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The Normalized Difference Vegetation Index (NDVI) is one of the most widely 

used vegetation indexes to measure and monitor plant growth, vegetation cover, and 

biomass production. A variety of different multispectral satellite systems could provide 

NDVI time series to examine the long-term vegetation process patterns. The effects of 

hurricanes on forested ecosystems can range from very minor defoliation of only a few 

trees to catastrophic blow-down of whole forest. During 2005, two hurricanes hit South 

Florida, Hurricane Katrina on Aug 25th and Hurricane Wilma on Oct. 24th. Several 

studies have evaluated the impact of hurricanes on mangroves, but relatively few have 

analyzed the rates and patterns of recovery from disturbances of mangrove forest and 

other vegetation using a NDVI time series. This thesis uses NDVI time series from 

imagery 2001 to 2010 with an 8-day interval derived from the MODIS Terra to detect 

the recovery rate of mangrove after the two major hurricanes in South Florida. The 

slope obtained from Ordinary Least Square (OLS) is used to analyze the recovery rates 

in this thesis. The slope values from OLS were compared between pre-hurricane and 

post-hurricane periods to show that the most rapid recovery rates were happening in the 

first years after the 2005 hurricanes events. This research showed that it took around 2 

to 3 years for vegetation to recover to normal level in terms of phenological rhythms.
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Chapter 1 

Introduction 

Land cover studies using satellite observations have gained much interest 

especially in recent decades. Remote sensing techniques have provided a range of 

useful methods that quantitatively measure land change process as on a larger scale 

with less expense compared with traditional methods, such as field surveys. Several 

different parameters derived from satellite data have been used in land cover studies 

such as detecting land cover changes, measuring the loss of water and so forth. The 

Normalized Difference Vegetation Index (NDVI) calculated from the red and 

near-infra-red bands, is one of the most widely used vegetation indexes in a variety of 

vegetation studies such as measuring plant growth or extracting phenological metrics. 

The NDVI time series consists of a set of NDVI imagery arranged in 

chronological order. The raw time series may contain noise manifested as different 

levels of fluctuations caused by the cloudiness, data transmission errors, incomplete 

or inconsistent atmospheric correction, or bi-directional effects. To obtain a higher 

quality NDVI time series, a smoothing method – the inverse Fourier Fitting method – 

was developed. This method decomposes phenological information from a time series 

according to their frequencies and reconstructs time series by eliminating 

high-frequency components. The effectiveness of using different harmonics of this 

method has also been examined in this thesis. 

In South Florida, hurricanes are common disturbances to the local ecosystem. 

During 2005, two major hurricanes – Hurricane Katrina on Aug. 25th and Hurricane 

Wilma on Oct. 24th – hit this region and consequently caused damage especially to 

mangroves, one of the most vulnerable vegetation types in this region 
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(www.nhc.noaa.gov). Several studies have evaluated the effects of hurricanes on 

vegetation, but few studies have examined the recovery rates of different types of 

vegetation after hurricanes. 

The purpose of this thesis is to evaluate the use of NDVI time series with an 

8-day interval derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Terra in order to detect the recovery rates of mangroves and other 

vegetation types following Hurricane Katrina and Wilma by using ordinary least 

square (OLS) method. The spatial recovery pattern is examined as well as a search for 

a spatial correlation between land-cover types and recovery rates. The results show 

that the fastest recovery rate occurred within the first year, and after two to three years, 

most of the vegetation returned to its pre-hurricane status. Similar recovery rates had 

been found within similar vegetation types, a finding that supports the efficacy of this 

method. 

After a brief introduction, the literature on related studies is presented in Chapter 

2. This chapter summarizes former landscape studies, NDVI principles, and 

vegetation damage and recovery studies in order to provide a theoretical background 

for the current thesis. The scientific insights gained from landscape studies and 

remotely sensed technologies in recent years are first outlined. This chapter also 

presents principles and theories related to NDVI in order to demonstrate its 

advantages for analyzing the vegetation information and their temporal behavior. 

NDVI data quality is also considered in this thesis. Several different ways of 

decreasing noise in NDVI time series are delineated to find a suitable noise reduction 

method. The properties of MODIS, the source of the NDVI time series, are also 

presented. Information about the study region – mangroves and other vegetation types  
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in the South Florida region – are then shown, as well as information about Hurricane 

Katrina and Wilma, which hit the South Florida region consecutively, approximately 

three months apart.  

Chapter 3 illustrates the data and methodology used in this thesis. The satellite 

data derived from MODIS Terra were processed into a single NDVI time series and 

supplemental data – the mangrove data and the land cover map – are presented. The 

data smoothing method, the inverse Fourier Fitting method, is then introduced and 

applied to smooth this time series using different harmonic numbers. The principle of 

the OLS method and how it will be used for the NDVI time series is explained next. 

To summarize the results from OLS, the results are processed through the 

unsupervised classification method and compared with an existing land cover map. 

Chapter 4 contains a discussion of the results from the previous chapters. The 

effectiveness of different harmonic numbers used to smooth the NDVI time series is 

shown and the efficacy of different numbers are compared using the coefficient of 

determination (r2) and the root mean square error (RMSE). The OLS slope images are 

then illustrated with the information extracted from the whole study area, including 

the mangroves. The comparison between the unsupervised classified slope image of 

the recovery time period with the land-cover map is also displayed to show the spatial 

correlation between land-cover types and recovery rates. The results show that 16 

harmonics produced the best fit and was therefore the most suitable for smoothing the 

NDVI time series analyzed in this thesis. The most intensive recovery time period was 

during the first year after hurricanes. In this study, similar recovery rates are detected 

within different land-cover types, a finding that provides good support for this method. 

These conclusions are drawn in the final chapter (5), as well as discussions for future 

work.



 

Chapter 2 

Literature Review and Study Area 

2.1 Literature Review 

The interest in land cover analysis from local to global scales has attracted 

increasing attention since the late 1990s (Cihlar et al. 2000). Understanding and 

quantifying land changes processes is necessary to ensure a sustainable management 

of natural resources (Turner 1987). Analysis and characterization of land use and 

land-cover change are becoming necessary to understand and predict land-cover 

change processes. Traditional methods, such as field surveys, are labor intensive 

relative to remote sensing, which has emerged as the most useful data source for 

quantitatively measuring land-cover changes at the landscape and smaller scales with 

a relatively low expense (Petit et al. 2001). Through analysis of time series of remote 

sensing data, the dynamics of land-cover change processes may be investigated. 

Moreover, remote sensing has become an important source of information for 

monitoring vegetation conditions and land use or land-cover changes (Chu et al. 

2009).  Vegetation Index (VI) time series derived from satellite images are some of 

the most important sources of information in detecting vegetation conditions as well 

as in monitoring land cover processes.  

The NDVI (Normalized Difference Vegetation Index) is one of the most widely 

used vegetation indices in recent years that measure and monitor plant growth, 

vegetation cover, and biomass production from multi-spectral satellite data. It is 

calculated from a normalized transformation of near-infrared (NIR) and red 

reflectance as follows: 
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NDVI = NIR − RED

NIR + RED  

The principle behind NDVI is that chlorophyll causes considerable absorption of 

incident red light, whereas the spongy mesophyll leaf structure produces considerable 

reflectance from the near-infrared region of the spectrum (Tucker 1979; Giri et al. 

2007; Hasegawa et al. 2009). As a result, high NDVI values will appear with 

vigorously growing healthy vegetation because of the low red-light reflectance and 

high near-infrared reflectance. This relatively simple transformation leads to output 

values ranging from -1.0 to 1.0. NDVI relates linearly to increasing leaf canopy 

density, which indicates increasing amounts of green vegetation. NDVI values near or 

less than zero relate to non-vegetated features like barren surfaces (rock and soil) and 

water, snow, ice, and clouds (USGS, http://ivm.cr.usgs.gov/whatndvi.php). Fig. 2.1 

shows a global NDVI image that depicts the distribution of different land cover types. 

 

 

Fig. 2.1 An example of an NDVI image on September 21-30, 1999 for the global 
scale (From NASA website: 

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/) 

 

 

 

http://ivm.cr.usgs.gov/whatndvi.php
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
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Large physical disturbances, such as fires, tropical cyclones (hurricanes or 

typhoons), tornados, ice storms, volcanic ash and landslides, can have major impacts 

on ecosystem structure and function; that is, such disturbances might induce 

significant changes in land-cover. The NDVI value indicates a level of photosynthetic 

activity despite varied levels of resilience among different vegetation species. 

Significant land-cover changes may result in NDVI value changes in areas affected by 

such disturbances: the comparison of one NDVI image of a period to an NDVI image 

of another period may be used to measure land-cover changes (Cakir et al. 2006). 

Therefore, a lot of studies have used NDVI to detect land-cover changes induced by 

various disturbances. For example, Rogers et al. (2009) examined the impact of 

Hurricane Katrina on Weeks Bay Reserve, Alabama. The images for March 2005 and 

September 2005 were compared. The comparison showed that during this time period, 

the average NDVI values decreased by 49% after landfall. The average NDVI values 

remained 44% lower in April 2006 compared with their values in March 2005 

(Rodgers et al. 2009). Another study used NDVI to monitor the damage of mangroves 

in Phang Nga, Thailand after the 2004 Indian Ocean tsunami (Kamthonkiat et al. 

2011). In van Leeuwen’s 2008 study, phenological metrics – the start and end of the 

season, the base and peak NDVI, and the integrated seasonal NDVI extracted from 

NDVI time-series – were compared between burned and unburned areas to detect 

post-fire vegetation response in USA, Spain, and Israel (van Leeuwen 2008). 

Besides the land-cover changes of the ecosystem induced by disturbances, the 

post-disturbance recovery patterns are also an important aspect of studying land-cover 

processes. It could provide us with a better understanding of vegetation recovery 

mechanisms. Time series data for NDVI may be derived from a variety of 

multispectral satellite systems such as NOAA/AVHRR (Advanced Very High 
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Resolution Radiometer), Terra or Aqua MODIS (Moderate Resolution Imaging 

Spectroradiometer), or SPOT/VEGETATION (SPOT/VGT) with slight differences in 

band ranges (see in Table 2.1) (Vrieling et al. 2011).  

 AVHRR/3 SPOT/VGT MODIS 

Red (nm) 580-680 610-680 620-670 

NIR (nm) 725-1,000 780-890 841-876 

Table 2.1 Spectral characteristics (nm) of the red and NIR bands for different sensors 

 

Among these sensors, the MODIS is a key instrument aboard the Terra (EOS AM) 

and Aqua (EOS PM) satellites. The orbit of Terra around the Earth passes from north 

to south across the equator in the morning, while Aqua passes from the opposite 

direction and crosses over the equator in the afternoon. For every 1 to 2 days, Terra 

MODIS and Aqua MODIS, acquire data in wavelengths from 0.4 µm to 14.4 µm and 

include 36 spectral bands to provide a view of the entire Earth’s surface. MODIS is an 

important instrument in the development of global, interactive Earth system models, 

which support analyses of global changes that help policymakers formulate practical, 

suitable decisions about environmental protection. Patil et al. (2012) used MODIS 

spectral data to report the above ground biomass (AGB) of forests in the southern part 

of Gujarat state in India (Patil et al. 2012). Further, the Enhanced Vegetation Index 

(EVI) time series derived from MODIS was used to identify vulnerable areas in order 

to establish a soil erosion risk map in Tunisia (Kefi et al. 2012). Several different 

studies indicate the efficacy of using MODIS data in examining phenological 

problems. 
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Ideally, NDVI time series should show small changes with respect to a short time 

period, and thus an NDVI temporal profile should be continuous and smooth. 

However, cloud cover variation, data transmission errors, incomplete or inconsistent 

atmospheric correction, and bi-directional effects are all possible factors that result in 

frequent fluctuations in multi-temporal NDVI data sets. The influence of these factors 

has been discussed by several studies, namely that those effects could decrease the 

reliability of results (Los et al. 2000). There are several different preprocessing 

methods used to eliminate noise, including Maximum Value Composite (MVC). MVC 

is applied in order to obtain a higher percentage of clear-sky data, or brightness 

adjustment, such as the partial correlation for Rayleigh scattering (Verhoef et al. 1996; 

Ma et al. 2006; Tucker et al. 2001). However, simple preprocessing methods cannot 

necessarily remove all the influence and the residual noise left in time series and may 

impede further analysis, thus generating erroneous results (Chen et al. 2004). 

Therefore, some scientists have examined several methods for reducing noise levels 

and reconstituting higher-quality NDVI time series, such as the best index slope 

extraction (BISE) method, asymmetric Gaussian function fitting, or Fourier filter. 

Among the different data filtering methods, Fourier filter may be more suitable for 

vegetation recovery after disturbance studies because the method yields a smoother 

time-series than the other methods (Chen et al. 2004).  

The Fourier filter has been applied in a variety of studies. For example, Sellers et 

al. (1994) used a series of adjustments to eliminate the errors in the NDVI continental 

data set caused from scattering, absorption of radiation in the atmosphere, and sensor 

degradation in order to generate global fields of terrestrial biophysical parameters. 

Also, a Fourier wave adjustment was first launched to adjust the problem of outliers 

(Sellers et al. 1994). The Fourier method was also used by Los et al. (2000) to build a 
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global nine-year biophysical land surface dataset using NDVI time series. This study 

found agreement between the estimated and observed data, and thus illustrated the 

effectiveness of this method (Los et al. 2000). 

Various studies have used NDVI time series to detect recovery patterns after 

physical disturbances, especially fires. For example, van Leeuwen (2008) conducted a 

study using MODIS NDVI time series to monitor post-fire recovery in Arizona. 

Phenological metrics, such as the start and end of the season, the base and peak NDVI 

and so on, were extracted from NDVI time series as well. Pre-fire and post-fire trends 

and anomalies from different sites (burned and unburned) were evaluated by 

examining and computing the post-fire seasonal trends in NDVI of the long-term 

seasonal average time-series data. These trends were then assessed through analysis of 

the seasonal differences between average NDVI values for each year. Additionally, 

MODIS time-series NDVI data were summarized for each of the burned and 

referenced sites by calculating the eleven phenological metrics for each year (van 

Leeuwen 2008). In another study Goetz et al. (2006) used AVHRR NDVI time series 

to analyze fire disturbance and forest recovery across Canada and found that the 

anomaly differences, which represent residual variations, illustrated significantly 

reduced NDVI during the time of fire. Comparison between burned and unburned 

sites led to the conclusion that it took less than five years to reach recovery to the 

pre-burn level (Goetz et al. 2006). Further, Kamthonkiat et al. (2011) used NDVI time 

series derived from Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) images to compare areas of mangrove coverage from different 

dates. Then NDVI curves were used to observe recovery patterns after the 2004 

Indian Ocean tsunami in Phang Nga, Thailand (Kamthonkiat et al. 2011). 
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Other studies have used different vegetation indices to detect recovery patterns. 

Wittenberg et al. (2007) used the Enhanced Vegetation Index (EVI) instead of NDVI 

time series to analyze the spatial as well as temporal recovery patterns of vegetation in 

a Mediterranean landscape after the sequences of forest fires. Multivariate analysis of 

variance (MANOVA) was used to analyze the influence of different factor (like 

aspects and climate variables) on post-fire vegetation recovery time period. The 

author concluded that vegetation would recover back to the pre-disturbance level 

within five years following a single fire. Further decrease of EVI values might appear 

after repeated fires, and the detected trend was more pronounced on south-facing 

slopes (SFS) than north-facing slopes (NFS) (Wittenberg et al. 2007). 

 Mangroves are a special type of wetland that consists of medium height trees 

(ranging from 6 m to 30 m) and shrubs growing in coastal habitats in the tropics and 

subtropics areas. The environmental and socioeconomic values of mangroves are well 

known. Mangroves occupy 137,760 km² of coastal areas worldwide (Rocchio, 2010) 

(Fig. 2.2) and provide several important functions that include supporting diverse 

food webs, assisting with water quality improvement, and protecting coastlines 

against tropical storm surges. Mangroves may provide economic values up to 

$200,000–$900,000 US dollars per hectare (Wells 2006) and benefit coastal 

inhabitants directly and indirectly as a source of fuel, medicine and supplementary 

food (Giri et al. 2007). Despite the importance of mangroves, they are among the 

most vulnerable vegetation types affected by disturbances and environmental changes, 

such as those resulting from hurricane and tsunamis. Studies have shown that 

mangroves tend to bear most of the damage from hurricanes and tropical storms (Piou 

et al. 2006; Krauss et al. 2005). For example, Omo-Irabor (2011) built a mangrove 

vulnerability model using satellite images, GIS techniques and spatial multi-criteria  
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analysis (SMCA) in parts of Western Niger Delta, Nigeria (Omo-Irabor et al. 2011). 

Further, Piou (2006) studied the zoning patterns of 41 years for mangrove forests in 

offshore Belize following a catastrophic hurricane (Piou et al. 2006). 

The largest mangrove ecosystem in the western hemisphere is located in 

Everglades National Park within the South Florida region. Everglades National Park 

is not only a large (around 6,100 km2) sub-tropical wetland, but also contains ridges 

with dense vegetation, relatively open sloughs, and tear-shaped tree islands. It is the 

largest subtropical wilderness in the United States. More than 350 species of birds, 

300 species of fresh and saltwater fish, 40 species of mammals, and 50 species of 

reptiles live within Everglades National Park (http://www.nps.gov/ever/index.htm). 

In 2005, the South Florida region was affected by two major hurricanes – 

Hurricane Katrina and Hurricane Wilma. After these two hurricanes, intensive damage 

was observed over a widespread area, especially for the coastal mangrove ecosystems 

in Everglades (See Fig. 2.3). 

 

Fig. 2.3 Hurricane effect in Everglades National Park, comparison of before and after 
(T. J. Smith III, 2007) 
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Many studies have analyzed Hurricane Katrina’s and Hurricane Wilma’s impacts 

on mangrove forests in this region. For example, Doyle et al. (2009) used airborne 

videography to analyze landscape patterns of the hurricanes’ impact as well as wind 

circulation in mangrove forests of the Everglades. Two aerial video transects, 

representing different topographic positions were used to quantify forest damage from 

video frame analysis in relation to prevailing wind force, tree-fall direction, and forest 

height. A hurricane simulation model was applied to reconstruct wind fields 

corresponding to the ground location of each video frame and to correlate observed 

tree-fall and destruction patterns with wind speed and direction. The conclusion from 

this analysis was that the mangrove area suffered whole or partial blow-downs within 

the storm's eye-path and the right-side (fore-wind) quadrants, whereas left-side 

(backwind) sites south of the eye-wall zone incurred moderate canopy reduction and 

defoliation (Doyle et al. 2009). Other studies have analyzed different aspects of the 

hurricanes’ impact on mangrove forests, such as Castaneda-Moya et al. (2011), who 

quantified sediment deposition and nutrient inputs in Florida Coastal Everglades (FCE) 

mangrove forests related to this storm event. The magnitude of fluxes that regulate 

nutrient biogeochemistry in mangrove forests of South Florida were also evaluated 

(Castaneda-Moya et al. 2011).  

Besides mangroves, several different vegetation types within the South Florida 

region also suffered damage from hurricanes. For example, Cushman et al. (2006) 

studied the yields of tomato crops after Hurricane Wilma in order to estimate the wind 

damage on crops in southern Florida (Cushman et al. 2006). Another study examined 

the effect of Hurricane Andrew on fruit crops and concluded that older and taller  
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trees were more severely damaged than younger and shorter trees. Moreover, this 

study also summarized the different responses from different crop species (Campbell 

et al. 1993). 

Despite previous studies that have examined the impact of hurricanes in this 

region, relatively few have analyzed the rates of recovery from these disturbances of 

mangrove forests and other vegetation types by using a time series of NDVI from the 

MODIS Terra satellite. In the current thesis, this gap will be addressed by using the 

smoothed time-series to detect mangrove and other vegetation types’ recovery 

patterns after the major disturbances of Hurricane Katrina and Hurricane Wilma in 

2005 in South Florida, south from Lake Okeechobee. 

To this end, the Ordinary Least Squares (OLS) method will be used in this thesis 

to map recovery trends. The OLS method has been used in different studies. Climate 

data and remote sensing data were used to evaluate alpha diversity estimates through 

this method in tropical rain forests of West Africa and Atlantic Central Africa 

(Parmentier et al. 2011). In another study, OLS regression had been used to examine 

the interdependence between spectral heterogeneity and net primary production (NPP) 

proxies, such as NDVI (Rocchini et al. 2010). This kind of method has also been used 

to detect trends in NDVI. For example, Fuller (1998) used this linear method to detect 

trends in NDVI time series in order to estimate their relation to rangeland and crop 

production in Senegal (Fuller 1998). 

2.2 Study Area 

The South Florida region is defined in this study as the region south of Lake 

Okeechobee (Fig 2.4). This map is created using the NASA Blue Marble: Next 

Generation 500m resolution imagery from ArcGIS 10 base-map 
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(http://earthobservatory.nasa.gov/Features/BlueMarble/). The study area is an 

approximately 64,100 km2 area of land in 16 counties. The land cover of the region is 

diverse and includes not only Everglades, Water Conservation Areas, Big Cypress 

National Park, water bodies such as Lake Okeechobee and Caloosahatchee River but 

also a most highly urbanized area consisting of Palm Beach, Broward, and 

Miami-Dade counties. These counties contain 30 percent of Florida’s residents 

(http://www.census.gov/). 

The South Florida Ecosystem is an important reservoir of landscape, community, 

and species diversity (Brook 1974). The vegetation of South Florida represents a 

mixture of Caribbean, southern temperate, and local influences. As a result of this 

convergence of Caribbean, temperate, and endemic influences, the South Florida 

Ecosystem – comprising the only subtropical ecological communities in the 

continental United States – supports substantial ecological, community, taxonomic, 

and genetic diversity (http://www.fws.gov/).  

All these features make this area an important and unique region to study and 

protect, but Florida is constantly under threat of hurricane disturbance, which could 

cause a lot of damage in this ecosystem. During 2005, two major hurricanes hit this 

South Florida region. On 25 August, 2005, Hurricane Katrina made its first landfall in 

the United States to the east of the Everglades as a category 1 (119-153 km·hr-1) 

hurricane with maximum sustained winds of 130 km, and soon degraded to a tropical 

storm (slower than 118km·hr-1) after crossing Florida. In contrast to Hurricane 

Katrina, Hurricane Wilma approached southwestern Florida from the Gulf of Mexico 

and made landfall on 24 October 2005 with maximum sustained winds of 195 km·hr-1 

(category 3) (178 km·hr-1 - 209 km·hr-1), which was stronger and caused more 

damage than Hurricane Katrina in this region (http://www.nhc.noaa.gov/). The 
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hurricane tracks are shown in Fig. 2.4. Although the damage caused by these two 

hurricanes was irreversible to this unique ecosystem, it made this area a suitable 

example to study hurricane damage on vegetation and subsequent vegetation recovery 

rates. 

 

Fig. 2.4 Satellite imagery from MODIS of study area with tracks of Hurricane Wilma 
and Katrina 

 
There are various land-cover types in this region such as beach dune, coastal 

strand, hardwood hammocks, rock-land pine forests, scrub, wet prairie, mangrove and 

cypress swamps, coastal salt and freshwater marsh, sloughs (Myers et al. 1990; 

(Duever et al. 1986). To better analyze different land-cover types, the classification 

scheme of the Global Land Cover 2000 Project (GLC 2000) 

(http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php), which used the VEGA  
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2000 dataset to create a land-cover map for the whole world, were utilized in this 

thesis; according to this project, there are 16 different land-cover types in the South 

Florida region (Fig. 2.5). 

 

Fig 2.5 Land cover map for study area 
(http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php)



 

Chapter 3 

Data and Methodology 

3.1. Data 

3.1.1 Satellite Data 

In this thesis, NDVI time series was formed by 8-day interval images from 2001 

to 2010, with 46 images for each year derived from MODIS Terra and calculated 

using band 1 (red) and band 2 (NIR). The spatial resolution is 250 m. The MODIS 

8-day images are maximum value composite (MVC) product, which means that for 

every cell in the image, the highest value during each 8-day period, is retained to 

create each image in the series, which reduces the effect of clouds, aerosols and water 

vapor. One image was missing in the time series (22nd in the sequence centered on Jun. 

18th 2001). The missing data was filled by averaging the images before and after the 

missing composite. Fig. 3.1 shows the mean NDVI for South Florida from 2001 to 

2004.  

3.1.2 Mangrove Data 

The mangrove area in South Florida covers approximately 1,600 km2 and is 

distributed mostly in southwestern costal region (Fig. 3.2). In the southeastern part of 

the Everglades, the dominant species is red mangrove, existing in scrub and dwarf 

forms and reaching 2.5 m in height. In the southwest and along fringes of the 

numerous islands in and around Florida Bay, red mangroves occur in a taller form, 

reaching 19 m at maturity in dense stands (Barr et al. 2009). The mangrove mask (Fig 

3.2) was used to extract mangrove slope values.  
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Fig. 3.1 The mean NDVI for South Florida from 2001 to 2004 
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Fig. 3.2 Mangrove mask in South Florida 

(ftp://sfnrc.net) 

 

 

3.2 Data Smoothing 

Although the MODIS 8-day products are MVC processed which helps reduce or 

eliminate clouds from a scene, frequent fluctuations caused by other factors could 

remain. An inverse Fourier de-noise method was used because the Fourier-based 

fitting methods are suitable for all kinds of studies and can result in a smoother curve 

 



21 
 

for further analysis than other methods such as threshold or asymmetric function 

fitting method (Chen et al. 2004). The Fourier transformation is a mathematical 

operation that decomposes a function into different sinusoidal components with 

different frequencies. The procedure of an inverse Fast Fourier transformation was 

applied as follow: first, the phenological information from the time series was 

decomposed into a series of sinusoids of different frequencies according to a Fourier 

transformation; second, proper reconstruction of the phenological signals was 

achieved through the inverse Fourier transformation utilizing different numbers of 

components decomposed from the first step, which is called harmonics as well 

(Jakubauskas et al. 2001). Previous studies have indicated that 50–90% of the 

variability in a time series could be maintained using the first two harmonics when 

utilizing the inverse Fourier transformation, but the first two harmonics can only be 

used to display annual and semi-annual cycles. Consideration of the first four 

harmonics reveals natural phenological cycles (Geerken et al. 2005; Jeganathan et al. 

2010), although these studies utilized this method on a time series one year in 

duration. According to the technical literature, the number of the harmonics should be 

based on the length of the series as well (Page 174, Chapter Earth Trends Modeler, 

Idrisi Taiga Manual book). A value that works well is to include all the inter-annual 

cycles, including the annual and semi-annual cycles, which will double the number of 

years included (Page 174, Chapter Earth Trends Modeler, Idrisi Taiga Manual book). 

In the current thesis, 10 years of data were used, so the harmonic number should not 

be larger than 20. Several different numbers of harmonics – 8, 10, 12, 16, and 20 – 

were used to de-noise the time series in order to illustrate the effects of different 

harmonic numbers, and the data for mangroves were extracted separately from each 

smoothed result by using the mangrove mask previously provided. The several 
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smoothed time series were then compared with the raw data of mangroves 

individually using linear regression to determine the coefficient of determination (r2) 

and the root mean square error (RMSE) in order to find out the best fit for further use. 

3.3 Methodology 

3.3.1 OLS slope analysis 

The OLS was used to estimate the unknown parameters in a linear regression 

model. The relationship can be expressed by a simple linear equation. Suppose the 

data consists of n observations ( yi, xi ) ni=1. Each observation includes a response yi 

and a regressor xi. In a linear regression model, the response variable is a linear 

function of the regressor shown as below, where the b is the slope value and a is the 

intercept value: 

Y= bx + a 

The OLS was used to express the linear relationship between time (the regressor 

variable) and NDVI (the response variable). The linear trend (OLS) function from the 

analysis tab in the Idrisi Taiga’s Earth Trend Modeler is the function that calculates 

the slope coefficient of an OLS regression between the values of each pixel over time 

and a perfectly linear series. The result is an expression of the rate of change over a 

set of time steps. Thus, the analysis expresses the average rate of change per 8 days 

for the length of each input time series. In this way, the slope values could be regarded 

as recovery rates. 

The phenology of vegetation in South Florida can be divided into two parts, the 

dry season from November – May, and the wet season from June - October. At the 

beginning of the wet season, the vegetation starts to grow and the NDVI starts to 

increase, which results in a positive value of the slope (b>0). At the start of the dry 

 

http://en.wikipedia.org/wiki/Statistical_unit
http://en.wikipedia.org/wiki/Linear_regression_model
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season, photosynthetic activity begins to decrease, which results in a negative value of 

the slope (b<0). So for an annual cycle, the average slope value will be around zero 

(b=0). A major disturbance, such as a hurricane, may produce different levels of 

damage to plant canopies ranging from defoliation to complete destruction and 

large-scale mortality. A recovery period is expected during the time that 

photosynthetic activity appears to increase, which leads to a positive b value of the 

slope.  

The NDVI time series is divided into three multi-year periods, pre-hurricane, 

recovery, and post-recovery. Each period covers a whole number of years in order to 

eliminate seasonal variation. In dividing the time series, the pre-hurricane periods 

includes the four years’ NDVI image before Hurricane Wilma (10/31/2001 to 

10/24/2005, 184 images). One-year (10/31/2005 to 10/24/2006, 46 images), two-year 

(10/31/2005 to 10/24/2007, 92 images) and three-year (10/31/2005 to 10/24/2008, 138 

images) time periods after Hurricane Wilma were taken into consideration to examine 

the different rates of recovery within different time spans. The other post-hurricane 

periods (five-year period 10/31/2005 to 10/24/2010, 230 images) were considered 

post-recovery periods accordingly (Fig. 3.3). In this way, the effects from both 

Hurricane Wilma and Hurricane Katrina could be measured within the recovery 

periods. Separation of the time series into different parts could provide a clear 

comparison between pre-hurricane period and post-hurricane period to illustrate the 

recovery rate during the post-hurricane period. Moreover, by examining the different 

time period lengths, such as one year, two years and three years after hurricanes, 

different recovery rates with different time periods should better reveal the recovery 

pattern through time  
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The separated time series parts were processed using the linear model (OLS) 

function respectively to obtain the slope value images and to illustrate the spatial 

distribution of recovery rate. The slope value distribution of the study area was 

extracted to show the trend through time, and the mangroves data was extracted by 

calculating the mean values of all pixels in the mangrove mask shown in Fig. 3.3 to 

analyze the recovery rate for mangroves separately. 

 

 

One Year 
Recoverybefore Hurricane Wilma after One Year Recovery

Four Years Next Four Years

10/31/2001 10/24/2005 10/24/2006 10/24/2010

before Hurricane Wilma
Next Three Years

after Two Years Recovery
Four Years Two Years 

Recovery

One Year 
Recoverybefore Hurricane Wilma after One Year Recovery

Four Years Next Four Years

10/31/2001

10/31/2001 10/24/2005 10/24/2007 10/24/2010

Recovery
before Hurricane Wilma

Three Years 
Recovery

Four Years Next Two Years
after Three Years

10/31/2001 10/24/2005 10/24/2008 10/24/2010

a.

b.

c.
 

 

Fig. 3.3 Different ways NDVI time series were divided (a. one year after Hurricane 
Wilma recovery time period; b. using two years after Hurricane Wilma recovery time 

period; c. using three years after Hurricane Wilma recovery time period) 
 

 

3.3.2 Unsupervised classification 

Unsupervised classification was used to identify spectrally or temporally similar 

clusters in satellite imagery. It enables one to specify parameters, such as vegetation 

indices or band information, which the computer uses to uncover statistical patterns 
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that are inherent in the data. In the current thesis, the spatial patterns of recovery rate 

images were unknown, so the unsupervised classification was considered more 

suitable than a supervised classification. 

The OLS regression slope images were produced as a set of raster images, each 

for one time period accordingly, with different values in each pixel. A layer stack was 

built to incorporate each recovery rate image into a single file, with each layer 

analogous to a different spectral band. The layer stack consisted of three images for 

the three recovery periods and was divided into five classes using ERDAS IMAGINE 

2010. 

3.3.3 Comparison 

The classified image of the three recovery periods was compared with the 

re-classified land-cover map to see if they revealed spatial coherence or general 

qualitative agreement. The classified recovery rate image of the recovery period has a 

different spatial resolution (250 m) than the land-cover map (1000 m), so the recovery 

rate map was re-sampled to 1000m resolution to match the land-cover map. The 

re-sampled classified recovery rate image was then compared with the land-cover 

map, using the matrix function in ERDAS IMAGINE 2010. This function creates a 

cross-tabulation between the land-cover map and the reclassified recovery rate image. 

Each number in the table represents the quantitative agreement between these two 

maps, which shows how many pixels belong to both a certain land-cover type and a 

certain recovery rate class. Using the total number of pixels for each land-cover type, 

percentages were calculated for each recovery rate class.  



 

Chapter 4  

Results 

4.1. Smoothed NDVI Time Series 

The NDVI data of the mangroves was extracted and is shown in Fig. 4.1, 

including the mean value and the standard deviation for the mangrove area. The 

annual cycle showing the seasonal variation can be seen as the single annual peak and 

minimum value within each cycle. The standard deviation is illustrated here as well, 

which shows how much spatial variation exists in each image. In this figure, low 

values frequently appeared with the peak of NDVI, which indicates that the data 

points tend to be very close to the area mean, whereas high standard deviation 

appeared around the bottom values, indicating that the data points are spread out over 

a large range of values.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.1 The mean and standard deviation of NDVI value for mangroves shown in 

 Fig. 3.2 
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The raw NDVI time series data (Fig. 4.1) displayed high-frequency noise, likely 

attributable to residual clouds or other effects, over the whole time series. To 

eliminate the influence of the noise, different numbers of inverse Fourier harmonics (8, 

10, 12, 16 and 20) were applied in order to smooth the raw NDVI time series. The 

different harmonics produced distinct de-noise effects. The plots showing mean NDVI 

of mangroves between smoothed data and raw data are shown in Fig. 4.2. From these 

plots, it can be seen that the method resulted in different smoothed curves. For the 

eight-harmonic result the curve is smoothed, but the annual cycle and seasonal 

variance were not clear in this time series. The fitting level with the raw data also 

seemed low compared to the other numbers of harmonics: it increased commensurate 

with the increase in numbers of harmonics. The results from linear regression between 

the raw data and smoothed data (Table. 4.1) better illustrate the correlation between 

different numbers of harmonics with raw time series. The coefficient of determination 

(r2) and the RMSE were derived from linear regression; the former indicates the level 

of fitting between the raw and smoothed data expressed in NDVI time series while the 

latter reveals the level of difference. The table clearly shows that the result from the 

eight harmonics had the lowest coefficient of determination of 0.11 as well as the 

highest root mean square error of 0.646. The coefficient of determination increased 

commensurate with the number of harmonics up to 16 harmonics (0.51) and then 

decreased with 20 harmonics (0.50). For the root mean square, the smoothed data with 

16 harmonics had the lowest value, indicating less difference between the smoothed 

and raw data than the other fits.  
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Coefficient of determination

r2 
Root mean square error 

(RMSE) 

8 harmonics 0.1126 0.0647 

10 harmonics 0.4757 0.0504 

12 harmonics 0.4951 0.0498 

16 harmonics 0.5125 0.0478 

20 harmonics 0.5067 0.0486 

Table 4.1 Summary of the results of the linear regression 

 

The resultant series smoothed using 16 harmonics were used to calculate the 

OLS slope images in the next step of the analysis. According to some previous studies 

(Geerken et al. 2009; Jeganathan et al. 2010), the most suitable harmonic number for 

the inverse Fourier filter method should be 3 to 5 for an annual time series. Results 

have shown that for multi-year time series, the harmonic number should be increased 

when the length of a time series is longer than one year.  

4.2 OLS Slope Analysis 

The results of Ordinary Least Square (OLS) slope images processed from 

16-harmonic smoothed NDVI time series were a set of continuous images, with a 

unique value for each pixel. Each image showed the slope values, which represent the 

trend of each of the different time segments of the NDVI time series. The results are  
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shown in Fig. 4.3, Fig. 4.4 and Fig. 4.5 with different length of time series to 

represent different recovery periods for the whole study area, along with the 

pre-hurricane image (the same in all the three figures) and the post-recovery images 

for comparison. To better illustrate the results, all the maps’ ranges were standardized 

to a range of -0.003 to 0.003, representing the rate of change in NDVI per 8-day 

period. 

In these figures, the slope image of the period one year after the hurricanes 

displayed more positive values (b>0) (shown in red region) than the other two, which 

indicated a more widespread region of high recovery rate in the whole South Florida 

area (shown in Fig. 4.3). The area of positive values decreased along with the increase 

of the length of the recovery time, which indicates that some regions’ recovery rates 

slowed within two years (shown in Fig. 4.4). Moreover, after three years of Hurricane 

Wilma, the positive value area was only a quite small portion (shown in red portion), 

which indicates that after three years’ recovery, most of the study area had recovered 

to the pre-hurricane levels (shown in Fig. 4.5). To better illustrate these results, the 

frequency distribution for different recovery periods are shown in Fig 4.6 with a class 

width of 0.001 and total range from -0.01 to 0.01 (including 98% of the first-year 

pixels and more than 99% for both two- and three-year time series). 
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Fig. 4.6 Distribution of values for different recovery periods for South Florida region 

 

Fig. 4.6 clearly shows how the kurtosis increased from the one-year recovery 

period to the three-year, whereas the mean of the curve approached zero. At the mean 

time, the skewness of the one-year curve toward positive value shifted toward the left 

with increasing length of the recovery period. These results show that the recovery 

rate was more widespread for the whole study area during the first year after the 

hurricanes, and most regions recovered back to pre-hurricane levels within two years. 

Further, after three years of recovery, almost all the study area had returned to normal 

levels with most b values approaching zero. Only a small portion of regions were still 
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recovering after three years. Expressing the recovery rate as ∆NDVI·yr-1 could make 

the recovery rate more meaningful; in this way, the slope values range for Fig. 4.3, 4.4, 

4.5 would range from -0.138 to -0.138 ∆NDVI·yr-1. 

The mean recovery rates for mangroves using the mask data in Fig 3.2 were 

subtracted separately from those slope images (Fig 4.3, 4.4, 4.5) for each time series, 

and the result are shown in Fig. 4.7. The initial value shows the mean recovery rate of 

the pre-hurricane period, and the middle values shows the average recovery rates for 

mangroves within different lengths of time periods and the last values show the mean 

recovery rates for the remaining post-recovery periods. 

In Fig. 4.7, the mangrove recovery rate for the pre-hurricane period was 0.00248 

∆NDVI·yr-1, which demonstrates that during the pre-hurricane period, there was very 

little change. The first year after Hurricane Wilma showed the highest recovery rate 

(0.0782 ∆NDVI·yr-1), which indicates a high recovery period in mangroves for the 

first year after Hurricane Wilma. The recovery rate dropped to 0.0370 ∆NDVI·yr-1 for 

the time period of two years after Hurricane Wilma, which shows a more moderate 

level of recovery. After three years, the recovery rate (0.018 ∆NDVI·yr-1) was nearly 

zero, illustrating that the recovery was not intensive in this time period. This result 

reveals that for mangroves, the most intensive recovery period occurred during the 

first year after Hurricane Wilma, and the recovery rate decreased for longer recovery 

time series. The total recovery period appears to have lasted two to three years. 
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                                                               (Recovery rate: ∆NDVI/year) 

 

Fig. 4.7 Plot of recovery rate extracted from mangrove mask (shown in Fig. 3.2) for 
three recovery periods 

 

 

4.3 Unsupervised Classification 

The unsupervised classification for the layer stack of three slope images is shown 

in Fig. 4.8. In this figure, the higher-class values indicate higher recovery intensity 

while the lower-class values indicate lower recovery intensity. From the spatial 

distribution shown in Fig. 4.8, the higher-class values appeared mostly along the 

coastline in the southern part of the study area where most of mangroves are, as well 

as the southern part of Lake Okeechobee where is the Everglades Agriculture Area – 

in which the dominant crop type is sugarcane. The highest-class value indicates a high 

recovery rate as well as a long recovery period. Along with mangroves, sugarcane is 
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also one of the most vulnerable vegetation types; it is especially susceptible to strong 

wind force, such as hurricanes, which causes the termination of stalk growth, 

metabolic depletion, and reduced assimilation (Moore et al. 1985). The lower values 

were clustered in Lake Okeechobee; since there is little vegetation in this water body, 

the influence of hurricanes was quite minor. The relationship between recovery rates 

with land-cover types is analyzed below. 

 

Fig. 4.8 Unsupervised classification result for the layer stack of three recovery 
periods with five classes (class 5 indicates the highest recovery rate and class 1 

indicates the lowest) 
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4.4 Comparison 

The spatial association between different land-cover types and recovery rates is 

presented in the matrix (Table 4.2), which shows the percentages of each land-cover 

type in different classes. In this chart, the 100.00% from Broadleaved Evergreen 

Forest – Closed Canopy appeared in Class 5, whereas 53.00% from Broadleaved 

Deciduous Forest appeared in Class 4 and 20.00% in Class 5. Both Broadleaved 

Forests had higher percentages in Class 4 and 5, which showed the high recovery rate 

for these two kinds of land cover, but the Broadleaved Evergreen Forest seems to 

have a higher recovery rate than the Broadleaved Deciduous Forest. Both 

Needleleaved Evergreen Forest – Closed Canopy and Needleleaved Evergreen Forest 

– Open Canopy showed the highest percentage of falling in Class 3 (44.01% of closed 

canopy and 48.48% of open canopy) and showed a moderate recovery rate. The 

highest percentage of Mixed Broadleaved or Needleleaved Forest lies in Class 4 

(38.64%), which is in between the Broadleaved and Needleleaved. Broadleaved 

Evergreen Shrubland and Mixed Broadleaved and Needleleaved Dwarf-Shrubland 

displayed some difference between each other, the former having the highest 

percentage in Class 3 (43.03%) and the latter having the highest percentage in Class 4 

(58.02%). Grassland and Grassland with a Sparse Tree Layer both have a similar 

highest percentage in Class 3. For Croplands, higher percentages were found in Class 

3 (35.92%) and Class 4 (30.88%). For Unconsolidated Material Sparse Vegetation, the 

majority of pixels were found in Class 3 (41.33%) and Class 4 (36.18%). Urban and 

Built-up type showed highest percentage in Class 3 (52.44%), while Consolidated 

Rock Sparse Vegetation mostly appeared in Class 2 (34.24%) and 3 (28.39%). 

Water-body type had its highest percentage in Class 1 (46.75%), which shows a low 

recovery rate for this land-cover type as expected. Herbaceous Wetlands had the 
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highest percentage in Class 3 (40.26%) and second highest in Class 2 (34.70%). 

Mangroves showed its higher percentages in Class 4 (32.67%) and Class 5 (30.89%). 

From the results, some patterns could be found among different land-cover types. The 

Broadleaved forest had a higher recovery rate than the Needleleaved forest, and the 

forest land-cover types in total had higher rates than the shrubland and grassland 

land-cover types. Similarities could be found in the association between land-cover 

types and recovery rates with similar land-cover types (i.e., between Broadleaved 

Evergreen Forest and Broadleaved Deciduous Forest and Needleleaved Evergreen 

Forest with either open or closed canopy as well as Grassland), which supports this 

method. In the current thesis, some different land-cover types may share a similar 

recovery rate with others (i.e., between Needleleaved Evergreen Forest and 

Broadleaved Evergreen Shrubland, etc.), demonstrating that the recovery rate may not 

be a good parameter by which to classify land-cover types. 
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Chapter 5  

Discussion and Conclusions 

Large physical disturbances like hurricanes will cause different levels of damage 

in different vegetation types. In 2005, two hurricanes – Hurricane Katrina and 

Hurricane Wilma hit the South Florida region consecutively and induced significant 

damage on both built structures and the natural environment (especially vegetation). 

Since the two hurricanes occurred within a markedly short period, their effects might 

not be easily separated. A possible solution might be using the time period in between 

the two hurricanes to compare changes after each. In the South Florida region, 

Hurricane Katrina first made landfall as a hurricane and then degraded into a tropical 

storm (slower than 120 km·hr-1) while crossing Florida. In contrast, Hurricane Wilma 

was reached category 3 (178km·hr-1 – 209km·hr-1), which was stronger and caused 

more damage than Hurricane Katrina in the study region (www.nhc.noaa.gov).  

Wind damage, storm surges, and sediment deposition are the three main ways 

that hurricanes affect vegetation (Smith et al. 2009). The first two factors might cause 

several immediate effects – fallen trees, broken stems, sediment deposition and soil 

compaction – and can result in tree mortality and the inability of seedling to grow, 

which will have a long-term influence on vegetation recovery rates. Both immediate 

and long-term damage on vegetation would lower the photosynthetic activity, which 

makes the NDVI an effective parameter for evaluating damaged vegetation visible to 

satellite sensors. Despite the many studies that have examined the immediate impact 

of hurricanes on vegetation or recovery rates after fires, relatively few have analyzed 

either long-term effects or the recovery patterns of vegetation. This present thesis 

attempts to fill this research gap by using 8-day interval NDVI time series (2001 to 
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2010) derived from MODIS to study the recovery rates (through OLS slope analysis) 

of vegetation in South Florida following Hurricane Wilma. 

The resulting images that represent the recovery rates for different time periods 

indicate that the values for the pre-hurricane period were near zero (Fig. 4.3, Page 31). 

It also shows higher frequencies of positive values (b>0) for recovery periods (Fig. 

4.3, 4.4, 4.5, Page 31, 32, 33). The distribution of values (Fig. 4.6, Page 34) for the 

three different lengths of recovery periods shows the decrease of frequencies of 

positive values as the recovery period extends. The conclusion could be made that for 

the first year after Hurricane Wilma, this region experienced the most intensive 

recovery rate; this time period also featured the most spread-out recovery region of all 

time periods. After two years’ recovery, most of the region returned to its 

pre-hurricane level; in terms of phenology, the region returned to its pre-hurricane 

level three years later.  

Data on mangroves was extracted for different recovery lengths and is displayed 

separately. Fig. 4.7 (Page 36) shows a recovery pattern with an intensive recovery rate 

during the first year after the hurricanes. This result not only demonstrates the high 

recovery rate and indicates severe damage to the mangroves after Hurricane Wilma, it 

agrees with the vulnerability mentioned in previous studies (Omo-Irabor et al. 2011; 

Rodgers, Murrah, and Cooke 2009; Giri et al. 2007). The recovery rate of the period 

two years after hurricanes was still higher than the pre-hurricane level, and after three 

years, the mangroves were almost back to normal in terms of phenological behavior. 

This result indicates that the recovery pattern for mangroves after hurricanes might be 

different than after fires, since van Leeuwen (2008) concluded that, in terms of 

phenological behavior, the recovery of mangroves needs less than five years. 
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Compared with previous vegetation recovery studies, the OLS method presented 

in the current thesis provided a robust way to detect the recovery rates and patterns. 

First, this method is simple and easily understood, and by extracting recovery slope 

values for each pixel, information is more detailed than a grouped region with 

different pixels, which was used by van Leeuen (2008). Second, by using this method, 

the seasonal variance could be eliminated, which could also decrease the effect from 

inter-annual variance that may appear when using phenological metrics to study 

recovery rates (van Leeuwen 2008). Overall, using NDVI time series to detect 

vegetation recovery patterns through OLS slope analysis appears to provide a reliable 

tool for vegetation recovery studies. One of the limitations of this method appeared 

when using the linear function to simulate the recovery pattern of vegetation. That is 

because the natural pattern for vegetation recovery might shift from an initial high 

intensive to a subsequently lower intensity. In this sense, other functions, especially 

the exponential function, might better fit recovery rate trend. Future work could be 

performed using other functions to imitate the recovery patterns. 

The NDVI time series derived from MODIS Terra satellite contain noise, most 

likely from sub-pixel clouds, incomplete or inconsistent atmospheric correction 

bi-directional effects and calibration issues. Although the MODIS 8-day images are 

MVC product, noise caused by other factors could remain in the time series. To obtain 

higher quality data, the inverse Fourier Fitting method was used to de-noise the NDVI 

time series in order to obtain a smoothed time series. Previous studies agreed that 

50% to 90% variability could be captured in the first two harmonics, and three to five 

harmonics could maintain the phenological cycle for a one-year length time series. In 

the present thesis, the results of the correlation analysis showed that the best 

coefficient of determination (r2) between NDVI data and smoothed series was found 
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when 16 harmonics was used. This indicates that an inverse-FFT that utilizes 16 

harmonics is most suitable for extracting signals from noise in a ten-year NDVI time 

series. Qualitative evidence (Table 4.1, Page 29) also suggests that smoothing 

approach preserved both annual and seasonal trends. Based on the manual technique 

support from the Idrisi manual as well as the theoretical support from Bloomfield 

(2005) , the suitable harmonics numbers for inverse Fourier fitting method to smooth 

a NDVI time series should depend on the length of the time series and should amount 

to no more than twice the number of years. The results shown in the present thesis are 

consistent with this principle. For further studies using the inverse Fourier fitting 

smoothing method, the length of the time series should be taken into consideration. 

Linear regression could provide an effective way to show the different levels of fitting 

through an examination of the correlation coefficient between the filtered data and the 

original time series. In this way, the most suitable harmonics number to smooth the 

time series could be decided by choosing the best fit. 

Different vegetation types have unique reactions to environmental disturbances, 

and recovery mechanisms that help them return to their pre-disturbance level within a 

certain time period. Trees might have more severe reactions to wind damage and 

storm surges, whereas grassland might be more influenced by long-term effects like 

sediment deposition. For recovery mechanisms, some species might rely on a seed 

banks (e.g., grassland in arid and semiarid ecosystems [Scott et al. 2012]) while other 

species might simply recover through sprouting, even from an uprooted tree (e.g., 

Eastern hemlock [McKee et al. 2007]). The difference between land-cover types could 

result in different recovery rates, a conclusion supported by the present thesis. 
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The relationship between land-cover types and recovery rate was examined by 

using a five-class slope values image (Fig. 4.8, Page 37) with the land-cover map (Fig. 

2.5, Page 17). Table 4.2 (Page 40) indicates the percentage of each land-cover type 

that appears in each class. The results illustrate the relationship between land-cover 

types and recovery rates and show that similar land-cover types had similar recovery 

rates. For example, broadleaved forests had higher recovery rates (Class 4, 5), and the 

needleleaved forest had a similar moderate recovery rate (Class 2, 3, 4) regardless of 

open or closed canopies. Similar rates were also found in grassland and grassland with 

sparse trees.  

These results demonstrate the efficacy of using the OLS slope method to detect 

the recovery patterns through NDVI time series. But since different land-cover types 

might have similar recovery rates, (e.g., needleleaved forest and broadleaved 

evergreen shrubland), the results in the present thesis show that the OLS method 

might not be the most effective way to separate different land-cover types. Further 

analysis using a different classification approach may be warranted. Another 

interesting phenomenon appeared in the relationship between mean and standard 

deviation of NDVI time series extracted from the mangroves data (Fig 4.1, Page 26). 

Low values frequently appeared with the peak of NDVI, which indicates that the data 

points tend to be very close to the mean. High standard deviation appeared near the 

bottom values, indicating that the data points are spread out over a large range of 

values. The peak of NDVI indicates the end of the wet season, during which water 

availability is generally spatially homogeneous; this helps to explain the low variance. 

But during the end of the dry season (the minimum NDVI) when vegetation starts to 

become green, the availability of water varies in different regions; this appears to 

explain the high variance. Future studies could be performed to examine other 
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possible factors (location, species types or cloud cover) that might influence the 

recovery rate for mangroves or other land-cover types. This method could also be 

used with different kinds of disturbances, such as droughts and anthropogenic 

disturbances (e.g., deforestation or desertification). 

Several studies have indicated that the biomass of the canopies was most likely 

still recovering, even though they had already recovered phenologically. Sarmiento et 

al. (2010) studied mangrove biomass recovery in the Everglades after Hurricane 

Wilma by detecting carbon dioxide (CO2). They found that after about four years’ 

recovery the flux of carbon dioxide over the entire year of 2009 had not yet reached 

pre-disturbance values yet (Sarmiento et al. 2010). This result shows that annual 

productivity, which is related to energy and materials exchange, might not be closely 

related to the phenological cycle during post-disturbance recovery. This also suggests 

that this method might be not suitable for productivity studies. 

Other studies have discussed the advantages of using EVI instead of NDVI, 

because the former reduces the adverse effects of atmospheric variability and soil 

background. Moreover, the EVI has improved sensitivity to high biomass regions and 

improved vegetation monitoring capability through the de-coupling of the canopy 

background signal and a reduction in atmospheric influences (Matsushita et al. 2007). 

Although the EVI has its own advantages, the blue band image provided by MODIS 

only has a spatial resolution of 500 m, which significantly reduces the spatial detail of 

EVI time series. As spatial resolution was considered important in order to analyze 

different patterns, MODIS NDVI was chosen in the present thesis. 
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