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In the U.S., the building sector accounts for the largest portion of primary energy 

consumption and its energy consumption is expected to continuously increase in the 

coming decades. Many methods have been proposed to enhance building operations. 

Among these methods, the model predictive control and the regression-model-based-

control are promising for large-scale applications. However, the model predictive control 

is difficult to implement due to the lack of appropriate modeling tools and thermal load 

prediction methods, while the regression-model-based-control has low accuracy. 

 

In this dissertation, a software environment for implementing the model predictive 

control is first presented. In this software environment, Modelica is used for system 

modeling while Python is used to automatize workflow, including state variable resetting. 

With this software environment, the study focuses on optimizing the design of the model 

predictive control for the purpose of resetting the condenser water return temperature set 

point (condenser water set point) and chiller staging. The results show that the speed and 

accuracy of the condenser water set point optimization can be improved by using the 

proposed method for selecting the initial point for searching. Results also reveal that the 

energy savings from the condenser water set point optimization is not sensitive to the 

reset frequency for the mild climate in which the study was conducted. Regarding the 



 
  

 

chiller staging optimization, results show that there is a trade-off among the energy use of 

chillers, pumps, and cooling towers. If the trade-off is considered in the design of the 

model predictive control, more energy savings can be achieved. 

 

A Bayesian network model for the cooling load prediction is then proposed. 

Compared to the existing methods, the Bayesian network model is easier to implement. A 

case study shows that the Bayesian network model can achieve comparable accuracy to 

the support vector machine method that has been recommended by previous studies. For 

both the Bayesian network model and the support vector machine model, the accuracy of 

the cooling load prediction is not always proportional to the amount of training data and 

may be significantly affected by the uncertainties in the inputs. 

 

The Bayesian network model is then applied in the regression-model-based-control 

for resetting the condenser water set point. The case study shows that the linear and 

polynomial models that were proposed in the previous studies sometimes even increase 

energy consumption, while the Bayesian network model can achieve nearly optimal 

energy savings. 

 

Finally, this dissertation demonstrates the preliminary work of implementing a model 

predictive control for an integrated community energy system that serves a net zero 

energy community. Suggestions for future work are also provided. 
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Chapter 1  

Introduction  

1.1 Problem Statement 

1.1.1 Building Energy Consumption in the U.S. 

As shown in Figure 1-1, the building sector in the U.S. accounted for the largest 

portion of primary energy consumption in 2010, which is 44% more than that of the 

transportation sector and 36% more than that of the industrial sector. In addition, the 

energy consumption by the building sector has increased dramatically. As shown in 

Figure 1-2, building energy use increased by 51% from 1980 to 2010 and is expected to 

rise by 67% in 2030.  

 

Figure 1-1 The distribution of energy use in the U.S. 

Data source: [1] 
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Figure 1-2 The change of building energy use in the U.S. 

Data source: [1, 2] 

Increased building energy consumption has many negative effects. For example, it 

leads to higher operational costs for buildings. In addition, since a major portion of 

energy used by buildings is generated by fossil fuels such as coal [1], the building sector 

also contributes to fossil-fuel-associated environmental issues, such as global warming 

and the rising of sea levels. Given these negative effects, it is of great importance to study 

how to improve the energy efficiency of buildings 
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1.1.2 Challenges in Reducing Building Energy Consumption 

Enhancing building energy efficiency, however, is difficult. The challenges come 

from two aspects of buildings. First, buildings are complicated and their energy 

performances require a great deal of effort to understand. Buildings usually consist of 

multiple systems, such as a heating, ventilation, and air conditioning (HVAC) system, 

lighting system, electric system, and control system. To understand the behavior of those 

systems, one needs to have knowledge from different disciplines regarding heat and mass 

transfer, fluid dynamics, electricity generation and conversion, and control theory. In 

addition, buildings are becoming increasingly integrated. This integration is achieved not 

only physically by energy/mass exchange between different systems (e.g., heat recovery 

from HVAC systems to domestic hot water systems), but also operationally via integrated 

control of different systems (e.g., hybrid ventilation realized by integrated control of 

mechanical ventilation and natural ventilation). This integration requires taking into 

account the interactions between different systems, which may be described in different 

time domains (continuous and discrete) with time-scales from sub-seconds (such as in 

control systems) to years (such as in geothermal systems) [3].  

 

Second, constraints in thermal comfort and economy should be considered when 

designing energy-saving strategies. Enhancing building energy efficiency may have 

negative impacts on a building’s thermal environment and/or its initial cost. For example, 

by using demand-response strategies (e.g., pre-cooling) to control the HVAC system, one 

may save energy but also would expect a deviation from the existing level of thermal 

comfort. Employing a thermal recovery system can lead to increases both in energy 
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efficiency and initial costs. However, impacts on cost should be minimized or balanced 

with the achieved building energy savings.  

 

1.2 Literature Review in Building Operation Optimization 

To improve building energy efficiency, research was performed and a great number 

of resulting methods were proposed [4-39]. As shown in Figure 1-3, those methods can 

be divided into two groups: design optimization methods [4-16] and control optimization 

methods [17-39].  

Figure 1-3 The existing methods for enhancing the energy efficiency of buildings 

 

1.2.1 Design Optimization 

For the design optimization methods, the basic idea is to adjust the design parameters 

or system configurations so that higher energy efficiency can be achieved. For example, 

Building Operation 
Optimization 
Methods

Design 
Optimization

Control
Optimization

Physics‐Model‐
based‐Control

Static‐Model‐
based‐Control

Model Predictive 
Control

Regression‐
Model‐based‐

Control
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Gordon, Ng, et al. [4] proposed a method to reduce the chiller power by varying the 

condenser water flow rate instead of keeping it as a constant design parameter. Shimoda, 

Nagota, et al. [8] found that it would be more efficient to employ a centralized cooling 

system rather than individual cooling systems. 

 

Although they demonstrate energy-saving potential, design optimization methods 

have one limitation: They may not be suitable for all buildings. Current design 

optimization methods usually require the modification of the building’s physical systems. 

However, the modification of the physical systems can be impossible for existing 

buildings, for the following reasons: 

 

a) The cost for the modification can be unacceptably high 

      The modification usually requires the redesign and/or replacement of existing 

systems, which may be expensive, especially when the systems are large or 

complicated. In addition, the building owners also need to invest in the training of 

operators for the new systems. Those costs may offset the benefits of energy savings. 

 

b) Building systems may be difficult to be modified 

      Conventionally, building systems are designed in such a way that operators are not 

expected to change anything but the predefined control parameters. For such systems, 

modification of the physical systems can be extremely difficult because the systems 

are enclosed and components may be highly coupled.       

 



6 
 

 
 

1.2.2 Control Optimization 

Control optimization methods are designed to optimize the predefined control 

parameters of building systems according to operating conditions. Compared to the 

design optimization methods, they do not require the modification of the physical system. 

Thus, they are suitable for large-scale applications in existing buildings. The operation 

optimization methods can be further divided into two sub-groups: physics-model-based-

control and regression-model-based-control methods. The following sections will 

elaborate on both methods. 

 

a) Physics-Model-based-Control 

      In physics-model-based-control methods [17, 18, 22, 24, 25, 28, 29, 34, 37-39], first 

principles and engineering models (e.g., performance curves) are developed to 

characterize the behavior of buildings. Those models are then coupled with the 

optimization algorithms to find the optimal values of the control parameters for a 

given operating condition and/or system status. Constraints for this optimization can 

be included in either the models or the optimization algorithms. Depending on 

whether the dynamics are considered, the physics-model-based control methods can 

be further divided into two groups: static-model-based-control and predictive control 

methods. 

 

      Static-Model-based-Control 

      In static-model-based-control methods [17, 18, 22, 24, 25, 29, 38], the objective 

function is usually the power of the studied system, while the studied system is 
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assumed to respond to the change of the control parameters instantaneously. For 

example, Lu, Cai, et al. [17] developed a static-model-based-control method of 

optimizing cooling tower speeds of chiller plants for measuring outdoor wet bulb 

temperatures and cooling loads (In this dissertation, the cooling load is the heat 

handled by the chiller plant. It includes the space cooling load and the fresh air 

cooling load) so that the total power of the chillers, cooling towers, and pumps could 

be minimized. 

 

      The major problem with static-model-based-control methods is that they may not be 

suitable for buildings with significant dynamics. The dynamics may significantly 

affect the building’s energy performance. For example, Ulpiani, Borgognoni, et al. 

[40] found that changing the dynamic pattern of the on-off controller by modulating 

the dead band width could lead to an approximately 25% increase in energy 

efficiency of the studied heating system. 

 

      Model Predictive Control  

      Model Predictive control methods [28, 34, 37, 39] solve dynamic optimization 

problems in which the objective function is usually the energy consumption or cost of 

the studied building system for a future period. The predicted operating conditions are 

the inputs for the dynamic optimization problems. For instance, Ma, Borrelli, et al. 

[28] presented a model predictive control for building cooling systems with thermal 

energy storage. In their method, the optimization was intended to minimize the 

electricity bill of the studied cooling system for a future period. The adjusted control 
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parameters included temperature set points of the chilled water and the condenser 

water as well as the operating status (on/off) of the studied system. 

 

      Model predictive control methods cannot can take into account the impact of the 

dynamics on the building performance. Thus, they can provide more accurate results 

compared to static-model-based-control methods. However, many existing obstacles 

prevent predictive control methods from being widely implemented in buildings. 

These obstacles include: 

      -  Existing building modeling tools are not suitable for model predictive control 

      The commonly used building energy modeling tools include DOE-2 [41], EnergyPlus 

[42], TRNSYS [43], and ESP-r [44]. Although these modeling tools are widely used 

in the design and optimization of building systems [45-49], they are not suitable for 

model predictive controls for the following reasons: 

1.  It is difficult to use the above tools to model the control process. DOE-2 [41], 

EnergyPlus [42], and ESP-r [44] are primarily designed for the long period of 

assessing building performance, with the aim of supporting building design and 

policy development. To achieve this goal, those tools tend to idealize the control 

process in order to accelerate the long simulation period. For TRNSYS [43], the 

major problem is that it employs a fixed time step length. A fixed time step length 

forces modelers to select a small time step in TRNSYS [43] to capture the 

dynamics in the control process. However, the small time step leads to a long 

computational time to perform the simulation. 
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2.  It is difficult to reset the initial value of state variables with existing building 

modeling tools. When using the model predictive control, initial values of all state 

variables of the system model need to be reset prior to evaluating the performance 

of different control parameter values. However, in existing building modeling 

tools, resetting the initial value of state variables is difficult if not impossible 

without making significant code changes. 

 

      -  Predicting the thermal load is challenging 

       The predicted thermal load is a critical input for performing the model predictive 

control. The thermal load is affected by many factors. Also, the relationship 

between those factors and the thermal load is complicated. The current thermal 

load prediction methods are problematic. For example, in Corbin, Henze, et al. 

[34] method, the building modeling tool, EnergyPlus [42], is used to predict the 

thermal load for a given weather forecast. The problem is that EnergyPlus 

requires detailed information about the building, such as the thermal characteristic 

of the envelope and the occupancy schedule, which may not be available for real-

world applications.  

 

b) Regression-Model-based-Control 

      In the regression-model-based-control methods [19-21, 23, 30], simple algebraic 

equations (e.g., linear equations) are developed to describe the relationships between 

the operating conditions and the corresponding optimal values of control parameters. 

The coefficients of those equations can be obtained based on the regression analysis 
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of the results obtained from simulation and/or experimentation. Those equations are 

then implemented into the controllers directly to enable an automatic resetting 

process of the control parameters. For example, Sun and Reddy [19] proposed a linear 

equation to reset the condenser water return temperature set point (condenser water 

set point) for chiller plants according to the outdoor wet bulb temperature and cooling 

load. Compared to the physics-model-based control methods, regression-model-

based-control methods are easier to implement because they do not require the 

solving of complicated optimization problems that usually require substantial 

computational time and resources. 

 

      The main problem with regression-model-based-control methods is that the 

relationship between the operating conditions and the corresponding optimal values 

of control parameters may not be described by simple algebraic equations due to the 

non-linear nature of buildings. For example, Ma, Wang, et al. [22] compared the 

performance of a physics-model-based control method for optimizing the condenser 

water set point of chillers with that of the regression-model-based-control method 

proposed by Sun and Reddy [19]. They found that the annual energy savings of the 

physics-model-based control method was 183,495 kWh, while that of the regression-

model-based-control method was only 130,236 kWh. Thus, the physics-model-based 

control method can achieve 41% more energy savings than the regression-model-

based-control method. 
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1.2.3 Summary 

In summary, design optimization methods can usually achieve better energy savings 

compared to control optimization methods, because they allow more independent 

variables to be considered in the optimization. The control optimization methods are 

more suitable for large-scale applications, since they do not require the modification of 

physical systems. Among the control optimization methods, the predictive control 

methods can achieve the best accuracy in predicting the optimal values of the control 

parameters for two reasons. First, they employ the physics models, which can provide a 

better representation of the studied systems than other models, such as regression models; 

second, they take the dynamics of the studied systems into account. However, the 

predictive control methods are difficult to implement due to the lack of appropriate 

modeling tools and thermal load prediction methods. The static-model-based-control 

methods are easier to implement because they employ a static system model, which 

requires little effort for implementation. The static-model-based-control methods also do 

not require thermal load prediction. However, the static-model-based-control methods 

may not be suitable for buildings with significant dynamics. The regression-model-based-

control methods require the least effort for implementation, although they have lower 

accuracy. 

 

1.3 Research Objectives 

The objectives of this dissertation are: 

1) To create a software environment for the model predictive control.   
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      This software environment will not only facilitate the implementation of the model 

predictive control by addressing the limitations mentioned above, but will also enable 

studies to support the design of predictive control methods. 

 

2) To invent an accurate cooling load prediction method for the model predictive 

control. 

      This thermal load prediction method should not require information that is not easily 

to access, in order to minimize the effort required for implementation. It should also 

provide reasonably strong accuracy so that no significant uncertainties will be 

introduced into the model predictive control. 

 
3) To develop a new regression-model-based-control method. 

      The new regression-model-based-control method is expected to be able to effectively 

manage the complicated relationships in the buildings. It will require little effort in 

training and will be computationally efficient in predicting the results. 

 

1.4 Dissertation Outline 

The rest of the dissertation elaborates on efforts made in this study to develop model-

based technologies for enhancing building operation. 

 

Chapter 2 discusses the research on enhancing the design of the model prediction 

control method for condenser water set point optimization. First, the condenser water set 

point optimization problem is introduced and a model predictive control method is 

proposed. Then, a new software environment for implementing the predictive control 
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method is demonstrated. Based on this software environment, this chapter then evaluates 

how the selection of the initial point for the search affects the energy savings from the 

proposed predictive control method through a case study. In this case study, the impact of 

the optimization frequency on the condenser water set point optimization is also assessed 

using the software environment previously described. 

 

Chapter 3 presents research on optimizing the model predictive control design for 

chiller staging. The chapter begins with a review of the chiller staging optimization 

problem and then proposes three new model predictive control approaches for chiller 

staging. Next, the software environment proposed in Chapter 2 is employed to implement 

these three approaches. Finally, an offline simulation is performed to evaluate the three 

approaches via a case study. 

 

Chapter 4 presents the research on cooling load prediction. First, it introduces the 

existing methods for cooling load prediction. Next, it proposes a Bayesian network 

modeling method for cooling load prediction. Then, a case study is presented to evaluate 

the Bayesian network modeling method for cooling load prediction. In the case study, the 

performance of the Bayesian network modeling method is compared to that of a support 

vector machine method, which has been recommended by previous studies. In addition, 

impacts related to the volume of training data and uncertainties about the inputs in the 

cooling load prediction results are also evaluated. 
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Chapter 5 elaborates on the research on the condenser water set point optimization 

with a regression-model-based-control method. First, it discusses the existing regression-

model-based-control methods for the condenser water set point. Then, it demonstrates the 

procedure of applying the Bayesian network model, proposed in Chapter 4, in the 

condenser water set point optimization. To evaluate the Bayesian network model for the 

condenser water set point optimization, a case study is presented that compares the 

performance of the Bayesian network modeling method with that of existing regression-

model-based-control methods. 

 

Chapter 6 discusses the research on modeling an integrated building system that 

serves a net zero energy community. This research is the initial work for developing a 

model predictive control for the studied system. This chapter first discusses the studied 

system and then describes the proposed research on developing the model predictive 

control for the studied system. Finally, it describes how the current modeling works and 

reveals preliminary results for the modeling. 

 

Chapter 7 presents the major conclusions found in this study. Plans for future work 

are also discussed. 
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Chapter 2  

Model Predictive Control for Condenser Water Loop Operation 

This chapter discusses the research on enhancing the design of the model prediction 

control for the condenser water loop operation. 

 

2.1 Condenser Water Loop Operation Optimization 

Depending on how chillers reject the waste heat, chiller plants can be categorized as 

water-cooled or air-cooled. Water-cooled chiller plants with cooling towers are common 

for large buildings. A typical water-cooled chiller plant consists of two water loops: a 

chilled water loop and a condenser water loop. The chilled water loop transfers the 

cooling energy generated by the chiller to the demand side; the condenser water loop 

rejects the waste heat from the chiller to the ambient environment through the water 

evaporation occurs in cooling towers [50].   

 

Water-cooled chiller plants are typically controlled by a two-level control structure. 

The low-level control (local controller) is enabled by a feedback control system. For 

instance, the temperature of the condenser water leaving the cooling towers is typically 

controlled by adjusting the speed of the cooling tower fans to meet a predefined set point, 

which is referred as to the condenser water set point. The upper-level control (supervisor 

controller) is used to specify set points for the local control and other time-dependent 

modes of operation [50]. Conventionally, set points are fixed at the nominal values. 
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One commonly used approach to achieve higher efficient chiller plants is to optimize 

the operation of cooling towers. This is achieved by adjusting the operation of cooling 

towers and/or chillers. For example, one can reach lower energy consumption of chillers 

by making cooling towers at higher fan speeds so that the temperature of the condenser 

water entering the chillers is lower. However, higher fan speeds mean more energy is 

used by cooling towers. Thus, the goal of optimizing the cooling tower operation is to 

achieve the minimum energy consumption of cooling towers and chillers by adjusting fan 

speeds of cooling towers. 

 

Unsurprisingly, finding optimal cooling tower fan speeds is challenging. The 

difficulties derive from the nonlinear nature of the chiller plant energy use. For example, 

the energy performance curves of the chillers and cooling towers are usually non-linear, 

which means the commonly used system analysis tools, such as linear optimization 

methods, may not be suitable for this problem. In addition, according to the ASHRAE 

Handbook [50], optimal fan speeds of cooling towers may be affected by both the cooling 

load and weather conditions. Therefore, finding optimal cooling tower fan speeds is a 

multiple-input nonlinear problem, which requires more efforts to be solved. 

 

Various methods have been proposed to find the optimal cooling tower fan speeds 

[17, 19, 21-23, 28, 30, 31, 51-53] and those methods can be categorized into two groups. 

In the first group, researchers [21, 51] proposed to replace a two-level control structure 

by directly controlling the fan speed according to the cooling load. For example, Braun, 

Klein, et al. [51] proposed a systematic method to control speeds of the variable-speed 
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cooling tower fans: all the cooling tower fans should operate at the same speed and a 

linear equation was proposed to determine the optimal fan speed according to the cooling 

load. This method is easy to be implemented and can make the control of cooling towers 

more stable. 

 

In the second group, researchers [17, 19, 22, 23, 28, 30, 31, 52, 53] have proposed 

methods to reset the condenser water set point according to the weather and/or cooling 

load. Some researchers [19, 23, 30, 52] proposed regression-model-based-control 

methods in order to reduce the computational time. In the regression-model-based-control 

methods, regression models are used to describe the relationship between the optimal 

condenser water set point and the outdoor wet bulb temperature, and/or cooling load 

conditions. The regression models are usually linear [19, 30] or polynomial regression 

models [23] to facilitate the implementation in a real controller. Although simple, the 

regression models may lead to significant deviations from the real optimal condenser 

water set point temperature [22, 50]. Other researchers [17, 22, 31, 53] developed static-

model-based-control methods to increase the optimization accuracy. For example, Lu, 

Cai, et al. [17] proposed to model the studied chiller plant with an empirical model and 

optimize the system using a genetic algorithm to find the optimal condenser water set 

point. They found that they could save approximately 10% of the energy consumption for 

the studied condenser water loop during high load periods compared to the baseline in 

which cooling tower fans and condenser water pumps were always at the full speed.  
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However, above methods are not suitable for legacy chiller plants. The methods in the 

first group are not often applied in legacy chillers because of the difficulty in changing 

the control structure of the legacy chiller plants. The control systems of the legacy chiller 

plants are usually designed to be enclosed and any modification can be difficult and 

uneconomical. For the methods in the second group, the most promising static-model-

based-control methods are usually complicated and computationally intensive. However, 

for legacy chiller plants, the control systems are usually simple programmable logic 

controllers with limited computational resource available, which makes the 

implementation of static-model-based-control methods very challenging.  

 

An additional operational constraint in legacy systems is that the condenser water set 

point cannot be changed very often since resetting the set points can only be done 

manually. Therefore, identifying an appropriate resetting frequency for changing the 

condenser water set point is critical. On one side, reducing the resetting frequency could 

alleviate associated efforts by the building operators. On the other side, a reduced 

resetting frequency may reduce the energy savings due to the failure in capitalizing on the 

system dynamics; in addition, a lower resetting frequency leads to a longer prediction 

horizon for model inputs. A longer prediction horizon is likely to decrease the prediction 

accuracy [54] so that more uncertainties will be introduced into the optimization. Thus, it 

is important to quantitatively assess the impact of the resetting frequency on the energy 

consumption by chiller plants. 
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This study attempts to provide a model predictive control to optimize the cooling 

tower operation for legacy chiller plants. This model predictive control uses the predicted 

cooling load and outdoor wet bulb temperature as inputs to search the optimal condenser 

water set points for a future period. The operators can then manually change the set 

points in the chiller control system, which alleviates the difficulties in the 

implementation. To improve the optimization accuracy and increase the optimization 

speed, the author also proposes an approach temperature based method for the selection 

of optimization starting point. To quantify the impact of set points changing frequency on 

the energy savings, the author evaluates the energy savings with different optimization 

frequencies. The proposed model predictive control is then evaluated using a case study 

on a legacy chiller plant located in Washington D.C. 

 

2.2 Model Predictive Control for Optimizing the Condenser Water Set Point 

For the condenser water set point optimization, the author considers a water-cooled 

chiller plant with multiple chillers and cooling towers. For each cooling tower, there is a 

variable speed fan controlled by one condenser water set point. The author assumes that 

all the cooling towers are controlled by the same condenser water set point and there is no 

other independent variable in the optimization. Thus, the optimization problem can be 

defined as  

min | min , , , ,
∆

	,	 

for ∈ , ∆  

(1) 

s.t.                                    , , , , , , (2) 
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where |  is the total energy consumption of the chillers and cooling towers during 

the optimization period , ∆ , 	 ,  is the condenser water set point,  is the 

predicted cooling load,  is the predicted outdoor wet bulb temperature,  is the state 

vector of the system (e.g. equipment operating status, water temperature in chiller 

condenser and evaporator), , ,  and , ,   are the low and high limit of the 

condenser water set point during , ∆ . Using the evaporative cooling, the cooling 

tower cannot cool the condenser water to a temperature lower than . Thus, the actual 

, ,  can be determined by 

, , ∈ , … , | , ,	 3

where , … ,  is the set of all the possible value for the condenser water set point, 

,  is the lowest  during , ∆ . The , ,  is set as 

, , , … , . (4) 

 

2.3 A Software Environment for Implementing the Model Predictive Control 

2.3.1 Overall Structure  

To facilitate the implementation of the model predictive control, the author develops 

a software environment. As show in Figure 2-1, the software environment consists of 

three modules: Dynamic Optimization, Pre-processing and Post-processing. As the core 

of the framework, the Dynamic Optimization module is made of an optimization engine 

and a system model. The raw data is processed in the Pre-processing module that 

provides clean inputs for the Dynamic Optimization module. The optimization results are 

then processed in the Post-processing. The following sections introduce the details of 

each module.  
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2.3.2 Dynamic Optimization Module 

The Dynamic Optimization module is designed to perform the dynamic optimization 

for the control parameters of the building system. The optimization problem is defined as: 

min | min t , ,
∆

, for ∈ ,

∆ , 
(5) 

                              s.t.                     t ∈  (6) 

             t , , 0 (7) 

             t , , 0  (8) 

where |  can be the energy consumption or cost of the studied system during the 

optimization period , ∆ , t t , . . , t  is the set which contains 

 control parameters to be optimized.  is the vector of the input variables for the 

optimization, such as the cooling load and the outdoor wet bulb temperature,  is the state 

vector of the studied system,   is the set consists of all valid options for . 

t 	, ,  and t 	, ,  are the equality and inequality 

constrains, respectively. 
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Figure 2-1 The framework for model predictive control 

 

To simplify the optimization, the author assumes that t 	remains constant within 

the optimization period, 

t 	 , for ∈ , ∆ . (9) 

Thus, the optimization problem defined in equation (5) can be simplified as 

min , ,
∆

for ∈ , ∆ 	, 

 
(10)

        s.t.                                       ∈  (11)

             , , 0 (12)

, , 0  (13)

In this module, 	is from the Input Data, which is the processed raw data. The  

is imported from the Initial Data (Figure 2-1) and it is used to reinitialize the simulation 

for the optimization period	 , ∆ . The system model then evaluates the objective 

function	 , ,
∆

. Based on the evaluation, the optimization engine 

would identify the optimal values for 	 . After the optimization is completed, the 

optimal  as well as ∆  are exported as the Optimization Output Data. 
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To build the system model, the author uses Modelica, which is an equation based 

modeling language. A key difference between Modelica and the conventional building 

energy modeling tools is that Modelica separates model development and numerical 

process. The users are responsible for modeling the studied system with mathematical 

equations. Then the simulation environment will analyze these mathematical equations, 

design corresponding numerical solutions, and finally translate those equations and the 

numerical algorithms into executable codes for preforming the simulation. The separation 

of modeling and numerical processes makes it easy to adjust the state variables since the 

change of the state variables doesn’t affect the mathematical equations. In addition, some 

Modelica simulation environments, such as Dymola [55], store the initial and final values 

of the state variables in dedicated files, which makes the resetting even more convenient.  

 

Modelica is also suitable for modeling the control process in building systems. Most 

Modelica simulation environments provide adaptive time step solvers, which can adjust 

the time step sizes according to how fast the system changes. This mechanism makes a 

balance between simulation accuracy and computing time demand so that fast dynamics 

can be caught with minimized computing efforts. 

 

2.3.3 Pre-processing Module 

The Pre-processing module contains two components: Initializer and Input File 

Generator. The Initializer generates the Initial Data based on the Final Data from the 

previous optimization period. The Input File Generator converts the raw data, such as 

cooling load and weather data, into the Input Data, which can be directly read by the 

system model. The raw data can be either predicted data or historical data. For instance, 
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the prediction model in [56] can be used to provide the predicted cooling load by using 

the weather prediction obtained from the weather forecast service. A Python package 

called Pandas [57] is used to process the possible missing or erroneous raw data.  

 

2.3.4 Post-processing Module 

In the Post-processing module, the System Model reads the Optimization Output Data 

and generates the Final Data, which is then used for the next optimization period	

∆ , 2∆ . The Final Data includes the state vector 	 ∆ . In addition, a 

component called Output File Generator processes the raw data in the Optimization 

Output Data and exports the data for later use, such as plotting the results and generating 

control signals.  

 

The optimization problem defined in section 2.2 is a special case of a general 

optimization problem defined in section 2.3.2. Thus, one can directly implement the 

optimization problem defined in section 2.2 with the proposed software environment. 

 

2.4 Starting Point Selection for the Condenser Water Set Point Optimization 

In general, a good starting point of the optimization can significantly increase the 

success rate of finding the global minimum and reduce the searching time. For the 

condenser water set point optimization, finding the global minimum can be a critical 

issue since many local minima exist. The optimization algorithm can potentially be 

trapped in a local minimum if the starting point is not appropriately selected. In the 

following sessions, the author will first introduce the local minima problem in the 

condenser water set point optimization. Then the author will discuss benefits and 
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limitations of three typical methods for selecting the optimization starting point. Finally, 

the author proposes an alternative method, which is simple and effective.  

 

2.4.1 Local Minima Problem 

As shown in Figure 2-2, it is possible that |  is constant if 	 ,  is within a 

certain range (the author names this range as “flat range”). When  or  is high, the 

flat range will occur when 	 ,  is lower (Figure 2-2 a). In this case, 

, , , , (14)

where 	 ,  is the lowest possible temperature of the condenser water leaving the 

cooling tower when the cooling tower fans are running at the full speed. Thus, when 

, 	 , , one always has  

| , , ∈ , , , , , (15)

, 	 , , , ∈ , , , , , (16)

where |  is the energy used by the cooling towers. With a constant , , the 

chiller energy consumption, | , will also remain unchanged. Thus, one will also 

have  

| , , ∈ , , , , . (17)

 

When  or  is low, the flat range may occur when 	 ,  is higher (Figure 2-2 

b). Under this condition, one will have 

, , , , (18)
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where 	 ,  is the highest possible temperature of the condenser water leaving the 

cooling tower when the cooling tower fans are off and only natural cooling happens. 

Thus, the cooling tower energy is zero: 

| 0, , ∈ , , , , . (19) 

And one will also have  

, , , and	 | , , ∈ , , , , . (20) 

As a result, the total energy consumption of chillers and cooling towers is also constant: 

| , , ∈ , , , ,  (21) 

 

(a) (b) 

Figure 2-2 Flat ranges in the condenser water set point optimization 

 

In both scenarios, the optimization algorithm will obtain a minimal solution in the flat 

range since it cannot detect any changes of |  for any	 ,  within the flat range. 

However, the obtained minimal solution is only valid for the flat range (local minimum). 

To find the minimal solution for the entire searching space (global minimum), one should 

start the search outside the flat range. 
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2.4.2 Current Methods for Selecting Starting Point 

To mitigate the local minimal problem in the condenser water set point optimization, 

it is critical to start the search outside the flat range. Unfortunately, generic starting point 

selection methods, such as the middle point method, the multiple starting point method, 

and the previous value method might not be well-suited for avoiding the flat range 

problem. The middle point method uses the middle point between the low bound and 

high bound of the independent variable as the starting point.  Because it is the simplest 

method to reduce the distance of the starting point and the global minimum, the middle 

point method is widely used in optimization problems when only one global minimum is 

believed to exist [58, 59]. However, for the optimization problems with multiple local 

minima, the middle point method may lead to a local minimum that is near the middle 

point.  

 

To deal with this problem, a multiple starting point method was proposed [60]. In this 

method, multiple starting points are generated randomly (For example, a uniform 

distribution between the low and high bound for the independent variable). However, it 

still does not guarantee a global minimum and may increase the searching time with 

multiple starting points [61].  

 

The previous value method [62] uses the optimal values resulted from the previous 

search as the starting points of the current search. The previous value method is based on 

the assumption that the optimal results for two adjacent optimization periods are likely to 
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be close if the system states and inputs are similar. However, it may not work properly if 

the optimal results of two optimization periods are significantly different. 

 

Specifically for the condenser water set point optimization, one can also use the 

highest possible set point as the starting point, , , :  

, , , , . (22) 

This method can be called as “high point” method. It can mitigate the flat range problem 

at the low end (Figure 2-2 a) but not the one at the high end (Figure 2-2 b). 

 

2.4.3 Approach Temperature Method 

To address the limitations of the current starting point selection methods for the 

condenser water set point optimization, the author proposes an approach temperature 

method by considering the physics of the chiller plant. To avoid the flat range problem, 

, ,  should satisfy  

, , ∈ , , , . (23)

 

The challenge is how to predict ,  and , .  Although some sophisticated 

cooling tower performance models [63, 64] can be used for predicting ,  and 

, , they are too complicated for the purpose of starting point selection. In this study, 

the author proposes to estimate the ,  based on the nominal approach 

temperature	Δ , , which is the difference between the temperature of condenser 

water leaving the cooling tower and the outdoor wet bulb temperature at the nominal 

condition. The predicted ,  would be: 
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, 	
, , , , Δ ,

, , , , Δ ,

	 Δ ,

		, (24)

where  is the function shown as follows: 

∈ ,… , | , (25)

where	 , … ,  is the set of all the possible value for ,  defined in equation (3). 

The author then sets: 

, , , , (26)

It is worth mentioning that under certain conditions [65], it is possible that 

Δ Δ , , (27)

where Δ  is actual approach temperature. This will lead the 

, , , , . (28)

In this case, , ,  will be located in the flat range.  

 
2.5 Case Study 

To evaluate the performances of starting point selection methods and identify how 

optimization frequency affects the condenser water set point optimization, the author 

implements the proposed model predictive control in a real chiller plant and performs an 

offline simulation using the historical cooling load and outdoor wet bulb temperature as 

the inputs.  

 

2.5.1 Case Description 

The studied chiller plant is located in Washington D.C., U.S.A. The chiller plant has a 

primary-secondary chilled water distribution loop and this optimization focuses on the 

primary loop. As shown in Figure 2-3, the chiller plant consists of three identical chillers, 

three identical cooling towers, three identical primary pumps, and three identical 

condenser water pumps. The chiller capacity is 970 ton. Each chiller has one dedicated 
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chilled water pump (design power: 22 kW), one dedicated condenser water pump (design 

power: 75 kW), and one dedicated cooling tower. The nominal chilled water and 

condenser water flow rate are 91.8 kg/s and 173.5 kg/s. The temperature of chilled water 

leaving the chiller, 	 , , is set as 3.89oC. The cooling tower has a fan with the 

nameplate power as 37 kW, the nominal outdoor wet bulb temperature, , ,	 is 

25.56oC and	∆ , 	is 3.89 K. A local controller is used to modulate the speeds of the 

cooling tower fans to maintain the temperature of the condenser water leaving the cooling 

towers as 29.44oC. In the condenser water loop, a three-way valve is employed to 

modulate the condenser flow rates through the cooling towers so that ,  is not less 

than 15.00oC, which is the lowest temperature can be accepted by the chillers.   

 

 
Figure 2-3 The schematic of the studied chiller plant (the primary loop) 

 

A supervisor controller is used to control the chiller operation status according to the 

measured cooling load. As described in Figure 2-4, there are four operating states for the 

chiller plant. For instance, “One On” means there is only one chiller in operation. The 
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three chillers can be turned on or off sequentially. A chiller should not be turned on/off 

unless the measured cooling load is larger/smaller than a certain critical point plus/minus 

a dead band, such as 50 ton. The critical points are defined as 90.00% of the sum of the 

operating chillers’ nominal cooling capacity. Besides the dead-band, a waiting period of 

900 s is also applied to avoid chiller short cycling.  

 
Figure 2-4 The state graph for the supervisor controller 

 

2.5.2 Plant Models 

In this study, the author models the chiller plant using component models from the 

Modelica Buildings library [66] and the state graph described in Figure 2-5 with the 

Modelica_StateGraph2 library [67]. A hierarchical model structure has been applied and 

Figure 2-5 shows the top-level model, which represents the schematic Figure 2-3. The 

subsystems for Chillers, Cooling Towers with Bypass and so on are packaged as single 

component models in the top-level model. Since this study focuses on the primary loop, 

the author prescribes the cooling load at the secondary loop using a Cooling Load model. 

Different than the system schematic, the Modelica model also includes the control 

system, such as the Supervisor Controller model. The solid lines represent the pipes and 
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the dashed lines are the paths for control signals and other input signals, such as weather 

data and cooling load data.  

 

Figure 2-5 Diagram of the top-level Modelica model for the studied chiller plant 

 

Figure 2-6 Diagram of the subsystem model for the Chillers 

 

Figure 2-6 shows the subsystem model for Chillers. The three chillers are connected 

in parallel and each chiller can be started independently. The inputs for this subsystem 

include the control signal (ON/OFF) for each chiller, the chilled water supply set point 



33 
 

 
 

and the temperature of the chilled and condenser water entering the chillers. The output is 

the power of each chiller. A Chillers.Carnot model in the Buildings library is used to 

calculate the power of each chiller: 

, ∙ / , (29)

where ,  is the nominal power of the chiller,  is the partial load ratio (the ratio 

of the cooling load handled by the chiller to its nominal cooling capacity),  is the 

chiller’s coefficient of performance at the nominal condition,  and  are the 

temperatures in the evaporator and condenser side of the chiller, respectively. In this 

study,  and  are assumed to be equal to ,  and , ,	 respectively. 

The	  is the Carnot effectiveness (assumed to be constant) and  is the chiller 

efficiency due to the part load of compressor, which is a function of PLR:  

1 , (30) 

where ,	 ,	  are constant coefficients. In order to mimic the internal capacity control 

of each chiller, a PI controller is used to modulate PLR for each chiller to maintain 

,  as 3.89oC. 
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Figure 2-7 Diagram of the subsystem model for the Cooling Towers with Bypass 

 

Figure 2-7 shows the diagram of the Cooling Towers with Bypass subsystem model. 

The inputs of the component include the control signal (ON/OFF) for each cooling tower, 

the temperature of the condenser water entering the cooling towers, the condenser water 

set point, and . The output is the power of each cooling tower. The bypass valve and 

the associated control are also included in this model. The cooling tower is modeled with 

the model CoolingTowers.YorkCalc in the Buildings library. The model calculates the 

approach temperature using a purely-empirical YorkCalc correlation [68]:  

Δ 0.359741205 0.055053608 0.0023850432

0.173926877Δ 0.0248473764 Δ 0.00048430224 Δ

0.005589849456Δ 0.0005770079712 Δ

0.00001342427256 Δ 2.84765801111111

0.121765149 0.0014599242

1.680428651 0.0166920786 Δ

(31) 
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0.0007190532 Δ 0.025485194448Δ

0.0000487491696 Δ 0.00002719234152 Δ

0.0653766255555556 0.002278167

0.0002500254 0.0910565458Δ

0.00318176316 Δ 0.000038621772 Δ

0.0034285382352Δ 0.00000856589904 Δ

0.000001516821552 Δ , 

where Δ  is the temperature of the condenser water entering cooling tower minus the 

temperature of the condenser water leaving cooling tower and   is the ratio of the 

condenser water flow rate to the airflow rate. The fan power	  is computed as  

, . (32) 

where 	  is the fan speed ratio and ,  is the nominal fan power (the fan efficiency is 

assumed to be constant). A PI controller is used to adjust  according to	 , . 

 

The subsystem model for the Supervisor Controller is shown in Figure 2-8. The core 

of the Supervisor Controller is a state graph model that is in the middle of the model 

diagram. It consists of state (oval icon) and transition (bar icon) modules. The state 

modules are used to represent the four states described in Figure 2-4. The transition 

module determines when to switch one state to another state. Each transition module has 

one preceding state and one succeeding state. When the conditions are met, the transition 

fires. 
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Figure 2-8 Diagram of the subsystem model for the Supervisor Controller 

 

The author calibrates chiller models using the measured data. The author uses the 

temperature of the condenser and chilled water entering the chillers as input variables and 

tries to tune the coefficients of the chiller performance curve ( ,	 ,	  ,  in equation 

(30)), the design condenser and chilled water temperature so that the difference between 

the measured and simulated power of chiller can be minimized.  

 

2.5.3 Optimization Settings 

In this study, the author uses the GenOpt [69] optimization engine and employs the 

Hooke Jeeves algorithm. The , … ,  defined in equation (3) is set to be [15.44, 

29.44oC] with an interval of 1oC. The author uses the historic data for 	and  as the 
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input variables, which is equivalent to having a perfect prediction model. The perfect 

prediction model creates an ideal input to evaluate the optimization. Figure 2-9 shows the 

hourly  and  in the year of 2012. The 	is obtained from on-site measurement and 

 is from a nearby weather station [70]. Since both  and  are hourly data, they are 

linearly interpolated during one hour to provide the inputs for the dynamic simulation. 

 

  (a) 
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(b) 
Figure 2-9 Input data for the optimization (a) cooling load  (b) outdoor wet bulb 

temperature 

 

 

2.5.4 Evaluation of Starting Point Selection Methods 

In this section, the author evaluates the performance of the optimization with four 

different starting point selection methods: approach temperature, middle point, previous 

value, and high point. The optimization is performed once an hour for all the methods. 

An exhaustive search method with a frequency as once an hour (Hourly ES) is used as the 

benchmark.  

 

Table 2-1 compares the accuracy of the optimization with four starting point selection 

methods compared with the Hourly ES, which provides a theoretical optimal solution. 
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None of the studied optimization starting point selection methods can guarantee the 

global minimum for all searches. With a better starting point, the search using the 

approach temperature method can mitigate the local minima problem and has the lowest 

failure point ratio (the ratio of number of failure searches in finding global optimal to the 

total number of searches). The failure ratios of the middle point method and the high 

point method are about twice of the approach temperature method. The previous value 

method experiences the highest failure points, which is more than three times compared 

to the approach temperature method. This means that the search with the previous value 

method is more likely trapped by local minima. However, it is surprising that the energy 

saving penalties for the failures are significantly smaller compared to the searching 

failure ratios.  

Table 2-1 Comparison of the accuracy using different starting point selection methods 

 
Approach 

Temperature
High Point

Previous 
Value 

Middle 
Point 

Benchmark 
(Exhaustive 

Search) 
Number of 

Failure 
Searches 

315 814 1,080 715 N/A 

Failure 
Search Ratio 

3.59% 9.27% 12.30% 8.14% N/A 

Annual 
Energy 

Consumption 
[kWh] 

5,028,148 5,030,700 5,030,545 5,028,436 5,027,758 

Annual 
Energy 

Saving Ratio 
9.67% 9.63% 9.63% 9.67% 9.68% 

 

Table 2-2 compares the computational performances of four methods. Depending on the 

starting point selection methods, the number of simulations needed by the optimization 

arranges from 30,989 to 52,285, which is significantly less than 113,658 simulations 
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required by the exhaustive search. In terms of the computing time, the previous value 

method has the best performance and it reduces the number of simulations by around 

72.73% and computing time by about 55.74% compared to the exhaustive search. The 

approach temperature method has similar performance as the previous value method. The 

high point method and the middle point method have lower reduction ratios for both the 

number of simulation (54.00%-57.82%) and computing time (40.40% - 42.25%).  

Table 2-2 Comparison of the computational performance using different starting point 
selection methods 

 
Approach 

Temperature
High Point 

Previous 
Value 

Middle 
Point 

Exhaustive 
Search 

Number of 
Simulation 

34,585 52,285 30,989 47,941 113,658 

Number of 
Simulation 
Reduction 

Ratio 

69.57% 54.00% 72.73% 57.82% N/A 

Computing 
Time [s] 

25,045 32,933 24,459 31,914 55,258 

Computing 
Time 

Reduction 
Ratio 

54.68% 40.40% 55.74% 42.25% N/A 

 

To get more insights on when and why each method fails to find the global minimum, 

the author studies four different scenarios. The first scenario is when  or  is low. In 

this scenario, the flat range is likely to occur at the high end. As shown in Figure 2-10 (a), 

the flat range is between 27.44oC and 29.44oC. Since the high point method selects 

, ,  as 29.44oC, it is trapped by the local minima within the flat range. Other 

methods select a starting point outside the flat range and successfully find the global 

minimum.  
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The second scenario occurs when  is extremely low. This can happen in the winter 

that the chiller is still running to provide cooling for building internal zones, such as 

computer rooms, even  is very low. The flat range then extends to a very low 

temperature (Figure 2-10 (b)) and both the middle point method and high point method 

fail to find the global minimum. 

 

The third scenario happens when ,  and  is relatively high. As 

mentioned earlier, equation (24) may underestimate	 , . In that case, the approach 

temperature method gets stuck in the local minima. For instance, in Figure 2-10 (c), 

, ,  given by equation (24) is 24.44oC, which is still in the flat range of [21.44, 

24.44oC]. Since the initial search step is 2.00oC, the optimization algorithm finds that 

both , 	= 22.44oC and 26.44oC cause a higher energy consumption than , 	= 

24.44oC, but misses the global minimum at 25.44oC. In this case, using a smaller initial 

search step, such as 1.00oC may avoid the problem. However, this is at the cost of longer 

searching time. 

 

The fourth scenario appears when the difference between the optimal ,  for the 

adjacent optimization periods is significant. This makes the previous value method fail to 

reach the global minimum. As shown in Figure 2-10 (d), the previous value method is 

stuck at 22.44oC, which is the optimal ,  for the previous optimization period. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-10 The scenarios when different starting point selection methods fail to find 

the global minimum 

 

To understand why comparably large searching failure ratios only lead to small 

differences in energy savings, the author analyzes the energy saving penalty due to failing 

to achieve the optimal condenser water set point. Based on Figure 2-11, for all the 

methods, more than 90% of the energy saving penalties are less than 5%. As shown in 

Figure 2-10 (c), the energy saving penalties can only be 0.20%. Thus, although the 

searching failure ratios of those methods are up to 12.30%, the impact of the searching 

failures on the total energy savings is not significant. 
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Figure 2-11 The energy saving penalty due to the failure in predicting the optimal 

condenser water set point 

 

2.5.5 Evaluation of the Optimization Frequency on the Energy Saving 

To evaluate the impact of the optimization frequency on the energy savings from the 

condenser water set point optimization, the author performs optimizations with two 

different frequencies: once an hour (Hourly OPT) and once a day (Daily OPT) using 

perfect predictions of 	and . To consider the uncertainties in the load and weather 

prediction due to a long prediction horizon (one day), the author uses the following 

equation to generate the synthetic errors. 

∗ Δ , Δ , (33) 

∗ Δ , Δ , (34) 

where ∗ and ∗ are the predicted cooling load and outdoor wet bulb temperature with 

errors, Δ 20%  and Δ 1 K are the error bands for 	and , respectively. 

The ,  is a function that returns a random value between the input range [a, 
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b]. A daily optimization using ∗ and ∗ as inputs is also tested and the configuration 

is named Daily OPT with Error. The approach temperature starting point method is 

applied in all configurations.  

 

Table 2-3 compares the performance of the optimization with different optimization 

frequencies. The Hourly OPT provides almost the same solution as the Hourly ES with 

about half of the computing time. By further reducing the number of optimizations, the 

Daily OPT achieves an around 95.00% time reduction with only 0.08% penalty in 

predicted energy saving than the Hourly ES. Compared with the Hourly OPT, the Daily 

Opt is about 10 times faster and provides an energy saving only 0.07% less. The reason 

why the Daily Opt does not achieve 24 times faster than the Hourly OPT is because the 

daily simulation costs more time to be solved than the hourly simulation. Even with 

uncertainties in the  and  prediction, the Daily OPT with Error gets a similar energy 

saving compared with the Daily OPT.  

Table 2-3 Performance comparison of different optimization frequencies 

 
Hourly 
OPT 

Daily 
OPT 

Daily 
OPT with 

Error  

Hourly ES 
(Benchmark)

Annual Energy Consumption 
[kWh] 

5,028,148 5,031,571 
5,031,752 5,027,758 

Energy Saving Ratio 9.67% 9.60% 9.60% 9.68% 
Computing Time [s] 25,045 2,536 2,796 55,258 

Computing Time Reduction 
Ratio  

54.68% 95.41% 
94.94% N/A 

 

To understand why the impact of the optimization frequency on the energy savings is 

not significant; the author investigates the profiles of the inputs for the condenser water 

set point optimization. The author first looks at the annual distribution of the daily 
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variation in the outdoor wet bulb temperature. Based on the Figure 2-12, most days (up to 

around 70.00%) of the year have the daily variations in the outdoor wet bulb temperature 

that are less than 6.00oC while only very few days (less than 5.00%) have relatively large 

daily variations (larger than 10.00oC) in the outdoor wet bulb temperature. This means 

the weather of the studied period in Washington D.C. is relatively temperate with a small 

daily variation in the outdoor wet bulb temperature. The author then looks at the cooling 

load distribution, since there are different cooling load profiles for different seasons in the 

cooling period. The author selects two typical days with different cooling load profiles: 

one day is from the mild season (April 20th, Friday) and the other day is from the hot 

season (July 20th, Friday). Both the mild day and the hot day have the daily variation in 

the outdoor wet bulb temperature less than 6.00oC.  

 

 

Figure 2-12 The annual distribution of daily variations in the outdoor wet bulb 

temperature 
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For the mild day, the cooling load changes from around 400 ton to 900 ton and the 

outdoor wet bulb temperate is from 11.00oC to 16.00oC (Figure 2-13). The Hourly OPT 

predicts the same results as the Hourly ES and a 2,648 kWh (16.14%) energy saving is 

achieved. The Daily OPT produces a slightly different result with an energy savings of 

16.13%. The ,  is constant as 15.44oC from 0:00 to 13:00 because of the low 

outdoor wet bulb temperate. The , 	begins to increase at 14:00 after  passed 

15.00oC. At around 17:00, ,  suddenly raises to 20.44oC. The reason for the quick 

increase is that at 17:00, the cooling load decreases from 900 ton to 731 ton and the 

number of operating chillers reduced from two to one. As a result, the cooling load for 

the remaining chiller increases from 450 ton to 731 ton. With the increased cooling load, 

it takes more efforts for the dedicated cooling tower to cool the condenser water to the 

given	 , , which makes the optimal ,  increased. After 17:00, ,  begins to 

decrease to reflect the reduced cooling load. It returns to 15.44oC at 19:00 and remains 

unchanged for the rest time. The Daily OPT predicts ,  as 15.44oC and there are only 

four hours when the ,  by the Daily OPT and the Hourly OPT are different. 
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Figure 2-13 The simulation results for April 20, 2012 

 

As shown in Figure 2-14, the cooling load and the outdoor wet bulb temperate for the hot 

day are higher than those in the mild day in Figure 2-13. Again, the Hour OPT predicts 

the same results as the Hourly ES. Basically, the trajectory of ,  in the Hourly ES 

follows the change of  during that day. The Daily OPT predicts ,  as 21.44oC. 

The energy savings from the Hour OPT are 682.4 kWh (2.31%) and that for the Daily 

OPT are 681.9 kWh (2.30%). Although there are only three hours when the ,  by the 

Daily OPT and the Hourly OPT are the same, the differences between the prediction by 

the Daily OPT and the Hourly OPT are not larger than 2.00oC.  
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Figure 2-14 The simulation results for July 20, 2012 

 

Based on the above analysis, one can see that despite of different cooling load profiles, 

the small daily deviation in the outdoor wet bulb temperature makes the difference 

between the predictions by the Daily OPT and the Hour OPT not obvious.  

 

2.6 Conclusion 

In this chapter, the author proposes and implements a model predictive control for 

optimizing the condenser water set point. The author evaluates how different starting 

point selection methods and the optimization frequency affect the condenser water set 

point optimization results via a case study. Based on the results of the case study, the 

following conclusions can be drawn: 
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1) Optimization starting point selection does not significantly impact energy savings 

from the condenser water set point optimization for the studied chiller plant 

significantly, although it does impact the computing time and the failure rate on 

finding the global optimum. The previous value method can achieve the fastest 

searching but it also obtains the largest number of failure. The approach temperature 

method is recommended since it has a failure rate 2-3 times lower than other methods 

and its computing time is almost the same as the previous value method. 

 

2) The optimization frequency doesn’t significantly affect the energy savings from the 

condenser water set point optimization for the studied chiller plant. This is because 

the daily variation in the outdoor wet bulb temperature is not large for most of the 

days in the studied year, which leads to a small difference between the predictions by 

the Daily OPT and the Hour OPT. 
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Chapter 3  

Model Predictive Control for Chiller Staging Control  

This chapter demonstrates the research on optimizing the model predictive control 

design for chiller staging. 

 
3.1 Cooling Load based Control for Chiller Staging 

Among various configurations of chiller plants, the multiple-chiller plants are the 

most widely used. For those plants, it is recommended to operate chillers sequentially 

rather than simultaneously [50]. To operate chillers in sequence, one uses a chiller 

sequencing control, usually based on the cooling load, to bring chillers online or offline. 

Depending on the approach to indicate the cooling load, the chiller sequencing control 

can be categorized as: the return chilled water temperature based control, the bypass flow 

based control, the direct power based control, and the Cooling Load based Control (CLC) 

[71]. Among them, the CLC is considered to be the most promising because other 

approaches employ the use of indirect indicators of the cooling load (e.g. the return 

chilled water temperature, the volume flow rate at bypass of secondary loop, and the 

chiller power), which may not be proportional to the cooling load [72]. The CLC directly 

calculates the cooling load using the chilled water flow rate and the difference between 

the chilled water return temperature and supply temperature [73].  

 

In the CLC, one chiller will not be brought online/offline unless the cooling load is 

larger/smaller than the total available cooling capacity of the operating chillers. The 
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total available cooling capacity of  operating chillers can be referred as a Critical Point 

(CP):  

∑ , , (35) 

where ,  is the actual cooling capacity of the  chiller. In the real world 

implementation, the nominal capacity of the chiller, , , is conventionally used to 

represent	 , . Thus, equation (35) can be converted into: 

∑ , , (36) 

where  is the safety factor (e.g., 90%) to mitigate the risk of insufficient cooling supply 

during the chiller start-up period. Besides, a state machine [74] can also be used to 

facilitate the implementation of the CLC. To avoid a chiller short circling, a waiting time 

 and a dead band  are usually employed. For instance, Figure 3-1 shows a 

conventional CLC for a chiller plant with three identical chillers. The transition between 

states indicates adding or reducing the number of the operating chillers.  

 

Figure 3-1 The state graph of a conventional CLC for a chiller plant with three identical 

chillers 
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3.2 Chiller Staging Optimization 

Although widely used, the conventional CLC has limitations and can’t guarantee the 

minimal energy consumption by the chiller plants. To improve the energy efficiency of 

the chiller plants, researchers proposed various CLC optimization approaches [72, 73, 75-

94]. Generally speaking, those approaches can be divided into two groups: studies to 

optimize the load distribution and studies to identify the optimal number of operating 

chillers. The author will discuss the concept and the limitations of each group as follows. 

 

The first group aims to optimize the load distribution among the chillers. The 

conventional CLC turns on an additional chiller only when the cooling load approaches 

the total nominal cooling capacity of the operating chillers. This means that chillers will 

work at the highest PLR. However, the ASHRAE Handbook [50] points out that a higher 

PLR does not necessarily mean a higher operational efficiency. The chiller’s operational 

efficiency is usually measured by the coefficient of performance (COP), which is the 

ratio of the cooling energy provided by the chiller to its power consumption. Figure 3-2 

shows that the highest COPs may occur at relatively low PLRs for three different chillers.  
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Figure 3-2 The relationship between PLRs and the relative COPs for three different 

chillers calculated according to the chiller dataset provided by EnergyPlus [42] 

 

To achieve the optimal load distribution, researchers developed model-based 

optimization approaches to adjust the PLR of each chiller individually according to a 

given cooling load [75-88]. Some studies aimed to maximize a summation of the 

operating chillers’ COP as follows [75, 76, 78, 88]: 

max ∑ , (37)

                                     s.t.    ∑ , , (38)

where  and  are the COP and PLR of the th chiller, respectively. The  is the 

number of the chillers in the chiller plant. They utilized a regressed PLR-COP curve in 

equation (39) to calculate the  under the	 :  

∑ , (39)

where  is the th constant coefficient and  is the number of the constant coefficients. 
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Other approaches tried to minimize the sum of the chillers’ power as follows [77, 79-

87]: 

min ∑ , , (40)

                                 s.t.    ∑ , , (41)

where ,  is the power of the th chiller. The regressed Power-PLR curve in equation 

(42) is employed to calculate	 , : 

, ∑ , (42)

where  is the th constant coefficient and  is the number of the constant coefficients. 

 

Both the above approaches use the PLRs as the independent variables to 

directly/indirectly reduce the total power of the chillers. However, it is difficult to 

implement the PLR control in the real world application since the PLR can only be 

indirectly controlled. Some scholars improved the above approaches by replacing the 

PLRs with other relevant controllable parameters, such as the chilled water flow rates 

through each chiller [90, 91], the temperature set points of the chilled water leaving each 

chiller [92, 93], and the combination of the previous two parameters [94]. However, these 

approaches still have some limitations. For instance, the approaches of adjusting the 

chilled water flow rate through chillers can only be applied to the chiller plant equipped 

with chillers and pumps that can handle variable chilled water flow rates. In addition, 

these approaches only consider the impact of the load distribution on the chiller power. 

However, for plants with dedicated pumps and dedicated cooling tower for each chiller, 

the load distribution also impacts the pump power and the cooling tower power. Without 

considering the impacts on the pump power and the cooling tower power, these 

approaches can’t guarantee the minimal energy consumption for the entire chiller plant. 
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The second group is associated with the optimization on the number of the operating 

chillers. As mentioned above, the conventional CLC uses the chillers’ nominal cooling 

capacities to represent the chillers’ actual cooling capacities. However, the actual cooling 

capacity of a chiller varies by its operating conditions [72, 73]. As shown in Figure 3-3, a 

chiller’s capacity increases up to 110% of its nominal capacity when the temperature of 

the condenser water entering the chiller ( , ) decreases from 23.89oC (nominal 

condition) to 18.89oC. Therefore, it is possible that a chiller’s actual cooling capacity is 

larger than its nominal capacity and so does the entire multi-chiller plant. In this case, the 

chiller plant can meet a higher cooling load without turning on an additional chiller. 

Since people usually have a dedicated primary chilled water pump and a dedicated 

condenser water pump for each chiller, reducing the number of the operating chillers can 

save energy from the dedicated pumps [50].  

 

Figure 3-3 The relationship between the temperature of the condenser water entering 

the chiller and the relative cooling capacity for three different chillers calculated 

according to the chiller dataset provided by EnergyPlus [42] 
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To identify the optimal number of the operating chillers, some researchers proposed 

to reset the CPs based on the estimation of the actual cooling capacity [72, 73, 89]. They 

calculated , 	using the operating parameters of the chiller (such as the pressure in the 

evaporator, compressibility factor and so on) at a given operating condition. Although 

these approaches may reduce the pump energy consumption, they can’t guarantee the 

minimal energy consumption of the entire chiller plant including chillers, cooling towers 

and pumps. For instance, by increasing the CPs according to the calculated cooling 

capacities, it is possible to reduce the number of the operating chillers. In that case, the 

PLR of each operating chiller has to increase to meet the same cooling load with fewer 

chillers. As mentioned above, the increased PLRs may lead to lower COPs.  

 

To summarize, there are deficiencies in the existing CLC optimization approaches. In 

addition, although the optimization of the load distribution and the optimization of the 

number of the operating chillers interact with each other, they were only studied 

separately in previous studies. In response to these issues, the author proposes three new 

CLC optimization approaches. The first approach is to optimize the load distribution by 

adjusting the CPs. The second approach is to optimize the number of the operating 

chillers by modulating the CPs and the condenser water set point. The third approach 

combines the first two approaches aiming to achieve more energy savings with a holistic 

solution. 
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3.3 New Approaches for the CLC Optimization 

3.3.1 General Assumptions 

In this study, the author considers a water-cooled chiller plant with  chillers and  

cooling towers. Each chiller has a dedicated constant speed chilled water pump and a 

dedicated constant speed condenser water pump. The towers have variable speed cooling 

tower fans controlled by the same condenser water set point. The other control 

parameters besides the CPs and , , such as set points for the temperature of the 

chilled water leaving the chillers,	 , , are constant. Thus, the total power of chillers, 

pumps, and cooling towers,	 , at time  can be described as follows:   

, , ,  

, , , … , , , , , 

(43)

where ,  and ,  is the power of the dedicated chilled water pump and the dedicated 

condenser water pump for the th chiller and the th cooling tower, respectively. Then the 

energy consumption of the chiller plant for a period from  to ∆ , | , is 

| ∆

, , , … , , , ,
∆

. 
(44) 

 

The outdoor wet bulb temperature and the cooling load during the period of	 t , t

Δt  can be obtained from the weather forecast and by using regression models, 

respectively. Then one can use the predicted cooling load,	 , and the predicted outdoor 

wet bulb temperature,	 , to represent 	and  in the optimization: 

, (45)

. (46)
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The author assumes  and ,  are constant during the period of	 , Δ :  

, , , (47) 

.  (48) 

 

In addition, since  is a function of , equation (44) can be converted into: 

|

, , , … , , , ,
∆

. 
(49) 

 

3.3.2 The New Approaches 

      1) Approach 1: Optimal Load Distribution 

For the load distribution optimization, the author assumes ,  is constant, thus 

equation (49) can be changed to: 

| 	 	 , … , , , ,
∆

. (50) 

 

The author uses the CPs to replace PLRs as the independent variables to 

minimize	 | . Based on equation (50), the optimization problem can be defined as 

min |

min 	 , … , , , ,
∆

, 
(51) 

                  s.t.                    ∑ , , (52) 

∑ , 1 , (53) 

where  is the low bound for . The	 ,  and  are the input 

variables while , … ,  are the independent variables in the optimization. 

Approach 1 does not consider the change of chiller cooling capacities by the operating 

conditions, thus the high bounds for CPs are determined as ∑ , . 
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Compared to the existing optimal load distribution approaches [75-88], Approach 1 

has the following advantages: first, it is easier for implementation since CPs can be 

directly adjusted; second, the impact of the load distribution on the energy consumption 

by the cooling towers and the pumps is considered in the objective function. Thus, 

Approach 1 can lead to a better energy saving for the entire chiller plant. 

 

      2) Approach 2: Optimal Number of the Operating Chillers 

For the cooling capacity based CPs reset, the author changes the reset into an 

optimization problem based on equation (49) to minimize	 | : 

min |

min , , , … , , , ,
∆

, 
(54) 

                s.t.                  , , , , , , (55) 

∑ , , (56) 

where  is the high bound for .  The ,  and  are the input 

variables. The	 ,  is selected as an independent variable because 	 ,  can be used 

to regulate ,  which in turn affects the actual cooling capacity of the chillers. The 

CPs can directly impact the number of the operating chillers and the associated pumps. 

To reduce the number of the operating chillers and the operating pumps, the author uses 

∑ ,  as the low bound for CPs and allowed CPs to be higher values up to 

. 

Because the chiller cooling capacities vary by operating conditions, it is possible that 

one may not be able to provide sufficient cooling if the estimated  is larger than 
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the actual maximum capacity. In that case, one may save energy by reducing the number 

of the operating chillers and the associated pumps, but the thermal comfort in the demand 

side would be sacrificed since provided cooling is insufficient. The author uses the 

deviation of temperature of chilled water leaving the chiller, , , from ,  as an 

indicator to determine if sufficient cooling is supplied. The deviation, 	 , ,  is 

calculated by 

, , ,

∆

 (57)

Ideally, ,  should be equal to 0. However, the deviation may also be caused by the 

waiting time in the CLC, which is inevitable. With that in mind, the author designes the 

following constraint: 

, , , , (58)

where , ,  is ,  at the baseline in which no optimization occurs. 

 

To summarize, the optimization can be described as: 

min |

min , , , . . , , , ,
∆

, 
(59)

                   s.t.               , , , , , , (60)

∑ , , (61)

, , , . (62)

 

Approach 2 considers the impact of the CPs reset on the energy performance of the 

chillers, the cooling towers and the pumps. Thus it can guarantee the minimal energy 

consumption for the entire chiller plant, which may not be achieved by the existing CPs 

reset approaches [72, 73, 89]. 
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      3) Approach 3: A Holistic Solution for the CLC 

It is possible to save more energy by combining Approach 1 and Approach 2. In this 

holistic approach, the CLC optimization problem can be defined as: 

min |

min , , , … , , , ,
∆

, 
(63) 

                  s.t.                     , , , , , , (64) 

, (65) 

1 , (66) 

, , , . (67) 

The 	 ,  and  are the input variables while 	 , , 

, … ,  are the independent variables. 

 

3.3.3 Implementation 

The CLC optimizations described in Approach 1, Approach 2 and Approach 3 are all 

constrained optimization problems. The commonly used technologies for solving the 

constrained optimization problems include the barrier function method and the penalty 

function method [95]. On one hand, the barrier function method imposes a punishment on 

the value of the objective function if the value of the objective function approaches the 

feasible region boundary. On the other hand, the penalty function method adds a term to 

the objective function and the added term generates a negative impact on the objective 

function when constrains are violated. In our CLC optimization, the author adopts the 

penalty function method. For example, the optimization problem in Approach 3 can be 

converted into: 
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∗ min	 , , , … , , , ,
∆

∙ maximum 0, , , , , 
(68)

           s.t.                       , , , , , , (69)

, (70)

1 , (71)

where  is the iteration index of one optimization and maximum	 0, ,

, ,  is the term for the penalty function method.  

The author then uses the software environment mentioned in Chapter 2 to implement 

the optimization problems described in Approach 1, Approach 2 and Approach 3. 

 

3.4 Case Study 

3.4.1 Case Description 

      1) Configuration of the Chiller Plant 

The author studies a chiller plant with the same configuration with that shown in 

Figure 2-3. The model of the chiller is a York_YK2771kW, which has the nominal 

cooling capacity as 2,771 kW (788 ton). Each chiller has one dedicated chilled water 

pump, one dedicated condenser water pump, and one dedicated cooling tower. For the 

cooling tower, the design fan power is 37 kW (50 HP) and the actual fan power is 

assumed to be proportional to the cubic of the fan speed ratio. The nominal outdoor wet 

bulb temperature and the nominal approach temperature are 23.89oC (75.00oF) and 

0.89oC (1.60oF), respectively. The chilled water and the condenser water pumps are 

constant speed pumps and their design powers are 34 kW and 47 kW, respectively. In the 

condenser water loop, a three-way valve is employed to modulate the condenser flow 

rates through the cooling towers so that the temperature of the condenser water entering 
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the chiller, ,  will not be less than 12.78oC (55.00oF), which is the lowest , 	can 

be accepted by the chillers.   

 

A supervisor controller is used to control the chiller operation status according to the 

measured cooling load. The control sequence is described as Figure 3-1 with  and  

fixed as 709 ton and 1,418 ton, respectively. The dead band (50 ton) and a waiting period 

(900 s) are also applied.  

 

 2) System Model 

For this study, the system model is almost the same with that described in section 

2.5.2. However, the author replaces the Chillers.Carnot model with the 

Chillers.ElectricEIR model, both the models are from Modelica Buildings library [66]. In 

addition, the performance curves of York_YK2771kW from the chiller dataset provided 

by EnergyPlus [42] are adapted in the ElectricEIR model. 

 

3) Optimization Setting 

In this study, the author uses the Hooke Jeeves algorithm [96] in the GenOpt [69] 

optimization engine to perform the searching of the optimal CPs and the optimal 

condenser water set point. The optimization is set to be performed every day. The author 

sets the safety factor 90% for all proposed approaches. For Approaches 2 and 3, the 

author sets the lowest allowable condenser water set point to be 13.89oC and  to be 

1.1 . The intervals for 	 , ,  and  are 1oC, 78.8 ton and 78.8 ton, 
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respectively. Table 3-1 summaries the settings used in the baseline and proposed 

approaches. 

Table 3-1 Settings for each CLC optimization approach 

CLC Optimization 

Approaches 
,  [oC]  [ton]  [ton] 

Baseline Fixed as 

23.89  

709 1418 

Approach 1 [0, 709]  [ , 1,418] 

Approach 2 [13.89, 

23.89] 

[709, 867] [1,418, 1,734] 

Approach 3 [0, 867] [ , 1,734] 

    

The author uses real historic data for 	and  shown in Figure 2-9. In real world 

implementation, one can obtain the predicted cooling load by using regression models 

and the outdoor wet bulb temperature from weather forecast.  

 

3.4.2 Results 

1) Annual Simulation 

Figure 3-4 shows the annual energy saving of the three CLC optimization approaches 

compared to the baseline. Approach 1 can reduce the annual chiller energy consumption 

by 4.9%. However, the energy consumption of the cooling towers and the pumps are 

increased (-5.8% and -8.6% in saving, respectively). Thus, the total energy saving ratio is 

only 0.5%. Approach 2 achieves a total energy saving around 5.3%. The energy use of 

the chillers and the pumps are reduced by 8.6% and 2.0%, respectively. Meanwhile, the 

cooling tower energy use is significantly increased (-41.8% in saving). As expected, 

Approach 3 provides the highest annual total energy saving (around 5.6%). The chiller 

energy saving ratio is the highest as 11.8% with the cost of the highest cooling tower 
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energy consumption (-43.8% in saving). In addition, the pump energy also rises slightly 

(-3.7% in saving). 

 

Figure 3-4 Comparison of the energy savings by different approaches 

 

To understand when the energy saving occur, the author performs the detailed 

analysis. As shown in Figure 3-5, the chiller energy consumption is saved mainly in the 

summer (May to September) for Approach 1. The cooling tower energy consumption 

sometimes decreases and sometimes increases. The pump energy consumption increases 

in the summer, which indicates that the number of the operating chillers is mainly 

increased to achieve an optimal load distribution. The total energy consumption decreases 

mainly in the summer. However, at a very few days, the total energy consumption even 

increases. The explanation is that the initial values of the state vectors (such as the chiller 

operating status) are different from that in the baseline at these days. Thus, it is possible 
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that Approach 1 may generate higher total energy consumption. For example, in October 

27, there are two chillers operating at the beginning for Approach 1 while there is only 

one for the baseline. The total energy consumption increases for Approach 1 compared 

with the baseline is around 0.2%. 

 

Figure 3-5 Daily energy saving by Approach 1 

 

For Approach 2, the chiller energy consumption is saved mainly in the non-summer 

season (Figure 3-6). The cooling tower energy consumption increases in the non-summer 

season due to the lower , . The pump energy consumption is also saved in the non-

summer season, which implies that the number of the operating chillers is mainly 

decreased. Since the studied chillers have higher efficiency at the part loads thus the 

energy saving from the chiller should be mainly due to the lower , . 
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Figure 3-6 Daily energy saving by Approach 2 

 

As shown in Figure 3-7, the chiller energy consumption is saved for the most of time 

in the studied year for Approach 3, which can be attributed to both the optimal load 

distribution and the lower 	 , . The cooling tower energy consumption mostly 

increases. It is also interesting to see that cooling tower energy consumption reduces 

sometimes in the summer. The pump energy consumption increases or reduces around 

the year. In the summer, the pump energy consumption usually increases which indicates 

that more chillers are operating compared with the baseline. In the rest time, the pump 

energy consumption reduces which means the cooling load is met with few chillers. 
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Figure 3-7 Daily energy saving by Approach 3 

 

Based on the above analysis, it can be found that:  

 Approach 1’s energy savings from chillers is mostly offset by the increased 

energy used by the pumps. This means that the optimal load distribution approach 

should be performed on chiller plants with high efficiency condenser water pumps 

and high efficiency chilled water pumps.  

 

 Approach 2 can save the pump energy for about 2.0% and the chiller energy for 

about 8.6%. The pump energy decreases because of the reducing number of the 

operating chillers while the chiller energy use saving is mainly due to the lower 

temperature of the condenser water entering the chiller.  
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 Approach 3 can increase the energy saving by combining the previous two 

approaches, but the total energy saving is less than the summation of their 

savings. Approach 3 can save the energy used by the chillers, the cooling towers 

as well as the pumps. In the summer, it increases the number of the operating 

chillers to save energy for the chillers and the cooling towers. In the non-summer 

season, it reduces the operating chiller number so that the pump energy saving can 

be obtained.  

 

2) Typical Days 

In order to further identify how energy saving for different components is achieved at 

different seasons, the author analyzes the performance of Approach 3 for one non-

summer day and one summer day. As shown in Figure 3-8, the cooling load in the non-

summer day (April 9) ranges from around 400 ton to 800 ton and the outdoor wet bulb 

temperature is within the range from around 5oC to 10oC. The optimal 	 	and  

predicted by Approach 3 are 867 ton and 1,418 ton while the optimal	 ,  is 13.89oC. 

Since the cooling load is always lower than 817 ton, there is only one chiller operating 

for Approach 3. However, for the baseline, since the cooling load is larger than 759 ton at 

around 13:00, the number of the operating chillers increases to 2 accordingly and then 

decreases to 1 around 17:00 when the cooling load is less than 659 ton. There is almost 

no deviation of ,  from ,  for both Approach 3 and the baseline. 
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Figure 3-8 Simulated system statuses for a non-summer day 

 

As shown in Figure 3-9, the hourly chiller energy consumption by Approach 3 is 

significantly less than the baseline over the day since the chiller is more efficient with 

cooler condenser water achieved by lowering the , . However, having a lower 

	 ,  significantly increases the cooling tower energy consumption. The pump energy 

is the same for Approach 3 as that for the baseline except the period when there is two 

operating chillers for the baseline. Since the chiller energy and the pump energy dominate 

the chiller plant energy consumption, Approach 3 always requires less energy than the 

baseline. 
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Figure 3-9 Simulated energy consumptions for a non-summer day 

 

As shown in Figure 3-10, the cooling load in the summer day (July 20) ranges from 

around 1,000 ton to 1,500 ton and the outdoor wet bulb temperature is within the range 

from around 20 to 25oC. The optimal	 	and  predicted by Approach 3 are 709 ton 

and 1,182 ton compared to the baseline value of 709 ton and 1,418 ton. The optimal 

	 ,  predicted by Approach 3 is 23.89oC, which is the same as the baseline. At the 

beginning, there are three chillers operating for Approach 3. The cooling load decreases 

to be less than 1,132 ton at around 19:00 and one of the operating chillers is turned off. 

For the baseline, the number of the operating chillers is two at the beginning and then 

turns to three at around 14:00. At around 15:30, it turns back to two. No significant 

deviation of ,  from ,  for both Approach 3 and the baseline is observed. 



72 
 

     
 

 

Figure 3-10 Simulated system statuses for a summer day  

 

As shown in Figure 3-11, the hourly chiller consumption for Approach 3 is 

significantly less than that for the baseline mostly because the chillers are more efficient 

at lower PLRs enabled by an additional chiller. When the number of the operating chillers 

is the same (e.g. 20:00-24:00), the chiller energy is the same for both Approach 3 and the 

baseline.  

 

The cooling tower energy consumption is smaller for Approach 3 than that for the 

baseline for most of the day since running three towers at lower speed is more energy 

efficient than running two towers at a higher speed. However, in the period from 14:00 to 

16:00, the cooling tower energy consumption for the baseline is smaller. The reason is 

that at this period, the outdoor wet bulb temperature is relatively higher and the cooling 
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towers are not able to maintain ,  as the set point. In that case, adding the number of 

the operating cooling towers would not affect the load ratio of each cooling tower 

(always be full load) and thus the cooling tower energy consumption is increased as a 

result.  

 

The pump energy is mostly higher for Approach 3 than that for the baseline because 

additional pumps are running for the additional chiller. However, the total energy 

consumption for Approach 3 is smaller than that in the baseline for the most time of the 

day because the energy saving from the chillers and the cooling towers can offset the 

additional energy consumption by the pumps.  

 

Figure 3-11 Simulated energy consumptions for a summer day 
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3.5 Conclusion 

In this chapter, the author proposes three new CLC optimization approaches to 

enhance the CLC. Approach 1 is to optimize the load distribution by adjusting the CPs. 

Approach 2 is to optimize the number of the operating chillers by modulating the CPs 

and the condenser water set point. Approach 3 is the combination of the first two 

approaches. The results suggest that the three approaches for optimizing the chiller 

sequencing control can all result in energy savings with little risk. The results also 

suggest that one needs to look at both the energy savings in the chillers as well as the 

increased energy use by other components of the chiller plant in the chiller sequencing 

control optimization. Among the three approaches, Approach 3 achieves the highest 

energy saving because it considers the trade-off among the energy consumption by the 

chillers, the cooling towers and the pumps. In the summer, one can make more chillers 

operating to achieve higher energy efficiency for the chillers and the cooling towers. In 

the non-summer season, one can reduce the number of the operating chillers to save the 

pump energy consumption.  

 

The new CLC optimization approaches can be directly implemented in the real chiller 

plant for resetting the CPs and/or the condenser water set point. They can also be used as 

references to help the operators manually adjust the chiller sequencing control.  
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Chapter 4  

A Bayesian Network Model for the Cooling Load Prediction in the 

Model Predictive Control 

Chapter 4 presents research on cooling load prediction. 

 

4.1 Cooling Load Prediction Methods 

Predicting cooling load is essential to model predictive control methods [28, 97]. 

However, it is challenging to accurately predict the cooling load because it is affected by 

many factors, such as the weather conditions and the internal activities of a building. In 

addition, the relationship between the cooling load and those factors is complicated and 

nonlinear.  

 

There are two approaches to predicting the cooling load of a building. One is to use 

building energy simulation tools such as DOE-2 [41], EnergyPlus [42], and TRNSYS 

[43]. Those tools predict the cooling load based on a physical description of the 

buildings. Although those tools have been successfully used to predict the cooling load 

[98, 99], they require detailed information about building characteristics, such as the 

thermal conductivity of the envelope as well as the operation schedules of the occupants, 

to build the model. That information, however, may not be available. In addition, those 

energy simulation tools are also time-consuming and resource-intensive for implementing 

in the model predictive control methods. 
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The other approach involves using regression models to predict the cooling load 

according to the pre-defined factors of building operations. These regression models 

include neural networks models [100-103], auto-regressive with exogenous inputs models 

[104], support vector machine models [105, 106], hourly cooling load factor methods 

[107], previous-prediction-error-based online load prediction methods [108], and analytic 

hierarchy process methods [109]. These regression models can be trained by the 

historical data regarding the cooling load as well as pre-defined factors. Compared to the 

building energy simulation tools, these regression models do not require detailed 

information about building characteristics. In addition, they can predict the cooling load 

instantaneously with few computational resources, which facilitates implementation. Due 

to those advantages, the regression models are preferable when the historical data is 

available [102]. 

 

However, the regression models also have limitations. The first limitation is that the 

performance of the regression models is sensitive to the settings of those models. For 

example, Chapelle, Vapnik, et al. [110] found that the values of parameters in the support 

vector machine model can dramatically affect the performance of this model. However, 

determining the best settings for those regression models requires a deep understanding 

of the mechanism of each model, which poses a serious challenge to large-scale 

applications. 

 

The second limitation is that the reliability and accuracy of those regression models 

mainly depend on the amount of training data that is available. If the actual situation 
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significantly deviates from the training data range, the predicted results may even become 

unreasonable [108]. Therefore, researchers tend to collect as much training data as 

possible. However, training data may be limited—more training data may not exist, or the 

cost to collect it may be extremely high. Thus, for those situations, it is worth studying 

the relationship between the amount of training data available and the accuracy of the 

regression models so an appropriate amount of training data can be determined.  

 

Aside from the limitations of those regression models, there is another problem that is 

seldom considered during the evaluation of those regression models. This problem is how 

uncertainties in cooling load prediction affect the prediction results. The uncertainties 

may occur in the training data. For example, the cooling load measurement is error-prone 

[89]. The uncertainties are likely to occur in the prediction of pre-defined factors. For 

example, the outdoor dry bulb temperature is usually selected as one factor for prediction 

cooling load, and regression models tend to rely on the weather forecast service to predict 

the outdoor dry bulb temperature. However, a significant difference between the 

predicted outdoor dry bulb temperature and the actual one may exist due to microclimate 

effects. Given these possibilities, it is necessary to quantitatively assess how those 

uncertainties affect the cooling load prediction. 

 

To address the first limitation of existing regression models, this chapter proposes a 

Bayesian network model that does not involve a complicated setting process.  Bayesian 

network models have been used in the building industry for different purposes. For 

instance, Jesen et al. [111] employed a Bayesian network model to estimate the effects of 
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the thermal indoor environment on the mental performance of office workers. Toftum et 

al. [112] used a Bayesian network model to calculate how the indoor temperature set 

point affected the performance of occupants and building energy consumption. O’Neil 

[113] utilized a Bayesian network model to establish the system model for building 

systems. However, no study on the results of applying the Bayesian network model in 

cooling load prediction seems to have been published. To address the second limitation of 

existing regression models, this chapter quantitatively describes the relationship between 

the amount of training data and cooling load prediction accuracy via a case study. This 

case study also evaluates how the uncertainties in predefined factors affect cooling load 

prediction.  

 

4.2 Bayesian Network Model 

4.2.1 Theory  

As shown in Figure 4-1, a typical Bayesian network model includes two components: 

nodes and arcs. The nodes (e.g.,  to ) represent variables that make up the system of 

analysis. A node that impacts other nodes is called a parent node (e.g.,	  and	 ), and a 

node that is impacted by other nodes is called a child node (e.g.,	  and	 ). A node can 

be both a parent node and a child node (e.g., 	  and 	 ). The arcs indicate the 

relationships between the nodes, which are quantified as conditional probabilities. In the 

following section, the node		  will serve as an example of how a Bayesian network 

model works. 
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Figure 4-1 The structure of a typical Bayesian Network model 

 

Node	  has three parent nodes—	 ,	 , and 	  —which means 

, , . (72) 

 

Here, it is assumed that the values of 	 , 	 , and 	  are within the sets 	 , , 	 , , 

	 , , 	 , , and 	 , , 	 , , respectively. The ranges of 	 , 	 , and 	  can be split 

into smaller sections: 	 , , 	 ,  is split into  sections: 	 , , 	 , ,	…, and 

	 , , 	 , ; 	 , , 	 ,  is split into  sections: 	 , , 	 , ,	…, and 

	 , , 	 , ; and 	 , , 	 ,  is split into o sections: 	 , , 	 , ,	…, and 

	 , , 	 , . The conditional possibility that 	 	 	 , , when the values of 	 , 

	 , and 	  are within the set 	 	 	∩ 	 	 ∩ 	 	 , can be calculated as 

	 	 , /	 	 	 	∩ 	 ∩ , ∩ 	∩ 	 	 ∩

	 	 / ∩ ∩ , 
(73) 

Then the expectation of 	 , when the values of 	 , 	 , and 	  are within the set 

	 	 	∩ 	 	 ∩ 	 	 , can be calculated by 

 

	 / 	 	 	∩ 	 	 ∩ ∑ , , / 	∩ 	 	 ∩

, 
(74) 
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where 	 , , …, 	 ,  are the observed values of 	 . 

If one assumes that the value of 	 , when the values of 	 , 	 , and 	  are within the 

set 	 	 	∩ 	 	 ∩ 	 	 , is equal to its expectation, then one can obtain the 

following equation: 

	 	 , 	 , ≅ / ∩ ∩ 	  (75)

 

Based on the above analysis, the value of 	  for the given values of	 , 	 , and 	  

can be determined according to equation (68) if the conditional probabilities are known. 

These probabilities are calculated with the following equations: 

	 	 , 	∩ 	 	 	∩ 	 ∩ , ∩ ∩	 	 ∩	 	
 , (76)

 

	 	 	∩ 	 ∩ =
∩ ∩ 	

, (77)

where 	 	 , 	∩ 	 	 	∩ 	 	 ∩ 	 	  is the number of training data 

points in which the values of 	 , 	 , 	 , and 	  are within the set 	 	 , 	∩

	 	 	∩ 	 	 ∩ 	 	 , 	 	 	∩ 	 	 ∩ 	 	  is the number of 

training data points in which the values of 	 , 	 , and 	  are within the set 	 	 	∩

	 	 ∩ 	 	 , and  is the number of total training data points. 

Thus, equation (67) can be simplified as  

	 , / ∩ ∩  

=	
	 	 , 	∩	 	 	∩	 	 ∩	 	

∩ ∩
. 

(78)
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4.2.2 The Procedure for Developing the Bayesian Network Model  

The typical procedure of developing the Bayesian Network model consists of four 

steps. 

 

Step 1: The first step is to determine the parent nodes for the studied child nodes. 

Selecting the parent nodes requires a careful balance between model accuracy and 

accessibility. On one hand, including parent nodes tends to give better prediction results; 

on the other hand, the parent nodes should also be easy to obtain so that the efforts of 

implementation can be minimized. 

 

Step 2: Based on the identified parent nodes in Step 1, one selects the training dataset and 

determines how to split this dataset. After the split is completed, one calculates the 

conditional probabilities according to equation (78). 

 

Step 3: After one obtains conditional probabilities from Step 2, one calculates the 

expectations for the studied child nodes according to equation (74). 

 

Step 4: To facilitate the implementation of the Bayesian network model, one must 

convert the expectations for child nodes and the corresponding sets of parent nodes into a 

multiple-dimensional reference table. This table is used to represent the conditional 

probabilistic expressions based on relative column position in the association list. 
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4.2.3 The Bayesian Network Model for Cooling Load Prediction 

To develop the Bayesian network model for cooling load prediction, the first step is 

to determine the parent nodes. The cooling load for the buildings is usually affected by 

factors such as the weather condition and the building’s internal activities. Depending on 

the type of building, the weather condition and internal activities affect the total cooling 

load in different ways. For example, in data centers, the cooling load is dominated by the 

heat gain from the IT equipment, and the impact of the weather condition is negligible. 

However, for buildings with a constant and high fresh air requirement (such as the clean 

rooms), the cooling load is mainly used for cooling the fresh air. In that case, the cooling 

load is mainly determined by the weather condition. 

 

To facilitate large-scale application of the Bayesian network model, this study 

considers both the weather condition and the internal activities in the design of a cooling 

load prediction method. The outdoor dry bulb temperature and the outdoor wet bulb 

temperature are used to represent the weather condition. For the internal activities, the 

days are divided into three categories (shown in Table 4-1) and the category numbers are 

used to reflect the internal activities of the day-level period. It is expected that days in the 

same category have a similar internal activity pattern. In addition, the hour index 

(0,…,23) is employed to reflect change in the internal activities within one day. 
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Table 4-1 The category of days 
 

Day Category Number Day Category name Description 

1 Working Day 

Official working day of the 
week. For typical office 

buildings, the working days 
are from Monday to Friday 

2 Holiday 

The days when no works are 
done. For typical office 

buildings, the working days 
are from Saturday to Sunday 

3 Event Day The days when events (e.g. 
ceremonies) occur 

 

Based on the above analysis, the Bayesian network model is built for cooling load 

prediction as shown in Figure 4-2.  

 
Figure 4-2 The structure of Bayesian Network model for the cooling load 

prediction 
 

 

It is possible that the training data may not cover the full range for the parent nodes. 

In that case, the Bayesian network model cannot predict the output. To address this issue, 

the linear interpolation and the nearest extrapolation methods are applied in the Bayesian 

network model. For example, one may use the Bayesian network model to predict the 

hourly cooling load for the following 5 hours: , , , , . However, due to the 
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limitations of the training data, the Bayesian network model can only generate	 , , 

and . To predict  and , the following equations were therefore used: 

 , (79)

 

3 2  , (80)

 

For the Bayesian network model, it is necessary to split the training data. In the case 

of this study, two of the parent nodes (day category number and the hour index) are 

discrete. For the other two parent nodes (outdoor dry bulb temperature and outdoor wet 

bulb temperate), a fixed interval (2oC) was used to split the full range of these 

temperature data: for the outdoor dry bulb temperature, the split ranges are [0, 2 ,…, 

[40,	∞ ]; for the outdoor wet bulb temperature, the split ranges are [0, 2 , …, [30,	∞ ]. 

 

4.3 Case Study 

In this case study, the Bayesian network model was applied in the prediction of the 

cooling load for a university campus located in Annapolis, Maryland, U.S.  

 

4.3.1 Training and Testing Data 

To generate the training and testing data for the cooling load prediction, the hourly 

cooling load data for the campus were collected via the building automation systems of 

the central cooling system. In addition, the hourly outdoor dry bulb temperature and the 

outdoor wet bulb temperature were obtained from a weather station located on the 

campus. The day category number was determined according to the academic calendar, 

which is available on the university website. The collected cooling load, the outdoor dry 
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bulb temperature data, the outdoor wet bulb temperature, and the day category number 

are shown in Figure 4-3. They cover two periods: 09/09‒11/02/2014 and 04/27‒

09/20/2015. These two periods represent a typical cooling season for the studied campus. 

The two periods consist of 29 weeks (although data gaps exist), among which one week 

(09/06‒12/2015) was selected as the testing period to evaluate the cooling load prediction 

while the remaining 28 weeks served as the training period. 

 

Figure 4-3 The training and testing dataset (blue = testing data; the rest = training 

data) 

 

4.3.2 Other Regression Models 

To better evaluate the performance of the proposed Bayesian network model in 

cooling load prediction, a support vector machine model is applied in the cooling load 
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prediction. For a comprehensive introduction to the support vector machine model, please 

refer to [105]. The reason to select the support vector machine model is that previous 

studies show that this model is better than other regression models, such as the neural 

network model [105]. The current study uses the Python Package scikit-learn [114] to 

implement the support vector machine model, and the inputs for the support vector 

machine model are the same as those of the Bayesian network model. For the support 

vector machine model, the kernel function is selected as the Gaussian function since it is 

recommended by [105]. The other settings are set as default values.  

 

4.3.3 Evaluation Merits 

To quantitatively evaluate the prediction accuracy, the author employ the coefficient 

of determination, denoted R2, and the root mean squared error (RMSE). R2 is calculated 

by 

1
∑ , ,

∑ ,
 , (81) 

where ,  and ,  are the th predicted and measured cooling load,  is the 

prediction number, and  is the mean value of , . Basically, the more closely R2 

approaches 1, the better the prediction accuracy is. The RMSE is calculated by 

∑ , / ,  . (82) 

 
 
 
 

4.3.4 The Impact of the Training Data on the Cooling Load Prediction 

To quantitatively describe the relationship between the amount of training data and 

the cooling load prediction results, the following studies were performed: 
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- The 28 weeks in the training period were indexed from 1 to 28 according to the time 

(shown in Figure 4-4). The week for index 27 is the week immediately before the 

testing week. 

Figure 4-4 The week indexes of the training data 

 

- The 28-week training data were distributed into 14 groups, shown in Table 4-2. 

- The Bayesian network model and support vector machine model were trained using 

training data from each group. 
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Table 4-2 the groups for the training data 
 

Groups The Week Number Number of Data 
1 26,27 276 
2 24,25,26,27 554 
3 22,23,24,25,26,27 872 
4 20,21,22,23,24,25,26,27 1,188 
5 18,19,20,21,22,23,24,25,26,27 1,463 
6 16,17,18,19,20,21,22,23,24,25,26,27 1,756 
7 14,15,16,17,18,19,20,21,22,23,24,25,26,27 2,079 

8 
12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
2,413 

9 
10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
2,743 

10 
8,9,10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
3,077 

11 
6,7,8,9,10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
3,413 

12 
4,5,6,7,8,9,10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
3,735 

13 
2,3,4,5,6,7,8,9,10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27 
4,071 

14 
1,2,3,4,5,6,7,8,9,10,11,12,13, 

14,15,16,17,18,19,20,21,22,23,24,25,26,27,28
4,379 

 

The following plotting was then made based on the group information shown in Table 

4-2 and the results for the cooling load prediction: 
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Figure 4-5 The relation between the amount of training data and the RMSD for the 

cooling load prediction 

 

Based on Figure 4-5, it is apparent that: 

1) By increasing the scope of training data collected from 2 weeks to 28 weeks, the 

RMSD of the Bayesian network model and the support vector machine model can be 

reduced from 0.25 to 0.15 and from 0.32 to 0.15, respectively. 

2) More training data does not guarantee better results. When the amount of the training 

data changes from 16 weeks (2,413 data) to 28 weeks, the RMSD of the Bayesian 

network model and the support vector machine model even increase slightly.  
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To demonstrate the details of the cooling load prediction, the results of the Bayesian 

network model and the support vector machine model (shown in Figure 4-6) were plotted 

for a volume of training data spanning 16 weeks. Generally speaking, both the Bayesian 

network model and the support vector machine model can predict changes in the cooling 

load during the testing period. The R2 of the two models are 0.84 and 0.83, which are 

quite close. However, for some periods, such as the middle of the week of 09/09/2015, 

significant deviations between the cooling load prediction and measurement exist for 

both two models. One possible reason for that discrepancy is that during those periods, 

cooling load changed dramatically due to the occupants’ activities. However, the factors 

selected to represent the occupancy activities may be too simple to reflect the dramatic 

changes in those short periods.  

 

Figure 4-6 The cooling load prediction results (16 weeks training data) 
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4.3.5 The Impact of the Uncertainties on the Cooling Load Prediction 

To quantitatively describe the relationship between the amount of training data and 

the cooling load prediction, the following studies were performed.  

- The following equation was used to generate synthetic errors to mimic the 

uncertainties in the weather forecasting: 

∗
, 0.5,0.5 , (83)

where ∗  is predicted as the outdoor dry/wet bulb temperature with error,  is the 

predicted outdoor dry/wet bulb temperature without error, ,  is the static error while 

0.5,0.5  is used to represent the dynamic error, and ,  is a function that 

returns a random number from the range [a,b]. 

 

In this study, it is assumed that the on-site outdoor dry/wet bulb temperature is noise-

free. Based on this assumption, the synthetic errors can be calculated according to 

different static error settings. An example for predicted outdoor dry/wet bulb 

temperature with error when synthetic error is 2oC is shown as Figure 4-7. 
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Figure 4-7 The uncertainties in the weather forecast (static error is 2oC) 

 

- The Bayesian network model and the support vector machine model were then used 

to predict the cooling load for the testing period, when the synthetic errors were 

considered for the outdoor dry bulb temperature and the outdoor wet bulb 

temperature. To mimic different error conditions, ,  was changed from -2oC to 

2oC with an interval of 0.5oC. Sixteen weeks of training data was used. 

 

The results for the cooling load prediction with errors in inputs are shown in Figure 

4-8. When the static error equals 0, the RMSD for the Bayesian network model and the 

support vector machine model are 0.15 and 0.17, which are slightly larger than the 

RMSDs when there are no errors in the inputs (a 15% and 5% increase, respectively). 

When the static error changes from 0 oC to -2 oC, the RMSD for the Bayesian network 
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model and the support vector machine model increases by 45% and 58%, respectively; 

when the static error changes from 0oC to 2oC, the RMSD for the Bayesian network 

model and the support vector machine model increases by 41% and 42%, respectively.  

 

 

Figure 4-8 The cooling load prediction with error in inputs 

 

4.4 Conclusion 

A Bayesian network model may be effective in predicting cooling load. The results of 

the case study evaluating the performance of this model on predicting cooling load point 

to the following conclusions: 

1) The Bayesian network model can achieve a very close performance to that of the 

support vector machine model in terms of accuracy and reliability. However, the 

Bayesian network model is easier to implement. 

2) The accuracy of the cooling load prediction is not always proportional to the 

amount of training data available. Sixteen weeks of training data actually 
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generated a slightly better prediction by both the Bayesian network model and the 

support vector machine model than 28 weeks of training data for the studied case. 

3) The accuracy of the cooling load prediction can be significantly affected by the 

uncertainties in the inputs.  
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Chapter 5  

A Bayesian Network Model for the Optimization of a Chiller Plant’s 

Condenser Water Set Point  

Chapter 5 elaborates the research on the condenser water set point optimization with a 

regression-model-based-control method. 

 

5.1 Regression-Model-based-Control Methods to Optimize the Condenser Water Set 

Point 

As described in Chapter 2, researchers have proposed various regression-model-

based-control methods to optimize the condenser water set points [19, 23, 30]. For 

example, Sun and Reddy [19] used a linear regression model to predict the optimal 

condenser water temperature set points according to the outdoor wet bulb temperature 

and the cooling load: 

, , , (84)

where the , , and  are regression coefficients. 

 

Yu and Chan [23] developed a polynomial regression model to predict the optimal 

condenser water temperature set points based on the outdoor wet bulb temperature and 

the cooling load in order to consider the nonlinearity in the actual system: 

, , , (85)

where the , , and  are regression coefficients. 
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Although fast and simple, the existing regression-model-based-control methods often 

do not achieve the optimal energy savings due to the low accuracy in predicting the 

optimal condenser water set points. It is likely that suboptimal condenser water set points 

are predicted mainly due to difficulties in representing the nonlinear relationships in the 

chiller and the cooling tower operation with linear or polynomial regression models.  

 

5.2 Bayesian Network Model for Condenser Water Set Point Optimization 

To address the limitations of linear or polynomial regression models, the author 

proposes a Bayesian Network model. Bayesian Network models have been employed in 

the building industry for other applications as show in Chapter 4. To the author’s best 

knowledge, however, no research has been reported on the application of a Bayesian 

Network model for the optimal selection of the condenser water set point of a chiller 

plant. 

 

For chiller plants, if the thermal and hydraulic dynamics are assumed to be negligible, the 

total power of the chillers and cooling towers,	 , can be described as 

, , , , (86) 

 

Based on Equation (86), the author defines the following optimization problem,  

min	 min , , , . (87) 

The input variables are the cooling load and the outdoor wet bulb temperature, the 

optimized variable is the condenser water set point and the objective function is the total 

power of the chillers and cooling towers. Thus, the problem is to find the optimal 
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condenser water set point, , , , that minimizes the total power of the chillers and 

cooling towers as a function of the cooling load and the outdoor wet bulb temperature: 

, , , . (88) 

 

Based on equation (88), the author builds a Bayesian Network model shown in Figure 

5-1. In this Bayesian Network model, the parent nodes are the cooling load and the 

outdoor wet bulb temperature, which are continuous variables. To perform the 

discretization for those variables, the author selects the discretization interval as 100 Ton 

and 1.0oC for the cooling load and the outdoor wet bulb temperature, respectively. The 

child node is the optimal condenser water set point and is limited in a certain range to 

avoid obviously negative impacts on the chiller operation (overcooling or overheating). 

In this case, the range is set to be [15.1, 26.1] (oC).  

 

Figure 5-1 The structure of the Bayesian Network model for the optimization of the 

condenser water set point 

 

5.3 Case Study 

As a case study, the author considers the chiller plant shown in Figure 2-3. The model 

of the chiller is a Trane_CVHF_2799kW, which has the nominal cooling capacity as 
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2,799 kW (796 ton). For the cooling tower, the design fan power is 37 kW (50 HP) and 

the actual fan power is assumed to be proportional to the cubic of the fan speed ratio. The 

nominal outdoor wet bulb temperature and the nominal approach temperature are 26.11oC 

(79.00oF) and 1.11oC (2oF), respectively. Each chiller has one dedicated chilled water 

pump, one dedicated condenser water pump and one dedicated cooling tower. 

The control sequence for the chillers is described as Figure 3-1 with  and  

fixed as 796 ton and 1,592 ton, respectively. The dead band and the waiting period are 

assumed to be 0. 

 

To evaluate the proposed Bayesian Network model, the author compares its 

performance with that of two regressing models: one is a linear regression model defined 

by (84), and the other one is a polynomial model defined as  

, , , (89)

where , ,	 , and  are regression coefficients. Equation (8) is derived from the 

equation (85). In equation (85), the coefficient of the outdoor wet bulb temperature is 1, 

which means when the outdoor wet bulb temperature changes by 1.0oC, the optimal 

condenser water set point will also change by 1.0oC. However, with different 

characteristics of chillers and cooling towers, it is possible that the relationship between 

the optimal condenser water set point and the outdoor wet bulb temperature changes by 

chiller plants. With that in mind, the author treats the coefficient of the outdoor wet bulb 

temperature as one regression coefficient in equation (8). Similar to the proposed 

Bayesian Network model, the optimal condenser water set points predicted by the 

regression models are also limited in the range [15.1, 26.1] (oC). 
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The regression coefficients in the linear and the polynomial models are estimated by 

the ordinary least squares method [115]. The ordinary least squares method estimates the 

unknown parameters in regression models by solving the following optimization 

problem: 

min ∑ min ,… , , (90) 

where  is the th observed value of the dependent variable,  is the corresponding 

predicted value of the dependent variable by the recession model,  is the number of 

the observed values, and , … ,  are the regression coefficients. 

 

5.3.1 The Training Dataset 

To generate a training dataset for the proposed Bayesian Network model and the 

linear and polynomial regression models, the author uses the following approach shown 

in Figure 5-2: 

Figure 5-2 The procedure for generating a training dataset  
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In Step 1, the author reviews the studied chiller plant’s typical operating condition. 

Over the course of a year, the author finds the cooling load ranges from 0 to around 2000 

Ton while the outdoor wet bulb temperature changes from around -11.0oC to 25.0oC.  

 

In Step 2, the author develops a complete dataset for the cooling loads and the 

outdoor wet bulb temperatures based on their ranges obtained in Step 1. In the dataset, 

the cooling load range is [50, 2000] (Ton) with an interval of 50 ton and the outdoor wet 

bulb temperature range is [-11.0, 25.0] (oC) with an interval of 0.5oC.  

 

In Step 3, the complete set for the cooling load and the outdoor wet bulb temperature 

is used as the inputs for a static-model-based-control method to find the corresponding 

optimal condenser water set points. For the static-model-based-control method, the 

optimization problem is the same as that defined in equation (87). The author models the 

studied chiller plant with Modelica [116] so that the values of the objective function 

under different condenser water set points can be obtained by the system model. For this 

study, the system model is almost the same with that described in section 3.4.1. However, 

the performance curves of Trane_CVHF_2799kW from the chiller dataset provided by 

EnergyPlus [42] are adapted in the ElectricEIR model and the system dynamics is also 

ignored. To guarantee that the optimal solution can be achieved, the author uses an 

exhaustive search method to evaluate all the possible condenser water set points. We 

limit the selection range in the range for the possible condenser water set points as 

[15.1oC, 26.1] (oC). The interval for this range is set to be 0.1°C since the accuracy level 

of water temperature sensor is normally 0.1°C in real practice.  
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In Step 4, the generated optimal condenser water set points are merged with the 

complete dataset for the cooling load and the outdoor wet bulb temperature data to 

develop a complete training dataset.  

 

5.3.2 Testing 

To evaluate the performances of the proposed Bayesian Network model and the linear 

and polynomial regression models, the author uses them to predict the optimal condenser 

water set points for two testing months: one mild month (April 2012) and one summer 

month (July 2012) in Washington D.C.. The two months represent the mild season and 

the summer season, respectively. The historic hourly data of the cooling load from an on-

site measurement of three office buildings and the outdoor wet bulb temperature from a 

nearby weather station [70] are used. The data is shown in Figure 5-3 and Figure 5-4.   

 

Figure 5-3 The hourly cooling load and outdoor wet bulb temperature data for the 

mild month in Washington D.C. 



102 
 

 
 

 

Figure 5-4 The hourly cooling load and outdoor wet bulb temperature data for the 

summer month in Washington D.C. 

 

To evaluate the performance of the Bayesian Network model, the author also uses the 

static-model-based-control method (section 5.3.1) to predict the true optimal condenser 

water set points for the testing periods. 

 

To investigate how the condenser water set point prediction affects the energy 

performance of the studied chiller plant, the author calculates the total power used by the 

chillers and the cooling towers according to the predicted condenser water set point via 

simulation. The system model is the same as that in the static model based control 

method (section 5.3.1). The author then calculates the energy consumption by the chillers 

and the cooling towers during the testing period by the following equation: 

∑ 3600 , (91)
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where  is the total power used by the chillers and the cooling towers at the th 

hour while  is the number of hour in the testing period. 

 

5.3.3 Results 

  1) General Result 

The general simulation results are shown as Table 5-1. In the mild month (April 

2012), the Bayesian Network model predicts the optimal condenser water set point with a 

Root Mean Square Deviation (RMSD) of 0.2oC to the real optimum. As a result, the 

energy saving ratio for the Bayesian Network model (25.92%) is close to the theoretically 

upper limit (26.04%). On the contrary, both the linear and the polynomial models have a 

relatively large error with a RMSD of 2.3oC. The large errors in condenser water set point 

predictions by the linear and the polynomial models lead to less energy savings (up to 

12,500 kWh) than the Bayesian Network model.  

Table 5-1 The general result for the testing set 

 
Bayesian 
Network 
Model 

Linear 
Regression 

Model 

Polynomial 
Regression 

Model 

Model-based 
Optimization 

Method 

Mild 
Month 

RMSD [oC] 0.2 2.3 2.3 N/A 
Energy 

Consumption 
[kWh] 

133,477 145,954 146,022 133,271 

Energy Saving 
Ratio  

25.92% 19.00% 18.96% 26.04% 

Summer 
Month 

RMSD [oC] 0.3 3.3 3.3 N/A 
Energy 

Consumption 
[kWh] 

486,117 511,345 511,139 485,262 

Energy Saving 
Ratio  

1.39% -3.73% -3.69% 1.56% 

(In the baseline, the condenser water set point is fixed as 26.1oC) 
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In the summer month (July 2012), the accuracy of the Bayesian Network model in 

predicting the optimal condenser water set points is also close to the real optimum with a 

RMSD of 0.3oC. Thus, the decrease in the energy saving ratio by the Bayesian Network 

model compared to the theoretically upper limit is only 0.17%. On the other hand, the 

linear and the polynomial models have relatively poor predictions with a RMSD of 3.3oC. 

The poor predictions of the linear and polynomial models result in even more energy than 

the baseline with increases by 3.73% and 3.69%, respectively. In other words, plants 

using these two models will consume up to 25,200 kWh more energy compared to the 

one using the Bayesian Network model. 

 

The above analysis shows that the performance of the Bayesian Network model is 

much better than that of the linear and the polynomial models in predicting the optimal 

condenser water set points for both the mild month and the summer month. Moreover, 

larger prediction errors of the linear and the polynomial models tend to increase the 

energy consumption.   

 

     2) Typical Days 

In order to understand how the optimal condenser water set point predictions affect 

the plant operation, the author selects two typical days from the two months: a mild day 

(April 20th, Friday) and a summer day (July 20th, Friday). In the mild day, the cooling 

load changes from around 400 Ton to 900 Ton and the outdoor wet bulb temperature was 

from 11.0oC to 16.0oC (Figure 5-5). The condenser water set points predicted by the 

Bayesian Network model are quite close to the optimal solution (predicted by the model-
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based optimization scheme). The highest deviation is 0.7oC. The linear and the 

polynomial models have similar condenser water set point predictions and the condenser 

water set points predicted by those two methods are always larger than that the optimal 

solution. As a result of different condenser water set point predictions, the Bayesian 

Network model, the linear model, and the polynomial model achieve 20.41%, 15.66% 

and 15.63% daily energy savings for the chillers and cooling towers, respectively. As a 

reference, the model-based optimization method achieves a 20.66% daily energy saving.    

 

Figure 5-5 The cooling load, outdoor wet bulb temperature, predicted condenser 

water set point, and the total chiller and cooling tower energy consumption of the 

mild day 

 

As shown in Figure 5-6, the cooling load and outdoor wet bulb temperature in the 

summer day are higher than those in the mild day in Figure 5-5. Since the condenser 
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water set point should be always higher than the outdoor wet bulb temperature, there is 

smaller room for optimizing the condenser water set points with higher outdoor wet bulb 

temperature. Thus, the optimal solution only achieves a 1.25% daily energy saving for the 

chillers and the cooling towers in the summer day. The Bayesian Network model 

achieves a condenser water set point prediction relatively closer to the optimal solution. 

The condenser water set points predicted by the linear and polynomial models are much 

lower than that by the optimal solution and sometimes are even less than the outdoor wet 

bulb temperature, which is not possible. In consequence, the Bayesian Network method 

achieves a 0.87% daily energy saving while both the linear and polynomial models 

increase the daily energy consumption for the chillers and the cooling towers by 5.08%.   
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Figure 5-6 The cooling load, outdoor wet bulb temperature, predicted condenser 

water set point, and the total chiller and cooling tower energy consumption of the 

summer day 

 
5.4 Conclusion 

In this chapter, the author proposes a Bayesian Network model for predicting the 

optimal condenser water set points. The author compares the performance of the 

Bayesian Network model with those of a linear model and a polynomial model via a case 

study. Based on the results of the case study, one can draw the following conclusions: 

1) The Bayesian Network model is able to represent the relationship between the 

cooling load, the outdoor wet bulb temperature, and the corresponding optimal 

condenser water set points with a good accuracy. It may be a promising approach 

for fast selection of the optimal condense water set point; 
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2) The Bayesian Network model can significantly increase the energy saving by the 

condenser water set point optimization compared to the linear and the polynomial 

models. 
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Chapter 6  

Modeling for a Net Zero Energy Community 
 

Chapter 6 discusses the research on modeling a community-level system that serves a 

net zero energy community. 

 

6.1 The Studied System 

The system investigated in this study is a real community energy system, which is an 

integration of multiple building systems. This system serves the Historic Green Village 

(HGV), which is a net zero energy community in Anna Maria Island, Florida. As shown 

in Figure 6-1, the HGV consists of five mixed-use (retail, residential, and office) 

commercial buildings. 

                    
        (a) Building Layout                                       (b) Google Street View 

 
Figure 6-1 Historic Green Village on Anna Maria Island, FL 
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To satisfy the energy demand of these buildings, the community energy system 

consists of three subsystems: electric, water-source heat pump, and domestic hot water 

(Figure 6-2).  

The electric subsystem includes the solar photovoltaic (PV) panels, electric load, and 

distribution network. The electric subsystem interacts with the power grid. The water-

source heat pump subsystem includes water-to-air heat pumps and a single ground-

coupled water loop with two boreholes. The heat pumps provide cooling and heating 

energy to all buildings within the community. The domestic hot water subsystem includes 

three solar thermal domestic water heaters. The domestic hot water subsystem is also 

coupled with heat pumps for the purpose of heat recovery. The following sections will 

demonstrate the details of the electric subsystem and the water-source heat pump 

subsystem. 

 
Figure 6-2 The schematic of the studied building system 

 

Figure 6-3 shows the schematic of the electric subsystem. Electricity is produced by 

the solar PV panels, which are installed on the roof of the Sea (A), Rosedale (C), Sears 

(D), Picklefish (F), Pillsbury (G), Carport, and Warehouse (another house outside the 
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HGV). Inverters are installed in the PV system to enable the connection with the service 

panels. (The voltage of the output electricity is 120/240 VAC). The interaction between 

the electric subsystem and the grid is realized by transformers. If transformers detect that 

demand load is not satisfied, the electricity generated by the solar PV panels will flow to 

the service panels to satisfy demand load. If load is satisfied, the electricity will flow out 

to the grid. 

 

 
Figure 6-3 The schematic of power distribution of HGV 

 

The water-source heat pumps subsystem is shown in Figure 6-4. The ground-coupled 

water loop consists of a heat exchanger and two boreholes. The boreholes penetrate a 

layer of limestone rock and are four hundred and fifty feet deep. The ground-coupled 

water loop connects with nine heat pumps, which provide cooling and heating to the 

buildings. Each heat pump has two dedicated circulating pumps (Table 6-1 shows 

detailed information about the pumps). In addition, the water loop also provides cooling 

for the refrigeration units in the general store. To ensure that the loop temperature stays 
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within the design range, a variable speed well pump controls the flow rate of the ground 

water through the main heat exchanger, based on the exit water temperature.  

 

 

Table 6-1 The specification of circulation pumps 

Heat Pump 
Circulation Pump 

Model 
Flow Rate [kg/s] Head (m) 

HP1 BGM 3655 8.83 10-1 20.73 

HP2 UP26-116F 5.68 10-1 18.90 

HP3 UP26-116F 5.68 10-1 18.90 

HP4 UP26-116F 5.05 10-1 19.20 

HP5 UP26-116F 5.68 10-1 18.90 

HP6 UP26-116F 5.68 10-1 18.90 
HP7 UP26-116F 5.68 10-1 18.90 

HP8 UP26-116F 5.68 10-1 18.90 

HP9 UP26-116F 5.68 10-1 18.90 

 

Figure 6-4 The schematic of HGV Ground Loop 
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6.2 The Proposed Research 

Aiming to improve the operational efficiency of the studied building system, the 

author proposes performing the research described in Figure 6-5: 

 

 

In the first step, a data acquisition mechanism that enables automatic collection of the 

operational data will be developed. The collected data can be used in the calibration of 

the system models. It can be also used as inputs for model predictive controls. In 

addition, the system models of the building system will be developed and calibrated.   

 

The second step first involves developing the model predictive control method and 

then implementing the method using the software environment proposed in Chapter 2. 

After that, an offline simulation will be performed to evaluate the model predictive 

control method. In the offline simulation, the measured data such as the cooling load will 

be used as the inputs. The offline simulation will facilitate quantification of the potential 

energy savings and test whether the proposed model predictive control method is robust. 

 

 
Figure 6-5 The proposed research for HGV 

Step 1
• Data Acquisition Mechanism Development
• System Model Development & Calibration

Step 2
• Model Predictive Control Development
• Offline Evaluation

Step 3
• Prediction Model Development
• Online Implementation
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In the third step, the prediction model will be developed. The prediction model 

provides the inputs, such as the weather conditions, the thermal load, and hot water 

usage, to the model prediction control in the online operation. The prediction model will 

be built using the Bayesian network model proposed in Chapter 4. After the prediction 

model is trained and verified, the prediction model and the model predictive control will 

be combined and implemented in the real controllers to achieve energy savings in the real 

world. 

 

This research remains ongoing, and at the time of writing, the first step is in progress. 

The following sections will report the preliminary results for the first step. 

 

6.3 Data Acquisition 

Developed by the partner Amzur Technologies, the data acquisition mechanism 

shown in Figure 6-6 consists of three parts: on-site measurement, database, and Web 

interface. The on-site measurement collects data from sensors and meters that are 

installed on site; the database receives data from the on-site measurement and stores the 

data for future uses. The Web interface provides a graphic interface by which the 

building operators can easily check the operation status. In addition, it also provides APIs 

(application program interfaces) for Python. The APIs can enable a seamless connection 

between the data acquisition and the proposed software environment for the predictive 

control model.  
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6.4 System Modeling 

6.4.1 The Partitioning Modeling Method 

The studied community energy system is a typical multidisciplinary dynamic system. 

The modeling and simulation of such a complex system can be challenging, preventing 

the developed model’s predictive control environment from being directly applied in this 

system. The difficulties stem from two aspects of its modeling and simulation: First, the 

interactions between different subsystems lead to a complicated structure for the system 

models, which makes it difficult to implement and debug the models; second, the 

simulation tends to be computationally intensive because a small time step should be 

used to catch the dynamics of the subsystem.  

 

To address the above challenges, the author proposes dividing the studied community 

system into different groups, as shown in Figure 6-7. The energy/mass/information 

 
Figure 6-6 the data acquisition mechanism 
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connections between different groups are modeled with corresponding buses. This 

technique has two benefits: first, it allows the system model to be easily separated in 

order to perform the unit testing, which permits the quick detection of bugs; second, by 

splitting the system model into different groups, it allows one to solve the time 

integration of different groups with different time step sizes: for groups with fast 

dynamics, one can use small time step sizes to capture the fast changes; while for those 

with relatively slow dynamics, one can use large time steps to reduce the computing time. 

Then, the connections between different groups can be realized by co-simulation 

interfaces such as Functional Mock-up Interface [117]. 

 

 

Following the grouping modeling concept, models were successfully developed for 

two groups: the ground-coupled heat pump subsystem and the solar PV subsystem. 

 
Figure 6-7 The structure for the system model 
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6.4.2 The Ground-Coupled Heat Pump Subsystem 

Figure 6-8 shows the top-level model of the ground-coupled heat pump subsystem. 

The model inputs include outside air temperatures, room air temperature set points, 

switching of cooling/heating mode, set temperature of the water leaving the heat pump, 

cooling/heating load profiles, and other device parameters. The main model outputs are 

the energy consumption of individual heat pumps and room air temperature. The key of 

this subsystem model is the heat pump. 

 

Figure 6-9 shows the details of the heat pump model: (a) shows the top-level model 

for the heat pump module, while (b) and (c) show the models of the waterside and airside 

equipment of the heat pump module, respectively.   

 

 
 

 Figure 6-8 Diagram of top level model of the heat pump subsystem 
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(a) 

   
(b) 

 
(c) 

Figure 6-9 Diagram of heat pump module: (a) heat pump; (b) air side; (c) water side 
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6.4.3 The Solar PV Subsystem 

Figure 6-10 shows the diagram of the top-level model of the solar PV subsystem, 

which consists of several single PV panel models. The single PV panel model takes the 

direct and diffuse solar radiation, which is calculated according to the inclined angle of 

the panel and the weather condition, as inputs. This model computes the active power 

generated by the PV panel as 

, (92) 

where  is the panel area;  	is the fraction of the aperture area;  is the constant panel 

efficiency;  is the total solar irradiation, which is the sum of direct and diffuse 

irradiation; and 	is the constant efficiency of the conversion between the direct 

current and the alternating current.  

 

 

 

 
 

 Figure 6-10 Diagram of top level model of the solar subsystem 
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6.5 Preliminary Simulation Results 

Although the Historic Green Village has installed many sensors, the collected data is 

only sufficient for the evaluation of a solar PV subsystem. To evaluate the performance 

of the developed model for the solar PV subsystem, the following study was performed: 

- Historic data was used for solar radiation as the inputs for one PV module in the 

solar PV subsystem in order to perform the simulation. 

- The simulation output was compared with the measurement. 

 

As shown in Figure 6-11, in the comparison of the simulation output with the 

measurement, it is clear that for both two studied months, the model predicts results that 

are quite close to the measurement. 

 

 

(a) 
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(b) 

 Figure 6-11 Simulated and measured energy production of PVs in building 

Warehouse in winter (a) and summer (b) of 2014  

 

6.6 Conclusion 

This chapter reports the preliminary work of developing a model predictive control 

for a net zero energy community. The simulation results show that the developed solar 

PV model can predict close results compared to the measurement. 
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Chapter 7  

Conclusion and Future Work 
 

This chapter concludes the finding of this dissertation and provides suggestions for 

future study. 

 

7.1 Conclusion 

In this dissertation, a software environment for implementing the model predictive 

control in buildings is proposed. Using the software environment, model predictive 

control methods for the condenser water set point and the chiller staging are implemented 

and optimized. In addition, this dissertation generates a new method for cooling load 

prediction, which is a critical input of the model predictive control methods for buildings. 

Furthermore, a new regression-model-based-control method for optimizing the condenser 

water set point is proposed. Finally, preliminary steps for modeling an integrated 

community system that serves a net zero energy community are presented. 

 

Based on the studies performed in this dissertation, the following conclusions can be 

drawn: 

1) For the model predictive control of the condenser water set point optimization, the 

selection of the initial point for searching has a significant impact on the 

optimization’s accuracy and runtime. The proposed method is recommended, 

since it can result in the lowest number of optimization failure points and a 

reasonably good speed. In addition, for the studied chiller plant located in the
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            climate with mild daily changes in outdoor wet bulb temperature, the frequency of 

the condenser water set point resetting does not affect the energy savings 

significantly. Thus, one can adopt a lower frequency to simplify the control. 

 

2) For the chiller staging control, the results clearly show that there is a trade-off 

among the energy consumption of the chillers, cooling towers, and pumps for the 

studied chiller plant. Depending on the season, one can adjust the number of 

operating chillers to reduce the total energy consumption of the chillers, cooling 

towers, and pumps. By considering the trade-off in the design of the model 

predictive control for chiller staging, one can achieve better energy savings.        

 

3) For the cooling load prediction, the proposed Bayesian network model can 

achieve a close performance to the support vector machine model in terms of 

accuracy and reliability. However, the Bayesian network model is easier to 

implement because it does not include a tuning process. For both the Bayesian 

network model and the support vector machine model, the accuracy of the cooling 

load prediction is not always proportional to the amount of training data available, 

and it may be significantly affected by the uncertainties in the inputs. 

 

4) For optimizing the condenser water set point, the proposed Bayesian network 

model is able to predict comparable results to the physics-model-based control 

method. Thus, it can achieve much better energy savings compared to the existing 

regression-model-based-control methods, which rely on a linear or polynomial 
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regression model. This is likely because the Bayesian network model is more 

suitable for nonlinear relationships. 

 

5) For the modeling of an integrated community system, the preliminary results 

show that the developed PV subsystem model is able to predict relatively accurate 

results. 

 

7.2 Future Works 

Suggestions for further study include: 

 

1) In the system modeling of the studied chiller plant, the author ignored the heat 

gains from the ambient environment and equipment (e.g., the heat generated from 

the operating pumps). It is recommended to consider those heat gains in system 

modeling so that a more realistic representation of the studied chiller plant can be 

achieved. 

 

2) This dissertation evaluates the impacts of the starting point selection and the 

resetting frequency on the energy savings from the condenser water set point 

optimization through a single case. It will be interesting to extend the evaluation 

to chiller plants with different load profiles and weather conditions. Based on 

such studies, researchers can gain a better understanding of the relationships 

between the starting point selection, the resetting frequency, and the energy 

savings from the condenser water set point optimization.    
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3) In this dissertation, the evaluation of the three model predictive control 

approaches for chiller staging is limited to application in the chiller plants with a 

constant primary chilled water flow rate and identical chillers. It is recommended 

to assess the performance of the three approaches on chiller plants with variable 

primary chilled water flow rates and non-identical chillers. 

 

4) For cooling load prediction, both the Bayesian network model and the support 

vector machine model are unable to catch the changes in cooling load for some 

periods. This may be because the hour index and the day number category may 

not be able to represent the occupancy activities in short periods of time. It will be 

beneficial to investigate how to further improve the cooling load prediction by 

using alternative factors to represent the occupancy activities. In addition, it will 

also be interesting to study the possibility of increasing the accuracy by predicting 

the sensible cooling load and the latent cooling load separately. 

 

5) For chiller plants with thermal storage devices or larger distribution loops, 

researchers may need to consider the dynamics of the chiller plants by introducing 

the time and state vectors as parent nodes in the Bayesian network model. In 

addition, studies should also be performed to determine if it is feasible to apply 

the Bayesian network model in the optimization of other control parameters, such 

as the critical points for chiller staging, and if the Bayesian network model can 

achieve better results than the linear or polynomial models in predicting the 

optimal values for those parameters. 
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6) For the research on the net zero energy community, the recommended future work 

will complete the proposed research mentioned in section 6.2. An evaluation 

should also be performed to learn to what extent the partitioning modeling method 

could speed up the simulation. In addition, it is also recommended to study 

whether it is possible to apply the Bayesian network model in the operational 

optimization to simplify the implementation. 
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