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We discuss the target space pseudoduality in supersymmetric sigma models on sym-

metric spaces. We first consider the case where sigma models based on real compact con-

nected Lie groups of the same dimensionality and give examples using three dimensional

models on target spaces. We show explicit construction of nonlocal conserved currents on

the pseudodual manifold. We then switch the Lie group valued pseudoduality equations

to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations.

We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-

dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual

to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric

spaces), we investigate pseudoduality transformation on the symmetric space sigma models

in the third chapter. We see that there can be mixing of decomposed spaces with each other,

which leads to mixings of the following expressions. We obtain the pseudodual conserved

currents which are viewed as the orthonormal frame on the pullback bundle of the tangent

space of G̃ which is the Lie group on which the pseudodual model based. Hence we obtain

the mixing forms of curvature relations and one loop renormalization group beta function

by means of these currents. In chapter four, we generalize the classical construction of

pseudoduality transformation to supersymmetric case. We perform this both by compo-

nent expansion method on manifold M and by orthonormal coframe method on manifold



SO(M). The component method produces the result that pseudoduality tranformation is

not invertible at all points and occurs from all points on one manifold to only one point

where riemann normal coordinates valid on the second manifold. Torsion of the sigma

model on M must vanish while it is nonvanishing on M̃ , and curvatures of the manifolds

must be constant and the same because of anticommuting grassmann numbers. We obtain

the similar results with the classical case in orthonormal coframe method. In case of super

WZW sigma models pseudoduality equations result in three different pseudoduality con-

ditions; flat space, chiral and antichiral pseudoduality. Finally we study the pseudoduality

tansformations on symmetric spaces using two different methods again. These two meth-

ods yield similar results to the classical cases with the exception that commuting bracket

relations in classical case turns out to be anticommuting ones because of the appearance of

grassmann numbers. It is understood that constraint relations in case of non-mixing pseu-

doduality are the remnants of mixing pseudoduality. Once mixing terms are included in the

pseudoduality the constraint relations disappear.



To my parents

iii



Acknowledgements

I would like to thank a number of people for their support during my Ph.D. years. First of

all I would like to express my gratitude to my advisor, Professor Orlando Alvarez. It was

a great pleasure to work under his supervision. He helped open up my horizons with the

answers to my questions which he always approached with patience and understanding. I

am very grateful to Dr. Plamen Karavassilev for his support and motivation besides helping

me in laboratory classes. I would like to thank all the members of the University of Miami

Physics Department for their friendship and warmth. Especially, I would like to thank

Professor Thomas Curtright, who gave me the opportunity to attend Miami conferences;

Professor Rafael Nepomechie, who gave me advice on various issues; Professor James

Nearing, who provided solutions to departmental problems; Professor Joshua Cohn, who is

the graduate advisor; Professor George Alexandrakis, who was the former chairman of the

department; and Professor Kenneth Voss, who is the current chairman. Finally I would like

to thank M. Fatih Soysal, who never left me alone and always supported and motivated me

in desperate times.

iv



Contents

1 Introduction 1

1.1 Pseudoduality in Sigma Models . . . . . . . . . . . . . . . . . . . . . . . 2

2 WZW Models and Conserved Currents 9

2.1 Pseudodual Currents : Simple Case . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Pseudodual Currents : Complicated Case . . . . . . . . . . . . . . . . . . . 18

2.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Pseudoduality Between Symmetric Space Sigma Models 25

3.1 Pseudoduality Between WZW Models : H = I . . . . . . . . . . . . . . . . 26

3.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Cartan Decomposition of Symmetric Spaces . . . . . . . . . . . . . . . . . 40

3.2.1 Non-Mixing Pseudoduality . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Mixing Pseudoduality . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Dual Symmetric Spaces and Further Constraints . . . . . . . . . . 48

3.2.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Case I: Curvatures on g and g̃ . . . . . . . . . . . . . . . . . . . . 55

v



3.3.2 Case II: Curvatures on Decomposed Spaces . . . . . . . . . . . . . 58

3.4 One Loop Renormalization Group β-function . . . . . . . . . . . . . . . . 62

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Pseudoduality In Supersymmetric Sigma Models 65

4.1 Pseudoduality in Heterotic Sigma Models . . . . . . . . . . . . . . . . . . 66

4.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Orthonormal Coframes . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Pseudoduality in (1, 1) Supersymmetric Sigma Models . . . . . . . . . . . 81

4.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Orthonormal Coframes . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Pseudoduality in Super WZW Models . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Supercurrents in Flat Space Pseudoduality . . . . . . . . . . . . . . 97

4.3.2 Supercurrents in Anti-chiral Pseudoduality . . . . . . . . . . . . . 100

4.3.3 Supercurrents in Chiral Pseudoduality . . . . . . . . . . . . . . . . 101

5 Pseudoduality In Supersymmetric Sigma Models on Symmetric Spaces 104

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Orthonormal Coframe Method . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Setting up the Theory on M . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Pseudoduality on H . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.3 Integrability Conditions and Curvature Relations . . . . . . . . . . 115

5.3 Component Expansion Method . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Pseudoduality: Non-Mixing Case . . . . . . . . . . . . . . . . . . 119

5.3.2 Pseudoduality: Mixing Case . . . . . . . . . . . . . . . . . . . . . 122

References 128

vi



Chapter 1

Introduction

The term duality has numerous meanings, and is an important concept in physics. When

two different systems turn out to be equivalent we say that there is a duality between these

systems. In string theory people use the term "target space duality" if there is a canonical

transformation between target spaces in which strings move. This transformation preserves

the hamiltonian. The simplest example is the standard abelian duality transformations [1,

2],

∂+ϕ̃ = +∂+ϕ (1.0.1)

∂−ϕ̃ = −∂−ϕ (1.0.2)

where ϕ is the massless free scalar field satisfying the wave equation ∂2
+−ϕ = 0 in light

cone coordinates. By means of duality transformations (1.0.1) and (1.0.2) we may construct

ϕ̃ satisfying the wave equation ∂2
+−ϕ̃ = 0, and hence understand that these two theories

are equivalent and dual to each other. A more general case is the pseudochiral models

introduced by Zakharov and Mikhailov [3]. We consider a standard sigma model with

target space a Lie Group G, which has equations of motion ∂µ(g−1∂µg) = 0. If we look

1
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for a dual model with a Lie algebra valued field φ, then the duality transformation can be

written as

g−1∂µg = −ενµ∂νφ (1.0.3)

But these dual models are not quantum mechanically equivalent to each other because it is

realized that duality transformations should be canonical transformations 1 [4, 5], but this is

not [6]. Subsequently people developed an extensive literature on nonabelian duality, and

Poisson-Lie duality motivated by string theory.

There is an interesting duality transformation proposed by Alvarez [2, 7], which is

called "pseudoduality" 2. By contrast with usual duality transformations this "on shell

duality" transformation is not canonical,and maps solutions of the equations of motion of

the "pseudodual" models. We will use the term pseudodual when there is a pseudoduality

transformation between different models. It is pointed out that this transformation preserves

the stress energy tensor [7].

It was shown [1, 7] that pseudoduality transformation in sigma models provides that

curvatures of dual models are constants, and have opposite signs, which restricts the con-

dition that pseudoduality exists between sigma models only if they are based on symmetric

spaces. It is also shown in this work that pseudoduality gives rise to infinite number of

nonlocal conserved currents associated with pseudodual model.

1.1 Pseudoduality in Sigma Models

We take spacetime Σ to be two dimensional Minkowski space, and σ± = τ ±σ throughout

thesis. The sigma model with target space M , metric g and two-form B is denoted by

1This is sometimes called as "off shell" duality
2This term was introduced first by Curtright and Zachos [4].
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(M, g,B) and has the lagrangian [7, 8]

L =
1

2
gij(x)∂µx

i∂µx
j +

1

2
Bij(x)εµν∂µx

i∂νx
j

=
1

2
gij(x)(ẋiẋj − x′ix′j) +Bij(x)ẋix′j (1.1.1)

where x : Σ → M and the closed 3-form H is defined by H = dB. This theory is

classically conformally invariant. The stress energy tensor is given by

Θ±∓ = 0 Θ±± = gij(x)∂±x
i∂±x

j (1.1.2)

We wish to construct the pseudoduality transformation between the solutions of the

equations of motion of the sigma model (M, g,B) and that of a different sigma model

(M̃, g̃, B̃). It is instructive to start with the sigma models based on riemannian manifolds.

The equations of motion for the sigma model based on M is

xi+− = −1

2
H i
jkx

j
+x

k
− (1.1.3)

Duality transformation is best formulated in the bundle of orthonormal coframes, SO(M).

Since all local descriptions can be extended to global ones [7], we will use global expres-

sions. We pick globally defined orientable orthonormal coframes wi and w̃i in the coframe

bundle SO(M) and SO(M̃) respectively, and given in terms of σa derivatives by

wi = xiadσ
a w̃i = x̃iadσ

a (1.1.4)

and the corresponding torsion free antisymmetric riemannian connection 1-forms wij and

w̃ij . We notice that wi and wij are linearly independent coframings on SO(M), similarly
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for SO(M̃). These global coframings satisfy the Cartan structural equations

dwi = −wij ∧ wj (1.1.5)

dwij = −wik ∧ wkj +
1

2
Ri
jklw

k ∧ wl (1.1.6)

where Ri
jkl is the Riemann curvature tensor on M . Similar equations can be written on

M̃ . We will define the pseudoduality transformation on the spacetime Σ, and hence we

consider the pullbacks

X∗wi = xiadσ
a X∗wij = wijadσ

a (1.1.7)

where the lift from Σ to SO(M) is defined, X : Σ→ SO(M). Therefore afore mentioned

pseudoduality equations in standard lightcone coordinates can be written as

x̃+(σ) = +T+(x, x̃)x+(σ) (1.1.8)

x̃−(σ) = −T−(x, x̃)x−(σ) (1.1.9)

where the orthogonal matrix valued functions T± : M × M̃ → SO(n) are given in [9],

and dim M = dim M̃ = n. In this thesis we will consider the case T± : Σ → SO(n) and

T+ = T− = T. Thus pseudoduality equations will be

x̃±(σ) = ±T (σ)x±(σ) (1.1.10)

The covariant derivative of xia (similarly for x̃ia) are written as

dxia + wijx
j
a = xiabdσ

b (1.1.11)
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Since we want to extract more information about pseudoduality transformations, and

find required conditions, we take exterior derivative of (1.1.10)

dx̃i± = ±(dT ij )x
j
± ± T ijdx

j
±

the covariant derivative (1.1.11) leads to

x̃i±bdσ
b − w̃ijx̃

j
± = ±(dT ij )x

j
± ± T ijx

j
±bdσ

b ∓ T ijw
j
kx

k
±

We now insert the pseudoduality equations (1.1.10) back in this equation and arrange the

terms to get

x̃i±bdσ
b = ±(dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
± ± T ijx

j
±bdσ

b (1.1.12)

Since we would like to use the equations of motion to reveal the integrability conditions,

we wedge by dσ± to get

x̃i±∓dσ
∓ ∧ dσ± = ±(dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
± ∧ dσ± ± T ijx

j
±∓dσ

∓ ∧ dσ± (1.1.13)

This can be split into the following two equations

x̃i+−dσ
− ∧ dσ+ = +(dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
+ ∧ dσ+ + T ijx

j
+−dσ

− ∧ dσ+ (1.1.14)

x̃i−+dσ
+ ∧ dσ− = −(dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
− ∧ dσ− − T ijx

j
−+dσ

+ ∧ dσ− (1.1.15)

Since we know that x+− = x−+ (also with tilde x̃+− = x̃−+), and dσ− ∧ dσ+ = −dσ+ ∧

dσ−, the left-hand sides of these equations can be equated each other to yield
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(dT ik + w̃ijT
j
k − T

i
jw

j
k)x

k
+ ∧ dσ+ − (dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
− ∧ dσ−

+ 2T ijx
j
+−dσ

− ∧ dσ+ = 0

We may now use the equations of motion (1.1.3) to obtain

(dT ik + w̃ijT
j
k − T

i
jw

j
k)x

k
+ ∧ dσ+ − (dT ik + w̃ijT

j
k − T

i
jw

j
k)x

k
− ∧ dσ−

− T ijH
j
klx

k
+x

l
−dσ

− ∧ dσ+ = 0 (1.1.16)

We split the last term into two terms by changing the orders of (−) and (+), and use

w = x+dσ
+ + x−dσ

− to get

(dT ik + w̃ijT
j
k − T

i
jw

j
k −

1

2
T ijH

j
klw

l)xk+ ∧ dσ+

−(dT ik + w̃ijT
j
k − T

i
jw

j
k +

1

2
T ijH

j
klw

l)xk− ∧ dσ− = 0 (1.1.17)

We define the following tensors in order to understand this equation better

U i
k−dσ

− = dT ik + w̃ijT
j
k − T

i
jw

j
k −

1

2
T ijH

j
klw

l (1.1.18)

U i
k+dσ

+ = dT ik + w̃ijT
j
k − T

i
jw

j
k +

1

2
T ijH

j
klw

l (1.1.19)

Hence equation (1.1.17) can be written as

U i
k−x

k
+dσ

− ∧ dσ+ − U i
k+x

k
−dσ

+ ∧ dσ− = 0 (1.1.20)

Besides, equations (1.1.18) and (1.1.19) yield that
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U i
k+dσ

+ + U i
k−dσ

− = 2(dT ik + w̃ijT
j
k − T

i
jw

j
k) (1.1.21)

U i
k+dσ

+ − U i
k−dσ

− = T ijH
j
klw

l (1.1.22)

Finally we may easily get the following from (1.1.22)

U i
k+dσ

+ ∧ dσ− = +T ijH
j
klw

l ∧ dσ− (1.1.23)

U i
k−dσ

− ∧ dσ+ = −T ijH
j
klw

l ∧ dσ+ (1.1.24)

If these results are substituted in (1.1.20) one gets

T ijH
j
klx

k
+w

l ∧ dσ+ + T ijH
j
klx

k
−w

l ∧ dσ− = 0

using the definition of w one obtains

T ijH
j
klx

k
+x

l
−dσ

+ ∧ dσ− = 0 (1.1.25)

Since we may choose xk+ and xl− arbitrarily at any σ we conclude that H = 0. This leads

the tensors U i
k+ and U i

k− to vanish by means of equations (1.1.23) and (1.1.24). Therefore

we obtain the result from (1.1.18) (or (1.1.19))

dT ik + w̃ijT
j
k − T

i
jw

j
k = 0 (1.1.26)

It is also evident from (1.1.14) (or (1.1.15)) that H̃ = 0 on the pseudodual manifold M̃ .

This shows why Ivanov [10] uses the case H̃ = 0 in his method. We would like to bring

out more conditions on pseudoduality transformations from the equation (1.1.26), and so
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we search for the integrability conditions of this equation, and see what we can obtain. We

take the exterior derivative and use again (1.1.26) to obtain

T ijR
j
kmnw

m ∧ wn = R̃i
jmnT

j
k w̃

m ∧ w̃n (1.1.27)

where we used the Cartan’s second structural equation (1.1.6). If we use the definitions for

w and w̃ followed by pseudoduality equations, we get the curvature relations

T ijR
j
kmn = −R̃i

jlpT
j
kT

l
mT

p
n (1.1.28)

Thus we get another condition for pseudoduality, curvatures of pseudodual manifolds M

and M̃ must have opposite signs. To discover more conditions we keep searching for the

integrability conditions of (1.1.28), and take exterior derivative and use again (1.1.26) to

get

T ijR
j
kmn;qw

q = −R̃i
jlp;qT

j
kT

l
mT

p
nw̃

q

where the covariant derivative ofR is defined asDRi
kmn = Ri

kmn;qw
q = dRi

kmn+Rq
kmnw

i
q−

Ri
qmnw

q
k −Ri

kqnw
q
m−Ri

kmqw
q
n, and similarly for R̃. This equation can be split into the fol-

lowing two independent equations

T ijR
j
kmn;q = −R̃i

jlp;qT
j
kT

l
mT

p
n

T ijR
j
kmn;q = +R̃i

jlp;qT
j
kT

l
mT

p
n

which give the solutions Rj
kmn;q = R̃i

jlp;q = 0. Therefore we find that the manifolds M and

M̃ must be locally symmetric spaces with the opposite curvatures. We finally conclude that

pseudoduality exists between two sigma models based on the riemannian manifolds M and

M̃ only if 3-forms H and H̃ vanish, and target spaces are the symmetric spaces with the

opposite curvatures.



Chapter 2

WZW Models and Conserved Currents

In this section we will consider the pseudoduality between two sigma models with

target space M a real connected compact Lie group G with an Ad(G)-invariant metric

[17]. The orthonormal frame bundle is SO(G) = G × SO(n), and wi and wij can be

chosen globally as above. The 3-form H i
jk will be proportional to the structure constants

f ijk, H
i
jk = af ijk and the constant a ∈ R. We especially specialize to the classical strict

WZW model [11] which is the case a = ±1 so that the action is normalized to make the

path integral well defined. The strict WZW model is the model with the Wess-Zumino term

normalized so that the canonical equations of motion are given by ∂−(g−1∂+g) = 0, where

g is a function on spacetime taking values in some compact Lie group G. We will show

that the WZW model on G is pseudodual to the WZW model on G̃ for any two compact

n-dimensional Lie groups. Let g be the Lie algebra of G, g̃ be Lie algebra of G̃. If the

Isom(g, g̃) is the vector space isometries from g to g̃, we may write the pseudoduality

mapping ∗Σ(g̃−1dg̃)(σ) = T (g−1dg)(σ), where T : Σ → Isom(g, g̃), and ∗Σ is the Hodge

duality operator on Σ. We will also investigate some properties of conserved currents on

target space manifolds that are pseudodual to each other, following a method discussed in

[7] we find an infinite number of conservation laws in the pseudodual manifold. We work

out the currents in case of pseudodualities [4, 7] between the sigma model on an abelian

group and a strict WZW sigma model [11] on a compact Lie group [12, 13] of the same

9
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dimensionality. We specialize to the case of the abelian group U(1) × U(1) × U(1), and

of the Lie group SU(2). We will afterwards work out WZW models with target spaces a

general real connected compact Lie groups, and find solutions for the transformation matrix

and pseudodual expressions in the next section.

We know [7, 10] that if we are given a sigma model on an abelian group, and a strict

WZW sigma model on a compact Lie group, there is a duality transformation between these

two manifolds that maps solutions of the equations of motion of the first manifold into the

solutions of the equations of motion of the second manifold. Solutions of the equations

of motions allow us to construct holomorphic [12] nonlocal conserved currents on these

manifolds. Pseudoduality relations provide a way to form pseudodual currents, and we

show that these currents are conserved.

Let M = G be a compact Lie group of dimension n with an Ad(G)-invariant metric,

and g : Σ → G. We define the basic nonlocal conserved currents J (L)
+ = (g−1∂+g) and

J
(R)
− = (∂−g)g−1 on the tangent bundle of G. What we demonstrate is that we can take

these currents, and using the pseudoduality relations we obtain currents on G (not G̃) and

these currents are conserved.

We would like to search for infinitely many conservation laws[14, 15, 16] on pseudod-

ual manifolds. We first concentrate on a simple case, whereM = G = U(1)×U(1)×U(1)

is an abelian group and M̃ = G̃ is SU(2). We show that infinite number of conservation

laws of free scalar currents on G enable us to construct infinite number of pseudodual cur-

rent conservation on G̃ by means of isometry preserving orthogonal map T between tangent

bundles of these manifolds. We next focus our attention on a more complicated case, where

M = G is the Lie group SU(2) and M̃ = G̃ is U(1) × U(1) × U(1). We find nonlocal

conserved currents on G and construct pseudodual free currents on G̃ using pseudoduality

relations. We show that pseudodual free scalar currents on G̃ gives us infinite number of

conservation laws.
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2.1 Pseudodual Currents : Simple Case

We take M as an abelian group, and the equations of motion become ∂2
+−φ

i = 0, where

φ is free massless scalar field. Currents on the tangent bundle of M are hence given by

J
(L)
+ = (∂+φ

i)Xi and J (R)
− = (∂−φ

i)Xi, where {Xi} is a basis for the abelian Lie algebra.

We notice that these currents are individually conserved, ∂−J
(L)
+ = ∂+J

(R)
− = 0. Now we

take M̃ as a compact Lie group of the same dimensionality with anAd(G)-invariant metric.

{X̃i} is the orthonormal basis for the Lie algebra of G̃ with bracket relations [X̃i, X̃j]G̃ =

f̃kijX̃k, where the structure constants f̃ijk are totaly antisymmetric in ijk. Using the map

g̃ : Σ → M̃ we may write equations of motion as ∂−(g̃−1∂+g̃) = 0. Currents on this

manifold are defined by J̃ (L)
+ = (g̃−1∂+g̃)iX̃i and J̃ (R)

− = [(∂−g̃)g̃−1]iX̃i. Again, by virtue

of equations of motion we observe that these currents are conserved, ∂−J̃
(L)
+ = ∂+J̃

(R)
− = 0.

To construct pseudodual currents on the manifold M we make use of the pseudoduality

conditions. The pseudoduality relations between the sigma model on an abelian group and

a strict WZW sigma model on a compact Lie group of the same dimension are

(g̃−1∂+g̃)i = +T ij∂+φ
j (2.1.1)

(g̃−1∂−g̃)i = −T ij∂−φj (2.1.2)

where T is an orthogonal matrix and g̃−1dg̃ = (g̃−1dg̃)iX̃i.

Taking ∂− of the first equation (2.1.1) we conclude that T is a function of σ+ only.

Taking ∂+ of the second equation (2.1.2) gives us the differential equation for T

[(∂+T )T−1]ij = −f̃ ikjT kl ∂+φ
l (2.1.3)

where we used the antisymmetricity of f̃ikj at right hand side of equation.

To get pseudodual currents on the manifold M , we first solve this differential equation
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for T , and then plug this into pseudoduality equations with an initially given ∂±φi and from

the pseudodual currents we find that these currents are conserved.

2.1.1 An Example

We consider the sigma model based on the product group U(1)× U(1)× U(1) for M and

a strict WZW model based on group SU(2) for M̃ . We may write a point on the sigma

model to M as φiXi, where i = 1, 2, 3 and {Xi} are basis. Equations of motions are

∂2
+−φ

i = 0. Currents may be written as J (L)
+ = (∂+φ

i)Xi and J (R)
− = (∂−φ

i)Xi. We learn

from equations of motions that these currents are conserved.

We denote any element in G̃ as g̃ = eiθ̃
kX̃k , where {θ̃k} = (θ̃1, θ̃2, θ̃3) and {X̃k} =

(−iσ1
2
,−iσ2

2
,−iσ3

2
) is a basis for the Lie algebra of SU(2). Structure constants are εijk.

Equations of motion for the strict WZW model are ∂−(g̃−1∂+g̃) = 0, where g̃−1dg̃ =

(g̃−1dg̃)kX̃k. Currents for the Lie algebra are J̃ (L)
+ = (g̃−1∂+g̃)kX̃k and J̃ (R)

− = [(∂−g̃)g̃−1]kX̃k.

Again equations of motion ensure that these currents are conserved.

We first solve the ordinary differential equation for T to find the pseudodual currents.

Multiplying (2.1.3) by T jn from right we get

∂+T
i
n = −f̃ ikjT kl T jn∂+φ

l (2.1.4)

We put in an order parameter ε to look for a perturbation solution,

∂+T
i
n = −εf̃ ikjT kl T jn∂+φ

l (2.1.5)

Presumably the solution is in the form T = eεα1e
1
2
ε2α2(I + O(ε3)), where α1 and α2

are antisymmetric matrices. Since we know that T is only a function of σ+, α1 and α2 are
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also functions of σ+. If we expand T

T = I + εα1 +
1

2
ε2(α2 + α2

1) +O(ε3) (2.1.6)

then taking ∂+ we end up with

∂+T = ε∂+α1 +
1

2
ε2[α1(∂+α1) + (∂+α1)α1 + ∂+α2] +O(ε3) (2.1.7)

If we compare (2.1.5) to (2.1.7), the latter may be written in tensor product form as

∂+T = −εf̃ ⊗ (T∂+φ)⊗ T = −εf̃ ⊗ [(I + εα1)∂+φ]⊗ (I + εα1)

= −εf̃ ⊗ ∂+φ⊗ I − ε2f̃ ⊗ α1∂+φ⊗ I − ε2f̃ ⊗ ∂+φ⊗ α1 (2.1.8)

Therefore we find

∂+α1 = −f̃ ⊗ ∂+φ⊗ I (2.1.9)

1

2
[∂+α2 + α1(∂+α1) + (∂+α1)α1] = −f̃ ⊗ α1∂+φ⊗ I − f̃ ⊗ ∂+φ⊗ α1 (2.1.10)

Solving (2.1.9) we get α1 as follows

(α1)in = −
∫ σ+

0

f̃ ikn∂+φ
k dσ′+ = −f̃ ikn(φk + Ck) (2.1.11)

where Ck is a constant, and we choose it to be zero. Since α1 is a function of σ+ only,

φk in the expression of α1 should involve σ+, not σ−. From this we understand that we

need to separate φ as right moving wave φR(σ−) and left moving wave φL(σ+), i.e. φ =
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φL(σ+) + φR(σ−). Hence (α1)in = −f̃ iknφkL, from which we find

α1 =


0 φ3

L − φ2
L

− φ3
L 0 φ1

L

φ2
L − φ1

L 0

 (2.1.12)

Solving (2.1.10) we obtain

(α2)in = −
∫ σ+

0

(α1∂+α1)in dσ
′+ −

∫ σ+

0

[(∂+α1)α1]in dσ
′+

− 2

∫ σ+

0

f̃ ikn(α1)kl ∂+φ
l
L dσ

′+ − 2

∫ σ+

0

f̃ imr∂+φ
m
L (α1)rn dσ

′+

= −
∫ σ+

0

(φiL∂+φ
n
L − φnL∂+φ

i
L) dσ′+ (2.1.13)

which gives us the following entries of α2 with the help of (2.1.12)

(α2)1
1 = 0

(α2)1
2 =

∫ σ+

0

[φ2
L(∂+φ

1
L)− φ1

L(∂+φ
2
L)] dσ′+

(α2)1
3 =

∫ σ+

0

[φ3
L(∂+φ

1
L)− φ1

L(∂+φ
3
L)] dσ′+

(α2)2
1 =

∫ σ+

0

[φ1
L(∂+φ

2
L)− φ2

L(∂+φ
1
L)] dσ′+

(α2)2
2 = 0

(α2)2
3 =

∫ σ+

0

[φ3
L(∂+φ

2
L)− φ2

L(∂+φ
3
L)] dσ′+

(α2)3
1 =

∫ σ+

0

[φ1
L(∂+φ

3
L)− φ3

L(∂+φ
1
L)] dσ′+

(α2)3
2 =

∫ σ+

0

[φ2
L(∂+φ

3
L)− φ3

L(∂+φ
2
L)] dσ′+

(α2)3
3 = 0
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Plugging α1 and α2 into T and setting ε = 1 gives us

T ij = δij + (α1)ij +
1

2
[(α2)ij + (α2

1)ij] +O(φ3) (2.1.14)

≈ δij − f̃ ikjφkL −
1

2
[

∫ σ+

0

(φiL∂+φ
j
L − φ

j
L∂+φ

i
L) dσ′+ − f̃ ikmf̃mnjφkLφnL]

so the entries of T becomes

T 1
1 = 1− 1

2
[φ2
Lφ

2
L + φ3

Lφ
3
L]

T 1
2 = φ3

L +

∫ σ+

0

φ2
L(∂+φ

1
L) dσ′+

T 1
3 = −φ2

L +

∫ σ+

0

φ3
L(∂+φ

1
L) dσ′+

T 2
1 = −φ3

L +

∫ σ+

0

φ1
L(∂+φ

2
L) dσ′+

T 2
2 = 1− 1

2
[φ1
Lφ

1
L + φ3

Lφ
3
L]

T 2
3 = φ1

L +

∫ σ+

0

φ3
L(∂+φ

2
L) dσ′+

T 3
1 = φ2

L +

∫ σ+

0

φ1
L(∂+φ

3
L) dσ′+

T 3
2 = −φ1

L +

∫ σ+

0

φ2
L(∂+φ

3
L) dσ′+

T 3
3 = 1− 1

2
[φ1
Lφ

1
L + φ2

Lφ
2
L]

We note that T is an orthogonal matrix. The type of the field φ(σ+, σ−) = φL(σ+)+φR(σ−)

puts pseudoduality relations into the forms

(g̃−1∂+g̃)i = +T ij∂+φ
j
L (2.1.15)

(g̃−1∂−g̃)i = −T ij∂−φ
j
R (2.1.16)
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We note that equation (2.1.15) has an invariance under g̃(σ+, σ−) −→ h(σ−)g̃(σ+, σ−).

From this we can look for solution g̃(σ+, σ−) = g̃R(σ−)g̃L(σ+), so first pseudoduality

relation is reduced to (g̃−1
L ∂+g̃L)i = +T ij∂+φ

j
L. This equation gives us the left current. Next

we have to find g̃R(σ−) using second pseudoduality equation to construct right current.

Plugging g̃(σ+, σ−) = g̃R(σ−)g̃L(σ+) into (2.1.16) and arranging terms we obtain

g̃−1
R (σ−)∂−g̃R(σ−) = −g̃L(σ+)(X̃iT

i
j∂−φ

j
R)g̃−1

L (σ+) (2.1.17)

where {X̃i} are the Lie algebra basis of g̃, and (X̃i)jk = εjik. Since we want to construct

pseudodual currents in the order of φn, we need T (σ+) to the order of φn−1 to get J̃ (L)
+ (σ+)

to the order of φn. From equation (2.1.17) we see that the knowledge of T to O(φn−1) and

g̃L toO(φn−1) allows us to construct g̃R toO(φn), so we can construct J̃ (R)
− (σ−) toO(φn).

First we construct J̃ (L)
+ (σ+) to the order of φ2, so we need T to O(φ)

T ij = δij − f̃ ikjφkL +O(φ2) (2.1.18)

Therefore, using first pseudoduality relation (2.1.15)

J̃
(L)
+ (σ+) = g̃−1

L ∂+g̃L = X̃i∂+φ
i
L − X̃if̃

i
kjφ

k
L∂+φ

j
L (2.1.19)

All we need is g̃L to the order of φ, so we need to solve g̃−1
L ∂+g̃L = X̃i∂+φ

i
L for g̃L(σ+).

Choosing initial condition as g̃L(σ+ = 0) = I , we get

g̃L(σ+) = I + X̃iφ
i
L +O(φ2) (2.1.20)

Its inverse is

g̃−1
L (σ+) = I − X̃iφ

i
L +O(φ2) (2.1.21)
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Plugging these into (2.1.17) we find

g̃−1
R ∂−g̃R = −(I + X̃lφ

l
L)X̃i(δ

i
j − f̃ ikjφkL)∂−φ

j
R(I − X̃kφ

k
L)

= −X̃i∂−φ
i
R +O(φ3) (2.1.22)

We notice that the order of φ2 terms are cancelled, and g̃R is a function of σ− only. We let

g̃R = e−φ
i
RX̃ieξ

kX̃k , where ξ represents O(φ2). Expanding g̃R

g̃R = (I − φiRX̃i +
1

2
φiRφ

j
RX̃iX̃j)(I + ξkX̃k)

= I − φiRX̃i +
1

2
φiRφ

j
RX̃iX̃j + ξkX̃k +O(φ3) (2.1.23)

the inverse g̃−1
R can be found from g̃R = e−ξ

kX̃keφ
i
RX̃i

g̃−1
R = (I − ξkX̃k)(I + φiRX̃i +

1

2
φiRφ

j
RX̃iX̃j)

= I + φiRX̃i +
1

2
φiRφ

j
RX̃iX̃j − ξkX̃k +O(φ3) (2.1.24)

It follows then that equations (2.1.23) and (2.1.24) lead to

g̃−1
R ∂−g̃R = −∂−φiRX̃i + ∂−ξ

kX̃k +O(φ3) (2.1.25)

and comparison with (2.1.22) evaluates ∂−ξk = 0, so ξk is constant and we choose it to be

zero. Therefore, right current can be constructed using (2.1.23) and (2.1.24) as

J̃
(R)
− (σ−) = (∂−g̃R)g̃−1

R = −(∂−φ
i
R)X̃i (2.1.26)

we see that order of φ2 disappears in the expression of right current. If we explicitly

write pseudodual currents on the manifold M up to the order of φ3 using equations (2.1.19)
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and (2.1.26) we get the following

J̃
(L)
+ (σ+) =X̃i[∂+φ

i
L − f̃ ikjφkL∂+φ

j
L −

1

2
[

∫ σ+

0

(φiL∂+φ
j
L − φ

j
L∂+φ

i
L) dσ′+

− f̃ ikmf̃mnjφkLφnL]∂+φ
j
L]

J̃
(R)
− (σ−) = −X̃i(∂−φ

i
R)

Therefore, our currents can be written as

J̃ (µ) = J̃
(µ)
[0] + J̃

(µ)
[1] + J̃

(µ)
[2] +O(φ3) (2.1.27)

where {µ} = (R,L). We can organize all these terms as

J̃ (µ)(φ) =
∞∑
0

J̃
(µ)
[n] (φ) (2.1.28)

It is easy to see that these currents are conserved, i.e. ∂+J̃
(R)
− = ∂−J̃

(L)
+ = 0, by means of

the equations of motion ∂2
+−φ

i = 0. Since each term satisfies ∂+J̃
(R)
[n] = ∂−J̃

(L)
[n] = 0 for all

n separately, we have infinite number of conservation laws for each order of φ as pointed

out in [7].

2.2 Pseudodual Currents : Complicated Case

In this case we consider the pseudoduality between two strict WZW models based on com-

pact Lie groups of dimension n with Ad-invariant metrics. If {Xi} are the orthonormal

basis for the Lie algebra of G with commutation relations [Xi, Xj]G = fkijXk, where fijk

are totally antisymmetric in ijk, and g : Σ → M is the map to the target space, we

may write equations of motion on G as ∂−(g−1∂+g) = 0. Therefore, currents become



19

J
(L)
+ = (g−1∂+g)iXi and J (R)

− = [(∂−g)g−1]iXi. These currents are conserved. We make

similar assumptions for the Lie group G̃. The pseudoduality equations are

(g̃−1∂+g̃)i = +T ij (g
−1∂+g)j (2.2.1)

(g̃−1∂−g̃)i = −T ij (g−1∂−g)j (2.2.2)

where T is an orthogonal matrix. Taking ∂− of the first equation (2.2.1) we learn that T

is a function of σ+ only. Taking ∂+ of the second equation (2.2.2) we get the differential

equation for T

[(∂+T )T−1]ij = −f̃ ikjT lk(g−1∂+g)l + fkmlT
i
kT

j
l (g−1∂+g)m (2.2.3)

We follow the same method as we did in the previous part to find pseudodual currents.

We first solve differential equation (2.2.3) for T , then replace this into the pseudoduality

relations, and finally build pseudodual currents. We will see that these currents are con-

served.

2.2.1 An Example

To illustrate all these steps in an example, we consider a strict WZW model based on Lie

group SU(2) for G, and a sigma model based on abelian group U(1) × U(1) × U(1) for

G̃. Using the map g : Σ → G, we may represent any element in G by g = eiφ
kXk , where

{φk} = (φ1, φ2, φ3) are commuting fields and {Xk} are the orthonormal basis for the Lie

algebra of G, and {Xk} = (− i
2
σ1,− i

2
σ2,− i

2
σ3) for the case of SU(2). Structure constants

are εijk, and commutation relations are the familiar form of Pauli matrices, [−iσi
2
,−iσj

2
] =

εkij(−iσk2 ). Equations of motion are ∂−(g−1∂+g) = 0. Nonlocal currents for the Lie algebra

of SU(2) are J (L)
+ = (g−1∂+g)kXk and J

(R)
− = [(∂−g)g−1]kXk. We want to construct
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currents up to the order of φ2. If we consider infinitesimal coefficients {φk}, keeping up to

second orders we may expand g as

g = 1 + iφkXk −
1

2
(φkφl)(XkXl) + ... (2.2.4)

Since we are looking for J (L)
+ and J (R)

− up to the order of φ2, we need g to the order of φ,

hence

g = 1 + iφkXk (2.2.5)

g−1 = 1− iφkXk (2.2.6)

To this order the solution to equations of motion ∂−(g−1∂+g) = 0 is g = gR(σ−)gL(σ+),

which leads to φ(σ+, σ−) = φR(σ−) + φL(σ+). Thus equation (2.2.5) can be written as

gL = 1 + iφkLXk (2.2.7)

gR = 1 + iφkRXk (2.2.8)

and hence left and right currents can readily be obtained as

J
(L)
+ = g−1

L ∂+gL = i∂+φ
m
LXm +

1

2
fmkl φ

k
L∂+φ

l
LXm (2.2.9)

J
(R)
− = (∂−gR)g−1

R = i∂−φ
m
RXm +

1

2
fmkl φ

l
R∂−φ

k
RXm (2.2.10)

Therefore, we conclude that ∂−J
(L)
+ = ∂+J

(R)
− = 0, i.e, currents are conserved on G. We

first solve equation (2.2.3) to figure out the pseudodual currents. Since f̃ ikj = 0, we have

[(∂+T )T−1]ij = fkmlT
i
kT

j
l (g−1

L ∂+gL)m (2.2.11)
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this may be reduced to

[(∂+T )]in = fkmnT
i
k(g
−1
L ∂+gL)m (2.2.12)

and putting in an order parameter ε we get

[(∂+T )]in = εfkmnT
i
k(g
−1
L ∂+gL)m (2.2.13)

We adapt to an exponential solution T = eεα1e
1
2
ε2α2(I + O(ε3)), where α1 and α2 are

antisymmmetric matrices, and expanding this solution we get

T = I + εα1 +
1

2
ε2(α2 + α2

1) +O(ε3) (2.2.14)

taking ∂+ of T leads to

∂+T = ε∂+α1 +
1

2
ε2[α1(∂+α1) + (∂+α1)α1 + ∂+α2] +O(ε3) (2.2.15)

expressing (2.2.13) in tensor product form

∂+T = εf(g−1
L ∂+gL)⊗ T = εf(g−1

L ∂+gL)⊗ (I + εα1)

= εf(g−1
L ∂+gL) + ε2f(g−1

L ∂+gL)⊗ α1 (2.2.16)

and comparing this with (2.2.15) we obtain α1

(α1)in =

∫ σ+

0

f imn(g−1
L ∂+gL)mdσ′+ (2.2.17)

= if imnφ
m
L +

1

2
f imnf

m
kl

∫ σ+

0

φkL∂+φ
l
L dσ

′+

= iεimnφ
m
L +

1

2

∫ σ+

0

(φnL∂+φ
i
L − φiL∂+φ

n
L) dσ′+
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this expression leads to the following entries

(α1)1
1 = 0

(α1)1
2 = −iφ3

L −
1

2

∫ σ+

0

[φ1
L(∂+φ

2
L)− φ2

L(∂+φ
1
L)] dσ′+

(α1)1
3 = iφ2

L +
1

2

∫ σ+

0

[φ3
L(∂+φ

1
L)− φ1

L(∂+φ
3
L)] dσ′+

(α1)2
1 = iφ3

L +
1

2

∫ σ+

0

[φ1
L(∂+φ

2
L)− φ2

L(∂+φ
1
L)] dσ′+

(α1)2
2 = 0

(α1)2
3 = −iφ1

L −
1

2

∫ σ+

0

[φ2
L(∂+φ

3
L)− φ3

L(∂+φ
2
L)] dσ′+

(α1)3
1 = −iφ2

L −
1

2

∫ σ+

0

[φ3
L(∂+φ

1
L)− φ1

L(∂+φ
3
L)] dσ′+

(α1)3
2 = iφ1

L +
1

2

∫ σ+

0

[φ2
L(∂+φ

3
L)− φ3

L(∂+φ
2
L)] dσ′+

(α1)3
3 = 0

and

∂+α2 = 2f(g−1
L ∂+gL)⊗ α1 − [α1(∂+α1) + (∂+α1)α1] (2.2.18)

Hence, α2 is obtained as

(α2)in =

∫ σ+

0

(φiL∂+φ
n
L − φnL∂+φ

i
L) dσ′+ (2.2.19)

We see that this is equivalent to (2.1.13), and entries are the same as the negative of above

results. Therefore, we can find T by means of (2.2.17) and (2.2.19), and setting ε = 1

T in = δin + iεimnφ
m
L +

1

2
(δinφ

m
L φ

m
L − φnLφiL) (2.2.20)
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Again we note that T is an orthogonal matrix. Now using pseudoduality equations (2.2.1)

and (2.2.2)

∂+φ̃L
i

= +T ij (g
−1∂+g)j = +T ij (g

−1
L ∂+gL)j (2.2.21)

∂−φ̃R
i

= −T ij (g−1∂−g)j = −T ij (g−1
L g−1

R (∂−gR)gL)j (2.2.22)

since we are trying to find ∂+φ̃L
i

and ∂−φ̃R
i

up to the order of φ2, we need T to the order

of φ, hence using

T in = δij + iεimjφ
m
L +O(φ2) (2.2.23)

we may find

∂+φ̃L
i

= T ij (g
−1
L ∂+gL)j

= [δij + iεimjφ
m
L ][i∂+φ

j
L +

1

2
εjklφ

k
L∂+φ

l
L]

= i∂+φ
i
L −

1

2
εiklφ

k
L∂+φ

l
L +O(φ3) (2.2.24)

∂−φ̃R
i

= −T ij (g−1∂−g)j = −T ij [g−1
L (g−1

R ∂−gR)gL]j

= −[δij + iεimjφ
m
L ][(1− iφkLXk)(1− φkRXk)(i∂−φ

k
RXk −

1

2
φmR∂−φ

l
RXlXm

− 1

2
φlR∂−φ

m
RXlXm)(1 + iφkLXk)]

j

= −[δij + iεimjφ
m
L ][i∂−φ

j
R + εjmnφ

m
L ∂−φ

n
R +

1

2
εjlmφ

l
R∂−φ

m
R ]

= −i∂−φiR −
1

2
εilmφ

l
R∂−φ

m
R (2.2.25)

We see that these are free scalar currents on the tangent bundle to the pseudodual manifold

G̃. Since ∂+φ̃L
i

depends only on σ+, and ∂−φ̃R
i

only on σ−, these pseudodual free scalar

currents are conserved provided that equations of motion for free scalar fields hold. We go

back to equations of motion to see that these pseudodual tangent bundle components take
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us to pseudodual conserved currents. Equations of motion, ∂−(g−1∂+g)i = 0, imply that

∂2
+−φ

i = 0. Obviously we find out the pseudodual conservation laws ∂2
±∓φ̃

i = 0 in all

φ-orders using these conditions.

2.3 Conclusion

We observed that nonlinear character of WZW models results in an infinite number of

terms in the mapping T , which in turn leads to construct infinite number of nonlocal cur-

rents in pseudodual manifold. Calculations were motivated by the fact that sigma models

have Lie group structures, and T ∈ SO(n). Hence structure of Lie groups together with

perturbation calculations reflects the nonlinear characteristic of sigma models. It is obvious

that pseudoduality transformation leads to the pseudodual conserved currents in our cases

where one model based on an abelian group U(1)×U(1)×U(1) in two cases we discussed.

However, One can consider general Lie group valued fields for both models, and see that

this would also yield conserved currents on pseudodual model. We considered three di-

mensional models for simplicity but this can be extended to any dimension. Calculation

of these currents gives us curvatures by means of Cartan structural equations (1.1.5) and

(1.1.6), where wi = J i and wij = 1
2
f ikjJ

k is the antisymmetric connection, and J stands for

both J (L)
+ and J (R)

− . These currents form an orthonormal frame on pullback bundle g∗(TG)

1. Since we considered abelian models, and hence obtained scalar currents, it is easily

noted that curvatures are zero. In general case where sigma models based on general Lie

groups, curvatures will be constant and opposite. This shows that sigma models are based

on symmetric spaces as pointed out in [2]. The calculations and results of this section can

be applied to pseudoduality relations between symmetric space sigma models to construct

nonlocal currents and curvatures relations. We will discuss this in the next section.

1TG is the tangent bundle of G, i.e. TG = G× g.



Chapter 3

Pseudoduality Between Symmetric
Space Sigma Models

In this section we present the general solution of the pseudoduality equations (2.2.1) and

(2.2.2) between two symmetric space sigma models, and construct the pseudodual currents

by means of these equations. We will do our calculations regardingG as a symmetric space

G × G/G, and then extend our construction using Cartan’s decomposition of symmetric

spaces. We will use the references [18, 19, 20, 21] for the symmetric space construction,

and utilize the literature [15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] on various

applications to sigma models. Since we defined pseudoduality on spacetime coordinates,

and we said above that pseudoduality is best done on the orthonormal coframes bundle

SO(M), we leave this construction to later. In this section we will do our calculations

on the pullback bundle of target space M . Hence pulling structures back to spacetime is

implicit, and not emphasized. We will see that this construction will give us complicated

expressions for T as opposed to the simplified form (identity) on SO(M).

25
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3.1 Pseudoduality Between WZW Models : H = I

We consider a strict WZW sigma model based on a compact Lie group of dimension n.

Lagrangian [11, 24, 31, 32, 33] for this model is defined by

L =
1

2
Tr(g−1∂µgg

−1∂µg) + Γ (3.1.1)

where Γ represents the WZ term, and the field g is given by the map g : Σ → G. We

take Σ to be two dimensional Minkowski space, and σ± = τ ± σ is the standard lightcone

coordinates as above. There is a global continuous symmetry GL × GR which gives us

the conserved currents J (L)
+ = g−1

L ∂+gL and J (R)
− = (∂−gR)g−1

R taking values in the Lie

algebra ofG, and g = gR(σ−)gL(σ+) is the solution giving the invariance of these currents.

The equations of motion following from (3.1.1) correspond to the conservation of these

currents:

∂−(g−1
L ∂+gL) = ∂+[(∂−gR)g−1

R ] = 0 (3.1.2)

Let G̃ be compact Lie group of the same dimension as G, and g̃ : Σ → G̃. Equations

of motion are given by

∂−(g̃L
−1∂+g̃L) = ∂+[(∂−g̃R)g̃R

−1] = 0 (3.1.3)

Solutions of equations of motion for both models can be combined in pseudoduality

equations (2.2.1) and (2.2.2) as

(g̃−1∂+g̃)i = T ij (g
−1∂+g)j (3.1.4)

(g̃−1∂−g̃)i = −T ij (g−1∂−g)j (3.1.5)

where T is an orthogonal matrix connecting target space elements g−1dg and g̃−1dg̃.
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Taking ∂− of first equation (3.1.4) with the help of equations of motions (3.1.2) and

(3.1.3) shows that T is a function of σ+ only. Taking ∂+ of second equation (3.1.5) gives

us the following differential equation

[(∂+T )T−1]ij = fkmlT
i
kT

j
l (g−1

L ∂+gL)m − f̃ ikjT kl (g−1
L ∂+gL)l (3.1.6)

We suggest an exponential solution 1 T = eX , and use the result [16, 18, 22]

(∂+T )T−1 = −1− eadX

adX
∂+X =

∞∑
n=0

1

(n+ 1)!
[X, ..., [X, ∂+X]] (3.1.7)

where adX : g → g, the adjoint representation of X, and adX(Y ) = [X, Y ] ∀Y ε g. We

let X → εX and look for a perturbation solution, and hence the left-hand side of equation

(3.1.6) is

[(∂+T )T−1]ij = ε(∂+X)ij +
ε2

2
[X, ∂+X]ij +

ε3

3!
[X, [X, ∂+X]] + ... (3.1.8)

We insert an order parameter ε to the right-hand side of (3.1.6), and get

[(∂+T )T−1]ij =εfkmlT
i
kT

j
l (g−1

L ∂+gL)m − εf̃ ikjT kl (g−1
L ∂+gL)l (3.1.9)

=εfkml(1 + εX)ik(1 + εX)jl (g
−1
L ∂+gL)m − εf̃ ikj(1 + εX)kl (g

−1
L ∂+gL)m

=εf imj(g
−1
L ∂+gL)m − εf̃ ikj(g−1

L ∂+gL)k + ε2f imlX
j
l (g
−1
L ∂+gL)m

+ ε2fkmjX
i
k(g
−1
L ∂+gL)m − ε2f̃ ikjX

k
l (g−1

L ∂+gL)l +O(ε3)

Comparing (3.1.8) and (3.1.9) in the first order of ε gives us

(∂+X)ij = (f ikj − f̃ ikj)(g−1
L ∂+gL)k (3.1.10)

1We notice that X ∈ so(n), lie algebra of SO(n)
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This leads to the solution

X i
j = X(0)ij + (f ikj − f̃ ikj)

∫ σ+

0

(g−1
L ∂+gL)kdσ′+ (3.1.11)

Hence the matrix T may be written as

T ij = δij +X(0)ij + (f ikj − f̃ ikj)
∫ σ+

0

(g−1
L ∂+gL)kdσ′+ (3.1.12)

We see that if both sigma models based on the same groups, i.e G = G̃, target space

of transformed model will be globally shifted as determined by the tangent space of unit

element of T . We set X(0)ij equal to zero.

Now we plug this in the pseudoduality equations (3.1.4) and (3.1.5) to find fields

g̃−1∂+g̃ and g̃−1∂−g̃ which lead us to construct the pseudodual currents. We switch from

Lie group-valued fields to the lie algebra-valued fields, and we let 2 g = eY and g̃ = eỸ .

Using the result [16, 18, 22]

e−X∂µe
X =

1− e−adX

adX
∂µX =

∞∑
k=0

(−1)k

(k + 1)!
[X, ..., [X, ∂µX]] (3.1.13)

we can write the following

g−1
L ∂+gL = ∂+YL −

1

2!
[YL, ∂+YL] +

1

3!
[YL, [YL, ∂+YL]] + ... (3.1.14)

g−1∂−g =∂−YR − [YL, ∂−YR]− 1

2
[YR, ∂−YR] +

1

2
[YL, [YR, ∂−YR]] (3.1.15)

+
1

2
[YL, [YL, ∂−YR]] +

1

6
[YR, [YR, ∂−YR]]...

2Y is the lie algebra of g, Y ∈ g.
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and the equations of motion for the left and right currents will be

∂−(g−1
L ∂+gL) = ∂2

+−YL −
1

2!
∂−[YL, ∂+YL] +

1

3!
∂−[YL, [YL, ∂+YL]] + ... = 0 (3.1.16)

∂+[(∂−gR)g−1
R ] = ∂2

+−YR +
1

2!
∂+[YR, ∂−YR] +

1

3!
∂+[YR, [YR, ∂−YR]] + ... = 0 (3.1.17)

where gL/R = eYL/R , and we used equation (3.1.7). We may write similar equations with

tilde (˜). Hence transformation matrix T (3.1.12) will be

T ij = δij + (f ikj − f̃ ikj)Y k
L −

1

2!
(f ikj − f̃ ikj)

∫ σ+

0

[YL, ∂+YL]kdσ′+ (3.1.18)

We impose a solution Y =
∑∞

n=1 ε
nyn to determine the nonlinear parts of the equations

(3.1.14) and (3.1.15) in terms of ε, where ε is a small parameter. Thus transformation

matrix (3.1.18) becomes

T ij = δij+ε(f
i
kj−f̃ ikj)ykL1+ε2(f ikj−f̃ ikj)[ykL2−

1

2

∫ σ+

0

[yL1, ∂+yL1]kdσ′+]+O(ε3) (3.1.19)

and we have the following expressions for (3.1.14) and (3.1.15)

g−1
L ∂+gL = ε∂+yL1 + ε2(∂+yL2 −

1

2
[yL1, ∂+yL1]) (3.1.20)

+ ε3(∂+yL3 −
1

2
[yL1, ∂+yL2]− 1

2
[yL2, ∂+yL1] +

1

6
[yL1, [yL1, ∂+yL1]]) +O(ε4)

g−1∂−g = ε∂−yR1 + ε2(∂−yR2 − [yL1, ∂−yR1]− 1

2
[yR1, ∂−yR1]) (3.1.21)

+ ε3(∂−yR3 − [yL2, ∂−yR1]− [yL1, ∂−yR2]− 1

2
[yR2, ∂−yR1]− 1

2
[yR1, ∂−yR2]

+
1

2
[yL1, [yR1, ∂−yR1]] +

1

2
[yL1, [yL1, ∂−yR1]]) +H.O(ε)
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Therefore first pseudoduality equation (3.1.4) can be split into infinite number of equations,

determined by each order of ε as follows,

(1.i) ∂+ỹ
i
L1 = ∂+y

i
L1 (3.1.22)

(1.ii) ∂+ỹ
i
L2 +

1

2
[ỹL1, ∂+ỹL1]i

G̃
= ∂+y

i
L2 +

1

2
[yL1, ∂+yL1]iG

(1.iii) ∂+ỹ
i
3 −

1

2
[ỹ1, ∂+ỹ2]i

G̃
− 1

2
[ỹ2, ∂+ỹ1]i

G̃
+

1

6
[ỹ1, [ỹ1, ∂+ỹ1]G̃]i

G̃
= ∂+y

i
3

+
1

2
[y1, ∂+y2]iG +

1

2
[y2, ∂+y1]iG − [y1, ∂+y2]i

G̃
− [y2, ∂+y1]i

G̃
− 1

3
[y1, [y1, ∂+y1]G]iG

+
1

2
[y1, [y1, ∂+y1]G]i

G̃
− 1

2
[

∫ σ+

0

[y1, ∂+y1]G dσ
′+, ∂+y1]iG +

1

2
[

∫ σ+

0

[y1, ∂+y1]G dσ
′+, ∂+y1]i

G̃

· · ·

where we used subindex G (G̃) to represent commutation relations for the sigma model

based on Lie group G (G̃). (1.i) gives ỹL1 = yL1 +CL1, where CL1 is a constant, and we set

it equal to zero, and leads to (1.ii). Likewise second pseudoduality equation (3.1.5) gives

the following infinite set of equations

(2.i) ∂−ỹ
i
R1 = −∂−yiR1 (3.1.23)

(2.ii) ∂−ỹ
i
R2 −

1

2
[ỹR1, ∂−ỹR1]i

G̃
= −∂−yiR2 +

1

2
[yR1, ∂−yR1]iG

(2.iii) · · ·

where we used (2.i) and (1.i) in (2.ii), and (2.i) leads to ỹR1 = −yR1 + CR1, CR1 is a

constant which is set to zero. We notice the fact that (3.1.22) only depends on σ+, and
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(3.1.23) on σ− point out pseudodual conserved currents, which can be written as follows

J̃L+(σ+) = g̃−1∂+g̃ =
∞∑
n=1

εnJ̃
L[n]
+ (σ+) (3.1.24)

J̃R− (σ−) = (∂−g̃)g̃−1 =
∞∑
n=1

εnJ̃
R[n]
− (σ−) (3.1.25)

where each component is determined by the orders of ε’s, which are given by expression

(3.1.20) (with tilde). The nonlocal expressions of currents are determined with the help of

(3.1.22) and (3.1.23)

J̃
L[1]
+ (σ+) = ∂+ỹ

i
L1 = ∂+y

i
L1 (3.1.26)

J̃
L[2]
+ (σ+) = ∂+ỹL2−

1

2
[ỹL1, ∂+ỹL1]G̃ = ∂+y

i
L2 +

1

2
[yL1, ∂+yL1]iG− [yL1, ∂+yL1]G̃ (3.1.27)

· · ·

J̃
R[1]
− (σ−) = ∂−ỹ

i
R1 = −∂−yiR1 (3.1.28)

J̃
R[2]
− (σ−) = ∂−ỹR2 +

1

2
[ỹR1, ∂−ỹR1]G̃ = −∂−yiR2 +

1

2
[yR1, ∂−yR1]iG + [yR1, ∂−yR1]G̃

(3.1.29)

· · ·

We see that these currents are conserved, ∂−J̃L+ = ∂+J̃
R
− = 0. It is observed that

pseudodual currents are expressed as a nonlocal function of lie algebra valued fields on g.

As a result we obtained a family of nonlocal conserved currents on the WZW model on G.

This family is a consequence of infinite set of terms of T which is a function of lie algebra

valued fields g.
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3.1.1 An Example

We consider sigma models based on Lie groups G = SO(n + 1) and G̃ = SO(n, 1). The

corresponding lie algebra are given by

so(n + 1) =

 a b

−bt c

 so(n, 1) =

 ã b̃

b̃t c̃


a = ã = n× n

b = b̃ = n× 1

c = c̃ = 1× 1

(3.1.30)

Let g = eY and g̃ = eỸ , and fields g−1
L ∂+gL and g̃L−1∂+g̃L are given by (3.1.14). We

get the following expressions

YL =

 aL bL

−btL cL

 ∂+YL =

 ∂+aL ∂+bL

−∂+b
t
L ∂+cL



ỸL =

 ãL b̃L

b̃L
t
c̃L

 ∂+ỸL =

∂+ãL ∂+b̃L

∂+b̃L
t
∂+c̃L


[YL, ∂+YL] =

(
0 aL∂+bL+bL∂+cL−(∂+aL)bL−(∂+bL)cL

−btL(∂+aL)−cL(∂+btL)+(∂+btL)aL+(∂+cL)btL 0

)
[ỸL, ∂+ỸL] =

(
0 ãL∂+b̃L+b̃L∂+c̃L−(∂+ãL)b̃L−(∂+b̃L)c̃L

b̃tL(∂+ãL)+c̃L(∂+b̃tL)−(∂+b̃tL)ãL−(∂+c̃L)b̃tL 0

)
Hence up to the second order terms we get the expressions for the fields on the target

space elements

g−1
L ∂+gL =

X1 X2

X3 X4

+H.O g̃L
−1∂+g̃L =

X̃1 X̃2

X̃3 X̃4

+H.O (3.1.31)
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where we defined the following

X1 = ∂+aL X̃1 = ∂+ãL X4 = ∂+cL X̃4 = ∂+c̃L

X2 = ∂+bL −
aL∂+bL + bL∂+cL − (∂+aL)bL − (∂+bL)cL

2

X̃2 = ∂+b̃L −
ãL∂+b̃L + b̃L∂+c̃L − (∂+ãL)b̃L − (∂+b̃L)c̃L

2

X3 = −∂+b
t
L −
−btL(∂+aL)− cL(∂+b

t
L) + (∂+b

t
L)aL + (∂+cL)btL

2

X̃3 = ∂+b̃
t
L −

b̃tL(∂+ãL) + c̃L(∂+b̃
t
L)− (∂+b̃

t
L)ãL − (∂+c̃L)b̃tL

2

Likewise we get the following expressions related to fields g−1∂−g and g̃−1∂−g̃ using

(3.1.15)

[YL, ∂−YR] =
(

0 aL∂−bR+bL∂−cR−(∂−aR)bL−(∂−bR)cL
−btL(∂−aR)−cL(∂−btR)+(∂−btR)aL+(∂−cR)btL 0

)

[YR, ∂−YR] =
(

0 aR∂−bR+bR∂−cR−(∂−aR)bR−(∂−bR)cR
−btR(∂−aR)−cR(∂−btR)+(∂−btR)aR+(∂−cR)btR 0

)
[ỸL, ∂−ỸR] =

(
0 ãL∂−b̃R+b̃L∂−c̃R−(∂−ãR)b̃L−(∂−b̃R)c̃L

b̃tL(∂−ãR)+c̃L(∂−b̃tR)−(∂−b̃tR)ãL−(∂−c̃R)b̃tL 0

)
[ỸR, ∂−ỸR] =

(
0 ãR∂−b̃R+b̃R∂−c̃R−(∂−ãR)b̃R−(∂−b̃R)c̃R

b̃tR(∂−ãR)+c̃R(∂−b̃tR)−(∂−b̃tR)ãR−(∂−c̃R)b̃tR 0

)

g−1∂−g =

Z1 Z2

Z3 Z4

+H.O g̃−1∂−g̃ =

Z̃1 Z̃2

Z̃3 Z̃4

+H.O (3.1.32)

Z1 = ∂−aR Z̃1 = ∂−ãR Z4 = ∂−cR Z̃4 = ∂−c̃R

Z2 = ∂−bR − (aL +
aR
2

)∂−bR − (bL +
bR
2

)∂−cR + (∂−aR)(bL +
bR
2

) + (∂−bR)(cL +
cR
2

)

Z̃2 = ∂−b̃R − (ãL +
ãR
2

)∂−b̃R − (b̃L +
b̃R
2

)∂−c̃R + (∂−ãR)(b̃L +
b̃R
2

) + (∂−b̃R)(c̃L +
c̃R
2

)
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Z3 = −∂−btR + (btL +
btR
2

)∂−aR + (cL +
cR
2

)∂−b
t
R− (∂−b

t
R)(aL +

aR
2

)− (∂−cR)(btL +
btR
2

)

Z̃3 = ∂−b̃
t
R − (b̃tL +

b̃tR
2

)∂−ãR − (c̃L +
c̃R
2

)∂−b̃
t
R + (∂−b̃

t
R)(ãL +

ãR
2

) + (∂−c̃R)(b̃tL +
b̃tR
2

)

Obviously equations of motion are satisfied. Since we want to reduce constraints on the

conservation laws and bring the nonlinear characters of conserved currents into the open

we let e =
∑∞

n=1 ε
nen, where e stands for the matrix components a, b and c. We may

find solutions in the orders of ε’s. But we need to find transformation matrix T first and

foremost.

Trivial Case: T = I

Let us consider first a trivial solution where transformation matrix is identity. Pseudoduality

equations will be

(g̃L
−1∂+g̃L)i = (g−1

L ∂+gL)i (3.1.33)

(g̃−1∂−g̃)i = −(g−1∂−g)i (3.1.34)

Using (3.1.31) the first equation (3.1.33) leads to

∂+ãL1 = ∂+aL1 ∂+ãL2 = ∂+aL2

∂+c̃L1 = ∂+cL1 ∂+c̃L2 = ∂+cL2

∂+b̃L1 = ∂+bL1 ∂+b̃
t
L1 = −∂+b

t
L1

∂+
˜bL2 = ∂+bL2 + 1

2
[AL1(∂+bL1) +BL1(∂+cL1)− (∂+aL1)BL1 − (∂+bL1)CL1]

∂+b̃
t
L2 = −∂+b

t
L2 − 1

2
[Bt

L1(∂+aL1) + CL1(∂+b
t
L1)− (∂+b

t
L1)AL1 − (∂+cL1)Bt

L1]
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where we used the solutions of first six equations in the last two lines as follows

ãL1 = aL1 + AL1 ãL2 = aL2 + AL2

c̃L1 = cL1 + CL1 c̃L2 = cL2 + CL2

b̃L1 = bL1 +BL1 b̃tL1 = −btL1 −Bt
L1

˜bL2 = bL2 + 1
2
(AL1bL1 +BL1cL1 − aL1BL1 − bL1CL1) +BL2

b̃tL2 = −btL2 − 1
2
(Bt

L1aL1 + CL1(∂+b
t
L1)− (∂+bL1)AL1 − cL1B

t
L1)−Bt

L2

where AL1, AL2, BL1, BL2, CL1 and CL2 are constants. Therefore pseudodual left current

(3.1.31) up to the order of ε2 in nonlocal expressions is

g̃−1
L ∂+g̃L =

 M̃1 M̃2

M̃3 M̃4

+H.O (3.1.35)

where we defined the following symbols for the entries of matrix

M̃1 = ε∂+ãL1 + ε2∂+ãL2 = ε∂+aL1 + ε2∂+aL2

M̃4 = ε∂+c̃L1 + ε2∂+c̃L2 = ε∂+cL1 + ε2∂+cL2

M̃2 = ε∂+b̃L1 + ε2[∂+b̃L2 −
1

2
(ãL1∂+b̃L1 + b̃L1∂+c̃L1 − (∂+ãL1)b̃L1 − (∂+b̃L1)c̃L1)]

= ε∂+bL1 + ε2[∂+bL2 −
1

2
[aL1(∂+bL1) + bL1(∂+cL1)− (∂+aL1)bL1 − (∂+bL1)cL1]]

M̃3 = ε∂+b̃
t
L1 + ε2[∂+b̃

t
L2 −

1

2
[b̃tL1(∂+ãL1) + c̃L1(∂+b̃

t
L1)− (∂+b̃

t
L1)ãL1 − (∂+c̃L1)b̃tL1]]

= −ε∂+b
t
L1 − ε2[∂+b

t
L2 −

1

2
[btL1(∂+aL1) + cL1(∂+b

t
L1)− (∂+b

t
L1)aL1 − (∂+cL1)btL1]]
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Obviously this current is conserved. To find right current we use 2nd pseudoduality equa-

tion (3.1.34) and we find the following expressions up to the order of ε2

∂−ãR1 = −∂−aR1 ∂−ãR2 = −∂−aR2

∂−c̃R1 = −∂−cR1 ∂−c̃R2 = −∂−cR2

∂−b̃R1 = −∂−bR1 ∂−b̃
t
R1 = ∂−b

t
R1

∂− ˜bR2 = −∂−bR2 + (aR1 − AL1 + AR1

2
)(∂−bR1) + (bR1 −BL1 + BR1

2
)(∂−cR1)

−(∂−aR1)(bR1 −BL1 + BR1

2
)− (∂−bR1)(cR1 − CL1 + CR1

2
)

∂−b̃
t
R2 = ∂−b

t
R2 − (−Bt

L1 + btR1 +
Bt

R1

2
)(∂−aR1)− (−CL1 + cR1 + CR1

2
)(∂−b

t
R1)

+(∂−b
t
R1)(−AL1 + aR1 + AR1

2
) + (∂−cR1)(−Bt

L1 + btR1 +
Bt

R1

2
)

where we used the solution of first six equations in the last two equations as

ãR1 = −aR1 − AR1 ãR2 = −aR2 − AR2

c̃R1 = −cR1 − CR1 c̃R2 = −cR2 − CR2

b̃R1 = −bR1 −BR1 b̃tR1 = btR1 +Bt
R1

whereAR1,AR2,BR1, CR1 andCR2 are constants. A brief computation yields the following

expression for the right current

(∂−g̃R)g̃−1
R =

 Ñ1 Ñ2

Ñ3 Ñ4

+H.O (3.1.36)
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Ñ1 = ε∂−ãR1 + ε2∂−ãR2 = −ε∂−aR1 − ε2∂−aR2

Ñ4 = ε∂−c̃R1 + ε2∂−c̃R2 = −ε∂−cR1 − ε2∂−cR2

Ñ2 = ε∂−b̃R1 + ε2[∂−b̃R2 + 1
2
(ãR1∂−b̃R1 + b̃R1∂−c̃R1 − (∂−ãR1)b̃R1 − (∂−b̃R1)c̃R1)]

= −ε∂−bR1 + ε2[−∂−bR2 + (3
2
aR1 + AR1 − AL1)(∂−bR1) + (3

2
bR1 +BR1 −BL1)(∂−cR1)

−(∂−aR1)(3
2
bR1 +BR1 −BL1)− (∂−bR1)(3

2
cR1 + CR1 − CL1)]

Ñ3 = ε∂−b̃
t
R1 + ε2[∂−b̃

t
R2 + 1

2
[b̃tR1(∂−ãR1) + c̃R1(∂−b̃

t
R1)− (∂−b̃

t
R1)ãR1 − (∂−c̃R1)b̃tR1]]

= ε∂−b
t
R1 + ε2[∂−b

t
R2 − (3

2
btR1 +Bt

R1 −Bt
L1)(∂−aR1)− (3

2
cR1 + CR1 − CL1)(∂−b

t
R1)

+(∂−b
t
R1)(3

2
aR1 + AR1 − AL1) + (∂−cR1)(3

2
btR1 +Bt

R1 −Bt
L1)]

We see that this current is also conserved.

Nontrivial Case: General T

In this case we use the general expression (3.1.19) of transformation matrix T. Pseudod-

uality equations are given by (3.1.4) and (3.1.5), and gave us the equations (3.1.22) and

(3.1.23) which can be written as

∂+ãL1 = ∂+aL1 ∂+b̃L1 = ∂+bL1 ∂+b̃
t
L1 = −∂+b

t
L1 ∂+c̃L1 = ∂+cL1

∂−ãR1 = −∂−aR1 ∂−b̃R1 = −∂−bR1 ∂−b̃
t
R1 = ∂−b

t
R1 ∂−c̃R1 = −∂−cR1

∂+ãL2 = ∂+aL2 ∂+c̃L2 = ∂+cL2 ∂−ãR2 = −∂−aR2 ∂−c̃R2 = −∂−cR2

∂+b̃L2 = ∂+bL2 −
1

2
[AL1(∂+bL1) +BL1(∂+cL1)− (∂+aL1)BL1 − (∂+bL1)CL1]

∂+b̃
t
L2 = −∂+b

t
L2 +

1

2
[Bt

L1(∂+aL1) + CL1(∂+b
t
L1)− (∂+b

t
L1)AL1 − (∂+cL1)Bt

L1]

∂−b̃R2 = −∂−bR2 + (aR1 +
AR1

2
)(∂−bR1) + (bR1 +

BR1

2
)(∂−cR1)

− (∂−aR1)(bR1 +
BR1

2
)− (∂−bR1)(cR1 +

CR1

2
)

∂−b̃
t
R2 = ∂−b

t
R2 − (btR1 +

Bt
R1

2
)(∂−aR1)− (cR1 +

CR1

2
)(∂−b

t
R1)

+ (∂−b
t
R1)(aR1 +

AR1

2
) + (∂−cR1)(btR1 +

Bt
R1

2
)
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where we used the solutions of first three lines for the last four expressions. Solutions of

these equations are

ãL1 = aL1 + AL1 b̃L1 = bL1 +BL1 b̃tL1 = −btL1 −Bt
L1

c̃L1 = cL1 + CL1 ãR1 = −aR1 − AR1 b̃R1 = −bR1 −BR1

b̃tR1 = btR1 +Bt
R1 c̃R1 = −cR1 − CR1 ãL2 = aL2 + AL2

c̃L2 = cL2 + CL2 ãR2 = −aR2 − AR2 c̃R2 = −cR2 − CR2

b̃L2 = bL2 +BL2 −
1

2
[AL1bL1 +BL1cL1 − aL1BL1 − bL1CL1]

b̃tL2 = −btL2 −Bt
L2 +

1

2
[Bt

L1aL1 + CL1b
t
L1 − btL1AL1 − cL1B

t
L1]

where AL1, AR1, BL1, BR1, CL1, CR1, and BL2 are constants. We did not find solutions of

b̃R2 and b̃tR2 because of their complicated forms and no need to use them. Hence pseudodual

left current (3.1.24) will be

J̃
(L)
+ = g̃−1∂+g̃ = ε∂+ỹL1 + ε2{∂+ỹL2 −

1

2
[ỹL1, ∂+ỹL1]G̃}+H.O.

=

 M̃1 M̃2

M̃3 M̃4

+H.O. (3.1.37)



39

where

M̃1 = ε∂+ãL1 + ε2∂+ãL2 = ε∂+aL1 + ε2∂+aL2

M̃4 = ε∂+c̃L1 + ε2∂+c̃L2 = ε∂+cL1 + ε2∂+cL2

M̃2 = ε∂+b̃L1 + ε2[∂+b̃L2 −
1

2
{ãL1(∂+b̃L1) + b̃L1(∂+c̃L1)− (∂+ãL1)b̃L1 − (∂+b̃L1)c̃L1}]

= ε∂+bL1 + ε2[∂+bL2 −
1

2
{aL1(∂+bL1) + bL1(∂+cL1)− (∂+aL1)bL1 − (∂+bL1)cL1}]

M̃3 = ε∂+b̃
t
L1 + ε2[∂+b̃

t
L2 −

1

2
{b̃tL1(∂+ãL1) + c̃L1(∂+b̃

t
L1)− (∂+b̃

t
L1)ãL1 − (∂+c̃L1)b̃tL1}]

= −ε∂+b
t
L1 − ε2[∂+b

t
L2 − (

btL1

2
+Bt

L1)(∂+aL1)− (
cL1

2
+ CL1)(∂+b

t
L1)

+ (∂+b
t
L1)(

aL1

2
+ AL1) + (∂+cL1)(

btL1

2
+Bt

L1)]

Pseudodual right current (3.1.25) can be constructed as follows

J̃
(R)
− = (∂−g̃)g̃−1 = ε∂−ỹR1 + ε2{∂−ỹR2 +

1

2
[ỹR1, ∂−ỹR1]G̃}+H.O.

=

 Ñ1 Ñ2

Ñ3 Ñ4

+H.O. (3.1.38)
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where

Ñ1 = ε∂−ãR1 + ε2∂−ãR2 = −ε∂−aR1 − ε2∂−aR2

Ñ4 = ε∂−c̃R1 + ε2∂−c̃R2 = −ε∂−cR1 − ε2∂−cR2

Ñ2 = ε∂−b̃R1 + ε2{∂−b̃R2 +
1

2
[ãR1(∂−b̃R1) + b̃R1(∂−c̃R1)− (∂−ãR1)b̃R1 − (∂−b̃R1)c̃R1]}

= −ε∂−bR1 − ε2{∂−bR2 − (
3aR1

2
+ AR1)(∂−bR1)− (

3bR1

2
+BR1)(∂−cR1)

+ (∂−aR1)(
3bR1

2
+BR1) + (∂−bR1)(

3cR1

2
+ CR1)}

Ñ3 = ε∂−b̃
t
R1 + ε2{∂−b̃tR2 +

1

2
[b̃tR1(∂−ãR1) + c̃R1(∂−b̃

t
R1)− (∂−b̃

t
R1)ãR1 − (∂−c̃R1)b̃tR1]}

= ε∂−b
t
R1 + ε2{∂−btR2 − (

3btR1

2
+Bt

R1)(∂−aR1)− (
3cR1

2
+ CR1)(∂−b

t
R1)

+ (∂−b
t
R1)(

3aR1

2
+ AR1) + (∂−cR1)(

3btR1

2
+Bt

R1)}

It is apparent that these currents are conserved.

3.2 Cartan Decomposition of Symmetric Spaces

We saw in the above example that symmetric spaces can be decomposed into two pieces,

one piece remains invariant under transformation T though the other piece is transformed in

such a way that it behaves like a new symmetric space. Let π be the projection G −→ M ,

sending each g ∈ G to submersion M . We see that M is symmetric space after invariant

parts of G are eliminated.

Let H be a closed subgroup of a connected Lie group G, and σ be an involutive au-

tomorphism of G such that F0 ⊂ H ⊂ F = Fix(σ). Symmetric space M is the coset

space M = G/H . If g is the Lie algebra of G, h is the Lie algebra of H , and m is the Lie

subspace (not the Lie algebra) of M , then g = m ⊕ h, where h is closed under brackets

while m is Ad(H)-invariant subspace of g, i.e, Adh(m) ⊂ m for all h ∈ H . If X ∈ g, then
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X = Xh + Xm, where Xh ∈ h, and Xm ∈ m. The involutive automorphism dσ is such

that dσ(Xh) = Xh and dσ(Xm) = −Xm. Bracket relations for the symmetric space are

defined by

[h,h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h (3.2.1)

The currents J (L)
+ = g−1∂+g and J (R)

− = (∂−g)g−1 on g can be split into the currents

J
(L)
m = g−1D+g and J (R)

m = (D−g)g−1 on m and J (L)
h = A+ and J (R)

h = gA−g
−1 on h,

where D± is the covariant derivative acting on m, and A± is the gauge field defined on h.

If one defines indices i, j, k, ... for the space elements of g, indices a, b, c, ... for the

space elements of h, and indices α, β, γ, ... for the space elements of m, then (3.2.1) allows

only structure constants fabc, f
α
aβ , fαβa, and faαβ . The other structure constants vanish. This

leads to the following equations of motion,

k+ = g−1D+g =⇒ D−k+ = 0 (3.2.2)

k− = g−1D−g =⇒ D+k− = [k−, A+] + [A−, k+] (3.2.3)

A+ = g−1D
′

+g =⇒ D
′

−A+ = 0 (3.2.4)

A− = g−1D
′

−g =⇒ D
′

+A− = [A−, A+] + [k−, k+] (3.2.5)

where k±(A±) belongs to m(h), and D(D′) is the covariant derivative acting on m(h).

It is natural to write down the Pseudoduality equations (3.1.4) and (3.1.5) in the most

general split form on two spaces m and h as follows

k̃α+ = Tαβ k
β
+ + Tαa A

a
+ Ãa+ = T ab A

b
+ + T aαk

α
+

k̃α− = −Tαβ k
β
− − Tαa Aa− Ãa− = −T ab Ab− − T aαkα−

(3.2.6)
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where

g−1∂+g =

 k+

A+

 on m−space

on h−space
(3.2.7)

g−1∂−g =

 k−

A−

 on m−space

on h−space
(3.2.8)

and

T =

 Tαβ Tαa

T aβ T ab

 on m−space

on h−space
(3.2.9)

Apparently Tαa and T aβ represent the mixing components of the isometry preserving

map T . Before considering this most general pseudoduality relations which lead to mixed

expressions it is worth to analyze pseudoduality equations between pure symmetric spaces

and their counter H-spaces without mixing parts.

3.2.1 Non-Mixing Pseudoduality

We set the mixing components Tαa and T aβ in equation (3.2.6) equal to zero, and consider

the pseudoduality equations on m and h-spaces as follows

k̃α± = ±Tαβ k
β
± (3.2.10)

Ãa± = ±T ab Ab± (3.2.11)

When we take D− of (3.2.10), and D′− of (3.2.11) (‘+’ equations only) followed by the

equations of motion (3.2.2) and (3.2.4) we obtain the result that both Tαβ and T ab depend
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only on σ+. Now let us take D+ of ‘−’ equation in (3.2.10), and use (3.2.3) to get

[k̃−, Ã+]α + [Ã−, k̃+]α = −(D+T
α
β )kβ− − Tαβ [k−, A+]β − Tαβ [A−, k+]β (3.2.12)

Since k− and A− can be treated independently, this equation can be split into the following

equations

f̃αβak̃
β
+T

a
c = Tαβ f

β
λck

λ
+ (3.2.13)

f̃αaβÃ
a
+T

β
λ = −D+T

α
λ + Tαβ f

β
aλA

a
+ (3.2.14)

First equation (3.2.13) gives us a relation between structure constants, f̃αβaT
β
λ T

a
c = Tαβ f

β
λc,

which leads second equation to yield D+T
α
λ = 0. Therefore we conclude that Tαβ has to

be a constant, and we choose it to be identity. Similarly we take D′+ of ‘−’ equation in

(3.2.11), and use (3.2.5) to get

[Ã−, Ã+]a + [k̃−, k̃+]a = −(D
′

+T
a
b )Ab− − T ab [A−, A+]b − T ab [k−, k+]b (3.2.15)

This equation yields the following results

f̃aαβk̃
α
+T

β
λ = T ab f

b
βλk

β
+ (3.2.16)

f̃abcÃ
b
+T

c
d = −D′+T ad + T ab f

b
cdA

c
+ (3.2.17)

First equation (3.2.16) verifies the result above up to the permutation of indices, f̃aαβT
α
ν T

β
λ =

T ab f
b
νλ. Second equation (3.2.17) produces the following solution

T ab = T ab (0) + (facb − f̃acb)
∫ σ+

0

Ac+D
′
σ
′+ +H.O. (3.2.18)
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where we choose T ab (0) to be identity. It is easy to see that these equations yield the

following bracket relations

[k̃+, Ã−]α = −Tαβ [k+, A−]β (3.2.19)

[k̃−, Ã+]α = −Tαβ [k−, A+]β (3.2.20)

[k̃+, k̃−]a = −T ab [k+, k−]b (3.2.21)

[Ã+, Ã−]a = −T ab [A+, A−]b + (D
′

+T
a
b )Ab− (3.2.22)

that verifies the equations of motion on pseudodual space as pointed out above, D+k̃
α
− =

−TαβD+k
β
− and D+Ã

a
− = −T ab D

′
+A

b
− − (D

′
+T

a
b )Ab−. We notice that if H and H̃ are the

same for both manifolds, i.e., fabc = f̃abc, then T ab reduces to identity, and we recover the flat

space pseudoduality relations on two manifolds. One can easily construct nonlocal field

expressions using above solutions, which are

k̃± = ±k± (3.2.23)

Ã± = ±A± ±
∫ σ+

0

([A+(σ
′+), A±(σ+)]H − [A+(σ

′+), A±(σ+)]H̃)D
′
σ
′+ +H.O.

(3.2.24)

One may readily construct nonlocal expressions of the conserved pseudodual currents by

means of these fields and following the method in section 2 (2).

3.2.2 Mixing Pseudoduality

We now consider mixing of m and h-spaces in pseudodual expressions. Pseudoduality

equations can be written as in (3.2.6). We take ∂− of first equation on m-space (3.2.6), and

obtain

(∂−T
α
β )kβ+ + (∂−T

α
a )Aa+ = 0 (3.2.25)
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since m and h-spaces are independent, we get ∂−Tαβ = ∂−T
α
a = 0, so Tαβ and Tαa don’t

depend on σ−. Now we take ∂+ of second equation on m-space (3.2.6) and see that

[k̃−, Ã+]α + [Ã−, k̃+]α =− (∂+T
α
β )kβ− − Tαβ [k−, A+]β − Tαβ [A−, k+]β

− (∂+T
α
a )Aa− − Tαa [A−, A+]a − Tαa [k−, k+]a (3.2.26)

We substitute the expressions for k̃− and Ã− into this equation, and compare the coefficients

of k− and A− to get the following expressions

∂+T
α
λ = [fβbλT

α
β − f̃αaβ(T ab T

β
λ − T

β
b T

a
λ )]Ab+ + [faβλT

α
a − f̃αaν(T aβT νλ − T νβT aλ )]kβ+ (3.2.27)

∂+T
α
b = [f νβbT

α
ν − f̃αaν(T aβT νb − T νβT ab )]kβ+ + [facbT

α
a − f̃αβa(T βc T ab − T ac T

β
b )]Ac+ (3.2.28)

Since we only need to find currents up to the second order terms, it suffices to find mapping

tensors using only initial values

Tαλ (σ+) =Tαλ (0) + (fαbλ − f̃αbλ + f̃αaβT
β
b (0)T aλ (0))

∫ σ+

0

Ab+D
′
σ
′+ (3.2.29)

+ (faβλT
α
a (0)− f̃αaλT aβ (0) + f̃αaβT

a
λ (0))

∫ σ+

0

kβ+Dσ
′+ +H.O.

Tαb (σ+) =Tαb (0) + (fαβb + f̃αbβ − f̃αaνT aβ (0)T νb (0))

∫ σ+

0

kβ+Dσ
′+ (3.2.30)

+ (facbT
α
a (0)− f̃αβbT βc (0) + f̃αβcT

β
b (0))

∫ σ+

0

Ac+D
′
σ
′+ +H.O.
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where all initial values are chosen to be identity. Therefore pseudodual nonlocal currents

on m̃ can be written as

k̃α+ =kα+ + Tαb (0)Ab+ + (faβλT
α
a (0)− f̃αaλT aβ (0) + f̃αaβT

a
λ (0))kλ+

∫ σ+

0

kβ+Dσ
′+

+ (fαbβ − f̃αbβ + f̃αaνT
ν
b (0)T aβ (0))

∫ σ+

0

(Ab+(σ
′+)kβ+(σ+)− kβ+(σ

′+)Ab+(σ+))dσ
′+

+ (facbT
α
a (0)− f̃αβbT βc (0) + f̃αβcT

β
b (0))Ab+

∫ σ+

0

Ac+D
′
σ
′+ +H.O. (3.2.31)

k̃α− =− kα− − Tαb (0)Ab− − (faβλT
α
a − f̃αaλT aβ (0) + f̃αaβT

a
λ (0))kλ−

∫ σ+

0

kβ+Dσ
′+

+ (fαβb + f̃αbβ − f̃αaνT νb (0)T aβ (0))

∫ σ+

0

(Ab+(σ
′+)kβ−(σ+)− kβ+(σ

′+)Ab−(σ+))dσ
′+

− (facbT
α
a (0)− f̃αβbT βc (0) + f̃αβcT

β
b (0))Ab−

∫ σ+

0

Ac+D
′
σ
′+ +H.O. (3.2.32)

Conservation laws of these currents up to the second order terms are obvious. Now we

consider pseudoduality equations on h-space (3.2.6). We take ∂− of first equation, and we

obtain

(∂−T
a
b )Ab+ + (∂−T

a
α)kα+ = 0 (3.2.33)

Hence we get ∂−T ab = ∂−T
a
α = 0, which implies that T ab and T aα don’t depend on σ−.

Taking ∂+ of second equation we get the following equation

[Ã−, Ã+]a + [k̃−, k̃+]a =− (∂+T
a
b )Ab− − T ab [A−, A+]b − T ab [k−, k+]b

− (∂+T
a
α)kα− − T aα [k−, A+]α − T aα [A−, k+]α (3.2.34)
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We replace Ã− and k̃− in this equation to obtain the following results

∂+T
a
d = (T ab f

b
ed − f̃abcT beT cd − f̃aαβTαe T

β
d )Ae+ + (T aαf

α
λd − f̃abcT bλT cd − f̃aαβTαλ T

β
d )kλ+

(3.2.35)

∂+T
a
ν = (T ab f

b
λν − f̃abcT bλT cν − f̃aαβTαλ T βν )kλ+ + (T aαf

α
dν − f̃abcT bdT cν − f̃aαβTαd T βν )Ad+

(3.2.36)

We again want to find solutions up to the second order terms, so we only use initial values

to get

T ad (σ+) =T ad (0) + (faed − f̃aed − f̃aαβTαe (0)T βd (0))

∫ σ+

0

Ae+D
′
σ
′+ (3.2.37)

+ (T aα(0)fαλd − f̃abdT bλ(0)− f̃aλβT
β
d (0))

∫ σ+

0

kλ+Dσ
′+ +H.O.

T aν (σ+) =T aν (0) + (faλν − f̃aλν − f̃abcT bλ(0)T cν (0))

∫ σ+

0

kλ+Dσ
′+ (3.2.38)

+ (T aα(0)fαdν − f̃adcT cν (0)− f̃aανTαd (0))

∫ σ+

0

Ad+D
′
σ
′+ +H.O.

Thus pseudodual fields up to the second order terms on H space will be

Ãa+ = Aa+ + T aλ (0)kλ+ + (faed − f̃aed − f̃aαβTαe (0)T βd (0))Ad+

∫ σ+

0

Ae+D
′
σ
′+

+ (T aα(0)fαλd − f̃abdT bλ(0)− f̃aλβT
β
d (0))

∫ σ+

0

(kλ+(σ
′+)Ad+(σ+)− Ad+(σ

′+)kλ+(σ+))dσ
′+

+ (faλν − f̃aλν − f̃abcT bλ(0)T cν (0))kν+

∫ σ+

0

kλ+Dσ
′+ +H.O. (3.2.39)
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Ãa− = −Aa− − T aλ (0)kλ− − (faed − f̃aed − f̃aαβTαe (0)T βd (0))Ad−

∫ σ+

0

Ae+D
′
σ
′+

− (T aα(0)fαλd − f̃abdT bλ(0)− f̃aλβT
β
d (0))

∫ σ+

0

(kλ+(σ
′+)Ad−(σ+)− Ad+(σ

′+)kλ−(σ+))dσ
′+

− (faλν − f̃aλν − f̃abcT bλ(0)T cν (0))kν−

∫ σ+

0

kλ+Dσ
′+ +H.O. (3.2.40)

It is obvious that conservation laws (3.2.4) and (3.2.5) up to the second order terms are

satisfied

D̃
′

−Ã
a
+ =0 (3.2.41)

D̃
′

+Ã
a
− =− [A−, A+]a

G̃
− [k−, k+]a

G̃
− [T (0)A−, T (0)A+]a

G̃
− [A−, T (0)k+]a

G̃

− [T (0)k−, A+]a
G̃
− [T (0)A−, k+]a

G̃
− [k−, T (0)A+]a

G̃

− [T (0)k−, T (0)k+]a
G̃

+H.O. (3.2.42)

3.2.3 Dual Symmetric Spaces and Further Constraints

It is well-known [2, 19] that two normal symmetric spaces are dual symmetric spaces if

there exist

1. a Lie algebra isomorphism S : h −→ h̃ such that Q̃(SV, SW ) = −Q(V,W ) for all

V,W ∈ h, and Q is inner product.

2. a linear isometry T : m −→ m̃ such that [TX, TY ] = −S[X, Y ] for all X, Y ∈ m.

Item (1) tells us that brackets in h and h̃ are the same while item (2) tells us that inner

products in m and m̃ are the same. Item (1) yields the result facb = f̃acb for non-mixing

pseudoduality, which leads T ab to be a constant. Hence pseudoduality transformations will
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simply be

k̃α± = ±kα± (3.2.43)

Ãa± = ±Aa± (3.2.44)

with the bracket relations (3.2.19)-(3.2.22) given by

[k̃+, Ã−]α = −[k+, A−]α (3.2.45)

[k̃−, Ã+]α = −[k−, A+]α (3.2.46)

[k̃+, k̃−]a = −[k+, k−]a (3.2.47)

[Ã+, Ã−]a = −[A+, A−]a (3.2.48)

On the other hand one can write the following bracket relations between pseudodual

target spaces for the mixing pseudoduality case

[k̃−, Ã+]α + [Ã−, k̃+]α =− Tαβ [k−, A+]β − Tαβ [A−, k+]β (3.2.49)

− Tαa [A−, A+]a − Tαa [k−, k+]a

[Ã−, Ã+]a + [k̃−, k̃+]a =− T ab [A−, A+]b − T ab [k−, k+]b (3.2.50)

− T aα [k−, A+]α − T aα [A−, k+]α

which in turn leads to relations of connection two-forms between symmetric and corre-

sponding H-spaces, which is consistent with the result found in section 5 (5). These equa-

tions produce that all components of the pseudoduality map T must be constant, and we
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choose them to be identity. Hence pseudoduality equations will simply be

k̃α± = ±kα± ± Tαa (0)Aa± (3.2.51)

Ãa± = ±Aa± ± T aα(0)kα± (3.2.52)

3.2.4 An Example

We consider the Lie groups we used in the previous section. We saw that invariant subspace

of SO(n + 1) is 1 × SO(n). We pick H space as SO(n). Hence our symmetric space is

M = SO(n+1)
SO(n)

. The Lie algebra g = so(n+ 1) can be written as

so(n+ 1) =

 a b

−bt c


a = 1× 1

b = 1× n

c = n× n

(3.2.53)

which can be split as

 a b

−bt c

 =

 a 0

0 c

+

 0 b

−bt 0

 g = h⊕m (3.2.54)

Let Y ∈ g, X ∈ h, and Z ∈ m. Then, D′Z = 0 and DX = 0. Using the expansions
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(3.1.14) and (3.1.15), we may write the following expressions

kα+ = D+Z
α
L −

1

2
[XL, D+ZL]α − 1

2
[ZL, D

′

+XL]α +H.O. (3.2.55)

Aa+ = D
′

+X
a
L −

1

2
[XL, D

′

+XL]a − 1

2
[ZL, D+ZL]a +H.O. (3.2.56)

kα− = D−Z
α
R − [XL, D−ZR]α − [ZL, D

′

−XR]α − 1

2
[XR, D−ZR]α (3.2.57)

− 1

2
[ZR, D

′

−XR]α +H.O.

Aa− = D
′

−X
a
R − [XL, D

′

−XR]a − [ZL, D−ZR]a − 1

2
[XR, D

′

−XR]a (3.2.58)

− 1

2
[ZR, D−ZR]a +H.O.

We describe solutions X =
∑∞

n=1 ε
nxn and Z =

∑∞
n=1 ε

nzn, where ε is a small parameter.

It is clear that equations of motion (3.2.2)-(3.2.5) for all orders of ε are satisfied. In the

following calculations we are going to use expressions up to the order of ε2 for simplicity.

Now we consider dual symmetric space M̃ = SO(n,1)
SO(n)

, where H̃ = SO(n). Lie algebra

g̃ = so(n, 1) is written as

so(n, 1) =

 ã b̃

b̃t c̃


ã = 1× 1

b̃ = 1× n

c̃ = n× n

(3.2.59)

which is split as

 ã b̃

b̃t c̃

 =

 ã 0

0 c̃

+

 0 b̃

b̃t 0

 g̃ = h̃⊕ m̃ (3.2.60)

Let Ỹ = X̃+ Z̃, where Ỹ ∈ g̃, X̃ ∈ h̃, and Z̃ ∈ m̃. We get the same fields as equations

(3.2.55)-(3.2.58) with tilde. Equations of motion will be the same with tilde. We may now

find pseudodual fields using our expressions found above. We note that because of the
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special form of our Lie groups, mixing components of the map T vanishes, and we simply

get non-mixing pseudoduality condition.

We insert our expressions into equations (3.2.43) and (3.2.44) to get infinitely many

pseudoduality relations. Up to the order of ε2 terms equation (3.2.43) will be

D̃+z̃
α
L1 = D+z

α
L1 D̃−z̃

α
R1 = −D−zαR1 (3.2.61)

D̃+z̃
α
L2 −

1

2
[x̃L1, D̃+z̃L1]α − 1

2
[z̃L1, D̃

′

+x̃L1]α = D+z
α
L2 −

1

2
[xL1, D+zL1]α − 1

2
[zL1, D

′

+xL1]α

D̃−z̃
α
R2 − [x̃L1, D̃−z̃R1]α − [z̃L1, D̃

′

−x̃R1]α − 1

2
[x̃R1, D̃−z̃R1]α − 1

2
[z̃R1, D̃

′

−x̃R1]α =

−D−zαR2 + [xL1, D−zR1]α + [zL1, D
′

−xR1]α +
1

2
[xR1, D−zR1]α +

1

2
[zR1, D

′

−xR1]α

and equation (3.2.44) will be

D̃
′

+x̃
a
L1 = D

′

+x
a
L1 D̃

′

−x̃
a
R1 = −D′−xaR1 (3.2.62)

D̃
′

+x̃
a
L2 −

1

2
[x̃L1, D̃

′

+x̃L1]a − 1

2
[z̃L1, D̃+z̃L1]a = D

′

+x
a
L2 −

1

2
[xL1, D

′

+xL1]a − 1

2
[zL1, D+zL1]a

D̃
′

−x̃
a
R2 − [x̃L1, D̃

′

−x̃R1]a − [z̃L1, D̃−z̃R1]a − 1

2
[x̃R1, D̃

′

−x̃R1]a − 1

2
[z̃R1, D̃−z̃R1]a =

−D′−xaR2 + [xL1, D
′

−xR1]a + [zL1, D−zR1]a +
1

2
[xR1, D

′

−xR1]a +
1

2
[zR1, D−zR1]a
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Since we know

D±zn =

 0 D±bn

−D±btn 0

 D
′

±xn =

 D
′
±an 0

0 D
′
±cn



[x1, D
′

±x1] =

 [a1, D
′
±a1] 0

0 [c1, D
′
±c1]



[z1, D±z1] =

 (D±b1)bt1 − b1(D±b
t
1) 0

0 (D±b
t
1)b1 − bt1(D±b1)



[x1, D±z1] =

 0 a1D±b1 − (D±b1)c1

−c1(D±b
t
1) + (D±b

t
1)a1 0



[z1, D
′

±x1] =

 0 b1D
′
±c1 − (D

′
±a1)b1

−bt1(D
′
±a1) + (D

′
±c1)bt1 0


One can write similar expressions on the pseudodual space replacing each term with tilded

terms. Only exception is that we switch btn with −b̃tn so that we get the convenient lie

algebra on tilded space. Therefore pseudoduality equations above (3.2.61) and (3.2.62)

will give the following expressions

D̃+b̃L1 = D+bL1 D̃+b̃
t
L1 = −D+b

t
L1

D̃−b̃R1 = −D−bR1 D̃−b̃
t
R1 = D−b

t
R1

D̃
′

+ãL1 = D
′

+aL1 D̃
′

+c̃L1 = D
′

+cL1

D̃
′

−ãR1 = −D′−aR1 D̃
′

−c̃R1 = −D′−cR1
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D̃+b̃L2 = D+bL2 +
1

2
{(ãL1 − aL1)D+bL1 −D+bL1(c̃L1 − cL1)}

+
1

2
{(b̃L1 − bL1)D

′

+cL1 −D
′

+aL1(b̃L1 − bL1)}

D̃+b̃
t
L2 = −D+b

t
L2 −

1

2
{(c̃L1 − cL1)D+b

t
L1 −D+b

t
L1(ãL1 − aL1)}

+
1

2
{(b̃tL1 + btL1)D

′

+aL1 −D
′

+cL1(b̃tL1 + btL1)}

D̃
′

+ãL2 = D
′

+aL2 +
1

2
[(ãL1 − aL1), D

′

+aL1]

− 1

2
{D+bL1(btL1 + b̃tL1)− (bL1 − b̃L1)D+b

t
L1}

D̃
′

+c̃L2 = D
′

+cL2 +
1

2
[(c̃L1 − cL1), D

′

+cL1]

− 1

2
{D+b

t
L1(bL1 − b̃L1)− (btL1 + b̃tL1)D+bL1}

D̃−b̃R2 = −D−bR2 + {(aL1 − ãL1) +
1

2
(aR1 − ãR1)}D−bR1

−D−bR1{(cL1 − c̃L1) +
1

2
(cR1 − c̃R1)}

+ {(bL1 − b̃L1) +
1

2
(bR1 − b̃R1)}D′−cR1

−D′−aR1{(bL1 − b̃L1) +
1

2
(bR1 − b̃R1)}



55

D̃−b̃
t
R2 = D−b

t
R2 − {(cL1 − c̃L1) +

1

2
(cR1 − c̃R1)}D−btR1

+D−b
t
R1{(aL1 − ãL1) +

1

2
(aR1 − ãR1)}

− {(btL1 + b̃tL1) +
1

2
(btR1 + b̃tR1)}D′−aR1

+D
′

−cR1{(btL1 + b̃tL1) +
1

2
(btR1 + b̃tR1)}

D̃
′

−ãR2 = −D′−aR2 + [(aL1 − ãL1) +
1

2
(aR1 − ãR1), D

′

−aR1]

+D−bR1{(btL1 + b̃tL1) +
1

2
(btR1 + b̃tR1)}

− {(bL1 − b̃L1) +
1

2
(bR1 − b̃R1)}D−btR1

D̃
′

−c̃R2 = −D′−cR2 + [(cL1 − c̃L1) +
1

2
(cR1 − c̃R1), D

′

−cR1]

+D−b
t
R1{(bL1 − b̃L1) +

1

2
(bR1 + b̃R1)}

− {(btL1 + b̃tL1) +
1

2
(btR1 + b̃tR1)}D−bR1

where tilded terms on the right hand sides can be replaced by solving corresponding equa-

tions. One can obtain the conserved nonlocal currents using these terms.

3.3 Curvatures

3.3.1 Case I: Curvatures on g and g̃

Let us find the curvatures related to symmetric spaces, and see the relations between dual

symmetric parts. We first consider the case where H = id. We may choose orthonormal

frame {J} on the pullback bundle g∗(TG), where J stands for both J (R) and J (L). These
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currents satisfy the Maurer-Cartan equation

dJ i +
1

2
f ijkJ

j ∧ Jk = 0 (3.3.1)

where wi = J i and wik = 1
2
f ijkJ

j is the antisymmetric riemannian connection. Curvature

can be found using torsion free Cartan structural equations

dwi + wij ∧ wj = 0 (3.3.2)

dwij + wik ∧ wkj =
1

2
Ri
jklw

k ∧ wl (3.3.3)

Substituting wi = J i and wij = 1
2
f ikjJ

k into first equation gives us the Maurer-Cartan

equation (3.3.1). Curvature tensor associated with g can be found using second equation

(3.3.3),

Ri
jmn = −1

2
(f ikmf

k
nj + f ikjf

k
mn) =

1

2
f iknf

k
jm (3.3.4)

where we used jacobi identity in the last equation, f ik[mf
k
nj] = 0. We may find similar

relations for pseudodual space with tilde (just put˜on each term). To relate curvature tensor

on pseudodual space with regular space, we use nonlocal expressions (3.1.26)-(3.1.29).

Since both currents yield the same result, we just use (3.1.26) and (3.1.27) for the final

expression. We may write J̃ i in nonlocal terms as

J̃ i = εdyi1 + ε2[dyi2 +
1

2
f ijky

i
1 ∧ dyk1 − f̃ ijky

j
1 ∧ dyk1 ] +H.O. (3.3.5)

Hence w̃i = J̃ i, and w̃ik can be written as

w̃ik =
1

2
f̃ ijkJ̃

j

=
ε

2
f̃ ijkdy

j
1 +

ε2

2
f̃ ijk[dy

j
2 +

1

2
f jmny

m
1 ∧ dyn1 − f̃ jmnym1 ∧ dyn1 ] +H.O. (3.3.6)
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We plug w̃i and w̃ik into the second Cartan structural equation on pseudodual space in the

form

dw̃ij + w̃ik ∧ w̃kj =
1

2
R̃i
jklw̃

k ∧ w̃l (3.3.7)

to obtain the curvature expression

R̃i
jmn =

1

2
f̃ ikjf

k
mn − f̃ ikj f̃kmn +

1

2
f̃ imkf̃

k
nj (3.3.8)

Since by definition R̃i
jmn (3.3.4)can also be written as

R̃i
jmn =

1

2
f̃ iknf̃

k
jm (3.3.9)

we get a relation between structure constants on spaces g and g̃

1

2
f̃ ikjf

k
mn =

1

2
f̃ ikj f̃

k
mn (3.3.10)

where we used the jacobi identity f̃ ik[nf̃
k
jm] = 0. Though we do not set fkmn equal to f̃kmn, we

may treat them on equal footing, and use one for another interchangeably in paired terms.

Hence R̃i
jmn (3.3.8) can be written in nonlocal structure constants as

R̃i
jmn = −1

2
f iknf

k
jm = −Ri

jmn (3.3.11)

where we used f ik[jf
k
nm] = 0 after setting tilde terms with nontilde terms. We note that we

obtained pseudodual space curvature as the negative regular space curvature. This shows

that spaces are dual symmetric spaces as we expressed above.
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3.3.2 Case II: Curvatures on Decomposed Spaces

Let us decompose the current as J = Jαtα + Jata, where we use indices α, β, γ, ... for m

space and indices a, b, c, ... for h space, and tα and ta are corresponding generators. We can

write the commutation relations as

[ta, tb] = f cabtc [ta, tβ] = fαaβtα [tα, tβ] = f cαβtc (3.3.12)

Maurer-Cartan equation (3.3.1) can be decomposed as

dJa +
1

2
fabcJ

b ∧ J c +
1

2
faαβJ

α ∧ Jβ = 0 on h− space (3.3.13)

dJα + fαβaJ
β ∧ Ja = 0 on m− space (3.3.14)

We can also decompose Cartan structural equations. Decomposition of first structural equa-

tion gives us

dwa + wab ∧ wb + waα ∧ wα = 0 on h− space (3.3.15)

dwα + wαβ ∧ wβ + wαa ∧ wa = 0 on m− space (3.3.16)

comparison of these equations with the Maurer-Cartan equations (3.3.13)-(3.3.14) gives us

the following connections

wa = Ja wac =
1

2
fabcJ

b waβ =
1

2
faαβJ

α (3.3.17)

wα = Jα wαβ =
1

2
fαaβJ

a wαa =
1

2
fαβaJ

β (3.3.18)
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Decomposition of second Cartan structural equation leads to the following equations

dwab + wac ∧ wcb + waλ ∧ wλb =
1

2
Ra
bcdw

c ∧ wd +
1

2
Ra
bcλw

c ∧ wλ (3.3.19)

+
1

2
Ra
bλcw

λ ∧ wc +
1

2
Ra
bλµw

λ ∧ wµ

dwaα + wac ∧ wcα + waλ ∧ wλα =
1

2
Ra
αbcw

b ∧ wc +
1

2
Ra
αbβw

b ∧ wβ (3.3.20)

+
1

2
Ra
αβbw

β ∧ wb +
1

2
Ra
αλµw

λ ∧ wµ

dwαβ + wαγ ∧ w
γ
β + wαa ∧ waβ =

1

2
Rα
βabw

a ∧ wb +
1

2
Rα
βaγw

a ∧ wγ (3.3.21)

+
1

2
Rα
βγaw

γ ∧ wa +
1

2
Rα
βλµw

λ ∧ wµ

dwαa + wαγ ∧ wγa + wαb ∧ wba =
1

2
Rα
abcw

b ∧ wc +
1

2
Rα
abλw

b ∧ wλ (3.3.22)

+
1

2
Rα
aλbw

λ ∧ wb +
1

2
Rα
aλµw

λ ∧ wµ

Inserting (3.3.17) and (3.3.18) into (3.3.19) gives the following curvature components

Ra
bde =

1

2
(fadcf

c
eb − facbf cde) =

1

2
facef

c
bd (3.3.23)

Ra
bαβ =

1

2
(faαλf

λ
βb − facbf cαβ) =

1

2
faλβf

λ
bα (3.3.24)

Ra
bcλ = Ra

bλc = 0 (3.3.25)

where we used the jacobi identity fac[df
c
be] = 0 in (3.3.23), and faλαf

λ
bβ + facbf

c
βα + faλβf

λ
αb in

(3.3.24). Likewise (3.3.20) gives the following curvature components

Ra
αcλ =

1

2
(facdf

d
λα − faβαf

β
cλ) =

1

2
faβλf

β
αc (3.3.26)

Ra
αλc =

1

2
(faλβf

β
cα − faβαf

β
λc) =

1

2
fabcf

b
αλ (3.3.27)

Ra
αbc = Ra

αλµ = 0 (3.3.28)
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where we used the jacobi identity fadcf
d
αλ + faβαf

β
λc + faβλf

β
cα = 0 in (3.3.26), and faβλf

β
αc +

faβαf
β
cλ + fabcf

b
λα = 0 in (3.3.27). Equation (3.3.21) produces the following curvature com-

ponents

Rα
βbc =

1

2
(fαbγf

γ
cβ − f

α
aβf

a
bc) =

1

2
fαγcf

γ
βb (3.3.29)

Rα
βλµ =

1

2
(fαλaf

a
µβ − fαaβfaλµ) =

1

2
fαaµf

a
βλ (3.3.30)

Rα
βaγ = Rα

βγa = 0 (3.3.31)

where we used the jacobi identity fαγbf
γ
βc + fαaβf

a
cb + fαγcf

γ
bβ = 0 in (3.3.29), and fαaλf

a
βµ +

fαaβf
a
µλ + fαaµf

a
λβ = 0 in (3.3.30). Finally, equation (3.3.22) gives the following curvature

components

Rα
acλ =

1

2
(fαcβf

β
λa − f

α
βaf

β
cλ) =

1

2
fαbλf

b
ac (3.3.32)

Rα
aλc =

1

2
(fαλbf

b
ca − fαβaf

β
λc) =

1

2
fαβcf

β
aλ (3.3.33)

Rα
abc = Rα

aλµ = 0 (3.3.34)

where we used the jacobi identity fαβcf
β
aλ + fαβaf

β
λc + fαbλf

b
ca = 0 in (3.3.32), and fαbλf

b
ac +

fαβaf
β
cλ + fαβcf

β
λa = 0 in (3.3.33). Obviously we can write similar equations with tilde.

We want to write down curvature relations between symmetric spaces (m and m̃) and

corresponding closed spaces (h and h̃) on g and g̃. To realize this objective we will use the

bracket relations derived from pseudoduality equations. In case of non-mixing pseudodu-

ality, we will make use of bracket relation (3.2.45)-(3.2.48). After eliminating A− and k−
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terms we obtain the following relations between connection one forms

w̃αa = wαa w̃αβ = wαβ (3.3.35)

w̃aβ = waβ w̃ab = wab (3.3.36)

where we used the definitions (3.3.17) and (3.3.18) for the connection two forms. Taking

exterior derivative of these connections we obtain the result

R̃A
BCD = −RA

BCD (3.3.37)

where A, B, C and D represent indices corresponding to M or H-space elements depend-

ing on which equation is used. But curvature expressions found above restrict all curvature

components to exist. Therefore we will only have curvatures whose all indices belongs to

one space (m or h) or being shared equally, otherwise they do not exist. On the other hand

when we consider mixing pseudoduality, we observe that curvature components mix. From

the connection two-forms we obtain the relations

w̃αβ + w̃αaT
a
β (0) = wαβ + Tαa (0)waβ (3.3.38)

w̃αβT
β
b (0) + w̃αb = Tαa (0)wab + wαb (3.3.39)

w̃ab + w̃aβT
β
b (0) = wab + T aβ (0)wβb (3.3.40)

w̃abT
b
β(0) + w̃aβ = T aγ (0)wγβ + waβ (3.3.41)

It is clear that once mixing isometries disappear we have (3.3.35) and (3.3.36). Therefore
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curvature relations will be

R̂A
Bµν = −( ¯̃RA

Bµν + ¯̃RA
BµcT

c
ν (0) + ¯̃RA

BcνT
c
µ(0) + ¯̃RA

BcdT
c
µ(0)T dν (0)) (3.3.42)

R̂A
Bµd = −( ¯̃RA

Bµd + ¯̃RA
BcdT

c
µ(0) + ¯̃RA

BµνT
ν
d (0) + ¯̃RA

BcνT
c
µ(0)T νd (0)) (3.3.43)

R̂A
Bcν = −( ¯̃RA

Bcν + ¯̃RA
BcdT

d
ν (0) + ¯̃RA

BµνT
µ
c (0) + ¯̃RA

BµdT
µ
c (0)T dν (0)) (3.3.44)

R̂A
Bcd = −( ¯̃RA

Bcd + ¯̃RA
BµdT

µ
c (0) + ¯̃RA

BcµT
µ
d (0) + ¯̃RA

BµνT
µ
c (0)T νd (0)) (3.3.45)

where we defined R̂α
λµν ≡ Rα

λµν + Tαa (0)Ra
λµν and ¯̃Rα

λµν ≡ R̃α
λµν + R̃α

bµνT
b
λ(0), and A, B

represent indices for m or h-spaces. Obviously if all mixing parts are set to zero we obtain

the simplest case (3.3.37).

3.4 One Loop Renormalization Group β-function

It is noted that renormalization group β-function to one-loop order [8, 34, 35] is given by

βmn =
Rmn

2π
(3.4.1)

where Rmn is Ricci curvature of connections wij . On g it is written as

βij =
1

4π
fknjf

n
ik (3.4.2)

On decomposed spaces h and m one loop β-functions will be

βab =
1

4π
(fαβbf

β
aα + f cdbf

d
ac) (3.4.3)

βαγ =
1

4π
(faλγf

λ
αa + faαλf

λ
aγ) (3.4.4)
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It is readily observed that Raα = Rαa = 0. On pseudodual spaces one can write the

following relations

βij = −β̃ij βab = −β̃ab βαγ = −β̃αγ (3.4.5)

if there is a non-mixing pseudoduality. On the other hand if there is a mixing pseudoduality

we have

βab = −β̃ab − β̃aνT νb (0)− β̃νbT va (0)− β̃µνT µa (0)T νb (0) (3.4.6)

βµν = −β̃µν − β̃dνT dµ (0)− β̃µdT dν (0)− β̃abT aµ (0)T bν (0) (3.4.7)

where we defined β̃νb ≡ 1
2π
{R̃c

νµbT
µ
c (0)+R̃µ

νcbT
c
µ(0)}, β̃aν ≡ 1

2π
{R̃c

aµνT
µ
c (0)+R̃µ

acνT
c
µ(0)},

β̃dν ≡ 1
2π
{R̃c

dλνT
λ
c (0)+R̃λ

dcνT
c
λ(0)} and β̃µd ≡ 1

2π
{R̃c

µλdT
λ
c (0)+R̃λ

µcdT
c
λ(0)} on the contrary

to (3.4.1). We notice that if all mixing isometries vanish, then we get (3.4.5). We notice

that we will also obtain additional mixing components of β-function, but we avoid to obtain

them.

3.5 Discussion

In this section we were able to obtain infinite number of pseudoduality equations by switch-

ing from Lie group expressions to lie algebra expressions. We observed that pseudoduality

transformation respects the conservation law of currents. To understand what currents im-

ply for let us write pseudoduality equations as

J̃
(L)
+ = +TJ

(L)
+

J̃
(L)
− = −TJ (L)

−
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where J (L)
± = g−1∂±g. First equation implies that T is a function of σ+ as above. Second

equation is interesting and gives the information about currents. If we take ∂+ of second

equation we obtain that

[g̃−1∂−g̃, g̃
−1∂−g̃]G̃ = −(∂+T )(g−1∂−g)− T [g−1∂−g, g

−1∂+g]G

We notice that g−1∂±g ∈ g, and if we use the definition adg(X)(Y ) = [X, Y ]G this equa-

tion can be written as

adg̃(J̃
(L)
+ )(J̃

(L)
− ) = (∂+T )J

(L)
− + Tadg(J

(L)
+ )(J

(L)
− )

If the second pseudoduality equation is inserted then one gets

−adg̃(J̃
(L)
+ )T − Tadg(J

(L)
+ ) = (∂+T )

It is obvious that this is the lie algebra version of the AdG×AdG̃ action on T. adg(J
(L)
+ ) is

the orthogonal flat connection on g∗TG as defined in section (3.3). One may find curvature

relations using these connections as above. Thus another interpretation of pseudoduality

is that since J (L)
+ depends only on σ+, so does T . Hence if we define a parallel transport

P (σ) from (0, 0) to σ = (σ+, σ−), pseudoduality equations may be written as

∗Σ(P̃ (σ))−1(g̃−1dg̃) = T (0)(P (σ)−1g−1dg)

where T (0) = P̃ (σ)T (σ)P−1(σ). This means that we start with g−1dg, and parallel trans-

port it to origin, and do the same on the dual model. We finally use the fixed isometry T (0)

to equate these two fields at the origins.



Chapter 4

Pseudoduality In Supersymmetric
Sigma Models

This model consists of both bosons and fermions, and they are transformed into each other

by supersymmetry transformation. It improves the short distance behaviour of quantum

theories and gives a beautiful solution to the hierarchy problem. Supersymmetric sigma

models have a rich geometrical structure. It has been shown that target space of N = 1

sigma models is a (pseudo-)Riemannian manifold, N = 2 is the Kähler manifold and

N = 4 is the hyper-Kähler manifold. Sigma models based on manifolds with torsion [40]

have chiral supersymmetry in which the number of left handed supersymmetries differs

from the number of right handed supersymmetries. In [7], pseudoduality in classical sigma

models was extensively discussed, and in this section we are going to analyze pseudodual-

ity transformation of supersymmetric extension of classical sigma models. We will focus

on (1,0) and (1, 1) real supersymmetric sigma models in two dimensions, and find the re-

quired conditions which supersymmetry constrains the target space and following results

for pseudoduality. We will refer to references [8, 36, 37, 38, 39] about supersymmetry and

superspace constructions.

We use the superspace coordinates (σ±, θ±), where the bosonic coordinates σ± = τ±σ

are the usual lightcone coordinates in two-dimensional Minkowski space, and the fermionic

65
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coordinates θ± are the Grassmann numbers. The supercovariant derivatives are

D± = ∂θ± + iθ±∂± (4.0.1)

and the supercharges generating supersymmetry are

Q± = ∂θ± − iθ±∂± (4.0.2)

and it follows that

Q2
± = −i∂± D2

± = i∂±. (4.0.3)

and all other anticommutations vanish. The scalar superfields in components have the form

X(σ, θ) = x(σ) + θ+ψ+(σ) + θ−ψ−(σ) + θ+θ−F (σ) (4.0.4)

where x : Σ → M , ψ± are the two dimensional Majorana spinor fields, and F is the

auxiliary real scalar field.

4.1 Pseudoduality in Heterotic Sigma Models

This model [8, 40, 41, 42, 43, 44] is enlarging the spacetime Σ in the classical case to the

superspace Ξ1,0 by adding a Grassmann degree of freedom. Hence the sigma model is the

map consisting of a scalar x and a fermion ψ+. This case has one left-handed supercharge

Q+, and does not contain any right-handed supercharge Q−. The supersymmetry algebra

will be

{Q+, Q+} = 2iP+
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where {, }denotes anticommutation, and P+ = −∂+ as can be checked from (4.0.3). The

supersymmetry transformations generated by Q+ will be

δεx(σ) = ε−ψ+(σ)

δεψ+(σ) = iε−∂+x(σ)

Hence the fermion ψ+ can be thought of as the superpartner of the boson x. In what fol-

lows we will examine pseudoduality transformations between supermanifolds M 1 and M̃

using components first, and then probe how it behaves when lifted to orthonormal coframe

bundles SO(M) 2 and SO(M̃). We again emphasize that pseudoduality is defined between

superspaces z which are the pullbacks of the manifols M and M̃ in case of components, and

SO(M) and SO(M̃) in case of orthonormal coframe method. This is implicitly intended in

our calculations.

4.1.1 Components

In this case the superfield X has the form

X = x(σ) + θ+ψ+(σ) (4.1.1)

where X : Ξ1,0 → M, and Ξ1,0 = (σ+, σ−, θ+). The real grassmann coordinate θ+ is

anticommuting and (θ+)2 = 0. We will assume that target space has torsion H, which

is introduced into the action by a Wess-Zumino term. Reparametrization invariant action

defined on a Riemannian manifold M with metric Gij , standard connection Γi
jk and anti-

1M is the target space in which supersymmetric sigma models is defined.
2SO(M) = M× SO(n).
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symmetric two-form Bij can be written as

S =

∫
d2σdθ(Gij +Bij)D+X

i∂−X
j (4.1.2)

We may write similar expressions for manifold M̃ using expressions with tilde. Since

we want to write down pseudoduality transformations between two manifolds, we need

to find out the equations of motions from action (4.1.2). If we write this action in terms

of bosonic coordinates of superspace only, we obtain our original classical action plus

fermionic terms. After expanding Gij and Bij in the first order terms and integrating this

action under dθ gives the following

S =

∫
d2σ[i(gij + bij)∂+x

i∂−x
j − gijψi+∇

(−)
− ψj+] (4.1.3)

where ∇(−)
− ψj+ = ∇−ψj+ − Hj

klψ
k
+∂−x

l and ∇−ψj+ = ∂−ψ
j
+ + Γjklψ

k
+∂−x

l, and Hijk =

1
2
(∂ibjk + ∂jbki + ∂kbij). Equations of motion following from the action (4.1.3) are

∇(−)
− ψi+ = 0 (4.1.4)

�xk = iR̂k
lijψ

i
+ψ

j
+∂−x

l (4.1.5)

where �xk = ∇(+)
+ ∂−x

k +∇(−)
− ∂+x

k, and the generalized curvature is defined as

R̂ijkl = Rijkl −DkHijl +DlHijk +HiknH
n
lj −HjknH

n
li (4.1.6)

We can write the Pseudoduality transformations as follows

D+X̃
i = +T ij D+X

i (4.1.7)

∂−X̃
i = −T ij ∂−Xj (4.1.8)
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where T is the transformation matrix, and is a function of superfield X . Since superfield

depends on σ and θ+, we may say that T is a function of σ and θ+. We let T (σ, θ) =

T (σ) + θ+N(σ). Splitting pseudoduality equations into the fermionic and bosonic parts

leads to the following set of equations

ψ̃i+(σ) = +T ij (σ)ψj+(σ) (4.1.9)

∂−ψ̃
i
+(σ) = −T ij (σ)∂−ψ

j
+(σ)−N i

j(σ)∂−x
j(σ) (4.1.10)

∂+x̃
i(σ) = +T ij (σ)∂+x

j(σ)− iN i
j(σ)ψj+(σ) (4.1.11)

∂−x̃
i(σ) = −T ij (σ)∂−x

j(σ) (4.1.12)

We see that the component T is responsible for the classical transformation which does

not change the type of field, while N contributes to the fermionic degree of transformation

which transforms bosonic fields to fermionic ones, and vice versa. Before finding pseu-

dodual expressions it is worth to obtain constraint relations. We take ∂− of (4.1.9) and set

equal to (4.1.10), and then use the equation of motion (4.1.4) to obtain

N i
k = −[M i

lk + 2T ij (H
j
lk − Γjlk)]ψ

l
+ (4.1.13)

where we define ∂kT il = M i
lk. Now taking ∂+ of (4.1.12) and setting equal to ∂− of (4.1.11)

followed by using equations of motion (4.1.4) and (4.1.5) yields

[2T ik(H
k
mn − Γkmn) + 2M i

(mn)]∂+x
m∂−x

n + iT ikR̂
k
mijψ

i
+ψ

j
+∂−x

m

= iN i
k(H

k
mn − Γkmn)ψm+∂−x

n + i(∂−N
i
k)ψ

k
+ (4.1.14)

where M i
(mn) represents the symmetric part of M i

mn. Real part of this equation gives

T ik(H
k
mn − Γkmn) + 2M i

(mn) = 0 (4.1.15)
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which implies that

Hk
mn = 0, (4.1.16)

M i
(mn) = T ikΓ

k
mn (4.1.17)

Substituting these results into (4.1.13) leads to

N i
k = M i

kmψ
m
+ (4.1.18)

Complex part of (4.1.14) together with (4.1.16), (4.1.17) and (4.1.18) gives the follow-

ing equation

∂nM
i
[mj] = T ikR

k
njm + 2M i

[kj]Γ
k
mn (4.1.19)

where M i
[mj] denotes the antisymmetric part of M i

mj . Solution of this equation gives the

result for T .

Riemann Normal Coordinates

Before we attempt to find the general (global) solution for the equation (4.1.19), it is in-

teresting to find the special solution where Riemann Normal coordinates [45, 46, 47] are

used in both models. In these coordinates solution is expanded around a point (call this

point as p on M , and p̃ on M̃ ) which Christoffel’s symbols vanish. Curvature tensor R is

the curvature of the point p, and constant. (4.1.17) implies that M i
jm = −M i

mj , and hence,

equation (4.1.19) is reduced to

∂nM
i
mj = T ikR

k
njm
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After integration we get

M i
mj = M i

mj(0) +

∫
T ikR

k
njmdx

n

and since T im = T im(0) +
∫
M i

mjdx
j , we finally obtain

T im = T im(0) +M i
mj(0)xj + T ik(0)Rk

njm

∫
xndxj +M i

kl(0)Rk
njm

∫
dxj

∫
xldxn +H.O.

and

M i
mj = M i

mj(0) + T ik(0)Rk
njmx

n +M i
kl(0)Rk

njm

∫
xldxn +H.O.

and also using (4.1.18) we find

N i
k = M i

km(0)ψm+ + T ij (0)Rj
nmkψ

m
+x

n +M i
jl(0)Rj

nmkψ
m
+

∫
xldxn +H.O.

We choose the initial condition T im(0) = δim. Hence Pseudoduality relations (4.1.9) -

(4.1.12) up to the second order in x can be written as

ψ̃i+ = ψi+ +M i
jk(0)ψj+x

k +Ri
nkjψ

j
+

∫
xndxk +H.O. (4.1.20)

∂−ψ̃
i
+ = −M i

jm(0)ψm+∂−x
j −Ri

nmjψ
m
+x

n∂−x
j +H.O. (4.1.21)

∂+x̃
i = ∂+x

i +M i
jk(0)xk∂+x

j − iM i
jm(0)ψm+ψ

j
+ − iRi

nmjψ
m
+ψ

j
+x

n

+Ri
nkj∂+x

j

∫
xndxk − iM i

kl(0)Rk
nmjψ

m
+ψ

j
+

∫
xldxn +H.O. (4.1.22)

∂−x̃
i = −∂−xi −M i

jk(0)xk∂−x
j −Ri

nlj∂−x
j

∫
xndxl +H.O. (4.1.23)

Using the equation of motion (4.1.4) for tilde, i.e. ∂−ψ̃i+ = H̃ i
jkψ̃

j
+∂−x̃

k, and combining
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with (4.1.20) and (4.1.23) we find

∂−ψ̃
i
+ = −H̃ i

mjψ
m
+∂−x

j − H̃ i
mkM

k
jn(0)ψm+x

n∂−x
j − H̃ i

kjM
k
mn(0)ψm+x

n∂−x
j +H.O.

(4.1.24)

A comparison of equation (4.1.21) with equation (4.1.24) gives

H̃ i
mj = M i

jm(0) (4.1.25)

Ri
nmj = M i

km(0)Mk
jn(0) +M i

jk(0)Mk
mn(0) (4.1.26)

Now we see that equation (4.1.5) with tilde is written as ∂2
+−x̃

i = H̃ i
jk∂+x̃

j∂−x̃
k+ i

2
ˆ̃Ri
jklψ̃

k
+ψ̃

l
+∂−x̃

j .

Inserting (4.1.20), (4.1.22) and (4.1.23) into this equation gives

∂2
+−x̃

i = −H̃ i
jk∂+x

j∂−x
k+iH̃ i

jkM
j
mn(0)ψn+ψ

m
+∂−x

k− i
2

ˆ̃Ri
jklψ

k
+ψ

l
+∂−x

j+H.O. (4.1.27)

Likewise we can write a relation for ∂2
+−x̃

i using (4.1.22) or (4.1.23) as

∂2
+−x̃

i = −M i
kj(0)∂+x

j∂−x
k − i

2
Ri
jklψ

k
+ψ

l
+∂−x

j +H.O. (4.1.28)

A simple comparison of (4.1.27) with (4.1.28) gives the following

H̃ i
jk = M i

kj(0) (4.1.29)

−Ri
jkl = − ˆ̃Ri

jkl + 2H̃ i
njH̃

n
kl (4.1.30)

We notice that (4.1.25) is the same as (4.1.29), and − ˆ̃Ri
jkl + 2H̃ i

njH̃
n
kl = −R̃i

jkl. There-

fore we obtain Ri
jkl = R̃i

jkl. We see that curvatures of the points p and p̃ are constant

and same. This implies that pseudoduality between two models based on Riemann nor-

mal coordinates must have same curvatures. We see from (4.1.25) and (4.1.26) that this
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transformation works in one way, and is not invertible in this special solution.

General Solution

Now we find the global solution to equation (4.1.19). We know that we can write M i
kj as

the sum of symmetric and antisymmetric parts as follows

M i
kj =

1

2
(M i

kj −M i
jk) +

1

2
(M i

kj +M i
jk)

Inserting antisymmetric part of this matrix into (4.1.19), and using the result (4.1.17) gives

∂nM
i
mj = T ikR

k
njm + 2M i

kjΓ
k
mn − 2TlΓ

l
kjΓ

k
mn

If this equation is integrated, the result will be

M i
mj =M i

mj(0) + 2M i
kj(0)

∫
Γkmndx

n + 4M i
lj(0)

∫
Γkmndx

n

∫
Γlkadx

a

+

∫
T ik(R

k
njm − 2ΓkljΓ

l
mn)dxn +H.O.

and using T im = T im(0) +
∫
M i

mjdx
j we find T up to the third order terms as follows

T im =T im(0) +M i
mj(0)xj + 2M i

kj(0)

∫
dxj

∫
Γkmndx

n

+ 4M i
lj(0)

∫
dxj

∫
Γkmndx

n

∫
Γlkadx

a + T ik(0)

∫
dxj

∫
(Rk

njm − 2ΓkljΓ
l
mn)dxn

+M i
kb(0)

∫
dxj

∫
(Rk

njm − 2ΓkljΓ
l
mn)xbdxn +H.O.
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which immediately leads to a final result for M i
mj

M i
mj = M i

mj(0) + 2M i
kj(0)

∫
Γkmndx

n + 4M i
lj(0)

∫
Γkmndx

n

∫
Γlkadx

a

+ T ik(0)

∫
(Rk

njm − 2ΓkljΓ
l
mn)dxn +M i

ka(0)

∫
(Rk

njm − 2ΓkljΓ
l
mn)xadxn +H.O.

One may find torsion and curvature relations using these explicit solutions as in the previous

section. Let us inquire solutions by expressing equations (4.1.9) - (4.1.12) in terms of T

instead of finding explicit solutions.

If (4.1.17) is inserted in the pseudoduality equations (4.1.9)-(4.1.12) we get

ψ̃i+ = +T ijψ
j
+ (4.1.31)

∂−ψ̃
i
+ = −T ij∂−ψ

j
+ −M i

jmψ
m
+∂−x

j (4.1.32)

∂+x̃
i = +T ij∂+x

j − iM i
jmψ

m
+ψ

j
+ (4.1.33)

∂−x̃
i = −T ij∂−xj (4.1.34)

Using equations of motion for ∂−ψ̃i+ and ∂−ψ
j
+ in (4.1.32), one finds

(H̃ i
mn − Γ̃imn)ψ̃m+∂−x̃

n = T ijΓ
j
mnψ

m
+∂−x

n −M i
nmψ

m
+∂−x

n (4.1.35)

and inserting (4.1.31) and (4.1.34) into (4.1.35) leads to the following result

(H̃ i
mn − Γ̃imn)Tma T

n
b = M i

ba − T ijΓ
j
ab (4.1.36)

Now taking ∂− of (4.1.33) (or ∂+ of 4.1.34) leads to

∂2
+−x̃

i = M i
jk∂+x

j∂−x
k+T ij∂

2
+−x

j−i∂nM i
jmψ

m
+ψ

j
+∂−x

n−iM i
jm∂−ψ

m
+ψ

j
+−iM i

jmψ
m
+∂−ψ

j
+
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We use the equation of motion for ∂2
+−x̃

i, ∂2
+−x

j and ∂−ψm+ , and use the result (4.1.19) to

get

(H̃ i
jk − Γ̃ijk)∂+x̃

j∂−x̃
k +

i

2
ˆ̃Ri
jkmψ̃

k
+ψ̃

m
+∂−x̃

j =(M i
mn − T ijΓjmn)∂+x

m∂−x
n (4.1.37)

− i

2
T ijR

j
mnkψ

n
+ψ

k
+∂−x

m

now using (4.1.31), (4.1.33) and (4.1.34) in (4.1.37) leads to

− (H̃ i
jk − Γ̃ijk)T

j
mT

k
n∂+x

m∂−x
n + i(H̃ i

jl − Γ̃ijl)M
j
knT

l
mψ

n
+ψ

k
+∂−x

m

− i

2
ˆ̃Ri
abcT

b
nT

c
kT

a
mψ

n
+ψ

k
+∂−x

m = (M i
mn − T ijΓjmn)∂+x

m∂−x
n − i

2
T ijR

j
mnkψ

n
+ψ

k
+∂−x

m

which can be split into the following equations

(H̃ i
jk − Γ̃ijk)T

j
mT

k
n = −M i

mn + T ijΓ
j
mn = M i

[nm] (4.1.38)

1

2
T ijR

j
mnk =

1

2
ˆ̃Ri
abcT

b
nT

c
kT

a
m − (H̃ i

jl − Γ̃ijl)M
j
[kn]T

l
m (4.1.39)

we see that (4.1.36) and (4.1.38) are the same equations (by means of equation (4.1.17)).

It is evident that right hand side of equation (4.1.38) is equal to the antisymmetric part of

M i
nm, and therefore, Γ̃ijk = 0. Equation (4.1.39) can be written as

1

2
T ijR

j
mnk =

1

2
( ˆ̃Ri

abc − 2H̃ i
jaH̃

j
bc)T

b
nT

c
kT

a
m (4.1.40)

where we used (4.1.38). H̃ can be figured out by (4.1.38) using the initial values of T and

M , hence it is easy to see that H̃ i
mn = M i

[nm](0). Therefore, we can write ˆ̃Ri
abc−2H̃ i

jaH̃
j
bc =

R̃i
abc, which leads to Ri

mnk = R̃i
mnk by equation (4.1.40). This means that curvatures will

be related to each other by the relation Ri
mnk = R̃i

mnk around the point p on M where the

transformation is identity, and R̃i
mnk is the curvature at point p̃. In this case all the points on
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manifold M will be mapped to only one point p̃ on M̃ where riemann normal coordinates

are used.

4.1.2 Orthonormal Coframes

In this case we will present pseudoduality equations on the orthonormal coframe SO(M).

Equations of motion following from the action (4.1.2) in terms of the superfields are

Xk
+− = Xk

−+ = −[Γk
ij(X)−Hk

ij(X)]X i
+X

j
− (4.1.41)

where superfield X has the form (4.1.1), D+X = X+ and ∂−X = X−. We choose an

orthonormal frame {Λi} with the riemannian connection Λi
j on the superspace. If the su-

perspace coordinates are defined by z = (σ±, θ+), then one form is given by

Λi = dzMX i
M (4.1.42)

Covariant derivatives of XM and XMN will be

dX i
M + Λi

jX
j
M = dzNX i

MN (4.1.43)

The Cartan structural equations are

dΛi = −Λi
j ∧ Λj (4.1.44)

dΛi
j = −Λi

k ∧ Λk
j + Ωi

j (4.1.45)
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where Ωi
j = 1

2
Ri
jklΛ

k ∧ Λl is the curvature two form. Pseudoduality equations (4.1.7) and

(4.1.8) are

X̃ i
± = ±T ij X

j
± (4.1.46)

where T depends on superfield X . Taking the exterior derivative of both sides yields

dX̃ i
± = ±dT ij X

j
± ± T ij dX

j
±

Inserting (4.1.43) in this equation gives

−Λ̃i
jX̃

j
± + dzNX̃ i

±N = ±dT ij X
j
± ∓ T ij Λj

kX
k
± ± dzNT ij X

j
±N

We now substitute (4.1.46) and arrange the terms to get

dzNX̃ i
±N = ±(dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

± ± dzNT ij X
j
±N

We wedge the plus equation (upper sign) by dz+ and minus equation (lower sign) by dz−,

and find the following equations

dz+ ∧ dz−X̃ i
+− = dz+ ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

+ + dz+ ∧ dz−T ij X
j
+− (4.1.47)

dz− ∧ dz+X̃ i
−+ = −dz− ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

− − dz− ∧ dz+T ij X
j
−+ (4.1.48)
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SinceX+− = X−+ (also with tilde) and dz+∧dz− = dz−∧dz+ we may find the constraint

relations by equating left hand sides

2dz+ ∧ dz−T ikXk
+− + dz+ ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

+

+dz− ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

− = 0 (4.1.49)

we substitute the equations of motion (4.1.41)

− 2dz+ ∧ dz−T ik [Γk
mn −Hk

mn]Xm
+X

n
− + dz+ ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

+

+ dz− ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

− = 0 (4.1.50)

and we use dz±Xn
± = Λn − dz∓Xn

∓ to get

− dz+ ∧ T ik (Γk
mn −Hk

mn)Xm
+ Λn − dz− ∧ T ik (Γk

mn +Hk
mn)Xm

−Λn (4.1.51)

+ dz+ ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

+ + dz− ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

− = 0

Now we define the following tensors

dz−U ik− = (dT ik − T ij Λj
k + Λ̃i

jT
j
k )− T ij (Γj

kn −H
j
kn)Λn (4.1.52)

dz+U ik+ = −(dT ik − T ij Λj
k + Λ̃i

jT
j
k ) + T ij (Γj

kn +Hj
kn)Λn (4.1.53)

which satisfies the equation (4.1.51)

dz+ ∧ dz−U ik−Xk
+ − dz− ∧ dz+U ik+X

k
− = 0 (4.1.54)
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They also yield the result

dz−U ik− + dz+U ik+ = 2T ijH
j
knΛn (4.1.55)

which gives

dz+ ∧ dz−U ik− = 2dz+ ∧ T ijH
j
knΛn (4.1.56)

dz− ∧ dz+U ik+ = 2dz− ∧ T ijH
j
knΛn (4.1.57)

If these equations are substituted into (4.1.54), one obtains

2dz+ ∧ T ijH
j
knΛnXk

+ − 2dz− ∧ T ijH
j
knΛnXk

− = 0 (4.1.58)

and using (4.1.42) gives the final result

2dz+ ∧ dz−T ijH
j
knX

n
−X

k
+ − 2dz− ∧ dz+T ijH

j
knX

n
+X

k
− = 0 (4.1.59)

which shows that

dz+ ∧ dz−T ijH
j
knX

k
+X

n
− = 0 (4.1.60)

Therefore, we conclude that H = 0, and U ik− = U ik+ = 0 by equations (4.1.56) and

(4.1.57). Finally equation (4.1.52) and (4.1.53) gives the following result

(dT ik − T ij Λj
k + Λ̃i

jT
j
k ) = T ij Γj

knΛn (4.1.61)
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If we insert the equations of motion into (4.1.47) and (4.1.48), we obtain

−dz+ ∧ dz−(Γ̃i
jk − H̃i

jk)X̃
j
+X̃

k
− = dz+ ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

+

−dz+ ∧ dz−T ij Γi
mnX

m
+X

n
− (4.1.62)

−dz− ∧ dz+(Γ̃i
jk − H̃i

jk)X̃
j
+X̃

k
− = −dz− ∧ (dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

−

+dz− ∧ dz+T ij Γi
mnX

m
+X

n
− (4.1.63)

Inserting dz−Xk
− = Λ − dz+X+ (also with tilde) and X̃+ (4.1.46) into (4.1.62), and

dz+X+ = Λ− dz−X− (also with tilde) and X̃− (4.1.46) into (4.1.63) gives

−dz+ ∧ (Γ̃i
mn − H̃i

mn)Tmk Λ̃n = dz+ ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )− dz+ ∧ T ij ΓiknΛn

(4.1.64)

−dz− ∧ (Γ̃i
mn + H̃i

mn)Tmk Λ̃n = −dz− ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k ) + dz− ∧ T ij ΓiknΛn

(4.1.65)

where we cancelled out Xk
+ in (4.1.64) and Xk

− in (4.1.65). We notice that right-hand sides

of these equations become zero by means of the constraint relation (4.1.61), and we are left

with

(Γ̃i
mn − H̃i

mn)T mk Λ̃n = 0 (4.1.66)

(Γ̃i
mn + H̃i

mn)T mk Λ̃n = 0 (4.1.67)

This shows that on the transformed superspace we must have Γ̃ = 0 and H̃i
mn = 0. We

may find the relation between curvatures of the spaces using (4.1.61). We may define the

connection one form Λj
k = Γj

knΛn, and hence (4.1.61) is reduced to

(dT ik − 2T ij Λj
k + Λ̃i

jT
j
k ) = 0 (4.1.68)
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Taking exterior derivative, and using again (4.1.68) together with (4.1.45) gives

T ij Ωj
k = Ω̃i

jT
j
k (4.1.69)

where new orthonormal coframe is replaced by 2Λ with the same curvature two form Ω on

the manifold M. It is obvious that integrability condition of this equation followed by the

use of (4.1.42) and (4.1.46) yields a curvature relation between two (1, 0) supersymmetric

sigma models which tied together with pseudoduality, which can be reduced to the same

results found in the previous section. The reason why we get a positive sign in curvature

expression in component expansion method is because of anticommuting grassmann num-

bers. This gives that pseudoduality transformation can be performed only if two sigma

models are based on symmetric spaces with opposite curvatures on target spaces M and M̃.

4.2 Pseudoduality in (1, 1) Supersymmetric Sigma Models

In this case [8] the classical spacetime Σ can be enlarged to the superspace Ξ1,1 by

adding Grassmann coordinates of opposite chirality. We will have one left-handed super-

charge Q+, and one right-handed supercharge Q− as given by (4.0.2). The supersymmetry

algebra can be written as

{Q±, Q±} = 2iP± {Q+, Q−} = 0

where P± = −∂±. The supersymmetry transformations will be

δεx
i = ε+ψi+ + ε−ψi−

δεψ
i
+ = iε+∂+x

i + ε−(Γijk +H i
jk)ψ

i
+ψ

k
−

δεψ
i
− = −ε+(Γijk +H i

jk)ψ
j
+ψ

k
− + iε−∂−x

i
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where ε± is the constant anticommuting parameter.

4.2.1 Components

The superfield is written as

X = x+ θ+ψ+ + θ−ψ− + θ+θ−F (4.2.1)

where X : Ξ1,1 → M . We define the (1, 1) superspace Ξ1,1 = (σ+, σ−, θ+, θ−), where

(σ+, σ−) are the null coordinates, and (θ+, θ−) are the Grassman coordinates of opposite

chirality. The action of the theory is

S =

∫
d2σd2θ(Gij +Bij)D+X

iD−X
j (4.2.2)

where supercovariant derivatives are given in (4.0.1). Similar definitions can be written for

pseudodual model with tilde. First order expansion of Gij and Bij , followed by the d2θ

integral gives

S = −
∫
d2x[(gij+bij)∂+x

i∂−x
j+igijψ

i
+∇

(−)
− ψj++igijψ

i
−∇

(+)
+ ψj−−

1

2
R̂+
bnamψ

m
+ψ

n
−ψ

a
+ψ

b
−]

where ∇(±)
± ψj∓ = ∇±ψj∓ ± Hj

mnψ
m
∓∂±x

n, and R̂±bnam = Rbnam ± DaHnmb ∓ DmHnab +

HbajH
j
mn −HnajH

j
mb.
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Equations of motion following from this action will be

F i =(Γijk −H i
jk)ψ

j
+ψ

k
− (4.2.3)

∇(−)
− ψi+ =

i

2
(R̂+)ijmnψ

n
−ψ

j
+ψ

m
− (4.2.4)

∇(+)
+ ψi− =

i

2
(R̂+)ijmnψ

n
+ψ

j
−ψ

m
+ (4.2.5)

�xk =i(R̂−)knimψ
i
+ψ

m
+∂−x

n + i(R̂+)knimψ
i
−ψ

m
−∂+x

n (4.2.6)

− (D̂kR̂+
bnam)ψm+ψ

n
−ψ

a
+ψ

b
−

where D̂kR̂+
bnam = DkR̂+

bnam+Hk
jn(R̂+)jbam−Hk

jb(R̂
+)jnam+Hk

ja(R̂
+)jmbn−Hk

jm(R̂+)jabn.

Pseudoduality transformations are

D+X̃
i = +T ij D+X

j (4.2.7)

D−X̃
i = −T ij D−Xj (4.2.8)

where T is a function of superfield (4.2.1). Transformation matrix T can be expanded as

T (X) = T (x) + θ+ψk+∂kT (x) + θ−ψk−∂kT (x) + θ+θ−F k∂kT (x)− θ+θ−ψk+ψ
l
−∂k∂lT (x).

If pseudoduality transformations are written in components, first equation (4.2.7) yields the

following set of equations

ψ̃i+ = T ijψ
j
+ (4.2.9)

F̃ i = T ijF
j −M i

jkψ
j
+ψ

k
− (4.2.10)

∂+x̃
i = T ij∂+x

j + iM i
jkψ

j
+ψ

k
+ (4.2.11)

∂+ψ̃
i
− = T ij∂+ψ

j
− − 2iM i

[jk]ψ
j
+F

k +M i
kjψ

j
−∂+x

k + i∂lM
i
[jk]ψ

k
+ψ

l
−ψ

j
+ (4.2.12)

where M i
jk = ∂kT

i
j , and M i

[jk] represents the antisymmetric part of M i
jk. Second equation
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(4.2.8) will produce

ψ̃i− = −T ijψ
j
− (4.2.13)

F̃ i = −T ijF j +M i
kjψ

j
+ψ

k
− (4.2.14)

∂−x̃
i = −T ij∂−xj − iM i

jkψ
j
−ψ

k
− (4.2.15)

∂−ψ̃
i
+ = −T ij∂−ψ

j
+ − 2iM i

[jk]ψ
j
−F

k −M i
kjψ

j
+∂−x

k − i∂lM i
[jk]ψ

k
−ψ

l
+ψ

j
− (4.2.16)

We can find constraint relations using these equations. If (4.2.10) is set equal to (4.2.14),

and equation of motion (4.2.3) is used, the result follows

T ij (Γ
i
mn −Hj

mn) = M i
(mn) (4.2.17)

where M i
(mn) is the symmetric part of M i

mn. We immediately notice that Hj
mn = 0, and we

are left with

T ijΓ
j
mn = M i

(mn) (4.2.18)

We next take ∂− of (4.2.9)and set equal to (4.2.16) followed by the equations of motion

(4.2.3) and (4.2.4) to obtain

[2M i
(mn) − 2T ijΓ

j
mn]ψm+∂−x

n = −i[∂aM i
[bc] + 2M i

[ck]Γ
k
ab + T ijR

j
abc]ψ

c
−ψ

a
+ψ

b
− (4.2.19)

Real part of this equation is simply (4.2.18), and complex part will produce

∂aM
i
[bc] + 2M i

[ck]Γ
k
ab + T ijR

j
abc = 0 (4.2.20)

We now take ∂+ of (4.2.13) and set equal to (4.2.12) followed by the equations of
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motion (4.2.3) and (4.2.5) to get

[2M i
(mn) − 2T ijΓ

j
mn]ψm−∂+x

n = −i[∂aM i
[bc] + 2M i

[ck]Γ
k
ab + T ijR

j
abc]ψ

c
+ψ

a
−ψ

b
+ (4.2.21)

This equation is similar to (4.2.19), and we again notice that real part of this equation

is equal to (4.2.18), and complex part is (4.2.20). We finally take ∂− of (4.2.11), ∂+ of

(4.2.15), and set them equal to each other to find out the remaining constraints

2M i
(jk)∂+x

j∂−x
k + 2T ij∂

2
+−x

j = 2iM i
[kj]ψ

j
+∂−ψ

k
+ + i∂nM[kj]ψ

j
+ψ

k
+∂−x

n

+ 2iM i
[kj]ψ

j
−∂+ψ

k
− + i∂nM[kj]ψ

j
−ψ

k
−∂+x

n (4.2.22)

using equations of motion for ∂2
+−x

j (4.2.6), ∂−ψ
j
+ (4.2.4) and ∂+ψ

j
− (4.2.5) yields

(2M i
(mn) − 2T ijΓ

j
mn)∂+x

m∂−x
n + i(T ijR

j
abc + 2M i

[kb]Γ
k
ca + ∂aM

i
[bc])ψ

b
+ψ

c
+∂−x

a

+ i(T ijR
j
abc + 2M i

[kb]Γ
k
ca + ∂aM

i
[bc])ψ

b
−ψ

c
−∂+x

a

− (T ijD
jRabcd +M i

[dk]R
k
cab +M i

[bk]R
k
acd)ψ

d
+ψ

b
−ψ

c
+ψ

a
− = 0 (4.2.23)

If this equation is split into real and complex parts the following results are obtained

(2M i
(mn) − 2T ijΓ

j
mn)∂+x

m∂−x
n = (T ijD

jRabcd +M i
[dk]R

k
cab +M i

[bk]R
k
acd)ψ

d
+ψ

b
−ψ

c
+ψ

a
−

(T ijR
j
abc + 2M i

[kb]Γ
k
ca + ∂aM

i
[bc])ψ

b
+ψ

c
+∂−x

a

+ (T ijR
j
abc + 2M i

[kb]Γ
k
ca + ∂aM

i
[bc])ψ

b
−ψ

c
−∂+x

a = 0
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First equation leads to the following results

M i
(mn) = T ijΓ

j
mn (4.2.24)

T ijD
jRabcd +M i

[dk]R
k
cab +M i

[bk]R
k
acd = 0 (4.2.25)

where (4.2.24) is the same as (4.2.18). Second equation gives

T ijR
j
abc + 2M i

[kb]Γ
k
ca + ∂aM

i
[bc] = 0 (4.2.26)

which is the same equation as (4.2.20) with b ↔ c. Obviously we have three independent

constraint relations, which are (4.2.18), (4.2.20), and (4.2.25).

Now we can find out pseudodual fields, and relations between two sigma models based

onM and M̃ by means of pseudoduality equations. Using (4.2.10) or (4.2.14), and equation

of motion (4.2.3) for F j we get

F̃ i = M i
[nm]ψ

m
+ψ

n
− (4.2.27)

Also definition of F̃ i gives that

F̃ i = (Γ̃ijk − H̃ i
jk)ψ̃

j
+ψ̃

k
−

= −(Γ̃ijk − H̃ i
jk)T

j
mT

k
nψ

m
+ψ

n
− (4.2.28)

where we used (4.2.9) and (4.2.13). Comparison of (4.2.27) with (4.2.28) gives that

(Γ̃ijk − H̃ i
jk)T

j
mT

k
n = M i

[mn] (4.2.29)

Hence we obtain that Γ̃ijk = 0. This means that pseudoduality transformation will be
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from any point on M to only one point where Γ̃ vanishes on M̃ . We know that this is

consistent with Riemann normal coordinates. We are left with

H̃ i
jkT

j
mT

k
n = M i

[nm] (4.2.30)

We next consider (4.2.12). Using equations of motion (4.2.3) and (4.2.5) we obtain

∂+ψ̃
i
− = M i

[mn]ψ
m
−∂+x

n − i

2
T ijR

j
abcψ

c
+ψ

a
−ψ

b
+ (4.2.31)

where we used the constraint (4.2.20). On the other hand we can write the equation of

motion (4.2.5) on M̃ as

∂+ψ̃
i
− = −H̃ i

jkψ̃
j
−∂+x̃

k +
i

2
( ˆ̃R+)ijmnψ̃

n
+ψ̃

j
−ψ̃

m
+ (4.2.32)

= H̃ i
jkT

j
mT

k
nψ

m
−∂+x

n + i(H̃ i
jkT

j
aM

k
[bc] −

1

2
( ˆ̃R+)ijmnT

n
c T

j
aT

m
b )ψc+ψ

a
−ψ

b
+

where we used (4.2.9), (4.2.11) and (4.2.13) in the first line of (4.2.32). If we compare

(4.2.31) with (4.2.32) we see that

H̃ i
jkT

j
mT

k
n = M i

[mn] (4.2.33)

1

2
T ijR

j
abc =

1

2
( ˆ̃R+)ijmnT

n
c T

j
aT

m
b − H̃ i

jkT
j
aM

k
[bc] (4.2.34)

From (4.2.30) and (4.2.33) it is obvious that antisymmetric part of M i
mn disappears,

M i
[mn] = 0, which leads to the result H̃ i

jk = 0. Hence (4.2.34) is reduced to

T ijR
j
abc = R̃i

jmnT
n
c T

j
aT

m
b (4.2.35)

We now simplify right hand side of (4.2.16). We use equations of motion (4.2.3) and
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(4.2.4) and arrange the terms to get

∂−ψ̃
i
+ =

i

2
T ijR

j
abcψ

c
−ψ

a
+ψ

b
− (4.2.36)

where we used the constraint (4.2.20). Also equation of motion for ∂−ψ̃i+ on M̃ gives

∂−ψ̃
i
+ =

i

2
R̃i
jmnψ̃

n
−ψ̃

j
+ψ̃

m
−

=
i

2
R̃i
jmnT

n
a T

j
b T

m
c ψ

a
−ψ

b
+ψ

c
− (4.2.37)

A comparison of (4.2.36) with (4.2.37) gives (4.2.35). When we take ∂− of 4.2.11, and

using relevant equations of motion together with the constraints (4.2.20) and (4.2.25) gives

∂2
+−x̃

i =
i

2
T ijR

j
abcψ

b
−ψ

c
−∂+x

a − i

2
T ijR

j
abcψ

b
+ψ

c
+∂−x

a (4.2.38)

Likewise on M̃ we obtain

∂2
+−x̃

i =
i

2
R̃i
abcψ̃

b
+ψ̃

c
+∂−x̃

a +
i

2
R̃i
abcψ̃

b
−ψ̃

c
−∂+x̃

a − 1

2
D̃iR̃abcdψ̃

d
+ψ̃

b
−ψ̃

c
+ψ̃

a
−

=− i

2
R̃i
mnkT

n
b T

k
c T

m
a ψ

b
+ψ

c
+∂−x

a +
i

2
R̃i
mnkT

n
b T

k
c T

m
a ψ

b
−ψ

c
−∂+x

a

− 1

2
D̃iR̃jkmnT

n
d T

k
b T

m
c T

j
aψ

d
+ψ

b
−ψ

c
+ψ

a
− (4.2.39)

A quick comparison shows that we obtain equation (4.2.35), and D̃iR̃jkmn = 0. We notice

that covariant derivatives of curvatures on both spaces vanish while curvatures are con-

stants, and related to each other by (4.2.35). This obeys that both models are based on

symmetric spaces.
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4.2.2 Orthonormal Coframes

Equations of motion following from (4.2.2) are

Xk
−+ = −[Γk

ij(X)−Hk
ij(X)]X i

+X
j
− (4.2.40)

where X+ = D+X , X− = D−X and X−+ = D+D−X . On the contrary to (1, 0) case, this

time one writes that X−+ = −X+− and {X+, X−} = 0, where {, } defines the anticommu-

tation. Superspace coordinates are z = (σ±, θ±), and orthonormal frame can be chosen as

{Λi} with connection one form {Λi
j}. Similar to (4.1.42) and (4.1.43) one form {Λi} and

covariant derivative of XM can be written as

Λi = dzMX i
M (4.2.41)

dX i
M + Λi

jX
j
M = dzNX i

MN (4.2.42)

Pseudoduality relations are

X̃ i
± = ±T ij X

j
± (4.2.43)

We are going to mimic the calculations performed in (1, 0) case except notable differences

dz+ ∧ dz− = −dz− ∧ dz+, X+− = −X−+, and X+X− = −X−X+. We take exterior

derivative of (4.2.43), and then use (4.2.42) for both manifolds, and arrange the terms to

get

dzNX̃ i
±N = ±(dT ik − T ij Λj

k + Λ̃i
jT

j
k )Xk

± ± dzNT ij X
j
±N (4.2.44)
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We wedge the plus equation by dz+ and minus equation by dz− to get

dz+ ∧ dz−X̃+− = dz+ ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

+ + dz+ ∧ dz−T ij X
j
+− (4.2.45)

dz− ∧ dz+X̃−+ = −dz− ∧ (dT ik − T ij Λj
k + Λ̃i

jT
j
k )Xk

− − dz− ∧ dz+T ij X
j
−+ (4.2.46)

we set left-hand sides equal to each other using X̃+− = −X̃−+ and dz+ ∧ dz− = −dz− ∧

dz+. We notice that we have symmetric expression which has antisymmetric terms in pairs.

Therefore expressions from (4.1.49) to (4.1.69) can be repeated. This ends up with the

same result, curvatures of the supersymmetric sigma models will be constant and opposite

to each other, yielding the dual symmetric spaces.

4.3 Pseudoduality in Super WZW Models

At this point it is interesting to discuss the pseudoduality transformations on super WZW

models [12]. The super WZW model has considerable interest in the context of conformal

field theory. We use the superspace with coordinates (σ+, σ−, θ+, θ−) where σ± are the

standard lightcone coordinates, and θ± are the real Grassmann numbers, with supercharges

Q± = ∂θ± − iθ±∂± and supercovariant derivatives D± = ∂θ± + iθ±∂±. To define super

WZW model we introduce the superfield G(σ, θ) in G with components as expanded by

G(σ, θ) = g(σ)(1 + iθ+ψ+(σ) + iθ−ψ−(σ) + iθ+θ−χ(σ)) (4.3.1)

where the fermions ψ±(σ) take values in g, and are the superpartners of the group-valued

fields g(σ). The field χ(σ) is the auxiliary field. The lagrangian of the model can be written

as

L =
1

2
Tr(D+G−1D−G) + Γ (4.3.2)
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where Γ represents the WZ term. Equations of motion following from this lagrangian are

D−(G−1D+G) = 0 (4.3.3)

D+[(D−G)G−1] = 0 (4.3.4)

There is a global symmetry GL × GR which gives the conserved super currents J L
+ =

G−1D+G and J R
− = (D−G)G−1.

We can write similar expressions related to pseudodual WZW model with tilde. One

can write the pseudoduality transformations using the similarity with bosonic case

G̃−1D+G̃ = +T (σ, θ)G−1D+G (4.3.5)

G̃−1D−G̃ = −T (σ, θ)G−1D−G (4.3.6)

Taking D− of first equation (4.3.5) followed by (4.3.3) yields that D−T (σ, θ) = 0. If

T (σ, θ) is expanded as T (σ, θ) = T (σ) + θ+λ+ + θ−λ− + θ+θ−N(σ), then the condition

D−T (σ, θ) implies that λ− = 0, N(σ) = 0, ∂−T (σ) = 0 and ∂−λ+ = 0. Hence T turns

out to be

T (σ, θ) = T (σ+) + θ+λ+(σ+) (4.3.7)

Taking D+ of second equation (4.3.6) gives the following equation

D+T jj (σ, θ) = (f̃ imnT mj T nk − fmjkT im)(G−1D+G)k (4.3.8)

Before going further to solve this equation, it is convenient to find out the values of some
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fields in terms of components. A brief computation shows that

G−1D+G =iψ+ + iθ+(g−1∂+g − iψ2
+) + iθ−(χ− iψ−ψ+) (4.3.9)

− θ+θ−(∂+ψ− + [g−1∂+g, ψ−] + [ψ+, χ])

G−D−G =iψ− − iθ+(χ− iψ−ψ+) + iθ−(g−1∂−g − iψ2
−) (4.3.10)

+ θ+θ−(∂−ψ+ + [g−1∂−g, ψ+] + [χ, ψ−])

(D−G)G−1 =g{iψ− − iθ+(χ− iψ−ψ+) + iθ−(g−1∂−g + iψ2
−) (4.3.11)

+ θ+θ−(∂−ψ+ + [ψ−, χ]}g−1

Hence, the equation of motion (4.3.3) produces the following equations

χ = iψ−ψ+ (4.3.12)

∂−ψ+ = 0 (4.3.13)

∂−(g−1∂+g − iψ2
+) = 0 (4.3.14)

∂+ψ− = [ψ−, g
−1∂+g] + [χ, ψ+] (4.3.15)

and (4.3.4) yields that

χ = iψ−ψ+ (4.3.16)

∂−ψ+ = [χ, ψ−] (4.3.17)

∂+ψ− = [ψ−, g
−1∂+g] (4.3.18)

∂+(g−1∂−g + iψ2
−) = [g−1∂−g + iψ2

−, g
−1∂+g] (4.3.19)

We see that (4.3.12) and (4.3.16) are the same expressions, and determines the auxiliary

field in terms of ψ− and ψ+. (4.3.13) implies that ψ+ depends on σ+ only, and (4.3.17)

points out that χ commutes with ψ− as expected. (4.3.14) gives us the bosonic left current
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conservation law by means of (4.3.13). Comparison of (4.3.15) with (4.3.18) shows that χ

commutes with ψ+, and (4.3.18) is the fermionic equation of motion for ψ−, which leads

(4.3.19) to the bosonic right current conservation law. Finally we may eliminate ψ2
± terms

because these are fermionic fields and anticommute with each other.

Therefore the fields (4.3.9)-(4.3.11) can be written in simplified forms as

G−1D+G = iψ+ + iθ+g−1∂+g (4.3.20)

G−1D−G = iψ− + iθ−g−1∂−g + θ+θ−[g−1∂−g, ψ+] (4.3.21)

(D−G)G−1 = igψ−g
−1 + iθ−(∂−g)g−1 (4.3.22)

We can now solve the equation (4.3.8) using (4.3.7) and (4.3.20). A little computation

gives the components of T (σ, θ) as

(λ+)ij =i(f̃ imnT
m
j T

n
k − fmjkT im)ψk+ (4.3.23)

(∂+T )ij =(f̃ imn(λ+)mj T
n
k + f̃ imnT

m
j (λ+)nk − fmjk(λ+)im)ψk+ (4.3.24)

+ (f̃ imnT
m
j T

n
k − fmjkT im)(g−1∂+g)k

If (4.3.23) is inserted in (4.3.24) the result follows

(∂+T )ij =(f̃ imnT
m
j T

n
k − fmjkT im)(g−1∂+g)k − if̃ iklf̃ lmn(Tmj T

k
b − T kj Tmb )T na ψ

a
+ψ

b
+

− if̃ iklfmbaT kj T lmψa+ψb+ + ifmjb f
n
maT

i
nψ

a
+ψ

b
+ (4.3.25)

We want to find perturbation solution, and we notice that the order of the term g−1∂+g is

proportional to the order of the term ψψ. We find the following perturbative result up to



94

the second order terms after integrating (4.3.25)

T ij (σ
+) = T ij (0) + Aijk

∫ σ+

0

(g−1∂+g)kdσ′+ +Bi
jab

∫ σ+

0

ψa+ψ
b
+dσ

′+ +H.O. (4.3.26)

where T ij (0) = δij , A
i
jk = (f̃ ijk − f ijk), and Bi

jab = i(f̃ iakf̃
k
bj + f̃ ijkf

k
ab + f iakf

k
bj). Therefore

λ+ may be written as

(λ+)ij =iAijkψ
k
+ + Ci

jkcψ
k
+

∫ σ+

0

(g−1∂+g)cdσ′+

+ iDi
jkcdψ

k
+

∫ σ+

0

ψc+ψ
d
+dσ

′+ +H.O. (4.3.27)

where constants Ci
jkc and Di

jkcd are

Ci
jkc =f̃ ijnA

n
kc + f̃ inkA

n
jc − fnjkAinc = (f̃ incf̃

n
jk − f̃ in[jf

n
ck] + f incf

n
jk) (4.3.28)

Di
jkcd =f̃ ijnB

n
kcd + f̃ inkB

n
jcd − fnjkBi

ncd = if̃ ijnf̃
n
cmf̃

m
kd + if̃ inkf̃

n
cmf̃

m
jd

+ if̃ ijnf̃
n
kmf

m
da + if̃ inkf̃

n
jmf

m
dc − if̃ icmf̃mndfnjk + if̃ ijnf

n
cmf

m
kd

+ if̃ inkf
n
cmf

m
jd − if̃ inmfmdcfnjk − if icmfmndfnjk (4.3.29)

As seen we have an expression for the transformation matrix (4.3.7) up to the third order

terms. We notice that T represents even order terms while λ+ represents odd order terms.

Now we can proceed to find expressions on M̃ using pseudoduality equations (4.3.5) and

(4.3.6). If (4.3.7) and (4.3.20) are substituted in the first equation we obtain

ψ̃i+ = T ijψ
j
+ (4.3.30)

(g̃−1∂+g̃)i = T ij (g
−1∂+g)j + (λ+)ijψ

j
+ (4.3.31)

We notice that both of these equations depend only on σ+. Likewise inserting (4.3.7) and



95

(4.3.21) into second equation (4.3.6) leads to

(λ+)ijψ
j
− = 0 (4.3.32)

ψ̃i− = −T ijψ
j
− (4.3.33)

(g̃−1∂−g̃)i = −T ij (g−1∂−g)j (4.3.34)

[g̃−1∂−g̃, ψ̃+]i = −T ij [g−1∂−g, ψ+]j + i(λ+)ij(g
−1∂−g)j (4.3.35)

These are the pseudoduality equations in components. We observe that if ψ− and ψ+ are set

to zero we obtain bosonic case pseudoduality equations as pointed out in ([7]). We see that

the term (λ+)ijψ
j
+ in equation (4.3.31) gives us (λ+)ijψ

j
+ = −i[ψ̃+, ψ̃+]i

G̃
+ iT ij [ψ+, ψ+]jG =

0. The last equation (4.3.35) gives us the constraint (4.3.23). The equation (4.3.32) is

interesting because it tells us that [ψ̃−, ψ̃+]i = −T ij [ψ−, ψ+]j , which gives us two choices.

First choice is λ+ = 0 which leads to either

f̃ imnT
m
k T

n
l = T ijf

j
kl (4.3.36)

if ψ+ 6= 0. This yields that ∂+T = 0 as can be seen from (4.3.24), and hence we get a

trivial case, flat space pseudoduality equations as follows

ψ̃i± = ±ψi± (4.3.37)

(g̃−1∂±g̃)i = ±(g−1∂±g)i (4.3.38)

where we choose T to be identity. Therefore we obtain f̃ ijk = f ijk in (4.3.36). Or we set

ψ+ = 0, and hence last term in (4.3.26) will be eliminated, so pseudoduality relations will



96

be

ψ̃i− =− ψi− − [ψ−,

∫ σ+

0

(g−1∂+g)dσ′+]i
G̃

(4.3.39)

+ [ψ−,

∫ σ+

0

(g−1∂+g)dσ′+]iG +H.O.

(g̃−1∂±g̃)i =± (g−1∂±g)i ± [g−1∂±g,

∫ σ+

0

(g−1∂+g)dσ′+]i
G̃

(4.3.40)

∓ [g−1∂±g,

∫ σ+

0

(g−1∂+g)dσ′+]iG +H.O.

where we introduced the bracket [ , ]G/G̃ to represent the commutations in G/G̃. Second

choice will eliminate ψ− and hence we get whole expressions (4.3.26) and (4.3.27) for T

and λ+. Therefore we obtain the following perturbation fields

ψ̃i+ =ψi+ + [ψ+,

∫ σ+

0

(g−1∂+g)dσ′+]i
G̃
− [ψ+,

∫ σ+

0

(g−1∂+g)dσ′+]iG

+ i

∫ σ+

0

[ψ+(σ
′+

), [ψ+(σ′+), ψ+(σ+)]G̃]i
G̃
dσ′+

+ i

∫ σ+

0

[ψ+(σ
′+

), [ψ+(σ′+), ψ+(σ+)]G]iGdσ
′+ +H.O. (4.3.41)

(g̃−1∂±g̃)i =± (g−1∂±g)i ± [g−1∂±g,

∫ σ+

0

(g−1∂+g)dσ′+]i
G̃
∓ [g−1∂±g,

∫ σ+

0

(g−1∂+g)dσ′+]iG

± i
∫ σ+

0

[ψ+(σ′+), [ψ+(σ′+), (g−1∂±g)(σ+)]G̃]i
G̃
dσ′+

± i
∫ σ+

0

[ψ+(σ′+), [ψ+(σ′+), (g−1∂±g)(σ+)]G]iGdσ
′+ +H.O. (4.3.42)

where the cross terms [ , [ , ]G]G̃ vanish.

We have already derived our pseudoduality equations, conditions inducing pseudodual-
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ity, and finally the perturbative expressions of the pseudodual fields up to the third (fourth)

order terms, leading to conserved currents on the pseudodual model. Using these fields it is

possible to construct left and right super currents on pseudodual manifold M̃. It is apparent

from the expression (4.3.20) that we can easily construct right super currents belonging to

special cases discussed above. To find left super currents we use the method we traced in

third section (3).

4.3.1 Supercurrents in Flat Space Pseudoduality

In this case structure constants of both models are the same, f̃ = f , and pseudoduality

relations are given by (4.3.37) and (4.3.38). We let g = eY , where Y is the lie algebra.

Using the expansion in the third section (3)

g−1∂±g =
1− e−adY

adY
∂± =

∞∑
k=0

(−1)k

(k + 1)!
[Y, ..., [Y, ∂±Y ]] (4.3.43)

where adY is the adjoint representation of Y , and adY (Z) = [Y, Z]. We know that bosonic

currents are invariant under g −→ gR(σ−)gL(σ+), hence we obtain that g−1∂+g −→

g−1
L ∂+gL, which is

g−1
L ∂+gL = ∂+YL −

1

2!
[YL, ∂+YL] +

1

3!
[YL, [YL, ∂+YL]] + ... (4.3.44)

Now we impose that Y =
∑∞

0 εnyn, where ε is a small parameter. Thus we get the

following lie algebra valued field up to the third order terms

g−1
L ∂+gL =ε∂+yL1 + ε2(∂+yL2 −

1

2
[yL1, ∂+yL1]) (4.3.45)

+ ε3(∂+yL3 −
1

2
[yL1, ∂+yL2]− 1

2
[yL2, ∂L1] +

1

6
[yL1, [yL1, ∂+yL1]]) +O(ε4)
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In a similar way one can find the expression for g−1∂−g [?]

g−1∂−g =ε∂−yR1 + ε2(∂−yR2 − [yL1, ∂−yR1]− 1

2
[yR1, ∂−yR1]) (4.3.46)

+ ε3(∂−yR3 − [yL2, ∂−yR1]− [yL1, ∂−yR2]− 1

2
[yR2, ∂−yR1]− 1

2
[yR1, ∂−yR2])

+
1

2
[yL1, [yR1, ∂−yR1]] +

1

2
[yL1, [yL1, ∂−yR1]] +O(ε4)

Since it works all the way up we are going to do all our calculations up to the sec-

ond order of ε for simplicity and demonstration. We can write similar expressions for the

manifold M̃ . Pseudoduality equation (4.3.38) gives infinite number of sub-pseudoduality

equations, from which we may write the following expressions coming from up to the

second order of ε terms

∂+ỹL1 = ∂+yL1 (4.3.47)

∂−ỹR1 = −∂−yR1 (4.3.48)

∂+ỹL2 −
1

2
[ỹL1, ∂+ỹL1] = ∂+yL2 −

1

2
[yL1, ∂+yL1] (4.3.49)

∂−ỹR2 − [ỹL1, ∂−ỹR1]− 1

2
[ỹR1, ∂−ỹR1] = −∂−yR2 + [yL1, ∂−yR1] +

1

2
[yR1, ∂−yR1]

(4.3.50)

First equation yields that ỹL1 = yL1 +CL1, where CL1 is constant, and the second equation

gives ỹR1 = −yR1 − CR1, where CR1 is constant. Inserting these result into last equation

gives

∂−ỹR2 +
1

2
[ỹR1, ∂−ỹR1] = −∂−yR2 +

3

2
[yR1, ∂−yR1] (4.3.51)

where we used the equality of structure constants. We found this because we need this term
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in the expansion of bosonic right current 3, which is

(∂−gR)g−1
R = ε∂−yR1 + ε2(∂−yR2 +

1

2
[yR1, ∂−yR1]) +O(ε3) (4.3.52)

Hence bosonic right and left currents on M̃ in terms of nonlocal expressions will be

J̃L+ = g̃−1
L ∂+g̃L = ε∂+yL1 + ε2(∂+yL2 −

1

2
[yL1, ∂+yL1]) +O(ε3) (4.3.53)

J̃R− = (∂−g̃R)g̃−1
R = −ε∂−yR1 − ε2(∂−yR2 −

3

2
[yR1, ∂−yR1]) +O(ε3) (4.3.54)

Obviously these currents are conserved by means of (4.3.14) and (4.3.19). Now we con-

sider the fermionic components, and we let ψ± =
∑∞

n=1 ε
nψn±. We denote ψ± as the sum

of right and left components ψ± = ψR±(σ−) +ψL±(σ+). But from (4.3.13) we understand

that ψ+ includes ψL+ only. Pseudoduality relations (4.3.37) again yields infinite number of

subequations

ψ̃Ln+ = ψLn+ (4.3.55)

ψ̃(L/R)n− = −ψ(L/R)n− (4.3.56)

which hold true for each n. Thus left and right supercurrents on M̃ in nonlocal terms up to

the second order of ε will be

J̃ L
+ = G̃−1D+G̃ = iψ̃+ + iθ+(g̃−1∂+g̃) (4.3.57)

= iε(ψL1+ + θ+∂+yL1) + iε2{ψL2+ + θ+(∂+yL2 −
1

2
[yL1, ∂+yL1])}+O(ε3)

3see (3) [16, 18, 22] for details of this expansion
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J̃ R
− = (D−G̃)G̃−1 = ig̃ψ̃−g̃

−1 + iθ−(∂−g̃)g̃−1 (4.3.58)

= −iε(ψ1− + θ−∂−yR1)− iε2{ψ2− + [yL1, ψ1−]− [yR1, ψ1−]

+ θ−(∂−yR2 −
3

2
[yR1, ∂−yR1])}+O(ε3)

It is obvious from the equations of motion that these currents in nonlocal expressions are

conserved.

4.3.2 Supercurrents in Anti-chiral Pseudoduality

Now we consider our second case where ψ+ vanishes. In this case we need to be careful

when using bracket relations because structure constants are different. We have already

found our nonlocal expressions in (4.3.39) and (4.3.40). We use the same expansions of lie

algebra Y and fermionic field ψ− in the powers of ε as used in the previous part. Therefore

pseudoduality relations up to the second order of ε yield the following equations

ψ̃i1− = −ψi1− (4.3.59)

ψ̃i2− = −ψi2− − [ψ1−, yL1]i
G̃

+ [ψ1−, yL1]iG (4.3.60)

∂+ỹ
i
L1 = ∂+y

i
L1 (4.3.61)

∂+ỹ
i
L2 − [ỹL1, ∂+ỹL1]i

G̃
= ∂+y

i
L2 +

1

2
[yL1, ∂+yL1]iG − [yL1, ∂+yL1]i

G̃
(4.3.62)

∂−ỹ
i
R1 = −∂−yiR1 (4.3.63)

∂−ỹ
i
R2 +

1

2
[ỹR1, ∂−ỹR1]i

G̃
= −∂−yiR2 +

1

2
[yR1, ∂−yR1]iG + [yR1, ∂−yR1]i

G̃
(4.3.64)
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We may find out nonlocal supercurrents on the pseudodual manifold using these expres-

sions

J̃ L
+ = iεθ+∂+yL1 + iε2θ+{∂+yL2 +

1

2
[yL1, ∂+yL1]iG − [yL1, ∂+yL1]i

G̃
}+O(ε3) (4.3.65)

J̃ R
− = −iε(ψ1− + θ−∂−yR1)− iε2{ψ2− + [yL1, ψ1−]G − [yR1, ψ1−]G̃ (4.3.66)

+ θ−(∂−yR2 −
1

2
[yR1, ∂−yR1]G − [yR1, ∂−yR1]G̃)}+O(ε3)

Obviously these currents in nonlocal expressions are conserved provided that equations of

motion are satisfied.

4.3.3 Supercurrents in Chiral Pseudoduality

We consider our final case where ψ− disappears. We notice that there is a contribution of

chiral part in the isometry T which leads to third order terms in the field expressions on the

target space of pseudodual manifold as can be seen from equations (4.3.41) and (4.3.42).

Again we keep in our minds that structure constants are different. If the same conventions

for Y and ψ+ are used as above, then pseudoduality relations up to the second order of ε

can be calculated. Expressions for the fields g̃−1∂±g̃ are the same as (4.3.61)-(4.3.64), and

expression for the chiral field (4.3.41) gives that

ψ̃iL1+ = ψiL1+ (4.3.67)

ψ̃iL2+ = ψiL2+ + [ψL1+, yL1]i
G̃
− [ψL1+, yL1]iG (4.3.68)
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Then nonlocal conserved supercurrents are found to be

J̃ L
+ = iε(ψL1+ + θ+∂+yL1) + iε2{ψL2+ + θ+(∂+yL2 +

1

2
[yL1, ∂+yL2]G (4.3.69)

− [yL1, ∂+yL1]G̃)}+O(ε3)

J̃ R
− = −iεθ−∂−yR1 − iε2θ−(∂−yR2 −

1

2
[yR1, ∂−yR1]G − [yR1, ∂−yR1]G̃) +O(ε3)

(4.3.70)

It is noted that all these supercurrents are the complements of each other, and special

cases of a more general one. Under the limiting conditions they are equal to each other. If

we denote the bosonic and fermionic components by J̃B and J̃F then they are written as

J̃ L/R
± = ±J̃L/RF ± θ±J̃L/RB (4.3.71)

Since these super currents serve as the orthonormal frame on the pullback bundle of the

target space of G, we may find the corresponding bosonic and fermionic curvatures using

them. If Li = J i is the left invariant Cartan one form which satisfies the Maurer-Cartan

equation

dJ i +
1

2
f ijkJ j ∧ J k = 0 (4.3.72)

and Lik = 1
2
f ijkJ j is the antisymmetric riemannian connection, then Cartan structural equa-

tions on superspace can be written as

dLi + Lij ∧ Lj = 0 (4.3.73)

dLij + Lik ∧ Lkj =
1

2
Ri
jklL

k ∧ Ll (4.3.74)

where Ri
jkl is the curvature of superspace. If the calculations in the previous section is

repeated using these equations in this case one can show that curvatures on SO(M) are
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constants, and related to each other by R̃i
jkl = −Ri

jkl, which shows that two superspaces

are dual symmetric spaces. If this curvature relation is split into bosonic and fermionic

parts, it is easy to see that fermionic part will yield a curvature relation which are opposite

to each other, i.e. (R̃F )ijkl = −(RF )ijkl, while bosonic part will give that both curvatures

will be the same, i.e. (R̃B)ijkl = (RB)ijkl, because of anticommuting numbers. This is

consistent with the results found in the component expansion methods.



Chapter 5

Pseudoduality In Supersymmetric
Sigma Models on Symmetric Spaces

5.1 Motivation

In the previous two works we studied target space pseudoduality between symmetric space

sigma models for scalar fields, and supersymmetric sigma models. In this work we will

analyse pseudoduality in G/H supersymmetric sigma models in two respects, on the or-

thonormal coframe first, and then using components.

We will work in superspace with coordinates (σ±, θ±), where σ± are the standard ligh-

cone coordinates on two dimensional Minkowski space and θ± are the fermionic coordi-

nates which are real Grassmann numbers. Supersymmetry generating charges and super-

covariant derivatives are given respectively by

Q± = ∂θ± − iθ±∂± (5.1.1)

D± = ∂θ± + iθ±∂± (5.1.2)

which obey

Q2
± = −i∂± D2

± = i∂± (5.1.3)

104
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with all other anti-commutators vanishing. Lagrangian of the model is defined by

LG =
1

2
Tr(D+G−1D−G) + Γ (5.1.4)

with Γ representing WZ term. We introduced the superfield G(σ, θ) taking values in a

compact Lie group G, which can be expanded in components by

G(σ, θ) = g(σ)(1 + iθ+ψ+(σ) + iθ−ψ−(σ) + iθ+θ−χ(σ)) (5.1.5)

where ψ± take values in Lie algebra g, and χ is the auxiliary field. The lagrangian (5.1.4)

has a global symmetry GL×GR acting on the superfield G by left and right multiplication,

which produces the following equations of motion

D−(G−1D+G) = 0 (5.1.6)

D+[(D−G)G−1] = 0 (5.1.7)

and yields the conserved super currents J L
+ = G−1D+G and J R

− = (D−G)G−1 taking

values in g. We may write similar expressions for the pseudodual sigma model using tilde.

We were able to write pseudoduality relations in the previous section as

G̃−1D±G̃ = ±T (σ, θ)G−1D±G (5.1.8)

where T (σ, θ) is expanded as

T (σ, θ) = T (σ) + θ+λ+ + θ−λ− + θ+θ−N(σ)

Equations of motion (5.1.6) implies that λ− = 0, N = 0, and T (σ) and λ+ depends on
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σ+. We saw (4.3) that component expansion of pseudoduality equations leads to three con-

ditions; flat space pseudoduality which gives λ+ = 0, T (σ) = id and Lie groups have to

be same, (Anti)chiral pseudoduality which gives vanishing (ψ+) ψ− in both models with

distinct Lie groups. We saw that derived conserved super currents serve as the orthonormal

frame on the pullback bundle of the target space, we derived curvature relations between

two manifolds, which are constants and opposite to each other, implying that both super-

spaces are the dual symmetric spaces. Motivated by this result we examine pseudoduality

conditions in super WZW models based on symmetric spaces. We begin with orthonormal

coframe method, and then figure out component expansions.

5.2 Orthonormal Coframe Method

We consider a closed subgroup H of a connected Lie group G. We know that symmetric

space M is the coset space M = G/H such that Lie algebras h of H and m of M are the

orthogonal complements of each other, and g = m + h, where h is closed under brackets

while m is Ad(H)-invariant subspace of g, Adh(m) ⊂ m for all h ∈ H . Symmetric space

conditions are given by the bracket relations

[h,h] ⊂ h [h,m] ⊂ m [m,m] ⊂ h (5.2.1)

To distinguish space elements of different Lie algebras we will use the indices i, j, k...

for the space elements of g, α, β, γ... for the space elements of m, and a, b, c... for the space

elements of h. Therefore (5.2.1) leads to the only allowed structure constants fabc and faαβ

up to permutations of indices.

Let us first formulate G/H sigma model on superspace before embarking on pseudod-
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uality. G(σ, θ) was defined in (5.1.5), and J L
± = G−1D±G ∈ g can be split as

J L
± = K± +A± (5.2.2)

where K± ∈ m and A± ∈ h. The Lagrangian for the G/H sigma model is

LG/H =
1

2
Tr(K+K−) + ΓG/H (5.2.3)

where ΓG/H represents the Wess-Zumino term for G/H supersymmetric sigma model.

Equations of motion following from (5.1.6), (5.1.7) and (5.2.1) are

K+− = 0 K−+ = [K−,A+] + [A−,K+] (5.2.4)

A+− = 0 A−+ = [A−,A+] + [K−,K+] (5.2.5)

We choose an orthonormal coframe {Li} with the Riemannian connection Lij on the

superspace G. Li is the left invariant Cartan one form, which satisfies the Cartan structural

equations

dLi + Lij ∧ Lj = 0 (5.2.6)

dLij + Lik ∧ Lkj =
1

2
Ri
jklL

k ∧ Ll (5.2.7)

The Maurer-Cartan equation

dLi +
1

2
f ijkL

j ∧ Lk = 0 (5.2.8)

leads to Lik = 1
2
f ijkL

j . If the superspace coordinates are given by z = (σ±, θ±), and
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Li = dzMLiM , the covariant derivative of Li can be written as

dLiM + LijL
j
M = dzNLiMN (5.2.9)

The pseudoduality equations (5.1.8) are written as

L̃i± = ±T ij L
j
± (5.2.10)

We already know how to solve these equations from previous sections. Now let us con-

struct the symmetric space M and its complement H-space formulations. We will use the

same symbols as the supercurrents to define orthonormal coframes and corresponding con-

nections on superspaces M and H . Let Kα (Aa) be the orthonormal coframe, and Kαβ (Aab )

be the Riemannian connection on subspace M (H).

5.2.1 Setting up the Theory on M

We already found the equations of motion in (5.2.4), where Kα = dzMKαM . The Maurer-

Cartan equation (5.2.8) can be written as

dKα + fαβaKβ ∧ Aa = 0 (5.2.11)

which leads to the following connections by comparison to (5.2.13)

Kαβ =
1

2
fαaβAa Kαa =

1

2
fαβaKβ (5.2.12)
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Cartan structural equations can be split on M as

dKα +Kαβ ∧ Kβ +Kαa ∧ Aa = 0 (5.2.13)

dKαβ +Kαγ ∧ K
γ
β +Kαa ∧ Aaβ =

1

2
Rα
βλµKλ ∧ Kµ +

1

2
Rα
βabAa ∧ Ab (5.2.14)

+Rα
βλaKλ ∧ Aa

dKαa +Kαγ ∧ Kγa +Kαb ∧ Aba =
1

2
Rα
aλµKλ ∧ Kµ +

1

2
Rα
abcAb ∧ Ac (5.2.15)

+Rα
aλbKλ ∧ Ab

The covariant derivative (5.2.9) is written

dKαM +KαβK
β
M +KαaAaM = dzNKαMN (5.2.16)

We observe that all the fields on m-space have additional mixing components to h-

space, which leads us to write down the pseudoduality equations on m-space in a pre-

dictable way

K̃α± = ±T αβ K
β
± ± T αa Aa± (5.2.17)

We take the exterior derivative, use (5.2.16) and (5.2.33), and arrange the terms to get

dK̃α± = ±dT αβ K
β
± ± T αβ dK

β
± ± dT αa Aa± ± T αa dAa± (5.2.18)

dzNK̃α±N =± (dT αλ + K̃αβT
β
λ + K̃αaT aλ − T αβ K

β
λ − T

α
a Aaλ)Kλ±

± (dT αb + K̃αβT
β
b + K̃αaT ab − T αβ K

β
b − T

α
a Aab )Ab±

± dzNT αβ K
β
±N ± dz

NT αa Aa±N (5.2.19)
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we now wedge this equation by dz± to see the effect of equations of motion

dz± ∧ dz∓K̃α±∓ =± dz± ∧ (dT αλ + K̃αβT
β
λ + K̃αaT aλ − T αβ K

β
λ − T

α
a Aaλ)Kλ±

± dz± ∧ (dT αb + K̃αβT
β
b + K̃αaT ab − T αβ K

β
b − T

α
a Aab )Ab±

± dz± ∧ dz∓T αβ K
β
±∓ ± dz± ∧ dz∓T αa Aa±∓ (5.2.20)

Equations of motion (5.2.4) and (5.2.5) provide some cancellations, and we obviously see

that (+) equation gives us the following constraint relations

dT αλ + K̃αβT
β
λ + K̃αaT aλ − T αβ K

β
λ − T

α
a Aaλ = 0 (5.2.21)

dT αb + K̃αβT
β
b + K̃αaT ab − T αβ K

β
b − T

α
a Aab = 0 (5.2.22)

where we treatedKλ+ andAb+ as independent components, and we set these equations equal

to zero because dT is a one form. (−) equation has pure contributions from the equations

of motion

dz− ∧ dz+K̃α−+ = −dz− ∧ dz+(T αβ K
β
−+ + T αa Aa−+) (5.2.23)

We use the corresponding equations of motions, and obtain the result

dz− ∧ dz+(f̃αaβÃa+K̃
β
− + f̃αβaK̃

β
+Ãa− =− T αβ f

β
aλA

a
+Kλ− − T αβ f

β
λaK

λ
+Aa−

− T αa fabcAb+Ac− − T αa faβλK
β
+Kλ−) (5.2.24)

If we use the expansions Kα = dzMKαM and Aa = dzMAaM , and the connection one forms

(5.2.12) and (5.2.32) the result follows

K̃αβK̃
β
− + K̃αa Ãa− = −T αβ K

β
λK

λ
− − T αβ K

β
bA

b
− − T αa AabAb− − T αa AaλKλ− (5.2.25)
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Now we use pseudoduality equations (5.2.17) and (5.2.37) for K̃α− and Ãa−, and compare

the coefficients of Kλ− and Ab− to obtain the results

K̃αβT
β
λ + K̃αaT aλ = T αβ K

β
λ + T αa Aaλ (5.2.26)

K̃αβT
β
b + K̃αaT ab = T αβ K

β
b + T αa Aab (5.2.27)

we immediately notice that if these results are substituted into (5.2.21) and (5.2.22) we

obtain dT αλ = dT αb = 0. Therefore we conclude that T αλ and T αb must be constant, and we

choose them to be identity. Hence the pseudoduality relations between symmetric spaces

will simply be

K̃α± = ±Kα± ± T αa (0)Aa± (5.2.28)

Here T αa (0) is the identity mapping which provides the mixing of H-space to M̃ . From the

relations (5.2.26) and (5.2.27), which can simply be written as

K̃αλ + K̃αaT aλ (0) = Kαλ + T αa (0)Aaλ (5.2.29)

K̃αβT
β
b (0) + K̃αb = Kαb + T αa (0)Aab (5.2.30)

we may find relations between curvatures by means of (5.2.14) and (5.2.15). Since these

equations requireH-space connections, before going further it is worth to analyzeH-space

pseudoduality.

5.2.2 Pseudoduality on H

One form is defined byAa = dzMAaM . The Maurer-Cartan equation (5.2.8) corresponding

to H-space will be

dAa +
1

2
fabcA

b ∧ Ac +
1

2
faαβK

α ∧Kβ = 0 (5.2.31)
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Cartan structural equations are split as

dAa +Aab ∧ Ab +Aaβ ∧ Kβ = 0 (5.2.32)

dAab +Aac ∧ Acb +Aaλ ∧ Aλb =
1

2
Ra
bcdAc ∧ Ad +

1

2
Ra
bλµKλ ∧ Kµ (5.2.33)

+Ra
bcλAc ∧ Kλ

dAaα +Aac ∧ Acα +Aaλ ∧ Kλα =
1

2
Ra
αbcAb ∧ Ac +

1

2
Ra
αλµKλ ∧ Kµ (5.2.34)

+Ra
αbλAb ∧ Kλ

A comparison of (5.2.31) to (5.2.32) gives the following connections

Aac =
1

2
fabcAb Aaβ =

1

2
faαβKα (5.2.35)

The covariant derivative of Aa is

dAaM +AabAbM +AaλKλM = dzNAaMN (5.2.36)

Using the same reasoning above we may write the pseudoduality equations on H-space as

Ãa± = ±T ab Ab± ± T aβ K
β
± (5.2.37)

We take the exterior derivative

dÃa± = ±dT ab Ab± ± T ab dAb± ± dT aβ K
β
± ± T aβ dK

β
± (5.2.38)
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and use the covariant derivatives (5.2.18) and 5.2.36 followed by the pseudoduality equa-

tions (5.2.28) and 5.2.37 to get

dzNÃa±N =± (dT ac + ÃabT bc + ÃaλT λc (0)− T ab Abc − T aβ Kβc )Ac±

± (dT aλ + ÃabT bλ + Ãaλ − T ab Abλ − T aβ K
β
λ)Kλ±

± dzNT ab Ab±N ± dzNT aβ K
β
±N (5.2.39)

If this equation is wedged by dz± one gets

dz± ∧ dz∓Ãa±∓ =± dz± ∧ (dT ac + ÃabT bc + ÃaλT λc (0)− T ab Abc − T aβ Kβc )Ac±

± dz± ∧ (dT aλ + ÃabT bλ + Ãaλ − T ab Abλ − T aβ K
β
λ)Kλ±

± dz± ∧ dz∓T ab Ab±∓ ± dz± ∧ dz∓T aβ K
β
±∓ (5.2.40)

(+) (upper) equation yields the following constraints

dT ac + ÃabT bc + ÃaλT λc (0)− T ab Abc − T aβ Kβc = 0 (5.2.41)

dT aλ + ÃabT bλ + Ãaλ − T ab Abλ − T aβ K
β
λ = 0 (5.2.42)

one finds out the following constraint relation between equations of motion from (−)

(lower) equation

dz− ∧ dz+Ãa−+ = −dz− ∧ dz+(T ab Ab−+ + T aβ K
β
−+) (5.2.43)
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We use the equations of motions and find that

dz− ∧ dz+(f̃abcÃb+Ãc− + f̃aβλK̃
β
+K̃λ− =− T ab f bcdAc+Ad− − T ab f bβλK

β
+Kλ−

− T aβ f
β
bλA

b
+Kλ− − T aβ f

β
λbK

λ
+Ab−) (5.2.44)

we again use Kα = dzMKα
M and Aa = dzMAaM followed by connection forms (5.2.12)

and (5.2.32) to obtain

ÃacÃc− + ÃaλK̃λ− = −T ab AbcAc− − T ab AbλKλ− − T aβ K
β
λK

λ
− − T aβ KβcAc− (5.2.45)

If the pseudoduality equations (5.2.28) and (5.2.37) for K̃λ− and Ãc− is inserted, one finds

ÃabT bc + ÃaλT λc (0) = T ab Abc + T aβ Kβc (5.2.46)

ÃabT bλ + Ãaλ = T ab Abλ + T aβ K
β
λ (5.2.47)

These equations together with constraint relations above yield that dT ac = dT aλ = 0, which

shows that T ac and T aλ are constants, chosen to be identity as in the previous part. Therefore

we are left with the pseudoduality equations in reduced form

Ãa± = ±Aa± ± T aβ (0)Kβ± (5.2.48)

with corresponding constraint relations whose integrability conditions will give us the re-

lations between curvatures

Ãac + ÃaλT λc (0) = Aac + T aβ (0)Kβc (5.2.49)

ÃabT bλ (0) + Ãaλ = Aaλ + T aβ (0)Kβλ (5.2.50)
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5.2.3 Integrability Conditions and Curvature Relations

We have already figured out relations between connection one forms, (5.2.29) and (5.2.30)

for M -space, (5.2.49) and (5.2.50) for H-space, which leads to corresponding curvature

relations via second Cartan structural equation. We start with taking exterior derivative of

(5.2.29), and then insert in related Cartan‘s equations, and finally use the results (5.2.29),

(5.2.30), (5.2.49) and (5.2.50) to obtain

Ω̃α
λ + Ω̃α

b T bλ (0) = Ωα
λ + T αa (0)Ωa

λ (5.2.51)

where Ω•• is the curvature two form associated with the space whose indices are used. If we

insert the expressions for curvature two forms, and use pseudoduality equations, one gets

after some calculations

R̂α
λµν = −( ¯̃R

α

λµν + ¯̃R
α

λµcT cν (0) + ¯̃R
α

λcνT cµ (0) + ¯̃R
α

λcdT cµ (0)T dν (0)) (5.2.52)

R̂α
λµd = −( ¯̃R

α

λµd + ¯̃R
α

λcdT cµ (0) + ¯̃R
α

λµνT νd (0) + ¯̃R
α

λcνT cµ (0)T νd (0)) (5.2.53)

R̂α
λcν = −( ¯̃R

α

λcν + ¯̃R
α

λcdT dν (0) + ¯̃R
α

λµνT µc (0) + ¯̃R
α

λµdT µc (0)T dν (0)) (5.2.54)

R̂α
λcd = −( ¯̃R

α

λcd + ¯̃R
α

λµdT µc (0) + ¯̃R
α

λcµT
µ
d (0) + ¯̃R

α

λµνT µc (0)T νd (0)) (5.2.55)

where we defined R̂α
λµν ≡ Rα

λµν + T αa (0)Ra
λµν and ¯̃R

α

λµν ≡ R̃α
λµν + R̃α

bµνT bλ (0). It can

readily be seen that if one identifies a pseudoduality transformationsM −→ M̃ andH −→

H̃ , then one simply has the expected relations Rα
λµν = −R̃α

λµν and so on. If we generalize

this formation to remaining constraint equations above, and curvature relations followed

by them, one can easily writes

Ω̃A
B + Ω̃A

CT CB (0) = ΩA
B + T AC (0)ΩC

B (5.2.56)
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where the indices A, B and C stands for the indices corresponding to M or H-space ele-

ments depending on which relation is used. Therefore, curvature relations will be

R̂A
Bµν = −( ¯̃R

A

Bµν + ¯̃R
A

BµcT cν (0) + ¯̃R
A

BcνT cµ (0) + ¯̃R
A

BcdT cµ (0)T dν (0)) (5.2.57)

R̂A
Bµd = −( ¯̃R

A

Bµd + ¯̃R
A

BcdT cµ (0) + ¯̃R
A

BµνT νd (0) + ¯̃R
A

BcνT cµ (0)T νd (0)) (5.2.58)

R̂A
Bcν = −( ¯̃R

A

Bcν + ¯̃R
A

BcdT dν (0) + ¯̃R
A

BµνT µc (0) + ¯̃R
A

BµdT µc (0)T dν (0)) (5.2.59)

R̂A
Bcd = −( ¯̃R

A

Bcd + ¯̃R
A

BµdT µc (0) + ¯̃R
A

BcµT
µ
d (0) + ¯̃R

A

BµνT µc (0)T νd (0)) (5.2.60)

5.3 Component Expansion Method

In this section we work out the pseudoduality by components. The superfield G(σ, θ) is

given by (5.1.5) in components. In the previous section (4.3) we saw that equations of

motion (5.1.6) and (5.1.7) gave us the following results

χ = iψ−ψ+ (5.3.1)

∂−ψ+ = 0 (5.3.2)

∂+ψ− = [ψ−, g
−1∂+g] (5.3.3)

∂+(g−1∂−g) = [g−1∂−g, g
−1∂+g] (5.3.4)

∂−(g−1∂+g) = 0 (5.3.5)

We offer the solutions g = gR(σ−)gL(σ+) and ψ± = ψ±L(σ+) + ψ±R(σ−) in the right

and left moving components. Hence we observe that ψ+R = 0 from equation (5.3.2), ψ−R

commutes with gL from equation (5.3.3), and equations (5.3.4) and (5.3.5) depend only on
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σ− and σ+ respectively. Therefore we easily get the decomposition G = GRGL, where

GR = gR(1 + iθ−ψ−R) (5.3.6)

GL = gL(1 + iθ+ψ+L + iθ−ψ−L − θ+θ−ψ−Lψ+L) (5.3.7)

Using these relations one may get the following expressions which will be needed in con-

structing pseudoduality and conserved currents

G−1
L D+GL = iψ+L + iθ+g−1

L ∂+gL (5.3.8)

(D−GR)G−1
R = igRψ−Rg

−1
R + iθ−1(∂−gR)g−1

R (5.3.9)

G−1D−G = iψ−R + iθ−g−1∂−g + θ+θ−[g−1∂−g, ψ+L] (5.3.10)

We may decompose the fields g−1∂±g = k± + A± and ψ± = φ± + B± on symmetric

space, where k±, φ± ∈m are the bosonic and fermionic symmetric space field components,

and A±, B± ∈ h are the corresponding gauge fields. If one indicates these fields in terms

of right and left expressions, it is evident that k+ = k+L, k+R = 0, A+ = A+L, A+R = 0,

k− = g−1
L k−RgL, A− = g−1

L A−RgL, φ+R = B+R = 0. Hence one can write the superfield

decompositions (5.2.2) as follows

K+L = iφ+L + iθ+k+L (5.3.11)

K− = iφ−R + iθ−k− + θ+θ−([A−, φ+L] + [k−, B+L]) (5.3.12)

A+L = iB+L + iθ+A+L (5.3.13)

A− = iB−R + iθ−A− + θ+θ−([k−, φ+L] + [A−, B+L]) (5.3.14)

where K+R = A+R = 0. Equations of motion in components following from (5.2.4) and
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(5.2.5) will be

φ+−R =φ+−L = k+−R = k+−L = 0 (5.3.15)

A+−R =A+−L = B+−R = B+−L = 0 (5.3.16)

[B−R, φ+L] =− [φ−R, B+L] (5.3.17)

{B−R, k+L} =− {φ−R, A+L} (5.3.18)

A−φ+L =− k−B+L (5.3.19)

k−+ =− {k−, A+L} − {A−, k+L} − i[[A−, φ+L], B+L] (5.3.20)

− i[[k−, B+L], B+L]− i[[k−, φ+L], φ+L]− i[[A−, B+L], φ+L]

[φ−R, φ+L] =− [B−R, B+L] (5.3.21)

k−φ+L =− A−B+L (5.3.22)

{B−R, A+L} =− {φ−R, k+L} (5.3.23)

A−+ =− {A−, A+L} − {k−, k+L} − i[[k−, φ+L], B+L] (5.3.24)

− i[[A−, B+L], B+L]− i[[A−, φ+L], φ+L]− i[[k−, B+L], φ+L]

where [ , ] denotes commutation, and { , } denotes anticommutation relation. By means of

(5.3.19) and (5.3.22), equations (5.3.20) and (5.3.24) can be simplified as follows

k−+ =− {k−, A+L} − {A−, k+L} − i{B+L, φ+L}A− (5.3.25)

A−+ =− {A−, A+L} − {k−, k+L} − i{B+L, φ+L}k− (5.3.26)

Similar expressions on pseudodual manifold can be written using tilde over each term.

We may now establish the pseudoduality relations. We will first analyze non-mixing pseu-

doduality case which will lead mixing case to be well comprehended in turn.
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5.3.1 Pseudoduality: Non-Mixing Case

Before considering the general case, we figure out the simplest case where mixing part of

the pseudoduality map in (5.2.17) vanishes, T αa = 0. Let us first work out pseudoduality

on symmetric space M, and then consider H-space since they are mutually dependent on

each other. We think of T as a function of superfield X , and can be expanded as in the

first section (5.1), T (σ, θ) = T (σ+) + θ+λ+(σ+). Consequently pseudoduality relations in

components on M are written as

φ̃α+L = Tαβ φ
β
+L (5.3.27)

k̃α+L = Tαβ k
β
+L + (λ+)αβφ

β
+L (5.3.28)

φ̃α−R = −Tαβ φ
β
−R (5.3.29)

k̃α− = −Tαβ k
β
− (5.3.30)

(λ+)αβφ
β
−R = 0 (5.3.31)

[Ã−, φ̃+L]α + [k̃−, B̃+L]α = −Tαβ ([A−, φ+L]β + [k−, B+L]β) + i(λ+)αβk
β
− (5.3.32)

Likewise pseudoduality relations on H can be expanded in components as

B̃a
+L = T ab B

b
+L (5.3.33)

Ãa+L = T ab A
b
+L + (λ+)abB

b
+L (5.3.34)

B̃a
−R = −T ab Bb

−R (5.3.35)

Ãa− = −T ab Ab− (5.3.36)

(λ+)abB
b
−R = 0 (5.3.37)

[k̃−, φ̃+L]a + [Ã−, B̃+L]a = −T ab ([k−, φ+L]b + [A−, B+L]b) + i(λ+)abA
b
− (5.3.38)
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When we take the corresponding (+) covariant derivative of (5.3.29), we obtain that (D+T
α
β )φβ−R =

0, where D is the covariant derivative acting on m-space. Together with equation (5.3.31)

we are left with two options: First option is to consider that Tαβ is constant and (λ+)αβ is

zero. This is consistent with the results we found in our previous work, which leads to flat

space pseudoduality

k̃α+L = kα+L k̃α− = −kα− (5.3.39)

φ̃α+L = φα+L φ̃α−R = −φα−R (5.3.40)

with the corresponding bracket relations (5.3.32)

[Ã−, φ̃+L]α = −[A−, φ+L]α [k̃−, B̃+L]α = −[k−, B+L]α (5.3.41)

Second option is to have φ−R = 0, which leads to φ̃−R = 0. In this case the isometry Tαβ

can be found by taking D+ of (5.3.30), which leads to

(D+T
α
β )kβ− = Tαβ {k−, A+L}β + {k̃−, Ã+L}α (5.3.42)

with the constraint anti-commutation relation

{Ã−, k̃+L}α + if̃αβa{B̃+L, φ̃+L}βÃa− = −Tαβ {A−, k+L}β − iTαβ fβνa{B+L, φ+L}νAa−

(5.3.43)

k̃− and Ã+L can be replaced using (5.3.30) and (5.3.34). Hence it is realized that Tαβ is a

function of bosonic gauge field A+L. On the other hand (λ+)αβ can be found by (5.3.32)

i(λ+)αβk
β
− = [k̃−, B̃+L]α + Tαβ [k−, B+L]β (5.3.44)
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with the bracket relation

[Ã−, φ̃+L]α = −Tαβ [A−, φ+L]β (5.3.45)

where unknown tilded expressions can be substituted back using related equations above.

It is observed that (λ+)αβ is given in terms of the fermionic gauge field B+L.

Now we apply the same reasoning to H-space equations. We take D
′
+ of (5.3.35), and

have that (D
′
+T

a
b )Bb

−R = 0, where D
′ is the covariant derivative acting on h-space. We

again notice that we have two different options to satisfy this equation as well as (5.3.37).

First option is to pick T ab to have a constant, and (λ+)ab vanishing value. This is compatible

with the first option above and results in the previous work. This gives rise to the following

flat space pseudoduality equations

Ãa+L = Aa+L Ãa− = −Aa− (5.3.46)

B̃a
+L = Ba

+L B̃a
−R = −Ba

−R (5.3.47)

along with the bracket relations

[k̃−, φ̃+L]a = −[k−, φ+L]a [Ã−, B̃+L]a = −[A−, B+L]a (5.3.48)

Second option is to choose B−R = 0, which will bring about B̃−R = 0 respectively. In

this case T ab can be found by taking D
′
+ of (5.3.36), which will cause

(D
′

+T
a
b )Ab− = T ab {A−, A+L}b + {Ã−, Ã+L}a (5.3.49)

with the complemental equation

{k̃−, k̃+L}a+ if̃aαβ{B̃+L, φ̃+L}αk̃β− = −T ab {k−, k+L}b− iT ab f bαβ{B+L, φ+L}αkβ− (5.3.50)
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where Ã− and Ã+L can be substituted with the relevant equations above. Consequently we

are aware that T ab is a function of bosonic gauge field A+L similar to Tαβ . (λ+)ab can be

found using (5.3.38)

i(λ+)abA
b
− = [Ã−, B̃+L]a + T ab [A−, B+L]b (5.3.51)

with the associated bracket relation

[k̃−, φ̃+L]a = −T ab [k−, φ+L]b (5.3.52)

where Ã− and B̃+L can be replaced using related equations. We notice that (λ+)ab is a

function of B+L which is analogous to (λ+)αβ . Although it seems that both m and h-

space expressions are independent of each other, they are decomposed subspaces of g,

and accordingly has to satisfy constraints arising from g. Because of this reason we will

conclude that vanishing (λ+)αβ implies vanishing (λ+)ab , likewise if φ−R is set to zero, we

have to consider B−R = 0, which agrees with the result found in the previous work [?]. We

know that commutation relations found above leads to the corresponding relations between

connection two forms, which in turn give rise to relevant relations between curvatures.

5.3.2 Pseudoduality: Mixing Case

In this section we will consider the pseudoduality transformation that causes mixing of M

and H-spaces by allowing mixing components of T . Again the matrix T can be written in

the form which has already been imposed by the constraints on G as T = T + θ+λ+. On
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M -space pseudoduality equations will be

φ̃α+L = Tαβ φ
β
+L + Tαa B

a
+L (5.3.53)

k̃α+L = Tαβ k
β
+L + Tαa A

a
+L + (λ+)αβφ

β
+L + (λ+)αaB

a
+L (5.3.54)

φ̃α−R = −Tαβ φ
β
−R − T

α
a B

a
−R (5.3.55)

k̃α− = −Tαβ k
β
− − Tαa Aa− (5.3.56)

0 = (λ+)αβφ
β
−R + (λ+)αaB

a
−R (5.3.57)

[Ã−, φ̃+L]α + [k̃−, B̃+L]α = −Tαβ ([A−, φ+L]β + [k−, B+L]β) + i(λ+)αβk
β
−

− Tαa ([k−, φ+L]a + [A−, B+L]a) + i(λ+)αaA
a
− (5.3.58)

and on H-space we obtain the following pseudoduality equations

B̃a
+L = T ab B

b
+L + T aβφ

β
+L (5.3.59)

Ãa+L = T ab A
b
+L + T aβ k

β
+L + (λ+)abB

b
+L + (λ+)aβφ

β
+L (5.3.60)

B̃a
−R = −T ab Bb

−R − T aβφ
β
−R (5.3.61)

Ãa− = −T ab Ab− − T aβ k
β
− (5.3.62)

0 = (λ+)abB
b
−R + (λ+)aβφ

β
−R (5.3.63)

[k̃−, φ̃+L]a + [Ã−, B̃+L]a = −T ab ([k−, φ+L]b + [A−, B+L]b) + i(λ+)abA
b
−

− T aβ ([A−, φ+L]β + [k−, B+L]β) + i(λ+)aβk
β
− (5.3.64)

Let us find the constraint relations on pseudoduality transformations using the equations of

motion. Hence we take (+) covariant derivative of (5.3.55), and obtain

(D+T
α
β )φβ−R + (D+T

α
a )Ba

−R = 0 (5.3.65)
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If one deals with this equation together with (5.3.57), one can obtain two different condi-

tions. First condition imposes that Tαβ and Tαa are constants and chosen to be identity, and

(λ+)αβ and (λ+)αa vanish. Therefore one may obtain the pseudoduality equations

k̃α+L = kα+L + Tαa (0)Aa+L k̃α− = −kα− − Tαa (0)Aa− (5.3.66)

φ̃α+L = φα+L + Tαa (0)Ba
+L φ̃α−R = −φα−R − Tαa (0)Ba

−R (5.3.67)

with the constraint bracket relation

[Ã−, φ̃+L]α + [k̃−, B̃+L]α =− [A−, φ+L]α − [k−, B+L]α

− Tαa (0)([k−, φ+L]a + [A−, B+L]a) (5.3.68)

where Tαa (0) represents the mixing component of T which is identity. We see that once we

have the duality relations (5.3.66) and (5.3.67) we must have the bracket relation (5.3.68)

on both spaces. We observe that mixings are included by means of gauge fields A and B.

Second condition on m-space is given by setting both φ−R and B−R equal to zero. We

are careful at this point because we must have both fields vanishing. This is because these

two fields form the ferminonic field ψ on space g which leads both fields to disappear

simultaneously when split on h and m-spaces. Therefore we have φ̃−R = 0 from (5.3.55).

To find Tαβ and Tαa we take (+) covariant derivative of (5.3.56), which will lead to two

independent equations

(D+T
α
β )kβ− =Tαβ {k−, A+L}βG + Tαa {k−, k+L}aG + iTαa f

a
βλ{B+L, φ+L}βGk

λ
−

− {Tk−, Ã+L}αG̃ − {Tk−, k̃+L}αG̃ − if̃
α
βa{B̃+L, φ̃+L}βG̃T

a
λk

λ
− (5.3.69)

(D+T
α
a )Aa− =Tαβ {A−, k+L}βG + Tαa {A−, A+L}aG + iTαβ f

β
λa{B+L, φ+L}βGA

a
−

− {TA−, Ã+L}αG̃ − {TA−, k̃+L}αG̃ − if̃
α
βa{B̃+L, φ̃+L}βG̃T

a
b A

b
− (5.3.70)
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where { , }G represents anticommutation relation in G. We used the independence of

k− and A− in deriving this equation, and they can be cancelled out to give transformation

matrices. Terms with tilde can be replaced by nontilded ones using pseudoduality equations

above, and hence giving Tαβ and Tαa in terms ofA+L, k+L,B+L and φ+L. These are coupled

equations and can be solved perturbatively to yield terms up to the second order terms as

we did in our previous works. In this case fermionic transformation matrices will be

i(λ+)αβk
β
− = Tαβ [k−, B+L]βG + Tαa [k−, φ+L]aG − [Tk−, φ̃+L]α

G̃
− [Tk−, B̃+L]α

G̃
(5.3.71)

i(λ+)αaA
a
− = Tαβ [A−, φ+L]βG + Tαa [A−, B+L]aG − [TA−, φ̃+L]α

G̃
− [TA−, B̃+L]α

G̃
(5.3.72)

which are functions of fermionic terms φ+L and B+L after cancelling k− and A− respec-

tively. Again tilded terms can be replaced by nontilded ones using corresponding pseudo-

duality equations above. We notice that the constraint relations (5.3.50) and (5.3.52) found

in nonmixing pseudoduality case turns out to be expressions for transformation matrices

in mixing case. We understand that in the absence of mixing pseudoduality transformation

imposes some constraints which correspond to mixing part of pseudoduality.

In a similar way one can figure out pseudoduality on H-space. We take (+) covariant

derivative of (5.3.61)

(D
′

+T
a
b )Bb

−R + (D
′

+T
a
β )φβ−R = 0 (5.3.73)

When considered together with (5.3.63) one finds two conditions on pseudoduality. First

condition is to pick T ab and T aβ constant, and (λ+)ab and (λ)aβ vanishing. Of course these are

dependent on conditions (5.3.66) and (5.3.67) on m-space and can not be independently set
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to zero. Therefore pseudoduality equations will be

Ãa+L = Aa+L + T aβ (0)kβ+L Ãa− = −Aa− − T aβ (0)kβ− (5.3.74)

B̃a
+L = Ba

+L + T aβ (0)φβ+L B̃a
−R = −Ba

−R − T aβ (0)φβ−R (5.3.75)

where we chose the constant matrices to be identity. These equations adopt the following

constraint relation

[k̃−, φ̃+L]a + [Ã−, B̃+L]a =− [k−, φ+L]a + [A−, B+L]a

− T aβ (0)([A−, φ+L]β + [k−, B+L]β) (5.3.76)

Our second condition is to choose B−R = φ−R = 0. This leads to B̃−R = 0 on H̃ .

Transformation matrices can be found by taking (+) covariant derivative of (5.3.62) as

(D
′

+T
a
b )Ab− =T ab {A−, A+L}bG + T aβ {A−, k+L}βG + iT aβ f

β
λb{B+L, φ+L}λGAb−

− {TA−, Ã+L}aG̃ − {TA−, k̃+L}aG̃ − if̃
a
αβ{B̃+L, φ̃+L}αG̃T

β
b A

b
− (5.3.77)

(D
′

+T
a
β )kβ− =T ab {k−, k+L}bG + T aβ {k−, A+L}βG + iT ab f

b
αβ{B+L, φ+L}αGk

β
−

− {Tk−, Ã+L}aG̃ − {Tk−, k̃+L}aG̃ − if̃
a
αβ{B̃+L, φ̃+L}αG̃T

β
λ k

λ
− (5.3.78)

These are coupled differential equations, and can be solved perturbatively. It is obvious that

T ab and T aβ are functions of k+L, φ+L, A+L and B+L. Fermionic transformation matrices

can be found by

i(λ+)abA
b
− = T ab [A−, B+L]bG + T aβ [A−, φ+L]βG − [TA−, φ̃+L]a

G̃
− [TA−, B̃+L]a

G̃
(5.3.79)

i(λ+)aβk
β
− = T ab [k−, φ+L]bG + T aβ [k−, B+L]βG − [Tk−, φ̃+L]a

G̃
− [Tk−, B̃+L]a

G̃
(5.3.80)
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which are functions of fermionic terms φ+L and B+L. Tilded terms on right-hand sides

can be replaced using corresponding pseudoduality equations. Again these terms turn into

constraint relations when mixing components of T vanish.
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