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Abstract 
     
   
 
  Considerable attention has been devoted to nonlinear waves propagation 

in various waveguide structure due to their applications in photonic-

microwave devices. In the present work, we have investigated 

theoretically, by using the transfer matrix technique, the dispersion 

characteristics of transverse magnetic polarized TM waves propagating in 

a multilayer semiconductor superlattices waveguides which is surrounded 

in one side by nonlinear magnetic cover. The two sublattice uniaxial 

antiferromagnetic crystal is considered as a nonlinear magnetic medium 

where the permeability is treated as a function of the magnetic field. 

Numerical results are demonstrated for a waveguiding system containing 

some number of layers of superlattices. Also we shall show that the effect 

of quasiperiodic layering structure is led to increase the number of bulk 

bands and surface modes. In addition, the new surface modes are shown 

nonreciprocal with respect to propagation direction in the presence of an 

applied magnetic field. An application of optical devices such as 

switching, optical thresholding and optical bistability can be achieved 

throughout this work.    
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صاف     ي أن شرة ف ه المنت ر خطي سية الغي ات الكهرومغناطي الموج
 الموصلات 

  
  

ة         وجه آثير من الاهتمام        ر خطي سية الغي ي   نحو الأمواج الكهرومغناطي  الت
زة              ي الأجه رة ف تنتشر خلال طبقات الألياف الضوئية، وذلك لتطبيقاتها الكثي

  .التي تعمل بالأمواج القصيرة جداً
  

ل ا  ذا العم ي ه ك     ف شتت لتل ة الت ساب معادل ال لح صفوفة الانتق تخدمنا م س
ات ذات  الأمواج التي تنتشر خلال أنصاف الموصلات الم      دة طبق  كونة من ع

درجة توصيل مختلفة ، وهذه الطبقات مجتمعة مغطاة بغطاء  آثافة آهربيه و  
ة                  ى قيم سية عل ة المغناطي ا النفاذي د فيه من طبقة مغناطيسية غير خطية تعتم

ه       المجال المغناطيسي المؤثر، وعليه تكون النفاذيه المغناطيسية       ي قيم ه ف دال
  .المجال المغناطيسي 

  
دة     وق شكل قاع ي ت ات والت ن الطبق ين م دد مع ة لع يم العددي ساب الق ا بح من

واج       البلور، ووجدنا  أن زيادة عدد الطبقات يحدث زيادة مقابلة في آفاءة الأم
شر           اه فهي تنت ى الاتج د عل واج لا تعتم السطحية والحجمية أيضاً، وهذه الأم

  .بنفس القوة في جميع الاتجاهات بين الأسطح المغناطيسية
  
ن      د م صميم العدي ى ت ساعد عل ي ت ات الت دمنا بعض التطبيق ا ق ل بأنن  ونأم

  .الأجهزة الضوئية ذات المزايا والأغراض المختلفة
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Preface 
   

   Optical properties of linear and nonlinear multilayered media have been the subject of 

considerable theoretical and applied interest. We study the surface polariton modes in linear 

superlattice microstructures and the analysis of the optical response of nonlinear multiplayer 

systems such as bilayers and superlattices. These structures play an important role in many 

applications such as multilayer high reflectance optical coatings, multilayer thin films for the 

magneto-optical read-out of magnetically stored information and semiconductor superlattice 

media for optoelectronic devices and optical processing. The plan of this thesis as follows ; 

    

  Chapter one a general theory about the present work . Chapter two describes  the theory of 

nonlinear TM waves propagating along the interface between nonlinear semi-infinite 

magnetic media and linear dielectric media, where we study the solution of Maxwell’s 

equations  to find  the dispersion equation of the surface . we shall Also investigate the 

frequency characteristics of magnetic spatial solitons on the surface of two-sublattice uniaxial 

antiferromagnetic crystal. The study presented in this work suggests that the magnetic surface 

spatial soliton has frequency passband(s) and stopband(s), which are switchable by the power 

because the nonlinear permeability for both power and frequency are magnetic field 

dependent.  

     

  The power level required for the spatial soliton excitation is quite high by calculation. If ω  

is close to  resonance frequency NLC χω ,  becomes frequency dependent and the damping has 

to be taken into account, then the nonlinear permeabilty becomes complex, thus the different 

soliton passband(s) or stopband(s) may occur, since the curve of [ ]NLχRe  has positive slope in 

off- resonance region and has negative slope in resonance region. 

      

   Since NLχ  is insensitive to frequencies compared to the linear permeability )(ωμL  in the 

off-resonance range, we have regarded it as a constant throughout this work. Considering that 

there has been recent progress on artificial enhanced nonlinear nonmagnetic dielectric 

medium at microwave frequencies, there is every reason to expect the magnetic systems, also 
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with a desired enhanced nonlinearity.  The calculation in this work represents a starting point 

for a new area of work in magnetodynamic wave propagation. 

        

   Chapter three will   illustrate an exact theory for the TM polarized nonlinear guided waves 

propagating in a finite periodic multilayered dielectric structure in contact with nonlinear 

dielectric cover and linear dielectric base. By using the transfer matrix, we shall  investigate 

the stationary field distribution , the  nonlinear dispersion curve and the power of the system. 

 

     Chapter four describes the dispersion relations and the power of magnetoplasmons 

propagating in a semi-infinite quasiperiodic superlattice. We will examine a superlattice 

whose unit cells are composed of two different thicknesses of bilayers which are arranged in a 

Fibonacci sequence, specifically we have looked at a unit cell composed of three bilayers- two 

of one thickness separated by a third of a different thickness. We have shown that there exist 

new additional bulk and surface plasmons in the quasiperiodic structure which do not exist in 

the periodic case, and that these surface modes show nonreciprocity in frequency with respect 

to direction of propagation. 

 

    In chapter five, we have discussed the nonlinear waves, propagating in semiconductor 

superlattices covered by a nonlinear cladding. A transfer matrix is used to simplify the 

algebraic equations. We then derive the dispersion equation of the surface and the bulk 

modes. The power of the system in a special case is also calculated. Numerical results have 

shown the effect of the quasiperiodic superlattices  is to increase the number of bulk bands 

and surface modes. In addition dispersion curves for surface and bulk modes are displayed.  
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Chapter 1 
 
                   Nonlinear waves in solid state physics  
 
 
 
   In the magnetostatic limit, a lot of work has been done on magnetic/non-magnetic 

structures. In Ref. [ ]2,1 , Eshbach and Damon obtained the bulk and surface modes in a 

ferromagnetic/non-magnetic interface and a ferromagnetic slab. After that, there were many 

theoretical studies on the spin waves in magnetic/non-magnetic superlattices, using different 

techniques, including transfer matrix formalism and Green function method [ ]4,3 . Some 

interesting nonlinear properties have been discovered and predicted such as the modulation 

instability of  spin waves [ ]5 , the formation of magnetic solitons, three and four magnon  

decays [ ]97 − , and the bistability and multistability  of magnetostatic  waves in periodical 

structures [ ]9 ,…..etc. 

      Although the spectra of linear dipole spin waves (magnetostatic waves) in two sublattice 

uniaxial antiferromagnetic slabs have been calculated and predicted for many years, nonlinear 

wave behavior in antiferromagnetic materials has only recently been studied [ ]10 . The 

nonlinear  susceptibility NLχ  was derived for the first time in the study of the nonlinear 

infrared responses of antiferromagnets [ ]10 . NLχ  was used to explore the power dependent  

transmission of electromagnetic radiation through thin  antiferromagnetic films. 

      

    In Refs. [ ]9,8 ,  Boardman proved  theoretically the existence of  temporal envelope solitons 

in an antiferromagnetic film when the external magnetic field  was applied parallel to the film 

surface , and the calculation indicated the power threshold was about  several milliwatts. 

Wang indicated [ ]6  that in some conditions, in either stable or unstable case, a linearly 

polarized magnetic beam propagating in a bulk antiferromagnet took the form of spatial 

soliton, and the necessary condition for the steady propagation of a nonlinear magnetic plane 

wave is NLχ <0. 
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  The nonlinear phenomena of electromagnetic waves in antiferromagnets are not only 

interesting in itself but also important in connection with the behavior of antiferromagnetic 

devices at infrared frequencies. The antiferromagnetic resonance frequencies and the infrared 

part of electromagnetic wave spectra. These facts make the use of antiferromagnetic media in 

different applications very attractive. 

     Spatial solitons are beams of electromagnetic energy that rely on balancing diffraction and 

nonlinearity to retain their shapes [ ]7 . Although there are at least hundreds of papers dealing 

with the optical spatial solitons in dielectric waveguides, there is a little work on spatial 

solitons in antiferromagnetic materials. In our work we give a report on the frequency 

characteristics of magnetic spatial solitons  on the plane surface of an antiferromagnetic 

crystal . Physically, any possible spatial soliton behavior of an electromagnetic wave in an 

antiferromagnet ought to be ,in principle, similar to the optical spatial soliton case . A major 

difference, of course, is the use of nonlinear permeability, rather than the nonlinear 

permittivity on optical case, and therein lies a major of difficulty and interest in this new area 

.The  distinguishing feature of the magnetic surface spatial solitons reported in this work is 

the existence of the frequency passband(s) and stopband(s) that can be switched into each 

other by varying the power [ ]8  .  

     The frequency band switching effect of the solitons is actually caused by the fact that the 

nonlinear permeability is not only power dependent but also frequency dependent in infrared 

frequency region. In the case of the optical soliton the nonlinear     permittivity is always 

treated as frequency independent since where light frequencies usually have large departures 

from the resonance frequencies of the dielectric materials. It is noted that for frequencies near 

the resonance the dispersive and nonlinear response of the material may become substantial, 

and the damping of the system has to be taken into account. In order to obtain an approximate 

solution without bringing in many complicated expressions, we neglect the damping of the 

material. It certainly leads to some approximations but makes the main key point simpler and 

clearer.    

       An exact theory for the TM polarized nonlinear waves propagating in a finite periodic 

multilayered dielectric structure in contact with nonlinear magnetic cladding is presented in 

Refs. [ ]139 − . By using the transfer matrix technique the stationary field distribution and the 

nonlinear dispersion curve are obtained exactly in the following chapters. 
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Chapter  2 
 
    TM waves between nonlinear medium and dielectric medium  
 
   

2.1 General theory      
     The surface  waveguide structure  to be  considered is shown in Fig. 2.1. The nonlinear 

medium, with the relative dielectric constant 1ε  and nonlinear permeability NLμ , occupies the 

semi- infinite region 0<z  and its plane surface extends to infinite in the zoy  plane .The 

linear medium, with the relative dielectric constant 2ε  and nonlinear permeability 2μ , is the  

substrate which occupying 0>z  region. We begin with the assumption that the crystal is at 

low temperature and the magnetization of each sublattice can be regarded as saturated. We 

define  the x± - directions  to be the directions of the spontaneous magnetizations of the two 

sublattices respectively and parallel to the surface crystal. The net magnetizations of the two 

sublattices  are equal to each other. 

 

      The nonlinear medium assumed in this chapter is linearly isotropic and the waves 

propagate along the x - axis with a wave number k  and angular frequency ω  with  field  

vectors (electric and magnetic fields) :  

 
                             =E

v [ ])(,0),( zEzE zx
)( tkxie ω−                                                                      (2.1)  

and 
                            =H

v
{ o, YH (z),o } )( tkxie ω−                                                                      (2.2) 

 

      The components )(zEx  and )(zEz  are
2
π out of phase so, the transformation  

 
                                         yH    →     yH ,  
 
                                         xE   →      xiE , 
and 
                                         zE    →      zE   
 
 
can be made and we reduce Maxwell’s equations to :  
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                                 yxxx HEkE
z 0ωμ=−
∂
∂ ,                                                                      (2.3) 

  
                       

                                xxxy EH
z

εωε0−=
∂
∂ ,                                                                            (2.4) 

and 
 
                                 zzzyx EHk εωε0−=                                                                               (2.5) 
 
 
 
 
 
 
  
 
 
                   NLμμ =1                                                     medium 1 
                    11 =ε  
 
                                                                   0                                                                       x 
                                                                                                                                    
                   12 =μ                                                          medium 2 
                   εε =2  
                                                                    z 
 
               Fig. 2.1.  Nonlinear cladding in contact with dielectric substrate  
 
 
In the case of nonlinear  medium the permeability can be written as Ref. [ ]13 ,  
 
                                  2

yLNL Hαμμ +=                                                                               (2.6)  
where α  is the nonlinear factor, and Lμ  is the linear part of the permeability. 
 
Accordingly, Maxwell’s equations takes the form: 
 
                                 HiE NL

vv
ωμμ0=×∇                                                                              (2.7) 

and 
                                EiH

vv
10εωμε−=×∇                                                                            (2.8)        

 
 
 By using equations: (2.1) and (2.2) in equation (2.7) and (2.8) we have: 
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                            E
v

×∇ = ( kzE
y

jzE
z

zE
x

izE
y xxzz )())()(()(

∂
∂

−
∂
∂

−
∂
∂

−
∂
∂ ) )( tkxie ω−  

 

                                       = ⎥⎦
⎤

⎢⎣
⎡

∂
∂

+− )()( zE
z

zikE xz  )( tkxie ω−   

 
                                      Hi NL

v
μωμ0=   

where   
                                    =H

v
)(zH y

)( tkxie ω−  
 
Then we get: 

                                 )()()( 0 zHizE
z

zikE yNLxz μωμ−=
∂
∂

−                                                  (2.9) 

 
By the same way H

v
×∇  give: 

 

                                      )()( 10 zEizH
z xy εωε=
∂
∂                                                                (2.10) 

      and                                      
                                      )()( 10 zEzkH zy εωε−=                                                                  (1.11) 
 
Eliminating  xE and zE  from the equations (2.9), (2.10) and (2.11) we have : 
 

                       )()(1)( 02

2

1010

zHizH
zi

zHkik yNLyy μωμ
εωεεωε

−=
∂
∂

−
−

 

 
The above equation can be rearranged to give :  
 

                                     0)()()( 100
22

2

2

=+−
∂
∂ zHzHkzH
z yNLy μεεμω                                (2.12) 

 
which can be written as 

                    0)()()( 1
2
0

2
2

2

=+−
∂
∂ zHkzHkzH
z yNLyy με                                      (2.13) 

 
 Substituting the equation (2.6) into the equation (2.13), yields : 
                                    

                                    0)())(()()( 2
1

2
0

2
2

2

=++−
∂
∂ zHzHkzHkzH
z yyLyy αμε                      (2.14) 

where 

                                      2

2
2
0 c

k ω
=                                                                                        (2.15a) 

and  
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                                    Lkkk με1
2
0

22
1 −=                                                                             (2.15b)   

 
The equation (2.14) can be rewritten as:                         

                             0)())(()( 2
1

2
0

2
12

2

=−−
∂
∂ zHzHkkzH
z yyy αε                                         (2.16)   

 

Multiplying the equation (2.16)  by   )(2 zH
z y∂
∂  and then integrating over z , we have : 

  
 

                              0)()(2)()(2)().(2 3
1

2
0

2
12

2

=
∂
∂

+
∂
∂

−
∂
∂

∂
∂ zHkzH

z
zHkzH

z
zH

z
zH

z yyyyyy αε  

 
the first integration of this equation is : 
 

                                  =−−⎥⎦
⎤

⎢⎣
⎡
∂
∂ )())(

2
1()( 22

1
2
0

2
1

2

zHzHkkzH
z yyy αε  .const                          (2.17) 

 
which can be written as: 

                    )())(
2
1(.)( 22

1
2
0

2
1 zHzHkkconstzH

z yyy αε−+=
∂
∂                                            (2.18) 

 
So the integration of this equation is :  
 

                               
))(cosh(

.2.1)(
01

1

10 zzk
k

k
zH y −
=

αε
                                                      (2.19) 

 
 

To find the electric field components we use the equations (2.4) and (2.5) giving :  

 

                            
))((cosh

))(sinh(2)(
01

2
01

1001

2
1

1 zzk
zzk

k
kzE x −

−
=

αεωεε
                                                (2.20) 

and 

                            
))(cosh(

12)(
011001

2
1

1 zzkk
kzE z −

−=
αεωεε

                                               (2.21) 

 
and from the equations (2.20) and (2.21) we have:  
 

                             )(
))(tanh(

1)( 1
01

1 zE
zzk

zE xz −
=                                                              (2.22) 
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        In the dielectric medium we suggest that the permeability 12 =μ  and the relative 

dielectric function 2ε  is given in the tensor form as: 

 

                                  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

zzxz

yy

xzxx

εε
ε

εε
ε

0
00

0

2                                                                     (2.23)                           

where 
 

                          ⎥
⎦

⎤
⎢
⎣

⎡
−

−== ∞ )(
1 22

2

C

PC
zzxx ωωω

ωωεεε ,                                                        (2.24) 

 

                           
)( 22

2

C

PC
zxxz i

ωωω
ωωεεε
−

=−= ∞ ,                                                           (2.25) 

 
                            0==== yzzyyxxy εεεε ,                                                                (2.26) 
 

                                  ⎥
⎦

⎤
⎢
⎣

⎡
−= ∞ 2

2

1
ω
ωεε P

yy                                                                             (2.27) 

and 

                                    
m
en

p
∞

=
ε

ω
2

2  

where pω  is the plasma frequency.  
After we eliminate the magnetic field from Maxwell’s curl equations we get:  
 

                         E
t

EE
vvv

2

2

00
2 )(

∂
∂

=⋅∇∇−∇ εμε                                                                    (2.28) 

 
The divergence equation  
 
                                        0=⋅∇ D

v
                                                                                     (2.29) 

where                                       
                                      ED

vv
.0εε=                                                                                      (2.30) 

 

is the displacement vector,  does not mean that  0=⋅∇ E
v

 hence the second term on the left 

hand side of equation (2.28) must be remained. 

      
     For TM waves propagating in the −x direction with wave number  k  and frequency  ω    

the solution of the equation (2.28) is :  

 
                                     ),0,( 22 zx EEE =

v ztkxie 2)( αω +−                                                            (2.31) 
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where 2α  is the decay constant and zx EE 22 ,  are the components of the electric field 
 
Substituting the equation (2.31) into the equation (2.28) we get : 
 
 
                                     ))(0)(( 2

2
22

22 kEjiEikE zx α++=∇
v ztkxie 2)( αω +− ,                          (2.32) 

 
 
                                      [ ]zx EikEE 222 α+=⋅∇

v
 ztkxie 2)( αω +−                                              (2.33) 

and 
           
        =⋅∇∇ )( E

v [ ] [ ]{ }kEEikjiEikEik zxzx 2
2
222222

2 )(0)()( ααα ++++ ztkxie 2)( αω +−              (2.34) 
 
in the right hand side of the equation (2.28) we have:  
 
 

                         
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

zzxz

yy

xzxx

εε
ε

εε
ε

0
00

0
                                                               (2.35) 

 
and 

                                       [ ]zx EEiE
t 22

2
2

2

,0,)( ω−=
∂
∂ v

 ztkxie 2)( αω +−                                       (2.36) 

 
from the equations (2.28), (2.32), (2.34) and (2.36)   we have : 
 
                           0)()( 2

2
022

2
0

2
2 =−−+ zxzxxx EkikEk εαεα                                                 (2.37) 

and 
                           0)()( 2

2
0

2
2

2
02 =−+− zxxxxz EkkEkik εεα                                                  (2.38) 

 
if we eliminate   xE2   and  zE2  from the equations (2.37)  and (2.38) we have : 
 

                                   x
xz

xx
z E

kik
kE 22

02

2
0

2
2

2 εα
εα

−
+

=                                                                    (2.39) 

and 

                                   x
xx

zx
z E

kk
kikE 22
0

2

2
02

2 ε
εα

+
−

−=                                                                  (2.40) 

which means that: 

                                  
xx

zx

xz

xx

kk
ikk

kik
k

ε
αε

εα
εα

2
0

2
2

2
0

2
02

2
0

2
2

+
−

=
−
+                                                             (2.41) 

 
 from the equation (2.41) we have: 
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                                          vkk εα 2
0

22
2 −=                                                                          (2.42) 

and                              

                                         
xx

xz
xxv ε

εεε +=                                                                            (2.43) 

 
2.2  The dispersion equation  
   
   To find the dispersion equation we use the continuity of a tangent componental E

v
 and a 

normal componental D
v

 as the boundary conditions between the two mediums as the 
following:  
                                           )()( 21 zEzE xx =                                                                         (2.44) 
and 
                                           )()( 21 zDzD zz =                                                                        (2.45) 
 
From the equation (2.22) at 0=z we have:  
                                   

                                
0

)(
))(tanh(

1)( 1
01

1 =
−

=
z

zE
zk

zE xz                                                        (2.46) 

 
and )(1 zD Z can be found as the following:  
 
                                        1101 ED

vv
εε=  

 
in medium 1  the equation (2.21) gives: 
 
                                   

                                    
))(cosh(

12

)()(

01101

2
1

101

zzkk
k

zEzD zz

−
−=

=

αεωε

ε
                                            (2.47)                

 
zD2  can be found as the following:  

 
                                   

                                   
)49.2(

0
00

0
)48.2()(

12

3

21

2

2202

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

=

εε
ε

εε
ε

εε

i

i
zED ZZ

                        

where: 

                                         ⎥
⎦

⎤
⎢
⎣

⎡
−

+= ∞ 22

2

1 1
ωω

ωεε
C

P ,                                                               (2.50) 

 

                                        
)( 22

2

2 ωωω
ωωεε
−

= ∞
C

P
C ,                                                             (2.51) 
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and 

                                         ⎥
⎦

⎤
⎢
⎣

⎡
−= ∞ 2

2

3 1
ω
ωεε P                                                                        (2.52) 

for simplicity :  
 
                                          ))(,0),(()( 222 zEzEzE zx=

v
                                                       (2.53) 

and 

                                    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
==

)(
0

)(

0
00

0
)()(

2

2

02102

zE

zE
zEzD

z

x

xxxz

yy

xzxx

z

εε
ε

εε
εεε                     (2.54) 

then 
                                    { })()()( 222 zEzEzD zxxxxzz εε +−=                                                   (2.55) 
 
at the point 0=z  we have: 
                    0201 )()( == = ZxZx zEzE                                                                  (2.56) 
 

from the equations (2.20) and (2.53) at the point 0=z  we have : 
 

                         z
x e

zzkk
kzE 2

))(cosh(
12)(

011001

2
1

2
α

αεωεε
⋅

−
−

=                                            (2.57) 

 
and from the equations (2.39) , (2.40) , (2.47) and (2.55) we have: 
 
                              zzzzxxz EEE 1220 )( =+− εεε                                                                    (2.58) 
 
which gives the dispersion relation :  
 

                             
)tanh( 01

1
2
02

2
0

2
2

zkkik
k

xz

xx
xxxz

ε
εα
εαεε −

=⎥
⎦

⎤
⎢
⎣

⎡
−
+

+−                                                 (2.59) 

 
 
2.3  The power flow   
 
The total power is the sum of the power in two media  
 
* In the nonlinear medium : 
 

                                        ∫ ∗×= dzHEP x)(
2
1 vv

                                                                  (2.60) 

where 
                                        =E

v
 ))(,0),(( zEzE zx

)( tkxie ω−                                                                      
and 
                                         =H

v
 (o, yH (z),o) )( tkxie ω−  

where 
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))(cosh(

21)(
01

1

10 zzk
k

k
zH y −
=

αε
                                               (2.61) 

 
 From the solution of Maxwell’s equations we can find zx EE ,  as a function of yH  
 
The right hand side of the equation (2.60) can be rewritten as: 
    

                                        ∫ ∫ ∗∗ −=× dzHEdzHE yzx 2
1)(

2
1 vv

                                                 (2.62) 

 
we want to find just zE  from equation (2.11) as the following: 
 

                                         yz HkE
01εωε

−
=                                                                             (2.63) 

So that the power  becomes: 

                                        ∫= dzHkP y
2

01
1 2 εωε

                                                                     (2.64) 
Using Eq. (2.61) we get: 

                                      ∫
∞

−
=

0
01

22
0

2
10

2
1

1 )((cosh
1 dz

zzkk
kkP

ωαεε
                                           (2.65)                         

 
if we let z = z′  + 0z then the power becomes:  

                                       zd
zkk

kkP
Z

′
′

= ∫
∞

− 0
)(cosh

1

1
22

0
2
10

2
1

1 ωαεε
                                                (2.66) 

 
where the quantity 0z   is the position of maximum power density and when it moves to 
infinity , the power flow reaches the following equation: 
 

                                      ∫
∞

=
′

=
0

2
0

2
10

1

1
22

0
2
10

2
1

1 )(cosh
1

ωαεεωαεε k
kk

zkk
kkP                                   (2.67)  

 
** In  the dielectric medium:   
 

                                    ∫ ∫ ∗∗ −=×= dzHEdzHEp yzx 222
1)(

2
1 vv

                                     (2.68) 

 
From the equation (2.57) we have :  
 
 

                                   
)cosh(

12

011001

2
1

2 zkk
kE x αεωεε

=                                                     (2.69) 
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Then, we want to find zE2 , zH2  from the solution of Maxwell’s equations in the dielectric 

medium 2ε  as the following : 

 

                                          yzxx HEkE
z 2022 ωμ=−
∂
∂ ,                                                     (2.70)  

                                        

                                          xxxy EH
z 202 εωε−=
∂
∂ ,                                                           (2.71) 

 
and 
                                           
                                            zzzyx EHk 202 εωε−=                                                               (2.72a) 
 
From the equation (2.71) we have: 
                                           
                                          ∫−= dzEH xxxy 202 εωε                                                            (2.72b) 
 
where xE2  was given in the equation (2.69), then we write:  
         

                ∫−= dze
zkk

kH z
xxy

2

)cosh(
12

011001

2
1

02
α

αεωεε
εωε                                     (2.72c) 

 
 
By integration, we have: 

                           zxx
y e

zkk
kH 2

)cosh(
12

011021

2
1

2
α

αεαε
ε

⋅−=                                                      (2.73) 

 
 the equation (2.72) gives: 
                                  

                                    y
xx

x
z HkE 2

0
2 εωε

−=                                                                         (2.74a) 

which equivalent to: 
                                   
 

                               zX
z e

zkk
kkE 2

)cosh(
12

011
2
0201

2
1

2
α

αεααωεε
=                                              (2.74b) 

 
 
using the equations (2.73) and (2.74b) in  the equation (2.68) we get: 
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                                    ∫= dzHkp y
xx

x 2
2

0
2 2

1
εωε

                                                                (2.75) 

which becomes: 

                                  dze
zkk

kkP z
xx

xx

x 22

2

01
2
02

2
1

0
2 )cosh(

2

2
1 α

α

ε
α

εωε ∫
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅=                              

 
this integral gives: 

                               
)(cosh

2

2
1

01
22

0
3
20

2
1

1

4
1

2 zkk

kk
P

xxx

αωεε
αε

ε ⎥
⎦

⎤
⎢
⎣

⎡

⋅=
2
1
⋅ ze 22α

0

∞−
                                    (2.76) 

which equivalent to:  

                                   
)(cosh

2

2
1

01
24

0
3
20

2
1

1

4
1

2 zkk

kk
P

xxx

αωεε
αε

ε ⎥
⎦

⎤
⎢
⎣

⎡

⋅=                                                       (2.77) 

The total power now is : 
                                21 PPPtotal +=                                                                                (2.78) 
The numerical results of the equation (2.78) are ulstrated in the Fig. 2.2. where  

,1,1,29.1 1 === LNL μεμ eVP 04075.0,13.13 ==∞ ωε , 31810 −= cmn , eVC 004075.0=ω  and 
22810869.8 −×= Amα  are taken into account. Note that we have three curves corresponding to 

three different values of α  such that the decrease value of  α  the upper curve become. 
  
 

                  Fig. 2.2  Power flow versus wave index for TM surface/guided waves at a single  
interface between a nonlinear medium and a dielectric medium 
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2.4- Frequency characteristics of the magnetic spatial solitons on the surface of an   
       antiferromagnet 
 

     In the absence of an applied Zeeman field, the permeability tensor describing the nonlinear 

response of the crystal to the intense field is a diagonal one. For a TM wave special soliton  

investigated in this work, the permeability is given in a tensor form [ ]6  as: 

                                        
2

)()()( HNLLNLYY

v
ωχωμωμμ +==                                           (2.79) 

where :              

                                       22

2
1)(1

ωω
ωω

ωχμ μ

−
+=+=

C

A
L                                                        (2.80) 

 is linear permeability, ,00MM γμω = 00HA γμω = , EE H0γωμω =  and EAAC ωωωω 222 +=  

which is the resonance frequency of the system, and EA HandHM
vv

,,,0  are saturation  

magnetization , anisotropy and exchange fields of the crystal respectively.  

The dispersion relation can be written in general form as [ ]10  
 

                                                
21

12
01 )tanh(

ε
ε

k
kzk =                                                                 (2.81) 

where 
                                                Lkkk με1

2
0

2
1 −= ,                                                             (2.82) 

 
                                                 vkkk ε20

2
2 −=   ,                                                              (2.83) 

and   

                                                  
xx

xz
xxv ε

εεε
2

+=                                                                     (2.84) 

where 
c

k ω
=0 , k  is the pointing vector , and vεε ,1  represents the dielectric constants of the 

two mediums. 
From equation (2.81) we get:  

                                                   10
21

12 ≤≤
ε
ε

k
k                                                                       (2.85)      

where 
                                                  1)tanh(0 ≤≤ x                                                                 (2.86) 
 
squaring each side of this inequality using the equations (2.82),(2.83) and (2.85) we get: 
                                                                                        
 
                                            Lkkk με1

2
0

22
1 −= ,                                                                    (2.87) 

 
                                           vkkk ε20

22
2 −=  ,                                                                       (2.88) 
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                                           12
2

2
1

2
1

2
2 <
ε
ε

k
k  ,                                                                                 (2.89) 

 

                                          1
)(

)(

1
2
0

22
2

2
0

22
1 <

−
−

L

v

kk
kk

μεε
εε ,                                                                 (2.90) 

and 

                                           2
2

2
1

2
2

2
0

2
1

2
02

εε
μεεε

−
−

< LV kkk                                                               (2.91) 

 
which means that ∞→k  when 21 εε →  actually as ∞→0z  when  1)tanh( 01 →zk  so that 
the cut-off corresponding to a self-focused peak in the field moving out to infinity. 
 
The requirement that 02

1 >k  and 02
2 >k leads to: 

 
                                               vkk ε20

2 >                                                                               (2.92) 
 
which with Eq.(2.91) gives the range of frequency. 
 
Another inequality can be found by eliminating 0z from the dispersion equation and the 
boundary conditions which can be written as: 
        

                                             2
21

2
0

2
2

2
2

2
1

2
1

2
2 2

1
yNL Hkkk εχεεε =−                                                (2.93) 

 
  
If we eliminate 2

1k  and 2
2k  from  the equation (2.93) using the equations (2.87) and (2.88), and 

solving for 2k  we get: 
       

                                 
⎭
⎬
⎫

⎩
⎨
⎧

−−
−

= 2
222

2

1
2
2

2
1

12
2
02

2
1

yNLLv Hkk χεμεε
ε
ε

εε
εε                                         (2.94) 

 
which is the dispersion equation of the system 
 

Since  02
0

2

>
k
k , then equation (2.94) in the case of 12 εε <  gives:  

 

                                   −21με 0
2
1 2

222 <− HNLL χεμε                                                          (2.95a) 

or                               

                                  0
2
1 2

22222 <−− HNLL χεμεμε                                                   (2.95b) 

 
in the case of 12 εε >  
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Since  02

1 >k  and  02 >k   for a surface wave we have :  
 
                                     Lkk με1

2
0

2 >                                                                                   (2.96a) 
                                     Lkk με2

2
0

2 >                                                                                   (2.96b) 

 
2.5- Results Analysis 
 
The  frequency characteristics have  two cases 
 
* The case of     21 εε < : 
 
The equations (2.94) and (2.96a,b) give: 
 

                                           2
22

1

2

2
1 HNLL χμ

ε
εμ −>                                                           (2.97) 

 
the variation range of Lμ  is shown in figure (2.3), in this case Lμ can be either positive or 

negative, and the wave frequency can be either smaller or larger than the resonance frequency 

cω . From the equation (2.97) we have two forms:  

I-  If we assume that  12 =μ  and  1
2
1

1

2
2 −<

ε
εχ HNL  , Then  the equation (2.97) gives: 

 

                                           C

NL

MAC

H
ωω

χ
ε
ε

ωωωω <
−−

−
=′

2
2

1

2

2
11

2                                       (2.98) 

 
Then we have surface special soliton has a frequency passband and the bandwidth of  2ω  is: 
 
 

                                           
2
2

1

2

2

2
11

2)(
HNL

AM
P

χ
ε
ε

ωωω
−−

=Δ                                                  (2.99) 

 
which comes directly from the equation (2.98). 
 

      The  variation of ω′  with  2
22

1 HNLχ   are shown in figure (2.4). The increase of 2
22

1 HNLχ  

reduces the lower frequency limit ω′  and widens the passband.The maximum passband width 

is Cω  as 2
22

1 HNLχ  approaches ⎥
⎦

⎤
⎢
⎣

⎡
−− 2

2

1 21
C

AM

ω
ωω

ε
ε , at which the lower stopband vanishes . 
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     In the limit of 2
22

1 HNLχ 0→ , P)( 2ωΔ =
1

2
2

1

−ε
εωω AM  which is the narrowest passband 

related to 
1

2

ε
ε  . Asmaller difference between 1ε  and 2ε  leads to a wider passband. Increasing 

1

2

ε
ε  will widen the variation range of 2

2HNLχ . Curve 1 varies with 2
2HNLχ  more sharply than 

curve 2 and 3 do. This indicates that the spatial soliton propagating in the structure with a 

smaller value of 
1

2

ε
ε  depends more strongly on the power. When 

sradsrad AM /105.3,/10 1210 ×== ωω .  ,/10895.8 12 sradC ×=ω  2
22

1 HNLχ 5.0=  and 
1

2

ε
ε 2= , 

then the minimum passband is sradP /107.3)( 112 ×=Δω . 

 

II- when  1
2
1

1

22
2 −>

ε
εχ HNL   then the equation (2.97) gives:          

                                                 Cωω <                                                                              (2.100) 
or:  

                                            ω

ε
εχ

ωωωω ′′=
+−

+
>

1
2
1

2

1

22
2

2

HNL

AMC                                                (2.101) 

 
                                 
   So the surface spatial soliton has a low frequency passband and a high-frequency passband . 

The low limit ω ′′  of the high-frequency passband varies with the power and the parameters of 

the materials, while the low-frequency passband is power independent. Between the two 

passbands there is a stopband with a width of 2ω  being: 

 

                                           
1

2
1

2)(

1

22
2

2

+−
=Δ

ε
εχ

ωωω
HNL

AM
S                                                   (2.102) 

      If 2
22

1 HNLχ  5.1,6.0
1

2 ==
ε
ε  we have sradS /1036.8)( 112 ×=Δω , the increase of 

2
2HNLχ  leads to a decrease of ω ′′  and a narrowing of the stopband .As 2

2HNLχ  approaches 

infinite the stopband vanishes. On the contrary, as  2
2HNLχ  becomes smaller then ω ′′  becomes 

larger and finally stops the guided wave with frequency ω  which was originally in the high-

frequency passband . The variation of ω ′′ with 2
2HNLχ  is shown in figure (2.5). It is now quite 
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clear that for a fixed wave frequency the propagation and the cut-off states of the soliton can 

be swiched by varying the power. 

       Figure (2.6) brings the curves of the two cases together for the ratio  5.1
1

2 =
ε
ε . As the 

power increases, 2
22

1 HNLχ  reduces and destroys the lower stopband first, then shrinks the 

upper stopband until the band vanishes finally. When 2
22

1 HNLχ  value is below 1
1

2 −
ε
ε , no 

Cωω >  spatial soliton can exist. 
 
** The case of 21 εε > : 

      From the equations (2.94) and (2.96a,b) we find the necessary condition for the magnetic 

spatial soliton propagation in the case of 21 εε > 0> : 

 

                                              2
22

1

2

2
1 HNLL χμ

ε
εμ −<                                                         (2.103) 

 
    The variation range of Lμ determined by the equation (2.103) is displayed in figure (2.7) . 

Since 21 εε >  , Lμ  is always smaller than one when 12 =μ ,so the soliton frequency must be 

larger than the resonance frequency of the antiferromagnetic medium.  

 
When 1=Lμ  the equation  (2.103)  gives : 
 

                                             
1

2
1

2

1

22
2

2

+−

+
<<

ε
εχ

ωωωωω
HNL

AMC
C =ω ′′′                                     (2.104) 

 
Obviously there is a passband with the width of 2ω  being:       
 

                                          
1

2
1

2)(

1

22
2

2

+−
=Δ

ε
εχ

ωωω
HNL

AM
P                                                   (2.105) 

    

  The variation of the upper frequency limit ω ′′ with 2
2HNLχ  is shown in Fig. 2.8. It is seen 

that the increase of  2
2HNLχ  leads to a narrowing of the passband, which vanish as 2

2HNLχ  

goes to infinite. Therefore a guided spatial soliton with frequency ω  ,which is originally in 

the passband, will stop as 2
2HNLχ   approaches a critical value ⎥

⎦

⎤
⎢
⎣

⎡
−+

−
× 122

1

2
22 ε

ε
ωω
ωω

C

AM  and 
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beyond. In the limit of 2
2HNLχ → P)(,0 2ωΔ ⎥

⎦

⎤
⎢
⎣

⎡
−

×=
21

12
εε

εωω AM , which is the widest 

passband  related to 
1

2

ε
ε . A smaller 

1

2

ε
ε  results in a steeper variation of the passband at small  

5.0
2
1, 2

2
2
2 =HifH NLNL χχ , the passbands P)( 2ωΔ  for =

1

2

ε
ε 0.75,0.5, and 0.25 are 3× 1110  

,2.6 1110×  ,and 111036.2 × rad/s ,respectively. 

 
The total power flux  is [ ]10 : 

                             ∫ ∫ ∗∗ ×+×=+= dxHEdxHEPPP zzNLL )(
2
1)(

2
1

2211                             (2.106) 

 

                            2
2

2
0210

21

122
1

01

02

0
2
10

1

2

1
1

kk
k
kkk

k
k

k
kkP

NLNL ωχεεε
ε
ε

ε
ε

ωχεε
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=                                    (2.107) 

  

  The power flux in figure (2.9) is normalized with  mmwP NL /43.0
2
1

00 ≈= ωεχ . It is quite 

high but since it is inverse of ωχNL  working at higher frequencies requires a smaller NLχ  to 
offset this fact. 
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Fig. 2.3: Frequency dependence of the linear permeability Lμ , showing regions of propagation, in 
the case of ./105.3. 12

21 sradA ×=< ωεε  
 
 
 

Fig. 2.4: Variation of ω′  with ,
2
1 2

2hNLχ  for three different data :
1

2

ε
ε         .75.1:)3(,5.1:)2(,25.1:)1(  

 

                     Fig. 2.5: Variation of ω ′′  with 2
22

1 hNLχ  for the same three data 
1

2

ε
ε  as in Fig. 2.4 
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                     Fig. 2.6: Variation of the passbands with 2
22

1 hNLχ , for 6,4 21 == εε . 

 
                 
 
 

Fig. 2.7: Frequency dependence of the linear permeability, in the case of sradA /105.3, 12
21 ×=> ωεε .  
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Fig. 2.8: Variation of ω ′′′  with ,
2
1 2

2hNLχ  for three different data .25.0:)3(,5.0:)2(,75.0:)1(:
1

2

ε
ε  

 
 

 
 
 

 
 
 
 
 
 

Fig. 2.9: Normalized total power flux 
0p

p  along the z - direction as a function  of  
1

2

ε
ε

:                    

75.0:)2(,625.0:)1( , and for two frequencies, srad /10899.8,10898.8 1212 ××=ω . 
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Chapter 3 

      
     TM Nonlinear electromagnetic waves in multilayer dielectric systems 
 
    3-1   Introduction 
 
     There is at present considerable interest in the study of intrinsically nonlinear effects on 

the propagation of surface and guided electromagnetic waves along the single and multiple 

interfaces of optically nonlinear media [ ]115 − . Recently there have also been intensively 

discussed the properties of linear and nonlinear multilayer systems [ ]13 , e.g., the study of 

surface polariton modes in linear finite and semi-infinite superlattices and the characteristics 

of the optical response of nonlinear multilayer structures [ ]16 . 

     In this communication we investigate the propagation characteristics of TM-polarized 

nonlinear guided waves in finite periodic stratified media in contact with nonlinear dielectric 

cover and linear dielectric base as shown in Fig. 3.1. By using the transfer matrix method, the 

electromagnetic field distribution and the nonlinear dispersion curve are obtained exactly. 

      The nonlinear dielectric cover  is  assumed to be isotropic with a dielectric function given 

by [ ]15  ,2ES αεε += α  is the nonlinear coefficient in the region 0<z . A linear periodic 

stratified medium with N  unit cells consisting of alternating layers of materials 1 and 2 

characterized by dielectric functions 21,εε  and thicknesses 21,dd in the region 

)(0 21 ddNz +<<  and a linear base with dielectric constant cε  in the region Ndz >  where 

21 ddd +=  is the width of the cell.  
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          Nonlinear cover                           NLμ      0=z                                                             x 
                                                             1 
                                                             2 
 dielectric multilayers ),( 21 εε                    1 
                                                             2 
                                                             . 
                                                             . 
                                                             . 
                                                                    Ndz =  
     dielectric base                                    cε  
 
 
 
Fig. 3.1: Nonlinear magnetic cladding lies in the region 0<z  ,dielectric multilayers lies in the region 

Ndz <<0  where 21 ddd +=  and the dielectric cladding lies in the region Ndz >  

 
 
 3.2- Theoretical model  
   
     In this chapter we introduce our system as shown in Fig. 3.1. The TM wave is assumed to 

propagate along the x-axis, i.e., the magnetic field may be written as: 

 In the nonlinear medium  the magnetic field is [ ]16  : 

                            [ ])(cosh
12

00 zzqk
qH

SS

S
y −

⋅⋅=
αε

                                              (3.1) 

where  

                               2
0

2 kkq SS ε−=  

  In the multilayer dielectric system, the magnetic field is  
 

                                          )( 0

2
1 txki

YeHH ωβ −⋅=
v

 

 where 
c

k ω
=0  and β  is the propagation constant 

  The general solution of Maxwell’s equations in the nonlinear periodic stratified structure 

which satisfy the boundary conditions at mdz = where 21 ddd += , as shown in Ref. [ ]24 , 

has the form:  
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[ ] [ ] 110
1

1
110 ,)(sinh)(cosh dmzmdmdzqk

q
admdzqkAH ms

c
my +≤≤−⋅⋅+−−==

ε  (3.2)                     

[ ] [ ] dmzdmddmdzqk
q

AdmdzqkAH s
m

c
my )1(,)(sinh)(cosh 1120

2

2
11201 +≤≤+−−⋅+−−= ++
ε  (3.3)                    

where  
                 s

m
c
m AAnqNmdmzdmd ,,,,1,....,2,1,0,)1( 2

2,12,12,1
2

2,11 =−=−=+≤≤+ εεβ  
are constants . 
 
  In the linear dielectric medium, the magnetic field is   
 
                               )(0 Ndzqk

Ny
CeHH −−=                                                                  (3.4) 

 

where 2
2,1

2 εβ −=cq , NH  is constant which comes directly from the boundary conditions. 

      

 Using the boundary conditions between equation (3.2) and equation (3.3) at two points 

1dmdz +=  and dmz )1( += , with the aid we yield the following : 

    

                                    

⎥
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⎥
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⎢
⎢
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⎢
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⎣

⎡
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⎥
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s
m

c
m

s
m

c
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A

A

T

A

A

1

1

                                                               (3.5) 

 

 

where the transfer matrix T as shown in Ref. [ ]15  is given by: 
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where we used the following : 
 
                                          1.    2,12,102,1 dqk=γ                                                                                        

                                     2.   121 dmdzatEE xx +==                                           (3.7) 

                                     3.   dmzatEE xx )1(12 +==                                          (3.8) 
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                                     4.   121 dmdzatDD zz +==                                           (3.9) 

                                     5.   dmzatDD zz )1(12 +==                                         (3.10) 

                                   6.   1,........,3,2,1,0 −= Nm  

Using the boundary conditions at 0=z  between the equations (3.1) and (3.2) and note 

that  yy H
dz
dH ,  are continuos along z axis we have : 
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and 
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if we let                            
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we have                          
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Using the same way at the point Ndz = we have the following : 
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The eignvalues and the eigenvectors of T  can be found from the equation 

                                      
                               VTV λ=                                                                        (3.16) 

 
where V is the column eigenvectors  and λ  is the eigenvalues of T . 
 
The equation (3.16) becomes : 

 
                                   [ ] 0=⋅− VIT λ                                                                (3.17) 
which has a nontrivial solution if 



  

  

 

29

                                      0=− IT λ                                                                  (3.18)  

The solution of this equation is given in Ref. [ ]12  and the result is 
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To find the eigenvalues we write:  
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the equation (3.16) becomes:  
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the solution of this equation is : 
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We can introduce a column vector  as the linearly independent eigenvectors  ±V  as the 
following : 
 
            



  

  

 

30

                                   −
−

+
+ −=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

VAVA
A

A

s
M

c
N

                                                        (3.25) 

where:                                 
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then we can prove that : 
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By using the equation (3.25) in the equation (3.5), we find the following : 
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when mNm −→  then equation (3.28) becomes : 
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when Nm =  then the equation (3.29) becomes : 
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from the equations (3.30) and (3.14) we have : 
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when we use the values of ±

± VA ,  we find that : 
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3.3-  The power of the system 
   
   The total power is in three systems the first one is nonlinear cover the second is dielectric 

multilayers and the third one is the linear cladding  

 
  In the nonlinear cover:  

The power can be written as 

                                  dzHkp y
S

NL
20

02 ∫ ∞−
=

εωε
                                                  (3.34a) 

and this integral gives 
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S
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εεαω

=                                                            (3.34b)  

 
 In the multilayer dielectric medium: 

   In each layer 1 or 2 the power equation is: 
 
                                 ∫= dzHkp yf

2
2,1

2,10
2,1 2 εωε

                                                   (3.35) 

 
where 2,1yH  can be found from the equations (3.2) and (3.3). The constants in these equations 

comes from the equation (3.28) as the following: 
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From the values of −+ AA ,  and NH we find that: 
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 We can find the power in the multilayers as the following:  
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=
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For simplicity we can use the following:  
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where  i =1 or 2 , now the power in the multilayer system is: 
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  In the dielectric cladding the power is: 
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=
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where  yNH was given in equation (3.4) the result is : 
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The total power becomes: 
                                 
                             cfNLtotal pppp ++=                                                            (3.46) 
 
3.4- Numerical results 
   
      We present our numerical results for the following parameter values 

.513.3,590.3,10,075.0,1,502.3 2121 ======= nnNddnn cs λ  

      Fig. 3.2 shows the dependence of the propagation constant β  on the normalized power 

flow ./ 0pp  The solid lines shows the case ( )i  in which the material with 59.3=n  in contact 

with the nonlinear medium and the dotted lines shows the case ( )ii  in which the medium with 

513.3=n  in contact with nonlinear medium. 

     The unique feature of the zero’th order nonlinear guided wave solutions are the existence 

of wave propagation for >β  max ( 21,nn ) and the local maximum in guided wave power, see 

branches(a) in Fig. 3.2. The self-focusing action of the nonlinear substrate leads to a field 

maximum in that medium and the nonlinear guided wave branches (a) degenerate at high 

powers into single interface surface wave. Self-focusing in the nonlinear substrate also occurs 

for higher order nonlinear guided solutions (branches (b) in Fig. 3.2 ). Note also that the 

values of the local maximum of the power flow corresponding to the branches (a) and the 

values of the absolute maximum of the power flow corresponding to the  branches (b) in Fig. 

3.2 are clearly different in two cases (i) and (ii). 

      Fig. 3.3 shows the dependence of )/)(/( 2
00 εεμα H  on the dimensionless coordinate zk0  

for three values of the propagation constant β  corresponding to the same  value of the 

dimensionless power flow 0/ pp  12≅   and for 590.31 =n , 513.32 =n . For 5414.3=β  the 

electromagnetic field is concentrated in the finite superlattice medium and there exist several 

local maximum localized in the nonlinear self-focusing substrate occurs. 

     In Fig. 3.4 we illustrate the dependence of 2
00 )/( Hεμα  on the dimensionless coordinate 

zk0  for three values of the propagation constant β  corresponding to the same value of 

7/ 0 ≅pp  and for 590.31 =n , 513.32 =n . In this case there are several local field maximum 
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in the superlattice medium and the field minimum closest to the nonlinear substrate moves 

with increasing β  into that medium.  

 
 
 

                       Fig. 3.2: β  vs, 
0p

p   for  =sn 3.502, =cn  1, == 21 dd 0.075 λ , N=10, for two cases                                     

                      * case I : =1n 3.95,  =2n  3.513    * case II : 1n =3.513,  =2n  3.                                                                                            
 
 
 
 

                                                     Fig. 3.3: zkvsH 0
2

0

0 .
εε

μα  for  three values of  β  

 
                                        

                                       Fig. 3.4: zkvsH 0
2

0

0 .
ε
μα  for the same  three values of  β as in  Fig. 3.3. 
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Chapter  4 

Nonlinear TM waves between nonlinear medium and 
superlattices in the long wavelength 

 
4.1-  Introduction 
 
   There has been considerable interest  recently  in  the properties  of  quasiperiodic structures.  

Theoretical investigations have focused on one dimensional Schrodinger equations with two 

values of potentials arranged in a quasiperiodic sequence [ ]17 , and superlattices with two 

thicknesses of films arranged in a quasiperiodic sequence [ ]18 . The quasiperiodicity in the 

potentials or the superlattice layering has been imposed analytically by requiring that these 

parameters follow a Fibonacci sequence [ ]19 , i.e., if a system is constructed of building blocks α  

and β ,then the system will be a sequence of blocks which obeys the recursion relation 

,21 −− += mmm FFF  for integer ,3≥m  with { }α=1F  and { }αβ=2F .To illustrate the procedure , 

then , the next iteration produces { }αβα=3F . Therefore, we see   that  the extended sequence 

will be { }⋅⋅⋅αβααβααβα . 

 

    We investigate the dispersion relations in semi-infinite superlattices in contact with nonlinear 

magnetic cladding [ ]2620 − . The unit cells in the superlattices, are composed of two different 

thicknesses of bilayer minicells arranged in a Fibonacci sequence. We find that there exists 

another spectrum of both bulk and surface modes in the quasiperiodic structure, which is not 

present in the periodic structure. These surface modes become nonreciprocal with respect to the 

direction of propagation in an applied magnetic field. Since the  number and frequency of these  

modes depend upon  the layering of the unit cell, and since the surface modes are nonreciprocal, 

our results could be important to surface-wave-device  applications.    
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4.2- The dispersion equation of the periodic superlattices 
 

     We seek a solution to Maxwell’s equations corresponding to a TM     electromagnetic wave 

propagating along the x -axis in the xz -plane with wave number k  and angular frequency ω.  

The electric and magnetic vectors of the electromagnetic field then take the form. 

                            
                               [ ] )()(,0),( tkxi

zx ezEzEE ω−=
v

 
                                
                                =H

v [ ] )(0),(,0 tkxi
y ezH ω−  

 
     The nonlinear magnetic cladding is assumed to be isotropic with a 

permeability 22
YLLNL HH αμαμμ +=+=  where Lμ is the linear part of the permeability and α  

is the nonlinear coefficient. This expression arises from the expansion of the permeability about 

an applied static field 0H , and terms that could lead to harmonic generation are neglected. Hence, 

H
v

 is an ac magnetic field carried by the TM wave . yH  is real because only stationary, non-

radiating waves will be considered .  

 
 The magnetic field in the nonlinear cladding is given by [ ]16 : 
 
                             

                                     ( )[ ]01

1

10 cosh
21

zzk
k

k
H y −

=
αε

                                              (4.1) 

 
 
 
where k  is  the pointing vector in the −x direction which is the direction between superlattices 

and nonlinear cladding . 

       In Fig. 4.1, we  have the  superlattices ⋅⋅⋅⋅BABA εεεε ,,, as unit cells , each  of them has a 

depth nL  where nBnAn ddL += . Now  we introduce the  solution to multi- layer BA εε ,  in one unit 

cell.  

In the long wave length, static approximation, we can write:  
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                                 0=×∇ E
v

                                                                       (4.2) 
 
     If we make the assumption that only material A  contains free charges and material B  is an 

insulator, then we may write the dielectric functions of the materials as the following: 
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where :              
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In this equation pω  is the plasma frequency, cω is the cyclotron frequency ,

cm
eB
∗  and the  

subscript ∞  refers to the background dielectric constant of the given material and ∗m  is the 

effective mass of the charge carriers . 

     
      The equation (4.2)  allows us to introduce a scalar potential Φ  given by Φ∇−=

vv
E . Using 

this and the relationship, ED
vv

ε= , we find the following: 

 
                                         0=⋅∇ D

v
 

                          

                            Φ
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
Φ

∂
∂

+Φ
∂
∂

=⋅∇ 2

2

32

2

2

2

1 zyx
D εε
v

                                              (4.4) 

 
The potential does not depend on z , then the equation (4.4) becomes : 
 

                               02
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and the solution of this equation is : 
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                              )( 21
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n
zk
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                              )( 21
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n

zk
nBn eBeB δδ −+=Φ LiQtkxi nee ⋅− )( ω                                            (4.7) 

 
where δz is the depth along −z axis and nQ  is the block wave vector. 
 
To find the electric field, we introduce the following equations: 
 
                             Φ−∇=E
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                             ED
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By the same way we have :  
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                                                       NL medium 
                                                                                        z=0                                         x 
                                                           AAd ε,1  
                                                             
                                                          BBd ε,1  
 
                                                             . 
                                                             .                        superlattices  
                                                             . 
                                                    
                                                        AAnd ε,  
 
                                                        BBnd ε,  
 
                                                                                      z          
                                                          
                                       
                                             Fig. 4.1: The geometry of the system 
 
     

 In figure (4.1) we have: BnAn ddL += ,  or αβα nnn LLLL ++= , where L  is the depth of one unit 

cell. 

 
     The potentialΦ  and the displacement vector zD  must be continuous at the boundary, now we 

want to use the boundary conditions at two steps : 

 

The first step: between the last depth of nA  and the beginning depth of nB . 

The second step: between the last depth of nB  and the beginning depth of )1( +nA . 

Then we get the following equations: 
 
                                
                                2121 nn

kdAn
n

kdAn
n BBeAeA +=+ −                                                  (4.19) 

 
                               )()()( 21212121 nnB

kdAn
n

kdAn
n BBeAeA −=−++ − εεεεε                      (4.20) 

 
                                2)1(1)1(21 ++

− +=+ nn
kdBn

n
kdBn

n AAeBeB                                           (4.21) 
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                               )()()( 212)1(121)1(21

kdBn
n

kdBn
nBnn eBeBAA −

++ −=−++ εεεεε                (4.22) 
 
Eliminating 1nB  and 2nB  from the equations (4.19-4.22), as shown in (Appendix A), we can write 
the following result:  
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                                                             (4.23) 

 
where  
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⎢
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22122111

12221121

1
1 4

1

BABABABA

BABABABA

B

eewzeexyeexzeexz

eewzeewyeewzeexy

T
εε

 

 
is the transfer matrix that gives the constants 1+nA  in terms of nA constants  
 
and 
               
                                         12 εεε +−= Bw  
                                         21 εεε −−= Bx  
                                         21 εεε +−= By  
                                         12 εεε ++= Bz  
                                         kdBnB ee =1                                                                    (4.24) 
                                          kdBnB ee −=2  
                                          kdAnA ee =1  
                                         kdAnA ee −=1  
 
In a similar way we can find another transfer matrix 2T , which related the constants 1+nB  to the 
constants nB , as shown in (Appendix B) as the following:  
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                                                              (4.25) 
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where  
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⎥
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RT
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     (4.26) 

 
and 

                                                
))((

1
22

21 zx
R

−−
=

εε
 

 
Now we want to find   T    the transfer matrix between the cells ( 1, +nn ) such  that we have just 

two layers  BA εε ,  in each cell :  

 
                                               12TTT =                                                                  (4.27) 
 
the constants  between the cells ( 1, +nn ) are : 
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                                                               (4.28) 

 
where the transfer matrix  T  gives the dispersion relation :  
 
                                  [ ] )(

2
1)(cos TtrddQ BAn =+                                                      (4.29) 

 
 
 
4.3- The dispersion equation of the surface 
 
   To find the dispersion for surface waves between nonlinear cladding and semi-infinite 

superlattice, we match the boundary conditions at the surface 0=z , then we use the continuity 

of tangent E
v

 and normal D
v

 as the following. 

 
In the nonlinear medium the fields are :  
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                           [ ]
[ ]

)(
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2
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2
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)(sinh21 tkxi

x e
zzk
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k
kE ω

αεωε
−⋅
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⋅⋅⋅−=                                (4.30) 

 
                           zz ED 11 ε=                                                                                    (4.31) 
 

                           [ ]
)(

0110

1

0
1 )(cosh

12 tkxi
z e

zzkk
kkD ω

αεωε
−

−
⋅⋅⋅

−
=                                     (4.32) 

 
In the first layer in medium 2 we have: 
 
                           AAE Φ−∇=

v
                                                                                (4.33) 

 
                          { } iQnLtkxizk

n
zk

nAn eeAeA +−−+=Φ )(
21

ωδδ                                                  (4.34) 
 

                           Ank
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∂
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                                                      (4.35) 

 
                            [ ] )(

21)( QnLtkxizk
n

zk
nxA eeAeAikE +−−+−= ωδδ                                           (4.36) 

 
                            [ ] )(

21
QnLtkxizk

n
zk

nzA eeAeAkE +−−−−= ωδδ                                              (4.37) 
 
At  the point 0=z  the boundary conditions give:  
 
                                       xAxnL EE =                                                                      (4.38) 
 
                                     zAznL DD =                                                                        (4.39) 
 
From the equations (4.38) and (4.39) we can write:  
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0
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                                [ ] ( ) LiQeAA
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k
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0201
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121

−=⋅⋅⋅
αεωε

                              (4.41) 
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                                 [ ]01100

1
0201 cosh

121
00

zkk
keAeA LiQLiQ ⋅⋅⋅=+

αεωε
                           (4.43) 

 
 

                                [ ]
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1

0
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k
k

k
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                                 [ ][ ]1
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1

0110

1

0
02

0 −⋅⋅⋅⋅=
zkk

keA LiQ

αεωε
                               (4.45) 

 
We can use the relation:  
 
                                      〉=〉 n

iQnL
n AeAT                                                               (4.46) 

 
to write the following equations: 
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                                     0112021101

0 AeTATA LiQ=+                                                      (4.48) 
                                    0222022101

0 AeTATA LiQ=+                                                      (4.49) 
 
From equations (4.48) and (4.94) we find 

                                2221
02

01
12

01

02
11 TT

A
AT

A
AT +=+                                                     (4.50) 

If we let  

                                 λ=
01

02

A
A                                                                           (4.51) 

 
then the equation (4.50) gives:  
 
                                      22211211

1 TTTT +=+
λ

λ                                                        (4.52) 

which leads to                                   
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                                    { } 22211211 TTTT λλλ +=+                                                        (4.53) 
 
     The equation (4.53) is the dispersion equation of the surface where  
                                       
                               [ ]011 tanh zkk

k
−=λ                                                                (4.54) 

 
 
4.4- The power for superlattices and nonlinear medium  
       

   The power of the system, where, nn LLL βα == , is the sum of the total power of all powers in 

each layer as the following equations:  

                                        
                                           ∫ ∗×⋅= dzHEP x)(

2
1 vv

                                                     (4.55) 

 
                                         =P ∫ ∗− dzHE yz2

1                                                            (4.56) 
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                                          ∑ ∫=
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0
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                                        dzHkP N
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B

x
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=
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02 εωε
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QnLtkxizk

n
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                                        )(

21 )( QnLtkxizk
n
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                                     ∫= dzHkP BynA
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2
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, 2 εωε

                                                 (4.64)                         

 
To find  the constants  BA,   we write,  
 
                                     21TTT =                                                                           (4.65) 
 
and the vectors comes from the following equation; 
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where the 02,01,2,1 nnA  are constants to be calculated from the boundary conditions as the following: 
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The sB'  constants are coming directly from the sA'  constants as: 
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From the equations (4.66-4.73) we have :  
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To find the power, we can use the following integrals: 
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    so that the total power can be written as:                            
                                   
                                            NBNAnonlineartotal PPPP ++=                                              (4.83) 
 
4.5-  Results and discussions 
 
    In our numerical results, we assume that material A  is doped semiconductor  GaAs, while  

material B  is undoped simiconductor GaAs. For these materials, we use ,13.13=∞ε and the 

doping  concentration is 31810 −= cmn . The plasma frequency is eVp 04075.0=ω , and 

29.1=Lμ . 

       If we label the two different bilayers α  and β , then a unit cell composed of three bilayers 

will be look like αβα . The total thickness of each bilayer will be denoted αd  and βd  

respectively, and we label the thicknesses of the individual films ABA ddd βαα ,,  and Bdβ .  In all of 

what follows, we take 618.1/ =βα dd  ,  BA dd αα 2=  , and  .2 BA dd ββ =  

      For the purpose of comparison, we begin by showing the dispersion curves for the periodic 

superlattice )1( 1 =F . In Fig. 4.2 the bulk bands between  0=LQn   and π=LQn  in this case the 

applied field is zero, and the  equation is )(
2
1)cos( TtrLQn = . 

      In Fig. 4.3 we show the dispersion curves for bulk plasmons in the case .33 =F  Here we take 

the applied magnetic field to be zero and the  equation is )(
2
1)cos( TtrLQn = . The uppermost and 

lowermost bands are extremely narrow, note that the boundaries of the bulk bands are given by 

0=QL , and π=QL .   

     Fig. 4.4 depicts the surface modes for the same superlattice, again without an applied field. 

Both k±  are shown, and  we  note  that all modes are nonreciprocal with respect to propagation 

direction. The surface dispersion equation is given by equation (4.53).         

     Fig. 4.5 shows the dispersion for the surface modes again, but this time with an applied field 

given by 004075.0=Cω eV . 

 Both k±  are shown, and there are several  points of interest.  
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                                              Fig. 4.2: The Computed dispersion curves for bulk modes (F 1 =1)  
 
 
 

                                      Fig. 4.3: The Computed  dispersion curves for bulk modes (F 3 =3) 
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                        Fig. 4.4: The Computed  dispersion curves for surface  modes the field is zero 
 
 
                  
 
 

                            Fig. 4.5: The Computed dispersion curves for surface modes 004075.0=Cω eV   
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Chapter 5 
             
             Polaritons in an n-i-p-i semiconductor superlattice  
                     covered by a nonlinear magnetic cladding 
 
5.1- Introduction 
 
    Recently a number of papers has appeared dealing with the propagation of bulk and surface 

plasmons in semiconductor superlattices of various types. Binary superlattices consisting of 

alternating layers of materials a  and b with or without a two-dimensional electron (hole) gas at 

the interfaces where studied by many authors [ ]2117 − . A particular superlattice structure, the so-

called ipin ,,, superlattices has also been investigated and its particular features discussed [ ]26 . 

     In this chapter, we present a full theory of the bulk and surface-plasmon excitation spectrum 

of a finite superlattice covered by a nonlinear magnetic cladding.  We have included the effects of 

both retardation and an external magnetic field and we have obtained the dispersion relation for 

surface magnetoplasmon polaritons in this structure.  

   Our model is based on a transfer-matrix treatment, already presented earlier, to simplify the 

algebra which is otherwise quite involved. Since the quantization of the electronic states into 

subbands is quite negligible due to our basic assumption that the layer thicknesses are sufficiently 

large, we can describe the properties of the layers by macroscopic dielectric functions. Thus the 

electromagnetic fields in each layer are described by solving Maxwell’s equations subject to the 

appropriate boundary conditions. 

 
5.2  Theoretical model 
 

    The guiding structure to be considered consists of a nonlinear magnetic cladding in contact 

with superlattices everywhere on the 0=z  plane, where the z - axis points into the structure, the 

applied magnetic field is along y - axis and the propagation is along x - axis. The nonlinear 

magnetic cladding is  assumed to be isotropic with a permeability given by [ ]13 .  

                                      

                                      22
YLLNL HH αμαμμ +=+=                                                               (5.1)                         
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 where Lμ  is the linear part of the permeability and α  is the nonlinear coefficient. This 

expression arises from an expansion of the permeability about an applied static field 0H , and 

terms that could lead to harmonic generation are neglected. Hence, H  is the ac magnetic field 

carried by the TM wave. yH  is real because only stationary, non-radiating waves will be 

considered. 

     

     We have a solution  to the Maxwell’s equations corresponding to a TM electromagnetic wave 

propagating in the nonlinear cladding [ ]13  

                                    [ ])(cosh
21)(

00 zzkk
zH

s

s

s
y −

⋅=
α

αε
                                          (5.2)                     

where 0z  is a constant of integration that defines the position of a self-focused peak in YH  and 

Lsxs kk μεα 2
0

2 −=  , sε  is the dielectric constant of  the nonlinear medium . 

    The semiconductor superlattice consists of multilayer  materials in cells along the z - direction. 

Materials a  and c  are n  type and p  type, with dielectric constants )(ωεa  and cε )(ω , and  with 

thickness a  and c  respectively. Materials b and d  are intrinsic semiconductors with frequency 

independent  tensors bε and dε  and thickness b  and d respectively. The unit cell has 

length dcbaL +++=  and is designated by the index n . 

     In the thn'  unit cell, at the interfaces nLz =  and anLz += there is a two-dimensional 

electron gas, while at banLz ++=  and cbanLz +++=  there is a two dimensional hole gas. 

We assume that a uniform external magnetic field is imposed in the y - direction and that surface 

magnetoplasmon polaritons are allowed to propagate in the x - direction with a wave-vector k  

and frequency ω . 

 
     We are going firstly to find the dispersion relation for the system in an infinite superlattice and 

then for a finite one. In both cases the field amplitudes are assumed to be localized at each 

interface. In the following we discuss bulk modes and surface modes.  
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5.2-a  Bulk modes 
   

  To find the dispersion relation for the bulk modes we use the boundary condition to find the 

field constants in the layers of superlattices as a function of well known constants at the surface.  
The electric and magnetic fields in superlattices can be written as:  

 
                                  ( ) ( )[ ] )(,0,),( tkxin

z
n
x

n ekzEkzEtxE ωωω −=
v

                                                    (5.3) 
and 
                                  ( ) ( )[ ] )(0,,0, tkxin

y
n ekzHtxH ωω −=

v
                                                               (5.4) 

  
 In each layer these fields satisfy Maxwell’s equations:  
                     

                                   ),,()(),( 2

2

0 txE
t

txE n
j

n vvvv

∂
∂

−=×∇×∇ ωεε                                                   (5.5) 

and 

                                  ),,()(),( 0 txE
t

txH n
j

n vvv

∂
∂

=×∇ ωεε                                                             (5.6) 

 
where 0ε is the vacuum permittivity, jε  is the dielectric constant, and cbaj ,,= or d . 

In the equations (5.3) and (5.6)   the x - component of the electric field and the y - component of 

the magnetic field in each layer of the thn'  cell is given by: 
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j
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jj eAeAkzE ααω 21 += −                                                                (5.7) 
and 

                                   ( ) [ ]zn
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Therefore, using the boundary conditions for the electric and magnetic fields given by the 

equations (5.7) and (5.8) at the interfaces: 

,)1(,, LnzandcbanLbanLanLz +=++++++= we obtain the following equations: 
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                          ,2121
n
b

n
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n
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n
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                          ( ) ( ) ( ) ,2121
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                          ,2121
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n
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n
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                           ,)()()()( 21121
n
cec

n
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n
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n
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n
bb AAAfAfA σεσεσεε +′−+′−−′=−′                (5.13) 

                          c
n
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c fAfA 21 + ,21

n
d

n
d AA +=                                                                          (5.14) 

                          ,)()()( 2121
n
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n
dedc

n
cc

n
cc AAfAfA σεσεε +′=−′=−′                                      (5.15) 

                          ,1
2

1
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++ +=+ n
a

n
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n
dd

n
d AAfAfA                                                                     (5.16) 

                          1
2

1
121 )()()( ++ +′−−′=−′ n

aha
n
ahad

n
dd

n
dd AAfAfA σεσεε                                    (5.17) 

 

In the equations (5.10-5.17) we redefined n
jA1 and n

jA2 as:  

                               ( ) nLn
ma

n
ma

a
m

eAA α1−=                                                                                 (5.18) 

                              )()1( anLn
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n
mb

b
m

eAA +−= α                                                                             (5.19) 

                              ( ) )(1 banLn
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n
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c
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eAA ++−= α                                                                           (5.20) 

                              ( ) )(1 cbanLn
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n
md

d
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eAA +++−= α                                                                       (5.21) 

 

where 2,1=m , dcbaj
j

j
j ,,,, ==′

α
ε

ε , j
j

j
j

p

p
p

jj efefhep
m

en αα

εω
σ ==== −

∗ ,.,,
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We define, for each medium, the column vector:  
                 

                                    ,
2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= n

j

n
jn

j A
A

A                                                                                         (5.22) 

 
The equations (5.10-5.17) can be written in a matrix form as: 
                     

                                 

,

,

,

,

1+=

=

=

=

n
aa

n
dd

n
dd

n
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n
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n
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n
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n
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                                                                              (5.23)               
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where we have defined the matrices 
 

                                        ,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′−′

=
jjjj

jj
j ff

ff
M

εε
                                                                      (5.24) 

 
and 

                                        ,
11

⎥
⎦

⎤
⎢
⎣

⎡
−′−−′

=
pjpj

jN
σεσε

                                                             (5.25) 

 
with hp =  for baj ,=  and ep =  for dcj ,= . 
 
From the equations (5.23-5.25) it is easy to see that: 
                                 
                                             ,1 n

j
n
j ATA =+                                                                            (5.26) 

 
where the matrix T  is given by:  
                              
                                            abbccdda MNMNMNMNT 1111 −−−−=                                                (5.27) 
 

The matrix T  in the equation (5.27) is a transfer matrix because it relates the coefficients of the 

electric field in one cell to those in the preceding cell. Taking into account the translational  

symmetry of the problem, we can use Bloch’s theorem [ ]19 , that is:  

                            
                                        .1 n

j
iQLn

j AeA =+                                                                              (5.28) 
 
By using the equations (5.26) and (5.27) we have:  
                        
                                      ,n

j
iQLn

j AeAT =                                                                                (5.29) 

                                      ,1 n
j

iQLn
j AeAT −− =                                                                            (5.30) 

 
and consequently  
                         

                                    ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +− −1

2
1cos TTIQL 0=n

jA                                                         (5.31) 

   
     Since n

jA  is a general vector of the structure considered, the dispersion relation of the bulk 
polaritons on the superlattice will be given by: 
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                                    )(
2
1)cos( 1−+= TTIQL                                                                        (5.32) 

 
  From the definition of the transfer matrix in equation (5.27)  and using the equations (5.24) and 
(5.25) we can show that )det(T =1, therefore  
                                     

                                       ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

1121

12221

TT
TT

T                                                                          (5.33) 

 
and hence, from the equations (5.32) and (5.33) our dispersion relation for the bulk modes is 
simply:  
                      

                                        )(
2
1)cos( TTrQL =                                                                             (5.34) 

 
5.2b-  Surface modes 
     
  In order to study the surface modes we match the boundary conditions for the electric and 

magnetic fields at the surface where 0=z . Then the periodicity in the z  direction is destroyed 

and we can no longer assume Bloch’s theorem. Therefore we have to consider electromagnetic 

modes that have their excitations localized in the near vicinity of the interface between nonlinear 

magnetic cladding and superlattices, where we replace Q by βi , then Eq.5.34 becomes: 

                                     

                                              TrTL
2
1)cosh( =β                                                                      (5.35) 

We can conclude this prices as: 
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0
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0
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0
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0
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a
L
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AeATAT

AeATAT
β
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−
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                                                            (5.37) 

if we replace 0
2

0
1

a

a

A
A  by λ  we have  the dispersion equation of the surface:  

                               
                                              { } 22211211 TTTT λλλ +=+                                                           (5.38) 
 
where  
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                                          ( )
( ) aass
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z
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εαααλ
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=  

 
 
5.3  Special cases in superlattices  
     
    If we consider ca = , db = , and .eh σσ =  Therefore the periodicity of the superlattice is 

baL +=  and the transfer matrix will be given by:   
 
                                         abba MNMNT 11

1
−−=                                                                         

 
And the dispersion equation of the surface in this case is: 
                      

                                  )(
2
1))(cos( 1TTracebaQ =+                                                                   (5.39) 

 
To find the power of the system in this case we have: 
 
                                   CESSUPERLATTITOTAL PPP += NONLINEAR                                                                    (5.40 I) 
where 
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where A n

ba,,2,1  are constants can be found from the boundary conditions by using the following 
surface constants at the point 0=z  
 

                                     
)(cosh
)sinh(21

0
2

0

00 z
z

ki
E

s
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s
xNL α

αα
αεε

=                                                   

and 

                                        
)cosh(
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00 zk
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s
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s
yNL α

α
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=                                                      

 
In the first layer, at the point 0=z , we have:  
 
                                    0

2
0
1 aaxa AAE +=                                                                    (5.41) 
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and 
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the continuity of the electric and magnetic fields give: 
 
                                    xaxNL EE =                                                                        (4.43) 
and 
                                    yayNL HH =                                                                      (5.44) 
then, we have:                                        
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The solution of the equations (5.45) and (5.46) for the surface constants is: 
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when we find 0

2
0

1, AA AA , we can find jA where boraj =  as the following: 
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Another particular case, if we consider the limit where retardation effects can be neglected, we 
have that ba αα =  and equation (5.39) becomes: 
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  with  
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( ) ( )[ ] ( )[ ]{ } ( ) ( )[ ] ( )[ ]xxxx KsKsrKsKsrF −+−−−−++= 1sinh1sinh1211cosh1cosh12 22  

+ ( )[ ] ( )[ ] ( )[ ]{ }xxZ KsKsQsr −++ 1cosh1cosh1cosh4  

where we have introduced ,/,/,, absrQaQakK baZxx ==== εε  and =Ω
be

e

am
en
εε0

2

∗  

 
    Another special case of our results is the dispersion relation of bulk plasmons, in this case the 

superlattice consists of two dielectric materials a  and b with dielectric constants aε ( )ω  and 

bε frequency independent, respectively. The dispersion relation of bulk plasmons in this case can 

be obtained from the equation (5.39) by considering kba ==αα  and 0== he σσ , then we 

obtain: 

                 ( )[ ] ( ) ( ) ( ) ( ) ( )[ ],coshcosh2sinhsinh
2

1cos 22 kbkakbkabaQ baba
ba

εεεε
εε

++=+         (5.51) 

which equivalent to:  

                                 ( )[ ] ( )22
1cos TTrbaQ =+±                                                                      (5.52) 

where 
                                            ( )22TT =  
 
5.4-  Numerical results  and conclusion  
 

    In this section we present numerical examples of dispersion relations of magnetoplasmons in 

superlattices. We will show that the effect of quasiperiodic layering is to increase the number of 

bulk bands and surface modes. We also show that the new surface modes are nonreciprocal with 

respect to propagation direction in the presence of an applied magnetic field.  

     In order to obtain numerical results we consider the dielectric materials a  and c  as Si doped 

with n  and p impurities. Since we do not use highly semiconductors, we assume that  

)()( ωεωε ca = , and the dielectric constant of the Si can be taken as )./1()( 22
pL ωωεωε −=  

Where 7.11=Lε is the background dielectric constant of the material, and 
1131065.7 −×= spω which is the electronic plasma frequency and we consider )(ωε  independent 

of the impurity density. The effective mass of the electrons and holes are related to the electron 
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mass 0m by 00 4.0,2.0 mmmm he == ∗∗  respectively. We also assume that the dielectrics b  and d  

consists of  SiO 2  with dielectric constant .7.3== db εε  

      Fig.5.1 shows the dispersion for the surface modes with an applied magnetic field field given 

by eVC 004075.0=ω . Both k±  are shown, and there are several points of interest. 

     Fig. 5.2 displays the frequency ( )/ pωω of the two lower and upper bands of the bulk 

polaritons as a function of akx , for superlattice. we plot the dispersion relation for surface modes 

and bulk polaritons by considering the semiconductor layers (n and p) with 400 0A of thickness 

and the insulators with 200 of thickness and with:  216 /102 mcarrierne ×== σσ , 

22810869.8,29.1 −−×== AmL αμ . We observed that the existence of four bands tend to crowed 

together when k  increases.  

    Fig. 5.3 illustrates the dependence of 2
yHα  on the dimensionless coordinate zk0   for  two 

values of the propagation constant β  we see that for 90.3=β ,the maximum point of the curve 

becomes greater than the other curve when 5.3=β .  

     Fig. 5.4 shows the power flow versus wave index for TM  surface guided waves at the 

interface between a nonlinear magnetic cladding and the first unit cell in superlattices . Note that 

we have three curves according to three different values of α  such that the decrease value of  α  

the upper curve becomes. 
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                                     Fig. 5.1 The Computed  dispersion curves for surface modes. 
 
  
 
                                   
 
 

                                         Fig. 5.2 The Computed   dispersion curves for bulk modes 
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                                               Fig. 5.3   The nonlinearity  interface 2
yHα  versus   zk0  

 
 
 
      
                            
 
 

                                  Fig. 5.4 The normalized power flow versus wave index 0/ kkx=β  
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Appendices 
 
 
 
Appendix A 
 

Here, we want to find the transfer matrix 1T  which gives the field constants 1+nA  in terms of the 

constants nA  in superlattices.  

     The potentialΦ  and the displacement vector zD  must be continuous at the boundary, now we 

want to use the boundary conditions at two steps : 

 

The first step: between the last depth of the layer ( nA ) and the beginning depth of  the layer ( nB ). 

The second step: between the last depth of the layer ( nB ) and the beginning depth of  the layer 

)1( +nA . 

Then we get the following equations: 
 
                                
                                2121 nn
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n

kdAn
n BBeAeA +=+ − ,                                                                  (A.1) 

 
                               )()()( 21212121 nnB
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n BBeAeA −=−++ − εεεεε ,                                 (A.2) 

 
                                2)1(1)1(21 ++
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                               )()()( 212)1(121)1(21
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++ −=−++ εεεεε                          (A.4) 
 
 
From the equation (A.1) we have: 
 
                               2211 n
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n

kdAn
nn BeAeAB −−= −                                                                    (A.5) 

 
and from the equation (A.2) we have: 
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Adding  equations (A.5) and (A.6) we have :  
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In the same manner, from the equation (A.3) we have: 
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and from the equation (A.4)  we get: 
 

                             kdBn
n

kdBn

B
n

kdBn

B
nn eBeAeAB 2

2
12

2)1(
21

1)1(1
−−

++ +⋅⎥
⎦

⎤
⎢
⎣

⎡ −
+⋅⎥

⎦

⎤
⎢
⎣

⎡ +
=

ε
εε

ε
εε               (A.9) 

 
By adding equations (A.8) and (A.9)  we have: 
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then from the equations (A.7) and (A.10) we have: 
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Now solving for 2nB  we get the following relations 
 
from equation (A.1) we have :  
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and from equation (A.2)  we find : 
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from the equation (A.3) we can write : 
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from  the equation (A.4) we can write: 
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Adding  equations (A.12) and (A.13) we have : 
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and from the equations (A.14) and (A.15) we have:  
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Then from equations (A.16) and (A.17)  we have: 
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For simplicity, we define the following : 
   
                                         12 εεε +−= Bw  
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                                         kdBnB ee =1                                                                                      (A.19) 
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Consequently, equations (A.11) and (A.18) can be written as the following: 
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In the matrix form equations (A.20) and (A.21) becomes : 
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which can be written as transfer matrix:  
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To find 1T ,  we use the inverse of the matrix  
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from  equation (A.22) we get :  
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Noting that Bwzxy εε14−=−  then the equation (A.25) becomes : 
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then the  matrix 1T  becomes:  
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Appendix  B 
 
     In this appendix, we derive another matrix 2T , which gives the field constants 1+nB  in terms of 

nB  ones. 
 
 In the following equations, we want to eliminate 1nA  and 2nA  to find another matrix 2T  such that 
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By applying the boundary conditions between the last depth of 1)1( +nA  and the beginning of  

1)1( +nB , we get:  
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In equations (A.1) and (A.2) when  1+→ nn , we have :  
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By eliminating 1A  and 2A  from equations (B.2) and (B.3) we find 
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So that the equations (B.4) and (B.5) gives: 
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By using the equation (B.7) we can write :  
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 The equations (B.6) and (B.10) gives the following relation: 
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From the equation (B.9) we have :  
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 The equations (B.8) and (B.12) gives the following relation: 
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The equations (B.11) and (B.13) gives the following relation: 
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By using the equation (A.19), the equation (B.14) can be written as:   
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The equation (B.2) give the following relation:  
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By the same way, the equation (B.3) give the following relation:  
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By using the equation (B.4), we have :  
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The equation (B.17) can be written as: 
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Eliminating 1)1( +nA  from the equations (B.20) and (B.16) the result is:  
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The equation (B.19) can be written as:  
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The equations (B.18) and (B.22) gives the following result : 
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Eliminating 2)1( +nA  from the equations (B.21) and (B.23) we have :  
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We use the equations (A.19) and (B.24) to find :  
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In the matrix form, the equations (B.25) and (B.15) can be written as:  
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Now the matrix 2T comes directly from the equation (B.26) as: 
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    where                                          
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     Now we want to find T , the transfer matrix between the cells ( 1, +nn ) such  that we have 

just two layers  BA εε ,  in each cell :  

 
                                               12TTT =                                                                                      (B.28) 
 
The constants between the cells ( 1, +nn ) are : 
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where the transfer matrix  T  gives the dispersion relation :  
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where  =+ BA dd   the depth of the cell . 
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