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This dissertation encompasses several studies relating to the theory of weak potential 

scattering of scalar and electromagnetic random, wide-sense statistically stationary fields 

from various types of deterministic or random linear media. The proposed theory is 

largely based on the first Born approximation for potential scattering and on the angular 

spectrum representation of fields.  

The main focus of the scalar counterpart of the theory is made on calculation of the 

second-order statistics of scattered light fields in cases when the scattering medium 

consists of several types of discrete particles with deterministic or random potentials. It is 

shown that the knowledge of the correlation properties for the particles of the same and 

different types, described with the newly introduced pair-scattering matrix, is crucial for 

determining the spectral and coherence states of the scattered radiation. The approach 

based on the pair-scattering matrix is then used for solving an inverse problem of 

determining the location of an “alien” particle within the scattering collection of “normal” 

particles, from several measurements of the spectral density of scattered light. Weak 

scalar scattering of light from a particulate medium in the presence of optical turbulence 

existing between the scattering centers is then approached using the combination of the 

Born’s theory for treating the light interaction with discrete particles and the Rytov’s 

theory for light propagation in extended turbulent medium. It is demonstrated how the 

 
 



 
 

statistics of scattered radiation depend on scattering potentials of particles and the power 

spectra of the refractive index fluctuations of turbulence. This theory is of utmost 

importance for applications involving atmospheric and oceanic light transmission. 

The second part of the dissertation includes the theoretical procedure developed for 

predicting the second-order statistics of the electromagnetic random fields, such as 

polarization and linear momentum, scattered from static media. The spatial distribution of 

these properties of scattered fields is shown to be substantially dependent on the 

correlation and polarization properties of incident fields and on the statistics of the 

refractive index distribution within the scatterers. Further, an example is considered 

which illustrates the usefulness of the electromagnetic scattering theory of random fields 

in the case when the scattering medium is a thin bio-tissue layer with the prescribed 

power spectrum of the refractive index fluctuations. The polarization state of the 

scattered light is shown to be influenced by correlation and polarization states of the 

illumination as well as by the particle size distribution of the tissue slice. 
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Chapter 1 
 
Introduction  

The recently formulated unified theory of coherence and polarization of light has made it 

possible to predict the changes in spectrum, coherence and polarization of light beams on 

interaction with deterministic and random linear media, and allowed in-depth theoretical 

examination of the various phenomena of light accompanying light propagation, 

scattering and imaging by natural media and man-made optical systems. Employing this 

theory as the main theoretical foundation, we have studied the propagation of light 

through free space [1-2], laser resonators [3], active bistatic LIDAR system [4], negative-

phase materials [5-6] and atmospheric turbulence [7-8]; explored the properties of light 

scattered from collections of particles [9-13], correlated media [14-15] and biological 

tissues [16]; and investigated the imaging of light by an isoplanatic two-lens imaging 

system [17] and ghost imaging system [18]. 

δ −

    In this thesis, the focus is made on developing the theories of scalar and 

electromagnetic scattering of light from deterministic and random media. The text is 

divided into three chapters. In Chapter 1, we review the classic weak potential scattering 

theory and the angular spectrum representation of waves, a commonly used mathematical 

tool needed for efficient light description. In Chapter 2 we first introduce the pair-

structure matrix describing the relations among multiple kinds of particles in a scattering 

collection, and then use it for introducing a new technique for tracing the position of an 

alien object embedded in a random particulate medium. At the end of this chapter we 
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develop the method for predicting the interaction of optical fields with turbulent medium 

containing particles. Chapter 3 deals with generalization of the classic scalar, weak 

scattering theory of random fields to the electromagnetic case. Such extension allows 

evaluating polarization and momentum of scattered light. The electromagnetic theory of 

scattering is then applied to the situation when a random beam with arbitrary states of 

coherence and polarization is scattered from a thin bio-tissue slice with prescribed power 

spectrum of refractive index distribution. The state of polarization of the resulting field is 

shown to have strong dependence on the properties of incident light and statistics of the 

tissue.     

 

1.1 Description and models of random fields 

We begin by introducing the major quantities of the theory of coherence and polarization 

of light which we will be using throughout the thesis for characterization of illumination 

and scattered fields. The cross-spectral density function of a scalar field U is defined as a 

correlation function [19] 

                                             *
1 2 1 2( , , ) ( , ) ( , )W U Uω ω=r r r r ω

ω

,                                   (1.1) 

where angular brackets stand for the ensemble average of monochromatic realizations, r1 

and r2 are two position vectors and ω is the angular frequency. From the cross-spectral 

density function the expressions for the spectral density 

                                                           ,                                           (1.2) ( , ) ( , , )S Wω =r r r
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and the spectral degree of coherence 

      1 2
1 2

1 1 2 2

( , , )( , , )
( , , ) ( , , )

W
W W

ωμ ω
ω ω

= r rr r
r r r r

,                            (1.3) 

follow. 

The basic analytic model for a random beam is the Gaussian Schell-model model for 

which the cross-spectral density function at the source plane  has form [20] 0z =

        
2 2 2

(0) 2 1 2 1 2
1 2 2

( )( , , ) exp exp
4 2

W Aω
σ δ 2

⎡ ⎤ ⎡+ −= − −
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

ρ ρ ρ ρρ ρ
⎦

,                    (1.4) 

where A  is the amplitude,  is the r.m.s. width of the spectral density and  is the r.m.s. 

width of the degree of coherence. Limits  and  correspond to incoherent 

and coherent beams, respectively.  

σ δ

0δ → δ →∞

When the beam is electromagnetic it can be described by the cross-spectral density 

matrix 

*
1 2 1 2( , , ) ( , ) ( , )W r r E Eαβ α βω ω ω ( , ,= r r ), x yα β =                      (1.5) 

where xE  and yE  are the mutually orthogonal components of the electric field transverse 

to the direction of propagation. In this case, the spectral density and spectral degree of 

coherence are defined by the expressions  

                                                      ,                                           (1.6)  ( , ) ( , , )S Trω =r W r r ω

and  
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                                    1 2
1 2

1 1 2 2

( , , )( , , )
( , , ) ( , , )

Tr
Tr Tr

ωη ω
ω ω

= W r rr r
W r r W r r

,                         (1.7)  

where Tr  represents trace of the matrix. One more quantity that we should deal with in 

the vector-field treatment and can not be accounted for in the scalar-field treatment is the 

spectral degree of polarization 

         
[ ]2
4 ( ,( , ) 1

( , )
DetP

Tr
ωω
ω

= − W rr
W r

) ,                                          (1.8) 

where Det  denotes the determinant of the matrix.  

The electromagnetic extension of the Gaussian Schell-model beam has the form 

2 2 2
(0) 1 2 1 2

1 2 2 2

( )( , , ) exp exp
4 2

W A A Bαβ α β αβ
αβ

ω
σ δ

⎡ ⎤⎡ ⎤+ −= − −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

ρ ρ ρ ρρ ρ , ( ), ,x yα β = ,      (1.9) 

where  is the r.m.s width of the spectral density, σ xxδ , , yyδ xyδ  are the r.m.s. widths of 

auto-correlation functions of the x  component of the field, of the y  component of the 

field and of the mutual correlation function of x  and  field components, respectively, y

xyB  is the complex correlation coefficient between x  and components of the electric 

field. Parameters A , 

y

α Bαβ ,  and σ αβδ  are independent of position and, in our analysis, 

of frequency. 
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1.2 Classic Weak Scattering Theory  

Let us consider a monochromatic scalar field , incident on a linear, isotropic, 

nonmagnetic medium occupying a finite domain V . Assuming that there are no sources 

in V , we begin our analysis of the weak scattering theory with the scalar equation [19] 

( , )U ωr

                                          ,                                   (1.10) 2 2 2( , ) ( , ) ( , ) 0U k n Uω ω ω∇ +r r r =

where  and /k cω= ( , ) ( , )n ω ε ω=r r  denotes the refractive index of the medium with 

 being the dielectric ‘constant’. Equation (1.10) has a similar form as the 

Helmholtz equation and may be called the Helmholtz equation in medium. It is valid 

under the assumption that  varies slowly with position [19].   

( ,ε r )ω

( )ε r

We now rewrite Eq. (1.10) in the form 

                                 ,                       (1.11) 2 2( , ) ( , ) 4 ( , ) ( , )U k U F Uω ω π ω∇ + = −r r r ωr

where                         

    
2 21 [ ( , ) 1],

( , ) 4
0,

k n
F

ω
ω π

⎧ −⎪= ⎨
⎪⎩

r
r                                    (1.12) 

V
V
∈
∉

r
r

is called the scattering potential of the medium.  

    Let us now express  as a sum of the incident field  and the scattered 

field  , i.e. 

( , )U ωr ( ) ( , )iU ωr

( ) ( , )sU ωr

( ) ( )( , ) ( , ) ( , )i sU U Uω ω= +r r ωr .                                     (1.13) 
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Since the incident field satisfies the Helmholtz equation in free space, i.e., the source 

generating the field is outside the medium volume V , it may be excluded from 

consideration. Then for  and  we obtain the equations  ( ) ( , )iU ωr ( ) ( , )sU ωr

                                                 ,                                             (1.14) 2 2 ( )( ) ( , )ik U ω∇ + =r 0

ωr

d rω

)

')

')

and 

2 2 ( )( ) ( , ) 4 ( , ) ( , )sk U F Uω π ω∇ + = −r r ,                             (1.15) 

the latter being an inhomogeneous Helmholtz equation. With the Sommerfeld radiation 

condition, the solution to Eq. (1.15) is the convolution   

                ,              (1.16) ( ) 3( , ) ( )( , ) ( ', ) ( ', ) ( ', ) 's

V
U G FU G F Uω ω ω ω= ∗ = −∫r r r r r r

where  is the Green’s function of the Helmholtz operator, i.e., the solution to 

the equation 

( ',G ω−r r

                       ,                               (1.17) 2 2 (3)( ) ( ', ) 4 (k G ω πδ∇ + − = − −r r r r

where  is the three-dimensional Dirac delta function. We now choose 

 to be the outgoing free-space Green’s function of the Helmholtz operator:  

(3) (δ −r r

', )ω(G −r r

                                            
exp( ' )

( ', )
'

ik
G ω

−
− =

−
r r

r r
r r

.                                      (1.18) 

On using Eq. (1.16) in Eq. (1.13) we see that the total field could be determined from the 

equation 
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                       ,                  (1.19) ( ) 3( , ) ( , ) ( ', ) ( ', ) ( ', ) 'i

V
U U G F U dω ω ω ω ω= + −∫r r r r r r r

which is called the integral equation of potential scattering. In most cases of practical 

interest, Eq. (1.19) is impossible to handle due to the existence of  under the 

integral sign. However, it appears to be possible to obtain analytical solution of Eq. (1.19) 

under the first-order Born approximation in situations when the scattering is weak, for 

instance when the refractive index in the scattering medium is close to unity. Then 

throughout the scatterer we can assume that 

( , )U ωr

( ) ( )( , ) ( , )s iU Uωr ωr

r

i d rω

.
                                            (1.20) 

Under such approximation, known as the first-order Born approximation, the integral 

equation of potential scattering (1.19) becomes 

      ,                (1.21) ( ) ( ) 3( , ) ( , ) ( ', ) ( ', ) ( ', ) 'i i

V
U U G F U dω ω ω ω ω= + −∫r r r r r r

or 

       .                       (1.22)   ( ) ( ) 3( , ) ( ', ) ( ', ) ( ', ) 's

V
U G F Uω ω ω= −∫r r r r r

We now consider a more involved case when the light field incident onto a scatterer is 

not deterministic, but spatially partially coherent. In other words, the field fluctuations at 

different points are not longer statistically similar [21]. In such a case, the incident field 

can be characterized by the cross-spectral density function, i.e., 

                                   ( ) ( )* ( )
1 2 1 2( , , ) ( , ) ( , )i i iW U Uω ω=r r r r ω ,                               (1.23) 
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where angular brackets denote the average over the statistical ensemble of 

monochromatic realizations of the field. The cross-spectral density function is the major 

quantity in the unified theory of coherence and polarization of light [22]. Similarly, the 

scattered field may also be represented by an ensemble of monochromatic realizations of 

the field and its cross-spectral density function may be expressed in a similar manner, i.e. 

as 

                                     ( ) ( )* ( )
1 2 1 2( , , ) ( , ) ( , )s s sW U Uω ω=r r r r ω

F ω

3 3d

.                                (1.24)      

Generally the scattering media may be of deterministic or random nature. In the case 

when the scatterer is deterministic, the scattering potential  is a well-defined 

function of position. With the scattered field  and the incident field  

being related by Eq. (1.22), the cross-spectral density function of the scattered field, 

under the accuracy of the first-order Born approximation then takes the form  

( , )F ωr

( ) ( , )sU ωr ( ) ( , )iU ωr

                                                       

.                          (1.25) 

( ) ( ) *
1 2 1 2 1 2( , , ) ( ', ', ) ( ', ) ( ', )s i

V V
W W Fω ω ω= ∫ ∫r r r r r r

*
1 1 2 2( ', ) ( ', )G Gω ω× − −r r r r 1 2' 'd r r

Then due to the random nature of the incident field the scattered field also becomes 

random, although the scatterer is deterministic. 

In the case when the scattering medium is random the scattering potential becomes a 

random variable. One realistic example of a random medium is the atmospheric 

turbulence in which the refractive index fluctuates randomly in space and in time due to 

the fluctuations in temperature and pressure. By averaging Eq. (1.25) over the ensemble 

    
 



9 
 

of realizations of the scattering medium we then obtain for the cross-spectral density 

function of the scattered field the expression  

                                            ( ) ( )
1 2 1 2 1 2( , , ) ( ', ', ) ( ', ', )s i

FV V
W W Cω ω= ∫ ∫r r r r r r ω

3 3d                                        ,                                (1.26) *
1 1 2 2 1 2( ', ) ( ', ) ' 'G G dω ω× − −r r r r r r

where  

*
1 2 1 2( ', ', ) ( ', ) ( ', )F m

C F Fω ω=r r r r ω ,                                  (1.27) 

is the correlation function of the scattering potential with ...
m

 being the average taken 

over different realizations of the scatterer. One notes that the other average in the 

integrand of Eq. (1.26) is taken over the ensemble of the incident field.   

Let us consider a case where the incident field is a monochromatic plane wave. By 

approximating the Green’s function in the far-field of the scatterers 

exp(i )( , ) ~ exp( ')krG r ' ik
r

ω−s r s r− ⋅ ,                                 (1.28) 

it can be shown that the cross-spectral density function of the scattered wave reduces to 

the form  

                                   ( ) ( )
1 2 1 22

1( , , ) ( ) ( , , )s i
FW S C

r
ω ω= −r r K K ω ,                              (1.29) 

where  is the spectral density of incident light and  ( ) ( )iS ω
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          3 3
1 2 1 2 2 2 1 1 1 2( , , ) ( ', ', ) exp[ ( ' ')] ' 'F FV V

C C iω ω− = − ⋅ − ⋅∫ ∫K K r r K r K r d r d r

)

,         (1.30)   

is the six-dimensional Fourier transform of the correlation function  and 

 ( 1  is known as the momentum transfer vector.  

1 2( ', ', )FC ωr r

0( )i ik= −K s s , 2i =
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1.3 Angular spectrum representation of optical fields 

An important mathematical tool for description of light fields is its angular spectrum 

representation, i.e. the representation by the superposition of differently tilted and 

differently weighted plane waves. Let us first consider a monochromatic scalar field 

 oscillating at angular frequency  and propagating into the positive half-space 

 to a point with position vector 

( , )U ωr

0z >

ω

( , )z=r ρ . In the form of the above representation, 

the field can be expressed as [23] 

                                            2( , ) ( , ) exp( )U a ikω ω ⊥= d⋅∫r s s r s

)

,                                 (1.31) 

where ( , ,x y zs s ss =

( , )a ωs

0

 is a unit vector,  is its projection onto the source 

plane, and  is the amplitude of a plane wave which may be related to the field in 

the source plane U U  by the expression 

( , , 0x ys s⊥s =

', 0, )z =ρ

)

ω( ', ) (ω ≡ =ρ ρ

    
2

0( , ) ( ', ) exp( ') '
2
ka U ikω ω 2d ρ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ ρ ρs s ⋅ ,                     (1.32) 

where ' ( ', ')x y=ρ  is a point in the source plane. 

In Eq. (1.31), the plane wave modes can be of two kinds. The modes for which 1⊥ ≤s  

and 

                                                  2 21 1zs ⊥= + − = + − −s 2
x ys s                                   (1.33) 
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are called the homogeneous (propagating) plane waves. The modes for which 1⊥ >s  and 

hence  

                                            2 2 21zs i i s s⊥= + − = + + −s 1x y

ω

                                   (1.34) 

are known as evanescent waves. They decay exponentially in amplitude at distances on 

the order of a wavelength from the source plane. One sees that all high spatial frequency 

components of plane wave modes correspond to evanescent waves and therefore the 

information about them is lost during propagation. This explains the diffraction effects on 

imaging. In the far field of the source, the regime which will be of our major interest, 

only the homogeneous waves (low spatial frequency components) are of importance. 

We now generalize Eq. (1.31) to electromagnetic case. Let us consider a two-

dimensional electric vector-field ( , ) ( , ), ( , )x yE Eω ω⎡ ⎤= ⎣ ⎦E r r r

0z =

 with Ex and Ey  being two 

mutually orthogonal components transverse to direction of propagation z. If the field is 

radiated from the source plane, , into the positive half-space z > 0, then its plane-

wave expansion may be written as 

                                   2( , ) ( , ) exp( )x xE a ikω ω ⊥= d⋅∫r s s r s ,                                  (1.35a) 

        2( , ) ( , ) exp( )y yE a ikω ω ⊥= d⋅∫r s s r s ,                                 (1.35b) 

where   

                             
2

0( , ) ( ', ) exp( ') '
2x x
ka E ikω ω 2d ρ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ ρ ρs ⋅s ,                          (1.36a) 
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2

0( , ) ( ', ) exp( ') '
2y y
ka E ikω ω 2d ρ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ ρ ρs ⋅s

ω ⎤⎦

.                        (1.36b) 

where  is the field at the source plane. Now that 

 and  in Eq. (1.35) provide with the accurate form of the propagating 

field, let us show that we could verify Eq. (1.35) and Eq. (1.36) [or Eq. (1.31) and Eq. 

(1.32)] using a formula relating  and  directly. Indeed, instead of the 

two-dimensional field, we consider a three-dimensional field and further generalize the 

angular spectrum representation of plane wave from 2D to 3D. We again assume that an 

electromagnetic source  located in the plane , radiates into the half-space

. Then the three Cartesian components of the electric field are given by the 

Luneberg’s formulas: 

0 0 0( ', ) ( ', ), ( ', )x yE Eω ω⎡= ⎣E ρ ρ ρ

)ω ( , )yE ωr

( , )ωE r

(0) ( ', )ωρE

( ,xE r

0z >

0 ( , )ωE r

z 0=

                               (0) 21( , ) ( ', ) ( , ') '
2x x zE E Gω ω
π

= − ∫r drρ ρ ρ  ,                          (1.37a) 

         (0) 21( , ) ( ', ) ( , ') '
2y y zE E Gω ω
π

= − ∫r drρ ρ ρ ,                          (1.37b) 

          (0) (0) 21( , ) [ ( ', ) ( , ') ( ', ) ( , ')] '
2z x x y yE E G E Gω ω ω
π

= +∫r r drρ ρ ρ ρ ρ ,             (1.37c) 

where ( , ')xG r ρ , ( , ')yG r ρ , ( , ')zG r ρ  are the partial derivatives of the outgoing free-

space Green’s function, 

2exp( ' ) 1( , ') exp[ ( ' ]
' 2 z

ik ikG i
sπ ⊥

−
= = ⋅ −

− ∫
r

r s
r

ρ
ρ ρ

ρ
k d)r s ,               (1.38) 
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The last term of Eq. (1.38) is a form of the Weyl’s representation of a diverging spherical 

wave (see Sec. 3.2.4 of [23]). Then, the three partial derivatives of ( , ')G r ρ can be 

expressed as 

        
2

2( , ') exp[ ( ' ]
2 z

skG ik dρ s ( , ,
s
α

α π ⊥= − ⋅ − )∫ρr s r ), x y zα = .            (1.39) 

On substituting from Eq. (1.39) into Eq. (1.37), one obtains after interchanging the 

orders of integrals, 

        2( , ) ( , ) exp( )E a ikα αω ω ⊥= d⋅∫r s s r s ,                               (1.40) 

where  

                            
2

(0) 2( , ) ( ', ) exp[ '] '
2x x
ka E ikω ω d ρ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ ρ ρs ⋅s ,                         (1.41a) 

         
2

(0) 2( , ) ( ', ) exp[ '] '
2y y
ka E ikω ω d ρ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ ρ ρs ⋅s ,                          (1.41b) 

2
(0) (0) 2( , ) ( ', ) ( ', ) exp[ '] '

2
yx

z x y
z z

sska E E ik
s s

ω ω ω d ρ
π

⎡ ⎤⎛ ⎞= − + − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ρ ρ ρs s  

                       
1 ( , ) ( , )x x y y

z

s a s a
s

ω⎡= − +⎣ s s ω ⎤⎦ .                                                         (1.41c)  

One notes that the x −

)ω

)

 and  components of the amplitude of the plane wave modes 

 and  have exactly the same form as in Eq. (1.36) while the z  

component  is expressed via the transverse components through the simple 

y −

( , )xa ωs ( ,ya s

( ,z ωs

−

a
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transformation in Eq. (1.41c). Therefore Eq. (1.40) and Eq. (1.41) are the three-

dimensional generalization from its one-dimensional form and exactly equivalent to 

Luneberg’s formulas. While in the treatment involving beam-like (highly directional) 

fields, we need only  and  components of the electric field propagating 

from the planar source into the  half space, in studies of general fields we should 

consider all the three Cartesian components. Such situation arises in the analysis of near-

fields or on scattering at high angles, for instance.  

( , )xE ωr

( , )ωE r

( , )yE ωr

z+

On taking the average over the ensemble of the light field for each component of the 

electric field vector , we can form the 3x3 cross-spectral density matrix 

 with components 1 2( , , )ωW r r

                   1 2( , , ) =r r 1( , ) (βω ωr 2 , )Eαβ rW E ,   ω ( , , , )x y zα β = .                     (1.42) α
∗

On substituting from Eq. (1.40) into Eq. (1.42), we obtain the following expression for 

the cross-spectral density matrix of the field, in the form of angular-spectrum 

representation of plane waves propagating into the half-space : 0z >

                      2 2∗ ⋅1 2 , ) 1 2( , , )ω ω= 2 2 1 1 1 2( , exp[ ( )]W A ik ds dsαβ ⊥ ⊥⋅ −αβ∫ ∫ s r s rr r s s .           (1.43) 

Here , , ,x y zα β = , and 1 2 ,s s 1 2( , ) ( , ) ( , )A a aα βω ω ω∗= s sαβ  is the angular correlation 

function between components of two plane-wave modes of the electric field                

4kA Wαβπ
⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫ ∫

(0) 2 2
1 2 2 2 2 1 1 1 2( , , ) ', ) exp[ ( ' ')] '

2
ik d dαβ ω ω= − ⋅ − ⋅1( ',ρ ρ 'ρ ρ ρ ρs s s s ,    (1.44)   
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where only components , , ,  

contribute to the far field. 

1 2( , , )xxA ωs s 1 2( , , )xyA ωs s 1 2( , , )yxA ωs s 1 2( , , )yyA ωs s

                                   

  



 
 

Chapter 2 
 
Scalar Scattering Theory  

 

2.1 Pair-structure Matrix of Random Collection of 

Particles. 

In order to determine the statistical properties of light scattered from a collection of 

particles it is important to know various physical properties of the collection such as 

particle size, distribution of the refractive index, particles’ absorptive properties, 

anisotropic features, etc. [24-25]. In the situation if the collection is random statistical 

properties governing individual particles and the collection as a whole should be 

specified. In a particular case when each individual particle has deterministic potential 

but the locations of particle centers are random the structure factor [26-27] and the pair-

structure factor [28-29] are crucial quantities for the analysis of the second-order statistics 

of the scattered light. The structure factor [26] relates a single momentum-transfer vector, 

i.e. the scaled difference of incident and scattered directions, to the positions of the 

particles of the system. The pair-structure factor [28] relates two momentum-transfer 

vectors, taking into account two incident and two scattered directions, to correlations 

among the positions of the particles in the system. It was demonstrated that while for 

determination of the second-order statistical properties of scattered light at a single point 

in space, such as intensity and polarization, the structure factor provides sufficient 

17 
 



18 
 

amount of information, the pair-structure factor is necessary for finding the correlation 

properties of scattered radiation, e.g. its degree of coherence.       

However, in situations when a scattering collection contains particles of different types 

other quantities might play crucial part in determining the properties of scattered 

radiation. Even though in practice collections with different types of particles are 

commonly encountered, scattering of classic light from such collections has not yet been 

rigorously treated.   

2.1.1 Light scattering from random collections of particles of two types 

In this section we introduce a physical quantity, in the form of a matrix, for accounting of 

the correlations between particles belonging to different types, i.e. possessing different 

(deterministic) potentials. We show, in particular, that the off-diagonal elements of the 

new matrix, which relate to the joint correlations between different particle types, enter 

the formula for the degree of coherence of the scattered light and, hence, are of utmost 

importance for the scattering experiments in cases where interference effects cannot be 

neglected.  

    Let us begin by considering a monochromatic plane wave oscillating at angular 

frequency ω, and spatial position ' , , which propagates in a direction specified 

by a real unit vector  and is incident on a collection of particles. We may express the 

cross-spectral density function of the incident plane wave at a pair of points specified by 

the position vectors  and  as [20] 

r ( ) ( ', )iU ωr

0s

1'r 2'r
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( ) ( )* ( )

1 2 1 2

( )
0 2 1

( ) ( , ) ( , )

( ) exp[ ( )],

i i i

i

W ', ', U ' U '

S ik '

ω ω ω

ω

=

= ⋅

r r r r

s r r'−

c

n ω

)

)

                                    (2.1) 

where  is the spectral density of incident light and  is the free-space 

wave number.  

( ) ( )iS ω /k ω=

Before being involved with the general case let us first consider the situation when the 

scattering collection consists only of two different types. Let the particles have 

deterministic scattering potentials, but be randomly distributed in scattering volume V . 

In this case the scattering potential of the entire collection which in general is defined by 

Eq. (1.12) has the form 

  .                             (2.2) 
1 2

1 1 2 2
1 1

( , ) ( , ) ( , )
M M

m
m n

F ' f ' f 'ω ω
= =

= − + −∑ ∑r r r r r

Here two different kinds of particles have scattering potentials  and 

 and are located at points with position vectors ( i =1,…,

1 1( ,mf ω−r r

12 2( ,nf ω−r r 1mr M ) and  (2r n j

=1,… 2M ), respectively. In such a case, the correlation function of the scattering 

potentials  defined in Eq. (1.27) reduces to the form 1 2( ', ', )ωr rFC

                          
1 1

1 2
1 2

*
1 2 1 1 1 1 2 1

1 1
( , ) ( , ) ( , )

M M

F m
m m

C ', ' f ' f ' -ω ω
= =

= −∑∑r r r r r r m ω                        (2.3a) 

                                                
1 2

*
1 1 1 2 2 2

1 1
( , ) ( ,

M M

m n
m n

f ' f ' -ω
= =

+ −∑∑ r r r r )ω                         (2.3b) 
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2 1

*
2 1 2 1 2 1

1 1

( , ) ( ,
M M

n m
n m

f ' f ' -ω
= =

+ −∑∑ r r r r )ω                         (2.3c) 

                                              
2 2

1

1 2

*
2 1 2 2 2 2

1 1

( , ) ( ,
M M

n n
n n

f ' f 'ω
= =

+ − −∑∑ r r r r
2

)ω .                      (2.3d) 

Here Eqs. (2.3a) and (2.3d) denote the self-correlation functions of the scattering 

potentials of type 1 and type 2 particles, respectively, and Eqs. (2.3b) and (2.3c) represent 

their joint correlation functions. Self-correlation functions refer here to correlations 

between particles of one type and joint correlation functions refer to correlations between 

particles of two different types. On substituting from Eq. (2.3) into Eq. (1.30), and 

interchanging the orders of integrals and summations we find, after integration, that  

                 
*

1 2 1 2 11 1 21 1( , , ) ( , ) ( , ) ( , ,FC f f Mω ω ω− =K K K K K K )ω                               (2.4a) 

                                             
*

1 2 12 1 21 2( , ) ( , ) ( , ,f f Mω ω+ K K K K )ω                             (2.4b) 

                                             
*

1 2 21 1 22 1( , ) ( , ) ( , ,f f Mω ω+ K K K K )ω                             (2.4c) 

                                             
*

1 2 22 1 22 2( , ) ( , ) ( , ,f f Mω ω+ K K K K )ω ,                          (2.4d) 

where 1f  and 2f  are the Fourier transforms of the scattering potentials , i.e. 

                                3( , ) ( ', )exp( ')dii V
'f f iω ω= − ⋅∫K r K r r )          .               (2.5) ( 1,2i =

In Eq. (2.4) the quantities                              

    
 



21 
 

                       
1 2 1 2

1 1
( , , ) exp[ ( )]

ji MM

ij im jn
m n

M iω
= =

= ⋅ − ⋅ ( , 1,2)i j =∑∑K K K r K r

)

 
,       (2.6) 

have the following meaning:  and  are the pair-structure 

factors of type 1 and type 2  particle subcollections, as they were introduced in Ref. [28]; 

 and  are the joint pair-structure factors, which have not 

been introduced before. We note that in general  is not the complex 

conjugate of M . Upon denoting , and on 

forming a vector 

11 1 2( , , )M ωK K

2 , )ω

22 1 2( , , )M ωK K

12 1 2( , ,M ωK K

1

) = exp[
iM

i
m

Q
=

− ⋅∑K K

12 1 2( , ,M ωK K )

21

21M K K

1 2( , )K K

1( ,

,ω

)

( ]imi r ( 1,2i =

1( ( , ), ( ,f fω ωK K2 ) T( , ) = )ωF K (T standing for transposition) whose 

entries are the scattering potentials of two types, Eq. (2.4) may be expressed in a 

convenient matrix form as 

                             ,                 (2.7) † (2)
1 2 1 1 2 2( , , ) ( , ) ( , , ) ( , )FC ω ω ω− =K K F K M K K F K ω

where† * denotes the Hermitian operator and T=

           
* *

1 1 1 2 1 1 2 2(2)
1 2 * *

2 1 1 2 2 1 2 2

( , ) ( , ) ( , ) ( , )
( , , )

( , ) ( , ) ( , ) ( , )

Q Q Q Q

Q Q Q Q

ω ω ω ω
ω

ω ω ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
K K K K

M K K
K K K K

.            (2.8) 

2.1.2 Light scattering from random collections of particles of L types 

We will now extend the preceding analysis to the case of scattering of light from 

collection consisting of particles of L different types. Under these circumstances the 

scattering potential  has the form  ( , )F ' ωr
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                                         ,                                            (2.9) 
1 1

( , ) ( , )
iML

i im
i m

F ' f 'ω
= =

= −∑∑r r ωr

)where  is the location of a scattering center of a particle of type l , is the 

scattering potential of the scatter of type i  and 

imr ( ,i imf ' ω−r r

iM  is the number of particles of type i . 

Then, Eq. (2.3) can be generalized to the form 

                         * *
1 2

1 1 1 1
( ) ( , ) ( ,

ji MML L

F i im j
i j m n

C ', ', f ' f 'ω ω
= = = =

= −∑∑∑∑r r r r r r )jn ω−  .                 (2.10) 

In a similar fashion as it was done for two particle types it can be shown that the Fourier 

transform of the correlation function of the collection of L different types has the form of 

the matrix product 

                     † ( )
1 2 1 1 2 2( , , ) ( , ) ( , , ) ( ,L

FC ω ω ω− =K K F K M K K F K )ω ,                         (2.11) 

where 1 2( , ) ( ( , ), ( , ),..., ( , ))T
Lf f fω ω ω=F K K K K ω

)

and                                           

( )
1 2( , ,L ωM K K  

* * *
1 1 1 2 1 1 2 2 1 1 2

* * *
2 1 1 2 2 1 2 2 2 1 2

* * *
1 1 2 1 2 2 1 2

( , ) ( , ) ( , ) ( , ) ... ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ... ( , ) ( , )

... ... ... ...

( , ) ( , ) ( , ) ( , ) ... ( , ) ( , )

L

L

L L L

Q Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

K K K K K K

K K K K K K

K K K K K KL

. (2.12) 

As above, the diagonal elements of this matrix are known as the pair-structure factors of 

each particle type and off-diagonal elements are the joint pair-structure factors for each 

pair of particle types. Diagonal and off-diagonal elements of this matrix can have 
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different values, in general. Hence the entire matrix contains all the 

information of the correlation properties of between particles within one type and across 

different types it may be natural to call it the pair-structure matrix.  

( )
1 2( , , )L ωM K K

2.1.3 Dependence of coherence state of scattered light on the pair-

structure matrix 

Within the validity of the first-order Born approximation, the cross-spectral density 

function of the scattered field at two points specified by position vectors  and  

from a monochromatic plane wave is given by Eq. (1.29). After substituting from Eq. 

(2.11) into Eq. (1.29) one can obtain the formula for the cross-spectral density function of 

the field scattered from a collection of particles of 

1rs 2rs

L  different types in the form 

                 ( ) ( ) ( )
1 2 1 1 2 22

1( , , ) ( ) ( , ) ( , , ) ( ,s i LW r r S
r

ω ω ω ω+=s s F K M K K F K )ω .             (2.13) 

Hence the spectral degree of coherence defined by the Eq. (1.3) takes the form 

1 2( , , )r rμ ωs s  

          
† ( )

1 1 2 2
† ( ) ( )

1 1 1 1 2 2 2

( , ) ( , , ) ( , )
( , ) ( , , ) ( , ) ( , ) ( , , ) ( ,

L

L L

ω ω ω
ω ω ω ω ω+

= F K M K K F K
F K M K K F K F K M K K F K2 )ω

. 

                                                                                                                                      (2.14) 

Eq. (2.14) is the main result of this section which indicates the dependence of the state of 

coherence of scattered light on the correlation properties of the particles within one type 

and across different types.  
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    In the special case when , which means that the 

particles of different types are similarly distributed in space, Eq. (2.14) reduces to a 

simpler form  

( ) ( )( , , ) ( , , )L L
iiM Mω ≈K K K K ω

                    

* ( )
1 2 1 2

1 1
1 2

1 2
1 1

( , ) ( , ) ( , )
( , , )

( , ) ( , )

L L
L

iji j
i j

L L

i j
i j

f f m
r r

f f

ω ω
μ ω

ω ω

= =

= =

−
=
∑∑

∑∑

K K K K
s s

K K

ω
  .             (2.15) 

where 

                    
( )

1 2( )
1 2 ( ) ( )

1 1 2 2

( , , )
( , )

( , , ) ( , , )

L
ijL

ij L L
ij ij

M
m

M M

ω
ω

ω ω
− =

K K
K K

K K K K
,                     (2.16) 

where Eq. (2.16) is the degree of angular correlation of the collection of particles of 

different kinds (if i ) or of same kind (if i ), which is a generalization form from 

Eq. (10) in Ref. [28].  

j j≠ =

2.1.4 Example and concluding remarks 

To see the dependence of the spectral degree of coherence on the pair-structure matrix, 

especially on the off-diagonal components denoting the correlation between different 

kinds of particles, we consider two classes of particles distributed randomly in a finite 

volume, which are assumed to be similarly distributed in space, so that Eq. (2.21) is valid 

in this situation. We also assume that  has the Gaussian distribution type, which is of 

the form 

(2)
ijm
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2

1 2(2)
1 2 2( , ) exp

( )ij
ij

m
k

ω
δ

⎡ ⎤−
− = −⎢ ⎥

⎢ ⎥⎣ ⎦

K K
K K ，                                  (2.17) 

where  characterizes the correlation strength between the collection of particles of 

different classes (if i ) or of same class (if i ). Suppose that each particle has a 

scattering potential of Gaussian distribution of the form . The 

parameters are chosen as: , 

ijδ

j j≠ =

0.15

2 2( ', ) exp ' / 2i if ω σ⎡ ⎤= −⎣ ⎦r r

632.8nmλ = 1σ λ= , 2 0.3σ λ= 11 22 1δ δ= =

(2)
1 2( , , )ωM K K

, . Fig. 2.1 

shows the dependence of the spectral degree of coherence of the scattered field on the 

off-diagonal component of the pair-structure matrix . Different 

correlation strengths between different kinds of particles influence the spectral degree of 

coherence substantially, as is seen from Fig. 2.1. 

In summary, Eqs. (2.15)-(2.17) clearly show that the coherence properties of scattered 

light are intimately related to the various correlations between particles in the scattering 

collection, and, more importantly, to the possible non-zero correlations between particles 

pertinent to different types. Thus the introduced pair-scattering matrix may be employed 

in theoretical procedures and experiments involving scattering of light from complex 

collections of scatterers. 

    Among important applications of our theory is the development of novel sensing 

techniques in such natural environments as atmosphere and ocean where random particle 

distributions are commonly encountered. 
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Fig. 2.1 Dependence of the spectral degree of coherence 1 2( , , )r rμ ωs s  on , where θΔ

( )sin cos ,sin sin ,cosθ ϕ θ ϕ θ=s , , ( )0 0,0,1=s 1 2 / 2ϕ ϕ π= = , , . 1 0θ = 2 1θ θΔ = = 2θ θ −
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2.2 Method for tracing the position of an alien object 

embedded in random particulate medium 

Due to its vast applications in remote sensing and medical diagnostics the subject of light 

scattering from particulate media is always of a vivid interest for both scientific and 

engineering communities. Recently important steps forward were made in understanding 

how the interaction of light with linear media with arbitrary correlation properties, 

whether of continuous or particulate nature occurs [30-32].  

    Scattering potential is one of the important concepts for description of the scattering 

media. Once the statistics of this quantity are known those of the refractive index can be 

easily found [20]. As was shown in [33-34] several inverse scattering problems can be 

solved providing with the statistics of the scattering potential. All these techniques, 

however, either deal with a single random scatterer or with a random collection 

consisting of the identical particles. 

In this section we will be interested, based on the concept of pair-structure matrix 

introduced in Sec. 2.1, in solving an inverse problem that involves light scattering from a 

medium in which not necessarily identical particles are present. We first develop the 

general method for reconstruction of the correlation function of the scattering potential 

pertaining to particles of different types. Then we solve a specific problem of finding the 

position of a single deterministic particle, referred to below as an “alien particle” or 

“impurity”, in a random collection of other particles, referred to as “normal particles”.  

More specifically, by designing three scattering experiments, we first measure the pair-

structure function of the original particulate media without the impurity. Then, after 
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embedding the alien particle within the collection at a certain position, we provide the 

technique for its tracing. 

2.2.1 Scattering of light from particulate media 

    Suppose that a spatially coherent polychromatic plane wave propagating in a 

direction specified by a real unit vector  is incident onto a collection of particles 

occupying domain D . The incident light at position  may be characterized by a 

statistical ensemble  of realizations, all of the form 

0s

]}tω

'r

( )
0( , ; ) exp[iU ' iω −r s{

                                      ,                                          (2.18) ( )
0( , ; ) ( ) exp( )iU ' a ik 'ω ω=r s s r0 ⋅

cwhere  is, in general, complex and , with c  being the light speed in 

vacuum. Then the cross-spectral density function of the incident field at a pair of points, 

specified by the position vectors  and  may be expressed in the form [20] 

( )a ω /k ω=

1'r 2'r

                               ( ) ( )* ( )
1 2 0 1 0 2 0( , ) ( , ) ( ,i i iW ', ', U ', U ',ω ω=r r s r s r s )ω

−

,                          (2.19) 

where the asterisk denotes the complex conjugate and the angular brackets denote the 

ensemble average. On substituting from Eq. (2.18) into Eq. (2.19), the cross-spectral 

density function of the incident field becomes 

                               ,                               (2.20) ( ) ( )
1 2 0 0 2 1( ) ( )exp[ ( )]i iW ', ', , S ik ' 'ω ω= ⋅r r s s r r

with ( ) *( ) ( ) ( )iS a aω ω ω=
 
being the spectral density of the incident light. 
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In what follows we will assume that the incident light and the medium are statistically 

independent and, hence, their ensemble averages can be separated. If the refractive index 

differs only slightly from unity the scattering is weak and can be analyzed within the 

accuracy of the first-Born approximation. Then, the scattered field at a point, specified by 

position vector r ,  being the unit vector, obeys the law Eq. (1.22). The cross-spectral 

density function of the scattered field at two points specified by position vectors  and 

 is then defined by 

s s

1rs

2rs

                               ( ) ( )* ( )
1 2 0 1 2( , , , ) ( , ) ( , )s s sW r r U r U rω ω=s s s s s ω .                           (2.21)  

To obtain the cross-spectral density function of the scattered field in the far zone we 

rewrite Eq. (1.29) as 

                      ( ) ( )
1 2 0 1 0 2 02

1( , , , ) ( ) [ ( ), ( ),s i
FW r r S C k k

r
ω ω= − − −s s s s s s s ]ω ,                (2.22) 

where 1 2[ , ,FC ω−K K ]

)

0 ) 0 )

 is defined in Eq. (1.30) called the six-dimensional spatial Fourier 

transform of the correlation function  of the scattering potential and 1 2CF ', ',ω(r r

                                    ,            .                                   (2.23) 1 1(k= −K s s 2 2(k= −K s s

Here  and  are analogous to the momentum transfer vector of quantum mechanical 

theory of potential scattering. They have absolute values 

1K 2K

1
42k π
λ

≤ =K  and 

2
42k π
λ

≤ =K . 

    
 



30 
 

    We now consider a particulate scattering media composed of two different types of 

particles. We assume that the two types of particles are located at points with three-

dimensional position vectors ( =1,…,1mr m 1M ) and ( n =1,…2nr 2M ), and have scattering 

potentials  and , respectively. The Fourier transforms of the scattering 

potentials then have the forms 

1( ', )f ωr 2 ( 'f r , )ω

                          3( , ) ( ', ) exp( ')d 'ii V
f f iω ω= − ⋅∫K r K r r )

)

            .                  (2.24) ( 1,2i =

Further, by setting , and forming a vector

, it is possible to obtain the cross-spectral density 

function of the far field scattered from a collection of particles of two different types. 

Namely, one has:  

1

( ) = exp[ ]
iM

i
m

Q i
=

− ⋅∑K K

1 2 ( , ))TωK

imr ( 1,2i =

( , ) ( ( , ),f fω ω=F K K

             ( ) ( ) + (2)
1 2 0 1 1 2 22

1( , , , ) ( ) ( , ) ( , , ) ( , )s iW r r S
r

ω ω ω ω=s s s F K M K K F K ω ,             (2.25) 

where† * denotes the Hermitian operator and T=

           
* *

1 1 1 2 1 1 2 2(2)
1 2 * *

2 1 1 2 2 1 2 2

( , ) ( , ) ( , ) ( , )
( , , )

( , ) ( , ) ( , ) ( , )

Q Q Q Q

Q Q Q Q

ω ω ω ω
ω

ω ω ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
K K K K

M K K
K K K K

,            (2.26)                         

which is defined in Eq. (2.12). Since the cross-spectral density function

 is proportional to the degree of coherence, it can be measured from 

interference experiments [33]. Then, the Fourier transform of the correlation function of 

the scattering potential of the scatterer can be obtained experimentally [29, 33] as 

( )
1 2 0( , , , )sW r r ωs s s

    
 



31 
 

     
( )

† (2) 2 1 2 0
1 2 1 1 2 2 ( )

( , , , )( , , ) ( , ) ( , , ) ( , )
( )

s

F i

W r rC r
S

ωω ω ω ω
ω

− = = s s sK K F K M K K F K .   (2.27) 

2.2.2 Inverse problem of tracing an impurity in the random collection of 

particles 

On the basis of the theory described in Section 2.2.1, we will now develop a novel 

technique for tracing the position of an alien particle embedded in the collection of 

normal particles. We assume that the impurity consists of just one deterministic particle 

with scattering potential  located at a point, specified by position vector , and 

that the normal particles with scattering potentials  are located at 

. As the first step, we obtain from an experiment the Fourier transform of 

the correlation function of the scattering potential of the original collection, i.e. the 

collection consisting only of normal particles, as 

0 ( ', )f ωr 0r

1( ', )f ωr 1mr

( 1,..., )m = M

                             
(0) * *

1 11 1( , ) = ( ) ( ) ( ) ( )FC f f Q−K K K K K KQ

s

,                               (2.28) 

where we set ,  i.e.,  and omit the dependence of  for simplicity.  1 2= =K K K 1 2= =s s ω

    In the next step, we make two reference samples which consist of the original 

collection of normal particles and a known deterministic alien particle with scattering 

potential . Suppose, for the first sample we have the known “test particle” 

located at the origin point , and for the second sample we have the known “test particle” 

located at a known position . Thus we assume that at this step the alien particle has the 

known positions, which are not influenced by the original particulate media. From the 

2 ( ', )f ωr

O

2r
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experiment, we can determine the Fourier transform of the correlation function of the 

scattering potential of sample1, with the help of Eq. (2.27), i.e. 

   
(1) * ** *

1 1 11 1 1 2( , ) = ( ) ( )K ( ) ( ) ( ) ( ) ( )F f Q Q f f Q− +K K K K K K K KC f
 

                                                         
* *

12 1 2 2( ) ( ) ( ) ( ) ( )f f Q f f+ +K K K K K ,         (2.29)  

where  since the known particle is at origin. Without loss of 

generality we only consider the case where 

2 ( ) exp( 0)Q i= − ⋅K K 1=

1( )f K  and 2 ( )f K  are real (c.f. [35]). From 

Eqs. (2.28) and (2.29) we find that 

                      
(1) (0)

2
1

1 2 1

( )( , ) ( , )( ( ) )
2 ( ) ( ) 2 ( )

F F fC CQ
f f f

− − −= − KK K K KK
K K K

Re .                      (2.30) 

We can also obtain the Fourier transform of the correlation function of the scattering 

potential of sample from the scattering experiment, to be 2

  
(2) * ** *

1 1 11 1 1 2( , ) = ( ) 2( ) ( ) ( ) ( ) ( ) exp( )F f Q Q f f Q i− + − ⋅K K K K K K K K K r( )KC f            

                                                 
* *

1 22 1 2 2( ) ( ) ( ) exp( ) ( ) ( )f f Q i f f+ ⋅ +K K K K r K K , (2.31) 

where we extract  from the angular brackets since the alien particle is of 

deterministic nature. Then, from Eq. (2.28), (2.30) and (2.31), one obtains 

2exp(i ⋅K r )

    1 1Im( ( ) ) Re( ( 2cot( )Q Q= ⋅K K K r  ) )
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(2) (0)

2

2 21 2 1

( )( , ) ( , )
2 ( ) ( )sin( ) 2 ( )sin( )

F F fC C
f f f
− − −− +

⋅ ⋅
KK K K K

K K K r K K r
.        (2.32) 

Further the quantity 1( )Q K  may be obtained from Eqs. (2.30) and (2.32) as 

                                     1 1 1( ) Re( ( ) ) Im( ( )Q Q i Q= +K K )K .                                (2.33) 

Quantity ( )Q K  contains the information about the particulate medium in the absence 

of the alien particle. The three scattering experiments described above are designed to 

determine it in order to be employed below. 

    Now we assume that the alien particle is located within the original collection of 

normal particles at an unknown position . On performing one more scattering 

experiment, we may obtain the Fourier transform of the correlation function of the 

scattering potential of the mixed collection, as 

0r

( ) * ** *
1 1 11 1 1 0( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) exp( )

im
FC f f Q Q f f Q− +K K K K K K K K K K r0i− ⋅                                  

* *

1 00 1 0 0( ) ( ) ( ) exp( ) ( ) ( )f f Q i f f+ ⋅ +K K K K r K K ,                        (2.34) 

where im  denotes the impurity or the alien particle. From Eqs. (2.28), (2.30), (2.32) and 

(2.34) it follows that 

 1 0 1Re( ( ) ) cos( ) Im( ( ) ) sin( )Q Q⋅ − ⋅K K r K K 0r  

                                            
( ) (0)

0

1 0 1

( )( , ) ( , ) 
2 ( ) ( ) 2 ( )

im
F F fC C

f f f
− − −= − KK K K K

K K K
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( )C≡ K .                                                                         (2.35) 

    To determine the position vector of the alien particle, it is crucial to have  . 

On choosing the incident direction  and the observation direction 

0 1⋅K r

0 (0,0,1)=s

( ,0, )x zs s=s , without loss of generality, we can measure the x − component of the 

position vector , for which we have the constrains 0r

                               1xs ,            1 zs− 1 ,          1 zs s− x .                           (2.36) 

Inequalities (2.36) imply that 0 xks x⋅ ∼K r  ( 0x is the exact position and x is the 

approximate position). Retaining the first two terms of the Taylor expansion of the cosine 

function and the first term of the Taylor expansion of the sine function gives 

                           2
0

1cos( ) ~ 1 ( )
2

⋅ − ⋅K r K r ,         ,                          (2.37) 0sin( ) ~⋅K r K r⋅

where the exact position vector  is replaced by the approximate position vector r . On 

substituting form Eq. (2.37) into Eq. (2.35) we find that 

0r

       
2

1 1 1

1

Im( ( ) ) Im ( ( ) ) 2 Re( ( ) )[ ( ) Re( ( ) )]
Re( ( ) )x

Q Q Q C Q
x

ks Q
− + − −

=
K K K K

K
1 K

,    (2.38) 

where  is given by Eq. (2.35). Similar expression may be obtained for y

component of the position vector , if we assume  and  which 

satisfy the similar expression as Eq. (2.36). We note that for specific incident unit vector 

, we may only determine 

( )C K

,0,1)

−

0r 0 (0,0,1)=s (0, , )y zs s=s

0 (0=s x −  and components of the position vector , y − 0r
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however, for the z component of , we might need the incident field propagating in 

another direction, say . Although there may be some influence of the normal 

particles on the alien particle and vice versa, which might change their positions, such 

influence will be neglected in this section.  

− 0r

0 (1,0,0)=s

    In a more general case, the impurity may consist of more than one particle. Under 

these circumstances, similar procedures give the average value of the position vectors of 

the alien particles, which are concentrated in a small area, for instance  N

    
2 ( )

1 1 1 1

1

Im( ( ) ) Im ( ( ) 2 Re( ( ) )[ ( ) Re( ( ) )]
Re( ( ) )

NQ Q Q C Q
x

Q
− + − −

=
K K K K K

K
)

xks
,   (2.39) 

where 

                         
( ) (0)

( ) 0

1 0 1

( )( , ) ( , )( )  
2 ( ) ( ) 2 (

im
F FN N fC CC

N f f f
− − −= − KK K K KK

K K K )
.                     (2.40) 

    To justify the approximation in Eq. (2.37) we might have the requirements which are 

obtained from the expansion of cosine and sine function in the left hand side of Eq. (2.35), 

                            4
0 1 0 1

1 ( ) Re( ( ) ) Im( ( ) )
24

Q⋅ ⋅ ⋅ ⋅K r K K r KQ                          (2.41) 

                        3 2
1 0 0 1

1 1Im( ( ) ) ( ) ) Re( ( ) )
6 2

Q Q⋅ ⋅ ⋅ ⋅(K K r K r K ,                       (2.42) 

or 
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                                             31
0

1

Im( ( ) ) 1
Re( ( ) ) 24

Q
Q

⋅
K

K r
K

                                           (2.43) 

                                              11
0

1

Im( ( ) )
3

Re( ( ) )
Q
Q

−⋅
K

K r
K

.                                          (2.44) 

From the definition of  Eqs. (2.43) and (2.44) are automatically satisfied under the 

assumptions expressed by inequalities Eq. (2.36) and if . From theoretical side 

it is desirable to make the value of 

1( )Q K

0 1⋅K r

xs  as small as possible, however, in practice, the best 

range is between .         4 3,10 )− −(10

2.2.3 An example                       

      

Fig. 2.2 Normalized x − component of the calculated position vector of the impurity with 

various xs  determined from 18 randomly distributed “good particles”. 
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To illustrate the new technique we suppose that each particle has a scattering potential 

of a Gaussian form, i.e. 

                                      
2

2

'( ', ) exp
2i

i

f Bω
σ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

rr           ,                         (2.45) ( 0,1,2i = )

 
 

Fig. 2.3 Normalized component of the calculated position vector of the impurity with 

various wavelengths determined from 18 randomly distributed “good particles”. 

x −

of which, the three-dimensional Fourier transformation can be found to be 

                        (3/2) 3 2 2( , ) (2 ) exp / 2i iif Bω π σ σ⎡ ⎤= −⎣ ⎦K K           .             (2.46) ( 0,1,2i = )

1

Such a (soft) Gaussian profile of the scatterer potential is a mathematical model, which 

allows for analytic results. The use of hard-edge spheres might lead complications related 

to the discontinuity at the boundary [36, 37]. The parameters are , 

(the size of the normal particle), (sizes of an alien particle 

0.6328umλ =

1 0.09492umσ = 0 2 2σ σ σ= =
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and a test particle), 1B = ,  (otherwise chosen as a variable). From Fig. 2.2, we 

see that the optimal value range for 

0.01xs =

xs  is , making the measurement precise. 

Fig. 2.3 shows that the best wavelength of the incident plane wave is  times 

larger compared with the size of the normal particle. The reliable results may be achieved  

4 3(10 ,10 )− −

2(10,10 )

 

Fig. 2.4 Normalized component of the calculated position vector of the impurity with 

various size of the impurity determined from 18 randomly distributed “good particles”. 

x −

if we measure the position of the alien particle with ratio  compared to the size 

of the normal particles, as Fig. 2.4  illustrates. Our simulation (not included) showed that 

the above optimal ranges obtained from Figs. 2.2-2.4 are independent of the number of 

normal particles. In Fig. 2.5 we show the dependence of 

1 2(10 ,10 )−

/ 0x x on a wavelength 

normalized by the size of the normal particle, λ/σ1, for several values of N. The 

difference between the curves occurs only in the range (1,10). 
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2.2.4 Concluding remarks 

In summary, using the previously developed method of finding the correlation function of 

the scattering potential of a stationary, random media from scattering experiments, we 

have developed the novel technique for tracing the position of an alien particle embedded 

in a random collection of normal particles. If there is more than one alien particle, the 

average position of impurities may also be obtained if those particles are concentrated 

within a small area compared to the size of the whole media. A method of determining 

the structure factor of a random collection of identical particles is also provided. Our 

findings are of importance for any applications for tracing an alien object within the 

random particulate medium, including medical diagnostics of malignant cells and remote 

sensing of embedded targets, to name a few. 

 
 

Fig. 2.5 Normalized component of the calculated position vector of the impurity with 

various wavelengths for different number of randomly distributed “good particles”. 

x −
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2.3 Technique for Interaction of Optical Fields with 

Turbulent Medium Containing Particles 

Very frequently it is of importance to predict how optical signals interact with media 

having turbulent nature and, at the same rate, contain randomly distributed particles. Such 

situations arise, for instance, in LIDAR (radar at optical frequencies) and Lasercom 

systems operating in atmosphere containing aerosols and water droplets, or in oceanic 

waters, full of plankton, sediments, air bubbles, etc. Moreover, bio-tissues, exhibiting 

fractal nature globally but contacting discrete structures (cells) can also be viewed as a 

candidate for our theory. The classic literature on this subject has always treated either 

propagation [38-39] or scattering aspects [40-43], separately being insufficient for the 

complete comprehension of the issue. Needless to mention that the radiative transfer 

approach [43], very popular among the experimentalists, provides only with approximate 

results and is perfect only for selected regimes, namely the ones where the interference 

effects may be neglected. The problem with merging rigorous propagation and scattering 

theories stems from the fact that different mathematical tools have to be used. For 

scattering, for instance, spherical harmonics are frequently are the elementary modes and 

angular (plane wave) decomposition modes is employed for propagation in turbulent 

media [44]. Very recently scattering matrix theory was developed [30] which makes it 

possible to treat scattering process on the basis of the angular spectrum representation of 

optical fields. Its combination with a recently introduced technique for propagation in 

turbulent media, which is also employing the angular spectrum decomposition, provides 

the unique tool for treating the problems of interest. In this section we are making an 
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attempt of merging two different theories, for scattering from particles and for 

propagation in continuous random medium, by noting that both can be based on the 

angular spectrum decomposition of wave-fields with any spectral and coherence 

properties.  

2.3.1 Scattering theory in free space 

Let us consider a monochromatic scalar field  oscillating at frequency ω and 

propagating into the positive half-space  to point with position vector r . In the form 

of the angular spectrum representation of plane waves, the incident field can be expressed 

as  

( ) ( , )iU ωr

0z >

                                        ( ) ( ) 2( , ) ( , ) exp( )i iU a ikω ω ⊥= d s⋅∫r s s r                               (2.47) 

where ( , , )x y zs s s=s

)ω

is a unit vector, ,   is the wavenumber, 

is the amplitude of an incident plane wave. Suppose now that the field is 

incident on a medium, which could be either continuous or a collection of particles 

occupying a finite domain D . The scattered field may also be expressed, in the form of 

the angular spectrum of plane waves, as 

( , ,0)x ys s⊥ =s /k ω= c

d s⋅

( ) ( ,ia s

                                        ( ) ( ) 2( , ) ( , ) exp( )s sU a ikω ω ⊥= ∫r s s r                              (2.48) 

where is the amplitude of the scattered field.  ( ) ( , )sa ωs

    
 



42 
 

    Within the validity of the first-order Born approximation the scattered field is defined 

in Eq. (1.22) with the scattering potential of the scattering medium  defined in Eq. 

(1.12). For a collection of particles  has the form 

( ', )F ωr

( ', )F ωr

                                                                                            (2.49) 
1

( ', ) ( ' , )
L

m
n

F fω
=

= −∑r r ωr

where  is the scattering potential for a specific particle. The Green’s function 

describing light propagation in free space can also be expressed in terms of the plane 

waves, as a rewritten form from Eq. (1.38), 

( ', )f ωr

                       2exp( ' ) 1( ' , ) exp[ ( ')]
' 2 z

ik ikG i
s

ω
π ⊥

−
− = = ⋅ −

− ∫
r r

r r s r r
r r

k d s  .              (2.50) 

    On substituting from Eqs. (1.22), (2.47) and (2.50) into Eq. (2.48), we express the 

amplitude of the scattered field  through the amplitude of the incident field 

 

( ) ( , )sa ωs

( ) ( '; )ia ωs

                                    ( ) ( ) 2( , ) ( , ', ) ( ', ) '
2

s

z

ika S a
s

ω ω
π ⊥= ∫s s s si d sω

ω

 ,                           (2.51) 

where  is the scattering matrix, or S-matrix. Under the first-order Born 

approximation it may be expressed as follows [30] 

( , ', )S ωs s

                                                 ,                                         (2.52) ( , ', ) [ ( '), ]S F kω = −s s s s

where  is the three-dimensional Fourier transform of the scattering potential.  [ , ]F ωK
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2.3.2 Propagation in optical turbulence 

The other counterpart of our development is the optical wave interaction with optical 

turbulence. We will now briefly review the angular spectrum approach for dealing with 

this issue [44]. Let us consider a monochromatic field   oscillating at frequency

 at a point with position vector r  propagating in a random medium from the plane 

 into a positive half space . The space-dependent part of the field can be 

expressed in terms of its angular spectrum of plane waves [19] 

( ) ( , )iU ωr

ω

z = 0 0z >

                                           ( ) ( ) 2( , ) ( , ) ( , )di i TU a Pω ω ω ⊥= s∫ sr s r ,                                 (2.53) 

where  represents a plane wave distorted by the random medium at direction s  

at a position specified by vector r  and  is the amplitude of the distorted plane 

wave in the angular spectrum, which may be related to the field  in the source 

plane by 

( , )TP ωs r

( , )a ωs

0 ( ', )U ωr

                                 ( ) 2
02

1( , ) ( ', )exp( ' '
(2 )

ia U ikω ω d ρ
π

= −∫ ρ ρs ⋅ )s ,                        (2.54) 

where ' = ( ', ',0)x yρ  is a point in the source plane. At this stage we will need to introduce 

the statistical description for the propagating field. The cross-spectral density function of 

the incident field is defined by the expression  

                                      ( ) ( )* ( )
1 2 1 2( , , ) ( , ) ( , )i i iW U Uω ω=r r r r ω ,                                (2.55) 
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where the angular brackets stand for the ensemble average [23]. On substituting from Eq. 

(2.53) into Eq. (2.55), we find that the cross-spectral density function of the incident field 

propagating through the turbulence is given by the expression 

         
1 2

( ) ( )* ( ) * 2 2
1 2 1 2 1 2 1 2( , , ) ( , ) ( , ) ( , ) ( , )i i i T TW a a P P d sω ω ω ω ω ⊥= ∫ s sr r s s r r d s ⊥ ,         (2.56) 

where the second angular brackets denote ensemble average over the realizations of the 

turbulent medium. On substituting from Eq. (2.54) into the first bracket of Eq. (2.56) we 

find that 

( )* ( ) ( )
1 2 1 2( ', ) ( ', ) ( ', ', )i i ia a Aω ω ≡s s s s ω                                                               

                                       1 1 2 2( ' ' ' ')* 2
0 1 0 2 1 24

1 ( ', ) ( ', ) e ' 2

(2 )
ikU U d dω ω 'ρ ρ

π
⋅ − ⋅∫ ∫ ρ ρρ ρ s s

ω

= . (2.57)       

     Following the procedure of Ref. [44], the wide-sense statistically stationary plane 

wave  propagating through a weakly scattering random medium can be 

represented by a Rytov series,  

( , )TP ωs r

                             .                   (2.58)     (1) (2)( , ) exp( )exp[ ( , ) ( , ) ...]TP ikω ψ ω ψ= ⋅ + +s s sr s r r r

Here (1) ( , )ψ ωs r  and (2) ( , )ψ ωs r  are the complex phase perturbations of the first order and 

of the second order, respectively. On substituting from Eq. (2.58) into the second angular 

bracket of Eq. (2.56), we obtain via the method of cumulants, while keeping terms to the 

second order [39], the formula 

1 2

*
1 2 2 2 1( , ) ( , ) exp[ ( )]T TP P ik sω ω = ⋅ −s sr r s r 1⋅ r   
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1 2 1 2

(1) (2)
, 1 2 , 1 2exp 2 ( , , ) ( , , )E Eω ω⎡ ⎤× +⎣ ⎦s s s sr r r r .                (2.59) 

The integrals in the exponential term, provided that the atmosphere is isotropic, can be 

expressed as,    

                                
1 2

(1) 2 2
, 2 1 0 0

( - , ) 2 d d ( , )
L

nE k z zω π κ κ
∞

= − Φ∫ ∫s s r r κ                              (2.60) 

            
1 2

(2) 2 2
, 2 1 0 0

( - , ) 4 d d ( , )
L

nE k z zω π κ κ κ
∞

= Φ∫ ∫s s r r   

                                                              0 2 1 2 1( ) ( )(J L zκ ⊥ ⊥ ⊥ ⊥× ⎡ − − − − ⎤)⎣ ⎦r r s s ,          (2.61)      

where  is the power spectrum of turbulent fluctuations of refractive index,( , )n z κΦ

( , , )x y zκ κ κ=κ is the spatial frequency vector and  is the zero-order Bessel function of 

the first kind. For instance for atmospheric turbulence  is given in [39], for 

oceanic turbulence in [45], for bio-tissues in [46]. 

0J

( , )n z κΦ

2.3.3 Transmission through turbulent medium containing randomly 

distributed particles 

We now return to the case of interest when the incident field is being both scattered by 

particles and modulated by the turbulent medium. The form of the scattered field can now 

be obtained after considering the impact of each factor, the scatterers and the turbulence, 

on the same plane waves in the angular spectrum. Namely, on combining Eqs. (2.51) and 

(2.53) we find that the resulting field becomes 
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                                      ( ) ( ) 2( , ) ( , ) ( , )s s TU a Pω ω ω ⊥= d s∫ sr s r .                                    (2.62) 

    On substituting from Eq. (2.62) into (2.55), we find that the cross-spectral density 

function of the scattered field in turbulence can be expressed as 

( ) ( * ( )
1 2 1 2( , , ) ( , ) ( , )s s sW U Uω ω= ）r r r r ω                                         

                       
1 2

( )* ( ) * 2 2
1 2 1 2 1= ( , ) ( , ) ( , ) ( , )s s T Ta a P P d s dω ω ω ω ⊥∫ ∫ s ss s r r 2s ⊥ ,              (2.63)   

Further, on substituting from Eq. (2.51) into the first angular bracket on the right side of 

the formula above, we obtain the correlation function of the amplitude of the scattered 

field as 

2
( )* ( ) *

1 2 1 1 2 2
1 2

1( , ) ( , ) = ( , ', ) ( , ', )
2

s s

z z

ka a S S
s s

ω ω ω
π

⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫ ∫s s s s s s ω                                                              

                                                                   ( )* ( ) 2 2
1 2 1( ', ) ( ', ) ' 'i ia a d s d sω ω ⊥× s s 2⊥  .       (2.64) 

Here the correlation function of the scattering matrix is related to the six-dimensional 

Fourier transform of the correlation function of the scattering potential, i.e. 

                        [ ]*
1 1 2 2 1 1 2 2( , ', ) ( , ', ) ( '), ( '),FS S C k kω ω = − − −s s s s s s s s ω

)

,                (2.65) 

where ,  and         ( 'i i ik= −K s s ) ( 1,2i =

      [ ] * 3
1 2 1 2 1 1 2 2 1 2, , ( ', ) ( ', ) exp[ ( ' ')]d 'd 'F D D

C F F iω ω ω= × − ⋅ + ⋅∫ ∫K K r r K r K r 3r r .   (2.66) 
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    On substituting from Eqs. (2.59) and (2.64) into Eq. (2.63), we obtain the general 

expression for the cross-spectral density function of the field after transmission through 

turbulent and particulate random medium, viz. 

[ ]
2

( ) ( ) 2 2
1 2 1 2 1 2 1 2

1 2

1( , , )= ( ', ', ) , , ' '
2

s i
F

z z

kW A C
s s

ω ω
π ⊥ ⊥

⎛ ⎞ −⎜ ⎟
⎝ ⎠ ∫ ∫ ∫ ∫r r s s K K d s d sω     

                    . 
1 2 1 2

(1) (2) 2 2
2 2 1 1 , 1 2 , 1 2 1 2exp[ ( )]exp 2 ( , , ) ( , , )ik E E d s d sω ω ⊥ ⊥⎡ ⎤× ⋅ − ⋅ +⎣ ⎦s s s ss r s r r r r r

(2.67) 

In Eq. (2.67), ( )iA is given by Eq. (2.57) and expresses the properties of the incident field, 

[ ]ω1 2- , ,FC K K  is given by Eq. (2.66) and characterizes the properties of the scattering 

medium. Finally ,  are given by Eqs. (2.60), (2.61) and 

describe the effects of the atmospheric turbulence. Formula (2.67) is the main result of 

the section. It relates the cross-spectral density function of the scattered field with the 

correlation properties of the incident field (just being the spatial Fourier transform of the 

source cross-spectral density function), as well as with the statistics of turbulence and 

scattered collection. 

1 2

(1)
, 1 2( , , )E ωs s r r

1 2

(2)
, 1 2( , , )E ωs s r r

2.3.4 Derivation and Example 

We first show here on how to calculate Eqs. (2.60) and (2.61). We assume that the 

turbulence is modeled by the von Karman spectrum, which is given by [39] 

                                            
2 2

2
2 2 11/6

0

exp /
( ) 0.033

( )
m

n nC
κ κ

κ
κ κ
⎡ ⎤−⎣ ⎦Φ =
+

,                                 (2.68) 
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where , , with inner scale , and , with 

outer scale . If the power spectrum of atmospheric fluctuations does not depend 

on , Eq. (2.60) can be reduced to the form  

2 1410nC m− −=

0 10l m=

2
m m 0

)κ

L

/3 5.92 /m lκ = 1ml m= 0 1/ lκ =

z

                                      ,                               (2.69) 
1 2

(1) 2 2
, 2 1 0

( , ) 2 d (nE k Lω π κ κ
∞

= − Φ∫s s -r r

On substituting from Eq. (2.68) to Eq. (2.69), the integral could be calculated numerically 

and one get  

                                 .                         (2.70)  
1 2

(1) 2 2 2
, 2 1( - , ) 2 0.033 27.8495nE C kω π= − × ×s s r r

On the other hand, we are interested on the intensity of the propagating field. By taking 

, Eq. (2.61) is then shown to be 1 2= =r r r

                
1 2

(2) 2 2
, 2 1 0 2 10 0

( - , ) 4 d ( ) d ( )
L

nE k zJ L zω π κ κ κ κ
∞

⊥ ⊥= Φ ⎡ − − ⎤⎣ ⎦∫ ∫s s r r s s ,               (2.71) 

where 0  in the integral. Using Eq. (3.11) of Ref. [44], i.e., z L≤ ≤

                                   2 1

0 2 1 00
2 1

1 ( )
L
dzJ z J t dt

κ
κ

κ
−

⎡ − ⎤ =⎣ ⎦ −∫
s s

s s
s s 0

L

∫

1

.                      (2.72) 

and Eq. (11.1.1) of Ref. [47], 

                                                     ,                                        (2.73) 0 20
0

( ) 2 ( )
z

k
k

J t dt J z
∞

+
=

=∑∫

we could rewrite  as 
1 2

(2)
, 2 1( - , )E ωs s r r
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1 2

(2)
, 2 1( - , )E ωs s r r     

2 2
2 2 2

2 1 2 12 2 11/60
02 1 0

exp /24 0.033 d
( )

m
n m

m
C k J L

κ κ
π κ

κ κ

∞ ∞

+ ⊥ ⊥
=⊥ ⊥

κ
⎡ ⎤⎡ ⎤−⎣ ⎦⎢ ⎥= × × ⎡ − ⎤⎣ ⎦− +⎢ ⎥⎣ ⎦

∑ ∫ s s
s s

.  

                                                                                                                                     (2.74) 

Therefore, Eq. (2.61) can be written as a sum of a series of one-dimensional integrals in 

. In the example below, we show the intensity profile at the propagation distance 

. For such a case, our calculations reveal that the first term in Eq. (2.74) is much 

larger than other terms, so we keep the first 10 terms to obtain the accurate result of Eq. 

(2.74). 

κ

L 1m=

We then assume that the incident beam is one plane wave with form 

0 ( ', ) exp( ')U ikω = ⋅0ρ ρs , with the resulting amplitude of the plane wave as 

[ ]( )
0( , ) ( )ia kω δ= −s s s .  is also calculated through Eq. (2.57). For 

scattering media, we consider a special case of gas-like disorder where identical particles 

are randomly positioned with Gaussian potential  

( )
1 2( ', ', )iA ωs s

                                             
2

2

'( ', ) exp
2

f ω
σ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

rr ,                                              (2.75) 

and considered as statistically independent. In our simulation, the intensity profile is 

statistically averaged over 30 realizations. On substituting from Eq. (2.49) into Eq. (2.65), 

we have the correlation function of the scattering matrix of the form  

*
1 1 2 2( , ', ) ( , ', )S Sω ωs s s s  
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[ ] [ ] [*

1 1 2 2 1 1 2 2( ') ( ') ( '), ( '),f k f k M k k ω= − − − − −s s s s s s s s ] ,        (2.76) 

where 3/2 3 2 2( , ) (2 ) exp / 2f ω π σ σ⎡ ⎤= −⎣ ⎦K K  and  

                       [ ]1 2 2 11 1
( , , ) exp i( )L L

m nm n
M ω

= =
= − ⋅∑ ∑ +K K K r K r⋅ .                       (2.77) 

With all the above information, we can numerically calculate the integral Eq. (2.67). The 

parameters are chosen:  and 632.8nmλ = 0.1σ λ= . The plot below shows two cases: red 

solid curve, intensity of the incident beam scattered by a collection of particles within the 

surrounding of turbulence; black dashed curve, intensity of the incident beam scattered 

by a collection of particles without turbulence. The effect of the turbulence mitigates the 

disorder caused by the scattering particles of gas-like disorder. 

 
 

Fig.2.6 Normalized intensity of a plane wave propagating in the atmospheric turbulence 

with particles (solid curve); without particles (dotted curve) through section.  
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2.3.5 Concluding remarks 

We have developed a new technique for treating passage of light fields in environments 

where both optical turbulence and particle scattering are present. The approach is based 

on the angular spectrum decomposition and is valid for a broad class of optical fields, 

which might have arbitrary spectral and coherence properties. We have restricted 

ourselves to weak scattering regime and weak turbulence regime. However, these 

limitations can readily be overcome on including more terms in the Born and in the 

Rytov series. This analysis may prove an invaluable theoretical tool for making 

predictions about performance of optical systems (imaging, communication, recognition 

and tracking) operating through complex media. The extension of the theory to 

electromagnetic domain and consideration of specific examples is left for a follow-up 

detailed publication.    

 

  



 
 

Chapter 3 

Electromagnetic Scattering Theory 

 

3.1 Theory of Weak Scattering of Stochastic 

Electromagnetic Fields from Deterministic and Random 

Media 

In classical optics domain scattering of electromagnetic fields from deterministic and 

random continuous, static scattering media is treated in Refs. [19-20,48] in great detail. 

Some other aspects of this research area are addressed in Refs.  [49-53]. Theoretical and 

experimental studies relating to scattering from deterministic and random collections of 

particles were carried out in [25-26]. Some applications relating to determination of the 

structure of the medium from scattering experiments can be found in Ref. [54]. These 

investigations revealed that on scattering the statistical properties of light are influenced 

by both the correlation properties of the source and the structure and correlation 

properties of the medium. All these studies were confined to cases in which the incident 

field is either deterministic or scalar. Hence, it was not possible to account for changes in 

those characteristics of the scattered field, which are based on full electromagnetic 

description of stochastic fields, such as, for instance, the degree of polarization [19].   

    In this section we formulate the scattering theory that is valid for electromagnetic 

fields, of both deterministic and random nature, that scatter from deterministic or random 
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media. We use the assumption that the scatterer is weak, employing the first-order Born 

approximation, i.e. ( ) ( )s iU U . The new development allows for determining all the 

properties of the electromagnetic scattered field such as its spectral density, spectral 

degree of coherence and various polarimetric features, such as degree of polarization, 

ellipsometric properties, degree of cross-polarization, etc. Since it is often the case in 

scattering experiments, we predict evolution of the fields before and after scattering event, 

i.e. we incorporate their propagation from the source plane to the scattering medium and, 

after scattering, from the medium to the far-field. We carry the analysis in terms of the 

cross-spectral density matrices, from which one can determine all other second-order 

statistical properties of the field of interest. An example, in which spectral density, and 

the states of coherence and polarization of the scattered field, produced on scattering of 

uncorrelated partially polarized field from delta-correlated slab, is provided to illustrate 

the analytical results. 

3.1.1 Propagation of the electric-field vector through the scattering 

medium 

We begin by considering a monochromatic electric field oscillating at angular frequency 

 and propagating from the source plane  into the half space  (see Fig. 3.1).  ω 0z = 0z >

The transverse component of the electric field vector at a point specified by the 

position vector 'ρ  in the source plane has the form 

                                     (0) (0) (0)( ', ) ( ', ), ( ', )x yE Eω ω⊥ ω⎡ ⎤= ⎣ ⎦E ρ ρ ρ .                                    (3.1) 
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1 'ρ

2 'ρ

 
Fig. 3.1 Illustrating the notation related to propagation of the field from the source plane 

to the scatterer. 

Following the Luneberg’s formulas {see Eq. (1.37) also [56]} the three components of 

the electric field generated by the electric field in the source plane and propagated to a 

point specified by the position vector  in the half space  can be expressed as  1r 0z >

                                
1

(0) 2
1 1

1( , ) ( ', ) ( ', , ) '
2x x zE E Gω ω dω ρ
π

= − ∂∫r ρ ρ r ,                          (3.2a) 

                                
1

(0) 2
1 1

1( , ) ( ', ) ( ', , ) '
2y y zE E Gω ω dω ρ
π

= − ∂∫r ρ ρ r ,                         (3.2b) 

      
1 1

(0) (0) 2
1 1

1( , ) ( ', ) ( ', , ) ( ', ) ( ', , ) '
2z x x y yE E G E Gω ω ω ω ω1 d ρ
π

⎡ ⎤= ∂ + ∂⎣ ⎦∫r rρ ρ ρ ρ r ,        (3.2c) 

where  denotes partial derivative,∂ 1x , , are the Cartesian components of the position 

vector r  and G

1y 1z

1 1( ', , )ωrρ  is the outgoing free-space Green’s function of the form 

 

'O  

1r  

O

2r

 
0r

V  
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exp( ' )

( ', , )
'

ik
G ω

−
=

−
r

r
r

ρ
ρ

ρ
 ,                                              (3.3) 

where  is the wave number and c  is the speed of light in vacuum. From Eqs. 

(3.2), a linear transformation of the two-dimensional vector space containing the vector 

 onto the three-dimensional vector space containing the vector  can 

be conveniently written as 

/k ω=

( ', )ωρ

c

1

(0)
⊥E 1( , )ωE r

                                    (0) 2
1( , ) ( ', ) ( ', , )d 'ω ω ω ρ⊥= ∫ KE r E rρ ρ ,                                  (3.4) 

where the small circle denotes matrix multiplication, and 

               1 1

1 1

1 1
1

1 1

( ', , ) 0 ( ', , )1( ', , )
0 ( ', , ) ( ',2

z x

z y

G G

G G

ω ω
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ω ωπ
−∂ ∂⎡ ⎤
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r r
K r

r r

ρ ρ
ρ

ρ ρ , )
,         (3.5a) 

                                 1 11

1 1

0 '( , )
0 '2
z xL R

z y y
ω
π

− − x⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

.                                                 (3.5b) 

Here 'x ,  are the Cartesian components of the transverse vector 'y 'ρ , and 

                                            1
1 3

1

( 1)exp( )( , ) ikR ikRL R
R

ω −= 1 ,                                          (3.6)  

with 1 1 'R = −r ρ . More explicitly, Eq. (3.4) can be written as, 

1( , )ωE r  

1 1(0) (0) 2
1

1 1

0 '1 ( , ) ( ', ) ( ', )
0 '2 x y

z x x
L R E E d

z y y
ω ω ω ρ

π
− −⎡

⎡ ⎤= ⎢⎣ ⎦ − −⎣ ⎦
∫ ρ ρ ⎤

⎥ .            (3.7) 
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When a monochromatic electromagnetic field is incident on a linear, isotropic, 

nonmagnetic medium occupying a finite domainV (see Fig. 3.2), the scattered field at a 

point specified by position vector ( ) may be expressed in the form [19], rs 2 1=s

                                             ( ) ( , ) ( , )s
er ω = × × r ωE s ∇ ∇ ∏ s ,                                       (3.8) 

where  is the electric Hertz potential defined by the formula e∏

                                 1 3
1

1

exp( )
( , ) ( , )e V

ik r
r d

r
ω ω

−
=

−∫
s r

s P r
s r

∏ 1r ,                                  (3.9)  

Here  is the polarization of the medium, which may be expressed as, within the 

accuracy of the first-order Born approximation, as 

1( , )ωP r

                              ( ) ( )
1 1 1 1 12

1( , ) ( ) ( , ) ( ) ( , )i F
k

ω η ω ω= =P r r E r r E ri .                             (3.10) 

where η  is the dielectric susceptibility and the scattering potential of the medium is 

defined in Eq. (1.12). 

On substituting from Eqs. (3.9) and (3.10) into Eq. (3.8), we obtain the formula for the 

scattered field outside of the scattering medium 

                    1( ) ( ) 3
1 12

1

exp( )1( , ) ( ) ( , )s i

V

ik r
r F

k r
ω ω

−
= × ×

−∫
s r

E s r E r
s r

∇ ∇ 1d r .               (3.11) 
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Fig. 3.2 Illustrating the spherical coordinate system and notation relating the scatterer and 

the scattered field in the far zone. 

Eq. (3.11) is the general result for the scattered field within the accuracy of the first-order 

Born approximation, which is too complex to be employed in analytical calculations. It, 

however, simplifies significantly in the far zone of the scatterer. In this case Eq. (3.8) is 

reduced to the following formula 

        ( ) 2 exp( )( , ) { [ ( , )]}s ikrr k k
r

ω ω= − × ×E s s s P s ,                            (3.12) 

where ( , )k ωP s  is the three-dimensional Fourier transform of 1( )P r , i.e.,                                 

                      1 13 ( )
1 1 1 12

1( , ) ( ) e ( ) ( )eik iki

V V
k d r F

k
ω − ⋅ − ⋅= =∫ ∫s r s rP s P r r E r 3

1d r .                 (3.13) 

On substituting from Eq. (3.13) into Eq. (3.12), after straightforward vector 

multiplication, we rewrite Eq. (3.12) as 

O  

y
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rs eϕ

eθ
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θ

V
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             ( ) ( ) ( ) 3
1 1 1 1

exp( )( , ) ( )[ ( ) ( ( )) ]exp( )s i i

V

ikrr F ik
r

ω = − ⋅∫E s r E r s E r s s r 1d r− ⋅ .        (3.14) 

which is the asymptotic expression of Eq. (3.11) in the far zone. More explicitly, Eq. 

(3.14) can be rewritten in matrix form         

( ) ( , )s r ωE s  

( ) 2
1

( ) 2 3
1 1 1

( ) 2
1

( , ) 1
exp( ) ( ) ( , ) 1 exp( )
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y y x y y zV
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z z x z y z

E s s s s s
ikr

1F E s s s s s ik
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E s s s s s

ω
ω
ω

⎡ ⎤ ⎡ ⎤− − −
⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

∫
r

r r s r
r

d r− ⋅ ,   (3.15) 

where ( , , )x y zs s s=s .  

    It is evident from Eq. (3.12) that , i.e. that the scattered field in the far 

zone is orthogonal to s , or, transverse. Therefore, it will be convenient to represent such 

a transverse field in terms of the spherical polar coordinate system where it only has two 

non-zero components. As illustrated in Fig. (3.2), the transformation between the 

Cartesian coordinate system and the spherical coordinate system can be expressed as 

( ) ( , ) 0s r ω⋅s E s =

                               
e e sin cos cos cos sin
e e sin sin cos sin cos
e e cos sin 0

T T
r x

y

z

θ

ϕ

θ ϕ θ ϕ ϕ
θ ϕ θ ϕ ϕ
θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

,                  (3.16) 

or in the reverse form 
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e e cos cos cos sin sin
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TT
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,                   (3.17) 
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where ex , e , e , e , ,y z r eθ eϕ  are the unit vectors. Thus, we may rewrite Eq. (3.15) as 
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∫
r

r r s r
r

k r⋅ .  (3.18) 

    On passing to the next section we note that in order for a wave of wave number k , 

located at distance r  from the scatterer to the observation point to be in the far field of 

scatterer with size , the following restriction should be met (see Ref. [48], section 3.2) a

                                                    21max 1, ( )
2

kr ka⎡ ⎤
⎢ ⎥⎣ ⎦

.                                             (3.19)        

Previously we set the origin in the source plane when we deal with the electric field in 

the half space  generated by the source plane. Then we set the origin in the 

scattering medium in order to derive the explicit form of the scattered field. In order to 

combine the two representations, we suppose the origin is located within the scattering 

medium and specified by the position vector 

0z >

0 0 0 0( , , )x y z=r

1r

 from the perspective of the 

previous system. Then, Eq. (3.7) becomes (after replacing  by ) 1 0+r r

1( , )ωE r  

1 0 1 0(0) (0) 2
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− + + −⎡ ⎤
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(3.20) 

where now 1 1 0 'R = + −r r ρ . On substituting from Eq. (3.20) into Eq. (3.18), we obtain 

for the scattered field in spherical polar coordinate system (keeping only ,θ ϕ components) 

the formula 

( )

( )

( ) exp( )
( ) 2

Ts

s

E r ikr
E r r
θ

ϕ π
⎡ ⎤

=⎢ ⎥
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s
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(0) (0) 3 2
1 1 1 1 1( ) ( , ) ( ', ) ( ', ) ( , , , ') exp( ) 'x yV

F L R E E ik d r dω ω ω θ ϕ ρ⎡ ⎤× −⎣ ⎦∫ ∫ r M rρ ρ ρ ⋅s r

1

 , 

                                                                                                                                   (3.21)  

where 1 1 1sin cos sin sin cosx y zθ ϕ θ ϕ θ⋅ = + +s r  and  

        
.     (3.22)                           1 0 1 0 1 0

1
1 0 1 0 1 0

cos cos ( ) sin ( ') sin ( )
( , , , ')

cos sin ( ) sin ( ') cos ( )
z z x x x z z
z z y y y z z

θ ϕ θ ϕ
θ ϕ

θ ϕ θ ϕ
+ + + − − +⎡ ⎤

= ⎢ ⎥+ + + − +⎣ ⎦
M r ρ

3.1.2 Propagation of the cross-spectral density matrix of the 

electromagnetic field 

2 2×

The transformation law for the cross-spectral density matrix of a stochastic, wide-sense 

statistically stationary electromagnetic field, which interacts with the scattering system of 

interest, can be determined from Eq. (3.21). Let the fluctuations of the electric field at the 

source plane be characterized by the cross-spectral density matrix [20] 2 2×

  0 (0)* (0)
1 2 1 1' , ' , ) ( ' , ) ( ' , )E Eα βω ω ω ⎤⎦ ; ,⊥

⎡( = ⎣
（ ） ρ ρ ρ ρ )W    ( ,x y xα yβ= = .           (3.23) 

 
 



61 
 

Then suppose that the correlation properties of the electric field at a pair of points in 

spherical polar coordinate system, specified by position vectors  and 1rs 2rs

[ (sin cos ,sin sin ,cos )]θ ϕ θ ϕ θ=s  are characterized by the cross-spectral density 

matrix 

2 2×

         ( )* ( )
1 2 1 2( , , ) ( , ) ( , )s sr r E r E rα βω ω ω ⎤⎦ ; ,α θ⎡= ⎣s s s )W s     ( ,ϕ β θ ϕ= = ,            (3.24) 

or, equivalently,    

                                 ( ) ( )
1 2 1 2( , , ) ( , ) ( , )s sr r r rω ω+=W s s E s E s ω ,                              (3.25) 

where†denotes the Hermitian adjoint and ( ) ( ) ( )( , ) ( ) ( )s s sr E r E rθ ϕω ⎡ ⎤= ⎣ ⎦E s s

†A

s . Using Eq. 

(3.21), the matrix identity ( ) , and after interchanging the order of 

averaging and integration, we find that 

† †=A B B
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* *
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ω ω
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                    * *
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62 
 

2 2 3 3
1 2 1' 'd d d r dρ ρ× 2r ,                                                                            (3.26) 

or, more explicitly, 

W W
W W
θθ θϕ
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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              , 
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W W
d d d r d r

W W
θ ϕ θ ϕ ρ ρ

⎡ ⎤
× ⎢ ⎥

⎢ ⎥⎣ ⎦
M r M rρ ρ

(3.27) 

where 1 1 1 1( , , , ')θ ϕM r ρ  and 2 2 2 2( , , , ')θ ϕM r ρ  are given by Eq. (3.22) and 1 1 0 1 'R = + −r r ρ , 

2 2 0 2 '= + −r rR ρ . 

    We note that in the case when the scattering medium is located close to the z axis, 

i.e., about position , with the use of Taylor expansion 

−

0(0,0, )z 11 1
2

λ λ+ +∼ ( 0)λ → , 

Eq. (3.6) is reduced to 

2
1 1 0 12

1 0 1 0

( , ) exp[ ( )]exp{ [( ') ( ') ]}
( ) 2( )

ik ikL R ik z z x x y y
z z z z

ω = + − +
+ +

2
1 − ,    (3.28) 

which considerably simplifies the subsequent analysis.  
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3.1.3 Example and concluding remarks 

We will now restrict our attention to scattering of a field generated by an uncorrelated 

source, which in general is partially polarized, from a delta-correlated slab. Suppose that 

a field is generated in a two-dimensional domain D  confined to the plane . Such a 

source may be characterized by the 2  cross-spectral density matrix of the form [57-58] 

0z =

2×

                                 (0) (0) (2)
1 2 1 2 1( ', ', ) ( ', ) ( ' ')ω ω δ=W S −ρ ρ ρ ρ ρ ,                               (3.29) 

where (2)
2 1( ' ')δ −ρ ρ  is a two-dimensional Dirac delta-function and 

                                     ,   ( , .                                (3.30) (0) (0)( ', ) [ ( ', )]ijSω ω=S ρ ρ , )i j x y=

We also suppose that the fluctuations in the scattering volume are delta-correlated, i.e.  

                             * (
1 2 1 2 2 1( , , ) ( ) ( ) ( ) ( )FC F F Aω ω δ= =r r r r r r3) −

)

]

,                             (3.31) 

(3)
2 1(δ −r r  being a three-dimensional Dirac delta function and  a function which is 

independent of position. On substituting from Eqs. (3.29), (3.30) and (3.31) into Eq. (3.27) 

we find that 

( )A ω

1 2[ ( , , )W r rαβ ωs s  

2
1 12 2

1 ( ) ( , ) exp[ ( ) ]
4 V

A L R ik
r

ω ω
π

= −∫ ∫ s s r2 1⋅  

                         ,  (0) 2 3
1 1 1 2 2 1 1( , , ) [ ( ', )] ( , , )d 'dT

ijS rθ ϕ ω θ ϕ ρ×M r M rρ
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( , , ; , , )i j x yα β θ ϕ= = .   (3.32) 

We will now illustrate the preceding analysis by restricting ourselves to partially 

polarized incoherent electromagnetic Gaussian Schell-model beams, for which the 

elements of the correlation matrix are 

                              
2

(0)
2

'( ', ) exp{ }
2ij i j ijS I I Bω
σ

= − ρρ ,   ( , .               (3.33) ; ,i x y j x y= = )

where, for simplicity, ., i.e. the field in the source plane is unpolarized. It also 

follows from the properties of the cross-spectral density matrix that 

1x yI I= =

xy yxB B= = B [20]. 

On substituting from Eqs. (3.28) and (3.33) into Eq. (3.32) after some straightforward 

calculations and decomposition of ( , , )θ ϕM r  matrix into two, we find that 

2 2
1 1 1 1

1 2 2
1 1

cos cos cos sin sin( )[ ( , , )]
sin cos 02

A kW r r
rαβ

θ 1ϕ θ ϕ θω σω
ϕ ϕπ

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

s s    

                            1 2 1
4

1 0

exp[ ( ) ]
( )V

ik
z z

− ⋅
+∫
s s r  

2 2
1 0 1 0 1 0 1 1

2 2
1 0 1 0 1 0 1 1

2 2 2
1 0 1 1 1 0 1 1 1 1 1 1

( ) ( ) ( ) )
( ) ( ) ( ) ) d

( ) ) ( ) ) 2 2

z z B z z z z x By
3

1B z z z z z z Bx y r
z z x By z z Bx y x y Bx y σ

⎡ ⎤+ + − + +
⎢ ⎥× + + − + +⎢ ⎥
⎢ ⎥− + + − + + + + +⎣ ⎦

（

（

（ （

            

                         
2 2 2

2 2

2

cos cos sin
cos sin cos

sin 0

θ ϕ ϕ
θ 2ϕ ϕ
θ

−⎡ ⎤
⎢− −⎢
⎢ ⎥⎣ ⎦

⎥
⎥ , )α     ( ,β θ ϕ= .                                    (3.34) 
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For a specific case, we consider a delta-correlated hard-edge slab, with dimensions in 

Cartesian coordinate system 1 1( , 1)x L L∈ −

) ( ,W rαβω ⎡=⎣ ⎦ ⎣s

S

,  and , which also 

satisfy that . We note that the assumption that the scattering medium has 

hard edges does not contradict the first-Born approximation as long as the refractive 

index within the slab differs only slightly from that of surrounding free space. We will 

calculate matrix ⎡ ⎤  on which the statistical properties of 

interest, such as the spectral density   and the spectral degree of polarization , depend. 

Later we will turn to the spectral density matrix 

1 2( ,y L L∈ −

, )r ω ⎤⎦s s

( ,W rαβ

2 ) 3)1 3( ,z L L∈ −

, )ω

1 2 3 0, ,L L L z

( ,S rαβ

P

1 2r⎡ ⎤⎣ ⎦s s  at two different points 

on which the degree of coherence μ  depends in the paraxial propagation regime, i.e. 

when inclination angle  is small. Therefore, by assuming , we rewrite Eq. 

(3.34) as 

θ 1 2= =s s s

[ ( , , )W r rαβ ωs s ]  

2 2
0

2 2
0

cos cos cos sin sin( )
sin cos 02

A k V
r z

θ ϕ θ ϕ θω σ
ϕ ϕπ

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

                        
2 2 2
1 2
2 2 2
0 0 0

1 0 cos cos s
1 0 cos sin co

sin 020 0
3 3

B
B

L L
z z z

θ in
s

ϕ ϕ
θ ϕ ϕ
θσ

⎡ ⎤
⎢ ⎥ −⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥+ +⎢ ⎥⎣ ⎦

  

( , , )α β θ ϕ= .      (3.35) 
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For paraxial propagation ( is small) the terms containing horizontal axis are negligible. 

Therefore, Eq. (3.22) becomes 

θ

                           1 0 1 0
1

1 0 1 0

cos cos ( ) sin ( )
( , , )

cos sin ( ) cos ( )
z z z z
z z z z

θ ϕ ϕ
θ ϕ

θ ϕ ϕ
+ − +⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦
M r .                      (3.36) 

On substituting Eq. (3.36) into Eq. (3.35), we have, in a more explicit form, the

cross-spectral density matrix in spherical polar coordinate system, 

2 2×

2 2
31 2 1

1 2 2 2
1 0

exp[ ( ) ]( )[ ( , , )] d
2 ( )V

ikA kW r r r
r z zαβ

ω σω
π

− ⋅=
+∫
s s rs s 1

2

            

1 1 1 1 2 2 2

1 1 2 2

cos cos cos sin cos cos sin1
sin cos cos sin cos1

B
B

θ ϕ θ ϕ θ ϕ ϕ
ϕ ϕ θ ϕ ϕ

−⎡ ⎤ ⎡⎡ ⎤
× ⎢ ⎥ ⎢⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎦

,  

( , , )α β θ ϕ=    (3.37) 

where 1 1 1 1 1(sin cos ,sin sin ,cos )θ 1ϕ θ ϕ θ=s , 2 2 2 2 2(sin cos ,sin sin ,cos )θ 2ϕ θ ϕ θ=s  are the 

unit vectors at two different directions. Under the hard-edge slab assumption, the integral 

in Eq. (3.37) becomes  

               23 0 11 2 1
12 2

1 0 0

22 2exp[ ( ) ] sin ( )sin ( )sin ( )
( )

yx z
V

s LV s L sik d r c c c
z z z λ λ

− ⋅ =
+∫
s s r 3L

λ

3

,           (3.38) 

where  being the volume of the slab，  0 1 2V L L L= λ  is the free-space wavelength 

associated with free-space wave number k  and , i.e., 1 2( )i i= −s ss ( , ,i x y z= )

21 1cosθ 2sin sin cosxs ϕ θ ϕ= − , etc. On substituting from Eq. (3.38) into Eq. (3.37), the 

 cross-spectral density matrix of the scattered field in the far zone in paraxial 2 2×
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propagation, generated by a partially polarized incoherent electromagnetic source through 

a delta-correlated thin slab, in polar coordinate system, becomes  

1 2[ ( , , )W r rαβ ωs s ] 

2 2
20 1

2 2
0

2( ) 2 2sin ( )sin ( )sin ( )
2

yx zs LA k V s L s Lc c c
r z

ω σ
π λ λ

= 3

λ

2

 

1 1 1 1 2 2 2

1 1 2 2

cos cos cos sin cos cos sin1
sin cos cos sin cos1

B
B

θ ϕ θ ϕ θ ϕ ϕ
ϕ ϕ θ ϕ ϕ

−⎡ ⎤ ⎡⎡ ⎤
× ⎢ ⎥ ⎢⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎦

.    (3.39) 

From the components of the cross-spectral density matrix the spectral density S , the 

degree of coherenceμ  and the spectral degree of polarization  are defined in Eq. (1.6), 

Eq. (1.7) and Eq. (1.8), respectively. 

P

                   
Fig. 3.3 Normalized spectral density of the scattered field in the far zone vs. the 

inclination angle, with 
6
πϕ = .
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We will now illustrate the results by a set of figures. The following parameters are used 

for the plots: , 15 110 sω −= 2 cπλ
ω

= , 3
1 2 5 10L L λ= = × , , 3

3 10L λ= 5
0 10z λ= , . 

Fig. 3.3 shows the normalized spectral density defined by Eq. (1.6) of the field in the far 

zone generated by a partially polarized incoherent EMGSM source and scattered by a 

1mmσ =

 
Fig. 3.4 The spectral degree of polarization of the scattered field in the far zone vs. the 

inclination angle, with 0ϕ = . 

delta-correlated hard-edge scatterer for several values of the degree of polarization  of 

the field in the source plane. Fig 3.4 shows the degree of polarization, defined in Eq. (1.8), 

of the scattered field in the far zone. We see from Fig. 3.4 that the spectral degree of 

polarization of the scattered field in the paraxial region (the inclination angle is about 

zero) has its original value . In fact, similar result can be found from Ref. [58], where 

propagation of a partially polarized incoherent electromagnetic source in the paraxial 

oP

oP
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approximation is considered without scattering. This may be verified by substituting a 

Gaussian Schell-model beam into Eqs. (9), (10) of Ref. [58].  

 
Fig. 3.5 The spectral degree of coherence of the scattered field in the far zone at two 

points vs. the azimuth separation angle ϕΔ . 

In Fig. 3.5 we show the spectral degree of coherence, defined in Eq. (1.7), of the 

scattered field in the far zone with azimuthal separation angle ϕΔ . At the first glance, the 

value of degree of coherence is independent of the radial distance r , but it is not the case. 

Since for larger radial distance, two points with fixed azimuth angle difference will 

separate from each other larger, i.e. the distance between two points with fixed azimuth 

angle difference is proportional to the radial distance r . For coherence area AΔ  is 
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proportional to  which obeys the van Cittert-Zernike theorem in the far zone. Fig. 3.5 

clearly shows the fact that for small inclination angles, the degree of coherence curve is 

wider, since the distance between two points is smaller.  

2r
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3.2 Momentum of Light Scattered from Collections of 

Particles 

In applications involving optical trapping of particles, such as optical tweezers which 

recently gained popularity [59-60], it is crucial to determine and control the momentum 

flow of the electromagnetic field. The momentum flow at any spatial position and time 

instant can be found from the Maxwell stress tensor. The basic theory on this subject 

relating to monochromatic fields can be found in classic text [61], and its extension to 

partially coherent fields belongs to Ref. [62] in space-time domain and to Ref. [63] in 

space-frequency domain, including the corresponding momentum conservation laws. 

In optical tweezers it is crucial not only to control the momentum flow of the field 

incident on the particles but also to predict its behavior upon scattering. The purpose of 

this work is to evaluate the angular distribution of the momentum flow of an 

electromagnetic field scattered by a deterministic or random media, which may be a 

single scatterer or a collection, and to elucidate how the momentum flow of the scattered 

light wave relates to the individual and collective properties of the scatterers. To illustrate 

our theoretical analysis, we consider a pair of numerical examples in which a 

polychromatic electromagnetic plane wave is scattered from a collection of identical 

particles having deterministic potentials and either deterministic or random locations.         
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3.2.1 Momentum flow of an electromagnetic field on weak scattering. 

We begin by considering a polychromatic electromagnetic vector-field 

 at a point with position-vector r , at angular 

frequency , which is incident onto a medium with volume V  where only the 

polarization,  is induced, i.e. only the electric properties of the medium modulate 

the field in a nontrivial fashion. It is the case for most substances. Specialized to 

polychromatic fields, the scattered electric and magnetic fields outside the scattering 

volume V may be expressed, respectively, as (Ref. [19], Sec. 13.6)   

( ) ( ) ( ) ( )( , ) ( , ), ( , ), ( , )i i i i
x y zE E Eω ω ω⎡= ⎣E r r r r

ω

( , ),ωP r

ω ⎤⎦

ω

ω

r

                                         ,                                             (3.40) ( ) ( , ) ( , )s
eω = × ×E r r∇ ∇ Π

                                         ,                                              (3.41) ( ) ( , ) ( , )s
eikω = − ×B r r∇ Π

where  is defined by Eq. (3.9) (we repeat here for the convenience of readers) ( , )e ωrΠ

                                     ,                                       (3.42)  3( , ) ( ', ) ( ') 'e V
G dω ω= −∫r P r r rΠ

where  is a point within volume V and 'r

                                                exp( )( ) ( ) ikRG G R
R

= =R ,                                           (3.43) 

is the free-space Green’s function for the Helmholtz equation. Further, if the response of 

the medium is linear and the scattering is sufficiently weak, the constitutive relation may 

be expressed, within the accuracy of the first-order Born approximation, as [20] 
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( )

( )
2

( ', ) ( ', ) ( ', )
1 ( ', ) ( ', )

i

iF
k

ω η ω ω

ω ω

=

=

P r r E r

r E r
,                                           (3.44) 

where ( ', )η ωr  is the dielectric susceptibility and  is the scattering potential of 

the medium being defined by Eq. (1.12). 

( ', )F ωr

    It is often of interest in scattering experiments to examine the behavior of the scattered 

field in the far zone. By denoting ,  being the unit vector, we can approximate the 

free-space Green’s function by the form  

r=r s s

                                         
exp( ' ) exp( ) exp( ')

'
ik ikr ik r

r
−

= −
−

s
r r

r r
⋅ .                             (3.45)  

On substituting from Eqs. (3.42), (3.44) and (3.45) into Eq. (3.40) we find that the 

scattered electric field in the far zone becomes [see Eq. (3.16)] 

                  ( ) ( ) 3
1

exp( )( , ) ( ', ) ( ', ) ( ) exp( ') 's i

V

ikr F i
r

ω ω ω= −∫E r r E r S s s rk d r⋅ ,         (3.46) 

where circle stands for matrix multiplication (not to be confused with dot product and 

cross-product) and tensor 1( )S s  in the explicit form is  

                                        

2

2
1

2

1
( ) 1

1

x x y x z

y x y y z

z x z y z

s s s s s
s s s s s
s s s s s

⎛ ⎞− − −
⎜= − − −⎜
⎜ ⎟− − −⎝ ⎠

S s ⎟
⎟ .                                         (3.47) 

     Similar procedure leads to the expression of the scattered magnetic field in the far 

zone: 
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                ( ) ( ) 3
2

exp( )( , ) ( ', ) ( ', ) ( )exp( ') 's i

V

ikr F i
r

ω ω ω= −∫B r r E r S s s rk d r⋅

xs ⎟
⎟

,          (3.48) 

with 

                                               .                                           (3.49) 2

0
( ) 0

0

z y

z

y x

s s
s

s s

⎛ ⎞−
⎜= −⎜
⎜ ⎟−⎝ ⎠

S s

We note that Eqs. (3.46) and (3.48) are the same transformation laws in form, except they 

involve different transformation matrices, Eqs. (3.47) and (3.49), respectively. In 

particular, 1S  is a symmetric matrix while 2S  is anti-symmetric one. Further, since 

, , and ( ) 0s⋅ =s E ( ) 0s⋅ =s B ( ) ( )s s= ×B s E , the scattered electromagnetic field is the 

outgoing spherical wave which propagates in the direction of the unit vector s , i.e. in the 

outward radial direction from the scatterer. The incident field and the transformation 

matrices are all expressed in the Cartesian coordinate system, hence the resulting 

scattered fields are also in the same system. Then the total field including the incident 

filed and the scattered field may be expressed 

                                        ( ) ( )( , ) ( , ) ( , )i sω ω= + ωE r E r E r ,                                       (3.50) 

                                        .                                        (3.51) ( ) ( )( , ) ( , ) ( , )i sω ω= +B r B r B r ω

    The fields considered are out of the dielectric materials to avoid the Abraham-

Minkowski controversy [64]. The Maxwell stress tensor ( , )ωT r  of a monochromatic 

field in the space-frequency domain was shown to be given by the formula [63] 
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                   }† †1 1( , ) ( , ) ( , ) ( , ) ( , )
4 2

Trω ω ω ω
π
⎧ ω⎡ ⎤= −⎨ ⎣ ⎦⎩

T r E r E r E r E r I  

                                }† †1 1( , ) ( , ) ( , ) ( , )
4 2

Trω ω ω ω
π
⎧ ⎡ ⎤+ −⎨ ⎣ ⎦⎩

B r B r B r B r I ,             (3.52) 

where I  is a unit 3 matrix and Tr  stands for the trace of a matrix. Then the 

momentum flow  is defined, as a function of normal direction , as 

3×

( )rsQ s

                                                     ( ) ( , )r ω= ⋅Q s s T r .                             (3.53) 

   The total change in momentum within the volume V  containing the scattering media 

can be identified as the sum of the change in mechanical momentum of the scattering 

media and the change in the momentum of enclosed electromagnetic fields. According to 

the momentum conservation law the total change in momentum is equal to the net 

momentum flow introduced by the total field, through the surface enclosing volume V , 

which may be predicted by Eq. (3.53). 

3.2.2 Momentum flow of a scattered polychromatic plane wave 

    Let us now confine our analysis to the case of an incident polychromatic plane wave 

propagating along the axis, i.e. having wave vector  z − 0 [0,0,1]=s

                                        (( )
0( ', ) ( ) exp( ')iE a ikγ γω ω= ⋅r s r , )x yγ = ,                          (3.54) 

where  is the amplitude of the electric field and only the two transverse 

components are nontrivial. The magnetic counterpart of the incident field  

( )aγ ω
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( ) ( )
0( ', ) ( ', )i iω = ×B r s E r ω  (Ref. [19], Sec. 1.4) may be expressed, for the planar wave-

front, as 

                                           ( ) ( )
2 0( ', ) ( ', ) ( )i iω ω=B r E r S s

⎟
⎟

,                                      (3.55) 

where  and ( ) ( )( ', ) ( 'i ω =B r ( ) ( ), ), ( ', ), ( ', )i i i
x y zB B Bω ω ω⎡ ⎤⎣ ⎦r r r

                                                  .                                               (3.56)    2 0

0 1 0
( ) 1 0 0

0 0 0

⎛ ⎞
⎜= −⎜
⎜ ⎟
⎝ ⎠

S s

where the 2S  matrix is introduced in Eq. (3.49). In a general case when either the 

incident field is stochastic, wide-sense statistically stationary and/or scattering medium 

acts on the incident field in a random but static manner the resulting scattered 

electromagnetic field is also wide-sense statistically stationary [23]. To characterize the 

second-order correlation properties of fluctuating fields we use the cross-spectral density 

tensors at coinciding spatial arguments for its electric and magnetic counterparts as 

follows [23]  

                                       †( , , )= ( , ) ( , )E ω ω ωr E r E rW r ,                                       (3.57) 

                                       †( , , )= ( , ) ( , )B ω ω ωr B r B rW r ,                                        (3.58) 

dagger standing for Hermitian adjoint, and angular brackets denoting the ensemble 

average in the sense of classic coherence theory in the space-frequency domain.   
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    On substituting from Eq. (3.54) into Eq. (3.57) we find that at coinciding spatial 

arguments the electric cross-spectral density matrix of the incident polychromatic plane 

wave has the form  

                                            ( ), ( )( , , ) ( )ii E iSω ω=W r r C ,                                              (3.59) 

where * ( ) ( ) ( )ia a A A B Sγ χ γ χ γχω ω ω= ( )

0

⎟
⎟

2 0

, star standing for complex conjugate, and tensor   

                                          ,                                                (3.60) 

2

2

0
0

0 0

x x y

y x y

A A A B
A A B A

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

C

characterizes the correlation properties between the mutually orthogonal components of 

the field. In a similar way we find that the correlation tensor of the incident magnetic 

fields has the form  

                              ,                                (3.61) ( ), ( )
2 0( , , ) ( ) ( ) ( )ii B iSω ω= −W r r S s C S s

where the negative sign results from the anti-symmetry of tensor 2 0( )S s .  

    The correlation tensors of the scattered electric and magnetic fields can also be 

determined on substituting from Eq. (3.47) into Eq. (3.57) and from Eq. (3.49) into Eq. 

(3.58), using Eq. (3.59) respectively, 

                ( ), ( ),
1 12

1( , , ) ( , , ) ( ) ( , , ) ( )ss E ii E
FC

r
ω ω ω= −W r r K K S s W r r S s  

                                        ( )
12

1 ( ) ( , , ) ( ) ( )i
FS C

r
ω ω= −K K S s C S s1 ,                       (3.62) 
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                ( ), ( ),
2 22

1( , , ) ( , , ) ( ) ( , , ) ( )ss B ii E
FC

r
ω ω= − −W r r K K S s W r r Sω s  

                                       ( )
22

1 ( ) ( , , ) ( ) ( )i
FS C

r
ω ω= − −K K S s C S s2

)

,                     (3.63) 

where  resembles the momentum transfer vector in quantum mechanics and 0(k= −K s s

            * 3
1 2 2 1 1( , , ) ( ', ) ( ', ) exp[ ' ')] ' 'F

mV V
C F F i d r d rω ω ω− = − ⋅ −∫ ∫ (K K r r K r r 3

2

ω

ω

,       (3.64) 

is the six-dimensional Fourier transform of the correlation function of the scattering 

potential of the medium.  

The total electric field produced on scattering is the sum of the incident electric field 

and the scattered electric field and, hence, the cross-spectral density tensor of the total 

field includes a cross-term appearing from their interference. The same is true for the 

magnetic fields. Thus we have by substituting Eqs. (3.50) and (3.51) into Eqs. (3.57) and 

(3.58), respectively,  

                  ,              (3.65) ( ), ( ), ( ),( , , ) ( , , ) ( , , ) ( , , )E ii E ss E is Eω ω ω= + +W r r W r r W r r W r r

                 .               (3.66) ( ), ( ), ( ),( , , ) ( , , ) ( , , ) ( , , )B ii B ss B is Bω ω ω= + +W r r W r r W r r W r r

where the mixed terms are given by the formulas 

( ), ( ) ( ) ( ) ( )( , , ) ( , ) ( , ) ( , ) ( , ) ,is E s i i sω ω ω ω+ += +W r r E r E r E r E r ω          (3.67)
 

( ), ( ) ( ) ( ) ( )( , , ) ( , ) ( , ) ( , ) ( , ) .is B s i i sω ω ω ω+ += +W r r B r B r B r B r ω           (3.68)
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    We will now turn our attention to calculation of the momentum flow of the scattered 

field. For electromagnetic stochastic fields the ensemble averaged version of the stress 

tensor can then be generalized from Eq. (3.53) as [63]                                 

                         
}1 1( , ) ( , , ) ( , , )

4 2
E ETrω ω

π
⎧ ω⎡ ⎤= −⎨ ⎣ ⎦⎩

T r W r r W r r I  

                                         }1 1( , , ) ( , , )
4 2

B BTrω
π
⎧ ω⎡ ⎤+ −⎨ ⎣ ⎦⎩
W r r W r r I .                        (3.69)    

   On substituting from Eqs. (3.65) and (3.66) into Eq. (3.69), we find that in the situation 

involving scattering the total stress tensor has the following general form:  

                        
( ) ( ) ( )

( , ) ( , ) ( , ) ( , )
i s is

ω ω ω= + +T r T r T r T r ω .                         (3.70)  

Here the Maxwell stress tensors of the incident and scattered fields as well as of the 

mixed term are, respectively: 

                       ( ) ( ) }( ) ( ), ( ), ( ), ( ),1 1
4 2

i ii E ii B ii E ii BTr
π
⎧= + − +⎨
⎩

T W W W W I ,                   (3.71) 

                       ( ) ( ) }( ) ( ), ( ), ( ), ( ),1 1
4 2

s ss E ss B ss E ss BTr
π
⎧= + − +⎨
⎩

T W W W W I  ,               (3.72)        

                       ( ) ( ) }( ) ( ), ( ), ( ), ( ),1 1
4 2

is is E is B is E is BTr
π
⎧= + − +⎨
⎩

T W W W W I ,                 (3.73)    

where the arguments of the tensors are suppressed for brevity. In the present work we 

assume that the interference between the incident and the scattered fields is weak and can 
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be neglected, i.e. 
( )

0
is
≈T , which is usually the case. We make such an assumption 

since a random scattering medium may change the incident field, making the statistical 

properties of the scattered field completely uncorrelated with the original incident field. 

Therefore in a majority of recently published papers about scattering, the researchers only 

consider the correlation properties between the scattered fields themselves (see, for 

example, Ref.[20], Chap.6; Ref.[14]; Ref. [32]). Then the explicit expression for 
( )i

T  

may be obtained by substituting from Eqs. (3.59) and (3.61) into Eq. (3.71) as  

                              
( ) ( )

2 2

0 0 0
1( , ) ( ) 0 0 0

4
0 0

i i

x y

S
A A

ω ω
π

⎛ ⎞
⎜= − ⎜
⎜ ⎟+⎝ ⎠

T r ⎟
⎟ .                              (3.74) 

We note that for the momentum flow of the incident plane wave propagating into a plane 

perpendicular to radial unit vectors , only the component is nontrivial since [see Eq. 

(3.53)] 

z −

                      ( )( )( )( ) ( ) 2 21( ) ( , ) ( ) 0 0
4

ii i
x y zr Sω ω

π
= ⋅ = − +Q s s T r A A s .              (3.75) 

    On the other hand, for the scattered field the Maxwell stress tensor is a function of 

radial direction s , which can be readily asserted on substituting from Eqs. (3.62) and 

(3.63) into Eq. (3.72), to obtain the expression for the momentum flow  of the 

scattered field as 

( ) )s r(Q s

          

( )( ) ) ( ,
ss r ω≡ ⋅(Q s s T r )  
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(( )
2

1 ( ) ( , , )
4

i T
FS C Tr

r
ω ω

π
= − − −K K C s C s s)

)

,                      (3.76) 

where ( , ,x y z= s s ss . Eq. (3.76) is the main result of the paper. It can be used to 

determine the angular distribution of the momentum flow of the scattered field in the far 

zone as it propagates into a plane perpendicular to radial unit vector . We note that only 

the field component along the radial direction is nontrivial and is independent of the 

incident direction. Eq. (3.76) implies that the momentum flow Q  of the scattered 

field depends on the correlation function of the potential of the scattering medium and on 

the correlation properties of the incident field. Thus, there is no net momentum flow for 

an incident electromagnetic plane wave, even though the angular distribution of the stress 

tensor is nontrivial. However, as for the momentum flow introduced by the scattered field, 

its angular distribution does not only depend on the degree of polarization of the incident 

plane waves, but also upon the distribution of the scattering materials and the correlation 

properties of the media. Therefore, the net scattered momentum flow is nontrivial, being 

influenced by physical and statistical properties of the scattering medium.      

s

( ) (r )s s

3.2.3 Numerical examples 

    We will now employ the theoretical development of Sections 3.2.1 and 3.2.2 for 

solving an important class of problems relating to angular momentum distribution of light 

scattered from deterministic and random particulate media.  For simplicity we will 

confine ourselves only to collections of identical particles. The scattering potential of the 

collection can be expressed as sum 

 
 



82 
 

                                               ,                                          (3.77)   
1

( , ) ( , )
M

m
m

F ' f 'ω
=

= −∑r r ωr

where  is the center of a particle labeled with m . Further, the Fourier transform of the 

correlation function of the medium then takes form [20] 

mr

                                     
2

( , , ) ( , ) ( , )FC f Mω ω− =K K K K ω ,                                    (3.78) 

where ( , )f ωK

)ω

 is the Fourier transform of scattering potential of a single particle

, and ( ',f r
2

1
( , ) exp( )

M

m
m

M iω
=

= − ⋅∑K K r  is the structure factor containing the 

correlation information of the entire particle system. We assume the scattering potential 

of the particle is of Gaussian distribution, i.e., 
2

2

'( ', ) exp
2

f ω
σ

⎡ ⎤
= −⎢

⎣ ⎦

rr ⎥ . With 

sinxs cosθ ϕ= , sin sinys θ ϕ=  and  (see Fig. 3.2), we calculate the 

distribution of the momentum flow of the scattered fields at the scattering plane 

coszs θ=

0ϕ = . 

The parameters of the incident plane wave are chosen to be: 0.6328 mλ μ= , , 

. 

1yA A= =x

0.B = 2

     In Fig. 3.6 we consider the models of particle collections distributed along the x-axis 

that we use for numerical calculations. In particular, in Fig. 3.6(a) we show the simplest 

case of a pair of symmetrically located particles, with centers at ( /  and 

, respectively.  In Figs. 3.7 and 3.8 we present the momentum flow of the 

field scattered from collection of Fig. 3.6(a). It becomes clear from these two figures that 

the separation between the two particles influences the number and position of the peaks 

2,0,0)d

( / 2,0,0)d−
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of the momentum flow, while the size of the particles changes the peak value and retains 

the position of each peak. To understand the peak positions which are determined by the 

interference between particles, we first derive, from Eq. (3.76), the condition for the 

valley points (i.e., where ( ) ( ) 0s r =Q s ): 

                                       1sin ( )
2spd nθ λ= + ,  ( ,                                     (3.79) 0,1,2...)n =

 

 
 
 

Fig. 3.6 The coordinates of particles (a) (d/2,0,0), (-d/2,0,0); (b) (d/2,0,0), (-d/2,0,0), 

(d,0,0), (-d,0,0); (c) (d/2,0,0), (-d/2,0,0), (d,0,0), (-d,0,0), (3d/2,0,0), (-3d/2,0,0); (d) 

(d/2,0,0), (-d/2,0,0), (d,0,0), (-d,0,0), (3d/2,0,0), (-3d/2,0,0), (2d,0,0), (-2d,0,0); (e) 

(d/2,0,0), (-d/2,0,0), (d,0,0), (-d,0,0), (3d/2,0,0), (-3d/2,0,0), (2d,0,0), (-2d,0,0), (5d/2,0,0),              

(-5d/2,0,0). 
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where spd  is the spacing distance between two particles. This equation matches the 

positions of valley points in Figs. 3.7 and 3.8 accurately. Therefore for the case where the 

peak points are about the center of the two neighboring valley points (for example, 

8kd π= and ), the peak points’ positions may be approximately estimated by 16kd π=

the equation 

                                             sinspd nθ λ= ,   ( .                                        (3.80) 0,1,2...)n =

 
 

Fig. 3.7 (Normalized) distribution of momentum flow of the far field scattered from a 

pair of symmetrically distributed particles (Fig. 3.6(a)) for various seperation  as a 

function of angle , with

d

θ 0.3σ λ= . 

The reason that Eq. (3.79) is accurate for valley points while Eq. (3.80) is only 

approximately correct for the peak points may be explained as follows. In our case we 

consider the correlation between two scattered fields and, more importantly, we calculate 

the momentum flow (not just the spectral density). So the quantity [Eq. (3.76) with Eq. 
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(3.78)] is not only affected by the interference between the two waves as included in 

( , )M ωK , but also the properties of the scattering medium, included in 
2

( , )f ωK , and 

the properties of the incident field, included in . The peak points for the ( TTr −C s C s )
interference pattern are moved due to this reason, while the valley points where the 

spectral density is zero are unchanged since they retain the value zero despite of the 

product of other terms. 

 
 

Fig. 3.8 (Normalized) distribution of momentum flow of the far field scattered from a 

pair of symmetrically distributed particles (Fig. 3.6(a)) for various particel size  as a 

function of angle , with . 

σ

θ 16kd π=

For particles distributed according to Figs. 3.6(b) – 3.6(e), the scattered angular 

distribution of momentum flow is given in Fig. 3.9. It is interesting to note that there is 

one maximum peak value around 14 indepenent of the number of particles symmetrically 
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distributed along the x- axis, with the second peak appearing around 30 . This case with 

more than two particles is a more interesting problem since the interference of the 

scattered wave would not only come from the two adjacent particles but also from other 

particles. In our case the interference from multiple particles may be suitably divided into 

separate interference between two particles. Then for the set-ups in Fig. 3.6, the possible 

spacing distance between any two particles would be , , , , , ,/ 2d d 3 / 2d 2d 5 / 2d 3d

7 / 2d , , , . For spacing values 4d 9 / 2d 5d
2sp
ld d=  ( ) in Eq. (3.80), the 1,2l = ,...10

possible peak positions would be (with )  16kd π=

 
Fig. 3.9 (Normalized) distribution of momentum flow of the far field scattered from 

collections of particles shown in Fig. 3.6(a) (dotted curve) and (a) in Fig. 3.6(b) (solid 

curve); (b) in Fig. 3.6(c) (solid curve); (c) in Fig. 3.6(d) (solid curve); (d) in Fig. 3.6(e) 

(solid curve) with and 16kd π= 0.5σ λ= . 
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                                                  sin
4
n
l

θ = , ( .                                           (3.81)  0,1,2...)n =

Therefore for all the possible spacing choices, they share the common the peak position 

at  with  degree (mm means major maximum), which sin 1/ 4mmθ = 14.4775mmθ =

explains the first major maximum. For other major maximum, similar explanation applies. 

And the governing equation for the nth major maximum is ( / 2)sind nθ λ= .              

Spacing 
distance spd   

Counting 
numbers 

Peak positions  sinθ
(up to first major maximum) 

/ 2d  8 1/ 4  
d  7 1/ 8,1/ 4  
3 / 2d  6 1/12,1/ 6,1/ 4  
2d  4 1/16,1/ 8,3 /16,1/ 4  
5 / 2d  4 1/ 20,1/10,3 / 20,1/ 5,1/ 4  
3d  5 1/ 24,1/12,1/ 8,1/ 6,5 / 24,1/ 4  
7 / 2d  4 1/ 28,1/14,3 / 28,1/ 7,5 / 28,3 /14,1/ 4  
4d  3 1/ 32,1/16,3 / 32,1/ 8,5 / 32,3 /16,7 / 32,1/ 4  
9 / 2d  2 1/ 36,1/18,1/12,1/ 9,5 / 36,3 /18,7 / 36,2 / 9,1/ 4  
5d  1 1/ 40,1/ 20,3 / 40,1/10,1/ 8,3 / 20,7 / 40,1/ 5,9 / 40,1/ 4

 
Table 3.1 List of all the possible spacing distances with counting numbers and peak 

positions for the set-up in Fig. 3.6(e). 

     From Fig. 3.9, the fact that the number of minor peaks is equal to half of the number 

of particles can also be explained by the interference between waves scattered from the 

particles. It can be assumed the minor peaks are associated with different orders of 

maxima between two particles with distance equal to ( 1) / 2M d+ . The reason for this 

assumption may be explained as follows. Let us consider the most complicated case in 

Fig. 3.6(e), where . We may obtain the all the possible spacing distances between 5M =

 
 



88 
 

any two particles and count the numbers that the spacing distance appears. One may see 

from Table 3.1 that the peak positions for the spacing distances , ,  are / 2d d 3 / 2d

overlapped by the peak positions for the spacing 3 . And the counting number for d

spacing  is greater than other spacing possibilities except , d  and 3 / , whose 3d / 2d 2d

peak positions have been overlapped. Therefore the minor peak positions may be 

dominated by the different orders of maximum of distance 3 , although the exact minor d

peak positions may be slightly different due to the existence of interference of other 

choices of spacing distances. Furthermore, 3 ( , where M  is the 1) / 2dd M= + 5=

number of particles at one side of origin. Other cases with different number of particles 

may be similarly analyzed. 

 
 

Fig. 3.10 (Normalized) distribution of momentum flow of the far field scattered from 

collections of particles randomly distributed with 0.1σ λ= . 
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In Fig. 3.10 we consider a special case of a gas-like disorder [65] where identical 

particles with Gaussian potentials randomly positioned along the x-axis. In this case the 

particles are considered as statistically independent. Then structure factor becomes 

1( , ) (0, )M N M
N

ω = =K ω  for all  except . Fig. 3.10 shows the angular 

distribution of momentum flow of the scattered far field from  and  

K = 0K

5N = 10N =

particles, respectively. The range of x-axis within which all the particles are randomly 

distributed is 40λ , i.e., 20λ 20λ− ∼ . Therefore, the average spacing between 

neighboring particles for 10  particles is 4λ  and for  particles is 5 8λ , respectively. In 

each case the momentum flow is the statistical average over 30 realizations. The absolute 

value of  momentum flow ( ) ( )ss rQ  decreases abruptly to a value on the order of 1/N 

over the several degrees from the forward scattering direction and then levels off with a 

small negative slope due to the additional terms in Eq. (3.76). The fluctuations in the tail 

of ( ) ( )s rQ s  are caused by the limited number of particles in the ensemble: for 

sufficiently large values of N the momentum flow drops to zero over the first several 

degrees.  

3.2.4 Concluding remarks 

    In summary, we have derived the expression for the angular distribution of the 

momentum flow of the field produced on scattering of a plane wave from random media, 

which can be a single particle or collection as well as of deterministic or random nature. 

We have found that both polarization properties of the incident electromagnetic plane 

wave and the scattering potentials of the scattering material influence the distribution of 
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the momentum flow of the scattered field. From the examples considered, the size of 

particles, the separation between them, and the nature of the collection (deterministic or 

random centers’ locations) significantly influence the angular distribution of the 

momentum flow throughout the far zone of the scatterer.  
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3.3 Polarization of Random Light Beams Scattered 

from Bio-tissues 

Some years ago the power spectra of the microscopic refractive index variation were 

obtained for typical biological tissues [66]. Several proposed mathematical models of the 

experimentally fitted spectrum have later provided a powerful tool for analytic 

investigations of the statistical properties of random light on interaction with 

(propagation through or scattering from) tissues [66-67]. For example, based on such 

models it is possible to show that for most biological tissues the spectrum of the 

backscattered light is blue-shifted with respect to the spectrum of the incident light [68], 

although the red shift is generally observed on forward scattering [69].  

To our knowledge all previous studies about random light scattering from tissues were 

confined to scalar treatment, and, hence, could not account for polarimetric changes. It is 

known, however, that random light passing in some weekly-fluctuating media, such as 

atmosphere and ocean may lead to significant polarimetric modulation [70-71]. Based on 

the recently introduced electromagnetic (EM) scattering theory of random light [14], we 

derive the expression for the cross-spectral density (CSD) matrix of the field scattered 

from bio-tissues with given power spectrum and determine the changes in the degree of 

polarization (DOP) in the far zone of the tissue slice. 

3.3.1 Refractive-index fluctuation under Markov approximation 

Let us consider a thin tissue slice containing refractive index inhomogeneties with a continuum of 

scales between inner and outer scales, the variations in which are typically small [66]. We can 

 
 



92 
 

express the refractive index of a tissue layer being a random function of position as a sum of its 

mean and a spatially varying part, ( ) ( ) ( )n n nδ′ ′= +r r ′r , where  denotes a location within 

the tissue and 

′r

( )n ′r n . Then the scattering potential of the tissue slice takes the form 

2 2( , ) ( ) 1 / 4F k nω π′ ′⎡ ⎤= −⎣ ⎦r r       

22 1 2 ( ) ( ) / 4k n n n nδ δ⎡ ⎤′ ′= − + +⎣ ⎦r r2 π ,                              (3.82) 

Further, the spatial correlation function of the scattering potential becomes      

1 2 1 2( , , ) ( , ) ( , )FC F Fω ω∗′ ′ ′ ′=r r r r ω      

                   2 2 24 2 2
1 2[( 1) 2( 1) 4 ( ) ( ) ] /16k n n n n n nδ δ δ′ ′= − + − + r r 2π ,           (3.83) 

where higher-order terms have been neglected and 2nδ  is the variance of the tissue 

refractive index fluctuation. Eq. (3.83) implies that the correlation function contains 

constant terms and a term including the  correlation function 1 2( ) ( )n nδ δ′ ′r r , which gives 

rise to optical phase distortion and, hence, is of our major concern [66,68]. If the 

refractive index fluctuations are statistically homogeneous we may employ Markov 

approximation under which [39] 

                       2
1 2 1 2( ) ( ) =2 ( ) ( ) exp[ ( )]nn n z i dδ δ πδ ⊥′ ′ ′ ′Φ ⋅ − κ∫r r K K ρ ρ ,                    (3.84) 

where 1 1 1( , )z′ ′=r ′ρ , 2 2 2( , )z′ ′=r ′ρ ,  and  is the three-dimensional spatial 

power spectrum of the refractive-index fluctuations, and . The 

1z z z′= − 2′ ( )nΦ K

( ,0) ( , ,0)x yκ κ⊥= =K K
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six-dimensional spatial Fourier transform of the correlation function  of the 

scattering potential can then be readily evaluated as:  

1 2( , , )FC ω′ ′r r

d3 3
1 2 1 1 2 2 1 2 1 2( , , ) exp[ ( )] ( , , )F FD D

C i Cω ω′ ′ ′ ′ ′= − ⋅ + ⋅∫ ∫K K K r K r r r r rd ′     

                       23 4 (2)1 2 1 2( )) sin
2 2

z z Lκ κ− +⎡
1 28 (nk n L cπ δ⊥ ⊥
⊥ ⊥

⎛ ⎞ ⎤= Φ +⎜ ⎟ ⎢ ⎥⎣⎝ ⎠ ⎦

K K K K ,   (3.85) 

where L is the thickness of the tissue layer. To arrive to results in Eq. (3.85) a Fourier 

transform identity for the delta-function was employed. 

3.3.2 Scattered field statistics from thin bio-tissue in the far zone 

Suppose now that a monochromatic EM field  radiated from the source plane 

and incident onto the tissue is scattered into the field E r . The scattered field in 

the far zone can be expressed as [14] (see Fig. 3.11) 

( ) ( , )iE ω′r

s( ) ( , )ωs

3d′ ′                ( ) ( )e( , ) ( , ) ( , ) ( , ) exp( )
ikr

s i
sp D

r F ik
r

ω ω ω θ φ′ ′= − ⋅∫E s r E r S

]

s r r ,             (3.86) 

where ( ) ( ) ( ) ( )[ , ,s s s s
sp rE E Eθ φ=E  and ( ) ( ) ( ) ( )[ , ,i i i

x y z ]iE E E=E

[sin cθ

are vector-fields in spherical polar 

and in Cartesian coordinates, respectively, os ,sin sin ,cos ]φ θ φ θ=s  is the unit 

vector pointing from the origin within the tissue to the observed point and  

                                     
0 cos cos sin

( , ) 0 cos sin cos
0 sin 0

θ φ φ
θ φ θ φ φ

θ

−⎛ ⎞
⎜= ⎜
⎜ ⎟−⎝ ⎠

S ⎟
⎟ .                                (3.87) 
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2s

1s

x

z
θ  

s  

 

Fig. 3.11 Notations relating to scattering from tissues. 

The CSD matrix of the scattered electric field at a point specified by position vector r

in the spherical polar coordinates is then readily found to be [14] 

s

( ) ( , , )s
sp r r ωW s s  

      ( ) ( )( , ) ( , )s s
sp spr rω ω+= E s E s  

      † ( ) 3 3
1 2 1 2 1 2 1 22

1 ( , ) ( , , ) ( , , ) exp[ ( )] ( , )i
FD D

C ik d d
r

θ φ ω ω θ φ′ ′ ′ ′ ′ ′ ′ ′= ⋅ , (3.88)
 

−∫ ∫S W r r r r s r r r r S

where ( ) ( ) ( )
1 2 1 2( , , ) ( , ) ( , )i i iω ω+′ ′ ′ ′= ωr E r E rW r  is the CSD matrix of the incident beam 

within the tissue slice, which can be conveniently represented by a spectrum of plane 

waves. Since we assume that the origin of the coordinate system is located within the 

tissue slice, the plane waves which should start from the origin at the source plane in the 

regular representation may be rewritten through the transformation of the coordinates. 

Assuming that the center of the source plane is at (0  with respect to the origin 

within the tissue, we find that 

0,0, )z−

 W r  ( )
1 2( , , )i ω′ ′r
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                    ,     (3.89) 2 2
1 2 2 1 0 2 2 1 1 1 2( , , ) exp[ ( ) ]exp[ ( )]z zik s s z ik ds dsω⊥ ⊥ ⊥′ ′= − ⋅ −∫ ∫ A s s s r s r ⊥⋅

where  is the angular correlation function between two plane-wave modes 

and 

1 2( , , )ω⊥ ⊥A s s

0z λ , implying that only modes with 1 1⊥ ≤s  or 2 1⊥ ≤s  contribute to the 

spectrum, i.e. the evanescent waves are neglected. On substituting from Eq. (3.89) into 

Eq. (3.88), the CSD matrix of the scattered field can be expressed as 

( )
1 22

1( , , ) ( , ) ( , , )s
sp r r

r
ω θ φ ω+

⊥ ⊥= ∫ ∫W s s S A s s  

                  2 2
1 2 2 1 0 1 2[ ( ), ( ), ]exp[ ( ) ] ( , )F z zC k k ik s s z ds dsω θ φ⊥ ⊥× − − − −s s s s S .     (3.90) 

In Eq. (3.90)  is a unit vector pointing to the observed point while  and  indicate 

the directions of plane waves from the incident beam angular spectrum. Let us now 

substitute from Eq. (3.85) into Eq. (3.90) with ,  to obtain      

s 1s

(

2s

2 )s1 1( )k= − −K s s 2 k= −K s

( ) ( , , )s
sp r r ωW s s  

               
23 2

2
1 1 12

8
( , ) ( , ) [ ( )] ( , )n

k L n
k ds

r
π

θ φ ω θ φ+
⊥ ⊥ ⊥ ⊥= Φ − −∫S A s s s S ,        (3.91)  

where sin cosxs θ φ= , sin sinys θ φ=

2) /

,  and formula 

 is employed. Equation (3.91) is the main result of 

this section, which shows the relation between correlation properties of the illumination, 

the tissue refractive index variation and the scattered field statistics in the far zone. Since 

the elements of the first column of the S matrix are all zero, only four elements of matrix 

coszs θ=

(2)
1 2( k⊥ ⊥− s(2)

1 2( )δ δ⊥ ⊥+ =K K s
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( )sW  have non-trivial values. Such transverse field can be used for defining the spectral 

DOP in two-dimensional formalism [see Eq. (1.8)]: 

                                          2

4 ( , ,
( , ) = 1

[ ( , , )
Det

P
Tr

θφ

θφ

ω
ω

ω
−

W
W

r r
r

r r
)

]
 .                          (3.92)      

where [ ], ( , , )ij i jθφ θ φ= =W W  is the matrix. 2 2×

3.3.3 Example and concluding remarks 

We will now consider the model power spectrum of bio-tissue index fluctuations [66]:  

                                 2 2 2 2( ) 4 ( 1)(1 ) m
n K n L m K Lοπ δ −Φ = − + ο  ,                                (3.93) 

where K ⊥= K . For different tissues, the spectrum has different values of slope m  and 

outer scale L0. For example, for liver parenchyma (mouse),  and 1.41( 0.06)m = ±

8Lο m= μ ; for intestinal epithelium (mouse),  and 1.33( 0.03)m = ± 10L mο μ= ; for upper 

dermis (human),   and 1.43( 0.04)m = ± 4L mο μ= ; for deep dermis (mouse), 

 and 1.m 28(= ±0.02) 5L mο μ= . The thickness of the slice should not exceed the outer 

scale L0 [69]. As model for illumination field we will use an EM Gaussian Schell-model 

beam: 

                   ( )22 2
2 1(0) 1 2

1 2 2( , , ) exp exp ,
4 2I

W A A Bαβ α β αβ
αβ

ω
σ δ 2

⎡ ⎤−⎡ ⎤+= − −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

ρ ρρ ρρ ρ               (3.94) 

whose angular correlation function has form 
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1 2( ,Aαβ ⊥ ⊥s s )  

                 
4 4 2 2 2 4 2 2

1 2 1 2
2 2 2 2 2 2 2

( ) 2 (exp exp
(1 4 ) 4 1 4

I I

I I I

A A B k k kα β αβ

αβ αβ αβ

σ σ
π σ δ δ σ σ δ

⊥ ⊥ ⊥ ⊥ )⎡ ⎤ ⎡+ −= − −
⎤

⎢ ⎥ ⎢+ + ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

s s s s

⎦
,        (3.95) 

with , ,x yα β =

7 110k m−
xA

. Eq. (3.94) is valid when the origin is in the source plane and the 

transformation of coordinates does not influence the form of the angular correlation 

function in Eq. (3.95). Unless specified in captions, the following parameters were used: 

, , , , , , = 1= 1yA = 1xx yyB B= = 0.2xy yxB B= = 310 mσ −= 0φ = , 

, , and . 510 m−
yyδxxδ = 50 m−2 1= × 510 m−×2.5xy yxδ δ= =

Figure 3.12 shows that for different types of bio-tissues, the DOP of its scattered far 

field is considerably influenced by the characteristics of tissue, which may provide a 

useful tool for sensing and recognition and in distinguishing a pathological tissue from a 

normal one.  

 

Fig. 3.12 Scattered DOP for different bio-tissues. 
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For the tissues considered in this paper, their correlation lengths are ranged from 

 to  [66]. Fig. 3.13 shows the DOP of scattered light if incident beam has 

correlation coefficients    . It becomes 

evident that only when the correlation widths of the incident beam are close to the tissue 

correlation length, significant changes in the angular DOP profile can be observed. The 

detail of DOP variation in the case l  in Fig. 3.13 can also be found as the thick line 

in Fig. 3.12. 

610 m− 510 m−

10 ,l
xx mδ = 2 10 ,l

yy mδ = ×

5= −

2.5 10l
xy yx mδ δ= = ×

For uncorrelated incident beam and hence, its DOP reduces to 0,xy yxB B= =

2 2 2 2( )x y x yP A A A Aο = − + . In Fig. 3.14 we calculate the change in DOP of scattered light 

for several selected values of the DOP of incident uncorrelated beam. The polarization of 

the scattered field is seen to be modulated at most for an unpolarized incident beam. 

 

Fig. 3.13 DOP of light scattered from intestinal epithelium (mouse). 
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Fig. 3.14 DOP of the field with different 0 ( , )x yP A A and  scattered from 

intestinal epithelium (mouse). 

0xy yxB B= =

Thus we have derived the expression for the DOP of an EM random light beam 

scattered from a thin slice of bio-tissue with prescribed power spectrum [see Eqs. (3.91) 

and (3.92)]. We found that the DOP reflects both the statistical properties of incident 

radiation and those of tissue, i.e. m and L0. Our results can be of particular interest for 

tissue sensing [69]. 

 

   



 
 

Chapter 4 
 
Summary  

 

We have presented the advances to the theories of scalar and electromagnetic scattering 

of random optical fields from deterministic and random media which are based on 

rigorous theoretical foundations: the Maxwell’s equations and the classical statistical 

optics. The major contributions by the author to the optical community included in this 

thesis are outlined below: 

 The concept of the pair-structure matrix of a scattering collection is introduced for 

complete characterization of the correlation properties of between particles of one 

type and across different types. The elements of this matrix are shown to 

considerably affect the statistics of scattered light. 

 A method based on light scattering for tracing an alien particle embedded in a 

particulate, random medium is developed. 

 A novel theoretical approach to description of optical fields on interaction with a 

continuous turbulent medium containing discrete scatterers is suggested. 

 The classic scalar weak scattering theory is generalized to the electromagnetic 

domain. Based on this theory it is demonstrated for the first time how the predictions 

about the distribution of the spectral, coherence and polarization states of random 

light beams scattered from weakly fluctuating media can be made.  
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 The angular distribution of the momentum flow of a field produced on scattering of a 

plane wave from random media is evaluated and shown to be intimately related to 

the properties of the scatterer. 

 The electromagnetic scattering theory is applied to the scattering from a thin bio-

tissue slice. The polarization properties of scattered radiation are shown to be closely 

related to the distribution of the refractive index in the slice and the states of 

coherence and polarization of the illumination. 
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