1 Functional equations

In mathematics, a function equation is any equation that specifies a function in

93
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implicit form[109]. Often the equation relates the value of a function at some points
with its values at other points. In other words, functional equations are those in which
a function is sought which is to satisfy certain relations among its values at all points.
For function equations with one variable, they normally have the form like

F(x, f(x), f(G(x)) =0, (7.1)
where x 1is variable, f(x)is the function we want to solve, and F and G are two

given functions. Here we give the forms for some famous functional equations:

(1) f(x+y)=f(x)f(y), satisfied by all exponential functions (7.2)

2)  f(xy)=f(x)+ f(»), satisfied by all algorithmic functions  (7.3)

(3)  f(x+y)=f(x)+ f(), Cauchy equation (7.4)
4)  f((x+)/2)=(f(x)+ f())/2, Jensen equation (7.5)
(5)  f(h(x)) = f(x)+1, Abel equation (7.6)
6) f(x+¥)+[(x—y)=2f(x)f(y),d Alembert equation (7.7)

In simple cases, a functional equation can be solved by introducing some
substitutions to yield more information or additional equations. For example, if a
functional equation has the form like

h(x) f(x) +g(x) f(a—x)=s(x), (7.8)
where f(x) 1is the function we want to solve; A(x),g(x), and s(x)are known; a
is a constant . Then by replacing x by a—x, we have
ha—x)f(a—x)+gla—x)f(x)=s(a—x). (7.9)
Substituting this into (7.8) and solving for f(x), we get the explicit form for f(x).

However, like differential equations, solving functional equations for arbitrary
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forms can be very difficult. Except for few well known cases, there does not exist a
standard procedure to solve an arbitrary functional equation. For a general case, one

may have to design an algorithm and use numerical methods.

7.1.2 Schroeder’s equations
A Schroeder’s equation[76] is a functional equation with a fixed point: given

function f(x), find function y(x) such that

w(f(x)=sy(x), (7.10)
for some constant s. If x, is a fixed point of f(x), meaning f(x,)=x,, then
w(x,)=0 for some s=#1.Provided w(x,) is finite and y'(x,)does not vanish or
diverge, the eigenvalue s is given by s=f'(x,). Let ¢ =y 'be the conjugacy
function of i, then we have a transpose form of Schroeder’s equation

S(@() =¢(cy). (7.11)

Schroeder’s equation can be converted to other well known functional equations. By
changing variable, let a(x)=1log(y(x))/log(s), Schroeder’s equation becomes to
Abel equation

a(h(x))=a(x)+1. (7.12)
Similarly, the change of variables w(x) =log(¢(x)) converts Schroeder’s equation to

Bottcher equation

P(f (%) = (p(x))" . (7.13)

The solutions of Schroeder’s equation depend on the form of the given function

f(x). In Schroeder’s original paper[76], he gave a good number of particular
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solutions. Koenigs[78] gave an analytical solution for Schroeder’s equation if x, is

an attracting fixed point, meaning 0 <|f"(x,)|<1. In [110], Szekeres used the series

expansion around a fixed point and studied the relevant convergence properties of the

solution of the resulting orbit and analyticity properties. Here, we give two examples

constructed in Schroeder’s early paper[76]. The given function f(x)=sx(1—x) in

both examples are called logistic map, which is a polynomial mapping of degree 2.

Example 7.1, f(x)=2x(1-x). The solution is

p(0) == In(l-29),
with its conjugate

v =2 =),

Example 7.2, f(x)=4x(1—x). The solution is

w(x) = (arcsin/x)?,
with its conjugate

w ' (x) = (sin+/x)’.

7.2 Conjugation and Evolution

(7.14)

(7.15)

(7.16)

(7.17)

One of the numerical ways solving Schroeder’s equations is to use the iterating

relations and generate the approximate solutions[80,81].
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7.2.1 Iteration
First, let us consider an evolution trajectory x(¢) of a one-dimensional system,

specified by a local, time-translation-invariant law

dx(r)
dt

v(x(t)). (7.18)
By solving this differential equation, one can obtain the trajectory as a function of the
time ¢ and initial position x(0)

x(t) = f,(x(0)). (7.19)
Then we consider a series of time lattice with interval Ar=1 between two

consecutive points, so that
x(D) = £1(x(0)), (7.20)
x(t+1) = £,,(x(0) = £,(x(1)) - (7.21)
We have relation (7.21) because x(¢) can be considered as initial position of x(7+1).

It is straightforward to compute iterates of (7.20) at each time point

t=---2,-1,0,1,2,3, -, which gives
x(2) = f,(/i(x) = (%),
x(n) = fi(fi-- (L (0)) = [, (x), (7.22)
x(=1) = £ () = f1(%).

By assuming the domains for the various functions overlap properly, we have

associative and commutative composition
x= (L) = LX),
x(k+n)=f,(f,(x) = 1,(f; (%) (7.23)
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Schroeder approached this problem by introducing auxiliary function y/(x) and
solving Schroeder’s equations. We take x =0 as a fixed point of f (x), meaning
/1(0) =0. Construct an analytical f,(x)around it and the Schroeder’s equation is

w(fi(x)=sy(x), (7.24)
for some s=#1. At the fixed point, it gives w(0)=0, and if w'(0)=0, then
s = £,'(0). The inverse function satisfies Poincare’s equation

v (sx) = fily " (%) (7.25)
Upon iteration of the functional equation, y acts upon the splinter of x to give

s"y () =w (£, =p (- (fG). (7.26)
Then for arbitrary time ¢, Schroeder’s equation becomes
sy (x) =y (f,(x)), (7.27)
and the trajectory can be expressed in terms of w(x) and ' (x)
x(t)= f,(x) =y (s'y(x)). (7.28)
In a suitable domain, this gives the general iterate for any ¢ (it can be fractional,

negative, and infinitesimal), analytic around the fixed point x =0.

This solution manifestly satisfies the associative and abelian composition

properties for all iterates and inverse iterates. That is to say, f, ., (x)=f, (f, (x)),
hence x(#, +1,) = f, (x(,)) . However, in the limit s —1, all iterates and inverse

iterates lose their distinction and degenerate to the identity map, f,(x)=x, and the

method fails as written.
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For a very elementary illustration of the technique, consider Schroeder’s early
example of a recursive evolution law,
fi(x)=2x(1+x), (7.29)

so f,(0)=0,and s= f,'(0)=2. Schroeder’s equation is then solved by

w(x) :%In(l+2x), (7.30)
with its conjugate
V=S -, (7.31)
giving
x(t) = fi(x) = %((1 +2x)% -1). (7.32)

7.2.2 Approximate solution
In this subsection, we talk about how to construct approximate solution for
functional equations[111]. As other numerical methods, we have to check the

convergence behavior of the solutions. Functional equation (7.21) can be written as
X, (0, (0) = x, (5, (X)) = x, 0.3, (7.33)
In this situation, a useful direct approach is to construct an N th-order formal series
approximation for x, around a fixed point of x,, say at x =0, by series analysis of
the k=1 case of (7.33), written as
x,(x,(x)) = x,(x,(x)). (7.34)
With initial conditions corresponding to x, 1is identity map, the approximate solution

has the form
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N
XM () = e ()x" (7.35)
k=1

where ¢,(0)=1, ¢,_,(0)=0, so x""”(x)=x. Note that it is only necessary to
construct accurate approximations to x, for any unit interval in ¢, for then the
composition rules x,, = x,0x, and x_, =x,0x, can be used to reach higher or

lower values of .

Now, for a given N the series (7.35) may not produce accurate results for
values of ¢, or for an interval of initial x, of interest. Quite possibly, this may be
overcome if the series is convergent, by taking larger N, but if the series is only a
formal one, perhaps asymptotic, with zero radius of convergence, larger N may not

be a viable option. So what can be done then?

n compositions

Formally, for any fixed N, with x, =x, o---0Xx,, it follows that

x, = lim x, o x"7*) o x (7.36)

-n
n—too

is a solution to (7.34). This is a consequence of

t(Napprox) o x_n) — (xn+] o xt(Napp"Ox) ° X_n—l) °X. (737)

X o(x, ox
In the limit n — *oo, equation (7.34) is obtained, if either of those limits exist. For a
specified class of problems it might be possible to give an elegant proof that either

limit exists by using various fixed point theorems from functional analysis[112,113],

but that is not our objective here.

The objective is to estimate the numerical accuracy obtained by conjugating (7.35)
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a finite number of times, 7, with the given, exactly known, ‘finite step’ function x,,.
That is, our concern here is the relative error obtained as a function of #, prior to

taking the limit n — Zoo. In many cases, n-fold conjugation with the given x,, and
its inverse x_,, dramatically improves the numerical accuracy of the series

approximation, with the error vanishing exponentially in either Nlnn or Nn. This
behavior came to light in follow-up studies of earlier work[114,115,80,81]. We give
two examples of how to construct approximate solutions and calculate relative errors

in next two subsections.

7.2.3 A rational illustration

As a tractable example[76,91,110,116,117], consider

x,(x) =ﬁ, X, (x) =ﬁ. (7.38)

In this particular simple case, an exact solution to (7.33) is

X
l—xt

(7.39)

X, (x) =

But to illustrate the series method, consider (7.34) given only x, in (7.38). Recursive
analysis in powers of x immediately gives c,(t)=¢"", where we have defined the
form and scale of the ¢ parameterization by the choice c,(f) =1, to be in agreement
with (7.39). For instance, with x,(x) = x +#x” +¢,(£)x’ + O(x*) we find

x, (%)
1- X (X)

- x,( al j = (> —c,(t)x" +O(x°). (7.40)

I-x
Thus, (7.34) is satisfied if and only if ¢,(¢) =¢. So it goes to higher orders in x, with

each ¢,,, determined by c,, to satisfy (7.34) —not just by direct expansion of
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(7.39).

The result for the approximation is therefore

B (1-t"x")x

7.41
1—1x ( )

N
xf(Napprox) (x) — z tk—lxk
k=1

Then, by 7 -fold conjugation of this approximation with x, and its inverse, obtain

N N
x, o xMPron o ¢ () = x(1 —(1 il j Y nx(l b J ). (742
+ nx + nx

This indeed converges to the exact result, (7.39), as n — oo for any fixed N >1. But

what is the relative error for finite 7 ?

Since we know the exact answer in this elementary case, this error is not difficult

to compute. For any fixed N and finite » the relative error is

R(XNn)dei"-x,(x)—xnox}N“””’““”ox,,,(x): 1—tx + nx ( tx jN. (7.43)
Y x,(x) {—¢ e Y U+ nx
— X + nx
1+ nx

For N >1 this indeed vanishes as n— oo, for any fixed x, so long as #x=#1.
However, more importantly, for » finite but large compared to both 7 and 1/x,

this error goes to zero as the (N —1) st power of n,

N
t'x 1
wfil|Ux 1= g p™”

R.(x,N,n) (7.44)

-
Therefore, in principle, one can obtain numerical results to any desired accuracy by
repeated conjugation of the approximate series with the given step-function x,. It is

remarkable that it is only required to take any fixed N >2 to produce such results,

although in practice, as is manifested in (7.44), computational efficiencies can be
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improved by taking larger N since the desired accuracy is then reached for smaller

n.

The result for the relative error can be understood in terms of Schroeder

theory[76] as it applies to this simple example. The continuous iterate x, given in

(7.39) may be constructed from a Schroeder function, y , and its inverse. An exact

result for this particular example is given by

w(x)=exp(-1/x), w ' (x)=-1/In(x). (7.45)
This result is for a particular choice (namely, s =e) of the ‘multiplier’ in Schroeder’s

equation, sy (x)=w(x,(x)) . The multiplier 1is undetermined when
d"y(x)/dx" =exp(-1/x)|,._, is zero, or undefined, for all n. In such cases, it is

usually possible to choose s just as a matter of taste. In Schroeder’s conjugacy

framework, the general iterate is x,(x) =y ' (e'w(x)), or,
p(x,(x))=e'y(x). (7.46)
Thus, ® = w(x) is just the change of variable that reduces the effect of evolution in ¢

to nothing but a multiplicative rescaling, o, =¢'®.

But suppose that the exact x, were supplanted by an approximation of the form
x N = x4+ + O(xN?) (7.47)
for some coefficient « . Then,
w(xMPy = 1+ o™ +O(x"))exp(=1/x,) . (7.48)

Alternatively, with x, =—1/Iny(x,)=-1/Inw,,
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) 1
o Napprox) — o (Napprox)p 01y | ] 4 @ +0 w,. (7.49
! vix [@]) (-Inw )" (-lnw)" )" (7.49)

Then, it follows from the multiplicative rescaling behavior of @ that under the

approx

variable change x, - @, the conjugated approximation x, o x; oXx_, presents

itself as

o 1
O o™ om =1+ +0 .. 7.50
"o - ( (n—Inw,)"" ((n—lna),)ND ! ( )

This gives a relative error with the same power-law asymptotics as (7.44), namely,

R ~ a/n" .

n—s
7.2.4 Sine function
We construct the approximate solution sin,‘“"*'(x) for sin, (x) with
sin,(x) =sin(x) and sin_ (x)=arcsin(x). In this notation, the Abelian functional
composition equation is
sin,osin_ =sin,, . (7.51)
Specializing to s =1, written as
sin, (sin(x)) = sin(sin, (x)), (7.52)

we find a formal series solution,

2
sint(“”p’ux)(x)zx_%txa LG 5'4)t s (75t 333§'t+164)z e
! ! <

L (25t -24)8 - 7t)°t
9!

(7.53)

x’ +0(x")

This is the approximate solution up to O(x''), and we can calculate the solution up to

arbitrary order. It is not obtained by just taking Taylor expansion of both hand sides of
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(7.52). Assume the approximate solution has the form of
N
sin{""0 (x) =" ¢ ()x", (7.54)
k=1

and by Taylor expansion of sin(x), we can predict that the series solution does not
contain even order terms, then we assume
sin 7" (x) = x — cytx” (7.55)
for the approximation up to 3rd order. Here ¢, is the constant that we are trying to
determine through (7.52). Plug (7.55) to (7.52), we have
sin %" (sin(x)) — sin(sin®*"*? (x)) = O(x ") . (7.56)
For the left hand side of (7.56), take Taylor expansion of sin(x), then we have
o(x")=0(x"). (7.57)
This means, no matter what kind of ¢, we have, approximate solution always

satisfies (7.52) up to 7 th order. We choose ¢, =1/3!, and have sin"*”*”(x) as

sin > (x) = x — % o0 +cx’. (7.58)
Then (7.52) would yield
sin*#”"* (sin(x)) — sin(sin """ (x)) = O(x”) (7.59)
t t s °
and Taylor expansion would give
ﬁ(lZOcs +4t-52)x" +O0(x°) = O(x°) . (7.60)

The only condition that we can make (7.60) true is to take 120c, +4¢—5¢t> =0, and it
gives ¢, = (5t —4)t/5!. By repeating the same process, we can obtain ¢, and ¢, as

listed in (7.53). This is how we find series solution for (7.52).
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In this case, the series (7.53) is probably not convergent for almost all
t[110,116,118]. Although it obviously is convergent for ¢ € — . Rather, for generic ¢

the series appears to be asymptotic. For example, for #=1/2, using Mathematica to
extend the series(7.53) to O(x*') or so, the smooth behavior of the series

coefficients ¢, for k<61 suggests a finite radius of convergence ~4/3, as

estimated by 1/|ck|”k. But then less smooth behavior sets in for ¢, , and numerical

estimated of the radius begin to fall toward zero, as would be expected for an

asymptotic series.

Also note in passing that (7.53) implies the corresponding Schroeder function has

an essential singularity at x =0, as given explicitly by

150 379 29
x) ~ x*°exp| =+ x*+
v(x) P 1050”2625

Xt 0(x5)j, (7.61)

to be compared to (7.45). This follows from l//(x):exp('[dx/ v(x)) , using

v(x) = d sin, (x)/ dt |_,~ d sin'"* (x)/ dt|,_, .

Nonetheless, the conjugation method produces approximations sin, = 4,, which

provide compelling numerical evidence for the existence of a limit, hence an exact

result for sin,, as n—>oo. But note it is important in this case to take the

conjugations to be of the form

A,, =sin_,osin{”osin , (7.62)

The general rule being to act first with functions that are smaller in magnitude than

the identity map, thereby leading to evaluation of the truncated series at points closer
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to x=0.

The improvement wrought by conjugation of the truncated ninth-order series in
(7.53) is easily seen in following graphs, for the case #=1/2. The series itself is not
credible beyond x =7 /2, but a single conjugation forces the expected periodicity in
x and gives the more plausible green curve seen in Figure 7.1. Repeated conjugation
does not produce any discernible differences with the green curve to the accuracy of
Figure 7.1, but when the graph is magnified, as it is in Figure 7.2, numerical evidence

for convergence of the sequence of conjugations is quite compelling.

0.8 7T T
0.6 T T
04T T

0.2 +

0.0 —t——t——————————t——————
00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30
X

Figure 7.1. The ninth-order series (7.53) for 7=1/2, in black, along with its

n=1 conjugation (7.62), in green
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Figure 7.2. The r=1/2, n=1234and 5-fold conjugation (7.62), in green,

orange, blue, red, and purple, respectively

Proceeding in this way leads to the set of curves for various values of ¢ shown

in Figure 7.3. Each of these curves results from the 5-fold conjugation 4, of the

truncated ninth-order series (7.53). Note once again, as previously remarked in a

general context, it is only necessary to construct accurate approximations to sin, for
any unit interval in ¢, for then the composition rules sin,,, =sinosin, and
sin_,,, = arcsinosin, can be used to construct the curves for higher or lower values of
t. Also note from the numerics the obvious inference that sin,(x) becomes the

periodic triangular ‘sawtooth’ function as ¢ — 0, with

limsin, ((2k + 1)z /2) = (=)' 7 /2. (7.63)

As constructed, sin, (x) for #>0 is guaranteed to be real for all real values of
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x, but certainly it is not obvious for generic ¢ what numerical values are actually
attained at the extrema for x =7 /2mod . It suffices here for us to point out that the

maxima are approximated by the simple expression
. 17
sin,(7/2) = (Ej . (7.64)

At least, this is true for 0<¢<1, where the relative error between the exact

(numerical) value of sin,(z/2) and this approximation is less than about 3 parts per

mille. The branch point at # =0 exhibited in this approximate expression is perhaps

the most direct numerical evidence that the iterates are not analytic in ¢.

The graph in Figure 7.2 give a sense of the overall relative error, but lacking
closed-form expressions for either the iterates or the conjugations of the series
approximations, closed-form results for the error are not available for generic ¢. For
t € Z , however, precise calculation is indeed possible since both exact results and
convergent series are known. It suffices here to consider just one exact case, 7 =1.

Defining the relative error as before,

. . . (approx) :
SIn X —S1n__ o Sin oSin_(x
R (x,n) = - ! (%)

. ; (7.65)
S x

we have computed numerically the error involved in various conjugations of the
ninth-order series (see Figure 7.4). As previously remarked, conjugation by the sine

guarantees that the approximations are periodic. The results are shown here.
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Figure 7.3. Various sin, (x) are given by 5-fold conjugation A4,,(x) of the

Ninth-order series (7.53), for <1

0.0e+0 —t = — —t : : —
R ﬂq‘iﬁ;\ 7 = 7

“1.0e-9 + o o .'

-2.0e-9 f I f

Figure 7.4. R/(x,n) for n=45and 6, in green, red and blue,

respectively

It would be interesting to compute relative errors for other, generic ¢, but at this

stage it is only possible for us to compute the relative successive differences,

; i1 (@pprox) o s ; i (approx)
sin_, o sin, osin,(x)—sin_,, osin, osin,_(x)

S,(x,n) = , . :
o sin_, o sin'”"*Yosin (x)

(7.66)
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For example, consider ¢#=1/2 using the ninth-order series (see Figure 7.5)

. L.oe-5 I I f f f f
S
/N a
4 ., ."'x__ ey | \
P AN\ LTSN
0.0e+0 ] M : i S
0 1 2 3 4 s 6
X

Figure 7.5. S, ,(x,n) for n=45and 6, in green, red and blue,

respectively

7.3 Approximate Solutions to Logistic Maps

As mentioned in last section, logistic maps are first examples studied by
Schroeder in his early paper[76], they are also of special interests in Chaos theory. In
general, the logistic map is defined as

x(x)=sx(1-x), (7.67)
where s is scale constant. If we consider
X (x)=sx(1-x), (7.68)
then (7.34) becomes
x,(sx(1-x))=sx,(1-x,), (7.69)
with x=0 as its fixed point. The exact solutions to Schroeder’s equation (7.10) for

s=24 were given by Schroeder[76], and they provide us the opportunity to
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calculate the relative error of our approximation solutions.

7.3.1 Theory of relative error

The sequence of conjugations converges more rapidly in situations where the
underlying Schroeder function is analytic about the fixed point, in contrast to (7.45)
and (7.61). Instead of power-law behavior, for such situations the relative error
vanishes exponentially in 7, the number of conjugations. The general theory is well
illustrated by the logistic map (7.67), for 0<x<s/4 and 0<s<4. The result of

the theory is as follows

Theorem 7.1. Relative error after n-fold conjugation of the truncated series (7.35) is
given by

x, () = x, ("7 (x, (1))

X, ()

R (x,5,N,n)=

= (lJn r(x,t,s,N,n) . (7.70)
s

nN
= (lj ey, ts)x" +0x")

S

Proof: To sketch a proof, and to see more clearly the assumptions involved, as well as

to obtain expressions for r(x,¢,s,N,n), write the truncated series as
x NP () = x, (x) = xS (3, 1), (7.71)
Where o, (x,t) represents the exact difference, whose expansion in x begins
O(x"). Thus, the conjugation gives exactly
x, (e (x, (0))) = x, (x, (L, (0) = (e, () Sy (3, (0),0)) . (7.72)

Now expand the RHS in powers of (x_,)""5,,
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x, (x,(x_, () = (xr_, () 8y (x_, (30),1) = x, (x, (x_, (x))

. (7.73)
— (o, ()Y S (x, (x), ), (x, (x_, (%)) + O((x>,) " Sy
Since it consists of exact trajectories which obey (7.33), the first term

givesx, (x,(x_,(x))) = x,(x), while the second term involves

G, () =, (5 (L () =k (0, (174

() d %)

again using (7.33). Thus,

dx,(x)/ dx

x, () = M (x) = (x, () Sy (x, (0), 1) D ()] dx

+O((X> )63y, (71.75)

To proceed, we require that the unit step function is such that x_ (x) flows toward
the fixed point at the origin for the point x under consideration (so we suppose
|S| >1, but if not, just interchange x, and x_,). We also suppose that » has been
chosen large compared to ¢ so that

x,_,(x)=s"¢, (x,1) (7.75)
is small, where ¢, (x,7) =x+O(x”). If these requirements are met, then

dx,(x)/dx
s™"de,(x,t)/dx | (7.76)

X, () =D (x) = 57N U (x,0)8, (s, (x,0),8)
+0[S72n(N+1)82N+2§]%/]
where deg, (x,t)/dx=1+0(x). The result for the relative error is therefore of the

form in the statement of the theorem, with

£ (1,0)8, (5", (5,0).1) dx, (x)/ dx

+O[s " VRN 52 . (1.77
s'de (x,0)/dx x,(x) [ oowl (0 77)

r(x7t’S7N’n) =

For small x, we have

eV (x,0) = x""(1+0(x)), de, (x,t)/dx =1+ 0O(x),



114

dx,(x)/dx 1

=—(1+0(x)), (7.78)
x,(x) X

oy(s™"¢g,(x,0),t)=cy,, (t,5)+O0(x),

and therefore
r(x,t,5,N,n)=s"c,, (t,)x" +O(x"""), (7.79)

again as previously stated.

The form given in (7.77) enables analysis of the size of the error as a function of

x . Moreover, the form in (7.79) suggests an approximate scaling law for the error
R,(x,S,N,n)zsNRt(x,s,N,n+1), (7.80)
at least for x near the origin. It is interesting to check whether this is true for larger

x . In fact, it is.

7.3.2 s=2 logistic map

Consider the case s =2, which can be solved in closed form to obtain

1//(x)=—%ln(l—2x), w‘@):—%(l—ﬁ*), (7.81)
X, (x) = %(1 —(1-2x)%), LLACIpY (1-2x)™"7, (7.82)
g,(x,t)=2"1-(1-2x)""), LA 1-2x)"%",  (7.83)
dx
as well as
&V (x,0) = (2" %(1 —(1=2x)* " )M (7.84)

The approximation solution can be obtained by solving (7.34) recursively for

x,(x) =2x(1-x) upto O(x"")
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N
XM () = (2 x + ) (0))x", (7.85)
k=2
where the first several coefficients ¢, (f) are

61 =-2'2' -1), 60=22 @ -DE'-2),
QD=3 2@ D D2 -3), )= @ =D =D 32 -4,

c(t) = —%2(2’ —D)(2' =2)2" =3)(2 —4)(2' - 5). (7.86)

The general form for coefficients is

klkl

k(t)_ H( (7.87)

and fortunately, we can express the sum of the term after first N terms in terms of

hypergeometric functions, which give us the o6, by

Oy (x,t)= [ = 2)1)'1—[( j)thypergeom([l,N+1—2t],[2+N],2x), (7.88)

with the definition

x NP () = x, (x) — xS (x, 1) (7.89)
These s=2 results are all well behaved enough for the steps in the proof of the
theorem to be valid for x<1/2. However, at the upper end of the interval,
0<x<1/2, some additional consideration is needed. Expression (7.75) is 1/2 at

x=1/2,independent of ¢# and n, and therefore not small. That is to say, at x=1/2

the 27" prefactor in R, (x,s,N,n) is not present to suppress the error. On the other
hand, the ratio (dx,(x)/dx)/(de,(x,t)/dx)in (7.76), and in (7.77), always vanishes at

x=1/2, for any ¢, so the leading contribution to the relative error is actually zero at
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that point. Thus, the upper end of the x interval does not pose a problem after all. In
fact, as is evident in the graphs to follow, or by direct calculation, the maximum
magnitude of the leading contribution to R occurs for x <1/2, for which the 27"

prefactor is present.

Putting all this together for the s=2 logistic map, the leading approximation to

the relative error is

R (x,2,N,n) =3, G (1 —(1-2x)*" )zj

. - 7.90
X2”‘N(1—(1—2x)2 YWHx(1-2x)2 20 (7.50)

(1-(1-2x)")

For comparison purpose, we plot (in Figure 7.6) this last expression for various
N and n, and selected ¢, especially to check (7.80) for s=2. That scaling law is

seen to be hold fairly well, even for x~1/2.

Finally, we note there is no discernible difference, to the accuracy of this last plot,

between the leading approximations and the exact results for the relative error as
computed from (7.82) and the 5-, 6-and 7 -fold conjugations of x°%”*”(x). The
largest of these differences, between the exact and the leading approximation of the
relative error for N =5,n =35, is shown in Figure 7.7. So the exact relative errors are

essentially indistinguishable from their leading approximations, at least for s =2 and

t=1/2and t=3/4, and the relative error after 7 conjugations of the fifth-order

series is always less than 3 parts in 10'* for these two values of ¢. Other values of ¢

taken from the unit interval [0,1] are similarly well approximated by the combined

series and conjugation methods.
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Figure 7.6. Leading approximations to 2°"VR (x,s=2,N =5,n) for t=1/2
(solid) and ¢=3/4(dashed) with n=5,6and 7, in blue, red and green,

respectively
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Figure 7.7. AR=R,(x,s =2,N=5,n=5) |, =R, (x,5 =2, N =5,1=5) | aqing approx
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for ¢ =1/2(solid) and ¢ =3/4(dashed)
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7.3.3 s=4 logistic map
s =4 case is similar to s=2case, we use the same procedures, and it can be

solved in closed form also.

x=x(x)=4x(1-x), (7.91)
w(x) = (arcsin/x)?, w ' (x) = (sinv/x)?, (7.92)
e ) ) dx,(x) ., 1 i )
x,(x) = (sin(2" arcsin \/;)) , R 2 N sin(2" arcsin \/;), (7.93)
£ (x) =4""(sin(2"" arcsinv/x))?, dgdix) 2" \/ll—_x sin(2" " arcsinv/x) . (7.94)
Let z=2', then the expansion of x,(x) is
(sin(z arcsin \/;))2 = ic(n, z)x", (7.95)
with
_ 4)n 1 1
c(n,z) = (2 Y u‘[ j (7.96)

Again, x,(x) can be expressed by using hypergeometric function

(sin(z arcsin \/_)) = Z( " (H( j

(2n)!
ANT(N +1-2)[(N +1+z) zsinzz .,
4 1 I ) xM ,(7.97)
I'(2N +3) T
xhypergeom([l,N+1+z,N+1—z],[2+N,N+%],x)
and

Sy(x,t) = (j* - J
N { (2N + 2)'H (7.98)

hypergeom([LN +1—-z, N +1+z],[2+ N, N + %],x)
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The leading approximation to the relative error is calculated from (7.70), and Figure
7.8 shows the plot for N =5 with 3-, 4-and 5-fold conjugations of x"“"(x)

when 7#=1/2. One can see that the difference is very small between different
conjugations. Note that this Figure 7.8 shows a sudden dip (actually, a downward
spike, if resolved in more details) at x = 0.8 as a consequence of R having a zero
and changing sign at that point. Also in this Figure, we draw a light blue curve, which

is the relative error for small x formula

nN
R (x,5,N,n)~ (l) s7ey (6,5)xY (7.99)
s
so for s =4map,
ey 2(— 4x)
R (x,s=4,N,n)=4"" ———— 7.100

For x<0.7, it agrees with other curves very well, meaning it can substitute exact

relative error at small x.

201/

T+

Figure 7.8. Leading approximations to log,,(4*"™ | R (x,s =4,N =5,n)|) for

t=1/2 with n=3,4and 5, in blue, red, and green, respectively
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7.4 Discussion

From last section, we see that the approximate solution we obtained agree with
closed form solutions very well, and we believe series and conjugation method is a
reliable way to solve (7.34). With series and conjugation method, we can calculate
approximate solutions of logistic maps with general s, or other functions. Also, since

x,(x) gives the trajectories as functions of both time ¢ and position x, one would

be interested in first, the trajectory surfaces of the motion; and second, the velocities
and potentials based on these trajectories. The first one can be drawn by plotting
three-dimensional surfaces, and one can calculate the points with maximum or
minimum curvatures. As to the second, one can use approximate method to obtain

approximate velocities and potentials directly, which we talk about in next chapter.

7.4.1 Logistic maps with general s
Our interests in logistic maps with other sare those for 0 <s < 4. For each of

them we put restriction 0<x<s/4, because we want both x, and x, be real. So

far, for logistic maps with s other than 2 and 4, no one has solved them with a
closed form, therefore the series and conjugation method seems the only way to
approach them. For general s, finding the series approximation of solution to (7.34)
is not easy, because series method is based on correctly predicting first two or three
terms, and it is hard to do it for general s. Instead of solving (7.34) directly, we use

Poincare’s equation (7.11) to find the recursion relation between coefficients.

For any s consider a power series
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w7 (x, ) :x+xix”cn(s). (7.101)

Then the Poincare equation leads to a recursion relation for the s -dependent

coefficients.
1 n
Ca(s)=——5>cc, ;s (7.102)
1-s"" =
. 1 2 . .
with ¢,(s)=1, ¢/(s)= , ¢,(s) =——————, etc. The explicit coefficients are
l1-s 1-s)1-57)

easily recognized for s =2and 4, and immediately yield the two closed-form cases.

Similarly, let
w(x,s)=x+x) (-x)"d,(s). (7.103)
n=1

Then, as a consequence of Schroeder’s equation, d,(s)=1/(1-s),and for n>2,

n+l
] 5 1-k
d,,(s)Zl_S,, ; [n+k ]s""‘dn_k. (7.104)

where |- | denotes the integer-valued floor function. In principle, these series solve

(7.10) for any s, within their radii of convergence.

From extensive numerical studies, we believe the radius of convergence for

(7.103) depends on s as follows

1
N

1f0<s<2

R:‘

" ) (7.105)
— if2<s<4
4

The first few terms for w and ™' for generic s are given explicitly by
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x’ 2s x’ s(1+55%) x*
v(x,s)=x+ + S+ 3
s—=1 (s+D)(s-1)" (s"+s+)(s+1)(s-1)
25°(3+2s+7s%) x’ (7.106)
(T +D(> +s+D(s+1D? (s=1)* o
. 257 (1435 +14s° +14s* +75° +21s7) x° 0G)
S+ s+ DT+ D) +s+D(s+D7 (s=1)°
1 x 2 x’ 5+ x*
vo(x,s)=x+ + >+ 3
s=1 (s+D)(s=1)" (s"+s+D)(s+1)(s-1)
2(2s” +3s+7 x’
+— ( > ) > 7 , (7.107)
(s"+D(s"+s+D(s+1D)" (s—1)
4 3 2 6
2(3s" +8s” +14s” +145 + 21) X 0"

'+ +s7 s+ DS+ D) +s+D(s+D)7 (s—1)°
From which we infer that w(x,s)/x and w '(x,s)/x are actually series in

x/(1-s) with s-dependent coefficients that are analytic near s =1.

The trajectories interpolating the splinter (integer ¢) of the logistic map are then,

s’(l—s’)xz N 2S’(l—s’)(s—s’)x3
s—1 (s+1)(s-1)°
N s'(1—s")(s —s")(1+5s° —(S+5)S’)x4
(s+D(s* +s+1)(s-1)°
N 2S’(1—s’)(s—s’)(i2 —Zst)(7sz +2s+3—s’(3s2 +3s+7)) ¥+ 00
(s+D°(s"+D(s"+s+1)(s—1)

x(x) =y (s'w(x,s),s)=s"x+

. (7.108)

The trajectories are single-valued functions of the time so long as w ' is

single-valued.

7.4.2 s=1 logistic map
Here, s =1 1is a special case because according to the definition of Schroeder’s
equation, s # 1. And from last subsection, (7.106), (7.107) and (7.108) would have

singularity if one takes s — 1. So we have to approach s =1 separately. Also, when
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0<x<1/4, the shape of x, =x(1-x) is similar to x, =sinx, so it might provide

us an alternative way to study s =1 case by reusing the properties of x, =sinx.

For s=1, one has
x, =x(1-x), X, :%(li\/1—4x), (7.109)
and the first five terms of approximate solution shall have the form

X (x) = x —tx” 4+ (—1 +17)x +%(—3f+5f2 - 26"
1 (7.110)
+§(—8t+18r2 —1327 +3r*)x° + O(x°)

Therefore, it is of different form from (7.108).

7.4.3 Surface and curvature

Actually x,(x) denotes the surface of space-time, it would be straightforward to

see the relation between position and time from the surface. Sometimes, by fixing the
time (or position), we can guess or fit the curve of position (or time), writing the curve

in a closed form; and then find the closed form of the surface from the curve. Taking

sin,(x) as an example, if we take 5-fold conjugation sin'”(x) and fix the position

at x=7/2, then the curve at x=x/2 can be fitted by function g(¢) = (7[/ 2)1_6

when 0<¢<1, as shown in Figure 7.9.
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0.2 04 0.6 0.8 1.0

Figure 7.9. sin’(z/2) (red)vs g(¢) (green)

For a more general case, consider using g(x, t):sin(x)(x/sin(x))l'ﬁ to fit
sin®” (x). Three-dimensional graphs on region 0<t<1 and 0<x<7x/2 are like

following. Figure 7.10 shows the top part of the graph, while Figure 7.11 shows the

interpolation at x =0.01,0.5,1,1.5. One can see these two function agree with each

other very well on this region. This example shows that, even if we can not find the

analytical solution to (7.34) for sin(x), by drawing the graph of the approximate
solution, we can still find an analytical function fitting the approximate solution very
well. If we substitute sin,(x) with g(x,7) in (7.34), and compare the graphs of
both hand sides, we would find g(x,7) can be considered as the exact solution to

(7.34), as shown in Figure 7.12.
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Figure 7.10. sin”(x) (red) vs g(x,¢) (green) from the top
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x=1 x=1.5

Figure 7.11. Interpolation of Figure 7.10

Figure 7.12. Left hand side (red) vs right hand side (green) of (7.34)

The second we want to give here is the s=1 logistic map. Still take 5-fold

conjugation x'”(x) and fix the position at x=1/2, then the curve there can be
fitted by function g(¢)= 27 when 0<r<1. Plotting both x®(1/2) and

g(t)= il gives Figure 7.13 The largest difference on this graph is less than 2%,
so g(t) is a good estimation. Here, please notice that, in (7.109), the inverse function
of x, has two different branches. It is straightforward to see that different branches

would generate different approximation solutions. We talk about the solutions

generated by different branches in next chapter. The inverse function we used here is
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x, =(-+1-4x)/2. As to x"(x), we guess the surface fitting it should be of the

form

0.50
0.45 —
0l
0.35 —

0.30 |

0.2 0.4 0.6 0.8 1.0

Figure 7.13. x”(1/2) (red) vs g(t) (green)

g(x,t)=x(1-x)" . However, not like the sin'(x) case, there is a noticeable
difference between g(x,#) and x®(x) on the region 0<x<1/2 when ¢

approaches 0, because r— 0 makes g(x,f) approach to 1. Figure 7.14 shows

this difference.
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100

Figure 7.14. x®(x) (red) vs g(x,t) (green)

If we take another branch of the inverse function x*, =(1++/1-4x)/2, we can

approx
t

obtain another approximate solution, which is (x)’ ox o(x,)’(x), and put two

branches together on region —1<¢t<1 and 0<x<1 (Figure 7.15). For
(x*))° o x™ o(x,)*(x), we can fit it with a function similar to g(x,r)=x(1-x)" ,
which would still have the noticeable different when ¢=0. For each surface, if one
can fit it by an analytical function, then the curvature at every point can be calculate
exactly. For those which can not be fitted by analytical functions very well, the
curvature calculation can be very complicated and tedious, because for just 5-fold

conjugation, one has to calculate totally eleven functions acting on functions,

sometimes it is even impossible to do with computers.
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f ' 1.0

Figure 7.15. (x)’ ox®™ ™ o(x,)’(x) (red) s

(x7)7 02" o (x,)’ (x) (green)



Chapter 8

Renormalization Group Flows

8.1 Potentials, Velocities, and Actions

Before we start talking about the RG flows, let us study the relation between
functional conjugation and some common physical quantities, such as potential, velocity

and action. Originally, the solution to (7.34), x,(x), can be envisioned as the trajectory of
a particle, evolving from initial position x=x(z)|,_,. The particle is moving under the

influence of a potential according to Hamiltonian dynamics. Our objective is not only to
get the trajectory, but also to find the potential, velocity, and the action of the particle.
Since we have obtained the trajectories from Chapter 7, it is very straightforward to find
the velocities just by differentiating the trajectories with respect to time ¢,

dx, (x)

o= sy @y Sy ) (8.1)

v, (x)=

where x,(x) is given by (7.28).

8.1.1 The potentials

Here, we assume the motion of the particle is governed by a Lagrangian, with
L=mv*/2-V(x) type[80,81], and that the energy of the system is fixed. Therefore, the

result for the velocity immediately gives the x -dependence of the corresponding

130
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potential. Namely,
|
Vix)= —Emv (x)+ constant . (8.2)

Since the energy is fixed, we only need to take the initial velocity v,(x)|,_,, which gives

V) =, ()] = (83

—1In
o w(x)

To simplify the calculate, we write the potential as V' (x) =—v>(x), then
2
V(x) :—(1ns)2[@j . (8.4)
y'(x)
(8.4) tells us how to determine the potential from the solutions to Schroeder’s equations.

Also, if the trajectories are already known, then one can find potential directly through

V(x)z—(dx;lix)j oo (8.5)

On the other hand, the potential can also be determined directly from the functional

equation[115] it inherits from . That is

Vi(x,(x,s),8)= (%xl (x,s)j Vi(x,s). (8.6)

If the discrete map possesses a fixed point, we may attempt to solve this functional
equation for V' by series in x about that fixed point. Again, we take s # 1logistic map
as an example, then (8.6) becomes

Visx(1-x),5)=s>(1-2x)°V(x,s). (8.7)
Series method gives the approximate solution to this one[114] about x =0, with initial

conditions ¥(0,s) =0. The series solution can be expressed as
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V(x,s)=—(In’ 5)x [1 + ian (s)x" ] , (8.8)

5-3s

where alzi, a,=————_,an
I-s (1-5)"(s+1)

1 n+l . ) ]+2
a,.,=—|4a _,—4a + -1)"7a.s’ , 8.9
n+2 (I—S’HZ) n+l n A I%IJ( ) i (l’l-{-z—]] ( )
JEH =
2

for n>1, where \_ . J is the floor function.

8.1.2 The velocities

Similar to the potential, if x,(x) 1is already known, then velocity can be determined

very easily. However, sometimes it would be easier to obtain the velocity by series
method directly, which means we need the functional equation for velocity first. We
differentiate both hand sides of (7.34) with respect to ¢, and then take ¢=0because for
twith other values, they are similar to #=0 case. For s#1logistic map, functional

equation for velocity when =0 is

v(s(x(1-x))=s(1-2x)v(x). (8.10)
And the series solution is of the form
v(Sappmx) (x) =x+ x2 + 2 x3 _ (4+5S) - x4
1-s (1+s)1-s) (1+s)(—1+57) &.11)
) .
2(4+5s+7s7) ¥ +0(x%)

(st (=l+sY)
However, this approximate solution does not describe the real velocity very well. To see
this, we draw the curve of (8.11) when s=2 and compare it with the analytical solution

(Figure 8.1). The analytical solution of s =2 case can be derived from (7.82),
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V()= — 2 2 In(1— 2x). (8.12)
0.15
0.10 -
005 -
o1 02 03 o4  os*”

Figure 8.1. v°?"(x)(green) vs v(x)|_, (red)

One can see that the two curves do not overlap each other, v(x)|_, vanishes at x=1/2,

which is the turning point for s=2 case; while v*#”*”(x) does not. We have to do

some modifications to our series solutions to make sure they vanish at turning points.

Let y=s(x(1-x)), then the inverse is

1-\/1-4
y/s (8.13)

X=—""-—",

2
where we take one branch of the inverse. Plug (8.13) into (8.10), we get the equation

about y, and then substitute all the y’s with x’s, giving

v(x):swfl—ﬂv[l(l—wfl—ﬂj]. (8.14)
s |2 s

Based on (8.14), we use v“”™ to substitute the von the right hand side, and put a

factorlns in front the right hand side. Then the modified approximate solution is
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vm"d(x)=s1ns,/1—ﬂv(”””’“)(l(l— l—ﬂD. (8.15)
S 2 S

Now we compare v"™(x)|,_, and v(x)|,_,, having graph like Figure 8.2.

0.12
0.10
0.08
0.06
0.04

0.02

L L L L L L L L L L L L L L L L L L L L x

o1 02 03 04 05

Figure 8.2. v"(x)|_, (green) vs v(x)| _, (red)

Same thing happens for s=4 case (Figure 8.3)

0.6/

045

0.3

0.1"

o2 04 06 08 10
Figure 8.3. v"™(x)|_, (green) vs v(x)|_, (red)

One can see that the modified approximate solution fits better in s =4 than s=2 case,
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because the green curve overlaps the red one completely. Therefore logistic map with

other s, this method shall give a nice estimation of the real curve.

8.1.3 The actions
Once we have the velocity, the action becomes accessible. We could use the original

definition of the action
S(x) = j Vit . (8.16)

However, this method involving the integration of the velocity square, it is not integrable
if the velocity takes a complicated form, especially for many cases we have to use
modified series solution because analytical solution does not always exist. So instead of

using (8.16), we change the expression a little to make the calculation easier,
S(x)=jv2dt=jv@dt=jvdx, (8.17)
dt

which is just the integration of velocity. If one uses approximate solution for (8.17), then
the velocity should be substituted by modified series solution (8.15). Figure 8.4 shows the
comparison between analytical action derived from (8.12) and approximate solution
derived from (8.15) when s=2. One can see up to some constant, the two curves agree
with each other very well, actually that is not a surprise because their velocity functions

agree with each other well too.
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Figure 8.4. Exact action(red) vs approximate action when s=2

8.2 S -Function

The approximate method talked above can be applied to calculate / -functions in
RG theory. The f -function behaves like the velocity of the particle, so we can use (8.15)
to obtain approximate f -function if the trajectory is of the logistic map type. Here, one

may notice that when we derive (8.15), we just used one out of two branches of the
inverse function, so what if we use the other branch? We would see, the other branch is
also useful, and by combining different branches, we can construct some interesting

behavior

8.2.1 Renormalization group

We start with Gell-Mann-Low finite renormalization group equation[91],
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w(g)=2"y(g), (8.18)

where f=Inu is of the distance/energy reference point; A sets its scale; g=g(¢,)
and we can set #, =0; y 1sthe RG “scaling function”, which “rectifies” group flow to

linear flow. This equation is of the same form of (7.27), and is usually solved[119] by

integrating a perturbative approximant to its algebra, the / -function,

% pa)=niw(e)v'(@). (8.19)

in g, to obtain the full RG trajectory, for A =1,

gy =y~ (Ay(g)). (8.20)

However, there is a different way to calculate and analyze the RG trajectory, based on
the theory of functional conjugate equation, which is discussed above. In a conjugacy
form, the global self-similar functional structure of the RG trajectory is more apparent,
and illuminates the interplay between continuous and discrete rescaling (step-scaling in
lattice gauge theory or chaotic maps), often inaccessible to conventional local relations.

For example, in lattice gauge theory, for a discrete leap f(g)=g(1), (8.18) becomes
w(f(g)=Aw(g). (8.21)
We do an analytic interpolation between g =g(0) and f(g)=g(l) from boundary data

without the benefit of a local propagation relation (8.20). Then we can infer the

P -function and hence manufacture an underlying Hamiltonian dynamical system which

yields the RG flow by conserving energy.

Here is our method: consider analytic f,(g) around a fixed point of f(g). Without
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loss of generality, take the fixed point to be g=0, f(0)=0, which implies that
w(0)=0. And if y'(0)#0,00, then A= f'(0). We solve for w(g) in terms of f(g),
which needs recursion of the respective series coefficients. Finally, we invert w(g) to
obtain w ', and set A—>1 if the problem requites it. The final answer may be
convergent even if y is diverged for A =1. The group orbit found is thus analytic
around the fixed point g=0.The /-function is then of an emergent feature

£(g)=InA/(Iny(g))". (8.22)

Moreover, for nonlocal relations, Julia equation can be obtained
d
Pla) =L B(e). (8.23)

which is of the same form of (8.10), and A4 is equivalentto s.

8.2.2 p-function for s=1 logistic map
In last section, we have given the approximate solution to velocities for s =1
logistic maps, which are the same as the f-functions for s=1 logistic maps. In this
subsection, we systematically talk about the g -function for s=1 logistic map. The
functional equation is
Px(1-x))=(1-2x)6(x). (8.24)
The first several terms of series solution are

31 , 157 , 649 , 9427
X ——x+—x"+ x4
15 30 210

L(x)=x"+x 4—%x4 +§x5 + (8.25)

It is hard to guess the general expression of the coefficients just by observing (8.25), but
the simple form of (8.24) gives us the opportunity to do it. One can find that the

coefficient of »-th order term is determined by all the coefficients of the terms less than
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n-th order. Let ¢, denote the coefficient of x" in (8.25), and we compare the x"

terms on both hand sides. On the right hand side, the coefficient in front of x" is just
¢, —2c, ,. While on the left hand side, it is a polynomial of x(1—x), which are binomials
with different orders. For binomial (x—x*)", it contains x” term if and only if

\_(n +1)/ ZJ <k <n.So the coefficients of term x" on both hand sides satisfy equation

Zn: (-n"* c,{ g kj =c,—2c, . (8.26)
n—

n+l
%]
If we take k=n on left hand side of (8.26), we find that thec, on each hand side just

cancel each other, then how do we find ¢, ? Actually, if we just consider the coefficients

of x" term, it can give us coefficient ¢, |, butnot c,. After c,’s cancelling each other

n—1>2

in (8.26), we take ¢, , term out of the summation, then (8.26) becomes

S

n—

nl
2

(-n"* ck[ k j —(n-Dc, ,=-2c, . (8.27)
J n—k

k=

—

Next, we make a change n—>n+1 for (8.27), and solve the corresponding c, ,

obtaining

1 S n+l—k k
c, = ”‘Zk_%ZJ(_l) C"(nﬂ—kj' (8.28)

2
One can check the first several c, ’s are the same as the coefficients in (8.25).
By applying Mathematica 7.0, we can calculate as many c,’s as we want, and we
are interested in the behavior of ¢, ’s when n is large. One can see that, as n getting

big, ¢, goes up very quickly, and it is not easy for us to find the pattern of it. So instead
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of studying c, directly, we put a factor F =(1700!/c,,,,)""" in front of each c,, and

plot F(c,/n!)"", as shown in Figure 8.5.

Figure 8.5. F(c,/n!)"" (part)
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Figure 8.6. F(c,/n!)""" (whole) with fitting curve
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Figure 8.7. F(c,/n!)"" (200<1n<300)

There are two curves in Figure 8.5, the red one denotes ¢, when n is even, and
the orange one denotes ¢, when n is odd. Figure 8.5 only shows part of the whole

draw (Figure 8.6), but it indicates that F(c,/n!)""is monotonic but also oscillating. In

Figure 8.7, one can see the oscillation between odd terms and even terms. Although the
whole draw is a combination of monotonic up function and oscillating function, the
oscillating amplitude tends to decrease as n getting bigger. We can predict that at large
n, the oscillation would eventually disappear, and the whole draw would behave like a
smooth simple curve. We try to fit this curve by interpolating at the minima from Figure

8.6, which is the red curve below the initial draw. The curve function is

logx

-1.11257

f(x)=e T (8.29)
Also in [115,114], the authors talked about another estimation of # th root of ¢, , which

takes the form like
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1/x

g(x)z(Z_X/ze_3X/2F(x+l)) , (8.30)
where T'(x)is the gamma function. Actually, this estimation predicts (c,)"”" very

accurately (see Figure 8.8). The blue horizontal line in Figure 8.8 is just constant 1,

which is used as reference here. At a large scale, we can not tell the difference

between(c,)"” and g(x), though

a0
60
wl

0F

200 400 GO0 a0o 1000 1200 1400

Figure 8.8. (Z—x/ze—3x/2r(x+l))1/x Vs (Cn)l/n

there is a difference when n <50. Readers who are interested in how this estimation

works, can check [115,114].

8.2.3 /5 -function with different branches

For an inversible function, its inverse can have more than one branch. For example,

the  logistic  map fi(x)=sx(1-x) has two  branches of inverse:
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fi(x)=(1-+1-4x/5)/2 and [ (x)=(1+~+1-4x/s)/2 . When we calculate the
conjugation of series solution in Chapter 7 and modify the approximate velocity in this
chapter, mostly we only use the first branch /", (x), then the question is: why not use the

other branch? If we use it, what would happen? At the end of Chapter 7, we compare the
s=1 surface of approximate solution for both branches (Figure 7.15), which are
symmetric to x—tplane when the solution value is one half. When we modify the series

solution of velocity or, the /[ -function, we can use the other branch and generate some

interesting patterns. For example, we start with the series solution (8.11), and then use

both branches to ‘wrap’ it, meaning: if we have the original approximate £ -function

ﬂo(x)zs‘/l—t—xv(“”p”’”(%(l—Jl—%)], (8.31)

the next step is to use f,(x) to substitute the v*”* in (8.31) but the f,(x) is the

function of f(x)=(1++1-4x/5)/2,

Bi(x)==s 1—t—xﬁo[%[l+,/1—t—xn. (8.32)

Then we repeat the step but alternate the sign to generate more branches of f -function,

namely
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B(x) =—s 1—4—xﬂ7(1(1+w/1—4—xn (8.33)
s 2 s

Nine branches are listed here, but we can generate as many as we wish. These nine
branches are drawn in Figure 8.9 when s=3, from which one can see that they are
connected by turning points and they describe an oscillating behavior. The motion of the
particle starts from the origin, then go through branch g, (red curve), reaching one of
the turning point (0.75,0); then go through branch f, (green curve), reaching the
second turning point (0.5625,0); then go through the next branch, etc. By observing
Figure 8.9, we conclude that when s=3, distance between two consecutive turning
points always decreases as branch number goes up. Also, we can separate the graph into
upper part and lower part, and all the trajectories in the upper part go through point
(0.67,0.263), while all the trajectories in the lower part go through point (0.67,—0.263).
This is the special feature for s =3, describing a damped oscillation but the particle can
reach the same speed (v=0.263)at one certain point (x=0.67). When 2<s<3, the
oscillation is still damped, which means the distance between two consecutive turning

points decreases; but there is not such a point that different trajectories reach the same

speed at that point (see Figure 8.10). And one can see the damping is more obvious.
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Figure 8.9. (8.31), (8.32) and (8.33) when s=3
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Figure 8.10. (8.31), (8.32) and (8.33) when 2<s<3

When s >3, the damping phenomenon disappears, but the two turning points are

fixed, and the maximal speed for each oscillation all the way increases (see Figure 8.11).
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When s <2, there is no oscillating motion (see Figure 8.12 and Figure 8.13).
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Figure 8.12. (8.31), (8.32) and (8.33)

when s=2
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Figure 8.13. (8.31), (8.32) and

(8.33) when s=1.5
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Figure 8.9 gives system that is quasi-Hamiltonian since the resulting trajectory is not
single-valued. It is suggested that the underlying analytic potential for this kind of
recursion is of fundamental[114]. [114] also describes the recursion for potentials, which

we do not discuss here.

8.3 A Counter Example with a Limit Cycle

Monotonic renormalization group flows of the ¢-and a -functions are often cited as
reasons why cyclic or chaotic coupling trajectories cannot occur. It is argued here, based
on simple examples, that this is not necessarily true. Simultaneous monotonic and cyclic

flows can be compatible if the flow-function is multi-valued in the couplings[120].

8.3.1 Setup

Exact general results for RG flows are important as they may provide physical
insight for strongly coupled systems. The c-theorem for two-dimensional systems[100]
and the «-theorem for four-dimensional systems[102,121] are two such results that have
been established for every broad classes of models[122]. The c-theorem shows the
existence of a monotonically decreasing function of the length scale, ¢(L), which
interpolates between two dimensional Virasoro central charges of theories at conformal
fixed points, and thereby provides an intuitively correct count of system degrees of
freedom — fewer in the infrared than in the ultraviolet. The a -theorem establishes similar

monotonic flow for the induced coefficient of the Euler density, a(Ll), for a

four-dimensional theory in a curved spacetime background.
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It is a common conclusion — a “folk theorem” — based on these monotonically
evolving “observables” that the underlying couplings can not have RG trajectories which
are limit cycles or undergo more exotic (e.g. chaotic) oscillations (e.g. see second bullet
item under §6 in [103]). The point of here is to explain and illustrate with just one
coupling, as simply as possible, why this conclusion is unwarranted. (Somewhat similar
criticism of the monotonic folklore has been proffered in other contexts, involving
degenerate Morse function counterexamples for models with vorticity in the flow of

several couplings[123].)

In principle, we believe cyclic or perhaps even chaotic coupling trajectories are not
ruled out by either the c- or a-theorems, nor are they necessarily excluded by other
monotonic “potential flow-functions.” To illustrate our reasoning, we begin with a very
simple example based on a mechanical analogy. While this example does indeed exhibit
both monotonic flow and a cycling trajectory, it has the peculiar feature — insofar as
intuitively counting degrees of freedom is concerned — that the monotonic flow is
unbounded both above and below. Nevertheless, we recall there is a field theory model
that produces just such behavior[106]. We then exhibit another example where the
monotonic flows in bounded below and the coupling trajectory is not only cyclic but, in

fact, chaotic.

8.3.2 Monotonic flow with a cycling trajectory

The essential ideas, expressed for a single coupling x(¢), where ¢=InL, are given

by general statements for a locally gradient RG flow

dx(t) Bx(t)) = — dC(x(1))

dt dx(t) (834
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dC(x(1) _ dx dC _ E__(ET 635
de(t)  dt dx dx dx )’ '
And by a specific example of a flow-function, namely,
C,(x) = —%—%arcsin(x) —%x«/l —x* (8.36)
The corresponding £ function is
d
ﬂo(x):—aCo(x):\/I—x2 . (8.37)
The RG flow is given by
%z 1-x°, (8.38)

which is easily recognized as a “right-moving” simple harmonic oscillator(SHO) started
from rest at x=-—1. This of course has a turning point, x=+1, reached in finite Az, at

which point the only way to continue the evolution is the change branches of the square

root, \/l—x2 —>—\/ 1-x*, to produce a “left-moving” SHO. When this procedure is

repeated as turning points are encountered, the cyclic evolution emerges.

In addition, when the first turning point is encountered C switches to a second

branch, given by
3z 1 . 1 >
C, (x)=—T+Earcsm(x)+5x\/1—x . (8.39)
This gives the expected switch between branches for the £ function,

ﬁ:—iCl(x):—\/l—x2 ) (8.40)
dt dx

More importantly, this C function continues to decrease monotonically as a function of

¢t after switching branches.
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This is easily understood for this simple example just because the monotonically

changing C is nothing but the negative of the definite integral of “the oscillator’s kinetic

energy” T =(dx/dt)?,

C=—[ pix=- (j) %dxz—jm, (8.41)
0

x(0)=—1
where the integral is taken along the actual trajectory of the oscillator — a path that
conserves total “energy,” cf. RG invariants. (That is to say, C is just the reduced or
abbreviated action of Euler, Maupertuis, and Lagrange, or perhaps more consistently with

the notation, it is the characteristic function of Hamilton.)

In fact, to obtain the correct evolution for the continuous flow in question, it is

absolutely necessary not only to switch between the two branches for B(x)=2v1-x°,

but also to switch among an infinite set of branches for the C -function, as successive
turning points are encountered. Thus, as an analytic function, C involves a nontrivial

Riemann sheet structure[ 124, 125]. With initial flow to the right, dx/dt|_,>0, after N

encounters with turning points, the evolution is given by

dx N2 __i
E-(—l) JI-x? = dch(x), (8.42)
Cy(x)= —%(1 +2N)— (—I)N(%arcsin(x) +%x\/1 -x%), (8.43)

where arcsin is the principal branch of the inverse sine function. We plot a few branches

of C in Figure 8.14. More directly, as a function of ¢,
1 )
C() :—E(t—costsmt), (8.44)

which is indeed monotonic in ¢, as shown in Figure 8.15.
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Figure 8.15. Monotonic flow for the SHO C(¢)

The SHO example of simultaneous monotonic and cyclic flows, while certainly

familiar, is perhaps disconcerting, not just because of the multi-valuedness of C(x), but
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also because C(¢) is unbounded both above the below. However, this same cyclic flow
may also be observed by selecting different coordinates for the coupling, without
changing the physics of the system. Indeed, the “Russian doll superconductivity model”
of Leclair et al. [126,127] provides a single flowing coupling u that illustrates what we
have in mind. For that model the RG £ and corresponding C function are given by

innocuous polynomials,

%:%(l+u2), C:—%u(l+%u2). (8.45)

Despite this uncomplicated local behavior, the global trajectories go through finite

excursions in the course of their cyclic evolution:
1
u(t)= tan(at + arctanu(O)J . (8.46)

Thus it is difficult to keep track of the monotonicity of C, if any, as it executes an

infinite jump during the course of each cycle.

The system is perhaps easier to grasp upon being expressed in terms of a “dual”

u:i‘/H—x, L (8.49)
1-x dt

That is to say, the RG flow of the model is equivalent to the SHO as described earlier.

coupling, x,

Note the cyclic switching between the branches of u(x) corresponding to right-moving

and left-moving SHO motion, including an infinite jump upon reaching x =1, as shown
in Figure 8.16. Similar analysis can be carried out for theories with several coupling
constants. (For models with limit cycles in 4—¢ dimensions, see [128,129].) We leave

the study of these for another venue.
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Figure 8.16. The Russian doll - SHO RG duality

8.3.3 Cyclic and chaotic trajectory

We consider a model with a cyclic but chaotic trajectory which also exhibits a
monotonic flow-function. Again, a solvable example involving a single coupling is
sufficient to make the point. Perhaps the simplest system with chaotic RG evolution is the
Ising model with imaginary magnetic field, described by the special case of the logistic

map with parameter 4[130,131]. The exact trajectory and /£ function are given by

x(¢) = (sin(2 " arcsin/x))?, (8.48)
W) _ (10 4y (o)1= x(0) arcsin[x(0) . (8.49)

dt
where the arcsin function in this last expression switches branches upon encountering
turning points. Similarly, the corresponding C function, considered as a function of

x(t), also changes branches at turning points.
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The direction of the flow in ¢ is such that the origin is an attractive fixed point in
the infrared, so x >0 as L& t=InL — +oo. On the other hand, x becomes chaotic,
exhibiting cycles of arbitrary length, as L —>0 and ¢#— —oo. That is to say, for any
initial x € (0,1] the flow for #>0 is monotonically toward the fixed point at x=0,
while for ¢ <O0the flow is toward a turning point at x =1, where dx/dt reverses and
the flow is toward a second turning point at x=0 — the zero of f. As the evolution
continues into the UV, with 7 <0, the trajectory oscillates between the pair of turning

oints, x=0 and x =1, with increasing average “speed.”
9 9

02 04 06 08 10

8.17. Six branches of the logistic C(x) function

There are in infinite number of branches for both f(x) and C(x) in this case.

Those branches are given by

B, (x) = —(In4)y/x(1 —x){(—nN{1 N J;z + arcsin\/}} , (8.50)

2
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C,(x)= é(1n4){4x2(x—1)2 +[./x(1—x)(1—2x)—(—1)Nr+2N Jﬁ—arcsin\/;j } .

(8.51)
Here arcsin is understood to be the principal branch, and N counts the number of
encounters with the trajectory turning points at x=0 and x=1. The first six branches

of C(x) are shown in Figure 8.17. As ¢t —> oo, the flow is toward the origin, with
x(+0)=0 and C(+x)=0, while as t— -, C — +oo. This is more clearly seen by

plotting

x()

Cty== [ pydx=[(Bxw))’dr (8.52)

for 0<x(t)|,_,<1. The flow of C is monotonic in ¢ and bounded below, C>0. This

is shown in Figure 8.18 for x(z)|,_,=1/2.

UV (t<0) C@)

IR (t>0)

I 4

i A

Figure 8.18. Monotonic flow for the logistic C(¢)



156

A full discussion of Lagrangian models that realize this second example will have to
be given elsewhere. Suffice it to say here that the chaotic RG trajectories have indeed
appeared in spin-glass systems[132,133]. The point we wish to emphasize is that such

behavior is not necessarily inconsistent with ¢- and a -theorems.



Chapter 9

Conclusion of Part 11

In part II, we introduce Schroeder’s equation, and derive functional equation

(7.33) from it. We give an approximate solution to (7.33) around a fixed point of x,

through series and conjugation method. It is believed that all the functional equations
of form (7.33) can be solved approximate by this method, as long as one knows x;.

The journey of searching for series solution would take some time in the beginning,
because one needs to construct the first two or three terms by guessing. But after the
first several terms have been constructed, one can always write the solution up to as
high order as he wants. For logistic map when s #1, there exists a general form the
series solutions, and there also may exist an analytical function that fits each
approximate solution. Once an approximate solution has been constructed, the
convergence is of concern. We prove a theorem about the relative error, and show that

the error is very small around the fixed point.

We consider x, in (7.34) as the trajectory of a particle’s motion. Based on (7.34),

one can also derive the functional equations about the velocity and potential. There is
a general approximate solution for logistic map potential when s#1. As to the
velocity, we have to use recursion relation because the velocity is supposed to vanish

at turning points. When s=1, we give the general approximate solution for velocity,
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and find that the coefficient before each order has monotonic but oscillating behavior.

The approximate solution we introduce here is significantly useful to calculate

the f-function in RG theory, because f -function acts as velocities, and x, is

similar to RG trajectory. This series and conjugation method has many advantages:
the global self-similar functional structure of the RG trajectory is more apparent, and
it illuminates the interplay between continuous and discrete rescaling, which is
inaccessible to conventional local relations. When we talk about the conjugation, we

normally only use one branch of the inverse functions of x,, but other branches are
also useful. We give an example of using other branches for f-function recursion,

and it predicts oscillation of particle when s>2. If we make different branches
combine with each other, we would have different oscillations, the reason is different
combinations generate different potentials. It is commonly believed that monotonic
RG trajectory can not have limit cycles. However, we give a counterexample that
simultaneous monotonic and cyclic flows can be compatible if the flow-function is
multi-valued in the couplings. And it seems these trajectories are not ruled out by

either the c¢-and a-theorems.



Reference
[1] Y. Nambu, “Generalized Hamiltonian Dynamics,” Phys. Rev. D7 (1973) 2405-24
14.

[2] V. T. Filippov, “n-Lie Algebras,” Sib, Mat, Zh. 26 (1985) 126-140 (English
translation: Sib Math Journal 26 (1986) 879-891).

[3] L. Takhtajan, “On Foundation of the Generalized Nambu Mechanics,” Comm
Math Phys 160 (1994) 295-315 [hep-th/930111].

[4] T. L. Curtright and C. K. Zachos, “Classical and Quantum Nambu Mechanics,”
Phys, Rev, D68, 085001 (2003) [hep-th/0212267].

[5] N. Mukunda and G. Sudarshan, “Relation between Nambu and Hamiltonian
Mechanics,” Phys, Rev. D13 (1976) 2846.

[6] J. Hoppe, “Quantum Theory of a Massless Relativistic Surface and a Two
Dimensional Bound State Problem™, PhD thesis, Massachuses Institute of

Technology, 1982.

[7] H. Awata, M. Li, D. Minic and T. Yoneya, “On the Quantization of Nambu
Brackets,” JHEP 0102, 013 (2001) [hep-th/9906248].

[8] J. A. de Azcarraga and J. C. Perez-Bueno, “Higher-Order Simple Lie Algebras,”
Commun. Math. Phys. 184 (1997) 669-681 [hep-th/9605213].

[9] P. Hanlon and H. Wachs, “On Lie k-Algebras,” Adv. In Math. 113 (1995)
206-236.

[10] Y.L. Daletskii and L. Takhtajan, “Leibniz and Lie Algebra Structures for Nambu
Algebra,” Lett. Math. Phys. 39 (1997) 127-141.

[11] J. Casas, J. L. Loday, and T. Pirashvili, “Leibniz n-Algebras,” Forum Math. 14
(2002) 189-207.

[12] S. M. Kasymov, “Theory of n-Lie Algebras,” Algebra I Logika 26 (1987), no. 3,
277-297. (English translation: Algebra and Logic 26 (1988), 155-166).

[13] S. M. Kasymov, “Analogs of the Cartan Criteria for n-Lie Algebras,” Algebra I
Logika 34 (1995), no. 3, 274-287. (English translation: Algebra and Logic 34
(1995), no.3, 147-154).

[14] W. X. Ling, “On the Structure of n-Lie Algebras,” PhD thesis, Siegen, 1993.

[15] M. R. Bremner, “Identities for the Ternary Commutator,” J. Algebra 206 (1998)
615-623.

159



160

[16] M. R. Bremner and I. Hentzel, “Identities for Generalized Lie and Jordan
Products on Totally Associative Triple Systems,” J. Algebra 231 (2000)
387-405.

[17] M. R. Bremner and L. A. Peresi, “Ternary Analogues of Lie and Malcev
Algebras,” Linear Algebra and its Applications 414 (2006) 1-18.

[18] T. L. Curtright, X. Jin and L. Mezincescu, “Multi-operator Brackets Acting
Thrice,” J. Phys. A42 (2009) arXiv: 0905.2759 [math-ph].

[19] P. Dirac, “An Extensible Model of the Electron,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences (1962) 57-67.

[20] J. Hughes. J. Liu and J. Polchinski, “Supermembranes,” Phys. Lett. B180 (1986)
370.

[21] E. Bergshoeff, E. Sezgin and P. L. Townsend, “Supermembranes and
Eleven-Dimensional Supergravity,” Phys. Lett. B189 (1987) 75-78.

[22] E. Cremmer, B. Julia and J. Scherk, “Supergravity Theory in 11 Dimensions,”
Phys. Lett. B76 (1978) 409-412.

[23] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 Superconformal
Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” JHEP 10
(2008) 091, arXiv: 0806.1218 [hep-th].

[24] J. Bagger and N. Lambert, “Modeling Multiple M2’s,” Phys. Rev. D75 (2007)
045020, arXiv: 0611108 [hep-th].

[25] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple
M2-Branes,” Phys. Rev. D77 (2008) 065008, arXiv: 0711.0955 [hep-th].

[26] J. Bagger and N. Lambert, “Comments on Multiple M2-Branes,” JHEP 0802
(2008) 105, arXiv: 0712.3738 [hep-th].

[27] A. Guastavsson, “Algebraic Structures on Parallel M2-Branes,” Nucl. Phys.
B811 (2007) arXiv: 0709.1260 [hep-th].

[28] A. Basu and J. A. Harvey, “The M2-M5 Brane System and A Generalized
Nahm’s Equation,” Nucl. Phys. B 713 (2005) 136 [hep-th/0412310].

[29] M. A. Brandres, A. E. Lipstein and J. H. Schwarz, “N=8 Superconformal
Chern-Simons Theories,” JHEP 05 (2008) 025, arXiv: 0803.3242[hep-th].

[30] A. Morozov, “On the Problem of Multiple M2-Branes,” JHEP 05 (2008) 076,
arXiv: 0804.0913 [hep-th].



161

[31] P. M. Ho, R. C. Hou, and Y. Matsuo, “Lie 3-Algebra and Multiple M2-Branes,”
JHEP 06 (2008) 020, arXiv: 0804.2110 [hep-th].

[32] J. Distler, S. Mukhi, C. Papageorgakis, and M. Van Raamsdonk, “M2-Branes on
M-Folds,” JHEP 05 (2008) 038, arXiv: 0804.1256 [hep-th].

[33] P. M. Ho, and Y. Matsuo, “M5 from M2,” JHEP 0806 (2008) 105, arXiv:
0804.3629 [hep-th].

[34] I. A. Bandos and P. K. Townsend, “Light-Cone M5 and Multiple M2-Branes,”
Class. Quant. Grav. 25 (2008) 245003, arXiv: 0806.4777 [hep-th].

[35] I. A. Bandos and P. K. Townsend, “SDiff Gauge Theory and the M2
Condensate,” JHEP 02 (2009) 013, arXiv: 0808.1583 [hep-th].

[36] P. M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, “M5-Brane in Three-Form Flux
and Multiple M2-Branes,” JHEP 0808 (2008) 014, arXiv: 0805.2898 [hep-th].

[37] R. Gilmore, “Lie Groups, Lie Algebras, and Some of Their Applications,” Dover
(2005).

[38] W. X. Ling, “On the Structure of n-Lie Algebras,” Ph.D. thesis, Siegen, 1993.

[39] C. Sochichiu, “On Nambu-Lie 3-Algebra Representations,” arXiv: 0806.3520
[hep-th].

[40] M. Ali-Akbari, M. M. Sheikh-Jabbari, and J. Simon, “Relaxed Three-Algebras:
Their Matrix Representations and Implications for Multi M2-Brane Theory,”
JHEP 12 (2008) 037, arXiv: 0807.1570 [hep-th].

[41] T. Curtright, X. Jin, L. Mezincescu, D. Fairlie, and C. Zachos, “Classical and
Quanta Ternary Algebras,” Phys. Lett. B675 (2009) 387-392, arXiv: 0903.4889
[hep-th].

[42] P. Goddard and C. B. Thorn, “Compatibility of the Dual Pomeron with Unitarity
and the Absence of Ghosts in the Dual Resonance Model,” Phys. Lett. B 40
(1972) 235-238.

[43] T. L. Curtright, D. B. Fairlie, and C. K. Zachos, “Ternary Virasoro-Witt Algebra,”
Phys. Lett. B 666, 386-390 (2008) arXiv: 0806.3515 [hep-th].

[44] E. Inonu and E. P. Wigner, “On the Contraction of Groups and Their
Representations,” Proc. Nat. Acad. Sci. U.S.A., 1953, V.39, 510-524.

[45] J. A. de Azcarraga and J. M. Izquierdo, “n-Ary Algebras: A Review with
Applications,” J. Phys. A43 (2010), arXiv: 1005.1028 [hep-th].



162

[46] C. K. Zachos, D. B. Fairlie, and T. L. Curtright, “Quantum Mechanics in Physics
Space,” World Scientific, 2005.

[47] S. Chakrabortty, A. Kumar and S. Jain, “w_ 3-Algebra,” JHEP 0809, 091 (2008)
arXiv: 0807.0284 [hep-th].

[48] C. H. Hull and P. K. Townsend, “Unity of Superstring Dualities,” Nucl. Phys.
B438 (1995) 109-137 [hep-th/9410167].

[49] E. Witten, “String Theory Dynamics in Various Dimensions,” Nucl. Phys. B433
(1995) 85-126 [hep-th/9503124].

[50] J. H. Schwarz, “Superconformal Chern-Simon Theories,” JHEP 11 (2004) 078
[hep-th/0411077].

[51] M. Aganagic, J. Park, C. Popescu and J. H. Schwarz, “World-Volume Action of
the M-Theory Five-Brane,” Nucl. Phys. B496, (1997) 191 [hep-th/9701166].

[52] P. Pasti, D. P. Sorokin and M. Tonin, “Covariant Action for a D = 11 Five-Brane
with the Chiral Field,” Phys. Lett. B398 (1997) 41 [hep-th/9701037].

[53] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M.
Tonin, “Covariant Action for a Super-Five-Brane of M-Theory,” Phys. Rev. Lett.
78 (1997) 4332[hep-th/9701149].

[54] P. M. Ho, “Nambu Bracket for M-theory,” [hep-th/0912.0055].

[55] P. M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 Revisited”, JHEP 0807 (2008)
003 arXiv: 0805.1202 [hep-th].

[56] J. A. De Azcarraga and J. M. Izquierdo, “n-Ary Algebras: a Review with
Applications,” J. Phys. A43 (2010) arXiv: 1005.1028[hep-th].

[57] J. Hoppe, “Quantum Theory Of A Massless Relativistic Surface and A Two
Dimensional Bound State Problem,” Ph.D. thesis (MIT, 1982).

[58] E.G. Floratos, J. Iliopoulos and G. Tiktopoulos, “ A Note on SU(x) Classical
Yang-Mills Theories,” Phy. Lett. B(217) (1989) 285.

[59]J. S. Dowker, “Volume-Preserving Diffeomorphisms on the Three-Sphere,” Class.
Quant. Grav. 7 (1990) 1241.

[60] K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, “N = 4 Superconformal
Chern-Simons Theories with Hyper and Twisted Hyper Multiplets,” JHEP 0807,
091 (2008) arXiv:0805.3662 [hep-th].



163

[61] M. A. Brandres, A. E. Listein, J. H. Schwarz, “Studies of the ABJM Theory in a
Formulation with Manifest SU(4) R-Symmetry,” JHEP 0809, 027 (2008)
arXiv:0807.0880 [hep-th].

[62] M. Van Raamsdonk, “Comments on the Bagger-Lambert Theory and Multiple
M2-Branes,” JHEP 0805, 105 (2008) arXiv:0803.3803 [hep-th].

[63] J. Bagger and N. Lambert, “Three-Algebras and N=6 Chern-Simons Gauge
Theories,” Phys. Rev. D.79 (2009) arXiv:0807.0163 [hep-th].

[64] A. Gustavsson and S. J. Rey, “ Enhanced N =8 Supersymmetry of ABJM
Theory on R® and R*/Z,,” (2009) arXiv:0906.3568 [hep-th].

[65] O. K. Kwon, P. Oh and J. Sohn, “Notes on Supersymmetry Enhancement of
ABIM Theory,” JHEP 0908, 093 (2009) arXiv:0906.4333 [hep-th].

[66] O. K. Kwon, P. Oh, C. Sochichiu and J. Sohn, “Enhanced Supersymmetry of
Nonrelativistic  ABJM Theory,” JHEP 1003, 092 (2010) arXiv:1001.1598
[hep-th].

[67] N. Drukker, J. Plefka and D. Young, “Wilson Loops in 3-Dimensional N=6
Supersymmetric Chern-Simons Theory and Their String Theory Duals,” JHEP
0811, 019 (2008) arXiv: 0809.2787 [hep-th].

[68] B. Chen and J. B. Wu, “Supersymmetric Wilson Loops in N=6 Super
Chern-Simons-Matter Theory,” Nucl. Phys. B 825, 38 (2010) arXiv:0809.2863
[hep-th].

[69] S. J. Rey, T. Suyama and S. Yamaguchi, “Wilson Loops in Superconformal
Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity
Dual,” JHEP 0903, 127 (2009) arXiv: 0809.3786 [hep-th].

[70] T. Suyama, “On Large N Solution of ABJM Theory,” Nucl. Phys. B834 (2010)
arXiv:0912.1084 [hep-th].

[71] B. Ezhuthachan, S. Mukhi and C. Papageorgakis, “The Power of the Higgs
Mechanism: Higher-Derivative BLG Theories,” JHEP 0904, 101 (2009). arXiv:
0903.0003 [hep-th].

[72] S. V. Ketov and S. Kobayashi, “Higher-Derivative Dauge Interactions of BLG
Theory in N=1 Superspace,” Phys. Rev. D83 (2011) arXiv: 1010.0752 [hep-th].

[73] E. Castillo, A. Iglesias, and R. Ruiz-Cobo, “Functional Equations in Applied
Science,” Elsevier Science, (2005).

[74] J. Aczel, “Functional Equations: History, Applications and Theory,” Springer,
(2001).



164

[75] C. Small, “Functional Equations and How to Solve Them,” Springer, (2007).
[76] E. Schroeder, “Uber iterierte Funktionen III,” Math. Ann. 3 (1871).

[77] J. H. Shapiro, “Composition Operators and Schroeder’s Functional Equation,”
Contemp. Math. 213 (1998).

[78] G. Koenigs, “Recherches sur les Integrals de Certaines Equations Functionelles,”
Ann. Csi. Ec. Norm. Sup. (3) 1 (1884), Supplement.

[79] J. G Caughran and H. J. Schwartz, “Spectra of Compact Composition
Operators,” Proc. Amer. Math. Soc. 51 (1975).

[80] T. L. Curtright and C. K. Zachos, “Evolution Profiles and Functional Equations,”
J. Phys. A: Math. Theor. 42.485208 (2009) arXiv:0909.2424[hep-th].

[81] T. L. Curtright and C. K. Zachos, “Chaotic Maps, Hamiltonian Flows, and
Holographic Methods,” J. Phys. A: Math. Theor. 43.445101 (2010)
arXiv:1002.0104[hep-th].

[82] D. S. Alexander, “A History of Complex Dynamics from Schroeder to Fatou and
Julia,” Vieweg, (1994).

[83] T. W. Gamelin, “Review of A History of Complex Dynamics from Schroder to
Fatou and Julia,” Historia Math. 23 (1966).

[84] M. E. Fisher, “Renormalization group theory: Its Basis and Formulation in
Statistical Physics,” Rev. Mod. Phys. 70, 653 (1998).

[85] O. Reynolds, “An Experimental Investigation of The Circumstance which
Determine whether the Motion of Water in Parallel Channels shall Be Direct or
Sinuous and of the Low of Resistance in ParallelChannels,” Philos, Trans. R. Soc.
174 (1883).

[86] O. Reynolds, “On the Dynamical Theory of Incompressible Viscous Fluids and
the Determination of the Criterion,” Philos, Trans. R. Soc. 186 (1895).

[87] E. C. G. Stueckelberg and A. Petermann, “The Normalization Group in Quantum
Theory,” Helv. Phys. Acta 24 (1951).

[88] N. N. Bogoliubov and D. V. Shirkov, “Problems of Quantum Field Theory. I,”
Uspekhi Fiz. Nauk 55 (1955).

[89] N. N. Bogoliubov and O. S. Parasyuk, “Uber die Multiplication der
Kausalfunktionen in der Quantentheorie der Felder,” Acta. Math. 97 (1957).

[90] R. H. Dalitz and F. J. Dyson, “Renormalization in the New Tamm-Dancoff
Theory of Meson-Nucleon Scattering,” Phys. Rev. 99 (1955).



165

[91] M. Gell-Mann and F. E. Low, “Quantum Electrodynamics at Small Distances,”
Phys. Rev. 95, (1954).

[92] N. N. Bogoliubov and D. V. Shirkov, “Charge Renormalization Group in
Quantum Field Theory,” Nuovo Cim. 3 (1956).

[93] C. Callan, “Broken Scale Invariance in Scalar Field Theory,” Phys. Rev. D2(8):
1541 (1970).

[94] K. Symanzik, “Small Distance Behaviour in Field Theory and Power Counting,”
Comm. Math. Phys. 18 (3) (1970).

[95] D. F. Litim and J. M. Pawlowski, “On Gauge Invariant Vilsonian Flows,” (1998)
[hep-th/9901063].

[96] K. Aoki, “Introduction to the Nonperturbative Renormalization Group and its
Recent Application,” Int. J. Mod. Phys., B14 (2000).

[97] J. Berges, N. Tetradis, and C. Wetterich, “Non-Perturbative Renormalization
Flow in Quantum Field Theory and Statistical Physics,” Phys. Rept., 363 (2002)
[hep-ph/0005122].

[98] J. Polonyi, “Lectures on the Functional Renormalization Group Method,” Central
Eur. J. Phys. , 1, (2003) [hep-th/0110026].

[99] J. M. Pawlowski, “Aspects of the Functional Renormalization Group,” Annals
Phys., 322 (2007) [hep-th/0512261].

[100] A. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in
a 2D Field Theory,” JETP lett. 43, 730 (1986).

[101] J. Polchinski, “Scale and Conformal Invariance in Quantum Field Theory,” Nucl.
Phys. B303, 226 (1988).

[102] J. L. Cardy, “Is There a c-Theorem in Four Dimensions?”” Phys. Lett. B215
(1998).

[103] J. L. Cardy, “The Ubiquitous ‘c’: from the Stefan-Boltzmann Law to Quantum
Information” J. Stat. mech. 1010 (2010) arXiv:1008:2331 [cond-mat.statmech].

[104] K. G. Wilson, “Renormalization Group and Strong Interactions,” Phys. Rev. D 3
(1971).

[105] E. Braaten and D. Phillips, “The Renormalization Group Limit Cycle for
thel/r*> Potential,” Phys. Rev. A. 70 (2004) [hep-th/0403168].

[106] A. Leclair, J. M. Roman and G. Sierra, “Rassian Doll Renormalization Group
and Superconductivity,” Nucl. Phys. B 675, 584(2003)[cond-mat/0211338].



166

[107] A. Leclair, G. Sierra, “Renormalization Group Limit Cycles and Field Theories
for Elliptic S-Matrices,” J. Stat. Mech. 2004 (2004) [hep-th/0403178].

[108] P. K. Sahoo and P. Kannappan, “Introduction to Functional Equations,”
Chapman and Hall, (2011).

[109] S. Czerwik, “Functional Equations and Inequalities in Several Variables,” World
Scientific Publishing Co, (2002).

[110] G. Szekeres, “Regular Iteration of Real and Complex Functions,” Acta Math.
100 (1958).

[111] T. L. Curtright, X. Jin, and C. K. Zachos, “Approximate Solutions of Functional
Equations,” J. Phys. A44, (2011) arXiv:1105.3664[hep-th].

[112] R. P. Agarwal, M. Meehan, and D. O’Regan, “Fixed Point Theory and
Applications,” Cambridge University Press (2009).

[113] A. Grana and J. Dugundji, “Fixed Point Theory,” Springer (2010).

[114] T. L. Curtright, “Potential Unbounded Below,” SIGMA 7 (2011)
arXiv:1011:6056[math-ph].

[115] T. L. Curtright and A. Veitia, “Logistic Map Potential,” Phys. Lett. A (2011)
arXiv:1005. 5030[math-ph].

[116] P. Erdos and E. Jabotinsky, “On Analytic Iteration,” J. D’Analyse Math. 8
(1954).

[117] G. Julia, “Memoire sur 1’ Iteration des Fonctions Rationnelles,” J. Math. Pures
Appl. (1918).

[118] C. L. Siegel, “Iteration of Analytic Function,” Ann. Math. 43 (1942).

[119] O. J. Rosten, “Fundamentals of the Exact Renormalization Group,” Phys. Repts.
511 (2012) arXiv: 1003.1366 [hep-th].

[120] T. L. Curtright, X. Jin, and C. K. Zachos, “RG flows, Cycles, and c-Theorem
Folklore,” Phys. Rev. Lett. 108 (2012) arXiv: 1111.2649v1 [hep-th].

[121] D. Anselmi, D. Z. Freedman, M. T. Grisaru, and A. A. Johansen,
“Nonperturbative Formulas for Central Functions of Supersymmetric Gauge
Theories,” Nucl. Phys. B526 (1998) arXiv:hep- th/9708042.

[122] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four
Dimensions,” (2011) arXiv:1107.3987 [hep-th].



167

[123] A. Morozov and A. J. Niemi, “Can Renormalization Group Flow End in a Big
Mess?” Nucl. Phys. B666 (2003) arXiv:hep-th/0304178.

[124] A. Denbleyker, D. Du. Y. Liu, Y. Meurice, and H. Zou, “Fisher’s Zeros as the
Boundary of Renormalization Group Flows in Complex Coupling Spaces,”
Phys. Rev. Lett. 104 (2010) arXiv:1005.1993 [hep-lat].

[125] Y. Meurice and H. Zou, “Complex Renormalization Group Flows for 2D
Nonlinear O(N) Sigma Models,” Phys. Rev. D 83 (2011) arXiv:1101.1319v3
[hep-th].

[126] A. LeClair, J. M. Roman, and G. Sierra, “Log-Periodic Behavior of Finite Size
Effects in Field Theories with RG Limit Cycles,” Nucl. Phys. B700 (2004)
arXiv:hep-th/0312141.

[127] E. Braaten and H-W. Hammer, “Universality in Few-body Systems with Large
Scattering Length,” Phys. Rept. 428 (2006) arXiv:cond-mat/0410417.

[128] J-F. Fortin, B. Grinstein, and A. Stergiou, “Scale without Conformal Invariance:
An Example,” Phys. Lett. B704 (2011) arXiv:1106.2540 [hep-th].

[129] Y. Nakayama, “On ¢ -Conjecture in a-Theorem.” (2011) arXiv:1110.2586
[hep-th].

[130] B. P. Dolan, “Chaotic Behavior of Renormalization Flow in a Complex
Magnetic Field,” Phys. Rev. E52 (1995).

[131] T. L. Curtright and C. K. Zachos, “Renormalization Group Functional
Equations,” Phys. Rev. D83 (2011) arXiv:1010.5174 [hep-th].

[132] S. R. McKay, A. N. Berker, and S. Kirkpatrick, “Spin-Glass Behavior in
Frustrated Ising Models with Chaotic Renormalization-Group Trajectories,”
Phys. Rev. Lett. 48 (1982).

[133] A. J. Bray and M. A. Moore, “Chaotic Nature of the Spin-Glass Phase,” Phys.
Rev. Lett. 58 (1987).

[134] E. Witt, “Treue Darstellung Liescher Ringe,” Jour. Fur. Die rein und arge.
Mathe. 177 (1937).



	University of Miami
	Scholarly Repository
	2012-06-06

	Topics in Elementary Particle Physics
	Xiang Jin
	Recommended Citation


	1

