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The advent of developing outdoor malaria vector control methods creates a 

demand for distribution models of Anopheles mosquitoes at regional (~30 

meters) and fine spatial scales (~2 meters). The distributions Anopheline 

mosquitoes in West Africa have been modeled in the past, yet always at 

relatively coarse resolutions. In this study, I worked to develop methods to 

ascertain the distribution of Anopheline mosquitoes at these little studied spatial 

scales. The species distribution modeler Maxent was used to create a species 

distribution model at a regional scale for Anopheles gambiae and Anopheles 

arabiensis which relied on Landsat derived environmental indices. Models for 

both species preformed reasonably well with a training area under the curve 

value (AUC) of 0.767 & a test AUC of 0.783 for Anopheles gambiae, and a 

training AUC of 0.822 & a test AUC of 0.680 for   Anopheles arabiensis. The 

result of the created models agrees with the known bionomics of these species 

and demonstrated the reliance on the area around and in urbanized areas as 

being important to both species. The second aim of this research was to observe 

the distribution of mosquitoes at a fine spatial scale by mapping possible areas of 

resting habitats that these malaria mosquitoes use to rest during daylight hours. 

This was performed by using two different models, Maxent and Dempster-Shafer 



 
 

modeling, along with the high resolution satellite images from the WorldView 2 

satellite. The results of the two modeling methods appear to agree with the 

results of the other fairly well with a linear regression R-squared value of 0.428 

(p< 0.001) and both appear to be capable of mapping out the presence of areas 

likely used as resting sites by mosquitoes. Yet to accurately determine which 

resting sites are more important than others may require additional data that is 

difficult to determine by using remote sensing alone. 
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CHAPTER I 

INTRODUCTION  

 Problem Definition 

Malaria is one of the most serious public health problems in the developing 

world today, and as a result it is considered a high priority for control efforts and 

its elimination within the global health community. (Tanner and de Savigny 2008; 

Mendis et al. 2009; Bousema,Teun 2011; Cotter,Chris 2013). Recent incentives 

by researchers and health communities have aimed to make this goal possible 

with establishments such as The Roll Back Malaria (RBM) program. Programs 

such as these have already had a positive impact with reports showing that 

malaria mortality rates decreased by an impressive 47% between 2000 and 2013 

globally and by 54% in the WHO African Region (World Health Organization 

2014).  These successes can be attributed to the continuing development of new 

drugs, and international funding that supports various malaria vector control 

strategies. RBM has set new goals for global malaria reduction by 2015. These 

include reduction of global malaria deaths to near zero, reducing global malaria 

cases by 75% relative to the 2000 levels and eliminating the disease in at least 8 

to 10 new countries (Roll Back Malaria Partnership 2011).Yet, it is clear from 

recent data that this ambitious target remains elusive (World Health Organization 

2014).  

Focusing on Africa, malaria control efforts have resulted in a 23% decrease in 

cases and a 33% decrease in deaths associated with malaria when compared to 

data from 2000 (World Health Organization 2011). Yet this average figure does  
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not represent the entirety of the continent.  In 15 out of the 18 countries that fall 

within the region of West Africa, malaria transmission rates are among the 

highest in the Sub-Saharan part of the continent with infections almost 

exclusively due to Plasmodium falciparum (World Health Organization 2011).   

The problem of malaria in Africa can be partially attributed to the ecology 

and behavior of a highly competent vector system of Anopheles mosquitoes, 

primarily Anopheles gambiae and Anopheles arabiensis of the Anopheles 

gambiae complex, and Anopheles funestus ( Coetzee, Craig, and le Sueur 2000). 

Although each of these species is potentially dangerous to humans, each one 

has different habitat preferences. An. gambiae and An. funestus feed frequently 

and predominantly on humans, rest mainly inside houses (endophilic), and can 

survive for long periods. Peak densities of An. gambiae and An. arabiensis follow 

seasonal patterns of rainfall and both use a range of freshwater larval habitats 

(White 1974). An. funestus proliferate typically in permanent swamps and reach 

peak densities after seasonal rains into the dry season (White 1974). An. 

arabiensis is adapted to arid environments and has the most extensive 

geographic range in Africa. It is more difficult to control because of its outdoor 

(exophilic) resting and partial zoophilic feeding behaviors (Coluzzi 1984; WHO 

Study Group 2006).        

Spatial Considerations 

 To further malaria control efforts in West Africa it is important to consider 

the spatial constraints that limit the disease. The risk of transmission is not 
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uniform across the landscape; this is because risk is spatially heterogeneous due 

to the fact that pathogens, vectors and susceptible human populations are 

unevenly distributed in space and time (Brooker et al. 2004). Furthermore, the 

certain environmental variables required for the different vector mosquito species 

result in nonrandom distributions that can be analyzed and predicted with spatial 

models. Spatial models are advanced spatial analysis techniques that help 

identify the spatio-temporal patterns of both disease and vectors and provide a 

better understanding of environmental influence on the patterns observed; 

information which may then be used to direct surveillance and monitoring, 

decision-making and disease risk management (Stevens and Pfeiffer 2011; 

Eisen and Eisen 2011). 

Previous Distribution Studies 

As the RBM program focuses on reducing malaria transmission as one of 

its goals it is important to understand the distribution of the vector species 

throughout the landscape. An accurate and predictive understanding of the 

different geographic distributions of the malaria vectors in West Africa would 

permit efficient planning strategies for targeted control to reduce vector 

populations and identification of areas in which particular species are potentially 

involved in transmission. Modelling mosquito distribution is not a new concept. 

Researchers have used a variety of methods to map and predict mosquito 

ranges from regional to global scales. The most basic method for this distribution 

was to map out the frequency of different mosquito species and different 

chromosomal forms at different sampling locations (Toure et al. 1998). This 
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technique has been traditionally used at the country-level (Toure et al. 1998; 

Onyabe and Conn 2001) and continental level (Coetzee,et al, 2000) spatial 

scales with plot locations distributed throughout the study area. Some studies 

also implemented rainfall data to understand how this climatic variable correlates 

with what was seen (Toure et al. 1998; Coetzee et al,2000; Drake,and Beier 

2014). This technique provides valuable snapshots of information pertaining to 

mosquito frequency, density, and composition at the sampled locations. Yet it 

does not provide a continuous surface of information that might respond to the 

unique ground conditions that vary across the landscape. Other research has 

mapped mosquito distribution and abundance using GIS functions with 

environmental data such as climate, topography, human population density and 

soil water holding capacity (Lindsay et al. 1998). One study published maps that 

were displayed at a one-degree square grid (4 km2 at equator) and created maps 

of multiple Anopheline species for the entirety of Africa. These maps were then 

validated using public mosquito location data. This research as shown that the 

relative abundance of An. gambiae s.s. and An. arbiensis are correlated with 

temperature and precipitation at a regional scale (Moffett et al. 2007). Another 

study created predictive maps for An. arabiensis for the entirety of Mali using 

Bayesian geostatistical logistic regression (Sogoba et al. 2007). This study found 

that An. arabiensis was positively correlated with NDVI, soil water storage index, 

the maximum temperature and the distance to water bodies. It was also found 

that elements such as rainfall and minimum temperature were negatively 

correlated with An. arabiensis distribution (Sogoba et al. 2007). 
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 More recent research (Levine, et al, 2004; Drake and Beier 2014) has 

used ecological niche modeling to predict mosquito distribution in Africa. Drake 

and Beier (2014) specifically worked to develop models which would forecast the 

future distribution of An. arabiensis may be impacted by climate change. These 

ecological models were created using a program called GARP (Genetic 

Algorithm for Rule-set Prediction). This method maps ecological niches of 

species based on the relationship between point-occurrence data to maps of 

relevant ecological conditions, producing a heterogeneous set of rules that 

describe the potential distribution of species in ecological dimensions.  Other 

research has used different modeling algorithms, such as Boosted Regression 

Tree (BRT) (Sinka et al. 2010; Conley et al. 2014). Sinka et al. (2010) created a 

total of 41 vector distribution models for different areas of the world. They used 

public mosquito data (presence and absence points) and various environmental 

and climatic variables to create distribution maps using BRT methods. These 

species maps provide some of the most extensive mosquito distribution maps at 

the resolution of 5km by 5km. 

Outdoor Vector Control 

Even though these models provide useful information concerning 

mosquito distribution in Africa the spatial resolution is usually much too coarse 

for possible outdoor vector control. Vector control is the application of various 

strategies with the intent of preventing malaria transmission by limiting contact 

with the vector species. This also includes any methods intended to eliminate the 

vector species in some way. The use of vector control in areas where malaria is 
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prevalent, such as sub Saharan Africa, is considered of high importance (WHO 

2012). The current options for vector control in African countries are limited 

(Muller et al. 2010) and the vector control strategies available are meant for 

indoor control. The main control is insecticide-treated nets (ITNs) and long-

lasting insecticide-treated nets (LLINs) which have increased in usage in sub-

Saharan Africa from 3% of the population in 2000 to now around 53% in 2011 

(WHO 2012). Another popular vector control strategy is indoor residual spraying 

(IRS), which involves spraying the inside of dwellings with an insecticide. The 

proportion of the population protected by indoor residual spraying increased 

substantially in Africa during 2006–2008, and the increased coverage was then 

maintained above 10% during 2009–2011; in 2011, 77 million people in the 

Region, or 11% of the population at risk, were protected (WHO 2012). Even 

though these methods have been proven to reduce parasite transmission they do 

not consistently reduce malaria prevalence rates because even barely detectable 

numbers of infective bites per person per year can be associated with malaria 

prevalence rates over 20% (Beier, Killeen, and Githure 1999; Mueller et al. 

2010). In terms of outdoor vector control the options are still in development yet 

there is growing interest in pursuing these ventures. Much of the focus on the 

development of outdoor strategies has been on larval control. Killeen, Fillinger, 

and Knols 2002 and Gu and Novak 2005 demonstrated that larval control may be 

highly effective, complementary to adult control interventions, and should be 

considered as an integral part of Rolling Back Malaria. Fillinger et al. 2009 also 

demonstrated that vector control with microbial larvicides enhanced the malaria 
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control achieved with ITNs alone. With reference to adult targeted vector control 

strategies research has shown that spraying vegetation with insecticides such as 

Bifenthrin reduces mosquito populations in outdoor environments (Cilek 2008). 

Also, the use of phytochemicals, which are intended to attract mosquitoes, could 

be used to trap and eliminate mosquitoes in outdoor environments. (Foster 

2008). Another possible outdoor vector control method are attractive toxic sugar 

baits (ATSB), which aim to control mosquito populations by creating baits that 

consist of plant-based attractants combined with sugar and a low-risk toxin such 

as boric acid (Muller and Schlein 2006; Muller and Schlein 2008; Schlein and 

Mueller 2008; Muller et al. 2010; Muller et al. 2010). The use of ATSB has been 

shown to decrease male and female An. gambiae populations by 90% when 

compared to pre-treatment levels. ATSB methods may prove to be a highly 

effective, technologically simple, inexpensive, and environmentally safe mosquito 

control method (Muller et al. 2010).  

Local Scale Distribution 

To effectively use any of these vector control strategies requires 

knowledge of where the mosquitoes are within the environment surrounding the 

areas at risk. While distribution maps for the country of Mali were produced in the 

past (Sogoba et al. 2007), the literature lacks maps for species distribution at a 

finer spatial resolution, specifically at local-to-regional scales, which are 

consistent with many forms of freely available satellite imagery such as Landsat 

TM/ETM+, ASTER, or Quickbird imagery, for example.   
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At the village level, understanding resting habitats for the different malaria 

vectors becomes important to help create management plans that aim to reduce 

transmission. The resting sites of adult mosquitoes in general are a poorly 

documented subject in the literature, despite its importance in the ecology of 

these organisms (Burkett-Cadena, Graham, and Giovanetto 2013). Resting 

habitat for mosquitoes are areas where mosquitoes rest after taking in blood 

meals before oviposition or during periods of inactivity during the day light hours.  

Understanding and identifying hotspot resting habitats can serve to help in vector 

control in rural areas (Afrane et al. 2006). To eliminate malaria in this region of 

the world understanding both large scale and small-scale mosquito resting 

habitat preferences is necessary to efficiently allocate vital vector control to areas 

that need it most. Once these hotspots are located then the usage of ATSB, or 

insecticide can be deployed to produce the maximum effect in reducing mosquito 

populations as well as malaria transmission.  

Temperature is a major environmental factor that influences malaria 

mosquitoes (Paaijmans and Thomas 2011) and their resting behaviors. 

Mosquitoes are small poikilothermic organisms that are dependent on the 

surrounding environment for temperature regulation (Paaijmans and Thomas 

2011). As such these malaria vector mosquitoes need to remain in shaded areas 

for the majority of the time to avoid desiccation and death, which would result 

from extended periods in the African sun (May 1979). This means that the 

daytime resting habitat for these organisms can be closely tied to dense 

vegetation, which would likely provide shade and a cooler microclimate when 
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compared to open areas. Furthermore proximity to a water body and to blood 

meals is potentially important to consider as well, as they are crucial to the 

mosquitoes’ life history. Blood meals are important to female mosquitoes as they 

require blood for egg maturation which is part of the gonotrophic cycle 

(Paaijmans and Thomas 2011). Besides water being important for hydration of 

the adult mosquitoes, they also require open water to deposit their eggs at the 

end of their gonotrophic cycle (Sumba et al. 2004). The vicinity to water can be 

considered of utmost importance when identifying resting habitats. Previous 

studies have shown that proximity to swamps, as well as distance to streams or 

other water bodies are strong predictors of malaria incidence (Trape et al. 1992; 

Staedke et al. 2003; Gouagna et al. 2011; Zhou et al. 2012).  

Research Objectives 

The overall purpose of this research was to test the possibility and the 

feasibility to map the distribution of the anopheline mosquito species at regional 

scales found in public satellite imagery described earlier, using the popular 

species niche modeler, Maxent (Chapter 2) to describe Anopheles mosquito 

distribution across a landscape. The second objective of the research is to test if 

microhabitat preferences, such as resting habitats, can also be mapped using 

satellite images and remote sensing methods (Chapter 3).  These aims address 

the gaps in the literature in respects to malaria vector modeling. Furthermore, 

this research will be focused on Southern Mali which can be seen in Map 1.1, an 

area in West Africa where malaria is highly prevalent (WHO 2014).  
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Map 1.1 The Study area in Mali, West Africa; this map shows the location 
and extent of the two different remotely sensed images in this study. 
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Ecological Considerations 

Mali is a West African landlocked country that covers a total area of 

1,242,248 square kilometers. The country is relatively flat, altitude variations are 

minimal, ranging from 200 to 350 m above sea level (Sogoba et al. 2007). The 

majority of the country lies within the Sahara desert, which covers the northern 

part of the country that includes the regions of Tombouctou, Kidal, and Gao. Yet 

these regions, due their aridity, have limited vegetation or moisture which are 

associated with mosquito habitats. Therefore, the study area of this thesis falls in 

the southern region of Mali, which is defined by the second aim of this study. This 

area covers the Koulikoro, Bamako, and parts of the Sikasso and Ségou regions 

of the country. A small part of the study area also falls in the country of Guinea. 

This area overlaps the Sahel ecosystems in the north and Sudanian savanna 

ecosystems in the south.  

Sahel Region 

The Sahel is a transitional region that separates the Sahara from the southern 

savannah regions of Central and Western Africa. This unique zone of Africa 

occupies an area of 2.5 million km2 in a 400- to 500-km wide belt which has a 

strong north south precipitation gradient that follows a general 1mm/km (White 

1983; Le Houerou 1980). This region is characterized by short single rainy 

seasons which normally last 2-4 months then are followed by a long dry season 

which last the remainder of the year. Being near the Sahara the average 

maximum temperatures for the Sahel region can range from 40oC to 45oC from 
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April to possible as late as September. The lowest average temperatures for the 

Sahel occur around December to January which is around 15 oC (Tucker et al. 

1985).  Due to the short rainy seasons the growing season is also very brief, 

ranging from 2-2.5 months. As a result, this region is mainly dominated by annual 

grasses such as Chloris prieurri, Aristida mutabilis, Cenchrus biflorus, 

Schoenefeldia gracilis, Dactylocteuium aeyptium, and Tragus berteroniauus just 

to name a few (Tucker et al. 1985). The coverage of woody vegetation in this 

area is very low. On soils where the rainwater is well absorbed, the average 

coverage of these trees is less than 5 percent (Breman and Dewit 1983).  Yet in 

areas where the soil does not absorb the rainfall, the water runs-off and 

accumulates in temporary puddles.  It is around these areas where conditions 

are suitable enough for canopy cover to exceed coverages of 20 percent 

(Breman and Dewit 1983). The typical woody species in the Sahel include Acacia 

tortilis, A. laeta, Commiphora africana, Balanites aegyptiaca and Boscia 

senegalensis (Shorrocks 2007). The trees in this region have various adaptations 

to cope with the harsh, arid conditions. Many species have an extensive root 

system which is meant to utilize the largest amount of water and minerals from a 

large volume of soil (Shorrocks 2007). Many species also have a downward 

directed tap root which is meant to access deep sources of water as well as an 

anchor for smaller lateral roots to expand laterally into the different soil layers 

(Hopkins and Jenkin 1962; Sarmiento and Monasterio 1983). Yet in areas such 

as the Sahel, root systems have been known to flatten out near the surface to 

capture the most amount of water after relatively light rain (Walter 1973). These 
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extensive strategies all result in many trees to remain green long after the 

grasses have senesced. This leads to available shaded areas that may provide 

resting habitats to anopheline mosquitoes within the dry season (Paaijmans and 

Thomas 2011).  

The people who live in the Sahel region are mainly pastoralists and farmers 

although livestock production provides greater wealth potential than farming 

because of high rainfall variability in space and time and an abundance of 

nutritious forage for livestock.  The people of the Sahel usually follow one of two 

traditional systems of livestock farming which include nomadism and 

seminomadism animal husbandry (Breman and Dewit 1983). These different 

ways of life are determined by the environment of the inhabitants and are 

associated with the different climatological zones. Within the northern edge of the 

Sahel where is there is little water and little arable land, people follow the purely 

nomadic lifestyle as the need to find sufficient biomass for their herds constantly 

drive them to new areas (Breman and Dewit 1983).  In the heart of the Sahel 

region itself the people tend to follow the seminomadic lifestyle as there is more 

water and arable land so they can afford to spend time growing crops such as 

Millet. Yet even if there is more water and biomass in this region the quality of 

that biomass is less than in the north, so people still need to move around to 

accumulate sufficient nutrients for their cattle.   

Yet, how might these different lifestyles might affect malaria transmission? 

Previous research has shown that populated areas, which were found to be in 

close proximity to irrigated fields in the Sahel, had consistently high rates of 
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malaria transmission throughout the year (Dolo et al. 2004). Conversely, in areas 

which were not nearby an irrigated field, the transmission rates were found to be 

below detectable levels during the dry season. Furthermore in the non-irrigated 

areas the mosquito densities were found to be generally lower (Dolo et al. 2004). 

In the past researchers were unsure whether these populations survived the dry 

season through aestivation or were reestablished by migrants from distant 

locations. Yet recent research has shown that, in fact, aestivation goes occur in 

at least one Anopheline mosquito species (An. gambiae) (Lehmann et al. 2010).   

With reference to the presence of cattle in these areas, other research has 

shown that cattle are a major influence on host choice of mosquitoes (Garret-

Jones et al. 1980). In areas with cattle present, mosquitoes were diverted to 

livestock reducing malaria transmission rates on humans, especially in irrigated 

areas (Dolo et al. 2004, Robert et al. 1985). This suggests that even in dry areas 

of the Sahel where long-distance transhumance is practiced, malaria may be 

problematic. 
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Savannah Region 

The southern area of the study area is the savannah region in Mali, which is 

where the study site of the second aim of this thesis will be located. Within this 

area the rainfall is around 1000 to 1200mm per year (Breman and Dewit 1983; 

Nasi, R., and Sabatier, M. 1988). In the natural landscape there is a near 

continuous layer of perennial grasses over 1 m in height (Andropogon gayanus, 

Hyparrhenia dissolute, Cymbopogon giganteus, and Schizachyrium pulchellum) 

(Laris 2002; Shorrocks 2007). Due to the increase of rainfall in this area there is 

a slightly different assemble of tree species such as Isoberlina doka, Pterocarpus 

erinaceus, Lannea microcarpa, Parkia biglobosa and Vitellaria paradoxa (Nasi, 

R., and Sabatier, M. 1988).  Yet the vegetation in the settled regions is quite 

different than from what is found in the natural areas. For instance, perennial 

grasses have been found to be less common and they are replaced by annual 

grasses such as Andropogon pseudapricus and Pennisetum pedicellatum (Laris 

2002). In terms of trees, those that have a use for valuable seed crops are 

usually favored. Trees such as Parkia biglobosa and Vitellaria paradoxa and are 

usually found in agricultural fields (Laris 2002). In this region, people resort to 

more agricultural means of employment although pastoral livestock is still in 

occurrence. The principal crops, which are farmed in a rotational agricultural 

system, are sorghum, millet, corn, peanuts, and cotton (Laris 2002). Most crops 

are exclusively rain-fed and even during years of high rainfall crops may fail on 

average once every three years. Due to increasing population pressure there has 

been increasing conversion of rangeland to agricultural fields which tend to be 
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marginal due to the drastic annual variation of precipitation (Le Houerou 1980). 

Past research has shown that open-space irrigated vegetable fields near cities 

can provide suitable breeding sites for mosquito species such as Anopheles 

gambiae and these areas resulted in higher numbers of adult An. gambiae when 

compared to the control areas without irrigated urban agriculture (Afrane et al, 

2004). Moreover, people living in the vicinity of urban agricultural areas reported 

more malaria episodes than the control group in the rainy as well as dry seasons 

(Afrane et al, 2004). 
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CHAPTER II 

LANDSCAPE LEVEL DISTRIBUTION 

Introductory Remarks 

Previous maps, discussed earlier, (Sinka et al. 2010; Sogoba et al. 2007) 

have been helpful in the understanding of the macro-ecology of the different 

Anopheline mosquito species, and the risk for malaria transmission at these 

scales. Yet what are the distributions for these mosquito species at finer scales? 

How are environmental variables such as the moisture, vegetation, bareness, 

urban development, and elevation affecting mosquito presence? In this Chapter, 

I used Landsat images along with public online mosquito databases for presence 

points to create new species distribution models within southern Mali. To 

approach this, I have used the publically available species distribution algorithm 

software, Maxent. Maxent (maximum entropy) is similar to the models described 

above in that it can be described as a general purpose, machine-learning method 

with a simple and precise mathematical formulation, and it has a number of 

aspects that make it well suited for species distribution modeling including the 

ability to be able to make predictions from incomplete data (Phillips et al, 2006b; 

Baldwin 2009). This algorithm estimates the most uniform distribution (maximum 

entropy) of provided sampling points compared to background locations given 

the constraints derived of the data (Phillips, Anderson, and Schapire 2006b).  

The maximum entropy algorithm is deterministic and will converge to the 

maximum entropy probability distribution (Phillips et al. 2006b). Therefore, the 
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resultant output represents how much better the model fits the location data than 

would a uniform distribution (Phillips, Anderson, and Schapire 2006b). The area 

under the curve (AUC) statistic is the main method of evaluating the Maxent 

model performance. AUC is used to estimate the ability of the model to 

differentiate species occurrence from a random selection of background pixels. 

This method is commonly used for statistically measuring Maxent model 

performance (Baldwin 2009, Elith et al. 2011). Maxent offers many advantages 

over other species modelling approaches.  For instance, it can be used at any 

scale and it has the added advantage of allowing the use of both continuous and 

categorical variables (Baldwin 2009). Other traditional distribution models require 

both presence and absence data (e.g., logistic regression discriminant function 

analysis) (Baldwin 2009) Maxent requires presence-only data, along with 

environmental information for the area of interest (Phillips, Anderson, and 

Schapire 2006b). 

The aim of the present work is to investigate the possible relationship 

between the distribution of anopheline mosquitoes and the environment in 

southern Mali and subsequently derive vector distribution surfaces at landscape 

level scales (30m). 
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Methods 

Study Site 

In this study three Landsat 8 images dating from October 2014 were used. 

The three Landsat 8 images were mosaicked together to provide a broad study 

area in southern Mali which covers approximately 92,017 km2 with the capital of  

Mali, Bamako, near the center, see (Figure 3.1). The advantage to having 

a large study area is that it provides a range of different conditions that may 

affect mosquito presence which may not be present with a single Landsat 8 

Map 2.1 Landsat 8 Imagery Extent 
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image. Furthermore having a large study area (92,018.7 km2) also ensures I was 

able to utilize  

the maximum amount of mosquito points that the data set contains which will 

improve model results. The decision to use imagery from the month of October 

was to ensure that the season in which the data points derive from is consistent 

with the season of the imagery. Although there were data points presented from 

all months of the year the average month of collection was late August with a 

standard deviation of 2-3 months. This means that the general trend of the data 

points shows that most researchers collected samples during the wet season. 

Although this image lies roughly 5 years outside the range of  

 

Table 2.1 Landsat 8 Band Designations 

Landsat 8 Wavelength (micrometers) Resolution (m) 

Band 1 (Coastal aerosol) 0.43-0.45 30 

Band 2 (Blue) 0.45-0.51 30 

Band 3 (Green) 0.53-0.59 30 

Band 4 (Red) 0.64-0.67 30 

Band 5 (NIR) 0.85-0.88 30 

Band 6 (SWIR 1) 1.57-1.38 30 

Band 7 (SWIR 2) 2.11-2.29 30 

Band 8 (Panchromatic) 0.50-0.68 15 

Band 9 (Cirrus) 1.36-1.38 30 

Band 10 (TIRS) 1 10.60-11.19 30* 

Band 11 (TIRS) 2 11.50-12.51 30* 

* TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter 
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Table 2.2  Landsat-Based Indices Used in This Study 

Abbreviation Equation Index Name 

1. NDVI  = (𝑁𝑁𝑁 − 𝑁𝑅𝑅)/(𝑁𝑁𝑁 + 𝑁𝑅𝑅) 
 Normalized Difference 
Vegetation Index  
(Rouse et al., 1974) 

2. SAVI = �
𝑁𝑁𝑁 − 𝑁𝑅𝑅

𝑁𝑁𝑁 + 𝑁𝑅𝑅 + 0.5� ∗
(1 + 0.5) 

Soil Adjusted 
Vegetation Index 
(Huete, 1988) 

3. MNDWI =
𝐺𝐺𝑅𝑅𝐺 − 𝑆𝑆𝑁𝑁 1
𝐺𝐺𝑅𝑅𝐺 + 𝑆𝑆𝑁𝑁 1 

Normalized Difference 
Water Index  
(Xu, 2006) 

4. NDISI =
𝐺𝐺𝑅𝑅𝐺 − 𝑆𝑆𝑁𝑁 2
𝐺𝐺𝑅𝑅𝐺 + 𝑆𝑆𝑁𝑁 2 

Normalized Difference 
Impervious Surface 
Index  (Xu, 2010) 

5. NDMI =
𝑁𝑁𝑁 − 𝑆𝑆𝑁𝑁 1
𝑁𝑁𝑁 + 𝑆𝑆𝑁𝑁 1 

Normalized Difference 
Moisture Index 
(Hunt et al. 1987) 

6. NDBI =
𝑆𝑆𝑁𝑁 1 − 𝑁𝑁𝑁
𝑆𝑆𝑁𝑁 1 + 𝑁𝑁𝑁 

Normalized Difference 
Built-up Index 
(Zha et al., 2003) 

7. NDBaI =
𝑆𝑆𝑁𝑁 1− 𝑇𝑁𝑁
𝑆𝑆𝑁𝑁 1 + 𝑇𝑁𝑁 

Normalized Difference 
Bareness Index 
(Zhao and Chen, 
2005) 

8. UI =
𝑆𝑆𝑁𝑁 2 − 𝑁𝑁𝑁
𝑆𝑆𝑁𝑁 2 + 𝑁𝑁𝑁 

Urban Index 
(As-Syakur et al., 
2012) 

9. IBI =
2 ∗ 𝑆𝑆𝑁𝑁 2

𝑆𝑆𝑁𝑁2 + 𝑁𝑁𝑁 − � 𝑁𝑁𝑁
𝑁𝑁𝑁 + 𝑁𝑅𝑅 + 𝐺𝐺𝑅𝑅𝐺

𝐺𝐺𝑅𝑅𝐺 + 𝑆𝑆𝑁𝑁 2�

2 ∗ 𝑆𝑆𝑁𝑁 2
𝑆𝑆𝑁𝑁 2 + 𝑁𝑁𝑁 + � 𝑁𝑁𝑁

𝑁𝑁𝑁 + 𝑁𝑅𝑅 + 𝐺𝐺𝑅𝑅𝐺
𝐺𝐺𝑅𝑅𝐺 + 𝑆𝑆𝑁𝑁 2�

 

Index-based Built-Up 
Index  
(As-Syakur et al., 
2012) 

10. EBBI =
𝑆𝑆𝑁𝑁 1 − 𝑁𝑁𝑁

10 ∗ √𝑆𝑆𝑁𝑁 1 + 𝑇𝑁𝑁
 

Enhanced Built-Up and 
Bareness Index 
(As-Syakur et al., 
2012) 



22 
 

 
 

years from collection (1968-2009) it at least attempts to mitigate the issue of 

seasonality as it was acquired during the wet season. 

Satellite Imagery 

 The Landsat 8 satellite has been available since February 11, 2013 and 

has two earth observing sensors, which include the Operational Land Imager and 

the Thermal InfraRed Sensor. The Operational Land Imager has nine bands of 

data including near and shortwave infrared with a moderate spatial resolution of 

30 meters (m) (Table 2.1). The Thermal Infrared Sensor provides bands 10 and 

11, which are the thermal bands (Table 2.1). The data from Landsat was then 

used to create various environmental indices that provide useful information of 

surface conditions such as vegetation, urban development, bareness, and 

moisture. In total 10 different indices were created from the Landsat data to 

provide a diversity of possible indicators to species presence, which can be 

observed in Table 2.2. Furthermore, a Digital Elevation Model (DEM) was also 

included in the list of possible environmental factors for the model. The DEM has 

a spatial resolution of 90 meters and was resampled to 30 meters to match the 

spatial resolution of the Landsat data. Lastly a Topographic wetness index (TWI) 

derived from the DEM was also included as a possible environmental layer. TWI 

describes the tendency for water to collect in areas of topographic minima, and is 

defined as ln ( 𝑎
𝑡𝑎𝑡𝑡

) where ‘a’ is the local upslope area draining through a certain 

point per unit con- tour length and tan ‘β’ is the local slope (Beven and   Kirkby, 

1979, Sorensen et al. 2006). The influence of substrate moisture has a strong 
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correlation with the degree of Anopheles egg-laying, with standing water being 

the saturation point (Huang et al. 2005). Therefore a soil wetness index such as 

TWI would be essential to include as a possible environmental variable.  

From these twelve base environmental layers only a handful was selected 

for the final models. Only the most important indices were retained for each 

species and the rest were removed as the inclusion of excess indices may lower 

overall model performance. This elimination procedure was based on the 

statistical metrics that are returned with the output of the various Maxent models 

that were performed. These statistics included jackknife tests which provided 

information that was be used to see which environmental variables have the 

most useful information by itself and conversely the variables that have the least 

useful information. The Maxent model outputs also produced variable 

contribution tables, which provided estimates of relative contributions of the 

environmental variables to the Maxent model. This table provided two estimates 

and the first is a percent contribution estimate, which provides information as to 

how much information did each variable include in the overall model. The second 

estimate, permutation importance, is used to see what variables have the most 

information that isn't present in the other variables. The contribution for each 

variable is determined by randomly permuting the values of that variable among 

the training points (both presence and background) and measuring the resulting 

decrease in training AUC. A large decrease indicates that the model depends 

heavily on that variable. The figures given with this output table were helpful in 

deciding which indices provided the most useful information. Numerous models 
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were performed with different amounts and combinations of indices with the 

jackknife analysis and the variable contribution table as the means to determine 

the most important variables with the intent to return a model with the highest 

AUC values. This procedure was done for both species which resulted in 

different indices for each species, which represents the inherent ecological 

preferential differences that are found between An. gambiae and An. arabiensis. 

Data Points 

 The mosquito presence points which were used for this study come from 

a variety of sources. The two major contributors of species presence points come 

from publicly available databases, the Malaria Atlas Project and Walter Reed 

Biosystematics Unit MosquitoMap. These databases are a unique global 

resource for researchers who are focused on mosquito-borne diseases and 

mosquito distribution and ecology (Foley et al, 2009). These are online 

databases of broad species distribution models and georeferenced species 

collections for individual mosquito species. Collection records and distribution 

maps come from a multitude of sources; museum specimens, the literature, and 

from submissions by various entomologists. These data points were 

supplemented by data points that were found in the literature (Toure et al. 1998; 

Fane et al. 2012) that were not present in the online databases to provide the 

maximum possible training points, which would be used (7 points for An. 

arabiensis and 11 for An. gambiae). These data points had place names and 

coordinates at the precision of degrees and minutes. Data points were placed at 

the center of the towns and cities associated with the points as the coordinates 
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were not precise. Once all the data were pooled, special attention was paid to 

ensure that any redundant data points were eliminated as the data points from 

the online databases occasionally overlapped from separate studies or multiple 

points from the same study.  

In this study two Anopheles species were examined, An. gambiae and An. 

arabiensis. The third species, An. funestus, was not considered in this study due 

to a lack of data points found in the literature and in the online databases. In 

total, there were 60 presence points recorded for An. gambiae and 42 points for 

An. arabiensis. Roughly twenty percent of the data points for each species were 

randomly selected and then omitted from the algorithm to be used as test points 

for measuring statistical accuracy. The remaining points were used as the 

training points for the modeling.  

To evaluate how each environmental variable contributed to the overall 

model, a jackknife procedure was used. A jackknife procedure can either 

withhold all but one variable and refit the model to see how the inclusion or 

exclusion of that variable would change the AUC score, or withhold all variables 

but one and refit the model which would tell which variable would have the most 

useful information by itself. The difference in AUC scores is estimated and then 

the predictor variables that have to most impact on the AUC are assumed to be 

the most important (Phillips et al, 2006a; Elith et al. 2011; Stevens and Pfeiffer 

2011).  
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Bias Files 

Due to use of pooled data points that come from a variety of public sources, 

the sampling efforts are not expected to be uniform and it is expected a certain 

level of spatial sampling bias to be present. Many of the studies that the data 

were drawn from were working with genetics-focused studies and the sampling 

effort usually is more opportunistic. This means that the sampling efforts 

employed in these studies may be greater in conveniently accessed locations, 

such as populated areas, near roads or rivers, or in habitat already known to be 

successful in finding the species of interest. It is quite likely that these locations 

may not reflect the true range of the species environmental niche, and without 

correction the models trained on these samples will model the distribution of 

sampling effort, rather than the range of the species of interest (Conley et al. 

2014). To correct for this, a bias-raster file was created which would assign 

greater weight to presence points with fewer neighbors in geographic space 

(Elith et al. 2010). The bias-raster was created according to the methods outlined 

in Clements et al. 2012 in which all species points (An. arabiensis, An. gambiae, 

and An. funstus) were combined and used to represent the sampling effort 

across the study area. The weighted surface for both An. gambiae and An. 

arabiensis bias files were based on an African North Equidistant Conic Projection 

and calculation of the number of records in a chosen neighborhood for each cell 

was weighted by a Gaussian kernel. To calculate the weight of a given cell I used 

the Gaussian Function: exp �− 𝑑2

2𝑠2
�, where d is the distance in meters between a 

target species presence point and a second background point without missing 
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data and s is the standard deviation. The bias at a presence point was then taken 

as the sum of these weights of occurrences. A continuous raster was made using 

the Kernel Density function available in ArcMap using the newly created bias 

value as the population field, and the standard deviation of the Gaussian 

Function as the search radius. The resulting raster file was rescaled from 1 to 20 

to ensure all values were positive to fulfill the requirement of only using positive 

values for the bias option in Maxent (Elith et al. 2010).  

Results 

Species distribution models were produced for An. gambiae and An. 

arabiensis to predict their geographic distribution within a portion of southern 

Mali. The results represent the probability (0-1) of a particular geographical 

location to be habitable by the particular species. Map 2.2 shows the species 

distribution models for each species. The higher values correspond to higher 

probability of suitable environmental conditions. The resulting species distribution 

models produced from Maxent was found have mixed results. The model 

predicting the presence of An. gambiae was found to be significantly better than 

random distribution based on the AUC values (Table 2.3). 
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Map 2.2 Landsat Maxent Maps; Predicted probability of presence of An. gambiae 
and An. arabiensis the Southern Mali study area using Maxent. 
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 Table 2.3  Maxent Species Distribution Results 
  

   
 

   
Species # Training 

samples 
# Test 

samples 
Training 

AUC 
Test 
AUC 

AUC Standard 
Deviation 

 An. 
gambiae 

48 12 0.767 0.783 0.071  
An. 
arabiensis 

34 8 0.822 0.680 0.072  

        
Table 2.4 Analysis of Variable Contributions 
   

An. arabiensis 
 

An. gambiae 

Variable 
Percent 

contribution 
Permutation 
importance 

 
Variable 

Percent 
contribution 

Permutation 
importance 

Elevation 18.6 23.4 

 

Elevation 29.5 19.4 

NDBaI 24.6 41.7 

 

NDBaI 19.2 25.4 

MNDWI 15 34.9 
 

TWI 7.9 3.3 

IBI 37.9 0 

 

IBI 0.3 1.5 

SAVI 3.9 0 
 

NDVI 24.6 30.1 

   
 

NDMI 8.2 20.4 
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Figure 2.1 Response Curves 
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Maxent predicted distribution results show a training AUC probability of 0.767 

and a test AUC of 0.783 for An. gambiae. The indices that provided the highest 

statistical values and subsequently chosen for the model were NDVI, Elevation, 

NDBaI, NDMI, TWI, and IBI. Meanwhile the statistical scores for An. arabiensis 

indicated that the model produced a higher training AUC (0.822) and lower for 

the test AUC (0.680) (Table 2.3) relative to the model for An. gambiae. The 

environmental indices that were included for this model were IBI, NDBaI, 

Elevation, MNDWI, and SAVI.  

The percent contribution and permutation of importance of the different 

environmental indices were determined from the jackknife analysis that was 

produced from the Maxent model. For An. arabiensis, the test of variable 

importance showed that NDBAI was the most important when used in isolation 

(41.7% permutation importance) which means that this index has the most useful 

information by itself (Table 2.4). Now, the variable which had the most 

information on its own that is not found in the other variables was IBI, with a 

percent contribution of 37.9%. Meanwhile for An. gambiae it was found that NDVI 

had the most information on its own with a permutation importance percentage of 

30.1%. Yet, elevation had the most unique information among the different 

indices that were included in the model with a percent contribution value of 

29.5%. It was followed by NDVI and NDBaI with 24.6% and 19.2% contribution 

respectively (Table 2.4). 
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Lastly, the curves presented in Figure 2.1 shows how each environmental 

variable affects the Maxent prediction. The curves show how the logistic 

prediction changes across the range of values found in each environmental 

variable used in the model, keeping all other environmental variables at their 

average sample value. These response curves will also help in deciding what 

indices are the most essential for the model. The curves show the marginal effect 

of changing exactly one variable, whereas the model may take advantage of sets 

of variables changing together. These graphs used to determine the range of the 

environmental variable values that are determined to be the most important for 

predicting species presence by the model. This information then may be used to 

determine the ground conditions that are optimal habitat for the target species.  

 

  



 

33 
 

CHAPTER III 

MODELING RESTING HABITATS OF ANOPHELINE MOSQUITOES IN A 
RURAL MALIAN VILLAGE 

Introductory Remarks 

The goal of this chapter is to evaluate the possibility of using remote sensing 

techniques to predict the distribution of Anopheles mosquito outdoor resting sites 

at a village in Mali during the dry season. Recently, the outdoor malaria 

transmission has become a growing concern due to a major change in malaria 

transmission dynamics in Africa. Extensive indoor vector control (IRS and ITN) 

has shifted parasite transmission from the dominant and highly endophilic An. 

gambiae to the more exophilic, outdoor-adapted An. arabiensis (Baber et al. 

2010; Fornadel et al. 2010; Russell et al. 2011). Also, new findings demonstrate 

the existence of an exophilic An. gambiae subgroup population with high 

susceptibility to the malaria parasite P. falciparum through the use of a genetic 

survey that used large samples from both indoor and outdoor larval collections 

(Riehle et al. 2011). Anticipated increases in outdoor transmission will certainly 

confound attempts to successfully control malaria in Africa but currently, options 

are limited. Therefore, understanding the resting habitats of these exophilic 

species is imperative to further malaria control efforts in Africa. 

Based on these points we can hypothesize the factors that will be 

important to consider when constructing a spatial model of resting habitat 

probability. As vegetation can provide substantial amounts of shade, it can be 

assumed that resting habitats are closely tied to areas in which vegetation as the 
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dominant land cover. Also, resting areas close to water will likely contain higher 

densities of resting mosquitoes than areas secluded from water sources.  

Previous Remote Sensing and Resting Habitat Research 

Recently, a study has attempted to evaluate how certain small scale 

environmental variables affect vector ecology, but have used relatively simplistic 

and unacceptable methods to tackle this problem. Ricotta et al. 2014 attempted 

to look at this issue using the image processing software Image J along with 

Google Earth satellite imagery to see how vegetation is associated with malaria 

transmission. They claim that their method avoids the problem of using “complex 

satellite data and intricate calculations” for assessing vegetation cover. The first 

problem with their approach is the usage of imagery directly from the Google 

Earth software. Google Earth is not meant to be a satellite image provider and 

therefore does not provide band information for downloading, so is therefore 

limited in the amount of data available for analysis. Although this imagery can be 

used for a multitude of purposes the lack of spectral band data, especially bands 

outside of human vision, makes it problematic when trying to delineate certain 

land cover variables, such as vegetation by using automated based methods. 

Also, the usage of ImageJ for the analysis of satellite imagery is relatively 

unsatisfactory when compared to the software programs, such as IDRISI and 

ERDAS Imagine, which have been developed specifically for dealing with 

satellite images and creating land cover maps. For example Ricotta et al. 2014 

describes that in order to perform their analysis they had to convert their images 

into 8 bit black and white data and that they were unable to ensure that unwanted 
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features such as bodies of water, livestock, or houses were not included in the 

analysis. Problems such as these have already been considered within ERDAS 

Imagine or IDRISI, which each have a variety of algorithms and programs 

available which specifically deal with separating spectrally different features such 

as these, and they do not require the data to be in the limited 8 bit black and 

white format. Lastly the study by Ricotta et al. 2014 uses unsatisfactory levels of 

error assessment with their maps and models. They described that they 

attempted to check for accuracy by hand counting the number of plants around 

each area of focus but abandoned this method. Instead they rationalize their 

accuracy by running their analysis multiple times to determine the reproducibility. 

The problem with this is that the reproducibility of the model does not mean it is 

accurate.  

Meanwhile, the methods described here uses individual bands and band 

combinations to identify the possible small-scale ecological factors that affect 

vector presence in the environment. Within this study, I have used satellite 

imagery, which has more data than an image file from Google Earth. The 

program that I have used here is the remote sensing software IDRISI, which 

contains image classification algorithms specifically created for dealing with 

satellite imagery and the production of land cover maps. These image 

classification techniques in conjunction with the high quality satellite images can 

be used to delineate features such as water, vegetation, and houses, whereas 

the ImageJ approach does not have any capability for preforming this function. 

Furthermore the use of Dempster-Shafer modeling (described below) is an 
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acceptable way of roughly assessing spatial relationships that certain variables 

may have over spatial based phenomena (Malpica et al, 2007). 

Proposed Methods of Resting Habitat Modeling 

In this portion of the study, I used remote sensing techniques to develop 

and evaluate a new approach along with field-based criteria, to possibly predict 

concentrations of adult anopheline mosquitoes in the outdoor environment. A 

highly novel and flexible modeling approach was employed to assess probability 

of habitat occurrence based on a variant of Bayesian Theory, known as 

Dempster-Shafer (D-S) weight-of evidence modeling. D-S evaluates existing 

evidence using expert knowledge to transform evidence into probability surfaces. 

Unlike the Bayesian Theory, the D-S approach does not assume that one has full 

information, but it can handle a state of knowledge that is incomplete and 

changes over time (Malpica, Alonso, and Sanz 2007). As the literature on 

mosquito resting habitats within Mali and around the world is limited, this 

predictive modeling method is ideal for this study. The reason for focusing on the 

dry season is because adult vector densities are very low during this time of year, 

as larval habitats become limited, yet these habitats increase sharply at the onset 

of the rainy season (Charlwood et al, 2000). Focusing on mosquito control efforts 

during the dry season, when these vector populations are stressed, will likely 

yield the best results when trying to control local mosquito populations (Baber et 

al. 2010).   

In addition to the D-S model a Maxent model was also implemented using 

the WorldView 2 data and sampling data. This model predicts the presence of 
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resting habitat by using the field data which have been also used with the 

creation of the D-S model. The final models were then compared to each other to 

see if there is any overlap to what may be considered optimal resting habitat. The 

novelty of this approach is that Maxent has been used in the past to see species 

distribution over general areas. The comparison which is shown in this study 

looks at the congruence of the D-S model versus the Maxent model and 

demonstrates if Maxent can be used to measure small-scale specific habitat 

preferences. Anopheles mosquito presence, in an immediate area, depends on 

microclimatic and small environmental differences, as discussed before, and so 

will be an excellent candidate to test the flexibility of Maxent to predict these 

specific habitat conditions. 

Methods 

Study Site 

The study site was in and around the village of Kenieroba (Map 3.1) which 

is located 71 km southwest of Bamako, the capital of Mali. The study area is 

approximately a twenty five square kilometer area with the village of Kenieroba in 

the center.  A floodplain of about 2 km wide separates Keineroba from the Niger 

River. During the rainy season this area is flooded for rice agriculture and then it 

is used for vegetable cropping during the dry season. This site has been chosen 

due to its mixture of various land covers, which include a close proximity to a 

water body, dense agricultural plots and sparse natural vegetation, and areas of 

human occupation and habitation.  
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Field Data 

The field data, which was used to create and verify the D-S model was 

collected by a field team consisting of researchers from the University of Miami, 

Department of Public Health Sciences (Dr. John Beier), and the Hebrew 

University, Hadassah Medical School, Kuvin Center for the Study of Tropical and 

Infectious Diseases (Dr. Gunter C. Muller). The field data set, which was used to 

create and verify the D-S model was collected by a field team consisting of 

researchers from the University of Miami, Department of Public Health Sciences 

(Dr. John Beier), and the Hebrew University, Hadassah Medical School, Kuvin 

Center for the Study of Tropical and Infectious Diseases (Dr. Gunter C. Muller). 

The data was collected by the usage of drop nets at the end of November to the 

beginning of December for the year of 2013 which corresponds to the early dry 

season. The sampling strategy of using drop nets was used as this technique 

aimed to capture mosquitoes which were resting amongst the grasses and 

herbaceous vegetation beneath the drop net. The drop-nets enclosed a 2x2 

meter area and were deployed at predetermined microhabitat sites. Within the 

drop-net was a suspended CDC (Center for Disease Control) mosquito trap to 

capture the resting mosquitoes in the enclosed area. After 12 hours the traps 

were removed and the mosquitoes were counted and identified. At each site the 

drop nets were deployed for both the morning and again for the afternoon for 18 

days. This equated to 36 sampling events for each microhabitat site. The 

mosquito counts were then averaged to represent to average amount of 

mosquitoes captured per day, per microhabitat site (Table 3.1). 
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Table 3.1 Field Data; this table provides information pertaining to the average 
amount of mosquitoes captured per day at each microhabitat sampling 
site. The mosquitoes belonged to the species An. gambiae s.l. 

 
Drop-Net catches 
 

  Microhabitat Site Average Number of 
Mosquitoes Per Day 

 

Microhabitat Site Average Number of 
Mosquitoes Per Day 

C-1* 6.39 
 

D-1* 7.11 

C-2* 3.22 
 

D-2* 10.1 

C-3* 10.4 
 

D-3* 1.17 

C-4* 2.11 
 

D-4 0.39 

C-5 0.05 
 

D-5 0 

C-6 0 
 

D-6 0.11 

C-7 0.17 
 

D-7 0.06 

C-8 0 
 

D-8 0.06 

B-1a 0.22 
 

E-1 0.17 

B-1b* 1.83 
 

E-2* 0.78 

B-2a* 11.94 
 

E-3 0.11 

B-2b* 6.28 
 

E-4* 11.17 

B-3* 1.06 
 

E-5a* 6.44 

B-4* 2.44 
 

E-5b* 7.66 

B-5a 0.22 
 

E-6 0.33 

B-5b 0.05 
 

E-7* 17.94 

B-6* 11.61 
    

* Sampling locations found to be a statistically significant resting site  
 
Pearson Correlation Coefficient of male to female resting site preference*: 0.894 
 * This statistic used the average amount of male and female mosquitoes captured per site.  
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Map 3.1 WorldView 2 Imagery area. Red dots indicate sample locations. 
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Map 3.2 Area B Field Data Points 
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Map 3.3 Area C Field Data Points 
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Map 3.4 Area D&E Field Data Points 
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Morning and afternoon sampling were done due to the fact that shade is 

dependent on the time of day, and preforming morning and afternoon sampling 

provides an understanding of a site’s resting potential throughout the day. The 

locations for these microhabitat sampling sites can be seen in Maps 3.1-3.4. 

Additionally each site was evaluated if it could be considered a significant resting 

site. Although all but two sites had mosquitoes found at some point during the 18 

day sampling. Yet this may not be representative of the value that a particular 

site may hold as a resting site. Therefore, each site was independently tested to 

distinguish if it can be statistically verified of its resting site potential. A one tailed 

t-test with an alpha level of 0.01 was preformed to see if the average number of 

mosquitoes collected per day per site was statistically different from zero. Sites 

which were statistically different from zero were considered to be statistically 

significant resting sites. Whereas those sites which were proven not to be 

different from zero were labeled as insignificant resting sites. The results of this 

analysis can also be seen in Table 3.1.Lastly information was collected in 

regards to the sex of the mosquitoes which were captured in an effort to 

understand if there were and differences in resting site selection between male 

and female species. A Pearson Correlation was preformed between the average 

amount of female mosquitoes captured per site and the amount of male 

mosquitoes captured per site. The results of this analysis can be seen in Table 

3.1 as well. The high correlation coefficient of 0.894 means that there was no 

significant difference in resting site preference between the male and female 
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species. As a result no modeling was attempted to show the differences between 

the two sexes as the resulting models would have been redundant.  

 A major concern with this data is the issue of spatial autocorrelation. The 

distribution of the samples are very clustered and limited to small portions of the 

overall study area. Using a simple nearest neighbor statistic in ArcMap, shows 

that the field data is clustered based on spatial location. Yet this method may be 

inadequate in understanding the spatial autocorrelation of the data as this 

method is a location only analysis of autocorrelation and does not take into 

account the feature values along with the feature locations, which was highly 

useful for the creation the D-S model. For this reason I used Moran’s I approach 

to measuring autocorrelation as it does take into account the feature values 

(drop-net mosquito sums) along with the feature locations. This analysis was also 

done in ArcMap, using the Moran’s I tool, and it was found that the data sampling 

was spatially random and therefore no significant spatial autocorrelation was 

present within the data. The Moran’s I assessment used the Euclidean distance 

method and an inverse distance conceptualization. The results provided a 

Moran’s Index of 0.027, a variance of 0.025, a z-score of 0.37, and a p-value of 

0.71. Given the z-score of 0.37, the pattern does not appear to be significantly 

different from random 

Classification of remotely sensed imagery 

A classified map was produced for the study site using a high-resolution 

WorldView 2 satellite image. This image has a spatial resolution of two meters 
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and included the red, green, blue, and near infrared bands. The image was 

acquired March 5, 2013, which is during the dry season. The classified map was 

made using a combination of supervised classification and an image 

segmentation algorithm to identify discrete objects in the image such as patches 

of vegetation, metal-roofed buildings, water bodies, open fields, and bare earth. 

The application of segmentation during classification done to provide better 

classification results than traditional per-pixel classification approaches, 

especially for fine resolution images as the one used in this study (Lu and Weng 

2007; Benz et al. 2004).  Segmentation merges pixels into nonoverlapping 

homogeneous objects, and a classification method is then implemented based 

on objects (Thomas, Hendrix, and Congalton 2003). An additional class called 

‘Wetlands’ was also included in the final classified image and this class was 

created in an attempt to make up for the differences observed in WorldView 2 

image and the conditions which were present during the field collections. It was 

noted that certain areas nearby the Niger River were inundated whereas in the 

imagery they were being classified as bare earth. As the WorldView 2 images 

were taken in the late dry season and these areas have dried out. These bare 

areas and other bare areas like it were delineated from the classified image and 

were transformed into the class ‘Wetlands’. 

 To test the accuracy of the classified image I created 700 points with the 

aid of the ArcMap random point generator and used a composite image of the 

raw imagery to ground truth these points. The points were randomly stratified 

across the different classes, making sure that no points were placed in the 
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training sites used to create the classified image. Accuracy (“ground-truth”) data 

was then fed back into the classifications to improve map products to reduce 

omission and commission errors, and thus reduce error propagation in the 

subsequent analysis. To further increase the accuracy of key classes such as 

water and metal-roofed buildings a modal filter with a 3x3 window was used to 

eliminate various misidentified pixels. Furthermore certain shallow water bodies 

were classified as metal-roofed buildings by the segmentation algorithm due to 

the spectral similarity across the four bands. Since the water class is important to 

this study, the misidentified areas were reclassified manually using ArcMap with 

the help of Google Earth imagery to verify that these areas were indeed water 

bodies. It is also important to note that only buildings with metal roofs were 

identified in the classified map. The buildings that had roofs made of dried 

vegetation could not be extracted from the imagery using the methods described 

above as the spectral reflectance of these roofs was indistinguishable from the 

dead vegetation that was found in the surrounding fields. Furthermore the size of 

these buildings is very small, the majority of the buildings are only 3-5 meters in 

diameter. Since the spatial resolution of the WorldView 2 imagery is only 2 

meters these small huts at best can occupy 2 to 3 pixels, or else their spectral 

signature and shape are dispersed in the partially.overlapping pixels making it 

difficult for the segmentation process to delineate these shapes from the 

surrounding environment.  
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Table 3.2  Classification Accuracy 

  Class Accuracy 

Dense Vegetation 96.30% 

Water 98.15% 

Metal Roofed Buildings 98.75% 

Open Field 93% 

Bare Earth 85.50% 

Overall Accuracy 92% 
 

 

The overall accuracy of the classified map is 92%, which was calculated using 

the ground truth points described earlier, see Map 3.5. More importantly are the 

accuracies, which are associated with the classes that will be used for the D-S 

model (Table3.2). Dense vegetation has an accuracy of 96.3%, water has an 

accuracy of 98.15%, and metal roofed buildings have an accuracy of 98.75%. 

The Open Field class had an accuracy of 93% and Bare Earth had an accuracy 

of 85.5%. The wetlands class was not included in the classification accuracy 

assessment as it was manually created and did not depend on classification 

algorithms. 
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Map 3.5 Classified Map of WorldView 2 Study Area 
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Dempster-Shafer Model 

The classes of Dense Vegetation, Water, and Wetlands were extracted from the 

classified image. Each of these classes was transformed into distance maps 

using the IDRISI (Jiang and Eastman 2000) module Distance. These distance 

maps were then converted into fuzzy membership classes that are scaled from 0-

1 similar to real probabilities (Jiang and Eastman 2000). A key element is where 

to set the breakpoints and functions for fuzzy set membership. The breakpoints 

which were eventually decided upon were chosen as they provided the best 

correlation values.  

There are four hypothesis which were used for the D-S model; resting 

microhabitats are highly dependent on wetland areas, resting microhabitats also 

are highly dependent on Dense Vegetation which is found near water bodies, 

resting microhabitats are dependent on areas of dense foliage, and resting 

microhabitats do not exist directly over open water and areas directly adjacent to 

open water are also considered sup-optimal as these areas may be places of 

overhanging vegetation. These hypotheses were created as they provided the 

best model performance values and they are based off the fact that previous 

studies have shown that mosquitoes are highly dependent on moisture and 

shade during the day time (May 1979; Trape et al. 1992; Staedke et al. 2003; 

Sumba et al. 2004; Gouagna et al. 2011; Zhou et al. 2012).  

It must be stated that the vast majority of the areas classified as dense 

vegetation was associated with tree crowns. The implication that these areas are 



51 
 

 
 

important as resting habitats does not mean that the trees serve as resting 

habitats but rather the areas covered by this land cover support crucial areas that 

are used by Anopheles mosquitoes for day time resting habitat.  

WorldView 2 Maxent Model 

 The Maxent model produced for this study follows a similar procedure to 

the methods outlined in Chapter 2. The model depends on environmental indices 

and presence data to create the final model. The environmental indices include 

NDVI and NDWI (Normalized Difference Water Index) (Gao BS, 1996), which 

were created from the WorldView 2 data. The equation used for NDVI follows the 

same equation seen in Table 2.1 yet NDWI is specified by a different equation, 

which can is seen below. 

 

𝑁𝑅𝑆𝑁 =
𝐺𝐺𝑅𝑅𝐺 − 𝑁𝑁𝑁
𝐺𝐺𝑅𝑅𝐺 + 𝑁𝑁𝑁

 

 The last environmental index used was the classified image used for the 

development of the D-S model as the Maxent program can also utilize 

categorical data.  The data used for training comes from Table 3.1. The sampling 

sites marked as statistically significant resting sites were used as the presence 

points. As with the Maxent model produced in Chapter 2,  20% of the training 

points were reserved to act as testing points, which equated to there being 15 

presence records used for training, and  3 for testing.  

 



52 
 

 
 

To compare the outputs of the two different models discussed thus far, a 

Pearson correlation was performed. This correlation was done to see if the areas 

that the D-S model predicts as resting habitats are similar to the areas of resting 

habitat that the Maxent model predicts. 

Results 

The following information was used for the breakpoints for the fuzzy 

membership in the final D-S model. Fuzzy membership transforms the input 

distance data to a 0 to 1 scale based on the possibility of being a member of a 

hypothesis. 0 is assigned to those locations that are definitely not supporting the 

hypothesis, 1 is assigned to those values that definitely support the hypothesis, 

and the entire range of possibilities between 0 and 1 are assigned to some level 

of possible support (the larger the number, the greater the possibility).The 

distance that this range covers is defined by the break points, which are 

determined by the user. The first point (breaking point C) marks the location 

where the prediction value begins to fall from a prediction value of 1. The second 

point (breaking point D) indicates where the prediction value reaches 0. It also 

must be stated that providing a negative value for the starting break point 

ensures that the maximum value within a feature is less than 1. As some 

variables may be more important than others, providing a maximum value less 

than 1 can reflect this importance. Below is a bulleted list of the final model 

assumptions. 
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• The wetlands hypothesis used a linear membership function with a 

monotonically decreasing variant.  

o The C-break point was set at 0 and the D-breaking point at 45 

meters.  

• For the healthy foliage hypothesis I used a sigmodal membership 

function with also a monotonically decreasing variant.  

o The C-break point for this hypothesis was set at -10 meters with 

a D-break point of 15 meters. 

•  The ‘vegetated areas near water bodies’ hypothesis depended on two 

different fuzzy membership layers, which were eventually multiplied 

together using the overlay function in IDRISI to create the actual 

hypothesis used in the D-S model module. Both layers were made with 

a sigmodal membership function and used a monotonically decreasing 

variant 

o  The first fuzzy membership layer was a simple distance from 

water layer. The C-break point was set at 0 and the D-breaking 

point at 150 meters. 

o  The second layer used for this hypothesis was a distance from 

vegetation layer in which the C-Breaking point was -10 and the 

D-breaking point was set at 15 meters. 
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• The last hypothesis, resting habitats do not exist directly above or 

adjacent to open water, also used a sigmodal membership function 

with also a monotonically decreasing variant.  

o The C-break point for this hypothesis was set at 4 meters with a 

D-break point of 7 meters. 

 These breakpoints were varied experimentally to maximize the goodness of 

fit (R2) between the predicted probability of presence and average counts. The 

resulting D-S model that was produced using the hypotheses was put through a 

3X3 filter using the Filter function found in the ArcMap program. This filtering 

function averages the pixel values based on the surrounding window of N pixels. 

This was done in an effort to smooth the data by reducing local variation and 

removing noise. Model values were extracted from the predicted surface that was 

provided by the field data, which were then used for regression analysis seen in 

Table 3.3. The model produced an R-Squared value of 0.387 using a linear 

regression. (Table 3.3).   

Table 3.3 Linear Regression Model  
   

       
Linear Model Summary 

  
Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

0.387 19.57 1 31 0 0.235 0.042 
 

Independent Variable:  average number of mosquitoes caught per 
day. 

  
Dependent Variable:   D-S Model values 
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Map 3.6 Final D-S Model with a 3x3 Filter 
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Figure 3.1 Linear Regression for D-S Model & Field Data Comparison 
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Table 3.4  t-Test Two-Sample Assuming Unequal Variances 

   

  
Resting Sites Non-Resting Sites 

Mean 0.56 0.21 

Standard Error 0.06 0.07 

Variance 0.07 0.07 

Observations 18 15 
Hypothesized Mean 
Difference 0 

Degrees of Freedom 30 

t-Statistic 3.69 

P(T<=t) one-tail 0.00 

t-Critical one-tail 1.70 

P(T<=t) two-tail 0.00 

t-Critical two-tail 2.04 

Figure 3.2 Average D-S Model values and error bars for resting sites and 
non-resting sites 
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 Figure 3.2 displays in bar graph form the average D-S model values for 

collection sites deemed statistically significant and statistically insignificant in 

Table 3.1, using error bars which display the standard error. Table 3.4 displays 

the results of the two sample t-test which aims to determine if the D-S model 

values for the statistically significant resting sites are different from the D-S 

model values found for the insignificant resting sites.  With a one-tailed p value of 

0.0004~ it can be assumed with greater than 99% certainty that sites that have 

been identified as statistically significant resting sites have larger D-S values than 

the statistically insignificant resting sites.  

Maxent Model Results 

 The resulting Maxent model for the probability for resting habitat can be 

seen in Map 3.7. The training AUC that produced by the model was 0.801 with a 

test AUC of 0.789 seen in Table 3.5. Furthermore according to the test of 

variable importance (Table 3.6) revealed that NDVI is the most important 

variable when used in isolation (77.4% permutation importance), which means 

that this index has the most useful information by itself. Conversely, the variable 

that had the most information on its own, with a Percent contribution of 73.7% 

(Table 3.6) was the Classified Image which was produced for the D-S model. 

NDWI showed no importance for the model and did not contribute any useful 

information in the modeling of possible resting habitat.  
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Map 3.7 Maxent Model of Possible Habitats in Kenieroba 
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Table 3.5 Analysis of Maxent Model Performance 
 

Training AUC Test AUC Standard Deviation 
0.801 0.789 0.028 

   
   Table 3.6 Analysis of Maxent Variable Contribution 
 

Variable Percent Contribution Permutation importance 

Classified Image 73.7 22.6 
NDVI 26.3 77.4 
NDWI 0 0 

 

  

Figure 3.3Resting Habitat Maxent Model Variable Response Curves 
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Y-axis: Catagorical Value* Y-axis: Variable Value 

 

* 1. Dense Vegetation, 2.Water, 3. Open Field, 4. Bare Earth, 5. Metal Roofed Buildings, 

6. Wetlands 
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These curves shown in Figure 3.3 display the response curves for the 

variables which were inserted to the Maxent model.  As was explained in 

Chapter 2 the curves show how the logistic prediction changes as each 

environmental variable is varied, keeping all other environmental variables at 

their average sample value. The curves show the marginal effect of changing 

exactly one variable, whereas the model may take advantage of sets of variables 

changing together. The response curve for the classified image is displayed as a 

bar graph with each category displaying its own logistic prediction value as a 

column in a bar graph (Figure 3.3).This shows that areas considered as 

wetlands and water by the classified image were of the most important to the 

model, whereas the other classes were of only moderate importance. The 

response curve for NDVI displays areas with a high NDVI value were very 

important, which translates to areas that are covered by dense vegetation. Lastly 

NDWI showed no importance in the model as already confirmed by Table 3.6. 

Model Comparison 

The direct model to model comparison was done using band collection 

statistic tool found in Arcmap. This tool uses Pearson correlation coefficient to 

measure the correlation between the different raster inputs. The results for the 

correlation method can be seen in Table 3.7. The Pearson correlation coefficient 

ranges between -1 and 1, where 1 is total positive correlation, 0 is no correlation, 

and −1 is total negative correlation. The correlation coefficient found in Table 3.7 

shows a moderately positive correlation with a coefficient of 0.663. 
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Table 3.7 D-S model and Maxent Pearson Correlation 

    

Covariance Correlation Coefficient 

0.024 0.663 
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CHAPTER IV 

CONCLUSION 

Landsat Maxent Models 

Anopheles gambiae 

The Maxent model of An. gambiae performed well in this study based on 

the AUC scores that were generated by the model (Table 2.3). Furthermore, the 

predicted map can be considered consistent with the existing bionomics of that 

species. Important predictors of An. gambiae presence, found on the prediction 

map, are the areas comprised of vegetation near water bodies and irrigated 

agricultural fields. An. gambiae is a very prolific species, with a wide range of 

preferences yet they typically use sunlit, shallow, temporary bodies of fresh water 

such as ground depressions, puddles, pools and hoof prints for oviposition and 

subsequent larval development (Betson, Jawara, and Awolola 2009; Blackwell 

and Johnson 2000; Bockarie et al. 1993; Edillo et al. 2002; Koenraadt, Githeko, 

and Takken 2004; Minakawa et al. 2004; Mutuku et al. 2006; Mwangangi et al. 

2007). Additionally there are studies showing that this species also uses sites 

which contain floating and submerged algae, emergent grass, and rice fields for 

oviposition (Blackwell and Johnson 2000; Edillo et al. 2002; Koenraadt, Githeko, 

and Takken 2004; Minakawa et al. 2004; Mutuku et al. 2006; Mwangangi et al. 

2007; Bogh et al. 2003). Other major landcovers that proved to be highly 

important for predicting the presence of An. gambiae are areas of human 

development such as the capital city of Bamako (Figure 4.1). Besides the fact 
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that An. gambiae uses anthropogenic disturbed areas for larval development as 

discussed earlier, this species has shown to be highly reliant on human hosts for 

blood meals. However, it is important to mention that many studies that report 

host preference using blood-meal analysis are conducted on resting, blood-fed 

specimens collected inside houses. This introduces a potential study design 

sampling bias, which favors the likelihood that the blood meal will be from a 

human host (Diatta et al. 1998). This bias may be reflected in the data points and 

the subsequent Maxent model generated predictions in this study. Nonetheless, 

urbanized areas provide a combination of adequate habitat and feeding 

opportunities that could serve to provide optimal habitats for this largely 

endophilic species (Knudsen and Slooff, 1992). Furthermore breeding conditions 

in this area for mosquitoes are also favorable due to the presence of 

impoverished areas. In areas such as these where we find high human 

population densities in combination with poor infrastructure and inadequate 

services, conditions perfect to promote an optimal habitat for malaria vectors 

(Knudsen and Slooff, 1992). 
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An. arabiensis 

Although the map for An. arabiensis had a low test AUC (0.680) it is 

encouraging to see that the Maxent map agrees with many major points of this 

species’ bionomics as well. As described in previous research, An. arabiensis is 

a largely generalist species that can utilize a variety of habitats (Giles and 

Coetzee 1987; Sharp and Lesueur 1991; Sinka et al. 2010). A very common 

habitat preference of An. arabiensis is dry savannah and sparse woodland 

habitat types (Coetzee et al. 2000; Coluzzi et al. 1979; Giles and Coetzee 1987; 

Service 1985). Specifically this species seems to prefer sunlit areas of water and 

limited emergent vegetation (Abdullah et al. 1995; Himeidan et al. 2008; Mutero 

et al. 2000).  

Figure 4.1  Maxent prediction values near in Bamako; This figure displays a close view 
of the Maxent models for both species focusing on the city of Bamako. 
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Conversely, it has been shown that there is a tendency for An. arabiensis 

to have decreased densities in areas of dense vegetation which provide ample 

shade (Sinka et al. 2010). Observing the Maxent map of An. arabiensis it is 

evident that the areas of high predictive value coincide with places of sparse 

vegetation nearby streams (and other areas of moisture) in the northern region of 

the study area. According to the Maxent map, this species does not seem to 

utilize areas of rice fields in the southern region of the study area. This is 

supported by the findings of previous research showing that although An. 

arabiensis makes ready use of rice fields for oviposition, mosquito densities for 

this species drop off substantially as the rice plants mature (Mutero CM et al. 

2000; Mwangangi JM et al. 2006, Mwangangi J et al. 2006; Mwangangi JM et al. 

2007).  As with An. gambiae, another factor that has shown to be a high predictor 

of presence within the model output, are areas of urban development, highlighted 

in the city of Bamako (Figure 4.1), which in its entirety is nearly optimal for the 

presence of An. arabiensis. Traditionally An. arabiensis is considered an 

exophagic species. However, there has been research done showing that this 

species is becoming more of an urban-dwelling mosquito (Tirados et al. 2006).  It 

must be pointed out that these models seem to over predict the presence of An. 

arabiensis and An. gambiae in areas of urban development .Features such as 

runways and streets show up as high predictors of their presence, which is 

inconsistent with our present knowledge of mosquito distribution and habitat 

preferences. This over-prediction is an effect of using index-based environment 

variables which do not distinguish between roads and buildings.  
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The Maxent model’s predictions of the presence An. arabiensis are 

consistent with the results of previous mapping attempts. In Sogoba et al (2007), 

the predicted proportion of An. arabiensis was higher in the areas north of 

Bamako. A lower frequency of An. arabiensis was observed in the southern and 

northern savannah while higher frequencies were observed in areas which could 

be considered the Sahelian zone. This feature can also be seen in the Maxent 

map where in the areas north of Bamako there is a more concentrated area of 

high predictive values, and there are much lower predictive values in the south. It 

also stated that An. arabiensis density was lower along the rivers irrespective of 

the eco-climatic zone. In the Maxent map produced here, the predictive value of 

an. Arabiensis was also quite low around rivers such as the Niger River.  

Resting Habitat Modeling 

The results from the D-S modelling yielded important insights to mosquito-

resting behavior. It also revealed that remote sensing based techniques have the 

potential to make significant advances in our understanding of resting habitat 

preferences of malaria mosquitoes. The R-squared value of 0.387, which 

resulted from a linear regression, suggests that there is a moderate yet 

significant relationship between D-S model values and the average number of 

mosquitoes found per day at the sampling sites. Yet when looking at the T-test 

results shown in Figure 3.1 and Table 3.5 the D-S model performed quite well in 

distinguishing between suitable and unsuitable resting areas. This means that 

the D-S model can be very useful in determining which areas will be used as 
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resting habitat. However, when trying to determine the relative importance of 

various resting habitats, the D-S model provides no information.  

 A possible reason that the R-squared value of the D-S model remains at a 

moderate level of ~0.4 could be due to the factors that may help determine which 

resting habitats are more valuable compared to others from a mosquito’s 

perspective, and are not entirely limited to factors of distance to-and-from major 

land cover variables. The difference between a moderate resting habitat site and 

an ideal resting habitat may lie in conditions such as micro-elevation differences, 

soil moisture, or undergrowth density. Also information pertaining to the different 

species of plants that might constitute the areas within the dense vegetation 

class could yield information that would be useful in determining resting site 

potential. One factor that would be important in establishing resting habitats is 

the amount of shade provided by the trees within the densely vegetated areas. 

The D-S model works on the assumption that all areas covered by the dense 

vegetation class are equal. In reality some tree species may provide more shade 

than others due to different leaf areas, and this could have an effect on the 

quality of a resting habitat. Furthermore, flowering phenology can also be a factor 

to consider. Understanding the time of year that different plant species may 

flower would likely impact mosquito concentrations. Both male and female 

mosquitoes rely on the reproductive cycles of different plant species for their 

sugar production. Resting habitats nearby trees producing fruit or flowers could 

be favored when compared to resting sites nearby trees which are not producing 

any sugar. 
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 The comparison between the Maxent model of possible resting habitats 

and the D-S model shows a moderate amount of agreement with a correlation 

coefficient of 0.663. The result of this correlation analysis shows that there is a 

significant amount of agreement between the two models. This means that the 

assumptions used by the hypothesis in the D-S model is verified to some degree 

by an automated computer algorithm, which has been widely accepted as a 

powerful modeling method for the distribution of species presence (Phillips, et al. 

2006). The Maxent and the D-S models differ in the areas marked as 

unimportant to resting habitat which are portrayed as zero in the D-S model. This 

is partly due to the Maxent algorithm being a presence-only modeling method. 

Areas that have been shown to be poor resting habitats by the field data could 

not be used as training points to inform the Maxent algorithm, which areas are 

unsuitable for resting habitats. As a result, many areas that were considered as 

unsuitable by the D-S model had a range of low to medium prediction values in 

the Maxent model. Since the D-S model is able to take the absence values into 

account during the model creation to avoid over-prediction, it may be more 

reliable as a tool to use by public health workers who may wish to deploy the 

various outdoor control methods mentioned in Chapter 1. Lastly, the hypothesis 

that wetlands are important to resting habitats was very important to both the D-S 

and the Maxent models. As stated before, previous research has also found that 

vicinity to streams, wetlands, and other shallow water bodies to be reliable 

predictors of mosquito presence (Trape et al. 1992; Staedke et al. 2003; 

Gouagna et al. 2011; Zhou et al. 2012). The confirmation of this theory by the 
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two different models supports the idea that these areas should be considered 

high priority targets when implementing outdoor control methods.  

Limitations and Future Studies 

Landsat Maxent Models 

There are certainly limitations in the current study. For instance, with 

regards to the Landsat-Maxent models, the reliance on public malaria databases 

for mosquito presence points, carries with it a sampling bias. As stated in 

Chapter 2, the pooling of mosquito presence points from a variety of previous 

research and other sources means that there is no overall sampling strategy. 

Although bias files were created for the Maxent model trying to mitigate this 

limitation, there may still be some bias present. Previous research has made 

claims describing an urgent need for baseline surveys to be carried out in many 

West African countries since little to no reliable data exists for large areas 

(Coetzee et al, 2000). Also the use of a set of Landsat 8 images dating from 

2014 means that the imagery lies outside the time range of collected data points 

by 5 years, as the collection of these field data range from 1968 to 2009. As 

stated before the set of images used for this modeling was chosen to be 

congruent with the seasonality of the data points. Unfortunately the Landsat 

database is scarce of cloud free imagery during the wet season for the study 

area within the presence point’s time span.  

Future studies may wish to attempt to test the accuracy of the Landsat-

Maxent maps produced within this study by sampling for mosquitoes at certain 
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areas within the study site. Sampling for mosquito presence would help in 

verifying or refuting the results of the Maxent models. In addition to testing the 

models, the new presence points can be used to help further validate the models 

as well. Recent research published by Drake and Beier (2014) suggests that the 

future potential distribution of An. arabiensis in Africa is likely to be reduced as a 

result of climate change. Future distribution models of An. arabiensis and An. 

gambiae could be produced with more contemporary field data to investigate this 

possible change in mosquito distribution. Furthermore, future research into the 

mapping of mosquito distribution at a regional scale in other parts of West Africa, 

using a similar methodology, should be conducted to see if results of this study 

can be replicated.  

Resting Habitat Modeling 

The largest limitation with the resting habitat modeling was the clustering 

of the data points that were used to train the models. This clustering made it such 

that only features located nearby the areas of collection could be used to make 

assumptions regarding parameters impacting resting habitat selection. The other 

limitation in the resting habitat modeling portion of this thesis is the time 

difference between the date of collection (November-December) and the date of 

the World View 2 imagery (March). It must be acknowledged that steps were 

taken to account for these differences such as the creation of the wetlands class 

in the classified image as discussed in Chapter 3. It also must be stated that 

further land-cover discrepancies may still exist. Yet as there were no cloud free 
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images available for the field sampling time period, the imagery used in this study 

was consistent with the same season of collection (i.e., the dry season).  

Further research into predicting resting habitat using D-S or Maxent 

modeling of resting habitat should focus on optimizing the data sampling 

strategy. As stated above, one of the major drawbacks with the modeling 

preformed in the current study is the restricted sampling area. There are two 

major recommendations to be considered at this time. The first is to ensure that a 

random sampling effort be made taking into account the entire study area. Even 

though there may be many areas that could be considered unsuitable for resting 

habitats, the inclusion of sampling points from such areas will only improve the 

training of the model and its overall performance. Secondly, transects leading 

away from areas of interest can also help in understanding how resting habitat 

selection is influenced by vicinity to certain land cover features. For instance the 

inclusion of transects which would lead away from populated areas could help in 

understanding how distance from human dwellings may effect outdoor resting 

habitat selection by mosquitos.  

And finally, this study tends to only take into account resting behavior that 

involves mosquito use of the field layer, which is largely herbaceous. There may 

be resting habitats being used by mosquitoes in the tree canopies, and a future 

study may wish to investigate whether mosquitoes utilize these areas for resting 

as well. Lastly D-S modeling of resting habitats could be performed at different 

locations in West Africa to test if the assumptions made by this study pertaining 
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to the importance of certain land cover features, such as wetlands or densely 

vegetated areas, remain important. 

Summary of Major Contributions 

Below is a bulleted list of the major conclusions that are supported by the 

results of the research. 

• Maxent models can be derived from Landsat based indices to 

model mosquito presence across large regions.  

• Populated areas are highly important for both Anopheles species 

• An. gambiae is predicted to use agricultural sites more regularly 

than its congener An. arabiensis. 

• Modeling microhabitat preferences of mosquitoes using remote 

sensing is feasible  

• Wetlands are highly important to resting habitats 

• Areas covered by dense vegetation support resting habitats 

The findings of this study do provide new insights regarding what areas 

within Southern Mali that are at major malaria risk due to high probabilities of 

mosquito presence. This research also provides the fundamental science-based 

information necessary to support more effective outdoor control efforts based on 

the location of existing resting habitats. With the inclusion of richer field datasets 

it is anticipated that even more reliable models can be generated providing a 

better understanding of mosquito distribution across regional areas. This in turn 

can help identify places that are at greater risk of outdoor malaria contraction. 
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These areas can then be assessed to identify areas of resting habitat using the 

knowledge gained from the D-S models. The implementation of more effective 

outdoor control methods at these identified resting sites can then be used to help 

significantly reduce the spread of malaria. 
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