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We discuss the target space pseudoduality in supersymmetric sigma models on sym-
metric spaces. We first consider the case where sigma models based on real compact con-
nected Lie groups of the same dimensionality and give examples using three dimensional
models on target spaces. We show explicit construction of nonlocal conserved currents on
the pseudodual manifold. We then switch the Lie group valued pseudoduality equations
to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations.
We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-
dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual
to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric
spaces), we investigate pseudoduality transformation on the symmetric space sigma models
in the third chapter. We see that there can be mixing of decomposed spaces with each other,
which leads to mixings of the following expressions. We obtain the pseudodual conserved
currents which are viewed as the orthonormal frame on the pullback bundle of the tangent
space of G which is the Lie group on which the pseudodual model based. Hence we obtain
the mixing forms of curvature relations and one loop renormalization group beta function
by means of these currents. In chapter four, we generalize the classical construction of
pseudoduality transformation to supersymmetric case. We perform this both by compo-

nent expansion method on manifold M and by orthonormal coframe method on manifold



SO(M). The component method produces the result that pseudoduality tranformation is
not invertible at all points and occurs from all points on one manifold to only one point
where riemann normal coordinates valid on the second manifold. Torsion of the sigma
model on M must vanish while it is nonvanishing on M , and curvatures of the manifolds
must be constant and the same because of anticommuting grassmann numbers. We obtain
the similar results with the classical case in orthonormal coframe method. In case of super
WZW sigma models pseudoduality equations result in three different pseudoduality con-
ditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality
tansformations on symmetric spaces using two different methods again. These two meth-
ods yield similar results to the classical cases with the exception that commuting bracket
relations in classical case turns out to be anticommuting ones because of the appearance of
grassmann numbers. It is understood that constraint relations in case of non-mixing pseu-
doduality are the remnants of mixing pseudoduality. Once mixing terms are included in the

pseudoduality the constraint relations disappear.
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Chapter 1

Introduction

The term duality has numerous meanings, and is an important concept in physics. When
two different systems turn out to be equivalent we say that there is a duality between these
systems. In string theory people use the term "target space duality" if there is a canonical
transformation between target spaces in which strings move. This transformation preserves
the hamiltonian. The simplest example is the standard abelian duality transformations [1,

2],

043 = +0,0 (1.0.1)

0.3 =—0_p (1.0.2)

where ¢ is the massless free scalar field satisfying the wave equation 92 _¢ = 0 in light
cone coordinates. By means of duality transformations (1.0.1) and (1.0.2) we may construct
¢ satisfying the wave equation 97 _¢ = 0, and hence understand that these two theories
are equivalent and dual to each other. A more general case is the pseudochiral models
introduced by Zakharov and Mikhailov [3]. We consider a standard sigma model with

target space a Lie Group G, which has equations of motion 9*(¢g'9,9) = 0. If we look



for a dual model with a Lie algebra valued field ¢, then the duality transformation can be

written as

97'0u9 = —€,0,0 (1.0.3)

But these dual models are not quantum mechanically equivalent to each other because it is
realized that duality transformations should be canonical transformations ! [4, 5], but this is
not [6]. Subsequently people developed an extensive literature on nonabelian duality, and
Poisson-Lie duality motivated by string theory.

There is an interesting duality transformation proposed by Alvarez [2, 7], which is

" 2, By contrast with usual duality transformations this "on shell

called "pseudoduality
duality" transformation is not canonical,and maps solutions of the equations of motion of
the "pseudodual” models. We will use the term pseudodual when there is a pseudoduality
transformation between different models. It is pointed out that this transformation preserves
the stress energy tensor [7].

It was shown [1, 7] that pseudoduality transformation in sigma models provides that
curvatures of dual models are constants, and have opposite signs, which restricts the con-
dition that pseudoduality exists between sigma models only if they are based on symmetric

spaces. It is also shown in this work that pseudoduality gives rise to infinite number of

nonlocal conserved currents associated with pseudodual model.

1.1 Pseudoduality in Sigma Models

We take spacetime X to be two dimensional Minkowski space, and o = 7 & ¢ throughout

thesis. The sigma model with target space M, metric g and two-form B is denoted by

IThis is sometimes called as "off shell" duality
2This term was introduced first by Curtright and Zachos [4].



(M, g, B) and has the lagrangian [7, 8]

1 . | . .
L :igij($)alL$Z@M$] + §B,~j(x)e“”6ux18m
=—g;;(z) ('3 — 2"2"7) + By (x)z"z" (1.1.1)
27" J

where x : > — M and the closed 3-form H is defined by H = dB. This theory is

classically conformally invariant. The stress energy tensor is given by
@iq: =0 @ii = Gij (a:)@ixiﬁixj (112)

We wish to construct the pseudoduality transformation between the solutions of the
equations of motion of the sigma model (M, g, B) and that of a different sigma model
(M . 3, B). It is instructive to start with the sigma models based on riemannian manifolds.
The equations of motion for the sigma model based on M is

i 1 i o0 .k
= —3 Ty (1.1.3)

Duality transformation is best formulated in the bundle of orthonormal coframes, SO(M).

Since all local descriptions can be extended to global ones [7], we will use global expres-

sions. We pick globally defined orientable orthonormal coframes w* and w° in the coframe

bundle SO(M) and SO(M) respectively, and given in terms of o derivatives by
w' = 2’ do” W' = it do” (1.1.4)

and the corresponding torsion free antisymmetric riemannian connection 1-forms w§ and

zI;; We notice that w’ and w§ are linearly independent coframings on SO(M ), similarly



for S O(Z\Zf ). These global coframings satisfy the Cartan structural equations

dw' = —wh A w? (1.1.5)

_ 1.
dw! = —wj Awh + §R;.klwk Aw' (1.1.6)

where R, is the Riemann curvature tensor on M. Similar equations can be written on
M. We will define the pseudoduality transformation on the spacetime ., and hence we

consider the pullbacks
X*w' =z do* X w; = w},do® (1.1.7)

where the lift from ¥ to SO(M) is defined, X : ¥ — SO(M). Therefore afore mentioned

pseudoduality equations in standard lightcone coordinates can be written as

Ty(0) =4+T1(x,T)xy(0) (1.1.8)

7_(0) = —T_(z,%)1_(0) (1.1.9)

where the orthogonal matrix valued functions 7% : M x M — SO(n) are given in [9],
and dim M = dim M = n. In this thesis we will consider the case 7% : ¥ — SO(n) and

T, =T_ =T. Thus pseudoduality equations will be
Ti(0) =T (0)xs(0) (1.1.10)
The covariant derivative of z*, (similarly for Z) are written as

da, + wix] = x,do” (1.1.11)



Since we want to extract more information about pseudoduality transformations, and

find required conditions, we take exterior derivative of (1.1.10)
il = +(dT})ak + Tida,
the covariant derivative (1.1.11) leads to

i b -isj i, i g b i, gk
Tyydo” — wiF, = £(dTy)x) + Tixl,do” F Twjal

We now insert the pseudoduality equations (1.1.10) back in this equation and arrange the
terms to get

Thydo’ = £(dT, + 0} T — Tjw])ah + Tjal,do’ (1.1.12)

Since we would like to use the equations of motion to reveal the integrability conditions,

we wedge by do™ to get
P do™ Ndo™ = £ (dT}, + ID;T,g - T;wi)xi Ado* + T;xideajF ANdot  (1.1.13)
This can be split into the following two equations

i _do” Ndot = +(dT}, + ﬁ);Tg - T]’w‘,i)x’i Adot + Tjixﬁr,da_ Adot  (1.1.14)

i dot NdoT = —(dT}, + ﬁ);T,z — T;wi)x’i Ndo~ — T;:Uj,eroJ“ ANdo~  (1.1.15)

Since we know that 2z, _ = x_ (also with tilde 7, = 7_,),and do~ Adot = —do™ A

do~, the left-hand sides of these equations can be equated each other to yield



(dT} + WiT) — Thwl)ah Adot — (dT}, + @iT] — Tiw])a* Ado~

+ Qﬁx‘i,da_ ANdot =0
We may now use the equations of motion (1.1.3) to obtain

(dT}, + Wi T] — Thwl)ah Ado™ — (dT} + @iT, — Tiwl)a* Ado~

— TiH],ab 2l do™ Ndot =0 (1.1.16)

We split the last term into two terms by changing the orders of (—) and (+), and use
w=x,do" +x_do~ to get

(dT}, + wiT) — Tiw;), — ET;H,glwl)xi Adot

—(dT} + T} = Tjw + 5 YHwh)a® Ado” =0 (1.1.17)

We define the following tensors in order to understand this equation better

Up_do™ = dTy, + 05T}, — Tjwy, — §T;H{€lwl (1.1.18)
Upydo™ = dTy, + wiT) — Tjwy, + 3 ' H ' (1.1.19)

Hence equation (1.1.17) can be written as

Ui_atdo™ Ndot — Ui a*do™ Ndo™ =0 (1.1.20)

Besides, equations (1.1.18) and (1.1.19) yield that



Ul do" +Uj_do~ = 2(dT} + w'T] — Tiw]) (1.1.21)

Ui, do™ — Ui_do~ = T Hjw' (1.1.22)
Finally we may easily get the following from (1.1.22)

Uj,dot Ndo™ = +T Hlw' A do™ (1.1.23)

Ui_do~ Ndo" = =T Hjw' Ado™* (1.1.24)
If these results are substituted in (1.1.20) one gets
TiH}ahw' Adot + T H 2" w' Ado™ =0
using the definition of w one obtains
TiH} a2l dot Ado™ =0 (1.1.25)

Since we may choose :c’i and z'_ arbitrarily at any o we conclude that H = 0. This leads
the tensors Uy, and Uj},_ to vanish by means of equations (1.1.23) and (1.1.24). Therefore

we obtain the result from (1.1.18) (or (1.1.19))
AT} + W T] — Tiw] = 0 (1.1.26)

It is also evident from (1.1.14) (or (1.1.15)) that H = 0 on the pseudodual manifold M.
This shows why Ivanov [10] uses the case H = 0 in his method. We would like to bring

out more conditions on pseudoduality transformations from the equation (1.1.26), and so



we search for the integrability conditions of this equation, and see what we can obtain. We
take the exterior derivative and use again (1.1.26) to obtain

T’RJ w™ Aw" = RE L TIO™ A" (1.1.27)

kmn Jmn

where we used the Cartan’s second structural equation (1.1.6). If we use the definitions for

w and w followed by pseudoduality equations, we get the curvature relations
TiR],.. = —R,,TITL TP (1.1.28)

Thus we get another condition for pseudoduality, curvatures of pseudodual manifolds M
and M must have opposite signs. To discover more conditions we keep searching for the
integrability conditions of (1.1.28), and take exterior derivative and use again (1.1.26) to
get

TiR] = TIT! TP

kmn; q ]lp q

where the covariant derivative of Ris definedas DR =~ = w! = dR;,, +R]

kmn iq fernn W q

Rz I w?

qmn kqn®m kmq n’

and similarly for R. This equation can be split into the fol-

lowing two independent equations

i l
T; R?fmnq = le qTJT T?
TZR?cmn iq - +R;lp,qTIgT7i1TTIL)
which give the solutions kan v = ; 1p,q = 0. Therefore we find that the manifolds M and

M must be locally symmetric spaces with the opposite curvatures. We finally conclude that
pseudoduality exists between two sigma models based on the riemannian manifolds M and
M only if 3-forms H and H vanish, and target spaces are the symmetric spaces with the

opposite curvatures.



Chapter 2
WZW Models and Conserved Currents

In this section we will consider the pseudoduality between two sigma models with
target space M a real connected compact Lie group G with an Ad(G)-invariant metric
[17]. The orthonormal frame bundle is SO(G) = G x SO(n), and w' and w’ can be
chosen globally as above. The 3-form H;k will be proportional to the structure constants
fir Hi = afj;, and the constant a € R. We especially specialize to the classical strict
WZW model [11] which is the case a = =1 so that the action is normalized to make the
path integral well defined. The strict WZW model is the model with the Wess-Zumino term
normalized so that the canonical equations of motion are given by 9_(g~'9,g) = 0, where
g is a function on spacetime taking values in some compact Lie group G. We will show
that the WZW model on G is pseudodual to the WZW model on G for any two compact
n-dimensional Lie groups. Let g be the Lie algebra of G, g be Lie algebra of G. If the
Isom(g, g) is the vector space isometries from g to g, we may write the pseudoduality
mapping *x(§1dg)(c) = T(g~'dg)(c), where T : 3 — Isom(g, g), and x5 is the Hodge
duality operator on Y. We will also investigate some properties of conserved currents on
target space manifolds that are pseudodual to each other, following a method discussed in
[7] we find an infinite number of conservation laws in the pseudodual manifold. We work

out the currents in case of pseudodualities [4, 7] between the sigma model on an abelian

group and a strict WZW sigma model [11] on a compact Lie group [12, 13] of the same
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dimensionality. We specialize to the case of the abelian group U(1) x U(1) x U(1), and
of the Lie group SU(2). We will afterwards work out WZW models with target spaces a
general real connected compact Lie groups, and find solutions for the transformation matrix
and pseudodual expressions in the next section.

We know [7, 10] that if we are given a sigma model on an abelian group, and a strict
WZW sigma model on a compact Lie group, there is a duality transformation between these
two manifolds that maps solutions of the equations of motion of the first manifold into the
solutions of the equations of motion of the second manifold. Solutions of the equations
of motions allow us to construct holomorphic [12] nonlocal conserved currents on these
manifolds. Pseudoduality relations provide a way to form pseudodual currents, and we
show that these currents are conserved.

Let M = G be a compact Lie group of dimension n with an Ad(G)-invariant metric,
and g : ¥ — (. We define the basic nonlocal conserved currents JJ(FL) = (g7'0.g) and
JH = (0_g)g~" on the tangent bundle of G. What we demonstrate is that we can take
these currents, and using the pseudoduality relations we obtain currents on G (not &) and
these currents are conserved.

We would like to search for infinitely many conservation laws[14, 15, 16] on pseudod-
ual manifolds. We first concentrate on a simple case, where M = G = U(1) xU(1) xU(1)
is an abelian group and M = G'is SU (2). We show that infinite number of conservation
laws of free scalar currents on GG enable us to construct infinite number of pseudodual cur-
rent conservation on G by means of isometry preserving orthogonal map 7' between tangent
bundles of these manifolds. We next focus our attention on a more complicated case, where
M = G is the Lie group SU(2) and M = G is U(1) x U(1) x U(1). We find nonlocal
conserved currents on GG and construct pseudodual free currents on G using pseudoduality
relations. We show that pseudodual free scalar currents on G gives us infinite number of

conservation laws.
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2.1 Pseudodual Currents : Simple Case

We take M as an abelian group, and the equations of motion become 97 _¢" = 0, where
¢ is free massless scalar field. Currents on the tangent bundle of M are hence given by
J = (8,¢")X; and TP = (0_¢")X,, where {X;} is a basis for the abelian Lic algebra.
We notice that these currents are individually conserved, 0_ JiL) =04 JH = 0. Now we
take M as a compact Lie group of the same dimensionality with an Ad(G)-invariant metric.
{X;} is the orthonormal basis for the Lie algebra of G’ with bracket relations [X;, X,]5 =
ji’;f( x» where the structure constants fijk are totaly antisymmetric in ijk. Using the map
§ : ¥ — M we may write equations of motion as d_(§~'d,.j) = 0. Currents on this
manifold are defined by J\*) = (5710,§)'X; and J¥ = [(0_§)§ )" X;. Again, by virtue
of equations of motion we observe that these currents are conserved, 0_ jJ(rL) =04 J = 0.

To construct pseudodual currents on the manifold M we make use of the pseudoduality

conditions. The pseudoduality relations between the sigma model on an abelian group and

a strict WZW sigma model on a compact Lie group of the same dimension are

(5710:9) = +T;04¢’ 2.1.1)

(G7'0-9)" = —T;j0_¢ (2.1.2)

where 7T is an orthogonal matrix and §~'dj = (§7'dg)' X..
Taking O_ of the first equation (2.1.1) we conclude that 7" is a function of o™ only.

Taking 0. of the second equation (2.1.2) gives us the differential equation for 7T’
(0, T = = fi; T 0, ¢ (2.1.3)

where we used the antisymmetricity of fikj at right hand side of equation.

To get pseudodual currents on the manifold M, we first solve this differential equation
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for T', and then plug this into pseudoduality equations with an initially given 0. ¢ and from

the pseudodual currents we find that these currents are conserved.

2.1.1 An Example

We consider the sigma model based on the product group U(1) x U(1) x U(1) for M and
a strict WZW model based on group SU(2) for M. We may write a point on the sigma
model to M as ¢'X;, where i = 1,2,3 and {X;} are basis. Equations of motions are
9% _¢" = 0. Currents may be written as JE = (0.¢")X; and JP = (0_¢") X;. We learn
from equations of motions that these currents are conserved.

We denote any element in G as § = ¢'"Xx where {#¥} = (6*,62,6%) and {X,,} =

(—1%, —i%, —i%) is a basis for the Lie algebra of SU(2). Structure constants are €;j.

Equations of motion for the strict WZW model are 0_(§7'0,g) = 0, where g~ 'dg =
(§'d§)* Xy Currents for the Lie algebra are J\*) = (5710,§)* X, and J™ = [(6_7)5 )" X}
Again equations of motion ensure that these currents are conserved.

We first solve the ordinary differential equation for 7" to find the pseudodual currents.

Multiplying (2.1.3) by 79 from right we get

04T, = —fi T T30,/ (2.1.4)
We put in an order parameter ¢ to look for a perturbation solution,

0T = —efi, T T30, ¢! (2.1.5)

Presumably the solution is in the form 7' = e**1e2°*2(] 4 O(£3)), where o and s

are antisymmetric matrices. Since we know that 7" is only a function of o, «; and «, are
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also functions of o*. If we expand T
T=1+cea + %g"’(ag +a2) + 0(e?) (2.1.6)
then taking 0, we end up with
0. T =¢ed oy + %52 (a1 (Opa1) + (Opar)ar + Oyan) + O(?) (2.1.7)
If we compare (2.1.5) to (2.1.7), the latter may be written in tensor product form as

0T =—ef @ (T.0) T = —ef @ [(I 4+ £01)04.0] @ (I + ary)

= f R0 -2 fR 10,0 —*f R0, ® oy (2.1.8)

Therefore we find
diay=—fR0,001 (2.1.9)

1 - -
5[8+a2 +a1(0ron) + (Oyan)ar] = —f® 10,0 @1 — fR 016 ® (2.1.10)

Solving (2.1.9) we get o as follows

(a1)), = — /U fid,¢"do'™™ = —fi (" +CF) 2.1.11)
0

where CF is a constant, and we choose it to be zero. Since «; is a function of o+ only,
¢ in the expression of «; should involve o, not c~. From this we understand that we

need to separate ¢ as right moving wave ¢r(c~) and left moving wave ¢ (07), i.e. ¢ =
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¢r(0%) + ¢r(c7). Hence ()i, = — fi_¢*, from which we find

0 o — o7
a=| —¢ 0 oL (2.1.12)
o —¢p 0

Solving (2.1.10) we obtain

ot ot

(an)i = - / (10 cn )i do™ — / [0y n)en]’, do’™
00'+ .. 0 U+ -
4/‘&mWwwW—ﬁ"mAW@mw+
0 0

ot

== | o0y — opo.op) o 2113

which gives us the following entries of a, with the help of (2.1.12)

—
Q
no
N—
[y
|

q
+

[0%(0401) — ¢1(04¢7)] do’™

—
Q
)
N—
o —
|

q
+

[¢?i(a+¢lL) - ¢1L(a+¢%)} do"™

q
+

[¢1L(a+¢%) - Cb%(&rﬁblL” do'"™*

—~
Q
no
SN—
Ll N
I

D

S

ey
I

—
e
[V
N—
NN
Il
@)

q
+

[¢%(3+¢%) - ¢%(0+¢%)} do'

,\
Q
N
w N
I
c\q c\
+

—~
o)
[\
~—
— o
I

[61,(0401) — ¢1.(04¢)] do'™

q
+

[07.(0401) — ¢1.(04¢7)] do'™

—~
e
[\
~—r
[\RVN)
I
o

—
Q
)
N—
w w
I
e}
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Plugging a; and o into 7" and setting € = 1 gives us

T = 3+ (o)} + ()

J J 9 L+ (a%);] + O(¢3) (2.1.14)

. T A o
~ 0= Fdh = 5[ (6100, - 010,61 o™ i 0

0

so the entries of 1" becomes

1

7 =1- Lt + dlol

1 =g+ [ dh(0.0)do"
0

H:—&+A $(0,0%) do'*

17— —oi+ [ ol0.dh)dt

0

1

T3 =1 - 3[40} + dio

13—+ [ oh(0.0) do
0

19—+ [ oh(o.o)do"
0

ﬁ:—¢+l B2 (05 6%) do'™*
1

13- 1- Ligtol + 10

We note that 7" is an orthogonal matrix. The type of the field ¢(cF,07) = ¢r(0F)+pr(c™)

puts pseudoduality relations into the forms

(§710+9)" = +T044), (2.1.15)

(§'0-g) = —T;0_¢} (2.1.16)
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We note that equation (2.1.15) has an invariance under g(c™,07) — h(c™)g(c™,07).
From this we can look for solution g(c™,07) = gr(oc7)gr(c™), so first pseudoduality
relation is reduced to (§; ' 04 gr)" = +Tf8+¢1. This equation gives us the left current. Next
we have to find gr(c~) using second pseudoduality equation to construct right current.

Plugging §(c",07) = gr(c7)gr(c™) into (2.1.16) and arranging terms we obtain
Ir (07)0_gr(0™) = —gr(o ™) (XiTi0_¢%) g, (o) (2.1.17)

where {f(l} are the Lie algebra basis of g, and (X’i)jk = €j;x. Since we want to construct
pseudodual currents in the order of ¢", we need T'(c ™) to the order of ¢" ! to get jiL) (o)
to the order of ¢". From equation (2.1.17) we see that the knowledge of T to O(¢™~!) and
71 to O(¢™1) allows us to construct jz to O(¢"), so we can construct J (67 to O(¢").

First we construct jiL) (o) to the order of ¢?, so we need T' to O(9)
Tj = 65 — fi;01 + O(¢°) (2.1.18)
Therefore, using first pseudoduality relation (2.1.15)
TP (0%) = 5710291 = X0,y — Xifiih 0.0, (2.1.19)

All we need is gy, to the order of ¢, so we need to solve §; 0, g, = Xi&rgbiL for gr.(c™).

Choosing initial condition as g, (c™ = 0) = I, we get
g(o*) =1+ Xid}, + O0(¢”) (2.1.20)

Its inverse is

grt(oT) =1 - X;¢} + O(¢?) 2.1.21)
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Plugging these into (2.1.17) we find

Gr'0_Gr = —(I + Xi}) Xi(6} — fi05)0_ (1 — Xyoh)

= —X;0_¢% + O(¢?) (2.1.22)

We notice that the order of ¢? terms are cancelled, and g is a function of o~ only. We let

Gr = e 9r%ie8" X where ¢ represents O(¢?). Expanding jr

gr= (I — ¢pXi+ %%%Xif(j)(f + &8 Xy,)

A _ f
= I = ¢pXi + 5OR0RXe X + Xy + O(¢°) (2.1.23)
the inverse §5' can be found from §r = e Xt

- ~ P o 1 P oo
gRl = (I =& X)(I + X + §¢R¢jRXin>

o 1 . . o~ - ~
=T+ ¢\ X, + §¢§%¢§2Xin — X+ 0(0?) (2.1.24)
It follows then that equations (2.1.23) and (2.1.24) lead to
Jr'0-Gr = —0_¢pX; + 0_6" X}, + 0(¢”) (2.1.25)

and comparison with (2.1.22) evaluates 0_&* = 0, so £ is constant and we choose it to be

zero. Therefore, right current can be constructed using (2.1.23) and (2.1.24) as
J(07) = (0-9r)ir" = —(0-9}) X, (2.1.26)

we see that order of ¢? disappears in the expression of right current. If we explicitly

write pseudodual currents on the manifold M up to the order of ¢* using equations (2.1.19)
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and (2.1.26) we get the following

ot

3 3 S ] , , o
TPe) =Xl0.0), - Figohoro, — 5[ (6100 - 0j0.0}) do't

0
— [in 010710467
T (07) = —Xi(0-0%)
Therefore, our currents can be written as

T = Jo) + 8 + T+ 0(°) (2.1.27)

where {11} = (R, L). We can organize all these terms as

T (g) =" 4 (9) (2.1.28)
0

It is easy to see that these currents are conserved, i.e. 0 JM =5 jJ(rL) =0, by means of
the equations of motion 9% _¢’ = 0. Since each term satisfies 0, j[(ﬁ) =0_ j[%) = 0 for all
n separately, we have infinite number of conservation laws for each order of ¢ as pointed

out in [7].

2.2 Pseudodual Currents : Complicated Case

In this case we consider the pseudoduality between two strict WZW models based on com-
pact Lie groups of dimension n with Ad-invariant metrics. If {X;} are the orthonormal
basis for the Lie algebra of G with commutation relations [X;, X;]¢ = fi’}X k> where fij
are totally antisymmetric in ijk, and g : > — M is the map to the target space, we

may write equations of motion on G as _(g~'d,g) = 0. Therefore, currents become
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JJ(FL) = (¢7'0,9)'X; and JE [(0_g)g~']'X;. These currents are conserved. We make

similar assumptions for the Lie group G. The pseudoduality equations are
(67'0:9)" = +T;(g" 01 g) 2.2.1)

(§7'0-9)" = -Ti(g '0_g) (2.2.2)

where T is an orthogonal matrix. Taking 0_ of the first equation (2.2.1) we learn that T’
is a function of ot only. Taking 0, of the second equation (2.2.2) we get the differential

equation for T’

(0. TVT s = —fiyTi(g " 0v9)' + Fo T (g7 0 g)™ (2.2.3)

We follow the same method as we did in the previous part to find pseudodual currents.
We first solve differential equation (2.2.3) for 7', then replace this into the pseudoduality
relations, and finally build pseudodual currents. We will see that these currents are con-

served.

2.2.1 An Example

To illustrate all these steps in an example, we consider a strict WZW model based on Lie
group SU(2) for GG, and a sigma model based on abelian group U(1) x U(1) x U(1) for
G. Using the map ¢ : X — G, we may represent any element in G by g = ei" Xk where
{¢*} = (¢, ¢?, ¢*) are commuting fields and {X}} are the orthonormal basis for the Lie

algebra of G, and { X} = (—%01, —%09, —%03) for the case of SU(2). Structure constants

are eé »» and commutation relations are the familiar form of Pauli matrices, [—i%, —i%] =

k

e};(—1%). Equations of motion are 0_(g~'0,.g) = 0. Nonlocal currents for the Lie algebra

of SU(2) are J = (9710, 9)k X}, and J = [(0_g)g!]*X,. We want to construct
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currents up to the order of ¢2. If we consider infinitesimal coefficients {¢*}, keeping up to

second orders we may expand g as
, 1
g=14+ip"X;, — §(¢k¢l)(Xle) + .. (2.2.4)

Since we are looking for JJ(FL) and J% up to the order of ¢?, we need ¢ to the order of ¢,

hence

g=1+i¢"X; (2.2.5)

g =1—ig"X; (2.2.6)

To this order the solution to equations of motion 9_(g~'0,g) = 0is g = gr(c7)gr(c™),

which leads to ¢(ot,07) = ¢r(07) + ¢ (0T). Thus equation (2.2.5) can be written as

gr = 1 +idk X, (2.2.7)

gr =1 +id}Xk (2.2.8)
and hence left and right currents can readily be obtained as

— . m 1 m
Jj(LL) = 91,0191, = 10197 X + éfkl 10407 Xom (2.2.9)

T = (0-gr)g" = 10-0% X + 3 SO0 O} X (22.10)

Therefore, we conclude that 0_ JJ(FL) =0, JSR) = 0, i.e, currents are conserved on G. We

first solve equation (2.2.3) to figure out the pseudodual currents. Since f,g] = 0, we have

(0. T)T~Y = X, 10T (97, 0y g0)™ (2.2.11)

J
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this may be reduced to

(0,1, = frnTi(gr Org)™ (2.2.12)

and putting in an order parameter € we get

(0.1 =efr, Ti(gr 0sgL)™ (2.2.13)

We adapt to an exponential solution 7' = emle%a%‘?(] + O(&%)), where o and «y are

antisymmmetric matrices, and expanding this solution we get
T=1+¢ea;+ %aﬁ(ag +a3) + O(e?) (2.2.14)
taking 0, of T leads to
0, T = edyo + %8 [ (Dy01) + (Opa1)a + Opas] + O(E?) (2.2.15)
expressing (2.2.13) in tensor product form

0.1 =ef(g;'0r91) ©T = f (g9, 0490) ® (I +ea)

=ef(97'0v91) +€2f (97 0 g1) ® 1 (2.2.16)

and comparing this with (2.2.15) we obtain o

ot
(), = / Son (g Opgr) " do"™ (2.2.17)
0

- £ m 1 i m i
= men¢L + §fmnfkl / gblza—i-gblll dO-H_
0
ot

) 1 . ) ,
—ic + 5 | (010:0) - 60,07 do”
0



this expression leads to the following entries

(a1); =0

1
(@)} =—ist —3 |
@=idt+3 [
(@i =gt +3 [
(a1)3=0

1
()i =—ivp—3 [

1
()] = —id7, — 5/0
(@ =ich+; |

()3 =0

and

dyoy = 2f (97 01 91) ® an — [a1 (D) + (Dy )]

Hence, o, 1s obtained as

ot

ot

[¢IL (a+¢%) - d)i (a+¢i)] do"™*

ot

[67,(0+61) — ¢1.(0+01 )] do™

ot

[61,(0+61) — ¢1(0+01 )] do™

[01(0+01) — 61(0401 )] do™

[67,(0401) — ¢1(04¢7)] do"™

ot

[07(0+01) — 07(0401 )] do"™

<wﬂ=l<%m%—%m%mw
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(2.2.18)

(2.2.19)

We see that this is equivalent to (2.1.13), and entries are the same as the negative of above

results. Therefore, we can find 7" by means of (2.2.17) and (2.2.19), and setting ¢ = 1

T, =0, + i€, o7 + §<5n¢L o1 — Pré%)

(2.2.20)
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Again we note that 7" is an orthogonal matrix. Now using pseudoduality equations (2.2.1)
and (2.2.2)

vt = +Ti(g 049 = +Ti(g; ' Dsgr)’ (2.2.21)
0-gr =—T)(g7'0_g) = —T}(91" 95" (0-gr)gL)’ (2.2.22)

since we are trying to find E)+q5~ Li and 0_ ¢~Ri up to the order of ¢?, we need 7' to the order
of ¢, hence using

T} =6, + i€, d] + O(¢”) (22.23)

we may find

0.61 = 77(9;16+9L)j
= [5; + Zemj¢L][Za+¢]L + 56%@'2&%]

. i 1 i
= i0, ¢} — §ek,¢§a+¢g + O(¢?) (2.2.24)

0 = —Ti(g7'0_g) = —T'lg; (95 0_gr)gry
i m . . 1.,
= — [0 + el 71 — idf Xp) (1 — ¢} X0) (10— ¢ X, — §¢33—¢%X1Xm
1 , .
- §¢E37¢?X1Xm)(1 + i X))’

= _[5; + ZEqubL ] [Z@—Qﬁ% + €£rm¢[, a—¢R + §€{m¢lRa—¢R]

= —i0_¢% — §elm¢lRa,¢R (2.2.25)

We see that these are free scalar currents on the tangent bundle to the pseudodual manifold
G. Since 8+¢~ Li depends only on o, and 0_ ¢~Ri only on o, these pseudodual free scalar
currents are conserved provided that equations of motion for free scalar fields hold. We go

back to equations of motion to see that these pseudodual tangent bundle components take
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us to pseudodual conserved currents. Equations of motion, 0_ (g~ 10, g)" = 0, imply that
d%_¢" = 0. Obviously we find out the pseudodual conservation laws 8i¥<5i = 0 in all

¢-orders using these conditions.

2.3 Conclusion

We observed that nonlinear character of WZW models results in an infinite number of
terms in the mapping 7', which in turn leads to construct infinite number of nonlocal cur-
rents in pseudodual manifold. Calculations were motivated by the fact that sigma models
have Lie group structures, and 7' € SO(n). Hence structure of Lie groups together with
perturbation calculations reflects the nonlinear characteristic of sigma models. It is obvious
that pseudoduality transformation leads to the pseudodual conserved currents in our cases
where one model based on an abelian group U (1) x U(1) x U(1) in two cases we discussed.
However, One can consider general Lie group valued fields for both models, and see that
this would also yield conserved currents on pseudodual model. We considered three di-
mensional models for simplicity but this can be extended to any dimension. Calculation
of these currents gives us curvatures by means of Cartan structural equations (1.1.5) and
(1.1.6), where w* = J* and w;'. = % f,ij J* is the antisymmetric connection, and J stands for
both JSFL) and J¥. These currents form an orthonormal frame on pullback bundle ¢g*(T'G)
. Since we considered abelian models, and hence obtained scalar currents, it is easily
noted that curvatures are zero. In general case where sigma models based on general Lie
groups, curvatures will be constant and opposite. This shows that sigma models are based
on symmetric spaces as pointed out in [2]. The calculations and results of this section can
be applied to pseudoduality relations between symmetric space sigma models to construct

nonlocal currents and curvatures relations. We will discuss this in the next section.

TG is the tangent bundle of G, i.e. TG = G x g.



Chapter 3

Pseudoduality Between Symmetric
Space Sigma Models

In this section we present the general solution of the pseudoduality equations (2.2.1) and
(2.2.2) between two symmetric space sigma models, and construct the pseudodual currents
by means of these equations. We will do our calculations regarding GG as a symmetric space
G x G/@G, and then extend our construction using Cartan’s decomposition of symmetric
spaces. We will use the references [18, 19, 20, 21] for the symmetric space construction,
and utilize the literature [15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] on various
applications to sigma models. Since we defined pseudoduality on spacetime coordinates,
and we said above that pseudoduality is best done on the orthonormal coframes bundle
SO(M), we leave this construction to later. In this section we will do our calculations
on the pullback bundle of target space M. Hence pulling structures back to spacetime is
implicit, and not emphasized. We will see that this construction will give us complicated

expressions for 7" as opposed to the simplified form (identity) on SO(M).

25



26

3.1 Pseudoduality Between WZW Models : H=1

We consider a strict WZW sigma model based on a compact Lie group of dimension n.

Lagrangian [11, 24, 31, 32, 33] for this model is defined by
1 —la —lau
L= ETr(g .99 g)+7T 3.1.1)

where I' represents the WZ term, and the field g is given by the map g : ¥ — G. We
take X to be two dimensional Minkowski space, and o0& = 7 & ¢ is the standard lightcone
coordinates as above. There is a global continuous symmetry G, x G'p which gives us
the conserved currents JJ(FL) = g;18+g,; and J = (0_gr) ggl taking values in the Lie
algebra of G, and g = gr(0~)gr (o) is the solution giving the invariance of these currents.
The equations of motion following from (3.1.1) correspond to the conservation of these

currents:

0-(9;'0491) = 94[(0-gr)gz'] = 0 (3.12)

Let G be compact Lie group of the same dimension as G, and § : ¥ — G. Equations

of motion are given by

O-(g.'01g1) = 04[(0-gr)gr~'] =0 (3.1.3)

Solutions of equations of motion for both models can be combined in pseudoduality

equations (2.2.1) and (2.2.2) as

(§7'0+9)" =T} (g '049) (3.1.4)

(§7'0-9)" = -Ti(g '0_g) (3.1.5)

where T is an orthogonal matrix connecting target space elements g~ 'dg and §~'dg.
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Taking O_ of first equation (3.1.4) with the help of equations of motions (3.1.2) and
(3.1.3) shows that 7" is a function of o™ only. Taking 0. of second equation (3.1.5) gives

us the following differential equation
(O TYT s = fR T (97 0vg)™ — iy T (97 01g1)' (3.1.6)

We suggest an exponential solution ' 7' = ¢ , and use the result [16, 18, 22]

1— eodX = 1
-1 _ —
(O DT = =0, X ; T (X, ..., [X,0,X]] (3.1.7)

where adX : g — g, the adjoint representation of X, and adX(Y) = [X,Y] VYe g. We
let X — X and look for a perturbation solution, and hence the left-hand side of equation

(3.1.6) s

52 ) 53
X0 X5+ X [X 0. X)) + (3.1.8)

(0, T)T; = e(0:.X); + 31

We insert an order parameter ¢ to the right-hand side of (3.1.6), and get

(O T)T s = f3 T} (91, 090)™ — fi T (91, 01 gr)' (3.1.9)
=efE (1 +eX)i(1+eX) (97" 0490)™ — 5]%(1 +eX)P (97 O g)"
:5f;1j(9218+9L)m - 5f1§j(9218+9L)k + €2f&le(9210+gL)m

+ & i Xi(gp ' 0vgr)™ — [, X (97 04gr) + O(E)
Comparing (3.1.8) and (3.1.9) in the first order of ¢ gives us

(04 X)5 = (fi; — fis) (91" 04 gr)* (3.1.10)

"'We notice that X € so(n), lie algebra of SO(n)
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This leads to the solution

ot
X[ = X+ (= Fip) [ (02 0ge)t ot G111
0
Hence the matrix 7" may be written as
T3 =5+ XO+ (= i) [ (0700t (3.1.12)
0

We see that if both sigma models based on the same groups, i.e G = G, target space
of transformed model will be globally shifted as determined by the tangent space of unit
element of T'. We set X (0) equal to zero.

Now we plug this in the pseudoduality equations (3.1.4) and (3.1.5) to find fields

G 10,g and §~'O0_g which lead us to construct the pseudodual currents. We switch from

Lie group-valued fields to the lie algebra-valued fields, and we let > g = e¥ and § = ¥ .
Using the result [16, 18, 22]
1— e—adX S (_1)k
-Xg X
0 = ——0,X = X, .., |X,0,X 3.1.13
(& Me adX “w ;(kj—l—l)'[ ) ’[ i ¥ H ( )
we can write the following
1 1 1
gy, 8+gL = 8+YL — a[YL, 8+YL] + g[YL, [YL7 8+YL]] + ... (3114)
4 1 1
qg 0_9 :6_YR - [YL, 8_YR] - §[YR, 6_YR] + §[YL, [YR, 8—YRH (3115)

1 1
+ §[YL, Y7, 0_Yg]] + E[YR’ [Yr,0_Yg]]...

%Y is the lie algebra of g, Y € g.
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and the equations of motion for the left and right currents will be

1 1
0-(9;"02gr) = 02 Vi — 50 [Y1, 0,Yi] + 50 [Yy, V2, 0.Y2) + .. =0 (3.116)

_ 1 1
O:1(0-gr)gr'] = 02_Yr + 5a+[YR, O_Yr] + 5a+[YR, [Yr, O_Yg]]+...=0 (3.1.17)
where g7 /r = e¥r/r and we used equation (3.1.7). We may write similar equations with
tilde (7). Hence transformation matrix 7" (3.1.12) will be
ot

i i i Fi Lo Fi '
Ti =65+ (s — fkj)YLk - i(fkj - fkj)/o Y, 04Yi] do™ (3.1.18)

We impose a solution Y = > _>° | "y, to determine the nonlinear parts of the equations
(3.1.14) and (3.1.15) in terms of ¢, where € is a small parameter. Thus transformation

matrix (3.1.18) becomes

ot

o - R 1 ,
T; :5§+6(f£j—f;ij)y§1+€2(féj—féj)[yﬁr5/ Y1, Osyra]"do™ ]+ O(e%) (3.1.19)
0

and we have the following expressions for (3.1.14) and (3.1.15)

1
910491 = €0, yr1 + €*(04 Y2 — 5[%17 d+y11]) (3.1.20)
1 1 1
+ % (04yrs — §[yL1, 0+yr2] — 5[3/L27 Oryr1] + E[ym, [yr1, Oryri]]) + O(eh)
1
g '0_g=e0_ypi +*(0-yro — Y11, 0-yr1] — =[Yr1, O-Yr1)) (3.1.21)

2

1 1
+ 53(8—,%23 - [yL2> 3—931] - [th a—ym] - 5[95{27 3—931] - 5[95{1, a—ym]

1 1
+ 5[%1, [Yr1, 0_Yyr1]] + é[ym, [yr1,0_yri]]) + H.O(e)
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Therefore first pseudoduality equation (3.1.4) can be split into infinite number of equations,

determined by each order of ¢ as follows,

(1.4) 0497, = 04y1, (3.1.22)
. ~ L. ~ i i 1 i
(L.12) 04910 + S[U11, aerLl]@ = 04 Ype + 5[y, 01ymle
2 2
PR TR I o 1
(1.42) 0475 = 5[5, O+4]g — 582, O+l + ¢1d1, 91, Ot J& = 01u3
1 . 1 . 1
+ §[y1, O yal + §[y2, Oryile — v, 8+y2] — [y, 8+y1] 3 [?/1, [y1, 0y u1le ]
1 1, [
+ 5[3417 [y1, O nlele — 5[/ [y1, 04 nle do'™, 0 / [y1,0441]q do'* ,Ov il
0

where we used subindex GG (G) to represent commutation relations for the sigma model
based on Lie group GG (G’). (1.1) gives y1,1 = yr1 + Cr1, where C; is a constant, and we set
it equal to zero, and leads to (1.i1). Likewise second pseudoduality equation (3.1.5) gives

the following infinite set of equations

(2.0) O_Gy = —0_yhy (3.1.23)
. i 1. - ; 1 ;
(2-“) afyRQ - §[lea afle](; = —(9,sz + i[be G,le]G
(2.4i1) - - -
where we used (2.1) and (1.i) in (2.ii), and (2.i) leads to yr; = —yr1 + Cr1, Cry is a

constant which is set to zero. We notice the fact that (3.1.22) only depends on ¢*, and
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(3.1.23) on ¢~ point out pseudodual conserved currents, which can be written as follows

JHo") =505 =Y " (o) (3.1.24)
n=1

Jio™) = (0-g)57" = > " T (67) (3.1.25)
n=1

where each component is determined by the orders of ¢’s, which are given by expression
(3.1.20) (with tilde). The nonlocal expressions of currents are determined with the help of

(3.1.22) and (3.1.23)

JW(ety = 0,5, = 04y, (3.1.26)
L), o+ _ 1 _ i1 i
JL N 0T) = 049re — é[ym, 04Jr1)a = a+yL2+§[yLla Ovyrilg—yr1, O1yrile (3.1.27)
T (™) = o_gt, = —0_yiy, (3.1.28)
=R[2], _ 1 _ i1 i
JZ07) = 0-re + 5[im, 0-rile = —0-Yre + 5lym, O-yrle + [ym, O-yrile
(3.1.29)

We see that these currents are conserved, 0_ J f = 3+j R — (. It is observed that
pseudodual currents are expressed as a nonlocal function of lie algebra valued fields on g.
As a result we obtained a family of nonlocal conserved currents on the WZW model on G.
This family is a consequence of infinite set of terms of 7" which is a function of lie algebra

valued fields g.
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3.1.1 An Example

We consider sigma models based on Lie groups G = SO(n + 1) and G = SO(n, 1). The

corresponding lie algebra are given by

S

js )

S
IS
|
Q!
I
S
X
S

(3.1.30)

=
I
S
I
N
X
—_

b
son+1) = so(n, 1) =
-t ¢

(e k!
~
™\

@)

I

[}

I

—

X

—

Let g = ¥ and § = €¥, and fields g; '0, g;, and ¢;, 'O, gy, are given by (3.1.14). We

get the following expressions

ar, bL 8+CLL &J)L
YL = 8+YL ==
—th Cyr, —8+th a+CL
Y~ CL~L b~L a YN' 8+a~L a...b;
L=1 _ +1L = -
bLt C~L 8+bLt 6+C~L
. 0 ar,0+br+br0ycr—(04ar)br—(0+br)c
[YL78+YL] - (7th(a+aL)ch(6+th)+(8+bi)aL+(3+C[l)th P 0Jr m o L>
¥ ¥, o 0 (~1L8+EL+BL8+5L7(8+&L)BL7(8+BL)5L
Y2, 04 Y1) = (Bz(mmm<a+i>z>—<a+52>aL—<a+aL>Bz 0 )

Hence up to the second order terms we get the expressions for the fields on the target

space elements

L X1 X, e [X X
g; 0+ = + H.O g 04grL = | _ + H.O (3.1.31)

X3 Xy X3 Xy
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where we defined the following

X1 = 8+aL Xl = 8+&L X4 = a+CL X4 = 8+EL

X2 = 8+bL —_ aLa+bL + bLaJrCL _ 8+a/L)bL - (6+bL)CL

(
2

XQ - an)L — aLa+bL + bLa+cL - §8+aL)bL - (a-‘rbL)CL
)

X — —O. bt —b1,(0sar) — cr(946%) + (010 )ar + (O1cr)by,
3 = —040f — 5

o oo WL(0yan) +E0(040)) — (940 )ar — (94én)b,

Likewise we get the following expressions related to fields ¢g~10_g and §—'0_g using
(3.1.15)

0 ar,0_br+br,0_cr—(0—ar)br,—(0-bgr)c
[Y1,0-Yr] = (_th(a,aR) (OO Vst @ er), 0 L>
0 ar0_br+brO_cr—(0—ar)bp—(0—br)c
[Yr, 0_Yg| = ( B0 an)—en(@ W)L O bant@ el 0 R)
¥ / - 0 &Lafi)R-‘rBL876R—(876~LR)I~7L—(871~?R)5L
[Y1,0-Yg] = <EtL(a_aR)+aL(a_EtR)f(a_EtR)aLf(a_aR)BtL 0 )
/ 7 o 0 EzRa_BR+BR8_ER7(6_&R)537(6_I~)R)ER
Yk, - Y] = (BtR(a,aRHaR(a,E%)_(a,BtR)aR_(a,aR)BtR 0 )
) 7y Zy .4 2
g 0_g= + H.O g o_g=\|_ | +HO (3.1.32)
Zy Ly Zy Ly
= 8,aR Zl = 8,&1% Z4 = 8,CR 24 = 8751{

=0_ bR — (GL + —)8 bR — (bL + b )8 CR -+ (8 CLR)(bL —+ b2 ) (G,bR)(cL + Cg)
6 bR — (aL —|— )8 bR — (bL + i) )8 CR -+ (8 aR)(bL + bQR) + (&ER)(éL + %)



34

bt bt
Zy = —0_bly + (b, + -2)0-an+ (c1 + %R)a,be (b)) (ar + LBy — (0_cr) (B, + 2

2 2
Z—az}t—(éf+gﬁ)a~—~ CRVD B + (0.5 (@ + 2R + (0_ep) (B, i
3 = 0_bp Lt 5 )0-ar (CL+2)—R+(—R)(GL+2)+(—CR)(L+2)

Obviously equations of motion are satisfied. Since we want to reduce constraints on the
conservation laws and bring the nonlinear characters of conserved currents into the open
we let e = > 7 &"e,, where e stands for the matrix components a, b and c. We may
find solutions in the orders of €’s. But we need to find transformation matrix 7' first and

foremost.

Trivial Case: T =1

Let us consider first a trivial solution where transformation matrix is identity. Pseudoduality

equations will be

(91,701 d1)" = (97 0+ g1)" (3.1.33)

(§7'0-9)" = —(g7'0_g)' (3.1.34)

Using (3.1.31) the first equation (3.1.33) leads to

Orary = Oyary Oyary = 0rars
OyCr1 = Oscpn O4Cra = OycCr2
01bry = 04 bia Oyby, = =04,

Obrz = Oy bra + %[Am(&rbm) + Br1(04cp1) — (04ar1)Bry — (04b11)ClLi]
Dyby = —04b1y — §[B(Oyan) + Cra(9:07,) — (946, Ay — (91c01) B
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where we used the solutions of first six equations in the last two lines as follows

ary = a1 + A arg = aps + Ars
¢ =c1+Cn Cro = cr2 + Cro

by, =br+ B b, = —bt, — Bt
L1 L1 L1 L1 L1 L1

bra = brs + %(Ambm + Bricri — apiBri — briCry) + Bro
BtLQ = —blp — %(BtLlaLl + Cri(040%1) — (0+br1) Ay — c1By,y) — Bl

where Api, Ao, Bri, Bra, Cp1 and Cpy are constants. Therefore pseudodual left current

(3.1.31) up to the order of €2 in nonlocal expressions is

o M, M,
itog= " |+HO (3.1.35)
M, M,

where we defined the following symbols for the entries of matrix

M1 = 58+dL1 + 828+C~LL2 = 88+CLL1 —+ 528+aL2

M4 = E@.;.éLl + 528+EL2 = Ea+CL1 —+ €2a+CL2

- - - 1. - - .
My = €0, bry + %[04 bra — §(GL18+5L1 + 01104¢11 — (O1ar1)brr — (04br1)¢r1)]
1
= 58+bL1 —+ 82[8+bL2 — E[am(&rbm) + bL1(8+cL1) — (8+aL1)bL1 — (a+bL1)CL1]]
- - - 1- 3 N . . o
M; = Eaertm + 52[a+thQ - E[thl(a-i-aLl) + CLl(a+th1) - (a+th1)aL1 - (6+CLl)b§:1H

1
= _Ea+thl — &’ [3+th2 - é[thl(&raLl) + CLl(a-i-thl) - <a+thl)aL1 - (a+CL1)thl]]
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Obviously this current is conserved. To find right current we use 2"¢ pseudoduality equa-

tion (3.1.34) and we find the following expressions up to the order of £2

0_ar1 = —0_ar: O_GRry = —0_apgy
0_Cp = —0_cm 0_Cry = —0_cCp2
O_bpi = —0_bpi  O_by = O_bly

O_bra = —0_bpo + (ap1 — A1 + %)(37531) + (br1 — Bri + 28)(0_cp1)

—(0—ap1)(bri — Br1 + 28) — (0_bg1)(cg1 — Cp1 + <82)
8—622 = (9_1)'}%2 - (_le + btRl + B;“)(@—GRQ - (_CLI + Cr1 + %)(8_6}21)

+(3J7§%1>(—AL1 + ap1 + %) + (a*CRl)(_BtLl + bl}%l + _)

where we used the solution of first six equations in the last two equations as

ar1 = —ap1 — Ar1 Qo = —ars — Apo

¢ri = —Ccr1 —Cr1 Cr2= —cr2 — Cho
7 _ 1t 1t t
le - _le - BRI le — le + BRl

where ARy, Ar2, Bri, Cr1 and Cg, are constants. A brief computation yields the following

expression for the right current

T + H.O (3.1.36)
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N, = €0 gy +20_apy = —0_ap, — £20_apy
Ny =0 _¢pi +c20_Cry = —0_cpy — £20_Cpo
Ny = e0_bpy + €2[0_bra + 2(ar10-br1 + bp10-¢r1 — (0-ar1)br1 — (0-br1)er)]
= —€0_bp + €*[~0_bps + (3aps + Ar1 — AL1)(0-br1) + (301 + Bri — Br1)(0-cp1)
—(0—ar1)(2br1 + Bri — Br1) — (0-br1)(3cr1 + Cri — Cr1)]
Ny = €0_byy + 2[0_blyy + §[b%y (0—p1) + Cri(0-blgy) — (0-_byy )1 — (0—Cr1)bly, ]
= £0_blyy + %[0 by — (30 + Bly — B4y)(0-am) — (Bep + Cri — Cra)(9-by,)
+(0- ) (3ar: + Ap — A1) + (0-cr1) (30, + Biy — Biy)

We see that this current is also conserved.

Nontrivial Case: General T

In this case we use the general expression (3.1.19) of transformation matrix T. Pseudod-
uality equations are given by (3.1.4) and (3.1.5), and gave us the equations (3.1.22) and

(3.1.23) which can be written as

Opapy = Opapy  Oibpy = Oybpy  O4bh, = —0,bh, 0.6, = Oypcpy
O_ap = —0_ap O_bg = —0_bgy 9_bb, = 0_bly,  0_ép = —0_cp
Oyars = 0rapy  O0yCpo = 04crs  O0_Gry = —0_apy O_Cre = —0_Cpo
O.b1s = 0 brs — %[Am(mbm) b Bia(0,cn1) — (9sa11)Bry — (8,b11)Cal

~ 1
Dby = —0.b, + §[Bil(a+aLl) + CL1(94b7,) — (04:b7,) ALt — (94c1) B

- A B
O0_bry = —0_bra + (ap1 + %)(3—531) + (bp1 + %)(8_@1)

B
= (O-am)(bs + =) = (0-bmn) (e + =)

7t t t B}:ﬂ Cri ¢
0_bpy = 0_bpy — (bpy + —=)(0-ar1) — (cr1 + ——)(0-bg,)

2
Bri

A
+ (0-)(ars + =) + (0-cp) (b + =)

2
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where we used the solutions of first three lines for the last four expressions. Solutions of

these equations are

ary = ag + A bpy =bp + By by, = bt — BY,
éri=cn+Cn  am = —ag —Am bri = —bri — Br
5331 =0y + By Crmi=—cri—Cr a2 =ar+ AL
Cro=cra+Cra  apr= —arys — Aps  Crz = —Cr2 — Cro

~ 1
bro =br2 + Bra — §[AL1bL1 + Bricri — a1 B — bL1CL1]

~ 1
by = —biy — Bly + Q[Btmam + Caby, — b Ay — e By

where A1, Ar1, Bri, Bri, Cr1, Cri, and By, are constants. We did not find solutions of

brs and 53%2 because of their complicated forms and no need to use them. Hence pseudodual

left current (3.1.24) will be

o ) I
I = §710,5 = €0y g1 + £2{0. 01 — §[yL17 d4yr1lg} + H.O.
M, M,
=1 + H.O.
Ms My

(3.1.37)
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where

Y ~ 2 ~ 2
M1 = €8+CLL1 +e€ 8+aL2 = 86+CLL1 +ée a+(ng

My = €0,y + €20, G0 = €dycpy + 20 ,cr9

- - 1 - - ~ . .
M, = €8+bL1 + 52[8+bL2 - —{GL1(5+bL1) + bLl(a-',-CLl) - (8+CLL1)bL1 - (a+bL1)CL1}]
2

1
=e0ybpy + %[04 brs — §{aL1(a+bL1) +br1(91cr1) — (Orapi)bry — (O4bri)crr}
1 -~ - -

My = €0, b + 2[00, — 5{521(5+5lm) + Era(04bh) — (94bhy)ars — (94é11)bl1}]
bt
= _56+th1 - 52[a+thQ - (% + BtL1)(a+aL1) - (% + CL1)<8+thl)
a bt
+ (&@1)(% + A1) + (3+CL1)(% + Bi,)]

Pseudodual right current (3.1.25) can be constructed as follows

N . 1 -
JP = (0_9)57" = e0_jn1 + £2{0_ijns + 5[931, O-ymlat + H.O.

N; N
" | +HO. (3.1.38)
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where
N1 = 58_631 + 826_632 = —eﬁ_am — 628_CLR2
N4 = 88_631 + 628_6}{2 = —Ea_CRl — 828_(3}32

~ ~ ~ 1. ~ ~ B B ~ ~ B
Ng = 88_631 + 52{8_632 + E[am(ﬁ_bm) + le((‘?_ch) — (8_aRl)le — (8_bR1)ch]}

3 3b
= —£0_bry — e*{0_bgro — ( an + ARr1)(0-br1) — ( ZRI

3[931 3CRl

+ Bm)(é)_cm)

+ (0—am)( 5 T Bri) + (9-br1)( +Cr1)}

Ny = e0_bly, + e2{0_b, + %[égl(a_am) + Cp1 (0-blyy) — (0-blay)am — (0—Cp1)blgy]}
= 0_bigy + {0 by — (%tm + Bly)(0-am) — (30231 + Cha) (0-blyy)
(O P4 4 ) + (0-em) (2 1 Bl

It is apparent that these currents are conserved.

3.2 Cartan Decomposition of Symmetric Spaces

We saw in the above example that symmetric spaces can be decomposed into two pieces,
one piece remains invariant under transformation T though the other piece is transformed in
such a way that it behaves like a new symmetric space. Let 7 be the projection G — M,
sending each g € G to submersion M. We see that M is symmetric space after invariant
parts of GG are eliminated.

Let H be a closed subgroup of a connected Lie group G, and o be an involutive au-
tomorphism of G such that Fy C H C F = Fix(o). Symmetric space M is the coset
space M = G/H. If g is the Lie algebra of G, h is the Lie algebra of H, and m is the Lie
subspace (not the Lie algebra) of M, then g = m & h, where h is closed under brackets

while m is Ad(H )-invariant subspace of g, i.e, Ad,(m) C mforall h € H. If X € g, then
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X = Xj, + X, where X;, € h, and X,, € m. The involutive automorphism do is such
that do(X,) = X and do(X,,) = —X,,. Bracket relations for the symmetric space are
defined by

hyhjCh, [hmjCm, [mmjCh (3.2.1)

The currents JJ(FL) = ¢ '0,g and JE = (0_g)g~' on g can be split into the currents
JE = gD g and JS = (D_g)g~! on m and J,EL) = A, and J}ER) =gA_g 'onh,
where D is the covariant derivative acting on m, and A is the gauge field defined on h.

If one defines indices ¢, j, k, ... for the space elements of g, indices a, b, c, ... for the
space elements of h, and indices «, (3, 7, ... for the space elements of m, then (3.2.1) allows
only structure constants f., fq5, f5,, and fgz. The other structure constants vanish. This

leads to the following equations of motion,

ki =¢'D,g =— D_k,=0 (3.2.2)
k=g 'D.g = Dik_ =k ,A]+[A_ k] (3.2.3)
A, =¢g'Dig = DA =0 (3.2.4)
A =¢g'Dlg = DA =[A A+ [k k] (3.2.5)

where k1 (AL) belongs to m(h), and D(D") is the covariant derivative acting on m(h).
It is natural to write down the Pseudoduality equations (3.1.4) and (3.1.5) in the most
general split form on two spaces m and h as follows
ke = Tgkl + To A At = TeAb + Toks

) ) (3.2.6)
ke = —Tgk” — ToA® A? = —TpAb — Take
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where
k. on m-—space
= (3.2.7)
Ap on h—space
) k_ on m-—space
g 0_g= (3.2.8)
A on h—space
and

T8 T on m-—space
g b (3.2.9)
g 1y on h—space

Apparently 77" and T represent the mixing components of the isometry preserving
map 7'. Before considering this most general pseudoduality relations which lead to mixed
expressions it is worth to analyze pseudoduality equations between pure symmetric spaces

and their counter H-spaces without mixing parts.

3.2.1 Non-Mixing Pseudoduality

We set the mixing components 7;* and T in equation (3.2.6) equal to zero, and consider

the pseudoduality equations on m and h-spaces as follows

kS = £T5K] (3.2.10)

A% = 4T AL (3.2.11)

When we take D_ of (3.2.10), and D" of (3.2.11) (‘+’ equations only) followed by the

equations of motion (3.2.2) and (3.2.4) we obtain the result that both 73 and 7" depend
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only on 0. Now let us take D of ‘—’ equation in (3.2.10), and use (3.2.3) to get

ko, A+ [A k) = —(DyTHK. = Tg Tk, AP = T5[A k)P (32.12)

Since k_ and A_ can be treated independently, this equation can be split into the following

equations

FoukiTe = TG £k (3.2.13)

foAeTY = —DL T + T5 f AL (3.2.14)

First equation (3.2.13) gives us a relation between structure constants, fg‘an T = Tg‘ ffc,

which leads second equation to yield D, 7' = 0. Therefore we conclude that 7" has to

b

be a constant, and we choose it to be identity. Similarly we take D/Jr of ‘=’ equation in

(3.2.11), and use (3.2.5) to get

(A, A+ [k, ky]® = (D, TH A" —TP[A_, ALY — Tok, ky )b (3.2.15)

This equation yields the following results

faskSTY = T fhakS (3.2.16)

feAb TS = D T9 + T¢ f2, A< (3.2.17)

First equation (3.2.16) verifies the result above up to the permutation of indices, fg 5TﬁTﬂ =

T2 f2,. Second equation (3.2.17) produces the following solution

ot
Te = T2(0) + (f9 — }b)/ ASD'¢" + H.O. (3.2.18)
0



44

where we choose 77 (0) to be identity. It is easy to see that these equations yield the

following bracket relations

ey, A]* = —T§[ky, A_)° (3.2.19)
ko, Ay]* = —Tg[k_, A})? (3.2.20)
iy, k] = =T0ky, k_]° (3.2.21)
(A, A ]* = —TP[A,, A"+ (D, T AY (3.2.22)

that verifies the equations of motion on pseudodual space as pointed out above, D+I~CE =
~T¢D,k? and Dy A* = —Tg¢D' A® — (D', T#)A®. We notice that if H and H are the
same for both manifolds, i.e., f;. = Ngg, then 7} reduces to identity, and we recover the flat
space pseudoduality relations on two manifolds. One can easily construct nonlocal field

expressions using above solutions, which are

ky = tky (3.2.23)
O’+

AL =+A, + /0 ([AL(c 1), As(oM) — [Ap(0™), Ar(oT)]z)D'a ™ + H.O.

(3.2.24)

One may readily construct nonlocal expressions of the conserved pseudodual currents by

means of these fields and following the method in section 2 (2).

3.2.2 Mixing Pseudoduality

We now consider mixing of m and h-spaces in pseudodual expressions. Pseudoduality
equations can be written as in (3.2.6). We take J_ of first equation on m-space (3.2.6), and
obtain

(O-T$ K] + (0-T)A% =0 (3.2.25)
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since m and h-spaces are independent, we get 0_Tg = 0T = 0, so Tj§ and T} don’t

depend on o~. Now we take J, of second equation on m-space (3.2.6) and see that

ko, A+ [AL k) = — (04 TR = Tk, AP = TS[A- k)

— (O, TNAY — TO[A_, AL =TTk, ki ]* (3.2.26)

We substitute the expressions for k_ and A_ into this equation, and compare the coefficients

of k_ and A_ to get the following expressions

LTS = [T — Jo(TRT) — TPTHIAY + ([T — Jo (T5TY — TYTOKS (3:227)

0.1y = ([T — fo (T5Ty — TETOIKE + [f8 T — Jo.(T0Ty — TT))IAT (3.2.28)

Since we only need to find currents up to the second order terms, it suffices to find mapping

tensors using only initial values

T¢(ot) =T(0) + (3 — s + FoTY (0)TS(0)) / AL Do (3.2.29)
T (FT2(0) — FRTE0) + FTE(0) / K Do+ + H.O.
T <T3O0) + (S5 + fiy = FBT3OT0) [ KDo™ (3230)

ot

+ (f4T2(0) — f5,T7(0) + fori(0)) / ASD'¢™" + H.O.
0
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where all initial values are chosen to be identity. Therefore pseudodual nonlocal currents

on m can be written as

ot
R =S+ TO0)AL + (HT20) = T30 + F3T3 00 [ kDo
ot

(= o+ AT OT0) [ (AR ) = )AL (oo™
U+
+ (f3T2(0) — fo,T2(0) + fo.17(0)) A% / ASD'¢™" + H.O. (3.2.31)
0
RO = ke TR(O)AY — (FT — FATE(0) + FoTE(0)R /0 K Do’
0-+

+ (f5 + fis — Fa, Ty (0)T5(0)) /0 (AL (e )KL (o) = Ki(o™) A (o))do™

— (f472(0) — fST2(0) + fo.1, (0)) A / ASD'¢" + H.O. (3.2.32)
0

Conservation laws of these currents up to the second order terms are obvious. Now we
consider pseudoduality equations on h-space (3.2.6). We take 0_ of first equation, and we
obtain

(0-T) AL + (0-THk: =0 (3.2.33)

Hence we get 0_T; = 0_T7 = 0, which implies that 7;* and 7} don’t depend on o~.

Taking 0, of second equation we get the following equation

AL AL + [ ] = — (0T A" — TeA, AL — Tofk, b’

(TR Tk, AL — TOAL ] (3.234)
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045 = (Tg foy — FRTlTs — fsTOT))AS + (Tofy — feTiTs — fesTeTy) k)

(3.2.35)

0.1 = (T3 Ry — JINTS = JagTRT)RY + (T fa, — JoTiTs — JagTaT))AS

(3.2.36)

We again want to find solutions up to the second order terms, so we only use initial values

to get

0'+
T(o™) =T5(0) + (f% — [ — FosTo(0)T2(0)) / AD'o™
0—+

L (TH0) £ — FATL0) — FiTE(0)) / K\Do'* + H.O.

ot

To(ot) =T2(0) + (f5, — 2 — FETUO0)TE(0)) / kDot

L (TO(0) 8, — FATE(0) — Fo,T5(0)) / AU D" 1 HO.
0

Thus pseudodual fields up to the second order terms on H space will be

0'+
A% = AT+ TR + (f% — % — T (0)T5(0)) A / ASD o
O'+

+ (T2(0) fg = JoaTR(0) = f35T7(0)) /0 (K} (™)AL (o) — AL )KL (o

ot

+(fL = FL = FeT(0)TE(0)) kY, / kYDo't + H.O.
0

(3.2.37)

(3.2.38)

))do'

(3.2.39)
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A = A" THOR — (f%— f% — FTo(0)TH(0)) A / T oAD'
0
— (T2(0) £y — fET2(0) — fi,T5(0)) / (KX (o)A (07) — AL (o) kA (01))do'™
— (f5, = f, — feT2(0)TE(0)k” / ’ Ky Do + H.O. (3.2.40)
0

It is obvious that conservation laws (3.2.4) and (3.2.5) up to the second order terms are

satisfied
D_ A% =0 (3.2.41)
DyAY = —[A ALJE — [k kil — [T(0)A-, T(0) AL — [A-, T(0)k, ]

— [T(0)k_, A4]& — [T(0)A_, ki % — [k-, T(0) AL

— [T(0)k—, T(0)ky]% + H.O. (3.2.42)

3.2.3 Dual Symmetric Spaces and Further Constraints

It is well-known [2, 19] that two normal symmetric spaces are dual symmetric spaces if
there exist

1. a Lie algebra isomorphism S : h — h such that Q(SV, SW) = —Q(V, W) for all
V,W € h, and () is inner product.

2. alinear isometry 7" : m — m such that [TX, TY] = —S[X, Y] forall X, Y € m.

Item (1) tells us that brackets in h and h are the same while item (2) tells us that inner
products in m and m are the same. Item (1) yields the result f¢ = f¢ for non-mixing

pseudoduality, which leads ;" to be a constant. Hence pseudoduality transformations will
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simply be

kS = +kS (3.2.43)

At = x40 (3.2.44)

with the bracket relations (3.2.19)-(3.2.22) given by

ey, A ] = —[k, A_]® (3.2.45)
ko, AL = —[k_, Ay]° (3.2.46)
hy, k] = —[ky, k_]° (3.2.47)
(A, A" = —[A;, A (3.2.48)

On the other hand one can write the following bracket relations between pseudodual

target spaces for the mixing pseudoduality case

ko, A + [Al kg = — T [k-, AL)P — TS[A- k)P (3.2.49)
—TA AL =TT k-, kg )
A A+ [k by ) = —TPA_, A — TPk kL] (3.2.50)

~ Tk AL - TEA R

which in turn leads to relations of connection two-forms between symmetric and corre-
sponding H-spaces, which is consistent with the result found in section 5 (5). These equa-

tions produce that all components of the pseudoduality map 7" must be constant, and we
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choose them to be identity. Hence pseudoduality equations will simply be

kS = +k§ £ T2(0)AL (3.2.51)

AL = +A% £ T2(0)kS (3.2.52)

3.2.4 An Example

We consider the Lie groups we used in the previous section. We saw that invariant subspace

of SO(n+1)is 1 x SO(n). We pick H space as SO(n). Hence our symmetric space is

M = SO+

SO0 The Lie algebra g = so(n + 1) can be written as

a=1x1
a b
so(n+1) = b=1xn (3.2.53)
-b ¢
c=nxn
which can be split as
a b a 0 0 b
_ + g=hodm (3.2.54)
-b ¢ 0 ¢ -t 0

LetY € g, X € h,and Z € m. Then, D'Z =0and DX = 0. Using the expansions
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(3.1.14) and (3.1.15), we may write the following expressions

ki:Dﬁﬁ—%MLnga—%wbDL&P+HO. (3.2.55)

Aj::D;Xf——%M@,D;Xiﬁ——%pQ,D+Zﬂ“+f£O. (3.2.56)

kf::D_Zg—[XDLLZﬂ“—{ZbLLXhP——%M@PD_ZQQ (3.2.57)
—%mefXﬂa+HI)

Ai=:DLX$——M@%DLXQ“—[ZDLLZEP——%D@rDLXﬂ“ (3.2.58)
—%meé%P+HO.

We describe solutions X = > > "z, and Z = )~ €"z,, where ¢ is a small parameter.
It is clear that equations of motion (3.2.2)-(3.2.5) for all orders of ¢ are satisfied. In the

following calculations we are going to use expressions up to the order of 2 for simplicity.

Now we consider dual symmetric space M = SSOO(&?, where H = SO(n). Lie algebra

g = so(n, 1) is written as

) a=1x1
a b .
so(n,1) =1 _ b=1xn (3.2.59)
bto¢
c=nxXn
which is split as
a b a 0 0 b o
= + | g=hdm (3.2.60)
b ¢ 0 ¢ bt 0

LetY = X +Z,where Y € g, X € h, and Z € m. We get the same fields as equations
(3.2.55)-(3.2.58) with tilde. Equations of motion will be the same with tilde. We may now

find pseudodual fields using our expressions found above. We note that because of the



52

special form of our Lie groups, mixing components of the map 7" vanishes, and we simply
get non-mixing pseudoduality condition.
We insert our expressions into equations (3.2.43) and (3.2.44) to get infinitely many

pseudoduality relations. Up to the order of €2 terms equation (3.2.43) will be

D, 5%, = D, 2%, D_3% = —D_z%, (3.2.61)
N so 1 ~ N =~ o = N~ o a «a 4 a
D, zr, — §[$L1, D+ZL1] - §[ZL1, D+5UL1] = Dyz27y — §[$L1> D+ZL1] - §[ZL17 D+9€L1]
N o ~ N . 1o z N & o 1 Nn . o L. N & o
D—ZRQ - [lea D—ZRl] - [ZLla D_l“m] - 5[5101%1, D—ZRl] - 5[21%17 D_CERl] =

/ 1 1 /
— D_z% + w1, D_zm|® + 2101, D_xm|* + Q[th D_zpm|* + 5[231, D_zp]”

and equation (3.2.44) will be

D\ %, = D, 1%, D #% = —-D" 2%, (3.2.62)

~ ~ /

~a - e L = " 1 / o 1 a
D+$L2—§[$L1,D+9EL1] —§[ZL1,D+ZL1} =D+3CL2—§[$L1,D+$L1] _§[ZL1>D+ZL1]

~/ ~a ~ ~/ a ~ -~ ~ a 1 ~ ~/ a 1 ~ ~ ~ a
D_fBRQ - [$L1,D_IL’R1] - [ZleDfZRl] - 5[ RlaD_-TRl] - §[ZR17D72R1] =

/ / 1 / 1
— D_x% + [v1, D_xm|* + 211, D_zm|* + §[$R1a D_zp "+ 5[2’}217 D_zm]*
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Since we know

0 Db, , D.a, 0
Diz, = * D,x, = *
—Dib, 0 0 Diyc,
, a1, D\ a 0
o, D] = [ar, Da4]
0 [c1, Dicy]
(D1b1)b] — by (D7) 0
[217 Dizﬂ =
0 (D2by)by — by (Dsby)
0 alDibl - (Dibl)cl
[thizl] =
—C (Dibﬁ) + (Dibﬁ)al 0
, 0 biD,ci — (D\iay)b
[217Dix1] _ / / 1101 ( + 1) 1
—bﬁ(Dial) + (Dicl)bﬁ 0

One can write similar expressions on the pseudodual space replacing each term with tilded
terms. Only exception is that we switch b, with —l;; so that we get the convenient lie
algebra on tilded space. Therefore pseudoduality equations above (3.2.61) and (3.2.62)

will give the following expressions

D+Z~)L1 = D+bL1 D+EtLl - —D+b21

D bgy = —D_bg D_ by =D by
ﬁ;&m = D;_aLl D;ém = D;_cLl

~ /

- / ~ 7 /
D ary — —D_(ZRl D_CRl = —D_CRl



J 1. -
D. by = Dibry + 5{(%1 —ar1)Dybry — Db (61 —cr1)}

1 ~ ’ ’ fod
+ 5{(bL1 — bLl)D+CL1 - D+aL1(bL1 - bLl)}

. L. >
Dybl,=—Dyb, — 5{(CL1 — 1) Dby — Dby, (G — ar)}

1 - , , -
+ 5{(th1 + th1)D+aL1 - D+cLl(thl + th1)}

D ags = D,ap + 5[(51111 —ap), D ap]

1 . 5
- §{D+bL1(th1 +071) — (bpy — bra) Dby, }

D;éLQ = D:,_CLQ + 5[(5L1 —cr1), D;_CLl]

1 ~ -
= 5{DsbLa(bea = ) = (011 + 02)) Dibia}

~ B 1 B
D_bgy = =D_bpz + {(ar1 — ar1) + §<CLR1 —ap1)}D b
_ 1 .
— D_bpi{(cr1 — ¢r1) + §(CR1 — Cr1)}
_ 1 B )
+ {(bz1 — br1) + 5(5}21 —br1)}D_cp

, - -
— D_ap{(br1 —br1) + é(bm —br1)}

54
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-~ ~ 1 B
Dby = Dby = {(ez = 1) + 5(ern — Era) } Dby

. 1 N

+ Dby {(ar — an) + 5(611%1 —ar1)}
~ 1 - ,

- {(thl + thl) + §(b§%1 + bgﬂ)}D—am

’ 7 1 7
+ D_cp{(b}, +bp,) + 5(173%1 + br1)}

~ 7 ’ - 1 - ’
D_agry = —D_ags + [(ap1 — ar1) + 5(6131 —ap1), D_ap]

- 1 ~
+ D—le{(thl + thl) + 5(17321 + bfm)}

8 1 5
—{(br1 — br1) + §(bR1 — br1)}D_bg,

~ ’ - 1 - /
D_épy = —D_cpz + [(cra = ¢p1) + 5(em — m), D_cmi]
. 1 .
+ D—bsﬂ{(bLl - bLl) + E(le + le)}

. 1 _
- {(bzl + thl) + 5(173%1 + bi%l)}D—le

where tilded terms on the right hand sides can be replaced by solving corresponding equa-

tions. One can obtain the conserved nonlocal currents using these terms.

3.3 Curvatures

3.3.1 CaselI: Curvatureson gand g

Let us find the curvatures related to symmetric spaces, and see the relations between dual
symmetric parts. We first consider the case where H = id. We may choose orthonormal

frame {.J} on the pullback bundle ¢*(7'G), where .J stands for both .J(9 and J(). These
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where w’ = J" and wj, = 3 f.J7 is the antisymmetric riemannian connection. Curvature

can be found using torsion free Cartan structural equations

dw' + wi A’ =0 (3.32)
i Lo
duw + wi Awf = 2 Rjpu® Aw (3.3.3)
Substituting w’ = J and w} = %fi.J" into first equation gives us the Maurer-Cartan

equation (3.3.1). Curvature tensor associated with g can be found using second equation

(3.3.3),

where we used jacobi identity in the last equation, f,i[m fffﬂ = 0. We may find similar
relations for pseudodual space with tilde (just put ~on each term). To relate curvature tensor
on pseudodual space with regular space, we use nonlocal expressions (3.1.26)-(3.1.29).
Since both currents yield the same result, we just use (3.1.26) and (3.1.27) for the final

expression. We may write .J* in nonlocal terms as
Fi i i I g
J' = edy! + 2[dy} + 5 i A dyy — fieyi A dyt] + H.O. (3.3.5)

Hence @' = J*, and w}, can be written as

~1 1 rioTd
wk.:§ ijj
o 9

£ j g? i j L. m n £ .m n
o fidyt + 5 Fieldys + 5 fntt" A Ay — frnyt A dyp] + H.O. (3.3.6)
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We plug @' and W}, into the second Cartan structural equation on pseudodual space in the
form

~i ~3 ~ 1 i~ ~
Al + W, A WF = §Rjklwk A @' (3.3.7)

to obtain the curvature expression

Pi Lz i F Y
Since by definition [}, (3.3.4)can also be written as
i Lz g

we get a relation between structure constants on spaces g and g
1 1 =
§fkjf:m = §fk,‘]frlfln (3.3.10)

where we used the jacobi identity f/ﬁ[n ffm] = 0. Though we do not set f* equal to f*  we
may treat them on equal footing, and use one for another interchangeably in paired terms.
Hence R! (3.3.8) can be written in nonlocal structure constants as

gmn

jmn Jmn

~ . 1 . )
Rjn = =5 in b =—R} (3.3.11)

where we used f,i[ i fﬁm} = () after setting tilde terms with nontilde terms. We note that we
obtained pseudodual space curvature as the negative regular space curvature. This shows

that spaces are dual symmetric spaces as we expressed above.
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3.3.2 Case II: Curvatures on Decomposed Spaces

Let us decompose the current as J = J“t, + J%t,, where we use indices «, 3,7, ... for m
space and indices a, b, c, ... for h space, and ¢,, and ¢, are corresponding generators. We can

write the commutation relations as

tasts) = fote  [tarts] = fo5ta  [tarts] = foste (3.3.12)
Maurer-Cartan equation (3.3.1) can be decomposed as

1 1
dJ* + §fb“CJb NI+ S fag I A J? =0 onh— space (3.3.13)

dJ* + fgaJﬁ ANJ*=0 on m — space (3.3.14)

We can also decompose Cartan structural equations. Decomposition of first structural equa-

tion gives us

dw® + wi A’ +w Aw* =0 onh — space (3.3.15)

dw® +wg A w? + wy ANw® =0 on m — space (3.3.16)

comparison of these equations with the Maurer-Cartan equations (3.3.13)-(3.3.14) gives us

the following connections

1 1
w=J* w'= 3 wJb wh = 3 oA (3.3.17)
« « a 1 a Ta « 1 a 718
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Decomposition of second Cartan structural equation leads to the following equations

1 1
dwi + ws A wi + w§ A wp =5 Rheaw” A w? + 5 Boeat” A w* (3.3.19)
1, .1
—l—éRbAcw’\/\w +§
dw? + w® Awt, +wi Aw) = Rabcw A we + Rabﬁw A wP (3.3.20)

a A “w
Ry, w* Aw

+ = R w? A wb +
o abb 2

dwg +wi Awj +wg A wjg = Rﬂabw Aw® + Rﬁavw A w? (3.3.21)

"
Ra)\uw A w

+ 2Rﬁwuﬂ/\w + 2Rm“w A w

1
dwy + w3 A w, + wy A w? =3 o wh Awe + Rab)\w A w? (3.3.22)
+ _Ra)\bw /\ w +

5 Ra/\uw A wh

2

Inserting (3.3.17) and (3.3.18) into (3.3.19) gives the following curvature components

Rpge = (fdc b — fanfie) = 5 fetia (3.3.23)
gaﬁ = §(fgxfﬁb ob ozﬂ) fwfba (3.3.24)
ber = By =0 (3.3.25)

where we used the jacobi identity f [dfbe] 0in (3.3.23), and f/‘\laf,;\ﬂ + faoSfa T f/\ﬂf , 1N

(3.3.24). Likewise (3.3.20) gives the following curvature components

1 1
oA = 2( cd )\a fﬁaf ,\) = §f§)\f£c (3.3.26)
a B8 1 a rb
e = (f)\ﬂfa - fﬁaf,\c) = §fbc po (3.3.27)
Rpe = Rop =0 (3.3.28)
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where we used the jacobi identity f.f2, + fgaffc + fg/\ffa = 01n (3.3.26), and fEAfffc +
Sbal, fA + f2 f2, = 01in (3.3.27). Equation (3.3.21) produces the following curvature com-

ponents

oY 1 « a fa 1 «
Bbe = §(fb'y gg - aﬁfbc) = 5 chgb (3.3.29)
a 1 a ra a fa 1 a ra
Rﬁ)\p, - i(f)\af,uﬁ - faﬂfz\u) - Efaufﬂ)\ (3330)
RS, = R%, =0 (3.331)

where we used the jacobi identity % f3. + fo5fa + fo.fys = 01in (3.3.29), and f) f§, +
asfix T Jauf5s = 0in (3.3.30). Finally, equation (3.3.22) gives the following curvature

components

P o 1.,

oo = S (Ff = F5uli) = SIS (3332)
1 1

e = 5 (Flea = foufie) = 515505 (3.3.33)

Rope = Hgp, =0 (3.3.34)

where we used the jacobi identity fgcff/\ + fgaffc + fafe = 0in (3.3.32), and f3 f2. +
f5a ffA + fbe ffa = 01in (3.3.33). Obviously we can write similar equations with tilde.

We want to write down curvature relations between symmetric spaces (m and m) and
corresponding closed spaces (h and h) on g and g. To realize this objective we will use the
bracket relations derived from pseudoduality equations. In case of non-mixing pseudodu-

ality, we will make use of bracket relation (3.2.45)-(3.2.48). After eliminating A_ and k_
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terms we obtain the following relations between connection one forms

T =wd WG = w (3.3.35)
T =wl af = wf (3.3.36)

where we used the definitions (3.3.17) and (3.3.18) for the connection two forms. Taking

exterior derivative of these connections we obtain the result

—égcz) = _RgCD (3.3.37)

where A, B, C' and D represent indices corresponding to M or H-space elements depend-
ing on which equation is used. But curvature expressions found above restrict all curvature
components to exist. Therefore we will only have curvatures whose all indices belongs to
one space (m or h) or being shared equally, otherwise they do not exist. On the other hand
when we consider mixing pseudoduality, we observe that curvature components mix. From

the connection two-forms we obtain the relations

WG+ weTE(0) = wf + T2 (0)wh (3.3.38)
STy (0) + wf = T2(0)wy + wy (3.3.39)
Wi+ W4Ty (0) = wi + T5(0)wy (3.3.40)
W TH(0) + o = TH0)w] + w (3.3.41)

It is clear that once mixing isometries disappear we have (3.3.35) and (3.3.36). Therefore
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curvature relations will be

Ritey = —(Ripe, + Rty THO) + Rip,,, TH(0) + Ry, T(0)T2(0)) (3.3.44)
where we defined R, = RS, + T2(0)RS,, and RS, = RS, + B3, T%(0), and A, B

represent indices for m or h-spaces. Obviously if all mixing parts are set to zero we obtain

the simplest case (3.3.37).

3.4 One Loop Renormalization Group S-function

It is noted that renormalization group S-function to one-loop order [8, 34, 35] is given by

Brn = (34.1)

where R,,,, is Ricci curvature of connections w; On g it is written as

1 k prn
Bij = 1o nili (3.4.2)

On decomposed spaces h and m one loop S-functions will be

1
Bar = 7~ ([T + Finfic) (343)

1
Bay = - (5 faa + fonfis) (3.44)
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It is readily observed that R,, = R., = 0. On pseudodual spaces one can write the

following relations

Bii=—Bij  Bab=—DPa Bary = —Par (3.4.5)

if there is a non-mixing pseudoduality. On the other hand if there is a mixing pseudoduality

we have

ﬂab = _Bab - BaVTbV(O) - BubT;(()) - B#VTéL(O)TbV(O) (346)

B,uu = _B;w - BduTi(()) - BﬂdTg(O) - BabT;?(O)TS(O) (347)

where we defined Bl’b = o= {RVMb <O) +R50ch( >}’ Bau - QW{RGIJ«V c (O) +R50VT/S(O)}
B = QW{Rd/\u 20)+R),,T5(0)} and 5ud = 217r{RMd (0)+led (0)} on the contrary
to (3.4.1). We notice that if all mixing isometries vanish, then we get (3.4.5). We notice

that we will also obtain additional mixing components of 5-function, but we avoid to obtain

them.

3.5 Discussion

In this section we were able to obtain infinite number of pseudoduality equations by switch-
ing from Lie group expressions to lie algebra expressions. We observed that pseudoduality
transformation respects the conservation law of currents. To understand what currents im-

ply for let us write pseudoduality equations as

B = g

JH = —rg®
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where JiL) = g~ '0.g. First equation implies that 7" is a function of o+ as above. Second
equation is interesting and gives the information about currents. If we take 0, of second

equation we obtain that

[9710-3,G'0-glg = —(0:T)(g™'0-9) = Tlg™'0-9,9 ' ds9la

We notice that g~ '0..g € g, and if we use the definition adg(X)(Y) = [X, Y] this equa-

tion can be written as

adg(JE)(JP) = (0, 7)Y + Tady(J{) (7))
If the second pseudoduality equation is inserted then one gets
—adg(J{)T = Tady(J) = (9, T)

It is obvious that this is the lie algebra version of the AdG' x AdG action on T. adg(JJ(rL)) is
the orthogonal flat connection on ¢*7T'G as defined in section (3.3). One may find curvature
relations using these connections as above. Thus another interpretation of pseudoduality
is that since JELL) depends only on o™, so does 7. Hence if we define a parallel transport

P(o) from (0, 0) to 0 = (0", 07), pseudoduality equations may be written as

x5 (P(0)) ™ (97 dg) = T(0)(P(0)~"g~"dg)

where T'(0) = P(0)T(0)P~*(c). This means that we start with g~'dg, and parallel trans-
port it to origin, and do the same on the dual model. We finally use the fixed isometry 7'(0)

to equate these two fields at the origins.



Chapter 4

Pseudoduality In Supersymmetric
Sigma Models

This model consists of both bosons and fermions, and they are transformed into each other
by supersymmetry transformation. It improves the short distance behaviour of quantum
theories and gives a beautiful solution to the hierarchy problem. Supersymmetric sigma
models have a rich geometrical structure. It has been shown that target space of N = 1
sigma models is a (pseudo-)Riemannian manifold, N = 2 is the Kihler manifold and
N = 4 is the hyper-Kihler manifold. Sigma models based on manifolds with torsion [40]
have chiral supersymmetry in which the number of left handed supersymmetries differs
from the number of right handed supersymmetries. In [7], pseudoduality in classical sigma
models was extensively discussed, and in this section we are going to analyze pseudodual-
ity transformation of supersymmetric extension of classical sigma models. We will focus
on (1,0) and (1, 1) real supersymmetric sigma models in two dimensions, and find the re-
quired conditions which supersymmetry constrains the target space and following results
for pseudoduality. We will refer to references [8, 36, 37, 38, 39] about supersymmetry and
superspace constructions.

+

We use the superspace coordinates (o=, %), where the bosonic coordinates o+ = 740

are the usual lightcone coordinates in two-dimensional Minkowski space, and the fermionic

65
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coordinates §= are the Grassmann numbers. The supercovariant derivatives are

Dy = Opr +i6F0, (4.0.1)
and the supercharges generating supersymmetry are

Qi = g — 0704 (4.0.2)

and it follows that

Q% =—i0r D2 =i0.. (4.0.3)

and all other anticommutations vanish. The scalar superfields in components have the form
X(0,0) =xz(0) + 0" (o) +0 2 _(0) + 070" F(0) (4.0.4)

where x : X — M, 1. are the two dimensional Majorana spinor fields, and F' is the

auxiliary real scalar field.

4.1 Pseudoduality in Heterotic Sigma Models

This model [8, 40, 41, 42, 43, 44] is enlarging the spacetime X in the classical case to the
superspace =¥ by adding a Grassmann degree of freedom. Hence the sigma model is the
map consisting of a scalar z and a fermion 1), . This case has one left-handed supercharge
(), and does not contain any right-handed supercharge ¢)_. The supersymmetry algebra

will be
{Q+,Q+} =2iPy



67

where {, }denotes anticommutation, and P, = —0, as can be checked from (4.0.3). The

supersymmetry transformations generated by (), will be

dex(0) = e_1(0)

Ocpy (o) = ie_0rx(0)

Hence the fermion v, can be thought of as the superpartner of the boson x. In what fol-
lows we will examine pseudoduality transformations between supermanifolds M ! and M
using components first, and then probe how it behaves when lifted to orthonormal coframe
bundles SO(M) 2 and SO(M). We again emphasize that pseudoduality is defined between
superspaces z which are the pullbacks of the manifols M and M in case of components, and
SO(M) and SO(M) in case of orthonormal coframe method. This is implicitly intended in

our calculations.

4.1.1 Components

In this case the superfield X has the form

X =xz(0) + 0%, (o) (4.1.1)

where X : 0 — M, and Z° = (07,07,60T). The real grassmann coordinate 07 is
anticommuting and (07)* = 0. We will assume that target space has torsion H, which
is introduced into the action by a Wess-Zumino term. Reparametrization invariant action

defined on a Riemannian manifold Ml with metric G;, standard connection I, and anti-

M is the target space in which supersymmetric sigma models is defined.
2SO(M) = M x SO(n).
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symmetric two-form B;; can be written as
S = / d*0df(Gy; + Bij) D4 X'0_X7 (4.1.2)

We may write similar expressions for manifold M using expressions with tilde. Since
we want to write down pseudoduality transformations between two manifolds, we need
to find out the equations of motions from action (4.1.2). If we write this action in terms
of bosonic coordinates of superspace only, we obtain our original classical action plus
fermionic terms. After expanding Gi;; and B;; in the first order terms and integrating this

action under df gives the following
S = /dza[z(g,] + bij)a_,_l"i@_QTj — glﬂ,[]:_v(,_)wi] (413)

where Vgl = Vo) — HI k0 2t and V ol = 9 ¢ + Tk o 2!, and Hyj =

%(aibjk + 0;bi; + Okbi;). Equations of motion following from the action (4.1.3) are

vyl =0 (4.1.4)
Oa* = iR} . 0_a! (4.1.5)

where (z¥ = ng) O_ak + V(:)8+:Jck , and the generalized curvature is defined as
Rijj = Rijii — DyHy; + DiHyjp + HiwnHj; — Hjpn Hy; (4.1.6)

We can write the Pseudoduality transformations as follows

DX’ =+T'D, X’ (4.1.7)

O_X'=-T/0_X' (4.1.8)
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where 7T is the transformation matrix, and is a function of superfield X. Since superfield
depends on o and 6%, we may say that 7 is a function of o and 6. We let T (0,0) =
T(o) + 6T N(o). Splitting pseudoduality equations into the fermionic and bosonic parts

leads to the following set of equations

VY (0) = +T; ()¢ (o) (4.1.9)
04l (0) = =T}(0)0-¢, () = Nj(0)d-a7 (o) (4.1.10)
043 (0) = +T}(0)d427 (o) — iN} (o), (o) (4.1.11)
0_3'(0) = =T} (0)0-2'(0) (4.1.12)

We see that the component 7' is responsible for the classical transformation which does
not change the type of field, while NV contributes to the fermionic degree of transformation
which transforms bosonic fields to fermionic ones, and vice versa. Before finding pseu-
dodual expressions it is worth to obtain constraint relations. We take 0_ of (4.1.9) and set

equal to (4.1.10), and then use the equation of motion (4.1.4) to obtain
Ny = —[M}, + 2T;(Hljk - ng)]wi (4.1.13)

where we define 9,7} = M;,. Now taking 0, of (4.1.12) and setting equal to 9_ of (4.1.11)

followed by using equations of motion (4.1.4) and (4.1.5) yields

= iNL(HF, — T8 YTo_a™ +i(0_Nj)y¥ (4.1.14)
where M, (imn) represents the symmetric part of M? . Real part of this equation gives

Ti(Hy = D) + 2M{ ) = 0 (4.1.15)
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which implies that

HF =0, (4.1.16)
My = TiTh, (4.1.17)

Substituting these results into (4.1.13) leads to
Ni = M, 07 (4.1.18)

Complex part of (4.1.14) together with (4.1.16), (4.1.17) and (4.1.18) gives the follow-
ing equation

njm

On M5 = TR, + 2Mj T, (4.1.19)

where M, [’m i denotes the antisymmetric part of M}nj Solution of this equation gives the

result for 7.

Riemann Normal Coordinates

Before we attempt to find the general (global) solution for the equation (4.1.19), it is in-
teresting to find the special solution where Riemann Normal coordinates [45, 46, 47] are
used in both models. In these coordinates solution is expanded around a point (call this
point as p on M, and p on M) which Christoffel’s symbols vanish. Curvature tensor R is

the curvature of the point p, and constant. (4.1.17) implies that M ;m = —M! ., and hence,

mj°
equation (4.1.19) is reduced to

0. M), = T, R}

njm
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After integration we get

My, =M, (0)+ / TiRF. da™

njm
and since T}, = T}, (0) + [ M} ;dz’, we finally obtain
T, = T:(0) + M. (0)7 + TL(0)RE, . / a"da? + M (0)RY,, / da? / 2'dz" 4+ H.O.

and
M, = M} (0) + Ti(0)RE ™ 4+ My (0) Ry /xldx” + H.O.

njm njm

and also using (4.1.18) we find
Ni = My, (097 +T;(0)Rﬁlmk T+ M;l(O)RﬂmkwT/xldw” + H.O.

We choose the initial condition 7" (0) = 4. Hence Pseudoduality relations (4.1.9) -

(4.1.12) up to the second order in x can be written as

U=l 4+ My (0) b + R / z"de® 4+ H.O. (4.1.20)

O_i = =M, (0)o_a’) — Rl 4Ta"0_a’ + H.O. (4.1.21)
043" = 02’ + My (0)2*0, 27 — i, (0) 0T, — iRL, AT, a”

+ R}y;04a” / a"da® — iMj (0)RE, T, / z'da™ + H.O. (4.1.22)

0% = —0_a" — M4 (0)z"*0_2" — R, ,0_a /x”dxl + H.O. (4.1.23)

Using the equation of motion (4.1.4) for tilde, i.e. _1)% = ﬁj WWL0_7*, and combining
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with (4.1.20) and (4.1.23) we find

5_@1 H _T(‘?_x] ]—ilfnkan(O) " al — Hk,]Mk (0)yT2"0_x! + H.O.
(4.1.24)

A comparison of equation (4.1.21) with equation (4.1.24) gives

H,. =M. (0) (4.1.25)
R, = M}, (0)MF (0) + M;,(0) M, (0) (4.1.26)

Now we see that equation (4.1.5) with tilde is written as 95 _%" = H WOLTI0_ T + Rz Ll +wiﬂ,

Inserting (4.1.20), (4.1.22) and (4.1.23) into this equation gives
02 = —H'0, 090 2k +iHi, MJ, (0)47 T ot ﬁz;kl@bwga_xﬂ‘ YHO. (4.1.27)
Likewise we can write a relation for 97 _Z' using (4.1.22) or (4.1.23) as
&7 _& = —M;;(0)0;270_a* — %R;kl¢ﬁwia_xj + H.O. (4.1.28)
A simple comparison of (4.1.27) with (4.1.28) gives the following

H]’k Mkj(O) (4.1.29)

—Ri, = —R;lkl +2H. H], (4.1.30)

We notice that (4.1.25) is the same as (4.1.29), and R ikt 2H! H,?l = R;kl. There-
fore we obtain R}kl = R;kl We see that curvatures of the points p and p are constant
and same. This implies that pseudoduality between two models based on Riemann nor-

mal coordinates must have same curvatures. We see from (4.1.25) and (4.1.26) that this
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transformation works in one way, and is not invertible in this special solution.

General Solution

Now we find the global solution to equation (4.1.19). We know that we can write M ,ij as

the sum of symmetric and antisymmetric parts as follows

i 1 i i 1 i i
Mkj = §(ng - Mjk:) + Q(Mk;] + Mjkz)

Inserting antisymmetric part of this matrix into (4.1.19), and using the result (4.1.17) gives

M =TiRE, + 2M; Tk — 21T, Tk

njm j- mn kjt mn
If this equation is integrated, the result will be
M, =M, (0) + 2M;;(0) / L) da™ 4 4M;;(0) / Ik da" / It dx®
+ / Ti(RY,,, — 20T )da™ + H.O.
and using T}, = T;.,(0) + [ M ;dz? we find T up to the third order terms as follows
Ty, =T7,(0) + M}, (0)z7 + 2M;;(0) / da’ / It da”
+ 4M;,(0) / da? / Ik dz" / I, dz® + TE(0) / da? / (RE,, — 20T, ) da”

+ M;,(0) / da’ / (RF.—2DETL Yabda™ + H.O.

njm lj&- mn



which immediately leads to a final result for anj

My = M;}:(0) + 2M;;(0) / I dz™ 4+ 4M;(0) / Ik dz" / I, dx®
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+ T}(0) / (RY,, — 2T5 T da™ + M, (0) / (RE,,, — 20T )adz™ + H.O.

One may find torsion and curvature relations using these explicit solutions as in the previous

section. Let us inquire solutions by expressing equations (4.1.9) - (4.1.12) in terms of T’

instead of finding explicit solutions.

If (4.1.17) is inserted in the pseudoduality equations (4.1.9)-(4.1.12) we get

o = +Tj
D% = ~T30 — Moo
043" = +T}0.a7 — iM}, W,

07" = —Tj&xj
Using equations of motion for 0_ 151 and 0_ wi in (4.1.32), one finds
(Hyp, = Do) 0L 0-3" = TjT3, 002" — My, 102"
and inserting (4.1.31) and (4.1.34) into (4.1.35) leads to the following result
(}y, — Dl VTP = M, — TITY,

Now taking 0_ of (4.1.33) (or 0, of 4.1.34) leads to

(4.1.31)
(4.1.32)
(4.1.33)

(4.1.34)

(4.1.35)

(4.1.36)

071" = M0.a7 0_a*+Ti0% _a7—i0, M}, W7 0_a™ —i M., O_ T —i M, T O 4,
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We use the equation of motion for 95 7", 95 _x7 and 0_1""", and use the result (4.1.19) to

get

(B, — T,)0, 503" + %é;kmzzﬁzzfa,ng — (M}, — TIT3, )0,a™d 2" (4.1.37)

- §Tg Rinnk¢+wia_x
now using (4.1.31), (4.1.33) and (4.1.34) in (4.1.37) leads to

— (Hjj, = Ty) T Ti0 2™ 0o + i(Hjy — Ty MY, Ttk 0™
(=Y cra | n m ) Al m n v i 17 n m
- éRabchTkquﬂA—wf—afx - (an - T‘]l—‘fnn)aJra: 0_z" — 51;Rirmkw+w§-af$

which can be split into the following equations

(Hjy, = D) T3, T3 = =My, + TiT0,, = My (4.1.38)
| 1z2. ~ . ~ . )
57_;R371nk = §szbcT1ll)TlgTr?1 - (H]Zl - F;l)M[J]m}T#L (4139)

we see that (4.1.36) and (4.1.38) are the same equations (by means of equation (4.1.17)).
It is evident that right hand side of equation (4.1.38) is equal to the antisymmetric part of
Mi

nm?

and therefore, f; x = 0. Equation (4.1.39) can be written as

1
2

. 1 2. ~
T;R! —(Rly. — 2H Hy ) TVTSTS, (4.1.40)

mnk abc

[\

where we used (4.1.38). H can be figured out by (4.1.38) using the initial values of 7" and

M, hence it is easy to see that H:, = M inm) (0). Therefore, we can write Rl —2H! H] =

abc

R!,., which leads to R’ . = R’ . by equation (4.1.40). This means that curvatures will
be related to each other by the relation R., , = fifmk around the point p on M where the

transformation is identity, and R? . is the curvature at point f. In this case all the points on
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manifold M will be mapped to only one point p on M where riemann normal coordinates

are used.

4.1.2 Orthonormal Coframes

In this case we will present pseudoduality equations on the orthonormal coframe SO(M).

Equations of motion following from the action (4.1.2) in terms of the superfields are
Xb_o=XF, = —[DE(X) — HE(X)] XX (4.1.41)

where superfield X has the form (4.1.1), D, X = X, and 0_X = X_. We choose an
orthonormal frame {A’} with the riemannian connection A;'- on the superspace. If the su-

perspace coordinates are defined by z = (o%, %), then one form is given by
A = dMXE, (4.1.42)
Covariant derivatives of X; and X ;n will be
dX} + N X5, = deN Xy (4.1.43)
The Cartan structural equations are

dAT = —ALA A (4.1.44)

dAS = —Aj AAE + Q) (4.1.45)
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where Q; = %R; wAF A Alis the curvature two form. Pseudoduality equations (4.1.7) and

(4.1.8) are
Xi=+T/X] (4.1.46)
where 7 depends on superfield X . Taking the exterior derivative of both sides yields
dXL = +dT;X] + TjdX]
Inserting (4.1.43) in this equation gives
—N XL+ deN XLy = AT XL F TN XE £ dNT X,
We now substitute (4.1.46) and arrange the terms to get
dzN Xy = £(dTy — TN, + N THXE £ dNT Xy

We wedge the plus equation (upper sign) by dz" and minus equation (lower sign) by dz—,

and find the following equations

dzt ANdem XL =d2t A (AT — TN, + NTHXY +det Ade T/XT (4.1.47)

dz” Ndz" XD = —dz” AT = TPA + NTHXE —dz” Ad2" TP X7, (4.1.48)
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Since X, = X, (also with tilde) and dz" Adz~ = dz~ Adz" we may find the constraint

relations by equating left hand sides

2dzT Nz TIXE_ +det A (AT =TI, + AT XE
+dzm AT — TiAL 4+ N THXE =0 (4.1.49)

we substitute the equations of motion (4.1.41)

= 2d2t Nz T[T, — My | XEXT +det A (AT = TEN, + AT X

and we use dz= X} = A" — dzT X7 to get

—dzt AT — HE VXTA" —dz” AT, +HE )X A" (4.1.51)

+dzT A (AT = TIA, + N THXE +dz A (AT — TiAL + AL T)XE =0

Now we define the following tensors

dz"Ui_ = (AT} — TN, + A7) — TS, — Hi, ) A" (4.1.52)
dz"U, = —(dT} — TAL + ATY) + T(T9,, + ML, A" (4.1.53)

which satisfies the equation (4.1.51)
det ANdz UL_XE —dz” ANd2TUL XE =0 (4.1.54)
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They also yield the result

dz"Ul_ +d= U}, = 2T M, A" (4.1.55)

which gives
dz" Ndz U = 2dzt A TIHL, A" (4.1.56)
dz" ANdzUL, = 2dz" A TiHL, A" (4.1.57)

If these equations are substituted into (4.1.54), one obtains
2dz" N TIHL A XE — 2d2” ANTIHLAXE =0 (4.1.58)
and using (4.1.42) gives the final result
2dzt Nde T ML, X XE —2de” N2V TIHL XTXE =0 (4.1.59)

which shows that

dzt A dzm TIHE,XEXT =0 (4.1.60)

Therefore, we conclude that % = 0, and &} = U}, = 0 by equations (4.1.56) and
(4.1.57). Finally equation (4.1.52) and (4.1.53) gives the following result

T = TN+ ) = T 161
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If we insert the equations of motion into (4.1.47) and (4.1.48), we obtain

—dzT A dz_(f‘;k - ~;k))~(i)~(ﬁ =dz* AT - 7?1% + /N\;EJ)X?-
—dz" Ndz" T T, X7 X" (4.1.62)
—dz” ANzt (T, — H) XL XE = —dz™ A (dT} - TN, + A7) X*

+dz" NPT, X7 X" (4.1.63)

Inserting dz~X* = A — dz* X, (also with tilde) and )~(+ (4.1.46) into (4.1.62), and
dzt X, = A — dz~ X_ (also with tilde) and X (4.1.46) into (4.1.63) gives

—dz" AN (T, — Hi ) TA™ = dz A (AT — TiAL + ALTY) — det A TT, A"
(4.1.64)

—dz" AT, + He ) TA™ = —dz™ A (AT} — TiAL + ALTY) + dz™ A T;T, A"
(4.1.65)

where we cancelled out X _’ﬁ in (4.1.64) and X* in (4.1.65). We notice that right-hand sides
of these equations become zero by means of the constraint relation (4.1.61), and we are left

with

(T —H VT A" =0 (4.1.66)

(T +H )T A" =0 (4.1.67)

This shows that on the transformed superspace we must have I' = 0 and Hi = 0. We
may find the relation between curvatures of the spaces using (4.1.61). We may define the

connection one form Af; = I‘{;n/\”, and hence (4.1.61) is reduced to
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Taking exterior derivative, and using again (4.1.68) together with (4.1.45) gives
T = QLT (4.1.69)

where new orthonormal coframe is replaced by 2A with the same curvature two form €2 on
the manifold M. It is obvious that integrability condition of this equation followed by the
use of (4.1.42) and (4.1.46) yields a curvature relation between two (1, 0) supersymmetric
sigma models which tied together with pseudoduality, which can be reduced to the same
results found in the previous section. The reason why we get a positive sign in curvature
expression in component expansion method is because of anticommuting grassmann num-
bers. This gives that pseudoduality transformation can be performed only if two sigma

models are based on symmetric spaces with opposite curvatures on target spaces M and M.

4.2 Pseudoduality in (1, 1) Supersymmetric Sigma Models

In this case [8] the classical spacetime X can be enlarged to the superspace =% by
adding Grassmann coordinates of opposite chirality. We will have one left-handed super-
charge ()., and one right-handed supercharge () _ as given by (4.0.2). The supersymmetry

algebra can be written as

{Qi7Qi} = 2P, {Q+7Q—} =0

where P, = —0.. The supersymmetry transformations will be

A eﬂﬁi +e )t
Sl =ietora’ + e (I, + Hy )it

St = —e" (I + Hi )Wk +ieo_a’
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where €% is the constant anticommuting parameter.

4.2.1 Components

The superfield is written as
X=x+0T),+0_+0T0"F 4.2.1)

where X : b1 — M. We define the (1,1) superspace =4 = (oF,07,07,07), where
(07, 07) are the null coordinates, and (0", 6~) are the Grassman coordinates of opposite

chirality. The action of the theory is
S = / d*od*0(Gij + Bi;) Dy X'D_ X7 (4.2.2)

where supercovariant derivatives are given in (4.0.1). Similar definitions can be written for
pseudodual model with tilde. First order expansion of G;; and B;;, followed by the d*0

integral gives
i i | i =) i 1 m,/mn,a
§=_ / A2 (gij+bi)) 02 O_a +igi ' V© )wiﬂgim,v(:)wi—ﬁ}z;m% R

where vgl::t)wg!: = V:I:w%: + Hﬂnnd}?a:txn’ and Ri = Rbnam + DaHnmb + DmHn(zb +

bnam

HyoyHi, — Hypoy HY

mb*
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Equations of motion following from this action will be

Fr=(T% — Hi ot (4.2.3)
VO, = (Rt o (4.2.4)
AR %(}?*)gmnww{w (4.2.5)
O* =i(R7)f, 00" +i( R )50 02" (4.2.6)
— (DR )T
where DkR;;mm = Dle—;Lam + an(R+)Zam - Hfb(Rﬂ%am + H]ka(R—i—)ann - ijm<R+)?zlm

Pseudoduality transformations are

Dy X' = +T'D, X’ (4.2.7)
D_X'=-T/D_X’ (4.2.8)

where 7 is a function of superfield (4.2.1). Transformation matrix 7 can be expanded as
If pseudoduality transformations are written in components, first equation (4.2.7) yields the

following set of equations

P =T, (4.2.9)
Fl=TIF — Mgt (4.2.10)
0@ = Tj0 2! + i My k (4.2.11)

O )t = TI04) — 2iMg F* + M 0,2 + i M o' o) (4.2.12)

where M;k = akZ?, and M, [zj ) Tepresents the antisymmetric part of M. ;k Second equation
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(4.2.8) will produce

g = Tl 4.2.13)
F'= ~TIF9 1 Mo (4.2.14)
0_i" = —TI0_a? — M’ F (4.2.15)

O_, = =Ti0_ — 2iMyy? F* — Mo ab —io Miywf gy’ (4.2.16)

We can find constraint relations using these equations. If (4.2.10) is set equal to (4.2.14),

and equation of motion (4.2.3) is used, the result follows

(T, — Hi,,) = M| (4.2.17)

(mn)

where M{, ., is the symmetric part of M,,,. We immediately notice that /77, = 0, and we

are left with

TS, = M. (4.2.18)

We next take 0_ of (4.2.9)and set equal to (4.2.16) followed by the equations of motion

(4.2.3) and (4.2.4) to obtain
[2M ) — 2103, JUT 0 2™ = —i[0, Mg + 2M{ Tl + Ty R, JUC 40t (4.2.19)
Real part of this equation is simply (4.2.18), and complex part will produce
O My + 2M{ T, + TIR), =0 (4.2.20)

abc

We now take 0, of (4.2.13) and set equal to (4.2.12) followed by the equations of
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motion (4.2.3) and (4.2.5) to get
[2M{ 0y — 2T 10, 0" O™ = —i[0u My + 2M Tl + Ty R, JWS0%0% (4221

This equation is similar to (4.2.19), and we again notice that real part of this equation
is equal to (4.2.18), and complex part is (4.2.20). We finally take 0_ of (4.2.11), d, of

(4.2.15), and set them equal to each other to find out the remaining constraints

2M (Ot O_a® + 21707 a7 = 2i M 0_ + i0, My 0_a”

+ 20M] 07 0,08 + 10, My wF 0, 2" (4.2.22)
using equations of motion for 92 _z7 (4.2.6), 9_v, (4.2.4) and 9,4’ (4.2.5) yields

(2M ) — 2T10,,)042™0_a" + i(T R?

abc

+ 2Mj T, + 0o My )04 0502

abc

+i(TIRY,, + 2M[jy Tty + O My U 9 02

— (T} D’ Rapea + My Rl + Miyy Ri )00 05400 = 0 (4.2.23)

cab acd

If this equation is split into real and complex parts the following results are obtained

(2M{yy — 2T3T,,)05 2™ 0" = (T} D’ Rapea + Mg Rl + Mg Rig) 030" 5 0%

acd

(ji;}%ibc

+ 2M T8, + 0a My 0L 4502

+ (T;Rj + 2Mf}fb}F’Za + 3aMfgc])¢llwia+x“ =0

abc
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First equation leads to the following results

My =TT, (4.2.24)

T} D Rapeq + Mg Riy + My Rlreq = 0 (4.2.25)
where (4.2.24) is the same as (4.2.18). Second equation gives

TIR%, + 2My T, + 0, M}, =0 (4.2.26)

abc

which is the same equation as (4.2.20) with b <+ c¢. Obviously we have three independent
constraint relations, which are (4.2.18), (4.2.20), and (4.2.25).

Now we can find out pseudodual fields, and relations between two sigma models based
on M and M by means of pseudoduality equations. Using (4.2.10) or (4.2.14), and equation

of motion (4.2.3) for 7 we get
Fi= an AR (4.2.27)
Also definition of F* gives that

= —(0Yy — Hyp ) T3, Ty " (4.2.28)
where we used (4.2.9) and (4.2.13). Comparison of (4.2.27) with (4.2.28) gives that
(T — Hi)TLTY = M, (4.2.29)

)

Hence we obtain that T % = 0. This means that pseudoduality transformation will be
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from any point on M to only one point where I vanishes on M. We know that this is

consistent with Riemann normal coordinates. We are left with

Hi TITF = M| (4.2.30)

[nm]

We next consider (4.2.12). Using equations of motion (4.2.3) and (4.2.5) we obtain

- . i
Ot = M} ™0, " — ET;Rgbcwiwwi (4.2.31)

[mn]

where we used the constraint (4.2.20). On the other hand we can write the equation of

motion (4.2.5) on M as

T rri o 0.0 ~ LA i Tn 73 Tm
04t = —Hi " 0,3% + 3 (B )jmn 31O (4.2.32)
rri j T j [ i njmy, ¢, /.a
= H}kTéT:QﬁTaﬂn + Z(ijTgM[]Zc] - §(R+)jmnTc TIT )5 o
where we used (4.2.9), (4.2.11) and (4.2.13) in the first line of (4.2.32). If we compare
(4.2.31) with (4.2.32) we see that

H T = M, (4.2.33)
1 . . 1 2, . . ~ . .
§I?Rzzbc = §(R+>;mnTchgTbm - HJZkT(gM[IZC} (4234)

From (4.2.30) and (4.2.33) it is obvious that antisymmetric part of M! —disappears,
Mz‘

[mn

| = 0, which leads to the result ﬁ[jk = (. Hence (4.2.34) is reduced to

TR, = R

abc jmn

T T (4.2.35)

We now simplify right hand side of (4.2.16). We use equations of motion (4.2.3) and
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(4.2.4) and arrange the terms to get
0.} = STIRI, 00 Yy (42.36)
where we used the constraint (4.2.20). Also equation of motion for 0_ @Zi on M gives

8—,&:— _Rzmnwn Ni@ET

= —RZ T]qu/f’ ¢+¢ (4.2.37)

jmn= a

A comparison of (4.2.36) with (4.2.37) gives (4.2.35). When we take J_ of 4.2.11, and

using relevant equations of motion together with the constraints (4.2.20) and (4.2.25) gives
92 it = —T’Rflbcwb YDz — %T’ RI, by O_a" (4.2.38)
Likewise on M we obtain

~z' 7 ~a c ~a 1 a
a?kf = Rabcmrer +35 Rabcwb w - §D Rabcderwb ?Mw
- —R%nkTé‘ TET S O_a® + §Rfkab” TET " ¢ 02

1 o
— D' Ry TR TETI T p? S ap (4.2.39)

[\

A quick comparison shows that we obtain equation (4.2.35), and DiRjkmn = 0. We notice
that covariant derivatives of curvatures on both spaces vanish while curvatures are con-
stants, and related to each other by (4.2.35). This obeys that both models are based on

symmetric spaces.



89

4.2.2 Orthonormal Coframes

Equations of motion following from (4.2.2) are
Xk, = —[Th(X) - HE (XXX (4.2.40)

where X, =D, X, X_=D_Xand X_, = D, D_X. On the contrary to (1, 0) case, this
time one writes that X | = — X, and {X, X_} = 0, where {, } defines the anticommu-
tation. Superspace coordinates are z = (o, F), and orthonormal frame can be chosen as
{A’} with connection one form {A’}. Similar to (4.1.42) and (4.1.43) one form {A’} and

covariant derivative of X ;; can be written as

A =dMXE, (4.2.41)
dXh + NXY, = d2V Xy (4.2.42)

Pseudoduality relations are
Xi=+T/X] (4.2.43)

We are going to mimic the calculations performed in (1, 0) case except notable differences
dzt Ndz™ = —dz” Ndzt, X,_ = —X_,,and X, X_ = —X_X_,. We take exterior
derivative of (4.2.43), and then use (4.2.42) for both manifolds, and arrange the terms to

get

dzN X4y = 2(dTy — TN, + NTHXE £ dN T Xy (4.2.44)
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We wedge the plus equation by dz* and minus equation by dz~ to get

dzt ANde Xoo = dzt A (AT — TN, + NTHXE +dat Ade T/XT . (42.45)

dz" Ndz"X_ = —dz” AT} = TPA, + NTHXE —dz” Nd2"T) X7, (42.46)

we set left-hand sides equal to each other using X, = —X__ and dzt Adz™ = —dz~ A
dz*. We notice that we have symmetric expression which has antisymmetric terms in pairs.
Therefore expressions from (4.1.49) to (4.1.69) can be repeated. This ends up with the
same result, curvatures of the supersymmetric sigma models will be constant and opposite

to each other, yielding the dual symmetric spaces.

4.3 Pseudoduality in Super WZW Models

At this point it is interesting to discuss the pseudoduality transformations on super WZW
models [12]. The super WZW model has considerable interest in the context of conformal
field theory. We use the superspace with coordinates (oF, o—, 6+, 7) where o are the
standard lightcone coordinates, and # are the real Grassmann numbers, with supercharges
Q+ = Op+= — 100, and supercovariant derivatives Dy = Oyg= + i0=01. To define super

WZW model we introduce the superfield G(o, 0) in G with components as expanded by
G(0,0) =g(o)(1+i0% Y, (o) +i0 ¢_(0) + 1070 x(0)) (4.3.1)

where the fermions (o) take values in g, and are the superpartners of the group-valued
fields g(o). The field x (o) is the auxiliary field. The lagrangian of the model can be written
as

L= %TT(D+91DQ) +T (4.3.2)
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where I' represents the WZ term. Equations of motion following from this lagrangian are

D_(G'D,G)=0 (4.3.3)

DL[(D-G)G ™" =0 (4.3.4)

There is a global symmetry G, X G’z which gives the conserved super currents ./ f =
G'D,Gand ¥ = (D_G)G".
We can write similar expressions related to pseudodual WZW model with tilde. One

can write the pseudoduality transformations using the similarity with bosonic case

G 'D.G=+T(0,0)G'D,G (4.3.5)

G 'D_G=-T(0,0)G'D_G (4.3.6)

Taking D_ of first equation (4.3.5) followed by (4.3.3) yields that D_T (o,0) = 0. If
T (0,0) is expanded as T (0,0) = T(c) + 6"\, + 6~ A\_+ 616~ N(o), then the condition
D_T(o,0) implies that \_ = 0, N(0) = 0, 9_-T'(¢) = 0 and 0_A; = 0. Hence 7 turns
out to be

T(0,0) = T(c) + 0" A (o) (4.3.7)

Taking D of second equation (4.3.6) gives the following equation
DT} (0.0) = (Fu " T = TG DLG)* (4.3.8)

Before going further to solve this equation, it is convenient to find out the values of some



fields in terms of components. A brief computation shows that

G7'DLG =ipy + 107 (g7 01g — i) + 0 (x — i-_ty)
— 0707 (010 + (971019, 0] + [y, X])
G DG =iy —i0"(x —ith-tpy) + 10 (g7 0-g — ip)?)
+ 0707 (0_by + [g710_g, ] + [x, ¥-)])
(D-G)G ™" =g{i- —ib* (x —ip_ty) +i0 (g7 0_g +iW)?)

+ 0107 (0_vy + [V, X]}g !

Hence, the equation of motion (4.3.3) produces the following equations

X =1 1y
8,1b+ == O
O_(g7 0,9 —iv}) =0

Oyt = [_, g 04 g] + [x, U]

and (4.3.4) yields that

X =ity
8_1/1+ = [Xa 77Z)—]
84—77/}— = [w—vg_la—i-g]

(g '0_g+ip?) =[g7'0_g+iv?, g ' 0.g]
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(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)
(4.3.13)
(4.3.14)

(4.3.15)

(4.3.16)
(4.3.17)
(4.3.18)

(4.3.19)

We see that (4.3.12) and (4.3.16) are the same expressions, and determines the auxiliary

field in terms of ¢)_ and .. (4.3.13) implies that ¢/, depends on o only, and (4.3.17)

points out that Y commutes with ¢_ as expected. (4.3.14) gives us the bosonic left current
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conservation law by means of (4.3.13). Comparison of (4.3.15) with (4.3.18) shows that x
commutes with ¢, and (4.3.18) is the fermionic equation of motion for /_, which leads
(4.3.19) to the bosonic right current conservation law. Finally we may eliminate )% terms
because these are fermionic fields and anticommute with each other.

Therefore the fields (4.3.9)-(4.3.11) can be written in simplified forms as

G 'D,G =i, +i0 g 0, g (4.3.20)
G'D_G=ip_+i0 g '0_g+0"0" (g7 0_g,,] (4.3.21)
(D_G)G ' =ig_g ' +i0(0_g)g~* (4.3.22)

We can now solve the equation (4.3.8) using (4.3.7) and (4.3.20). A little computation

gives the components of 7 (o, 0) as

(A5 =i (L T Ty — fTi ol (4.3.23)
01T =(frn AT + fL T — AL )W (4.3.24)

+ (Fon T T = FRT) (g 049)"
If (4.3.23) is inserted in (4.3.24) the result follows

0T, =(fi T T3 — fRTEN (g 0w9)" — i fly flon (T Ty — TFTM T,

— i fufmTF T4 + i fy fra Ta s, (4.3.25)

We want to find perturbation solution, and we notice that the order of the term g~'0, g is

proportional to the order of the term ¢). We find the following perturbative result up to
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the second order terms after integrating (4.3.25)

ot

ot
Ti(o") = Ti(0) + A', / (97'0,9)*do’" + B, /0 Yot do't + HO.  (43.26)

0
where T%(0) = 0, A%, = (fi, — fip). and Bi,, = i(fi, fl + i f5 + fi,fL). Therefore
A, may be written as

ot

()i =i Al 4 Ot / (701 g)do™
0

ot
+ Dkt / VS yptde’™ + H.O. (4.3.27)
0
where constants C, . and D}, ., are

+ i fjntimSia T U Simlac — iUfemtnatin + 150 em i

+ifontemtia — U Fac i — W anFnafie (4.3.29)
As seen we have an expression for the transformation matrix (4.3.7) up to the third order
terms. We notice that 7" represents even order terms while A, represents odd order terms.

Now we can proceed to find expressions on M using pseudoduality equations (4.3.5) and

(4.3.6). If (4.3.7) and (4.3.20) are substituted in the first equation we obtain

)i =T, (4.3.30)

(5710:9)' = Tig ' 0rg) + ()it (43.31)

We notice that both of these equations depend only on 0. Likewise inserting (4.3.7) and
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(4.3.21) into second equation (4.3.6) leads to

(M)’ =0 (4.3.32)
L= Ty’ (4.3.33)
(97'0-9)" = ~Tj(g~"0-g)’ (4.3.34)
G710-g, 04 = =Tlg ' 0_g, 04 +i(As)i(g ' 0_g) (4.3.35)

These are the pseudoduality equations in components. We observe that if ¢)_ and v are set
to zero we obtain bosonic case pseudoduality equations as pointed out in ([7]). We see that
the term (\)%v’, in equation (4.3.31) gives us (\;)ie, = —i[i)y, ZZJF]ZG +iTi s, 4], =
0. The last equation (4.3.35) gives us the constraint (4.3.23). The equation (4.3.32) is
interesting because it tells us that [()_, ¢, ] = —Ti[s_, 1), which gives us two choices.

First choice is A, = 0 which leads to either
o T T = T} £y (4.3.36)

if 1o, # 0. This yields that 0,7 = 0 as can be seen from (4.3.24), and hence we get a

trivial case, flat space pseudoduality equations as follows

P = Fapl (4.3.37)
(7'9+9)" = £(g™'0+9)' (4.3.38)
where we choose 7' to be identity. Therefore we obtain f;k = ;k in (4.3.36). Or we set

14+ = 0, and hence last term in (4.3.26) will be eliminated, so pseudoduality relations will



96

be

VL= — ot — [y / 10, g)do"t];, (4.3.39)

+ [ / g '0,g9)do’" )L + H.O.

U+
(57'0:9)" ==+ (97'019)" £[g7"0sy, / (97'0+9)do"™ ] (4.3.40)
0

ot

[0y, / (970, g)do"]i; + H.O.
0

where we introduced the bracket [ , |, s¢ to represent the commutations in G / G. Second
choice will eliminate v/ and hence we get whole expressions (4.3.26) and (4.3.27) for T’

and \,. Therefore we obtain the following perturbation fields

ot ot

(97'01g)do" ]y — [0y, / (9704 9)do’ ],

0

G =t + by /
+( )¢+( )]é]~d0/+

i / RSN
o / W (01, s (0 0y (0 ]elizdo™ + H.O. (4.3.41)

ot ot

(§7'0:9)" =+ (97 '09)' £ [97 'Oy, / (97 0rg)do" | F [ 0y, / (97'04g)do™ ]
0 0

- / [0 (0, [ (o), (9709 (0 alizdo™

+ i /0 [y ("), [hs (o), (g7 0g)(0T)]c]edo’™ + H.O. (4.3.42)

where the cross terms |, [, ||z vanish.

We have already derived our pseudoduality equations, conditions inducing pseudodual-
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ity, and finally the perturbative expressions of the pseudodual fields up to the third (fourth)
order terms, leading to conserved currents on the pseudodual model. Using these fields it is
possible to construct left and right super currents on pseudodual manifold M. It is apparent
from the expression (4.3.20) that we can easily construct right super currents belonging to
special cases discussed above. To find left super currents we use the method we traced in

third section (3).

4.3.1 Supercurrents in Flat Space Pseudoduality

In this case structure constants of both models are the same, f = f, and pseudoduality
relations are given by (4.3.37) and (4.3.38). We let ¢ = ¥, where Y is the lie algebra.

Using the expansion in the third section (3)

1 — e—adY

© 1)k
g 1019 = O = Z =) ‘[Ya o [Y,0£Y]] (4.3.43)

where adY is the adjoint representation of Y, and adY (Z) = [Y, Z]. We know that bosonic
currents are invariant under ¢ — gr(0~)gr(o™), hence we obtain that g~'0,g —

970, g1, which is

1

1
o[V 0 V2] + Ve, V2, 0,72 + . (4.3.44)

95 ' 04gr = 041, —
Now we impose that Y = )" ° c"y,,, where ¢ is a small parameter. Thus we get the

following lie algebra valued field up to the third order terms

1
950491 =04 11 + £ (O4yr> = Sy, Oryra]) (4.3.45)

1 1 1
+ 53(a+yL3 — E[ym, 04Yr2) — §[yL2> Or1] + 6[?/L1, L1, 0+yra]]) + 0(54)
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In a similar way one can find the expression for g=10_g [?]

1
g_la—g =e0_yp1 + 52(3—yR2 — [yr1, 0—yr1] — §[ym, O0_yr1]) (4.3.46)
1 1
+ 53(&%«23 - [yL2> a—ym] - [Z/Lh 3—3/32] - 5[:91%27 &ym] - §[yR1, 373/32])
1 1
+ E[ym, [Yr1, 0_Yr1]] + 5[%17 [Yr1, 0—yri]] + 0(54)

Since it works all the way up we are going to do all our calculations up to the sec-
ond order of ¢ for simplicity and demonstration. We can write similar expressions for the
manifold M. Pseudoduality equation (4.3.38) gives infinite number of sub-pseudoduality
equations, from which we may write the following expressions coming from up to the

second order of ¢ terms

019r1 = 04y (4.3.47)
O = —0_ym (4.3.48)
0492 — %[@Lh 94Ur1] = 01y12 — %[?Jm? 0+yri] (4.3.49)
O_Yr2 — U1, 0-Jm1| — %[Cgm, 0_Um| = —0_Yr2 + [yr1,0—yr1] + %[ym, O_yri|
(4.3.50)

First equation yields that ¢;; = yr1 + Cr1, where C'p; is constant, and the second equation

gives g1 = —yr1 — CRr1, Where Cg; is constant. Inserting these result into last equation
gives
- 1 . N 3
O_URr2 + 5[@/}21, O_Jr1) = —0_yra + §[yR1, O_Yri) (4.3.51)

where we used the equality of structure constants. We found this because we need this term
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in the expansion of bosonic right current ?, which is

1
(8—gR)gl-_21 =¢e0_yp1 + 52(3_sz + §[ym, O_ym]) + (9(83) (4.3.52)

Hence bosonic right and left currents on M in terms of nonlocal expressions will be

1

Jf = 9218+§L =0, yr1 + 2 (0 yr2 — é[ym, dryr]) + O(e) (4.3.53)

- o 3
JE = (0_Gr)ip" = —€0_yr1 — €*(0_yra — §[yR1, O_yri]) + O(%) (4.3.54)

Obviously these currents are conserved by means of (4.3.14) and (4.3.19). Now we con-
sider the fermionic components, and we let ¢y = > ° | "), .. We denote ¢4 as the sum
of right and left components ¢ = ¥ g1 (0~) + 1+ (0"). But from (4.3.13) we understand
that ¢ includes 77, only. Pseudoduality relations (4.3.37) again yields infinite number of

subequations

Vint = Viny (4.3.55)

Dt Rn- = — V(L Ryn— (4.3.56)

which hold true for each n. Thus left and right supercurrents on M in nonlocal terms up to

the second order of ¢ will be

JE=G6""DyG =ith +i0"(57'049) (4.3.57)

1
= ie(VYr1s + 07 04yr1) +ie” (ot + 07 (04yro — 5[.%1, dryr])} + O(?)

3see (3) [16, 18, 22] for details of this expansion
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JE=(D-G)G ™" =igh-g~' +i0(0-9)5"" (43.58)
= —ie(P1- + 07 0_yr) — ie*{to + [yr1, 1] — [yr1, ¥1_]

+07 0y — Slum, 0y} + O(E?)

It is obvious from the equations of motion that these currents in nonlocal expressions are

conserved.

4.3.2 Supercurrents in Anti-chiral Pseudoduality

Now we consider our second case where 1, vanishes. In this case we need to be careful
when using bracket relations because structure constants are different. We have already
found our nonlocal expressions in (4.3.39) and (4.3.40). We use the same expansions of lie
algebra Y and fermionic field ¢)_ in the powers of ¢ as used in the previous part. Therefore

pseudoduality relations up to the second order of ¢ yield the following equations

P = —¢i_ (4.3.59)
Pho= =y — o, ynls + s, vl (4.3.60)
0+91 = 041, (4.3.61)

~7 ~ ~ i i 1 7 )
4 Yrs — U1, 3+Z/L1](; = 04Yrs + §[ym, Ovyrile — e, 0+yL1]é (4.3.62)
0-p1 = —0-Yp (4.3.63)

~i 1 ~ ~ i 7 1 9 7
O_Ypo + 5[2/1%17 O_Urilg = —0-ypo + 5[7;31, O_ymlg + [Yr1, 0-yrils (4.3.64)
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We may find out nonlocal supercurrents on the pseudodual manifold using these expres-

sions

- : : 1 i i
JE =ie0%0,yp + 20 {0, yro + 5[3/L17 Oyyrile — [Yr1, Oryrlg ) + O(e%) (4.3.65)

T = —ie(i- + 07 0_yr1) — ie*{tho- + [yr1, ¥1-]e — [yr1, ¥1-]a (4.3.60)

1
+ 07 (0-yro — E[le, O_ymlc — [Yr1,0-yrila)} + (9(53)

Obviously these currents in nonlocal expressions are conserved provided that equations of

motion are satisfied.

4.3.3 Supercurrents in Chiral Pseudoduality

We consider our final case where ¢)_ disappears. We notice that there is a contribution of
chiral part in the isometry 7" which leads to third order terms in the field expressions on the
target space of pseudodual manifold as can be seen from equations (4.3.41) and (4.3.42).
Again we keep in our minds that structure constants are different. If the same conventions
for Y and v, are used as above, then pseudoduality relations up to the second order of ¢
can be calculated. Expressions for the fields §g~'0, g are the same as (4.3.61)-(4.3.64), and

expression for the chiral field (4.3.41) gives that

Ve =P (4.3.67)

Vegy = Vior + [Wris, yrils — Wiyl (4.3.68)
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Then nonlocal conserved supercurrents are found to be

= . . 1
Ji =gy + 070 ynn) + i {Yras + 07 (Oya + Sy Osyle (4.3.69)

— [yL1, Osyila)} + O(%)
- 1
TR = —ich™0_yp — ic?0™ (0_yry — §[yR17 O_yrila — lr1, 0-yrila) + O(%)
(4.3.70)

It is noted that all these supercurrents are the complements of each other, and special
cases of a more general one. Under the limiting conditions they are equal to each other. If

we denote the bosonic and fermionic components by J and J then they are written as
TR — £ R 4 g+ JHR 4.3.71)

Since these super currents serve as the orthonormal frame on the pullback bundle of the
target space of (G, we may find the corresponding bosonic and fermionic curvatures using
them. If L? = J' is the left invariant Cartan one form which satisfies the Maurer-Cartan
equation

dJ" + % i’ NT" =0 (4.3.72)

and L}; = % f ;k J7 is the antisymmetric riemannian connection, then Cartan structural equa-

tions on superspace can be written as

dL'+ Ly AL =0 (4.3.73)

; ) 1 .
AL} + Ly ALY = §R;ML’“ AL (4.3.74)

where R;kl is the curvature of superspace. If the calculations in the previous section is

repeated using these equations in this case one can show that curvatures on SO(M) are
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constants, and related to each other by ﬁ;m = —Rj-kl, which shows that two superspaces
are dual symmetric spaces. If this curvature relation is split into bosonic and fermionic
parts, it is easy to see that fermionic part will yield a curvature relation which are opposite
to each other, i.e. (ﬁp);kl = —(Rr)}};» while bosonic part will give that both curvatures
will be the same, i.e. (7%3)§kl = (Rp)}» because of anticommuting numbers. This is

consistent with the results found in the component expansion methods.



Chapter 5

Pseudoduality In Supersymmetric
Sigma Models on Symmetric Spaces

5.1 Motivation

In the previous two works we studied target space pseudoduality between symmetric space
sigma models for scalar fields, and supersymmetric sigma models. In this work we will
analyse pseudoduality in G/H supersymmetric sigma models in two respects, on the or-
thonormal coframe first, and then using components.

We will work in superspace with coordinates (o=, %), where o*

are the standard ligh-
cone coordinates on two dimensional Minkowski space and §* are the fermionic coordi-
nates which are real Grassmann numbers. Supersymmetry generating charges and super-

covariant derivatives are given respectively by

Qi = Op= — i0F0, (5.1.1)
Dy = Opx + 0T 0, (5.1.2)

which obey
Q1 =—i0y D2 =i0, (5.1.3)

104
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with all other anti-commutators vanishing. Lagrangian of the model is defined by
1
Lo = 5Tr(D+g—1D_g) +T (5.1.4)

with I" representing WZ term. We introduced the superfield G(o, ) taking values in a

compact Lie group G, which can be expanded in components by
G(0,0) =g(o)(1+i0% Y, (o) +i0 ¢_(0) + 1070 x(0)) (5.1.5)

where 1), take values in Lie algebra g, and Y is the auxiliary field. The lagrangian (5.1.4)
has a global symmetry G;, x Gy acting on the superfield G by left and right multiplication,

which produces the following equations of motion

D_(G'D.G)=0 (5.1.6)

Dy[(D-G)G7'] =0 (5.1.7)

and yields the conserved super currents JF = G~'D,G and J = (D_G)G* taking
values in g. We may write similar expressions for the pseudodual sigma model using tilde.

We were able to write pseudoduality relations in the previous section as
G 'DLG = +T(0,0)G ' D.G (5.1.8)
where 7 (o, 0) is expanded as
T(0,0)=T(c)+0 A\ +0"A_+670"N(o)

Equations of motion (5.1.6) implies that \_ = 0, N = 0, and 7'(¢) and A, depends on
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o". We saw (4.3) that component expansion of pseudoduality equations leads to three con-
ditions; flat space pseudoduality which gives Ay = 0, T'(¢) = id and Lie groups have to
be same, (Anti)chiral pseudoduality which gives vanishing (¢;) 1)_ in both models with
distinct Lie groups. We saw that derived conserved super currents serve as the orthonormal
frame on the pullback bundle of the target space, we derived curvature relations between
two manifolds, which are constants and opposite to each other, implying that both super-
spaces are the dual symmetric spaces. Motivated by this result we examine pseudoduality
conditions in super WZW models based on symmetric spaces. We begin with orthonormal

coframe method, and then figure out component expansions.

5.2 Orthonormal Coframe Method

We consider a closed subgroup H of a connected Lie group G. We know that symmetric
space M is the coset space M = G/ H such that Lie algebras h of H and m of M are the
orthogonal complements of each other, and g = m + h, where h is closed under brackets
while m is Ad(H )-invariant subspace of g, Ad,(m) C m for all h € H. Symmetric space

conditions are given by the bracket relations

h,h] Ch [h,m| C m m,m| C h (5.2.1)

To distinguish space elements of different Lie algebras we will use the indices ¢, j, k...
for the space elements of g, o, 3, ... for the space elements of m, and a, b, c... for the space
elements of h. Therefore (5.2.1) leads to the only allowed structure constants f,;. and f,3
up to permutations of indices.

Let us first formulate G/ H sigma model on superspace before embarking on pseudod-
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uality. G(o,6) was defined in (5.1.5), and J£ = G'D.G € g can be split as
JE=K:+ Asx (5.2.2)
where K1 € m and A € h. The Lagrangian for the G/H sigma model is
1
Lon= §T7“(IC+IC_) +La/m (5.2.3)

where '/ represents the Wess-Zumino term for G/H supersymmetric sigma model.

Equations of motion following from (5.1.6), (5.1.7) and (5.2.1) are

’C+_ — 0 IC_+ — [IC_7A+] + [A_, ]C_|_] (524)

A+_ =0 A_+ — [A_, A+] + [IC_, ]C+] (525)

We choose an orthonormal coframe {L‘} with the Riemannian connection L;'» on the
superspace (. L' is the left invariant Cartan one form, which satisfies the Cartan structural

equations

dL'+ LN =0 (5.2.6)
i i kLo e l
dLi + Lp N L7 = §RJML AL (5.2.7)
The Maurer-Cartan equation
dLi+1fiLj/\L’f—o (5.2.8)
2 ]k - . .

leads to Lj, = 5fi, 7. If the superspace coordinates are given by z = (o*,6%), and
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L = dz™ L}, the covariant derivative of L’ can be written as
ALy, + LI, = dz"Liyy (5.2.9)
The pseudoduality equations (5.1.8) are written as
L\, =£TL% (5.2.10)

We already know how to solve these equations from previous sections. Now let us con-
struct the symmetric space M and its complement /{-space formulations. We will use the
same symbols as the supercurrents to define orthonormal coframes and corresponding con-
nections on superspaces M and H. Let K% (A?) be the orthonormal coframe, and K (A7)

be the Riemannian connection on subspace M (H).

5.2.1 Setting up the Theory on M

We already found the equations of motion in (5.2.4), where K¢ = dzK¢,. The Maurer-

Cartan equation (5.2.8) can be written as
dK* + f5,K° N A =0 (5.2.11)

which leads to the following connections by comparison to (5.2.13)

o 1 « a « 1 «
K5 = 5/aA K = 515K (5.2.12)
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Cartan structural equations can be split on M as

dK* + K§ AK? + K§ A A =0 (5.2.13)
1 1
diCG + K5 NG+ KA AG = SREKY AR + SRG,p A A A (5.2.14)
+ RGN A A
1 1
A + K3 AN + Ky A AL = 57233#1@ AKH + §R§‘bcAb A A (5.2.15)
+ R, A A
The covariant derivative (5.2.9) is written
dKS; + KGKh, + K AS, = dzV Ky (5.2.16)

We observe that all the fields on m-space have additional mixing components to h-
space, which leads us to write down the pseudoduality equations on m-space in a pre-
dictable way

Ce = £TPKL £ T2 A% (5.2.17)

We take the exterior derivative, use (5.2.16) and (5.2.33), and arrange the terms to get

dKS = £dTPK] £ TRdKS £ dT AL £ TAdAL (5.2.18)

dzVKSy = £ (AT + K§TY + KST — TeKS — T2 ADKE
+ (AT + K57 + Koy — Tk, — T2 Af) AL

+dN PRy £ dNTEAL (5.2.19)
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we now wedge this equation by dz™ to see the effect of equations of motion

A2 N d2FRG, = + d=* A (AT + KSTY + KeTe - TRKS — TR ADK
+d2F A AT+ KST + KoTy = Tk — T Ap) AL

+deE AN dTTPKL, £ det ANd2FTEALL (5.2.20)

Equations of motion (5.2.4) and (5.2.5) provide some cancellations, and we obviously see

that (+) equation gives us the following constraint relations

AT + ’657}5 + ;@37}1 _ 7;3&;@3 —TeAL =0 (5.2.21)

AT + KT + KaTe — TS, — T AL =0 (5.2.22)

where we treated ICj\r and A", as independent components, and we set these equations equal
to zero because d7 is a one form. (—) equation has pure contributions from the equations
of motion

dz” NdzK*, = —dz” NdzH(TEKD |+ T2A,) (5.2.23)

We use the corresponding equations of motions, and obtain the result

dz= Ndz(fo ALK + o KA = — T2 fAALKY — T2 o KL A

— T fr AL AC — T fa KLKY) (5.2.24)

If we use the expansions K¢ = dzM K¢, and A* = dz" A%, and the connection one forms

(5.2.12) and (5.2.32) the result follows

KK + KoA® = —TEKIKY — TR AL — TEAG AP — T ASKCH (5.2.25)
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Now we use pseudoduality equations (5.2.17) and (5.2.37) for K* and A%, and compare

the coefficients of X* and A° to obtain the results

KST] + KOT = TRKS + ToAS (5.2.26)

KT + KeT = TRK) + T2 Ay (5.2.27)

we immediately notice that if these results are substituted into (5.2.21) and (5.2.22) we
obtain d7* = d7,* = 0. Therefore we conclude that 7,* and 7,* must be constant, and we
choose them to be identity. Hence the pseudoduality relations between symmetric spaces
will simply be

CY = £K5 + T2(0)AL (5.2.28)

Here 7,%(0) is the identity mapping which provides the mixing of H-space to M. From the

relations (5.2.26) and (5.2.27), which can simply be written as

K$ + K2T2(0) = K§ + T.2(0).A% (5.2.29)

KT/ (0) + K = K + T2(0) Ay (5.2.30)

we may find relations between curvatures by means of (5.2.14) and (5.2.15). Since these
equations require /-space connections, before going further it is worth to analyze H -space

pseudoduality.

5.2.2 Pseudoduality on H

One form is defined by A®* = dz™ A%,. The Maurer-Cartan equation (5.2.8) corresponding
to H-space will be
1 1
dA® + 5fg;Ab A AC+ 5fgﬁKa ANKP =0 (5.2.31)



Cartan structural equations are split as

dA" + AENA"+ AZAKP =0
1 1
dAY + AL N A5+ A5 N A) = 5 RbeaA“ N A+ 572;3“/@ A KH
+RE LA A K

1
QAL + AN A+ AN = SR

1
o APN A+ 5 R KA A KCH

ap

+ R AP A K
A comparison of (5.2.31) to (5.2.32) gives the following connections

1 1
A= Sfa A A= S

The covariant derivative of A is

AAS, + ApAL, + A, = 2 Al
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(5.2.32)

(5.2.33)

(5.2.34)

(5.2.35)

(5.2.36)

Using the same reasoning above we may write the pseudoduality equations on H-space as

AL = T AL £ THKL
We take the exterior derivative

dAY = £dT A% £ TrdAY + dTKL £ T2dK]

(5.2.37)

(5.2.38)
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and use the covariant derivatives (5.2.18) and 5.2.36 followed by the pseudoduality equa-

tions (5.2.28) and 5.2.37 to get

AN ALy == (AT + AT+ ATA0) = Ty AL = Tk AL
+ (AT + ATV + A5 — T AL — TR

+ AN TP ALy £ AN TR (5.2.39)
If this equation is wedged by dz* one gets

Az NdzT AL, =% deF A AT+ AT+ ASTN0) = T AL — TEKD) AL
£ dzE A AT+ AZTE + A — T AL — TRK)K)

£ dzF ANdFTEALL £ det AdTTIRE (5.2.40)
(4) (upper) equation yields the following constraints

AT + AT+ AT 0) = TP AL = ik = 0 (5241

AT + Azf&b n «‘Ii — TeAL — %a;gf =0 (5.2.42)

one finds out the following constraint relation between equations of motion from (—)

(lower) equation

dz™ Ndzt A, = —de” NdeH(TPA L + TEKP ) (5.2.43)
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We use the equations of motions and find that

d2 A dzt(fr AL A + foRIRY = — T fh A AL — T Fo KK

— T FAALKY — T fo K AY) (5.2.44)

we again use K, = dz™ K¢, and A® = dz™ A4, followed by connection forms (5.2.12)

and (5.2.32) to obtain
ACAC + MG = —TPALA® — TR ASKY — TR — TaKEA (5.2.45)
If the pseudoduality equations (5.2.28) and (5.2.37) for K and A¢ is inserted, one finds

AT+ BTN0) = TP AL+ THKCE (240

ATY + A = T A+ TEKS (5.2.47)

These equations together with constraint relations above yield that d7.* = d7,* = 0, which
shows that 7, and 7" are constants, chosen to be identity as in the previous part. Therefore

we are left with the pseudoduality equations in reduced form
19 = £ AL £ T (0)KL (5.2.48)

with corresponding constraint relations whose integrability conditions will give us the re-

lations between curvatures

Al + ASTH0) = A2 + TR(0)K? (5.2.49)

AETH0) + A5 = A5 + TE(0)KS (5.2.50)
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5.2.3 Integrability Conditions and Curvature Relations

We have already figured out relations between connection one forms, (5.2.29) and (5.2.30)
for M-space, (5.2.49) and (5.2.50) for H-space, which leads to corresponding curvature
relations via second Cartan structural equation. We start with taking exterior derivative of
(5.2.29), and then insert in related Cartan‘s equations, and finally use the results (5.2.29),

(5.2.30), (5.2.49) and (5.2.50) to obtain

+ Q2TY0) = Q% + T2(0)Q (5.2.51)

where (27 is the curvature two form associated with the space whose indices are used. If we
insert the expressions for curvature two forms, and use pseudoduality equations, one gets

after some calculations

R = — (R + R TE(0) + R, T(0) + Ry TE(0)TA(0)) (52:52)
5 = — (R + RaadTE(0) + Ry, T (0) + R, T (0) T3 (0)) (5.2.53)
R = — (R + Rd T0) + Ry TH(0) + Ry, TH(0)T4(0)) (5.2.54)
Rt = — (R + Ry T2 (0) + Ry, TH(0) + Ry, TH(0) T3 (0) (5.2.55)

where we defined Ri“m,

_Ra

Ay

+ TX(0)RS,,, and ’RAW = RMW + RbWTAb(O). It can
readily be seen that if one identifies a pseudoduality transformations M — M and H —»
H, then one simply has the expected relations RS, = —Ri‘w and so on. If we generalize
this formation to remaining constraint equations above, and curvature relations followed

by them, one can easily writes

Q4 + QATS(0) = QA + TA(0)95 (5.2.56)
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where the indices A, B and C stands for the indices corresponding to M or H-space ele-

ments depending on which relation is used. Therefore, curvature relations will be

a4 = A = A . = A c = A - d
RB;W = _(’R’B,uu + RB;LC,]:/ (O) + ’R’Bcun (O) + ,R’Bcdl]; (0)7:/ (O))
~ = A = A = A = A
Rgud = _(RB,ud + RBcdﬁ(()) + RB,LLV7'dy(0> + RBcuﬁ(()),]:lV(O))
A = A =~ A =~ A =~ A

Rgcu - _(RBCV + RBcdﬁd(()) + RBuutﬁL(O) + RBudﬂu(O)ﬁda)))

~ = A = A " = A " = A " ”
Riea = —(Rpea + RpaTH(0) + Ry, T3 (0) + Rp,, TF(0)T;(0))

5.3 Component Expansion Method

(5.2.57)
(5.2.58)
(5.2.59)

(5.2.60)

In this section we work out the pseudoduality by components. The superfield G(o, 0) is

given by (5.1.5) in components. In the previous section (4.3) we saw that equations of

motion (5.1.6) and (5.1.7) gave us the following results

X =ity
Oy =0
O =[P, g 94g]
0:(97'0-9) = [¢7'0-9,97"' 14|

0_(g7'019) =0

(5.3.1)
(5.3.2)
(5.3.3)
(5.3.4)

(5.3.5)

We offer the solutions ¢ = gr(c)gr(o™) and L = ip(07) + Yrg(07) in the right

and left moving components. Hence we observe that ¢, = 0 from equation (5.3.2), ¢_g

commutes with g;, from equation (5.3.3), and equations (5.3.4) and (5.3.5) depend only on
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o~ and o respectively. Therefore we easily get the decomposition G = GrG;, where

Gr = gr(1+i0"¢Y_pg) (5.3.6)

Gr=gL(1+i0pyp + 07 — 070 p_ipyp) (5.3.7)

Using these relations one may get the following expressions which will be needed in con-

structing pseudoduality and conserved currents

G, DG = ithy + 10" g, 0491 (5.3.3)
(D_Gr)Gr' = igrt—rgr +i0~ ' (0-gr)g9g' (5.3.9)
G'D_G=itp_r+i0 g 'o_g+0T0" (g7 0_g,v0.1] (5.3.10)

We may decompose the fields g 1019 = ki + As and ¥+ = ¢+ + By on symmetric
space, where k4, ¢+ € m are the bosonic and fermionic symmetric space field components,
and A4, B. € h are the corresponding gauge fields. If one indicates these fields in terms
of right and left expressions, it is evident that ky = ky, kyp =0, Ay = Ay, ALg =0,
k. =g %k _rgr, A_ = g;'A_Rgr, ¢+r = Byr = 0. Hence one can write the superfield

decompositions (5.2.2) as follows

Kir=i¢ir+i0 kyr (5.3.11)
K_=i¢_p+i0 k- +6070 ([A_, ¢sr] + [k—, BiL]) (5.3.12)
Aip=iByp +i0T A (5.3.13)
A =iB p+i0 A +070 ([k_,¢,1] +[A_, By1]) (5.3.14)

where K, r = A, r = 0. Equations of motion in components following from (5.2.4) and
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(5.2.5) will be
Grr=0ip=hkip=hip=0 (5.3.15)
Ay r=A, =By r=B, =0 (5.3.16)
[B_g, ¢41] = = [¢-r, By (53.17)
{B-r,kiry = —{d-r, AL} (5.3.18)
A_¢y=—k_Byp (5.3.19)
oy =—{k A} —{A k) —illA, é41), By (5.3.20)

—illk—, Bir], Byr] — t[[k—, ¢1p], o41] — i[[A-, Bir], d41]
[6-r, ¢+1] = — [B-g, B1.1] (5.3.21)
k_¢ip=—A_Bip (5.3.22)
{B_p, Air} =—{¢-r kyr} (5.3.23)
Ay =—{A A} —{ko kyr} —ilk—, ¢42), Bos) (5.3.24)

—il[A, Byp], Bir] —i[[A-, dy1], dn] —illk-, Bys], 041]
where |, | denotes commutation, and { , } denotes anticommutation relation. By means of

(5.3.19) and (5.3.22), equations (5.3.20) and (5.3.24) can be simplified as follows

oy =—{k_ Ay —{A_ kir} —i{Bypr, b }A (5.3.25)

Ay =—{A Ay —{k_ kyr) —i{Bip, s Mo (5.3.26)

Similar expressions on pseudodual manifold can be written using tilde over each term.
We may now establish the pseudoduality relations. We will first analyze non-mixing pseu-

doduality case which will lead mixing case to be well comprehended in turn.
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119

Before considering the general case, we figure out the simplest case where mixing part of

the pseudoduality map in (5.2.17) vanishes, 7, = 0. Let us first work out pseudoduality

on symmetric space M, and then consider H-space since they are mutually dependent on

each other. We think of 7 as a function of superfield X, and can be expanded as in the

first section (5.1), T (0,6) = T'(67) + 67X (o). Consequently pseudoduality relations in

components on M are written as

tL= Tﬁa‘biL
kS =TgkD + (A)50]
+L BV+L +/B%¥Y+L
(52}{ = _T/?(blfR
ke = —Tgk?

(M),%“dﬂz =0

(A, 9n]™ + Tk, Bur]® = =T (A, ¢40)” + [y Bir]®) + (0 )5kE

Likewise pseudoduality relations on H can be expanded in components as

BiL = TbaBZL

Ay =TyAL + (V)i BY,
Bt =-TB",

Ar = —TpAb

()\+)ng3 =0

ko, dir]® + [AL, Byp)® = =To([k-, ¢42)" + [A-, Byr]") +i(Ay )5 A"

(5.3.27)
(5.3.28)
(5.3.29)
(5.3.30)
(5.3.31)

(5.3.32)

(5.3.33)
(5.3.34)
(5.3.35)
(5.3.36)
(5.3.37)

(5.3.38)
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When we take the corresponding (+) covariant derivative of (5.3.29), we obtain that (D7 g‘)(bé R=
0, where ® is the covariant derivative acting on m-space. Together with equation (5.3.31)
we are left with two options: First option is to consider that T3 is constant and ()3 is
zero. This is consistent with the results we found in our previous work, which leads to flat

space pseudoduality

ke, =k, ke = —k° (5.3.39)

=05  r=—0" (5.3.40)
with the corresponding bracket relations (5.3.32)
(AL, gyr]® = —[A_, ¢4r]®  [k=, Byr]® = —[k_, By]® (5.3.41)

Second option is to have ¢_p = 0, which leads to 95_ r = 0. In this case the isometry 7'

can be found by taking ©, of (5.3.30), which leads to
(DLTHE = Tg{k_, Ay} + {k, App}® (5.3.42)
with the constraint anti-commutation relation

{12177 l%JrL}a + ifga{B+L7 (Z;+L}B"i(i = _Tg{Afv kJrL}B - iT,BOlffa{B+L7 ¢+L}VA(1
(5.3.43)
k_ and fLr 1, can be replaced using (5.3.30) and (5.3.34). Hence it is realized that Tg isa

function of bosonic gauge field A ;. On the other hand (A, )§ can be found by (5.3.32)

iKY = [k, Byg]® + TS k-, By1)? (5.3.44)
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with the bracket relation

(A, ¢ir)* = —Tg[A_, 1) (5.3.45)

where unknown tilded expressions can be substituted back using related equations above.
It is observed that (A, )3 is given in terms of the fermionic gauge field B, .

Now we apply the same reasoning to /{-space equations. We take CD;L of (5.3.35), and
have that (D" T)B® , = 0, where D’ is the covariant derivative acting on h-space. We
again notice that we have two different options to satisfy this equation as well as (5.3.37).
First option is to pick 7} to have a constant, and (A )j vanishing value. This is compatible
with the first option above and results in the previous work. This gives rise to the following

flat space pseudoduality equations

Av, = A, A® = —A (5.3.46)

B, =B%, Bp=-B", (5.3.47)
along with the bracket relations
[];*7 éJrL]a = _[k*7 ¢+L]a [A,, BJrL]a = _[A*a B+L]a (5.3.48)

Second option is to choose B_p = 0, which will bring about B_x = 0 respectively. In

this case 7} can be found by taking ’D; of (5.3.36), which will cause
(D THAY = TMHA ALY +{A A ) (5.3.49)
with the complemental equation

(ko kypr} +ifes{Bir, o1}k = T {k_ koY — T8 fo0{ Bir, 20}k’ (5.3.50)
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where A_ and /Lr 1, can be substituted with the relevant equations above. Consequently we
are aware that 7y is a function of bosonic gauge field A, 1 similar to Tg'. (\,)j can be

found using (5.3.38)

iA)FAY = [A_ By )* + TP[A_, Bo]b (5.3.51)

with the associated bracket relation

[k, dyr)® = T3k, ¢4 i)’ (5.3.52)

where A_ and B, can be replaced using related equations. We notice that (Ay)fis a
function of B, which is analogous to (A, )§. Although it seems that both m and h-
space expressions are independent of each other, they are decomposed subspaces of g,
and accordingly has to satisfy constraints arising from g. Because of this reason we will
conclude that vanishing (A )§ implies vanishing (A, )7, likewise if ¢_p is set to zero, we
have to consider B_g = 0, which agrees with the result found in the previous work [?]. We
know that commutation relations found above leads to the corresponding relations between

connection two forms, which in turn give rise to relevant relations between curvatures.

5.3.2 Pseudoduality: Mixing Case

In this section we will consider the pseudoduality transformation that causes mixing of M
and H-spaces by allowing mixing components of 7. Again the matrix 7 can be written in

the form which has already been imposed by the constraints on G as 7 = T + 6" A,. On



M -space pseudoduality equations will be

N(-T-L = T§¢iL + T(?BiL
Ky = TohY, + TG + ()50l + ()i BY,
QggR = —ngb/iR —T1,;B%y
K = Tk’ — TeA”
0= (/\+)%¢€R + ()\+)3BZR
[A_ byr)* + [k-, Byf]” = —T5([A-, ¢ir)’ + [k, Bir]?) + Z(A+)gké

- Taaqkfa ¢+L]a + [A*? B+L]a) + Z'()\+)3A(i
and on H-space we obtain the following pseudoduality equations

B, =TeBY, + 1560,
Ay =TpAb + T/?ka + (A)eBY, + <)‘+)g’¢f-L
Bp=—T¢BY y — TS’
A = —Tp A" — TSKS
0=\ )¢B"p + (>\+)§¢éR
ko, dir]® + [AL, Byp)® = =T (b=, d41]" + [A-, By1]") +i(Ay )5 A"

— T§([A=, d11)’ + [k, Byr)?) +i(Ay)3k?
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(5.3.53)
(5.3.54)
(5.3.55)
(5.3.56)

(5.3.57)

(5.3.58)

(5.3.59)
(5.3.60)
(5.3.61)
(5.3.62)

(5.3.63)

(5.3.64)

Let us find the constraint relations on pseudoduality transformations using the equations of

motion. Hence we take (+) covariant derivative of (5.3.55), and obtain

(D:T8)¢ 5+ (DT)B =0

(5.3.65)
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If one deals with this equation together with (5.3.57), one can obtain two different condi-
tions. First condition imposes that 7' and 77" are constants and chosen to be identity, and

(Ay)g and (A4 ) vanish. Therefore one may obtain the pseudoduality equations

RS, = kS + TO(0)A%, kY = —k% — T2(0)A% (5.3.66)

bo, = ¢, +T20)BY, g =~k — T2(0)B%, (5.3.67)
with the constraint bracket relation

[A*7 &JrL]a + [l;*? B+L]a == [A*7 ¢+L]a - [k,, BJrL]a

= T3 (0)([k—, ¢+r]* + [A-, B1L]?) (5.3.68)

where 7 (0) represents the mixing component of 7" which is identity. We see that once we
have the duality relations (5.3.66) and (5.3.67) we must have the bracket relation (5.3.68)
on both spaces. We observe that mixings are included by means of gauge fields A and B.
Second condition on m-space is given by setting both ¢_r and B_g equal to zero. We
are careful at this point because we must have both fields vanishing. This is because these
two fields form the ferminonic field ¢/ on space g which leads both fields to disappear
simultaneously when split on h and m-spaces. Therefore we have ¢_r = 0 from (5.3.55).
To find Tﬁa and T we take (+) covariant derivative of (5.3.56), which will lead to two

independent equations

(DT =Tg{k—, Ar}ey + Tk, ki Yo + T8 fi{ Bir, 4 Yok
—A{Th_, A} —{Th_ ki }g — if5{Bir, 6L YoTRRY  (5.3.69)
(9-4-,'11?)"4Ci :TBQ{A—u k+L}g + Taa{A—7 A+L}aG + Z.Tﬁaffa{B-l-L? ¢+L}gAg

—{TA_ AL}y —{TA_ kir}y — if§{Bir, 040} LAY (53.70)
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where { , } represents anticommutation relation in G. We used the independence of
k_ and A_ in deriving this equation, and they can be cancelled out to give transformation
matrices. Terms with tilde can be replaced by nontilded ones using pseudoduality equations
above, and hence giving 75 and T7* in terms of A 1, k1, B, and ¢, 1. These are coupled
equations and can be solved perturbatively to yield terms up to the second order terms as

we did in our previous works. In this case fermionic transformation matrices will be

iADGKD = T5 ko, Byoly + Tolk—, ¢1nll — [Tho, 610)g — [The, By)g (5371

IA)SAT = TSIAL, 6y o)l + TOIAL Burlly — [TA- 6ur)l — [TA-, Byill (53.72)

which are functions of fermionic terms ¢, and B, after cancelling £_ and A_ respec-
tively. Again tilded terms can be replaced by nontilded ones using corresponding pseudo-
duality equations above. We notice that the constraint relations (5.3.50) and (5.3.52) found
in nonmixing pseudoduality case turns out to be expressions for transformation matrices
in mixing case. We understand that in the absence of mixing pseudoduality transformation
imposes some constraints which correspond to mixing part of pseudoduality.
In a similar way one can figure out pseudoduality on H-space. We take (+) covariant
derivative of (5.3.61)
(D, T)B" p + (D T5)¢ =0 (5.3.73)

When considered together with (5.3.63) one finds two conditions on pseudoduality. First
condition is to pick 7y and T constant, and (A, ); and ()3 vanishing. Of course these are

dependent on conditions (5.3.66) and (5.3.67) on m-space and can not be independently set
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to zero. Therefore pseudoduality equations will be

A% =A% +T500K,  A® = —A" —T5(0)k? (5.3.74)

B, = Bl +T5(0)¢%, Bp=—Bg—T50)6 4 (5.3.75)

where we chose the constant matrices to be identity. These equations adopt the following

constraint relation

[’E;—a 95+L]a + ["21—7 B+L]a - [k—7 ¢+L]a + [A—7 B+L]a

— TH0)([Am b10)’ + [k, Bis)?) (53.76)

Our second condition is to choose B_p = ¢_r = 0. This leads to B_ r = 0 on H.

Transformation matrices can be found by taking (+) covariant derivative of (5.3.62) as

(DLTA" =Ty {A Ay LYo + TE{A ko +iT5 f{ By, 1016 A
—{TA A} —{TA kg —ifo{ Bir, 040 }2T) A (5.3.77)
(DL TR =Ty {k, ki n Yo + To{ko, Aur}e + T3 fo{ Bir, d10} 6K

—{Th_, A} — {Tk_ kir}s —ifes{Bir, 040 }ATURY  (5.3.78)

These are coupled differential equations, and can be solved perturbatively. It is obvious that
Ty and T are functions of kyr, ¢, 1, A4z and Byy. Fermionic transformation matrices

can be found by

IADRAY = TY[A-, ByJg + TEA-, ¢urle — [TA 6yl — [TA-, Bigly (53.79)

i)k = T lk_, dyrly + Tglk—, Borll — [Tho, di1]l — [Tk, Biy]  (5.3.80)
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which are functions of fermionic terms ¢, ; and B, . Tilded terms on right-hand sides
can be replaced using corresponding pseudoduality equations. Again these terms turn into

constraint relations when mixing components of 7" vanish.
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