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 بسم الله الرحمن الرحيم

تذقِ  ْ وَمَوْعِظَةا لِلمْم ينَ خَلوَْا مِنْ قبَْلِكُم ِ بَيِِّناَتٍ وَمَثلًَا مِنَ الَّذ ْ أ يََتٍ مم ليَْكُم
ِ
يَن وَلقََدْ أَنْزَلنْاَ ا

مورِهِ كََِشْكََةٍ فِيهاَ مِصْبَاحٌ المِْصْبَاحم فِِ 43) مَاوَاتِ وَالَْْرْضِ مَثلَم ن مورم السذ م ن ( اللَّذ

جَاجَةم  جَاجَةٍ الزُّ قِيذةٍ وَلََ غرَْبِيذةٍ  زم بَارَكَةٍ زَيتْمونةٍَ لََ شََْ رَةٍ مم يٌّ يموقدَم مِنْ شَََ رِِّ اَ كَوْكَبٌ دم كَََنَّذ

م لِنمورِهِ مَنْ يشََاءم  مورٍ يََْدِي اللَّذ مورٌ علَََ ن اَ يمضِِءم وَلوَْ لمَْ تمَْسَسْهم نََرٌ ن يكَََدم زَيْتُم

م الَْْمْثاَلَ لِ  ءٍ علَِيٌم )وَيضَِْْبم اللَّذ ِّ شََْ ِ م بِكم  ( 43لنذاسِ وَاللَّذ

 سورة النور                                                  
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ABSTRACT 

 
A lot of previous researches and studies discussed during the past two decades 

reflectance and transmittance and ellipsometric characteristics of waves in multi-

layered thin films. 

The angle of incidence and the number of layers and the quality of material 

consisting of layers attack the most attention of researchers, as well as the type of 

polarization of the wave . 

The polarization types are two: electric transverse field r (TE- mode) and the 

magnetic transverse field (TM-mode). 

While this thesis discusses the reflectivity and permeability and ellipsometric 

characteristics of visible incident light on a multi-layered thin film for both types of 

polarization (TE- mode) and (TM-mode) in the presence of a surface with a 

conductivity. 

The conducting surface can be controlled by a transverse voltage . The ability of 

controlling  the conductivity of the surfaces comes from the existence of 

accumulated charges between the layers of  different insulating material when 

neighboring. 

The incident voltage influences the accumulated charges and thus the conductivity 

of the surfaces, which affects the optical properties of thin films. 

This thesis based on mathematical formulas to calculate the reflection coefficient 

and permeability coefficient takes into account the conductivity at surfaces. 

 

A mathematical conductivity-formula to calculate the reflectivity and ellipsometric 

characteristics is used in the third chapter in this thesis. 

The conductivity values have been manually changed and simulated using the 

MATLAB program. The simulation results have been extracted as Excel file. The 

Excel file has been imported to be plotted using the Origin program.  

The plots were compared at different values of conductivity. 

Reflectance and transmittance from a conventional Bragg reflector with alternating 

layers of high and low refractive indices will be studied and analyzed in details. 
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The effect of all structure parameters such as the refractive index ratio, number of 

layers, and the angle of incidence will be presented. Reflection and transmission 

from simple dielectric layers in the presence of interface free charge layers will be 

explored. The influence of the interface charge layer will be studied for TM or TE 

polarized light. The effect of a transverse dc voltage on the density of free charges 

and hence on the reflectance and transmittance will be presented. A Bragg reflector 

with conducting interfaces will be considered in terms of reflectance, 

transmittance, phase, band-gap, and tune ability.   

 

Based on the positive results of the simulation in third chapter, researcher derived 

in the fourth chapter of his dissertation a mathematical formula to calculate the 

effect of a transverse voltage on the conductivity of multi-layered thin film. 

Simulation in the fourth chapter was made for structure of two famous materials 

silicon and copper.  

The ability of controlling the value of conductivity led to the ability to influence the 

value of the reflectivity and ellipsometric properties. 

The simulation has been done with several variables, including the wavelength and 

transverse voltage and angle of incidence. 

The research summary comes in Chapter five as a new device can modulates the 

optical wave by two types of modulation, one of them based on the reflectivity and 

the other based on ellipsometric properties. 
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 البحث ملخص

 

ناقشت كثير من الأبحاث و الدراسات السابقة خلال العقدين الماضيين الانعكاس و النفاذية و 

الرقائق متعددة الطبقات, و استولت زاوية السقوط و ( للموجات في ellipsometricخصائص )

عدد الطبقات و نوعية المادة المكونة للطبقات على جل اهتمام الباحثين و كذلك نوع استقطاب 

( و المجال المغناطيسي TE- modeالموجة و هما نوعان المجال الكهربي المستعرض )

 (. TM-modeالمستعرض )

( للضوء ellipsometricالانعكاسية و النفاذية و خصائص ) في حين أن هذه الأطروحة تناقش

-TM( و )TE- modeالمرئي الساقط على الرقائق متعددة الطبقات لكلي نوعي الاستقطاب )

mode في وجود سطح ذو موصلية يمكن التحكم بها عن طريق جهد مستعرض, وتكمن القدرة )

متراكمة بين طبقات المواد العازلة المختلفة على التحكم في موصلية الأسطح على وجود شحنات 

عند تجاورها , يقوم الجهد المستعرض بالتأثير على الشحنات المتراكمة و بالتالي على موصلية 

الأسطح مما ينعكس على الخصائص الضوئية للرقائق, و تستند هذه الأطروحة على صيغة 

 ين الاعتبار الموصلية عند الأسطح.رياضية لحساب معامل الانعكاس و معامل النفاذية تأخذ بع

طبقت في الفصل الثالث خلال الأطروحة الصيغة الرياضية ذات الموصلية لحساب الانعكاسية و 

(, تم تغيير قيمة الموصلية بشكل تجريبي و محاكاة الحسابات ellipsometricخصائص )

(simulation على برنامج )MATLAB ختلفة للموصلية.و رسم النتائج لمقارنتها عند قيم م 

( اشتق الباحث في الفصل الرابع من أطروحته simulationبناءً على النتائج الإيجابية للمحاكاة )

صيغة رياضية لحساب تأثير الجهد المستعرض على موصلية  الرقائق متعددة الطبقات للتحكم 

مصنوعة من مادتي في قيمتها, و قد تمت المحاكاة في الفصل الرابع على رقائق متعددة الطبقات 

السيليكون و النحاس و هما مادتان شائعتان و رخيصتان نسبياً, و قد أدى التحكم في قيمة 

(, وقد تم ellipsometricالموصلية إلى القدرة على التأثير في قيمة الانعكاسية و خصائص )

 محاكاة النظام مع عدة متغيرات تشمل الطول الموجي و فرق الجهد المستعرض و زاوية

 السقوط.

جاءت خلاصة البحث في الفصل الخامس على هيئة جهاز جديد يقوم بعملية توليف للموجة 

الضوئية بنوعين من التوليف أحدهما يعتمد على الانعكاسية و الآخر على خصائص 

(ellipsometric.) 

 

 

 

 



8 
 

List of Figures  

CHAPTER ONE 

Figure  1.1  Two media of permittivities 𝜀1 and 𝜀2 are separated by an interface 4 

Figure  1.2 Illustration of the field components 4 

Figure  1.3 Illustrating of the refraction of a plane wave. 10 

Figure  1.4 Propagation of a plane wave. 11 

Figure  1.5 Scattering of electromagnetic waves at an interface: TE case. 13 

Figure  1.6 Scattering of an electromagnetic wave at an interface: TM case. 14 

Figure  1.7 Wave vectors for an electromagnetic wave incident on a boundary 

separating two different media. 

15 

 

CHAPTER Two 

Figure  2.1  Schematic description of the transmission of an electromagnetic 

wave through a slab with width 𝓵. 

26 

Figure  2.2 Schematic of a multilayer system. Ai represent the amplitude of 

the right traveling wave and Bi that of the left-traveling one. Note 

that Ai and Bi are not continuous at the interfaces. 

 

30 

 

CHAPTER Three 

Figure  3.1  Configuration of reflected and refracted waves at an interface for 

TM mode. 

39 

Figure  3.2 Configuration of reflected and refracted waves at an interface 

between two media for the TE mode. 

45 

Figure  3.3 Schematic diagram of three-layer Brag reflector. 48 

Figure  3.4 Calculated reflectivity of three-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜in the spectral range of 350-850 nm for 

different values of σ. 

 

51 



9 
 

Figure  3.5 The ellipsometric parameter ψ of three-layer-quarter-wavelength 

Bragg reflector, at𝜃𝑜 = 18
𝑜 in the spectral range of 350-850 nm 

for different values of σ. 

 

51 

Figure  3.6 The ellipsometric parameter ∆ of three-layer-quarter-wavelength 

Bragg reflector, at 𝜃𝑜 = 18
𝑜 in the spectral range of 350-850 nm 

for different values of 𝜎. 

 

52 

Figure  3.7 Structure of brag reflector of five  layers 52 

Figure  3.8 Calculated reflectivity of five-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜 in the spectral range of 350-850 nm for 

different values of 𝜎. 

 

53 

Figure  3.9 The ellipsometric parameter ψ of five-layer-quarter-wavelength 

Bragg reflector, at 𝜃𝑜 = 18
𝑜 in the spectral range of 350-850 nm 

for different values of 𝜎 

54 

Figure  3.10 The ellipsometric parameter ∆ of five-layer-quarter-wavelength 

Bragg reflector, at 𝜃𝑜 = 18
𝑜 in the spectral range of 350-850 nm 

for different values of 𝜎 

54 

 

CHAPTER Four 

Figure  4.1  Three-layer Bragg reflector with an applied voltage V. 56 

Figure  4.2 Five-layer Bragg reflector with an applied voltage V. 58 

Figure  4.3 Reflectivity from three-layer Bragg reflector for Si-Cu structure 

for different values of voltage and for  𝜃𝑖=20
o
. 

61 

Figure  4.4 Reflectivity difference from three-layer Bragg reflector for Si-Cu 

structure for different values of voltage and for  𝜃𝑖=20
o
. 

61 

Figure  4.5 𝜓 of three-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
 

62 



11 
 

Figure  4.6 ψ difference of three-layer Bragg reflector for Si-Cu structure for 

different values of voltage and for 𝜃𝑖=20
o
. 

63 

Figure  4.7 ∆ of three-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
 

63 

Figure  4.8 ∆ difference of three-layer Bragg reflector for Si-Cu structure for 

different values of voltage and for  𝜃𝑖=20
o
 

64 

Figure  4.9 Reflectivity of five-layer Bragg reflector for Si-Cu structure for 

different values of the voltage and  𝜃𝑖=20
o
. 

65 

Figure  4.10 ψ of five-layer Bragg reflector for Si-Cu structure for different 

values of voltage and   𝜃𝑖=20
o
. 

65 

Figure  4.11 ∆ of five-layer Bragg reflector for Si-Cu structure for different 

values of voltage and  𝜃𝑖=20
o
. 

66 

Figure  4.12 Reflectivity of nine-layer Bragg reflector for Si-Cu structure for 

different values of voltage and for  𝜃𝑖=20
o
. 

67 

Figure  4.13 ψ of nine-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

67 

Figure  4.14 ∆ of nine-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

68 

Figure  4.15 Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure 

for 𝜃𝑖=20
o
, and with 0, and 1000 volt. 

69 

Figure  4.16 𝜓 of fifteen-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

69 

Figure  4.17 ∆ of fifteen-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

70 

Figure  4.18 Reflectivity of three-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0 volt 

71 



11 
 

Figure  4.19 ψ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

72 

Figure  4.20 ∆ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt for different 

values of 𝜆 

72 

Figure  4.21 Reflectivity of three-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 1000 volt 

74 

 

Figure  4.22 ψ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

74 

Figure  4.23 ∆ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

75 

Figure  4.24 Reflectivity of three-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 5000 volt 

76 

Figure  4.25 ψ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

76 

Figure  4.26 ∆ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

77 

Figure  4.27 Reflectivity of five-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0 volt 

78 

Figure  4.28 ψ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

79 

Figure  4.29 ∆ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

79 

Figure  4.30 Reflectivity of five-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 1000 volt 

80 

Figure  4.31 ψ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

80 



12 
 

Figure  4.32 ∆ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt  

 

81 

Figure  4.33 Reflectivity of five-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 5000 volt 

81 

Figure  4.34 ψ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

82 

Figure  4.35 ∆ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

82 

Figure  4.36 Reflectivity of nine-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0 volt 

83 

Figure  4.37 𝜓 of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

 

84 

Figure  4.38 ∆ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

 

84 

Figure  4.39 Reflectivity of nine-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 1000 volt 

85 

Figure  4.40 ψ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

 

85 

Figure  4.41 ∆ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

 

86 

Figure  4.42 Reflectivityof nine-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 5000 volt 

 

86 

Figure  4.43 ψ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

 

87 

Figure  4.44 ∆ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

87 



13 
 

Figure  4.45 Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0 volt 

 

88 

Figure  4.46 ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

 

89 

Figure  4.47 ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0 volt 

 

89 

Figure  4.48 Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 1000 volt  

 

 

90 

Figure  4.49 ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

 

91 

Figure  4.50 ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 1000 volt 

 

91 

Figure  4.51 Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 5000 volt 

 

92 

Figure  4.52 ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

 

92 

Figure  4.53 ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 5000 volt 

 

93 

Figure  4.54 Reflectivity of three-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0, 1000, 

and 5000 volt 

 

94 

Figure  4.55 ψ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

94 

Figure  4.56 ∆ of three-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

 

95 



14 
 

Figure  4.57 Reflectivity of five-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0, 1000, 

and 5000 volt 

 

96 

Figure  4.58 ψ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

96 

Figure  4.59 ∆ of five-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

97 

Figure  4.60 Reflectivity of nine-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0, 1000, 

and 5000 volt 

 

98 

Figure  4.61 ψ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

98 

Figure  4.62 ∆ of nine-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

99 

Figure  4.63 Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure 

versus the incidence angle with transverse voltage of 0, 1000, 

and 5000 volt  

 

 

100 

Figure  4.64 ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

100 

Figure  4.65 ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incidence angle with transverse voltage of 0, 1000, and 5000 volt 

 

101 

 

CHAPTER Five 

Figure  5.1  Amplitude modulation of a light depending on a transverse 

voltage pulse train. 

 

106 

  



15 
 

CONTENTS 

 
Chapter One: Introduction to electromagnetic theory 

1.1. Maxwell's equations and electromagnetic field……………... 1 

1.2. Boundary conditions………………………………..……….. 3 

1.3. Index of Refraction………………………………..………... 5 

1.4. Plane wave………………………………..………………… 8 

1.5. Polarization of light (TE and TM) ………………..………... 11 

1.6. Transmission and reflection of a plane wave at an interface... 15 

1.6.1. Plane wave at an interface………………………………... 15 

1.6.2. Transmission and Reflection Coefficients……………….. 17 

1.6.2.1. The TE Polarization………………..………………........ 17 

1.6.2.2. The TM Polarization………………..…………………... 19 

1.6.3. Total transmission and total reflection…………………... 20 

1.6.3.1. Total Transmission………………..……………………. 20 

1.6.3.2. Brewster Angles……………….………………………... 21 

1.6.3.3. Total Reflection………………..……………………….. 22 

1.6.3.4. State of the Art …………………………………………. 24 

 

Chapter Two: Analysis of multilayer structure 

2. Transmission and Reflection Coefficients for a Slab………... 25 

2.1.1. Transmission and Reflection Amplitudes: TE polarization 26 

2.1.2. Transmission and Reflection Amplitudes: TM 

polarization………………………………………………. 

 

 

 28 

2.2. Multilayer media……………...………………..……………. 28 

2.3. Mathematical methods for the analysis and simulation of 

multilayers…............................................................................ 

 

29 

2.3.1. Transfer Matrix Method (TMM) ………………..………. 29 

2.3.2. Polynomial approach….…………………………..……... 32 

2.3.3. BCITL Model………………………………..……….…... 33 

2.4. Application of Multilayer structures……...…………………. 34 

 

 



16 
 

Chapter Three: Transmission and reflection in multilayer structure  

with conducting interfaces 

3.1. Basic Relations...……………………………..……….……... 36 

3.2. Reflection and transmission of a polarized electromagnetic 

wave at a conducting interface…...…………………………. 

 

37 

3.2.1. Reflection and transmission of plane TM polarized light 

at a conducting     interface….…..……...………………. 

 

37 

3.2.2. Reflection and transmission of plane TE polarized light at 

a conducting interface…………..………………………... 

 

44 

3.3. Simulation of multilayer structures. ……………………….... 47 

3.3.1. Simulation of Bragg reflector with three layers ….……… 47 

3.3.1.1. Results of simulation of three-layer Bragg reflector …… 49 

3.3.2. Simulation of a Bragg reflector with five layers …….…... 52 

3.3.3. Result of simulation of Bragg reflector with five layers…. 53 

 

Chapter Four: Manipulation of the conducting interface in multilayer  

structure 

4.1. Three-layer Bragg reflector with conducting interfaces and 

transverse voltage  ……………………………….………...... 

 

55 

4.2. Five-layer Bragg reflector with conducting interfaces and 

transverse voltage  …………………...……………………… 

 

58 

4.3. Simulation results for Bragg reflector ………………………. 59 

4.3.1. Investigation of the effect of wavelength and voltage…… 60 

4.3.1.1. Results of a three-layer structure .………..……………... 60 

4.3.1.2. Results of a five-layer structure …………………..…..… 64 

4.3.1.3. Results of a nine-layer structure……………….……...… 66 

4.3.1.4. Results for a fifteen-layer structure.……………………. 68 

4.3.2. Investigation of Bragg reflector with the incidence angle,  

 



17 
 

applied potential,  and wavelength.. …………………...… 70 

4.3.2.1. Results of a three-layer Bragg structure. ………..……… 70 

4.3.2.2. Results of a five-layer structure. ………...………….…... 77 

4.3.2.3. Results for a nine-layer structure.. …………...…...…….. 83 

4.3.2.4. Results of a fifteen-layer structure……...……………….. 88 

4.3.3. Investigation of Bragg reflector performance with the 

incidence angle and transverse voltage…………………... 

 

93 

4.3.3.1. Results of a three-layer structure………………………... 93 

4.3.3.2. Results of a five-layer structure…………………………. 95 

4.3.3.3. Results of a nine-layer structure………………………… 97 

4.3.3.4. Results of a fifteen-layer structure………………………. 99 

 

Chapter Five: General conclusion       104 

 

References …………………………………………………………........... 106 

 

 

 

 

 

 

 

 

 



18 
 

Chapter One 

Introduction to electromagnetic theory 

 

In this chapter, a review of electromagnetic theory is presented. Maxwell's equations, 

boundary conditions, plane wave, and polarization of light are studied. Moreover, 

reflection and transmission at one interface between two different media are 

presented. 

 

2.5. Maxwell's equations and electromagnetic field  

 

Maxwell's equations are the cornerstone of electromagnetic theory. They fully 

describe the electromagnetic field. Optics, as a branch of physics, describes the 

phenomena associated with the propagation of light and it's interaction with matter. 

The field of optics usually deals with the behavior of visible light, infrared, and 

ultraviolet waves. The time dependent Maxwell equations are given by [1] 

 

(1.1 ) 
∇⃗⃗ × �⃗� = −

𝜕�⃗� 

𝜕𝑡
, 

(1.2 ) 
∇⃗⃗ × �⃗⃗� = 𝐽𝑓⃗⃗⃗  +

𝜕�⃗⃗� 

𝜕𝑡
, 

(1.3 ) ∇ ∙ �⃗⃗� = 𝜌𝑓 , 

(1.4 ) ∇ ∙ �⃗� = 0. 

 

The first is Faraday’s law of induction; the second is Ampere’s law as amended by 

Maxwell to include the displacement current 𝜕�⃗⃗�
 
𝜕𝑡
⁄  , the third is Gauss’ law for the 

electric field, and the fourth is the nonexistence of magnetic monopole. 

The displacement current term 𝜕�⃗⃗�
 
𝜕𝑡
⁄  in Ampere's law is essential in predicting the 
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existence of propagating electromagnetic waves. 

The quantities �⃗�  and �⃗⃗�  are the electric and magnetic field intensities and are 

measured in units of [volt/m] and [ampere/m], respectively. The quantities�⃗⃗�  and �⃗�  

are the electric and magnetic flux densities  in units of [coulomb/m
2
] and [weber/m

2
], 

or [tesla] respectively.  The quantities 𝜌 and 𝐽  are the volume charge density and 

electric current density of any external charges (that is, not including any induced 

polarizationcharges and currents.) They are measured in units of [coulomb/m
3
] and 

[ampere/m
2
]. 

These  equations describe all macroscopic electromagnetic phenomena where the 

primary sources of the electromagnetic fields are free charges and currents. 

For wave propagation phenomena considered in optics, media without free charges 

and conduction currents are most relevant. With 𝜌 =0 and 𝐽 = 0, Maxwell equations 

become  

 

(1.5 ) 
∇⃗⃗ × �⃗� = −

𝜕�⃗� 

𝜕𝑡
, ∇⃗⃗ × �⃗� = −

1

𝑐

𝜕�⃗� 

𝜕𝑡
 , 

(1.6 ) 
∇⃗⃗ × �⃗⃗� = 𝐽𝑓⃗⃗⃗  +

𝜕�⃗⃗� 

𝜕𝑡
, ∇⃗⃗ × �⃗⃗� =

1

𝑐

𝜕�⃗⃗� 

𝜕𝑡
, 

(1.7 ) ∇ ∙ �⃗⃗� = 𝜌𝑓 , ∇ ∙ �⃗⃗� = 0, 

(1.8 ) ∇ ∙ �⃗� = 0. ∇ ∙ �⃗� = 0. 

 

The behavior of substances under the influence of electric and magnetic fields is 

described by relation known as material equations (or constitutive relations). In 

general they are rather complicated; but if the field is time-harmonic, and  the material 

is isotropic (i.e. when its physical properties at each point are independent of 

direction), they take the form  

 

(1.9 ) 𝑗 = 𝜎�⃗� , 

(1.10 ) �⃗⃗� = 𝜀𝐸,⃗⃗  ⃗ 

(1.11 ) �⃗� = 𝜇𝐻,⃗⃗⃗⃗  
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where𝜎 is called the specific conductivity, 𝜀 is the dielectric constant (or permittivity) 

and 𝜇 is the magnetic permeability. 

Equation (1.9) is the differential form of Ohm's law. Substances for which 𝜎 ≠ 0 are 

called conductors. Metals are very good conductors, but there are other classes of 

good conducting materials such as ionic solutions in liquids and also in solids. In 

metals the conductivity decreases with increasing temperature. However, in other 

classes of materials, known as semiconductors, conductivity increases with 

temperature over a wide range. Substances for which 𝜎 is negligibly small are called 

insulators or dielectrics. Their electric and magnetic properties are then completely 

determined by 𝜀and 𝜇. For most substances the relative nonmagnetic permeability 𝜇𝑟 

is practically unity. If this is not the case, i.e. if 𝜇𝑟 differs appreciably from unity, the 

substance is said to be magnetic. In particular, if 𝜇𝑟> 1, the substance is said to be 

paramagnetic (e.g. platinum, oxygen, nitrogen dioxide), while if 𝜇𝑟< 1 it is said to be 

diamagnetic (e.g. bismuth, copper, hydrogen, water). 

 

 

2.6. Boundary conditions  

 

Figure 1.1.shows two media of permittivities 𝜀1 and 𝜀2 separated by an interface.  The 

boundary conditions for the electromagnetic fields across material boundaries are 

given by [2] 

 

(1.12 ) 𝐸1𝑡 − 𝐸2𝑡 = 0, 

(1.13 ) 𝐻1𝑡 − 𝐻2𝑡 = 𝐽 𝑠 × �̂�, 

(1.14 ) 𝐷1𝑛 − 𝐷2𝑛 = 𝜌𝑠, 

(1.15 ) 𝐵1𝑛 − 𝐵2𝑛 = 0, 

 

where�̂� is a unit vector normal to the boundary pointing from medium-2 into 

medium-1. The subscript t and n denote tangential and normal components, 
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respectively.  The quantities 𝜌𝑠, 𝐽𝑠⃗⃗  are any external surface charge and surface current 

densities on the boundary . 

 

 

Figure 1.1. Two media of permittivities𝜀1 and 𝜀2are separated by an interface. 

 

In words, the tangential components of the �⃗� -field are continuous across the interface; 

the difference of the tangential components of the �⃗⃗� -field are equal to the surface 

current density (𝐽𝑠); the difference of the normal components of the flux density �⃗⃗�  are 

equal to the surface charge density (𝜌𝑠); and the normal components of the magnetic 

flux density �⃗� are continuous.The relative directions of the field vectors are shown in 

Fig.1.2. Each vector maybe decomposed as the sum of a part tangential to the surface 

and a part perpendicular to it, that is 

 

(1.16 ) �⃗� 𝑡 = �̂� × (�⃗� × �̂�)      ,           �⃗� 𝑛 = �̂�(�̂� ∙ �⃗� ), 

 

and 

(1.17 ) �⃗⃗� 𝑡 = �̂� × (�⃗⃗� × �̂�) , �⃗⃗� 𝑛 = �̂�(�̂� ∙ �⃗⃗� ). 

 

 

Figure 1.2. Illustration of the field components. 
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+The first two boundary conditions that appear in equations (1.12) and (1.13) can be 

written  in the following vectorial forms. 

 

(1.18 ) �̂�21 × (�⃗� 1 × �̂�21) − �̂�21 × (�⃗� 2 × �̂�21) = 0, 

(1.19 ) �̂�21 × (�⃗⃗� 1 × �̂�21) − �̂�21 × (�⃗⃗� 2 × �̂�21) = 𝐽 𝑠 × �̂�21. 

 

The above two equations can be simplified as 

 

(1.20 ) �̂�21 × (�⃗� 1 − �⃗� 2) = 0 , 

(1.21 ) �̂�21 × (�⃗⃗� 1 − �⃗⃗� 2) = 𝐽 𝑠 . 

 

 

2.7. Index of Refraction 

 

We assume an isotropic, homogeneous, and non-conducting medium (i.e. 𝐽𝑓𝑟𝑒𝑒 = 0). 

In this case, we expect �⃗�  and �⃗�  to be parallel to each other so ∇ ∙ �⃗� = 0,where �⃗�  is the 

polarization. The general wave equation  for the electric field reduces in this case to 

[3] 

 

(1.22 ) 
∇2�⃗� − 𝜀𝑜𝜇𝑜

𝜕2�⃗� 

𝜕𝑡2
= 𝜇𝑜

𝜕2�⃗� 

𝜕𝑡2
. 

 

For sinusoidal waves, the solutions are considered to have the forms 

 

(1.23 ) 𝐸 = 𝐸𝑜𝑒
𝑖(𝑘∙ 𝑟−𝜔𝑡), 

(1.24 ) 𝑃 = 𝑃𝑜𝑒
𝑖(𝑘∙ 𝑟−𝜔𝑡). 
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An electric field stimulates a medium at frequency ω, then the polarization in the 

medium also oscillates at frequency ω. This assumption is typically rather good 

except for extreme electric fields, which can generate frequency harmonics through 

nonlinear effects. Substitution of the trial solutions (1.23) and (1.24) into (1.22) yields 

 

(1.25 ) −𝐾2𝐸𝑜𝑒
𝑖(𝑘∙ 𝑟−𝜔𝑡) + 𝜀𝑜𝜇𝑜𝜔

2 𝐸𝑜𝑒
𝑖(𝑘 ∙ 𝑟−𝜔𝑡) = −𝜇𝑜𝜔

2𝑃𝑜𝑒
𝑖(𝑘 ∙ 𝑟−𝜔𝑡). 

 

In a linear medium, the polarization amplitude is proportional to the strength of the 

applied electric field 

 

(1.26 ) 𝑃𝑜(𝜔) = 𝜀𝑜𝜒(𝜔)𝐸𝑜(𝜔), 

 

where𝜒(𝜔) is the susceptibility which depends on the frequency of the field. By 

inserting Eq.(1.26) into Eq.(1.25) and canceling the field terms, we obtain the 

dispersion relation in dielectrics 

 

(1.27 ) 𝐾2 = 𝜀𝑜𝜇𝑜[1 + 𝜒(𝜔)]𝜔
2     𝑜𝑟    𝐾 =

𝜔

𝑐
√1 + 𝜒(𝜔), 

 

where𝑐 = 1
√𝜀𝑜𝜇𝑜
⁄ . In general, (ω) is a complex number, which leads to a complex 

index of refraction, defined by  

 

(1.28 ) 𝑁(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔) = √1 + 𝜒(𝜔), 

 

where n and 𝜅  are respectively the real and imaginary parts of the index.According to 

Eq.(1.27), the magnitude of the wave vector is also complex according to 

 

(1.29 ) 
𝐾 =

𝑁𝜔

𝑐
=
(𝑛 + 𝑖𝜅)𝜔

𝑐
 . 

 

The use of complex index of refraction only makes sense in the context of complex 
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representation of plane waves. The complex index N takes into account absorption as 

well as the usual oscillatory behavior of the wave. This can be seen by explicitly 

placing Eq.(1.29) into Eq.(1.23) 

 

(1.30 ) 
𝐸(𝑟, 𝑡) = 𝐸𝑜𝑒

−𝐼𝑚{𝐾}∙𝑟𝑒𝑖(𝑅𝑒{𝐾}∙𝑟−𝜔𝑡) = 𝐸𝑜𝑒
−
𝑘𝜔

𝑐
�̂�∙𝑟𝑒𝑖(

𝑛𝜔

𝑐
𝑢∙𝑟−𝜔𝑡).

 

 

where�̂� is a real unit vector specifying the direction of K. When lookingat Eq.(1.30), 

the real part should be considered  

 

(1.31 ) 
𝐸(𝑟, 𝑡) = 𝐸𝑜𝑒

−
𝑘𝜔

𝑐
𝑢∙𝑟 cos (

𝑛𝜔

𝑐
�̂� ∙ 𝑟 − 𝜔𝑡 + 𝜙) 

 

Figure 1.3.shows a graph of Eq.(1.31). The imaginary part of the index causes the 

wave to decay as it travels. The real part of the index n is associated with the 

oscillations of the wave. From Eq.(1.28)  

 

(1.32 ) (𝑛 + 𝑖𝜅)2 = 𝑛2 − 𝜅2 + 𝑖2𝑛𝜅 = 1 + 𝑅𝑒{𝜒} + 𝑖𝐼𝑚{𝜒} = 1 + 𝜒 . 

 

The real and imaginary parts in the above equation are separately equal 

 

(1.33 ) 𝑛2 − 𝜅2 = 1 + 𝑅𝑒{𝜒}       𝑎𝑛𝑑   2𝑛 = 𝐼𝑚{𝜒} . 

 

From the latter equation  

 

(1.34 ) 𝜅 =
𝐼𝑚{𝜒}

2𝑛⁄  . 

 

When this is substituted into the first equation of (1.33) we get a quadratic in 𝑛2 

 

(1.35 ) 
𝑛4 − (1 + 𝑅𝑒{𝜒})𝑛2 −

(𝐼𝑚{𝜒})2

4
= 0 . 

 

The positive real root to this equation is given by 

 



25 
 

(1.36 ) 

𝑛 = √
(1 + 𝑅𝑒{𝜒}) + √(1 + 𝑅𝑒{𝜒})2 + (𝐼𝑚{𝜒})2

2
 . 

 

The imaginary part of the index is then obtained from Eq.(1.34). When absorption is 

small one can neglect the imaginary part of (ω), and Eq.(1.36) reduces to [3] 

 

(1.37 ) 𝑛(𝜔) = √1 + 𝜒(𝜔) . 

 

 

2.8. Plane wave 

 

Maxwell's equations relate the field vectors by means of simultaneous 

differentialequations. Confining our attention to that part of the field which contains 

no charges or currents, i.e. where 𝐽 = 0,and 𝜌 = 0, then substituting for �⃗�  from 

Eq.(1.11) into the first Maxwell Eq.(1.1), dividing both sides by 𝜇,and applying the 

operator curl (∇ ×); this gives  

 

(1.38 ) 
∇⃗⃗ × (

1

𝜇
∇⃗⃗ × �⃗� ) +

1

𝑐
∇⃗⃗ × (

𝜕�⃗⃗� 

𝜕𝑡
) = 0 . 

 

Differentiating Eq.(1.1) with respect to time, usingEq.(1.10) for�⃗⃗� , and eliminating 

∇⃗⃗ × (
𝜕𝐻

𝜕𝑡
) between the resulting equation and Eq.(1.2); this gives 

 

(1.39 ) 
∇⃗⃗ × (

1

𝜇
∇⃗⃗ × �⃗� ) +

𝜀𝑟
𝑐2
𝜕2�⃗� 

𝜕𝑡2
= 0 . 

 

Using the identities  ∇⃗⃗ × (𝑢𝑣) = 𝑢∇⃗⃗ × 𝑣 + (∇⃗⃗ 𝑢) × 𝑣  and ∇⃗⃗ × �⃗� × =  ∇⃗⃗ (∇⃗⃗ ∙ ) − ∇2, 

Equation (1.39) becomes  

 

(1.40 ) 
∇2�⃗� −

𝜀𝑟𝜇𝑟
𝑐2

𝜕2�⃗� 

𝜕𝑡2
+ (∇⃗⃗ ln 𝜇𝑟) × ∇⃗⃗ × �⃗� − ∇⃗⃗ (∇⃗⃗ ∙ �⃗� ) = 0. 
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Also from Eq.(1.7), using again the material equation for �⃗⃗�  and applying the 

identity∇⃗⃗ ∙ (�⃗� 𝑣 ) = 𝑢 ∇⃗⃗ ∙ 𝑣 + 𝑣 ∙ ∇⃗⃗ 𝑢 , 

 

(1.41 ) 𝜀�⃗� ∙ �⃗� + �⃗� ∙ ∇⃗⃗ 𝜀 = 0 . 

 

Hence Equation (1.40) may be written as 

 

(1.42 ) 
∇2�⃗� −

𝜀𝜇

𝑐2
𝜕2�⃗� 

𝜕𝑡2
+ (∇⃗⃗ ln 𝜇) × ∇⃗⃗ × �⃗� + ∇⃗⃗ (�⃗� ∙ ∇⃗⃗ ln 𝜀) = 0 . 

 

In a similar way we obtain an equation for �⃗⃗�  field as 

 

(1.43 ) 
∇2�⃗⃗� −

𝜀𝜇

𝑐2
𝜕2�⃗⃗� 

𝜕𝑡2
+ (∇⃗⃗ ln 𝜀) × ∇⃗⃗ × �⃗⃗� + ∇⃗⃗ (�⃗⃗� ∙ ∇⃗⃗ ln 𝜇) = 0 . 

 

In particular, if the medium is homogeneous, ∇⃗⃗ (ln 𝜀) = ∇⃗⃗ (ln 𝜇) = 0 , and 

Equations.(1.42) and  (1.43) reduce to [4] 

 

(1.44 ) 
∇2�⃗� −

𝜀𝑟𝜇𝑟
𝑐2

𝜕2�⃗� 

𝜕𝑡2
= 0, 

(1.45 ) 
∇2�⃗⃗� −

𝜀𝑟𝜇𝑟
𝑐2

𝜕2�⃗⃗� 

𝜕𝑡2
= 0. 

 

These are standard equations of wave motion and they suggest the existence of 

electromagnetic waves propagating with a velocity 

 

(1.46 ) 𝑣 = 𝑐
√𝜀𝑟𝜇𝑟
⁄ . 

 

According to the law of refraction, if a plane electromagnetic wave falls onto a plane 

boundary between two homogeneous media, the angle of incidence bears a constant 

ratio to the angle of refraction. This constant ratio being equal to the ratio of the 

velocities  𝑣1 and  𝑣2 of propagation in the two media, namely 
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(1.47 ) sin 𝜃1
sin 𝜃2

=
𝑣1
𝑣2
 . 

 

We also define an 'absolute refractive index' n of a medium; it is the refractive index 

for refraction from vacuum into that medium, 

 

(1.48 ) 𝑛 =
𝑐

𝑣
 . 

 

If n1 and n2 are the absolute refractive indices of two media, the (relative) refractive 

indexn12 for refraction from the first into the second medium then is 

 

(1.49 ) 𝑛12 =
𝑛2
𝑛1
=
𝑣1
𝑣2
 . 

 

 

Figure 1.3. Illustrating of the refraction of a plane wave. 

 

Comparison of Eq.(1.46) and Eq.(1.48) gives Maxwell's formula 

 

(1.50 ) 𝑛 = √𝜀𝑟𝜇𝑟 . 

 

In a homogeneous medium in regions free of currents and charges, each rectangular 

component V(r, t) of the field vectors satisfies, according to Eq.(1.44), and Eq.(1.45)  

the homogeneous wave equation 
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(1.51 ) 
∇2�⃗� −

1

𝑣2
𝜕2�⃗� 

𝜕𝑡2
= 0 . 

 

The simplest solution of this equation can be examined as follows; let r(x, y, z) be a 

position vector of a point P in space and k(kx, ky, kz) a unit vector in a fixed direction. 

Any solution of equation (1.51) of the form 

 

(1.52 ) 𝑉 =  𝑉(𝑟 ∙ �⃗�  , 𝑡). 

 

is said to represent a plane wave, since at each instant of time, V is constant over each 

of the planes 

 

(1.53 ) 𝑟 ⃗⃗  ∙ 𝑘 ⃗⃗⃗  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

which are perpendicular to the unit vector k. 

 

 

Figure 1.4. Propagation of a plane wave. 

 

 

2.9. Polarization of light (TE and TM) 

 

In transverse electric mode, the electric field has no longitudinal components (Ez=0) 

but in the transverse direction (𝐸𝑦 ≠ 0).  By definition, in the case of  TE polarization 
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the electric intensity E is parallel to the interface. In the notation of Fig.1.5,the vector 

�⃗�  has only one component, E = (0, 𝐸𝑦, 0), and vector �⃗⃗� has two components,  

H= (Hx, 0, Hz).As shown in Fig. 1.5, each field contains components that propagate to 

the right (denoted by the superscript +) and components propagating to the left 

(denoted by the superscript −). 

The boundary condition requires that the component of the electric field parallel to the 

interface is the same on both sides of the interface, 

 

(1.54 ) 𝐸1
+ + 𝐸1

− = 𝐸2
+ + 𝐸2

− . 

 

The same holds for the magnetic field, 

 

(1.55 ) 𝐻1𝑥
+ + 𝐻1𝑥

− = 𝐻2𝑥
+ + 𝐻2𝑥

−  . 

 

Using Maxwell’s equation 

 

(1.56 ) �⃗� × �⃗� =
𝜇𝜔

𝑐
�⃗⃗�  . 

 

to express the magnetic field �⃗⃗�  in Eq. (1.55) in terms of �⃗� , 

 

(1.57 ) 𝜇1𝜔

𝑐
𝐻1𝑥
+ = −𝑘1𝑧𝐸1

+      ,    
𝜇1𝜔

𝑐
𝐻1𝑥
− = 𝑘1𝑧𝐸1

− . 
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Figure 1.5. Scattering of electromagnetic waves at an interface: TE case. 

 

and similar relations for the field in the second medium. Here, k1z is the z-component 

of the wave vector in medium 1. Note that, the right- hand side of the second part of 

Eq.(1.57) has the opposite sign because the wave 𝐸1
− propagates in the opposite 

direction. Inserting Eq.(1.57) into the Eq.(1.55), we obtain 

 

(1.58 ) 
−
𝑘1𝑧𝑐

𝜇1𝜔
𝐸1
+ +

𝑘1𝑧𝑐

𝜇1𝜔
𝐸1
− = −

𝑘2𝑧𝑐

𝜇2𝜔
𝐸2
+ +

𝑘2𝑧𝑐

𝜇2𝜔
𝐸1
−. 

 

Equation (1.58) together with Eq.(1.54) can be written in a matrix form as 

 

(1.59 ) 
(
1           1

−
𝑘1𝑧

𝜇1
+
𝑘1𝑧

𝜇1

)(
𝐸1
+

𝐸1
−) = (

1            1

−
𝑘2𝑧

𝜇2
+
𝑘2𝑧

𝜇2

)(
𝐸2
+

𝐸2
−) , 

 

which expresses the electric field on one side of the interface in terms of the electric 

field on the other side of the interface. Eq.(1.67) can be written as  

 

(1.60 ) 
(
𝐸2
+

𝐸2
−) = 𝑀(𝑠) (

𝐸1
+

𝐸1
−) , 

 

with the transfer matrix𝑀(𝑠)is given by [1] 
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(1.61 ) 

𝑀(𝑠) =
1

2
(
1 +

𝜇2

𝜇1

𝑘1𝑧

𝑘2𝑧
1 −

𝜇2

𝜇1

𝑘1𝑧

𝑘2𝑧

1 −
𝜇2

𝜇1

𝑘1𝑧

𝑘2𝑧
1 +

𝜇2

𝜇1

𝑘1𝑧

𝑘2𝑧

). 

 

For transverse magnetic polarization, shown in Fig.1.6, we have the magnetic field 

vector �⃗⃗� parallel to the interface and, therefore, it has only one component �⃗⃗� =

(0, 𝐻𝑦, 0). 

 

Figure 1.6.Scattering of an electromagnetic wave at an interface: TM case. 

 

The electric field vector �⃗�  has two components �⃗� = (𝐸𝑥, 0, 𝐸𝑧). Following the same 

procedure used for the TE polarization, we get 

 

 

(1.62 ) 

�̃�(𝑝) =
1

2
(
1 +

𝜀2

𝜀1

𝑘1𝑧

𝑘2𝑧
1 −

𝜀2

𝜀1

𝑘1𝑧

𝑘2𝑧

1 −
𝜀2

𝜀1

𝑘1𝑧

𝑘2𝑧
1 +

𝜀2

𝜀1

𝑘1𝑧

𝑘2𝑧

) , 

 

where �̃�(𝑝)is the transfer matrix for TM-polarization[1]. 
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2.10. Transmission and reflection of a plane wave at an interface 

 

2.10.1. Plane wave at an interface 

 

Consider a plane wave striking the interface between two media as shown in Fig. 1.7.  

The electric and magnetic fields are given by the  

 

(1.63 ) �⃗� (𝑟 , 𝑡) = �⃗� 𝑜𝑒
𝑖(�⃗� ∙𝑟 −𝜔𝑡),  

(1.64 ) �⃗⃗� (𝑟 , 𝑡) = �⃗⃗� 𝑜𝑒
𝑖(�⃗� ∙𝑟 −𝜔𝑡), 

 

 

Figure 1.7. Wave vectors for an electromagnetic wave incident on a 

boundary separating two different media. 

 

where�⃗� 𝑜 and �⃗⃗� 𝑜are the vectors that define the absolute value and the direction of 

�⃗� (𝑟 , 𝑡) and �⃗⃗� (𝑟 , 𝑡), respectively.  The two media are characterized by different 

permittivities 𝜀1 and 𝜀2 and permeabilities 𝜇1and 𝜇2 . 

The coordinate system is chosen such that the interface between the two media is 

perpendicular to the z-axis and the plane of incidence. The geometry of the problem is 

shown in Fig. 1.7. Thus, the wave vector has only two components, 

 

(1.65 ) �⃗� = (𝑘𝑥, 0, 𝑘𝑧). 

 

The conditions 
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(1.66 ) �⃗� 1𝑡  = �⃗� 2𝑡 ,          𝑎𝑛𝑑       �⃗⃗� 1𝑡  = �⃗⃗� 2𝑡 , 

 

must be satisfied at any point x of the interface and the tangential component of the 

vector �⃗� , kx, must be the same for both media 

 

(1.67 ) 𝑘1𝑥  =  𝑘2𝑥  =  𝑘𝑥 . 

 

The explicit form of the dispersion relation 𝑛
2𝜔2

𝑐2
⁄ = 𝑘2 between the frequency and 

wave vector is given by 

 

(1.68 ) 𝑛1
2𝜔2

𝑐2
= 𝑘1

2 = 𝑘𝑥
2 + 𝑘1𝑧

2  ,      𝑛1 = √𝜇1𝜀1 , 

(1.69 ) 𝑛2
2𝜔2

𝑐2
= 𝑘2

2 = 𝑘𝑥
2 + 𝑘2𝑧

2  ,      𝑛2 = √𝜇2𝜀2 , 

 

for media 1 and 2, respectively. Here, k1 and k2 are the absolute values of vectors 

�⃗� 1and �⃗� 2, respectively. In the case of planar waves, both components of the wave 

vector are real, thus an angle of incidence 𝜃1 and angle of refraction 𝜃2 can be defined 

as 

 

(1.70 ) 
tan 𝜃1 =

𝑘𝑥
𝑘1𝑧

 , 

(1.71 ) 
tan 𝜃2 =

𝑘𝑥
𝑘2𝑧

 , 

 

From equation (1.67) we also have that 

(1.72 ) 𝑘𝑥 = 𝑘1 sin 𝜃1 = 𝑘2 sin 𝜃2 . 

 

Using Eqs. (1.68), and (1.69) we finally obtain that 

 

(1.73 ) 𝑘𝑥 = 𝑛1
𝜔

𝑐
sin 𝜃1 = 𝑛2

𝜔

𝑐
sin 𝜃2 . 
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Taking the ratio of the two equations in (1.73), we obtain a relation between angles of 

incidence and reflection, known as Snell’s law , 

 

(1.74 ) sin 𝜃1
sin 𝜃2

=
𝑛2
𝑛1
 . 

 

For the reflected wave, we have from Eqs.(1.68), and (1.69)  𝑘1
−2 = 𝑘1

+2. As the x-

component of the wave vector is preserved, we obtain that 

 

(1.75 ) 𝑘1𝑧
− = −𝑘1𝑧

+  . 

 

The negative sign is due to the opposite direction of propagation of the reflected 

wave. Consequently, the angle of the propagation of the reflected wave,𝜃𝑟 =

𝑡𝑎𝑛−1 (
𝑘𝑥

𝑘1𝑧
−⁄ )  equals in absolute value the incident angle 𝜃1 

 

(1.76 ) 𝜃𝑟 = −𝜃1 . 

 

 

2.10.2. Transmission and reflection coefficients 

 

The aim of this subsection is to determine the transmission and reflection coefficients 

for both TE and TM polarizations.  

 

 

2.10.2.1. The TE Polarization 

 

The transfer matrix M
(s)

given by Eq.(1.61) has been derived for the general case when 

the electromagnetic waves are coming from the left and the right of the interface. 

Consider now the case when the electromagnetic wave 𝐸1
+ is incident from the left 

and is scattered on the interface. Part of the wave, 𝐸1
−, is reflected back, and another 
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part, 𝐸2
+, is transmitted through the barrier. Since no wave is incident from medium 2, 

we designate 𝐸2
−=0. Then, we obtain from Eq.(1.60) that 

 

(1.77 ) 𝐸2
+ = 𝑀11

(𝑠)𝐸1
+ +𝑀12

(𝑠)𝐸1
−, 

(1.78 ) 𝐸2
− = 𝑀21

(𝑠)𝐸1
+ +𝑀22

(𝑠)𝐸1
− = 0. 

 

The transmission and the reflection amplitudes for the electric field are defined as 

 

(1.79 ) 
𝑡𝑠 =

𝐸2
+

𝐸1
+  ,    𝑎𝑛𝑑         𝑟𝑠 =

𝐸1
−

𝐸1
+. 

 

Using the explicit form of the matrix M
(s)

, given by Eq.(1.61), we can solve 

Eqs.(1.77), and (1.78) to obtain 

 

(1.80 ) 
𝑡𝑠 =

|𝑀(𝑠)|

𝑀22
(𝑠)

=
2𝜇2𝑘1𝑧

𝜇1𝑘2𝑧 + 𝜇2𝑘1𝑧

,

 

 

where|𝑀(𝑠)| =
𝜇2𝑘1𝑧

𝜇1𝑘2𝑧
⁄  ,and 

(1.81 ) 
𝑟𝑠 = −

𝑀21
(𝑠)

𝑀22
(𝑠)
=
𝜇2𝑘1𝑧 − 𝜇1𝑘2𝑧
𝜇1𝑘2𝑧 + 𝜇2𝑘1𝑧

 . 

 

The transmission coefficient is given by the ratio of the energy flows in the two 

media. Using the relations between �⃗� and �⃗⃗� , we can express the energy flow 

perpendicular to the surface can be expressed as 

 

(1.82 ) 
𝑆1 =

𝑐

8𝜋
𝑅𝑒[�⃗� 1

+ × �⃗⃗� 1
+∗] =

𝑐

8𝜋
𝑅𝑒[𝐸1

+𝐻1𝑥
+∗] =

𝑐

8𝜋

𝑅𝑒 𝑘1𝑧
𝜇1𝜔

|𝐸1
+|2, 

 

and 

 

(1.83 ) 
𝑆2 =

𝑐

8𝜋
𝑅𝑒[�⃗� 2

+ × �⃗⃗� 2
+∗] =

𝑐

8𝜋
𝑅𝑒[𝐸2

+𝐻2𝑥
+∗] =

𝑐

8𝜋

𝑅𝑒 𝑘2𝑧
𝜇2𝜔

|𝐸2
+|2. 
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Since 𝐸2
+ = 𝑡𝑠𝐸1

+ ,  we finally obtain the transmission and reflection coefficients as  

 

(1.84 ) 
𝑇𝑠 =

𝑆2
𝑆1
=
𝜇1
𝜇2

𝑅𝑒 𝑘2𝑧
𝑅𝑒 𝑘1𝑧

|𝑡𝑠|
2. 

 

(1.85 ) 𝑅𝑠 = |𝑟𝑠|
2. 

 

 

2.10.2.2. The TM Polarization 

 

Following the same procedure used for the TE polarization, the transmission and 

reflection amplitude can be written as  

 

(1.86 ) 
�̃�𝑝 =

|�̃�(𝑝)|

�̃�22
(𝑝)

=
2𝜀2𝑘1𝑧

𝜀2𝑘1𝑧 + 𝜀2𝑘2𝑧

,

 

(1.87 ) 
�̃�𝑝 = −

�̃�21
(𝑝)

�̃�22
(𝑝)
=
𝜀2𝑘1𝑧 − 𝜀1𝑘2𝑧
𝜀2𝑘1𝑧 + 𝜀1𝑘2𝑧

, 

 

where the transfer matrix �̃�(𝑝) is given by Eq.(1.62). The tilde was used to emphasize 

that �̃� is the transmission amplitude for the magnetic field. The Poynting vectors in 

this case are given by 

 

(1.88 ) 
𝑆1 =

𝑐

8𝜋
𝑅𝑒[�⃗� 1

+ × �⃗⃗� 1
+∗] =

𝑐

8𝜋
𝑅𝑒[𝐸1𝑥

+ 𝐻1
+∗] =

𝑐

8𝜋

𝑅𝑒 𝑘1𝑧
𝜀1𝜔

|𝐻1
+|2 , 

 

with a similar expression for S2. The Poynting vector represents the directional energy 

flux density i.e. the rate of energy transfer per unit area, in units of watts per square 

meter (W/m
2
) of an electromagnetic field. 

The transmission coefficient, given as the ratio of S2/S1, is given by 

 

(1.89 ) 
𝑇𝑝 =

𝜀1
𝜀2

𝑅𝑒 𝑘2𝑧
𝑅𝑒 𝑘1𝑧

|�̃�𝑝|
2
 

 



37 
 

and the reflection coefficient is given by 

 

(1.90 ) 𝑅𝑝 = |�̃�𝑝|
2
 

 

It is easy to prove that, in the absence of absorption (Re k1z = k1z and 

Re k2z = k2z), we have 

 

(1.91 ) T + R = 1. 

 

for both TE and TM polarizations. 

 

 

2.10.3. Total transmission and total reflection 

 

2.10.3.1. Total Transmission 

 

Formulas for the transmission and reflection coefficients can be applied to find the 

conditions under which the interface is totally transparent. In the absence of 

absorption 

 

(1.92 ) T + R = 1. 

 

The parameters for which the total transmission appears can be obtained by solving 

the Equations 

 

(1.93 ) rs = 0 , 

 

for the TE mode,and 

 

(1.94 ) rp = 0 , 

 

for the TM mode. 
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First, we calculate the conditions of zero reflectance of an interface between two 

regular dielectrics. The usual result for the Brewster angle will be recovered, where 

only the p polarization(TM) gives zero reflection. However, if we have an interface 

between a dielectric and a left-handed medium with negative refractive index, we can 

have zero reflection for both the TE and TM polarizations. This is a very important 

result, since we have perfect transmission for both polarizations of electromagnetic 

waves.  

 

 

2.10.3.2. Brewster Angles 

 

There are special angles of incidence for which the reflection amplitudes 

 

(1.95 ) 
𝑟𝑠 =

𝑧21 cos 𝜃1 − cos 𝜃2
𝑧21 cos 𝜃1 + cos 𝜃2

= 0             𝑜𝑟  �̃�𝑝 =
𝑧12 cos 𝜃1 − cos 𝜃2
𝑧12 cos 𝜃1 + cos 𝜃2

= 0 

 

where z21  and z12 are defined as 

 

(1.96 ) 

𝑧21 =
𝜇2
𝜇1

𝑘1
𝑘2
= √

𝜇2𝜀1
𝜇1𝜀2

 , 𝑧12 = √
𝜇1𝜀2
𝜇2𝜀1

 

 

These angles that satisfy the conditions of Eq.(1.95) are called Brewster angles. The 

wave incident on an interface with Brewster angle(𝜃𝐵𝑠 for TE and 𝜃𝐵𝑝  for TM) is 

totally transmitted through the interface. 

It is easy to find analytical expressions for the Brewster angles for both TE and TM 

polarizations. For instance, for the TE polarization, the Brewster angle 𝜃𝐵𝑠satisfies the 

equation 

 

(1.97 ) 𝑧21 cos 𝜃1 − cos 𝜃2 = 0  

 

Squaring and using Snell's law 
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(1.98 ) 𝜇2
𝜇1

𝜀1
𝜀2
𝑐𝑜𝑠 2𝜃1 +

𝜇1
𝜇2

𝜀1
𝜀2
𝑠𝑖𝑛2𝜃1 = 1. 

 

If 𝜇1 = 𝜇2, then Eq.(1.98) has only trivial solution where𝜀1 ≡ 𝜀2 (absence of the 

interface). Thus, it is clear that for the TE polarization no Brewster angle exists for an 

interface of two identical dielectrics. However, if 𝜇2 ≠ 𝜇1, Eq.(1.98)  can be solved to 

give the Brewster angle 𝜃𝐵𝑠 as 

 

(1.99 ) 
𝑐𝑜𝑠2𝜃𝐵𝑠 =

𝜀2
𝜀1⁄ −

𝜇1
𝜇2⁄

𝜇2
𝜇1⁄ −

𝜇1
𝜇2⁄

 

 

In a similar manner the Brewster angle 𝜃𝐵𝑝 for the p polarized (TM) wave is given by 

 

(1.100 ) 
𝑐𝑜𝑠2𝜃𝐵𝑠 =

𝜇2
𝜇1⁄ −

𝜀1
𝜀2⁄

𝜀2
𝜀1⁄ −

𝜀1
𝜀2⁄

 

 

For nonmagnetic materials, 𝜇1 = 𝜇2, the Eq. (1.100) reduces to the well-known result 

 

(1.101 ) tan 𝜃𝐵𝑝 =
𝑛2
𝑛1

 

 

 

2.10.3.3. Total Reflection 

 

Consider an interface between two dielectrics with 𝜇1 = 𝜇2 = 1. If the refractive 

index n2 of the second medium is smaller than that of the first medium, n1> n2.Any 

incident wave with angle 𝜃1 > 𝜃𝑐𝑟𝑖𝑡  is totally reflected. One of the most important 

applications of  total internal reflection is the propagation of light through fibers. 

Total reflection, however, does not mean that the field is exactly zero on the opposite 

side of the interface. To calculate the field in the second medium, we start with the 

dispersion relations. In the first medium we have the following dispersion relation 
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(1.102 ) 𝜔2

𝑐2
𝜀1 = 𝑘𝑥

2 + 𝑘1𝑧
2  , 

 

 

where 

(1.103 ) 𝑘𝑥 =
𝜔

𝑐
√𝜀1 sin 𝜃1 . 

 

In the second medium, we have 

 

(1.104 ) 𝑘2𝑧 = 𝑖𝜅2 ,      𝜅2 > 0 . 

 

and the dispersion relation is given by 

 

(1.105 ) 𝜔2

𝑐2
𝜀2 = 𝑘𝑥

2 − 𝜅2
2 . 

 

By solving Eqs.(1.102) and (1.105) for 𝜅2and substituting Eq.(1.103), we obtain 

 

(1.106 ) 
𝜅2
2 =

𝜔2

𝑐2
[𝜀1𝑠𝑖𝑛

2𝜃1 − 𝜀2] 

 

It might be more suitable to express 𝜅2 in units of the wavelength of the incident wave 

as 

(1.107 ) 

𝜅2 =
2𝜋

𝜆1
√𝑠𝑖𝑛2𝜃1 −

𝜀2
𝜀1
       ,      𝜆1 =

2𝜋

𝑘1
=
2𝜋𝑐

𝜔√𝜀1
 

 

Alternatively, we have 

 

(1.108 ) 

𝜅2 =
2𝜋

𝜆1
√
𝜀1
𝜀2
𝑠𝑖𝑛2𝜃1 − 1    ,    𝜆1 =

2𝜋

𝑘2
=
2𝜋𝑐

𝜔√𝜀2
 

 

Note that 𝜅2 is indeed real for 𝜃1 > 𝜃𝑐𝑟𝑖𝑡. 
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The transmission and reflection amplitudes of the total reflection can be calculated 

using the general form of the transfer matrix given by Eq.(1.61) with k2z = i𝜅2. 

 

(1.109 ) 
𝑡𝑠 =

2𝑖𝜅 

𝑘1𝑧 + 𝑖𝜅
 , 

and 

 

(1.110 ) 
𝑟𝑠 =

𝑘1𝑧 − 𝑖𝜅2
𝑘1𝑧 + 𝑖𝜅2

. 

 

We can also show that 

 

(1.111 ) Rs = |rs |
2
 = 1 

 

 

1.6.3.4. State of the Art  

Sina Khorasani and Bizhan Rashidian studied in 2001 the propagation of guided light 

in dielectric slab waveguides in the presence of interface free charge layer. They show 

that the density and conductivity of interface free charges can be controlled by a 

transverse voltage [5]. 

Feasibility of a new integrated amplitude modulator/switch operation up to the visible 

spectrum was investigated in 2002 by Sina Khorasani, Alireza Nojeh, and Bizhan 

Rashidian. Plasma layers are suggested to be generated via the Muller effect at the 

waveguide’s interfaces [6]. 

The transfer matrix method was modified for studying of optical wave propagation in 

layered media with conducting interfaces in 2002 by Sina Khorasani and Bizhan 

Rashidian [7]. 

Novel optical devices based on surface wave excitation at conducting interfaces were 

presented in a scientific paper by Khashayar Mehrany, Sina Khorasani, and Bizhan 

Rashidian in 2003 [8]. 

The effect of two-dimensional electron plasma formed on the surface of a 

semiconductor on the surface of a semiconductor on the refraction phase of an optical 

beam is presented in a scientific paper by Elham Darabi, Sina Khorasni, and Bizhan 

Rashidian and is published in December 2003 [9].  
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Chapter Two 

Analysis of multilayer structure 

 

2.1.Transmission and reflection coefficients for a slab 

 

Consider a slab of thickness l with permittivity 𝜀2 and permeability 𝜇2, 

locatedbetween two semi-infinite media with electromagnetic parameters (𝜀1, 𝜇1) and 

(𝜀3, 𝜇3)as shown in Fig. 2.1. The transmission and reflection amplitudes for a plane 

wave arriving from the left for both TE and TM polarizations are investigated here. 

Transmission through a planar slab is schematically shown in Fig.2.1. Fortunately, the 

transfer matrix technique accounts for all the contributions of multiple scattering very 

efficiently. On the other hand, multiple scattering inside the slab gives some 

interesting phenomena, such as the Fabry-Pérotresonances in dielectric slabs. First a 

general formula for the transfer matrix for a slab is derived. Then the transmission of 

an electromagnetic wave through a dielectric slab is studied. That the problem of 

transmission through a dielectric slab is very similar to the problem of propagation of 

a quantum particle through a rectangular potential. This analogy can be used to 

explain various interesting phenomena, such as resonant transmission and tunneling 

of an electromagnetic wave through a slab of material which has permittivity smaller 

than that of the embedding medium.  
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Figure 2.1. Schematic description of the transmission of an electromagnetic wave 

through a slab with width 𝓵. 

 

2.1.1. Transmission and Reflection Amplitudes: TE polarization  

 

To find the transfer matrix for the propagation of waves through the slab, thetransfer 

matrix M for a single interface is used which was derived in chapter one, where the 

composition law for transfer matrices isM12 =M2M1. In particular, for the TE 

polarization, one can write[1] 

 

(
𝐸3
+

𝐸3
−) = 𝑀12 (

𝑒𝑖𝑘2𝑧ℓ 0
0 𝑒−𝑖𝑘2𝑧ℓ

)𝑀23 (
𝐸1
+

𝐸1
−),  

(2.1)  

 

where the matrices M12 and M23 are given by equation (1.61) and the diagonal matrix 

 

(𝑒
𝑖𝑘2𝑧ℓ 0
0 𝑒−𝑖𝑘2𝑧ℓ

) 
(2.2)  

 

is the transfer matrix for a homogeneous medium (𝜀2, 𝜇2) between two interfaces. 

Multiplication of the matrices leads to the relation 
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(
𝐸3
+

𝐸3
−) = 𝑀𝑠𝑙𝑎𝑏

(𝑠) (
𝐸1
+

𝐸1
−). 

(2.3)  

 

Explicit expressions for the elements of the matrix 𝑀𝑠𝑙𝑎𝑏
(𝑠)

are given by 

 

𝑀11
(𝑠) =

1

2
[1 +

𝜇3
𝜇1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ +
𝑖

2
[
𝜇3
𝜇2

𝑘2𝑧
𝑘3𝑧

+
𝜇2
𝜇1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ , 
(2.4)  

𝑀12
(𝑠) =

1

2
[1 −

𝜇3
𝜇1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ +
𝑖

2
[
𝜇3
𝜇2

𝑘2𝑧
𝑘3𝑧

−
𝜇2
𝜇1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ, 
(2.5)  

𝑀22
(𝑠) =

1

2
[1 +

𝜇3
𝜇1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ −
𝑖

2
[
𝜇3
𝜇2

𝑘2𝑧
𝑘3𝑧

+
𝜇2
𝜇1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ, 
(2.6)  

𝑀21
(𝑠) =

1

2
[1 −

𝜇3
𝜇1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ −
𝑖

2
[
𝜇3
𝜇2

𝑘2𝑧
𝑘3𝑧

−
𝜇2
𝜇1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ. 
(2.7)  

 

The transmission and reflection amplitudes can be obtained as  

 

𝑡𝑠 =
𝐸3
+

𝐸1
+ =

|𝑀(𝑠)|

𝑀22
(𝑠)

          ,    𝑟𝑠 =
𝐸1
−

𝐸1
+ = −

𝑀21
(𝑠)

𝑀22
(𝑠)
 , 

(2.8)  

 

and the corresponding transmission coefficientis given by 

 

𝑇𝑠 =
𝑆3
𝑆1
=
𝜇1
𝜇3

𝑅𝑒𝑘3𝑧
𝑅𝑒𝑘1𝑧

|𝑡𝑠|
2, 

(2.9)  

 

and the reflection coefficient 

 

𝑅𝑠 = |𝑟𝑠|
2. (2.10)  
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2.1.2. Transmission and Reflection Amplitudes: TM polarization  

 

Similarly, for the TM mode it is straightforward to show that the elements of the 

matrix 𝑀𝑠𝑙𝑎𝑏
(𝑝)

 are given by 

 

�̃�11
(𝑝) =

1

2
[1 +

𝜀3
𝜀1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ +
𝑖

2
[
𝜀3
𝜀2

𝑘2𝑧
𝑘3𝑧

+
𝜀2
𝜀1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ , 
(2.11)  

�̃�12
(𝑝) =

1

2
[1 −

𝜀3
𝜀1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ +
𝑖

2
[
𝜀3
𝜀2

𝑘2𝑧
𝑘3𝑧

−
𝜀2
𝜀1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ , 
(2.12)  

�̃�22
(𝑝) =

1

2
[1 +

𝜀3
𝜀1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ −
𝑖

2
[
𝜀3
𝜀2

𝑘2𝑧
𝑘3𝑧

+
𝜀2
𝜀1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ , 
(2.13)  

�̃�21
(𝑝) =

1

2
[1 −

𝜀3
𝜀1

𝑘1𝑧
𝑘3𝑧

] cos 𝑘2𝑧ℓ −
𝑖

2
[
𝜀3
𝜀2

𝑘2𝑧
𝑘3𝑧

+
𝜀2
𝜀1

𝑘1𝑧
𝑘2𝑧

] sin 𝑘2𝑧ℓ . 
(2.14)  

 

Expressions (2.4)―(2.7) and (2.11)― (2.14) solve the problem of the transmission 

through a finite planar slab completely.  

 

 

2.2. Multilayer media   

 

Multilayered structures are built up by several thin films which thickness is of the 

same order of the wavelength of interest. A first approach, to understand the optical 

properties of these structures, is based on the multiple interferences which a light 

beam sustains when is reflected by several interfaces. Different transmission spectra 

can be obtained by changing the thickness and the refractive index of different layers. 

A second approach to understand the properties consists of inserting a periodic 

refractive index in the Maxwell equations. Multilayered structure can be considered as 

a subcase of a wider class of complex structures called Photonic Crystals. A set of 

approaches will be discussed in this chapter in order to explain the properties of 

multilayered structures. 
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2.3. Mathematical methods for the analysis and simulation of multilayers 

 

The development of methods for analyzing multilayer structures is essential to 

understand their fundamental properties. Any experimental exploration of the 

multilayers must be accompanied by a quantitative theoretical analysis so that the 

most interesting cases can be identified, the experimental measurements interpreted, 

and stable designs for successfully operating devices be found. This section provides 

an outline of the most widely used numerical techniques that make it possible to 

determine the optical properties of multilayers. The first, the Transfer Matrix method 

is the method used for the analysis of the multilayers presented in this work, for this 

reason it is presented in detail whereas the rest of methods are briefly explained. 

 

 

2.3.1. Transfer Matrix Method (TMM) 

 

This is the most widely used method for the mathematical study of one-dimensional 

structures because it allows the calculation of band diagrams , reflectivity and 

transmission spectra , emission spectra , guided modes and the modelization of 

porosity and thickness gradients. 

To study the reflection and transmission of electromagnetic waves through a 

multilayer structure with the TMM method, we consider a one dimensional structure 

as shown in Fig. 2.2. in which n1 and n2 are the layers refractive index, h1 and h2 are 

the thicknesses of the respective layers and Λ is the period of the structure (Λ= h1 

+h2). 

 



47 
 

 

Figure 2.2. Schematic of a multilayer system. Ai represent the amplitude of the right 

traveling wave and Bi that of the left-traveling one. Note that Ai and Bi are not 

continuous at the interfaces.  

 

The dielectric structure is defined by[10] 

 

𝑛(𝑥) =

{
 
 

 
 
𝑛𝑜 ,   𝑥 < 𝑥𝑜 ,                                                                          
𝑛1, 𝑥0 < 𝑥 < 𝑥1  𝑤𝑖𝑡ℎ 𝑥1 = 𝑥𝑜 + ℎ1 ,                              
𝑛2, 𝑥1 < 𝑥 < 𝑥2 𝑤𝑖𝑡ℎ 𝑥2 = 𝑥𝑜 + 𝛬 = 𝑥1 + ℎ2 ,             
⋮                                                                                               
𝑛𝑠,𝑥2𝑁 < 𝑥 𝑤𝑖𝑡ℎ 𝑥2𝑁 = 𝑥𝑜 + 𝑁𝛬 = 𝑥2𝑁−1 + ℎ2 ,        

 

(2.15)  

 

withn(x)=n(x+𝛬). ns is the substrate refractive index, n0 is that of the incident medium 

and nm is the refractive index of the m layer. Layer thicknesses are related to xm by 

hm=xm-xm-1 (m=1...2N), where N is an integer. 

The electric field of a general ++plane-wave solution can be written as E=E(x)e
i(ωt-βz) 

, 

where the electric field distribution E(x) can be written as 

 

𝐸(𝑥) = {

𝐴𝑜𝑒
−𝑖𝑘𝑜𝑥(𝑥−𝑥𝑜) + 𝐵𝑜𝑒

𝑖𝑘𝑜𝑥(𝑥−𝑥𝑜),   𝑥 < 𝑥𝑜 ,                       

𝐴𝑚𝑒
−𝑖𝑘𝑚𝑥(𝑥−𝑥𝑚) + 𝐵𝑚𝑒

𝑖𝑘𝑚𝑥(𝑥−𝑥𝑚),   𝑥𝑚−1 < 𝑥 < 𝑥𝑚 ,

𝐴𝑠
′ 𝑒−𝑖𝑘𝑠𝑥(𝑥−𝑥2𝑁) + 𝐵𝑠

′𝑒𝑖𝑘𝑠𝑥(𝑥−𝑥2𝑁), 𝑥2𝑁 < 𝑥,                    

 

(2.16)  

 

wherekmx is the x component of the wave vectors kmx =ωnmcosθm/c and θm is the ray 

angle in each layer. Am and Bm represent the amplitude of the plane waves at interface 

x=xm. 

If the two general amplitudes of E(x) are represented as column vectors, 
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the plane waves at different layers can be related by 

 

(
𝐴𝑚−1
𝐵𝑚−1

) = 𝐷𝑚−1
−1 𝐷𝑚 (

𝐴𝑚
′

𝐵𝑚
′ ) = 𝐷𝑚−1

−1 𝐷𝑚𝑃𝑚 (
𝐴𝑚
𝐵𝑚
) ,𝑚 = 1,2, …… .2𝑁 + 1, 

(2.17)  

 

where matrices Dm are the dynamical matrices given by 

 

𝐷𝑚 = {
(

1 1
𝑛𝑚 cos 𝜃𝑚 −𝑛𝑚 cos 𝜃𝑚

)    𝑓𝑜𝑟 𝑇𝐸 𝑤𝑎𝑣𝑒

(
cos 𝜃𝑚 cos 𝜃𝑚
𝑛𝑚 −𝑛𝑚

)                    𝑓𝑜𝑟 𝑇𝑀 𝑤𝑎𝑣𝑒
 

(2.18)  

 

and Pm is the propagation matrix, that can be written as 

 

𝑃𝑚 = (𝑒
𝑖𝑘𝑚𝑥ℎ𝑚 0
0 𝑒−𝑖𝑘𝑚𝑥ℎ𝑚

) . 
(2.19)  

 

The relation between A0, B0 and As
’
, Bs

’
 can thus be written as 

 

(
𝐴𝑜
𝐵𝑜
) = 𝐷𝑜

−1[𝐷1𝑃1𝐷1
−1𝐷2𝑃2𝐷2

−1]𝑁𝐷𝑠 = (
𝑀11 𝑀12
𝑀21 𝑀22

) (
𝐴𝑠
′

𝐵𝑠
′) , 

(2.20)  

 

where N is the number of periods in the structure, and  𝐷𝑜 is giving by Eq.(2.18)with 

m=0. 

The reflectance and transmittance of monochromatic plane waves through the 

multilayer structure are calculated from the matrix elements. If the light is incident 

from medium 0, the reflection and transmission coefficients are defined as 

 

𝑟 = (
𝐵𝑜
𝐴𝑜
)
𝐵𝑠=0

, 
(2.21)  

𝑡 = (
𝐴𝑠
𝐴𝑜
)
𝐵𝑠=0

. 
(2.22)  

 

Using the matrix equation (2.20) and following the definitions in Eqs.(2.21), and 

(2.22) we obtain 
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𝑟 =
𝑀21

𝑀11
 , 

(2.23)  

𝑡 =
1

𝑀11
 . 

(2.24)  

 

Reflectance is given by 

𝑅 = |𝑟2| = |
𝑀21

𝑀11
|
2

,   
(2.25)  

 

provided medium 0 is lossless. 

If the bounding media (0,s) are both pure dielectric with real n0 and ns, transmittance 

T is given by 

 

𝑇 =
𝑛𝑠 cos 𝜃𝑠
𝑛𝑜 cos 𝜃𝑜

|𝑡|2 =
𝑛𝑠 cos 𝜃𝑠
𝑠𝑜 cos 𝜃𝑜

|
1

𝑀11
|
2

.  
(2.26)  

 

 

2.3.2. Polynomial approach 

 

In this approach the transfer matrix [M] can be expressed as the product of interface 

matrices and layer matrices. The matrix[𝑟𝑗
𝛼]of the j

th
 interface located at the plane zj 

between two layers of refractive indices nj and nj+1 relates the fields on both sides of 

the interface, i.e., 

 

𝐸𝛼(𝑧𝑗 − 𝜀) = [𝑟𝑗
𝛼]𝐸𝛼(𝑧𝑗 + 𝜀),  (2.27)  

 

where α stands for either p in p-polarization or for s in s-polarization and ε is an 

infinitely small distance. The interface matrix is given by [11-13] 

 

[𝑟𝑗
𝛼] =

1

𝑡𝑗,𝑗+1
𝛼 [

1 𝑟𝑗,𝑗+1
𝛼

𝑟𝑗,𝑗+1
𝛼 1

]. 
(2.28)  
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The propagation of the fields across the same layer with refractive index nj between 

two interfaces located at zj-1 and zj= zj-1+dj is given by thej
th

 layermatrix [𝛽𝑗], i.e., 

 

𝐸𝛼(𝑧𝑗−1 + 𝜀) = [𝛽𝑗]𝐸
𝛼(𝑧𝑗 − 𝜀), (2.29)  

 

where the matrix [𝛽𝑗]is given by 

 

[𝛽𝑗] = [𝑒
𝑖𝛽𝑗 0
0 𝑒−𝑖𝛽𝑗

],  
(2.30)  

 

and𝛽𝑗 = 𝑘0𝑛𝑗 cos 𝜃𝑗𝑑𝑗 with ko is the free space wave number.  

The M-matrix of such a system can be written as the product 

 

[𝑀𝑁
𝛼] = [𝛽1][𝑟1

𝛼][𝛽2][𝑟2
𝛼]… [𝛽𝑛][𝑟𝑁

𝛼] 

 

(2.31)  

In this approach, the M-matrix is then defined in terms of the elementary symmetric 

functions of the mathematical theory of polynomials[14,15]. 

 

 

2.3.3. BCITL Model 

 

 Traditionally, the propagationmatrix approach is employed to solve problems 

relatedto planar multilayer structures rigorously. Alternatively, it is wellknown that 

these problems can also be solved readily by modelingthese structures using multi-

section transmission lines with appropriatecharacteristic impedances and propagation 

constants, where eachtransmission line possesses the same length as of the 

correspondinglayer [16-19]. 

Recently, it has been shown that lossless multi-section transmissionlines can be 

analyzed successfully using an equivalent model basedon the 

conjugatelycharacteristic-impedance transmission line (CCITL) [17]. By definition, 

CCITLs are lossless, and possess conjugatecharacteristic impedances of wave 
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propagating in opposite directions.CCITLs can be practically implemented using 

finite lossless periodicallyloaded transmission lines operated in pass bands. However, 

CCITLs cannot be used to model lossy multi-section transmission lines.Thus, one 

needs to resort to more general model for these cases.Anequivalent model based on 

the bi-characteristic impedance transmission line (BCITL) was employed to model 

planarmultilayer structures effectively for both lossless and lossycases[17,18].In 

general, BCITLs are lossy, and possess different characteristicimpedances 𝑍𝑜𝑏
±  Z

±
0b of 

wave propagating in opposite directions. Note thatBCITLs can be practically 

implemented using finite lossy periodicallyloaded transmission lines, and a graphical 

tool, known as a generalizedT-chart, has been recently developed for solving 

problems associatedwith BCITLs. It should be pointed out that CCITLs are a 

specialcase of BCITLs when associated losses of BCITLs disappear and thepass band 

operation is assumed. 

 

 

2.4. Applications of multilayer structures  

 

The first applications of multilayer structures were demonstrated more than 50 years 

ago for such uses as optical interference filters and reflection coatings. During the 

1970s, "macro" multilayer films became essential to the semiconductor industry for 

making everything from computer chips to hard disk drives. In the late 1970s, Barbee 

pioneered significant advances in the fabrication technology of multilayers for a wide 

variety of applications in the x-ray, soft (lower energy) x-ray, and extreme ultraviolet 

regions of the electromagnetic spectrum[20]. For example, high-reflectivity multilayer 

mirrors have made possible a new class of telescopes for solar physics and 

astronomical research. Multilayer optics also have found applications in electron 

microprobes, scanning electron microscopes, x-ray lasers (especially in laser-fusion 

diagnostic systems), and particle beam lines in accelerators. 

Multilayers were used as ultra-compact, high-energy storage, and extremely cost-

effective capacitors made up of alternating metal and dielectric layers. Power 

electronic "snubber" capacitors, normally made of ceramic or polymer dielectrics, and 
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similar in size to a C battery, are usually connected to much smaller solid-state 

switching devices. These capacitors typically store 0.1 to 0.2 joules per cubic 

centimeter capacitor volume and are widely considered the limiting factor in many 

applications. In contrast, multilayer capacitors would store 10 joules per cubic 

centimeter while costing perhaps one-twentieth that of ceramic ones. 

New application for multilayer structures emerges in the field of thermo-electricity. 

Current applications of thermoelectric devices include temperature-sensing 

thermocouples, electric power generators for spacecraft, and portable food and 

beverage coolers. The development of multilayers has attracted  interest that 

multilayer thermo-electric materials may be the key to taking these devices into the 

commercial mainstream.  
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Chapter Three 

Transmission and reflection in multilayer structureswith 

conducting interfaces 

 

3.1 Basic relations  

 

Before discussing multilayer structure, some basic relations should be introduced. 

Maxwell's equations for a plane wave can be written in the following form [1] 

 

(3.1)  �⃗� × �⃗� =
𝜇𝜔

𝑐
�⃗⃗� , 

(3.2)  �⃗� × �⃗⃗� = −
𝜀𝜔

𝑐
�⃗� , 

(3.3)  �⃗� ∙ �⃗� = 0, 

(3.4)  �⃗� ∙ �⃗⃗� = 0. 

 

Employing Eq. (3.1) to find (�⃗� × �⃗� ) ∙ (�⃗� × �⃗� ) , the following relation can be obtained 

 

(3.5)  
|�⃗� |

2
|�⃗� |

2
= (

𝜇𝜔

𝑐
)
2

|�⃗⃗� |
2
. 

 

In a similar manner , Eq. (3.2) gives 

 

(3.6)  
|�⃗� |

2
|�⃗⃗� |

2
= (

𝜀𝜔

𝑐
)
2

|�⃗� |
2
. 

 

Dividing Eq. (3.5) by  Eq. (3.6) gives 
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(3.7)  
|�⃗� | = √

𝜇

𝜀
|�⃗⃗� | =   |�⃗⃗� |,  

 

where  is the intrinsic impedance of the medium which defined as =
|�⃗� |

|�⃗⃗� |
= √

𝜇

𝜀
 . 

 

3.2 Reflection and transmission of a polarized electromagnetic wave at a 

conducting interface  

 

In this section, the reflection and transmission coefficients at a conducting interface 

between two media, when illuminated by a polarized TM orTE wave, are studied by 

direct solution of Maxwell’s equations.It is shown that the reflection and transmission 

behave in a similar manner as when the interface is non-conducting, e.g. 

obeyFrensel’s expression of reflection and transmission coefficient, while having 

differentexpressions for the corresponding coefficients.  

 

3.2.1 Reflection and transmission of plane TM polarized light at a conducting     

interface 

  

The arrangement of two adjacent dielectric semi-infinite slabs is illustrated in Fig.3.1. 

Here, the y axis is normal andoutwards, and the z = 0 or x–y plane represents 

theinterface between medium 1 (z<0) and medium 2 (z>0). 

Consider P-polarized wave is incident from media 1 to the interface with an angle of 

incidence 𝜃𝑖, the incident electric field 𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) can be expressed as 

 

(3.8)  𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) = �⃗� 𝑜𝑖𝑒
−𝑖[𝑘𝑖⃗⃗  ⃗ ∙𝑟 −𝜔𝑡] 
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For TM mode,the  electric field has two components (x and z), and at t=0, Eq.  (3.8) 

becomes 

 

(3.9)  𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑖{cos 𝜃𝑖 �̂� − sin 𝜃𝑖 �̂�}𝑒
−𝑖[𝑘𝑖∙⃗⃗⃗⃗  ⃗𝑟 ] 

 

But  

 

(3.10)  𝑘𝑖⃗⃗  ⃗ ∙ 𝑟𝑖⃗⃗ = 𝑘1{𝑥 sin 𝜃𝑖 + 𝑧 cos 𝜃𝑖}, 

 

where 

 

(3.11)  𝑘1 =
2𝜋

𝜆1
≡wave number in medium 1. 

 

So Eq. (3.9) becomes [5] 

 

(3.12)  𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑖{cos 𝜃𝑖�̂� − sin 𝜃𝑖�̂�}𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖). 

 

The magnitude of the incident electric field is given by 

 

(3.13)  |𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧)| = 𝐸𝑜𝑖. 
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Figure 3.1.Configuration of reflected and refracted waves at an interface for TM 

mode. 

 

Equation (3.1) can be expanded as  

 

(3.14)  

|

�̂� �̂� �̂�
𝑘𝑥 0 𝑘𝑧
𝐸𝑥 0 𝐸𝑧

| =
𝜇1𝜔

𝑐
{𝐻𝑥�̂� + 𝐻𝑦�̂� + 𝐻𝑧�̂�}, 

 

(3.15)  (𝑘𝑧𝐸𝑥 − 𝑘𝑥𝐸𝑧)�̂� = (
𝜇1𝜔

𝑐
)𝐻𝑦�̂� . 

 

Using Eq. (3.7) the incident magnetic field can be written as  

 

(3.16)  
𝐻𝑖⃗⃗⃗⃗ =

|𝐸𝑖⃗⃗  ⃗|

𝜂1
�̂� , 

(3.17)  
𝐻𝑖⃗⃗⃗⃗ (𝑥, 𝑧) =

𝐸𝑜𝑖
𝜂1
𝑒−𝑖𝑘1(𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖)�̂� . 

 

The reflected electric field  in medium 1 is given by  
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(3.18)  𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧) = �⃗� 𝑜𝑟𝑒
−𝑖[𝑘𝑟⃗⃗ ⃗⃗  ∙𝑟𝑟⃗⃗  ⃗−𝜔𝑡]. 

 

At t= 0, Eq. (3.18) can be written as 

 

(3.19)  𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧) = 𝐸𝑜𝑟{cos 𝜃𝑟 �̂� + sin 𝜃𝑟�̂�}𝑒
−𝑖[𝑘𝑟⃗⃗ ⃗⃗  ∙𝑟𝑟⃗⃗  ⃗]. 

 

But  

 

(3.20)  𝑘𝑟⃗⃗⃗⃗ ∙ 𝑟𝑟⃗⃗  = 𝑘1{𝑥 sin 𝜃𝑟 − 𝑧 cos 𝜃𝑟}. 

 

So that Eq.  (3.19)  becomes  

 

(3.21)  𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧) = 𝐸𝑜𝑟{cos 𝜃𝑟�̂� − sin 𝜃𝑟�̂�}𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑟−𝑧 cos𝜃𝑟). 

 

The magnitude of reflected electric field will be 

 

(3.22)  |𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧)| = 𝐸𝑜𝑟. 

 

The reflected magnetic field 𝐻𝑟⃗⃗ ⃗⃗   can be written as 

 

(3.23)  
𝐻𝑟⃗⃗ ⃗⃗  =

|𝐸𝑟⃗⃗⃗⃗ |

𝜂1
(−�̂�),            

(3.24)  
𝐻𝑟⃗⃗ ⃗⃗  (𝑥, 𝑧) =

−𝐸𝑜𝑟
𝜂1

𝑒−𝑖𝑘1(𝑥 sin𝜃𝑖−𝑧 cos𝜃𝑖)�̂�.         
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In a similar manner, the transmitted electric field can be written  

 

(3.25)  𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑡{cos 𝜃𝑡�̂� − sin 𝜃𝑡�̂�}𝑒
−𝑖𝑘2(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡). 

 

The magnitude of transmitted electric field will be 

 

(3.26)  |𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧)| = 𝐸𝑜𝑡 

 

Using Eq. (3.7)yields 

 

(3.27)  
�⃗⃗� 𝑡 =

|�⃗� 𝑡|

𝜂2
�̂� 

(3.28)  
𝐻𝑡⃗⃗⃗⃗ (𝑥, 𝑧) =

−𝐸𝑜𝑡
𝜂2

𝑒−𝑖𝑘2(𝑥 sin𝜃𝑡−𝑧 cos𝜃𝑡)�̂� 

 

Applying the continuity of the tangential components of electric field at z = 0, gives 

that [21] 

 

(3.29)  (𝐸1⃗⃗⃗⃗ − 𝐸2⃗⃗⃗⃗ ) × �̂�12 = 0,  

(3.30)  {(𝐸𝑖⃗⃗  ⃗ + 𝐸𝑟⃗⃗⃗⃗ − 𝐸𝑡⃗⃗  ⃗) × �̂�}|𝑧=0 = 0 

 

 

(3.31)  

(𝐸𝑜𝑖𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑖+0)(cos 𝜃𝑖�̂� − sin 𝜃𝑖�̂�)) × �̂�

+ (𝐸𝑜𝑟𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑟+0)(cos 𝜃𝑟�̂� + sin 𝜃𝑟�̂�)) × �̂�

− (𝐸𝑜𝑡𝑒
−𝑖𝑘2(𝑥 sin𝜃𝑡+0)(cos 𝜃𝑡�̂� − sin 𝜃𝑡�̂�)) × �̂� = 0,       

 

and making use of  

 

(3.32)  𝜃𝑖 = 𝜃𝑟 , 
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(3.33)  𝑛1 sin 𝜃𝑖 = 𝑛2 sin 𝜃𝑡 , 

 

the following relations can be obtained 

 

(3.34)  (−𝐸𝑜𝑖 cos 𝜃𝑖 − 𝐸𝑜𝑟 cos 𝜃𝑖)𝑒
−𝑖𝑘1𝑥 sin𝜃𝑖 = −𝐸𝑜𝑡 cos 𝜃𝑡𝑒

−𝑘2𝑥 sin𝜃𝑡 . 

 

Equation (3.34) can be simplified as 

 

(3.35)  (𝐸𝑜𝑖 + 𝐸𝑜𝑟) cos 𝜃𝑖 = 𝐸𝑜𝑡 cos 𝜃𝑡 = 𝐸
‖ (𝑥, 0). 

 

The current density of a conducting medium is given byOhm's law[2] 

 

(3.36)  𝐽 = 𝜎[�⃗� + 𝑣 × �⃗� ] =  𝜎𝑓 , 

 

where 𝐽 , 𝜎,�⃗�  ,𝑣 , �⃗� , and 𝑓  are current density, conductivity, electric field, velocity of 

charges, magnetic field, and the force per unit charge, respectively. 

Since no charge motion 𝑣  =0, so 

 

(3.37)  𝐽 = 𝜎�⃗� . 

 

The surface current density for a conducting layer of an effective thickness is much 

smaller than the wavelength of light can be written as [5, 7, 21, and 22] 

 

(3.38)  𝐽𝑠⃗⃗ (𝑥) = 𝜎�⃗� ‖ (𝑥, 𝑧 = 0), 

(3.39)  �⃗� ‖ (𝑥, 0) = 𝐸1⃗⃗⃗⃗  × �̂�12 = 𝐸2⃗⃗⃗⃗  × �̂�12, 

where 

 

(3.40)  |�⃗� ‖ (𝑥, 0)| = (|�⃗� 𝑖| + |�⃗� 𝑟|) cos 𝜃𝑖 = |�⃗� 𝑡| cos 𝜃𝑡 . 

 

The magnetic field �⃗⃗�  at (z=0) can also be written as  

 

(3.41)  (�⃗⃗� 1 − �⃗⃗� 2) × �̂�12 = 𝐽 𝑠(𝑥), 
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(3.42)  �⃗⃗� 1 = �⃗⃗� 𝑖 + �⃗⃗� 𝑟 , 

(3.43)  �⃗⃗� 2 = �⃗⃗� 𝑡 , 

(3.44)  (�⃗⃗� 𝑖 + �⃗⃗� 𝑟 − �⃗⃗� 𝑡) × �̂� = 𝐽 𝑠(𝑥, 𝑧 = 0). 

 

Equation (3.44) may be written as  

 

(3.45)  �⃗⃗� 𝑖
‖
+ �⃗⃗� 𝑟

‖
− �⃗⃗� 𝑡

‖
= 𝐽𝑠�̂� 

 

Substituting  (3.17), (3.24), and (3.28) into (3.45) gives 

 

 

(3.46)  

𝐸𝑜𝑖
𝜂1
𝑒−𝑖𝑘1(𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖)    −      

𝐸𝑜𝑟
𝜂1
𝑒−𝑖𝑘1(𝑥 sin𝜃𝑟−𝑧 cos𝜃𝑟)  

−
𝐸𝑜𝑡
𝜂2
𝑒−𝑖𝑘2(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡)      = 𝐽𝑠 = 𝜎|�⃗� 

‖ |, 

 

which may be reduced to give  

 

(3.47)  
(𝐸𝑜𝑖 − 𝐸𝑜𝑟)

1

𝜂1
= (

1

𝜂2
+ 𝜎 cos 𝜃𝑡)𝐸𝑜𝑡 

 

The Fresnel's reflection and transmission coefficients are given by [4] 

 

(3.48)  
𝑟 =

𝐸𝑜𝑟
𝐸𝑜𝑖

     ,         𝑡 =
𝐸𝑜𝑡
𝐸𝑜𝑖

 

 

Substituting  Eq.(3.35), and Eq.(3.47) into Eq.(3.48) gives[5,21]. 

 

(3.49)  
𝑡𝑇𝑀 =

𝐸𝑜𝑡
𝐸𝑜𝑖

=
2 ∙ 𝜂2 ∙ cos 𝜃𝑖

𝜂2 ∙ cos 𝜃𝑡 + 𝜂1 ∙ cos 𝜃𝑖(1 + 𝜂2 ∙ 𝜎 ∙ cos 𝜃𝑖 ∙ cos 𝜃𝑡)
 

 

(3.50)  
𝑟𝑇𝑀 =

𝐸𝑜𝑟
𝐸𝑜𝑖

=
𝜂2 cos 𝜃𝑡 − 𝜂1 cos 𝜃𝑖(1 + 𝜂2𝜎 cos 𝜃𝑡)

𝜂2 cos 𝜃𝑡 + 𝜂1 cos 𝜃𝑖(1 + 𝜂2𝜎 cos 𝜃𝑡)
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3.2.2 Reflection and transmission of plane TE polarized light at a conducting 

interface 

 

The case of TE polarized light is similar to that of TM with the electric field has only 

one component (y-direction) and the magnetic field has two components in the x and 

z directions. 

The incident field in medium 1 can be expressed as  

 

(3.51)  𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) = �⃗� 𝑜𝑖𝑒
−𝑖[𝑘𝑖⃗⃗  ⃗∙𝑟𝑖⃗⃗⃗  −𝜔𝑡], 

 

with 

 

(3.52)  𝑘𝑖⃗⃗  ⃗ ∙ 𝑟𝑟⃗⃗  = 𝑘1{𝑥 sin 𝜃𝑖 + 𝑧 cos 𝜃𝑖}. 

 

So that Eq. (3.51) reads 

 

(3.53)  𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑖𝑒
−𝑖𝑘1[𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖]�̂� . 

 

Moreover, the magnitude of the incident electric field is given by  

 

(3.54)  |𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧)| = 𝐸𝑜𝑖. 

 

As mentioned above the magnetic field intensity has two components one at the x 

direction, and the other at the z direction, and at assuming that  t=0  
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(3.55)  
𝐻𝑖⃗⃗⃗⃗ (𝑥, 𝑧) =

𝐸𝑜𝑖
𝜂1
(− cos 𝜃𝑖�̂� + sin 𝜃𝑖�̂�)𝑒

−𝑖𝑘1(𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖), 

 

with a magnitude  

(3.56)  
|𝐻𝑖⃗⃗⃗⃗ (𝑥, 𝑧)| =

𝐸𝑜𝑖
𝜂1
𝑒−𝑖𝑘1(𝑥 sin𝜃𝑖+𝑧 cos𝜃𝑖) =

|𝐸𝑖⃗⃗  ⃗(𝑥, 𝑧)|

𝜂1
. 

 

 

Figure 3.2.Configuration of reflected and refracted waves at an interface between 

two mediafor the TEmode. 

 

For the reflected field (z<0)  in medium 1, one can write  

 

(3.57)  𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧) = �⃗� 𝑜𝑟𝑒
−𝑖[𝑘𝑟⃗⃗ ⃗⃗  ∙𝑟𝑟⃗⃗  ⃗−𝜔𝑡], 

 

with 

 

(3.58)  𝑘𝑟⃗⃗⃗⃗ ∙ 𝑟𝑟⃗⃗  = 𝑘1{𝑥 sin 𝜃𝑟 − 𝑧 cos 𝜃𝑟}. 
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At t= 0, Eq. (3.57) becomes 

 

(3.59)  𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧) = 𝐸𝑜𝑟𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑟−𝑧 cos𝜃𝑟)�̂� . 

 

The magnitude of the reflected electric field is given by 

 

(3.60)  |𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧)| = 𝐸𝑜𝑟 . 

 

 The reflected magnetic field intensity can be written as 

 

(3.61)  
𝐻𝑟⃗⃗ ⃗⃗  (𝑥, 𝑧) =

𝐸𝑜𝑟
𝜂1
(cos 𝜃𝑟�̂� + sin 𝜃𝑟�̂�)𝑒

−𝑖𝑘1(𝑥 sin𝜃𝑖−𝑧 cos𝜃𝑖). 

 

Hris related to Eor(x,z) by [22] 

 

(3.62)  
|𝐻𝑟⃗⃗ ⃗⃗  (𝑥, 𝑧)| =

|𝐸𝑟⃗⃗⃗⃗ (𝑥, 𝑧)|

𝜂1
 =

𝐸𝑜𝑟
𝜂1
 . 

 

For the transmitted electric and magnetic fields in medium 2, the following relations 

are applicable 

 

(3.63)  𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑒−𝑖[𝑘𝑡⃗⃗⃗⃗ ∙𝑟𝑡⃗⃗  ⃗−𝜔𝑡], 

(3.64)  𝑘𝑡⃗⃗  ⃗ ∙ 𝑟𝑡⃗⃗ = 𝑘2{𝑥 sin 𝜃𝑡 + 𝑧 cos 𝑡}, 

(3.65)  𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧) = 𝐸𝑜𝑡𝑒
−𝑖𝑘2(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡)�̂�, 

(3.66)  |𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧)| = 𝐸𝑜𝑡𝑒
−𝑖𝑘1(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡), 
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(3.67)  
𝐻𝑡⃗⃗⃗⃗ (𝑥, 𝑧) =

𝐸𝑜𝑡
𝜂2
(− cos 𝜃𝑡�̂� + sin 𝜃𝑡�̂�)𝑒

−𝑖𝑘2(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡), 

(3.68)  
|𝐻𝑡⃗⃗⃗⃗ (𝑥, 𝑧)| =

𝐸𝑜𝑡
𝜂2
𝑒−𝑖𝑘2(𝑥 sin𝜃𝑡+𝑧 cos𝜃𝑡) =

|𝐸𝑡⃗⃗  ⃗(𝑥, 𝑧)|

𝜂2
. 

 

Making use of Eqs. (3.48), the Fresnel reflection and transmission coefficient for TE-

polarization can be written as [5, 7, 21, and 22] 

 

(3.69)  
𝑡𝑇𝐸 =

2𝜂2 cos 𝜃𝑖

𝜂2 cos 𝜃𝑖 + 𝜂1 cos 𝜃𝑡 (1 +
𝜂2𝜎

cos 𝜃𝑡
⁄ )

, 

(3.70)  

𝑟𝑇𝐸 =
𝜂2 cos 𝜃𝑖 − 𝜂1 cos 𝜃𝑡 (1 +

𝜂2𝜎
cos 𝜃𝑡
⁄ )

𝜂2 cos 𝜃𝑖 + 𝜂1 cos 𝜃𝑡 (1 +
𝜂2𝜎

cos 𝜃𝑡
⁄ )

 

 

 

3.3 Simulation of multilayer structures 

 

3.3.1 Simulation of Bragg reflector with three layers  

 

To demonstrate the reflectance from Bragg reflector in the presence of conducting 

interfaces, three layer Bragg reflector is assumed. The layer of high refractive index is 

assumed to be titanium oxide (TiO2) and the one with low refractive index is taken to 

be magnesium fluoride (MgF2) on a substrate of glass- silicon dioxide- (SiO2)[23-25]. 

The optical parameters of these layers were taken from the handbook of optical 

constants of solids [23-25]. 

Figure 3.3 shows the proposed structure with A represents TiO2 with high refractive 

index (nH) and B represents MgF2 layers with low index of refraction (nL). 
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Figure 3.3Schematic diagram of three-layer Brag reflector. 

 

To calculate the reflectance of the proposed structure, the transfer matrix,comprising 

the interface [𝑟𝑖]and layer [𝛽𝑖] matrices, is used [1] 

 

(3.71)  𝑀 = [𝛽1][𝑟1][𝛽2][𝑟2][𝛽3][𝑟3],  

 

where[𝛽𝑖]is the layer matrix of the 
ith

layer, and [𝑟𝑖]is the interface matrix between the 

(i-1)
th

 and i
th

layer. 

 

The layer matrix of the i
th

layer can be defined as [1,26-28] 

 

(3.72)  
[𝛽𝑖] = [

𝑒𝑖𝛽𝑖 0
0 𝑒−𝑖𝛽𝑖

], 

 

where 

 

(3.73)  
                 𝛽𝑖 = (

2𝜋

𝜆
) 𝑛𝑖(𝑑𝑖) cos 𝜃𝑖 , 
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and 𝑑𝑖 is the thickness of the i
th

layer, 𝑛𝑖is the refractive index of the i
th

 layer,𝜃𝑖is the 

incidence angle at the i
th

 layer.   

Moreover, the interface matrix is given by [1, 27, and 28] 

 

(3.74)  
[𝑟𝑖] = (

1

𝑡𝑖,𝑖+1
)(

1 𝑟𝑖,𝑖+1
𝑟𝑖,𝑖+1 1

),  

 

where𝑟𝑖,𝑖+1 and 𝑡𝑖,𝑖+1 are Fresnel's reflection and transmission coefficients between 

layer i and layer i+1 respectively.  

The reflection from the proposed structure can be calculated from transfer matrix 

element as [1] 

 

(3.75)  
𝑟 =

𝑀2,1

𝑀1,1
.  

 

 

3.3.1.1 Results of simulation of three-layer Bragg reflector 

 

As mentioned before, a three-layer Bragg reflector is assumed where TiO2 and MgF2 

are taken to be the high and low refractive index materials. MATLAB program was 

usedto multiplythe interface and layer matrices and to find the elements of the transfer 

matrix. 

The reflection coefficient for p- and s- polarizations are calculated using Eq. (3.50), 

and Eq. (3.70) respectively. The reflectivity for both polarizations is calculated as [24] 

 

(3.76)  
𝑅 =

𝑅𝑝 + 𝑅𝑠

2
=
|𝑟𝑝|

2
+ |𝑟𝑠|

2

2
 

 

Moreover we calculate the ellipsometric parameters ψ and ∆, where ψ measures the 

amplitude ratio between p- and s- reflection coefficient, and ∆ measures the phase 

difference between p- and s- polarization. ψ and ∆ are given by [24]: 
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(3.77)  
𝜓 = tan−1 (

|𝑟𝑝|

|𝑟𝑠|
) 

(3.78)  ∆= 𝑎𝑟𝑔 (
𝑟𝑝

𝑟𝑠
) 

 

A dielectric mirror (Bragg reflector) usually consists of identical alternating layers of 

high and low refractive indices, as shown in Fig. 3.3. The optical thicknesses are 

typically chosen to be quarter-wavelength long at some center wavelength λo, that 

is,𝑛𝐻𝑑𝐻 = 𝑛𝐿𝑑𝐿 =
𝜆𝑜

4⁄ , where nH and nL are the indices of refraction of the high- 

and low-index layers, respectively, dH and dL are the thicknesses of the high- and low-

index layers, respectively. Incident angle was taken to be 18
o
.  

The behavior of the reflectivity from three-layer Brag reflector is studiedusing the 

transfer matrix method (TMM) approach. 

Figure 3.4 shows the reflectivity for three different values of 𝜎. As can be seen from 

the figure, increasing the value of 𝜎leads to a slight shift of the reflectivity profile 

towards higher values of 𝜆. 

To study the ellipsometric parameters ψ and Δ for the three-layer Bragg reflector, we 

consider θ0 = 18
o
. The importance of ψ and Δ comes from the fact that once they are 

determined during a measurement at a given wavelength one can invert Fresnel 

equations to extract the optical parameters of a bulk sample. For a multilayer structure 

one must perform a spectroscopic ellipsometric scan over a certain spectrum to 

determine the thickness, the refractive index, and the extinction factor for each layer. 

Figures 3.5 and 3.6 show respectively ψ and Δ for the three-layer Bragg reflector in 

the spectral range 350-850 nm. As the figures reveal, ψ ranges between 35 – 44
o
 

whereas Δ ranges between -5 – 5
o
. Both of them changes slightly with increasing the 

conductivity of the interface between layers constituting Bragg reflector. As can be 

seen from Fig. 3.5, the behavior of ψ with the wavelength for the 3 layer Bragg 

reflector is oppositeof  that of the reflectivity. As the conductivity of layers increase ψ 

decreases and becomes less flatter within some bandwidth. Also it has sharper edges 

and tends to 43
o
 which means the complex Fresnel reflection coefficients for p- and s- 

polarized lights have equal magnitudes. In the spectral region λ<400nm , the 

ellipsometricparameter ψ oscillates between 39
o
 and 43

o
.   
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Figure 3.6 shows that the phase difference Δ between p- ans s- polarized lights is 

enhanced with increasing of 𝜎. This enhancement is barely detected for 𝜎 = 0.1 and it 

is relatively observable for 𝜎 = 0.3. 
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Figure 3.4. Calculated reflectivity of three-layer-quarter-wavelength Bragg reflector, 

at 𝜃𝑜 = 18
𝑜in the spectral range of 350-850 nm for different values of 𝜎. 
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Figure 3.5. The ellipsometric parameter ψ of three-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜 in the spectral range of 350-850 nm for differ rent values of 𝜎. 
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Figure 3.6. The ellipsometric parameter ∆ of three-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜 in the spectral range of 350-850 nm for different values of 𝜎. 

 

 

3.3.2 Simulation of a Bragg reflector with five layers  

It is considered that we have five-layers Bragg reflector. The first, the third, and the 

fifth layers are made of  TiO2which have high refractive index compared with the 

second and fourth layers which are made of MgF2which have low refractive index. 

The substrate is made of SiO2. 

 

 

Figure 3.7. Structure of brag reflector of five  layers 
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As same as three-layers Bragg reflector , to calculate the reflectance for this structure, 

the transfer matrix for the structure is given by [1] 

 

(3.79)  𝑀 = [𝛽1][𝑟1][𝛽2][𝑟2][𝛽3][𝑟3][𝛽4][𝑟4][𝛽5][𝑟5] 

 

 

3.3.2.1 Result of simulation of Bragg reflector with five layers 

 

The behavior of the reflectivity from Brag reflector for the case of 5layer Bragg 

reflectoris investigated using the TMM approach as shown in Fig. 3.8. The reflectivity  

rises and becomes flatter  as the conductivity between the  layers increases within the 

bandwidth Δλ. Figures 3.9 and 3.10 show respectively ψ and Δ for the 5-layer Bragg 

reflector in the spectral range 350-850 nm. As the figures reveal, ψ ranges between 

31.5
o
 – 48.7

o
 whereas Δ ranges between -15

o
 –25

o
. 

The effect of increasing 𝜎on ψ is not significant except in the IR region for 𝜆> 840 

nm. However considerable effect of increasing 𝜎on Δcan be seen from Fig. 3.10 for 

𝜆> 700 nm. 
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Figure 3.8. Calculated reflectivity of five-layer-quarter-wavelength Bragg reflector, at 

𝜃𝑜 = 18
𝑜 in the spectral range of 350-850 nm for different values of 𝜎. 
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Figure 3.9. The ellipsometric parameter ψ of five-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜 in the spectral range of 350-850 nm for different values of 𝜎. 
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Figure 3.10. The ellipsometric parameter ∆ of five-layer-quarter-wavelength Bragg 

reflector, at 𝜃𝑜 = 18𝑜 in the spectral range of 350-850 nm for different values of 𝜎. 
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Chapter Four 

Manipulation of the conducting interfaces in multilayer 

structures 

 

In this chapter, Bragg reflector is considered with conducting 

interfaces.SinaKhorasani a Persian professor discussed in many research papers the 

behavior of light with conducting interfaces. He explains the accumulation of surface 

charges which comes either from misbalance between Fermi levels of the adjacent 

dielectrics or from trapped electrons or holes in the quantum wells across the valence 

and conducting bands, or from trapping of charge due to lattice 

imperfections[5,7,8].Many Bragg reflector configurations are assumed. For each 

configuration the transfer matrix is derived to find the reflectivity and phase angle. 

These parameters are studied in details with the wavelengths of the incident light, 

angle of incidence and the applied voltage.  

 

 

4.1 Three-layer Bragg reflector with conducting interfaces and transverse 

voltage   

 

A dc voltage is considered to be applied to a three-layer Bragg reflector with a 

conducting  interface between the last high index layer and the substrate. The 

interface conductivity can be calculated according to the following expression[5,24] 

 

(4.1) 
𝜎 = −𝑖

𝑒|𝑞𝑠|

𝑚∗𝜔
 , 

 

where𝜎, 𝑒, |𝑞𝑠|, 𝑚
∗ and 𝜔 are interface conductivity ,electron charge,charge density, 

effective mass of electron, and angular frequency of light respectively. 
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This conducting interface is generated due to interface charge of two dielectrics, and 

is generally composed of the depletion layer, whichresults from the initial misbalance 

between the Fermi levelsof the adjacent dielectrics.The depletion layer charge is 

formed by the ionized impurities and thus it is not mobile. Therefore, its contribution 

to the interface conductivityshould be described by apositive sign, resulting in a net 

increment in local permittivity[5, 7, and 8]. 

 

 

Figure 4.1. Three-layer Bragg reflector with an applied voltage V. 

 

The charge density in the i
th

 layer can be calculated using the following expression[5, 

7, 8, and 25] 

 

(4.2) 
|𝑞𝑖,𝑖+1| = |

𝜀𝑖+1𝜌𝑖+1 − 𝜀𝑖𝜌𝑖
𝑑𝑠𝜌𝑠 + 𝑑𝑖𝜌𝑖 + 𝑑𝑖+1𝜌𝑖+1

| 𝑉, 

 

where𝜀𝑖, 𝜌𝑖, 𝑎𝑛𝑑 𝑑𝑖represent permittivity, resistivity, andthickness of thei
th

 layer 

respectively. V is the transverse voltage that is applied to the multi-layer structure. 

Electric resistivity quantifies how strongly a given material opposes the flow of 

electric current. A low resistivity indicates a material that readily allows the 

movement of electric charge.  
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Substituting from Eq. (4.2) into Eq. (4.1), gives
 

 

(4.3) 
𝜎𝑖 = −𝑖

𝑒 𝑉

𝑚∗𝜔
|

𝜀𝑖+1𝜌𝑖+1 − 𝜀𝑖𝜌𝑖
𝑑𝑠𝜌𝑠 + 𝑑𝑖𝜌𝑖 + 𝑑𝑖+1𝜌𝑖+1

|. 

 

In a similar manner to the mathematical treatment developed in chapter three, the 

transfer matrix of the three-layer structure shown in Fig. 4.1 is given in termsof the 

layer and interface matrices as   

 

(4.4) M = [β1][r1][β2][r2][β3][r3], 

 

where 

 

(4.5) 
[𝛽𝑖] = [

𝑒𝑖𝛽𝑖 0
0 𝑒−𝑖𝛽𝑖

],           

 

(4.6) 
       𝛽𝑖 = (

2𝜋

𝜆
) 𝑛𝑖(𝑑𝑖) cos 𝜃𝑖 , 

and 

 

(4.7) 
[𝑟𝑖] = (

1

𝑡𝑖,𝑖+1
)(

1 𝑟𝑖,𝑖+1
𝑟𝑖,𝑖+1 1

),        

 

𝑟𝑖,𝑖+1is a Fresnel's reflection coefficient, and 𝑡𝑖,𝑖+1is theFresnel's transmission 

coefficient.Thus the reflectance, ψ, and ∆ can be calculated from transfer matrix as the 

following  

 

(4.8) 
𝑟𝑝 =

𝑀2,1
𝑝

𝑀1,1
𝑝  ,    𝑟𝑠 =

𝑀2,1
𝑠

𝑀1,1
𝑠  , 𝑅 =

|𝑟𝑝|
2
+ |𝑟𝑠|

2

2
 , 
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(4.9) 𝜓 = 𝑡𝑎𝑛−1

(

 
 
 
 |
𝑀2,1
𝑝

𝑀1,1
𝑝⁄ |

|
𝑀2,1
𝑠

𝑀1,1
𝑠⁄ |

)

 
 
 
 

, 

  

(4.10) 

∆ = 𝑡𝑎𝑛−1

(

 
 
 
 
 
 
 
 
𝑖𝑚𝑔

(

 
 

𝑀2,1
𝑝

𝑀1,1
𝑝⁄

𝑀2,1
𝑠

𝑀1,1
𝑠⁄

)

 
 

𝑟𝑒𝑎𝑙

(

 
 

𝑀2,1
𝑝

𝑀1,1
𝑝⁄

𝑀2,1
𝑠

𝑀1,1
𝑠⁄

)

 
 

)

 
 
 
 
 
 
 
 

. 

 

 

4.2 Five-layer Bragg reflector with conducting interfaces and transverse voltage   

 

The argument mentioned above is now extended to five-layer Bragg reflector.  

Figure 4.2 shows the five-layer structure with the applied transverse voltage. 

 

Figure 4.2. Five-layer Bragg reflector with an applied voltage V. 
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The transfer matrix of the five-layer Bragg reflector can be written in terms of the 

layer matrix [𝛽], and interface matrix [𝑟] as 

 

(4.11) 
𝑀 =∏[𝛽𝑖][𝑟𝑖]

𝑛

𝑖=1

, 

 

where n is the number of Bragg reflector layers. 

After performing the product of matrices given by Eq.(4.11) and obtaining the four-

elements of the transfer matrix, the reflectivity, ψ, and ∆ can be obtained using  Eqs 

(4.8), (4.9), and (4.10) respectively. And any number of layers can be treated in the 

same manner. 

 

 

4.3 Simulation results for Bragg reflector 

 

The simulated results of a Bragg reflector with different configurations were 

performed using MATLAB program, and are discussed in this section. The silicon 

(Si) is taken as a high refractive index layer, and cupper (Cu) is taken as a low 

refractive index layer. The optical parameters of these layers were taken from the 

handbook of optical constants of solids [29-31]. 

The electric resistivity of silicon and cupper are taken to be 0.0100 ohm-cm , and 

0.00000170 ohm-cm respectively [32-37]. 

The spectral range is taken to be 400 nm – 850 nm, with a step of 1 nm so the 

program takes the previous spectral range with 450 points. 

Indexing in MATLAB starts with 1, so wavelength of 400 nm is taken as wavelength 

of index 1, and wavelength of 850 nm is taken as wavelength of index 450. 

Thus the center wavelength is with index of  450 2⁄ + 1, which equals 226. 

The wavelength corresponding to the index 226 is 𝜆𝑜 = 625𝑛𝑚. 
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The thicknesses of Si, and SiO2 are taken depending on the condition of Bragg 

reflector 𝑛𝐻𝑑𝐻 =
𝜆𝑜

4⁄ , while the thickness of Cu is taken to be 5 nm. The thickness 

of Cu layer is considered to be very small in order to forma thin conducting layer and 

at the same time to be penetrable such light can reach the other layers. 

Transvers voltages of 0, 1000, and 5000 volt will be applied to the structure.  Three-

layer, five-layer, nine layer, and fifteen layer structures will be discussed. 

 

 

4.3.1 Investigation of the effect of wavelength and voltage 

 

4.3.1.1 Results of a three-layer structure  

 

Three-layer Bragg reflector is assumed in which Si is used as the low index layer, and 

Cu is used as the high index layer.  Transverse voltages of 0V and 1000 V are applied 

across the three-layer Bragg reflector. Silicon dioxide (SiO2) is taken as a substrate 

layer. 

The reflectivity, ψ, and∆are studied as a function of wavelength in the spectral range 

from 400nm to 850 nm for an angle of incidence of 20
o
.  

The following figures show the result obtained for the reflectivity, ψ, and ∆ using Eqs. 

(4.8),(4.9),and (4.10). 

Figure 4.3.shows the reflectivity from three layer Bragg reflector as a function of the 

wavelength of the incident light for a transverse voltages of zero, and 1000 volt, and 

an incidence angle of 20
o
 in the spectral range of 400 nm to 850 nm.  

As can be seen from the Fig 4.3, the reflectivity decreases as the wavelength increases 

of the incident light with a small dip is observed at about 600nm. When a potential 

difference of 1000 V is applied to the three-layer structure, the shape of curve remains 

unchanged with a small enhancement in the reflectivity. Moreover there is a small 
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shift in the dip position towards shorter wavelength with increasing the applied 

voltage.  
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Figure 4.3. Reflectivity from three-layer Bragg reflector for Si-Cu structure for 

different values of voltage and for 𝜃𝑖=20
o
. 

 

The difference between the reflectivity values at 1000 V, and 0 V for three-layer 

Bragg reflector is shown in Fig.4.4. It is clear that it is approximate a linear line with 

positive slope. 
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Figure 4.4. Reflectivity difference from three-layer Bragg reflector for Si-Cu 
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structure for different values of voltage and for  𝜃𝑖=20
o
. 

 

 

The ellipsometric parameter ψof the three-layer Bragg reflector is shown as y-axis 

with the wavelength of the incident light as x-axis for two different transverse 

voltages; 0 and 1000 V  in Fig. 4.5. Increasing of the transverse voltage enhances the 

ψ value in the spectral range 400 nm to 850 nm. A small dip appears around 600 nm, 

and it is noticed that there is a slight shift in the dip position towards shorter 

wavelengths when applying transverse voltage. 
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Figure 4.5. 𝜓of three-layer Bragg reflector for Si-Cu structure for different values of 

voltage and for  𝜃𝑖=20
o
. 

 

It is clear that the curve in Fig.4.6. is approximate a linear line with positive slope. 

The line represent the difference of values of ψ between 1000 V, and 0 V values of ψ 

for three-layer Bragg reflector. 
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Figure 4.6. 𝜓difference of three-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

 

The Phase difference "∆" between the two components of light equals zero when 

applying no transverse voltage, and it changes gradually from -0.1 degree to -0.7 

degree when applying a transverse voltage of 1000 volt. This is shown in Fig. 4.7. in 

the spectral range of 400nm to 850 nm. 
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Figure 4.7. ∆of three-layer Bragg reflector for Si-Cu structure for different values of 

voltage and for  𝜃𝑖=20
o
. 
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The ∆ difference of values between 1000 V, and 0 V values of  ∆ for three-layer 

Bragg reflector is shown in Fig.4.8. It is clear that it is approximate a linear line with 

negative slope. 
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Figure 4.8. ∆difference of three-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

 

 

4.3.1.2 Results of a five-layer structure  

 

In a similar manner, five-layer Bragg reflector is discussed in this subsection. The 

following figures show the results obtained for the reflectivity, ψ, and ∆. 

Figure 4.9.shows the reflectivity of five layer Bragg reflector versus the wavelength 

of the incident light for two different transverse voltages; 0 V and 1000 V. The 

reflectivity increases very fast from 400 nm to about 650 nm, then it becomes stable 

from 650 nm to 850 nm. The reflectivity value in the stable region is near one.   It is 

clear that increasing of the transverse voltage will dampen the reflectivity in the 

spectral range 400 nm to 850 nm.  
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Figure 4.9. Reflectivity of five-layer Bragg reflector for Si-Cu structure for different 

values of the voltage and 𝜃𝑖=20
o
. 

 

Figure 4.10. illustratesthe ellipsometric parameter ψ of the five layer Bragg reflector 

as a function of wavelength for two different transverse voltages; 0 V and 1000 V. It 

is clear that there is no change of ψ value when applying 1000 volt across the Bragg 

reflector in the spectral range 400 nm to 850 nm. 
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Figure 4.10. ψ of five-layer Bragg reflector for Si-Cu structure for different values of 

voltage and 𝜃𝑖=20
o
. 
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On the other hand the Phase difference "∆" dependence on the wavelengthis shown in 

Fig. 4.11. andis slightly enhanced when applying a transverse voltage of 1000 volt 

across the five layer Bragg reflector. 
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Figure 4.11. ∆of five-layer Bragg reflector for Si-Cu structure for different values of 

voltage and 𝜃𝑖=20
o
. 

 

 

4.3.1.3 Results of a nine-layer structure 

 

Reflectivity, ψ, and ∆of nine-layer Bragg reflector will be discussed in this 

subsection. The following figures show the result obtained for the reflectivity , ψ, and 

∆.Figure 4.12. illustrates the reflectivity of nine layer Bragg reflector versus the 

wavelength of the incident light for two different transverse voltages; 0 V and 1000 

V. the variation of the reflectivity with the wavelength of the incident light for nine-

layer Bragg reflector is similar to that of five-layer Bragg reflector. The reflectivity 

increases very fast from 400 nm to about 650 nm, then it becomes more stable from 

650 nm to 850 nm as it approaches unity. It is clear that increasing of the transverse 

voltage will reduce veryslightly the reflectivity in the spectral range under study.  
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Figure 4.12. Reflectivity of nine-layer Bragg reflector for Si-Cu structure for different 

values of voltage and for  𝜃𝑖=20
o
. 

 

Figure 4.13. illustrates ψ of the nine-layer Bragg reflector as a function of wavelength 

for two different transverse voltages; 0 V and 1000 Vobviously. There is no 

considerable change of ψ value when applying 1000 volt across the Bragg reflector in 

the spectral range under consideration. 
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Figure 4.13. ψ of nine-layer Bragg reflector for Si-Cu structure for different values of 

voltage and for  𝜃𝑖=20
o
. 
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AlternativelyThe Phase difference "∆" is slightly enhanced when applying a 

transverse voltage of 1000 volt to a nine layer Bragg reflector which is shown in 

Fig.4.14. 
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Figure 4.14. ∆of nine-layer Bragg reflector for Si-Cu structure for different values of 

voltage and for  𝜃𝑖=20
o
. 

 

 

4.3.1.4 Results for a fifteen-layer structure  

 

The reflectivity versus the wavelength for fifteen-layer Bragg reflector is shown in 

Fig.4.15. for two values of V. The reflectivity curve for V=0 is similar to that of nine- 

and five- layer Bragg reflectors. When applying a voltage of 1000 V to the fifteen-

layer Bragg reflector, a change in the reflectivity is observed. The reflectivity 

decreases when applying the voltage. This decrease in the reflectivity is dependent on 

the wavelengths. 

The decrease in reflectivity is enhanced as the wavelength increases. The behavior of 

ψ with the wavelength and V is similar to that of the reflectivity as can be seen from 

Fig.4.16. 
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Figure 4.15. Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure for 

𝜃𝑖=20
o
, and with 0, and 1000 volt. 
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Figure 4.16. 𝜓of fifteen-layer Bragg reflector for Si-Cu structure for different values 

of voltage and for  𝜃𝑖=20
o
. 
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The phase difference ∆ versus the wavelength for a fifteen-layer Bragg reflector is 

shown in Fig.4.17. for two values of V. the dependence on V is very small and it can 

be seen for 𝜆> 650 nm. 
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Figure 4.17. ∆of fifteen-layer Bragg reflector for Si-Cu structure for different values 

of voltage and for  𝜃𝑖=20
o
. 

 

 

4.3.2 Investigation of Bragg reflector with the incident angle, and wavelength. 

 

In this subsection, the effect of varying the applied potential, the angle of incidence, 

and the wavelength of light on R, ψ, and ∆ of three Bragg structures will be studied. 

Three applied potentials will be used. The angle of incidence will be varied from 0
o
 to 

80
o
 and four wavelengths of light will be considered.  

 

 

4.3.2.1 Results of a three-layer Bragg structure  

 

Figures 4.18.and Fig.4.19. showthe reflectivity and ψ as a function of the angle of 

incidence for different wavelength for a three layer Bragg reflector. The considered 

wavelengths are550 nm, 600 nm, 633 nm, and 700 nm. 
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The light is incidence with different angles, with no transverse voltage. The 

reflectivity is taken as y-axis , while incidence angle is taken as x-axis in Fig.4.18, 

while ψ is taken as y-axis in Fig.4.19. 

It can be noticed that the reflectivity increases from 0.045 to 0.394 as the incident 

angle is changed from 0
o 

to 80
o
. Moreover, Fig. 4.18.shows no detectable change in 

the reflectivity with the change in wavelength. 

The reflectivity increases remarkably with the angle of incidence. Changing the 

wavelength of the incident light does not affect the reflectivity  profile. ψ decreases 

with the angle of incidence and reaches a minimum value at  an angle of 57
o
. In a 

similar manner to the reflectivity profile, there is no effect of the wavelength of 

incident light on the ψ curve. 
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Figure 4.18. Reflectivity of three-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0 volt. 
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Figure 4.19. ψ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt. 
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Figure 4.20. ∆of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt for different values of 𝜆. 

 

Phase difference angle versus the angle of incidence is illustrated in Fig. 4.20. 

Different wavelengths of incident lights were examined when the transverse voltage 

equals zero. Figure 4.20.shows a notch behavior around 𝜃𝑖 = 57
𝑜 which is the same 
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angle for the lowest value of ψ appears in Fig.4.19. A very slight change of order 10
-4

 

of ∆ with the wavelength of incident light. All other scanned incidence angles do not 

show a similar behavior. 

The reflectivity and ψ versus the incidence angle for a transverse voltage of 1000 volt, 

of three layer Bragg reflector do not change with the wavelength except small 

deviation and curvature  of ψ at the bottom near 𝜃𝑖 = 57
𝑜. This appears in Fig.4.21., 

and Fig.4.22. 

The huge effect of transverse voltage of 1000 volt appears on the phase difference 

angle in Fig.4.23. A very rapid decreasing of the Phase difference before𝜃𝑖 = 57
𝑜, 

then also a very rapid increasing after the same angle. The vertical line of 𝜃𝑖 = 57
𝑜, is 

as an asymptoting line. Phase difference angles of different wavelengths act in the 

same manner with very slight difference in values. 

Where the applied voltage is zero to the three-layer Bragg reflector,∆ is 

approximately zero for all incidence angles as can be seen in Fig.4.20. where a 

transverse voltage of 1000 volt is applied to the structure, a significant change in ∆ 

curve is observed in the region between 𝜃𝑖 = 50𝑜 − 70𝑜, especially at 𝜃𝑖 = 57𝑜 

where ∆ ranges between 50
o
 and 80

o
. Moreover there is a slight effect of 𝜆 on ∆ 

curves in the incidence angle range 50
o
-70

o
. 

 

 



91 
 

0 20 40 60 80
0.00

0.07

0.14

0.21

0.28

0.35

0.42

 

 

R
e

fl
e
c
ti
v
it
y

(deg)

 





 





 





 





 

Figure 4.21. Reflectivity of three-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 1000 volt  
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Figure 4.22. ψ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  

 



92 
 

0 20 40 60 80
-100

-75

-50

-25

0

25

50

 

 



d

e
g


deg

 






 





 





 





 

Figure 4.23. ∆of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt. 

 

The same notation  and discussion can be said for a three layer Bragg reflector with 

5000 volt transverse voltage except more curvature at the bottom of ψ near 𝜃𝑖 = 57
𝑜, 

and less inclining negative slope of Phase difference angle about the assymptoting 

line 𝜃𝑖 = 57
𝑜. Applying a transverse voltage of 5000 V slightly enhances the effect of 

different wavelengths. All these can be seen in Fig.4.24., Fig.4.25., Fig.4.26. 

Applying different values of transverse voltage does not change the critical value of 

𝜃𝑖 = 57
𝑜. 
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Figure 4.24. Reflectivity of three-layer Bragg reflector for Si-Cu structure versus 

the incident angle with transverse voltage of 5000 volt  
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Figure 4.25. ψ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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Figure 4.26. ∆ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  

 

 

 

 

4.3.2.2 Results of a five-layer structure  

 

Figure 4.27, and Fig 4.28.shows the reflectivity and ψ respectively as a function of 

incidence angle. Both reflectivity and ψ havedifferent values when incident a light 

with different wavelengths, and applying no transverse voltage across five layer 

Bragg reflector.  

The behavior of reflectivity versus the incidence angle with no transverse voltage, 100 

V, and 5000 V is shown in Fig.4.27, 4.30, 4.32. respectively. Reflectivity curves –

with different wavelengths- show a stable and nearly constant value when it is studied 

as a function of incidence angles in the range 𝜃𝑖 = 0
𝑜 − 60𝑜, then suddenly increase 

in the incidence angles range 60𝑜 − 80𝑜. 

The greater is the wavelength, the smaller is the difference between values of 

reflectivity and also between the ψs. 
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The behavior of ψ as a function of incidence angle in five-layer Bragg reflector differ 

of that of three-layer in smoothness and a dipangle 𝜃𝑖 . In five-layer Bragg reflector 

the curve of ψ decreases smoothly with increasing in 𝜃𝑖 until reaches the lowest value 

of 𝜃𝑖 = 77𝑜.Note that the dip angle 𝜃𝑖 = 77
𝑜 shifts to the right – increases- with 

increases of wavelength. This discussion of ψ is true for a transverse voltage of  0 V, 

1000 V, and 5000 V, which are shown in Fig.4.28, 4.31, 4.34. 

Different-wavelength curves of "∆" as a function of 𝜃𝑖 is plotted in Fig.4.29.The  

curve of ∆ increases gradually with increasing of 𝜃𝑖 until reaches critical value 

𝜃𝑖 = 77
𝑜. The critical value 𝜃𝑖 is shifted with the increasing of wavelength i.e. the 

same behavior of that of ψ. 

Fig.4.33, 4.35 show the similar behavior of ∆ with respect of 𝜃𝑖 with different 

wavelength in the presence of transverse voltage of 1000 V, and 5000 V respectively. 
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Figure 4.27. Reflectivity of five-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0 volt  
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Figure 4.28. ψ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  
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Figure 4.29. ∆ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  
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Figure 4.30. Reflectivity of five-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 1000 volt  
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Figure 4.31. ψ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.32. ∆ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.33. Reflectivity of five-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 5000 volt  
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Figure 4.34. ψ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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Figure 4.35. ∆ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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4.3.2.3 Results for a nine-layer structure. 

 

The reflectivity and ψareplottedversus incidence angle in Fig.4.36, and Fig 

4.37.respectively. Both reflectivity and ψ havevarying values when a light is incident 

with different wavelengths, and applying no transverse voltage across nine-layer 

Bragg reflector. The greater is the wavelength, the smaller is the difference between 

values of reflectivity -with different wavelengths- and also between the ψs. 

Phase difference angles for different wavelengths of incident light with different 

angles are shown in Fig.4.38.  

Regarding the critical valley angle 𝜃𝑖 = 77𝑜, and the transverse voltage of 0 V, 1000 

V, and 5000 V, the similar talk as which was said previously in five-layer structure 

can be said here.   
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Figure 4.36. Reflectivity of nine-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0 volt  
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Figure 4.37. 𝜓 of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  
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Figure 4.38. ∆ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  
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Figure 4.39. Reflectivity of nine-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 1000 volt  
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Figure 4.40. ψ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.41. ∆ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.42. Reflectivityof nine-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 5000 volt  
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Figure 4.43. ψ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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Figure 4.44. ∆ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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4.3.2.4 Results of a fifteen-layer structure  

 

Numerical talk is left until reach this subsection to clarify the similarity among five-, 

nine-, and fifteen-layer structure.The reflectivity for 0 V transverse voltage for 

fifteen-layer Bragg reflector is shown in Fig.4.45. The reflectivity curves for different 

wavelengths are stable and constant in the range between 𝜃𝑖 = 0
𝑜 − 60𝑜and have the 

following values; R = 0.63533 for wavelength of 550 nm, R = 0.86034 for wavelength 

of 600 nm, R = 0.92992 for wavelength of 633 nm, and R = 0.95488 for wavelength 

of 700 nm. The previous values are true for nine-layer, and five-layer Bragg reflector. 

While the values of ψ for 0 V, for wavelengths of 550 nm, 600 nm, 633 nm, and 700 

nm are all start from 45.02
o
 and decreasing gradually with different slope for each 

wavelength as shown in Fig.4.46. The ψ curve of wavelength 500 nm has the lowest 

value- valley angle- of 37
o
when the incidence angle has the value of 76.80

o
. Again the 

values of ψ for nine-, and five-layer are identical  of those of fifteen-layer Bragg 

Reflector. The applying of a transverse voltage of 0 V across fifteen-layer Bragg 

reflector gives the following values of ∆ for the wavelength of 550 nm; see 

Fig.4.46.Maximum ∆is 86.35
o
 at 𝜃𝑖 = 76

o
, and minimum ∆ is -86.7

o
 at 𝜃𝑖 = 77

o
, which 

are the same values for nine-layer, and five-layer Bragg reflector.  
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Figure 4.45. Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0 volt  
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Figure 4.46. ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  
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Figure 4.47. ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0 volt  

 

The reflectivity values when applying a transverse voltage of 1000 V is shown in 

Fig.4.48. The different wavelength curves show a stable and constant behavior in the 

range between 𝜃𝑖 = 0𝑜 − 50𝑜and have the following values; R = 0.618042 for 

wavelength of 550 nm, R = 0.847573 for wavelength of 600 nm, R = 0.921143 for 
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wavelength of 633 nm, and R = 0.946679 for wavelength of 700 nm. The previous 

values are identical in case of nine-layer, and five-layer Bragg reflector.  

The applying of a transverse voltage of 1000 V across fifteen-layer Bragg reflector 

gives the following values of ψfor the wavelength of 550 nm, 600 nm, 633 nm, and 

700 nm are all start from 45.02
o
 and decreasing gradually with different slope for each 

wavelength as shown in Fig.4.49. The ψ curve of wavelength 500 nm has the lowest 

value- valley angle- of 37
o
 when the incidence angle has the value of 76.01

o
. Again 

the values of ψ for nine-, and five-layer are identical  of those of fifteen-layer Bragg 

Reflector.  

The values of ∆ for the wavelength of 550 nmis shown in Fig.4.50. when applying a 

transverse voltage of 0 V across fifteen-layer Bragg reflector gives the following; 

maximum ∆is 86.92
o
 at 𝜃𝑖 = 76

o
, and minimum ∆ is -85.69

o
 at 𝜃𝑖 = 77.15

o
, which are 

the same values for nine-layer, and five-layer Bragg reflector.  
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Figure 4.48. Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 1000 volt  
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Figure 4.49. ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.50. ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 1000 volt  
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Figure 4.51. Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 5000 volt  
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Figure 4.52. ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  
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Figure 4.53. ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 5000 volt  

 

 

4.3.3 Investigation of Bragg reflector performance with the incident angle and 

transverse voltage. 

 

4.3.3.1 Results of a three-layer structure  

 

Figure 4.54 shows the reflectivity for three layer Bragg reflector versus the incident 

angle, when applying a transverse voltage of 0 volt or 1000 volt the values are nearly 

identical, while applying 5000 volt will cause a slight enhancement of reflectivity. 
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Figure 4.54. Reflectivity of three-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0, 1000, and 5000 volt  

 

Figure 4.55.showsψ of three layer Bragg reflector as a function of incident angle. The 

figures shows a sharp cliff around 𝜃𝑖 = 58
𝑜 with a no transverse voltage, the 

sharpness decreases when applying 1000 volt , and it becomes round carve when 

applying 5000 volt. 
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Figure 4.55. ψ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  
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It is seen in Fig. 4.56. that with zero transverse voltage the Phase difference angle is 

zero degree, and with 1000, and 5000 volt there is an asymptoting around  𝜃𝑖 = 58
𝑜. 

The changing of Phase difference with 5000 volt becomes fast comparing with 1000 

volt. 
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Figure 4.56. ∆ of three-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  

 

 

4.3.3.2 Results of a five-layer structure  

 

Figure 4.57. shows the reflectivity as a function of angle of incidence for five layer 

Bragg reflector, while Fig.4.58. illustrates the ψ versus incident angle. More 

transverse voltage will cause a more dampen of reflectivity.  Regarding the ψ when 

applying 1000 volt transverse voltage the ψ dampen while when applying 5000 volt ψ 

is enhanced.  

Figure 4.59. presentsPhase difference versus incidence angle for five layer Bragg 

reflector, more transverse voltage will cause a slight increase in Phase difference 

angle.    
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Figure 4.57. Reflectivity of five-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.58. ψ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.59. ∆ of five-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  

 

 

4.3.3.3 Results of a nine-layer structure  

 
 

Figure 4.60.shows the nine layer Bragg reflector's reflectivity as a function of incident 

angle while Fig.4.61. illustrates the ψ versus incidence angle. More transverse voltage 

will cause a more dampen of reflectivity.  Regarding the ψ when applying 1000 volt 

transverse voltage the Ψ dampens while when applying 5000 volt ψ increases.  

Figure 4.62.showsPhase difference versus incidence angle for five layer Bragg 

reflector, more transverse voltage will cause a slight increase in Phase difference 

angle.    
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Figure 4.60. Reflectivity of nine-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.61. ψ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.62. ∆ of nine-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  

 

 

4.3.3.4 Results of a fifteen-layer structure  

 

Figure 4.63.shows the fifteen layer Bragg reflector's reflectivity as a function of 

incident angle while Fig.4.64. illustrates the ψ versus incidence angle. More 

transverse voltage will cause a more dampen of reflectivity and more increment of ψ 

when applying 5000 volt transverse voltage but more dampen when applying 5000 

volt.  

Figure 4.65.presentsPhase difference versus incidence angle for fifteen layer Bragg 

reflector, more transverse voltage will cause a slight increase in Phase difference 

angle.    
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Figure 4.63. Reflectivity of fifteen-layer Bragg reflector for Si-Cu structure versus the 

incident angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.64. ψ of fifteen-layer Bragg reflector for Si-Cu structure versus the incident 

angle with transverse voltage of 0, 1000, and 5000 volt  
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Figure 4.65. ∆ of fifteen-layer Bragg reflector for Si-Cu structure versus the incidence 

angle with transverse voltage of 0, 1000, and 5000 volt  
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Chapter five  

General conclusion 

 

In this thesis a reflection and transmission from a multilayer structure with interface 

free charge layer are studied are studied in detail. 

A famous semiconductor material, the Silicon (Si), is taken to be a high refractive 

index layer. While Cupper (Cu) is taken to be a layer of law refractive index. The 

substrate is taken to be glass , Silicon dioxide (SiO2). 

This Thesis studies three-layer, five-layer, nine-layer, and fifteen-layer structures. The 

study investigates the effect of wavelength and transverse voltage on a reflectivity 

(R), ellipsometric parameters ψ, and ∆. 

The study clarifies the effect of incident angle and wavelength on the same 

parameters R, ψ, and ∆. 

The thesis also studies the performance of reflectivity, ψ, and ∆ with the incident 

angle and transverse voltage. 

The simulation revealed that the reflectivity decreases as the wavelength increases of 

the incident light, when a potential difference of 1000 V is applied to the three-layer 

structure, the shape of curve remains unchanged with a small enhancement in the 

reflectivity. 

Which means that the reflectivity difference for three-layer Bragg reflector is 

approximate a linear line with positive slope. 

Increasing of the transverse voltage will enhance the ψ value in the spectral range 400 

nm to 850 nm for a three-layer Bragg reflector. 

The Phase difference "∆" between the two components of light equals zero when 

applying no transverse voltage, and it changes gradually from -0.1 degree to -0.7 

degree when applying a transverse voltage of 1000 volt across a three-layer Bragg 

reflector  
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While for five-, and nine-layer Bragg reflector the reflectivity increases very fast from 

400 nm to about 650 nm, then it becomes stable from 650 nm to 850 nm. The 

reflectivity value in the stable region is near one. It is clear that there is no change of 

ψ value when applying 1000 volt across the Bragg reflector in the spectral range 400 

nm to 850 nm. 

The Phase difference "∆" dependence on the wavelength is slightly enhanced when 

applying a transverse voltage of 1000 volt across the five layer Bragg reflector. 

When applying a voltage of 1000 V to the fifteen-layer Bragg reflector, a significant 

change in the reflectivity is observed. The reflectivity decreases when applying the 

voltage. This decrease in the reflectivity is critically dependent on the wavelengths. 

The behavior of ψ with the wavelength and V is similar to that of the reflectivity. The 

phase difference ∆ versus the wavelength for a fifteen-layer Bragg reflector is affected 

slightly by the voltage, and it can be seen for 𝜆> 650 nm.  

The reflectivity for three layer Bragg reflector versus the incidence angle, when 

applying a transverse voltage of 0 volt or 1000 volt the values come nearly identical, 

while applying 5000 volt will cause a slight enhancement of reflectivity. The ψ of 

three layer Bragg reflector as a function of incident angle shows a sharp cliff 

around𝜃𝑖 = 58
𝑜with a no transverse voltage, the sharpness decreases when applying 

1000 volt , and it becomes round carve when applying 5000 volt. It is depicted. that 

with zero volt transverse voltage the Phase difference angle is zero degree, and with 

1000, and 5000 volt there is an asymptoting around. The changing of Phase difference 

with 5000 volt becomes fast comparing with 1000 volt. 

Regarding five-, nine, and fifteen-layer Bragg reflector the reflectivity as a function of 

incidence angle for five layer Bragg reflector is damped when applying a transverse 

voltage. The ψ is damped when applying 1000 volt transverse voltage, while when 

applying 5000 volt ψ is enhanced. Phase difference versus incidence angle for five 

layer Bragg reflector is slightly increased when applying transverse voltage. 

The whole results which are gained in chapter fourproposed  anew photo-electric 

device. A new device allow manipulating of reflectivity, ψ, and ∆ as a function of 

transverse voltage. The device in general has two behaviors. The first when the 
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number of layers is three. The second behavior appears with large number of layers -

five-layer, nine-layer, and  fifteen-layer Bragg reflector-. 

Note that the effect of conductivity appears clearly in case of three-layer because the 

varying conductivity is generated between the third layer – last layer of Bragg 

reflector- and the substrate. And when applying a transverse voltage across a device 

the reflectivity , and ψ will enhanced. The value of enhancement increases linearly 

with the increasing of the wavelength of incidence light in the spectral range 400 nm-

850 nm.While "∆" the phase difference between p- polarized component of light and 

s- polarized component of light decreases linearly with increasing of wavelength in 

the spectral range 400 nm- 850 nm. 

The opposite behavior of large number Bragg reflector can be concluded for five-

layer, nine-layer, and fifteen-layer Bragg reflector. The effect of voltage appears 

clearly with the increasing of number of layers, so it is useful to focus on fifteen-layer 

Bragg reflector. 

The reflectivity, ψ decrease when applying a transverse voltage across the fifteen-

layer Bragg reflector. Reflectivity, and ψ are affected strongly with a transverse 

voltage when the wavelength increases, while the phase difference decreases slightly 

when applying a transverse voltage, the effect of a voltage increases with the 

increasing of wavelength.  

The change of reflectivity with respect to voltage specially in high wavelength 

spectral range 650-850 nm can be deal  with as amplitude modulation. 

Regarding the three-layer Bragg reflector, the applying of 1000 voltage will increase 

the amplitude. The incidence light can be considered as base band light or carrier 

light, the transverse voltage as modulating wave, and the reflected light can be 

considered as modulated light. 



122 
 

 

Figure 5.1 Amplitude modulation of a light depending on a transverse voltage pulse 

train. 

 

The change of ψ or ∆ can be considered as a phase modulation even it is not the 

traditional phase of the signal – light-, but the change of ellepsometric parameter ψ, 

∆opens the door to a new type of modulation, lets name it ellipsometric modulation. 

This type of modulation can be more secured and complex modulation, because 

apparently the light – signal- is not changed but truly it is modulated. 

The same thing can be said for fifteen-layer Bragg reflector with inverse behavior in 

both amplitude and ellipsometric modulation. But ∆ modulation is not suitable to be 

used practically because of slight change with respect to a transverse voltage. 
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