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II 

 

Abstract 

 

   Graphene is a single layer of covalently bonded carbon atoms, which was 

discovered at the last decade. It has electronical transport and optical properties so 

that it is unusual material it yet has already attracted intense research.   

  In this work, a three layer waveguide sensor is proposed. The structure consists of 

an infinitesimally sheet of thin conducting graphene material layer which is followed 

by dielectric layer and a substrate layer of kerr-like nonlinear medium. The 

dispersion relation of such a structure is derived in terms of the thickness and the 

physical parameters. The dispersion relation for the waveguide structure for 

transverse electric (TE-Mode) wave and nonlinear equation were also investigated. 

The sensitivity of the effective refractive index to variations in the refractive index of 

the cladding is obtained. Sensitivity has been obtained by tuning some physical 

parameters.  

     This thesis has concluded that the proposed sensor gave results for the sensitivity. 

The results are very important and useful for the practical application of graphene-

based optoelectronic sensors. 
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 الولخص

َانزي حم اكخشافً  انضشافٍه ٌُ عباسة عه طبمت َاحذة مه رساث انكشبُن انمشحبطت حساٌمٍا،

فً انعمذ انماضً. َانزي ٌخمخع بخاصٍت انىمم الإنكخشَوً، َنذًٌ أٌضا خصائص بصشٌت نزا 

 ٌعخبش مادة غٍش عادٌت َ ما صانج حضزب الاوخباي

. انذنٍم انمُصً مكُن مه رلاد طبماثممخشط نضٍاصاسخشعاس فً ٌزا انعمم، حم حصمٍم     

مه مادة انضشافٍه انمُصهت َحهٍٍا طبمت عاصنت َطبمت غٍش  سفٍعتٌَخكُن انٍٍكم مه طبمت 

. حم اشخماق علالت انخشخج فً ٌزا انٍٍكم مه حٍذ انسماكت َانمعاٌٍش kerrخطٍت مزم 

 ئٍتكٍشبانلامُاس انانفٍضٌائٍت. َأٌضا لذ حم انخحمك مه انعلالت بٍه حشخج ٌٍكم انذنٍم انمُصً 

نخطٍت. حم انحصُل عهى حساسٍت معامم الاوكساس (  َانمعادنت غٍش اTE-modeشضت )مسخعان

انفعال نهخغٍشاث فً معامم اوكساس انغلاف. َلذ حم لٍاط انحساسٍت مه خلال ضبظ بعض 

 انمعاٌٍش انفٍضٌائٍت

الاسخشعاس انممخشط أعطى وخائش نهحساسٍت. َلذ كاوج  صٍاصَلذ خهص ٌزا انبحذ انى أن      

 عهى انضشافٍه انمبٍىتأصٍضة الاسخشعاس انضُئٍت  فًنعمهً ىخائش مٍمت صذا َمفٍذة نهخطبٍك اان

 

 انحساسٍت ، معامم الاوكساس ، مششذاث انمُصاث،  غٍش خطٍت ، : انضشافٍه الكلوبث الوفتبحيت

 . انمضساث ،
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Chapter 1 

The fundamental of optical waveguides and Maxwell's Equations 

 

   This chapter presents the background and fundamental concepts of electromagnetic 

fields and waveguides. It provides a brief review of Maxwell's equations, wave 

equation and refractive index. The concepts of nonlinear, TE polarizations and 

waveguide modes are also presented. 

1.1 Maxwell's Equations 

     Maxwell's Equations are used to govern the behavior of electric and magnetic 

fields. A flow of electric current produces a magnetic field. The magnetic field 

produce an electric field. Maxwell's Equations show that separated charge (positive 

and negative) gives rise to an electric field which is varying in time because it gives 

rise to a propagating electric field, further giving rise to a propagating magnetic field. 

Maxwell was one of the first to determine the speed of propagation of 

electromagnetic (EM) waves which was the same as the speed of light - and hence to 

conclude that EM waves and visible light were really the same thing. (Jackson, 1999; 

Born & Wolf, 1999); 

 

 Maxwell's equations were written as follows: 

 

                                            ,D                                                                   (1.1)                                                                                                        

                                        ,
B

E
t


  


                                              (1.2) 

                                         0,B                                                (1.3) 

                                                  .
D

H J
t


  


                                              (1.4) 

where E and H are the electric and magnetic fields, respectively, D and B are the 

electric and magnetic flux densities, respectively, and ρ and J are the electric charge and 

the current densities, respectively. 
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For wave propagation in an isotopic medium without free charges and conduction 

current (ρ = 0, and J = 0). 

Eqs. (1.1), (1.2), (1.3) and (1.4) become as:                                          

                                                 0,D                                                                 (1.5) 

                                                  ,
B

E
t


  


                                                       (1.6)                                                  

                                             0,B                                                                 (1.7) 

                                         .
D

H
t


 


                                 (1.8) 

1.2 Constitutive Relations 

     The fields and flux densities in Eqs. (1.5), (1.6), (1.7) and (1.8) are related to each 

other by the constitutive relations. For a linear, isotropic, homogeneous medium the 

constitutive relations can be written as: 

                                       ,D E                                                                           (1.9) 

                                     ,B H                                                                            (1.10) 

                                      .J E                                                                           (1.11) 

where the electric permittivity ε and the magnetic permeability μ are defined as: 

                                       0 ,i                                                                            (1.12) 

                                      0 i                                                                            (1.13) 

where i  is the relative permittivity of the medium, i  is its relative permeability of 

the medium. 0  
and 0 are the free space permittivity and the free space permeability 

respectively.  

Applying Eq. (1.9) to (1.13) into Eq.(1.5) to (1.8) we get: 

                                         0,E                                                                   (1.14) 
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                                      ,
H

E
t




  


                                (1.15) 

                                        0,H                                                                    (1.16) 

                                        .
E

H
t




 


                                                           (1.17) 

 

1.3 The Wave Equation 

Taking the curl of Eq. (1.15) to derive the wave equation 

                  
( )

,
H

E
t


 

  


                                                 (1.18) 

Substituting Eq. (1.17) into (1.18), we get: 

                  

2

2
,

E
E

t



  


                                                                     (1.19) 

Using the vector identity 

                    2( ) ( . ) ,A A A                        (1.20) 

Substituting Eq. (1.20) into (1.19) we get: 

                   
2

2

2
( ),

E
E E

t



    


                                                             (1.21) 

For sources free isotropic medium 0,E    Eq. (1.21), Becomes: 

                 
2

2

2
0,

E
E

t



  


                                                                           (1.22) 

Similarly, starting with Eq. (1.17) and following the above procedure we get 

                    
2

2

2
0,

H
H

t



  


                                                                          (1.23)  

Equations (1.22) and (1.23) are three dimensional equations where the laplacian 

operator ∇2
 is given in rectangular coordinates by 
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2 2 2

2

2 2 2
'

x y z

  
   

  
                                                              (1.24) 

 

Equations (1.22) and (1.23) are called Helmholtz equations which having a 

sinusoidal solution if the coefficient of the second term is positive and an 

exponentially increasing or decreasing solution if it is negative. 

The ideal notation for the electromagnetic wave which represents the solution of the 

wave equation, is the phasor notation, i.e. 

                        ( . )

0( , ) i k r tr t e                                                                      (1.25) 

where    is either E or H, 0  is the amplitude of the wave, k is the wave vector and

   is the angular frequency. 

Applying the phasor notation to Maxwell's equations, we get: 

                              'E i H                                                                    (1.26) 

                              'H i E                                                                       (1.27)           

or 

                              
'

1
E H

i
                                                                    (1.28) 

                             
1

H E
i

   .                                                               (1.29)  

Eqs. (1.26) and (1.27) represent Maxwell's equations for time harmonic fields in free 

charge lossless media. 

To analyze wave propagation in a charge-free medium, it is helpful to have separate 

wave equations for electric and magnetic fields. 

Taking   Eq. (1.15) and substitute from Eq.(1.17) for the value of H , then we 

obtain (Born & Wolf, 1999; Markoš & Soukoulis, 2008): 

.                         2( ) ,E E                                                                 (1.30) 

Applying Eq. (1.20) and (1.14) into (1.30) we get: 
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                             2 2 0,E E                                                                  (1.31) 

Similarly, the homogeneous wave equation for H is: 

                               2 2 0,H H                                                               (1.32) 

In a lossless medium, the wavenumber k is defined by
2 2k   . Then Eqn. (1.31) 

and Eq. (1.32) can be written as: 

                         
2 2 0,E k E                                                                           (1.33) 

                        
2 2 0,H k H                                                                           (1.34)  

Eqs. (1.33) and (1.34) are referred to as Hemholtz equations. 

1.4 Refractive index 

  The refractive index n  is a measure of how speed of a wave is reduced inside the 

medium relative to the speed in vacuum. It is determined by the permittivity and 

permeability by the following relation 

                                                        r rn                                                         (1.35) 

The velocity of ray light bending when it moves from medium to another. The 

refraction index is also given by: 

                                            
 of light in vecuum

 of light in a mdium

speed c
n

speed 
                          (1.36) 

Where, 

0 0

1
c

 
 and 

1
v


  

1.5 Nonlinear media 

     Nonlinear medium is a medium where the relative refractive index depends on 

intensity of light. When an external electric field is applied to a matter, it induces or 

reorients dipole moments of atoms or molecules of the matter, resulting in a nonzero 

average dipole moment per unit volume or polarization of the material. If the applied 

electric field is not too large, the polarization is proportional to the field strength, i.e،
 

                                                  P=
 0  χ

(1)
 
 
E                                                      (1.37) 
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where χ
(1)

 is the usual susceptibility of linear optics. In writing Eq. (1.37) we ignored, 

for simplicity, the vector nature of both the applied field and the resulting 

polarization. As the magnitude of the field increases though, the simple linear 

relation Eq. (1.37) no longer holds. However, typical electric fields generated by all 

but most powerful modern lasers are in the range of 106 to 107 V/cm, whereas the 

electrons bound to atoms or molecules experience far greater fields of the order of 

109 to 1010 V/cm. Consequently, one can assume the induced electron 

displacements in laser fields to be rather small; the latter circumstance justifies using 

a Taylor series expansion of the dielectric Polarization density (dipole moment per 

unit volume) P(t) at time t in terms of the electrical field E(t): 

                P(t)= ε0( χ
(1)

 E(t)
 
 +χ

(2)
 E

2
(t) + χ

(3)
 E

3
(t) +…),                                     (1.38) 

The coefficients χ
(n)

 are the n-th order susceptibilities of the medium and the 

presence of such a term is generally referred to as an n-th order nonlinearity.
                                                                                                    

 

 where l is the real constant,  is the coefficient of nonlinearity 

The propagation of light in a nonlinear medium is governed by the wave equation 

Eq.(1.18), which was derived from Maxwell’s equations for an arbitrary 

homogeneous, isotropic dielectric medium. The isotropy of the medium ensures that 

the vectors P and E are always parallel so that they may be examined on a 

component-by-component basis, which provides (Iizuka, 2002) 

2 2 2

'2 2 2 2

0

1 NLn
E E P

c t c t

 
  

                                                            
           (1.39) 

where P
NL

 is the nonlinear part of the Polarization density and n is the refractive 

index due to the linear term in P. 

Eq.(1.39) has nonzero term at the right hand side  
 

    

 

   

 
P

NL)
 that called the 

inhomogeneous term and P
NL

= ε0 χ
(2)

 E
2
  

The permittivity in kerr-meduim can ber rewritten as (Iizuka, 2002) 

                            
2

,
nl l z

E   
                                                                      (1.40)

 

 

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Polarization_density
https://en.wikipedia.org/wiki/Electric_susceptibility
https://en.wikipedia.org/wiki/Polarization_density
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Refractive_index
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1.6 Boundary Conditions 

     The boundary conditions required for the electromagnetic fields cross a given 

boundary between two different media as shown in Figure (1.1) must be satisfied. A 

set of boundary conditions at the interface between the two media are summarized as 

follows (Kenji and Tsutomun, 2002): 

 

          Figure (1.1): Field directions at boundary (Hunsperger, 2002). 

 

 1- The tangential component of the electric field is continuous across the surface,i.e. 

              

                                        2 1
ˆ ( ) 0,i t tn E E      

                                          2 2 1 1
ˆ ˆ

t tn E n E                                                          (1.41) 

where ˆ
in is the unit vector normal to the interface between the media and pointing in 

the outward direction relative to the region i. 

2-The tangential component of the magnetic field is continuous, when no charge at 

the surface 

                                     2 1ˆ ( ) 0,t tin H H      

                                         2 1ˆ ˆt tn H n H                                                           (1.42)           

In the presence of a surface current of density sJ , the tangential component of the 

magnetic field is discontinuous across the surface by sJ  , i.e. 

                                                2 1
ˆ ( )i t t sn H H J   ,                                             (1.43) 
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3-The normal component of the magnetic flux is continuous across the surface of 

discontinuity, i.e. 

                                               2 1
ˆ .( ) 0,in B B                                                        (1.44) 

4-In the presence of a surface charge of density  , the normal component of the 

electric displacement is discontinuous by  , i.e. 

                                             2 1
ˆ .( ) ,in D D                                                  (1.45) 

when there are no charges on the surface, the electric displacement is continuous. 

                                            1 1 2 2
ˆ ˆ .n D n D  

                                                          
(1.46)

                         

where  

                                               B H ,                                                                 (1.47) 

                                               D E ,                                                                  (1.48) 

The importance of the boundary conditions gets clear when dealing with 

electromagnetic waves striking an interface between two different media. 

1.7 Theory of Waveguides 

1.7.1 Surface wave 

    The structure of the basic dielectric step index waveguide is shown in Figure (1.2). 

The slab waveguide consists of three layers: the film is sandwiched between cover 

and substrate,{which has the refractive index dielectric ( )fn }, The cover material 

(cladding) has refractive index (nc), and the substrate material, has refractive index 

(ns). For surface wave s f cn n n . waveguide slab structure is a symmetric. 

1.7.2 Guiding wave 

    For three layers wave guide structure,
 
to keep the wave guide inside the film layer, 

the refractive index dielectric ( )fn  must be larger than that of the substrate (ns) and 

that of the cover (nc) this means that  f s cn n n . 
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Moreover, the substrate and cover layers are much thicker than the operating 

wavelength λ. However, The film thickness d should be comparable to λ (Pollock, 

1995). 

                            nc  

                                                                                                           z 

  
fn  film                              x 

                                    sn                                                  y 

Figure (1.2): Basic dielectric step index waveguide consists of three layers
 

1.8 Basic Waveguide Equations 

   Considering an electromagnetic wave which advances into waveguide shown in 

Figure (1.2) and propagating in the z-direction. The electric and magnetic fields are 

supposed to have the sinusoidal form, as displayed in Figure (1.3). 

 

 

     Figure (1.3): Propagation of an electromagnetic field. 

The electric and magnetic field can be writen as , 

                                               ( )

0 ( , ) ,i t zE E x y e                                             (1.49) 

                                                 ( )

0 ( , ) .i t zH H x y e                                              (1.50) 
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where ω is the frequency of the field and β is the longitudinal component of 

propagation  in z-direction, E0 and H0 define the amplitude and the direction of the 

vectors E and H, respectively. 

Expanding Eq. (1.26) in three dimensions, we get: 

 

                                 ( )x y z

x y z

i j k

i H i H j H k
x y z

E E E


  

   
  

                      (1.51) 

 

By solving Eq. (1.51) ,we get: 

 

                                

z
y x

z
x y

y x
z

E
i E i H

y

E
i E i H

x

E E
i H

x y

 

 



 
   


 

  
 
 

   
  

                                               (1.52)   

 

  Similarly, Eq. (1.27) becomes:   

 

                              ( )x y z

x y z

i j k

i E i E j E k
x y z

H H H


  

  
  

                       (1.53) 
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By solving Eq.(1.53) , we get: 

                             

z
y x

z
x y

y x
z

H
i H i E

y

H
i H i E

x

H H
i E

x y

 

 



 
  


 

   
 
 

  
  

                                              (1.54) 

 

1.9 Optical Waveguide Modes  

      The propagating modes along the waveguide can be classified according to the 

presence of field components in the wave. The longitudinal components are those 

field components that are in the direction of the wave propagation, while those 

perpendicular to the direction of propagation are defined as transverse components 

(Blake, 1969; Pozar, 2009).  

1.9.1 General Solutions for Optical Waveguide Modes  

     The analysis of planar waveguide requires solving Helmholtz equation in the 

three layers. Consider again the waveguide shown in Figure (1.2). The wave is 

supposed to propagate in the z-direction. The waveguide is assumed to be infinitely 

extended in the y-direction, so that 0
y





 (Chen, 2006).    

Then Eqs. (1.53) and (1.54) become: 

                              
0 ,y xi E i H                                                                (1.55)   

                              
0 ,z

x y

E
i E i H

x
  


 


                                                    (1.56) 

                             0 ,
y

z

E
i H

x
 


 


                                                               (1.57)      

                             ,y xi H i E                                                                   (1.58) 

                            ,z
x y

H
i E i E

x
 


  


                                                      (1.59) 
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                            .
y

z

H
i E

x






                                                                     (1.60) 

The ratio of the propagation constant in the medium β to the wave number in a 

vacuum k0 is called the effective index: 

                            
0

.N
k


                                                                               (1.61) 

Therefore , the Helmholtz equation for the electric field E  in Eq. (1.33)  can be 

rewritten as: 

                         
2 2 2( ) 0,iE k E                                                                 (1.62)        

or 

                         
2 2 0,iE E                                                                         (1.63) 

Similarity the Helmholtz equation for the Magnetic field H  in Eq. (1.34) can be 

rewritten as: 

                                
2 2 2( ) 0,iH k H                                                        (1.64)                     

or 

                                
2 2 0.iH H                                                                    (1.65)           

where 

                                           
2 2 2

i ik                                                              (1.66) 

 

with
2

i  is transvers wave number, 0 ,i i ik k   i=1,2,3 is the  wavenumber in 

region i, 0 0 0 /k c     is the free-space wavenumber, and 
0 , 0 ,i i      

where i  and  i  are the relative permittivity and permeability of the region i. 

1.9.2 Transverse electric mode (TE mode). 

     In the TE mode, the electric field has no longitudinal component (Ez =0) but in the 

transverse direction (Ey ≠0). Only three components exist for TE mode Ey , Hx  and 
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Hz. The two magnetic field components Hx and Hz can be expressed in terms of the 

electric field component Ey by using Eq.(1.52) (Kenji & Tsutomu, 2001): 

                                         ( ) ( ),x yH x E x



                                           (1.67) 

                                        ( ) ( )z y

i d
H x E x

dx
                                         (1.68) 

Substituting from Eqs. (1.67) and (1.68) into Eq. (1.59) gives the Helmholtz wave 

equation for TE mode: 

                                        
2

2 2

2
( ) ( ) ( ) 0y i y

d
E x k E x

dx
                               (1.69) 

1.9.3 Transverse Magnetic (TM) modes: 

  The magnetic field is transverse to the direction of propagation (no longitudinal 

magnetic field component) while the electric field has both transverse and 

longitudinal component [H z = 0, Ez ≠0]. 

1.9.4 Transverse Electromagnetic (TEM) modes: 

    The transverse electric and magnetic (TEM) modes are perpendicular to the 

direction of wave propagation with no longitudinal components [E z = H z = 0].  TEM 

modes cannot exist on single conductor guiding structures. Plane waves can also be 

classified as TEM modes. Quasi-TEM Modes – modes which approximate true 

TEM modes when the frequency is sufficiently small.  

                                   
0 0

lim lim 0z z
f f

E H
 

                                           (1.70)  

1.9.5 Hybrid Modes (EH or HE modes): 

 Both the electric and magnetic fields have longitudinal components [E z ≠ H z ≠ 0]. 

The longitudinal electric filed is dominant in the EH mode while the longitudinal 

magnetic field is dominant in the HE mode.  
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Chapter 2 

Graphene Material and Optical Sensing 

 

    This chapter presented some facts about Graphene such as its definition, 

characteristics, brief history, Optical conductivity and its applications. It also 

introduces the optical sensing including their concepts and their applications. 

2.1 Graphene Material 

   Introduction 

The element carbon is an unusual element. Its quasi-2-dimensional structures have 

attracted physicists around the globe. Real 2-dimensional states of matter have been 

assumed not to exist (Zhang, et al,2005). 

 It is stronger than diamond, conducts electricity and heat better than any material 

ever discovered, and has interesting optical response. Also, its reflectance, 

transmittance and absorbance are one of the striking optical properties of Graphene 

(Nair et al., 2008; Kuzmenko et al, 2008). Graphene is the thinnest ever material 

known in the world. Thus , so for this feature it plays major rules in the fundamental 

base for technology development, which included technological industry such as 

electronic optical. 

The previous attempts to study graphene can be traced back to 1859. There has been 

an explosion in research around the material since 2004, when Professor Sir Andre 

Geim and Professor Sir Kostya Novoselov of the University of Manchester 

discovered and isolated a single atomic layer of carbon for the first time. The pair 

received the Nobel Prize in Physics in 2010 in recognition of their 

breakthrough(Nikitin, 2011). 

2.2 Brief History 

    Graphene, millions of ultra-thin layers that stack together to form graphite 

commonly found in pencils, was first studied as long ago as 1947.Graphene was first 

studied theoretically in the 1940s. At that time, scientists thought it was physically 

impossible for a two dimensional material to exist, so they did not pursue isolating 

graphene. Decades later, interest picked up and researchers began dreaming up 

http://www.graphene.manchester.ac.uk/story/
http://www.graphene.manchester.ac.uk/story/
http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_2009.pdf
http://arxiv.org/pdf/cond-mat/0702595.pdf
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techniques to peel apart graphite. They tried wedging molecules between layers of 

graphene and scraping and rubbing graphite, but they never got to a single layer. 

Eventually, they were able to isolate graphene on top of other materials, but not on 

its own. 

Attempts to grow graphene on other single crystal surfaces have been ongoing since 

the 1970s, but strong interactions with the surface on which it was grown always 

prevented the true properties of graphene being measured experimentally 

The electric current would be carried by effectively massless charge carriers in 

graphene was pointed out theoretically in 1984, and the name 'graphene' was first 

mentioned in 1987 to describe the graphite layers that had various compounds 

inserted between them. The term was used extensively in work on carbon nanotubes, 

which are rolled up graphene sheets. 

In 2002, University of Manchester researcher Andre Geim became interested in 

graphene and challenged a PhD student to polish a hunk of graphite to as few layers 

as possible. The student was able to reach 1,000 layers, but could not hit Geim’s goal 

of 10 to 100 layers. Geim tried a different approach: tape. He applied it to graphite 

and peeled it away to create flakes of layered graphene. More tape peels created 

thinner and thinner layers, until he had a piece of graphene 10 layers thick. 

While scientists had theorized about graphene for decades, it was first produced in 

the lab in 2004. Despite its short history, graphene has already revealed a cornucopia 

of new physics and potential applications. Andre Geim and Konstantin Nevoselov at 

the university of Manchester won the Nobel prize in physics in 2010 “for 

groundbreaking experiments regarding the two-dimensional material graphene” (Xia 

et al, 2009). 

2.3 Definition of Graphene 

    Graphene is, basically, a single atomic layer of graphite; an abundant mineral 

which is an allotrope of carbon that is made up of very tightly bonded carbon atoms 

organized into a hexagonal lattice. 

 

 

http://arxiv.org/pdf/cond-mat/0702595.pdf
http://iopscience.iop.org/0953-8984/9/1/004/
http://www.aps.org/publications/apsnews/200910/physicshistory.cfm
http://www.graphenea.com/pages/graphene
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2.4 Structure of graphene 

    Sheets of graphene are bonded by loose bond in graphite, these bonds are broken 

and sheets are isolated to form graphene. These isolated hexagonal sheets are 

graphene . 

It is the one-atom thick planar sheet of carbon atoms (graphite), which makes it the 

thinnest material ever discovered and has 2-dimentional crystalline allotrope of 

carbon. It is almost completely transparent, yet so dense that not even helium can 

pass through it(Morozov, et al., 2004).  

2.5 Prepare 

   The isolation of single graphene sheets offers opportunities for its investigation by 

various spectroscopic and microscopic techniques. Samples can be either in the form 

of dispersion or graphene sheets deposited on the proper substrates. In this section 

the most commonly used characterization tools are introduced. As for most 

nanomaterials electronic microscopies and AFM are powerful tools for the 

characterization of graphene and graphene derivatives. Raman spectroscopy and 

spectromicroscopy can distinguish single layer graphene from double layer and few-

layer graphene and give clear indications on the number of defects present in the 

material. Thermogravimetric analysis (TGA) diagrams are useful to trace changes in 

the structure of graphitic materials before and after functionalization of graphene 

sheets. Optical microscopy can visualize a single graphene layer that is placed on the 

right substrate. X-ray diffraction (XRD) informs on the success of exfoliation or 

intercalation of graphite and is particularly useful to demonstrate functionalization.( 

Xu, et al., 2012). 

2.6 Propriety 

   Geim and Novoselov’s paper was wildly interesting to other scientists because of 

its description of graphene’s strange physical properties. Electrons move through 

graphene incredibly fast and begin to exhibit behaviors as if they were massless, 

mimicking the physics that governs particles at super small scales. 

 

 

http://graphene.nus.edu.sg/content/graphene
http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_2009.pdf
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2.6.1 ConductiveThermal 

    A graphene sheet is thermodynamically most stable  

1. Only for molecules larger than 24,000 atoms 

2. Size greater than 20 nm 

3.Thermal conductivity is measured to be between (4.84±0.44) × 10
3
 and     

(5.30±0.48) × 10
3
 W·m−1·K−1 

2.6.2 Electronic Properties 

One of the most useful properties of graphene is that it is a zero-overlap semimet al 

(with both holes and electrons as charge carriers) with very high electrical 

conductivity. Carbon atoms have a total of 6 electrons; 2 in the inner shell and 4 in 

the outer shell. The 4 outer shell electrons in an individual carbon atom are available 

for chemical bonding, but in graphene, each atom is connected to 3 other carbon 

atoms on the two dimensional plane, leaving 1 electron freely available in the third 

dimension for electronic conduction. These highly-mobile electrons are called pi (π) 

electrons and are located above and below the graphene sheet. These pi orbitals 

overlap and help to enhance the carbon to carbon bonds in graphene. Fundamentally, 

the electronic properties of graphene are dictated by the bonding and anti-bonding 

(the valance and conduction bands) of these pi orbitals(Morozov et al., 2004). 

2.6.3 Mechanical 

   The carbon–carbon bond length in graphene is about 0.142 nanometers. Graphene 

sheets stack to form graphite with an interplanar spacing of 0.335 nm.Graphene is the 

strongest material ever tested, with an intrinsic tensile strength of 130 GPa and 

a Young's modulus (stiffness) of 1 TPa (150000000 psi). The Nobel announcement 

illustrated this by saying that a 1 square meter graphene hammock would support 

a 4 kg cat but would weigh only as much as one of the cat's whiskers, at 

0.77 mg (about 0.001% of the weight of 1 m
2
 of paper). The spring constant of 

suspended graphene sheets has been measured using an atomic force 

microscope (AFM). Graphene sheets were suspended over SiO2 cavities where an 

AFM tip was used to apply a stress to the sheet to test its mechanical properties. Its 

spring constant was in the range 1–5 N/m and the stiffness was 0.5 TPa, which 

https://en.wikipedia.org/wiki/Carbon%E2%80%93carbon_bond
https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Tensile_strength
https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Pounds_per_square_inch
https://en.wikipedia.org/wiki/Spring_constant
https://en.wikipedia.org/wiki/Atomic_force_microscope
https://en.wikipedia.org/wiki/Atomic_force_microscope
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differs from that of bulk graphite. These intrinsic properties could lead to 

applications such as  pressure sensors and resonators.  

Due to its large surface energy and out of plane ductility, flat graphene sheets are 

unstable with respect to scrolling, i.e. bending into a cylindrical shape, which is its 

lower-energy state(Neto, et al,. 2009).
 
 

2.6.4 Optical Conductivity of Graphene 

     The dynamic optical conductivity of graphene can be determined from the Kubo 

formalisms (Hanson, 2008 et al.,Gusynin 2006), consisting of intra-band and inter-

band contributions; 

2 1

2 1 1 20 0

( ) ( ) ( ) ( )( ) 1
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where е is the charge of an electron, ξ is the energy, ħ is the reduced Planck’s 

constant,
 

( )/ 1( ) ( 1)c Bk T

df e
      is the Fermi-Dirac distribution,   is the radian 

frequency, kB is the Boltzmann’s constant, T is the temperature, c  is the chemical 

potential, which can be varied by doping and/or an applied bias, τ is the relaxation 

time (τ
−1

 is the scattering rate), i is the imaginary unit and e 
iωt

 is the time variation. 

The first part in Eq. (2.1) is due to the intraband contribution and the second is due to 

interband contribution. The intra-band contribution can be derived and simplified as, 
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While the inter-band can be approximated as, for , : B ck T   
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The conductivity of Graphene is normalized by 0  (Xu et al., 2012). 

where                                        
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2.7 Application of Graphene 

      Graphene amazing properties brings scope of various future applications in 

following Fields.Graphene is a disruptive technology; one that could open up new 

markets and even replace existing technologies or materials. It is when graphene is 

used both as an improvement to an existing material and in a transformational 

capacity that its true potential could be realised.Graphene detects. Ultra-sensitive 

sensors made from graphene could detect minute dangerous particles helping to 

protect potentially dangerous environments (Zhang, et al, 2005). 

 2.7.1 Graphene sensors 

    Graphene is an ideal material for sensors. Graphene and sensors are a natural 

combination, as graphene’s large surface-to-volume ratio, unique optical properties, 

excellent electrical conductivity, high carrier mobility and density, high thermal 

conductivity and many other attributes can be greatly beneficial for sensor functions.  

Graphene is thought to become especially widespread in biosensors and diagnostics. 

Graphene will enable sensors that are smaller and lighter - providing endless design 

possibilities. They will also be more sensitive and able to detect smaller changes in 

matter, work more quickly and eventually even be less expensive than traditional 

sensors. Some graphene-based sensor designs contain a Field Effect Transistor (FET) 

with a graphene channel. Upon detection of the targeted analyte’s binding, the 

current through the transistor changes, which sends a signal that can be analyzed to 

determine several variables. 

Graphene-based nanoelectronic devices have also been researched for use in DNA 

sensors (for detecting nucleobases and nucleotides), Gas sensors (for detection of 

different gases), PH sensors, environmental contamination sensors, strain and 

pressure sensors, and more (Xu et al, 2012). 

2.7.2 Graphene electronics 

Graphene can be used as a coating to improve current touch screens for phones and 

tablets. It can also be used to make the circuitry for our computers making them 

incredibly fast. These are just two examples of how graphene can enhance today's 

devices. Graphene can also spark the next-generation of electronics (Xia et al, 2009). 
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2.7.3 Graphene Transistors 

Researchers at the University of Manchester have already created the world's 

smallest transistor using graphene. The smaller the size of the transistor, the better 

they perform within circuits. The fundamental challenge facing the electronics 

industry in the next 20 years is the further miniaturisation of technology (Xu, et al, 

2012). 

2.7.4 Graphene Semiconductors 

Graphene's unique properties of thinness and conductivity have led to global research 

into its applications as a semiconductor. At just one atom thick and with the ability to 

conduct electricity at room temperature graphene semiconductors could replace 

existing technology for computer chips. Research has already shown that graphene 

chips are much faster than existing ones made from silicon (Wang et al, 2008). 

2.8 Optical Waveguide Sensors 

Waveguide sensors consider as one of the most important applications of planar 

waveguides. Sensing is performed by the evanescent field in the covering medium 

(Parriaux and Dierauer, 1994). The effective refractive index of a waveguide 

structure depends on film thickness and refractive indices of both film and 

surroundings. Thus, if the biological or chemical changes result in changing the 

effective refractive index, then the new properties give information about the 

refractive index of the analyte or the thickness of the adsorbed layer. Sensing process 

is then the measure of change in effective index due to either changes in cover 

refractive index or adding an ultra-thin film on surface of the guiding film. 

The sensitivity of the measurement of physical or chemical quantity present in the 

cover depends on the strength and the distribution of the evanescent field in the 

cover. The main design task is therefore to find the waveguide structure which 

maximizes the sensitivity on the quantity to be measured. The analysis differs 

somewhat if the measured property is homogeneously distributed in the cover or it is 

an ultra thin film at the waveguide–cover interface (surface sensing). The two cases 

are illustrated schematically in Figure (2.1) and Figure (2.2). It is assumed hereafter 

that the cover medium is a liquid or a gas, which implies that the contact zone 
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between the cover and the waveguide surface is of zero thickness and does not 

exhibit an air film or bubbles. 

2.8.1 Homogeneous sensing  

    If the properties are homogeneously distributed in the waveguide cover, then the 

process of detecting changes of these properties is called homogeneous sensing. Here 

sensitivity is defined as the change in the effective refractive index through the cover 

medium,  

,
Ad
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d





                       .
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

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      Figure (2.1): Schematic representation of planar waveguide homogeneous sensor 

(Parriaux & Veldhuis, 1998). 

 

2.8.2 Surface sensing 

    If changes of optical properties are due to adsorption of some molecules that 

construct an ultra-thin film on surface of the guiding thin film, then the process of 

detecting the adsorbed molecules is said to be surface sensing.  

In such configurations, the sensor consists of a guiding film over which sets a 

sensing layer. Electromagnetic waves propagating along the sensing element are 

attenuated due to the additional adsorbed film or analyte concentration. 
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Mathematically, surface sensing is defined as the change of effective refractive index 

with respect to change in adlayer width(Parriaux and Velduis,1998) 

                                                           

.
cn

c

N
S

n





                                                    

(2.4)

 

 

 

       Figure (2.2):  Schematic representation of planar waveguide surface sensor 

(Parriaux & Veldhuis, 1998).  

 

2.8.3 Uses and applications  

Planar optical waveguide sensors are used in many aspects: detecting and measuring 

the thickness of any layers such as metals, metal compounds, organic, bio-organic, 

enzymes, antibodies and microbes. They are also used in measuring concentrations 

of liquids and detecting small traces in chemicals.  

One of the important uses of such sensors is in radiation dosimeters and protective 

masks or clothing when they can readily identify and give scanning data about any 

change in exposure or lack in protection. They are of great benefit in detecting drug 

vapors. More specifically, planar optical sensors are also used in any chemical, 

biological or physical processes accompanied with changes in strength and 

distribution of the evanescent field strength (Xu et al, 2012). 
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2.9 Previous Work 

    A lot of researches and experiment studies have been conducted to improve the 

sensitivity of waveguide sensors. Sensing the evanescent field has captured 

considerable attention due to their advantages.Now well it has been proven and has 

been developed sensor systems and clear from many of the investigators. Studies 

have focused on the sensor board to promote the resolution, in and out of the whole 

system, reduce cost, and maximize the sensitivity of the sensor basis. Therefore , 

several structures by selecting the appropriates  layer have been proposed to enhance 

sensor sensitivity. For example, the addition of metamaterials to the sensor structure 

have been investigated by many authors (El-Khozondar  et al., 2015a; 2015b; 2014; 

2012a; 2012b; 2012e; 2011; 2008a; 2008b; 2008; 2006)  

Shabat et al., (2007) proposed optical waveguide sensors in which one or both of the 

surrounding media have an intensity dependent refractive index El-Khozondar, Rifa 

El-Khozondar et al., 2007 have studied the influence of temperature stress of the 

thermal sensitivity effective refractive index for asymmetrical nonlinear optical 

waveguides. It is found that the thermal sensitivity of the sensor can be controlled by 

temperature stresses which can be controlled by carefully picking the materials and 

loading methods. Wang et al.(2008) have studied the coupling surface plasmons in 

monolayer graphene sheet array and proved that the coupling of surface plasmons in 

the individual graphene sheet results in a reduction of the modal wavelength of the 

surface plasmons in comparison with that of a single graphene sheet The optical 

coupling of Plasmon waves between two graphene sheets sandwiched in symmetric 

surrounding dielectrics has been investigated for graphene-based high-speed and 

ultra-compact optoelectric devices (Wang, et al., 2012). Recently, Hamada et 

al.(2015) have studied the Plasmon characteristics in multilayer graphene film 

sandwiched by anisotropic dielectric and water cover. It is found that sensitivity of 

the multilayer structure containing graphene have a higher values by tuning some 

physical parameters as graphene thickness and the operating frequency.  
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Chapter Three 

Three-Layers Planar Waveguide Sensor 

Containing Graphene (TE-Mode) 

    In this chapter, three-layer slab waveguide structure is considered for sensing 

applications. Surface charge is assumed to be at the graphene interface. We 

concentrate on TE-polarized light only in this calculation. The dispersion relation is 

derived and the sensitivity is calculated, analyzed and discussed. 

3.1 Structure Analysis 

     In this section, the proposed structure consists of three layers where graphene thin 

layer is sandwiched between dielectric medium with permittivity ε2 and air with 

permittivity ε3 and nonlinear substrate. The permittivity function of the nonlinear 

substrate depends on the intensity of the light and it is written as: 

                                               
2

,
1 l y

E                                                      (3.1) 

The thickness of a thin layer graphene is tg = 0.35 nm between the dielectric layer 

and the air cladding.  The tg value can be considered  too small so tg→0 limit.  

 

 

 Graphene layer 

                                        

                 d                                                                                               

                                        

                           

Figure (3.1):  A schematic of a three-layer slab waveguide sensor including 

graphene material.  
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It can be assumed the thickness of the conducting graphene layer is infinitesimally 

thin with constant conductivity . 

The proposed waveguide sensor has been investigated to find the sensitivity which 

can be tuned by changing variables such as the waveguide thickness and other 

physical parameters. 

 

3.2 Dispersion Equations: 

     The electromagnetic responses of grapheme dielectric are numerically 

simulated .based on the model in Figure.3.1 the wave propagates in the Z-direction. 

In classical electromagnetic description, the TE wave is perpendicular to the plane of 

incidence (xz), and guiding surfaces are parallel to the yx plane possesses the 

electromagnetic field components E = {0, E y, 0}, and H= { H x,0 , Hz }. 

As in chapter 1, the wave propagates in the Z-direction which has the following 

from: 

     
( )

0( , ) ( ) ,i t zE r t E x e                                                                                      (3.2) 

   
( )

0( , ) ( ) ,i t zH r t H x e    (3.3) 

 Rewriting Maxwell's equations in three dimensions,  
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i H i j H k
x y z

E

  
  

   
  

                             (3.4) 

and 

                         0 (0 0 ) ,

0

i y y

x z

i j k

i i E j k E
x y z

H H

   
  

   
  

                            (3.5) 
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From Eqn. (3.2), (where i
z




 


) and using Eq. (3.4) we get: 

                                     
0

( ) ( ),x y

i

H x E x


 
                                              (3.6) 

                                 
0

1
( ) ( ),z y

i

d
H x E x

i dx 
                                           (3.7) 

where, 0 2 3 1      

The y-component of Eq. (3.5) is given by 

             z
x i y y

H
i H i E E

x
   


   


                                                    (3.8) 

For a linear medium (dielectric (2), air (3)) using Eq. (1.62), we have 

    
2

2 2

02
( ) ( ) ( ) 0;y i i yE x k N E x

x
 


  


                 ( 2,3).i                       (3.9) 

where 
2

2

2

0

N
k


 is the effective wave index of the waveguide,  0 0 0k    , is the 

wave number in vacuum.  

The  filed equation for nonlinear medium (1) is similar to Eq.(3.9):  

2
3

2 2 2

0 02
( ) ( ) ( ) 0;y i i y yE x k N E x k E

x
  


   


        ( 1).i                          (3.10) 

where, 

                                           
2

1 0 1k N                                                         (3.11) 

Both sides of Eq. (3.10) are first multiplied by 2 
( )ydE x

dx
and then integrated with 

respect to x. The result is
 

   

 

                                                    
(3.12)
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Let us determine the integration constant  . Since Eq. (3.12) has to hold regardless 

of the value of x, the location of the boundary condition is chosen to be at the 

location of the peak. The condition is 

                                               

0( )
0,

ydE x

dx
                                                 (3.13) 

Setting  =0  in Eq.(3.12), we get the of 
yE to be, 
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                                        (3.14) 

Let the desired type of solution ( )yE x have a peak value of 
2

1

2

0

1
( )
2

k





at the 

extremum. At such a location, Eq.( 3.12) becomes 
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(3.16) 

Now, using the following integral from a table of integrals, 
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the integral of Eq. (3.20) becomes
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Thus, the final result is 

                                

1
1 0

2

( ) sec ( ( ))
1

( )
2

yE x h x x
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
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

                               (3.20) 

0x  is a constant of integration at which power is maximum 

Eq. (3.9) and Eq. (3.10) can be solved to obtain cladding and film fields as follows: 

 

    )  
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√
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     (3.21)  

 

Where A, B and C are constants giving the wave amplitudes in the four layers.  They 

can be determined from the boundary conditions. The parameters 2 3and   are given 

by the forms:  

 

         

                                   
2

2 0 2k N  
                                              

  (3.22) 

and 

                                           
2 2

3 0 3k N n                                                    (3.23) 

The    in the three layers of the waveguide structure is obtained by substituting Eq. 

(3.21) into Eq.(3.7)  and given by 
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Applying the boundary conditions: 

1) At 0x   

                                      
(1) (2)

y yE E                                                           (3.25) 

 

when substituting in Eq.(3.24) we get: 

 

                           1
1 0

0

2
sec ( )C h x




 
                                                   (3.26)   

                                      

when substituting in Eq.(3.21). we get: 

 

                                (1) (2) 0z zH H                                                          (3.27) 

                                                                                           

                 
  

    
   

  

    
√

 

 
 
  

  
              ))              ))           (3.28) 

 

2) At  x d  

 

                                   
(3) (2)

y yE E
                                                             

(3.29) 

 

when substituting in Eq.(3.21) we get: 

 

        √
 

 
 
  

  
            )           )  

  

  
           )         )              (3.30) 

 

                                 
(3) (2) (3)

z z yH H E                                                  (3.31)  

 

when substituting in Eq.(3.15) we get: 
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3.3 Approximation Solution 

  The dispersion equation can be written as: 
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where, 
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The Eq. (3.35) can be rewritten as: 
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(3.39) 



 

34  

where,
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(3.40) 
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3.4 Sensitivity 

The sensitivity of the evanescent field sensor Eq.(2.4) is obtained from the dispersion 

relation.
                                             

 

To find a mathematical expression for S, we differeniate the dispersion Eq. (2.4) with 

respect to n3 as: 
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Differentiating Eq. (3.40) with respect to n3 become: 
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Differentiating Eqn. (3.41) with respect to n3 become:                         
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Differentiating Eqn.(3.36)
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where, 
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Differentiating Eq. (3.38) 
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After some mathematical manipulations, we get: 
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3.5 Results and Discussion 

      The dispersion relation given by Eq. (3.35) is solved numerically for the effective 

index N. This value is then substituted in Eq. (3.65) to find the sensitivity.  

All the media are considered to be nonmagnetic, 0 2 3 1     so we obtaine,

2

2

E
r


 , which is a nonlinear factor .  

Figure (3.2) shows the real effective index (N) from Eq. (3.34) for TE0 as a function 

of angular frequency at different values of d (the thickness of dielectric layer). The 

graphene conductivity 5

0 6.085 10 siemens   , the nonlinear factor (r) is fixed to 0.1, 

and the frequency is taken in Terahertz range. As the thickness of the dielectric layer 

increases, the real effective index (N) decreases. Additionally, increasing the angular 

frequency, the real part of the effective index (N) increases. 
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         Figure (3.2): The effective index (N) of TE0 versus from angular frequency 

for different thickness d (m) at nonlinear factor r=0.1, and conductivity of 

grapheme, 5

0 6.085 10 .siemens    
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The real effective index (N) for TE1 versus angular frequency at different values 

of thickness is plotted in Figure. In the calculating  The graphene conductivity

5

0 6.085 10 .siemens    The nonlinear factor (r) is fixed to 0.1, and the angular 

frequency is taken in Terahertz. In Figure(3.3), it is noticeable that N depend on 

d values  As the thickness of the dielectric layer increases, the real effective 

index (N) also increases. Moreover, increasing the frequency, the real part of the 

effective index (N) increases  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

            Figure (3.3): The effective index (N) of TE1 versus from as function of 

angular frequency for different values of d, a nonlinear factor r=0.1, and 

conductivity of grapheme,
 

5

0 6.085 10 .siemens    
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. 
  Figure (3.4) illustrates the relation between the effective index (N) of the 

TE0 mode at the thickness d=280×10
-8

(m) for different values of  

nonlinear factor r. It can be seen that the real effective index (N) gets 

higher with inecreasing nonlinear factor. It can be seen that from Figer 

(3.4) that the real effective index (N) starts its values from: 1.65 to 1.681 

for the values of r versuse of r varies from  0.1 to  0.5. The conductivity of 

graphene 7

0 6.085 10 siemens   . 

 

 

 

  

          Figure (3.4): The effective index (N) for TE0 versus angular frequency at 

thickness dielectric layer, d=280×10
-8

(m) for different r, mode order at m=0, 

and conductivity of grapheme, 7

0 6.085 10 .siemens     
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Figure (3.5) displays effective index of the proposed waveguide structure versus 

frequency for fundamental mode TE0 at different values of r (positive and 

negative) the negative r is a little increasing effective index from positive r ,for 

fixed d=250×10
-8

(m) and conductivity of graphene 7

0 6.085 10 siemens   . 

      

 

      Figure (3.5): The effective index (N) for TE0 against the frequency for thickness 

dielectric layer, d=280×10
-8

(m) for different r, mode order at m=0, and conductivity 

of graphene 7

0 6.085 10 siemens   . 
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Figure (3.6) shows the effect of changing mode m (0, 1) on the effective index 

(N) versus frequency. For m=1 the effective index has higher values than for   

m=0. For m=1, the values of N is hardly change. In the calculation, the values 

of d, r and  kept constants. They are assumed to have the following values: 

d=250×10
-8

(m), 7

0 6.085 10 siemens   , and r=0.1. 

 

 

   Figure (3.6): The effective index (N) versus the frequency thickness dielectric 

layer, d=250×10
-8

(m) for different m mode order at r=0.1, and 

7

0 6.085 10 siemens   .  

 

 

 

 

 



 

43  

 

Results and discussions of sensitivity 

   The sensitivity versus the real part of N is plotted in Figure (3.7) for different 

nonlinear factor, at layer thickness, d=650×10
-8

(m) for TE1 and

6

0 6.085 10 siemens   . 

   It is clear from Figure (3.7) that the sensitivity of the structure increasing with the 

nonlinear factor. The sensitivity of the structure increasing to reach a peak then 

values decreases as the real part of N increases. Upon plotting  

 

 

   Figure (3.7): The real part of the sensitivity versus the real effective index (N) for   

different values of r at thickness of dielectric layer, d=650×10
-8

(m) for m=1 TE1 and

6

0 6.085 10 siemens   .  
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      Figures (3.8) presents the relationship between the real part of the sensitivity of 

the proposed sensor and effective index (N) for different positive values of the 

nonlinear factor (r) positive. It is clear from Figures (3.8), that an increase of the 

effective index (N) and decrease of nonlinear factor (r), would result in an increasing 

of the peak. The sensitivity value cut off is at the same value of effective index (N) 

and peak at the some value of effective index (N) for the different values of the 

nonlinear factor(r). 

 

 

   Figure (3.8): The real part of the sensitivity versus the real effective index (N) for   

different values of r at thickness of dielectric layer, d=250×10
-8

(m) for m=1 TE1 and

7

0 6.085 10 siemens   .  
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      Figures (3.9) illustrates the relationship between the real part of the sensitivity of 

the proposed sensor and effective index (N) for different values of the negative 

nonlinear factor (r). It is clear from Figures (3.9) that an increase in both the effective 

index (N) and nonlinear factor (r), would result in an increasing value of the peak.  

 

 

   Figure (3.9): The real part of the sensitivity versus the real effective index (N) for   

different values of -r at thickness of dielectric layer, d=250×10
-8

(m) for m=1 TE1 and

7

0 6.085 10 siemens   .  
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     Figure (3.10): The real part of the sensitivity versus the frequency ( ) for 

different values of the thickness of the dielectric layer, r=0.5, m=1 and 

7

0 6.085 10 siemens   .     

   It can be seen from Figure (3.10) that the sensitivity increases with increasing the 

angular frequency. Moreover, the sensitivity is highest at d=250×10
-8

(m) and lowest 

at d=650×10
-8

(m)and at d=750×10
-8

(m) between them.  

      A comparison between TE guided modes is carried out in Figures (3.11) and 

(3.12) where the real part of the sensitivity of the proposed sensor is plotted against 

nonlinear factor. We found that when  m=0 , d=650×10
-8

(m) produces given 

negative value however when m=1,d=650×10
-8

(m) gives positive while for 

d=250×10
-8

(m) and 750×10
-8

(m),we get negatives values when m=0 and positves 

values when m=1. 
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      Figure (3.11): The real part of the sensitivity versus then nonlinear factor (r) for 

different values of the thickness of the dielectric layer (d), m=0,  =1.756×10
15

(Hz) 

and 7

0 6.085 10 siemens   .     

 

    Figure (3.12): The real part of the sensitivity versus then nonlinear factor (r) for 

different values of the thickness of the dielectric layer (d), m=1,  =1.756×10
15

(Hz)

7

0 6.085 10 siemens   .     
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     Figures (3.13), (3.14) and (3.15) exhibit the real part of the sensitivity of the 

proposed sensor versus the frequency for different values of the conductivity of 

graphene. It can be seen from these Figures that the sensitivity increases to peak then 

decreases with increasing the frequency. In addition, the highest value of the 

sensitivity is obtained when the value of the conductivity of grapheme,

7

0 6.085 10 siemens   . 

 

  Figure (3.13): The real part of the sensitivity versus the frequency ( ) for values 

of d=250×10
-8

(m), r=0.5, m=0 and 5

0 6.085 10 siemens   .     

 

 

 



 

49  

 

   Figure (3.14): The real part of the sensitivity versus the frequency ( ) for values 

of d=250×10
-8

(m), r=0.5, m=0, 6

0 6.085 10 siemens   .     

 

  Figure (3.15): The real part of the sensitivity versus the frequency ( ) for values 

of d=250×10
-8

 (m), r=0.5, m=0 and 7

0 6.085 10 siemens   .     
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Chapter 4 

Conclusion 
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Conclusion 

In  this thesis, the main purpose is to study a structure of optical  waveguide sensor, 

three layers waveguide sensor for sensing at various physical parameters. We 

analyses three layers waveguide sensor when the propagation of TE- polarized waves 

in a slab waveguide structure support with nonlinear layer substrate. One of the 

layers is considered as an infinitesimally thin of graphene material.  

Our results are important for a better understanding of Graphene of TE- polarized 

waves with nonlinear layer, which are useful to design the various graphene-bases 

optoelectronic devices. 

In conclusion, we have: 

 The real part of the effective index Re(N), versus as a function of angular 

frequency at different values of d (the thickness of dielectric layer). Re(N) 

increases with increasing the value of angular frequency and decreasing d at 

TE0 . 

 Re (N) increases with increasing the mode order and gets more higher values 

with TE1 mode more than TE0. 

 The relation between the effective index (N) of the TE0 mode at fixed 

thickness d for different nonlinear factor r values increasing should that Re 

(N) with increasing r. 

 The negative r produce a little increasing effective index than positive r. 

 When the real part of the sensitivity of the proposed sensor is plotted versus 

the real effective index (N) for different values of r, the sensitivity increasing 

with  decreasing positive nonlinear factor r and increasing negative nonlinear 

factor r at d=250×10
-8

(m). 

 The sensitivity increases with increasing the angular frequency that the 

sensitivity is maximum at d=250×10
-8

 (m) and minimum at d=650×10
-8

 (m). 

 At different TE0 and TE1 the sign of  sensitivity is changing. 

 The sensitivity has the highest values for conductivity of grapheme,

7

0 6.085 10 siemens   . 
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