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Abstract 

The present work continues the study of two semi-directed BA networks, SDBA1 and SDBA for 

much larger m than before. In these semi-directed networks, the exponent γ for the power law 

governing the decay of the number 𝑛(𝑘) of nodes having(𝑘)neighbors, 𝑛(𝑘)~1/𝑘−𝛾, depends 

continuously on the parameter m, and the behavior for m → ∞ is studied. 

  The effect of different finite size with constant number of neighbours m and the effect of different   

number of neighbors with constant lattice size on two versions (SDBA1 and SDBA2) for semi-

directed Barabási-Albert networks are evaluated  to find out the size effects vary with m. 

 

 

 

 

Keywords: Directed BA Network, Undirected BA Network, Semi-directed BA 

Network. 
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Abstract in Arabic 

 الملخص

الشبه مباشرة  وفي هذه الشبكات الأول.أكبر بكثير من  mإن العمل الحالي يكمل دراسة شبكتين ألبرت برابيزي الشبه مباشرة ل

يعتمد بصفة مستمرة على  𝑛(𝑘)~𝑘−𝛾 تجاورها.التي (𝑘)للعقد  𝑛(𝑘) لقانون القوة الذي يحكم تلاشي الرقم γفإن الدليل 

 ما لانهاية. عرفة شكله السلوكي عندما تؤول إلى حيث نود م mالتدرج 

ثيرات المتجاورات لأرقام مختلفة بحجم شبكة ثابتة على ولتأ mلمتجاورات المحدود بأرقام ثابتة نفحص تأثير الحجم  والآن

 . mنظامين لشبكات ألبرت برابيزي لمعرفة كيف يؤثر تغيير الحجم على ال
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CHAPTER ONE 

ISING MODEL 

1.1. Introduction 

The Ising model is the simplest and most famous spin system model for the study phase 

transitions. It was introduced in 1925 by Ernst Ising (1 )in his Ph.D. thesis. He solved the 

model completely for one -dimension, and found that no phase transition occurs. He 

concluded that this should be the case for all dimensions. 

We can calculate the energy of a system by using the Hamiltonian 

                   𝑯 =  −𝑱 ∑ 𝒔𝒊𝒔𝒋<𝒊𝒋>  − 𝒉 ∑ 𝒔𝒊𝒊                                                                       (1.1) 

 Where 𝑠𝑖 =  ±1, 𝑖 = 1, … , 𝑁 (state of spin ) 

< 𝑖𝑗 > 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑠𝑝𝑖𝑛 

 J-coupling constant  

h- external magnetic  field 

 

 

 

 

                                                           
1 About professor Ernst Ising (Heise, Heß, Strecker, & Frank, 2010) 

- May 10, 1900 – born in Germany 

- 1924 – University of Hamburg, published his doctoral thesis on linear chain of magnetic moments of 

1 and -1, and never returned to this research 

- 1947 – Ising came to USA and became a teacher of physics and mathematics at State Teachers 

College in Minot, North Dakota 

- 1948 – became a physics professor at Bradley University, Illinois 

- May 11, 1998 – He passed away.    
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1.2. Fundamental Concept 

   1.2.1. Models in Statistical Mechanics 

Statistical Thermodynamics provides a connection between the macroscopic properties of 

materials in thermodynamic equilibrium, and the microscopic behaviour and motions 

occurring inside the material(Renn, 1997) 

In Statistical physics, a toy model is a simplified set of objects and equations 

relating them so that they can nevertheless be used to understand a mechanism that is also 

useful in the full, non-simplified theory. Some examples of "toy models" in Statistical 

Physics might be: The Ising model and the Potts model as a toy model for ferromagnetism. 

   1.2.2. Partition Function 

Partition functions describe the statistical properties of a system in thermodynamic 

equilibrium. It is a function of temperature and other parameters, such as the volume 

enclosing a gas. Most of the aggregate thermodynamic variables of the system, such as 

the total energy, free energy, entropy, and pressure can be expressed in terms of the 

partition function or its derivatives. 

There are actually several different types of partition functions, each 

corresponding to different types of statistical ensemble (or, equivalently, different types 

of free energy). The canonical partition function applies to a canonical ensemble, in which 

the system is allowed to exchange heat with the environment at fixed temperature, volume, 

and number of particles. The grand canonical partition function applies to a grand 

canonical ensemble, in which the system can exchange both heat and particles with the 

environment, at fixed temperature, volume, and chemical potential. Other types of 

partition functions can be defined for different circumstances. 

As a beginning assumption, assume that a thermodynamically large system is in a 

constant thermal contact with the environment at a temperature T, and both the volume of 
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the system and the number of constituent particles fixed. This kind of system is called a 

canonical ensemble. Let us label with s (s = 1, 2, 3, ...) the exact states (microstates) that 

the system can occupy, and denote the total energy of the system when it is in microstate 

s as 𝐸𝑠. 

Generally, these microstates can be regarded as analogous to discrete quantum states of 

the system. The canonical partition function is defined as: 

   𝒁 =  ∑ 𝒆−𝜷𝑬𝒔
𝒔   ,                                                                                                   (1.2) 

Where the symbol Z is the “partition function” and 𝜷 is the "inverse temperature", which 

is conventionally defined as:  𝜷 =  
𝟏

𝒌𝑩  𝑻
 , with 𝑘𝐵  denoting Boltzmann's Constant. The 

term 𝑒−𝛽𝐸𝑠  is known as the Boltzmann factor. 

Suppose a system is subdivided into N sub-systems with negligible interaction 

energy. If the partition functions of the sub-systems are 𝜁1 , 𝜁2, 𝜁3 , … … 𝜁𝑁 . then the 

partition function of the entire system is the product of the individual partition functions: 

𝒁 = ∏ 𝜻𝒋 
𝑵
𝒋=𝟏   .                                                                                                               (1.3) 

If the sub-systems have the same physical properties, then their partition functions are 

equal, 𝜁1 = 𝜁2 = 𝜁3 = ⋯ … = 𝜁 in which case  𝒁 =  𝜻𝑵. 

However, there is a well-known exception to this rule. If the sub-systems are actually 

identical particles, in the quantum mechanical sense that they are impossible to 

distinguish even in principle, the total partition function must be divided by a N! (N 

factorial) ("Partition function (statistical mechanics),")    

𝒁 =  
𝜻𝑵

𝑵!
 .                                                                                                                        (1.4) 
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    1.2.3.  Curie Temperature 

The Curie temperature ( 𝑇𝑐), or Curie point, is the temperature at which a ferromagnetic 

or a ferromagnetic material becomes paramagnetic on heating; the effect is reversible.   

A magnet will lose its magnetism if heated above the Curie temperature. The term is 

also used in piezoelectric materials to refer to the temperature at which spontaneous 

polarization is lost on heating. An analogous temperature, the Néel temperature, is 

defined for antiferromagnetic materials.  

Below the Curie temperature neighboring magnetic spins are aligned parallel within 

ferromagnetic materials and anti-parallel in ferromagnetic materials. As the temperature 

is increased towards the Curie point, the alignment within each domain decreases. 

Above the Curie temperature, the material is paramagnetic so that magnetic moments are 

in a completely disordered state. ("Curie-point,") 

The destruction of magnetization at the Curie temperature is a second-order phase 

transition and a critical point where the magnetic susceptibility is theoretically infinite.  

   1.2.4. Magnetic Susceptibility 

Magnetic susceptibility is defined as a physical quantity that characterizes the relation 

between the magnetic moment(magnetization) of a substance and the magnetic field in   

the substance. 

The volume magnetic susceptibility equals to the ratio of magnetization per unit   

volume of the substance M to the intensity H of the magnetizing field that 

is                                         χ = M/H.                                                                           (1.5)          

Magnetic susceptibility is a dimensionless quantity. 

Magnetic susceptibility may be positive or negative. Diamagnets, which are 

magnetized against rather than with the field, have negative magnetic susceptibility.  
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 For paramagnets and ferromagnets the magnetic susceptibility is positive (they are 

magnetized with the field). The magnetic susceptibility of diamagnets and 

paramagnets is low and depends very slightly on H. 

Magnetic susceptibility attains particularly high values in ferromagnets (from 

several tens to many thousands of units) and is very strongly and intricately dependent 

on H. Therefore, the differential magnetic susceptibility 𝝌 =  
𝝏𝑴

𝝏𝑯
 is introduced for 

ferromagnets. For H = 0,  the magnetic susceptibility of  ferromagnets isnot equal to zero

 but rather has the value χ. As H increases, the magnetic susceptibility increases,     

reaches a maximum, and then declines.  

Magnetic susceptibility usually depends on the temperature. The magnetic 

susceptibility of paramagnets decreases with temperature, conforming to Curie’s 

law. In ferromagnetic solids magnetic susceptibility increases with temperature, reaching 

a sharp near the Curie point θ. The magnetic susceptibility of antiferromagnets increases 

with temperature up to the Neel temperature and then decreases according to the Curie-

Weiss law. (Veselago & Vinokurova, 1988) 

    1.2.5.Magnetization  

The matter is built up out of atoms, and each atom consists of electrons in motion. The 

currents associated with this motion are termed atomic currents. Each atomic current is a 

tiny closed circuit of atomic dimensions, and may therefore be appropriately described as 

a magnetic dipole. If the atomic currents of a given atom all flow in the same plane then 

the atomic dipole moment is directed normal to the plane (in the sense given by the right-

hand rule), and its magnitude is the product of the total circulating current and the area of 

the current loop. If j(r) is the atomic current density at the point  then the magnetic 

moment of the atom is  

               𝒎 =  
𝟏

𝟐 
 ∫ 𝒓 × 𝒋 𝒅𝟑 𝒓  ,                                                                                    (1.6) 
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where the integral is over the volume of the atom. If there are  such atoms or molecules 

per unit volume then the magnetization  (i.e., the magnetic dipole moment per unit 

volume) is given by .  

More generally,        𝑴 (𝒓) =  ∑ 𝑵𝒊 𝒊  < 𝒎𝒊  >                                                             (1.7) 

 where< mi  >   is the average magnetic dipole moment of the th type of molecule in 

the vicinity of point , and 𝑁𝑖   is the average number of such molecules per unit volume 

at . 

Consider a general medium which is made up of molecules which are polarizable and 

possess a net magnetic moment. It is easily demonstrated that any circulation in the 

magnetization field 𝑀 (𝑟) gives rise to an effective current density 𝑗𝑚   in the medium. In 

fact, 

𝒋𝒎 =  𝛁 × 𝑴 ,                                                                                                              (1.8) 

where   𝑗𝑚  is current density and called the magnetization current density (Fitzpatrick, 

2006)  

 1.2.6. Ferromagnetism 

Iron, nickel, cobalt and some of the rare earths (gadolinium, dysprosium) exhibit a unique 

magnetic behavior which is called ferromagnetism because iron (ferrum in Latin) is the 

most common and most dramatic example. Samarium and neodymium in alloys with 

cobalt have been used to fabricate very strong rare-earth magnets. 

Ferromagnetic materials exhibit a long-range ordering phenomenon at the atomic 

level which causes the unpaired electron spins to line up parallel with each other in a 

region called a domain (The domain is a formation of regions of magnetic alignment from 

electron spins characteristic of ferromagnetic materials). Within the domain, the magnetic 

field is intense, but in a bulk sample the material will usually be unmagnetized because 
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many domains will themselves be randomly oriented with respect to one another. 

Ferromagnetism manifests itself in the fact that a small externally imposed magnetic field, 

say from a solenoid, can cause the magnetic domains to line up with each other and the 

material is said to be magnetized. The driving magnetic field will then be increased by a 

large factor which is usually expressed as a relative permeability for the material. There 

are many practical applications of ferromagnetic materials, such as the electromagnet. 

Ferromagnets will tend to stay magnetized to some extent after being subjected to 

an external magnetic field. This tendency to "remember their magnetic history" is 

called hysteresis. The fraction of the saturation magnetization which is retained when the 

driving field is removed is called the remanence of the material, and is an important factor 

in permanent magnets. 

All ferromagnets have a maximum temperature where the ferromagnetic property 

disappears as a result of thermal agitation. This temperature is called the Curie 

temperature. All the other classes of materials have positive susceptibility. Within these 

classes the magnitude of the susceptibility varies over a very wide range. However, at 

sufficiently high temperatures the susceptibility decreases with increasing temperature for 

all materials in these classes.  

It was found experimentally that all these materials follow the relationship 

𝝌 =  
𝑪

𝑻− 𝑻𝒄
    ,                                                                                                                 (1.9) 

here C and 𝑇𝑐 are positive constants independent of temperature and different for each 

material. (Zhang, Jiang, & Lin, 2014)   

1.2.7. Relation Between the Partition Function and The Various Thermodynamic   

In order to demonstrate the usefulness of the partition function, let us calculate the 

thermodynamic value of the total energy. This is simply the expected value, or ensemble 
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average for the energy, which is the sum of the microstate energies weighted by their 

probabilities and given as: 

< 𝑬𝒔  > = ∑ 𝑬𝒔 𝒔  𝑷𝒔 =  
𝟏

𝒁 
 ∑ 𝑬𝒔𝒆−𝜷𝑬𝒔

𝒔 =  
−𝟏

𝒁
 
𝝏 𝒁 (𝜷,𝑬𝟏,𝑬𝟐,…….)  

𝝏𝜷
=  

−𝝏 𝐥𝐧 𝒁

𝝏𝜷
    .              (1.10) 

or, equivalently:          < 𝑬 > =  𝑲𝑩 𝑻𝟐  
𝝏 𝐥𝐧 𝒁

𝝏𝑻
    .                                                        (1.11)                                              

and the variance in the energy (or "energy fluctuation") given as : 

< (∆ 𝑬 )𝟐 > = < ( 𝑬− < 𝑬 > )𝟐  > =  
𝝏𝟐 𝐥𝐧 𝒁

𝝏𝜷𝟐    .                                                       (1.12) 

While the heat capacity calculated by: 

𝑪𝒗 =  
𝝏<𝑬 >

𝝏𝑻
=  

𝟏

𝑲𝑩 𝑻𝟐 < (∆ 𝑬 )𝟐 > ,                                                                           (1.13) 

And The entropy given as : 

𝑺 ≡  
𝝏 (𝑲𝑩 𝑻 𝒍𝒏 𝒁) 

𝝏𝑻
=  

−𝝏𝑨

𝝏𝑻
    ,                                                                                         (1.14) 

where A is the Helmholtz free energy defined as A = U - TS, where U=<E> is the total 

energy and S is the entropy, so that  𝑨 =< 𝑬 >  −𝑻𝑺 =  −  (𝑲𝑩 𝑻 𝒍𝒏 𝒁)  .             (1.15)                                          

("Partition function (statistical mechanics),") 

1.2.8. Arrhenius Law: 

Arrhenius equation in chemistry equation is named after the owner of the world's chemist 

Svante Arrhenius, which describe the process of time chemical reactions (chemical 

kinetics), Arrhenius' equation gives the dependence of the rate constant  K  of a chemical 

reaction on the absolute temperature T  (in kelvins), 𝑲 =   𝑨 𝐞𝐱𝐩(−𝑬𝒂 /𝑹𝑻), where  A is 

the pre-exponential factor , 𝐸𝑎is the activation energy ,R  and  is the universal gas constant 

(Arrhenius, 1889),(Choudhury, Malhotra, Bhattacharjee, & Prasad, 2014), 
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1.3. Solving of Ising Model  

The Ising model was dissolved form in several stages as follows: 

 invented by W. Lenz and his student E. Ising (1920)  

 1D: solved analytically by Ising (1925): no phase transition in 1D and he concluded 

incorrectly that in higher dimension also no phase transition occurs. 

 2D square lattice: solved by L. Onsager (1944), exhibits phase transition also in higher 

dimensions phase transition can be modeled 

 Istrail showed that computation of the free energy of an arbitrary subgraph based on 

Ising model will not be approximated computationally intractable (not solvable) by 

any method for the case 3- dimension and higher. (Heise et al., 2010) 

As temperature(T) increases, spin (s) deviate more and more from the common 

direction, thus increasing the amplitude of spin waves reducing the net magnetization  

(Peierls, 1936) 

 

Low Temperature(T) 

 

High Temperature 

 

Solved by 

1-D  

  

 

Ising -1925 

 

2-D 

 

   

  

 

Onsager-1944 

 

3-D 

  

Proven 

Computationally 

Intractable -2000 
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1.4. Ising Model Basics   

The Ising model has some basic rules, including: (Iordache, 2000) 

a- A simple, classical model of a magnetic material. 

b- A Lattice (usually regular): several points in a set dimension, either 1-D, 2-D,3-D, etc. 

with a magnet or classical ‘spin’ at each spin has one of two states (+/-) or directions 

(up/down). down:  𝑺𝒊  ∈ {+𝟏, −𝟏}  (in Quantum Mechanics Would be     𝑺𝒊  ∈

{+𝟏/𝟐, −𝟏/𝟐}  ). Each line between points is called a bond. If there is a bond 

connecting two points, they are referred to as nearest neighbours.  

 

c- The ‘Spins’ Interact with each other via a coupling of strength J and to an external 

applied magnetic field h. 

d- The total energy of the ‘spins’ is the Hamiltonian: 

𝑯 =  −𝑱 ∑ 𝒔𝒊𝒔𝒋<𝒊𝒋>  − 𝒉 ∑ 𝒔𝒊𝒊    ,                                                                               (1.17) 

Where 𝑠𝑖 =  ±1, 𝑖 = 1, … , 𝑁 (state of spin ) 

h- external magnetic  field  ,  J-coupling constant  

If J>0, we have a ferromagnetic. Energy is lowest if all 𝒔𝒊 are the same favored.  

 

 

 

N 

S 

N 

S 
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If J<0, we have an antiferromagnetic. Energy is lowest if neighbouring  𝒔𝒊  are 

opposite favored. 

 

 

 

 

e- Introducing the inverse temperature parameter β=
𝟏

𝐤𝐁  𝐓
 , 

 where  𝒌𝑩 = 𝟏. 𝟑𝟖𝟎𝟔𝟓𝟖 𝒙 𝟏𝟎−𝟐𝟑 𝐽
𝐾⁄  , 𝑖𝑠 𝑡ℎ𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

1.5. Ising Model –Statistical Thermodynamics   

The Ising microscopical systems model as it is in statistical Thermodynamics  , so it is 

based on the principles of statistical dynamics as follows :(Huang, 2009) 

a- The probability for the system to in the microstate v defined as: 

𝑷𝒗   =  
𝟏

𝒁
 𝒆𝒙𝒑(−𝜷𝑬𝒗 ) ,                                                                                            (1.18) 

where  𝑬𝒗 =  −𝑱 ∑ 𝒔𝒊𝒔𝒋<𝒊𝒋>   ,                                                                                            

For β < <β critical (i.e. T>>Tcritical) spins are essentially random (. i.e. the probability of all 

configurations is essentially equal . 𝐥𝐢𝐦
𝜷→𝟎

𝑷𝒗   =  
𝟏

𝒁
    .                                                 (1.19)  

  But if  β > β critical (i.e. T<Tcritical), then for J>0, configurations with almost all spins 

aligned are much more probable. Where  Tcritical is the Neél or Curie Temperature. For 

J=1, β critical~0.44 or Tcritical~1.6.  

b- The partition function is defined as: 

Z (β, h) = ∑ 𝐞𝐱𝐩 (−𝜷𝑬𝒗𝒗  ) .                                                                                       (1.20) 

S N 

N S 
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c- The Magnetization: 

If no magnetic field term in h, h=0, then the magnetism is defined as: 

𝑀𝑣  =  ∑ 𝑠𝑖
𝑁
𝑖=1       or  𝑀𝑣 =  −

𝜕𝑓

𝜕ℎ
  ,where (f = −𝑘𝛽 𝑇 ln(𝑧) ) is the free energy, and if 

h≠0, then The magnetization is a function of β and h. 

d- The Mean Magnetization is given as: 

𝑴 ≡< 𝑴𝒗 >=
𝟏

𝒁
 ∑ 𝑴𝒗

𝒗

𝐞𝐱𝐩(−𝜷𝑬𝒗 )                                                                            (𝟏. 𝟐𝟏) 

e- The Mean Energy is given as : 

𝑼 ≡< 𝑬𝒗 >=
𝟏

𝒁
 ∑ 𝑬𝒗𝒗 𝐞𝐱𝐩(−𝜷𝑬𝒗 )                                                                         (1.23) 

In Figure (1.1) 

 

 

 

 

 

 

Figure (1.1): show Magnetization in zero external field, as function of temperature. 

(Huang, 2009) 
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Figure (1.2):  shows the relationship between energy versus temperature (𝑬𝒗  ∝  𝑻 )   

  (Huang, 2009) 

1.6. Applications for Ising Model   

Ising model has several applications in different fields including, the following :(Heise 

et al., 2010) 

a- Magnetism: 

*In 19th century: two theories: Ampere postulated that the permanent magnets due to 

permanent internal atomic currents versus. The theory of permanent magnetic moment as: 

- Electron spin discovered to describe magnetism 

- Ising model: investigate if electrons could be made to spin in same direction by 

simple local forces                                                                                                                                                      

the magnetism defined : 𝑴𝒗  =  ∑ 𝒔𝒊
𝑵
𝒊=𝟏       or  𝑴𝒗 =  −

𝝏𝒇

𝝏𝒉
   

temperature 

en
er

g
y
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Figure (1.3): As electrons orbit around the nucleus, they create a magnetic field. 

b- Lattice gas: 

- Interpret Ising model as a statistical model where B =[0,1],[unoccupied 

,occupied]  B = (σ + 1)/2  σ = [-1,1] 

𝑯 =  −𝑱 ∑ 𝑩𝒊𝑩𝒋<𝒊𝒋>           (1.26) 

The density of atoms can be controlled by chem pot  

𝑯 =  −𝑱 ∑ 𝑩𝒊𝑩𝒋<𝒊𝒋>  − ∑ 𝒖 𝑩𝒊𝒊                (1.27) 

 

 

 

Figure (1.4): density of atoms 
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c- Biologic – neurons in brain:  

Ising model has been applied in the biology of the human body as in states: firing, not 

firing .To reproduce average firing rate for each neuron includes activity of each neuron 

(statistically independent)      𝑯 =  − ∑ 𝒖 𝑺𝒊𝒊            (1.28) 

To allow for pair interactions when a neuron tends to fire along with another  

𝑯 =  −
𝟏

𝟐
 ∑ 𝑱 𝒔𝒊𝒔𝒋<𝒊𝒋>  −  ∑  𝒉 𝒔𝒊𝒊                     (1.29) 

 

 

 

Figure (1.5): for pair interactions when a neuron tends to fire along with another 

J – NN interaction of firing rate.              h – self-firing rate                           

This energy function only introduces probability biases for a spin having a value and for 

a pair of spins having the same value 
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CHAPTER TWO 

BARABÁSI ALBERT NETWORK 

 

2.1. Introduction 

 The system feature in natural systems is always a source of inspiration and beauty as 

related to physical and biological sciences where arranging crystals is the most important 

foundation of many developments in contemporary physics and complex systems in 

nature (Barabási, Albert, & Jeong, 2000). In fact, some of the systems around us give 

us a complex topology that appears somewhat random and unexpected, particularly the 

complex systems of networks consisting of vertices representing elements of the system 

and edges that represent the interactions between them. For example, genes in which the 

system ’ s proteins are the vertices while the chemical interactions between proteins are 

edges. Similar is the formation of an extensive network in the nervous system, and the 

which are vertices nerve cells, while the edges are neurons. But equally complex networks 

occur in social science, where vertices are individuals or organizations and the edges 

characterize the social interactions between them (Wasserman & Faust, 1994), in the 

business world, where vertices are companies and edges represent diverse trade 

relationships, or describe the world-wide web (www) whose vertices are HTML 

documents connected by links pointing from one page to another (Barabási et al., 

2000),(Kaltenbrunner et al., 2007) . The most important step is to understand the general 

characteristics of network development concerning the recent discovery of a surprising 

degree of self-organization characterizing the large scale properties of complex networks. 

Exploring several large databases describing the topology of large networks, that span as 

diverse fields as the www or the citation patterns in science, recently proved that 

independence of the nature of the system and the identity of its components, the 

probability P(k) that a vertex in the network is connected to k other vertices decays as a 

power-law, following 𝑃(𝑘)~𝑘−𝛾. These results offered the first evidence that large 



19 
 

networks self-organize into a scale-free state, a feature unexpected by all existing random 

network models.(Newman, Barabasi, & Watts, 2006)  

This chapter, explains the history of the concept of the Preferential attachment to reach 

Barabási- Albert networks, and will also discusses the network and degrees of dynamics 

and degrees of distributions through continuum theory, at the end of the chapter I refer to 

Albert Barabási networks applications 

2.2 A Brief History  

Preferential attachment has emerged repeatedly in mathematics and social sciences. 

Consequently, today we can encounter it under different names in the scientific literature, 

as fellow: 

• It made its first appearance in 1923 in the celebrated urn model of the Hungarian 

mathematician Gyorgy Polya (1887-1985) (Albert & Barabási, 2002) , proposed to 

explain the nature of certain distributions. Hence, in mathematics preferential attachment 

is often called a Polya process. 

• George Udmy Yule (1871-1951) in 1925 used preferential attachment to explain the 

power-law distribution of the number of species per genus of flowering plants(Yule, 

1925). Hence, in statistics preferential attachment is often called a Yule process. 

• Rober Gibrat (1904-1980) in 1931 proposed that the size and the growth rate of a firm 

are independent. Hence, larger firms grow faster(Gibrat & Les Inégalites Économiques, 

1931). Called proportional growth, this is a form of preferential attachment. 

• George Kinsley Zipf (1902-1950) in 1941 used preferential attachment to explain the fat 

tailed distribution of wealth in the society (Zipf, 1949).  

• Modern analytical treatments of preferential attachment use of the master equation 

approach are pioneered by the economist Herbert Alexander Simon (1916-2001). Simon 
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used preferential attachment in 1955 to explain the fattailed nature of the distributions 

describing city sizes, word frequencies in a text, or the number of papers published by 

scientists(Simon, 1960) . 

• Building on Simon’s work, Derek de Solla Price (1922-1983) used preferential 

attachment to explain the citation statistics of scientific publications, referring to it as 

cumulative advantage (Price, 1976) . 

• In sociology preferential attachment is often called the Matthew effect, named by Robert 

Merton (1910-2003) (Merton, 1968) after a passage in the Gospel of Matthew: “For 

everyone who has will be given more, and he will have an abundance. Whoever does not 

have, even what he has will be taken from him.” 

• The term preferential attachment was introduced in the 1999 paper by Barabási2 and 

Albert (Barabási & Albert, 1999) to explain the ubiquity of power laws in networks. 

(Barabási & Frangos, 2014) 

 

 

                                                           

2 About professor Barabási Albert:(Barabási et al., 2000) 

Albert-László Barabási (born March 30, 1967) is a Romanian-born Hungarian-American physicist, best 

known for his work in the research of network theory. He is the former Emil T. Hofmann professor at the 

University of Notre Dame and current Distinguished Professor and Director of Northeastern University's 

Center for Complex Network Research (CCNR) associate member of the Center of Cancer Systems 

Biology (CCSB) at the Dana–Farber Cancer Institute, Harvard University, and professor at the Center for 

Network Science  at Central European University. 

He introduced in 1999 the concept of scale-free networks and proposed the Barabási–Albert model to 

explain their widespread emergence in natural, technological and social systems, from the cellular 

telephone to the World Wide Web or online communities. 
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2.3. The Barabási-Albert Model  

The recognition that growth and preferential attachment coexist in real networks which  

has inspired a minimal model called the Barabási-Albert model, which can generate 

scale-free networks (Barabási & Frangos, 2014) . Also known as the BA model or the 

scale-free model, it is defined as follows: 

Starting with 𝑚𝑜 nodes, the links which are chosen arbitrarily, as long as each node has at 

least one link. The network develops the following two steps (Figure 2.1): 

(A) Growth 

At each time step added a new node with m (≤𝑚𝑜) 

links that connect the new node to m nodes already 

in the network. 

(B) Preferential attachment 

The probability  𝑃(𝑘)that a link of the new node 

connects to node 𝑖 depends on the degree 𝑘𝑖 as    

𝑷(𝒌𝒊) =
𝒌𝒊

∑ 𝒌𝒊𝒊
                                                                                                                                 (2.1) 

Preferential attachment is a probabilistic mechanism: A new node is free to connect to any 

node in the network, whether it is a hub or has a single link. Equation (1) implies, however, 

that if a new node has a choice between a degree-two and a degree-four node, it is twice 

as likely that it connects to the degree-four node. After t time steps the Barabási-Albert 

model generates a network with N=t+𝑚𝑜 nodes and 𝑁𝑜 + 𝑚𝑡 links. Where𝑁𝑜 is initial 

number of links between the initial 𝑚𝑜 nodes. As Figure (2.2) shows the obtained network 

having a power-law degree distribution with degree exponent γ=3. (Barabási & 

Frangos, 2014) 

Figure2. 1 show generating the BA networks 



22 
 

As Figure (2.1), while most nodes in the network have only a few links, a few gradually 

turn into hubs. These hubs are the result of a rich-gets-richer phenomenon: Due to 

preferential attachment new nodes are more likely to connect to the more connected nodes 

than to the smaller nodes. Hence, the larger nodes will acquire links at the expense of the 

smaller nodes, eventually becoming hubs. 

In brief, the Barabási-Albert model indicates that two simple mechanisms, growth and 

preferential attachment which are responsible for the emergence of scale-free networks. 

The origin of the power law and the associated hubs are a rich-gets-richer phenomenon 

induced by the coexistence of these two ingredients. 

 

 

 

 

 

 

Figure (2.2): The degree distribution of a network generated by the Barabási-Albert 

model. The figure shows 𝑷(𝒌) for a single network of size N=100,000 and m=3. It shows 

both the linearly- binned (purple) and the log-binned version  (green) of 𝑷(𝒌). The straight 

line is added to guide the eye and has slope γ=3, corresponding to the networks predicted 

degree exponent 

 

                                                           
 hubs: The popular nodes 
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2.4. Degree Dynamics  

To find out the properties of the scale-free networks what is known (Barabási-Albert 

model), we must focus on the temporal evolution her. Starting by exploring the time-

dependent degree of a single node(Jeong, Tombor, Albert, Oltvai, & Barabási, 2000). 

In the model an existing node can increase its degree each time and a new node 

enters the network. This new node will link to m of the N(t) nodes already present in the 

system. The probability that one of these links connects to node i is given by Equation 

(2.1). (Albert & Barabási, 2002) 

Let us approximate the degree 𝒌𝒊 with a continuous real variable, representing its 

expectation value over many realizations of the growth process, that at each time step  

(𝑡 → 𝑡 + 1) one node with m links is added. 

The Time rate at which an existing node i acquires links as a result of new nodes 

connecting to it, is  

𝝏𝑲𝒊  

𝝏𝒕
 ∝  𝑷(𝒌𝒊) = 𝒎 

𝑲𝒊  

∑ 𝑲𝒋  𝒋
 ,                                                                                            (2.2) 

The coefficient m describes that each new node arrives with m links. 

Hence, node i has m chances to be chosen. The sum in the denominator of Equation (2.2) 

goes over all nodes in the network except the newly added node, thus   

∑ 𝑲𝒋  = 𝟐𝒎𝒕 − 𝒎  𝑵−𝟏
𝒋=𝟏                                                                                                      (2.3) 

Therefore, Equation (2.2) becomes    
𝝏𝑲𝒊  

𝝏𝒕
=  

𝑲𝒊  

𝟐𝒕−𝟏 
 

For large t the (-1) term can be neglected in the denominator, obtaining 

𝒅𝑲𝒊  

𝑲𝒊  
=  

𝟏

𝟐
 (

𝟏

𝒕
 ) 𝒅𝒕                                                                                                            (2.4) 
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 By integrating Equation (2.4) and using the fact that 𝑲𝒊  (𝒕𝒊  ) = 𝒎  , meaning that node i 

joins the network at time  𝑡𝑖   with m links, we obtain 

𝑲𝒊  (𝒕) = 𝒎 ( 
𝒕

𝒕𝒊  
 )𝜷                                                                                                          (2.5) 

We call β the dynamical exponent and has the value β = 
1

2
  

2.5. Degree Distribution 

A number of analytical tools are available to calculate the degree distribution of the 

Barabási-Albert network. (Barabási & Frangos, 2014) The simplest is the continuum 

theory, where it predicts the degree distribution  𝑷(𝑲) = 𝟐 𝒎
𝟏

𝜷 𝒌−𝜸  ,                       (2.6)                                            

with 𝜸 =
𝟏

𝜷
  + 𝟏 = 𝟑. 

  2.5.1. Continuum Theory  

To calculate the degree distribution of the Barabási-Albert model in the continuum 

approximation, firstly calculate the number of nodes with a degree smaller than k, i.e. 

𝐾𝑖  (𝑡) < k. Using Equation (2.5) we write  

      𝒕𝒊  < 𝐭 (
𝒎

𝒌
 )

𝟏

𝜷   , In the model one node is added at equal time step Therefore the number 

of nodes with a degree smaller than k  is   𝐭 (
𝒎

𝒌
 )

𝟏

𝜷  .  

 Altogether there are N=mo+t nodes, which becomes N≈ t in the large t limit. Therefore, 

the probability that a randomly chosen node has degree k or smaller, which is the 

cumulative degree distribution, follows     𝒑(𝒌) = 𝟏 − (
𝒎

𝒌
 )

𝟏

𝜷      ,                             (2.7)                                                                                        

by taking the derivative of Equation (2.7), we obtain the degree distribution  
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𝒑𝒌 =
𝝏𝒑(𝒌)

𝝏𝒌 
=  

𝟏

𝜷
 

𝒎
𝟏
𝜷

𝒌
𝟏
𝜷

+𝟏
= 𝟐𝒎𝟐𝒌−𝟑 ,                                                                                (2.8)                                                                                            

which is Equation (2.6)   (Barabási & Frangos, 2014). 

 

2.6.  Barabási-Albert Networks Types 

As has already been dealt with the Barabási-Albert model. we will look at the most 

important of types as follows: 

The first type: Price model created a directed graph with variable numbers of edges 

added to each node. It gives the degree distribution   𝑃(𝑘)~𝑘−𝛾 . (Hong, Damrauer, 

Carroll, & Berry, 1993) .Direct Barabási-Albert networks (DBA)/ Price model   keeps 

the growing character of the network without preferential attachement. Starting with a 

small number of nodes (𝑚𝑜)t, at every time step, we add a new node to m(<𝑚𝑜), edges. 

We assume that the new node is connected with equal probability to the nodes already 

existing in the system, i.e. 

 𝑷(𝒌𝒊) =
𝟏

(𝒎𝒐+𝐭−𝟏)𝐢 
 independent of 𝑘𝑖 .(Albert & Barabási, 2002) 

The Second type :Thirty years after, in 1999, Barabási and Albert came with their 

model: undirected, constant number of edges, always gives   𝑃(𝑘)~𝑘−𝛾 (Huang, 2009). 

Undirect Barabási-Albert Networks (UDBA) :  starts with N nodes. Usually all N nodes 

are connected to each other add to the List " This Kert’esz”  At each time step a node is 

selected randomly and connected with probability 𝑷(𝒌𝒊) =
𝒌𝒊

∑ 𝒌𝒊𝒊
 to a node i in the 

system.(Albert & Barabási, 2002). 
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The Third type : Semi-direct Barabási-Albert Networks(SDBA) 

If one adds to the List the m old nodes, plus only once and not m times the new node, one 

gets a semi-directed network (SDBA). Now we check the number of neighbours on two 

versions (SDBA1 and SDBA2) for semidirected Barabási-Albert networks. 

SDBA2 does not give the proper power laws for large m but it does so for small m, 

whereas SDBA1 gives the  proper power laws for large and small m. The resulting 

exponents vary with m. (M. Sumour, Lima, Radwan, & Shabat,  Al-Aqsa University 

Journal (Natural Sciences Series),Vol.19, No.1, Pages 50-62,Jan.2015 ISSN 2070-3155) 

The first version SDBA1 builds the network as follow : new node n  selects m sites j 

which n will all influence, while n will be influenced only by the first selected j. Our 

second version SDBA2 inverts the direction of the spin interaction : The new node n 

selects m sites j which will all influence n, while n will influence only the first selected j. 

(M. Sumour et al.) 

 

 

 

 

 

 

Figure (2.3): Number of nodes n(k) versus k with different m=2 to 16 and N=1,000,000for 

SDBA1. (M. Sumour et al.)                                                                       
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Figure (2.4): Number of nodes n(k) versus k-m with different m=2 to16 and  N=1,000,000 

for SDBA2(M. Sumour et al.) 

As shown in figures (2.3) and (2.4), we can determine a nice slopes in log-log plots of 

n(k) versus k for SDBA1, while for large m, bad power law is seen for SDBA2. 

 

2.7. Applications for Barabási-Albert Model: 

Indeed, behind each complex system, there is an intricate network that encodes the 

interactions between the system’s components; 

a- The network describes the interactions between genes, proteins, and metabolites 

integrates the processes behind living cells, and the wiring diagram capturing the 

connections between neural cells holds the key to our understanding of brain 

functions.  

b- The sum of all professional, friendship, and family ties is the fabric of the society.  

c- The network describing which communication devices interact with each other, 

capturing internet connections or wireless links, is the heart of the model. 
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d- The power grid, a network of generators and transmission lines, supply energy 

virtually to all modern technology.  

e- Trade networks maintain our ability to exchange goods and services, being responsible 

for the material prosperity that an increasing fraction of the world has been enjoyed 

since WWII (World WarII) They also play a key role in the spread of financial and 

economic crises. 

f- Networks are at the heart of some of the most revolutionary technologies of the 21st 

century, empowering everything from Google to Facebook, CISCO, and Twitter. At 

the end, networks permeate science, technology, and nature to a much higher degree 

than may be evident upon a casual inspection. Consequently, it is increasingly clear 

that we will never understand complex systems unless we gain a deep understanding 

of the networks behind them. (Lander et al., 2001) 

g- Epidemics: From forecasting to halting deadly viruses. 

While the H1N1 pandemic was not as devastating as it was feared at the beginning of the 

outbreak in 2009, it gained a special role in the history of epidemics: it was the first 

pandemic whose course and time evolution were accurately predicted months before the 

pandemic reached its peak. This was possible thanks to fundamental advances in 

understanding the role of networks in the spread of viruses. Indeed, before 2000 epidemic 

modeling was dominated by compartment models, assuming that everyone can infect 

everyone else, one word: the same socio-physical compartment. The emergence of a 

network-based framework has fundamentally changed this, offering a new level of 

predictability in epidemic phenomena. (Lander et al., 2001) 

h- Brain Research: Mapping neural network.  

The human brain, consisting of hundreds of billions of interlinked neurons, is one of the 

least understood networks from the perspective of network science. The reason is simple: 

we lack maps telling us which neurons link to each other. The only fully mapped neural 

map available for research is that of the C. Elegans worm, with only 300 neurons. Should 

detailed maps of mammalian brains become available, brain research could become the 
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most prolific application area of network science. Driven by the potential impact of such 

maps, in 2010 the National Institutes of Health have initiated the Connectome project, 

aimed at developing the technologies that could provide an accurate neuron-level map of 

mammalian brains. (Venter et al., 2001) 

i- Health: From drug design to metabolic engineering. 

The human genome project, completed in 2001, offered the first comprehensive list of the 

whole human genome. Yet, to fully understand how our cells function, and the origin of 

disease, we need accurate maps that tell us how these genes and other cellular components 

interact with each other. Most cellular processes, from the processing of food by our cells 

to sensing changes in the environment, rely on molecular networks. (Venter et al., 2001) 
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CHAPTER THREE 

POTTS MODEL 

3.1. Introduction 

The Potts model studies long term behaviour of complex systems. The model is able to 

investigate how the internal elements of the system react with one another based on certain 

characteristics that each element has. As these reactions take place macroscopic properties 

of the system will evolve. The Potts model is a very important model, and has wide 

applications in various fields such as biology, sociology, physics, and chemistry. 

(Beaudin, Ellis-Monaghan, Pangborn, & Shrock, 2010) 

The Potts model’s origins date back to the mid-1900s. Two mathematicians, Julius 

Ashkin and Edward Teller (Ashkin & Teller, 1943), were among the first to experiment 

with a mathematical model which simulated behavior of various elements within a system. 

Intrigued by the model, Cyril Domb suggested the topic to his Ph.D. student, 

Renfrey B. Potts(Potts, 1952) .With the foundation set by Ashkin and Teller, Potts was 

able to construct a very useful model. In 1952 he published his doctoral thesis in which 

he described this particular model (Potts, 1952) The form which the model takes today is 

known as the q –state Potts model. 

This chapter explains the Potts model Hamiltonian, and also discusses the Potts 

Model Partition Function. At the end of the chapter I talk about Potts Model applications. 
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3.2. The Potts Model Hamiltonian  

The Potts model is a very important mathematical model that studied behaviour in 

complex system. The model studies the microscopic internal elements and relates their 

interactions to the macroscopic result which can be observed over time. 

Every vertex of the graph will be assigned a spin. The combination of a spin and 

an adjacency determines which elements will interact with one another. 

 In general, the spins take the value as 1...q where. When q = 2 the Potts model is known 

as the Ising model. The interaction of different spins with each other depend on their 

position on the graph and their specific values. They measure the total energy of the 

system(Chang & Shrock, 2001) . 

The function which measures the total energy of a complex system is the Hamiltonian. 

The Hamiltonian measures the energy of a particular state of a graph by assigning a value 

to every edge within the complex system . This value depends on the application. In the 

propriety of the Potts model there are two dominant definitions for the Hamiltonian of a 

system. The next section shows that these definitions yield equivalent forms of the Potts 

model partition function. Both definitions use the same notation, J is the interaction energy 

between adjacent elements of the system, and  𝑠𝑖 is the spin value assigned to vertex i in 

the state ω. and using the Kronecher’s delta function, 

𝜹𝒔𝒊, 𝒔𝒋 
= {

𝟏            𝒊𝒇 𝝈𝒊 = 𝝈𝒋  

𝟎            𝒊𝒇 𝝈𝒊 ≠ 𝝈𝒋
                                                                        (3.1) 

Definition(1) : The first Hamiltonian(Chang & Shrock, 2001) is given by, 

𝑯(𝝎) =  −𝑱 ∑ 𝜹𝒔𝒊, 𝒔𝒋 <𝒊𝒋>    ,                                                                                          (3.2) 

where ω is a state of a graph G. 
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Definition(2): The other definition (Welsh & Merino, 2000) for the Hamiltonian is, 

𝑯(𝝎) =  𝑱 ∑ (𝟏 − 𝜹𝒔𝒊, 𝒔𝒋 <𝒊𝒋> )       ,                                                                               (3.3) 

Using Definition (1): (Kurinsky, 2015) 

𝑯 =  −𝑱 ∑ 𝜹𝒔𝒊, 𝒔𝒋 <𝒊𝒋> +  ∑ −𝒉 𝝈𝒊𝒊                                                                                (3.4) 

where  𝜎𝑖 is a complex vector spaced rotationally equidistant in the complex plane: 

𝝈𝒊 = 𝐞𝐱𝐩(
𝒊𝟐𝝅𝒔𝒊

𝒒
 )                                                                                                           (3.5) 

where 𝑠𝑖 = 1, 2……., q 

The Hamiltonian for the Potts model was given in equation (3.4), where it was stated to 

be a generalization of Ising Hamiltonian with a small caveat, which needs to be noted 

before discussing critical properties further. Note that the Ising system has spins 𝑠𝑖 = ±1, 

which can parameterize as  𝝈𝟏=1 and  𝝈𝟐=2 given that in a q = 2 system, equation (3.5) 

gives 𝝈𝟏 =- 1 and  𝝈𝟐= 1.  

In addition, we can parameterize their product in the Hamiltonian from the introduction 

as:                𝒔𝒊 𝒔𝒋 = (𝟐𝜹𝒔𝒊, 𝒔𝒋 
− 𝟏 )   .                                                                             (3.6) 

which gives the relation: 

𝑯𝒂𝒎𝒊𝒍𝒕𝒐𝒏𝒊𝒂𝒏𝑰𝒔𝒊𝒏𝒈 =   𝑯𝒂𝒎𝒊𝒍𝒕𝒐𝒏𝒊𝒂𝒏 𝑷𝒐𝒕𝒕𝒔           at q =2  

𝑯 =  −𝑱 ∑ 𝒔𝒊𝒔𝒋

<𝒊𝒋>

 − 𝒉 ∑ 𝝈𝒊 =  −𝑱 ∑ 𝜹𝒔𝒊, 𝒔𝒋 

<𝒊𝒋>

+  ∑ −𝒉 𝝈𝒊

𝒊

   

𝒊

 

=  −𝑱 ∑ (𝟐𝜹𝒔𝒊, 𝒔𝒋 
− 𝟏 )<𝒊𝒋>  − 𝒉 ∑ 𝝈𝒊 =  −𝑱 ∑ 𝜹𝒔𝒊, 𝒔𝒋 <𝒊𝒋> +   ∑ −𝒉 𝝈𝒊𝒊    𝒊                        (3.7) 
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which immediately gives the relation 

    𝑱𝑃𝑜𝑡𝑡𝑠 = 2 𝑱𝐼𝑠𝑖𝑛𝑔            or                    𝑻𝐼𝑠𝑖𝑛𝑔 =
1

2
 𝑻𝑃𝑜𝑡𝑡𝑠  .                                               (3.8) 

The order parameter defined which describes the average spin state in the system, as the 

vector mean of all individual spins: 

𝒎 = < 𝒔 >=  
𝟏

𝑵
 |∑ 𝒆𝒙𝒑(

𝒊𝟐𝝅𝒔𝒊

𝒒

𝑵
𝒊=𝟏  )|   ,                                                                          (3.9) 

such that completely correlated states will evaluate to 1 and uncorrelated states to 0; the 

phase factors from the uncorrelated states will be cancelled. In addition, the correlation 

between spins  𝒔𝒊 𝒔𝒋 according to the coupling in the Hamiltonian can be written as: 

<  𝒔𝒊 𝒔𝒋 > =  
𝒒

𝒒−𝟏
 

𝟏

𝑵𝒑
 ∑ ( 𝜹(

𝑵𝒑

 𝒔𝒊 𝒔𝒋
 𝒔𝒊− 𝒔𝒋) −

𝟏

𝒒
 )     ,                                                      (3.10) 

This follows as the simple sum of weighted probabilities. In a completely uncorrelated 

system, the probability of two spins having the same value is 
𝟏

𝒒
 , and the correlation will 

be zero, and in a completely correlated system the expectation of the delta function will 

be 1, and the value in the sum will evaluate to N (q-1)/ q, giving the correlation a value of 

1. (Kurinsky, 2015) 

3.3.  The Potts Model Partition Function 

The partition function of the q-state Potts model is defined by 

𝒁 =  ∑ 𝐞𝐱𝐩(−𝜷𝑯 )      ,                                                                                              (3.11) 

The Potts model probability function is the function which calculates the probability of 

finding the lattice in a particular state. This probability function depends on the Boltzmann 

distribution from statistical mechanics (for a system following the Boltzmann distribution 
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laws the number of particles in a given energy state are exponentially distributed.)               

𝑷 =  
1

𝑍
exp(−𝛽𝐻 ) 

so the probability of occurrence of a state now depends solely on the temperature of the 

system. Table (3.1) shows how the probability changes regarding the system's temperature 

(Tran, 2013) 

 Table (3.1) shows how the probability changes regarding the system's temperature. 

 

 

 

 

As can be seen the probability of having all particles with the same state is the highest at 

low temperature, when the ferromagnetic particles prefer same direction alignment, and 

the free energy in the system is not enough for most of the particles to change state. Higher 

temperature brings more free energy to the system, and when the temperature is high 

enough the probability for the particles to stay aligned is approximately the same as when 

they stay misaligned. 

The main focus of Potts models is to find out the critical point and observe the 

phenomenon that occurs during the phase transition between order states. With square 

Lattice= 2 the critical point (usually denoted as 𝛵𝑐   with T stands for "temperature" can be 

found mathematically (Schubert, 2008) as follows:(T in unit of  
𝐽

𝐾𝛽
⁄ ) 

𝜯𝒄  =  
𝟏

𝐥𝐧(𝟏+√𝒒 ) 
                                                                                                           (3.12) 

Temperature Probability 

0.01 0.5 or 50% 

1.00 0.27 or 27% 

2.00 0.149 or 14.9% 

10 0.076 or 7.6% 

100 0.0637 or approx. 1/16 
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Table 3.2: Critical points in systems with different number of states in the square 

Lattice= 2 (d=2)  

 

 

 

 

 

For the sole purpose of presenting, the data was recorded from cold-start Potts models 

with value of all spin initialized to 0 at start. Unlike average energy which could only vary 

from 0 to 2, magnetisation varies from 0 to q - 1 and therefore the data presented in Figure 

(3.1) has been normalized to the range [0.0,1.0]. As can be observed the average 

magnetisation gradually increases toward the average value (0.5), and the models 

transform from magnetized to non-magnetized at the critical temperatures. This 

phenomenon occurs concurrently with the increase of energy from low to high. 

Figure (3.1): magnetisation of various Potts models when temperatures auto increment 

from 0.0 to 2.0. (Tran, 2013) 

q 𝛵𝑐   

2 1.135 

3 0.995 

4 0.91 

5 0.852 

10 0.70 

100 0.40 
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Figure (3.2): show the relation between magnetisation various temperatures for largest 

size lattice. (Kurinsky, 2015) 

In figure (3.2) note the sharp discontinuities in higher spins and higher dimensions, and 

the difference between the d2, q=2 transition and the transitions at higher order, as well 

as the difference between the d=2, q=3 transition and the other q=3 transitions (it is, just 

barely, continuous; there is a slope and it does not go directly to 0). This is a significant 

effect, as it was seen for all lattices, and what it plotted is a lattice 1000 sites per side. 

3.4.  Applications for Potts Model  

We find out three unique applications of the Potts model. The first is a physical 

application in which the Potts model is used to simulate the behavior of foams. The 

second is a biological application which simulates the growth patterns of tumors. The 

final example is a sociological example where the Potts model is used to study human 

interactions. 
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In these applications the Hamiltonian will become a little more complex to capture 

external factors. These use the following Hamiltonian. 

𝑯 =   −𝑱 ∑ 𝜹𝝈𝒊, 𝝈𝒋 <𝒊𝒋>  − 𝒉 ∑ 𝝈𝒊𝒊   .                                                                            (3.13) 

In this case the strength of the interaction between neighboring elements J varies 

depending on their location on the lattice. The second sum is the addition of an outside 

force which also depends on the position within the lattice. (Beaudin et al., 2010) 

a- Physical application: 

The first experiment is described by Sanyal et al (Sanyal & Glazier, 2006) in their article 

titled, “Viscous instabilities in flowing foams: A Cellular Potts Model.” This experiment 

tracks a single large bubble as it flows through a foam. At first glance, foam flow may 

not seem to have many applications. However, “foams are of practical importance in 

applications as diverse as brewing, lubrication, oil recovery, and firefighting” (Jiang, 

1996) Foams exist in many dangerous and challenging fields. The Hamiltonian for the 

experiment takes into consideration the energy of this system as well as the area of the 

bubbles. 𝑯 =   ∑ 𝑱 (𝟏 − 𝜹𝝈𝒊, 𝝈𝒋 <𝒊𝒋> ) + 𝝀 ∑ (𝒂𝒏𝒏 − 𝑨𝒏)𝟐   ,                                        (3.14) 

The variable λ is the strength of the area constraint on the bubble. The unattainable value 

𝑨𝒏 is the area the bubble would assume if there were no forces acting on it, and 𝒂𝒏 is the 

current area of the same bubble. The counter n is the number of bubbles. 

b- Biological application 

The second application involves studying a cancerous tumor. Sun et al(Sun, Chang, & 

Cai, 2004) describe their experiment in the article titled “A Discrete Simulation of 

Tumor Growth Concerning Nutrient Influence.” The authors use the Potts model to 

determine whether the amount and location of nutrients affect the growth pattern of a 

tumor.
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CHAPTER FOUR 

UNUSUAL FERROMAGNETISM IN ISING AND POTTS MODEL 

ON SEMI-DIRECTED BARABÁSI-ALBERT NETWORKS 

 

4.1. Introduction 

The Ising and Potts model were used to test and improved algorithms to calculate the 

important foundations of high precision for the calculation of critical exponents in 

equilibrium statistical mechanics using a new Monte Carlo methods, including: 

Metropolis (Merton, 1968); Swendsen-Wang (Swendsen & Wang, 1987), Wang-Landau 

(Wang & Landau, 2001). The Ising model was applied to expand the undirected Barabási-

Albert networks (UBA), so that was simulated by Monte Carlo methods which refers to 

indicate a Curie temperature increasing logarithmically with increasing system size   

(𝑻𝒄 ∝ 𝐍 ). Differently from (Aleksiejuk et al., 2002), Sumour et al. (M. A. Sumour & 

Shabat, 2005),(M. A. Sumour et al., 2005) studied the Ising model on a directed Barabási-

Albert network (DBA) using standard Glauber kinetic Ising models on fixed networks. 

They confirmed the asymptoptic Arrhenius extrapolation  (𝐥𝐧 𝝉 ∝ 𝐓 ) 1for  the time  until 

the first sign change of the magnetisation, meaning that at all finite temperatures the 

magnetization eventually vanishes (M=0) 

This chapter, studying the critical behavior of Ising and Potts model on semi-

directed Barabási-Albert network (SDBA), where now the number N(k) of nodes with k 

links each decays as  𝑵(𝒌)~
𝟏

𝒌−𝜸    and the exponent ɤ decreases from 3 to 2 for increasing 

m  where m  is the number of old nodes, which a new node, added to the network, selects 

to be connected with. This behavior is totally different from UBA and DBA scale-free 

networks, where ɤ = 3 is universal, i.e., independent of m. For both Ising and Potts model 

in our results no usual phase transition has been found, similar to (Aleksiejuk et al., 2002), 

(M. A. Sumour et al., 2005) 
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4.2. Semi-Directed Barabási-Albert Networks 

 

Both UBA and DBA networks are grown such that the probability, of a new site to be 

connected to one of the already existing sites, is proportional to the number of previous 

connections to this already existing site: the rich get richer. 

In this way, each new site selects exactly m old sites as neighbours. In a UBA network 

(Aleksiejuk et al., 2002), the neighbour relations for the spin interactions were such that 

if A has B as a neighbour, B has A as a neighbour, while, for DBA, in general B then does 

not have A as a neighbour. 

In the DBA and UBA networks (M. A. Sumour & Shabat, 2005),(M. A. Sumour et al., 

2005),if a new node selected m old nodes as neighbours, then the m old nodes are added 

to the Kert´esz list and the new node is also added m times to that list. Connections are 

made with m randomly selected elements of that list. If one only added the old nodes to 

the list, then only the initial core would be selected as neighbours, which is not interesting. 

But if one adds to the list the m old nodes plus once the new node, one has a semi-directed 

network: SDBA. (For usual BA networks, the new node is added m times to the Kert´esz 

list.) 

4.3. Model and Simulation 

4.3.1 The versions SDBA1 and SDBA2 

Our first version, SDBA1, builds the network in the way of (M. Sumour & Radwan, 2012). 

The new node n selects m sites j, which n will all influence, while n will be influenced 

only by the first selected j. Our second version, SDBA2, inverts the direction of the spin 

interaction: The new node n selects m sites j, which will all influence n, while n will 

influence only the first selected j. 

Networks simulated with N nodes i , with spins 𝑆𝑖  on each node. For both Ising and Potts 

model on SDBA, the  evolution in time is given by single spin-flip Glauber dynamics with 

a probability P given by Appendix 4 
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𝑷 =   𝟏/[𝟏 + 𝐞𝐱𝐩 (
𝟐𝛁𝑬

𝑲𝑩𝑻
)]                                                                                               (4.1) 

with 𝛁𝑬  to be defined below through eqs. (4.2) and (4.3). Here, the time is defined as one 

Monte Carlo step (MCS), where one MCS is accomplished after all N spins are updated; 

and we denote the final Monte Carlo step number as MCSN. (like number of iterations 

for equilibration.)  

The error bars 3are usually smaller than the size of symbols, so cannot put them 

into the figures. The statistical errors were evaluated from 10 to 100 samples of initial 

configurations and with 4000 to 100000 Monte Carlo steps (thermal error). 

 

4.3.2. Ising Model On SDBA Networks 

The Ising interaction energy is given by 

𝑯 =  −𝑱 ∑ ∑ 𝒔𝒊𝒋  𝒔𝒋𝒊                                                                                                       (4.2) 

where 𝒔𝒊 = ±1, and the inner sum runs over all neighbours j of node i. And the 

magnetisation defined for this model as:  

 𝑴𝒗  =
∑ 𝒔𝒊

𝑵
𝒊=𝟏

𝑵
      .                                                                                                          (4.3) 

(M. A. Sumour et al., 2005) 

 

                                                           
3 Error bars are a graphical representation of the variability of data and are used on graphs to 

indicate the error, or uncertainty in a reported measurement. They give a general idea of how 

precise a measurement is, or conversely, how far from the reported value the true (error free) 

value might be. Error bars often represent one standard deviation of uncertainty, one standard 

error, or a certain confidence interval (e.g., a 95% interval). These quantities are not the same 

and so the measure selected should be stated explicitly in the graph or supporting text*.(Bertini, 

Kennedy, & Puppo) 
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4.3.3. Potts Model On SDBA Networks 

In the Potts model, the interaction energy is written as: 

𝑯 =  −𝑱 ∑ ∑ 𝜹𝒔𝒊, 𝒔𝒋 𝒋𝒊     ,                                                                                                (4.4) 

with 𝜹𝒔𝒊, 𝒔𝒋 
 Kronecher’s delta and  𝒔𝒊 = 1, 2, . . . q. Again, to study the critical behaviour,   

the magnetisation is defined as: 

𝑴𝒗 =
(𝒒𝑴−𝑵)

[(𝒒−𝟏)𝑵 ]
      ,                                                                                                        (4.5) 

where M is the largest of the q numbers of spins 𝒔𝒊 in one of the q directions 1, 2, . . ., q, 

at each iteration. (M. Sumour & Radwan, 2012) 

4.4. Results and Discussion 

4.4.1. Ising Model 

Using the FORTRAN program as in our appendix 3, with different m. The number of 

nodes N added to the initial core of m nodes is 10000 to 50000, and MCSN = 100000 

iterations were made. First we measure the number N(k) of nodes influenced by k 

neighbours in SDBA2, analogous to (M. Sumour & Radwan, 2012) for SDBA1. In fig. 

(4.1), for each m value (including m = 1, not shown), plotting double-logarithmically the 

observed numbers of nodes with at least k links each and determined the decay exponents 

by the slopes ɤ(m) − 1 versus 1/m, which makes the possible extrapolation towards 

infinite m (m = ∞, 1/m = 0) clearer. Maybe the true exponents ɤ(m) equal 2+1/m, since 

m = 1 should give the standard (undirected) exponent ɤ = 3. The deviations from this 

formula (straight line in fig. (4.1)) are not much larger than our systematic errors. As an 

alternative to the linear behaviour also a power-law fit to m > 1 is shown. We see that the 

new power-law fit agrees very nicely with the data except for the standard BA model 
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(undirected) case m = 1. The behaviour of the exponents for much larger m is discussed 

elsewhere (Choudhury et al., 2014) and differs appreciably between SDBA1 and SDBA2.  

 

 

 

 

 

 

 

 

Figure (4.1): Plot of ɤ(m) − 1 versus 1/m with power –law: ɤ-1 = 0.98+0.8/m0.59, 

N=4100000 nodes  (M. Sumour & Radwan, 2012) 

 

Figure (4. 2) shows the magnetisation as a function of temperature (T = 0, 1, 2, . . ., 16). 

The roughly exponential decay is similar to (Aleksiejuk et al., 2002) Then changed the 

initial number of neighbours m = 1, 3, 5, 7 with system size N=50000 and MCSN = 4000 

to 100000 iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.2): Semi – logarithmic plot of magnetisation versus T for m= 3 and 400 

nodes. (M. Sumour & Radwan, 2012) 
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In fig. (4.3) we see that with decreasing N, the magnetisation is decreasing except that at 

small temperatures, the magnetisation does not change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3): Plot of magnetisation versus T for m= 3 and different system sizes 

N=1000 to 50000, MCSN = 100000. (M. Sumour & Radwan, 2012) 

4.4.2. Potts Model 

To study the q = 2 Potts model we start with all spins ordered S = 1, a number of spins 

equal to N = 500, 5000,50000, and 100000 with MCSN = 108, 107 and 2 × 106 with Heat 

Bath algorithm, respectively, in figs. (4. 4)(a), (b), (c) and (d).  

The temperature is measured in units of J/kB4. We determine the time  after which the 

magnetisation has flipped its sign for first time, and then take the median value of 9 

samples. So, this way, it is possible to determine various temperatures for different 

network sizes and to extrapolate to infinity and obtain the critical temperature for SDBA1 

and SDBA2 networks. simulations on SDBA1 and SDBA2 networks indicate that the q = 

2 Potts model does not display a usual phase transition and the plots of the time 1/ ln( ) 

versus temperature in figs.(4. 4)(a), (b), (c) and (d) show that the results agree with the 

                                                           
4  kB = 1.380658 x 10-23 J/K, implying that J/kB = 1 
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Vogel-Fulcher-Tammann law5 for the relaxation time  , defined as the first time, when 

the sign of the magnetisation flips: 1/ ln( ) ∝ T − 𝑻𝒄(𝑵). We extrapolate 𝑻𝒄(𝑵) for N 

logarithmically with N as in (Aleksiejuk et al., 2002)  

Table (4.1): the data is the value of 𝑻𝒄(𝑵)  versus  the different number of N for SDBA1 

and SDBA2  

 

                                                           
 5 the Vogel-Fulcher-Tammann (VFT) law:  

 The Vogel-Fulcher-Tammann (VFT) equation has been used extensively in the analysis of the 

experimental data of temperature dependence of the viscosity or of the relaxation time 

𝝉 =  𝝉𝒐 𝐞𝐱𝐩(𝑨 /(𝑻 − 𝑻𝒐)) 

SDBA1 

N 20 30 50 100 200 500 5000 500000 100000 

𝑻𝒄(𝑵) 0.1 0.2 0.7 1.0 1.1 1.3 3.1 5.3 6.0 

SDBA2 

𝑻𝒄(𝑵) 0.5 0.7 1.0 1.5 1.8 2.5 4.2 6.6 7.0 
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figure (4.4): Reciprocal logarithm of the relaxation time versus temperature for 

SDBA1(circle) and SDBA2(square) networks and Potts model with q = 2 (Ising), m= 2 

and 400 nodes initial neighbours and N =500(a),5000(b),50000(c), and 100000(d) sites. 

(M. Sumour & Radwan, 2012) 
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Fig. (4. 5) show the magnetisation versus temperature behaviour on SDBA1 and SDBA2 

networks for the Potts model with q = 2 states and m = 3 initial neighbours and N = 

50000 sites. Both SDBA1 and SDBA2 network present similar behaviour, but SDBA1 

decreases faster than SDBA2 with increasing temperature, since SDBA2 has more 

neighbours than SDBA1. Two different programs using for Potts and Ising, which agree 

in their results for q = 2, and they should. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.5): Plot of the magnetisation versus temperature for SDBA1(x) and 

SDBA2(+) networks and Potts model with q = 2, m=3 initial neighbours and N =50000 

sites and MCSN = 100000 iterations. (M. Sumour & Radwan, 2012) 

Fig. (4. 6) illustrates the magnetisation versus the temperature on SDBA1 network for the 

Potts model with q = 2, 3, and 10 states, m = 3 initial neighbours and N = 50000 sites. 

Here, we see that increasing q of the Potts model provides a more rapid decay of the 

magnetisation as a function of temperature. 
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Figure (5.6): Plot of the magnetisation versus temperature for different values of q = 

2(+), 3(x) ,5(*), and 10(square) on SDBA1networks for N =50000 sites and m=3. 

(M. Sumour & Radwan, 2012) 

 

 

In fig. (5.7), we show the same behaviour, we see that increasing q of the Potts model 

provides a more rapid decay of the magnetisation as a function of temperature. but now 

on the SDBA2 network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.7): Plot of the magnetisation versus temperature for different values of q = 

2(+), 3(x) ,5(*), and 10(square) on SDBA2networks for N =50000 sites and m=3. 

(M. Sumour & Radwan, 2012) 
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Figure (4.8): Plot of the number of S=1,2 and 3 states versus the time for the Potts model 

with q=3 states on SDBA1network, for m=3 , N =4000  (M. Sumour & Radwan, 2012) 

 

In fig. (4.8) we show the time dependence of the number of S = 1 and 3 states for the Potts 

model with q = 3 states on SDBA1 network. Here we observe the tunneling between these 

three states with the evolution of time. In fig. (4. 9) we show the same behaviour as in fig. 

(4.8), but now on the SDBA2 network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.9): Plot of the number of S=1,2 and 3 states versus the time for the Potts 

model with q=3 states on SDBA2network, for m=3, N =4000. (M. Sumour & Radwan, 

2012)
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CHAPTER FIVE 

FINITE-SIZE EFFECTS ON SEMI-DIRECTED BARABÁSI-

ALBERT NETWORKS 

 

5.1. Introduction 

The construction of a Barabási-Albert network (BA)(Adamic & Huberman, 

2000),(Aleksiejuk, Hołyst, & Stauffer, 2002) presents two important concepts: the growth 

of the network and preferential attachment. Starting with a core of m nodes, one after 

another each new node connects to m already existing nodes, until N nodes were added to 

the initial core. The growth means that the number of nodes in the network increases over 

time and preferential attachment means that the more connected a node is, the more likely 

it is to receive new links. 

Then BA is growing such that the probability of a new site to be connected to one of the 

already existing sites, is proportional to the number of previous connections to this already 

existing site: The rich gets richer. In this way, each new site selects exactly m old sites as 

neighbors. In directed (DBA) and undirected (UBA) Barabási- Albert networks, the 

network itself was built in the standard way, but when agents (spins) were put on the 

network nodes (Aleksiejuk, Hołyst, & Stauffer, 2002);(M. A. Sumour & Shabat, 

2005);(M. A. Sumour, Shabat, & Stauffer, 2005) ;(Lima, 2015)  the neighbor relations 

were such that if A has B as a neighbor, B in general does not have A as a neighbor for 

DBA while it does have for UBA. Differently, semi-directed BA networks (SDBA) have 

directedness already in their growth and attachment process and do not require agents on 

their nodes (Stauffer, 2015) ;(M. A. Sumuor, 2015) The present work continues the study 

of two semi-directed BA networks, SDBA1(M. Sumour et al.) and SDBA2(M. A. Sumour 

& Lima, 2014) for much larger m and checks effects of finite size N on these networks 

with  2 ≤ 𝑚 ≤ 300 . 
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5.2. Model and Simulations  

5.2.1. Undirected Barabási-Albert Network 

The undirected Barabási-Albert network (Adamic & Huberman, 2000),(Aleksiejuk et al., 

2002) is grown such that the probability of a new node to be connected to one of the 

already existing nodes is proportional to the number of the previous connections to this 

already existing node: the rich get richer. In this way, each new node selects exactly m old 

nodes as neighbors. If a new node selects randomly m old nodes as neighbors, then the m 

old nodes are added to a long array of node indices called the Kert’esz list, and the new 

node is also added m times to that list. At the start of the network growth, this Kert’esz 

list is empty. The above random selections are made by selecting m random nodes from 

the Kert’esz list. The neighbor relations were such that if A has B as a neighbor, B has A 

as a neighbor. 

5.2.2. Directed Barabási-Albert Network 

In directed Barabási-Albert networks, the network itself is produced in the undirected 

Barabási-Albert networks way. When interacting agents are put onto this network, each 

node is influenced by the fixed number m of neighbors with it had selected when joining 

the network. It is not influenced by other nodes that selected it as neighbor after it joined 

the network, i.e., the neighbor relations were such that if A has B as a neighbor, B in 

general does not have A as a neighbor in the later interactions of agents on this DBA 

network. 

5.2.3. Semi-Directed Barabási-Albert Network (SDBA) 

The semi-directed Barabási-Albert networks version is constructed similarly to the 

undirected Barabási-Albert network. When a new node makes connections with m 

randomly selected old nodes of the Kert’esz list, one adds the m old nodes, plus only 

once (and not m times), the new node; then one has a semi-directed network. For SDBA 

we have two versions SDBA1 and SDBA2: 
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a- Semi-directed Barabási-Albert networks (SDBA1): 

Our first version, SDBA1, the new node n selects m nodes j, which n will all influence, 

while n will be influenced only by the first selected j. 

b-  Semi-directed Barabási-Albert networks (SDBA2): 

Our second version, SDBA2, inverts the direction of the node interaction: The new node 

n selects m nodes j, which will all influence n, while n will influence only the first selected 

j. 

In summary, UBA and DBA have the same network, and only the later interactions 

between agents (spins) put onto these networks differ. SDBA networks, in contrast, differ 

already in their structure and need no agents to make this difference visible. 

5.3. Results and Discussion 

Let       𝑲𝒄  =  ∑ 𝑲(𝒊)/𝒎𝒎
𝒊=𝟏            and          𝑲𝒏  =  ∑ 𝑲(𝒊)/𝒎𝒎+𝑵

𝒊=𝒎+𝟏      ,    

be the average number  𝑲𝒄 of neighbors 𝑲(𝒊) influencing one of the m core nodes and 

 𝑲𝒏 an analogous quantity for the N non-core nodes added to the core. In the simulations, 

two codes for SDBA1 and SDBA2 networks were used as in appendix (1-2) (M. Sumour 

et al);  (M. A. Sumour & Lima, 2014)The Fig(5.1) and (5.2) were built from the tables 

(5.1) and (5.2), respectively, for SDBA1 and SDBA2 networks. These show the average 

number of neighbors ( 𝑲𝒄) with m = 2; 15, and 100, versus N = 103 to 2 * 107. From both 

tables and figures (1 and 2) and for m = 100 we have the effect of finite size up to N = 

4000000 nodes for both SDBA1 and SDBA2. 

 These data show that SDBA1 gives very nice straight lines, while SDBA2 does only for 

m = 2 and 15 and not for m = 100. This is an important difference between the two 

networks in the effect of finite-size. The behavior for  𝑲𝒏  is different, due to a change in 
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the loop 6 of the main code, replacing 𝑲𝒄 by  𝑲𝒏  . We sum all 𝑲(𝒊) from i = m + 1 to i = 

m + N while Figs. (5.1) and (5.2) summed from i = 1 to i = m. 

Table (5.1): Average number of core neighbours (𝑲𝒄  ) ,for m= 2,15and100 from 

SDBA1, versus different number of N of nodes 

 

 

 

 

 

N 

 

m=2 m=15 m=100 

Average neighbours 

(𝐾𝑐  ) 

Average 

neighbours (𝐾𝑐  ) 

Average 

neighbours (𝐾𝑐  ) 

1000 159.5 849.1 1083.7 

5000 465.0 3764.7 4956.9 

10000 745.5 7205.2 9754.0 

20000 1195.5 13762.9 19284.2 

50000 2225.0 32484.9 47635.7 

100000 3525.0 62141.5 94539.1 

500000 10332.0 280725.7 464831.4 

1 Million 16398.8 537837.38 923198.63 

2 Million 26131.0 1030183.1 1833653.8 

4 Million 41537.0 1972485.4 3642164.5 

5 million 48203.5 2431307.8 - 

10 Million 76375.0 - - 

20 Million 121224.5 - - 
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Figure 5.1: Average number of core neighbours (𝑲𝒄  ) ,for m= 2,15and100 from 

SDBA1, versus N =1000 to 20million of nodes. See table (5.1)  (Radwan, Sumour, 

Elbitar, Shabat, & Lima, 2016) 

Table (5.2): Average number of core neighbours (𝑲𝒄  ) ,for m= 2,15and100 for SDBA2, 

versus different number of N of nodes: 

N m=2 m=15 m=100 

Average neighbours 

(𝐊𝐜  ) 

Average neighbours 

(𝐊𝐜  ) 

Average neighbours 

(𝐊𝐜  ) 

1000 79.5 69.8 108.8 

5000 233.0 264.5 147.4 

10000 372.5 495.6 195.3 

20000 592.5 934.5 290.4 

50000 1107.0 2182.3 573.8 

100000 1749.5 4150.9 1042.2 

500000 5172.0 18752.3 4743.2 

1 Million 8173.5 36241.3 9325.4 

2 Million 13004.5 68790.7 18430.8 

4 Million 20680.5 131622.3 36518.9 

5 million 24003.0 162229.1 - 

10 Million 38096.0 310610.9 - 

20 Million 60532.5 594663.9 - 
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Figure 5.2: Average number of core neighbours (𝑲𝒄  ) ,for m= 2,15and100 from 

SDBA2, versus N =1000 to 20million of nodes. See table (5.2) (Radwan, Sumour, 

Elbitar, Shabat, & Lima, 2016) 

Thus we change in the codes the loop 6 into i = 1+m; max to get  𝑲𝒏  . For this non-core 

 𝑲𝒏  versus N for m = 2; 15, and 100 for SDBA1 and SDBA2 in our log-log plots (not 

shown), in contrast to Figs (5.1) and (5.2), all the data lie on straight lines having the same 

slope. Thus instead Figs(5.3) and (5.4) show the ratio  𝑲𝒏 /N (linear scale) versus N 

(logarithmic scale), giving only minor variations with N. 

 Table (5.3): The data is the value of the ratio  𝑲𝒏 /N from SDBA1 versus different 

number of lattice size N with three values of m=   2,15,100. 

 

N m=2 m=15 m=100 

 𝑲𝒏 /N  𝑲𝒏 /N  𝐊𝐧 /N 

5000 1.407 0.3165 0.0384 

10000 1.425 0.3475 0.0445 

50000 1.455 0.4172 0.0593 

100000 1.464 0.44539 0.0655 

1000000 1.4836 0.52884 0.0869 

2000000 1.4869 0.55158 0.0904 

4000000 1.4896 0.55226 0.0938 
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Figure (5.3): ratio  𝑲𝒏 /N from SDBA1 versus different number of lattice size N with 

three values of m=   2,15,100 . (Radwan, Sumour, Elbitar, Shabat, & Lima, 2016) 

 Table (5.4): The data is the value of the ratio  𝐊𝐧 /N from SDBA2 versus different 

number of lattice size N with three values of m =   2,15,100 

 

N m=2 m=15 m=100 

 𝑲𝒏 /N  𝐊𝐧 /N  𝐊𝐧 /N 

5000 1.4536 1.016 1.0073 

10000 1.4628 1.018 1.0074 

50000 1.4778 1.0233 1.0005 

100000 1.4825 1.0253 1.00056 

1000000 1.4918 1.0307 0.9876 

2000000 1.4935 1.0638 0.97467 

4000000 1.4948 1.0813 0.968193 
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Figure (5.4): The ratio  𝑲𝒏 /N from SDBA2 versus different number of lattice size N 

with three values of m=   2,15,100. (Radwan, Sumour, Elbitar, Shabat, & Lima, 

2016) 

In the Figs (5. 5 )and (5.6 )we plot the number 𝑲(𝒊) of neighbors versus node index i with 

i = 1; 2; : : :N = 106 for SDBA1 and SDBA2. These gives a clear gap in the number of 

𝑲(𝒊) of neighbors. This gap occurs next to m = 100 and for  m > 100 the 𝑲(𝒊) shrink 

drastically. For clarity, data above i = 1000 are binned. 

A gap in the 𝑲(𝒊) plots of Figs. (5.5 )and(5.6), and also in Ref. (M. A. Sumuor, 2015) 

Such an effect was already reported a decade ago in Ref. (Guimarães Jr, de Aguiar, 

Bascompte, Jordano, & Dos Reis, 2005) if the core is not connected completely but only 

partially (Erdos-Renyi network). This explanation does not fit SDBA with fully connected 

cores. For our simulations, in undirected Barabási- Albert networks (UBA) as well as in 

the two types SDBA1 and SDBA2 of semi directed networks, when the core has been 

constructed, each of the m core nodes appears m times in the Kert’esz list (called "list" in 

the programs). All the later added non-core nodes   i = m+1; m+2; ……; m+N after their 

addition are inserted m times to the Kert’esz list for UBA but only once for SDBA; see 

Section 2. Thus each SDBA core node has a roughly m times bigger chance than node i = 

m+1 to be selected by the later node i = m + 2. Therefore, between i = m and i = m + 1 

the number 𝑲(𝒊) of neighbors for very large m jumps down by a factor near m, as seen in 
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Figs. (5.5) and(5. 6) for m = 100. For small m like m = 2 this jump and the region to the 

left of the jump are much smaller and thus barely visible. 

Fig. (5.5) is different from Fig. (5. 6) by orders of magnitude For SDBA1 in Fig.(5.5) 

each non-core node n at the time it joined the network gets 𝑲(𝒏) = 1 neighbors, while for 

SDBA2 in Fig. (5. 6)   it gets 𝑲(𝒏) = m neighbors influencing it. During the later growth 

of the network, in both SDBA1 and SDBA2 the 𝑲(𝒊) can increase but this initial 

difference still has a visible effect: 𝑲(𝒊) can go down to unity in SDBA1 but is at least m 

for SDBA2. 

For SDBA1 each of the N  non-core nodes selects m neighbors, mostly from the m core 

nodes, and thus at the end each core node was selected roughly  N  times in Fig.(5. 

5): 𝑲(𝒊) ≅  106 for 1 ≤ i ≤ m. For SDBA2 each of the N non-core nodes instead selects 

only one neighbor, again mostly from the core. Thus for the core nodes 𝑲(𝒊) ≅  N=m = 

104, as seen in the left part of Fig. (5.6). 

Figure (5.5): Number 𝑲(𝒊)  of neighbors influencing node i versus node index with i = 1; 

2; …. N  at m=  100 and N=one million , from SDBA1 . (Radwan, Sumour, Elbitar, 

Shabat, & Lima, 2016) 



61 
 

Figure (5.6): Number 𝐾(𝑖)  of neighbors influencing node i versus node index with i = 1; 

2; …. N at m= 100 and N=one million, from SDBA2. (Radwan, Sumour, Elbitar, Shabat, 

& Lima, 2016) 

The  𝑲𝒄  and 𝑲𝒏 are plotted in the Figs(5.7) and (5.8) versus m for SDBA1 and SDBA2, 

averaged over 100 samples. Again, for Fig(5.8) the behavior of  𝑲𝒏  is different of  𝑲𝒄, 

due to a change in the loop 6 of the main code, as explained above . 

Table (5.5): the data is the value of average number  𝑲𝒄  of neighbors for m core nodes 

(i= 1, 2…..., m) versus different number of m for SDBA1 and SDBA2 at N= 106 

  

 

 

 

 

 

 

m  𝑲𝒄  core (average number (sum/m) 

SDBA1 SDBA2 

2 16398.0 8173.5 

4 93065.5 23233.3 

8 304058.5 38034.8 

15 537837.4 35916.5 

32 759266.0 23751.6 

64 6878753.  13798.9 

100 923198.6 9325.4 

128 939726.6 7469.1 

256 972478.3 4052.6 
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Figure (5.7): average number  𝑲𝒄  of neighbors for m core nodes (i= 1, 2…..., m)  versus  

different number of  m for SDBA1 and SDBA2 at N= 106 . (Radwan, Sumour, Elbitar, 

Shabat, & Lima, 2016) 

 Table (5.6):  The data is the value of average number  𝑲𝒏  of neighbors for m non-core 

nodes (i= 1, 2…..., m) versus different number of m for SDBA1 and SDBA2 at N= 106  

 

 

 

 

 

 

m  𝑲𝒏 non- core(average number (sum/m) 

SDBA1 SDBA2 

2 1483603.0 1491827.5 

4 1156937.5 1226769.8 

8 820948.5 1086972.3 

15 528843.3 1030764.2 

32 272015.13 1007373.0 

64 136934.3 1001756.5 

100 86900.6 987611.7 

128 68212.8 1000404.1 

256 31682.97 1000082.8 
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Figure (5.8): average number  𝑲𝒏  of neighbors for m non-core nodes (i= 1, 2,…..,m)  

versus  different number of  m for SDBA1 and SDBA2 at N= 106 . (Radwan, Sumour, 

Elbitar, Shabat, & Lima, 2016) 
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Conclusion 

 

There are many different models of interest in statistical mechanics, corresponding to the 

wide range of macroscopic systems found in nature and made in the laboratory. 

Since 1999 the scale-free networks of Barabási-Albert have become very fashionable, 

and Ising spins have also been simulated on these Barabási-Albert networks.  

So a special model in statistical mechanics ,as the Barabási-Albert networks ,will be 

discussed the Barabási-Albert (BA) or scale-free networks are very famous since 1999 

and have been more recently modified into semi-directed (SDBA) networks. 

The Barabási -Albert network is growing such that the probability of a new site to be 

connected to one of the already existing sites is proportional to the number of previous 

connections to this already existing site: The rich get richer. In this way, each new site 

selects m old sites as neighbours. 

 In directed Barabási  - Albert networks, the network itself was built in the standard way, 

but when agents (spins) were put on the network nodes, the neighbour relations were 

such that if A has B as a neighbour, B in general does not have A as a neighbour. But in 

undirected Barabási-Albert network B has A as a neighbour. 

 

 

In the undirected Barabási-Albert network, if a new node selects m old nodes as 

neighbours, then the m old nodes are added to the Kert’esz list, and the new node is also 

added m times to that list.  Also in our semi-directed version, the new node makes 

connections with m randomly selected old nodes of the Kert’esz list. If one would only 

add the old nodes to the list, then only the initial core can be selected as neighbours, 

which is less interesting.  But if one adds to the list the m old nodes, plus only once (and 

not m times) the new node, then one has what we call here a semi-directed Barabási-

Albert network (SDBA). We deal here only with its structure, not with agents put onto 

its nodes. In this semi-directed Barabási-Albert model one can put in neighbour relations 

which are directed or undirected, for agents(spins) put onto the network nodes; but we 

do not that here.  
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Finally, for both SDBA1 and SDBA2 networks we found a Vogel-Fulcher law, suggesting 

stable ferromagnetism for T < Tc(N). For Potts model with q = 3 on SDBA1 and SDBA2 

networks we found a tunneling between these three states with the evolution of time. 

Similarly, to the Ising model on undirected Barabási-Albert network there is no usual 

ferromagnetic transition on these SDBA1 and SDBA2 networks, since Tc(N) increases 

roughly logarithmically with network size N. The distribution of the number of neighbours 

of each node decays with a non-universal exponent depending on m. 

It was known already that in the SDBA the 𝒏(𝑲) ≈ 𝟏
𝒌𝟐⁄ in opposition to 𝟏

𝒌𝟑⁄  for 

standard BA networks at all m. Now we found for both SDBA1 and SDBA2 the variation 

with network size N size for large m and also showed the gap in the 𝑲(𝒊) distribution at  

i = m for both types of networks. 
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Appendix 1 

 

Fortran program for Ising model on SDBA1, without spins. 

parameter(nrun=100, maxtime=1000000,m=64,iseed=2,max=maxtime+m, 
1    kb=9000000,length=1+(1+m)*maxtime+m*(m-1)) 

integer*8 ibm 
real*8 factor 
dimension nklog(0:30) 
dimension k(max), nk(kb), list(length) 
data nk/kb*0/,nklog/31*0/ 
OPEN (UNIT=60,FILE=’SDBA1-1NmA64.DAT’) 
OPEN (UNIT=70,FILE=’SDBA1-2mA64.DAT’) 
WRITE (60,*)’#(nrun, maxtime, m, iseed)’,nrun, maxtime, m,iseed 
ibm=2*iseed-1 
factor=(0.25d0/2147483648.0d0)/2147483648.0d0 
fac=1.0/0.69314 
do 5 irun=1,nrun 
do 3 i=1,m 
do 7 j=(i-1)*(m-1)+1,(i-1)*(m-1)+m-1 

7         list(j)=i 
3         k(i)=m-1 

L=m*(m-1) 
if(m.eq.1) then 
L=1 
List(1)=1 
k(1)=1 
endif 

C         All m initial sites are connected with each other 
do 1 n=m+1,max 
do 2 new=1,m 

4         ibm=ibm*16807 
j=1.d0+(ibm*factor+0.5d0)*L 
if(j.le.0.or.j.gt.L) goto 4 
j=list(j) 
list(L+new)=j 

2         k(j)=k(j)+1  
L=L+m+1 
list(L)= n 

1         k(n)=1 
write(60,*),’#(irun)’, irun 
do 5 i= 1,max 

5         nk(k(i))=nk(k(i))+1  
SUM=0 
do 6 i=1,m 
SUM=SUM+K(i) 

6         write(60,*) i,k(i) 
do 9 i=1,kb 
j=alog(float(i))*fac  

9       nklog(j)=nklog(j)+nk(i)  
AVERGESUM=SUM/m 

             jmax=(1.0 + alog(float(kb))*fac) 

do 10 j=0,jmax 

if(nklog(j).ne.0) write(70,*) sqrt(2.0)*2**j,nklog(j),j,AVERGESUM 

10 if(nklog(j).ne.0) print*, sqrt(2.0)*2**j,nklog(j),j,AVERGESUM 

stop 

end 
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Appendix 2 

 

Fortran program for Ising model on SDBA2, without spins. 

parameter(nrun=100, maxtime=1000000,m=64,iseed=2,max=maxtie+m, 
1 kb=9000000,length=1+(1+m)*maxtime+m*(m-1)) 
         integer*8 ibm 
        real*8 factor 
         dimension nklog(0:30) 
         dimension k(max), nk(kb), list(length) 
        data nk/kb*0/,nklog/31*0/,k/max*0/ 
           OPEN (UNIT=60,FILE=’SDBA2-1M64.DAT’) 
           OPEN (UNIT=70,FILE=’SDBA2-2M64.DAT’) 
         WRITE (60,*)’#(nrun, maxtime, m, iseed)’,nrun, maxtime, m,iseed 
        ibm=2*iseed-1 
        factor=(0.25d0/2147483648.0d0)/2147483648.0d0 
        fac=1.0/0.69314 
           do 5 irun=1,nrun 
           do 3 i=1,m 
           do 7 j=(i-1)*(m-1)+1,(i-1)*(m-1)+m-1 
7       list(j)=i 
3        k(i)= m-1 
           L= m*(m-1) 
       if(m.eq.1) then 
           L=1 
        List(1)=1 
         k(1)=1 
        endif 
C       All m initial sites are connected with each other 
            do 1 n=m+1,max 
            do 2 new=1,m 
 4        ibm=ibm*16807 
           j=1.d0+(ibm*factor+0.5d0)*L 
       if(j.le.0.or.j.gt.L) goto 4 
        j=list(j) 
         if(new.eq.1) k(j)=k(j)+1 
       if(k(j).gt.kb .or. k(n).gt.kb) stop 9 
         list(L+new)=j 
2         continue 
                L=L+m+1 
        List(L)=n 
1           k(n)=m 
 
         write(60,*) ’# (irun )’, irun 
do 5 i= m+1,max 
5         if(k(i).gt.m) nk(k(i)-m)=nk(k(i)-m)+1 
SUM=0 
do 6 i=1,m 
SUM=SUM+K(i) 
6        write(60,*) i,k(i) 
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do 9 i=1,kb 
j=alog(float(i))*fac 

9        nklog(j)=nklog(j)+nk(i) 
AVERGESUM=SUM/m 
jmax=(1.0 + alog(float(kb))*fac) 
do 10 j=0,jmax 

     if(nklog(j).ne.0) write(70,*) sqrt(2.0)*2**j,nklog(j),j,AVERGESUM 
10        if(nklog(j).ne.0) print*,sqrt(2.0)*2**j,nklog(j),j,AVERGESUM 

stop 
end 

 

Appendix 3. 

This is the Fortran program for Ising model on SDBA1and SDBA2. without 

spins. 

parameter(kb=30000) 

C   maxtime=sites 

       parameter(nrun=100,maxtime=10000,m=3,iseed=1,max=maxtime+m, 

1    length=1+(1+m)*maxtime+m*(m-1)) 

       integer*8 ibm,iex, summag,imag 

        integer*4 mag 

        real*8 factor,ex 

       dimension is(max),iex(-kb:kb),neighb(max,kb) 

        dimension k(max), nk(kb), list(length) 

        data nk/kb*0/,nsteps/100000/,k/max*0/ 

        print *, max,m,nsteps,nsteps,iseed 

        ibm=2*iseed-1 

        factor=(0.25d0/2147483648.0d0)/2147483648.0d0 

       do 9 itemp=100,1600,+100 

         T = 0.01*itemp 

         do 5 irun=1,nrun 

          do 3 i=1,m 

           do 7 j=(i-1)*(m-1)+1,(i-1)*(m-1)+m-1 

7          list(j)=i 
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        jj=0 

       do 71 j=1,m 

      if(j.eq.i) goto 71 

        jj=jj+1 

        neighb(i,jj) = j 

71      continue 

3         k(i)=m-1 

           L=m*(m-1) 

          if(m.eq.1) then 

            L=1 

           List(1)=1 

            k(1)=1 

         neighb(1,1)=1 

           endif 

C       All m initial sites are connected with each other 

          do 1 n=m+1,max 

           do 2 new=1,m 

4        ibm=ibm*16807 

         j=1.d0+(ibm*factor+0.5d0)*L 

        if(j.le.0.or.j.gt.L) goto 4 

            j=list(j) 

            k(n)=k(n)+1 

           if(new.eq.1) k(j)=k(j)+1 

           if(k(j).gt.kb) stop 9 

            list(L+new)=j 

c       n selects m sites j which will all influence n 

c        n will influence only the first selected j 

c        j is always added to LIST, n is added only once 

c        k(i) is the number of sites neighb(i, . ) which will influence i 

         neighb(n ,new)=j 
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         if(new.eq.1) neighb(j,k(j))=n 

2       continue 

         list(L+m+1)=n 

          L=L+m+1 

1          k(n)=m 

          do 5 i=1,max 

            k(i)=min0(k(i),kb) 

5          nk(k(i))=nk(k(i))+1 

C         ******************* ISING PART 

             DO 20 I=1,MAX 

20         IS(I)=1 

           DO 21 IE=-KB,KB,1 

           EX=EXP(-2*IE/T) 

            IF(IE/T.LE.-20.0) EX= 1.0D9 

            IF(IE/T.GE. 20.0) EX= 1.0D-9 

21        IEX(IE)=2147483648.0D0*(4.0D0*EX/(1.0D0+EX)-2.0D0)*2147483648.0D0 

             SUMMAG=0 

            DO 22 MC=1,NSTEPS 

             DO 23 I=1,MAX 

               IE=0 

            DO 24 NB=1,K(i) 

24          IE=IE+IS(NEIGHB(I,NB)) 

             IE=IS(I)*IE 

             IBM=IBM*16807 

             IF(IBM.LT.IEX(IE)) IS(I)=-IS(I) 

23           CONTINUE 

                 MAG =0 

              DO 25 I=1,MAX 

25           MAG=MAG+IS(i) 

               IMAG=IABS(MAG) 



7 
 

22           IF(MC.GT.(NSTEPS/2)) SUMMAG=SUMMAG+IMAG 

              AVERGESUMMAG=SUMMAG*2.0/(MAX*NSTEPS) 

C             End of Ising part 

9             PRINT *,T,AVERGESUMMAG 

STOP 

END 

Appendix 4 

single spin-flip Glauber dynamics with a probability P 

Metropolis (1953) detailed balance ensures convergence to equilibrium. 

𝑷(𝑺𝒊)𝑷(𝑺𝒊 → 𝑺𝒋) =  𝑷(𝑺𝒋)𝑷(𝑺𝒋 → 𝑺𝒊) 

 

in other words:                 
𝑷(𝑺𝒊→𝑺𝒋)

𝑷(𝑺𝒋→𝑺𝒊)
=  

 𝑷(𝑺𝒋)

𝑷(𝑺𝒊)
=  𝒆−(𝑬𝒋−𝑬𝒊 ) 𝑲𝑻⁄  

 

(Where the last equality follows from the Boltzmann probability). 

Glauber dynamics: 

𝑷(𝑺𝒊 → 𝑺𝒋) =  𝒆−(𝑬𝒋) 𝑲𝑻⁄ (𝒆−(𝑬𝒋) 𝑲𝑻⁄ +⁄ 𝒆−(𝑬𝒊 ) 𝑲𝑻⁄  

 

=  
𝟏

( 𝟏 +  𝒆∆(𝑬𝒋𝒊  ) 𝑲𝑻⁄ )
 

 

(Raissa D’Souza, Simulating Glauber dynamics for the Ising model) 


