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Abstract

Considerable attention has been devoted to nonlinear waves propagation
in various waveguide structure due to their applications in photonic-
microwave devices. In the present work, we have investigated
theoretically, by using the transfer matrix technique, the dispersion
characteristics of transverse magnetic polarized TM waves propagating in
a multilayer semiconductor superlattices waveguides which is surrounded
in one side by nonlinear magnetic cover. The two sublattice uniaxial
antiferromagnetic crystal is considered as a nonlinear magnetic medium
where the permeability is treated as a function of the magnetic field.
Numerical results are demonstrated for a waveguiding system containing
some number of layers of superlattices. Also we shall show that the effect
of quasiperiodic layering structure is led to increase the number of bulk
bands and surface modes. In addition, the new surface modes are shown
nonreciprocal with respect to propagation direction in the presence of an
applied magnetic field. An application of optical devices such as
switching, optical thresholding and optical bistability can be achieved

throughout this work.
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Preface

Optical properties of linear and nonlinear multilayered media have been the subject of
considerable theoretical and applied interest. We study the surface polariton modes in linear
superlattice microstructures and the analysis of the optical response of nonlinear multiplayer
systems such as bilayers and superlattices. These structures play an important role in many
applications such as multilayer high reflectance optical coatings, multilayer thin films for the
magneto-optical read-out of magnetically stored information and semiconductor superlattice

media for optoelectronic devices and optical processing. The plan of this thesis as follows ;

Chapter one a general theory about the present work . Chapter two describes the theory of
nonlinear TM waves propagating along the interface between nonlinear semi-infinite
magnetic media and linear dielectric media, where we study the solution of Maxwell’s
equations to find the dispersion equation of the surface . we shall Also investigate the
frequency characteristics of magnetic spatial solitons on the surface of two-sublattice uniaxial
antiferromagnetic crystal. The study presented in this work suggests that the magnetic surface
spatial soliton has frequency passband(s) and stopband(s), which are switchable by the power
because the nonlinear permeability for both power and frequency are magnetic field

dependent.

The power level required for the spatial soliton excitation is quite high by calculation. If @

is close to resonance frequency w., y,, becomes frequency dependent and the damping has

to be taken into account, then the nonlinear permeabilty becomes complex, thus the different

soliton passband(s) or stopband(s) may occur, since the curve of Re[;(NL] has positive slope in

off- resonance region and has negative slope in resonance region.

Since y,, Iis insensitive to frequencies compared to the linear permeability x, (@) in the

off-resonance range, we have regarded it as a constant throughout this work. Considering that
there has been recent progress on artificial enhanced nonlinear nonmagnetic dielectric

medium at microwave frequencies, there is every reason to expect the magnetic systems, also



with a desired enhanced nonlinearity. The calculation in this work represents a starting point

for a new area of work in magnetodynamic wave propagation.

Chapter three will illustrate an exact theory for the TM polarized nonlinear guided waves
propagating in a finite periodic multilayered dielectric structure in contact with nonlinear
dielectric cover and linear dielectric base. By using the transfer matrix, we shall investigate

the stationary field distribution , the nonlinear dispersion curve and the power of the system.

Chapter four describes the dispersion relations and the power of magnetoplasmons
propagating in a semi-infinite quasiperiodic superlattice. We will examine a superlattice
whose unit cells are composed of two different thicknesses of bilayers which are arranged in a
Fibonacci sequence, specifically we have looked at a unit cell composed of three bilayers- two
of one thickness separated by a third of a different thickness. We have shown that there exist
new additional bulk and surface plasmons in the quasiperiodic structure which do not exist in
the periodic case, and that these surface modes show nonreciprocity in frequency with respect

to direction of propagation.

In chapter five, we have discussed the nonlinear waves, propagating in semiconductor
superlattices covered by a nonlinear cladding. A transfer matrix is used to simplify the
algebraic equations. We then derive the dispersion equation of the surface and the bulk
modes. The power of the system in a special case is also calculated. Numerical results have
shown the effect of the quasiperiodic superlattices is to increase the number of bulk bands
and surface modes. In addition dispersion curves for surface and bulk modes are displayed.



Chapter 1

Nonlinear waves in solid state physics

In the magnetostatic limit, a lot of work has been done on magnetic/non-magnetic

structures. In Ref. [1,2], Eshbach and Damon obtained the bulk and surface modes in a
ferromagnetic/non-magnetic interface and a ferromagnetic slab. After that, there were many
theoretical studies on the spin waves in magnetic/non-magnetic superlattices, using different
techniques, including transfer matrix formalism and Green function method [3,4]. Some
interesting nonlinear properties have been discovered and predicted such as the modulation
instability of spin waves [5], the formation of magnetic solitons, three and four magnon
decays[7—9], and the bistability and multistability of magnetostatic waves in periodical
structures[9]......etc.

Although the spectra of linear dipole spin waves (magnetostatic waves) in two sublattice
uniaxial antiferromagnetic slabs have been calculated and predicted for many years, nonlinear

wave behavior in antiferromagnetic materials has only recently been studied[lo]. The
nonlinear susceptibility y,, was derived for the first time in the study of the nonlinear
infrared responses of antiferromagnets [10]. ¥n. Was used to explore the power dependent

transmission of electromagnetic radiation through thin antiferromagnetic films.

In Refs. [8,9], Boardman proved theoretically the existence of temporal envelope solitons
in an antiferromagnetic film when the external magnetic field was applied parallel to the film
surface , and the calculation indicated the power threshold was about several milliwatts.
Wang indicated[6] that in some conditions, in either stable or unstable case, a linearly
polarized magnetic beam propagating in a bulk antiferromagnet took the form of spatial
soliton, and the necessary condition for the steady propagation of a nonlinear magnetic plane

wave is y,, <0.



The nonlinear phenomena of electromagnetic waves in antiferromagnets are not only
interesting in itself but also important in connection with the behavior of antiferromagnetic
devices at infrared frequencies. The antiferromagnetic resonance frequencies and the infrared
part of electromagnetic wave spectra. These facts make the use of antiferromagnetic media in
different applications very attractive.

Spatial solitons are beams of electromagnetic energy that rely on balancing diffraction and

nonlinearity to retain their shapes [7] Although there are at least hundreds of papers dealing

with the optical spatial solitons in dielectric waveguides, there is a little work on spatial
solitons in antiferromagnetic materials. In our work we give a report on the frequency
characteristics of magnetic spatial solitons on the plane surface of an antiferromagnetic
crystal . Physically, any possible spatial soliton behavior of an electromagnetic wave in an
antiferromagnet ought to be ,in principle, similar to the optical spatial soliton case . A major
difference, of course, is the use of nonlinear permeability, rather than the nonlinear
permittivity on optical case, and therein lies a major of difficulty and interest in this new area
.The distinguishing feature of the magnetic surface spatial solitons reported in this work is
the existence of the frequency passband(s) and stopband(s) that can be switched into each
other by varying the power|[8] .

The frequency band switching effect of the solitons is actually caused by the fact that the
nonlinear permeability is not only power dependent but also frequency dependent in infrared
frequency region. In the case of the optical soliton the nonlinear permittivity is always
treated as frequency independent since where light frequencies usually have large departures
from the resonance frequencies of the dielectric materials. It is noted that for frequencies near
the resonance the dispersive and nonlinear response of the material may become substantial,
and the damping of the system has to be taken into account. In order to obtain an approximate
solution without bringing in many complicated expressions, we neglect the damping of the
material. It certainly leads to some approximations but makes the main key point simpler and
clearer.

An exact theory for the TM polarized nonlinear waves propagating in a finite periodic
multilayered dielectric structure in contact with nonlinear magnetic cladding is presented in

Refs. [9—13]. By using the transfer matrix technique the stationary field distribution and the

nonlinear dispersion curve are obtained exactly in the following chapters.



Chapter 2

TM waves between nonlinear medium and dielectric medium

2.1 General theory

The surface waveguide structure to be considered is shown in Fig. 2.1. The nonlinear
medium, with the relative dielectric constant ¢, and nonlinear permeability z,, , occupies the
semi- infinite region z <0 and its plane surface extends to infinite in the zoy plane .The
linear medium, with the relative dielectric constant ¢, and nonlinear permeability ., , is the

substrate which occupying z >0 region. We begin with the assumption that the crystal is at
low temperature and the magnetization of each sublattice can be regarded as saturated. We
define the + x- directions to be the directions of the spontaneous magnetizations of the two
sublattices respectively and parallel to the surface crystal. The net magnetizations of the two

sublattices are equal to each other.

The nonlinear medium assumed in this chapter is linearly isotropic and the waves
propagate along the x- axis with a wave number k and angular frequency @ with field

vectors (electric and magnetic fields) :

E =[E,(2).0,E,(z)] ' (2.1)
and
H={oH, (@0 e (2.2)

The components E (z) and E,(2) are%out of phase so, the transformation

and

can be made and we reduce Maxwell’s equations to :



EEX —-K.E, =auH,, (2.3)
0
= H, = —we&e,E,, (2.4)
and
kH, =-wee,E, (2.5)
M= Uy medium 1
& =1
0 X
My = medium 2
&, =¢
z
v
Fig. 2.1. Nonlinear cladding in contact with dielectric substrate
In the case of nonlinear medium the permeability can be written as Ref. [13],
M = M+ aH; (2.6)
where « is the nonlinear factor, and g, is the linear part of the permeability.
Accordingly, Maxwell’s equations takes the form:
VxE =iuymuy, H (2.7)
and
VxH =-ioue,eE (2.8)

By using equations: (2.1) and (2.2) in equation (2.7) and (2.8) we have:



xE = i i — i _ﬁ '_i i(kx—at)
v E(@&U”(m&m = ED)] Waawm

= {— ikE, (z) + o E, (z)} g!(keet)
oz

= iwpo i H
where
H= H,(2) g!(ket)

Then we get:

. 0 .
IKE, (2) = < E,(2) = -ospan H, (2

By the same way V x H give:

0 .
P H,(2) = iwe6E, (2)

and
kH, (2) = ~wsy&,E, (2)

Eliminating E and E, from the equations (2.9), (2.10) and (2.11) we have :

ik

1 ¢ :
Hy(z)_- _Hy(z):_la)/uO:uNLHy(Z)

2
— WEyE, lweys, 01

The above equation can be rearranged to give :

2

? H(z)- k*H y(Z) + a)zﬂogoglﬂNLH y(Z) =0

which can be written as
82
=5 H,(2) —k*H,(2) + kseyuy H, (2) =0

Substituting the equation (2.6) into the equation (2.13), yields :

82
gHy(Z) —k?H(2) + kg &, (p +aH ] (2))H,(2) =0
where
2
(4]
and

(2.9)

(2.10)

(1.11)

(2.12)

(2.13)

(2.14)

(2.15a)



k2 = k2 —k2gu, (2.15b)

The equation (2.14) can be rewritten as:
82
=7 H,(@) =k ~kggatj(2)H,(2) =0 (2.16)

Multiplying the equation (2.16) by ZaﬁHy(z) and then integrating over z, we have :
z
0 o° 0

0
25 Hy(z).? H,(z) - 25 H, (z)k!H,(z) + 25 H, (z)kjeoH ]} (z) =0

the first integration of this equation is :

0 ? 1
|:5Hy(z):| —(k} —EkjglaHyz(z))Hyz(z) = const. (2.17)
which can be written as:
0 1
5 (@)= \/00n5t- + (K} —EkozelaHi(Z))Hi(Z) (2.18)

So the integration of this equation is :

Hoot [k 19
k, | e, cosh(k,(z - z,))
To find the electric field components we use the equations (2.4) and (2.5) giving :
2 1 —
E, (2) = K, 2 S|nh2(k1(z Z,)) (2.20)
gkwe, | ag, cosh”(k,(z-z,))
and
2
E,(2)=- kl 2 L (2.21)
gk,we, \ ag, cosh(k,(z-z,))

and from the equations (2.20) and (2.21) we have:

1
Elz(z) = tanh(kl(Z . ZO)) Elx(z) (222)




In the dielectric medium we suggest that the permeability u, =1 and

dielectric function ¢, is given in the tensor form as:

8)()( 0 SXZ
&= 0 ¢, O
— &y 0 &y
where
2
O~
_ _ CcC*'p
Ew =&y &y 1- 2 2 )
(0 —af)
_i D
&y = —Ey e, 2 K
(0 — o
Ey =€y =6y =8,=0,
o;
ey, =6,1-—
yy 0)2
and
, n%
o, =
g.m

where @, is the plasma frequency.
After we eliminate the magnetic field from Maxwell’s curl equations we get:
2

V’E-V(V-E) = 80y08%|§

The divergence equation

where

the relative

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

is the displacement vector, does not mean that V-E =0 hence the second term on the left

hand side of equation (2.28) must be remained.

For TM waves propagating in the x —direction with wave number k and frequency o

the solution of the equation (2.28) is :

E — (E2X|07 EZZ) ei(kx—a)t)+azz

(2.31)



where «, is the decay constant and E,,,E,, are the components of the electric field

Substituting the equation (2.31) into the equation (2.28) we get :

V2E = ((iK)?E,d + 0] + (a,)? E, k) €'t (2.32)
V-E =[ikE,, +a,E,,] e'® e (2.33)

and
V(V-E) = {(ik)?E,, + (K)&,E,, | + 0 + [(iK)a,E,, + a2, k| e'e0rezt (2.34)

in the right hand side of the equation (2.28) we have:

gXX 0 gXZ
e= 0 ¢, 0 (2.35)
— &y 0 €y
and
0% = :
EE = (-iw)?[E,,.0,E,, ] e'teenre (2.36)

from the equations (2.28), (2.32), (2.34) and (2.36) we have :

(aZZ + kOZ‘c"xx)EZX - (IkaZ - k()zgxz)EZZ = 0 (237)

and
(ike, — kozgxz)E2X + (k% - kOZgXX)EZZ =0 (2.38)

if we eliminate E,, and E,, from the equations (2.37) and (2.38) we have :

= 2ot g (2.39)
ike, —K; &,
and
ke, —kie,
Fam TN e, (240
which means that:
a +Kotw _ Koey —ikay, (2.41)

H 2 2 2
ika, —kje,, K™ +Kye,

from the equation (2.41) we have:

10



ab =k’ —Kkle,
and

—e +on

2 XX

XX

2.2 The dispersion equation

(2.42)

(2.43)

To find the dispersion equation we use the continuity of a tangent componental E and a
normal componental D as the boundary conditions between the two mediums as the

following:

E..(2) = By (2)
and

Dlz(z) = D2z(z)

From the equation (2.22) at z = 0 we have:

E.(2)= @, _

- - E,
tanh(k, (z,))

0
and D,, (z) can be found as the following:
D, = g,&,E,
in medium 1 the equation (2.21) gives:
D,,(z) = &E, (2)
k|2 1

gak, \ ga cosh(k,(z - z,))

D,, can be found as the following:

D,; = &&,E,; (2)

—ig, 0 g
where:
2
w
81 = 800 1+ 2 P 2 y
Wc — @

op

&, =E,0 )

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)



and

& = 8{ _a)_é} (2.52)
w
for simplicity :
E,(2) = (E(2).0,E,,(2)) (2.53)
and
& 0 &, | |Ex(®)
D,,(2) = &&E,(2)=¢| 0O ¢, 0] O (2.54)
&y 0 Exx Ezz(z)
then
D,,(2) = {~&,E, (2) + &,E,, (2)} (2.55)

at the point z =0 we have:
Elx(z)|2:0 =E,, (Z)|z:o (2.56)

from the equations (2.20) and (2.53) at the point z =0 we have :

12
E,(2) = k|2 - g% (2.57)
gkye,0 \ ag, cosh(k,(z - z,))

and from the equations (2.39) , (2.40) , (2.47) and (2.55) we have:

&y (_gxz E2x + &, EZZ) = Elz (258)

which gives the dispersion relation :

(2.59)

2 1,2
a; +Kye, }_ — &

&y T Ey -
[ tanh(k,z,)

ika, — ke,
2.3 The power flow
The total power is the sum of the power in two media

* In the nonlinear medium :

P =%j(l§x H*), dz (2.60)
where

E = (E,(2).0,E,(2)) e
and

H = (0,H, (2),0) '
where

12



1 [2 K,
)= k_oJa: cosh(k,(z — 2,) (261

From the solution of Maxwell’s equations we can find E,,E, as a function of H,

The right hand side of the equation (2.60) can be rewritten as:
L{(ExA"),dz=-1[E,H:d 2.62
SJExH), dz = E.Hdz (2.62)

we want to find just E, from equation (2.11) as the following:

E, = —k H, (2.63)
WEE,
So that the power becomes:
k
P = H%dz 2.64
' 2a)glgoj g (2.64)
Using Eqg. (2.61) we get:
2
P = Ekl | —— 1 dz (2.65)
&6 oKy *0 cosh”(k,(z - z,)
if we let z= 7" + z,then the power becomes:
2 <]
oS [ gy (2:66)
&é& oKy 5 cosh(k,z')

where the quantity z, is the position of maximum power density and when it moves to
infinity , the power flow reaches the following equation:

kk> 7 1 Kk
A= 212 .[ 20 N 212 (2.67)
g5 kg cosh”(kiz') g6 0Kk 0
**In the dielectric medium:
le, - -, 1 .
p:EI(ExH ), dz :—EIEZZszdz (2.68)
From the equation (2.57) we have :
2
E, = K 2 L (2.69)
& gk, \ g, cosh(k,z,)

13



Then, we want to find E,,,H,, from the solution of Maxwell’s equations in the dielectric

medium ¢, as the following :

0

EEZX - kxEZZ = a)zuoHZy )
0
E H2y = _a)gogxxEZX )
and
kx H 2y — —W& &, EZZ

From the equation (2.71) we have:
H,, = —a)eogxijZXdz

where E,, was given in the equation (2.69), then we write:

k’ 2 1
H,, = —a)goexx_[ = e”'dz
gkowe, \ ag, cosh(k,z,)

By integration, we have:

ek’ | 2 1 .
H, =- ~ e”
ok, \ e cosh(k,z,)

the equation (2.72) gives:

which equivalent to:

k, k? 2 1 w2
E,, = 5 e”
gweaLKia\ g cosh(k,z,)

using the equations (2.73) and (2.74b) in the equation (2.68) we get:

14

(2.70)

(2.71)

(2.72a)

(2.72b)

(2.72¢)

(2.73)

(2.744)

(2.74b)



1, k

== |—*—Hjdz 2.75

2= Ia»:osxx S (2.75)
which becomes:
2
1 k klz\/?‘c"xx
R=s——[|—2 e?**dz
2 weye,, * | a,k; cosh(kz,)

this integral gives:

kxgxxkl4|:2:| —®©
P, = 1 agy 1 R
2

= 2.76
glweookicosh®(kz,) 2 0 (2.76)
which equivalent to:
1 kX8XXkl4|:2j|
ac
P==- ! 2.77
22 gweyak?cosh?(kz,) @.77)
The total power now is :
I:,total = Pl + PZ (278)

The numerical results of the equation (2.78) are ulstrated in the Fig. 2.2. where
ty =1.29,6 =1L =1 &, =13.13,w, = 0.04075eV ,n =10 cm™>, @, =0.004075eV and

a =8.869x10°m*A are taken into account. Note that we have three curves corresponding to
three different values of « such that the decrease value of « the upper curve become.

A normnalized power

b \7{4.&10%*}1*
45
4 cr = 8[3605< 10 e
35
2
e ot = 2.9 it 4
A
15
1
05
way e inde=
o 0 12 18 24 3

Fig. 2.2 Power flow versus wave index for TM surface/guided waves at a single
interface between a nonlinear medium and a dielectric medium

15



2.4- Frequency characteristics of the magnetic spatial solitons on the surface of an
antiferromagnet

In the absence of an applied Zeeman field, the permeability tensor describing the nonlinear
response of the crystal to the intense field is a diagonal one. For a TM wave special soliton

investigated in this work, the permeability is given in a tensor form [6] as:

-2
Ly = iy (@) = p (@) + 1y ((0)‘ H‘ (2.79)
where :
2
=1+ y(@) =1+ n (2.80)
0E —

is linear permeability, ,, = y1,M,, @, = y,H,, @p = you,H, and f = o} + 20,0,
which is the resonance frequency of the system, and M,,H,,and,H. are saturation

magnetization , anisotropy and exchange fields of the crystal respectively.

The dispersion relation can be written in general form as [10]

tanh(k,z,) = <2 (2.81)
ki&,
where
k, = k2 —kZe,p, (2.82)
k, =k’ — K¢, | (2.83)
and
82
& =&y +% (2.84)

gXX

where k, = —, k is the pointing vector , and ¢,,&, represents the dielectric constants of the
c

two mediums.
From equation (2.81) we get:
0< Xt o4 (2.85)
k&,
where
0 <tanh(x) <1 (2.86)

squaring each side of this inequality using the equations (2.82),(2.83) and (2.85) we get:

k2 =k>—Kleu, , (2.87)

k2 =k -k, , (2.88)



2.2
L (2.89)
ki &,
& (k* —kse,)
522(k2 - kozgllul_)

<1, (2.90)

and

2. 2 2.2
< Koy & — Koy

2_

2
k 2
& —&

(2.91)

which means that k — co when & — ¢, actually as z, - « when tanh(k,z,) — 1 so that
the cut-off corresponding to a self-focused peak in the field moving out to infinity.
The requirement that k? > 0 and k> > Oleads to:

k? > Kkle, (2.92)
which with Eq.(2.91) gives the range of frequency.

Another inequality can be found by eliminating z,from the dispersion equation and the
boundary conditions which can be written as:

oK - 6 = ek, 2.93)

If we eliminate k/ and k> from the equation (2.93) using the equations (2.87) and (2.88), and
solving for k* we get:

kle,e | & 1
k2 :ﬁ{g—la—%m —EgngLszy} (2.94)
1 2 2

which is the dispersion equation of the system
2

Since % > 0, then equation (2.94) in the case of ¢, < & gives:
0

1
Ell, — &1, _EgleLsz <0 (2.95a)
or

1
Sl — &1, _ESZZNLHZZ <0 (2.95b)

in the case of ¢, > ¢

17



Since k> >0 and k, >0 for a surface wave we have :

k2 > k2e,u1, (2.96a)
k2 > k2,11, (2.96b)

2.5- Results Analysis
The frequency characteristics have two cases
*Thecaseof ¢ <e¢,:

The equations (2.94) and (2.96a,b) give:

& 1
H >;2/"2 _EZNLHZZ (2.97)
1

the variation range of x, is shown in figure (2.3), in this case g, can be either positive or

negative, and the wave frequency can be either smaller or larger than the resonance frequency

@, . From the equation (2.97) we have two forms:

1 . .
I- If we assume that ,, =1 and E;(NLHZ <% 4 , Then the equation (2.97) gives:
&

o' = @ < O (2.98)

Then we have surface special soliton has a frequency passband and the bandwidth of @ is:

20,0,
1
i_l_*ZNLsz
& 2

(Aw?), = (2.99)

which comes directly from the equation (2.98).

- : I . 1
The variation of @' with %ZNLHZZ are shown in figure (2.4). The increase of EZNLHZZ

reduces the lower frequency limit @' and widens the passband.The maximum passband width

. 1
IS w: as EINLHS approaches{ﬁ_l_%z“’fk

, at which the lower stopband vanishes .
& Wc
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_— 1 S
In the limit of E;(NLHZ2 —0,(A0?), =20, 0, 2 1 which is the narrowest passhand

) —

&

related to . Asmaller difference between ¢ and ¢, leads to a wider passband. Increasing

&

2 will widen the variation range of y, H>. Curve 1 varies with y, H2> more sharply than
&

curve 2 and 3 do. This indicates that the spatial soliton propagating in the structure with a

smaller value of 2 depends more strongly on the power. When
&

o, =10"rad/s,w, =3.5x10%rad/s. o, =8.895x10%rad /s, l;(NLHZ2 =05 and 22 =2,
2 &

then the minimum passband is /(A®?), =3.7x10"rad/s.

I1- when %;{NLHZZ > 2 _1 then the equation (2.97) gives:

&
o < O (2.100)
or:
o> |5 g + in;:A - o (2.101)
EZNLHZ _;1"'1

So the surface spatial soliton has a low frequency passband and a high-frequency passband .
The low limit »" of the high-frequency passband varies with the power and the parameters of

the materials, while the low-frequency passband is power independent. Between the two

passbands there is a stopband with a width of »° being:

20,0,

(A0?); = ¢ : (2.102)
SawH; - R+l
2 &
If %;{NLHZZ =06, 2=15 we have \(Ae®), =8.36x10"rad/s, the increase of
&

7w H? leads to a decrease of »” and a narrowing of the stopband .As y,, H? approaches

infinite the stopband vanishes. On the contrary, as y,, HZ becomes smaller then »” becomes
larger and finally stops the guided wave with frequency @ which was originally in the high-

frequency passband . The variation of »”with y, H/ is shown in figure (2.5). It is now quite
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clear that for a fixed wave frequency the propagation and the cut-off states of the soliton can

be swiched by varying the power.

Figure (2.6) brings the curves of the two cases together for the ratio %2 _15. As the
&

. 1 . .
power increases, > 7w HZ reduces and destroys the lower stopband first, then shrinks the

upper stopband until the band vanishes finally. When %ZNLHZZ value is below 2—1, no
&

@® > @, spatial soliton can exist.
**The case of ¢, > ¢&,:

From the equations (2.94) and (2.96a,b) we find the necessary condition for the magnetic

spatial soliton propagation in the case of ¢, > ¢, >0
&, 1 )
M <—H _EZNLHZ (2.103)
1

The variation range of 4, determined by the equation (2.103) is displayed in figure (2.7) .
Since ¢ > ¢, , y, is always smaller than one when g, =1,s0 the soliton frequency must be

larger than the resonance frequency of the antiferromagnetic medium.

When g, =1 the equation (2.103) gives:

2
W <0< |7 @e ¥ ZwM;)A =" (2.104)
EZNLHZZ -—2+1
&

Obviously there is a passband with the width of »* being:

(M), = 1 ZC"M“’; (2.105)
*ZNLHZZ -—2+1
2 &

The variation of the upper frequency limit »”with y, HZ is shown in Fig. 2.8. It is seen

that the increase of y, H. leads to a narrowing of the passhand, which vanish as y, H2
goes to infinite. Therefore a guided spatial soliton with frequency @ ,which is originally in

. . 2
the passhand, will stop as y, H? approaches a critical value 2{ Z)Mw‘; +ﬁ—1} and
0" —w; &
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beyond. In the limit of ;{NLHZZ—>0,(Aa)2)P:2xa)Ma){ 4

] which is the widest
&~ &

passband related to %2 A smaller 22 results in a steeper variation of the passband at small
& &

aH2, if %ZNLHZZ = 0.5, the passbands /(Aw?), for 22 =0.75,0.5, and 0.25 are 3x 10™

1

2.6x10" ,and 2.36x10" rad/s ,respectively.

The total power flux is [10]:

P=P +P, =%I(E1X Hf)zdx+%J'(E2xH;)zdx (2.106)
kk?|1— fﬁ
k&
p-_ K (1+ kZ“’OJJr L1 (2.107)
&0&; Yy Ky k&, 25068, KoK;

The power flux in figure (2.9) is normalized with P, = %Zma’go ~ 0.43mw/m. It is quite

high but since it is inverse of y, @ working at higher frequencies requires a smaller y,, to
offset this fact.
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nio propagation

Fig. 2.3: Frequency dependence of the linear permeability z, , showing regions of propagation, in
the case of &, < &,.w, =3.5x10%rad /s,

stopbands

stopbands

Fig. 2.4: Variation of @ with %ZNLhzz, for three different data 22 : (1) :1.25,(2):1.5,(3):1.75.

&1

Fig. 2.5: Variation of " with 1, 12 for the same three data 2 as in Fig. 2.4
2 &
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no propagatiarn

Fig. 2.6: Variation of the passbands with %INL Z,for e, =4,5,=6.

Fig. 2.7: Frequency dependence of the linear permeability, in the case of ¢ > &,,m, = 3.5x10%rad/s.
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stopbands

Fig. 2.8: Variation of " with % P for three different data &, . (1):0.75.(2) : 0.5, (3) : 0.25.

&

Fig. 2.9: Normalized total power flux P along the z - direction as a function of i:
Po 81
(1):0.625,(2) : 0.75, and for two frequencies, @ =8.898x10",8.899x10"rad /s.
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Chapter 3

TM Nonlinear electromagnetic waves in multilayer dielectric systems

3-1 Introduction

There is at present considerable interest in the study of intrinsically nonlinear effects on
the propagation of surface and guided electromagnetic waves along the single and multiple

interfaces of optically nonlinear media [5-11]. Recently there have also been intensively
discussed the properties of linear and nonlinear multilayer systems [13], e.g., the study of

surface polariton modes in linear finite and semi-infinite superlattices and the characteristics

of the optical response of nonlinear multilayer structures [16].

In this communication we investigate the propagation characteristics of TM-polarized
nonlinear guided waves in finite periodic stratified media in contact with nonlinear dielectric
cover and linear dielectric base as shown in Fig. 3.1. By using the transfer matrix method, the

electromagnetic field distribution and the nonlinear dispersion curve are obtained exactly.

The nonlinear dielectric cover is assumed to be isotropic with a dielectric function given
by[15] £ =& +a|E|2, a is the nonlinear coefficient in the region z < 0. A linear periodic

stratified medium with N unit cells consisting of alternating layers of materials 1 and 2

characterized by dielectric functions ¢&,s, and thicknesses d,,d,in the region
0<z<N(d, +d,) and a linear base with dielectric constant &, in the region z > Nd where

d =d, +d, is the width of the cell.
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Nonlinear cover Mty | 2=0
1 »
2
dielectric multilayers (&, &,) 1
2
z=Nd
dielectric base &
v

Fig. 3.1: Nonlinear magnetic cladding lies in the region Z < O ,dielectric multilayers lies in the region
0 <z < Nd where d =d, +d, and the dielectric cladding lies in the region z > Nd

3.2- Theoretical model

In this chapter we introduce our system as shown in Fig. 3.1. The TM wave is assumed to

propagate along the x-axis, i.e., the magnetic field may be written as:

In the nonlinear medium the magnetic field is[16] :

Qs 2 1
H —s. .
Yk, \aes cosh[gs(z-2,)]

Os = \/kz —&5kg

In the multilayer dielectric system, the magnetic field is

where

H :lH ei(ﬁ-kox—(ut)

2 Y

where k, = 2 and [ is the propagation constant
C

(3.1)

The general solution of Maxwell’s equations in the nonlinear periodic stratified structure

which satisfy the boundary conditions at z = md where d =d, +d,, as shown in Ref.[24],

has the form:
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H, = A% = cosh[k,q,(z = md —d,)]+a,, -2 -sinh[k,q,(z—md)] md <z<m-+d, (3.2)

y
1
H, = AS,,coshlk,a,(z —md —d,)]+ A}, -%sinh[koqz(z -md—d,)], md+d, <z<(m+1)d (3.3)
2

where

md+d, <z<(M+1)d,m=012..,N-10,, =B —¢,,6, =0 A, A,

are constants .

In the linear dielectric medium, the magnetic field is

H, = He ot (3.4)

where q, = /#° — &, , H, is constant which comes directly from the boundary conditions.

Using the boundary conditions between equation (3.2) and equation (3.3) at two points

z=md +d, and z=(m+1)d , with the aid we yield the following :

=7 (3.5)

where the transfer matrix T as shown in Ref. [15] is given by:

coshy, coshy, + %2 sinh 7,Sinhy, — Z2ginh y,coshy, — “sinh y,coshy,
1€2 Q. 4
T = (3.6)
% _Gg e, .
sinh y, coshy, sinh y, coshy, coshy, coshy, + sinhy,sinhy,
& & 061 _

where we used the following :

1 V12 = k0q1,2d1,2

2. E,=E, at z=md +d, (3.7)

3. E,=E, at z=(m+1d (3.8)

27



4, D,=D,, at z=md+4d, (3.9
5 D,,=D, at z=(m+21d (3.10)
6. m=0123,..... ,N -1

Using the boundary conditions at z =0 between the equations (3.1) and (3.2) and note

d . .
that Hy,d— H, are continuos along z axis we have :
z

c 2 V ﬂz — &
A =H,= : (3.11)
aes cosh(zy/ 2 — &) 120
and
1 0
;=—-—H 3.12
A 2 (3.12)
if we let
-1 9y (3.13)
kOquO 82 Z=0
we have
A 1
=H, (3.14)
A ugs / &
Using the same way at the point z = Nd we have the following :
Ay 1
=H, (3.15)
Ali =0 /gc
The eignvalues and the eigenvectors of T can be found from the equation
TV = AV (3.16)
where V is the column eigenvectors and A is the eigenvalues of T .
The equation (3.16) becomes :
[T-a1]v =0 (3.17)

which has a nontrivial solution if
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T-Al|=0 (3.18)

The solution of this equation is given in Ref. [12] and the result is

L 22 () -4

) = gp*tod 3.19
: 5 (3.19)
where:
f(B) = cosh y,coshy, +~ [82—‘11#91—%} sinhy,sinh7, (3.20a)
2 &0, &0,
and
1Lf(B8)=0
s =sin[f(8)]= 2 (3.20b)
-1, f(B) <0
To find the eigenvalues we write:
Vl
V = (3.22)
V2
the equation (3.16) becomes:
Vl Vl
T =1 (3.22)
V2 V2
the solution of this equation is :
1
V, = (3.23)

where
{‘c"lqz _ngl} -sinhy, sinhy, £s [f (/B)]z -1
1 1&9 &0
at = E

“sinh y,coshy, + %2 jnh 7,coshy,
1 2

(3.24)

We can introduce a column vector as the linearly independent eigenvectors V + as the
following :
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=AYV, -AV.
A
where:
A —H, a, +q./¢,
a, —a

then we can prove that :

A 1

=H, =AYV, -AV
Atfl -, /gc

By using the equation (3.25) in the equation (3.5), we find the following :

A,
_gN-m {A+V+e(N—m)tk0d _ A—V_e—(N—m)tkod}
A,

when m — N —m then equation (3.28) becomes :

Al
_ Sm{A+V+emtk0d _ A—V_e—mtkod}
Al

when m = N then the equation (3.29) becomes :

A
—gM {AW eMkod _ A~/ e—Ntkod}
A
from the equations (3.30) and (3.14) we have :

1
H, _gN {A+V+eNtkod _ A—V_e—Ntkod}
Uq,/ &,

when we use the values of A*,V, we find that :
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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N —_—
H, - s'(a, —a_)H, (3.32)

&+a+ aNtkod _ i+a_ o~ Ntkod
gC gC

%, a, [ae"" - % ia a e N
U — i . 8() 8()

g, $+a+ eNikod _ i+a7 o Ntkod
& &

c

(3.33)

3.3- The power of the system

The total power is in three systems the first one is nonlinear cover the second is dielectric
multilayers and the third one is the linear cladding

In the nonlinear cover:

The power can be written as

k 0
= H 2dz 3.34a
P 2w, J.-m g ( )
and this integral gives
kas
=15 3.34b
P =~ e (3.34b)

In the multilayer dielectric medium:

In each layer 1 or 2 the power equation is:

ke

Pt = >
W8, ,

[H;,dz (3.35)

where H,, , can be found from the equations (3.2) and (3.3). The constants in these equations

comes from the equation (3.28) as the following:

A% _gN-m {A+e(N—m)tk0d _ A—e—(N—m)tkod} (3.36)

A; _ gN-m {A+a7 Le(N-mitkod _ Aa, _e—(N—m)tkod} (3.37)
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From the values of A", A" and H we find that:

. m a, +q./¢, m m a +0./¢, | _n-m
AC =N HN{—a ?a }e(N Jod _ N HN{—a ?a }e (N-m)tkod (3.38)

_ a_+09./¢ _ _ a+09./¢. | _n-
A?] — sN ma_HN + qc c e(N m)tkod _ SN ma+HN — qc c e (N-m)tkyd (339)
a,-a, a,—a

We can find the power in the multilayers as the following:
. (3.40)

P; sz:o Pra2

For simplicity we can use the following:

_ ) 2
Fii _ C()Sh]/I Slnhﬂ/i +7i +(_1)i+1[2ai]'{8|nh7/i} + giasi {COSh]/, Sinhﬂ/i —]/i} (341)
&0, i Ui
' ) 2 .
F - coshy,sinhy, +, + (_:L)i+1(a+ N a){smh 7i} +ea.a ,{COSh Vi S'Zh Vi _7i} (3.42)
&0 4 g

where i=1 or 2, now the power in the multilayer system is:

-2
P, &.{(aJr_'_&]eNtkod _(a_+ije—Ntkod} 9
&, &,

- 4,0 .
2 2Nitk,d 2 ~2Ntkod
g - o) €70 —1 d. . cootgd) 1—€77
Ha++g_j '(Fl +Fe™ )'H—al@.dJ{a—Jrg_j '(Fl +Fe” ) o7l _q
“2N(F, + FZ)-{a +iHa+ + qC} (3.43)
g, &

In the dielectric cladding the power is:

K (3.44)

20&,8.

@ 2
.[Z:Nd H yN dz

P

where H,, was given in equation (3.4) the result is :
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2
pH a_a
i ] 3.45
P dws,e, (a+ +0./¢, )eNtkod _(a_ +0,/¢, )e—Ntkod ( )
The total power becomes:
Piotat = Pne + P¢ + B (3.46)

3.4- Numerical results

We present our numerical results for the following parameter values
n,=3502, n =1 d, =d,=0.0754, N =10, n, =3.590, n, =3.513.
Fig. 3.2 shows the dependence of the propagation constant £ on the normalized power

flow p/p,. The solid lines shows the case (i) in which the material with n = 3.59 in contact

with the nonlinear medium and the dotted lines shows the case (ii) in which the medium with

n = 3.513 in contact with nonlinear medium.

The unique feature of the zero’th order nonlinear guided wave solutions are the existence
of wave propagation for £ > max (n;,n,) and the local maximum in guided wave power, see
branches(a) in Fig. 3.2. The self-focusing action of the nonlinear substrate leads to a field
maximum in that medium and the nonlinear guided wave branches (a) degenerate at high
powers into single interface surface wave. Self-focusing in the nonlinear substrate also occurs
for higher order nonlinear guided solutions (branches (b) in Fig. 3.2 ). Note also that the
values of the local maximum of the power flow corresponding to the branches (a) and the
values of the absolute maximum of the power flow corresponding to the branches (b) in Fig.

3.2 are clearly different in two cases (i) and (ii).

Fig. 3.3 shows the dependence of a(u,/&,)(H?/&) on the dimensionless coordinate k,z
for three values of the propagation constant £ corresponding to the same value of the
dimensionless power flow p/p, =12 and for n, =3.590,n, =3.513. For S =3.5414 the

electromagnetic field is concentrated in the finite superlattice medium and there exist several

local maximum localized in the nonlinear self-focusing substrate occurs.

In Fig. 3.4 we illustrate the dependence of a(u,/&,)H? on the dimensionless coordinate
k,z for three values of the propagation constant g corresponding to the same value of

p/p, =7 and for n, =3.590,n, = 3.513. In this case there are several local field maximum
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in the superlattice medium and the field minimum closest to the nonlinear substrate moves

with increasing £ into that medium.

Fig.3.2: B vs, P for n, =3502, N, = 1, d, = d, =0.075 A, N=10, for two cases
Po
*casel: Ny =3.95 N, =3513 *casell: N =3513, N, = 3.

Fig. 3.3: atoH? s, k,z for three values of p
£oE

Fig. 3.4: OgﬂH2 VS. koz for the same three values of ,Bas in Fig. 3.3.
&p



Chapter 4

Nonlinear TM waves between nonlinear medium and
superlattices in the long wavelength

4.1- Introduction

There has been considerable interest recently in the properties of quasiperiodic structures.
Theoretical investigations have focused on one dimensional Schrodinger equations with two
values of potentials arranged in a quasiperiodic sequence[17], and superlattices with two
thicknesses of films arranged in a quasiperiodic sequence [18]. The quasiperiodicity in the
potentials or the superlattice layering has been imposed analytically by requiring that these
parameters follow a Fibonacci sequence [19], i.e., if a system is constructed of building blocks «
and [ ,hen the system will be a sequence of blocks which obeys the recursion relation
F,=F, +F,,, forinteger m>3, with F, = {a} and F, = {@f}.To illustrate the procedure ,
then , the next iteration produces F, = {affa}. Therefore, we see that the extended sequence

will be {aﬂaaﬁaaﬂa X } .

We investigate the dispersion relations in semi-infinite superlattices in contact with nonlinear
magnetic cladding [20—26]. The unit cells in the superlattices, are composed of two different

thicknesses of bilayer minicells arranged in a Fibonacci sequence. We find that there exists
another spectrum of both bulk and surface modes in the quasiperiodic structure, which is not
present in the periodic structure. These surface modes become nonreciprocal with respect to the
direction of propagation in an applied magnetic field. Since the number and frequency of these
modes depend upon the layering of the unit cell, and since the surface modes are nonreciprocal,

our results could be important to surface-wave-device applications.
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4.2- The dispersion equation of the periodic superlattices

We seek a solution to Maxwell’s equations corresponding to a TM  electromagnetic wave
propagating along the X -axis in the xz -plane with wave number k and angular frequency o.

The electric and magnetic vectors of the electromagnetic field then take the form.

E =[E,(2).0,E,(2) '™
H =[0,H, (2),0f" "

The nonlinear magnetic cladding is assumed to be isotropic with a
permeability z, =y, + a|H |2 = u, +aH, where y is the linear part of the permeability and «

is the nonlinear coefficient. This expression arises from the expansion of the permeability about

an applied static field H,, and terms that could lead to harmonic generation are neglected. Hence,

H is an ac magnetic field carried by the TM wave . H, is real because only stationary, non-

y

radiating waves will be considered .

The magnetic field in the nonlinear cladding is given by [1 6]:

1 |2 k
H = — by S 4.1
Tk Vag cosh[k,(z -z, )] @)

where K is the pointing vector in the X —direction which is the direction between superlattices

and nonlinear cladding .
In Fig. 4.1, we have the superlattices €,,&g,&,,85 -+ as unit cells , each of them has a
depth L, where L, =d , +d ;. Now we introduce the solution to multi- layer &,,&; in one unit

cell.

In the long wave length, static approximation, we can write:
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VxE =0 (4.2)

If we make the assumption that only material A contains free charges and material B is an

insulator, then we may write the dielectric functions of the materials as the following:

g 0 g

ex=| 0 & O (4.3a)
—-ig, 0 g
g 0 0
=10 & 0 |=¢4l (4.3b)
0 0 &

where :
2 2 2
; W-0p ;
s =l t—5—5p &=6ay— 5 A & =g, 1-—
; — @ (o —o7) @

. . . . eB
In this equation @, is the plasma frequency, @,is the cyclotron frequency e’ and the

subscript oo refers to the background dielectric constant of the given material and m® is the

effective mass of the charge carriers .

The equation (4.2) allows us to introduce a scalar potential @ given by E = —V®. Using

this and the relationship, D = ¢E , we find the following:

V.D=0
2 2 2
vb=s Lo+ Lole Lo (4.4)
OX oy oz

The potential does not depend on z, then the equation (4.4) becomes :
2 2
%(D . %Cb 0 4.5)

and the solution of this equation is :
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D, = (A\nek& + A]Zefkaz) gitkat) | qiQ;L

_ % —k&zy pikx-ot) AiQuL
®,, =(B, e +B, e ")e ™" .e

n

where 6z is the depth along z —axis and Q, is the block wave vector.

To find the electric field, we introduce the following equations:

VO

eE

o m
Il

E,, = _k(Ameka‘z _ Anze—ka‘z) gilke-at) giQ;L

EAnx — _ik(Aﬂekéz + Ahze_k&) ei(kx—a)t) _eiQnL

D. = (_{6‘1 +é, }Aﬂek& + {51 e, }A]ze—k&) pitkeat) _giQ,L

Anz

= ka —kaz | pi(kx—et) 4IQ,L
Doz = {_ (& + &) Anme” (6 = &) Ane Z}e' b g

ok koz —koz i(kx—at) iQ,L
EA(n+1)x = _lk[A(nﬂ)le + A(n+1)2e ]e "€

By the same way we have :

_ ki —kaz | pikx—at) AiQuL
D _—kgB[Bme *—B,,e Z]e' e

Bnz

_ koz —koz i(kx—at) iQ,L
DB(n+1)z = —keg [B(n+1)1e - B(n+1)2e ] € €

E —ik[B gk _ ane—kéz] gitke-at) oiQ;L

Bnx — ni

o koz —kéz | Ai(kx—at) AiQ,L
EB(n+1)x__|k[B(n+1)le _B(n+1)2e ]e €
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NL medium
7z=0 X
>
das€a
dg;. &5
superlattices
dps€a
gy, €5
z
v

Fig. 4.1: The geometry of the system

In figure (4.1) we have: L=d,, +dg,, or L=L, +L ;+L,, where L is the depth of one unit

na

cell.

The potential ® and the displacement vector D, must be continuous at the boundary, now we

want to use the boundary conditions at two steps :

The first step: between the last depth of A, and the beginning depth of B, .

The second step: between the last depth of B, and the beginning depth of A

n+l) *

Then we get the following equations:

A+ A e =B +B, (4.19)
(& + &) AN + (&, — &) A" = £,(B, - B,,) (4.20)
BnlekdBn + ane_kdBn = A(n+1)1 + A(n+l)2 (4.21)
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(& + 52)A(n+1)1 +(&, - 31)A(n+1)2 = gB(BnlekdBn - aneikdBn) (4.22)

Eliminating B, and B, from the equations (4.19-4.22), as shown in (Appendix A), we can write
the following result:

A<n+1>1 A
=T, (4.23)
A(n+1)2 Ahz
where
xy-eAl-eBz—wz-eAl-eBI Wy-eA2~e32—wz~eA2-e31
1
T, =
—4e6q

xz-eM . Bl _xz.eM . gB2 xy-eAz-eBl—wz-eAz-eBz

is the transfer matrix that gives the constants A ,, in terms of A, constants
and

W=2¢g;—6,+¢
X=¢&3—& —&
y=¢& —¢ +¢&,
ZI=¢&5t6&,+¢ >

e®! =gl (4.24)
eBZ — e—kdBn
eAl — eden
eAl — e—den
In a similar way we can find another transfer matrix T,, which related the constants B, ,, to the
constants B, , as shown in (Appendix B) as the following:
B(n+1)1 Bnl
=T, (4.25)
B(n+l)2 Bn2
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where

XZ(gl _ gZ)eAZJrBl _ ZW(gl + gz)eAl+Bl Zy(gl + gz)eBZJrAl _ XZ(SI _ gZ)eA2+BZ)

T,=R (4.26)

)eBl+A2 )eA2+B2

Xz2(g — &, — XW(g, +&,)e"® Xy(g, +&,)e N — 2% (g, - &,

and
1

(¢ _52)()(2 - Zz)

Now we want to find T the transfer matrix between the cells (n, n+1) such that we have just

two layers ¢,,&5 1n each cell :

T=T,T, (4.27)
the constants between the cells (n, n+1)are :

C(n+1)1 C

nl
_T. (4.28)

C(n+1)2 Cn2

where the transfer matrix T gives the dispersion relation :

cos[Q,(d, +dy)]= %tr(T) (4.29)

4.3- The dispersion equation of the surface

To find the dispersion for surface waves between nonlinear cladding and semi-infinite

superlattice, we match the boundary conditions at the surface z = 0, then we use the continuity

of tangent E and normal D as the following.

In the nonlinear medium the fields are :
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2 : _ )
E, = _Lk_l 2 s1nh2[k1(z ZO)] . gillx=e) (4.30)
we, k, \sa cosh’lk(z-z,)]

o (4.31)

D Kk [2 1 ikt (4.32)
" we, k, \&a coshlk (z-z,)]

E,=-Vd, (4.33)

CDAn — {A]lek& + A]ze_k& }ei(kx—a)t)HQnL (4.34)

E:—[§i+%j+§kj-®m (4.35)
X yA

EXA — _(ik)[Aﬂek& + A]Zefké‘z ki(kxfwt+QnL) (436)

EZA — _k[Aﬂeké'Z _ A12€—k5zki(kx—a)t+QnL) (437)

At the point Z =0 the boundary conditions give:

E. =E, (4.38)

xnL

D, =D, (4.39)

znL

From the equations (4.38) and (4.39) we can write:

1 k' [2 sinhlkz,] o
oz 1 Vo ooz, ] 0 4.40
we, ko ga COShz[kIZO] (AOI + A()z)e ( )

1 k1 2 1 o
% Vea coshliz,] v WET 4.41

W&, ko \/; COSh[kle] (AOI A()z) ( )
ot et K[ sinka] s

1 2 we, kko ga cosh? [k1zo] )
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, i ki 1 2 1
el 4 A Qb - % o 4.43
gl A we, k, \ea cosh[k,z, | (4.43)

aeer =L 1k [2 Kk tanhlkz,] (4.44)

2 ws, k, \ga k coshlkz,]

ou_1 1 k J2 1 4.45
Aok 2 we, k, \ea cosh[klzo][ ] (449

We can use the relation:
T|A)y =€ |A) (4.46)

to write the following equations:

T, T, Ao Ay
=e'on (4.47)

T, T, A, Ay
A01T11 + A02T12 =e'o A01 (4.48)
A01T21 + Aoszz =e'o Aoz (4.49)

From equations (4.48) and (4.94) we find

T, +iT12 - ﬁTﬂ +T,, (4.50)
A\)l 2
If we let
A, (4.51)
A

then the equation (4.50) gives:
1
T,+1T, = ETZI +T, (4.52)

which leads to
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Z{Tn + /ﬂ-lz} =T, + AT,
The equation (4.53) is the dispersion equation of the surface where

k
k, tanh[k,z, |

4.4- The power for superlattices and nonlinear medium

(4.53)

(4.54)

The power of the system, where,L = L, = L, is the sum of the total power of all powers in

each layer as the following equations:
P—l-j(ExH*) dz
2 X

P:—%J'EZH;dz

k

H
nA,B 20)505ABI ynAB
Py = = o] Hondz
A 2,6, <" A
Pxs 26050 Zn o_[ H a2

_ —ik(Amek& + Aﬂefksz),ei(kxwaQnL)

s kéz —kdz \ 41 (kx—at+QnL)
E,z =-1k(B,e“" + B, e “)e
H yAB — J-Ia)gogA,BEan,de

Koz k&
HynA=a)‘90€A(A1le - A,e bz)

k& —ké
HynB = a)gogB(Bnle - ane Z)
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(4.55)

(4.56)

(4.57)

(4.58a)

(4.58b)

(4.59)

(4.60)

4.61)

(4.62)

(4.63)



k

P,p=|—2—H2, .dz 4.64
nA,B .[ 26!)806'&5 ynA,B ( )

To find the constants A,B we write,

T=TT, (4.65)

and the vectors comes from the following equation;

A, Ao Ao
:-I-n — eitnkOL

; (4.66)
A, Ay Ay

where the A, ,, are constants to be calculated from the boundary conditions as the following:

AOI :lLﬁ i.;.ﬁ.tanh[klzo] (467)
2 we, Kk, g cosh[klzo] K
11k [2 1
=t = 4.68
A 2 we, k, \ga coshlkz] (4.68)
A, = Aem" (4.69)
A, = Ane (4.70)

The B's constants are coming directly from the A'S constants as:

=T, (4.71)
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_801_ Abl

-7, (4.72)
_BO2 AOZ
i Bnl ] BOI

_ 10 (4.73)
_Bn2_ BOZ

From the equations (4.66-4.73) we have :
Bm _ A)l{xz(gl _gz)eA2+Bl —WZ(E,‘I +82)eA1+Bl}‘ grimkL A)z{yz(él +82)eA1+Bl —x(e, _gz)eAznaz}_ gtk L (4.74)

an :A)l{xz(gl _gz)eA2+Bl —WX(&‘I +82)eAl+Bl}‘e—itnlq,L + A)z{xy(fﬁ +82)eA1+BZ —22(81 —82)6A2+B2}- gL (4.75)

P = 2a)go Zn ijzgggf\ A e — A e }Zdz (4.76)
PNA _ kxa)280€A { Z:‘:OJ'Ai . ezkb‘zdz n Z:_OJ.A?Z . e—zkb‘zdz _2Z:ZOJ.A11A\12dZ} (477)
o K a)gogB { IR D S - T 3 IBmandZ} (4.78)

To find the power, we can use the following integrals:

1 [ ez =i[e2k&]§ =i[e2“\—1] (4.79)
2: [ e*dz= 21k[ 2km]o _21k e —1] (4.80)
3: [ ez =%[ 1-e 2] (4.81)
4: |7 ez =21—k[ 1-e2®] (4.82)
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so that the total power can be written as:

P

total

=P

nonlinear

+ Pya + P (4.83)

4.5- Results and discussions

In our numerical results, we assume that material A is doped semiconductor GaAs, while

material B is undoped simiconductor GaAs. For these materials, we use &, =13.13,and the
doping  concentration is n=10"cm™. The plasma frequency is , =0.04075eV, and
u =129,

If we label the two different bilayers « and /£, then a unit cell composed of three bilayers

will be look like afix. The total thickness of each bilayer will be denoted d, and d,
respectively, and we label the thicknesses of the individual films d,,d5,d; and dg. Inall of

what follows, we take d,/d, =1.618 , d, =2d4 ,and d, =2d.
For the purpose of comparison, we begin by showing the dispersion curves for the periodic

superlattice (F, =1). In Fig. 4.2 the bulk bands between Q,L =0 andQ,L =7 in this case the
: . L 1
applied field is zero, and the equation is cos(Q,L) = Etr(T ).
In Fig. 4.3 we show the dispersion curves for bulk plasmons in the case F, = 3. Here we take

the applied magnetic field to be zero and the equation is cos(Q,L) = %tr(‘l’ ). The uppermost and

lowermost bands are extremely narrow, note that the boundaries of the bulk bands are given by
QL=0,and QL =17.

Fig. 4.4 depicts the surface modes for the same superlattice, again without an applied field.
Both +k are shown, and we note that all modes are nonreciprocal with respect to propagation
direction. The surface dispersion equation is given by equation (4.53).

Fig. 4.5 shows the dispersion for the surface modes again, but this time with an applied field

given by @ = 0.004075 eV .

Both +k are shown, and there are several points of interest.
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upper bandz

[owwer bands

Fig. 4.2: The Computed dispersion curves for bulk modes (F,=1)

[ower bands

Fig. 4.3: The Computed dispersion curves for bulk modes (F ;=3)
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Fig. 4.4: The Computed dispersion curves for surface modes the field is zero

Fig. 4.5: The Computed dispersion curves for surface modes . = 0.004075 eV
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Chapter 5

Polaritons in an n-i-p-i semiconductor superlattice
covered by a nonlinear magnetic cladding

5.1- Introduction

Recently a number of papers has appeared dealing with the propagation of bulk and surface
plasmons in semiconductor superlattices of various types. Binary superlattices consisting of
alternating layers of materials a and b with or without a two-dimensional electron (hole) gas at
the interfaces where studied by many authors [17 - 21]. A particular superlattice structure, the so-
called n,i, p,i superlattices has also been investigated and its particular features discussed [26].

In this chapter, we present a full theory of the bulk and surface-plasmon excitation spectrum
of a finite superlattice covered by a nonlinear magnetic cladding. We have included the effects of
both retardation and an external magnetic field and we have obtained the dispersion relation for
surface magnetoplasmon polaritons in this structure.

Our model is based on a transfer-matrix treatment, already presented earlier, to simplify the
algebra which is otherwise quite involved. Since the quantization of the electronic states into
subbands is quite negligible due to our basic assumption that the layer thicknesses are sufficiently
large, we can describe the properties of the layers by macroscopic dielectric functions. Thus the
electromagnetic fields in each layer are described by solving Maxwell’s equations subject to the

appropriate boundary conditions.

5.2 Theoretical model

The guiding structure to be considered consists of a nonlinear magnetic cladding in contact
with superlattices everywhere on the z = 0 plane, where the z - axis points into the structure, the

applied magnetic field is along y - axis and the propagation is along x- axis. The nonlinear

magnetic cladding is assumed to be isotropic with a permeability given by [13].
Hne :ﬂL+a|H|2 = g +aHy (5.1)
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where g, is the linear part of the permeability and « is the nonlinear coefficient. This
expression arises from an expansion of the permeability about an applied static field H,, and

terms that could lead to harmonic generation are neglected. Hence, H is the ac magnetic field

carried by the TM wave. H,  is real because only stationary, non-radiating waves will be

considered.

We have a solution to the Maxwell’s equations corresponding to a TM electromagnetic wave

propagating in the nonlinear cladding [13]

1 /2 o
") = k_oJa:es “cosh[k, (z - 2,)] 62

where z, is a constant of integration that defines the position of a self-focused peak in H, and

a, = \kZ—kieu, , &, isthe dielectric constant of the nonlinear medium .

The semiconductor superlattice consists of multilayer materials in cells along the z - direction.
Materials a and c are n type and p type, with dielectric constants ¢, (w) and ¢, (@), and with
thickness a and c respectively. Materials band d are intrinsic semiconductors with frequency
independent  tensors g and &, and thickness b and d respectively. The unit cell has
lengthL=a+b+c+d and is designated by the index n.

In the n'th unit cell, at the interfaces z=nL and z =nL+athere is a two-dimensional
electron gas, whileat z=nL+a+b and z=nL+a+b+c there is a two dimensional hole gas.
We assume that a uniform external magnetic field is imposed in the y - direction and that surface
magnetoplasmon polaritons are allowed to propagate in the x- direction with a wave-vector k

and frequency @ .

We are going firstly to find the dispersion relation for the system in an infinite superlattice and
then for a finite one. In both cases the field amplitudes are assumed to be localized at each

interface. In the following we discuss bulk modes and surface modes.
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5.2-a Bulk modes

To find the dispersion relation for the bulk modes we use the boundary condition to find the
field constants in the layers of superlattices as a function of well known constants at the surface.

The electric and magnetic fields in superlattices can be written as:

E"(x,t) = [E] (ko) 0, EX(z]ko ) (5.3)
and
H"(x,t)= [0, H (zke) 0! (5.4)
In each layer these fields satisfy Maxwell’s equations:

2

VxVxEN(x 1) = g, (w)% E"(x,1). (5.5)
and
VxH"(xt) = &¢; (w)%ﬁ“(x,t), (5.6)

where &, is the vacuum permittivity, &; is the dielectric constant, and j =a,b,cor d.

In the equations (5.3) and (5.6) the x- component of the electric field and the y - component of

the magnetic field in each layer of the n'th cell is given by:

Ey(zka)= Ale™" + Aje™ (5.7)
and
H? (zfkeo) = -i —“’Z‘)gi [Are — A7 ] (5.8)
i
where

2 2 .2}2
" :{(kX £,® /C)‘ k> egmlc (59)

b il 1 - K2k, < g0l c

Therefore, using the boundary conditions for the electric and magnetic fields given by the
equations (5.7) and (5.8) at the interfaces:

z=nL+a,nL+a+b,nL+a+b+c and z=(n+1)L,we obtain the following equations:
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Aina fa + Azna _a = Ainb + Aznb’ (510)

ea(AL T, = AL )= (e + 0 )AL — () + 0, A, (5.11)
AL+ AT = AL+ AL (5.12)
(AT, = AL ,) = (sl — )AL - (sl + 0 AL — (6L + 0 AL, (5.13)
AT+ AT = AL+ AL, (5.14)
(AT — AT = (s) — 0 )AL = (&) +0.) Ay, (5.15)
A, f, +A2df = ”*1 ”a*l, (5.16)
gy (AL s = Ay fy) = (i — )AL = (e + o) ALY (5.17)

In the equations (5.10-5.17) we redefined Ajjand A}, as:

An, = Apel et (5.18)

Ay, = Apet e (5.19)

An, = An el e (5.20)

A = AN el (lsaioio (5.21)
where m:1,2,g}:i,j:a,b,c,d,ap— : p=eh f =) f =e

a; ma)go

We define, for each medium, the column vector:

A) = {A&’ } (5.22)

i

The equations (5.10-5.17) can be written in a matrix form as:

M

a

Aan>:Nb
\Ab

A
A')

A
n+1>

(5.23)

)=N
AT)=N
Al)=N
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where we have defined the matrices

f f
M; { ' 5 ,’f} (5.24)
¢ —&il

and
1 1
N; ={ , , } (5.25)
¢ p
with p=h for j=a,b and p=e for j=c,d.
From the equations (5.23-5.25) it is easy to see that:
\Aj”“) = T\ A, (5.26)

where the matrix T is given by:

T = N*M,N;*"M_N*M, N ™M, (5.27)

The matrix T in the equation (5.27) is a transfer matrix because it relates the coefficients of the
electric field in one cell to those in the preceding cell. Taking into account the translational

symmetry of the problem, we can use Bloch’s theorem [19], that is:

AT = e A), (5.28)

By using the equations (5.26) and (5.27) we have:

T| A7) = e |AT), (5.29)

T A ) =e A7), (5.30)
and consequently

[cos(QL)l —%(T +Tl)} A =0 (5.31)

Since ‘AJ”> is a general vector of the structure considered, the dispersion relation of the bulk
polaritons on the superlattice will be given by:
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cos(QL)I :%(T +TH (5.32)

From the definition of the transfer matrix in equation (5.27) and using the equations (5.24) and
(5.25) we can show that det(T) =1, therefore

T, -T.
T—l — |: 22 12j| (5'33)
_T21 T11

and hence, from the equations (5.32) and (5.33) our dispersion relation for the bulk modes is
simply:

cos(QL) = %Tr(T) (5.34)

5.2b- Surface modes

In order to study the surface modes we match the boundary conditions for the electric and
magnetic fields at the surface where z = 0. Then the periodicity in the z direction is destroyed
and we can no longer assume Bloch’s theorem. Therefore we have to consider electromagnetic
modes that have their excitations localized in the near vicinity of the interface between nonlinear

magnetic cladding and superlattices, where we replace Q by i3, then Eq.5.34 becomes:

cosh(pL) = %TrT (5.35)

We can conclude this prices as:

|:T11 T12:| {Aﬂ _ eﬁ{Aﬂ (5.36)
T21 T22 AZa AZa

T11A10A +T12A§a = eiﬂLAioa

(5.37)
T21A10a "'TzzAga = e_ﬁLAga
0
if we replace Aga by A we have the dispersion equation of the surface:
T, + AT, =T, + AT, (5.38)
where
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A% tanh(e,z,)-a, /¢,
a tanh(e,z,)+a, /&,

5.3 Special cases in superlattices

If we consider a=c, b=d, and o, =o,. Therefore the periodicity of the superlattice is
L = a+b and the transfer matrix will be given by:

T, = N;'M,N;'M,

And the dispersion equation of the surface in this case is:
cos(Q(a+hb)) = %Trace(Tl) (5.39)

To find the power of the system in this case we have:

F)TOTAL = I:)NONLINEAR + F)SUPERLATTICES (5'40 I)
where
k,k
NONLINEAR W;ogf (540 “)
and
Prraines = (AL F| o) [+ D (a F e )| 2 A 2
SUPERLATTICES ~ a Zaa & a 20{a T a* ar
N N N
)| k)| Sl e -2 e a0
n=0 b n=0 b n=0

where A7, ., are constants can be found from the boundary conditions by using the following
surface constants at the point z =0

1 2 o sinh(a,z,)
E><NL = 2
ig,k, | e, cosh”(a,z,)

1 2 a

H = |- s
Mk, | ae, cosh(a,z,)

and

S

In the first layer, at the point z = 0, we have:

E.=AL+A, (5.41)
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and

Hyo = —i{%}-m& -A) (5.42)

the continuity of the electric and magnetic fields give:

Ea = Ea (4.43)
and
HyNL = Hya (5.44)
then, we have:
1 2 a
/ s tanh(e.z,) = A° + A° 5.45
ig,k, || e, cosh(e,z,) (@:2) = A+ Ay ( )

and

1 2 o _ wEHYE, 0 A0
k_ﬁ cosh(a.z,) '( 2, J{Aﬂ Al (5:49)

The solution of the equations (5.45) and (5.46) for the surface constants is:

o | a 2 1 a
—_. s . . tanh(a.z,) + —2 5.47
gl 2 | akos, | s, cosh(aszo)J [as (.2,) gj (G47)
and
o I « 2 1 a
| % e~ |latanh(az) -2 5.48
A =73 ke, \a cosh(aszo)J [as (@2,) gj (5.48)

when we find A7, A7, , we can find A;where j=a or b as the following:

AT A
=T (5.49)

n+1 n
A A

Another particular case, if we consider the limit where retardation effects can be neglected, we
have that «, = a,, and equation (5.39) becomes:

@ L K, {cosh[(1+s)K,)]-cosh[(1-s)K, |}
[Q}  (r+1sinh[L+5)K, - (r =1)sinh[1-s)K, ]+ F "’ (5.50)
with
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F = 2(r? +1){cosh[(L+ s)K, Jeosh[(1 - s)K, ]~ 1} - 2(r? — 1)sinh[(L+ s)K, Jsinh[1-s)K, ]
+4r cosh[(1+s)Q, Jicosh|(1+ s)K, Jcosh[(L - s)K, ]}

where we have introduced K, =k,a, Q, =Qa, r=¢,/g, s=b/a, and Q=

Another special case of our results is the dispersion relation of bulk plasmons, in this case the

superlattice consists of two dielectric materials a and b with dielectric constants &, (@) and
g, frequency independent, respectively. The dispersion relation of bulk plasmons in this case can

be obtained from the equation (5.39) by considering «, =, =k and o, =0, =0, then we

obtain:

cos[Q(a +b)] = > L [(s2 + &2 )sinh(ka)sinh(kb)+ 2¢,¢, cosh(ka)cosh(kb)}  (5.51)

agb
which equivalent to:
+cos[Q(a +b)] = %Tr(Tz) (5.52)
where
T= (Tz )2
5.4- Numerical results and conclusion

In this section we present numerical examples of dispersion relations of magnetoplasmons in
superlattices. We will show that the effect of quasiperiodic layering is to increase the number of
bulk bands and surface modes. We also show that the new surface modes are nonreciprocal with
respect to propagation direction in the presence of an applied magnetic field.

In order to obtain numerical results we consider the dielectric materials a and c¢ as Si doped

with n and pimpurities. Since we do not use highly semiconductors, we assume that
&,(w) = ¢,(w), and the dielectric constant of the Si can be taken as ¢(w) =& (1-0’/®}).
Where g =11.7is the background dielectric constant of the material, and
®, = 7.65x10"s™ which is the electronic plasma frequency and we consider &(w) independent

of the impurity density. The effective mass of the electrons and holes are related to the electron
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massm, by m; = 0.2m,,m, = 0.4m, respectively. We also assume that the dielectrics b and d
consists of SiO, with dielectric constant ¢, = ¢, = 3.7.

Fig.5.1 shows the dispersion for the surface modes with an applied magnetic field field given
by w. =0.004075eV . Both £k are shown, and there are several points of interest.

Fig. 5.2 displays the frequency (@/w,)of the two lower and upper bands of the bulk

polaritons as a function of k,a, for superlattice. we plot the dispersion relation for surface modes

and bulk polaritons by considering the semiconductor layers (n and p) with 400 A°of thickness

and the insulators with 200 of thickness and with: |o|=|o,|=2x10® carrier/m?,

1, =1.29,a =8.869x10°m*A~*. We observed that the existence of four bands tend to crowed
together when k increases.

Fig. 5.3 illustrates the dependence of aHj on the dimensionless coordinate k,z for two

values of the propagation constant S we see that for g = 3.90,the maximum point of the curve
becomes greater than the other curve when g =3.5.

Fig. 5.4 shows the power flow versus wave index for TM surface guided waves at the
interface between a nonlinear magnetic cladding and the first unit cell in superlattices . Note that
we have three curves according to three different values of « such that the decrease value of «

the upper curve becomes.
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Fig. 5.1 The Computed dispersion curves for surface modes.

density of ¢ harges=2*10"16 camers/ocm”™3

=0 y17

[aewer bands

Fig. 5.2 The Computed dispersion curves for bulk modes
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Fig. 5.3 The nonlinearity interfaceaHj versus kOZ

Fig. 5.4 The normalized power flow versus wave index 3 = K, /K,



Appendices

Appendix A

Here, we want to find the transfer matrix T, which gives the field constants A, in terms of the

constants A, in superlattices.

The potential ® and the displacement vector D, must be continuous at the boundary, now we

want to use the boundary conditions at two steps :

The first step: between the last depth of the layer ('A,) and the beginning depth of the layer (B,).

The second step: between the last depth of the layer (B, ) and the beginning depth of the layer

Aml) '

Then we get the following equations:

Aﬂeden + A]ze_den — Bnl + an’
(& + gz)Amede” +(g, - 51)szeiden = &5(By — B,2)

kdBn —kdBn
Bnle + ane = A(n+1)1 + A(n+1)2 ,

and

kdBn —kdBn)

(& + gz)A(n+1)1 +(& - 51)A(n+1)2 = &p(Be" — B8

From the equation (A.1) we have:
B.= A\ueden - Nzeiden -B,

and from the equation (A.2) we have:

& +& kdan | | €2 — & —kdAn
Bnl = { }Aﬂe + c A]Ze + an

&g B

Adding equations (A.5) and (A.6) we have :
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2B = A11|:81 + &, +1j|_eden n sz{gz; & —1}6%”
B

&g
In the same manner, from the equation (A.3) we have:

kdBn —kdBn —2kdBn
Bnl = Am—l)le + Am—l)ze - ane

and from the equation (A.4) we get:

&1+ & | ken & & | kdBn ~2kdBn
B = A(n+1)1|: c ]e + Apiaye T "€ +B,,e
B

B

By adding equations (A.8) and (A.9) we have:

&+ & | kdBn €y =& | _kdbn
2Bnl = A(n+1)l|:1+ A :| € + Am—l)z 1+ ‘€

B €3

then from the equations (A.7) and (A.10) we have:

Aule, +& + gs)ekdBn + AL (=& +e + 5B)e_kdBn = A(n+1)1(51 t+é&, + gs)e+kdBn + A(n+1)2(‘92 —& +é&g)e

Now solving for B,, we get the following relations
from equation (A.1) we have :
B., = Aﬂeden + A\12e7den - B,

and from equation (A.2) we find :

&+ & kdAn €y =& | _kdan
BnZ = Bnl _|: :|An1e - AnZ A ‘€
B

!
from the equation (A.3) we can write :
Bn2 = [A(n+1)l + A(n+1)2 - BnlekdBn]' ekdBn

from the equation (A.4) we can write:
+ J—
an = {BnlekdBn o (81 “2 JA(nA)l o [M]A(nu)z} -
Ex &g
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(A7)

(A.8)

(A.9)

(A.10)

—kdBn

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



Adding equations (A.12) and (A.13) we have :

_ kdAn —kian | &1 T & kdan | €2-& —kdAn
2an - Anle + A12e _{ Awle - A\mze

! !

and from the equations (A.14) and (A.15) we have:

Zan = |:A(n+1)1(1— g]_ + 82 J + AYnJrl)z(l— 82 - (91 J:I . ekdBn
&g £x

Then from equations (A.16) and (A.17) we have:

—kdAn

(A.16)

(A.17)

Auleg —&—¢,)- e+ A,les —¢&,+5)-€ = [(55 —& 52)A(n+1)1 +(eg—&+ 51)A(n+1)2]' e (A.18)

For simplicity, we define the following :

W=g,—e,+6 )
X=¢&,—& &,
y=é&—¢&+6é
L= &g + &, + & >
@Bl _ akdén

QB2 _ q-kden
Pl _ akdan

Al —kdAn
e =€

J

Consequently, equations (A.11) and (A.18) can be written as the following:

AL A2 B1 B1
XA 87 + WA ™ = XA e + WA )8
and
AL A2 B2 B2
AT + YA = ZA(n+1)1e + yA(n+1)2e

In the matrix form equations (A.20) and (A.21) becomes :

X‘eBl W‘eB1 An-#l)l X'eAl W'eA2 Aﬂ

7 .82 y-e%2 | | Any: 7.eM y-er | | A,

which can be written as transfer matrix:
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(A.19)

(A.20)

(A.21)

(A.22)



AYn+l)l

AYnJrl)Z

Ay

Av

To find T,, we use the inverse of the matrix

from equation (A.22) we get :

B2

AYn+1)1
1
Xy —wz

A(n+1)2

y-€

_Z.eBZ

b -1
B 1
ad —bc
d -C
_W_eBl
X_eBl

aAl

Noting that xy —wz = —4¢,¢; then the equation (A.25) becomes :

Aim-l)l

A2 xz-eM

then the matrix T, becomes:

xy -e™

xz -e™

eBl_xz.eM.e

B2

_eBZ_WZ_eAl_eBl

g8l _x7.M . gB?
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(A.23)
—b
(A.24)
a
Al w-eh? A,
(A.25)
y-e* | [ A,
Wy_eAZ.eBZ_Wy_eAZ_eBl A,
(A.26)
xy-eAz-eBl—wz-eAz-eBz A,
Wy~eA2 B2 _\z.e"?.ght
(A.27)
xy-e“ el _\wz.e”?.eB2



Appendix B

In this appendix, we derive another matrix T,, which gives the field constants B, ,, in terms of
B, ones.

In the following equations, we want to eliminate A, and A, to find another matrix T, such that

B(n+1)1 Bnl
=T, (B1)
B(n+1)2 Bn2

By applying the boundary conditions between the last depth of A, and the beginning of
B(n.1y » WE get:
BnleBl + aneB2 = A(n+1)1 + A(n+1)2 (B-Z)

(& + 82)A(n+1)1 +(& - 51)A(n+1)2 = 5B(BnleBl - aneBZ) (B.3)
In equations (A.1) and (A.2) when n — n+1, we have :
A(n+1)1eAl + A(n+1)2eA2 = B T Binsa2 (B.4)
and

(& + 52)A(n+1)1eA1 +(& - 51)A(n+1)2eA2 = &g (B(n+1)1 - B(n+l)2) (B.5)

By eliminating A and A, from equations (B.2) and (B.3) we find

B1 B2
A(n+1)1 =Bye” + B - A(n+l)2 (B.6)
& B1 B2| & —&
A(n+l)1 = = [Bnle - ane ]_ 2 : A(n+1)2 (B7)
& *+é& &+ &

So that the equations (B.4) and (B.5) gives:
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A2 2A2
A(n+1)1 = (B(n+l)l + B(n+1)2) e - A(n+1)ze (B-8)

& A €~ € 2A2
A(n+1)1 = . (B(n+l)1 - B(n+1)2) e - 2 AYnJrl)Ze (Bg)
6‘1 + 6‘2 6‘1 + 6‘2
By using the equation (B.7) we can write :
&+ & & B1 B2
2 Apip = —2—(Be" - B,e”%)+ Az (B.10)
& — & & —&

The equations (B.6) and (B.10) gives the following relation:

{1+81+82}A(M)1:{1+L}Bnlem+{l— %s }ane” (B.11)
3 2

&~ & &~ €& &~ &

From the equation (B.9) we have :

&+ & &g

A(n+1)1 =

A2 2A2
Bim€ - (B(n+1)1 - B(n+1)2) + Apia)® (B.12)
& =& &~ &

The equations (B.8) and (B.12) gives the following relation:

{1"' a4 :|AYn+l)l = |:1+ 8—8} B(n+1)1eAZ + {1_8—8} B(n+1)2eA2 (B.13)
€

& —& & té& &+ &

The equations (B.11) and (B.13) gives the following relation:

& —& & —& &+é, &+é,

L+ = }Bnlem{l— - }aneBZ:[1+g—B}B<n+meA2{1_8—B}B<n+me” (B.14)

By using the equation (A.19), the equation (B.14) can be written as:
(6,+8,) (6 — &, +&5)Bye™ + (5, +6,)(e, - &, - gs)aneBZ =

(e—&)e+e+ gB)B(m—l)leAZ +(g—¢&) e +e&, - gB)B(n+1)2eA2 (B.15)

The equation (B.2) give the following relation:
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AXn+1)2 = BnleBl + BnZeB2 - AXn+1)1 (816)
By the same way, the equation (B.3) give the following relation:

2

& +eE
A(n+1)2 = —{BmeB1 - aneB2 }_ -2 A(n+1)1 (B-17)

2 & &) =&

By using the equation (B.4), we have :
Ay = B(n+1)1eA1 + B(n+1)2eAl - A(n+1)1eZA1 (B.18)
&y A & Té& 2AL
=—==B -B — e B.19

An-*—l)z 82 _ 81 { (n+1)1 (n-*—l)Z}e {;'2 _ 81 A(n+1)1 ( )

The equation (B.17) can be written as:

&8 3

A(n+1)2 = —{BnleBl - BnZeB2 }_ AYnJrl)l (BZO)

&+ & &, +&

Eliminating A ,,, from the equations (B.20) and (B.16) the result is:

{1+ & —& }A(ml)z _ {1_ &g }BnleBl n {l+ &g }aneaz (B.21)
&+ & &, +& & +é
The equation (B.19) can be written as:
&4 _ % Al 2AL
= S = T S e B.22
{6‘2 + gl}ﬂml)Z & 4 & { (n+1)1 (n+1)2} A(n+l)1 ( )

The equations (B.18) and (B.22) gives the following result :

&—€& £ £
{1+ 1 Z}A(m)z :{1_ B }B(n+1)1eAl+{l_ ; }B(“ﬂ)zeAl (B.23)

&+ & &, +& &+ &

Eliminating A ,,), from the equations (B.21) and (B.23) we have :

{1_ = }BmeBl + {1+ = }BnleB2 N {1_8—B}B(n+mem " {Hg—B}B("ﬂ)zeAl (B.24)
&+ & &, T & &+ & &1 &

We use the equations (A.19) and (B.24) to find :

B1 Al Al
—XBe™ + 7B, = —XB,.;€" + 2B, 1€ (B.25)
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In the matrix form, the equations (B.25) and (B.15) can be written as:

(51_52)Z'eA2 _(51_52)'eA2 B(n+1)2 W(‘C"l‘}'gz)'eBl _y(gl*"c"z)'eBZ B..

Now the matrix T, comes directly from the equation (B.26) as:

XZ(Sl _ 82)eA2+Bl _ ZW(gl + Ez)eAl+Bl Zy(81 + 52)e82+A1 _ XZ(&'l _ 82)eA2+BZ)
T,=R (B.27)
XZ(Sl _ gz)eBl+A2 _ XW(Sl + gz)eAhBl Xy(é‘l + gz)eBZ+A1 _ 22(81 _ gz)e/.\2+|32
where

B 1
(6,—5)(X* - 7%)

Now we want to find T, the transfer matrix between the cells (n, n+1) such that we have

just two layers ¢,,&;, ineach cell :
T=T,T, (B.28)
The constants between the cells (n, n+1)are:

C(n+1)1 Cnl
_T. (B.29)

C(n+1)2 an

where the transfer matrix T gives the dispersion relation :

cos[Q, (d, + ;)] = S tr(T) (B.30)
where d, +d; = the depth of the cell .
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