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This work is focused on the different supersymmetric extensions of the Landau 

model. We aim to fully solve each model and describe its energy levels, 

wavefunctions, Hilbert space and define a norm on it, as well as find symmetry 

generators and transformations with respect to them. 

Several possible generalizations were considered before. It was found for Landau 

model on the so called Superflag manifold as well as planar Superflag and 

Superplane Landau models that standard norm on the Hilbert space is not positive 

definite. Later for planar cases it was found that it is possible to fix this by 

introducing a new norm which will be invariant and positive definite. Surprisingly 

this procedure brings up ‘hidden’ symmetries for the known super Landau models. 

In the dissertation we apply the same procedure for Landau model on 

superpshere and Superflag manifolds. It turns out that superpsherical Landau 

model is equivalent to the Superflag model with one of the parameters fixed. 

Because the model on superpshere can be recovered from the Superflag we will do 

calculations of corrected norm only for the Superflag. 

After this we develop a different generalization of the Superplane Landau 

model. Starting with Lagrangian in a superfield form we introduce two arbitrary 

functions of superfields K(Φ) and V(Φ) into the Lagrangian. We follow with the 

component form of Lagrangian. The quantization of the model is possible, and we 

will show that there is a reparametrization which turn equation of motion of the 



first scheme into the second set. Standard metric is again non-positive definite and 

we apply already known procedure to correct it. It will not be possible to solve 

Schrodinger equations in general with undefined K and V , so we consider one 

specific case which give us Landau model on a sphere with N = 2 supersymmetry, 

which put it apart from the superspherical Landau model, which have a 

superpshere for a target space but do not possess supersymmetry. 



For the benefit of all beings
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Chapter 1

Introduction

Mathematical physics can by defined as ”application of mathematics to problems in

physics and the development of mathematical methods suitable for such applications

and for the formulation of physical theories”, as given by the Journal of Mathematical

Physics [1]. As one of the most well-known branches of mathematical physics super-

symmetry was proposed to be a possible solution for several questions in theoretical

physics like hierarchy problem or unification theories. Introducing supersymmetry

in the string theory was a fascinating step in the evolution and made it feasible for

physicists to aim for solving more complicated problems. But every expansion make

theory more complex and complexity is an unfortunate features of super string theory,

so to better understand supersymmetry it was natural to turn to researching simpler

models with anticommutative variables included.

With the importance of supersymmetry understood it has become interesting

to learn how to introduce SuSy into well explored areas of theoretical physics, e.g.

classical and quantum mechanics. Thus the research of the models in supersymmetric

mechanics and supersymmetric quantum mechanics is not only interesting by itself

but also give us hope to understand better more complicated areas like super strings,

super Yang Mills, physics on the spaces with anticommutative coordinates. The

purpose of this dissertation is a detailed investigation of the several supersymmetric

quantum mechanical systems which stem from a so called Landau model.

In 1930 Landau proposed a quantum problem with a charged particle moving on

the plane in the uniform magnetic field perpendicular to the surface and showed that

particles energy is quantized [2]. The energy levels are usually called ‘Landau levels’

1
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with the ground level being the ‘Lowest Landau level’ abbreviated LLL. One of the

first generalizations was proposed by Haldane [22] in 1983 and is a system with a

particle moving on a sphere in E3 with magnetic monopole in its center. Intriguing

fact is that the spherical Landau model also turned to be exactly solvable with energy

levels quantized. In the LLL the coordinates on the sphere possess certain degree of

non-commutativity turning it into fuzzy sphere. This property make it related to

Quantum Hall Effect [23] and theories with noncommutative coordinates. One of the

ideas which brought up the study of Super Landau models was introduction of a fuzzy

superpshere. It is a supersymmetric case of a fuzzy sphere, so we can anticipate that

there exist a supersymmetric version of the Landau model on a sphere. This was done

in [5] with action being of SCSQM1 on the CP (n|m) with a Kahler metric. The model

is indeed solvable and possess fuzzy LLL, which lead us to a question about how to

find similar models, what symmetries they can possess and what are their properties?

Research of Super Landau models2 essentially started with an introduction of the

Landau model on the Superflag manifold [6]. In the text of the dissertation we will

consider five cases: Landau model on the superpshere and Superflag, their planar

versions Superplane and Planar Superflag, and then superfield generalization of a

Superplane model. In the next section we will discuss Superplane Landau model,

which is the simplest one of all the cases and thus let us explore its properties in

details. There are three different ways to construct Superplane Landau model. First

way is a naive generalization of original model by modifying its Lagrangian with

fermionic fields. We will start by writing fermionic Lagrangian similar to the original

model and solving pure fermionic model. The model is trivial but already possess

the most important feature — some of the eigenstates are not positive definite. It

is known that when fermionic kinetic term in the Lagrangian contain second order

1Supersymmetric Chern-Simons Quantum Mechanics
2There is another approach to the supersymmetrization of Landau model which bring us to a

similar but not exactly the same models [14].
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derivative then the model is not unitary, and this system is another confirmation

to that fact. We will later observe how all Super Landau models have non-unitary

metric and devise a method to fix it. After joining fermionic and bosonic Lagrangian

to make a planar Super Landau model we will see how it can be solved and that

eigenstates again do not all possess positive norm.

It is possible to create the same model by pure geometrical means and in the

section 2.2 we will show how the Lagrangian of a planar model Super Landau can be

found from invariant forms on IU(1|1)/[U(1|1) × Z]. In the next subsection we will

describe a method to fix the states of the negative norm. In short the idea is to find

a new metric different from a natural one such that we would keep the symmetries of

the model but new Hermitian conjugation will make the model unitary. In the last

part we will discuss how Superflag Landau model was originally constructed 2.4.

Chapter 3 is based on [4] and discusses in detail properties of Superflag and

superpshere Landau model. Structure of this section is straightforward – first we

will solve Landau model on the superpshere, find eigenvalues and describe energy

levels, and after directly calculating norms of the eigenfunctions we will see that they

are not positive definite. Next step is the same procedure for the Superflag model,

which is in certain ways a little bit simpler then the superpshere. After it we modify

the norm of a Superflag model and show that for a specific choice of parameters

Superflag is equivalent to superpshere. It turns out that modified norm bring up

some hidden symmetries of the system, so in the end it possess SU(2|2) and not

SU(2|1) symmetry.

With four cases studied one of the questions is if it possible to generalize Landau

models further. Chapter 4 will show how superfield approach can be used to express

the Lagrangian of the Superplane Landau model [3]. With superfields we have a

third way of setting up a model on the Superplane, and this method is the easiest
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to generalize. We introduce arbitrary potentials into the Lagrangian and investigate

new features of the system following the same course as before. We have considered

two quantization schemes for these models but after calculations we will see that they

are equivalent. These models as well possess states of negative norm and we can fix

it by using the same method as before. In the last part of the section we will explore

a particular case of the potentials which create a Landau model on a sphere, in fact

it is an N = 2 supersymmetric extension of the model describing particle on the 2-

sphere in the field of the magnetic monopole. This is different from the Superspherical

Landau model which does not possess worldline supersymmetry but instead has odd

coordinates in the target space.

We will summarize all important results in the end and give a short list of possible

direction for a further research.



Chapter 2

Supersymmetric extensions of Landau models

We will start with Superplane Landau model, which is the simplest supersymmetric

expansion of the original problem. It will be our main toy model. After that we

will discuss construction of three other models Superflag, superpshere and planar

Superflag. At the end we will show the method of dealing with non-positive definite

metrics.

2.1 Superplane Landau Model

To begin with the Superplane Landau model we have to write a Lagrangian for it.

This is a simple case so there are several different ways to obtain this Lagrangian.

We will show only the most straightforward approach in this section, other methods

will be explored on the way.

Here by “Superplane” we mean the superspace C(1|1) parametrized by complex

coordinates (z, ζ), where z is a complex number and ζ a complex anticommuting

variable. Let us assume that Superplane Lagrangian can be written as

L0 = Lb + Lf , (2.1)

where

Lb = |ż|2 − iκ (żz̄ − ˙̄zz) (2.2)

is the Lagrangian for the original planar Landau model. Lb is purely bosonic, and Lf

will be a fermionic part of the expression. Let’s define it for anticommuting variables

5
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ζ similar to the bosonic part

Lf = ζ̇ ˙̄ζ − iκ
(
ζ̇ ζ̄ + ˙̄ζζ

)
. (2.3)

Here 2κ is energy spacing(which we take to be positive) as in the standard Landau

model.

This Lagrangian L0 is quadratic and doesn’t have any complex interaction terms.

Later we will see that there are different ways to generalize this form; for example one

can obtain planar Superflag this way. The potential term in Lf has different sign then

Lb, because anticommuting variables have different complex conjugation properties

and we need Lagrangian to be Hermitian. Another thing to note is a second derivative

of the fermionic kinetic term, this is not standard and it will later create problems

for us as a non-positive definite metric.

Let us first summarize Landau’s results for the standard, “bosonic” Landau model.

The equation of motion for classical system has the general solution

z = z0 + (ż0/κ)e−iκt sinκt , (2.4)

so the motion is periodic with angular frequency 2κ. With p being the complex

momentum conjugate to z we obtain Hamiltonian

Lb = żp+ ˙̄zp̄−Hb , Hb = |p+ iκz̄|2 , (2.5)

and proceed with quantizations

p→ p̂ = −i∂z , p̄→ ˆ̄p = −i∂z̄ . (2.6)

There is a trivial ordering ambiguity (pp̄ or p̄p) but the natural symmetric ordering
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yields quantum Hamiltonian

Ĥb = a†a+ κ , (2.7)

where a and a† are creation and annihilation operators

a = i (∂z̄ + κz) , a† = i (∂z − κz̄) , [ a, a† ] = 2κ . (2.8)

The ground states, which span the LLL, can be found easily, it is annihilated by a

and has have energy κ. Higher Landau levels created by acting with a† on the ground

state, and the energy levels can be found to be E = 2κ(N + 1/2) for non-negative

integer N .

Fermionic model is extremely similar to the bosonic case. It has the general

solution

ζ = ζ0 + (ζ̇0/κ)e−iκt sinκt , (2.9)

and the motion is again periodic with period 2κ. Classical Hamiltonian is found to

be

Lf = −iζ̇π − i ˙̄ζπ̄ −Hf , Hf = (π̄ − κζ)
(
π − κζ̄

)
, (2.10)

where π is the momentum conjugate to ζ, and π̄ is the complex conjugate of π.

Quantization replacement for anticommuting momenta

π → π̂ = ∂ζ , π̄ → ˆ̄π = ∂ζ̄ . (2.11)

Once again we have trivial ordering ambiguity and in the fermionic case natural

antisymmetric ordering yields the quantum Hamiltonian

Ĥf = −α†α− κ , (2.12)
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where

α =
(
∂ζ̄ − κζ

)
, α† =

(
∂ζ − κζ̄

)
,

{α, α†} = −2κ .
(2.13)

Fermionic Hamiltonian (2.12) has four linear independent eigenfunctions. Two of

them which have energy −κ we denote collectively by Ψ−, and the other two with

energy +κ correspondingly Ψ+. Ground level wavefunctions Ψ− can be found from

the requirement that they are annihilated by α. Then α†Ψ− will give us Ψ+, and since

α† is a fermionic operator then α†α† = 0, and we see that Ψ+ is being annihilated by

α†. Decomposing each of the function and solving for components it can be found

Ψ− = A−
(
1 + κζ̄ζ

)
+B−ζ ,

Ψ+ = A+

(
1− κζ̄ζ

)
+B+ζ̄ . (2.14)

the natural inner product for wavefunctions on the complex grassman plane is given

up to an overall constant factor by

〈Ψ1,Ψ2〉 = ∂ζ∂ζ̄ (Ψ∗1Ψ2) . (2.15)

Not that this expression is invariant under translations and phase rotations of ζ. It

is straightforward to verify that wavefunctions with different energies are orthogonal

with respect to this inner product, and that

〈Ψ−,Ψ−〉 = 2κĀ−A− + B̄−B− ,

〈Ψ+,Ψ+〉 = −2κĀ+A+ − B̄+B+ .
(2.16)

Through the computations we never assigned specific parity to either Ψ± or A±, B±.

Usually we would take all coefficients A and B Grassman even in which case all the

states of Ψ− have positive norm and all the states of Ψ+ have negative norm. But

we can otherwise assume that Ψ− and Ψ+ have a definite Grassmann parity, then
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either the A or the B coefficient is Grassmann-odd. In this case the states of Ψ−

have non-negative norm, but for Ψ+ situation changes, that now it may have non-

negative norm but one of the higher level states will always have negative norm. So

whatever assumptions we make about parity of A, B only Ψ− will always have states

of non-negative norm.

We have to be careful about parameter κ, since Lb and Lf behave differently.

Setting κ = 0 will give us simply a free particle on the plane for bosonic case. In

the fermionic Landau model setting κ = 0 because the model becomes unphysical,

quantum Hamiltonian Ĥf becomes non-diagonalizable. In the simplest bosonic case

this parameter is proportional for magnetic field, but this goes in contradiction with

its behavior for fermionic model. So it is possible that κ may have some alternative

meaning for a supersymmetric Landau models.

We are now prepared for the Landau model of a particle on the Superplane. The

Hamiltonian form of the full Lagrangian L0 is found by combining (2.5) and (2.10)

L0 =
(
żp− iζ̇π

)
+ c.c.− (Hb +Hf ) . (2.17)

We quantize using rules (2.11) and (2.6) together and arrive to the following quantum

Hamiltonian

H = ∂ζ̄∂ζ − ∂z∂z̄ + κ
(
z̄∂z̄ + ζ̄∂ζ̄ − z∂z − ζ∂ζ

)
+ κ2

(
zz̄ + ζζ̄

)
. (2.18)

Recalling definitions of the boson and fermion creation and annihilation operators we

express H in operator form

H = a†a− α†α . (2.19)

The quantum Hamiltonian has energy levels 2κN for non-negative integer N . Lowest

Landau level (LLL) states have zero energy and are annihilated by both a and α
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which bring us the following form

ψ(0) = e−κK2 ψ(0)
an (z, ζ) , where K2 = |z|2 + ζζ̄ . (2.20)

Here ψ
(0)
an (z, ζ) is an analytic function, it is an arbitrary function of z, ζ and does not

depend on z̄, ζ̄. The first exited states will have energy 2κ, and are linear combinations

of states a†ψ(0) and α†ψ(0). The wavefunctions at higher Landau levels have energy

EN = 2κN and obtained but multiple action of a† on the first level states. Thus

N -the have wavefunction

ψ(N) =
(
−ia†

)N
e−κK2ψ

(N)
+ (z, ζ)−N

(
−ia†

)N−1
α†e−κK2ψ

(N)
− (z, ζ) , (2.21)

where ψ±(z, ζ) are two analytic functions of z and ζ; we can write them as

ψ
(N)
± (z, ζ) = A

(N)
± (z) + ζB

(N)
± (z) . (2.22)

Coefficients A and B are analytical functions of z which make manifest four-fold

degeneracy of exited states. By analogy with pure fermionic model we can guess that

exited states will have some states of negative norm and only ground level be purely

positive definite. Let’s show this explicitly. The natural invariant inner product is

〈
φ
∣∣ψ〉 =

∫
dµ φ

(
z, z̄; ζ, ζ̄

)
ψ
(
z, z̄; ζ, ζ̄

)
, where dµ = dzdz̄dζdζ̄ . (2.23)

For the N -th level eigenfunction one can find

〈ψ(N)
∣∣ψ(N)〉 = (2κ)NN !

[
−N

∣∣∣∣∣∣ψ(N)
−

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ψ(N)

+

∣∣∣∣∣∣2] , (2.24)

where we have defined

||φan||2 ≡
∫
dµ e−2κK2 φan φan (2.25)
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for any analytic function, or superfield, φan(z, ζ). Substituting component expansion

of ψ
(N)
± into the last integral and performing integration over grassman variables (we

have to be careful with order as coefficients A and B may be odd, depending on parity

of ψ), we arrive at

∣∣∣∣∣∣ψ(N)
±

∣∣∣∣∣∣2 =

∫
dzdz̄ e−2κ|z|2

(
2κA

(N)
± (z)A

(N)
± (z) +B

(N)
± (z)B

(N)
± (z)

)
, (2.26)

so the minus sign in (2.24) indeed implies an indefinite norm. This concludes detailed

analysis of Superplane model with naive norm on the superspace.

2.2 Symmetries and geometrical interpretation of a Super-

plane model

With the Superplane Landau model in hand we can write down its symmetries, which

are inherited from the Superplane. Our superspace is parameterized by two com-

plex variables (z, ζ) so that there will be super-translations (P, P †,Π, P i†), SU(1|1)

super-rotations (Q,Q†, C), and an independent U(1) phase rotation J . Infinitesimal

transformations for each of this operators are straightforward and follow from its def-

inition. We will skip expressions for infinitesimal transformation of the phase space

and present differential form of these operators. In the end we will write down Cartan

form for the coset of symmetry group and will be able to recreate exactly the same

Superplane Lagrangian from the geometrical point of view. For the more detailed

explanations refer to [7].

Super-translations generated on the phase space by the operators

P = −i (∂z + κz̄) , P † = −i (∂z̄ − κz)

Π = ∂ζ + κζ̄ , Π† = ∂ζ̄ + κζ . (2.27)
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Their non-zero (anti)commutation relations are

[P, P †] = 2κ , {Π†,Π} = 2κ . (2.28)

Here κ make its appearance as a central charge of our algebra. For the commutation

relations we will later use notation Z = κ. The SU(1|1) super-rotation transforma-

tions include two odd and one even generator

Q = z∂ζ − ζ̄∂z̄ , Q† = z̄∂ζ̄ + ζ∂z , (2.29)

C = z∂z + ζ∂ζ − z̄∂z̄ − ζ̄∂ζ̄ . (2.30)

The only non-zero (anti)commutation relations of these generators is

{Q,Q†} = C . (2.31)

Finally we have an independent U(1) phase rotation which is generated by the Her-

mitian operator

J =
1

2

[
z∂z − ζ∂ζ − z̄∂z̄ + ζ̄∂ζ̄

]
. (2.32)

The rest of non-zero commutation relations

[Q,P ] = iΠ , {Q†,Π} = iP , [C,P ] = −P , [C,Π] = −Π . (2.33)

[J,Q] = Q , [J,Q†] = −Q† , [J, P ] = −P , [J,Π] = Π . (2.34)

The supergroup generated by the five even charges (P, P †, C, J, Z) and the four odd

charges (Π,Π†, Q,Q†) with (anti)commutation relations (2.28) ,(2.31), (2.33), (2.34)

will be called IU(1|1). Superplane is parametrized by (z, ζ) which correspond to

P,Π, so we can view Superplane as the coset superspace IU(1|1)/[U(1|1)×Z]. It is
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important to note that IU(1|1) is a contraction of SU(2|1). This is a hint for possible

generalization of a Superplane model on IU(1|1) to a superpshere model on SU(2|1).

We just discussed very straightforward and quantum mechanically transparent

way of generalizing standard Landau model to a supersymmetric model on Super-

plane. But with the knowledge of the symmetries we can turn to a geometrical point

of view and observe how the same Lagrangian can be reproduced from the differ-

ential properties of the supermanifold. This is an important example, because the

same method is used to construct Landau model on the Superflag, but that case is

computationally much harder.

Consider a coset superspace

K = IU(1|1)/[U(1)× U(1)×Z] . (2.35)

Here U(1)×U(1) are generators C and J from above, and Z is a central charge. We

parametrize coset space by one even and two odd coordinates (u, η1, η2) and define

its exponential representation as

g = eA1eA2 , (2.36)

where

A1 = η1Π− η2Q+ η̄1Π† − η̄2Q
† , A2 = −iuP − iūP † . (2.37)

Definition of the exponential can be changed, but in the end it will give the same

result. In our case we define odd coordinates so that they will anticommute with odd

generators and signs in (2.37) are chosen for later convenience. We also use different
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set of coordinates (u, η1, η2) which is related to our old set (z, ζ, ξ) by

u = z −
1

2
ζξ̄ , η1 = ζ + zξ −

1

3
ξ̄ξ , η2 = ξ . (2.38)

The left-covariant Cartan forms and the superconnections on the stability sub-

group are defined by

g−1dg = iωPP + iω̄PP
† + ω1Π + ω̄1Π† − ω2Q− ω̄2Q

† + ACC + A2κκ . (2.39)

There appear no connection associated with J . Other connections and 1-forms are

given by

ωP = −

1 +
1

2
ξ̄ξ

 dz − ξ̄dζ , ω1 = ξdz +

1−
1

2
ξ̄ξ

 dζ , ω2 = dξ ,

A2κ = −
(
z̄ dz − z dz̄ − ζ̄ dζ − ζ dζ̄

)
, AC =

1

2

(
ξdξ̄ + ξ̄dξ

)
. (2.40)

We can use this expressions and combine them into Lagrangian. We would gener-

ally use square of 1-forms to make a kinetic term and connections to make a potential

term of the Lagrangian. In particular our Superplane Lagrangian can be obtained in

a manifestly invariant form in terms of pullbacks of the above Cartan forms and is

given by

L0 = |ω̂P |2 + ω̂1 ˆ̄ω1 + iκÂ2κ . (2.41)

Here the “hat” denotes a pullback. It can be easily checked that L0 is independent of

ξ, ξ̄ variables. With a different choice of Lagrangian we can create planar Superflag

Landau model. In fact it’s Lagrangian looks simpler in this form because it doesn’t

have term ω̂1 ˆ̄ω1.
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2.3 Alternative metric for Superplane model

With the complete analysis of a Superplane Landau model we now ask ourselves - what

can be done about non-positive definite metric? Consider some abstract quantum

model with a complete system of energy eigenvectors |fA〉 for the Hamiltonian, H,

which obey

〈fA|fB〉 = (−)g(A) δAB , g (A) =

 0 : A = a

1 : A = α
. (2.42)

Here g(A) is the grading which indicate positive norm states with A = a and nega-

tive norm states with A = α, thus it should not be confused with grassman parity.

Hamiltonian of our system will be taken to be Hermitian H = H†, where operation

(†) is a naive hermitian conjugation with respect to original non-positive-definite in-

ner product. In order to improve inner product we introduce a ‘metric operator’ G

and define it in such a way so that it would take care of a minus sign where needed

G |fA〉 ≡ |GfA〉 = (−)g(A) |fA〉 , G = G† . (2.43)

It is easy to notice from this definition that [H,G] = 0. Now new ‘corrected’ inner

product is defined by

〈〈fA|fB〉〉 ≡ 〈GfA|fB〉 = δAB . (2.44)

We will use double dagger sign for the ‘improved’ hermitian conjugate O‡, with

respect to 〈〈· · · 〉〉. Thus for any operator O

〈〈
O‡fA|fB

〉〉
= 〈〈fA |O| fB〉〉 = 〈GfA |O| fB〉 =

=
〈
O†GfA|fB

〉
=
〈
G
(
G−1O†G

)
fA|fB

〉
, (2.45)
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where

O‡ ≡ G−1O†G = O† + SO . (2.46)

Here SO we will call a “shift operator”for a given O. It shows difference between

conjugation properties with respect to naive and corrected metrics and it is given by

SO ≡ G−1
[
O†, G

]
. (2.47)

Only operators which commute with H will have the same conjugation in each inner

product. Not that G is hermitian G = G†, which implies
(
O‡
)‡

= O . Shift operator

have convenient property

SO
‡ = −SO† . (2.48)

As a consequence, we have

Õ ≡ O +
1

2
S†O , then Õ‡ = Õ† . (2.49)

We will extensively use properties of G,SO and Õ later on as well as a following idea

Lemma 1. Since [G,H] = 0 , the Hamiltonian H is hermitian in both inner products,

H = H† = H‡ . Moreover, if the operator O is a constant of motion, then the

corresponding shift operator is also a constant of motion. Indeed, from [O, H] = 0

it follows that
[
O†, H

]
= 0 and

[
O‡, H

]
= 0 . This is a signal that the algebra of

operators which are in involution with the Hamiltonian may be larger than originally

assumed: the system may have some ‘hidden’ symmetries.

Let’s make use of this method in the Superplane model. In (2.24) only ψ− com-

ponent generated negative norm states. We are going to guess metric function G

now. Now lets look at (2.21), and note how does each analytic function appear in the
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expression. Let’s see how Ĥf from (2.12) acts on each of them

(−α†α− κ)ψ
(0)
+ = −κψ(0)

+ , (2.50)

(−α†α− κ)α†ψ
(0)
− = (−α†αα† − κα†)ψ(0)

− =

= (−α†{α, α†} − κα†)ψ(0)
− = κα†ψ

(0)
− .

(2.51)

Basically Ĥf acts as −κ on ψ
(N)
+ which is positive definite and as κ on ψ

(N)
− which is

negative definite. Thus let us postulate G = −κ−1Hf or in differential form

G =
1

κ

[
∂ζ∂ζ̄ + κ2ζ̄ζ + κ

(
ζ∂ζ − ζ̄∂ζ̄

)]
. (2.52)

It is easy to see that G commutes with H, a, a†, but does not commute with α, α†.

Note that ĤfĤf = κ2 which will give us G−1 = G. Using (2.46) we can easily find

α‡ = −α† , (2.53)

The Hamiltonian may now be written in the manifestly positive form

H = a†a+ α‡α . (2.54)

This far we just fixed inner product. But this operation brings out new symmetry

properties. To investigate things further we need to look at the ISU(1|1) symmetry

generators, it turns out that metric operator commutes with all of them except Q,Q†.

Thus modified hermitian conjugation

Q‡ = Q† − i

κ
S . (2.55)



18

Shift operator could be found using (2.47) and is given by

S = i
(
∂z∂ζ̄ + κ2z̄ζ − κz̄∂ζ̄ − κζ∂z

)
. (2.56)

This expression for S could be conveniently written through creation/destruction

operators, and together with S‡ we obtain

S = a†α , S‡ = aα‡ . (2.57)

These operators follow anticommutations of N = 2 supersymmetry algebra

{S, S‡} = 2κH , {S, S} = 0 = {S‡, S‡} , (2.58)

Both S and S‡ annihilate LLL leaving worldline supersymmetry unbroken. This is

an additional previously ‘hidden’ symmetry which commute with original symmetry

group. We also have to modify ISU(1|1), in order to make it consistent with new

conjugation. Instead of Q and C we will now use

Q̃ = Q− i

2κ
S‡ , C̃ = C +

1

2κ
H . (2.59)

This operator Q̃ now commutes with G, thus Q̃‡ = Q̃†. Tis operators follow the same

anticommuting properties as before

{
Q̃, Q̃†

}
= C̃ . (2.60)

This is final result given for Landau model on Superplane. We was able to fully solve

quantum mechanical problem, analyse its solutions and symmetries, modify norm so

that all eigenvectors are positive definite. Last procedure brings out hidden N = 2

symmetry of the problem. Our system had this symmetry from the beginning, but
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because of our choice of coordinates it was hidden.

We discussed Superplane Landau model with all details, so that it can serve as a

toy model and step for the more complicated cases. For Landau model on the planar

Superflag we will have very similar result with extra N = 2 supersymmetry just with

more complicated expressions. It is also important to note that for planar Superflag

case we will have additional parameter M and hidden supersymmetry manifests un-

broken for M < 0. We will not go any more deeper in that case. All details on planar

Superflag model can be found in [7] and [8].

2.4 Construction of the Superflag and superpshere model

Now we turn to analysis of the Superflag Landau model. During discussion of the

Landau model on the Superplane it was shown how we can obtain its Lagrangian

using differential geometry on the coset space. We are going to use the same idea for

the Superflag Landau model. The name Superflag describe SU(2|1)/[U(1) × U(1)]

coset space similarly to purely bosonic Flag manifold SU(3)/[U(1) × U(1)]. Model

on the flag manifold was discussed in [21], and we are following the same steps in

creating supersymmetric generalization of it. Main idea is to calculate Cartan forms

and U(1) connections, and then make an invariant Lagrangian from them.

The group SU(2|1) acts linearly on vectors in a vector superspace of dimension

(1|2), for defenition of the algebra refer to the appendix B. A simple choice of basis

in this superspace is provided by the supermatrix


1 0 0

−ξ2 1 0

−ξ1 z 1

 , (2.61)
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where z is a complex variable and ξi (i = 1, 2) are complex anticommuting variables,

with complex conjugates ξ̄i. Later we will change coordinates into ξ, ζ. Although this

supermatrix is simple looking, before we proceed with calculations of Cartan forms

we need to make it into unitary supermatrix with orthonormal columns. Applying

Gramm-Schmidt procedure on the last expression we can find

U =


1

K1

1

2


1

−ξ2

−ξ1


K1

K2


1

2


(
ξ̄2 + zξ̄1

)
/K1

2

1− ξ̄1 (ξ1 − zξ2)

z + ξ̄2 (ξ1 − zξ2)


1

K2

1
2


ξ̄1 − z̄ξ̄2

−z̄

1




, (2.62)

where

K1 = 1 + ξ̄1ξ
1 + ξ̄2ξ

2, K2 = 1 + z̄z +
(
ξ1 − zξ2

) (
ξ̄1 − z̄ξ̄2

)
. (2.63)

Last expression defines U such that U ∈ SU(2|1) and it also provides parametriza-

tion of the coset superspace SU(2|1)/[U(1)×U(1)]. Now to compute the Cartan forms

and U(1) connections

U−1dU ≡ Ω =


0 Ē2 Ē1

−E2 0 −Ē+

−E1 E+ 0

 − i

2


B 0 0

0 B −A 0

0 0 A

 . (2.64)

The Cartan 1-forms are EA = (E+, E1, E2) and their complex conjugates are
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ĒA = (Ē+, Ē1, Ē2). One can find

E+ = K
−

1

2
1 K−1

2

[
dz −K−1

1

(
dξ1 − zdξ2

) (
ξ̄2 + zξ̄1

)]
,

E1 = (K1K2)
−

1

2
[
dξ1 − zdξ2

]
,

E2 = K
−

1

2
2

[
dξ1
(
z̄ − ξ2

(
ξ̄1 − z̄ξ̄2

))
+ dξ2

(
1 + ξ1

(
ξ̄1 − z̄ξ̄2

))]
. (2.65)

For the U(1) connections A and B we have, similarly, that

A = −idZM∂M logK2 + c.c., B = idZM∂M logK1 + c.c. , (2.66)

where ZM = (z, ξ1, ξ2) are the complex coordinates and Z̄M = (z̄, ξ̄1, ξ̄2) their complex

conjugates. Now we rewrite 1-forms (EA,A,B) as the corresponding 1-forms on the

particle’s worldline (i.e. go to dt from dz, dξ1, dξ2). Thus, we now have

EA = dt ωA, ωA ≡ żEA
z + ξ̇iEi

A (2.67)

and

A = dtA, A ≡
[
żAz + ξ̇iAi

]
+ c.c.,

B = dtB B ≡ ξ̇iBi + c.c. . (2.68)

In principle all the coefficients ωA = (ω+, ω1, ω2) can be used to construct SU(2|1)-

invariant kinetic terms, but we can observe that in (2.65) Ei has dξi appear by itself

without another grassman coordinate and in E+ dξi appear only in fermion-bilinear

terms. This means that terms quadratic in ωi will be higher-derivative for fermion
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variables. So we will use only ω+ for the kinetic term

ω+ = żω + ξ̇iωi , (2.69)

where

ω = K
−

1

2
1 K−1

2 ,

ω1 = −K
−

3

2
1 K−1

2

(
ξ̄2 + zξ̄1

)
,

ω2 = K
−

3

2
1 K−1

2 z
(
ξ̄2 + zξ̄1

)
. (2.70)

In addition to the kinetic term, there are two possible WZ terms that we may con-

struct from A and B.

Az = −iK−1
2

[
z̄ − ξ2

(
ξ̄1 − z̄ξ̄2

)]
,

A1 = −iK−1
2

(
ξ̄1 − z̄ξ2

)
,

A2 = iK−1
2 z

(
ξ̄1 − z̄ξ2

)
, (2.71)

and

Bi = −iK−1
1 ξ̄i . (2.72)

Finally we can write Lagrangian as

L = |ω+|2 +NA+MB , (2.73)

where N and M are two constants. For more details please refer to [6]. In that paper

Superflag Landau model was solved and negative-norm states were confirmed.



Chapter 3

Landau Models on the superpshere and Superflag

manifolds

With Superplane Landau model fully developed we can turn to the more complicated

cases. In this section we will solve Landau models on the superpshere SU(2|1)/U(1|1)

and Superflag SU(2|1)/U(1) × U(1) manifolds. As the negative norm states will

appear, we will find ‘metric operator’ to make a new positive definite scalar product,

in the similar way it was done to for the planar case.

We will start with construction of Lagrangian for the model on a superpshere,

then we will find eigenfunctions and energy levels and calculate scalar product of

eigenfunctions in naive metric. It will show clearly that scalar product is not positive

definite. After this we will move to the model on the Superflag and go through the

same steps. It turns out that norm of eigenfunction in the Superflag case can be made

into norm on the superpshere case by fixing one parameter and a transformation of

another. This make superpshere equivalent to the specific case of the Superflag, and

for the rest of the chapter we will concentrate on Superflag.

Successfully finding metric operator and fixing norm we will recover some new

symmetries. This ‘hidden’ symmetries are different from the Superplane case in the

way that we don’t have a worldline supersymmetry anymore, instead we have our

off-shell symmetry algebra expanded from SU(2|1) to SU(2|2).

23
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3.1 Model on the superpshere

The model

The Riemann superpshere CP(1|1) ∼= SU(2|1)/U(1|1) is a complex supermanifold

with complex coordinates

ZA =
(
Z0, Z1

)
= (z, ζ) , Z̄B̄ =

(
Z̄0, Z̄1

)
=
(
z̄, ζ̄
)
, (3.1)

where z is a complex coordinate of the Riemann sphere, with complex conjugate z̄,

and ζ is its anti-commuting partner, with complex conjugate ζ̄. For the Superflag

later we will have set of three complex coordinates (z, ζ, ξ). Note that this is different

from the coordinates used before. This change is made for later convenience when

we will switch to analytic subspace on Superflag. These two sets of coordinates are

connected by

ξ1 = ζ + zξ , ξ2 = ξ . (3.2)

We are not giving commutation relations of SU(2|1) yet. All of the properties of

algebras used are collected in the appendix (B).

The Riemann superpshere is not only a complex supermanifold but also a Kähler

supermanifold, with Kähler 2-form

F = 2i dZA ∧ dZ̄B̄ ∂B̄∂AK , (3.3)

where

K = log
(
1 + zz̄ + ζζ̄

)
(3.4)

is the Kähler potential, which is real because the usual convention for complex conju-
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gation of products of anti-commuting variables implies that (∂ζ)
∗ = −∂ζ̄ , and hence

that

(∂B̄∂AK)∗ = (−1)a+b (∂B̄∂AK) . (3.5)

Here a is the Grassmann parity associated with the A or Ā index; i.e. a = 0 for A = 0

and Ā = 0, and a = 1 for A = 1 and Ā = 1 (to avoid ambiguities with this simplified

notation, one must arrange for all barred indices to have letters that differ from those

of unbarred indices, but this restriction is easily accommodated).

The Kähler 2-form may be written locally as F = dA, where

A = −i
(
dZA∂A − dZ̄B̄∂B̄

)
K ≡ dZAAA + dZ̄B̄AB̄ (3.6)

is the Kähler connection. It turns out that connection is SU(2|1) invariant. The

Kähler metric of the Riemann superpshere is

dZAdZ̄B̄ gB̄A = dZAdZ̄B̄ ∂B̄∂AK . (3.7)

It is manifestly Kähler gauge invariant, and hence SU(2|1) invariant. Before proceed-

ing we record, for future use, the components of the metric and inverse metric. The

metric components are

gz̄z =
1 + ζζ̄(

1 + zz̄ + ζζ̄
)2 , gz̄ζ = − zζ̄

(1 + zz̄)2 ,

gζ̄z =
z̄ζ

(1 + zz̄)2 , gζ̄ζ =
1

1 + zz̄
. (3.8)

The inverse metric components are

gzz̄ = (1 + zz̄)
(
1 + zz̄ + ζζ̄

)
, gzζ̄ = (1 + zz̄) zζ̄ ,

gζz̄ = − (1 + zz̄) z̄ζ , gζζ̄ = 1 + zz̄
(
1− ζζ̄

)
.

(3.9)
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The metric gB̄A and its inverse gAB̄ are related by the conditions

gAB̄gB̄C = δAC , gB̄C g
CĀ = δB̄

Ā . (3.10)

We are going to use metric to write kinetic term and connections for potential

terms in the Lagrangian. In general the classical Lagrangian of the superspherical

Landau model is

L = ŻA ˙̄ZB̄gB̄A +N
(
ŻAAA + ˙̄ZB̄AB̄

)
, (3.11)

where the overdot indicates differentiation with respect to an independent variable,

which we interpret as time. Observe that L is real as a consequence of (3.5). The

SU(2|1) variation of this Lagrangian is a total time derivative, for any real number

N , so our model is really SU(2|1)-invariant. Constant 2N can be interpreted as the

particle’s electric charge, after moving to the quantum theory we will see that it

requires 2N to be an integer.

We are following the same procedure as before. From Lagrangian we derive Hamil-

tonian, then we quantize it and try to rewrite it in the form which will permit fac-

torization. The last part will be solving for eigenvalues and eigenvectors of factorized

Hamiltonian.

We will proceed directly to the Hamiltonian form of the Lagrangian,

L = ŻAPA + ˙̄ZB̄PB̄ − (PA −NAA) gAB̄ (PB̄ −NAB̄) , (3.12)

where the inverse metric is defined in (3.9), (3.10) and the conjugate momenta are

PA = (pz,−iπζ) , PB̄ =
(
pz̄,−iπζ̄

)
. (3.13)

Here, pz̄ is the complex conjugate of pz and πζ is the complex conjugate of πζ̄ ; the
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factors of−i are needed for this as a consequence of the rule for complex conjugation of

products of anti-commuting variables (A.6), so we can write for generalized momenta

(PA)∗ = (−1)a PĀ . (3.14)

Since the inverse metric behaves in the same way as the metric under complex conju-

gation, one sees that the new Lagrangian, in Hamiltonian form, is real, and one may

verify that elimination of the momenta returns us to the Lagrangian (3.11). We may

now read off the classical Hamiltonian, which we rewrite as

Hclass = (PA −NAA) gAB̄ (PB̄ −NAB̄)

= (−1)a(a+b) gAB̄ (PA −NAA) (PB̄ −NAB̄) . (3.15)

To quantize, we make the replacements

pz → −i∂z , pz̄ → −i∂z̄, πζ → ∂ζ , πζ̄ → ∂ζ̄ , (3.16)

which imply

PA → −i∂A , PB̄ → −i∂B̄ . (3.17)

This yields the quantum Hamiltonian

H = − (−1)a(a+b) gAB̄∇(N)
A ∇

(N)

B̄
, (3.18)

where

∇(N)
A = ∂A −N (∂AK) , ∇(N)

B̄
= ∂B̄ +N (∂B̄K) . (3.19)

These covariant derivatives have the super-commutator

∇(N)

B̄
∇(Ñ)
A − (−1)ab∇(Ñ)

A ∇
(N)

B̄
= −

(
N + Ñ

)
gB̄A , (3.20)
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with all other super-commutators equal to zero. For further use, we present here the

explicit expressions for ∇(N)
A ,∇(N)

B̄

∇(N)
z = ∂z −N

z̄

1 + zz̄ + ζζ̄
, ∇(N)

z̄ = ∂z̄ +N
z

1 + zz̄ + ζζ̄
,

∇(N)
ζ = ∂ζ −N

ζ̄

1 + zz̄ + ζζ̄
, ∇(N)

ζ̄
= ∂ζ̄ −N

ζ

1 + zz̄ + ζζ̄
. (3.21)

The SU(2|1) invariance of the model can be made manifest by writing the Hamil-

tonian (3.18) in terms of the Casimir operators. We substitute differential representa-

tions of algebra generators into Casimir operators and compare it with Hamiltonian

operator. One finds that

H = C2 . (3.22)

The spectrum

It is not clear from the beginning how to apply factorization method to superp-

shere. Moreover, the lowest Landau level (LLL) is known from earlier work [5]; in the

present context, in which we have chosen an operator ordering such that the ground

state energy is zero, the LLL wave functions are components of a superfield Ψ
(N)
0 ,

satisfying the analyticity constraint

∇(N)

B̄
Ψ

(N)
0 = 0 , (3.23)

and they carry an irreducible superspin N representation of SU(2|1) that decomposes

into the reducible (N − 1/2)⊕N representation of SU(2).

At ` = 1 we have the superfield wave function

Ψ
(N)
1 = ∇(N+1)

C ΦC . (3.24)
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After acting with H on this wave function, we move the ∇(N)

B̄
derivative to the right,

where it annihilates ΦC , but we pick up a super-commutator term, which we simplify

using (3.20). The result is

HΨ
(N)
1 = (2N + 1)gaB̄∇(N)

A gB̄CΦC . (3.25)

Now we use the identity

(−1)a(a+b) gAB̄∇(N)
A gB̄C = ∇(N+1)

C , (3.26)

which itself is a consequence of the identity

(−1)a(a+b) gAB̄ (∂A gB̄C) = −∂C K . (3.27)

The result is that Ψ
(N)
1 is an eigenfunction of H with energy eigenvalue (2N + 1). At

` = 2 we have the superfield wave function

Ψ
(N)
2 = ∇(N+1)

D ∇(N+3)
C ΦCD . (3.28)

After acting with H on this superfield we again move ∇(N)

B̄
to the right, where it

annihilates the chiral superfield Φ, but we now pick up two super-commutator terms.

Simplifying these with (3.20), we find that

HΨ
(N)
(+)2 = (−1)a(a+b) (2N + 1) gAB̄∇(N)

A gB̄D∇
(N+3)
C ΦCD

+ (−1)a(a+b)+bd (2N + 3) gAB̄∇(N)
A ∇

(N+1)
D gB̄C ΦCD . (3.29)

Now we use the identity
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(−1)bc∇(N+1)
(C gB̄D) ≡ gB̄(C∇

(N+3)
D) , (3.30)

where the brackets indicate graded symmetrization in the unbarred indices, to rewrite

(3.29) as

HΨ
(N)
(+)2 = (−1)a(a+b) (4N + 4) gAB̄∇(N)

A gB̄D∇
(N+3)
C ΦCD . (3.31)

Then, using (3.26), we confirm that Ψ
(N)
2 is an eigenfunction of H with energy eigen-

value (4N + 4). No new identities are needed to repeat these steps at higher levels,

and the result for the `th level may be obtained by induction. Energy eigenvalues are

E` = C2(`) = ` (`+ 2N) (3.32)

for non-negative integer `, and the states in the `th Landau level, for ` > 0, have

superfield wave functions of the form

Ψ
(N)
` = ∇(N+1)

A1
· · · ∇(N+2`−1)

A`
ΦA`...A1 , (3.33)

where the superfield ΦA`···A1 is totally graded symmetric in its ` indices and satisfies

the analyticity condition

∇(N)

B̄
ΦA`...A1 = 0 . (3.34)

The graded symmetry means that Φ has only two independent components, which

we may take to be

Φz...z ≡ Φ
(+)
` , Φz...ζ = Φ

(−)
` . (3.35)

It follows that

Ψ
(N)
` = Ψ

(N)
(+)` + Ψ

(N)
(−)` , (3.36)
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where the two independent superfields Ψ
(N)
(±)` are given by

Ψ
(N)
(+)` = ∇(N+1)

z · · · ∇(N+2`−1)
z Φ

(+)
` (3.37)

and

Ψ
(N)
(−)` =

[∑̀
p=1

∇(N+1)
z . . .∇(N+2p−1)

ζ . . .∇(N+2`−1)
z

]
Φ

(−)
` . (3.38)

The LLL is exceptional in that only the (+) component is defined, and this is the

ground state wave function that we called Ψ
(N)
0 . In general, both of the Ψ(±) com-

ponents will carry an irreducible representation of SU(2|1), so only the LLL has a

representation carried by a single analytic superfield. We arrived at this result using

insights gained from earlier studies of the planar limit, and by analogy with the CP2

Landau model.

Hilbert space norm

The Hilbert space has a natural SU(2|1)-invariant norm, defined as the superspace

integral3 [5]

||Ψ||2 =

∫
dµ0 e

−KΨ∗Ψ , (3.39)

where

dµ0 = dzdz̄ ∂ζ∂ζ̄ . (3.40)

For the ground state this norm reproduces the results in [5]. For the first excited

state we may simplify the norm by means of the integration by parts identity

∫
dµ0 e

−K
(
∇(N)
A ΦA

)∗
Θ ≡ − (−1)a

∫
dµ0 e

−K (ΦA
)∗ (∇(N−1)

Ā
Θ
)
, (3.41)

3For the definition of the integral look in the appendix A at the page 89.
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valid for arbitrary superfield Θ. Using also the super-commutator identity (3.20) and

the chirality condition on ΦC , we find that

||Ψ(N)
1 ||2 = (−1)a (2N + 1)

∫
dµ0 e

−K (ΦB
)∗

gB̄AΦA. (3.42)

Similar steps may be used to simplify the norm of Ψ
(N)
` for ` > 1, but one now needs

the identity, analogous to (3.30),

(−1)bc∇(N+2)

(Ā
gB̄)C ≡ g(ĀC∇

(N)

B̄)
, (3.43)

where the brackets again indicate graded symmetrization, but now in the barred

indices. The final result for l−th level wave function could be obtained in the sim-

ilar way with the repeated use of this identities, although the calculations are more

cumbersome because of the plus and mimus components (4.52). At the end we obtain

||Ψ(N)
` ||

2 = σ`
(2N + 2`− 1)!`!

(2N + `− 1)!

∫
dµ0 e

−K (ΦB1...B`
)∗
gB̄1A1

· · · gB̄`A`
ΦA`...A1 , (3.44)

where

σ` = (−1)
∑`

i bi+
∑`−1

i aibi+1 . (3.45)

In terms of the two independent chiral superfields Φ
(±)
` , we have4

||Ψ(N)
` ||

2 =
(2N + 2`− 1)!`!

(2N + `− 1)!

∫
dµ0 e

−K
{(

Φ
(+)
`

)∗
(gz̄z)

` Φ
(+)
` (3.46)

+ `
(

Φ
(+)
`

)∗
(gz̄z)

`−1 gz̄ζ Φ
(−)
` − `

(
Φ

(−)
`

)∗
(gz̄z)

`−1 gζ̄z Φ
(+)
`

+
(

Φ
(−)
`

)∗ [
−` (gz̄z)

`−1 gζ̄ζ + ` (`− 1) (gz̄z)
`−2 gz̄ζgζ̄z

]
Φ

(−)
`

}
.

4Although the ` = 0, 1 cases are special, and need to be considered separately, this result for
` ≥ 2 is also correct for ` = 0, 1. In particular, all terms involving Φ(−) are absent for ` = 0, as
expected.
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To proceed, we solve the analyticity constraint (4.2) on the Φ
(±)
` superfields by

writing

Φ
(±)
` = e−NKϕ

(±)
` , (3.47)

where ϕ
(±)
` are unconstrained analytic superfields. We may expand ϕ

(±)
` in component

fields as follows

ϕ
(−)
` = A` + ζψ` , ϕ

(+)
` = χ` + ζF` . (3.48)

If (as the notation suggests) the component functions (χ, ψ) are assumed to be

Grassmann odd, and the component functions (A,F ) are assumed to be Grassmann

even, then Ψ will be Grassmann odd. With the reverse Grassmann parity assignments

to the component functions, Ψ will have even Grassmann parity. In either of these

two cases the ‘Hilbert’ space is actually a supervector space rather than a vector

space. If, instead, all component functions are assumed to be Grassmann even then

Ψ will not have a definite Grassmann parity but the Hilbert space will be a standard

Hilbert space. There is no need here to choose between these alternatives as long as

we are careful not to perform any re-ordering that would require us to specify one

of them. Substituting for Φ
(±)
` in (3.46) and performing the Berezin integration, we

arrive at the result

||Ψ(N)
` ||

2 =
(2N + 2`− 1)!`!

(2N + `− 1)!

∫ dzdz̄

(1 + zz̄)2(N+`)+1

[
− ` (2N + `) |A`|2 − `ψ̄`ψ`

− `
(
χ̄` + z̄ψ̄`

)
(χ` + zψ`) +

2 (N + `) + 1

1 + zz̄
χ̄`χ` + |F`|2

]
. (3.49)

The above norm is SU(2|1) invariant, by construction, but not positive definite,

so the associated quantum theory is not unitary. However, there could be an al-

ternative SU(2|1) invariant norm that is positive-definite. Indeed there is, but we

shall investigate this in the context of the more general Superflag model since we
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may then specialize to M = 0 to get a unitary superspherical Landau model. Quite

apart from the fact that we will then have the main result in the context of a more

general model, another reason for this approach to the problem is that computations

are easier for the Superflag model. This is because the additional anti-commuting

variable of the classical theory becomes an additional superspace coordinate in the

quantum theory, and expansion in this coordinate yields (±) pairs of superfields of

the type that we have been considering. This simplification also allows the Superflag

model to be solved exactly by a factorization trick.

3.2 Solving Superflag

We already introduced Superflag Lagrangian to be

L =
∣∣ω+
∣∣2 +

[
ŻM (N ′AM +MBM) + c.c.

]
, (3.50)

We now turn to a Hamiltonian analysis of the general Superflag model. General-

ized momenta are found to be

Pζ = πζ − iN ′Aζ − iMBζ , Pz = (pz −N ′Az −MBz),

Pζ̄ = πζ̄ − iN ′Aζ̄ − iMBζ̄ , Pz̄ = (pz̄ −N ′Az̄ −MBz̄) . (3.51)

Since we have auxiliary coordinates in Lagrangian there will appear constraints when

we transition to Hamiltonian formalism. The model has four primary constraints,

which occur in two complex conjugate pairs. One pair is

ϕζ = Pζ + i(ξ̄K2 + ζ̄z)Pz, ϕζ̄ = Pζ̄ − i(ξK2 + ζz̄)Pz̄ , (3.52)

ϕξ = πξ − iMBξ, ϕξ̄ = πξ̄ − iMBξ̄ . (3.53)
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After substitutions we can find Hamiltonian

H0 = K2
2K
−1
1

[
1 +

(
ζ̄ + z̄ξ̄

)
ζ
] [

1 + ζ̄ (ζ + zξ)
]
PzPz̄ , (3.54)

where the subscript is a reminder that we may add any function on phase space that

vanishes on the subspace specified by the primary constraints. A remarkable feature

of this Hamiltonian is that it is independent of M . When we pass to the quantum

theory, this means that the energy levels are independent of M but this does not mean

that the parameter M is irrelevant because it can affect the norms of the quantum

states.

Before proceeding to the quantum theory we have to address a minor difficulty.

The Hamiltonian H0 does not commute, even ‘weakly’, with the constraints. This

difficulty can be circumvented by introducing the new variables

ξ1 = ζ + zξ , ξ2 = ξ . (3.55)

These were the variables used in [6], and the analog of H0 found by using these vari-

ables commutes with the constraints. Alternatively, one can modify the Hamiltonian

by adding terms proportional to the constraint functions such that the new Hamilto-

nian commutes, at least weakly, with the constraints. This second approach was the

one adopted in [8] for the planar Superflag, and we will do the same here. Specifically,

we take the new Hamiltonian to be

H = K2
2K1 (Pz + iξPζ)

(
Pz̄ + iξPζ̄

)
. (3.56)

It may be verified that H is weakly equivalent to H0 but commutes (strongly) with

the constraints.

To pass to the quantum theory we make the replacement PA → −i∂A, as in (3.17),
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where A = (z, ζ), and we also make the replacement

πξ → ∂ξ , πξ̄ → ∂ξ̄ , (3.57)

which is needed only for the second pair of constraints (3.53). The resulting Hamil-

tonian operator5 is

HN ′ = −K2
2K1

(
∇(N ′)
z − ξ∇(N ′)

ζ

)(
∇(N ′)
z̄ − ξ̄∇(N ′)

ζ̄

)
, (3.58)

where covariant derivatives are

∇(N ′)
A = ∂A − iN ′AA , ∇(N ′)

Ā
= ∂Ā − iN ′AĀ . (3.59)

Here ∇(N ′)
z − ξ∇(N ′)

ζ can be understood as creation operator and ∇(N ′)
z̄ − ξ̄∇(N ′)

ζ̄
as

annihilation operator, there is an ordering ambiguity in the order of these operators

which allows addition of a constant to the Hamiltonian. We just set this constant

to zero. Because the analytic constraint operators commute, we may quantize à la

Gupta-Bleuler by requiring physical states to be annihilated by these operators. The

result is that ‘physical’ wave functions must take the form

Ψ = KM
1 K−N

′

2 Φ (z, z̄sh, ζ, ξ) , (3.60)

where Φ is a ‘reduced’ wave function that depends on z̄ only through the ‘shifted’

coordinate

z̄sh = z̄ − ξζ̄ − z̄ (ζ + zξ) ζ̄ . (3.61)

This system was already solved in [6], so here we are going to reproduce already

known formulas for energy levels, eigenfunctions, but in new coordinates (z, ζ, ξ).

5Operator ordering ambiguities allow the addition of a constant, which we have set to zero.
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For 2N ′ an integer, which we may assume to be positive, the Hamiltonian may be

diagonalized in the physical subspace, with energy eigenvalues

EN ′ = `(2N ′ + `+ 1) , ` = 0, 1, 2, . . . . (3.62)

The wave functions for the LLL (` = 0) is

Ψ(0) = KM
1 K−N

′

2 Φ(0)
an (z, ζ, ξ) . (3.63)

That is, the reduced LLL wave function is an analytic function. The reduced wave

function at all higher levels may be expressed in terms of a level ` analytic function

Φ
(`)
an according to the formula

Φ(`) = D2(N ′+1) · · · D2(N ′+`) Φ(`)
an (z, ζ, ξ) (` > 0) , (3.64)

where

D2N ′ ≡ ∇2N ′

z − ξ∇2N ′

ζ = ∂z − ξ∂ζ −
2N ′ z̄sh
1 + zz̄sh

. (3.65)

As in the case of the superspherical Landau model, there is a natural SU(2|1)

invariant inner product on Hilbert space defined by a superspace integral, although

the superspace now has an additional complex anti-commuting coordinate. As shown

in [6], this inner product is

〈Υ|Ψ〉 =

∫
dzdz̄ ∂ζ∂ζ̄∂ξ∂ξ̄K

−2
2 Υ∗Ψ . (3.66)

Performing the Berezin integration over all anti-commuting coordinates, we get an

ordinary integral over the sphere with an integrand determined by the four analytic
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functions (A(`), ψ(`), χ(`), F (`)) appearing in the (ζ, ξ)-expansion of Φ
(`)
an :

Φ(`)
an = A(`) + ζ

[
ψ(`) +

∂zχ
(`)

(2N ′ + 2`+ 1)

]
+ ξχ(`) + ζξ F (`) . (3.67)

The net result, after integrating by parts to remove all derivatives, is that wave

functions at different levels are orthogonal, while

||Ψ(`)
N ′ ||

2 ≡ 〈Ψ|Ψ〉 = `!
(2N ′ + `+ 1)!

(2N ′ + 1)!

∫
dzdz̄

(1 + zz̄)2(N ′+`+1)
×{

(2M − `) (2M + 2N ′ + `+ 1) Ā(`)A(`) + F̄ (`)F (`)

+
(N ′ + `+ 1) (2N ′ + 2M + `+ 1)

(2N ′ + 2`+ 1) (1 + zz̄)
χ̄(`)χ(`)

+ (2M − `) (1 + zz̄) ψ̄(`)ψ(`)

}
. (3.68)

This is a simplified form of the result given in [6]; the unusual expansion of (3.67) has

led to a norm that is diagonal in the component functions.

With the above norm, the model has ghosts. For positive M (which was the only

case considered in [6]) there are ghosts whenever ` > 2M and if 2M is a non-negative

integer then there are zero-norm states for ` = 2M . This means, in particular, that

the model has ghosts in this ‘naive’ norm for any positive M . The same is true for

negative M , and in this case there are zero norm states even for ` = 0 .

Of course, the sign of the norm has physical relevance only for Grassmann-even

component functions, and either A(`) or ψ(`) would be Grassmann-odd if we were to

assume (as in [6]) that wave functions are superfields (i.e. have definite Grassmann

parity). However, even in this case the above statements concerning ghosts still apply.

We have been careful to allow for (i) wave functions that are superfields, in which

case the ‘Hilbert’ space is actually a vector superspace, and (ii) wave functions for

which all component fields are ordinary functions (or bundle sections), in which case
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the Hilbert space is a vector space.

3.3 Unitary norm

The SU(2|1) symmetry of the Superflag model implies the existence of Noether

charges, which become differential operators in the quantum theory, satisfying the

(anti)commutation relations of SU(2|1) given in Appendix B. These differential op-

erators acting on the whole Superflag wave functions, determine a simpler set of dif-

ferential operators that act on the analytic wave functions, and vice-versa since the

full Noether charge operators can be recovered from the simpler ‘analytic’ operators

that we now present. The even generators are

J− = −i∂z ,

J+ = −i
[
−2 (N ′ + `) z + z2∂z + zζ∂ζ − (ζ + zξ) ∂ξ

]
,

J3 = − (N ′ + `) + z∂z +
1

2
(ζ∂ζ − ξ∂ξ) ,

F = 2M +N ′ +
1

2
(ζ∂ζ + ξ∂ξ) . (3.69)

Note the `-independence of B ; for the other generators one should view ` as an

operator (later to be called L) that takes the value ` in the `th level. The odd

generators are

Π = ∂ζ , Q = z∂ζ − ∂ξ (3.70)

and

Π† = (2M + 2N ′ + `) ζ − ζz∂z + ξ [(2M − `) z − ζ∂ξ] ,

Q† = ζ∂z − (2M − `) ξ . (3.71)
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These results may be compared to the expressions (). In the present case, the full

differential operators representing the generators (J+,Π
†, Q†) , which are determined

by the simpler ‘analytic’ forms given above, are the Hermitian conjugates of the

generators (J−,Π, Q) in the ‘naive’ norm.

We are now in a position to work out the SU(2|1) representation content at each

Landau level. Let us first consider the SU(2) content. We have

J2 = J−J+ + J2
3 + J3

= (N ′ + `+ 1) (N ′ + `)−
(
N ′ + `+

1

4

)
ζ∂ζ

+

[
ζ∂z +

(
N ′ + `+

3

4
− 1

2
ζ∂ζ

)
ξ

]
∂ξ . (3.72)

Now we act with this operator on the analytic wave functions of (3.67), which we

may rewrite as

Φ(`)
an = A(`) + ζψ(`) +

[
ξ +

ζ∂z
2N ′ + 2`+ 1

]
χ(`) + ζξ F (`) . (3.73)

We find that

J2Φ(`)
an = (N ′ + `) (N ′ + `+ 1)A(`) +

(
N ′ + `− 1

2

)(
N ′ + `+

1

2

)
ζψ(`)

+

(
N ′ + `+

1

2

)(
N ′ + `+

3

2

)[
ξ +

ζ∂z
2N ′ + 2`+ 1

]
χ(`)

+ (N ′ + `) (N ′ + `+ 1) ζξ F (`) . (3.74)

One reads off from this result the eigenfunctions of J2 and their eigenvalues. Acting
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with J3 on the J2 eigenfunctions we get

J3

[
A(`)

]
= (z∂z −N ′ − `)A(`) ,

J3

[
ζψ(`)

]
= ζ

(
z∂z −N ′ − `+

1

2

)
ψ(`) ,

J3

[(
ξ +

ζ∂z
2N ′ + 2`+ 1

)
χ(`)

]
=

(
ξ +

ζ∂z
2N ′ + 2`+ 1

)(
z∂z −N ′ − `−

1

2

)
χ(`)

J3

[
ζξ F (`)

]
= ζξ (z∂z −N ′ − `)F (`) . (3.75)

Putting this all together we find the following sets of (2s+1) spin-s joint eigenfunctions

of J2 and J3 :

s = (N ′ + `) : znan , n = 0, . . . , 2N ′ + 2` ,

s =

(
N ′ + `− 1

2

)
: ζzpψn , p = 0, . . . , 2N ′ + 2`− 1 ,

s =

(
N ′ + `+

1

2

)
:

(
ξ +

(q + 1) ζ

2N ′ + 2`+ 1

)
zqχq , q = 0, . . . , 2N ′ + 2`+ 1 ,

s = (N ′ + `) : ζξ zmfm , m = 0, . . . , 2N ′ + 2` (3.76)

for constants (am, ψp, χq, fm) .

As mentioned already, there are two separate cases in which the ‘naive’ norm

considered so far has ghosts when M < 0. These are (i) 2M < −2N ′ − 1 , and (ii)

−2N ′ − 1 < 2M < 0 . Consider the operator

Gan = −1 + 2ξ∂ξ +
2

2N + 2`+ 1
ζ∂z∂ξ . (3.77)

This commutes with J2 and J3, and hence with the Hamiltonian, as is clear from the

alternative expression

Gan =
1

2N ′ + 2`+ 1

[
2J2 + 2 (F − 2M + `)2 − (2N ′ + 2`+ 1)

2
]
. (3.78)
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It also has the property that

G2
an ≡ 1 . (3.79)

As was explained in [8], the same properties hold for the corresponding ‘full’ operator

G, so each of the eigenstates listed above has a definite ‘G-parity’. By inspection,

one sees that for

−2N ′ − 1 < 2M < 0 , (3.80)

the positive (negative) norm eigenstates have positive (negative) G -parity, and there-

fore that the G is the ‘metric operator’ for M in the above range, in the sense that

the new norm

|||Ψ|||2 ≡ 〈Ψ|GΨ〉 (3.81)

is positive definite; we refer to [8] for details of the formalism.

For M = 0 there are zero-norm states, but still no negative-norm states. Now

consider the operator

G̃an = 1− 8 (F − 2M −N ′) + 8 (F − 2M −N ′)2
. (3.82)

It is manifest that G̃an commutes with the Hamiltonian, and hence the same is true

of G̃. One may verify that G̃2
an ≡ 1 , so that the eigenstates listed above also have a

definite G̃ -parity. Inspection shows that when 2M < −2N ′−1 the states with positive

(negative) norm have (positive) negative G̃-parity. The operator G̃ is therefore a

‘metric’ operator for 2M < −2N ′ − 1 , which is a range that has no counterpart in

the planar limit. The metric operator for M > 0 is a more-complicated ‘dynamical’

one, depending on the level. We skip the details of this case.
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3.4 Hidden symmetries

We know that there is hidden worldline supersymmetry of the planar super-Landau

models, for M ≤ 0 . This implies the existence of some enlarged supersymmetry

algebra for the spherical super-Landau models, and we now aim to investigate this.

For simplicity, we now place M in the range for which the metric operator defining

the unitary models is the operator G defined by (3.77). As we have seen, this means

that M should satisfy (3.80) but, as we have also seen, we may allow M = 0 too. In

other words, we now restrict M such that

−2N ′ − 1 < 2M ≤ 0 . (3.83)

Now, let O be some operator that commutes with the Hamiltonian as in the

Lemma 1. O‡ and Õ where defined in (2.46) and (2.49). In addition to them we will

use

OG ≡ [G,O] . (3.84)

Because O commutes with Hamiltonian, OG also commutes with Hamiltonian. Note

that

(OG)‡ =
[
G,O†

]
= − [G,O]† = − (OG)† ≡ −O†G . (3.85)

Symmetry generators that do not commute with G thus generate, in general, addi-

tional symmetries that are ‘hidden’ in the sense that their existence was not built into

the construction of the model. For the Superflag model, it is the odd generators that
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fail to commute with G, and this leads to the following new symmetry generators

ΠG = − 2

2N ′ + 2`+ 1
∂ξ∂z ,

Π‡G =
4M − 2`

2N ′ + 2`+ 1
[ζ (1 + z∂z) + (2N ′ + 2`+ 1) zξ − ζξ∂ξ] ,

QG =
2

2N ′ + 2`+ 1
(2N ′ + 2`+ 1− z∂z − ζ∂ζ) ∂ξ ,

Q‡G = − 4M − 2`

2N ′ + 2`+ 1
[(2N ′ + 2`+ 1) ξ + ζ∂z] . (3.86)

The naive hermitian conjugate of a symmetry operator O will not coincide with

its new hermitian conjugate O‡ unless O commutes with G . For this reason, it is

convenient to choose a basis in which the original SU(2|1) symmetry operators O

are replaced by the operators Õ which commute with G even when O does not, and

Õ‡ = Õ†. In case that O is hermitian with respect to the ‘naive’ Hilbert space metric,

the operator Õ will also be hermitian with respect to the new Hilbert space norm.

When applied to the operators Π and Q, the definition (2.49) yields

Π̃ = Π +
1

2
ΠG , Π̃† = Π† − 1

2
Π‡G ,

Q̃ = Q+
1

2
QG , Q̃† = Q† − 1

2
Q‡G , (3.87)

where we have used the remarkable identities

ΠGG = ΠG , QGG = QG . (3.88)

In terms of the rescaled odd charges

(
Π̃′, Q̃′

)
=

√
2N ′ + 2`+ 1

2M + 2N ′ + `+ 1

(
Π̃, Q̃

)
, (3.89)
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and the redefined U(1) generator

F ′ = F − 2M + ` , (3.90)

one finds, after some computation, that the non-zero (anti)commutation relations of

the odd charges (Π̃′, Q̃′) , and their hermitian conjugates, and the even SU(2)×U(1)

charges (J3, J±, F
′) are precisely of the standard SU(2|1) form given in appendix B.4.

Thus, these charges provide an alternative basis for the SU(2|1) symmetry algebra.

Now we turn to the ‘hidden’ symmetry charges. Their non-zero anticommutators

are

{
ΠG,Π

‡
G

}
=

4 (`− 2M)

2N ′ + 2`+ 1

(
J3 + F̌

)
,

{
QG, Q

‡
G

}
=

4 (`− 2M)

2N ′ + 2`+ 1

(
−J3 + F̌

)
,{

ΠG, Q
‡
G

}
= −i 4 (`− 2M)

2N ′ + 2`+ 1
J− ,

{
Π‡G, QG

}
= i

4 (`− 2M)

2N ′ + 2`+ 1
J+ , (3.91)

where

F̌ = 2M + 2N ′ + `+ 1− F . (3.92)

Notice that the coefficients are level-dependent. The `-dependence in the denomi-

nators is easily removed by a level-dependent rescaling of the odd charges but the

(` − 2M) factor in the numerators is more problematic because when M = 0 this

factor is zero for ` = 0 but non-zero for ` > 0 . For this reason, we will discuss these

two cases separately.

−2N′ − 1 < 2M < 0
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In this case we may define new odd charges by

Π̌G = −

√
2N ′ + 2`+ 1

4 (`− 2M)
Q‡G , Q̌G =

√
2N ′ + 2`+ 1

4 (`− 2M)
Π‡G , (3.93)

in terms of which the anti-commutation relations of (3.91) become

{
Π̌G, Π̌

‡
G

}
= −J3 + F̌ ,

{
Q̌G, Q̌

‡
G

}
= J3 + F̌ ,{

Π̌G, Q̌
‡
G

}
= iJ− ,

{
Π̌‡G, Q̌G

}
= −iJ+ . (3.94)

To present the commutators of these new odd charges with the even charges of SU(2|1)

we need to give only the non-zero commutators with (Π̌G, Q̌G) charges since the

remainder are found by hermitian conjugation; these are

[
F̌ , Π̌G

]
= −1

2
Π̌G ,

[
F̌ , Q̌G

]
= −1

2
Q̌G ,[

J3, Π̌G

]
= −1

2
Π̌G ,

[
J3, Q̌G

]
=

1

2
Q̌G ,[

J+, Π̌G

]
= iQ̌G ,

[
J−, Q̌G

]
= −iΠ̌G . (3.95)

This shows that the new odd symmetry charges transform as a charged doublet under

the U(2) subgroup of SU(2|1). In fact, the operators (Π̌‡G, Q̌
‡
G), together with their

hermitian conjugates, and the even charges (J3, J±, F̌ ), obey the (anti)commutation

relations of SU(2|1). The full symmetry group therefore contains two distinct SU(2|1)

superalgebras. As F ′ is the U(1) charge of one of these superalgebras and F̌ the U(1)

charge of the other one, the full symmetry group must contain

2Z = F ′ + F̌ = 2N ′ + 2`+ 1 , (3.96)

which is a level-dependent central charge. However, this level-dependence does not
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present a problem; it just means that we have a central charge

Z =
1

2
(2L+ 2N ′ + 1) , (3.97)

where L is the level operator .

The two SU(2|1) superalgebras are non-commuting because there are non-zero

anti-commutators of the odd charges from one with the odd charges from the other.

These are

{
Π̃′, Π̌‡G

}
=

{
Q̃′, Q̌‡G

}
= iJ− ,{

Π̃′‡, Π̌G

}
=

{
Q̃′‡, Q̌G

}
= −iJ+ , (3.98)

where the analytic operators representing J± are

J+ = i
√

(`− 2M) (2M + 2N ′ + `+ 1) ξζ ,

J− =
i√

(`− 2M) (2M + 2N ′ + `+ 1)
∂ξ∂ζ . (3.99)

These satisfy, together with

J3 =
1

2
(−1 + ξ∂ξ + ζ∂ζ) , (3.100)

the standard su(2) commutation relations

[J+,J−] = 2J3 , [J3,J±] = ±J± . (3.101)

Finally, the non-zero commutators of these new SU(2) charges with the odd
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charges are [
J+, Π̃

′
]

= −iΠ̌G ,
[
J+, Q̃

′
]

= −iQ̌G ,

[J−,Π′G] = iΠ̃′ ,
[
J−, Q̌G

]
= iQ̃′ ,[

J3, Π̃
′
]

= −1
2
Π̃′ ,

[
J3, Q̃

′
]

= −1
2
Q̃′ ,[

J3, Π̌G

]
= 1

2
Π̌G ,

[
J3, Q̌G

]
= 1

2
Q̌G ,

(3.102)

and hermitian conjugates. These commutation relations show that (Π̃′, Π̌G) and

(Q̃′, Q̌G) are doublets of the SU(2) group generated by (J±,J3) .

We have now shown that the charges

{J±, J3,J±,J3, Z; Π̃′, Q̃′; Π̌G, Q̌G} (3.103)

span a Lie superalgebra, with structure constants that are level independent. We

have therefore found a finite-dimensional ‘enlarged’ symmetry algebra. The brackets

where the central charge Z defined in (3.97) contributes, are:

{Π̌G, Π̌
‡
G} = −J3 − J3 + Z , {Q̌G, Q̌

‡
G} = J3 − J3 + Z ,

{Π̃′, Π̃′†} = −J3 + J3 + Z , {Q̃′, Q̃′†} = J3 + J3 + Z . (3.104)

Its even subalgebra is that of SU(2)×SU(2)×U(1), where the U(1) charge is central,

and its four complex odd generators transform as the (2,1)⊕(1,2) of SU(2)×SU(2).

This uniquely fixes the full symmetry algebra to be that of SU(2|2); recall that the

groups SU(p|q) have even subgroup SU(p)×SU(q)×U(1) with the U(1) charge being

central when p = q .



Chapter 4

Generalized Landau Model

We were able to deeply analyze the properties of Landau models on the Superplane

and Superflag manifolds . Together with previously studied planar Landau models it

gives us a lot of information about supersymmetrization of the original model. For

the next step we would like to work out a more general approach to the problem.

Most straightforward way to deal with a supersymmetric theory is when one starts

with action for superfields. In this way supersymmetry is guaranteed by construction

and even if superfield action have simple form its component version maybe highly

nonlinear and nontrivial. Simplest model we had considered so far was the Landau

model on the Superplane, which had its worldline N = 2 supersymmetry hidden.

We showed two different ways of constructing its Lagrangian, directly starting from

original Landau model in section 2.1 and from Cartan forms in 2.2. We will start by

presenting yet another method for constructing Superplane model which will make

its N = 2 symmetry manifest from the beginning.

4.1 Superplane from superfields

We start with the necessary definitions. The basic objects are two N=2, d=1 chiral

bosonic and fermionic superfields Φ and Ψ of the same dimension.

The real N=2, d=1 superspace is parametrized as

(τ, θ, θ̄) . (4.1)

49
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The left and right chiral superspaces are defined by

(tL, θ), (tR, θ̄), tL = τ − iθθ̄, tR = τ + iθθ̄ = tL + 2iθθ̄ . (4.2)

It will be convenient to work in the left (chiral) basis, so for brevity we will use the

notation tL ≡ t, tR = t + 2iθθ̄. In this basis, the N=2 covariant derivatives are

defined by

D̄ = − ∂

∂θ̄
, D =

∂

∂θ
− 2iθ̄∂t , {D, D̄} = 2i∂t , D

2 = D̄2 = 0 . (4.3)

The chiral superfields Φ and Ψ obey the conditions

D̄Φ = D̄Ψ = 0 (4.4)

and in the left-chiral basis have the following component field contents

Φ(t, θ) = z(t) + θχ(t) , Ψ(t, θ) = ψ(t) + θh(t) , (4.5)

where the complex fields z(t), h(t) are bosonic and χ(t), ψ(t) are fermionic. The

conjugated superfields, in the same left-chiral basis, have the following θ-expansions

Φ̄ = z̄ − θ̄χ̄+ 2iθθ̄ ˙̄z , Ψ̄ = ψ̄ + θ̄h̄+ 2iθθ̄ ˙̄ψ . (4.6)

Also, we shall need the component structure of the following superfields

DΦ = χ− 2iθ̄ż + 2iθθ̄χ̇ , D̄Φ̄ = (DΦ)† = χ̄+ 2iθ ˙̄z ,

DΨ = h− 2iθ̄ψ̇ + 2iθθ̄ḣ , D̄Ψ̄ = −(DΨ)† = −h̄+ 2iθ ˙̄ψ . (4.7)
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Consider the following action with real parameter ρ

S = −
∫
dtd2θ

{
ΦΦ̄ + ΨΨ̄ + ρ

[
ΦDΨ− Φ̄D̄Ψ̄

]}
≡
∫
dt {L1 + ρL2} . (4.8)

After component expansion of superfields and taking the Berezin integral, we find

L1 ⇒ −2i
(
z ˙̄z + ψ ˙̄ψ

)
−
(
χχ̄+ hh̄

)
,

L2 ⇒ −2i
(
zḣ+ χψ̇ + ˙̄zh̄+ χ̄ ˙̄ψ

)
. (4.9)

The fields h and χ are auxiliary and they can be eliminated by their equations of

motion

χ = 2iρ ˙̄ψ , h = −2iρ ˙̄z . (4.10)

Upon substituting this into the sum L ≡ L1 + ρL2, the latter becomes

L ⇒ −2i
(
z ˙̄z + ψ ˙̄ψ

)
+ 4ρ2

(
ż ˙̄z + ˙̄ψψ̇

)
. (4.11)

After redefining

ψ̄ = ζ , ψ = ζ̄ , 4ρ2 ≡ 1

κ
, (4.12)

and integrating by parts, the Lagrangian (4.11) takes the form

L = −i
(
z ˙̄z − z̄ż + ζ ˙̄ζ − ζ̇ ζ̄

)
+

1

κ

(
ż ˙̄z + ζ̇ ˙̄ζ

)
. (4.13)

This expression is equivalent to the Superplane model Lagrangian (2.1), after re-

versing of the time, t → −t together with an overall factor κ. By construction, the

superfield action (4.8) is manifestly N=2 supersymmetric. The N=2 transformations
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of the component fields can be found from

δΦ = −
[
εQ− ε̄Q̄

]
Φ , δΨ = −

[
εQ− ε̄Q̄

]
Ψ . (4.14)

These are general expression for supersymmetry transformations in the superfield

form. We have in the left-chiral basis,

Q =
∂

∂θ
, Q̄ = − ∂

∂θ̄
− 2iθ∂t , {Q, Q̄} = −2i∂t = 2P0 . (4.15)

From this we can find transformations of the component fields under supersymmetry.

It follows from (4.14), (4.15) that off-shell

δz = −εχ , δχ = 2iε̄ż , δψ = −εh , δh = 2iε̄ψ̇ . (4.16)

With the on-shell values (4.10) for the auxiliary fields and with the relabelling (4.12),

these transformations become

δz = − i√
κ
εζ̇ , δζ = − i√

κ
ε̄ż . (4.17)

4.2 Generalized action with interaction

Now we are in a convenient situation. We have a well studied toy model with a simple

looking action defined on chiral superfields. Natural question now is what if we make

this action more complicated? Or to be more precise - how we can to make generalize

this action to make more interesting and rich but still solvable model? Let us consider

the following action

S = −
∫
dtd2θ

{
K(Φ, Φ̄) + V (Φ, Φ̄)ΨΨ̄ + ρ

[
ΦDΨ− Φ̄D̄Ψ̄

]}
≡
∫
dtd2θL . (4.18)
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Here, like in (4.8), ρ is a real parameter. In general, the potentials K and V are

arbitrary real functions of the chiral and antichiral scalar superfields Φ, Φ̄. In princi-

ple, in the third term in (4.18) we could also replace Φ and Φ̄ by arbitrary mutually

conjugate potentials. However, in the case of generic dependence of such potentials

on Φ and Φ̄, the component action can be shown to be non-polynomial in the time

derivatives of z and z̄. Such an exotic feature does not show up if these potentials

are, respectively, holomorphic and antiholomorphic. In this case the action can be

reduced to the form (4.18) through a field redefinition. Thus we take (4.18) as the

starting point. N=2 supersymmetry also admit superfield terms A(Φ)D̄Φ̄ and B(Φ)Ψ

in the action, but after breaking down to components they would induce some new

potential-like terms without derivatives, as well as a modification of other terms. As

far as we are interested in a generalization of the Superplane model action (4.8), we

ignore this possibility.

Our purpose is to find a quantum formulation of this system. Also, we wish to

learn which K’s and V ’s permit the stationary Schrödinger equation for this system

to be solved, that is, in which case the eigenfunctions and eigenvalues of the relevant

Hamiltonian can be fully determined.

To begin, we rewrite the Lagrangian density in terms of the component fields

Lcomp = i (żKz − ˙̄zKz̄)− χχ̄Kzz̄ − iV
(
ψ ˙̄ψ − ψ̇ψ̄

)
− hh̄ V

− χψh̄ Vz + χ̄ψ̄h Vz̄ − χχ̄ ψψ̄ Vzz̄ + iψψ̄ (żVz − ˙̄zVz̄)

+2iρ
(
żh− ˙̄zh̄− χψ̇ − χ̄ ˙̄ψ

)
, (4.19)

where Kz ≡ ∂zK, etc.6 It is worthwhile to remark that (4.19) is immediately put in

the Hamiltonian form, since it is linear in the time derivatives of the dynamical fields

6Herewith, the lower-case indices z, z̄, ψ, ψ̄ denote derivatives, as well as mark the relevant mo-
menta P and connections A (see below).
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z, z̄, ψ, ψ̄. We will use for them the following notation A,B = (z, ψ), Ā, B̄ = (z̄, ψ̄).

And the usual definition of momenta

PA =
∂L

∂ŻA
, PB̄ =

∂L

∂ ˙̄ZB̄
. (4.20)

To get rid of the auxiliary fields h, χ, h̄, χ̄ lets compute momenta from (4.20) and

(4.19), and use those equations to express auxiliary fields. We will obtain

h =
1

2iρ

(
Pz − iKz − iψψ̄Vz

)
, h̄ = − 1

2iρ

(
Pz̄ + iKz̄ + iψψ̄Vz̄

)
,

χ =
1

2iρ

(
Pψ − iV ψ̄

)
, χ̄ =

1

2iρ

(
Pψ̄ − iV ψ

)
, (4.21)

Hamiltonian form of (4.19) can be easily written down

Lcomp = ŻAPA + ˙̄ZB̄PB̄ −Hclass

(
ZA, PC , Z̄

B̄, PC̄

)
. (4.22)

The classical Hamiltonian can now be expressed as

Hclass = PA gAB̄ PB̄ , (4.23)

where we introduced the supermetric gAB̄ and classical “covariant derivatives”

PA = PA −AA , PĀ = PĀ −AĀ . (4.24)

The entries of the supermetric are given by

gzz̄ =
V

4ρ2
, gψψ̄ = −

1

4ρ2

(
Kzz̄ + ψψ̄ Vzz̄

)
, gzψ̄ = −

Vz̄ψ̄

4ρ2
, gψz̄ =

Vzψ

4ρ2
, (4.25)
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while the gauge superconnections are defined by

A = i
(
dZA∂A − dZ̄B̄∂B̄

)
K ≡ dZAAA + dZ̄B̄AB̄, (4.26)

where

K =
(
K + ψψ̄ V

)
. (4.27)

The explicit form of (4.26) is

Az = i(Kz + ψψ̄ Vz) , Az̄ = −i(Kz̄ + ψψ̄ Vz̄) , Aψ = iV ψ̄ , Aψ̄ = iV ψ . (4.28)

Though the connections have a nice Kähler form, the generic supermetric (see (4.34)

below) cannot be expressed through K or any other Kähler-like potential, so the

supermanifold we deal with is not super Kähler (as distinct e.g. from the superpshere

model with Lagrangian (3.11)).

Instead of calculating auxiliary fields through momenta we can always use stan-

dard approach of solving equation of motions. Varying (4.19) with respect to the

non-propagating fields h, h̄, χ, χ̄ , we obtain for them the following expressions

h = −χψ V −1Vz − 2iρ V −1 ˙̄z , h̄ = χ̄ψ̄ V −1Vz̄ + 2iρ V −1ż ,

χ = 2iρA−1
[
1− ψψ̄ BA−1

]
∇ψ̄ , χ̄ = −2iρA−1

[
1− ψψ̄ BA−1

]
∇ψ ,(4.29)

where

A ≡ Kzz̄ , B ≡ Vzz̄ − V −1VzVz̄ , (4.30)

and

∇ψ ≡ ψ̇ + żV −1Vz ψ , ∇ψ̄ ≡ ˙̄ψ + ˙̄zV −1Vz̄ ψ̄ . (4.31)

After substituting these expressions back into the off-shell Lagrangian (4.19), we
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obtain its on-shell form

Lcomp = 4ρ2 V −1 ż ˙̄z − 4ρ2A−1
[
1− ψψ̄ BA−1

]
∇ψ∇ψ̄

+ i (żKz − ˙̄zKz̄) + iψψ̄ (żVz − ˙̄zVz̄)− iV
(
ψ ˙̄ψ − ψ̇ψ̄

)
. (4.32)

This Lagrangian can be written as

L = ŻA ˙̄ZB̄gB̄A +
(
ŻAAA + ˙̄ZB̄AB̄

)
, (4.33)

where

gz̄z =
4ρ2

V

1− ψψ̄
VzVz̄

AV

 , gψ̄ψ = −
4ρ2

A

1− ψψ̄
B

A

 ,

gz̄ψ = −4ρ2
Vz̄

AV
ψ̄ , gψ̄z = 4ρ2

Vz

AV
ψ , (4.34)

while the connection terms are given by (4.28). It is easy to check that gB̄A is indeed

the inverse of (4.25). So (4.23) is a Hamiltonian which correspond to component

Lagrangian (4.32).

4.3 Quantization scheme 1

In order to step up to the quantum level we have to quantize our Hamiltonian. Be-

cause of the presence of arbitrary functions in the model, we will encounter operator

ordering ambiguities in this process. During quantization procedure we want to keep

supersymmetry intact, which means that we need [Q, Q̄] = H for quantum Hamil-

tonian and generators of supersymmetry. It is easier to quantize supercharges then
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Hamiltonian, so first we will find the supercharges of the classical system and then

define their quantum versions in such a way that the involution Q→ Q̄ of the N = 2

supersymmetry algebra becomes hermitian conjugation of the quantum system. The

quantum Hamiltonian can be read off from the anticommutator of the corresponding

supercharges. In this Hamiltonian, the coefficients of the terms having the second

order in the derivatives with respect to the target space variables should be identical

with the coefficients of the terms bilinear in semi-classical momenta in (4.23).

The Lagrangian (4.19) transforms into a total derivative under the transformations

(4.16)

δLcomp =
d

dt

[
−iε

(
χKz + Vzχψψ̄ + V hψ̄ + 2ρχh

)
+ c.c.

]
. (4.35)

Classical supercharges are found as a Noether invariants. After calculations we get

Q = χ
(
Pz − iKz − iVzψψ̄ − 2iρh

)
+ h

(
Pψ − iV ψ̄

)
,

Q̄ = χ̄
(
Pz̄ + iKz̄ + iVz̄ψψ̄ + 2iρh̄

)
− h̄

(
Pψ̄ − iV ψ

)
, (4.36)

where χ, χ̄, h and h̄ are given by the expressions (4.21). After substituting auxiliary

fields and some work, these supercharges can be rewritten as

Q =
1

2iρ
PzPψ, Q̄ =

1

2iρ
Pψ̄Pz̄, (4.37)

where the classical covariant derivatives PA,PĀ were defined in (4.24). So the follow-

ing Poisson brackets will be useful

{z, Pz}PB = 1, {z̄, Pz̄}PB = 1, {ψ, Pψ}PB = −1,
{
ψ̄, Pψ̄

}
PB

= −1 , (4.38)
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Under these brackets, the covariant derivatives obey the relations

{PA,PB̄}PB = −2i∂A∂B̄K, {PA,PB}PB = 0. (4.39)

where the potential K is defined in (4.27). Evaluating the brackets between the

supercharges according to the usual rules we obtain

{
Q, Q̄

}
PB

= −
1

4ρ2
[Pz
{
Pψ, Pψ̄

}
PB
Pz̄ − PzPψ̄ {Pψ, Pz̄}PB

−
{
Pz, Pψ̄

}
PB
Pz̄Pψ − Pψ̄ {Pz, Pz̄}PB Pψ] = −2iHclass , (4.40)

where Hclass was defined in (4.23)7 and

{Q,Q}PB =
{
Q̄, Q̄

}
PB

= 0. (4.41)

We are going to pursue the quantization of this system in the following way. We

first replace

PA → −i∂A, PB̄ → −i∂B̄. (4.42)

We tackle the quantization ordering ambiguities by focusing on the definition of Q

given by (4.37): As expressed in terms of PA, the supercharge Q does not exhibit

any ordering ambiguities. Then we are led to introduce a general inner product on

the target superspace (z, z̄, ψ, ψ̄) with a general measure, and to define Q† as an

Hermitian conjugate of Q with respect to this inner product.

7It is curious that the inverse supermetric gAB̄ entering (4.23) is related by (4.40) through (4.39)
to the second derivatives of the potential K:

∂A∂B̄K = −4ρ2εAB εB̄C̄ g
BC̄ ,

where εAB , εĀB̄ are symmetric constant tensors with the only non-zero entries εzψ = εψz = 1 and
εz̄ψ̄ = εψ̄z̄ = 1 , respectively. This is an indication that the underlying geometry of our general N = 2
super LM is an interesting modification of the super Kähler geometry, such that it is the inverse
metric which is expressed through second derivatives of some scalar potential, not the standard
metric as in the (super)Kähler case.
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The inner product is defined as

< f, g >=

∫
dz dz̄ dψ dψ̄ F

(
f
(
z, z̄, ψ, ψ̄

))
g
(
z, z̄, ψ, ψ̄

)
, (4.43)

where the measure F is assumed to have the following ψ, ψ̄ expansion

F = F0 (z, z̄) + ψ̄ψF3 (z, z̄) , (4.44)

with the real functions F0 and F3 to be determined8. The superfunction f has the

generic ψ, ψ̄ expansion

f
(
z, z̄, ψ, ψ̄

)
= f0(z, z̄) + ψf1(z, z̄) + ψ̄f2(z, z̄) + ψ̄ψf3(z, z̄) , (4.45)

and similarly for g .

Now we wish to compute the hermitian conjugates of the basic operators with

respect to this general inner product. We note that the anticommuting variables are

always standing on the left, so to compute the component norms we will never need

to ascribe a definite Grassmann parity to the component fields. With this in mind,

we derive

(∂ψ)† = ∂ψ̄ + ψ
F3

F0

, (∂z)
† = −∂z̄ −

∂z̄F0

F0

− ψ̄ψ
F3

F0

∂z̄F3

F3

−
∂z̄F0

F0

 . (4.46)

The quantum version of PB̄ can be obtained in a similar way, i.e. through her-

mitian conjugation of PB with respect to the above inner product. As a result, the

quantum version of Q† will be expressed in terms of the quantum versions of PB̄

according to eq. (4.24), but with the properly modified connection terms (due to

8Measure F must be even that is why we do not have components F1 and F2.
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(4.46)). This modification will change the quantum version of eq. (4.39). Then the

quantum version of equation (4.40) will imply constraints on the measure F , so as to

preserve the form of “kinetic” terms in the quantum Hamiltonian (i.e., terms bilinear

in the partial derivatives) because the ordering procedure cannot modify the coeffi-

cients of these highest-order terms. These coefficients are specified by the quantum

version of the relations (4.39), and (4.40). Requiring them to coincide with those in

the classical Hamiltonian implies the measure to be trivial,

F3 = 0 , F0 = ω(z) ω̄(z̄) , (4.47)

where ω(z) is an arbitrary holomorphic function. In the inner product (4.43), the

holomorphic and antiholomorphic factors in F0 can always be absorbed into the re-

definition of the superfunctions f and g, and so, without loss of generality, we can

choose F0 = 1.

Having such a constant measure comes as both a bonus and a surprise. It is a

bonus because with such a measure both Q and Q† are naturally on the same foot-

ing. Otherwise, it would be difficult to explain why we start by quantizing Q and

then define Q†, and not the other way around. It is a surprise because both the La-

grangian and the Hamiltonian in the general case involve a non-trivial supermetric.

In the quantum models associated with homogeneous superspaces as the targets, the

integration measure in the inner product can be naturally constructed with the help

of the supervolume form, by requiring this measure to be invariant under the group

of super-isometries of the target space (see e.g. [4]). In our case the only prereq-

uisite symmetry of the Lagrangian and Hamiltonian is N = 2 supersymmetry, the

transformations of which involve the momenta (time derivatives of the coordinates).

No isometry acting only on the coordinates is assumed a priori. This invalidates the

usual arguments for the construction of the invariant measure through the standard
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supervolume form. In principle, using the ordering ambiguities, one can arrange the

quantum theory in such a way that the measure will involve a non-trivial factor (see

Section 5). However, the final answers will be the same as in the present case.

The quantum version of our covariant derivatives PA,PB̄ will be

Pz = −i(∂z +Kz + ψψ̄Vz) , Pz̄ = −i(∂z̄ −Kz̄ − ψψ̄Vz̄) ,

Pψ = −i(∂ψ + ψ̄V ) , Pψ̄ = −i(∂ψ̄ + ψV ),
(4.48)

and, correspondingly, the non-vanishing relations in (4.39) become

[Pz,Pz̄] = 2
(
Kzz̄ + ψψ̄ Vzz̄

)
,

{
Pψ,Pψ̄

}
= −2V ,[

Pz,Pψ̄
]

= −2ψ Vz , [Pψ,Pz̄] = 2ψ̄ Vz̄ .
(4.49)

Now it is straightforward to compute the quantum Hamiltonian

Hq =
1

4ρ2
[PzV Pz̄ + PzPψ̄Vz̄ψ̄ − VzψPz̄Pψ + Pψ̄(Kzz̄ + ψψ̄Vzz̄)Pψ] . (4.50)

With this hermitian Hamiltonian at hand we turn to the study of the eigenvalue

equation

HqΨ
(
z, z̄, ψ, ψ̄

)
= λΨ

(
z, z̄, ψ, ψ̄

)
, (4.51)

where Ψ is assumed to have general ψ, ψ̄ expansion (4.45),

Ψ
(
z, z̄, ψ, ψ̄

)
= f0(z, z̄) + ψf1(z, z̄) + ψ̄f2(z, z̄) + ψ̄ψf3(z, z̄) . (4.52)

An important property of this Hamiltonian is that it does not mix any components

of Ψ
(
z, z̄, ψ, ψ̄

)
which are linear in ψ, ψ̄, i.e.

Hq ψf1(z, z̄) = λ1 ψf1(z, z̄) , Hq ψ̄f2(z, z̄) = λ2 ψ̄f2(z, z̄) . (4.53)
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Or, in the component form,

−
1

4ρ2
(∂z̄ −Kz̄)V (∂z +Kz) f1 = λ1 f1, (4.54)

and

−
1

4ρ2
(∂z +Kz)V (∂z̄ −Kz̄) f2 = λ2 f2. (4.55)

In other words, the corresponding subspaces are invariant subspaces of Hq. We can

also find another pair of invariant subspaces of Hq which consist of components of the

wave superfunction Ψ
(
z, z̄, ψ, ψ̄

)
which are even in ψ, ψ̄. We represent Ψ in (4.52)

as a sum

Ψ = ΨL + ΨH , (4.56)

where

ΨL = fL0 + ψ̄ψV fL0 + ψ̄f2 ≡ ΨL
even + ψ̄f2 , ΨH = fH0 − ψ̄ψV fH0 + ψf1 ≡ ΨH

even + ψf1 .

(4.57)

This corresponds just to rearranging the component fields in (4.52) as

f0 = fL0 + fH0 , f3 = V
(
fL0 − fH0

)
. (4.58)

The superfunctions ΨL
even and ΨH

even also prove to be invariant subspaces under the

action of Hq,

Hq ΨL
even = λ3 ΨL

even , Hq ΨH
even = λ4 ΨH

even . (4.59)
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This gives rise to the other two eigenvalue equations completing (4.54) and (4.55)

−
1

4ρ2
(∂z +Kz) (∂z̄ −Kz̄)V f

L
0 = λ3f

L
0 (4.60)

−
1

4ρ2
(∂z̄ −Kz̄) (∂z +Kz)V f

H
0 = λ4f

H
0 . (4.61)

Thus, passing to the parametrization (4.56), (4.57) of the general wave superfunc-

tion reduces the diagonalization of the Hamiltonian Hq to two ordinary eigenvalue

problems.

Indeed, by the factorization lemma which states that the non-zero eigenvalues of

the operators BC and CB are the same (appendix C), it can be easily seen that the

non-zero eigenvalues of the operators in (4.54) and (4.60) coincide. The same is true

for the operators in (4.55) and (4.61). This is a consequence of the fact that these

states are transformed into each other by the N = 2 supersymmetry transformations

(see below).

With F = 1 , the inner product (4.43) of the component functions, in terms of the

invariant states of the Hamiltonian Hq described above, is as follows

< f, g > =

∫
dz dz̄ dψ dψ̄

(
Ψ̄LΨL + Ψ̄HΨH

)
=

∫
dz dz̄

(
f̄1g1 − f̄2g2 + 2V f̄L0 g

L
0 − 2V f̄H0 g

H
0

)
. (4.62)

The corresponding norm, < f, f > is diagonal and, evidently, the norms of states

corresponding to fH0 and f2 appear with the wrong sign. Therefore, like in the

previous cases [4, 8], in order to restore the positive definiteness we are led to introduce

the metric operator

G =

[
Pψ̄,Pψ

]
2V

+ 2

ψ∂∂ψ− ψ̄
∂

∂ψ̄

 . (4.63)
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This metric operator commutes with Q and Q†,

[G,Q] =
[
G,Q†

]
= 0, (4.64)

and it is a constant of motion by itself. Under the new inner product

<< f, g >>=< Gf, g >, (4.65)

the operators appearing in formulas (4.54), (4.55), (4.60) and (4.61) are hermitian

positive-definite operators. It follows that their eigenvalues must be > 0, and the pos-

sible zero modes (specifying the ground state wave functions) are related to solutions

of the equations

(∂z +Kz) g = 0, (∂z̄ −Kz̄)h = 0. (4.66)

Notice that the superwave functions ΨL
even, ψ̄f2 , ΨH

even, ψf1 corresponding to the

invariant subspaces of Hq are mutually orthogonal with respect to (4.62) and (4.65),

as should be. Actually, the only effect of passing to the new inner product is the

change of the minus signs to the plus signs in the component expression (4.62), i.e.

the change of the relative sign between terms related to each of the two irreducible

N = 2 multiplets (the signs between products or norms of the fields belonging to the

same multiplet cannot alter because the metric operator G commutes with the N = 2

supersymmetry generators).

As the last topic of this Section, we shall study the action of the supersymmetry

generators on the invariant subspaces of the Hamiltonian which we described above.
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We have

QΨL = 0 ,

Q†ΨL =
i

2ρ
[(∂z̄ −Kz̄)f2 + 2ψ(∂z̄ −Kz̄)V f

L
0 − ψ̄ψV (∂z̄ −Kz̄)f2] , (4.67)

and

Q†ΨH = 0 ,

QΨH =
i

2ρ
[(∂z +Kz)f1 + 2ψ̄(∂z +Kz)V f

H
0 + ψ̄ψV (∂z +Kz)f1] . (4.68)

Now it is easy to see that the general superfunction Ψ contains two irreducible N = 2

multiplets (f1, f
L
0 ) and (f2, f

H
0 ) , which, before the redefinition of the norm, have

positive and negative norms, respectively. Defining the N = 2 supersymmetry trans-

formation of the general wave function Ψ = ΨL + ΨH as

δΨ = (εQ+ ε̄Q†)Ψ , (4.69)

we find from (4.67) and (4.68)

δfL0 =
i

2ρ
ε (∂z +Kz) f1 , δf1 = − i

ρ
ε̄ (∂z̄ −Kz̄)V f

L
0 ,

δfH0 =
i

2ρ
ε̄ (∂z̄ −Kz̄) f2 , δf2 = − i

ρ
ε (∂z +Kz)V f

H
0 . (4.70)

The ground state wave superfunctions ΨL
vac,Ψ

H
vac are defined as zero eigenvalues

of Hq. The corresponding wave functions are solutions of eqs. (4.66), so ΨL
vac,Ψ

H
vac

automatically obey the conditions

QΨL
vac = Q†ΨL

vac = QΨH
vac = Q†ΨH

vac = 0 , (4.71)
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as a consequence of the relations (4.67), (4.68). The set of ground states is spanned

by two holomorphic and two antiholomorphic functions

(f2)vac = eK f̃2(z) , (fL0 )vac = V −1eK f̃L0 (z) ,

(f1)vac = e−K f̃1(z̄) , (fH0 )vac = V −1e−K f̃H0 (z̄) . (4.72)

Using the transformation properties (4.70), it is straightforward to check that the

functions (4.72) are indeed singlets under N = 2 supersymmetry.

Finally, we notice that the obvious requirement of finiteness for the z, z̄ integrals

present in the definition of the inner products (4.62) and (4.65), and of the corre-

sponding norms, imposes rather severe restrictions on the asymptotic behavior of the

admissible class of wave functions fL0 , f
H
0 , f1 and f2 as z, z̄ →∞, as well as on the ad-

missible choice of the potentials K(z, z̄) and V (z, z̄). This issue is difficult to analyze

in general. We shall discuss it on a specific example in section 4.5.

4.4 Quantization scheme 2

Lets discuss quantization procedure once again. Our classical Hamiltonian is fixed,

but there may be different quantum versions of it depending on quantization. Never-

theless we have to demand the identity of the coefficients of the terms quadratic in the

momenta in the quantum and classical versions of the Hamiltonian. We observed in

previous case how this imposes very strong conditions on the hermitian adjoint prop-

erties of the covariant derivatives. More specifically after we obtain quantum operator

P†A computed within the natural inner product, we must demand it to be consistent

with classical momentum PĀ. In (4.47) this condition forced the integration measure

in the inner product to be almost constant.

Now we will consider equivalent classical form of the supersymmetry charges Q
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and Q̄, in order to avoid this troublesome constraint. Indeed, consider the following

expressions for the supersymmetry generators

Q′ =
1

2iρ
P ′zPψ, Q̄′ =

1

2iρ
Pψ̄P ′z̄, (4.73)

where

P ′z = (Pz − iKz −
Vz

V
ψPψ) , P ′z̄ = (Pz̄ + iKz̄ −

Vz̄

V
ψ̄Pψ̄),

Pψ = (Pψ − iψ̄V ) , Pψ̄ = (Pψ̄ − iψV ).

(4.74)

It is easy to see that Pz − P ′z ∼ ψPψ, because of this P ′zPψ = PzPψ, and therefore

the classical supercharge Q = Q′ is not modified, and a similar argument is valid for

conjugated supercharge Q̄ = Q̄′. The corresponding classical brackets among these

“new covariant derivatives” can be easily obtained from (4.38), (4.39).

We are going to use the same quantization rules (4.42), and 1/V as a measure

in (4.43). In the first quantization scheme we defined quantum operator Q and a

measure which gave us conjugation rules and operator Q†, here we start by defining

both Q and Q† that is why we get a differen measure 1/V for the second case. We

are also going to use the following quantum ordering prescription in the definitions

P ′z = −i(∂z +Kz −
Vz

V
ψ∂ψ + a

Vz

V
) , P ′z̄ = −i(∂z̄ −Kz̄ −

Vz̄

V
ψ̄∂ψ̄ − a

Vz̄

V
),

Pψ = −i(∂ψ + ψ̄V ) , Pψ̄ = −i(∂ψ̄ + ψV ),

(4.75)

where the extra terms with a real constant a in the expression of the P ′s reflects the

ordering ambiguity in the products ψPψ and ψ̄P̄ψ̄. We have freedom to fix value of a

later to insure consistence of quantum and classical versions of a Hamiltonian. It can

be checked that this definitions of quantum momentum and the choice of measure



68

together bring correct conjugation properties

P ′†z = P ′z̄, P†ψ = −Pψ̄. (4.76)

Therefore, if the supercharge Q′ is ordered as in (4.73), and Q′† is defined as the her-

mitian conjugate of Q′ with respect to the inner product with the measure 1/V , we

can again implement the involution of the abstract N = 2 superalgebra as the hermi-

tian conjugation of the quantum operators. It remains to check that the coefficients

of the terms quadratic in the momenta of the quantum and classical Hamiltonians

are equal. The algebra of the new covariant derivatives is

{Pψ ,Pψ̄} = −2V , [P ′z ,P ′z̄] = 2Kzz̄ + (∂z∂z̄ lnV ) (ψ̄∂ψ̄ − ψ∂ψ + 2a),

[P ′z ,Pψ̄] = 0, [P ′z̄ ,Pψ] = 0, PψPψ = Pψ̄Pψ̄ = 0,

[P ′z ,Pψ] = −i (∂z lnV )Pψ , [P ′z̄ ,Pψ̄] = −i (∂z̄ lnV )Pψ̄. (4.77)

Then the quantum Hamiltonian reads

2H̃q =
{
Q′, Q′†

}
=

1

2ρ2

P ′zV P ′z̄ + Pψ̄

Kzz̄ +
1

2
∂z∂z̄ lnV

(
ψ̄∂ψ̄ − ψ∂ψ + 2a

)Pψ
(4.78)

An inspection of this expression reveals that it contains terms which formally

appear as having three odd derivatives, viz. Pψ̄(ψ̄∂ψ̄−ψ∂ψ)Pψ. Upon rewriting them

in detail, because of the ordering, these terms generate an additional term in the

product of the two odd momenta. By choosing a = −
1

2
one can cancel the additional

contribution to ensure that the coefficients of the momenta-squared terms in the

quantum Hamiltonian are identical to those in the classical Hamiltonian. Should we
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have chosen another ordering instead of the one in (4.73), for example the symmetrical

(Weyl) prescription
1

2
(P ′zPψ + P ′ψPz) with the corresponding definition of Q′†, it can

be shown (with the help of (4.77)) to require a different value of a. In what follows

we are going to pursue the consequences of the ordering chosen in (4.73).

Now, proceeding as we did in the previous section, we obtain the same invari-

ant subspaces of the new quantum Hamiltonian. Using the same expansion for the

relevant wave superfunction, we derive

H̃ψf1 = − 1

4ρ2
V

(
∂z̄ −Kz̄ +

1

2
∂z̄ lnV

)(
∂z +Kz −

1

2
∂z lnV

)
ψf1 = λ1ψf1, (4.79)

and

H̃ψ̄f2 = − 1

4ρ2
V

(
∂z +Kz +

1

2
∂z lnV

)(
∂z̄ −Kz̄ −

1

2
∂z̄ lnV

)
ψ̄f2 = λ2ψ̄f2. (4.80)

Then, using (4.57), we obtain the other set of invariant subspaces

H̃fH0 = − 1

4ρ2

(
∂z̄ −Kz̄ −

1

2
∂z̄ lnV

)
V

(
∂z +Kz +

1

2
∂z lnV

)
fH0 = λ3f

H
0 , (4.81)

and

H̃fL0 = − 1

4ρ2

(
∂z +Kz −

1

2
∂z lnV

)
V

(
∂z̄ −Kz̄ +

1

2
∂z̄ lnV

)
fL0 = λ4f

L
0 . (4.82)

The inner product (4.43) of the component functions, with the measure V −1, in terms

of the invariant states of the Hamiltonian Hq described above, is given by the integral

< f, g >=

∫
dz dz̄

V

(
f̄1g1 − f̄2g2 + 2V f̄L0 g

L
0 − 2V f̄H0 g

H
0

)
. (4.83)
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At this stage it is easy to see that, changing the functions in (4.83) by

fL0 → V
1
2fL0 , fH0 → V

1
2fH0 , fi → V

1
2fi , (i = 1, 2), (4.84)

we come back to (4.62), while the equations (4.79) - (4.82) are converted into the pre-

vious set (4.54), (4.55), (4.61), (4.60). The supercharges of the different quantization

schemes are connected by the relation

V −
1
2Q′ V

1
2 = Q, V −

1
2Q′† V

1
2 = Q†. (4.85)

It is also easy to find the explicit relation between the Hamiltonians Hq and H̃q defined

by eqs. (4.50) and (4.78) with a = −1
2

H̃q = Hq +
1

8ρ2

[
Vzz̄ +

1

2

VzVz̄
V

+ i (VzPz̄ + Vz̄Pz)− i
VzVz̄
V

(
ψPψ + ψ̄Pψ̄

)]
. (4.86)

This relation can be rewritten as the following simple similarity transformation,

V −
1
2 H̃q V

1
2 = Hq , (4.87)

which agrees with (4.85) and proves the equivalence of the two quantization schemes.9

Now, using (4.57), we have

QΨL = 0, Q†ΨL =
i

2ρ
[(∂z̄ −Kz̄ −

1

2
∂z̄ lnV )f2 + 2ψV (∂z̄ −Kz̄ +

1

2
∂z̄ lnV )fL0

−ψ̄ψV (∂z̄ −Kz̄ −
1

2
∂z̄ lnV )f2] , (4.88)

9A similar equivalence transformation between various quantization schemes in the conventional
supersymmetric quantum mechanics and its relation to different definitions of the inner product
were discussed many years ago in [12].
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and

Q†ΨH = 0, QΨH =
i

2ρ
[(∂z +Kz −

1

2
∂z lnV )f1 + 2ψ̄V (∂z +Kz +

1

2
∂z lnV )fH0

+ψ̄ψV (∂z +Kz −
1

2
∂z lnV )f1] . (4.89)

As follows from (4.79) - (4.82), the ground state wave functions corresponding to zero

eigenvalues of H̃ are defined by the equations

(∂z +Kz −
1

2
∂z lnV ) (f1)vac = (∂z̄ −Kz̄ +

1

2
∂z̄ lnV ) (fL0 )vac = 0 ,

(∂z̄ −Kz̄ −
1

2
∂z̄ lnV ) (f2)vac = (∂z +Kz +

1

2
∂z lnV ) (fH0 )vac = 0 , (4.90)

which imply that the ground state wave superfunctions ΨL
vac,Ψ

H
vac are singlets of

N = 2 supersymmetry, like in the first quantization scheme (eqs. (4.71)).

Finally, we note that the passing to the positive-definite inner product from (4.83)

in this quantization scheme is accomplished by the same operator G as in (4.63),

but now it should be transformed on the pattern of (4.85) and (4.87). Since this

quantization scheme is found to be equivalent to the first one there is no need to

give excessive details on the solution of the quantum model as it can be effectively

constructed from the known expressions in the previous subsection.

4.5 Particle on the superpshere

We are unable to proceed further into analysis of quantum model without specific

choice of potentials K and V . There is no recipe on what choice to make in order have

solvable Schrodinger equations. One insight is to have extra symmetry introduced

into our system. Lets have our potentials realize a symmetry for a particle on a sphere

CP1 ∼ SU(2)/U(1). Consider the SU(2) invariant subclass of our original superfield
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action (4.18), with the following potentials

K(Φ, Φ̄) = −N ln
(
1 + ΦΦ̄

)
, V (Φ, Φ̄) =

(
1 + ΦΦ̄

)2
. (4.91)

It is easy to check that under this choice (4.18) is invariant with respect to the

standard CP1 realization of the SU(2) transformations

δΦ = ε+ iβ Φ + ε̄Φ2 , δΨ = − (iβ + 2ε̄Φ) Ψ . (4.92)

Thus the superfields Φ and Φ̄ can be interpreted as the complex coordinates of CP1 ∼

SU(2)/U(1), with K(Φ, Φ̄) being related to the Kähler potential. To be more precise

we will have components z and z̄ to be complex coordinates of CP1, with K(z, z̄) =

−N ln(1 + zz̄) being the Kahler potential. Because of this we deal with the dynamics

of a particle on the sphere in a magnetic field — the field of a Dirac monopole

located at the center. For this particular case the on-shell Lagrangian (4.32) (up to

a renormalization factor) reads

Lsu(2) =
ż ˙̄z

(1 + zz̄)2 +N−1 (1 + zz̄)2 [1 + 2N−1ψψ̄ (1 + zz̄)2]∇ψ∇ψ̄
− i

[
N − 2ψψ̄ (1 + zz̄)2

1 + zz̄
(żz̄ − ˙̄zz)− (1 + zz̄)2

(
ψ̇ψ̄ − ψ ˙̄ψ

)]
, (4.93)

where

∇ψ = ψ̇ + 2
żz̄

1 + zz̄
ψ , ∇ψ̄ = ˙̄ψ + 2

˙̄zz

1 + zz̄
ψ̄ . (4.94)

This Lagrangian can be rewritten as

Lsu(2) = ŻA ˙̄ZB̄gB̄A +
(
ŻBAB + ˙̄ZB̄AB̄

)
, (4.95)
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with

gz̄z =
1

(1 + zz̄)2 +
4zz̄

N
ψψ̄ , gψ̄ψ =

(1 + zz̄)2

N

[
1 +

2ψψ̄ (1 + zz̄)2

N

]
,

gz̄ψ =
2 (1 + zz̄)

N
zψ̄ , gψ̄z = −2 (1 + zz̄)

N
z̄ψ , (4.96)

Az = iz̄
−N + 2ψψ̄ (1 + zz̄)2

1 + zz̄
, Az̄ = iz

N − 2ψψ̄ (1 + zz̄)2

1 + zz̄
, (4.97)

Aψ = i (1 + zz̄)2 ψ̄, Aψ̄ = iψ (1 + zz̄)2 . (4.98)

The entries of the inverse target space metric are given by

gzz̄ = (1 + zz̄)2 , gψψ̄ =
1

(1 + zz̄)2

[
N − 2ψψ̄ (1 + zz̄)2 (1 + 2zz̄)

]
,

gψz̄ = 2 (1 + zz̄) z̄ψ , gzψ̄ = −2 (1 + zz̄) zψ̄ . (4.99)

The action corresponding to the Lagrangian (4.93) is invariant under the N =

2 supersymmetry transformations (4.16), with the auxiliary fields h and χ being

expressed by the general formulas (4.29), and under SU(2) transformations (4.92)

δz = ε+ iβ z + ε̄ z2 , δψ = − (iβ + 2ε̄ z)ψ . (4.100)

These invariances are the only symmetries of the considered model. The Lagrangian

(4.93) presents an N = 2 supersymmetric extension of the SU(2) invariant bosonic

Lagrangian describing a particle in the background of a Dirac monopole placed at the

center of the 2-sphere S2 ∼ CP1 (and so underlying a LM on the 2-sphere S2 [22]).

Actually, like in the bosonic case (Landau model on the sphere [22]), we deal

with a group of models parametrized by the parameter N . The quantization of these

models follows the general pattern, and we will specialize the general results obtained

in the preceding Sections. Working within the alternative quantization scheme, the
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corresponding eigenvalue equations are

−V∇(N+1)
z̄ ∇(N+1)

z f1 = λ1f1, −V∇(N−1)
z ∇(N−1)

z̄ f2 = λ2f2,

−∇(N−1)
z̄ V∇(N−1)

z fH0 = λ3f
H
0 , −∇

(N+1)
z V∇(N+1)

z̄ fL0 = λ4f
L
0 , (4.101)

where

∇(N)
z = ∂z −N

z̄

1 + z̄z
, ∇(N)

z̄ = ∂z̄ +N
z

1 + z̄z
. (4.102)

One more advantage of the alternative quantization scheme in the present case is

that the integration measure in the inner product (4.83) is just the SU(2) invariant

integration measure over CP1, dz dz̄/(1 + zz̄)2, so requiring the relevant wave func-

tions to be normalizable actually amounts to the standard demand of their square-

integrability on CP1 ∼ S2 , under which the function proves to be globally defined

on S2. In turn, this implies that the normalizable wave functions should encompass

irreducible unitary representations of SU(2) . It is useful to know the SU(2)/U(1)

transformations of the wave functions f1, f2, f
L
0 , f

H
0 which leave invariant the inner

product (4.83) in the model under consideration

δf1 = −[(N + 1)(εz̄ − ε̄z) + δz∂z + δz̄∂z̄] f1 ,

δf2 = −[(N − 1)(εz̄ − ε̄z) + δz∂z + δz̄∂z̄] f1 ,

δfL,H0 = −
[
εz̄ + ε̄z +N(εz̄ − ε̄z) + δz∂z + δz̄∂z̄

]
fL,H0 . (4.103)

Now we shall analyze the structure of the wave functions as solutions of (4.101)

- (4.102). It turns out that this structure essentially depends on the value of N ∈

(N,N+ 1
2
). The normalizability requirement imposes rather severe restrictions on the

admissible choice of the wave functions.

Ground states
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We start our analysis with the ground states. From the point of view of the

underlying bosonic Landau model on S2 ∼ CP1 [22], they correspond to the lowest

Landau level (LLL). The LLL wave functions are defined by the equations (4.90)

specialized to the case under consideration

∇(N+1)
z f1 = ∇(N−1)

z̄ f2 = ∇(N−1)
z fH0 = ∇(N+1)

z̄ fL0 = 0 . (4.104)

The first of eqs. (4.104) has solutions of the form f1 ∼ (1 + zz̄)N+1 which are not

normalizable for any choice of N ≥ 0. The other equations, depending on the value

of N , yield the following non-trivial ground-state wave functions.

• For N = 0 , one has two normalizable singlet ground states:

fH,00 (z, z̄) =
fH,00

1 + z̄z
, fL,00 (z, z̄) =

fL,00

1 + z̄z
. (4.105)

where fH,00 and fL,00 are constants. Thus in this case the ground states are

SU(2) singlets.

• For N =
1

2
, one has normalizable doublet ground states

fL,00 (z, z̄) =
A+Bz

(1 + z̄z)
3
2

, (4.106)

the constants A and B thus forming spin 1/2 multiplet of SU(2).

• For N > 1 , one has the following set of the ground states

f 0
2 (z, z̄) =

f 0
2 (z)

(1 + z̄z)N−1
, Nmax = 2(N−1), fL,00 (z, z̄) =

fL,00 (z)

(1 + z̄z)N+1
, Nmax = 2N.

(4.107)

Here, f 0
2 (z) and fL,00 (z) are polynomials in z of the maximum degree Nmax, thus

implying that the ground states carry spins N−1 and N (the coefficients of the
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z monomials are just the components of the corresponding SU(2) multiplets,

like in (4.106)).10

In accord with the general relations (4.71), all ground states are singlets under

the N = 2 SUSY transformations, which can be directly checked using eqs. (4.88),

(4.89) adapted to the case at hand.

Higher LL states

The non-zero eigenvalues for supersymmetric partners, f1 and fL0 , go by the stan-

dard pattern, and for N > 0 one has

E` = `(`+ 2N + 1), ` = 1, 2 . . . , (4.108)

f 1
1 = f̃ 1

1 , f `1 = ∇(N+3)
z · · · ∇(N+2`−1)

z f̃ `1 , ` > 1 , (4.109)

∇(N+1)
z̄ f̃ `1 = 0 ⇒ f̃ `1 =

f̃ `1(z)

(1 + z̄z)N+1
, fL,`0 = ∇(N+1)

z f̂ `1 , ` ≥ 1 , (4.110)

where f̂1
`(z, z̄) is expressed in terms of an analytic function ˆ̃f `1(z) in precisely the

same way as f `1(z, z̄) is in terms of f̃ `1(z) , in (4.109). From the computation of the

norm of f `1 and f̂ `1, it follows that the polynomials f̃ `1(z) and ˆ̃f `1(z) have the maximum

degree Nmax = 2(N + `). The convergence of the norm of fL,`0 is then guaranteed by

that of the norm of f̂ `1 , upon performing an integration by parts. Thus the LL states

with ` ≥ 1 are spanned by two independent SU(2) multiplets of spin N + ` encoded

in the wave functions f̃ `1(z) and ˆ̃f `1(z) . This additional two-fold degeneracy of the

spectrum is of course a consequence of N = 2 supersymmetry which transforms f̃ `1(z)

and ˆ̃f `1(z) into each other and commutes with SU(2).

10Under SU(2), the polynomial f(z) of the maximal degree Nmax transform as δf(z) =
Nmax ε̄z f(z)− δzf ′(z) . This generic transformation law agrees with the laws (4.103).
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This sequence of eigenvectors and eigenvalues can be extended to include the

ground (LLL) states for fL,00 from (4.105) - (4.107) and correspondingly, to admit

` = 0 in the eigenvalues (4.108). Since fL,00 is a singlet of N = 2 supersymmetry, no

two-fold degeneracy comes out at ` = 0 . The completed set of eigenvalues is given

by

EL
`′ = `′(`′ + 2N + 1), `′ = 0, 1 . . . , for N ≥ 0 . (4.111)

Now we shall focus on the second N = 2 multiplet of wave functions. The non-

zero eigenvalues of supersymmetric partners f2 and fH0 must be split according to

0 6 N < 1 and N > 1, as implied by the eigenvalue equation for f2, which demands

that for 0 6 N < 1 we should work on the subspace of anti-analytic functions.

For N > 1 one has

E` = `(`+ 2N − 1), ` = 1 . . . , (4.112)

f `2 = ∇(N+1)
z · · · ∇(N+2`−1)

z f̃ `2 , ∇(N−1)
z̄ f̃ `2 = 0 ⇒ f̃ `2 =

f̃ `2(z)

(1 + z̄z)N−1
, (4.113)

fH,`0 = ∇(N−1)
z̄ f̂ `2 , (4.114)

where f̂ `2 is expressed through an analytic function ˆ̃f `2 in the same way as f `2 through

f̃ `2 . From the computation of the norm of f `2 and f̂ `2 , it follows that the polynomials

f̃ `2(z) and ˆ̃f `2 have the maximal degree Nmax = 2(N + ` − 1). The convergence

of the norm of fH,`0 is then guaranteed by that of the norm of f̂ `2 . Thus, like in

the previous case, we observe two-fold degeneracy of the energy spectrum due to

N = 2 supersymmetry, having two irreducible SU(2) multiplets with spin N + `− 1 .

Extending the range of ` to include 0 for the ground state vectors f 0
2 (z, z̄) from (4.107),

one eventually obtains the full second sequence of eigenvectors corresponding to

EH
` = `(`+ 2N − 1), ` = 0, 1 . . . , for N ≥ 1 . (4.115)
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Once again, no two-fold degeneracy occurs at ` = 0 because f 0
2 (z, z̄) are singlets of

N = 2 supersymmetry.

To summarize the above discussion, for N > 1 the eigenvalues and eigenfunctions

are split into two sequences corresponding to two super monopole systems, one with

the charge 2N and the other with the charge 2(N − 1). The first sequence extends

to the entire range of N > 0 .

It remains to analyze the case 0 6 N < 1 for the multiplet (f2, f
H
0 ). We have the

following non-zero eigenvalues,

E` = (`+ 1)(`− 2N + 2), ` = 0, 1 . . . , for 0 ≤ N < 1 . (4.116)

f 0
2 = f̃ 0

2 ; f `2 = ∇(N−3)
z̄ · · · ∇(N−2`−1)

z̄ f̃ `2 , ` > 0 ;

∇(N−1)
z f̃ `2 = 0 ⇒ f̃ `2 =

f̃ `2(z̄)

(1 + z̄z)1−N , fH,`0 = ∇(N−1)
z̄ f̂ `2 , (4.117)

where f̂ `2 is related to an anti-analytic function ˆ̃f `2 as f `2 is to f̃ `2 . From the computation

of the norms of f `2 and f̂ `2 , it follows that the polynomials f̃ `2(z̄) and ˆ̃f `2(z̄) have the

maximal degree Nmax = 2(−N + ` + 1) and, hence, encompass two independent

SU(2) multiplets with spin 1 − N + `, revealing the same two-fold degeneracy as in

the previous cases. The convergence of the norm of fH,`0 is then guaranteed by that

of the norm of f̂ `2 .

For N = 0, one can make the shift `′ = ` + 1 and append the value `′ = 0

associated with the ground-state function fH,00 from (4.105), obtaining in this way

the completed set of eigenvalues as

E
(N=0)
`′ = `′(`′ + 1), `′ = 0, 1 . . . . (4.118)
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This set for `′ > 0 is clearly degenerate with the corresponding N = 0 set from (4.111).

Therefore, in this case the system acquires an extra degeneracy: excited levels built

on the corresponding N = 2 singlet ground states possess the same energy. So in this

case the system reveals a four-fold degeneracy (like in the Superplane Landau model

[8]).

For N = 1
2
, there is no match for the singlet ground state (4.106) in the above

sequence, so in this sector N = 2 supersymmetry appears as spontaneously broken,

even though for the whole system it is not, because for the other supermultiplet f1, f
L
0 ,

in the range N > 0, there is always an N = 2 supersymmetric singlet ground state.

Finally, let us note that, should we have chosen N 6 0, we would expect that the

role of f1, f
L
0 and analyticity will be replaced by f2, f

H
0 , and anti-analyticity (and

vice-versa).



Chapter 5

Summary

Let us summarize the important results and then outline several possible routes for a

further research. We just discussed a collection of models which are all generalizations

of the one simple quantum mechanical problem. Each of these models is fully solv-

able analytically and have energy levels quantized11. Unfortunately by construction

all of these models have a second order fermionic kinetic term in the Lagrangian, and

because of this all of them are originally non-unitary with some energy states having

negative norm with respect to the natural inner product. There are multiple similar-

ities and differences between these models but before going into details lets point out

that this work is largely divided into two parts. The outcome of the research on the

Superflag and superpshere Landau model which was started in [5], [6] is discussed

in the section 3 which was the first part of our investigation and the next step to

further generalizing this whole approach is done in chapter 4. Our conclusions will

be discussed in the same order.

The research of the supersymmetric Landau models started with a study of the

lowest Landau level for a particle on the superpshere CP(1|1) ∼= SU(2|1)/U(1|1). One

may take a limit in which only the lowest Landau level survives and in this limit

the model provides a ‘quantum superspace’ description of the fuzzy superspheres [5].

The quantum states of the lowest Landau level all have positive norm with respect to

an SU(2|1)-invariant inner product that is naturally defined as a superspace integral,

but this inner product implies the existence of negative norm states, or ‘ghosts’, in all

11Note that for generalized Superplane Landau model we are able to solve it only for particular
choice of the potentials, and can not say anything about energy levels in the general case
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higher levels. Superflag Landau model involve an additional anti-commuting variable

and an additional parameter M , which has no effect on the energy levels but does have

an effect on the norms of states [6]. For positive M it was found that the first [2M ]+1

Landau levels are ghost-free, in the natural superspace norm, although there are still

ghosts in higher Landau levels. For M < 0 all levels will contain ghosts. Another

unusual feature of the Superflag is the appearance of the zero-norm states when the

parameter 2M is a non-negative integer.

One surprising aspect of the Superplane Landau model is that the energy spectrum

is precisely that of a model of supersymmetric quantum mechanics, at least if one

quantizes in such a way that the state space is a conventional Hilbert space and not a

vector superspace. This feature implies the existence of an alternative positive norm,

with respect to which the Superplane Landau model is both unitary and ‘worldline’

supersymmetric but it is not obvious that a positive norm will preserve the original

‘internal’ supersymmetry12. It was found in [8] that ‘internal’ supersymmetry per-

mits a new alternative norm which is positive for a Superplane model, but for planar

Superflag it is positive only when M ≤ 0. For M > 0 a ‘dynamical’ combination

of both the original and alternative norm is needed. A redefinition of the norm also

changes the definition of hermitian conjugation, such that the new hermitian conju-

gates are ‘shifted’ by operators that generate ‘hidden’ symmetries. Remarkably, the

non-zero ‘shift’ operators were found to be the odd generators of a hidden worldline

supersymmetry for a Superplane model and a planar Superflag with M ≤ 0. This

supersymmetry is spontaneously broken for M < 0 but unbroken for M = 0 .

We have carried out a similar analysis for the superspherical Landau model, and

for the associated Superflag Landau models. The first important result of our analysis

is the proof of a quantum equivalence between the M = 0 Superflag Landau model

12Internal supersymmetry is defined by the coset IU(1|1)/[U(1|1) × Z] and discussed in chapter
2.2 .
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with charge 2N ′ = 2N − 1 and the superspherical Landau model with charge 2N .

Classically, there is an equivalence between these models for the same charge provided

the energy is non-zero13. Another of our results is a proof that all Superflag Landau

models admit a positive SU(2|1) invariant Hilbert space norm. In general this norm

is a ‘dynamical’ combination of the ‘naive’ superspace norm and an ‘alternative’

norm that involves a non-trivial Hilbert space ‘metric operator’. This alternative

norm leads, by itself, to a unitary model when −2N < 2M ≤ 0. We have ‘solved’

these unitary models for all N : that is to say, we have found the complete SU(2|1)

representation content at each Landau level. This part of investigation was carried

out for the Superflag case, and the superspherical model could be obtained from

a restriction M = 0. Although Superflag models possess additional potential and

fermion variable they are in a some respect simpler then the superpshere model.

One of our objectives was to see whether the hidden worldline supersymmetry of

the planar Super Landau models is inherited from some analogous symmetry of spher-

ical super-Landau models. The introduction of a non-trivial ‘metric operator’, implies

the redefinition of some hermitian conjugates by ‘shift’ operators that are guaranteed

by the formalism to be new ‘hidden’ symmetry generators. For −2N < 2M < 0 it was

found that ‘hidden’ symmetries close to yield a finite-dimensional enlarged symmetry

algebra. In these cases the manifest SU(2|1) symmetry is a subgroup of an SU(2|2)

symmetry with a central charge that is linear in the ‘level operator’. The M = 0

case is similar in many respects but the lowest Landau level is now special and this

prevents any simple construction of a finite basis of charges with level-independent

(anti)commutation relations; it thus seems likely that any symmetry group of the

superspherical Landau model that contains SU(2|1) but has higher dimension will

have infinite dimension.

13For the planar models there is no shift, quantum Superplane is equivalent to quantum planar
Superflag with M = 0 and N ′ = N .
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Since ‘hidden’ symmetries for the superpshere and Superflag does not manifest any

worldline supersymmetry in contrast with the planar cases, one of the questions is if it

possible to construct superpshere Landau model with a worldline supersymmetry. We

attempt to generalize the Superplane Landau model by using superfield approach and

introducing arbitrary superpotentials in the action. We have shown that the world-

line N = 2 supersymmetry is strong enough to define unambiguously a rather general

family of quantum models. The naive definition of the inner product has been easily

modified, so that the states with a negative norm become proper, positive-normed

states in the redefined models. The fact that we have used systems for which kinetic

terms of the odd variables were quadratic in time derivatives, has led to general wave

functions containing reducible representations of supersymmetry, as can be seen by

contemplating (4.56), (4.67), and (4.68). The target superspace has a built-in N = 2

supersymmetry as compared to the Superplane and planar Superflag Landau models

where such property manifested only after the alternative norm was introduced. Also

because of the (4.64) there are no hidden symmetries in this case.

The geometry of the general model has certain interesting features (see footnote

7), but it was not possible to solve equations of motion in the general case. We

have found wave functions and energy levels for the special case of constant Gauss

curvature and constant magnetic fields. The wave function has two components, each

of them belonging to a representation of SU(2) and transforming into each other

under N = 2 supersymmetry. In our non-minimal model the four-component wave

function contains two SUSY lowest weights of different charges 2N and 2(N − 1). If

N > 1 there are two families of zero-energy solutions annihilated by the supercharges

(see formula (4.107)). For the case of N = 0, the system acquires an additional

degeneracy.

Finally, let us set up several questions for a further study. First, it is interesting

to inquire whether the general model (4.18) admits some non-trivial super-isometries
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for special choices of the potentials K and V , like its Superplane prototype (4.8),

which is known to respect ISU(1|1) super-isometry [7]. Another task is to construct

super Landau models with N = 4 and higher N world-line supersymmetries. Such

models are not known even in the planar limit. They could bear a close relation to

the Landau-type models on higher dimensional spaces, e.g. to the LM on R4 [24].

One more question come from the closer analysis of the hidden symmetries of the

Superflag Landau model. It turns out that the extended SU(2|2) symmetry algebra

has atypical representation on the each energy level. It would be instructive to find

connection with the known atypical representations of this superalgebra and possibly

to see if we can construct other atypical representations in this way.

The End.



Appendix A

Grassman algebra overview

Here is short collection of the definitions, which may be useful to somebody who is

new to supersymmetry. It is based on paragraphs 1.9 - 1.11 from [20].

Grassman algebra is an associative algebra with unit generated by a set of linearly

independent elements ζ i which anticommute with each other

ζ iζj + ζjζ i = 0 , in particular (ζ i)2 = 0 . (A.1)

Any element of the algebra a can be represented as

a = α +
N∑
k=1

1

k!
Ci1i2...ikζ

i1ζ i2 . . . ζ ik . (A.2)

Here N is a dimension of the set of generators. It can be infinite as well as finite and is

usually considered to be infinite in a general case. Coefficients of this decomposition

are complex numbers: α,Ci1i2...ik ∈ C. Any supernumber can be split in its ’body’

and ’soul’, where body is purely non-grassman part (as α in (A.2)) and soul is the

rest of the expression which involve grassman generators.

We are going to consider each supernumber z as a sum of its odd za and even zc

parts

z = zc + za ,

zc = zB +
∑∞

k=1
1

(2k)!
Ci1i2...i2kζ

i1ζ i2 . . . ζ i2k , (A.3)

za =
∑∞

k=0
1

(2k+1)!
Ci1i2...i2k+1

ζ i1ζ i2 . . . ζ i2k+1 .

85



86

So zc always has even number of generators ζ i in decomposition and za always has

odd number. If za = 0 we will say that z is a c-number and write z ∈ Cc, if zc = 0

we will call z an a-number and write z ∈ Ca. This a,c-numbers are also called pure

supernumbers, for them we can assign ’parity’ ε(z) by the rules

ε(zc) = 0 , ε(za) = 1 . (A.4)

Basically c-numbers behave similar to usual numbers and a-numbers similar to

grassman generators. It can be expressed with the help of parity in the following way

ε(z · w) = ε(z) + ε(w) (mod 2) ,

z · w = (−1)ε(z)ε(w)w · z
(A.5)

Since we defined our superalgebra over the complex numbers we can define op-

eration of conjugation on supernumbers. Complex conjugation has the following

properties

(ζ i)∗ = ζ i , i ∈ N ,

(αz)∗ = α∗z∗ , α ∈ C , (A.6)

(z + w)∗ = z∗ + w∗ , (zw)∗ = w∗z∗ .

Here the last property is especially important to us, because in any computations

involving supernumbers or superfunctions order of objects is essential. With this we

have enough definitions to go one step higher and discuss supervector spaces and

supermatrices. While we are not using supermatrices directly, it is important to note

this part of theory because we can not define superalgebras and supergroups without

the use of supermatrices.
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We can construct supervector spaces the same way as we do vector spaces. They

are linear spaces in the usual sense supplied with operations of multiplication by

supernumbers. We will usually consider supervectors of specific parity which give rise

to even and odd supervector spaces.

Lets define supermatrix as a matrix with elements being supernumbers. We can

decompose it in its body and soul M = MB +MS, then ’rank’ of M is defined to be

the rank of its body MB. An n×n supermatrix is said to be nonsingular if its body is

nonsingular. Now we can rewrite matrix as M = MB(In +M−1
B MS), then the inverse

matrix can be seen as a series

M−1 = M−1
B +

∞∑
k=1

(−1)k(M−1
B MS)kM−1

B . (A.7)

It is clear that square supermatrix has an inverse if and only if its body is nonsingular.

Superspaces are more complicated then normal vector spaces. For example not

every subspace of a finite dimensional superspace has a definite dimension. But for

now we are going to stick with a good examples. Given a d-dimensional superspace

L we can always choose a basis consisting of pure supervectors only. Let p be the

number of even basis vectors {~em}, and q be the number of the odd ones {~eµ}. Then

any c-type vector ~x ∈ L can now be written as

~x = xm~em + θµ~eµ , where xm ∈ Cc θµ ∈ Ca . (A.8)

The set of c-type supervectors from L can be identified as a space Cp|q ≡ Cp
c × Cq

a,

which is called complex superspace of dimension (p|q)

Cp|q = {(x1, x2, . . . , xp, θ1, θ2, . . . , θq), xm ∈ Cc, θ
µ ∈ Ca} . (A.9)
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We can obtain a real subspace Rp|q of the complex superspace by demanding that

coefficients of vector decomposition are real supernumbers xm ∈ Rc and θµ ∈ Ra. In

physics people usually consider even smaller spaces, instead of dealing with c-numbers

we take complex numbers xm ∈ C and instead a-numbers we take grassman algebra

generators θµ = ζmu. Actually this is not much of a simplification but it makes it

easier to imagine the supervector space and work with it.

Lets consider supernumber valued function of the real superspace Rp|q with coor-

dinates zM = (xm, θµ). Without going into much details we are going to consider only

nice functions, i.e. superanalytic and supersmooth functions which can be expressed

by its series expansion in odd coordinates

f(x1, . . . , xp, θ1, . . . , θq) =

f0(x1, . . . , xp) +

q∑
k=1

1

k!
f[µ1µ2...µk](x

1, . . . , xp) θµ1θµ2 . . . θµk . (A.10)

Here f0 and f[...] are supersmooth and superanalytic functions on Rp
c (or smooth and

analytic on Rp). Instead of complete antisymmetrisation in indices f[µ1µ2...µk] we will

often consider specific order, e.g. f[12...k]. Each superfunction can be decomposed into

its even and odd part f = fc+fa thus we can assign parity ε(f) to the superfunction.

If ε(f) = 0 we will often use bosonic instead of even and for ε(f) = 1 we use fermionic

along with odd.

We want to define a derivative associated to a a-number. Because of anticommu-

tativity order is important not only to the supernumbers but to the derivatives as

well. Because of the order it is possible to define left and right derivative with

left derivative

−→
∂

∂θ
θ = 1 ,

right derivative θ

←−
∂

∂θ
= 1 .

(A.11)
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From now on we will only use left derivative
∂

∂θ
=

−→
∂

∂θ
. It is convenient to assign

parity to the superderivatives as well. In generalized notation ∂M = (∂m, ∂µ) ≡

∂

∂zM
= (

∂

∂zm
,
∂

∂zµ
). Now we can define ε(∂m) = εm = 0 and ε(∂µ) = εµ = 1. Further

properties of partial derivatives such as commuting properties , generalized Leibniz

rule, conjugation properties are collected here

∂Mz
N = δNM , (A.12)

∂M∂N = (−1)εMεN∂N∂M , (A.13)

∂M(fg) = (∂Mf)g + (−1)εMε(f)f(∂Mg) , (A.14)

(∂Mf)∗ = (−1)εM (1+ε(f))∂Mf
∗ . (A.15)

Our next goal is to define integration on Rp|q. The main question is how to define

integral over a-number
∫
f(θ)dθ. Note that we want definite integral, but since we

can not use θ1, θ2 ∈ Ra as limits of integration, the only way we can define limits is

to make our integral over all the space Ra. But since this space is limitless we must

have ∫
dθ = 0 . (A.16)

Once again — this is not an indefinite integral. Next, since dθ is a-type object then∫
θdθ will be a c-number, normalization constant of the integral. So in addition to

the obvious properties of linearity our integral will have

∫
d

dθ
f(θ) dθ = 0 , (A.17)∫

θdθ = −
∫
dθ θ = −1 . (A.18)

If we use these two properties on the series decomposition of a superfunction we can
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easily find that integration over Ra actually equivalent to the differentiation

∫
dθf(θ) =

d

dθ
f(θ) . (A.19)

This will be all grassman algebra we will need for the purpose of this dissertation

work.



Appendix B

Superalgebra definition

There are several different superalgebras appearing in the text but all of them belong

to the same class of unitary superalgebras. We will define and give main properties

of the A(m|n) type superalgebras and then show commutation properties of algebras

we encountered during discussion of super Landau models. More information can be

found for example in [18].

B.1 A(m|n)

The unitary superalgebra A(m−1|n−1) also denoted as sl(m|n) with m 6= n defined

for m > n ≥ 0 has as even part the Lie algebra sl(m) ⊕ sl(n) ⊕ U(1), odd part is a

representation of the even part. It has rank m+n−1 and dimension (m+n)2−1. This

superalgebra can be generated by the supermatrices of dimension (m+ n)× (m+ n)

with a vanishing supertrace

M =

Xmm Tmn

Tnm Xnn

 where str(M) = tr(Xmm)− tr(Xnn) = 0 (B.1)

To construct basis we start with (m + n)2 elementary matrices eIJ of order m + n,

such that element in k-th column and l-th row is given by (eIJ)kl = δIlδjK . With this
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we can define generators

Eij = eij −
1

m− n
δij(ekk + ek̄k̄) , Eij̄ = eij̄ ,

Eīj̄ = eīj̄ +
1

m− n
δīj̄(ekk + ek̄k̄) , Eij̄ = eij̄ ,

(B.2)

where i, j run from 1 to m and ī, j̄ run from m + 1 to m + n, in these expressions

summation over repeated indicies is assumed. Then Z = Ekk = Ek̄k̄ generate U(1)

part, Eij− 1
m
δijZ generate sl(m) part, Eīj̄ + 1

n
δīj̄Z generate sl(n) part. These are the

generators of the bosonic subalgebra sl(m)⊕ sl(n)⊕U(1), and Eij̄ and Eīj transform

as (m̄, n) and (m, n̄) representations of it.

Generators of the Cartan subalgebra are given by

Hi = Eii − Ei+1,i+1 for 1 ≤ i ≤ m− 1 (B.3)

Hī = Eī̄i − Eī+1,̄i+1 for m+ 1 ≤ ī ≤ m+ n− 1 (B.4)

Hm = Emm + Em+1,m+1 (B.5)

General commutation relation could be easily recovered from the defenition of the

generators. It is also possible to write down general expression for the Casimir oper-

ators of this algebras. However in our case it is better to give expressions relevant to

those cases we considred in this text.

The case when dimension of even part equal the dimension of the odd part m = n

is in a way more involved. Because sl(n|n) contains one-dimensional ideal I generated

by I2n, th superalgebra A(n− 1, n− 1) is defined by A(n− 1, n− 1) ≡ sl(n|n)/I. It

has rank 2n − 2 and dimension 4n2 − 2 for n > 1. Its even part is the Lie algebra

sl(n)⊕ sl(n).
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B.2 SU(1|1)

This algebra consist of three generators, one even C and two odd Q,Q†. The only

nonzero (anti)commutation relation is

{Q,Q†} = C (B.6)

B.3 IU(1|1)

This superalgebra is generated by the even charges (P, P †, C, J, Z) and the odd charges

(Π,Π†, Q,Q†). Commutation properties

[P, P †] = 2κ , {Π†,Π} = 2κ {Q,Q†} = C ,

[Q,P ] = iΠ , {Q†,Π} = iP , [C,P ] = −P , [C,Π] = −Π , (B.7)

[J,Q] = Q , [J,Q†] = −Q† , [J, P ] = −P , [J,Π] = Π .

B.4 SU(2|1)

Lie superalgebra su(2|1) is spanned by four even generators F, J3, J±, and four odd

generators which form doublet Π, Q and its complex conjugate Π†, Q†.

Commutation relations

[J+, J−] = 2J3 , [J3, J±] = ±J± . (B.8)
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[J+,Π] = iQ , [J−, Q] = −iΠ ,

[J3,Π] = −1

2
Π , [J3, Q] =

1

2
Q , (B.9)

[F,Π] = −1

2
Π , [F,Q] = −1

2
Q[

J−,Π
†] = iQ† ,

[
J+, Q

†] = −iΠ† ,[
J3,Π

†] =
1

2
Π† ,

[
J3, Q

†] = −1

2
Q† , x (B.10)[

F,Π†
]

=
1

2
Π† ,

[
F,Q†

]
=

1

2
Q† ,

{
Π,Π†

}
= −J3 + F ,

{
Q,Q†

}
= J3 + F ,{

Π, Q†
}

= iJ− ,
{

Π†, Q
}

= −iJ+ . (B.11)

The quadratic Casimir operator

C2 =
1

2
{J+, J−}+ J2

3 − F 2 − 1

2

[
Π,Π†

]
− 1

2

[
Q,Q†

]
. (B.12)

Cubic Casimir operator

C3 =
i

2
J+

[
Q†,Π

]
− i

2

[
Π†, Q

]
J− +

1

2
J3

([
Q,Q†

]
−
[
Π,Π†

])
− 1

2
F
([

Π,Π†
]

+
[
Q,Q†

])
+ 2C2F − Π†Π−QQ† . (B.13)

B.5 SU(2|2)

We encounter as an enlarged symmetry of the Superflag Landau model. For cove-

nience I will use the same symbols as in the text, even though they are not the

simplest ones, I think that consistency with the text will provide additional con-

venience. Here are the generators of the algebra {J±, J3,J±,J3, Z; Π̃′, Q̃′; Π̌G, Q̌G},
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where Z is a central charge.

[J+, J−] = 2J3 , [J3, J±] = ±J± , (B.14)

[J+,J−] = 2J3 , [J3,J±] = ±J± . (B.15)

[
J3, Π̌G

]
= −1

2
Π̌G ,

[
J3, Q̌G

]
= 1

2
Q̌G ,[

J+, Π̌G

]
= iQ̌G ,

[
J−, Q̌G

]
= −iΠ̌G .

(B.16)

( same for Π̃′, Q̃′ ) (B.17)

[
J+, Π̃

′
]

= −iΠ̌G ,
[
J+, Q̃

′
]

= −iQ̌G ,

[J−,Π′G] = iΠ̃′ ,
[
J−, Q̌G

]
= iQ̃′ ,[

J3, Π̃
′
]

= −1
2
Π̃′ ,

[
J3, Q̃

′
]

= −1
2
Q̃′ ,[

J3, Π̌G

]
= 1

2
Π̌G ,

[
J3, Q̌G

]
= 1

2
Q̌G ,

(B.18)

{
Π̃′, Π̌‡G

}
=

{
Q̃′, Q̌‡G

}
= iJ− ,{

Π̃′‡, Π̌G

}
=

{
Q̃′‡, Q̌G

}
= −iJ+ , (B.19)

{Π̌G, Π̌
‡
G} = −J3 − J3 + Z , {Q̌G, Q̌

‡
G} = J3 − J3 + Z ,

{Π̃′, Π̃′†} = −J3 + J3 + Z , {Q̃′, Q̃′†} = J3 + J3 + Z . (B.20)



Appendix C

Factorization method

Based on the explanation from [10] here is brief explanation of a method we used

for solving Schrodinger equations of a different super Landau models. Factorization

method is a generalization of a how we treat harmonic oscillator in quantum mechan-

ics. There are three important steps involved. First, Hamiltonian of the system must

be written in a factorized way as product of two operators

H = AB . (C.1)

Next, we consider reverse Hamiltonian H̃ = BA, which have a form similar to H

but operators in an opposite order. It turns out that H and H̃ have the same non

zero eigenvalues. Indeed, if s 6= 0 is an eigenvalue of H̃

H̃|Ψ̃s >= BA|Ψ̃s >= s|Ψ̃s > , (C.2)

then if we define new wavefunction

|Ψs >= A|Ψ̃a > , (C.3)

we can show that this is an eigenfunction of H

H|Ψs >= ABA|Ψ̃s >= A (BA|Ψ̃s >) = sA|Ψ̃s >= s|Ψs > . (C.4)

Finally, for the last step we need some kind of recurrence procedure that yields all
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eigenfunctions and eigenvectors. For the harmonic oscillator we will have creation and

annihilation operators a and a† instead of A, B. Recurrence procedure easily stems

from the commutator [a, a†] = 1. But in more involved cases Hamiltonian (C.1) may

have c-number factor in addition to the operators, which make iteration procedure

more complicated. For example refer to the model on the superpshere. Factorized

Hamiltonian (3.18) contain additional function from metric. Super-commutator be-

tween covariant derivatives which serve as creation, annihilation operators is given

in (3.20). But as you can see super-commutator is not enough to get from Ψ
(N)
0 to

Ψ
(N)
1 , then to Ψ

(N)
2 and so on, we will need to use identities (3.26), (3.27), (3.30). For

a Superflag and superspherical case of a generalized model situation is similar, but

actual calculation and recurrence procedure is actually simpler.



Appendix D

Anticommuting calculation in the Mathematica 7.0

Since calculations in physics are often long and cumbersome, we thought of the pos-

sibility to check at least some of result on a computer. The problem is that common

programs which can do analytical computations (Mathematica, Maple) can’t deal

with anticommuting objects very well. Still the complexity of dealing with supersym-

metry calculations often comes from the fact that one has to keep track of the order

of operators and functions. This kind of task is something, which can be simplified

a lot with a computer. Mathematica has powerful methods of working with lists of

objects plus it has noncommuting multiplication build in, written like a**b. There

are no functions in Mathematica using noncommuting multiplication, so the rest of

the program we had to build ourselves.

There were two goals motivating writing of this program. First we wanted to be

able to do differentiation with respect to odd variables, it can be useful for example

when from action in superfunction one moves to component action. There one has

to differentiate (due to (A.19)) to obtain components of superfields. Another big

part of calculation is dealing with supersymmetric differential operators, for example

generators of symmetry algebra. Of course it is not easy to make computer program

to ’understand’ abstract operators. What is possible to do is to act with operators

on the general superfield and check the result. For example one can check Casimir

operators this way by seeing if the resulting superfield is proportional to the one acted

upon.

In this section we will present the structure of the program which we used to check

some important results in [3], [4]. Main idea is that any expression in Mathematica
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can be disassembled in a set of embedded lists. This lists come with a type of

operation on the elements. Here is an example of step by step disassembling of the

supersymmetric expression14

f0 + f1θ1 + f3θ1θ2 in Mathematica it will be f0 + θ1 ∗ f1 + θ1∗ ∗ θ2 ∗ f3

Sum {f0, Times{θ1, f1}, Times{NonCommutativeMultiply{θ1, θ2}, f3}}

without Heads { f0 , {θ1, f1} , { {θ1, θ2} , f3 } }

(D.1)

First group of functions in the program is used to ‘check’ expressions, more specifically

they order elements, collect terms with the same odd parts and simplify their bosonic

parts, then get rid of terms with θ2 or vanishing bosonic part. Now we will present

parts of the code and then briefly explain meaning of each function. Basic definitions

we start with

coordinates={{t},{h1,h2}};oddfunctions={ε,bε,f1[t],f2[t]};

p[x ]:=If[MemberQ[coordinates[[2]],x]||MemberQ[oddfunctions,x],1,0];

Here function p[x ] acts on symbol and return its parity, and first two list are

used to set up the list of odd variables which will be used in the specific problem.

Without it some functions will not know how to treat variables. Here is the first

group of functions

gsplitm[e ]:=Switch[Head[e],Times,Module[{l1={},l2={}},Map[

If[Head[#]===NonCommutativeMultiply,l2=Append[l2,#],l1=Append[l1,#]]&,

{Delete[e,0]}];Map[If[p[#]==1,l2={#};l1=DeleteCases[l1,#]]&,l1];

{If[Length[l1]>1,Times@@l1,l1[[1]]],Which[Length[l2]==0,Null,

lg[l2[[1]]]==1,l2[[1]],lg[l2[[1]]]>1,NonCommutativeMultiply@@l2]}],
14Note that anticommuting multiplication ∗∗ is prerogative to the regular multiplication ∗.



100

NonCommutativeMultiply,{1,e}, ,If[p[e]==0,{e,},{1,e}]];

gsplit[e ]:=Switch[

Head[e],Plus,Map[gsplitm[#]&,List[Delete[e,0]]], ,{gsplitm[e]}];

gcompile[l List]:=Plus@@Map[Apply[Times,#]&,DeleteCases[l,Null,{2}]];

body[x ]:=Plus@@Select[gsplit[x],#[[2]]==Null&][[All,1]];

soul[x ]:=g0[x-body[x]];

lg[x ]:=

If[Head[x]===NonCommutativeMultiply,Length[x],If[x===Null,0,1]];

gdim[x ]:=Module[{l=gsplit[g0[x]],n=0},

Do[n=Max[n,lg[l[[i]][[2]]]],{i,Length[l]}];n];

pcheck[x ]:=Equal@@Map[Mod[lg[#],2]&,Transpose[gsplit[g0[x]]][[2]]];

parity[x ]:=If[pcheck[x]==True,Mod[lg[gsplit[x][[1]][[2]]],2],

Message[parity::undifine p]];

g0[x ]:=If[

Length[gsplit[x]]<=1,x,gcompile[g2[g3[g2[g4[gsplit[Expand[x]]]]]]]];

g2[l List]:=DeleteCases[l,{0, }];

g3[l List]:=If[l==={},{},Map[{Simplify[#[[1]]],#[[2]]}&,

Module[{answer={l[[1]]}},Do[If[l[[i]][[2]]===l[[i+1]][[2]],

answer=ReplacePart[answer,answer[[-1]][[1]]+l[[i+1]][[1]],{-1,1}],
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answer=Append[answer,l[[i+1]]]],{i,Length[l]-1}];answer]]];

g4[l List]:=Sort[Map[{If[Head[#[[2]]]===NonCommutativeMultiply,

Signature[#[[2]]],1]*#[[1]],If[Head[#[[2]]]===NonCommutativeMultiply,

Sort[#[[2]]],#[[2]]]}&,l],If[And[#1[[2]]=!=Null,#2[[2]]=!=Null],

OrderedQ[{#1[[2]],#2[[2]]}],

If[#1[[2]]=!=Null&&#2[[2]]===Null,False,True]]&];

Here gsplit used to turn expression in a set of embedded lists like in the last line

of (D.1) and gsplitm work is to turn one term of a sum into the lists15. gsplitm is

long because one have to take care of different orderings of commuting and noncom-

muting variables. But we had to assume that one will put all odd variables together,

i.e. θ1f3θ2 will not work. Next function gcompile is used to go back from repre-

sentation as a list to actual mathematical expression usable by Mathematica. Next

are several supplementary functions: body, soul which return ’body’ and ’soul’ of

the expression, lg and gdim which return number of fermion variables in the single

term and whole expression correspondingly. Also pcheck tells if expression can be

assigned specific parity, then parity returns its value.

Now we have g2, g3, g4, where g2 delete terms with squared fermions, next g3

collect terms with the same fermions together and simplify their bosonic part, and g4

put odd variables in the same order in all terms as well as order summands. Finally

g0 just apply all this functions together in order to brush up expression. Since all

this functions do is move objects around it works very fast, that is why we use it

excessively just in case.

Lets discuss only the most important functions, which are the multiplication and

15Using notations from (D.1) even parts like f0, f1, f3 can actually be complicated expressions and

contain other functions and operation. For example you can have f3 = g0 −
g1g2

g3
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differentiation. First one is easy

gmshort[l1 ,l2 ]:=Which[l1[[2]]===Null,l1[[1]]*l2[[1]],l2[[2]],

l2[[2]]===Null,{l1[[1]]*l2[[1]],l1[[2]]},True,

{Signature[l1[[2]]**l2[[2]]]*l1[[1]]*l2[[1]],Sort[l1[[2]]**l2[[2]]]}];

gm[x ]:=x;

gm[x ,y ]:=gcompile[g2[g3[g2[g4[ Module[{lx=gsplit[Expand[x]],

ly=gsplit[Expand[y]],answer={}},Do[Do[answer=

Append[answer,gmshort[lx[[j]],ly[[i]]]],

{j,Length[lx]}],{i,Length[ly]}];answer]]]]]];

Here gmshort acts on expression with each having only one term, no summation.

And gm use previous function to multiply two general expressions. We have also

defined power and exponent of the supersymmetric expression. As exponent defined

by its series, it is possible to have more general series of a supersymmetric function.

Lastly differentiation was the hardest to define. For a derivative with respect to

c-number standard function from Mathematica works almost fine, just need to run g0

once. But for a derivative with respect to a-number what happens is that
d

dθ1
θ1∗ ∗ θ2

becomes 1∗ ∗ θ2 and then we need manually substitute last expression with θ2 and

take care of the signs. Here are two functions which do most of it. gprojection[x,h]

is a supplementary function which return expression x where one of the variables h

(odd or even) was set to zero, and gDf[x,h] differentiate supersymmetric expression

x with respect to odd variable h

gprojection[x ,h ]:=x//.{h->0,h** ->0, **h->0};
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gDf[x ,h ]:=Module[{xxx,l=gsplit[g0[x]]},

g0[gprojection[gcompile[Map[If[Position[#[[2]],1]==={},#,

{(-1)^(Position[#[[2]]**xxx,1][[1]][[1]]-1)*#[[1]],#[[2]]}]&,

g2[Map[gRefine[#]&,Join[MapAt[Expand[D[#,h]]&,l,

Table[{i,1},{i,Length[l]}]],MapAt[Expand[D[#,h]]&,l,

Table[{i,2},{i,Length[l]}]]/.{ **0** :>0}]]]]],h]/.

{ **0** :>0,A **1**B :>A**B,A **1:>A,1**A :>A}] 16

These are core function of this program. We also defined transformations of a

super-expression and a bracket like Poisson or Dirac bracket. To do this it is needed

to define a table of substitutions which can take a dozen or two lines, but once done it

is simple to use. It is possible to use this program for operators of algebra and check

operator equations. We used it to check most of the formulas from sections 3.3, 3.4

after doing manual calculations.

16Long underlines are actually triple underline, which in Mathematica can stand for any sequence
of zero or more expressions.
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