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ABSTRACT 
 
 
 
This work concerns planar optical waveguide sensors with the focus on slab 

waveguide structures comprising left-handed materials with simultaneously 

negative electric permittivity and magnetic permeability. In the last two 

decades planar waveguides have been introduced in the literature in optical 

sensing as a novel non-communication application of slab waveguides. Slab 

waveguide sensors have received an increasing interest due to their immunity 

to electromagnetic interference, have no danger of ignition, are field resistant, 

small sized, safe when used in aggressive environments, and mechanically 

stable.  

In this work, a three layer slab waveguide with a left-handed material guiding 

layer will be studied for sensing applications. TE and TM polarization will be 

presented. The dispersion relation of the proposed sensor will be obtained. The 

sensitivity of the sensor to changes in the cladding refractive index and the 

power flowing through each layer will be presented. The power confinement 

factor within each layer will also be considered. Moreover, the penetration 

depth and the Goos-Hanchen shift will be investigated. 

Metal-clad planar waveguide sensor with one of the layers is made of left-

handed material will be analyzed. Metal-clad waveguide can be operated in two 

different reflection modes, dip and peak types. Our study will focus on dip type 

mode. 
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   البحثملخص
  

  

رین   دین الأخی ي العق ي    ، ف ستخدم ف ات كمجسات ت دات الموج ة مرش احثین بدراس ام الب د اھتم تزای

ة   ذه المجسات    . العدید من المجالات مثل المجالات الحیویة والكیمیائیة والكیمیائیة الحیوی از ھ وتمت

أثر بالمجال ال    ، لة للإشتعال بأنھا آمنة غیر قاب    ا      كھرولا تت ى حجمھ سي المحیط بالإضافة ال مغناطی

  .الصغیر

ة   ذه الأطروح اقش ھ تخدام تن ضوئیة اس ات ال دات الموج سمرش ة   كمج ى طبق شتمل عل ي ت  والت

  .موجھة مكونة من مادة تتمتع بسماحیة كھربائیة سالبة ونفاذیة مغناطیسیة سالبة

ث ا     ت           في الفصلین الثاني والثال ات وكان لاث طبق ن ث د موجة یتكون م ى مرش شتملت الدراسة عل

ة اال ةطبق الب لموجھ سارھا س ل انك ادة معام ن م ون م ن  .  تتك التین م ى ح ة عل صرت الدراس واقت

سي        ا حالات استقطاب المجال الكھرومغناطی ي المستعرض       ھم   ) TE-modes(  المجال الكھرب

  ).TM-modes ( والمجال المغناطیسي المستعرض 

ة              لك س بالإضافة للطاق شتت والحساسیة للمج ة الت م اشتقاق علاق ل حالة من من الحالات السابقة ت

  .المتدفقة في كل طبقة من طبقات المجس

ات            ع طبق ى ارب شتمل عل ي ت ة والت دات الموجی ن المرش في الفصل الرابع تمت دراسة نوع اخر م

ا  لموجھةالطبقة ا بحیث كانت Metal-clad waveguideویطلق علیھا اسم  ادة    فیھ ن م ارة ع  عب

ل         .معامل انكسارھا سالب  ي معام رات الحاصلة ف د التغی ي تحدی وتناولت الدراسة طریقة اخرى ف

شعاع     ة سقوط ال  واشتملت  .انكسار الوسط المحیط عن طریق دراسة تغیر شدة الانعكاس مع زاوی

ذا     ة ھ ى مقارن دعى     الدراسة عل ب اخرى ت ع تراكی س م  Surface plasmon resonance  المج

ط    سار الوس ل انك ي معام لة ف التغیرات الحاص ساس ب ي الاح ة ف س الطریق ا نف ستخدم فیھ ي ی والت

  .المحیط

ادة     ى زی ؤدي ال ة ی ة موجھ سار كطبق البة معامل الانك واد س تخدام الم ة ان اس دت الدراس د وج وق

ى طبق           وي عل ي تحت ة الت ة بالمجسات العادی ة مصن  ةالحساسیة بدرجة عالیة مقارن ن   موجھ وعة م

  .مواد معامل انكسارھا موجب
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Chapter one 

Foundations for guided-wave optics 
 

 

In this chapter, the basic concepts and equations of electromagnetic wave 

theory required for the comprehension of light wave propagation in optical 

waveguides are presented, including wave equation, Maxwell's equations, 

boundary conditions, total internal reflection, and complex Poynting vector. 

The reflection and transmission of light wave at the interface between two 

media are investigated. Moreover, a two dimensional slab waveguide is 

discussed for both TE and TM guided modes. 

 

1.1 Introduction 

 

The fundamentals of optical waveguides are based on the electromagnetic 

theory of light and its interaction with matter. 

In 1845, Michael Faraday observed that a magnetic field would rotate the plane 

of polarization of light waves passing through the magnetized region. This 

observation led Faraday to associate light with electromagnetic radiation, but 

he was unable to quantify this association. He attempted to develop 

electromagnetic theory by treating the field as lines pointing in the direction of 

the force that the field would exert on a test charge. James Clerk Maxwell 

furnished a mathematical framework for Faraday's model in a paper read in 

1864 and published a year later. In this paper, Maxwell identified light as "an 

electromagnetic disturbance in the form of waves propagated through the 

electromagnetic field according to electromagnetic laws" and demonstrated that 

the propagation velocity of light was given by the electromagnetic properties of 

the material. 
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1.2. Propagation of light 

 

1.2.1. Wave equation 

 

Consider that a one dimensional wave pulse of sinusoidal shape is propagating 

in the positive x direction, then at t = 0 the wave can be described by the 

relation: 

 

                      kxAxfy sin)0,(  ,                                                                 (1.1) 

 

where the wave amplitude A and the propagation number k are constants that 

can be varied without changing the harmonic character of the wave. 

 

The propagation number can be defined in terms of the wavelength λ as 

 

                      

2

k                                                                                       (1.2) 

 

 

 
 

Fig. 1.1 Wave pulse moving at constant speed. 
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Now, consider the О΄ system, together with the wave, moves to the right in the 

positive x-axis with a constant speed υ relative to a fixed coordinate system О, 

as shown in Fig.1. 

In this new coordinate system, the pulse is described by: 

 

xkAxfy  sin)0,( .                                                              (1.3) 

 

But from Fig.1 we can see that txx  and the y-coordinate is identical in 

either system, y΄=y, thus Eq. (1.3) now reads: 

 

                       )(sin)0,( txkAtxfy   .                                               (1.4) 

 

The periodic time T, the frequency ν, and the angular frequency ω are relative 

to each other through the relations 

 

                      



T ,                                                                                       (1.5) 

                      
T
1

 ,                                                                                       (1.6) 

                       22


T
.                                                                          (1.7) 

 

Using Euler formula 

 

 sincos iei  ,                                                                    (1.8) 

 

it is possible to express a harmonic wave such as 

 
)(),( tkxiAetxfy  .                                                             (1.9) 
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In general, the harmonic wave propagating along any direction in space can be 

expressed by the wave displacement   such that  

                                       
)(),(   tiAet rkr ,                                                             (1.10) 

 

where δ is the initial phase. 

Now, we wish to derive the wave equation in one dimension. Using chain rule, 

the space derivative of Eq. (1.1) is given by 

 

                      
x
xf

x
x

x
xf

x
y













 )()( ,                                                           (1.11)                    

where    

                        1





 tx

xx
x  .                                                                 (1.12) 

 

Differentiate Eq. (1.11) with respect to space, we get 

 

             2
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 .                     (1.13) 

 

Now, the time derivatives of Eq. (1.1) 
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 .                (1.15)   

 

Combining Eq. (1.13) and Eq. (1.15), we obtain the relation [1-2] 

 

                       2

2

22

2 1
t

y
x

y










.                                                                       (1.16) 
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Which represents the wave equation of a wave in the form of Eq. (1.1) 

propagating in one dimension. 

In general, the homogeneous wave equation of any harmonic wave propagating 

along any direction in space can be expressed by [1-15] 

 

                     2

2

2
2 1

t






 .                                                                        (1.17) 

 

Substituting from Eq. (1.10) into Eq. (1.17) and using the relation 

 

                     


 2

2

2
1

c
n ,                                                                          (1.18) 

we get 

                     022   ,                                                                    (1.19) 

 

where n is the refractive index, ε is the electric permittivity, and µ is the 

magnetic permeability.  

                                                 

 

1.2.2. Maxwell's equations and electromagnetic waves 

 

Maxwell's equations for linear and isotropic dielectric materials are given by 

[1-15] 

 

                     
t




HE  ,                                                                        (1.20) 

                     
t




EH  ,                                                                          (1.21) 

                     0 E ,                                                                                  (1.22) 

                     0 H ,                                                                                 (1.23) 
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where E, H, ε, and µ are the electric field intensity, magnetic field intensity, 

medium permittivity, and medium permeability, respectively. 

Consider an electromagnetic wave, having an angular frequency ω, is 

propagating in an arbitrary direction in free space with propagation vector k. 

The electric and magnetic fields can be described by the harmonic wave 

equation in the form of equation (1.10) with the solution 

 

                     )( tie  rk
0EE ,                                                                      (1.24)                                                                                                                                                                                                                           

                     )( tie  rk
0HH .                                                                     (1.25) 

 

By using Eq. (1.24) and Eq. (1.25), Maxwell's equations takes the following 

form for plane harmonic waves 

 

                     HEk  ,                                                                         (1.26) 

                     EHk  ,                                                                        (1.27) 

                     0Ek ,                                                                                  (1.28) 

                     0Hk .                                                                                 (1.29) 

 

From equations (1.26-1.29), it is clear that the harmonic variation of the electric 

and magnetic fields are perpendicular to one another and to the direction of 

propagation given by k̂  as shown in Fig. 1.2. 

 

 
 

Fig 1.2 Propagation of an electromagnetic wave. 
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The magnitudes of the fields are related according to the relations 

 

                     EE
k

H 
 ,                                                                      (1.30) 

 

where 
k
  , represents the phase velocity of the wave. Moreover, in terms of 

the refractive index, 

cn  , equation (1.30) now reads [15] 

 

                        EnH
0

 ,                                                                             (1.31) 

 

where η0 is the intrinsic impedance of vacuum and given by  

 

                        000   .                                                                       (1.32) 

 

The time rate of the flow of electromagnetic energy per unit area is 

given by the vector S, called Poynting vector, which points along the direction 

of propagation of the wave and defined by [8-16] 

 

                       HES  .                                                                             (1.33) 

 

Both of the direction and the magnitude of the energy flux are determined by 

the poynting vector S. 

The complex electric and magnetic fields can be expressed by  

 

              )(*
0

)()(
2
1Re)( trkitrkitrki eeet    EEEE 00 ,                (1.34) 

              )(*
0

)()(
2
1Re)( trkitrkitrki eeet    HHHH 00 ,               (1.35) 

where * stands for the complex conjugate. 
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The time average of the poynting vector is given by 

 

HES   

          )(*
0

)()(*
0

)(
4
1 trkitrkitrkitrki eeee    HHEE 00  

             **
0

*
0 Re

2
1

4
1 HEHEHE 00  .                                     (1.36)          

 

Using Eq. (1.26) and Eq. (1.27) into Eq. (1.36) we get the following two 

relations [13] 

 

                     kES 0
ˆ

2
1 2


k

                                                                     (1.37) 

and 

                     kHS 0
ˆ

2
1 2


k

 .                                                                  (1.38) 
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1.2.3. Refractive index 

 

Light shows a complicated behavior because of either refraction or absorption 

of light as its wave strikes the interface between two optically different media. 

These two phenomena can be described by the refractive index, n, and the 

extinction coefficient, κ, or by the complex refractive index. The refraction of 

light is a physical phenomenon occurs because the velocity of light change 

when light moves from medium to another. This refraction of light can be 

obtained from the refraction index n, which is given by 

 

                      

cn 

medium ain light  of speed
in vacuumlight  of speed .                                         (1.39) 

 

From this definition it is obvious that the speed of light becomes slower in a 

medium have a high n. In other words, the maximum speed of light is detected 

in vacuum which characterized by unity refractive index. For example, light 

travels 1.5341 times faster in vacuum than it does in SiO2 since the refractive 

index of SiO2 is 1.5341. 

Another commonly used definition of the refractive index is given by the 

relation  

 

                      rrn 2 ,                                                                            (1.40) 

 

where εr is the relative permittivity of the medium to the permittivity of 

vacuum ε0 = 8.854×10-12 (F/m), and µr is its relative permeability of the 

medium to the permeability of vacuum µ0 = 4π×10-7 (H/m). At optical 

frequencies, µr = 1 for non-magnetic materials. Therefore, equation (1.40) now 

reads 

 

                      rn 2 .                                                                                (1.41) 
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When there is no absorption of light in medium (such media are called 

transparent media), by using equation (1.39), we can obtain the propagation 

number k such as 

 

                      nn
c

k




 2

 ,                                                                (1.42) 

 

where λ is the free space wavelength. 

Now, the electromagnetic wave propagating in a transparent medium can be 

obtained by substituting Eq. (1.42) into Eq. (1.10) 

 

                     
)2(

0
)(

0





  
xnti

t
kxti

t eEeEE ,                                        (1.43) 

 

where Et0 is the amplitude of the wave inside the transparent medium. Figure 

1.3 shows the electromagnetic waves travels into a transparent medium. 

 

 
 

Fig. 1.3 A light wave moves into a transparent medium (κ = 0). 

 

Figure 1.3 shows that when electromagnetic wave travels from one medium to 

another, its frequency does not change but its wavelength does. If this is not the 

case, then energy would be piling up at the boundary. Because there is no 

mechanism for this to occur, the frequency must be constant [17]. 
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Now using the definition 

  

                        .                                                                                    (1.44) 

Since 

                      ν1 = ν2 = ν,                                                                               (1.45) 

then 

                      11   ,                                                                                    (1.46)                   

                      22   .                                                                                 (1.47) 

 

Now dividing Eq.(1.46) by Eq.(1.47) and using υ = c/n, we get  

 

                      
1

2

2

1

2

1

2

1
n
n

nc
nc






 .                                                              (1.48) 

 

Assume that the first medium is vacuum, i.e. n1=1, then Eq.(1.48) will be 

 

                      
2

1
2 n

  .                                                                                  (1.49) 

 

As mentioned, the propagation of light in a transparent medium determined 

completely in terms of n. On the other hand, light is almost absorbed in real 

media, and in this case we need another physical quantity in addition to n to 

describe the propagation of light in such media. Accordingly, we define the 

extinction coefficient κ and the complex refractive index N such as [2] 

 

                      inN  .                                                                              (1.50) 

 

From Eq.(1.41) we can write  

 

                      2N ,                                                                                   (1.51) 
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where ε represents the complex electric permittivity, which is given by 

 

                      21  i .                                                                             (1.52) 

 

From Eqs.(1.50-1.52) we get 

 

                      22
1   n                                                                              (1.53)        

and                         

                       n22  .                                                                                (1.54) 

 

When there is no light absorption (κ = 0) then Eq.(1.53) and Eq.(1.54) now 

read 

                      2
1 n ,                                                                                   (1.55) 

                      02  .                                                                                    (1.56) 

 

In the case of absorbing media, Eq.(1.43) becomes 

 

                      
)2(2

0
)2(

0









 


xntix

t
xNti

t eeEeEE .                         (1.57) 

 

Figure 1.4 illustrate the wave form when light travels into absorbing medium. 

 

 
 

Fig. 1.4 A light wave advances into an absorbing medium (κ > 0). 



 13 

1.2.4. Phase and group velocities 

 

Dielectric waveguides are made of dispersive dielectric media, i.e. media 

whose refractive indices are functions of frequency (wavelength). 

Consider two harmonic waves propagating in x direction through a dispersive 

medium and having the same amplitudes but slightly different angular 

frequencies. The corresponding propagation constants will, in particular, also 

differ. The waves are given by 

 

                       txkkiAe )()(
1

  ,                                               (1.58) 

                       txkkiAe )()(
2

  .                                               (1.59) 

 

The superposition of the two waves is given by [11,12] 

 

       txkkiAetxkkiAeR
)()()()(   .                      (1.60) 

 

By factoring and collecting terms, Eq.(1.60) now reads 

 





  )()()(  tkxietkxietkxiAeR ,                         (1.61) 

or  

           )cos()(2   tkxtkxiAeR .                                                     (1.62) 

 

Eq.(1.62) represents a single wave )(2 tkxiAe  , which has a modulation 

envelope )cos(  tkx as shown in Fig. 1.5. To obtain the phase velocity, υ, 

of the wave we set the phase of the exponential term to a constant and finding 

dx/dt 

constant tkx  , 

or  
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kdt

dx   .                                                                            (1.63) 

 

The modulation envelope travels at a rate Δω/Δk, called the group velocity, υg, 

instead of traveling at a phase velocity, υ, of the individual waves. To obtain 

this group velocity we set the argument of the cosine term equal to a constant 

and finding dx/dt 

 

                      constant tkx , 

or  

                      






kg

1 .                                                                          (1.64) 

In the limit as 0   

                      



ddkg

1
 .                                                                           (1.65) 

 

 

 

Fig.1.5 Envelope of the combination of two harmonic waves. 
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In a dispersive medium we can write  

 

                      n
c

k 



 .                                                                           (1.66) 

 

Then, Eq.(1.65) becomes 
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dnn

c

c
n

d
dg

11

1 .            (1.67) 

 

In the case of a nondispersive medium, the phase and the group velocity do not 

differ since the refractive index and the phase velocity are constant. Hence, for 

free space Eq. (1.67) reads 

 

                      cg                                                                                 (1.68) 
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1.2.5. Boundary condition 

 

Consider an electromagnetic wave in the form of equations (1.24) and (1.25) 

incident from medium 1 into medium 2, as shown in Fig. 1.6. If there is no free 

charge or free current at the interface, the following boundary conditions must 

be satisfied at the interface between the two media 

 

1. The tangential components of both E and H are continuous at the boundary 

[4,15] 

 

                      0ˆˆ 2211  EE nn ,                                                              (1.69) 

                      0ˆˆ 2211  HH nn ,                                                   (1.70) 

 

where in̂  is the unit vector normal to the interface between the two media and 

pointing in the outward direction relative to the region i. 

 

2. The normal components of the electric flux density, D, and the magnetic flux 

density, B, are continuous at the boundary [4,15] 

 

                      0ˆˆ 2211  BB nn ,                                                                (1.71) 

                      0ˆˆ 2211  DD nn ,                                                                (1.72) 

 

where  

 

                      HB  ,                                                                                (1.73) 

                      ED  .                                                                                 (1.74) 

 

Note that equations (1.73) and (1.74) are called the constitutive relations. 

By using Eq. (1.69) and Eq. (1.70) we obtain  
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                     tt EE 21


      and     tt HH 21


 .                                              (1.75) 

 

Similarly, from Eq. (1.71) and Eq. (1.72) we get 

 

                     nn BB 21


      and      nn DD 21


 .                                            (1.76) 

 

where the subscripts t and n stand for the tangential and normal components, 

respectively. 

At the boundary, the tangential components of the propagation vector must be 

the same for both media, i.e.: 

 

                      xxx kkk  21 .                                                                        (1.77) 

 

From equation (1.42) we can write  

 

                      2
1

22
12

22
1

zx kkk
c

n


 ,                                                             (1.78) 

                      2
2

22
22

22
2

zx kkk
c

n


 .                                                             (1.79) 

 

For the case of plane waves, both components of the wave vector are real. 

Thus, the angle of incidence θ1 and the angle of refraction θ2 can be written as 

 

                      
z

x

z

x
k
k

k
k

11

1
1tan  ,                                                                   (1.80) 

                      
z

x

z

x
k
k

k
k

22

2
2tan  .                                                                  (1.81) 
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Fig. 1.6. Wave vectors for light incident on the boundary separating two different 

optical media. The superscripts +  and  –  represent a wave propagating downward and 

upward, respectively. 

 

Now, from Eq. (1.77), we have 

 

                      22111 sinsinsin  kkkk rx  .                                            (1.82) 

 

Using Eq(1.78) and Eq. (1.79) we get 

 

                      22111 sinsinsin 
c

n
c

n
c

nk rx  .                                (1.83) 

 

Equation (1.83) implies that 

 

                      r 1                                                                                      (1.84) 

and 

                      2211 sinsin  nn  .                                                                  (1.85) 

 

Eq. (1.85) is known as Snell's law. 
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1.2.6. Transmission and reflection coefficients  

 

In this subsection, we will discuss the transmission and reflection coefficients 

at the plane boundary for two different wave polarizations separately. In the 

first case, the electric fields of the incident waves is orthogonal to the plane of 

incidence. This case is called the TE-polarization or the perpendicular 

polarization, it is also referred to as the s-polarized or s-wave. In the second 

case, the electric fields of the incidence waves is parallel to the plane of 

incident, this is called TM-polarization (parallel polarization) or p-polarized (p-

wave). 

 

I) Perpendicular polarization 

 

The fields components existing for TE-polarization are Ey, Hx, Hz. Figure 1.7 

shows reflection and transmission of TE-polarized wave. The boundary 

conditions state that the electric fields E and magnetic fields H components 

parallel to an interface are continuous at the boundary   

  

                       yyy EEE 211 .                                                                       (1.86) 

 

Similarly for magnetic fields 

 

                       xxx HHH 211 .                                                                     (1.87) 
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Fig. 1.7 Wave vectors and associated fields for TE polarization. 

 

From Eq. (1.26) we have 

 

                      1111 HEk ωμ .                                                                     (1.88) 

 

Equating the x-components we obtain  

 

                        yzx EkH 1111 ,                                                                  (1.89) 

                        yzx EkH 1111 ,                                                                    (1.90) 

 

where k1z is the z-component of the wave vector of the wave which propagates 

downward. 

Similarly for the fields in the second medium we have 

 

                        yzx EkH 2222 .                                                                (1.91)  

 

Using equations (1.89-1.91), Eq.(1.87) now reads 
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                        y
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z EkEkEk
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1

1


.                                              (1.92) 

 

Using Eq.(1.86) and Eq.(1.92), the transmission amplitude of the electric field 

for TE polarization is given by  
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.                              (1.93) 

 

Using equations (1.80) and (1.81) we can write the transmission amplitude in 

terms of the incidence and transmission angles [11] 
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t .                            (1.94) 

 

The reflection amplitude of the electric field for TE polarization can be 

obtained from Eq.(1.86) and Eq.(1.92) such as 
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.                               (1.95) 

 

Similarly, substituting from equations (1.80) and (1.81) into Eq. (1.95) we get 

[11] 
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II) Parallel polarization 

 

The field components existing for TM-polarization are Hy, Ex, Ez. Figure 1.8 

shows the reflection and transmission of TM-polarized wave. The boundary 

conditions imply that 

 

                        yyy HHH 211 .                                                                    (1.97) 

 

Similarly for electric fields 

 

                        xxx EEE 211 .                                                                       (1.98) 

 

 
 

Fig. 1.8 Wave vectors and associated fields for TM polarization. 

 

The transmission and reflection amplitudes for TM-polarization can be 

obtained if µ1 and µ2 in Equations (1.93-1.96) are replaced with ε1 and ε2, 
respectively [11]. Thus 
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.                          (1.100) 

 

In a multilayer structure as shown in Fig. 1.9., the transmission and reflection  

coefficients are given by [2] 

 
Fig. 1.9. Reflection and transmission in a multilayer structure. 

 

                      
)2exp(1
)2exp(

222312

222312
123 dkirr

dkirrr
z
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 ,                                                 (1.101) 

                      
)2exp(1

)2exp(

222312
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123 dkirr
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 ,                                                 (1.102)  

and  

                      
)2exp(1
)2exp(

3323412

3323412
1234 dkirr

dkirrr
z
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 ,                                              (1.103) 

                      
)2exp(1

)2exp(

3323412

3323412
1234 dkirr

dkittt
z

z


 ,                                              (1.104)          

 

where kjz is the z-component of wave vector of the wave propagating in jth 

layer, and dj is the thickness of the jth layer. The reflectance for TE- and TM-

polarized waves are given by [2,6,9,12] 
 

                      
2

1234TE
rRTE       and     

2
1234TM

rRTM  .                              (1.105) 
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1.2.7. Total internal reflection 

 

Total internal reflection (TIR) is an optical phenomenon occurs when a light 

wave is incident at an angle greater than a particular angle, known as a critical 

angle, from a medium of high refractive index into a medium of lower 

refractive index. 

 

 
 

Fig. 1.10. Light reflection at a) θ1 < θc and b) θ1 ≥ θc.  θ1 and θc represent the 

incidence and critical angles, respectively. 

 

Figure 1.10(a) shows a ray of light strikes the boundary between two media,  

when n1 > n2  this leads to θ1 < θ2. At θ1 = θc we observe that θ2 = 90°. Then, 

from Snell's law, given by Eq. (1.85), we get the expression of the critical angle 

[1-15]  

 

                      









1

2arcsin
n
n

c .                                                                    (1.106) 

 

At θ1 ≥ θc, a so-called an evanescent wave occurs at the boundary as shown in 

Fig. 1.10(b). 
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1.3 Planar optical waveguide 

 

1.3.1 Thin film waveguide theory 

 

The simplest optical waveguide structure is a slab structure with a step index 

profile consisting of three layers, two of which are thick known as the substrate 

and the cover surrounding a thin layer called the guiding film. To keep the 

wave guided inside the film layer, the refractive index of the film nf must be 

larger than that of the substrate ns and that of the cover layer nc. Thus, fields are 

mainly confined in the film layer. Throughout our discussions, we assume that 

nf > ns ≥ nc. If ns = nc, we have a symmetric waveguide. On the other hand, if ns 

≠ nc, the slab waveguide is asymmetric. Figure 1.11 shows a conventional 

asymmetric slab waveguide with nf > ns > nc. 

Furthermore, the film thickness d should be comparable to the operating wave 

length λ. In contrary, the substrate and cover (cladding) layers are much thicker 

than λ. 

 

 
 

Fig. 1.11. Basic structure and refractive index profile of the optical slab waveguide. 
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1.3.2. Basic equations  

 

Consider an electromagnetic wave which advances into a waveguide shown in 

Fig. 1.11 and propagates in the z direction. The electric field and the magnetic 

field are assumed to have the sinusoidal form 

 

                      )(),( ztieyx   0EE ,                                                           (1.107) 

                      )(),( ztieyx   0HH ,                                                          (1.108) 

 

where β represents the longitudinal component of the wave vector. Substituting 

equations (1.107) and (1.108) into equations (1.20) and (1.21), the following 

equations are obtained [13-15] 
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                                                        (1.109) 

 

The waveguide is assumed to be infinitely extended in the y direction. 

Therefore, there is no variation in the waveguide geometry in the y direction 

and hence  

 

                      0



y
Ei  , 0




y
H i        i = x, y, and z.                                   (1.110) 
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For nonmagnetic materials µr = 1, then µ = µ0 and ε = ε0 n2. Using these 

relations and Eq. (1.110), the set of equations (1.109) become 

 

xy HiEi 0  ,                                                                 (1.111) 

y
z

x Hi
dx

dEEi 0  ,                                                         (1.112) 

z
y Hi

dx
dE

0 ,                                                                  (1.113) 

xy EniHi 2
0  ,                                                                (1.114) 

y
z

x Eni
dx

dHHi 2
0  ,                                                   (1.115) 

z
y Eni

dx
dH 2

0 .                                                                 (1.116) 

 

Equations (1.111) through (1.116) are divided into two independent 

electromagnetic modes, TE mode and TM mode. Equations (1.111), (1.113), 

and (1.115) involves Ey, Hx, and Hz only, which are the fields of TE mode while 

equations (1.112), (1.114), and (1.116) involves Hy, Ex, and Ez only, which are 

the fields of TM mode. 

 

I) Transverse electric modes 

 

Using equations (1.111) and (1.113), the two magnetic field components Hx 

and Hz of TE mode can be expressed in terms of the electric field component Ey 

by [13-15] 
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Substituting equations (1.117) and (1.118) into (1.115) gives the wave 

equation, Helmholtz equation, for TE mode : 

 

0)()()( 222
2

2
 xEnkxE

dx
d

yy  .                                        (1.119) 

 

The fields and propagation constant of TE modes can be obtained by solving 

for Ey(x) in Eq.(1.119) and choosing constants to satisfy the boundary 

conditions. 

 

II) Transverse magnetic modes 

 

From equations (1.114) and (1.116), the two electric field components Ex and 

Ez of the TM mode in terms of the magnetic field component Hy can be 

expressed as [13-15] 
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 ,                                                          (1.120) 
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 .                                                  (1.121) 

 

Substituting from equations (1.120) and (1.121) into (1.112) yields the wave 

equation, Helmholtz equation, for TM mode : 

 

0)()()( 222
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yy                                         (1.122) 

 

Solving for Hy(x) in the above equation, we get the fields and propagation 

constant of the TM modes. 
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1.3.3 The propagating power 

 

Using the divergence theorem for a vector A in an arbitrary volume V, we have 

 

 
sV

dsd nAA )( ,                                                      (1.123) 

 

where n represent a unit vector orthogonal to the surface S enclosing the 

volume V and pointing outward. Now, let HEA   then Eq. (1.123) will be 

 

 
sV

dsd nHEHE )()(  .                                       (1.124) 

 

Using the vector identity  

 

)()( BAABBA  )( ,                                     (1.125) 

 

 then, eq. (1.124) yields 
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dsd nHEHEEH )())()((  .                (1.126) 

 

Now substituting from Maxwell's equations, Eq. (1.20) and Eq. (1.21), into Eq. 

(1.126), we obtain 
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where uH and uE represents the energy density per unit volume associated with 

the magnetic and electric fields, respectively. The left hand side of  Eq. (1.127) 

represents the rate at which energy is transported by the electromagnetic wave, 

or the total power flow into the volume V bounded by S. Thus equation (1.127) 

becomes 

 

 
sss

dsdsdsP uSuHEnHE )()( ,                (1.130) 

 

where u is a unit vector in opposite direction of n. 

The time average of the total power flow can be obtained by substituting from 

Eq. (1.36) into last equation, then  
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dsdsP uHEuS *Re
2
1 .                                 (1.131) 

 

Substituting from Eq. (1.37) into Eq. (1.131) we get the total power flow for 

TE-polarization [13-15] 
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Similarly, substituting from Eq. (1.38) into Eq. (1.134) we get the total power 

flow for TM-polarization [13-15] 
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1.4. Optical sensing 

 

Optical waveguide sensors have been used for analytical purposes for a number 

of years [18-22].  The sensing operation of the slab waveguide sensors is 

performed by the evanescent tail of the modal field in the cover medium. The 

guided electromagnetic field of the waveguide mode extends as an evanescent 

field into the cladding and the substrate media and senses an effective 

refractive index of the guided mode. The effective refractive index of the 

propagating mode depends on the structure parameters, e.g., the guiding layer 

thickness and dielectric permittivity and magnetic permeability of the media 

constituting the waveguide. As a result, any change in the refractive index of 

the cladding results in a change in the effective refractive index of the guided 

mode. The basic sensing principle of the planar waveguide sensor is to measure 

the changes in the effective refractive index due to changes in the refractive 

index of the cladding [23]. Many theoretical and experimental studies have 

been conducted to improve the sensitivity of slab waveguide sensors. Taya et 

al. [24-27] proposed optical waveguide sensors in which one or both of the 

surrounding media have an intensity dependent refractive index. It is found that 

utilizing nonlinear media can enhance the sensitivity of slab waveguide 

sensors. Another class of optical waveguide sensor has been proposed with the 

so-called reverse symmetry design [28,29]. In these structures the substrate has 

a refractive index being less than that of the cladding medium. This design 

offers deeply penetrating evanescent optical fields into the analyzed cover 

sample. Therefore, the sensitivity has shown an improvement in the reverse 

symmetry configuration. 

The normalized analysis depends on the distribution of the cover medium, if 

the cover contains a thin layer, known as an adlayer or in some literature 

affinity layer, at the surface of the sensor, then the sensing operation is called 

the surface sensing. Otherwise, if the cover medium is homogeneously 

distributed, the operation is called homogeneous sensing. 
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In the case of the surface sensing, the sensitivity can be found out by measuring 

the change of the effective index due to the change of the adlayer width dA or 

the  refractive index of the adlayer nA, such as [19,30]  
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For homogeneous sensing, the cover sensitivity is the change of effective index 

with respect to the change of cover index [19,30] 

 

c
n n

NS
c 
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1.5 Metamaterials 

 

1.5.1 Concept of metamaterials 

 

In the past few years, new developments in structured electromagnetic 

materials have given rise to negative refractive index materials which have both 

negative dielectric permittivity ε and negative magnetic permeability μ in some 

frequency ranges [31-33].  

 

The origin of the term metamaterial has been attributed to R. Walser who 

define them as “Macroscopic composites having a manmade, three-

dimensional, periodic cellular architecture designed to produce an optimized 

combination, not available in nature, of two or more responses to specific 

excitation” [34]. 

 

The prefix "meta", in Greek implies "beyond" or "after", as in metaphysics, 

suggests that it possesses properties that transcend those available in nature 

[35,36]. 
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The history of these materials began with the paper of Veselago [37], who 

predicted a number of remarkable properties of waves in a material with 

simultaneously negative dielectric permittivity ε and magnetic permeability μ. 

Such materials are usually termed as metamaterials or left-handed materials 

(LHMs), since the electric and magnetic fields form a left-handed set of vectors 

with the wave vector and hence the direction of propagation is in the opposite 

direction of energy flow [35-40]. 

 

In addition, there are two mathematical solutions for 2n  namely 

n . In ordinary materials the permittivity and permeability are both 

positive. Thus it is natural to choose the positive square root n . When ε 

< 0 and µ < 0, physical and mathematical considerations lead to choosing the 

negative square root n . For this reason, left-handed materials are also 

referred to as negative index materials (NIMs). Consequently, when such 

media are interfaced with conventional dielectrics, Snell's law is reversed, 

leading to the negative refraction of an incident electromagnetic plane wave. 

Moreover, the Goos-Hanchen shift, which is the observed displacement from 

the point of incident during TIR, must be negative since the energy flow and 

wavefront propagation are antiparallel. 

 

Besides the negative refraction and backward-wave propagation, Veselago also 

showed some new features like reversed Doppler shift and backward Cerenkov 

radiation in metamaterials [37,40]. 

 

1.5.2 A brief historical review 

 

In 1968, Veselago predicted that substances with negative electric permittivity 

ε and negative permeability µ have some properties different from those with 

positive ε and µ [37]. 
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Pendry et al. [41,42] first theoretically suggested and later experimentally 

demonstrated that a composite medium of periodically placed thin metallic 

wires can behave as an effective plasma medium for radiation with wavelength 

much larger than the spatial periodicity of the structure. For frequencies lower 

than a particular (plasma) frequency, the thin wire structure therefore exhibits a 

negative permittivity ε. 

 

Smith et al [43] constructed a LHM using the combination of periodic rods and 

split rings and they performed many experiments in the microwave range to 

point out that the nature of this material is unlike any existing material. The 

first experimental investigation of negative index of refraction was achieved by 

Shelby et al in 2001 [44].  

 

The interaction of electromagnetic waves with stratified isotropic LHMs was 

investigated by Kong [45]. He investigated the reflection and transmission 

beams, field solution of guided waves, and linear and dipole antennas in 

stratified structure of LHMs. The theory of LHMs and their electromagnetic 

properties, possible future applications, physical remarks, and intuitive 

justifications are provided by Engheta in 2003 [46].  

 

Chew [47] analyzed the energy conservation property of a LHM and the 

realistic Sommerfeld problem of a point source over a LHM half space and a 

LHM slab. In 2006, Sabah et al [48] presented the reflected and transmitted 

powers due to the interaction of electromagnetic waves with a LHM. They 

studied the effects of the structure parameters, incidence angle, and the 

frequency on the reflected and transmitted powers for lossless LHM. The 

electromagnetic wave propagation through frequency-dispersive and lossy 

double-negative slab embedded between two different semi-infinite media was 

presented by Sabah et al [49].  
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Due to the fabrication technologies, the LHMs are widely used in filters, 

absorbers, lens, microwave components, and antennas, etc. Furthermore, many 

researchers continue to study the potential applications of LHMs [50-52].  

 

1.5.3 Uses and applications 

 

Because of the exciting and unusual properties, metamaterials are finding a lot 

of applications. The most exciting potential application is the perfect lens. 

Compared to a conventional convex lens, the LHM lens looks quite exotic in 

that it does not have any axis or curvature, nor does it focus parallel rays or 

magnify small objects. All of these features were recognized in the seminal 

paper by Veselago [37]. The other outstanding feature of the metamaterial is 

superlens [53,54], which is widely used in the super-resolution medical 

imaging, optical imaging, and nondestructive detections. In 2004, A. Grbic et 

al. realized the first superlens in the microwave regime [55], which 

demonstrated resolution three times better than the diffraction limit. Fang et al. 

proposed the first optical superlens using thin silver film in 2005 [56], which 

breaks the diffraction limit and produces super-resolution images.  

 

For LHMs, the cloaking devices have gained more attention [57-63]. The 

successful demonstrations of invisible cloaks experimentally in the microwave 

regime [57,58] make it possible to realize cloaking devices in the future. With 

the vast development of metamaterials, more applications will be found in the 

future. 
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Chapter two 

Slab waveguide optical sensor with left handed material 

as a core layer: TE-mode 
 

 

In this chapter, a three-layer planar waveguide consisting of thin left handed 

material core layer is investigated for sensing applications. The sensitivity of 

the proposed sensor to the changes in the refractive index of the cladding and 

the power flowing within each layer will be presented and will be compared to 

conventional waveguide sensor. Moreover, the power confinement factor in 

each layer will be obtained. 

 

2.1. Structure analysis 

 

We consider asymmetric slab waveguide with a LHM layer occupying the 

region 0 < z < d, which is characterized by an electric permittivity ε2 and a 

magnetic permeability µ2 such that 
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where ωp is the plasma frequency,  ωo is the resonance frequency, γ is the 

electron scattering rate, and F is the fractional area of the unit cell occupied by 

the split ring [64,65]. The slab is sandwiched between a dielectric cladding 

occupying the region z > d and having ε3 and µ3 and a dielectric substrate 

occupying the region z < 0 and having ε1 and µ1 as shown in Fig. 2.1. 
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Fig. 2.1. Schematic diagram of a left-handed material slab sandwiched between two 

semi-infinite media. 

 

2.2. The dispersion equation 

 

In order to obtain the dispersion relation, it is necessary to solve Maxwell’s 

equations for the three-layer structure. The solutions for the time harmonic 

electric field are given by 
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Using equations (1.117) and (1.118) we can find the nonvanishing components 

of the magnetic field 
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(2.4) 

where yx ˆ,ˆ and ẑ  are the unit vectors in x, y, and z directions, respectively. The 

constants A, B, C, D and the longitudinal propagation constant (kx) are chosen 

to satisfy the boundary conditions. The relation between βj (j=1, 2 and 3) and 

the normal vector component kz,j is given by 
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where Nkkx 0 , 

2

0 k ,   is the vacuum wavelength of the guided light, and 

N is the effective refractive index. 

The boundary conditions require that the tangential components of E and H to 

be continuous at z = 0 and z = d, yielding a set of homogeneous linear 

equations for the coefficients A, B, C, and D. The determinant of this set must 

be zero for a nontrivial solution to exist. After some manipulations, the 

following equation, which is the bulk polariton dispersion relation for TE 

waves, is obtained 
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The surface wave mode can be obtained with z,2k  is replaced by 2i . In this 

case the dispersion relation becomes 
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2.3. The sensitivity 

  

The sensitivity of the evanescent field sensor is calculated as the change of the 

effective refractive index with respect to the change of the cladding refractive 

index (n3); i.e., 
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Differentiating the dispersion relation given by Eq.(2.6) with respect to N , we 

get 
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For the surface mode, the sensitivity can be obtained by differentiating Eq.(2.7) 

which gives 
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2.4. Power flowing within the waveguide layers 

 

Due to the close connection between the sensitivity of the slab waveguide 

sensor and the power flow, it is worth to find the total time-average power 

transported by the waveguide,  
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Substituting for Ey(z) from Eq.(2.3) into Eq.(2.11), the time-average power 

flowing in the substrate, the film, and the cladding layers are respectively given 

by  
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The coefficients A, B, C, and D are related to each other through the equations 
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It is instructive to study the percentage of time-average power contained in 

each region. To quantify the fractional power within the jth layer, we define the 

jth layer confinement factor Γj as  
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The following relation must hold between the confinement factors   
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Thus, the confinement factor of the substrate, film, and cladding are 

respectively given by 

 

 



















dik

z

z
z

z

s
ze

ki

bk
bdbikabab

k
i

2,2
2

2,3323

22
2,3

2,
22

2,211

11

)(
4

4
1

1






  

(2.20) 

 

 
























dik

z

z
z

z

z
z

f
ze

ki

bk
bdbikabab

k
i

bdbikabab
k
i

2,2
2

2,3323

22
2,3

2,
22

2,211

2,
22

2,2

)(2
4

82
1

4
8








(2.21) 

 

























dik

z

z
z

z

dik

z

z

c
z

z

e
ki

bk
bdbikabab

k
i

e
ki

bk

2,

2,

2
2

2,3323

22
2,3

2,
22

2,211

2
2

2,3323

22
2,3

)(
4

4
1

)(
4










 

(2.22) 

where 
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2.5. Penetration depth and Goos-Hanchen shift 

 

The effective guide thickness is an important factor in the dispersion of the 

effective refractive index and in the application of optical sensing. 

Foreknowing this, we calculate the effective guide thickness from the ray 
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penetrations at the upper and lower boundaries of the guiding layer. The 

penetration of the guided wave from the guiding layer into the surrounding 

media can be written as [18] 
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where λ1 and λ3 are the penetration of guided wave from the guiding layer into 

the substrate and cladding layers, respectively. 

When a light beam undergoes a total internal reflection at the interface of two 

different media, the reflected light beam experiences a lateral shift in the plane 

of incidence from the position predicted by the geometrical optics because each 

plane wave component undergoes a different phase change [28]. This shift is 

known as Goos-Hänchen (GH) shift. GH-shifts at the film-substrate (GH1) and 

the film-cladding (GH3) interfaces are given by [66,67] 
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with 







 

2
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n
N is the incidence angle. 

 

2.6. Numerical results 

   

In the analysis below we have assumed the wavelength of ND Yag laser (λ = 

1064 nm), the substrate to be SiO2 with n1 = 1.5341 (ε1 = 2.35), the cladding to 

be water of n3 = 1.33 (ε3 = 1.77), the core layer to be LHM which is 
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characterized by ε2 and µ2 given by Eqs.(2.1,2.2) with ωp = 2ω, ω0 = 0.4ωp and 

µ1 = µ3 = 1. Eq.(2.3) has been solved numerically for the effective refractive 

index. The sensitivity, the power flow, the penetration depth, and the Goos-

Hanchen shift are calculated using the above set of equations. Figures 2.2 and 

2.3 show the variation of the real and imaginary parts of the sensitivity of the 

proposed sensor with the thickness of the LHM guiding layer and the electron 

scattering rate γ. As can be seen from the figures, the sensitivity is negative and 

has a peak at a specific value of the guiding layer thickness (d). The absolute 

value of the sensitivity decays towards lower values for high values of d due to 

the high field confinement. The absolute values of the real and imaginary parts 

of the sensitivity increase as γ decreases. 
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Fig. 2.2. The real part of the sensitivity of the proposed sensor versus the thickness of 

the guiding layer for different values of the electron scattering rate for λ = 1064 nm, ε1 

= 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1 and F = 0.56.   
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Fig. 2.3. The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1 and F = 0.56. 

 

It is very important to compare the sensitivity obtained for the proposed senor 

and that of the conventional three-layer slab waveguide sensor with positive 

index guiding layer. Figure 2.4 shows the absolute value of the real part of the 

sensitivity of the proposed sensor with the negative index material guiding 

layer and the sensitivity (S1) of the conventional three-layer slab waveguide 

sensor with positive index material guiding layer. It is clear from the figure that 

the proposed sensor has an improved sensitivity. The improvement may be 

attributed to the property of amplification of evanescent waves observed in 

LHMs [65].  
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Fig. 2.4. Comparison between the sensitivity of the proposed sensor and that of the 

conventional sensor (S1) for λ = 1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1, γ = 

0.012ωp, and F = 0.56. S1= sensitivity of conventional structure.   

 

The negative value of the sensitivity of the proposed structure is considered as 

a new feature that has not been observed in slab waveguide optical sensors. To 

clarify this point, we plot the real part of the effective refractive index as a 

function of d for different values of the cladding index. In the case of the 

proposed sensor, the effective refractive index N decreases as the cladding 

index n3 increases as shown in Fig. 2.5. This explains the negative value of the 

sensitivity which is the differentiation of N with respect to n3. On the other 

hand, N increases as n3 increases for the conventional sensor. 
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Fig. 2.5. The real part of the effective refractive index of the proposed sensor and that 

of the conventional sensor versus the thickness of the guiding layer for different 

values of the index of the cladding for λ = 1064 nm, ε1 = 2.35,  μ1 = 1, μ3 =1, γ = 

0.012ωp and F = 0.56. 

 

In Figs. 2.6 and 2.7, the real and imaginary parts of the sensitivity are plotted 

respectively versus the thickness of the guiding layer for different values of the 

fractional area of the unit cell occupied by the split ring. As can be seen from 

the figures, Re(S) and Im(S) exhibit different behaviors with F. In contrary to 

Im(S), the absolute value of Re(S) increases with increasing F for a given value 

of d.  

Figures 2.8, 2.9, and 2.10 show the real part of the power transported in the 

substrate, the guiding film, and the cladding, respectively. Many interesting 

features can be observed in these figures. First, the powers transported in the 

substrate and the cladding show the same behavior with γ. Decreasing γ 

enhances both of the powers. The enhancement of Re(P3) with decreasing γ 

explains the enhancement of the Re(S) with decreasing γ observed in Fig. 2.2. 

The sensitivity of evanescent field sensors is totally dependent on the power 

transported in the analyte medium (the material to be detected in the cladding 
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layer). Second, the negative value of the film power is the most important 

feature that can be seen in Fig. 2.9. This is one of the main differences between 

LHM and conventional materials. In LHM, the Poynting's vector S always 

forms a left-handed set with the vectors E and H. Accordingly, S and the 

propagation vector k are in opposite directions. Thus, it is clear that LHMs are 

substances with a so-called negative group velocity, which occurs in particular 

in anisotropic substances or when there is spatial dispersion. In brief, Fig. 2.9 

emphasizes the fact that in LHMs the phase velocity is opposite to the energy 

flow. Third, the effect of γ on the power transported in the film is barely 

detectable in the range considered for γ due to the large value of Re(P2) 

compared to Re(P1) and Re(P3). 
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Fig. 2.6. The real part of the sensitivity of the proposed sensor versus the thickness of 

the guiding layer for different values of the fractional area of the unit cell occupied by 

the split ring for λ=1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3=1 and γ = 0.012ωp. 
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Fig. 2.7. The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of the guiding layer for different values of the fractional area of the unit cell 

occupied by the split ring for λ = 1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1 and γ = 

0.012ωp. 
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Fig. 2.8. The real part of the power flowing within the substrate layer versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1, and F = 0.56. 
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Fig. 2.9. The real part of the power flowing through the guiding layer versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F=.56. 
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Fig. 2.10. The real part of the power flowing through the cladding layer versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F=0.56. 
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Figures 2.11, 2.12, and 2.13 show the imaginary parts of the power transported 

within the three layers. The powers transported in the substrate, film, and 

cladding show the same behavior with γ. A little enhancement could be 

achieved by decreasing γ. 
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Fig. 2.11. The imaginary part of the power flowing through the substrate layer versus 

the thickness of the guiding layer for different values of the electron scattering rate for 

λ = 1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F= 0.56. 
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Fig. 2.12. The imaginary part of the power flowing through the guiding layer versus 

the thickness of the guiding layer for different values of the electron scattering rate for 

λ = 1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F=0.56. 
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Fig. 2.13. The imaginary part of the power flowing through the cladding layer versus 

the thickness of the guiding layer for different values of the electron scattering rate for 

λ = 1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F=0.56. 
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In Fig. 2.14 the real part of confinement factors are plotted versus the thickness of 

the guiding layer for different values of the electron scattering rate γ. Figure 2.15 

shows the real part of confinement factors versus the thickness of the guiding layer 

for different values of the fractional area of the unit cell occupied by the split ring 

(F). For sensing purposes, it is significant to study the effect of the LHM core layer 

parameters on the cladding confinement factor. As can be seen from the figures, the 

effect of γ on Γc is barely seen whereas the effect of F is relatively considerable. The 

higher the value of F, the more the fractional power in the cladding especially for d 

= 100 nm. This is in agreement with the observations seen from Fig. 2.6. 
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Fig. 2.14. The real part of confinement factors as a function of d and γ for λ = 1064 

nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and F = 0.56. 
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Fig. 2.15. The real part of confinement factors as a function of d and F for λ = 1064 

nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 =1, and γ = 0.012 ωp. 

  

In order to study all parameters of the proposed structure, we plot the 

penetration depth and the GH shifts as a function of the guiding layer thickness 

for different values of the electron scattering rate γ as shown in Figs. 2.16 and 

2.17, respectively. Both of them can be treated as a probe for detection the 

changes in the refractive index of an aqueous cladding. In the analysis above, 

we have adopted the effective refractive index as a probe for detection the 

cladding index changes which is one of the most commonly used techniques in 

slap waveguide sensors.  Generally, any cladding-index dependent waveguide 

parameter can be used as the probe for optical sensing purposes provided that 

this parameter is practically measurable. Both the penetration depth and the GH 

shift are dependent on the cladding index and measurable. For example, several 

techniques have been developed for measuring the GH shift. Bretenaker et al. 

experimentally investigated the measurement of the GH shift for only one 

reflection [66]. His method uses the high sensitivity of the eigenstates of a 

quasi-isotropic laser to small perturbations to measure GH shift for angles of 

incidence both below and above the critical angle. Another approach was 
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proposed to measure the GH shift [67] based on the modulation of the 

polarization state of a laser by an electro-optic modulator combined with a 

precise measurement of the resulting spatial displacement with a position-

sensitive detector.  The sensitivity of any waveguide parameter to changes in 

the cladding index is given as the differentiation of that parameter with respect 

to n3.   
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Fig. 2.16. The penetration depth in the substrate and the cladding layers versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1 and F = 0.56. 
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Fig. 2.17. The Goos-Hanchen shift in the substrate and the cladding layers versus the 

thickness of the guiding layer for different values of the electron scattering rate for λ = 

1064 nm, ε1 = 2.35, ε3 = 1.77, μ1 = 1, μ3 = 1 and F = 0.56. 
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Chapter three 

Slab waveguide optical sensor with left handed material 

as a core layer: TM-mode 
 

 

In this chapter, a symmetric three-layer slab waveguide with a left handed 

material serves as a guiding layer is examined analytically for cover refractive 

index detection. The dispersion relation of TM mode for the proposed 

waveguide will be investigated. The sensitivity of the proposed sensor to 

changes in the cover refractive index and the power flowing within each layer 

will be presented. 

 

3.1. Structure analysis  

 

Figure 3.1 shows a schematic of  the proposed sensor configuration. We 

consider a slab waveguide with LHM thin film of thickness d occupying the 

region 0 < z < d, which is characterized by an electric permittivity ε2 and 

magnetic permeability µ2, given by Eqs.(2.1,2.2). The slab is sandwiched 

between two semi-infinite media occupying the regions z < 0 and z > d and 

having parameters (ε1, µ1) and (ε3, µ3), respectively. To create a LHM medium, 

an array of wires interspersed with an array of split ring resonators has been 

used in the literature [68]. The thin wire array has been shown to yield effective 

electric permittivity and magnetic permeability given by Eqs. (2.1) and (2.2).  
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Fig. 3.1. Schematic structure of the proposed sensor. 

 

3.2 The dispersion relation 

 

Solving Maxwell’s equations for the three-layer structure yields the solutions 

for the time harmonic magnetic field given by 
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Equations (1.120) and (1.121) for TM modes have been employed to calculate 
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where ,)( 2/12
0

2
, kkik jjxjzj    j = 1, 2, and 3, Nkkx 0 , 


2

0 k ,   is 

the vacuum wavelength of the guided light, and N is the effective refractive 

index. 

The constants A, B, C, D, and the longitudinal propagation constants kx can be 

determined by applying the boundary conditions which require that the E and 

H components parallel to the interfaces are continuous. Thus, the amplitudes 

are related to each through the relations  
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Applying the continuity requirements at z = 0 and z = d and after some 

manipulation, we obtain the dispersion relation for bulk polariton of TM mode 

as  
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3.3 The sensitivity 

 

Differentiating Eq.(3.7) with respect to N, the sensitivity of the proposed sensor 

for TM mode is found to be given by  
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3.4 The power propagating 

 

To study the power propagating in the structure, the time-averaged Poynting vector 

]ˆ)Re[( xx aHES 


 is calculated. The total energy flux can be calculated as 




dzSx , 

from which we obtain,  
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where the amplitudes A, B, C, and D are related to each through the Eqs.(3.4-

3.6). The confinement factor for the substrate, film, cladding layers are 

respectively given by 
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3.5. Numerical results 

 

In our analysis we have considered symmetric slab waveguide with water 

surrounding medium with n1 = n3 = 1.33 (ε1 = ε3 = 1.77) and µ1 = µ3 = 1 at the 

wavelength of ND Yag laser (λ = 1064 nm).  

The real and imaginary parts of the sensitivity of the proposed sensor as a 

function of thickness of the LHM film and for different values of γ are plotted 

in Figs. 3.2 and 3.3, respectively. The two figures show a negative sensitivity 

which means that the dependence of the effective refractive index on the 

cladding index has a negative gradient. The real part of the effective refractive 

index is much more sensitive to variations of the cladding index than the 

imaginary part. For instance, at a guiding layer thickness 150 nm and γ = 
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0.010ωp, the calculated values of Re(S) = -1.4833 whereas Im(S) = -0.0554, 

which means that Re(S) is 26.77 times the Im(S). This is simply because the 

cladding index is real and therefore any change in it has a greater impact on the 

real part of the effective refractive index. As seen in Fig. 3.3, the sensitivity of 

the imaginary part of the effective index can be slightly improved with 

increasing γ, whereas the Re(S), due to its high value, is barely affected with 

changing γ in the considered range of γ. In general, both the real and imaginary 

parts of S show the same behavior with the thickness of the guiding LHM 

layer. The absolute value of both parts of the sensitivity maximizes for low 

values of d and decays with increasing the thickness. In principle, the sensing 

operation is performed by the evanescent optical field extending from the thin 

guiding film into the cladding medium. This part of the guided field is 

generally few percent and decays with increasing the thickness d due to the 

high confinement of the guided mode. The behavior of both parts of the 

sensitivity with d is similar to that obtained for the sensitivity of the 

conventional three layer waveguide with a positive index material guiding layer 

with a reverse symmetry configuration [28,29].   

It is clear that the proposed sensor has an improved sensitivity compared to the 

conventional ones given in the literature in different forms. To illustrate this 

point, we assume a symmetric three layer waveguide with a lossless positive 

index material guiding layer. The sensitivity of such a structure is given in 

Refs. 21 and 24. In Fig 3.4, the absolute value of the real part of the sensitivity 

of the proposed sensor and the sensitivity of the conventional structure are 

plotted as a function of thickness d. As seen from the figure, the sensitivity of 

the proposed sensor is much higher than that of the conventional three layer 

waveguide sensor. The sensitivity improvement compared with the 

conventional three layer waveguide sensor is critically dependent on the 

thickness of the guiding layer, e.g., for d = 80 nm, d = 100 nm, and d = 150 nm 

the enhancement is approximately a factor of 5.82, 5.49, and 3.27, respectively.  
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Fig. 3.2. The real part of the sensitivity of the proposed sensor versus the thickness of 

the guiding LHM layer for different values of the electron scattering rate for λ = 1064 

nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 
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Fig. 3.3. The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of the guiding LHM layer for different values of the electron scattering rate 

for λ = 1064 nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 
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Fig. 3.4. The absolute value of the real part of the sensitivity of the proposed sensor 

and the sensitivity of the conventional sensor as a functions of d for λ = 1064 nm, ε1 = 

ε3 = 1.77, μ1 = μ3 = 1, γ = 0.012ωp, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 

 

This sensitivity enhancement is attributed to the amplification of evanescent 

waves caused by LHMs. It was verified that LHMs with low loss can focus 

light onto an area smaller than a square wavelength in near fields [69]. This 

super-resolution is also attributed the important feature of LHMs which is 

amplification of evanescent waves [70]. 

 

In order to optimize the proposed structure, it is significant to study the 

sensitivity dependence on the different parameters of the LHM guiding layer. 

We here restrict ourselves to the real part of the sensitivity. As seen by Eqs. 

(2.1,2.2), ε2 and μ2 are critically dependent on ω, ωp, and ωo. Figure 3.5 shows 

the real part of the sensitivity as a function of ωp/ω for different guiding layer 

thicknesses. In the figure, the range 1.68 < ωp/ω < 2 (in GHz) has been 

considered in which the real parts of ε2 and μ2 are both negative to make sure 

that the guiding layer is made of a left-handed material. A number of 

interesting features can be observed in the figure. There is an optimum value of 
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ωp/ω at which the Re(S) peaks and this optimum value is dependent on the 

thickness of the guiding layer. The optimum value of ωp/ω shifts towards 

higher values as the thickness of the guiding layer increases. For d = 100 nm, 

the optimum value of ωp/ω is 1.688 whereas it is 1.698 for d = 145 nm. The 

value of the sensitivity at the peak is critically dependent on the thickness of 

the guiding LHM layer. In the considered range of ωp/ω and d, the sensitivity at 

the peaks ranges between -8 to -16. The most important feature is that through 

proper choice of ωp/ω and d, the Re(S) may reach a value of order -16 which 

means the enhancement factor of the sensitivity of the proposed sensor could 

be of order 32.  

Figure 3.6 shows the real part of the sensitivity as a function of the thickness of 

the LHM guiding layer for different values of the resonance frequency ωo. A 

considerable increase in the absolute value of the Re(S) is observed with 

decreasing ωo. The impact of ωo on the Re(S) is much greater than that of γ. It 

is well-known that LHMs are artificial multifunctional materials that gain its 

material properties from its structure rather than inheriting them directly from 

the materials it is composed of. Thus the LHM parameters (ωp, ωo, γ) can be 

controlled by adjustment of the structure size. For example, in a recent study, 

the resonance frequency band of a rectangular periodic band is found to be 

shifted and broadened from low frequency to high frequency by adjustment of 

the corresponding structure size [71]. Therefore, the LHM parameters (ωp, ωo, 

γ) can be adjusted to attain a considerable sensitivity enhancement. 

Figure 3.7 shows the imaginary part of the sensitivity as a function of the 

thickness of the guided layer for different values of the resonance frequency 

ωo, the absolute value of the imaginary part of the sensitivity decreases as the 

resonance frequency ωo increases. 
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Fig. 3.5. The real part of the sensitivity of as a function of ωp/ω for different 

thicknesses of the guiding layer for λ = 1064 nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, γ = 

0.012ωp, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 
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Fig. 3.6. The real part of the sensitivity as a function of d and ωo for λ = 1064 nm, ε1 = 

ε3 = 1.77, μ1 = μ3 = 1, γ = 0.012ωp, F = 0.58, and ωp = 2ω. 

. 
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Fig.3.7. The imaginary part of the sensitivity of TM mode as a function of the 

thickness of the LHM layer for different values of resonance frequency ωo for λ = 

1064 nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, γ = 0.012ωp, F = 0.58, and ωp = 2ω. 

 

Figures 3.8 and 3.9 shows the real and imaginary parts of the sensitivity versus 

the LHM layer thickness for different values of F. The absolute value of the 

imaginary part of the sensitivity can be enhanced by decreasing F whereas the 

real part of the sensitivity, due to its high value, does not exhibit a remarkable 

change with F. 
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Fig.3.8. The real part of the sensitivity of the proposed sensor versus the thickness of 

the guiding layer for different values of the fractional area of the unit cell occupied by 

the split ring for λ = 1064 nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, γ = 0.012ωp, ω0 = 0.4ωp, and 

ωp = 2ω. 
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Fig. 3.9. The imaginary part of the sensitivity of the proposed sensor versus the 

thickness of the guiding layer for different values of the fractional area of the unit cell 

occupied by the split ring for λ = 1064 nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, γ = 0.012ωp, ω0 

= 0.4ωp, and ωp = 2ω. 
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Figure 3.10 shows the variation of the real part of the sensitivity with the 

thickness d of the LHM layer for different values of cover refractive index. As 

expected, increasing the cover refractive index enhances the evanescent field 

into the cladding region, which in turn enhances the sensitivity of the sensor to 

changes in the index of the analyte.  
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Fig. 3.10. The real part of the sensitivity of TM mode as a function of the thickness of  

the LHM layer for different values of cover refractive index for λ = 1064 nm, ε1 = ε3 = 

1.77, μ1 = μ3 = 1, γ = 0.012ωp, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 

. 

Figure 3.11 shows the power confinement factor in the film layer Γf, the 

cladding layer Γc, and the substrate layer Γs as a function of thickness of the 

LHM layer for different values of γ. Due to the symmetric configuration 

assumed in the calculations, there is no cut-off thickness and therefore the size 

of the guiding layer can go to zero theoretically. The power distributions are in 

the expected shape. The power confinement factor within the film region 

increases as the thickness d increases at the expense of Γc and Γs. Due to the 

symmetric configuration assumed Γc and Γs are identical. The impact of γ on Γj 

is not very big. Increasing γ between 0.010ωp to 0.012ωp causes a little 
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enhancement in Γc and Γs. A well known feature appears in Fig. 3.11 which is 

the negative value of Γf. This is one of the main differences between negative 

index and positive index materials. In positive index materials, the Poynting's 

vector S always forms a right-handed set with the vectors E and H. 

Accordingly, S and the propagation vector k are in the same direction. 

However, this is not the case of LHMs in which S and k are in opposite 

directions. 
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Fig. 3.11. The real part of confinement factors as a function of d and γ for λ = 1064 

nm, ε1 = ε3 = 1.77, μ1 = μ3 = 1, F = 0.58, ω0 = 0.4ωp, and ωp = 2ω. 
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Chapter four 

Metal-clad slab waveguide sensor 
 

 

In this chapter, we assume a four-layer waveguide comprising a dielectric 

substrate, a metal layer, a LHM as a guiding layer, and a cladding which is the 

material to be detected. Such a structure is called metal-clad waveguide. 

Fresnel reflection coefficients are used to study the resonance dips at which the 

reflectance minimizes. Both the angular shift and the width of the resonances 

are presented and discussed. 

 

4.1. Introduction 

 

As mentioned in chapter 1, many attemps have been presented since the 

emergence of the slab waveguide sensors to improve the sensitivity. Among 

these attemps was the reverse symmetry design in which the refractive index of 

the substrate is takes to be less than that of the cladding [29,72-74]. Salamon et 

al. [75-78] proposed the coupled plasmon-waveguide resonance sensor. In 

2005, metal-clad waveguide sensors have been proposed and investigated in 

details [74]. In this chapter we present metal-clad waveguide sensor using a 

LHM core layer.  

 

4.2. Structure analysis 

 

Figure 4.1 shows a schematic diagram of  the planar metal-clad waveguide 

configuration. It consists of four layers with LHM film layer of thickness d3 

occupies the region d2 < z < d2+d3, which is characterized by an electric 

permittivity ε3 and magnetic permeability µ3, given by Eqs. (2.1, 2.2).  
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A metal layer (silver or gold) occupies the region 0 < z < d2 and characterized 

by ε2 and µ2. The metal and LHM layers are sandwiched between an aqueous 

superstrate (ε4, µ4) and a dielectric substrate (ε1, µ1). 

 

 
 

Fig. 4.1. A metal-clad waveguide structure configuration. 

 

4.3. Fresnel reflection coefficients 

 

Slab waveguides sensors are operated in two configurations. In the first one, 

the change in the effective refractive index of the guided mode is used to detect 

the changes in the index of an analyte. In the second configuration such as 

metal-clad waveguide sensors, the structure is operated in reflection mode in 

which the waveguide structure is illuminated from below and the reflected 

beam is received by a detector. The incidence angle is varied and the reflected 

intensity is measured as a function of the angle of incidence. This is due to the 

fact that the guided light in the guiding layer is strongly attenuated over a short 

distance due to the lossy metal layer and therefore is hardly measurable. 

Measuring the reflectance versus the incidence angle usually results in a chart 
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containing a clear dip at which the reflectance approaches zero at an angle of 

incidence called the resonance angle. The reflectance as a function of the 

incidence angle can be calculated using Fresnel's reflection laws. From section 

1.2.6., the reflectance from a layered structure can be calculated using Fresnel's 

reflection laws. For TE-mode, the reflectance from three-layer is given by 
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where ri,j is the amplitude reflection coefficient between layers i and j, d2 is the 

thickness of layer 2, βi is the normal wavevector component in medium i, µj is 

the magnetic permeability of medium j, εj is the electric permittivity of medium 

j, and N is the effective refractive index. The effective refractive index is given 

by 
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where Θj (j = 1, 2, 3, 4) represents any of the individual angles of incidence. 

The reflectance from a four layer structure shown in Fig. 4.1. is therefore given 

by 
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where r234 has the same form given by Eq. (4.1) with the appropriate indices. 

The relations for TM-mode can be obtained if µ in the last equations is replaced 

with ε. 
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4.4. Dispersion relation 

 

For TE-mode, the solution of Helmholtz equation for the time harmonic 

electric field is given by 
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where ,
ja  ( j=1, 2, 3, 4) are the amplitudes of the up- and down going waves 

in the individual media.  

The tangential nonzero components of the magnetic field can be obtained using 

Maxwell's relations  
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where 2/12
0 )( Nk jjj   . Applying the boundary conditions for the TE-

polarized light, six equations are obtained and can be written in the form [74] 
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A ,                                                                                   (4.7) 

with 

                         122334 ,,,,, aaaaaa
 ,                                                     (4.8) 
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and  









































 







1

1

2

2

2

2

2

2

2

2

3

3

3

3

)(

3

3)(

3

3)(

4

4

)()()(

000
111000

00
00

000
000

22222323

22222323

323323324

323323324







































didididi

didididi

ddiddiddi

ddiddiddi

eeee
eeee

eee
eee

A

(4.9) 

 

where d2 and d3 are the metal and film thicknesses, respectively. The 

determinant of this set must be zero for nontrivial solutions to exist, which 

leads to the dispersion equation of TE-polarized light 
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where  
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r , 

 

m = 0, 1, 2, … is the mode order. Ф3,4 and Ф3,2,1 are the phase shifts the wave 

undergoes upon reflected at the film-cladding and the film-metal interfaces, 

respectively. 

To obtain the relations of TM-polarized light we replace µ1, µ2, µ3, and µ4 by 

ε1, ε2, ε3, and ε4, respectively, in the above set of equations. 
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4.5. Numerical results 

 

Lossless LHM only represents an ideal case. In all LHM practical designs, a 

lossy material with negative parameters was obtained .Thus LHM material with 

absorption coefficient seems to be more realistic. Moreover, LHMs with 

minimal absorption coefficient have been reported to focus light onto an area 

smaller than a square wavelength in near fields [79]. This behavior is attributed 

the amplification of evanescent waves caused by LHMs. Thus, in our 

calculations, we assume the LHM guiding layer to have an electric permittivity 

and a magnetic permeability of the form ir i 333    and ir 333   , 

respectively. He-Ne laser beam of λ = 632.8 nm is assumed. The cladding is 

considered to be water (n4 = 1.33) and the substrate is glass (n1 = 1.517). 

 

Figures 4.2 and 4.3 show the reflectance of TM-polarized light from a metal-

clad waveguide as a function of the incidence angle (Θ1) for two different 

values of the LHM film thickness. In Fig. 4.2, we used silver cladding whereas 

gold cladding was used in Fig. 4.3. When d3 = 0, the reflectance dip represents 

the surface plasmon resonance (SPR) mode. For film thickness > 0, the 

reflectance dip represent the metal-clad waveguide configuration.  

It is clear that a sharper dip is obtained in the presence of 350 nm LHM guiding 

layer between the metal and cladding layers. This is an advantage of metal-clad 

waveguide configurations over SPR structures for sensing applications. It is 

well-known that the principle of operation of reflection mode optical sensor is 

based on measuring the angular shift of the reflectance dip when the refractive 

index of the cladding changes. Therefore, when the dip is sharper the reading is 

easier and more accurate. 
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The choice of the metal plays a significant role in the reflectance dip sharpness. 

The losses in metal-clad waveguide configuration is strongly dependent on the 

imaginary part of metal permittivity ( "
2 ). The larger the value of the imaginary 

part of ε2 leads to a broader dip [80,81]. Accordingly, the dip of the silver-clad 

waveguide (Fig. 4.2) is much sharper than that of gold-clad waveguide (Fig. 

4.3) since )("
2 Au  > )("

2 Ag . 
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Fig. 4.2. Calculated reflectance for TM-mode light reflected from a silver-clad 

waveguide with and without a LHM film layer for d2= 60nm, λ = 632.8nm, ε1 = 2.3, 

ε2 = -16+i0.52, ε3 = -4+i0.001, ε4=1.77, µ1 = 1, µ2 = 1, µ3 = -2.4+i0.001, and µ4 = 1. 
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Fig. 4.3. Calculated reflectance for TM-mode light reflected from a gold-clad 

waveguide with and without a LHM film layer for d2 = 60nm, λ = 632.8nm, ε1 = 2.3, 

ε2 = -10.22+i0.96, ε3 = -4+i0.001, ε4 = 1.77, µ1 = 1, µ2 = 1, µ3 = -2.4+i0.001, and µ4 

= 1. 

 

In Figs. 4.4 calculated reflectance from silver-clad waveguide (a) and gold-clad 

waveguide (b) with three different thicknesses of the metal cladding are 

presented. From the figures its clear that the thickness of the metal layer is 

important for the shape and depth of the reflectance dip. For both the silver-

clad waveguide and gold-clad waveguide the position and the shape of the 

reflectance dip are change with metal thickness. At a metal thickness of 40 nm 

the reflectance approaches zero, which is defined as the optimum metal 

thickness. As the metal layer gets thinner, the reflectance dip gets deeper and 

sharper. 
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(b) 

Fig. 4.4. Calculated reflectance for TE-mode light reflected from (a) a silver-clad 

waveguide and (b) a gold-clad waveguide for different values of metal thickness for 

d3 = 250nm, λ = 632.8nm, ε1 = 2.3, ε2 = -16+i0.52 (silver), ε2 =-10.22+i0.96 (gold), 

ε3 = -4+i0.001, ε4 = 1.77, µ1 = 1,  µ2 = 1, µ3 = -3+i0.001, and µ4 = 1.  
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It is very important when proposing a metal-clad waveguide configuration with 

a LHM film for sensor applications to study the effect of the parameters of the 

LHM layer on the reflectance curves. In Fig. 4.5 we study the effect of the 

LHM layer thickness on these curves. As can be seen from Fig. 4.5 (a) and (b) 

increasing the thickness of the LHM layer shifts the reflectance dip towards 

lower incidence resonance angles for both silver and gold metals. 
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(b) 

Fig. 4.5. Calculated reflectance for TE-mode light reflected from (a) a silver-clad 

waveguide and (b) a gold-clad waveguide for different values of LHM film thickness 

for d2 = 40nm, λ = 632.8nm, ε1 = 2.3, ε2 = -16+i0.52 (silver), ε2 = -10.22+i0.96 

(gold), ε3 = -4+i0.001, ε4 = 1.77, µ1 = 1,  µ2 = 1, µ3 = -3+i0.001, and µ4 = 1. 

 

We also investigate the effect of the electric permittivity (ε3) and the magnetic 

permeability (µ3) of the LHM film on the reflectance curves. As the absolute 

value of the real part of both ε3 and µ3 increases, the reflectance dip become 

sharper and the angular position of the resonance dip decreases as shown in 

Figs. 4.6 and 4.7. 
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Fig. 4.6. Calculated reflectance for TE-mode light reflected from (a) a silver-clad 

waveguide and (b) a gold-clad waveguide for different values of permittivity of the 

LHM film for d2 = 40nm, d3 = 250nm, λ = 632.8nm ε1 = 2.3, ε2 = -16+i0.52 (silver), 

ε2 =-10.22+i0.96 (gold), ε4 = 1.77, µ1 = 1, µ2 = 1, µ3 = -3+i0.001, and µ4 =1. 
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(b) 

Fig. 4.7. Calculated reflectance for TE-mode light reflected from (a) a silver-clad 

waveguide and (b) a gold-clad waveguide for different values of permeability of the 

LHM film for d2 = 40nm, d3 = 250nm, λ = 632.8nm ε1 = 2.3, ε2 = -16+i0.52 (silver), 

ε2 =-10.22+i0.96 (gold), ε3 = -4+i0.001, ε4 = 1.77, µ1 = 1,  µ2 = 1, and µ4 = 1. 
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In Fig. 4.8 the pairs of reflectance curves illustrate the shifts in dip position due 

to small changes in the cover refractive index (n4). The width of the dips are 

much larger for the SPR modes compared with the waveguide dips, and the 

dips approach to zero in the metal-clad waveguide modes. 
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Fig. 4.8. Calculated reflectance for a silver-clad waveguide for different values of n4 

for d2=40nm, d3=250nm, λ=632.8nm, ε1 = 2.3, ε2 = -16+i0.52, ε3 = -4+i0.001, ε4 = 

1.77, µ1 = 1,  µ2 = 1, µ3 = -3+i0.001, and µ4 = 1. 

 

The reflectance curves of a TM-polarized light from a silver-cladding 

waveguide is plotted for different values of n4 in Fig. 4.9. 

For n4 = 1.33, the critical angle and the reflectance dip are barely separated and 

the limiting parameter of the detection range is the thickness of the waveguide 

film. As n4 increases the reflectance dip gets broader. 
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Fig. 4.9. Calculated reflectance for TM-mode light reflected from a silver-clad 

waveguide for different values of n4 for d2= 40 nm, d3= 250 nm, λ= 632.8 nm, ε1 = 

2.3, ε2 = -16+i0.52, ε3 = -4+i0.001, ε4 = 1.77, µ1 = 1,  µ2 = 1, µ3 = -2.4+i0.001, and 

µ4 = 1. 
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Chapter five 

Conclusion 
 

 

In this thesis, analyzed a slab waveguide for sensing purposes has been 

analyzed. a three layer slab waveguide sensor and a dip-type metal-clad 

waveguide sensor, each sensor consisting of a LHM as a guiding layer, have 

been studied. 

The three-layer slab waveguide sensor has been studied for two cases, TE- and 

TM- modes. 

In order to optimize the proposed structure, it is significant to study the 

sensitivity dependence on the different parameters of the LHM guiding layer. 

In the case of TE-mode, the following observations are obtained: 

 

- The sensitivity is negative and has a peak at a specific value of the guiding 

layer thickness (d). The film power is also negative. 

 

- The absolute value of the sensitivity decays towards lower values for high 

values of d due to the high field confinement. 

 

- The absolute values of the real and imaginary parts of the sensitivity increase 

as γ decreases. The confinement factor for the cladding layer is enhanced with 

decreasing γ. Therefore, γ should be as low as possible. 

 

- The Re(S) and Im(S) exhibit different behaviors with F. In contrary to Im(S), 

the absolute value of Re(S) increases with increasing F for a given value of d. 

 

- The higher the value of F, the more the fractional power in the cladding 

which leads to a higher sensitivity. 
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For the case of TM-mode, we consider a symmetric slab waveguide and we 

study the sensitivity as a function of ωp/ω for the range 1.68 < ωp/ω < 2 (in 

GHz) in which the real parts of ε2 and μ2 are both negative to make sure that the 

guiding layer is made of a left-handed material. Also we study the sensitivity as 

a function of thickness of the guiding layer and γ. The following remarks have 

been observed: 

 

- The real part of the effective refractive index is much more sensitive to 

variations of the cladding index than the imaginary part. Accordingly, the 

Re(S) is about 26.77 times the Im(S) for a specific configuration.  

 

- The sensitivity of the imaginary part of the effective index can be slightly 

improved with increasing γ, whereas the Re(S), due to its high value, is barely 

affected with changing γ in the considered range of γ. 

 

- Both the real and imaginary parts of S show the same behavior with the 

thickness of the guiding LHM layer. The absolute value of both parts of the 

sensitivity maximizes for low values of d and decays with increasing the 

thickness. 

 

- The most important feature is that through proper choice of ωp/ω and d, the 

Re(S) may reach a value of order -16 which means the enhancement factor of 

the sensitivity of the proposed sensor could be of order 32. 

 

We also study the Fresnel reflection coefficients for TE- and TM-modes from  

metal-clad waveguide. The operation of sensing is more accurate if the 

reflectance dip is sharper since the reading of the angular shift becomes easier.  

A number of interesting features can be observed: 
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- A sharper dip is obtained in the presence of 350 nm LHM guiding layer 

between the metal and the cladding layer. This is an advantage of metal-clad 

waveguide configuration over SPR structure for sensing applications. 

 

- The larger the value of the imaginary part of ε2 leads to a broader dip since the 

losses in metal-clad waveguide configuration is strongly dependent on the 

imaginary part of metal permittivity ( "
2 ). As a result, the dip of the silver-clad 

waveguide is much sharper than that of gold-clad waveguide. 

 

- The position and shape of the reflectance dip change with metal thickness, the 

optimum metal thickness is found to be 40 nm at which the reflectance 

approaches zero. Decreasing d2 increases the minimum reflectance and the dip 

becomes sharper. 

 

- As the real part of both ε3 and µ3 increases, the reflectance dip become 

sharper and the angular position of the resonance dip decreases. 
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