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In four studies, the live load factors for the design of reinforced concrete (RC) structures, 

and the strength reduction factors assigned to the elements that use FRP material as 

internal or external reinforcement, are reevaluated against the values in current practice.  

Taking advantage of the theory of the reliability of structures, Studies I and II incorporate 

the life-time into the live load factor of an RC element. To this end, a statistical model is 

established upon the recognized axioms about the probabilistic distributions of load and 

resistance and that the live load factor of 1.60, stated by the current building code for RC 

structures, may account for the variations of the live load in a period of 50 years. The 

outcome of these studies describes the live load factor as ascending functions of life-time, 

which meet the predetermined value of 1.60 for a life-time of 50 years. The same 

formulation also provides a solution to the problem of the effect of the under or over-

design on the expected life-time of a member. 

Studies III and IV also employ the theory of reliability, but this time to calibrate the 

strength reduction factors of the elements that use FRP reinforcement. Study III 

concentrates on flexural members with internal FRP reinforcement, while the subject of 

Study IV is externally strengthened flexural members with the focus on near-surface-



 
 

 
 

mounted (NSM) FRP bars. The novelty of Study III is the introduction of a new approach 

to the calibration of reduction factors which is referred to as the “comparative reliability”. 

The current North American guidelines that regulate the design of the RC members 

internally reinforced with FRP bars, derive their factors by targeting preset levels of 

reliability that are, sometimes, not even achievable by the ordinary steel reinforced 

concrete members. Conceding that the latter elements are of sufficient safety, the 

comparative reliability is a method to calculate the strength reduction factors of the newly 

introduced elements in harmony with the old ones. This approach to strength reduction 

factors minimizes the penalizing of one material in favor of the other, while maintaining 

a uniform level of safety for all. 

Unlike Study III, that uses a database of experimental results to obtain its essential 

statistical input, Study IV generates its own database of externally strengthened RC 

beams and slabs with NSM FRP bars, by benefiting from simulation techniques. The 

combination of the computerized simulation and comparative reliability creates an 

original approach to the calibration of the strength reduction factors of NSM systems, 

while in the current guidelines, the reduction factors are selected by judgment and 

consensus and lack a theoretical and experimental foundation. Furthermore, this study 

eliminates the current partial strength reduction factor, assigned by the current design 

guideline to FRP contribution, and achieves an inclusive factor for NSM FRP systems. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 PREFACE 

The two design parameters that determine the safety of a structural member are the load 

and strength reduction factors. For common structural materials, such as steel and 

reinforced concrete, these parameters are very well established, while for the newly 

introduced structural composites these factors are still in need of validation as:  

The load factors are designed to account for the uncertainties relative to loads and 

therefore, it may be argued that, they are material-independent. Nevertheless, when the 

strengthening of an existing structure is concerned, the expected remaining life-time can 

be different, probably shorter, from what is expected from new construction. A shortened 

life-time, certainly, limits the changeability of the time-dependent loads such as live, 

wind and seismic loads. The first two studies of this thesis try to reflect this time-induced 

change of randomness in the special case of the live load factor. The proposed method, 

however, is expandable to cover other loads as wind, earthquake and snow. 

The strength reduction factors, which are supposed to temper the randomness of 

resistance, are undoubtedly material-dependent. In this aspect, the current North 

American guidelines  developed by the American Concrete Institute (ACI), that control 

the design of the structural members that use composites (also known as fiber-reinforced 

polymers or FRPs), either internally or externally, suffer from two obvious shortcomings. 

They either derive these factors by imposing stringent and non-flexible safety measures 
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on the members they regulate, as is the case for the internally FRP reinforced flexural RC 

members, or merely replicate the factors assigned to the ordinary RC elements, with the 

addition of partial reduction factors for the FRP contribution, as is the case for the 

externally strengthened RC members. Again, this thesis, in its two last studies, is an 

attempt to calibrate the strength reduction factors, so that neither the competitiveness nor 

the safety of the elements with composite materials is compromised. Study III deals with 

the flexural and shear strength reduction factors assigned to beams and slabs reinforced 

internally with FRP bars. Study IV calibrates the flexural reduction factors for external 

strengthening with FRP bars in the special case of near-surface-mounted (NSM) systems.    

The reliability analysis is the recurring theme in all the four studies that form this thesis. 

The reliability analysis can simply be described as the assessment of the probability of 

failure of a certain element subject to a certain load. If the statistical parameters of load 

and resistance are known or estimated, and if a desired level of safety or equally an 

acceptable probability of failure, is determined, the strength and load factors can be 

calculated by reliability-based-criteria. Since the field of the reliability of structures is 

still fresh and not fully explored, this thesis can also make an original contribution to the 

advancement of the subject matter which is no less important than its obvious goals stated 

earlier. 

 

1.2 OBJECTIVES AND OUTLINE 

The thesis may be outlined by Table 1.1 which summarizes the abovementioned points 

and the intended improvements. The four studies share similarities in their general 
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direction and goals; however, each of them possesses a distinctive character that 

separates it from the rest: 

• Study I achieves its goal with analytical means that benefit from simplifying 

assumptions. 

• Study II uses a numerical method to enhance the accuracy of the analytical results 

of Study I. 

• Study III prepares the theoretical ground of calibrating the strength reduction 

factors and applies it to a set of experimental data. 

• Study IV follows the calibration concept of Study III, but gains its distinction 

from generating its input database by computerized simulation. 

The similarities provide a smooth transition from one study to the other, while the 

differences make each study maintain its independent identity.  
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Table 1.1: Outline of the objectives 

Study Subject of study Parameter of 
concern According to ACI Objective of study 

I and II ACI 318-08 
RC elements Live load factor 𝛾𝐿 = 1.60 (1) 𝛾𝐿𝑛 = f(n) (2) 

III ACI 440.1R-06 
FRP RC elements 

Strength reduction 
factors 

Flexural factors are calibrated so that: 
β(FRP RC)≥3.5(4)(5) 

Shear factors are based on ACI 318-08 (6), with 
no reliability analysis performed.  

Calibrate the reduction factors 
using the reliability analysis  

so that: 
β(FRP RC)≈β(Steel RC)  

β(NSM)≈β(Steel RC) (4)  IV 
ACI 440.2R-08 

strengthened 
RC elements  

Strength reduction 
factor for flexural 

NSM systems 

Flexural factors are based on ACI 318-08 (7), with 
the addition of a partial factor, ψf=0.85,  

for FRP (8). 
No reliability analysis is performed.  

(1) ACI 318-08:9.2.1 
(2)  n is the expected life-time (years). 
(3) ACI 440.1R-06:8.2.3 
(4)  β is the reliability index.  
(5) ACI 440.1R-06:8.2.3 
(6) ACI 440.1R-06:9.1.1 
(7) ACI 440.2R-08:10.2.7  
(8) ACI 440.2R-08:10.2.10 
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1.3 NOTATIONS 

Af= area of FRP reinforcement, in.2 (mm2) 

Afv= amount of FRP shear reinforcement within spacing s, in.2 (mm2) 

As= area of steel reinforcement, in.2 (mm2) 

b= width of the beam or slab strip, in. (mm) 

CE= environmental reduction factor 

c= concrete cover to the centroid of steel reinforcement, in. (mm) 

D= dead loads, or related internal moments and forces 

d= dimensionless dead load (random variable) 

d*= value of d at design point 

db= diameter of reinforcing bar, in. (mm) 

df= effective depth of tensile FRP reinforcement, in. (mm) 

ds= effective depth of tensile steel reinforcement, in. (mm) 

Ec= modulus of elasticity of concrete according to ACI 318-11, ksi (GPa) 

Ef= modulus of elasticity of FRP bars, ksi (GPa) 

Es= modulus of elasticity of steel bars, ksi (GPa) 

FX(x)= cumulative distribution function (CDF) for a random variable X 

f= ratio of stress in FRP to its debonding stress 

f’c= specified compressive strength of concrete, ksi (MPa)  

ff= stress level in FRP reinforcement, psi (MPa) 

ffb= strength of bent portion of FRP bar, ksi (MPa) 

ffd= design stress of externally bonded FRP reinforcement, ksi (MPa) 
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ffu= ultimate longitudinal tensile strength of FRP bars, ksi (MPa) 

f*
fu=ultimate tensile strength of the FRP material as reported by the manufacturer, ksi 

(MPa) 

ffv =tensile strength of FRP for shear design, ksi (MPa) 

fX(x)= probability density function (PDF) for a random variable X 

fy= yield strength of steel reinforcement, ksi (MPa) 

G= limit state function 

g= normal comparative limit state function 

g0= a specific value of g 

k= gamma distribution parameter 

kc= ratio of depth of neutral axis to reinforcement depth 

L= live loads, or related internal moments and forces 

L’= nominal live load capacity of a member 

l= dimensionless live load (random variable) 

l*= value of 𝑙 at design point 

N= total number of sets of random samples 

Nf = number of failures 

P= estimated probability of failure 

Ptrue= correct probability of failure 

P(X≤x) = probability of the event X≤x  

p= probability of the event g<g0 

pc= probability of the event g<0 

Q= total load (random variable) 
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QD= dead load (random variable) 

QL= live load (random variable) 

QN= nominal value of total load, or related internal moments and forces 

q= dimensionless total load (random variable) 

q*= value of q at design point 

Mf= contribution of FRP to flexural resistance disregarding professional factor 

Mn= nominal flexural strength, kip.in. (kN.m) 

Mnf= contribution of FRP reinforcement to nominal flexural strength, kip.in. (kN.m) 

Mns= contribution of steel reinforcement to nominal flexural strength, kip.in. (kN.m) 

Ms= contribution of steel to flexural resistance disregarding professional factor 

Ni= nominal value of resistance of ith element (i=1, 2) 

nf= ratio of modulus of elasticity of FRP bars to modulus of elasticity of concrete 

n= life–time (years) 

Pf= professional factor for FRP contribution 

Ps= professional factor for steel contribution 

R= resistance (random variable) 

Rf= contribution of FRP to total flexural resistance (random variable) 

Ri= resistance of ith element (i=1, 2) 

RN= nominal capacity of an element 

Rs= contribution of steel to total flexural resistance (random variable) 

r= dimensionless resistance (random variable) 

r*= value of r at design point 

rb= internal radius of bend in FRP reinforcement, in. (mm) 
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s= stirrup spacing, in. (mm) 

U= required strength of an element (n=50) 

Un= required strength of an element (life-time of n years) 

u= extreme value distribution (EVD) Type I parameter  

ui= ith sample of a uniformly distributed variable between 0 and 1 

un = EVD Type I parameter for live load in a life-time of n years  

Vc= nominal shear strength provided by concrete, kips (kN) 

Vf= shear resistance provided by FRP stirrups, kips (kN) 

Vn= nominal shear strength at section, kips (kN) 

W= nominal value of wind load 

x*= design point 

xi=ith sample of a random variable X 

z*= reduced design point 

zx= reduced form of the random variable 𝑋 

zx
*= value of zx at design point 

α = extreme value distribution (EVD) Type I parameter 

α1= multiplier on f’c to for an equivalent rectangular stress distribution for concrete 

αn = EVD Type I parameter for live load in a life-time of n years 

β= reliability index  

β1= ratio of depth of equivalent rectangular stress block to depth of the neutral axis 

βn = reliability index for a life-time of n years  

βT= target reliability index 

Γ(k)= gamma function 
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γ= total load factor for a life-time of 50 years  

γD= dead load factor per ACI 318-11 (1.2)  

γL = live load factor per ACI 318-11 (1.6)  

γLn = live load factor for a life-time of n years  

γn = total load factor for a life-time of n years  

Δ= strengthening level 

δLn = coefficient of variation of live load for a life-time of n years 

δQn = coefficient of variation of total load for a life-time of n years 

εbi= strain level in concrete substrate at time of FRP installation, in./in. (mm/mm) 

εcu=0.003 in./in. (mm/mm), ultimate axial strain of concrete  

εi= intermediary sepeation variables (i=1, 2, c) 

εn = intermediary separation variable for a life-time of n years 

εs= strain in steel reinforcement, in./in. (mm/mm) 

εsy= strain corresponding to yield strength of steel reinforcement, in./in. (mm/mm) 

δX = coefficient of variation of a random variable X  

θ= gamma distribution parameter 

κ= life-time modification coefficient 

κm=0.70, dimensionless bond-dependent coefficient for flexure 

λLn = bias factor of live load for a life-time of n years 

λQn= bias factor of total load for a life-time of n years 

λX = bias factor of a random variable X 

μ= intermediary variable  

μLn = mean value of live load for a life-time of n years 
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μX = mean value of a random variable X 

μX
e= equivalent normal mean value of a random variable X 

ρ= ratio of live load to total load 

ρfl= FRP longitudinal reinforcement ratio 

ρfv= FRP transverse reinforcement ratio 

ρs=steel reinforcement ratio 

σX= standard deviation of a random variable X 

σX
e = equivalent normal standard deviation of a random variable X 

Φ= cumulative distribution function (CDF) for standard normal distribution 

φ= probability density function (PDF) for standard normal distribution 

Ø= strength reduction factor 

ψf=0.85 partial reduction factor for FRP 

ωb= overall reinforcement index producing balanced strain conditions  

ωf= reinforcement index for FRP bars 

ωfb= FRP reinforcement index producing balanced strain conditions 

ωs= reinforcement index for steel bars 

ωsb= steel reinforcement index producing balanced strain conditions 
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CHAPTER 2 

 

2. STUDY I: INCORPORATING EXPECTED LIFE-TIME INTO LIVE LOAD 
FACTOR FOR RC STRUCTURES USING RELIABILITY ANALYSIS 

 

2.1 BACKGROUND 

Current design codes are mostly silent about the expected life-time of a structure, but it is 

widely believed and agreed upon that their provisions are intended for a life-time of at 

least 50 years (Nowak and Collins 2000, Ellingwood and Galambos 1982, McCormac 

1989).  The design live load proposed by ASCE 7-10 is by definition the maximum live 

load that is predicted to be experienced by an element during its life-time, whereas 

normally only a fraction of this maximum, known as the sustained live load, is applied to 

the element. Infrequent but typically drastic additions to the sustained live load are 

categorized as transient live load, a time-dependent random variable. Therefore, the 

design live load is describable as the maximum value of the live load, sustained plus 

transient, over the expected life-time of 50 years. Noting that sustained live load is also a 

time dependent random variable, the maximum value of live load over a time range 

(design live load for that time range) is another random variable whose statistical 

properties naturally approach those of the sustained live load as the life-time shortens. 

When the life time reaches its minimum, in other words when it is reduced to a given 

point in time, these two become identical, thus sustained live load is often called 

arbitrary-point-in-time (APT) live load. With such a definition of design live load, it is a 

foregone conclusion that, if the life-span of a structure is shortened or prolonged, the 
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design live load has to be affected in the same manner (i.e., is reduced or increased, 

respectively). As a result, when the life-span is shorter than 50 years, in such cases as a 

new but temporary building, or an existing building being repaired with the aim of 

completing its remaining life-time, a certain degree of relaxation to the code’s live load 

factor is logical. Nonetheless, the question of calculation method for this reduction in 

load factor (or increase in case of a life-time of more than 50 years) remains unanswered. 

The same question may be posed in a somewhat more tangible format, that is: how does 

over-design (or under-design) prolong (or shorten) the expected life-time from what the 

code intended (presumably 50 years)?  

This study is an attempt to tackle these questions using a method of reliability analysis 

supported by test data and results available in the technical literature. This is, however, 

only a load-oriented solution the consequences of which cannot be overstated inasmuch 

as other factors (most importantly environmental effects) are not accounted for. To be 

more precise, as the changeability of the live load is reflected in its factor, the possible 

decline of the nominal strength or the deterioration of the structure by time may be 

mirrored in the strength reduction factor, thus decoupling the problem. The latter, 

however, lies outside the scope of this study which only deals with the variability of the 

live load with time.  Still, by covering the aspect of the problem dealing with the 

variation of live load with time, this chapter provides a partial solution to the larger 

question. Attention should also be paid to the definition of life-time when the natural 

deterioration of the structure is overlooked. In this sense, life-time is not a time span after 

which the structure is deemed useless, but is a period during which the probability of 

failure is confined within the limits tolerated by the design code. 
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In this chapter a method of reliability analysis is utilized to calibrate the live load factor 

based on the expected life-time of a cast-in-place reinforced concrete (RC) structure. The 

probabilistic parameters of live load are computed for different life-times and live load 

factors are then suggested so that the same level of safety is maintained for any given 

life-span. An example is presented that demonstrates how modified live load factors can 

be conducive to making decision on the necessity and the level of the required 

strengthening in a concrete structure in need of repair. 

 

2.2 OUTLINE 

 The components of this study that are also sequentially presented include: 

1) Collection of data (resistance and load models): 

• Statistical parameters (i.e., mean and standard deviation) of resistance for each 

element and its (ultimate) limit state are gathered from the literature (Nowak and 

Szerszen 2003). 

• Dead load and live load are assumed to be the only loads exerted on an element 

and are combined according to the relevant load combination of ASCE 7 (ultimate 

strength design) which is concurrent with ACI 318-11 (U=1.2D+1.6L). When 

only live and dead load are of concern, another possible combination is U=1.4D, 

which is only critical if the live load is minimal. Since the focus of this sudy is on 

the live load, this combination is neglected. 

• Statistical parameters of dead and live load for both cases of a 50-year period and 

arbitrary-point-in-time are gathered from the literature (Nowak and Szerszen 2003 

and Ellingwood and Galambos 1982). 
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These brief sections obtained from existing studies prepare the input for the following 

sections which make up the original contribution of this work to the existing body of 

knowledge. 

2) Process of data: 

• Based on these data, a probabilistic model is constructed that permits the 

computation of the statistical parameters of live load as functions of life-time. 

This part provides the data required for the calibration process.  

3) Calibration procedure: 

• Limit state functions are defined according to the ultimate load-carrying capacity 

of the element in question. The limit states are defined as exceeding: a) the 

ultimate moment carrying capacity for flexural members (RC beams and slabs); 

b) the ultimate shear capacity of RC beams; and, c) the ultimate compressive 

capacity of tied RC columns (concrete crushing). Thus the terms “limit state” and 

“failure mode” might be used interchangeably. 

• The reliability index for a 50-year life-span is calculated according to ACI 318-11 

load and safety factors together with relevant statistical parameters of live and 

dead load. This reliability index serves as the “target reliability” or the safety level 

provided by the design code.  

• For each life-time, the live load factor, γLn, is calculated so that the target 

reliability index is achieved.  

• Life-time modification coefficient, κ, is then introduced to unify the formulation 

of the live load factors. κ is calculated for several cases that can cover a range of 

loadings and limit states.  
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By describing the live load factor, γL, as a function of the expected life-time of a 

structure, this chapter tries to add another dimension to the load and resistance factor 

(ultimate strength) design method of ACI 318-11. This approach offers the clear 

advantage of an economical yet safe design when the expected life-time is different from 

what the code intended. Additionally, it provides a methodology to assess the expected 

life of structures in need of strengthening, which is a critical factor in deciding upon the 

urgency and level of the required repair. 

 

2.3 RESISTANCE MODEL 

The structural elements considered in this chapter are cast-in-place RC flexural members 

(beams and slabs with tension-controlled failure) and cast-in-place RC compression 

members (axially loaded tied columns with compression-controlled failure). The ultimate 

limit states are flexural moment capacity for beams and slabs, shear capacity for beams, 

and compressive capacity for columns. Materials utilized in construction are ordinary 

concrete and steel reinforcing bars. The construction method is cast-in-place. For such 

members and conditions, the statistical parameters of resistance, R, are taken from 

Nowak and Szerszen (2003) and shown in Table 2.1. These parameters include: 1) bias 

factor or λ (the ratio of mean to the nominal or design value of a random variable); 2) 

coefficient of variation (CoV) or δ; and, 3) the probabilistic distribution of the variable. 

 

2.4 LOAD MODEL 

The two most common load components, dead and live loads, are herein considered. The 

statistical parameters and properties of dead and live loads are taken from the available 
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literature (Nowak and Szerszen 2003, Ellingwood and Galambos 1982) and summarized 

in Table 2.2 with its parameters defined similar to Table 2.1. Two sets of these 

parameters are introduced: the first set, arbitrary-point-in-time (APT), relates to the load 

expected to act on the structure at any given time; while the second set corresponds to the 

maximum load expected in the 50-year life-time of the structure. Dead load is basically 

time independent, therefore the two sets (i.e., APT and 50-year) are identical. In addition 

to time, live load parameters are also functions of the influence area so that by increasing 

that area, the live load tends to grow more deterministic and less random. Here, an 

influence area of 430 sq. ft. (40 m2) is considered as a reasonable assumption which also 

corresponds to the values in Table 2.2. This concludes the collection of data from 

literature. The following section details the utilization of the statistical modelling in order 

to interpolate (for life-times shorter than 50 years) and extrapolate (for life-times longer 

than 50 years) these parameters and hence generate the essential data for the calibration 

of the live load factor. 

 

2.5 CALCULATION OF STATISTICAL PARAMETERS OF LIVE LOAD AS 
FUNCTIONS OF LIFE-TIME 

 
Building upon Table 2.2, this study tries to project the statistical parameters of live load, 

λL and δL, for different life-spans.  

The probabilistic nature of maximum live load in a certain period of time is assumed to 

be characterized by extreme value distribution (EVD) Type I. Such a distribution is 

defined by its cumulative distribution function (CDF), FX(x), and probability density 

function (PDF), fX(x) , as shown in Equations 2.1 and 2.2 (Nowak and Collins 2000): 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑒−𝑒−𝛼(𝑥−𝑢)
     (2.1) 
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𝑓𝑋(𝑥) = 𝛼𝑒−𝑒−𝛼(𝑥−𝑢)𝑒−𝛼(𝑥−𝑢)     (2.2) 

In Equations 2.1 and 2.2, X is a random variable and P(X≤x) denotes the probability of X 

being equal or smaller than a specific value of x. Parameters α and u are related to mean, 

μX, and standard deviation, σX, of X by (Haldar and Mahadevan 2000): 

𝜇𝑋 = 𝑢 + 0.5772
𝛼

        (2.3) 

     𝜎𝑋 = 𝜋
√6𝛼

      (2.4) 

In order to derive λ and δ for a period of 25 years, it can be argued that a life-time of 50 

years can be split into two consecutive 25-year periods. It is assumed that for each sub-

life-time, the live load, QL, conforms to a Type I distribution. Let F25,QL(l), defined by 

parameters α25  and u25, stand for the CDF of live load during each period of 25 years, 

whereas F50,QL(l), representing the CDF over the total life-time, is defined by α50 and  u50 

or: 

𝜇𝐿𝑛 = 𝑢𝑛 + 0.5772
𝛼𝑛

        (2.5) 

    𝜎𝐿𝑛 = 𝜋
√6𝛼𝑛

      (2.6) 

Where n is the life-time, i.e., 25 or 50 years in this case. According to Equation 2.1: 

𝑃(𝑄𝐿 ≤ 𝑙)|in 50 years = 𝐹50,𝑄𝐿(𝑙)    (2.7) 

                 𝑃(𝑄𝐿 ≤ 𝑙)|in the first 25 years = 𝐹25,𝑄𝐿(𝑙)       (2.8) 

    𝑃(𝑄𝐿 ≤ 𝑙)|in the second 25 years = 𝐹25,𝑄𝐿(𝑙)    (2.9) 

The probability of occurrence of the event in Equation 2.7 is conditional upon occurrence 

of both events in Equations 2.8 and 2.9 or: 

𝑃(𝑄𝐿 ≤ 𝑙)|in 50 years = 𝑃�(𝑄𝐿 ≤ 𝑙)|in the first 25 years AND (𝑄𝐿 ≤ 𝑙)|in the second 25 years�     

(2.10) 
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 It is justifiable to assume that the loadings in the two periods are uncorrelated and 

therefore:  

𝑃(𝑄𝐿 ≤ 𝑙)|in 50 years = �𝑃(𝑄𝐿 ≤ 𝑙)|in the first 25 years��𝑃(𝑄𝐿 ≤ 𝑙)|in the second 25 years�       

(2.11) 

Substituting from Equations 2.7 to 2.9 into Equation 2.11: 

𝐹50,𝑄𝐿(𝑙) = 𝐹25,𝑄𝐿
2 (𝑙)     (2.12) 

Hence: 

𝑒−𝑒−𝛼50(𝑙−𝑢50) = 𝑒−𝑒−𝛼25(𝑙−𝑢25)+ln (2)    (2.13) 

Which necessitates: 

𝛼50 = 𝛼25      (2.14) 

And therefore: 

𝜎𝐿50 = 𝜎𝐿25      (2.15) 

And: 

𝛼50𝑢50 − 𝛼25𝑢25 = ln (2)     (2.16) 

Hence, recalling Equations 2.5 and 2.6: 

𝜇𝐿25 = 𝜇𝐿50 −
ln (2)
𝛼50

= 𝜇𝐿50 −
√6
𝜋

 ln (2)𝜎𝐿50 = 𝜇𝐿50 �1 −
√6
𝜋

 ln (2)𝛿𝐿50� (2.17) 

In Equation 2.17, δL50=0.18, as per Table 2.2. In general, for any life-time of n years for 

which a valid assumption of EVD Type I distribution can be made:  

𝜇𝐿𝑛 = 𝜇𝐿50 �1 + 0.140ln � 𝑛
50
��    (2.18) 

𝜎𝐿𝑛 = 𝜎𝐿50      (2.19) 
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Note that for n=25, Equations 2.18 and 2.19 are identical to Equations 2.17 and 2.15. λLn, 

the bias factor of the live load for a period of n years (e.g., λL50=1.00  from Table 2.2), 

and δLn, the coefficient of variation of the live load for the same period, are defined as: 

𝜆𝐿𝑛 = 𝜇𝐿𝑛
𝐿

      (2.20) 

𝛿𝐿𝑛 = 𝜎𝐿𝑛
𝜇𝐿𝑛

      (2.21) 

In Equation 2.20, L is the nominal (design) value of live load per code. Eventually, by 

substituting from Equation 2.20 into 2.18: 

𝜆𝐿𝑛 = 𝜆𝐿50 �1 + 0.140ln � 𝑛
50
�� = 1 + 0.140ln � 𝑛

50
�   (2.22) 

Combining Equations 2.19 and 2.21 results in: 

                             𝜇𝐿𝑛𝛿𝐿𝑛 = 𝜇𝐿50𝛿𝐿50      (2.23) 

Substituting from Equation 2.20 into Equation 2.23: 

                                 𝜆𝐿𝑛𝛿𝐿𝑛 = 𝜆𝐿50𝛿𝐿50 = 0.180      (2.24) 

Or: 

    𝛿𝐿𝑛 = 0.180

1+0.140ln� 𝑛50�
      (2.25) 

One must, however, be mindful of the limitations of Equations 2.22 and 2.25. As n 

decreases, the probabilistic distribution of live load deviates from EVD Type I and 

approaches gamma distribution, which is the distribution corresponding to APT. 

Therefore, these formulae lose their applicability for small values of n. The minimum 

value of n that can justify an EVD Type I distribution is mostly a matter of engineering 

judgment; nevertheless, mathematically speaking, in order to maintain consistency, it is 

necessary but may not be sufficient, that n be selected so that λLn≥ λLAPT=0.24 and δLn≤ 
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δLAPT=0.65, which can be conservatively translated into n≥1. By imposing this 

restriction, Equations 2.22 and 2.25 provide a smooth transition between the two cases of 

point-in-time and 50-year period and even beyond (Fig. 2.1). Table 2.3 also presents the 

statistical parameters (bias and CoV) for a few selected life-times. In Fig. 2.1 the origin, 

n=0, corresponds to APT in Table 2.3. The segments of the two curves confined between 

APT and n=1 are of very little practical interest and at any rate can be obtained accurately 

enough by a linear interpolation between the two points.  

 

2.6 CALIBRATION OF LIVE LOAD FACTOR BY MEANS OF 
RELIABILITY ANALYSIS 

 
The safety level of a structural element is measured in terms of reliability index β which 

is defined as: 

𝛽 = 𝜇𝑅−𝜇𝑄

�𝜎𝑅
2+𝜎𝑄

2
      (2.26) 

In which the subindices R and Q indicate resistance and load respectively. In case of live 

load, as the mean value of load, μLn, is a function of life-time (Equation 2.18) so is the 

reliability index, unless resistance is adjusted so that a constant level of safety for any 

given life-time is attained. This constant level or target reliability, βT, is benchmarked 

against the already established level of safety of the code:   

𝛽𝑇 = 𝛽50     (2.27) 
β50 is the reliability index for a life-time of 50 years assuming that load and safety factors 

given by ACI 318-11 pertain to that time span. It is essential that attention be paid to this 

definition of the target reliability that differs from the conventional target reliability 

described as a constant value. By this definition, βT is a function of the relative 

magnitude of live and dead loads. βT is also, as the design code intends, a function of the 
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consequence of failure with the more critical elements or failure modes having larger 

target reliability indices. These variations of the target reliability are quantified in the 

upcoming sections of this study.  

 Adjustment of resistance can be implemented by changing design requirements (i.e., the 

design live load factor, the load magnitude or the strength reduction factor). In this study, 

this adjustment is applied to the live load factor and is referred to as the calibration of live 

load factor.  

Calculation of target reliability index (β50) 

The first step of calibration is the calculation of the reliability index in terms of safety and 

load factors and statistical parameters of load and resistance. ACI 318-11 requires that the 

following equation between the nominal values of resistance, RN , dead load, D, and live 

load, L, be upheld: 

𝜙𝑅𝑁 = 𝛾𝐷𝐷 + 𝛾𝐿𝐿     (2.28) 

In which γD=1.2 is the dead load factor, γL=1.6 is the live load factor and Ø is the 

strength reduction factor that assumes different values based on the limit state (Table 

2.4). 

For RC members complying with this load combination, Fig. 2.2 displays the target 

reliability over the whole range of ρ, the ratio of live (L) to total load (D+L). Table 2.4 

also shows the exact value of the index for a few select values of ρ. Appendix A provides 

details of the calculations undertaken to generate the relationship between the reliability 

index and ρ. Furthermore, Table 2.4 and Fig. 2.2 show how target reliability is in 

agreement with the importance hierarchy of the elements and the suddenness of failure. 

The highest value of β belongs to columns, the lowest to slabs while beams are placed in 
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between. Again for beams, failure against shear has to satisfy higher levels of reliability 

compared to the more ductile and less sudden flexural failure. 

Modification of live load factor 

ACI 318-11 load-resistance requirement (Equation 2.28) can be generalized for any life-

span of n years as: 

𝜙𝑅𝑁 = 𝛾𝐷𝐷 + 𝛾𝐿𝑛𝐿     (2.29) 

The aim of modification (or calibration) is to find γLn, so that a constant level of 

reliability is maintained for any life-time of n years. Details of calculations are provided 

in Appendix B and the final solution is repeated here: 

   𝛾𝐿𝑛 = 1.6 �1 + 𝜅ln � 𝑛
50
��       (2.30) 

Derived from Equation B13, κ or life-time modification coefficient depends on the 

element, limit state (failure mode) and as Table 2.5 shows, to a lesser degree, the live 

load ratio, ρ, while it is independent of n.  

Minimum live load factor 

Similar to Equations 2.22 and 2.25, Equation 2.30 is not recommended for n<1 year. Live 

load factors belonging to shorter life-times are not of considerable practical interest; 

however, they are briefly discussed here for completeness. 

The minimum value of the live load factor corresponds to the shortest of life-times, i.e., 

APT, therefore the limit for Equation 2.30 may be obtained by following the same 

procedure detailed in Appendix B with the difference that the statistical parameters of 

the arbitrary-point-in-time live load (Table 2.2) replace those calculated from Equations 

2.22 and 25. Again this minimum load factor depends on the element, ultimate limit state 

and the live load ratio, ρ. For instance, if ρ=0.50 then γLAPT=0.697 for columns subject to 
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compressive force and γLAPT=0.639 for slabs subject to flexure. With these two values 

calculated for the elements demanding the highest and lowest reliability indices 

respectively, Fig. 2.3 depicts the variation of the live load factors for these elements, limit 

states and the live load ratio of 0.50 over time spans ranging from APT to 100 years. 

Simplification for practical purposes 

As Fig. 2.3 reveals, the live load factor curves for different elements are virtually 

inseparable, bearing in mind that the curves for the live load factors of beams, under 

flexure or shear (not shown in the graph), lie between the two curves relative to columns 

and slabs. This calls for a simplification of Equation 2.30 which enhances its workability 

and streamlines the structural analysis:  

𝛾𝐿𝑛 = 1.6 �1 + 0.09ln � 𝑛
50
�� ≥ 0.65       (2.31) 

Equation 2.31 is employable regardless of the live load ratio, element type or limit state. 

Appendix C recounts the details of this reformulation which, certainly, is not the sole 

approximation method and engineers, as they deem fit, can derive their own formulae. 

 

2.7 EXAMPLE OF APPLICATION: REPAIR OF AN EXISTING BUILDING 

A simple example illustrates how including the expected life-time of a building can 

influence and guide the process of the repair of a building.  

An existing RC building must sustain a dead load of D=60 psf (L=3.0 kN/m2) and a live 

load of L=80 psf (L=4.0 kN/m2) which, according to ACI 318-11, leads to the required 

strength of the structural members of Urequired =(1.2)(60 psf)+(1.6)(80 psf)= 200 psf (10.0 

kN/m2). Due to the structural inadequacies detected in the building, it is determined that 

its structural members have an average capacity of ØRN=184 psf (9.2 kN/m2) which 
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corresponds to the same dead load but a live load of only L=70 psf (L=3.5 kN/m2). The 

design objective is to determine a) the required level of repair, if the remaining life of the 

structure after repair is required to be 10 years and b) the remaining life-time of the 

building, for the same level of safety of 50 years, if no repair is implemented.  

a) Recalling Equation 2.31(for simplicity, although the more accurate form of Equation 

2.30 is also possible) with n =10 years, the live load factor, γLn, may be modified to 

1.368. Hence Urequired=(1.2)(60 psf)+(1.368)(80 psf)=181 psf (9.1 kN/m2) < Uexisting=184 

psf (9.2 kN/m2) which rejects the necessity of repair. 

b) The expected life-time of an RC structure must satisfy Equations 2.29. For the building 

in the example this leads to γLn=1.40. Reversing Equation 2.31 and solving for n, the 

remaining unrepaired life-time is approximately 12 years. 

 

2.8 CONCLUSIONS 

To adjust the live load factor of ACI 318-11, γL=1.6, based on the expected life-time of 

structures, the live load factor is derived as a function of the expected life-time, for 

common reinforced concrete elements and ultimate limit states (or failure modes). To that 

end, the statistical data available in the literature is used and expanded by describing the 

probabilistic parameters of live load as functions of life-time using the statistical model 

of extreme value distribution Type I. Assuming that the design requirements of ACI 318-

11 are based on a life-time of 50 years, the live load factors, while different for different 

element types, converge to the factor stipulated by ACI 318-11 when the life-span 

approaches 50 years. In other words, all the factors are, as expected, ascending functions 

of life-time with a fixed value of 1.6 at n=50 years. However, due to their closeness and 
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for the convenience of use in practice, all these curves are condensed in one to propose a 

unique and simple formulation for the variation of the live load factor with the expected 

life-time. This modified factor allows engineers to optimize their design without 

compromising the safety of structures. 

The method detailed in this chapter is applicable to other time-dependent loads (e.g., 

seismic or wind loads) and other load combinations in order to generate load factors that 

are tied to the expected life-time. 

The reliability analysis presented in this chapter involves some approximation as, in 

essence, it does not discriminate between normal and non-normal random variables. This 

can be alleviated by adopting numerical methods that incorporate the distribution of each 

random variable into calculations. The equations derived in this study may then be used 

to generate a semi-analytical solution for live load factors based on numerical outcomes 

which is the subject of the next chapter. 
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Table 2.1: Statistical parameters of resistance for cast-in-place RC members (1) 

Structural type  Limit state Bias (λR) CoV(δR) Distribution 

Beam  Flexure(2) 1.190 0.089 Lognormal 

Beam  shear 1.230 0.109 Lognormal 

Slab  Flexure(2) 1.077 0.146 Lognormal 

Tied column  compression 1.260 0.107 Lognormal 

(1)Nowak and Szerszen (2003) 

(2)Tension controlled 

 

Table 2.2: Statistical parameters for load components 

Load 
component 

Arbitrary point-in-time (APT) 50-year life-time 

Bias(1) 
(λ)  

CoV(1) 
(δ)  Distribution(2) Bias(1) 

(λ) 
CoV(1) 

(δ)  Distribution(2) 

Dead load(3)  1.05 0.10 Normal 1.05 0.10 Normal 

Live load 0.24 0.65 Gamma 1.00 0.18 Type I 

(1)Nowak and Szerszen (2003) 
(2) Ellingwood and Galambos (1982) 
(3)Cast-in-place 
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Table 2.3: Statistical parameters of live loads 

Life-time 
(n years) 

Bias 
(λLn) 

CoV 
(δLn) 

APT 0.240 0.650 

1 0.452 0.398 

5 0.677 0.266 

10 0.774 0.233 

25 0.903 0.199 

50 1.000 0.180 

100 1.097 0.164 

 

 

Table 2.4:Target reliability indices, β50, as a function of ρ for cast-in-place RC members 

Structural type Limit state Ø(2) 

β50 

ρ=0.25  ρ=0.50 ρ=0.75 ρ=1.00 

Beam  Flexure(1) 0.90 3.83 4.24 4.34 4.28 

Beam  shear 0.75 4.39 4.69 4.80 4.81 

Slab  Flexure(1) 0.90 2.12 2.45 2.64 2.75 

Tied column  compression 0.65 5.21 5.47 5.57 5.57 

(1)Tension controlled 
(2)ACI 318-11 
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Table 2.5: Life-time modification coefficient, κ, as a function of ρ for cast-in-place RC 

members 

Structural type Limit state 

κ 

ρ=0.25  ρ=0.50 ρ=0.75 ρ=1.00 

Beam  Flexure(1) 0.088 0.091 0.091 0.091 

Beam  shear 0.085 0.088 0.087 0.086 

Slab  Flexure(1) 0.096 0.100 0.102 0.103 

Tied column  compression 0.081 0.083 0.082 0.081 

(1)Tension controlled 
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Figure 2.1:Statistical parameters of live load (λLn, δLn) vs. life-time (n) 

 

Figure 2.2: Target reliability indices for different cast-in-place RC elements 
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Figure 2.3: Live load factors for columns and slabs (ρ=0.50) 
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CHAPTER 3 

 

3. STUDY II: NUMERICAL APPROACH TO LIVE LOAD FACTORS FOR RC 
STRUCTURES AS FUNCTIONS OF LIFE-TIME  

 

3.1 BACKGROUND 

Summary of study I 

When conventional reinforced concrete (RC) structures are concerned the dominant 

design load combination against the gravitational loads, according to ASCE 7-10 and 

ACI 318-11, is: 

𝑈 = 1.2𝐷 + 1.6𝐿         (3.1) 

Where U is the required strength and D and L are dead and live loads, or their related 

internal moments and forces. The live load is, naturally, time-dependent which binds 

Equation 3.1 to the intended life-time of the structure, for which a span of 50 years is the 

standard assumption.  The aim is simply to generalize Equation 3.1 as a function of the 

expected life-time, n, or: 

𝑈𝑛 = 1.2𝐷 + 𝛾𝐿𝑛𝐿         (3.2) 

Where γLn is a function of n, e.g., γL50=1.60. As a preamble to this study, an approximate 

analytical solution was presented in Chapter 2 which yielded results in the general form 

of: 

𝛾𝐿𝑛 = 𝛾𝐿 �1 + 𝜅ln � 𝑛
50
��     (3.3) 

Where, κ, the life-time modification coefficient is a function of two parameters: the limit 

state (failure mode) and ρ=L/(D+L). 
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Objective 

This chapter tries to overcome the deficiencies of the analytical solution presented in the 

previous chapter (Study I) using a numerical method (Rackwitz-Fiessler procedure) while 

benefiting from the approximate analytical solution to mold the numerical results into an 

analytical format. The two objectives of this study are: a) to use the numerical Rackwitz-

Fiessler procedure to refine the approximate analytical results obtained in the previous 

study; and, b) to offer an extensive comparison of the mainstream reliability analysis 

methods (i.e., analytical, numerical and simulation techniques) which are applied in 

practical cases. The latter can be regarded as an investigation on the extent of efficiency 

and accuracy of each method. 

 

3.2 OUTLINE 

The contents of this chapter include a discussion of: 

• The “target reliability index” is defined as the reliability index of a cast-in-place 

RC element complying perfectly with the load-resistance requirements of ACI 

318-11, when the statistical parameters of the live load are derived for the 

duration of 50 years.  

• The target reliability indices are calculated by the Rackwitz-Fiessler method and 

are juxtaposed with the results obtained by the conventional assumption that the 

limit state conforms to the normal distribution. 

• The state of failure is simulated numerically via Monte Carlo method and the 

target reliability indices are recalculated. This stage provides proof positive of the 

enhancement in accuracy achieved by the Rackwitz-Fiessler method. 
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• For any life-time of n years, the statistical parameters of the live load are modified 

according to Chapter 2 and the live load factor is calibrated so that the target 

reliability is attained. 

• The live load factor is formulated as a function of the life-time and conversely the 

expected life-time is described as a function of the live load capacity of an 

element and its design live load. 

 

3.3 CALCULATION OF RELIABILITY INDEX: RACKWITZ-FIESSLER 
PROCEDURE 

 
The first stage of the process is the calculation of the target reliability index, βT, which, in 

this study, is redefined as, β50, the reliability index of an element if the strength reduction 

(Ø) and load factors (γ) are based on ACI 318 and the statistical parameters of the live 

load are based on a life-time of 50 years. Study I provides these values of β50 based on 

the simplifying assumption that load and resistance are random variables that follow the 

normal distribution (top part of Table 3.1).  

To achieve higher accuracy, the numerical Rackwitz-Fiessler procedure can be utilized 

which takes into account the probabilistic distribution of the random variables. This 

procedure is detailed and developed in Appendix D to accommodate the limit state 

investigated in this study. The middle part of Table 3.1 shows the target reliability 

indices for a few selected values of ρ=L/(D+L) calculated by this procedure. As an 

example, Table 3.2 details how βT =β50=3.87 is calculated for an RC beam subject to 

flexural failure (ultimate limit state) caused by equal nominal live and dead loads 

(ρ=0.50). It should be noted that the first cycle of the Rackwitz-Fiessler is equivalent to 

the assumption that all the variables are normally distributed, as in Equation A17 or 
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equally in Study I, and leads to the same results. For the instance of this case, β=4.24 

from both the normal assumption part of Table 3.1 and the first cycle in Table 3.2. The 

subsequent values of β in Table 3.2 show the transition towards the eventual 

convergence, β=3.87, which is the corresponding value of β50 obtained by the Rackwitz-

Fiessler procedure (the middle part of Table 3.1). For the cases investigated in Table 3.1, 

the relative difference between the results of the two methods reaches a maximum of 

29% and averages at 12%.  

Fig. 3.1 portrays a comparison between the two approaches in the case of beams. 

Significant differences, especially for cases where the live load accounts for the majority 

of the total applied load, necessitate that the error associated with the two approaches be 

estimated. In this study the Monte Carlo simulation, discussed in the following section, is 

employed to arbitrate between the former two methods and provide a sense of accuracy 

of each.  

 

3.4 CALCULATION OF RELIABILITY INDEX: VALIDATION BY MONTE 
CARLO SIMULATION 

 
Monte Carlo method is simply a brute force technique that generates samples of 

numerical data (e.g., load and resistance) and then observes the number of times an event 

of concern (e.g., failure) occurs. Appendix E provides the details of the method by which 

any level of precision is theoretically obtainable; however, it also points out its 

computational intensity if a high reliability index is to be calculated with a high level of 

accuracy, the reason that renders the two aforesaid methods (Rackwitz-Fiessler and 

normal assumption) , even with their recognized limitations, of great practical interest. 
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The bottom part of Table 3.1 shows the results of the Monte Carlo simulations which are 

in close accordance with the Rackwitz-Fiessler method (less than 1% difference on 

average with a maximum of 2.5 %). With the target reliability indices validated, the 

actual objective of this study and its contribution to the reliability literature is explained 

in the following sections. 

 

3.5 CALIBRATION OF LIVE LOAD FACTOR BASED ON THE EXPECTED 
LIFE-TIME 

 
 When the target reliability is calculated by the Rackwitz-Fiessler procedure (middle part 

of Table 3.1), the parameters λL, δL and γ are replaced by their counterparts that 

correspond to a life-time of n years, λLn, δLn and γn as formulated in Study I. For each life 

span, the load factor γn is adjusted so that this target reliability is attained. This requires a 

trial and error solution for γn, with each trial going through the iterative procedure 

detailed in Appendix D. The modified live load factor, γLn, is then back calculated from 

Equation B2. Table 3.3 shows the calibrated live load factors (γLn) for ρ=0.50.  

Example of application 

A simple example may explain Table 3.3 more clearly. An RC beam is subject to equal 

dead and live loads of 50 psf (2.5 kN/m2) which also produce equal internal moments. 

The aim is to calculate its required flexural strength, Un, if  

a)  the beam is to be designed according to ACI 318-11.  

b) the beam is being examined for possible repair as its existing factored capacity is 

evaluated as ØRN = 130 psf (6.5 kN/m2), while it is required to function for only 5 

more years. 

c) the beam is part of an important building with an expected life-time of 100 years. 
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Since D=L then ρ= L/ (D+L)= 0.50 and Table 3.3 is applicable. Therefore: 

a) U50=140 psf (7.0 kN/m2) from either Equation 3.1 or equally by substituting 

γL50=1.600 (from Table 3.3) into Equation 3.2.  

b) From Table 3.3, γL5=1.314, and by substituting into Equation 3.2: U5=125.7 psf 

(6.3 kN/m2)< ØRN =130 psf (6.5 kN/m2), hence, no repair is needed although the 

beam is deficient according to ACI 318-11 which demands a strength of U50=140 

psf (7.0 kN/m2) from part (a). 

c) From Table 3.3, γL100=1.686, and by substituting into Equation 3.2: U100=144.3 

psf (7.2 kN/m2). A slight addition to the strength, 4.3 psf (0.2kN/m2), drastically 

lengthens the life-time. 

For other loading proportions (different values of ρ) tables similar to Table 3.3 can be 

developed which are left out for brevity; instead, a generalized solution that practically 

covers all the cases is formulated in the next section. 

 

3.6 UNIFIED FORMULATION OF LIVE LOAD FACTORS 

To obtain a formula for the live load factors from the numerical values a regression curve 

of must be fitted to each column of Table 3.3. Finding the optimal curve type to be fitted 

to a set of numerical data is normally a matter of trial and error. In this study, however, 

the analytical although approximate solution (Chapter 2) provides the benefit of having a 

natural candidate that with minor modifications fits extremely well into the numerical 

results. Furthermore, such a regression curve has the additional advantage of forecasting 

the results beyond the original data points with adequate certainty, while the extrapolated 

tails of the curves selected by trial and error must always be treated with extreme caution.  
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Equation 3.3 is, therefore, fitted to the columns of Table 3.3, where the unknown κ or 

life-time modification coefficient, is calculated from conventional regression procedures. 

Table 3.4 shows these results and others that pertain to a few selected values of ρ. 

Compared to the analytical results (Chapter 2) which demonstrated little and slightly 

erratic sensitivity to ρ, the numerical results follow a general and noticeable declining 

trend as ρ, the share of live load from the total load, increases. The gap between the two 

methods also widens with the increase of live load or ρ.  

Fig. 3.2 and Fig. 3.3 compare the results obtained in this study with those from Study I in 

the cases of a beam subject to flexure and a column subject to compressive axial load. 

For both cases D=L or ρ=0.50. Equation 3.3, however, is singular if n=0 which puts the 

start point of the curves out of the range of the validity of Equation 3.3.The next section 

deals with this point. 

 

3.7 MINIMUM VALUE OF LIVE LOAD FACTORS 

A restriction must be imposed on the minimum acceptable value of n in Equation 3.3. 

Logically the minimum modification factor corresponds to that of the shortest life span or 

APT. Therefore values of n that yield live load factors smaller than those corresponding 

to the arbitrary–point-in-time (Table 3.5) are to be neglected, or:  

𝛾𝐿𝑛 = 𝛾𝐿 �1 + 𝜅ln � 𝑛
50
�� ≥ 𝛾𝐿𝐴𝑃𝑇    (3.4) 

γLAPT is obtained in the same manner of γLn, taking into account that in the APT case the 

probabilistic distribution of the live load conforms to the gamma distribution instead of 

EVD type 1, as discussed in more detail in Appendix D. Conservatively, however, the 

inequality may be replaced by limiting the life-time to a minimum of 1 year (n≥1).  
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3.8 APPLICATION TO CALCULATION OF EXPECTED LIFE-TIME AS A 
FUNCTION OF LOAD AND RESISTANCE 

 
The obvious application of mathematical procedure developed in this chapter is to adjust 

the required strength according to the expected life-time of a new structure or the 

remaining life-time of an existing one. This was explained earlier by a simple example, 

but this formulation, if reversed,  can also be an aid to engineers attempting to estimate 

the expected life of a structure based on its design capacity and design loads.   

If an RC element is optimally designed then, according to ACI 318, its nominal strength, 

RN, must uphold Equation 3.5: 

∅𝑅𝑁 = 1.2𝐷 + 1.6𝐿         (3.5) 

Where Ø is the strength reduction factor. While the nominal strength of an over or under-

designed element satisfies Equation 3.6: 

   ∅𝑅𝑁 = 1.2𝐷 + 1.6𝐿′                         (3.6) 

Where L’ is the nominal live load capacity of the member and accounts for the deviation 

from the loading requirements. If Equations 3.2 and 3.6 are equated (Un=ØRN) the life-

time of the element, n, or the period during which its capacity satisfies the strength 

requirement can be derived as: 

𝑛 = 50𝑒�
𝐿′

𝐿 −1�/𝜅     (3.7) 

Again, L’ is the nominal live load that a member can sustain, L is the design live load 

stated by the code and κ, is selected from Table 3.4. A simplified example can show how 

life-time is affected by a change in use of a building. 

A building, based on its function, must be capable of carrying a live load of L=50 psf (2.5 

kN/m2). It is also assumed that the dead load has an equal magnitude or D=50 psf (2.5 
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kN/m2) which leads to U=140 psf (7.0 kN/m2). However, the building is slightly over-

designed and its structural members have an average capacity of ØRN=150 psf (7.5 

kN/m2) which according to Equation 3.6 can be divided into the unchanged dead load of 

D=50 psf (2.5 kN/m2) and the new live load of L’=56.25 psf (2.8 kN/m2). The building is 

now being converted to a different use which, according to the load requirements, 

necessitates a design live load of L=60 psf (3.0 kN/m2). The effect of this conversion is to 

be investigated on the expected life-time of each element type. 

Since, dead and live load are approximately equal before and after conversion, ρ≈0.5, and 

with a slight approximation, corresponding values of κ from Table 3.4 may be 

substituted in Equation 3.7. Table 3.6 shows how the initial over-strength and subsequent 

under-strength greatly influence the expected life-time of the building and the probability 

of failure of each member type. Subtly, it also reveals that degree of sensitivity of the 

elements to over or under-strength conforms to the hierarchy of their importance or 

reliability: The most sensitive are the columns, the least are the slabs while beams are in 

between. Again for beams, shear limit state is more decisive in defining the life-time as 

compared to the more ductile and less sudden flexural limit state. 

The procedure described in this study can be applied on other time dependent loads, 

snow, wind and earthquake or other structural elements to describe their load factors as 

functions of life-time for the limit states considered.  
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3.9 CONCLUSIONS 

The following results are drawn from this study: 

• Live load factors as functions of the expected life-time are derived for common 

reinforced concrete elements and ultimate limit states (or failure modes), using the 

statistical data available in the literature and expanding the probabilistic parameters of 

live load as a function of life-time by means of the statistical model of extreme value 

distribution Type I. The numerical Rackwitz-Fiessler procedure of reliability analysis is 

applied to this data, while a simplified analytical method (Study I) provides the basis 

upon which the numerical results are shaped into a uniform and simple analytical format 

(Equation 3.3). Assuming that the design requirements of ACI 318-11 aiming at a life-

time of 50 years, the live load factors are, as expected, ascending functions of the life-

time, n, which converge at the fixed value of γL=1.60 at n=50 years, but differ in the life-

time modification coefficient, κ, which varies according to the element type, limit state 

and the ratio of live load to the total load.  

• By providing a method to calculate the influence of any under-strength on the 

life-time or equally the probability of failure during a certain period, live load 

modification equations may also be interpreted as a means to appraise the necessity of 

repair for a structure. Expected life of a member as portrayed by Equation 3.7 is an 

exponential function of the live load demand (L), its live load capacity (L’) and its failure 

mode (κ). It is demonstrated how even a slight deficiency in strength may have dramatic 

implications on the probability of failure and make rehabilitation required. Conversely, a 

seemingly insignificant over-strength may drastically prolong the expected life of a 

structure. The latter implies that for important structures which are expected or needed to 
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last considerably more than 50 years, comparatively small modifications in design can 

provide both safety and economy. 

• A byproduct of this study is a relatively comprehensive comparison of the 

common methods utilized in the reliability analysis: the simple assumption that the limit 

state conforms to a normal distribution, the more sophisticated Rackwitz-Fiessler method 

which observes, to some extent, the effect of different statistical distribution and finally 

the Monte Carlo method of simulation by which any degree of accuracy is theoretically 

attainable, so long as the computational obstacles can be overcome. For the cases 

investigated, as the portion of the live load with respect to the total load grows, the first 

method leans towards over-predicting the reliability index. Thus, it is recommendable 

that whenever the live load forms the majority of the total load, either of the two latter 

methods, Rackwitz-Fiessler or Monte Carlo, be employed to perform the reliability 

analysis.   
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Table 3.1: Target reliability indices, β50, as a function of ρ for cast-in-place RC members  

Method Structural type Limit state 

β50 

ρ=0.25  ρ=0.50 ρ=0.75 ρ=1.00 
N

or
m

al
 

di
st

rib
ut

io
n 

 Beam  Flexure(1) 3.83 4.24 4.34 4.28 

Beam  shear 4.39 4.69 4.80 4.81 

Slab  flexure(1) 2.12 2.45 2.64 2.75 

Tied column  compression 5.21 5.47 5.57 5.57 

R
ac

kw
itz

-F
ie

ss
le

r 
pr

oc
ed

ur
e 

Beam  flexure(1) 4.15 3.87 3.55 3.33 

Beam  shear 5.22 4.74 4.31 4.02 

Slab  flexure(1) 2.40 2.72 2.73 2.67 

Tied column  compression 6.39 5.59 5.02 4.64 

M
on

te
 C

ar
lo

 
si

m
ul

at
io

n 

Beam  flexure(1) 4.09 3.85 3.53 3.32 

Beam  shear 5.16 4.72 4.31 4.02 

Slab  flexure(1) 2.34 2.67 2.72 2.67 

Tied column  compression 6.35 5.57 5.02 4.65 

(1)Tension controlled 
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Table 3.2: Calculation of β50 for RC beams in flexure (ρ=0.50)(1) 

Parameter 

Iteration cycle 

1 2 3 4 5 

σd 0.047 0.047 0.047 0.047 0.047 

μd 0.472 0.472 0.472 0.472 0.472 

σl
e 0.081 0.136 0.200 0.223 0.227 

μl
e 0.450 0.377 0.228 0.160 0.148 

σq
e 0.094 0.144 0.206 0.228 0.232 

μq
e 0.922 0.849 0.700 0.633 0.620 

σr
e 0.148 0.100 0.118 0.124 0.125 

μr
e 1.666 1.566 1.625 1.637 1.639 

d* 0.527 0.524 0.509 0.506 0.505 

l* 0.608 0.806 0.887 0.902 0.904 

r* 1.135 1.331 1.396 1.408 1.409 

β 4.238(2) 4.072 3.887 3.873 3.873(3) 

(1) For definitions of symbols see NOTATIONS. 
(2)Similar to normal assumption: βT= β50 ≈4.24 

(3)Convergence achieved: βT= β50 ≈3.87 
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Table 3.3: Live load factors, γL n (ρ=0.50) 

Life-time  
(n years) 

Structural type and limit state  

RC beam cast-
in-place, 
flexure(1) 

RC beam 
cast-in-place, 

shear 

RC slab cast-
in-place, 
flexure 

RC column 
cast-in-place, 

tied(2) 

APT 0.802 0.826 0.709 0.840 

1 1.115 1.164 0.991 1.218 

5 1.314 1.342 1.238 1.374 

10 1.402 1.421 1.347 1.443 

25 1.512 1.520 1.490 1.530 

50 1.600 1.600 1.600 1.600 

100 1.686 1.678 1.710 1.667 

(1)Tension controlled 
(2)Axial compression 

 

Table 3.4: Life-time modification coefficient, κ, as a function of ρ 

Structural type Limit state 

κ 

ρ=0.25 ρ=0.50 ρ=0.75 ρ=1.00 

Beam  flexure(1) 0.086 0.078 0.074 0.073 

Beam  shear 0.081 0.070 0.065 0.063 

Slab  flexure(1) 0.100 0.098 0.093 0.089 

Tied column  compression 0.073 0.061 0.057 0.055 

(1)Tension controlled 
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Table 3.5: Minimum live load factors, γLAP T 

Structural type Limit state 

γLAPT 

ρ=0.25 ρ=0.50 ρ=0.75 ρ=1.00 

Beam  flexure(1) 0.800 0.802 0.842 0.870 

Beam  shear 0.810 0.826 0.886 0.928 

Slab  flexure(1) 0.720 0.709 0.744 0.774 

Tied column  compression 0.800 0.840 0.925 0.974 

(1)Tension controlled 

 

Table 3.6: Effect on life-time of a hypothetical RC building 

Structural type Limit state 

Life-time(years) 

Before conversion 
L=50 psf (2.5 kN/m2) 

After conversion 
L=60 psf (3.0 kN/m2) 

Beam  flexure(1) 248 22 

Beam  shear 298 20 

Slab  flexure(1) 179 25 

Tied column  compression 388 18 

(1)Tension controlled 
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Figure 3.1: Target reliability indices, β50, as a function of ρ for cast-in-place RC beams 
(Rackwitz-Fiessler method compared to normal distribution assumption) 
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Figure 3.2: Live load factors for RC beams subject to flexure (ρ=0.50) 

Analytical vs. numerical results 
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Figure 3.3: Live load factors for RC columns subject to axial compression (ρ=0.50) 

Analytical vs. numerical results 
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CHAPTER 4 

 

4. STUDY III: RELIABILITY ANALYSIS OF CONCRETE BEAMS 
INTERNALLY REINFORCED WITH FRP BARS 

 

4.1 BACKGROUND 

The ever-increasing use of FRP materials in construction, both in new and existing 

structures, calls for a deeper investigation into the selection of the strength reduction (or 

variously called safety) factors imposed on their design equations, as the current values 

have been typically chosen based on judgment and consensus and are still in need of hard 

evidence for validation.  This validation can be attained by the reliability analysis that 

links the probability of failure to the load and safety factors, providing a basis for their 

calibration to achieve desired levels of safety. Conventionally, the reliability index is 

defined as an indicator of the probability of failure of a member with a resistance of R, 

against the loads it may experience during its life-time, Q; both Q and R being random 

variables. This, however, poses a few obvious difficulties due to presence of load 

parameters in the calculations: 

• Compared to resistance, statistical parameters of loading are far more difficult to 

obtain, due to the vast number of factors affecting load. 

• Load and resistance, being of different nature, follow different statistical distributions 

which, especially in the case of multiple load cases, makes the problem of calculating the 

reliability index less tractable.
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• Reliability analysis has to be performed for several types of loads and load 

combinations. 

• For each load combination, covering the whole range of plausible loadings makes the 

calculations cumbersome, especially when more than two loads are involved. 

The idea central to this study is to calibrate safety factors of the elements reinforced with 

new materials not by setting them against loads, but by comparing them to elements of 

the same capacity, but made of better-established and better-known materials. In other 

words, if the current safety factors for steel-reinforced concrete and its associated load 

factors are taken for granted, as there is little doubt about its performance when designed 

according to code, how should the safety factors of FRP-reinforced members be 

proportioned so that the same level of safety is attained? This study elaborates this 

concept, applies it to the case of beams internally reinforced with FRP bars and proposes 

revised strength reduction (safety) factors for use in FRP design guidelines. 

 

4.2 OUTLINE 

The contents of this chapter, in sequential order, may be summarized as: 

• By employing the concept of reliability index, an interim index of “comparative 

reliability” is proposed that bypasses the loading variables and weighs the 

resistances of two structural elements with the same ultimate limit state directly 

against each other.  

• The comparative reliability index is then related to the conventional target 

reliability to allow a simple calculation method of the strength reduction factor for 

elements whose strength reduction factor is yet to be calibrated. This is achieved 
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by comparing a pair of elements which experience the same failure mode and yet 

only one holds a validated level of safety (i.e., strength reduction factor and 

reliability index).  

• This concept is put into practice by calculating flexural and shear strength 

reduction factors for FRP reinforced concrete members by comparison with 

conventional steel-reinforced concrete beams possessing the same ultimate 

capacity.    

• As a result, a revised set of strength reduction factors and deign provisions is 

proposed for use in FRP design guidelines for shear and flexure. 

By following these steps, this study introduces a method to extrapolate the strength 

reduction factors of new construction materials from the experience gained with 

conventional ones. Such a method, without compromising safety, prevents penalizing 

new materials. Accordingly, this study attempts to develop consistency between the 

flexural and shear strength reduction factors of ACI 318 and ACI 440 documents. 

 

4.3 COMPARATIVE RELIABILITY 

Let R1 and R2 be the resistance of two elements 1 and 2 with the same ultimate limit 

state. The comparative reliability index, βc, is defined as a measure of the probability of 

element 1 possessing a lower level of resistance than element 2. Calculation of the 

comparative reliability index of two elements is almost identical to calculation the of the 

reliability index, β, for lognormal load and resistance variables found in Nowak and 

Collins (2000) and  Haldar and Mahadevan (2000); nevertheless, the procedure is 

detailed here because of the modification due to the removal of load from the equation. 
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The means of the random resistance variables R1 and R2 are denoted by μ1 and μ2 while 

σ1 and σ2, respectively, denote their standard deviations. Since resistance can only take 

positive values, it is believed to conform to lognormal distribution (Ellingwood and 

Galambos 1982) and so do R1 and R2. Therefore, another lognormal random variable G 

can be introduced as: 

𝐺 = 𝑅2
𝑅1

                                                                      (4.1) 

ln(𝐺) = 𝑔 = ln(𝑅2) − ln(𝑅1)                                                   (4.2) 

The probability of the event R2 < R1 or pc=P(R2 < R1) can be written as: 

𝑝𝑐 = 𝑃(𝐺 < 1) = 𝑃(𝑔 < 0)                                                    (4.3) 

ln(R1), ln(R2)  and subsequently g are normal variables, therefore: 

𝑃(𝑔 < 𝑔0) = Φ(𝑔0−𝜇𝑔
𝜎𝑔

)                                                         (4.4) 

Where g0 is an arbitrary value, Φ is the cumulative distribution function (CDF) of the 

standard normal distribution, and μg and σg are, respectively, the mean and standard 

deviation of g. Hence, by substituting g0=0 in Equation 4.4: 

𝑝𝑐 = Φ�−𝜇𝑔
𝜎𝑔
� = Φ�− 1

𝛿𝑔
�                                                       (4.5) 

δg is the coefficient of variation of g. Defining Φ-1 as the inverse function of Φ, Equation 

4.5 can be rewritten as: 

𝜇𝑔
𝜎𝑔

= −Φ−1(𝑝𝑐) = Φ−1(1 − 𝑝𝑐) = 𝛽𝑐                                            (4.6) 

βc is the “comparative reliability index” and can be calculated in terms of the statistical 

parameters of R1 and R2. The relationship between the statistical parameters of a 

lognormal variable, X, and its normal twin, ln(X), is (Nowak and Collins 2000): 

 𝜎ln(𝑋)
2 = ln(1 + 𝛿𝑋2)                                                            (4.7) 
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𝜇ln(𝑋) = ln(𝜇𝑋) −
𝜎ln (𝑋)
2

2
= ln(𝜇𝑋) − ln�1+𝛿𝑋

2 �
2

                                     (4.8) 

As R1 and R2 are reasonably assumed to be statistically independent, from Equation 4.2 it 

follows that: 

𝜇𝑔 = 𝜇ln(𝑅2) − 𝜇ln(𝑅1)                                                      (4.9) 

𝜎𝑔2 = 𝜎ln(𝑅1)
2 + 𝜎ln(𝑅2)

2                                                      (4.10) 

Replacing the statistical parameters of normal variables ln(R1) and ln(R2) in Equations 

4.9 and 10 with those written in terms of R1 and R2 using Equations 4.7 and 4.8, one 

obtains : 

𝜇𝑔 = ln ��𝜇2
𝜇1
��1+𝛿12

1+𝛿22
�                                                        (4.11) 

𝜎𝑔2 = ln(1 + 𝛿12) + ln(1 + 𝛿22)                                               (4.12) 

Where δ1= δR1 and δ2= δR2. Eventually, substituting Equations 4.11 and 4.12 into 

Equation 4.6, βc, can be formulated as: 

𝛽𝑐 =
𝜇ln(𝑅2)−𝜇ln(𝑅1)

�𝜎ln(𝑅1)
2 +𝜎ln(𝑅2)

2
=

ln��𝜇2𝜇1
��

1+𝛿1
2

1+𝛿2
2�

�ln�1+𝛿12�+ln�1+𝛿22�
                                          (4.13) 

 

4.4 RELATIONSHIP BETWEEN TARGET AND COMPARATIVE 
RELIABILITY INDICES 

 
The comparative reliability index, βc, is merely an intermediary parameter, as it does not 

reveal anything about the probability of failure which is measured by the reliability index 

β and its acceptable level, βT, or target reliability. 
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Next is to relate the comparative reliability index, βc, to the target reliability, βT. The 

conventional reliability index, β, for lognormal load (Q) and resistance variables (R1 or 

R2) is defined as: 

  𝛽(𝑄,𝑅1) =
𝜇ln(𝑅1)−𝜇ln(𝑄)

�𝜎ln(𝑅1)
2 +𝜎ln(𝑄)

2
= 𝛽𝑇                                          (4.14) 

𝛽(𝑄,𝑅2) =
𝜇ln(𝑅2)−𝜇ln(𝑄)

�𝜎ln(𝑅2)
2 +𝜎ln(𝑄)

2
= 𝛽𝑇                                          (4.15) 

In Equations 4.14 and 4.15, it is assumed that the target reliability, βT, or the expected 

level of safety is equal for both elements. To eliminate the square root and separate R1 or 

R2 from Q in Equations 4.14 and 4.15 an intermediary parameter, ε, is introduced (Haldar 

and Mahadevan 2000): 

𝜀1 =
�𝜎ln(𝑅1)

2 +𝜎ln(𝑄)
2

𝜎ln(𝑅1)+𝜎ln(𝑄)
                                                                (4.16) 

𝜀2 =
�𝜎ln (𝑅2)

2 +𝜎ln (𝑄)
2

𝜎ln(𝑅2)+𝜎ln(𝑄)
                                                               (4.17) 

Similarly, to separate R1 and R2 in Equation 4.13: 

𝜀𝑐 =
�𝜎ln(𝑅1)

2 +𝜎ln(𝑅2)
2

𝜎ln(𝑅1)+𝜎ln(𝑅2)
                                                              (4.18) 

ε1, ε2 and εc vary in a narrow range (√2/2≤ε≤1.00); hence, if their values are comparable 

which is a reasonable assumption, the following approximation can be made:  

𝜀1 ≈ 𝜀2 ≈ 𝜀𝑐                                                             (4.19) 

Combining Equations 4.13 to 4.19, βc can be rewritten as: 

𝛽𝑐 ≈
𝜎ln(𝑅2)−𝜎ln(𝑅1)

𝜎ln(𝑅1)+𝜎ln(𝑅2)
𝛽𝑇 =

�ln�1+𝛿22�−�ln�1+𝛿12�

�ln�1+𝛿12�+�ln�1+𝛿22�
𝛽𝑇                                    (4.20) 

And from Equations 4.13 and 4.20: 
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𝛽𝑐 =
ln��𝜇2𝜇1

��
1+𝛿1

2

1+𝛿2
2�

�ln�1+𝛿12�+ln�1+𝛿22�
=

�ln�1+𝛿22�−�ln�1+𝛿12�

�ln�1+𝛿12�+�ln�1+𝛿22�
𝛽𝑇                                    (4.21) 

Equation 4.21 can be further simplified by taking advantage of Taylor expansion: 

ln(1 + 𝑥) ≈𝑥 − 𝑥2

2
+ 𝑥3

3
− ⋯         if |𝑥| < 1                                           (4.22) 

Assuming that δX ≤0.30, within a margin of error of about 2%, Equation 4.7 may be 

simplified as: 

𝜎ln(𝑥) = �ln(1 + 𝛿𝑋2) ≈ 𝛿𝑋                                                  (4.23) 

Hence, if both δ1 and δ2≤0.30, which is a common situation, Equations 4.13 and 4.21 can 

be simplified as:  

𝛽𝑐 =
ln��𝜇2𝜇1

��

�𝛿12+𝛿22
= 𝛿2−𝛿1

𝛿1+𝛿2
𝛽𝑇                                                           (4.24) 

βc has concluded its part by assisting to establish a load free relationship between βT and 

the statistical parameters of R1 and R2, as formulated in Equations 4.21 or 4.24, which 

are identified as the comparative reliability equations. The target reliability, βT, has its 

preset minimum values based on consequence of failure and incremental cost of safety as 

shown in Table 4.1 for reinforced concrete members made of ordinary concrete (Nowak 

and Szerszen 2003). Table 4.1 also presents the safety factors stipulated by ACI 318-11, 

coefficients of variations (CoV or δ) and bias factors (λ). The latter parameter is defined 

in the following section. 
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4.5 CALIBRATION OF STRENGTH REDUCTION FACTORS 

When rewritten as a function of the strength reduction factors, Ø, Equation 4.24 (or 4.21) 

can be used calibrate to those factors. Structural elements 1 and 2 are comparable only if 

they are equal in their ultimate design capacity or:   

𝜙1𝑁1 = 𝜙2𝑁2                                                           (4.25) 

Where Øi indicates the strength reduction factor and Ni is the nominal strength (design 

strength) of each element (i=1, 2). Element 1(e.g., steel RC beam) serves as the 

benchmark for calibration of the safety factor of element 2 (e.g., FRP RC beam). In other 

words, Ø1 and the desired level of reliability, βT, are assumed to be known and Ø2 has to 

be calculated from them. 

The bias factor, λi, is defined as the ratio of the mean value, μi, to the nominal value, Ni, 

of a random variable or in this case R1 and R2, therefore: 

𝜆1 = 𝜇1
𝑁1

                                                                  (4.26) 

𝜆2 = 𝜇2
𝑁2

                                                                  (4.27) 

It can be concluded from Equations 4.25 to 4.27 that: 

𝜇2
𝜇1

= 𝜙1
𝜙2

𝜆2
𝜆1

                                                               (4.28) 

If δ1 and δ2≤0.30, substituting Equation 4.28 into Equation 4.24 results in: 

ln��𝜙1𝜙2
𝜆2
𝜆1
��

�𝛿12+𝛿22
= 𝛿2−𝛿1

𝛿1+𝛿2
𝛽𝑇                                                       (4.29) 

If δ1 or δ2>0.30, then the simplification of Equation 4.21 is not suitable and Equation 

4.30 provides better accuracy than Equation 4.29:  
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ln��𝜙1𝜙2

𝜆2
𝜆1
��

1+𝛿1
2

1+𝛿2
2�

�ln�1+𝛿12�+ln�1+𝛿22�
=

�ln�1+𝛿22�−�ln�1+𝛿12�

�ln�1+𝛿12�+�ln�1+𝛿22�
𝛽𝑇                                    (4.30) 

In any event, Ø2 can be calculated directly from Equations 4.29 or 4.30.  

This concludes the first part of this chapter that deals with the introduction and 

formulation of the comparative reliability. The following part takes advantage of this 

concept to calculate the safety factors of concrete beams reinforced with FRP bars subject 

to flexure and shear. 

  

4.6 FLEXURE-CONTROLLED FAILURE OF FRP RC MEMBERS 

A reliability analysis for FRP-reinforced beams in flexure using the load combination of 

U=1.2D+1.6L for live to dead load ratios between 1 and 3, indicated reliability indices 

between 3.5 and 4.0 when Ø was set to 0.65 for both concrete crushing failure and FRP 

reinforcing bar rupture failure (Gulbrandsen 2005). Based on these results, ACI 440.1R-

08, recommends a strength reduction factor of 0.55, if failure is due to FRP rupture, and 

0.65 if failure is due to concrete crushing, with a linear variation in the transitional range 

between the two failure modes. Table 4.2 summarizes the statistical data (bias factor and 

coefficient of variation) obtained from tests discussed in detail in Gulbrandsen (2005), its 

assumptions (minimum target reliabilities) and strength reduction factors adopted by ACI 

440.1R-08.  

Here the aim is to calibrate the FRP-RC strength reduction factors, not by using 

conventional reliability analysis as in Gulbrandsen (2005), but by taking advantage of the 

concept of comparative reliability. Using Equation 4.29, the strength reduction factors 

can be calibrated proportional to those of a steel RC beam whose statistical parameters 
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are given in Table 4.1(Nowak and Szerszen 2003). In other words, λ1 and δ1 in Equation 

4.29 correspond to the first row of Table 4.1, while λ2 and δ2, depending on the failure 

mode, are taken from the two rows of Table 4.2 respectively. As a result, Table 4.3 

displays the calculated values of the safety factor, Ø, for different assumptions of the 

target reliability; however, only the first column (βT=3.5) corresponding to the assumed 

safety target of ACI 318-11 is of primary interest while the remaining columns are 

merely presented to show the relatively low sensitivity of Equation 4.29 to the variation 

in the target reliability. 

Stability under alternative order of solution 

To demonstrate the stability of Equation 4.29, a different approach for the former part is 

presented here.  

The strength reduction factor for the FRP rupture mode can be calculated according to 

Equation 4.29 by comparing it to a steel RC beam as the benchmark which results in 

Ø=0.70 if βT=3.5 (Table 4.3). Now, to calibrate the strength reduction factor of the other 

mode (concrete crushing), the FRP rupture mode is considered as the benchmark 

(Ø1=0.70, λ1=1.11 and βT=3.5 in Equation 4.29) unlike the previous section which used a 

steel RC beam as the reference for both cases. If the results obtained by both approaches 

concur, in other words if a chain rule can be established for the comparative reliability, 

Equation 4.29 may be considered stable. This is necessary due to the approximate nature 

of this equation and the possibility of accumulating errors at each stage of the 

computation.         

In this case δ1 and δ2 are relative to the two modes of failure (δ1=0.157 and δ2=0.158); 

therefore, βc≈0 (Equation 4.22) and from Equation 4.27 it can be concluded that Ø1λ2= 
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Ø2λ1 where λ1=1.11 and λ2=1.19 (Table 4.2). With Ø1=0.70, Ø2 becomes equal to 0.75 

which is consistent with the value given in Table 4.3. 

 

4.7 VALIDATION OF THE PROPOSED METHOD 

In the previous sections of this chapter, it is claimed that Equation 4.29 (or its more 

accurate form Equation 4.30) calibrates the strength reduction factor of element 2 so that 

it provides an acceptable fit for the reliability curves of the two elements, thus 

eliminating the need for repeating all computations for element 2. To put this claim to test 

and to understand the reason and consequences of behind the difference between the 

strength reduction factors obtained in this study (Table 4.3, under βT=3.5) and those 

stipulated by ACI 440.1R-08 (Table 4.2), the reliability index is calculated for the entire 

range of the ratio of live load, L, to total load of dead plus live, D+L. To maintain 

consistency with Gulbrandsen (2005), the design load combination is assumed to be 

U=1.2D+1.6L and the values for statistical parameters of loads are taken from Nowak 

and Szerszen (2003) and given in Table 4.4, columns 2 and 3. It is also assumed that the 

design strength, ØN, is equal to the ultimate load or required strength, U, so there is no 

over or under-strength. The distribution of load variables is according to Ellingwood and 

Galambos (1982) as shown in Table 4.4, column 4. 

Instead of using the approximate Equations 4.14 or 4.15 that assume both load and 

resistance conform to the lognormal distribution, the reliability index is calculated by the 

more sophisticated iterative Rackwitz-Fiessler method which takes into account different 

distributions (Appendix D). The results are plotted in Fig. 4.1 which demonstrates that 

that the strength reduction factors of ACI 440.1R-08 achieve higher degrees of reliability 
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than intended as represented by the two top curves. While the strength reduction factors 

proposed in this study (i.e., Ø1=0.70 and Ø2=0.75), target a reliability index 

approximately equal to that of a steel RC beam which in its turn is assumed to be 

approximately between 3.5 and 4.0. The two virtually inseparable reliability curves 

relative to the strength reduction factors derived in this study trail at a close distance the 

steel RC reliability curve as their target reliability, providing evidence for the validity of 

the comparative reliability method.  

The validation may be further extended for other load combinations that include other 

load types, namely snow (S), earthquake (E) and wind (W) for which the reliability 

analyses of Gulbrandsen (2005) and subsequently ACI 440.1R-08 are silent. Although 

the method presented in this study does not provide the exact value of the reliability 

index, it guarantees that a safety performance comparable to that of a conventional RC 

may be expected. To demonstrate this quality, another load combination from ACI 318-

11, e.g., U=1.2D+1.0L+1.6W may be considered. A combination containing wind load, 

while not necessarily critical for RC beams, is merely chosen because of the relative ease 

of applying the Rackwitz-Fiessler method to random variables that conform to the 

extreme value type I distribution (e.g., live load and wind load, Table 4.4). The presence 

of a third load component would necessitate a three dimensional representation of the 

reliability surface as opposed to the reliability curves given in Fig. 4.1. For simplicity, it 

is assumed that L=0 thus U=1.2D+1.6W, which makes a two dimensional representation 

possible. The statistical parameters of the wind load are shown in Table 4.4. Fig. 4.2 

shows the reliability index over the total range of the ratios of the wind load to the total 

load calculated by the Rackwitz-Fiessler numerical method. Again, the reliability curves 
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associated with the safety factors calculated by the comparative reliability formulation 

(Equation 4.29) maintain their proximity to that of the steel RC beam, while those based 

on the strength reduction factors of ACI 440.1R-08 (the two top curves) indicate a more 

conservative design approach when compared to ACI 318-11, something which might be 

less than desirable. As for the case of Fig. 4.1, the two curves of the computed factors of 

Ø1=0.70 and Ø2=0.75 are to all effects overlapping. 

 

4.8 SHEAR-CONTROLLED FAILURE OF FRP RC MEMBERS 

ACI 440.1R-08 states that “The strength reduction factor of 0.75 given by ACI 318-05 

for reducing nominal shear capacity of steel-reinforced concrete members should also be 

used for FRP reinforcement.” which singles out this guideline among other codes of 

practice for proposing a larger strength reduction factor for shear as compared to flexure, 

and makes the need for validation more deeply felt. As always, the process of calibrating 

the safety factors starts by obtaining the statistical parameters of the element type in 

question. In this study, beams with or without transverse reinforcement (stirrups) are 

investigated independently as follows: 

Statistical database: Test results compiled by Miano (2011) in combination with results 

from Matta et al. (2011) provide a statistical database for beams without stirrups which is 

summarized in Table 4.5. A similar database for beams with shear reinforcement 

(stirrups) is collected by Vitiello (2011) which is concisely displayed in Table 4.6. 

FRP RC beams without stirrups: Based on the database summarized in Table 4.5, 

statistical parameters of FRP RC beams without stirrups under shear failure are calculated 
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as λR=1.93 and δR=0.238 (Table 4.7, first row). Appendix F details the calculation of 

nominal shear capacity of such beams and their probabilistic parameters. 

FRP RC beams with stirrups: Based on the database summarized in Table 4.6 statistical 

parameters of FRP reinforced beams under shear failure are calculated as λR=1. 64 and 

δR=0.353 (Table 4.7, second row). Again, Appendix F provides an example of the 

calculation of nominal shear capacity of the RC beams with FRP stirrups. 

For each of these two cases, Equation 4.30 may be used (especially for the second case 

where δR≥0.30) to calculate the shear strength reduction factor. Substituting the 

probabilistic parameters of shear failure of a steel RC beam from Table 4.1 (Ø1=0.75, 

λ1=1.23 and δ1=0.109) and an FRP RC beam from Table 4.7 (λ2 and  δ2 from either of 

the first two rows), the strength reduction factor for the latter can be calculated for any 

presumed value of target reliability (the first two rows of Table 4.8) of which only the 

first column that corresponds to βT=3.5 or the recognized safety level guaranteed by ACI 

318, is of practical interest and the rest is only provided for comparison. 

Evidently, the current shear safety factor of 0.75 is only justifiable for beam with no 

shear reinforcing, while in presence of such reinforcement, a drastic modification (from 

existing Ø=0.75 to no less than Ø=0.49) is necessary. Instead, this study advocates a 

modification to the limitations of shear design equation that eliminates the need for such 

a substantial drop in the strength reduction factor while maintains the desired level of 

safety.  

Proposed modification to the FRP shear design equation limits 

Redressing the issue of the strength reduction factor for beams with FRP stirrups requires 

pinpointing the source of deviation in resistance, as the sizeable coefficient of variation of 
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such elements (δR=0.353) is the major contributor to the uncertainty associated with their 

strength that, subsequently, leads to a low safety factor. 

Grouping the beams based on the level of shear reinforcement (Vf/Vc or FRP to concrete 

shear contribution) reveals a direct relationship between this value and deviation of 

resistance as the 32-member group of beams with Vf ≥ 3Vc was detected as the most 

temperamental (δR=0.614 from Table 4.7). Consistent with ACI 318 and ACI 440.1R 

approach, but using a lower threshold, it is proposed to limit shear reinforcement 

contribution, Vf, to 3Vc. By imposing a new ceiling on the combination of the two 

components of the shear resistance, this modification excludes the set of elements with Vf 

≥ 3Vc from the sample population: 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑓  if   𝑉𝑓 ≤ 3𝑉𝑐                                              (4.31) 

𝑉𝑛 = 4𝑉𝑐  if   𝑉𝑓 > 3𝑉𝑐                                                 (4.32) 

Equation 4.32 is to cover those cases in which considerations such as achieving higher 

ductility through a tight arrangement of stirrups, supersede those of demand.  

Leaving out these 32 cases from the sample population (Table 4.6), the statistical 

parameters are calculated for the remainder (Table 4.7, last row) with a considerable 

improvement in consistency of behavior (δR decreases from 0.383 to 0.226). The strength 

reduction factors are calculated anew using these fresh parameters which, when rounded, 

show compliance with the current code at the safety level of βT=3.5 (Table 4.8, last row).  

Similar to the flexural case, Fig. 4.3 and 4.4 show the reliability curves associated to this 

strength reduction factor (Ø=0.75 and Vf≤ 3Vc). The curves confirm that for both load 

combinations (U=1.2D+1.6L and U=1.2D+1.6W) and the limit state of shear, if Vf≤ 3Vc 
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then the reliability index of beams with FRP stirrups is comparable to that of steel RC 

beams. 

 

4.9 DISCUSSION 

The results of the comparative reliability analysis of beams internally reinforced with 

FRP bars measured against traditional steel RC beams may be summed up as follows:  

• A flexural strength reduction factor of 0.70 is recommended for concrete beams 

internally reinforced with FRP bars when the failure mode is FRP rupture. 

• A flexural strength reduction factor of 0.75 would be justifiable for concrete beams 

internally reinforced with FRP bars when the failure mode is concrete crushing. Although 

this is higher than the strength reduction factor of 0.65 imposed by ACI 318-11 on 

compression controlled sections, regardless of the reinforcement type, it is in agreement 

with the factor recommended by Nowak and Szerszen (2003).  

• Even though the aforesaid strength reduction factors were derived based upon 

probabilistic consideration, they still submit to a traditional tendency of assigning a 

smaller strength reduction factor to the FRP rupture mode of failure, the mode that is 

presumed to be more sudden and brittle. Nevertheless, the considerable elongation of 

FRP bars up to the point of rupture which can be translated into exaggerated deflections, 

should FRP rupture govern the failure, provides enough warning prior to the abrupt 

collapse and may remove the need for differentiating between the two modes. 

• Taking into account the three points above, due to the closeness of the two strength 

reduction factors a unified value of 0.70, irrespective of the failure mode, is 

recommended as it simplifies design and guarantees a higher level of safety. 
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• The current shear strength reduction factor of 0.75 may be maintained so long as the 

maximum effective level of shear resistance is dictated by Equations 4.31 and 4.32, in 

other words the nominal shear strength of a beam with FRP shear reinforcement must not 

exceed four times the strength provided by concrete (Vn≤ 4Vc or equally Vf≤ 3Vc). 

 

4.10 CONCLUSIONS 

In the first part of this study, an alternative formulation of target reliability, βT, is 

presented as a function of the resistances of two elements, unlike the conventional 

representation of the reliability index which is a function of load and resistance. 

Discarding the load parameters considerably simplifies calculations, as the need for 

obtaining the reliability index curves for numerous load combinations comprised of 

different load cases with different probability distributions is now circumvented. The 

relative ease of finding the probabilistic parameters of resistance, as compared to those of 

loads, as well as fewer uncertainties associated with resistance are additional advantages 

of the elimination of loads from the equations. 

In the second part of the chapter, this comparative method is used to calibrate the strength 

reduction factors for design of concrete beams internally reinforced with FRP bars. As 

opposed to the traditional calibration methods which require a painstaking trial-and-error 

procedure of plotting the reliability curves for several load combinations over the 

conceivable ranges of proportions of load components, the proposed method obtains the 

strength reduction factor of the element of interest as an explicit function of the strength 

reduction factor, statistical parameters and an identical target reliability of the benchmark 

element.  This is corroborated by the reliability curves of the benchmark elements (steel 
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RC beam) and those of the elements of interest (FRP RC beam), that demonstrate an 

acceptable fit between the two over a wide range of load ratios, if the strength reduction 

factors for the latter are derived according to the comparative formulation. 

The closing discussion enumerates: a) modifications to the strength reduction factors of 

ACI 440.1-R08 associated with flexural elements (i.e., Ø=0.70 for both modes of failure); 

and b) limitations to the shear strength of beams with FRP stirrups (i.e.,Vf≤ 3Vc). These 

modifications ensure that a reliability level in compliance with the existing safety 

provisions is attainable or simply put, FRP RC beams are “as safe” and “as reliable” as 

the common steel RC beams. 

The same procedure may be employed to calibrate the strength reduction factors 

associated with other RC elements, reinforced with FRP material such as columns or 

externally strengthened with FRP material. 
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Table 4.1: Strength reduction and statistical parameters of cast-in-place steel RC beams  

Limit state Ø (2) βT
(3) Bias (λ) (3) CoV(δ) (3) 

Flexure(1) 0.90 3.5 1.190 0.089 

Shear 0.75 3.5 1.230 0.109 

(1)Tension controlled 
(2)ACI 318-11 
(3) Nowak and Szerszen (2003) 

 

Table 4.2: Strength reduction and statistical parameters of FRP reinforced beams subject 

to flexure  

Limit state Ø (1) Ø (2) βT
(2) Bias (λ) (2) CoV(δ) (2)  

FRP rupture 0.55 0.65 3.5 1.11 0.157 

Concrete crushing 0.65 0.65 3.5 1.19 0.158 

(1)ACI 440.1R-08 
(2)Gulbrandsen (2005) 

 

Table 4.3: Calculated strength reduction factors for FRP RC beams subject to flexure for 

different target reliabilities  

Limit state 

Strength reduction factor (Ø) 

βT=3.5  βT=4.0  βT=4.5 

FRP rupture 0.70 0.69 0.67 

Concrete crushing 0.75 0.73 0.72 

 

 



68 
 

 
 

Table 4.4: Statistical parameters for load components 

Load component Bias (λ)(1) CoV(δ)(1) Distribution(2) 

Dead load (cast-in-place)  1.05 0.10 Normal 

Live load 1.00 0.18 Type I 

Wind Load 0.78 0.37 Type I 

(1)Nowak and Serszen (2003) 
(2) Ellingwood and Galambos (1982) 
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Table 4.5: Experimental database of flexural elements without FRP stirrups(1)  

Reference No. of 
Specimens 

f’c 
ksi (MPa) 

b 
in. (mm) 

df 
in. (mm) 

Longitudinal FRP 
 Vexp 

kips(kN) Ef  ksi (GPa) ρfl (%) 
Nagasaka et al. 

(1993) 2 
3.3-5.1 

(22.9-34.1) 
9.8 

(250) 
10.1 
(265) 

8120 
(56) 1.90 18.7-25.4 

(83.0-113.0) 
Tottori and 

Wakui(1993) 5 
6.5-6.8 

(44.6-46.9) 
7.9 

(200) 
12.8 
(325) 

8410-27850 
(58-192) 0.70-0.90 10.6-22.0 

(47.0-98.0) 
Maruyama and 
 Zhao (1994) 4 

4.0-5.1 
(27.5-34.9) 

5.9 
(150) 

9.8 
(250) 

13340 
(92) 0.55-2.00 8.3-13.0 

(37.0-57.8) 
Maruyama  

and Zhao (1995) 2 
5.0 

(34.3) 
5.9 

(150) 
9.8 

(250) 
15230 
(105) 1.51-2.00 10.1-10.3 

(45.0-46.0) 
Nakamura and 
 Higai(1995) 2 

3.3-4.0 
(22.7-27.8) 

5.9 
(150) 

5.9 
(150) 

4210 
(29) 1.30-1.80 7.4-8.1 

(33.0-36.0) 
Maruyama  

and Zhao (1996) 3 
4.3-4.9 

(29.5-34.0) 
5.9-11.8 

(150-300) 
9.8-19.7 

(250-500) 
14500 
(100) 1.07 6.4-31.5 

(28.5-140.0) 
Vijay et al. 

(1996) 1 
6.5 

(44.8) 
7.9 

(200) 
10.4 
(265) 

7830 
(54) 1.40 10.1 

(45.0) 
Duranovic et al. 

(1997) 4 
3.8-5.5 

(26.3-38.1) 
5.9 

(150) 
8.3-8.7 

(210-220) 
6530 
(45) 1.30 4.9-6.0 

(22.0-26.5) 
Mizukawa et al. 

(1997) 1 
5.0 

(34.7) 
7.9 

(200) 
10.2 
(260) 

18850 
(130) 1.30 13.9 

(62.0) 
Swamy et  

Aburawi(1997) 2 
4.9-5.7 

(34.0-39.0) 
6.1-10.0 

(154-254) 
8.7 

(222) 
4930 
(34) 1.55-1.60 4.4-8.8 

(19.5-39.0) 
Deitz et al. 

(1999) 5 
3.9-4.5 

(27.0-30.8) 
12.0 
(305) 

6.2 
(158) 

5800 
(40) 0.70 6.1-6.5 

(27.0-29.0) 
Alkhradji et al. 

 (2001) 3 
3.5 

(24.1) 
7.0 

(178) 
11.0-11.3 
(279-287) 

5800 
(40) 0.77-2.00 8.1-12.0 

(36.1-53.4) 
Ospina, et al. 

 (2001) 3 4.2-5.4 
(28.9-37.5) 

84.6 
(2150) 

4.7 
(120) 

4930 
(34) 0.73-1.46 46.3-260 

(206.0-
 Yost et al.  

(2001) 19 5.3-5.5 
(36.3-38.0) 

7.0-12.0 
(178-305) 

7.6-8.9 
(192-225) 

5800-5950 
(40-41) 0.36-2.00 6.0-11.5 

(26.7-51.0) 
Frosh 
(2002) 5 5.8-6.2 

(39.8-42.6) 
18.0 
(457) 

14.9 
(379) 

5510-7690 
(38-53) 1.00-2.00 41.3-77.6 

(183.7-
 El Ghandour et al. 

(2003) 8 4.9-8.4 
(34.0-58.0) 

78.7 
(2000) 

6.9 
(175) 

6530-15950 
(45-110) 0.15-0.30 38.2-71.3 

(170.0-
 Gross et al. 

(2003) 12 11.5 
(79.6) 

6.0-8.0 
(152-203) 

8.9 
(225) 

5800 
(40) 1.25-2.00 6.8-10.9 

(30.4-48.3) 
Tariq and  

Newhook(2003) 11 4.9-6.3 
(34.1-43.2) 

5.1-6.3 
(130-160) 

12.2 
(310) 

6090-17400 
(42-120) 0.70-1.50 9.7-13.0 

(43.0-58.0) 
Benmokrane 

(2004) 14 5.8-7.3 
(40.0-50.0) 

9.8-39.4 
(250-1000) 

6.1-12.8 
(154-326) 

5800-18850 
(40-130) 0.39-2.00 13.5-42.7 

(60.0-190.0) 
Gross et al. 

(2004) 12 8.7-11.8 
(60.3-81.4) 

3.9-6.3 
(89-159) 

5.6 
(141-143) 

20160 
(139) 0.33-0.76 2.0-5.2 

(8.8-23.1) 
Lubell et al. 

(2004) 1 5.8 
(40.0) 

17.7 
(450) 

38.2 
(970) 

5800 
(40) 0.50 30.6 

(136.0) 
Razaqpur et al.  

(2004) 6 5.9-7.1 
(40.5-49.0) 

7.9 
(200) 

8.9 
(225) 

21030 
(145) 0.25-0.88 8.1-10.6 

(36.1-47.2) 
El-Sayed et al. 

 (2005) 10 6.3-9.1 
(43.6-63.0) 

9.8 
(250) 

12.8 
(326) 

5660-19580 
(39-135) 0.87-2.00 13.5-39.1 

(60.0-174.0) 
El-Sayed et al. 

 (2005) 8 5.8 
(40.0) 

39.4 
(1000) 

6.3-6.5 
(159-165) 

5800-16530 
(40-114) 0.39-2.00 25.4-42.7 

(113.0-
 Guadagnini  

et al. (2005) 2 5.8-6.5 
(40.3-44.9) 

5.9 
(150) 

8.8 
(223) 

6530 
(45) 1.28 6.1-10.0 

(27.2-44.7) 
Wegian and 

 Abdalla (2005) 1 4.4 
(30.0) 

39.4 
(1000) 

6.4 
(162) 

6090 
(42) 0.77 17.2 

(76.5) 
Ashour et al. 

(2006) 6 4.2-7.3 
(28.9-50.2) 

5.9 
(150) 

6.4-10.4 
(163-263) 

4640-5510 
(32-38) 0.45-1.39 2.8-6.7 

(12.5-30.0) 
El-Sayed  

et al.(2006) 6 6.3-7.3 
(43.6-50) 

9.8 
(250) 

12.8 
(326) 

5800-18850 
(40-130) 0.90-1.70 13.5-28.1 

(60.0-125.0) 
Kilpatrick et al. 

(2006) 9 7.0-13.3 
(48.0-92.0) 

16.5 
(420) 

2.9-3.0 
(73-75) 

6090 
(42) 0.68-1.16 5.2-7.6 

(23.1-33.9) 
Kilpatrick and  
Easden (2006) 11 8.8-13.5 

(61.0-93.0) 
16.5 
(420) 

3.13.3 
(79-83) 

5800-6090 
(40-42) 0.61-2.00 4.4-9.0 

(19.5-40.0) 

Continued on the next page 
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Table 4.5: Continued 

Reference No. of 
Specimens 

f’c 
ksi (MPa) 

bw 
in. (mm) 

d 
in. (mm) 

Longitudinal FRP 
b  

Vexp 
kips(kN) Ef  ksi (GPa) ρf (%) 

Valerio et al.  
(2006) 4 7.2 

(49.8) 
4.3 

(110) 
5.9 

(150) 
18850 
(130) 0.93 4.8-5.6 

(21.3-25.1) 
Matta et al.  

(2011) 14 4.3-8.7 
(29.5-59.7) 

4.5-18.0 
(114-457) 

5.75-34.76 
(146-883) 

5950-6240 
(41-43) 0.58-1.18 2.3-36.5 

(10.1-162.2) 

Total 196 3.3-13.5 
(22.7-93.0) 

3.50-84.60 
(89-2150) 

2.87-38.19 
(73-970) 

4060-27850 
(28-192) 0.15-2.00 2.0-77.6 

(8.8-345.0) 
(1)Miano (2011) and Matta et al. (2011) 
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Table 4.6: Experimental database of flexural elements with FRP stirrups(1) 

Reference 
No. of 

Specimens(2) 
f’c 

ksi (MPa) 
b 

in. (mm) 
df  or ds  

in. (mm) 

FRP bars  FRP stirrups 

Vexp 

kips (kN) 
Ef  or Es  

ksi (GPa) 
ρfl 

(%) 
 Ef  

 ksi (GPa) 
ρfv 

(%) 
ffu  

ksi(Mpa) 
Nagasaka et al. 

 (1993) 29 (4) 
3.3-5.8 

(23.0-40.3) 
9.84 
(250) 

9.96 
(253) 

8120-27270 
(56-188) 0.31-1.90 

 6530-16680 
(45-115) 0.50-1.50 

71.1-133.4 
(490-920) 

36.4-82.3 
(162.0-366.0) 

Tottori and  
Wakaui (1993) 29 (11) 4.3-10.4 

(29.4-71.6) 
5.91-7.87 
(150-200) 

9.84-19.69 
(250-500) 

8410-29880 
(58-206) 0.53-2.00 

 5220-19870 
(36-137) 0.06-0.54 86.7-53.1 

(598-1745) 
13.0-51.8 

(58.0-230.5) 
Maruyama and  

Zhao (1994) 9 4.4-5.6 
(30.5-38.3) 

5.91 
(150) 

9.84 
(250) 

13630 
(94) 0.55-2.00 

 13630 
(94) 0.12-0.24 189.7 

(1308) 
13.3-26.9 

(59.0-119.5) 
Maruyama and 
 Zhao (1995) 14 5.0 

(34.3) 
5.91 
(150) 

9.84 
(250) 

15230 
(105) 1.51-2.00 

 5660-14500 
(39-100) 0.42 159.5-188.5 

(1100-1300) 
12.2-28.3 

(54.4-125.9) 
Nakamura and  
Higai (1995) 8 (4) 4.8-5.2 

(33.4-35.8) 
7.87 
(200) 

9.84 
(250) 

4210-26100 
(29-180) 1.61-1.72 

 4500 
(31) 0.14-0.35 120.1 

(828) 
12.6-36.0 

(56.0-160.3) 
Vijay et al. 

(1996) 4 4.5-6.5 
(31.0-44.8) 

5.91 
(150) 

10.43 
(265) 

7830 
(54) 0.64 

 7830 
(54) 0.62-0.93 157.8 

(1088) 
25.9-28.6 

(115.0-127.0) 
Maruyama and  

Zhao (1996) 6 4.3-4.9 
(29.5-34.0) 

5.91-17.72 
(150-450) 

9.84-29.53 
(250-750) 

14500 
(100) 1.07 

 4350 
(30) 0.43-0.86 87.0 

(600) 
24.1-132.6 

(107.0-590.0) 
Alsayed et al. 

(1997) 4 (2) 5.1-5.7 
(35.5-39.6) 

7.87 
(200) 

12.20 
(310) 

5220-29000 
(36-200) 0.97-1.37 

 6090 
(42) 0.21-0.40 81.9 

(565) 
15.4-32.5 

(68.5-144.4) 
Duranovic et al.  

(1997) 2 4.6 
(31.8) 

5.91 
(150) 

8.66 
(220) 

6530 
(45) 1.30 

 6530 
(45) 0.35 108.8 

(750) 
11.0-15.0 

(49.0-66.6) 
Shehata et al.  

(1999) 8 (6) 4.8-7.8 
(33.0-54.0) 

5.31 
(135) 

18.50 
(470) 

19870-29000 
(137-200) 1.25-1.32 

 5950-19870 
(41-137) 0.24-1.40 92.8-250.9 

(640-1730) 
62.4-84.4 

(277.5-375.5) 
Whitehead and  

Ibell (2005) 5 8.1-9.3 
(55.6-63.9) 

4.33 
(110) 

3.94-7.87 
(100-200) 

8700 
(60) 0.32 

 8700 
(60) 0.19-0.80 203.1 

(1400) 
10.1-13.5 

(45.0-60.0) 

Total 118 (27) 3.3-10.4 
(23.0-71.6) 

4.33-17.72 
(110-450) 

3.94-29.53 
(100-750) 

4210-29880 
(29-206) 0.31-2.00 

 4350-19870 
(30-137) 0.06-1.50 71.1-253.1 

(490-1745) 
10.1-132.6 

(45.0-590.0) 
(1)Vitiello (2011) 
(2) The number in parentheses indicates the number of specimens with longitudinal steel bars instead of FRP bars.  
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Table 4.7: Strength reduction and statistical parameters of FRP reinforced beams subject 

to shear 

Shear reinforcement Ø (1) βT Bias (λ) CoV(δ)  

Vf=0 (no stirrups) 0.75 3.5 1.93 0.238 

no limit on Vf 0.75 3.5 1.64 0.353 

Vf>3Vc  0.75 3.5 1.22 0.614 

Vf≤3Vc  0.75 3.5 1.80 0.226 

(1) ACI 440.1R-08 

 

Table 4.8: Calculated strength reduction factors for FRP RC beams subject to shear  

for different target reliabilities  

Limit state 

Strength reduction factor (Ø) 

βT=3.5  βT=4.0  βT=4.5 

Vf=0 (no stirrups) 0.84 0.80 0.76 

no limit on Vf 0.49 0.45 0.41 

Vf≤3Vc 0.77 0.73 0.70 
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Figure 4.1: Reliability indices for beams made of ordinary concrete under flexure; load 

combination U=1.2D+1.6L 

 

Figure 4.2: Reliability indices for beams made of ordinary concrete under flexure; load 

combination U=1.2D+1.6W 
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Figure 4.3: Reliability indices for beams made of ordinary concrete under shear; load 

combination U=1.2D+1.6L 

 

Figure 4.4: Reliability indices for beams made of ordinary concrete under shear; load 

combination U=1.2D+1.6W
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CHAPTER 5 

 

5. STUDY IV: STRENGTH REDUCTION FACTORS FOR FLEXURAL RC 
MEMBERS STRENGTHENED WITH NEAR-SURFACE-MOUNTED BARS 

 

5.1 BACKGROUND 

Assigning a strength reduction factor to RC members externally strengthened with FRP 

bars presents the code writers with a dilemma: on the one hand, any reduction factor has 

to address the very legitimate and yet, as will be explained later, frequently misconceived 

notions arising from adding to an RC members a new material, (e.g., FRP bars) whose 

behaviour exhibits more unpredictability than reinforcing steel. On the other hand, such a 

factor has to observe continuity, continuity being the sameness of the ultimate strength of 

an unstrengthened RC member with that of the same member with an infinitesimal 

amount of strengthening, a requirement which, needless to say, is violated should a 

smaller reduction factor be imposed on strengthened members. ACI 440.2R-08,”Guide 

for the Design and Construction of Externally Bonded FRP Systems for Strengthening 

Concrete Structures”, has opted for an alternative solution: maintaining the strength 

reduction factors as stipulated by ACI 318, (e.g., Ø=0.90 for a tension-controlled flexure) 

and dictating a partial reduction factor to the contribution of FRP, e.g., ψf=0.85 for a 

section subject to pure bending. Historically, the primary reason for this approach was to 

allow for the use an “emerging” material system whose behaviour was not fully 

understood and proven. This method, although logical and effective, is today 

unsatisfactory, unsatisfactory as it constitutes a departure from ACI’s approach of 
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applying holistic reduction factors to the strength of members, and unsatisfactory because 

it resonates more as an “ignorance” factor than a safety factor, for it is designed mainly to 

alleviate non-quantified concerns and is derived chiefly by engineering judgement. 

The seeming inescapability of a smaller reduction factor for FRP strengthened members 

stems from the belief that due to the higher randomness of the mechanical behaviour of 

FRP as compared to steel, and also the uncertainties associated with the installation of 

FRP, such member is necessarily more temperamental than an ordinary RC member, in 

other words adding FRP should lead to a build-up of uncertainties. This, however, might 

not always be true. Counterintuitive as it may sound, according to basic statistics, 

introducing a random variable into a system of random variables might very well reduce 

the deviation of the whole system, even if the newly added variable has a greater 

randomness than the former system. The simplest of such cases may be explained by two 

independent random variables with equal means and coefficients and variation. The sum 

of the two forms another random variable with a variation of about 70% of the variation 

of each of its components and, therefore, is more, not less, deterministic. When FRP 

strengthened RC members are concerned, the likelihood of such relaxations in 

uncertainty cannot be discounted. 

It also should be noted that owing to the provisions of the guidelines (ACI 440), FRP 

components, compared to steel bars, commonly reserve a higher portion of their capacity 

between the point of their nominal strength to the point of their actual failure, i.e., rupture 

for FRP or yield for steel. In statistical terms FRP bars have a higher bias factor which 

can act as a pre-applied or hidden safety factor for them. 
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A combination of such arguments and other considerations related to the cost of repair, 

prompted the authors of this study to investigate the subject anew, for flexural members 

strengthened with near-surface mounted (NSM) FRP bars, by taking advantage of 

reliability analysis and computerized simulation techniques. 

In this study, using a comprehensive test matrix of flexural members processed with the 

computerized Monte Carlo simulation technique, the probabilistic implications of 

applying FRP to RC beams and slabs, as near-surface-mounted (NSM) reinforcement, are 

investigated. The statistical data generated are then employed to recommend revised 

strength reduction factors for flexural RC members strengthened with NSM FRP bars, 

covered by ACI 440.2R-08, that are styled after the ACI 318 building code, do not 

compromise safety and yet do not impose needless restraints on benefiting from the full 

capacity of the strengthening system. By doing so not only a consistency among ACI 

documents can be achieved, but also repairs can be made satisfactorily safe and cost-

effective at the same time.  

 

5.2 OUTLINE 

This study discusses the items below sequentially: 

• The structural model of the strengthened RC members is discussed. 

• The statistical model is defined based on the structural model and its variables and 

their descriptive parameters are introduced. 

• The Monte Carlo simulation technique is briefly discussed. 

• The statistical model is analysed via the Monte Carlo technique. 
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• The reliability analysis is employed to calculate the strength reduction factors for 

strengthened flexural members so that they achieve the same level of safety of 

ordinary RC beams and slabs. 

• Recommendations about the modification of strength reduction factors are 

presented that allow for the elimination of the partial factors. 

These steps break down the original unwieldy task of assessing the uncertainty of the 

complicated behaviour of a strengthened member into a series of smaller, more 

manageable questions of evaluating the uncertainties associated with each component and 

parameter contributing to the resistance of the member such as its materials, its 

dimensions, etc. None of these steps is absolutely judgment-free, yet anytime an 

engineering judgment is made, for want of information or statistics, it will be quantifiable 

and so will be its effects on the eventual outcome, making the methodology easily 

repeatable when richer experimental databases become available. 

 

5.3 STRUCTURAL MODEL 

The nominal flexural capacity of flexural RC members externally strengthened with FRP, 

of which NSM system is a subset, may be calculated as the sum of the strengths provided 

by each reinforcement component, the contribution of steel, Mns, and the contribution of 

FRP, Mnf: 

𝑀𝑛 = 𝑀𝑛𝑠 + 𝑀𝑛𝑓     (5.1) 

Where each term on the right of Equation 5.1 is a function of resistance variables 

calculated according to Chapter 10 of ACI 440.2R-08: 

𝑀𝑛𝑠 = 𝑓(𝐴𝑠,𝑓𝑦, 𝑓𝑐′, 𝑏,𝑑𝑠,𝛼1,𝛽1, 𝜀𝑐𝑢, 𝜀𝑏𝑚)     (5.2) 
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𝑀𝑛𝑓 = 𝑔(𝐴𝑓 ,𝑓𝑓𝑢, 𝜅𝑚,𝐸𝑓 ,𝑓𝑐′, 𝑏,𝑑𝑓 ,𝛼1,𝛽1, 𝜀𝑐𝑢, 𝜀𝑏𝑚)                     (5.3) 

The symbols are defined in Notations. It should be noted the two components of 

resistance in Equation 5.1 are not totally decoupled, for, as a result of the repositioning of 

the neutral axis, Mns declines ever so slightly as Mnf increases.  

Modes of Failure 

According to ACI 440.2R-08 two distinct modes of failure govern the behaviour of the 

externally FRP strengthened members and thus affect the calculation of Equations 5.1 to 

5.3. The first mode is initiated by the crushing of the concrete in compression and occurs 

when the compressive strain in concrete reaches the maximum usable value of εcu=0.003.  

The debonding of the FRP bars initiates the second mode, which is similarly identified by 

the tensile strain of FRP system reaching the maximum level which can sustain the bond 

between the concrete and FRP bars. This maximum is referred to as the debonding strain 

or εfd,  which is discussed later in this study.  Reinforcing steel, also, may or may not 

have yielded at the point of failure, thus dividing each of the two aforesaid modes into 

two sub-modes, resulting in a total of four failure modes. 

In this study, using the customary assumptions of the linearity of the plane sections in 

bending and compatibility of strains, the conditions that distinguish between these modes 

are derived based on the design parameters of the member. The reinforcement indices for 

steel and FRP, ωs and ωf, are defined as: 

𝜔𝑠 = 𝐴𝑠𝑓𝑦
𝑓𝑐′𝑏𝑑𝑠

;  𝜔𝑓 = 𝐴𝑓𝑓𝑓𝑑
𝑓𝑐′𝑏𝑑𝑠

     (5.4) 

Note that the denominator is the same for both parameters and ffd is the stress in FRP 

corresponding to the debonding strain, εfd. The two modes can be predicted by 

comparison to the balanced condition: 
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�
𝜔𝑓 ≥ 𝜔𝑓𝑏:Concrete crushing 
𝜔𝑓 < 𝜔𝑓𝑏:     FRP debonding     (5.5) 

ωfb depends on whether steel yields or not: 

𝜔𝑓𝑏 =

⎩
⎪
⎨

⎪
⎧0.85𝛽1

𝑑𝑓
𝑑𝑠

𝜀𝑐𝑢
𝜀𝑐𝑢+𝜀𝑓𝑑+𝜀𝑏𝑖

− 𝜔𝑠                                          ∶                    if steel yields.

0.85𝛽1
𝑑𝑓
𝑑𝑠

𝜀𝑐𝑢
𝜀𝑐𝑢+𝜀𝑓𝑑+𝜀𝑏𝑖

− 𝜔𝑠
�𝑑𝑠𝑑𝑓

�(𝜀𝑓𝑑+𝜀𝑏𝑖)−�1−𝑑𝑠𝑑𝑓
�𝜀𝑐𝑢

𝜀𝑠𝑦
:        if steel doesn't yield.

 (5.6) 

ωsb, separates the yielding sub-modes when concrete crushing is the case:  

 �
𝜔𝑠 ≤ 𝜔𝑠𝑏:                    steel yields 
𝜔𝑠 > 𝜔𝑠𝑏:        steel doesn't yield     (5.7) 

Where: 

𝜔𝑠𝑏 = 0.85𝛽1
𝜀𝑐𝑢

𝜀𝑐𝑢+𝜀𝑠𝑦
− 𝜔𝑓

�
𝑑𝑓
𝑑𝑠
−1�𝜀𝑐𝑢+�

𝑑𝑓
𝑑𝑠
�𝜀𝑠𝑦−𝜀𝑏𝑖

𝜀𝑓𝑑
   (5.8) 

In Equations 5.6 and 5.8, εbi is the strain level in the concrete substrate at the time of FRP 

installation and in practical cases varies, based on the loading, in the approximate range 

of 0.0005~0.001, while for the lab-made specimens normally εbi=0. For simplicity and 

uniformity, in this study the latter value is assumed for every case investigated, knowing 

that this assumption slightly over-predicts the resistance, if the member is deflected at the 

time of installation, but has less effect on the randomness of its behaviour which is the 

focus of this study. 

Equations 5.4 to 5.8 confirm, as it could be expected, that the increase in steel 

reinforcing, ωs, and FRP strengthening, ωf, increase the likelihood of the first mode of 

failure, i.e., concrete crushing. Generally speaking, debonding is the dominant failure 

mode and concrete crushing is normally confined to the infrequent case of heavily-

reinforced, heavily-strengthened beams. 
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5.4 STATISTICAL MODEL 

In lieu of test results upon which the statistical parameters of the flexural capacity, partial 

(Mns and Mnf) and total (Mn), can be established, these parameters are to be calculated 

from the combination of the factors that generate uncertainty in resistance. Each source of 

uncertainty is defined by its bias factor (λ, the ratio of the mean to the nominal value of a 

random variable), coefficient of variation (δ or CoV) and probabilistic distribution type. 

The following recounts how these data are collected from the literature or assumed by 

judgement. 

Sources of uncertainty 

Material factor: Although defined by its unique nominal or design value, the actual 

strength of a material is a random variable whose mean and standard deviation may be 

related to its nominal value from experimental data. Table 5.1 lists the probabilistic 

identifiers of materials and each item is briefly discussed here: 

f’c: The compressive strength of concrete is not typically the controlling in the flexural 

capacity of a member, thus only the most common of concrete types is considered, the 

statistical parameters of which are taken from Novak and Szerszen (2003).  

fy: Grade 60 steel (fy=60 ksi or 414 MPa) is the common  type of reinforcing bars used in 

RC construction. Novak and Szerszen (2003) provides the statistical data.  

ffu: ACI 440 modifies the guaranteed tensile strength of FRP reinforcement, f*fu, by a 

reduction factor, 0.70≤CE≤1.0 based on the fiber type and conditions of environmental 

exposure: 

𝑓𝑓𝑢 = 𝐶𝐸𝑓𝑓𝑢∗       (5.9) 
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 ffu, the tensile strength of FRP bars or laminates is then a decisive factor in determining 

the flexural strength. In this study it is assumed that CE regardless of its value is pre-

applied and therefore only ffu takes part in the computations. Ignoring a potential source 

of uncertainty in CE is deemed to be mitigated by ACI 440.2R-08 statement that its 

recommended values are “conservative estimates”. In other words, in reality FRP 

material might be slightly more volatile and yet in contrast slightly stronger than what 

this study presumes. 

Unlike steel and to some extent concrete producers that comply with well-established 

standards, FRP manufacturers protocols are less controllable. This leads to a variation in 

the mechanical characteristics of FRP products which in turn, makes acquiring an 

objective assessment of the probabilistic parameters of FRP materials a challenging task, 

as the test samples are usually biased towards the products and manufacturers they 

represent. In this study, it is assumed that FRP products exhibit a level of consistency of 

characteristics higher than that of concrete and yet lower than steel, which is the most 

predictable of construction materials.   This assumption confines FRP’s coefficient of 

variation between those of concrete and steel (i.e., 0.05≤δ≤0.10). For FRP bars, circular 

or rectangular, δ=0.08 is selected as a reasonable estimate. A bias factor of λ=1.20 that 

corresponds to such a deviation, according to Gulbrandsen (2005), completes the couple.  

Two generic types of FRP are assumed with type 1 having significantly higher tensile 

strength and modulus of elasticity than type 2. 

Ef: The statistical data is according to Gulbrandsen (2005). 

κm: FRP debonding is the dominant failure mode of the strengthened members. The 

debonding strain and stress of the NSM reinforcement, εfd and ffd , are defined as: 
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𝜀𝑓𝑑 = 𝜅𝑚𝜀𝑓𝑢  ;   𝑓𝑓𝑑 = 𝜅𝑚𝑓𝑓𝑢     (5.10) 

For NSM reinforcement, ACI 440.2R-08 states that 0.60≤κm≤0.90, “depending on many 

factors such as member dimensions, steel and FRP reinforcement ratios, and surface 

roughness of the FRP bar” and recommends the use of κm=0.70. Assuming a simple 

uniform random distribution over that range, the statistical parameters are estimated. The 

coefficient of variation of 0.115 makes the debonding factor, κm, the major source of 

material uncertainty. 

Fabrication Factor: The variations in dimensions and geometry fall under the category of 

the fabrication factor. These parameters as shown in Table 5.2 are generally based on 

Novak and Szerszen (2003), except for those discussed below: 

c: The concrete cover to steel reinforcement center is assumed to be statistically 

independent of the effective depth of steel bars, but with the same probabilistic 

parameters of bias and variation. 

 df: The effective depth of external FRP, with negligible approximation, is estimated as: 

𝑑𝑓 = 𝑑𝑠 + 𝑐      (5.11) 

Therefore, df is a random variable whose nominal and mean value and its standard 

deviation depend upon c and d and their relative magnitude. Also note that higher 

variation and smaller bias factor for the effective depth and concrete cover differentiate 

slabs from beams.  

b (for slabs):The unit width of strip used in the analysis and design of the slabs is 

assumed to be a deterministic parameter.  

Af: The statistical data for the FRP bars is according to Gulbrandsen (2005). 
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Professional factor: is the ratio of the actual to theoretical behavior, and is applied to steel 

and FRP contributions independently. In mathematical terms, these factors (material, 

fabrication and professional) boil down to the statistical model of: 

𝑅 = 𝑅𝑠 + 𝑅𝑓      (5.12) 

Where, R, the total flexural strength of the member is a random variable comprised of 

steel and FRP random contributions, Rs and Rf: 

𝑅𝑠 = 𝑃𝑠𝑀𝑠;𝑅𝑓 = 𝑃𝑓𝑀𝑓                               (5.13) 

Ms and Mf are random variables whose nominal values are Mns and Mnf (Equations 5.2 

and 5.3), and contain the collective effect of the material and fabrication factors. Ps and 

Pf are the random variables representing the professional factor and account for the 

uncertainties associated with analysis parameters (εcu, α1 and β1) that are presumed to be 

deterministic. The probabilistic parameters of Ps (i.e., λ and δ) are according to Novak 

and Szerszen (2003). The same parameters are deemed by the authors to be applicable to 

Pf ; however, to remain reasonably conservative the bias factor (λ) for FRP is lowered to 

1.00 (Table 5.3). 

 

5.5 SIMULATION MATRIX 

Table 5.4 shows a summary of the simulation matrix. Thirty two sets of slabs and thirty 

sets of beams, divided equally between the two types of FRP specified in Table 5.1, are 

simulated. Each set contains 5 members, one unstrengthened member and 4 with different 

levels of strengthening applied to that, resulting in a total of 310 simulated members. All 

the unstrengthened members, that represent the common designs, are tension controlled 

in flexure, according to ACI 318-11. This can be easily confirmed by the limits of steel 



85 
 

 
 

ratios, ρs. The focus is, of course, on the flexure and other types of resistance, shear and 

torsional, are assumed to be sufficient. 

A very limited number of simulations pertain to the strengthening range of 100-150%; 

however, the utmost level of strengthening is generally restricted to approximately 100%, 

which means that the nominal flexural capacity may, as a maximum, be nearly doubled 

by strengthening. This is consistent with the limit imposed by ACI 440.2R-08, Chapter 9.  

 

5.6 MONTE CARLO SIMULATION 

Monte Carlo method technique is employed to generate samples of numerical data (e.g., 

resistance) from which the statistical parameters such as mean and standard deviation, or 

equally bias factor and coefficient of variation, may be calculated. Appendix G provides 

an example of how this technique is employed in this study. Tables 5.5 and 5.6 contain 

examples of the results of such simulations. For each design, in addition to the nominal 

values of resistance, the statistical parameters are also calculated by the Monte Carlo 

simulation. 

 

5.7 RELIABILITY ANALYSIS AND CALCULATION OF STRENGTH 
REDUCTION FACTORS 

 
The strength reduction factors are calibrated based on the comparative reliability equation 

elicited from Chapter 4: 

ln�𝜙𝑁𝑆𝑀𝜙𝑅𝐶

𝝀𝑹𝑪
𝜆𝑁𝑆𝑀

�

�𝛿𝑁𝑆𝑀
2 +𝛿𝑅𝐶

2
= 𝛿𝑅𝐶−𝛿𝑁𝑆𝑀

𝛿𝑁𝑆𝑀+𝛿𝑅𝐶
𝛽𝑇                     (5.14) 

Equation 5.14 relates the strength reduction and statistical parameters (Ø, λ and δ) of an 

NSM member, denoted by the subindex NSM, to those of an ordinary RC member with 
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the subindex RC, which acts as the benchmark, if the same level of safety or target 

reliability of βT is expected from both member types. In this study, the benchmark RC 

members are assumed to have the same statistical characteristics of resistance of the 

member prior to strengthening. Tables 5.5 and 5.6 can be recalled to clarify the subject. 

These tables display sample simulated sets of five members. The first row of each set, 

i.e., the unstrengthened or the ordinary RC member constitutes the benchmark member. 

The benchmark reduction factor for each member is calculated according to ACI 318-11 

and the safety levels of βT=2.5 for slabs or βT=3.5 for beams are selected according to 

Novak and Szerszen (2003). The failure mode predicted by the design (nominal) values is 

denoted by mode I for concrete crushing and mode II for debonding. The last column is 

the ratio of the reduction factor of the strengthened member, ØNSM, to that of an RC 

member, ØRC, calculated according to Equation 5.14. 

 

5.8 DISCUSSION 

Investigation of the results 

A general observation can be made from the results of the simulations, represented 

partially by Tables 5.5 and 5.6: the FRP contribution has a higher deviation and higher 

bias factor than the steel contribution. This, nevertheless, is a forgone conclusion due to 

the higher bias and deviation associated with FRP as a material. Further generalizations 

may be drawn by a more in-depth look at the results: 

Slabs: The variation of the strength of the strengthened member is normally lower than 

the variations of each of its components. This is mainly attributable to the variation 
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reduction mentioned in section 5.1 and accounts, partially, for the increased reduction 

factors compared to the unstrengthened members (cases with ØNSM / ØRC >1.0). 

Beams: The fabrication factors of beams, as opposed to those of slabs, have a markedly 

lower randomness, which results in the more deterministic behavior of the beams which 

is reflected in their lower coefficients of variation. In the case of beams, the addition of 

FRP generally increases the variation when the failure is governed by concrete crushing. 

For debonding failures, the trend is mainly similar to that of slabs which undergo the 

same failure mode.  

Aside from these general statements, a pattern must be detected in the calculated strength 

reduction factors so that they can be formulated for practical use. 

When steel yields, Equations 5.5 and 5.6 can be easily reworked to predict the failure 

mode based on the ratio of the collective reinforcement index, ωs+ωf, to the parameter, 

ωb, defined in this study as: 

𝜔𝑏 = 0.85𝛽1
𝑑𝑓
𝑑𝑠

𝜀𝑐𝑢
𝜀𝑐𝑢+𝜀𝑓𝑑+𝜀𝑏𝑖

     (5.15) 

ωb marks the combination of the steel and FRP indices which results in the simultaneous 

FRP debonding and concrete crushing, if steel has already yielded. If (ωs+ωf)/ωb≤1.0, 

the debonding mode governs the failure; else, failure is initiated by the concrete crushing. 

This ratio can also be interpreted as an indicator of the deflection before failure. The 

growth of (ωs+ωf)/ωb leads to smaller deflections before the flexural failure and vice 

versa. Therefore to formulate the Ø factor, members were regrouped based on this ratio. 

Fig. 5.1 and 5.2 display the reduction factors calculated against the strengthening levels 

for two of such groups, i.e., 1.0≤(ωs+ωf)/ωb≤2.0 and 2.0≤ (ωs+ωf)/ωb≤4.0,. It is 

observed that for the group with (ωs+ωf)/ωb≤1.0, or those that fail by debonding, the 
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calculated strength reduction factor is almost always larger than ØRC. One exception is 

presented in the last row of Table 5.5 which is, admittedly, a design far from normal.  As 

shown graphically, by the totally conservative approach of finding the lower boundary of 

the points a reduction factor can be suggested as:  

∅𝑁𝑆𝑀
∅𝑅𝐶

= �
1.0        :            if 𝜔𝑠+𝜔𝑓

𝜔𝑏
≤ 1.0      

1- Δ
9
≥ 8

9
:             if 𝜔𝑠+𝜔𝑓

𝜔𝑏
≥ 2.0       

    (5.16) 

Where, Δ, is the strengthening level: 

Δ = 𝑀𝑛|strengthened−𝑀𝑛|unstrengthened

𝑀𝑛|unstrengthened
     (5.17) 

And for values of 1.0 ≤ (ωs+ωf)/ωb≤2.0 a linear interpolation is satisfactory. 

 

Example 

As an example, the procedure of the calculation of the ultimate flexural strength, 

Mu=ØMn, for one of the beams in Table 5.6(Set 2, fourth row) is detailed here: 

Flexural capacity, Mnstrengthened, calculations: 

 From the beam and material properties (Tables 5.1 and 5.6) the reinforcement indices 

(Equation 5.4) can be calculated as:  ωs=0.1500, ωf=0.1524, assuming that εbi=0.00.  

Equations 5.7 and 5.8 are used to check if the steel yields: 

 ωsb= 0.3857>ωs; therefore, steel yields. 

Debonding can be checked by equations: 

ωb=0.1865, (ωs+ ωf)/ωb=1.62>1.0; no debonding is expected and concrete crushing is 

the failure mode. 

In this study the design equations governing this mode of failure (concrete crushing and 

steel yielding) are derived as: 
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Stress ratio in FRP: 

𝑓 = 𝑓𝑓
𝑓𝑓𝑑

=
��𝜔𝑠𝜔𝑓

−
𝜀𝑐𝑢+𝜀𝑏𝑖
𝜀𝑓𝑑

�
2
+3.4𝛽1

𝜔𝑓
 𝜀𝑐𝑢 
𝜀𝑓𝑑

 
𝑑𝑓
𝑑𝑠

  −�𝜔𝑠𝜔𝑓
+
𝜀𝑐𝑢+𝜀𝑏𝑖
𝜀𝑓𝑑

�

2
≤ 1   (5.18) 

ff  is the stress in FRP. The steel contribution is calculated as: 

𝑀𝑛𝑠 = 𝑓′𝑐𝜔𝑠 �1 − 𝜔𝑠+𝑓𝜔𝑓

1.7
�𝑏𝑑𝑠2    (5.19) 

And the contribution of FRP: 

𝑀𝑛𝑓 = 𝑓′𝑐𝑓𝜔𝑓 �
𝑑𝑓
𝑑𝑠
− 𝜔𝑠+𝑓𝜔𝑓

1.7
� 𝑏𝑑𝑠2    (5.20) 

Substituting the corresponding values into Equations 5.18 to 5.20: 

f=0.667, Mns=1473.7 kip.in (166.5 kN.m), Mnf=1187.8 kip.in (134.2 kN.m), and 

according to Equation 5.1: Mn=2661.5 kip.in (300.7 kN.m). 

Strength reduction factor according to ACI 440.2: 

𝑀𝑢 = ∅𝑅𝐶�𝑀𝑛𝑠 +  𝜓𝑓𝑀𝑛𝑓�    (5.21) 

Where: 

0.65 ≤ ∅𝑅𝐶 = 0.65 + 0.25 𝜀𝑠−𝜀𝑠𝑦
0.005−𝜀𝑠𝑦

≤ 0.90; ψf=0.85   (5.22) 

εs is the strain in steel reinforcement which can be calculated from the compatibility of 

strains: 

𝜀𝑠 = 𝑑𝑠
𝑑𝑓
�𝑓𝜀𝑓𝑑 + 𝜀𝑏𝑚� − (1 − 𝑑𝑠

𝑑𝑓
)𝜀𝑐𝑢 ≥ 𝜀𝑠𝑦   (5.23) 

εs=0.0056; therefore, ØRC=0.90 and Mu=2235.0 kip.in (252.6 kN.m). 

Strength reduction factor according to this study: 

The strength reduction factor is calculated from Equation 5.16: 

(ωs+ωf)/ωb=1.62>1.0; therefore, 8/9≤ØNSM /ØRC≤1.0 and the strengthening level, Δ, 

must be computed. 



90 
 

 
 

From conventional reinforced concrete design: 

𝑀𝑛|unstrengthened = 𝑓′𝑐𝜔𝑠 �1 − 𝜔𝑠
1.7
� 𝑏𝑑𝑠2 = 1577.2 kip.in (178.2 kN.m)  (5.24) 

And according to Equation 5.17 the strengthening level is: Δ=0.69. From Equation5.16: 

if (ωs+ωf)/ωb=2.0; then, ØNSM /ØRC=1.0-(0.69)/9=0.923 

The strength reduction factor is obtained by interpolation: 

ØNSM/ØRC=(1.62-1.00)(0.923)+(2.00-1.62)(1.0)=0.952 (compare to the value of 0.962  

obtained by the reliability analysis, i.e., Equation 5.14 and Table 5.6.) 

ØRC=0.90; therefore, ØNSM=0.857 

And, eventually, Mu=ØNSMMn=2281.0 kip.in (257.7 kN.m), slightly higher than ACI 

440.2 recommendation. 

Table 5.7 summarizes similar calculations for the beams of Table 5.6. 

Comparison with ACI 440.2 

A direct comparison between the strength reduction factors obtained in this study 

(Equation 5.16) with that stipulated by ACI 440.2R-08 (Equation 5.22) might not seem 

very streamlined. Nevertheless, if the question is approached from a practical point of 

view the issue can be greatly simplified.  The lower values of the current reduction 

factors from ACI 440.2 are relatively of low practical importance due to a series of 

reasons, including: 

• They require low levels of strain on the tension side of the flexural member 

which can be translated into low levels of stress in the strengthening system and 

its decreased efficiency. Such a situation may defeat the idea of strengthening in 

the first place. 
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• The overwhelming majority of the members in need of strengthening are lightly 

reinforced, either because of their nature, like slabs, or because of the reason that 

originates the requirement of repair, like under-designed beams. Such designs, 

always, lead to large deformations on the tension side. 

• Mainly due to the installation hardships, the additional strength gained by adding 

FRP hardly ever goes beyond 50%, with the normal values revolving around 20 

to 25%. This again means less restraint for the member and comparatively large 

deflections on the tension side. 

Tables 5.6 and 5.7 portray these arguments in a more tangible form: Set 1 is composed of 

a lightly-reinforced RC beam (ρs=0. 5% slightly higher than the minimum permissible by 

ACI 318, ρmin=0. 35%) with different degrees of strengthening, Δ. Set 3, on the other 

hand is heavily reinforced (ρs=1.5%) and, unlike Set 1, for the strengthening levels of 

Table 5.7 requires ØRC factors of smaller than 0.90, according to ACI 440.2. A 

comparison between the relative ratios of FRP to steel (Af/As in Table 5.6, or more 

comprehensively ωf/ωs in Table 5.7) confirms the much higher efficiency of the 

strengthening in Set 1. The absence of any slabs and the rarity and the relative 

impracticality of the beams that require a factor lower than 0.90 by ACI 440.2 in the 

simulated designs confirm that ØRC=0.90 may be regarded as the most applicable 

strength reduction factor recommended by the guideline, which, certainly, has to be 

applied in combination with its partial reduction factor of ψf=0.85 imposed on the FRP 

contribution. 
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5.9 CONCLUSIONS 

Based on this discussion, a simple and general comparison between the two proposed 

factors for NSM systems, can now made: 

• For lightly reinforced and strengthened flexural members, this study recommends 

a reduction factor of 0.90 and eliminates the ACI’s partial factor of 0.85.   

• For other cases, this study recommends a variable but unified reduction factor 

that, roughly speaking, has the equal effect of the double factor of ACI 440.2.  

The obvious advantages can be restated as the increased cost-effectiveness without 

risking the safety and restoring the tradition of ACI in applying the reduction factors to 

the overall strength of a member and not to the individual materials. 

This study concentrates on the NSM systems; however, other types of installation, such 

as pultruded plates and in-situ lay-up and other limit states such as shear and axial force 

may be investigated in the same manner, provided that the data concerning their 

uncertainties are reliably provided or estimated. 
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Table 5.1: Statistical parameters for materials 

Material Property Nominal 
value 

Bias 
(λ) CoV(δ) Distribution 

Concrete(1) f’c ksi (MPa) 4.0 (27.6) 1.24 0.10 lognormal 
Steel bars(1) fy  ksi (MPa) 60 (414) 1.145 0.05 lognormal 

FRP bars(2) 

1 ffu ksi (MPa) 250 (1725) 1.20(2) 0.08(2) lognormal 
Ef ksi (GPa) 20000(138) 1.04(2) 0.08(2) lognormal 

2 ffu ksi (MPa) 90 (620) 1.20(2) 0.08(2) lognormal 
Ef ksi (GPa) 6000(41) 1.04(2) 0.08(2) lognormal 

κm 0.70 1.071 0.115 uniform 
(1)Nowak and Szerszen (2003) 
(2)Gulbrandsen (2005) 

 

Table 5.2: Statistical parameters for dimensions of concrete, steel and FRP 

Item Member Bias (λ)  CoV(δ)  Distribution 

ds
(1) beam 0.99 0.04 lognormal slab 0.92 0.12 

c beam 0.99 0.04 lognormal slab 0.92 0.12 

b beam(1) 1.01 0.04 lognormal 
slab 1.00 0.00 deterministic 

As
(1) beam, slab 1.00 0.015 lognormal 

Af
(2) beam, slab 1.00 0.03 lognormal 

(1)Nowak and Szerszen (2003)  
(2)Gulbrandsen (2005) 
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Table 5.3: Statistical parameters of professional factors 

Item Nominal 
value Bias (λ)  CoV(δ)  Distribution 

Ps
(1) 1.00 1.02 0.06 lognormal 

Pf 1.00 1.00 0.06 lognormal 
(1)Nowak and Szerszen (2003)  

 

Table 5.4: Summary of simulated members 

Member ds in. (mm) df in. (mm) b in. (mm) ρs (%) Strengthening 
Level (%) 

Number of 
members  

Slabs 2.5-10.5 
(64-267) 

4.0-12.0 
(102-305) 

12.0 
(305) 0.2-0.5(1) 20-110(3) 160 

Beams 9.5-27.5 
(241-699) 

12.0-36.0 
(305-914) 

8.0-24.0 
(203-610) 0.5-1.5(2) 20-150(3) 150 

(1)ρs=As/bdf 
(2)ρs=As/bds 
(3)Approximate range. 
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Table 5.5: Examples of results for NSM strengthened slabs per unit width of 1.0 ft. (305 mm) 

Slab Properties(1) Steel contribution FRP contribution 
Total strength 

(NSM) 
Strengthening  

level (%) 
Failure  
mode(3) ØNSM/ØRC

 (4) Set 

df 
in. 

(mm) 

ds 
in. 

(mm) 

As 
in.2 

(mm2) 

Af
(2) 

in.2 

 

Mns
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mnf
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mn
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

1 (ρ
s =0.2%

) 

6.0 
(152) 

4.5 
(114) 

0.144 
(93) 

0.00 38.0 1.090 0.188 0.0 - - 38.0 1.090 0.188 0 - 1.000 
0.01 37.2 1.085 0.189 10.2 1.205 0.200 47.4 1.111 0.175 25 II 1.043 
0.02 37.1 1.086 0.191 20.3 1.206 0.200 57.3 1.128 0.172 51 II 1.064 
0.03 36.9 1.086 0.190 30.3 1.205 0.198 67.2 1.139 0.170 77 II 1.079 
0.04 36.8 1.085 0.190 40.3 1.207 0.200 77.1 1.149 0.172 103 II 1.083 

2 (ρ
s =0.3%

) 

8.0 
(203) 

6.5 
(165) 

0.288 
(186) 

0.00 108.7 1.087 0.176 0.0 - - 108.7 1.073 0.176 0 - 1.000 
0.02 106.8 1.087 0.174 26.9 1.207 0.199 133.6 1.111 0.163 23 II 1.059 
0.04 106.2 1.085 0.177 53.5 1.206 0.202 159.8 1.125 0.165 47 II 1.070 
0.06 105.7 1.085 0.177 80.0 1.205 0.200 185.7 1.137 0.164 71 II 1.081 
0.08 105.2 1.082 0.177 106.2 1.201 0.198 211.4 1.142 0.165 95 II 1.084 

3 (ρ
s =0.4%

) 

10.0 
(254) 

8.5 
(216) 

0.480 
(307) 

0.00 234.6 1.087 0.167 0.0 - - 234.6 1.077 0.167 0 - 1.000 
0.04 230.8 1.086 0.169 66.6 1.207 0.201 297.3 1.113 0.160 27 II 1.047 
0.08 229.1 1.083 0.170 132.3 1.201 0.198 361.4 1.126 0.160 54 II 1.059 
0.12 227.4 1.079 0.172 197.3 1.187 0.200 424.7 1.129 0.165 81 II 1.052 
0.16 225.6 1.080 0.175 261.4 1.161 0.204 487.0 1.123 0.174 108 II 1.031 

Continued on the next page 
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Table 5.5: Continued 

Slab Properties(1) Steel contribution FRP contribution 
Total strength 

(NSM) 
Strengthening  

level (%) 
Failure  
mode(3) ØNSM/ØRC

 (4) Set 

df 
in. 

(mm) 

ds 
in. 

(mm) 

As 
in.2 

(mm2) 

Af
(2) 

in.2 

 

Af
(2) 

in.2 

 

Mns
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mnf
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mn
(5)

 
kip.in 

 

λ 
 
 

4 (ρ
s =0.5%

) 

12.0 
(305

) 

10.5 
(267) 

0.720 
(465) 

0.00 430.7 1.086 0.163 0.0 - - 430.7 1.080 0.163 0 - 1.000 
0.06 424.4 1.086 0.168 118.9 1.203 0.203 543.3 1.112 0.160 26 II 1.036 
0.12 420.6 1.081 0.170 236.0 1.180 0.205 656.5 1.117 0.165 52 II 1.031 
0.18 416.6 1.078 0.169 351.0 1.136 0.209 767.6 1.105 0.172 78 II 1.008 
0.24 412.2 1.075 0.172 463.7 1.077 0.224 875.9 1.076 0.186 103 II 0.958 

(1)Other properties according to Table 5.1.  
 (2)FRP type 1 from Table 5.1.  
(3)I: concrete crushing, II: debonding  
(4)According to Equation 5.14 with βT=2.5 
(5)1.0 kip.in=0.113 kN.m 
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Table 5.6: Examples of results for NSM strengthened beams 

Beam properties(1) Steel contribution FRP contribution 
Total strength 

(NSM) 
Strengthening 

level (%) 
Failure 
mode(3) 

Ø
N

SM /Ø
R

C
 (4) 

Set 

b 
in. 

(mm) 

df 
in. 

(mm) 

ds 
in. 

(mm) 

As 
in.2 

(mm2) 

Af
(2) 

in.2 

 

Mns
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mnf
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

Mn
(5)

 
kip.in 

 

λ 
 
 

δ 
 
 

1 (ρ
s =0.5%

) 

8.0 
(203) 

12.0 
(305) 

9.5 
(241) 

0.38 
(245) 

0.00 207.0 1.165 0.095 0.0 - - 207.0 1.159 0.095 0 - 1.000 
0.075 204.3 1.164 0.095 54.2 1.292 0.161 258.5 1.189 0.087 26 II 1.049 
0.15 203.0 1.163 0.096 107.7 1.288 0.158 310.7 1.204 0.089 52 II 1.054 
0.225 201.6 1.162 0.097 160.8 1.272 0.150 362.4 1.208 0.092 78 II 1.052 
0.30 200.2 1.160 0.098 213.2 1.246 0.143 413.4 1.202 0.094 103 II 1.040 

2 (ρ
s =1.0%

) 

12.0 
(305) 

18.0 
(457) 

15.5 
(394) 

1.86 
(1200) 

0.00 1577.2 1.161 0.093 0.0 - - 1577.2 1.170 0.093 0 - 1.000 
0.60 1529.1 1.173 0.095 569.4 1.080 0.169 2098.5 1.148 0.091 33 I 0.986 
1.20 1497.9 1.176 0.095 922.4 1.098 0.167 2420.4 1.147 0.097 53 I 0.971 
1.80 1473.7 1.178 0.096 1187.8 1.102 0.161 2661.5 1.144 0.099 69 I 0.962 
2.40 1453.6 1.178 0.095 1402.6 1.104 0.160 2856.2 1.142 0.102 81 I 0.953 

3 (ρ
s =1.5%

) 

18.0 
(457) 

24.0 
(610) 

21.5 
(546) 

5.805 
(3745) 

0.0 6497.3 1.171 0.094 0.0 - - 6497.3 1.171 0.094 0 - 1.000 
2.50 6256.2 1.177 0.095 1733.9 1.099 0.202 7990.1 1.160 0.096 23 I 0.984 
5.00 6098.7 1.183 0.096 2802.9 1.107 0.192 8901.6 1.159 0.101 37 I 0.971 
7.50 5978.0 1.182 0.097 3588.9 1.115 0.187 9566.9 1.157 0.106 47 I 0.959 
10.00 5878.9 1.184 0.099 4211.3 1.124 0.181 10090.3 1.159 0.110 55 I 0.950 

(1)Other properties according to Table 5.1.  
 (2)FRP type 2 from Table 5.1.  
(3)I: concrete crushing, II: debonding  
(4)According to Equation 5.14 with βT=3.5 
(5)1.0 kip.in=0.113 kN.m 
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Table 5.7: Ultimate strength of the beams in Table 5.6 

Set ωb ωs ωf (ωs+ωf)/ωb 
Mns 

kip.in 
Mnf 

kip.in 
Mn

(1)
 

kip.in 
Δ  

(%) ØRC ØNSM/ØRC
(2) ØNSM Mu

(3)
 

kip.in 
Mu

(4)
 

kip.in 

1 0.203 0.075 

0.000 0.37 207.0 0.0 207.0 0 0.900 1.000 0.900 186.3 186.3 
0.016 0.45 204.3 54.2 258.5 26 0.900 1.000 0.900 232.7 225.3 
0.031 0.52 203.0 107.7 310.7 52 0.900 1.000 0.900 279.6 265.1 
0.047 0.60 201.6 160.8 362.4 78 0.900 1.000 0.900 326.2 304.5 
0.062 0.67 200.2 213.2 413.4 103 0.900 1.000 0.900 372.1 343.3 

2 0.186 0.150 

0.000 0.80 1577.2 0.0 1577.2 0 0.900 1.000 0.900 1419.5 1419.5 
0.051 1.08 1529.1 569.4 2098.5 33 0.900 0.997 0.897 1883.3 1811.8 
0.102 1.35 1497.9 922.4 2420.4 53 0.900 0.979 0.881 2133.1 2053.8 
0.152 1.62 1473.7 1187.8 2661.5 69 0.900 0.952 0.857 2281.0 2235.0 
0.203 1.89 1453.6 1402.6 2856.2 81 0.899 0.919 0.826 2360.2 2378.0 

3 0.179 0.225 

0.000 1.26 6497.3 0.0 6497.3 0 0.900 1.000 0.900 5847.6 5847.6 
0.102 1.82 6256.2 1733.9 7990.1 23 0.879 0.979 0.860 6872.0 6791.0 
0.203 2.39 6098.7 2802.9 8901.6 37 0.804 0.959 0.771 6859.6 6815.9 
0.305 2.96 5978.0 3588.9 9566.9 47 0.757 0.948 0.717 6860.0 6832.7 
0.407 3.53 5878.9 4211.3 10090.3 55 0.724 0.939 0.679 6852.9 6844.4 

(1)Mn= Mns+ Mnf 
(2)According to Equation 5.16 
(3)Mu=ØNSMMn: According to this study 
(4)Mu=ØRC (Mns+0.85Mnf): According to ACI 440.2R-08 
1.0 kip.in=0.113 kN.m 
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Figure 5.1: Calculated strength reduction factors for beams with 1.0≤(ωs+ωf)/ωb≤2.0.  

(Only points with ØNSM/ØRC ≤1.0 are shown.)

 

Figure 5.2: Calculated strength reduction factors for beams with 2.0≤(ωs+ωf)/ωb≤4.0. 

(Only points with ØNSM/ØRC ≤1.0 are shown.)
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CHAPTER 6 

 

6. CONCLUSIONS 

 

The results and findings of this thesis are concisely recapitulated in Table 6.1 and 

itemized as: 

• Study I, analytically, formulates the live load factor as the function shown in the 

first row of Table 6.1. It also obtains approximate values for the life-time 

modification coefficient, κ. 

• Study II, benefits from the numerical methods to find more accurate values of κ. 

• Study III, introduces the “comparative reliability” concept and with that 

calculates new flexural strength reduction factors for beams and slabs internally 

reinforced with FRP bars (Table 6.1). It also concludes that Ø factor of 0.75, for 

shear, can be maintained if a stricter limit is imposed on maximum shear 

reinforcement with FRP stirrups. 

• Study IV, obtains a flexural strength reduction factor that is exclusively 

calculated for NSM FRP bars, which is an enhancement to the current guideline 

that uses a Ø factor meant for steel RC flexural elements in combination with the 

ψf factor. 

Further Investigation 

The four studies that constitute this dissertation conform to a similar pattern of 

introducing a general methodology followed by its application to an especial case of 
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interest.  Other cases, however, can now be investigated taking advantage of the 

theoretical basis laid by these studies: 

• The life-time of a structure may be incorporated into other time-dependent load 

cases such as wind and earthquake, using the methodology detailed by Studies I 

and II.  

• Current North American design guidelines do not cover columns internally 

reinforced with FRP bars. The structural reliability of such members may be 

analyzed according to the procedures detailed in Studies III and IV in order to 

obtain their associated calibrated reduction factors. 

• Study IV can be further advanced to include other types of external strengthening 

of RC members with FRP materials as well as other ultimate limit states. 
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Table 6.1: Summary of the results compared to the values in codes in practice 

Study Subject of study Parameter of concern According to ACI According to this thesis 

I and II ACI 318-08 
RC elements Live load factor 𝛾𝐿 = 1.60 (1) 𝛾𝐿𝑛 = 1.60 �1 + 𝜅ln �𝑛

50
�� (2) 

III ACI 440.1R-06 
FRP RC elements 

Strength reduction factors 

Flexure, FRP rupture: Ø=0.55 (3) Ø=0.70(4) 

Flexure, Concrete crushing:0.55 ≤Ø≤0.65 (3) Ø=0.75(4) 

Shear: Ø=0.75 (5) Ø=0.75(4) 

Maximum shear 
reinforcement 𝑉𝑓 ≤ 8�𝑓𝑐′𝑏𝑑 (6) 𝑉𝑓 ≤ 3𝑉𝑐 P

(4) 

IV 
ACI 440.2R-08 

strengthened 
RC elements  

Strength reduction factor 
for flexural NSM systems 

Overall: 0.65≤ØNSM=ØRC≤0.90 (7) 
 FRP: ψf=0.85 (8) 

8/9≤ ØNSM/ØRC ≤1.0 (9) 
ψf is removed. 

(1) ACI 318-08:9.2.1 
(2)  n is the expected life-time (years), κ is according to Table 3.4. 
(3) ACI 440.1R-06:8.2.3 
(4) Section 4.9 
(5) ACI 440.1R-06:9.1.1 
(6) ACI 440.1R-06:9.2.3 
(7) ACI 440.2R-08:10.2.7 (Equation 5.22) 
(8) ACI 440.2R-08:10.2.10(Equation 5.22) 
(9) Equation 5.16 
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APPENDIX A: STUDY I - DETAILS OF CALCULATION OF TARGET 
RELIABILITY INDEX 

 
The nominal values in Equation 2.28 are related to their mean values by: 

      𝑅𝑁 = 𝜇𝑅
𝜆𝑅

      (A1) 

                   𝐷 = 𝜇𝐷
𝜆𝐷

         (A2) 

       𝐿 = 𝜇𝐿
𝜆𝐿

       (A3) 

Equation A3 is the equivalent of Equation 2.20 for the special case of n=50. Equation 

2.26 is formulated for a single load; therefore, the right-hand side of Equation 2.28 may 

be revised in terms of a single total load variable, Q, with a nominal value of QN, a load 

factor of γ and a bias factor of λQ, as Q is the sum of two independent variables QD, dead 

load, and QL, live load: 

𝑄 = 𝑄𝐷 + 𝑄𝐿      (A4) 

            𝜇𝑄 = 𝜇𝐷 + 𝜇𝐿      (A5) 

                        𝜎𝑄2 = 𝜎𝐷2 + 𝜎𝐿2      (A6) 

  𝑄𝑁 = 𝐷 + 𝐿      (A7) 

    𝑄𝑁 = 𝜇𝑄
𝜆𝑄

      (A8) 

                     𝛾𝑄𝑁 = 𝛾𝐷𝐷 + 𝛾𝐿𝐿         (A9) 

   𝜙𝑅𝑁 = 𝛾𝑄𝑁      (A10) 

γ , λQ  and δQ, depend on ρ , the ratio of live load  to total load: 

 𝜌 = 𝐿
𝐷+𝐿

= 𝐿
𝑄𝑁

                    (A11) 

From Equations A7, A9 and A11 with γD=1.2 and γL=1.6, one obtains:
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     𝛾 = (1 − 𝜌)𝛾𝐷 + 𝜌𝛾𝐿 = 1.2 + 0.4𝜌    (A12) 

Similarly by substituting from Equations A1, A2 and A8 into Equation A5, it can be 

rewritten as: 

                      𝜆𝑄𝑄𝑁 = 𝜆𝐷𝐷 + 𝜆𝐿𝐿         (A13) 

And therefore, substituting from Equation A11 and Table 2.2: 

    𝜆𝑄 = (1 − 𝜌)𝜆𝐷 + 𝜌𝜆𝐿 = 1.05 − 0.05𝜌    (A14) 

Equation A6 can also be written as: 

(𝜇𝑄𝛿𝑄)2 = (𝜇𝐷𝛿𝐷)2 + (𝜇𝐿𝛿𝐿)2    (A15) 

Substituting bias factors and nominal values from Equations A2, A3 and A8 into 

Equation A15, one obtains: 

(𝜆𝑄𝑄𝑁𝛿𝑄)2 = (𝜆𝐷𝐷𝛿𝐷)2 + (𝜆𝐿𝐿𝛿𝐿)2   (A16) 

Hence as, from Equation A11 and Table 2.2: 

𝜆𝑄𝛿𝑄 = �[(1 − 𝜌)𝜆𝐷𝛿𝐷]2 + (𝜌𝜆𝐿𝛿𝐿)2 = �[0.105(1 − 𝜌)]2 + (0.18𝜌)2  (A17) 

With the factor and the probabilistic parameters of the total load calculated, the next step 

is to calculate the reliability index. The limit state function G(Q,R) can be written as: 

𝐺(𝑄,𝑅) = 𝑅 − 𝑄     (A18) 

It is more convenient for calculations to be carried out in terms of dimensionless 

variables. Therefore Equations A1, A8 and A10 are reworked as: 

𝜇𝑄
𝜙𝜆𝑄

= 𝜇𝑅
𝛾𝜆𝑅

= 𝜇      (A19) 

The dimensionless variables of resistance, r, and load, q, can be defined as: 

       𝑞 = 𝑄
𝜇

      (A20) 

                   𝑟 = 𝑅
𝜇
      (A21) 



108 
 

 
 

And their statistical parameters are: 

𝜇𝑞 = 𝜇𝑄
𝜇

= 𝜙𝜆𝑄;  𝜎𝑞 = 𝜎𝑅
𝜇

= 𝜙𝜆𝑄𝛿𝑄;  𝛿𝑞 = 𝛿𝑄   (A22) 

𝜇𝑟 = 𝜇𝑅
𝜇

= 𝛾𝜆𝑅;  𝜎𝑟 = 𝜎𝑅
𝜇

= 𝛾𝜆𝑅𝛿𝑅;  𝛿𝑟 = 𝛿𝑅    (A23) 

Equally, the limit state function can be defined in terms of q and r: 

       𝐺(𝑞, 𝑟) = 𝑟 − 𝑞      (A24) 

Using Equations A22 and A23, the reliability index can be expressed as: 

𝛽50 = 𝜇𝑟−𝜇𝑞

�𝜎𝑟2+𝜎𝑞2
= 𝛾𝜆𝑅−𝜙𝜆𝑄

�(𝛾𝜆𝑅𝛿𝑅)2+(𝜙𝜆𝑄𝛿𝑄)2
     (A25) 

By means of Equations A12, A14, A17 and A25, the reliability index can be calculated 

for any given ratio of live to total load for a 50-year life-span, which is regarded in this 

study as target reliability, βT, for that loading condition. 
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APPENDIX B: STUDY I - DETAILS OF CALCULATION OF LIVE LOAD 
FACTOR 

 
Similar to Equation A25, the reliability index for a life span of n years (βn) can be 

obtained as: 

 𝛽𝑛 = 𝛾𝑛𝜆𝑅−𝜙𝜆𝑄𝑛

�(𝛾𝑛𝜆𝑅𝛿𝑅)2+(𝜙𝜆𝑄𝑛𝛿𝑄𝑛)2
= 𝛽50    (B1) 

The time-dependent parameters, identified by subscript n can be calculated by 

generalizing their counterparts derived in Appendix A: 

𝛾𝑛 = (1 − 𝜌)𝛾𝐷 + 𝜌𝛾𝐿𝑛    (B2) 

Which characterizes the general form of Equation A12. Similarly, time can be 

incorporated into Equations A14 and A17 as: 

𝜆𝑄𝑛 = (1 − 𝜌)𝜆𝐷 + 𝜌𝜆𝐿𝑛    (B3) 

𝜆𝑄𝑛𝛿𝑄𝑛 = �[(1 − 𝜌)𝜆𝐷𝛿𝐷]2 + �𝜌𝜆𝐿𝑛𝛿𝐿𝑛�
2

= �[0.105(1 − 𝜌)]2 + (0.18𝜌)2 = 𝜆𝑄𝛿𝑄  

(B4) 

Noting that in Equation B3, λLn is derived from Equation 2.22. Also, Equation B4 is 

simplified using Equations 2.24 and A17. 

Although Equation B1 can now be solved for the exact value of γn, a simple 

approximation technique can be used to render it separable and obtain a less complicated 

final solution (Haldar and Mahadevan 2000) by introducing an intermediary variable, εn:  

𝜀𝑛 =
�(𝛾𝑛𝜆𝑅𝛿𝑅)2+(𝜙𝜆𝑄𝑛𝛿𝑄𝑛)2

𝛾𝑛𝜆𝑅𝛿𝑅+𝜙𝜆𝑄𝑛𝛿𝑄𝑛
     (B5)
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Since all the parameters in Equation B5 are positive, then √2/2≤εn≤1.00. Also according 

to Equation B4, for a given ρ, the term  (λQnδQn) is constant, therefore within a small 

margin of error εn can be assumed to be constant and equal to its value at n=50: 

      𝜀𝑛 ≈ 𝜀50      (B6) 

Based on Equations B5 and B6, Equation B1 can then be written as: 

𝛽𝑛 = 𝛾𝑛𝜆𝑅−𝜙𝜆𝑄𝑛
𝜀50(𝛾𝑛𝜆𝑅𝛿𝑅+𝜙𝜆𝑄𝑛𝛿𝑄𝑛)

= 𝛽50    (B7) 

Which can be solved for γn as: 

      𝛾𝑛 = 𝜙 𝜆𝑄𝑛
𝜆𝑅

1+𝜀50𝛽50𝛿𝑄𝑛
1−𝜀50𝛽50𝛿𝑅

         (B8) 

If n=50, the subscript n may be dropped and Equation B8 may be written simply as: 

        𝛾 = 𝜙 𝜆𝑄
𝜆𝑅

1+𝜀50𝛽50𝛿𝑄
1−𝜀50𝛽50𝛿𝑅

         (B9) 

Equations B4, B8 and B9 result in: 

       𝛾𝑛
𝛾

= 𝜆𝑄𝑛
𝜆𝑄

1+𝜀50𝛽50𝛿𝑄𝑛
1+𝜀50𝛽50𝛿𝑄

= 𝜆𝑄𝑛+𝜀50𝛽50𝜆𝑄𝛿𝑄
𝜆𝑄+𝜀50𝛽50𝜆𝑄𝛿𝑄

       (B10) 

This can be solved for γLn as: 

 𝛾𝐿𝑛 = 𝛾𝐿 + 0.14 𝛾
𝜆𝑄+𝜀50𝛽50𝜆𝑄𝛿𝑄

ln ( 𝑛
50

)    (B11) 

Which can be summarized as: 

   𝛾𝐿𝑛 = 1.6 �1 + 𝜅ln � 𝑛
50
��    (B12) 

   𝜅 = 0.0875𝛾
𝜆𝑄+𝜀50𝛽50𝜆𝑄𝛿𝑄

     (B13) 

κ is the “life-time modification coefficient”.
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APPENDIX C: STUDY I - SIMPLIFIED METHOD FOR CALCULATION OF 
LIFE-TIME MODIFICATION COEFFICIENT  

 
Equation B13 can be simplified by replacing the parameters ε50 and β50 with constant 

values:  

The separation parameter, ε50, can be approximated with sufficient accuracy, as 0.75.β50 

may be replaced by βT, the desirable level of reliability index i.e., for the limit states of 

Table 4: βT=3.5 for beams, βT=2.5 for slabs and βT=4.0 according to Novak and Szerszen 

(2003). Let βT=4.0 and ε50=0.75, Fig. C1 shows κ as a function of ρ, which for normal 

loading cases (0.5≤ L/D ≤2.0) averages at 0.09, with negligible deviation. Thus it is 

reasonable to substitute κ in Equation 2.30 with the unique value of 0.09 to cover all the 

ultimate states and live load ratios (Equation 2.31). 

 

Figure C1- life-time modification coefficient (κ) vs. live load ratio (βT=4.0 and ε50=0.75) 
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APPENDIX D: STUDY II - RACKWITZ-FIESSLER METHOD 

The Rackwitz-Fiessler method is an iterative procedure whose cycles consist of two 

major steps: first, finding the “design point”; and, second, calculating the “equivalent 

normal” values of the mean and standard deviation for each non-normal variable. The 

input data of the Rackwitz-Fiessler are the “real” mean and standard deviation of the non-

normal variables of the limit state function, G(Q,R)=R-Q. R is the resistance and load, Q, 

as assumed earlier, is constituted of dead and live load components, QD and QL (For a 

complete list of symbols see NOTATIONS). For the ease of calculations, these variables 

may be replaced by their dimensionless counterparts: 

     𝑞 = 𝑑 + 𝑙      (D1) 

       𝑞 = 𝑄
𝜇

;  𝑑 = 𝑄𝐷
𝜇

; 𝑙 = 𝑄𝐿
𝜇

     (D2) 

Where μ is defined as: 

  𝜇 = 𝜇𝑄
𝜙𝜆𝑄

= 𝑄𝑁
𝜙

       (D3) 

ρ stands for the ratio of  design live load, L,  to total load, QN, or:  

𝜌 = 𝐿
𝐷+𝐿

= 𝐿
𝑄𝑁

       (D4) 

Which in combination with Equation D3 results in: 

𝜇 = 𝐷
(1−𝜌)𝜙

= 𝐿
𝜌𝜙

     (D5) 

Replacing the nominal values of loads by their means, using the definition of bias factor, 

it can be obtained that: 

         𝜇 = 𝜇𝐷
(1−𝜌)𝜙𝜆𝐷

= 𝜇𝐿
𝜌𝜙𝜆𝐿

     (D6) 

Hence the statistical parameters of d, l and q can be calculated as: 

        𝜇𝑑 = 𝜇𝐷
𝜇

= (1 − 𝜌)𝜙𝜆𝐷;  𝜎𝑑 = 𝜎𝐷
𝜇

= (1 − 𝜌)𝜙𝜆𝐷𝛿𝐷;  𝛿𝑑 = 𝛿𝐷   (D7)
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𝜇𝑙 = 𝜇𝐿
𝜇

= 𝜌𝜙𝜆𝐿;𝜎𝑙 = 𝜎𝐿
𝜇

= 𝜌𝜙𝜆𝐿𝛿𝐿;  𝛿𝑙 = 𝛿𝐿   (D8) 

       𝜇𝑞 = 𝜇𝑑 + 𝜇𝑙  (D9) 

         𝜎𝑞2 = 𝜎𝑑2 + 𝜎𝑙2     (D10) 

The statistical parameters of r, the dimensionless form of resistance, R, are taken from 

Appendix A (Equation A23) and repeated here: 

  𝜇𝑟 = 𝜇𝑅
𝜇

= 𝛾𝜆𝑅;  𝜎𝑟 = 𝜎𝑅
𝜇

= 𝛾𝜆𝑅𝛿𝑅;  𝛿𝑟 = 𝛿𝑅   (D11) 

With the input data calculated the details of the two aforesaid iterative steps of the 

method are as follows: 

First Step: Design point 

The design point, x*(q*, r*), can be defined as the closest point of the function G(q, r)=r-

q=0 to the origin, when G is formulated in terms of reduced variables of load and 

resistance, zq and zr.  

𝑧𝑞 = 𝑞−𝜇𝑞
𝜎𝑞

 (D12) 

𝑧𝑟 = 𝑟−𝜇𝑟
𝜎𝑟

 (D13) 

zq and zr possess a mean of 0 and a standard deviation of 1. This shortest distance (i.e., 

between the design point and origin) is then equal to the reliability index, β (Fig. D1).  

For an arbitrary limit state function, the general approach to this step is the 

implementation of the Lagrange multipliers method and numerical or trial-and-error 

solution of the resultant equations (Nowak and Collins 2000). In this study, that deals 

with a linear limit state function, an alternative and more conceptual solution is presented 

that circumvents the Lagrange multipliers and yields closed-form solutions: 

𝐺�𝑧𝑞 , 𝑧𝑟� = 𝑟 − 𝑞 = �𝜇𝑟 − 𝜇𝑞� + 𝑧𝑟𝜎𝑟 − 𝑧𝑞𝜎𝑞 = 0   (D14) 
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From Fig. A1 it can be concluded that:  

𝐺�𝑧𝑞∗ , 𝑧𝑟∗� = �𝜇𝑟 − 𝜇𝑞� + 𝑧𝑟∗𝜎𝑟 − 𝑧𝑞∗𝜎𝑞 = 0   (D15) 

 (𝑧𝑞∗)2 + (𝑧𝑟∗)2 = 𝛽2     (D16) 

While the reliability index, β, is conventionally defined as: 

𝛽 = 𝜇𝑟−𝜇𝑞

�𝜎𝑟2+𝜎𝑞2
 (D17) 

By solving Equations D15, D16 and D17 the reduced design point can be calculated as: 

𝑧𝑞∗ = 𝜎𝑞(𝜇𝑟−𝜇𝑞)
𝜎𝑟2+𝜎𝑞2

                      (D18) 

𝑧𝑟∗ = −𝜎𝑟(𝜇𝑟−𝜇𝑞)
𝜎𝑟2+𝜎𝑞2

               (D19) 

Mapping (zq
*, zr

*) into (q, r) coordinates using Equations D12 and D13, the design point 

(q*, r*) is found as: 

𝑞∗ = 𝑟∗ = 𝜇𝑟𝜎𝑞2+𝜇𝑞𝜎𝑟2

𝜎𝑞2+𝜎𝑟2
     (D20) 

q* must be decoupled to its two components (d*, l*). To this end, the limit state function 

G(d, l, r)=0 that describes a plane in the (d, l, r) space must be reformulated in terms of 

their reduced variables, (zd, zl, zr): 

𝐺(𝑑, 𝑙, 𝑟) = 𝑟 − (𝑑 + 𝑙) = 0        (D21) 

𝑧𝑑 = 𝑑−𝜇𝑑
𝜎𝑑

     (D22) 

𝑧𝑙 = 𝑙−𝜇𝑙
𝜎𝑙

     (D23) 

The reduced form of r is calculated from Equation D13. Substituting these reduced forms 

into the limit state function (Equation D21) and simplifying it with Equation D9, the limit 

state plane in the (zd, zl, zr) space is describable as:  

𝐺(𝑧𝑑, 𝑧𝑙, 𝑧𝑟) = �𝜇𝑟 − 𝜇𝑞� + 𝑧𝑟𝜎𝑟 − 𝑧𝑙𝜎𝑙 − 𝑧𝑑𝜎𝑑 = 0  (D24) 
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As mentioned earlier, by definition, the closest point of this plane to the origin is the 

reduced design point, z*( zd
*, zl

*, zr
*), while its distance from the origin is equal to the 

reliability index, β: 

(𝑧𝑑∗)2 + (𝑧𝑙∗)2 + (𝑧𝑟∗)2 = 𝛽2     (D25) 

It can be derived from Equations D16 and D25 that: 

    (𝑧𝑑∗)2 + (𝑧𝑙∗)2 = (𝑧𝑞∗)2     (D26) 

Equation D1 can be expressed in terms of reduced variables as well: 

𝜇𝑞 + 𝑧𝑞𝜎𝑞 = (𝜇𝑑 + 𝑧𝑑𝜎𝑑) + (𝜇𝑙 + 𝑧𝑙𝜎𝑙)   (D27) 

Combined with Equation D9, Equation D27 may be simplified as: 

𝑧𝑞𝜎𝑞 = 𝑧𝑑𝜎𝑑+𝑧𝑙𝜎𝑙     (D28) 

Naturally, Equation D28 must be satisfied at zq
*( zd

*, zl
*) as well: 

𝑧𝑞∗𝜎𝑞 = 𝑧𝑑∗𝜎𝑑+𝑧𝑙∗𝜎𝑙     (D29) 

Where zq
* can be obtained from Equation D18.The two conditions stated by Equations 

D26 and D29 may have a geometrical interpretation similar to that of the definition of 

reliability index and design point shown in Fig. D1, which is plotted in Fig. D2. 

Substituting from Equation D10 into the two Equations D26 and D29 they can be solved 

for zd
* and zl

* as: 

𝑧𝑑∗ = 𝜎𝑑
𝜎𝑞
𝑧𝑞∗ = 𝜎𝑑(𝜇𝑟−𝜇𝑞)

𝜎𝑟2+𝜎𝑞2
    (D30) 

𝑧𝑙∗ = 𝜎𝑙
𝜎𝑞
𝑧𝑞∗ = 𝜎𝑙(𝜇𝑟−𝜇𝑞)

𝜎𝑟2+𝜎𝑞2
     (D31) 

By substituting values of zd
* and zl

* into Equations D22 and D23, the load components of 

the design point are finally calculated as: 

𝑑∗ = 𝜇𝑑 + 𝜎𝑑
2

𝜎𝑟2+𝜎𝑞2
(𝜇𝑟 − 𝜇𝑞)    (D32) 
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𝑙∗ = 𝜇𝑙 + 𝜎𝑙
2

𝜎𝑟2+𝜎𝑞2
(𝜇𝑟 − 𝜇𝑞)    (D33) 

It should be noted that: 

        𝑟∗ = 𝑑∗ + 𝑙∗     (D34) 

Which conforms to Equation D20. 

Second Step: Equivalent normal parameters 

This step requires the replacement of the mean and standard deviation, μX and σX, of a 

non-normal variable X of the limit state function, G, with “equivalent normal parameters” 

μe
X  and σe

X, that possess the same values of PDF and CDF at the design point x*. X can 

be any of the live load, l, or resistance, r, variables. This can be translated into 

mathematical terms as (Nowak and Collins 2000): 

𝜎𝑋𝑒 = 1
𝑓𝑋(𝑥∗)ϕ�Φ

−1�𝐹𝑋(𝑥∗)��     (D35) 

𝜇𝑋𝑒 = 𝑥∗ − 𝜎𝑋𝑒�Φ−1�𝐹𝑋(𝑥∗)��     (D36) 

Where φ is the PDF for the standard normal distribution and Φ-1 is the inverse of the 

CDF for the standard normal distribution. FX and fX indicate the CDF and PDF of the 

variable X respectively. For the EVD Type I load variable of l, the equivalent parameters 

can be calculated by substituting its CDF and PDF (Study I) into Equations D35 and D36. 

If arbitrary-point-in-time live load is of concern, probability functions of the gamma 

distribution are to be used: 

𝑓𝑋(𝑥) = 𝑥𝑘−1 𝑒−
𝑥
𝜃

𝜃𝑘𝛤(𝑘)
     (D37) 

         𝜇𝑋 = 𝑘𝜃      (D38) 

        𝜎𝑋2 = 𝑘𝜃2      (D39) 
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For the lognormal variable, r, or resistance, Equations D35 and D36 can be further 

simplified as (Nowak and Collins 2000): 

𝜎𝑟𝑒 = 𝑟∗𝜎ln (𝑟)      (D40) 

𝜇𝑟𝑒 = 𝑟∗�1− ln(𝑟∗) + 𝜇ln (𝑟)�    (D41) 

Where: 

𝜎ln(𝑟)
2 = ln(1 + 𝛿𝑟2)     (D42) 

𝜇ln(𝑟) = ln(𝜇𝑟) −
𝜎ln(𝑟)
2

2
      (D43) 

Iteration 

When the equivalent parameters are calculated, step 1 must be repeated anew, using the 

equivalent values to find a new design point, from which new equivalent parameters are 

calculated. This cycle must be repeated until the desirable convergence is achieved. The 

following recapitulates the procedure: 

1. For any given value of ρ, the “real” statistical parameters of load and resistance 

are calculated from Equations D7 to D11.   

2. The design point is calculated from Equations D32 to D34. 

3. The reliability index is calculated from Equation D17. 

4. The equivalent parameters of live load and resistance are calculated from 

Equations D35 and D36 for live load and D40 and D41 for resistance. Dead load 

is already a normal variable and needs no alteration in its parameters. 

5. Steps (b) to (d) are repeated, with the new equivalent parameters replacing the old 

ones (from the previous cycle) until both β and design point converge.  
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Figure D1- Definition of reliability index and design point in the space of reduced 

variables 

 

 

 

 

 

 

 

 

 

 

Figure D2- Geometrical display of reduced components of load at the design point 
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APPENDIX E: STUDY II - MONTE CARLO SIMULATION 

The general procedure for generating random samples, xi, of a variable X with an 

arbitrary distribution of FX(x) may be described by (Nowak and Collins 2000): 

   𝑥𝑚 = 𝐹𝑋−1(𝑢𝑚)      (E1) 

Where ui is a sample of a uniformly distributed variable between 0 and 1, and FX
-1 is the 

inverse of FX. For each set of randomly generated samples of load and resistance, (di, li, 

ri), the limit state function, Gi, is calculated and the probability of failure is estimated as:  

𝑃 = 𝑁𝑓
𝑁

       (E2) 

Where Nf is the number of failures observed (i.e., events of Gi<0) and N is the total 

number of simulations or the sets of random samples. The reliability index follows the 

conventional definition: 

𝛽 = −Φ−1(𝑃)                (E3) 

Φ-1 is the inverse of the cumulative distribution function (CDF) for the standard normal 

distribution. 

The accuracy of the probability estimates, needless to say, depends heavily on the 

number of simulations. To assess this accuracy, it should be noted that the estimated 

probability, P, is a random variable itself whose mean, μP, and coefficient of variation, 

δP, are related to the theoretically correct probability, Ptrue, by (Nowak and Collins 

2000): 

𝜇𝑃 = 𝑃𝑡𝑟𝑢𝑒;  𝛿𝑃 = �1−𝑃𝑡𝑟𝑢𝑒
𝑁(𝑃𝑡𝑟𝑢𝑒)

    (E4) 

Knowing that Ptrue, although unknown, is relatively small and assuming that the sample 

size, N, is large enough so that P≈ Ptrue, Equations E2 and E4 can be combined as: 
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𝛿𝑃 ≈
1

�𝑁𝑓
     (E5) 

Which is used as the indicator of accuracy in this study. To calculate the target reliability 

indices for cases similar to those presented in Table 3.1, each simulation is repeated until 

400 events of failure are recorded (Nf=400) which corresponds to a variation of 5.0 

percent (δP=0.05), a variation deemed small enough to justify the use of the outcomes as 

credible pointers towards the precision of calculations. The total number of required 

simulations, hence, varies approximately from N=4×104 (if P=1×10-2 or β≈2.3) to 

N=4×1012 (if P=1×10-10 or β≈6.4), certainly increasing as the probability of failure 

decreases or equally the reliability index increases. 
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APPENDIX F: STUDY III - CALCULATION OF NOMINAL SHEAR 
STRENGTH OF BEAMS AND THEIR STATISTICAL PARAMETERS 

 
The nominal shear capacity, Vn, is calculated according to Chapter 9 of ACI 440.1R-08.  

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑓                                                             (F1) 

Where Vc and Vf are the contributions of concrete and FRP stirrups respectively:  

𝑉𝑐 = �5
2
�2𝑘�𝑓𝑐′𝑏𝑑𝑓                                                       (F2) 

Where f’c is the compressive strength of concrete, b is the width of the beam, d is the 

effective width and k is the ratio of depth of neutral axis to reinforcement depth, d: 

𝑘𝑐 = �2(𝜌𝑓𝑛𝑓) + (𝜌𝑓𝑛𝑓)2−(𝜌𝑓𝑛𝑓)                                            (F3) 

Where ρf  is the ratio of the longitudinal FRP bars and nf  is the modular ratio: 

𝑛𝑓 = 𝐸𝑓
𝐸𝑐

                                                                  (F4) 

Ef and Ec are the modulus of elasticity of FRP and concrete. 

𝑉𝑓 = 𝐴𝑓𝑣𝑓𝑓𝑣𝑑𝑓
𝑠

                                                             (F5) 

Afv is the area of FRP stirrups within a spacing of s. The tensile strength of FRP for shear 

design, ffv, is calculated as: 

𝑓𝑓𝑣 = 0.004𝐸𝑓 ≤ 𝑓𝑓𝑏                                                      (F6) 

Where Ef is the modulus of elasticity of stirrups. ffb, strength of bent portion of FRP 

stirrups, depends on that rb/db, the ratio of internal radius of bend in stirrups to their 

diameter which here is assumed to be equal to 3, the minimum recommended by the 

guideline.  

  𝑓𝑓𝑏 = �0.05 𝑟𝑏
𝑑𝑏

+ 0.3� 𝑓𝑓𝑢 = 0.45𝑓𝑓𝑢 ≤ 𝑓𝑓𝑢                                      (F7)
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ffu is the ultimate longitudinal tensile strength of FRP stirrups. Examples of calculations 

are presented in Tables F1 and F2. The first, from Yost et al. (2001), exemplifies beams 

without shear reinforcement while the second, from Nagasaka et al. (1993), represents 

shear reinforced beams. As in the second case Vf exceeds 3Vc, the nominal strength, Vn, 

is calculated and shown twice in Table F1: first, as the sum of the two components of 

shear strength and second, according to the modification suggested by Equations 4.31 and 

4.32. Such cases of “excessive” FRP contribution are disregarded when the aim is 

calculating the statistical parameters of shear resistance under the restrictions of 

Equations 4.31 and 4.32. When bias factors are calculated for every case (beams with and 

without stirrups are treated separately), the overall bias factor and coefficient of variation 

for resistance are calculated as, respectively, the mean and coefficient of variation of 

individual bias factors (Table 4.7). 
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Table F1: Examples of properties of specimens 

Reference 

f’c 
ksi 

(MPa) 

b 
in. 

(mm) 

df 
in. 

(mm) 

FRP bars  FRP stirrups 

Ef   
ksi 

(GPa) 

Af 
in.2 (mm2) 

 Ef  

 ksi (GPa) 
Afv 

in.2 (mm) 
ffu  

ksi (Mpa) 
s 

in. (mm) 

Yost et al. (2001) 5.3 
(36.3) 

9.0 
(229) 

11.25 
(286) 

5800 
(40) 

1.116 
(720) 

 
- 0 - - 

Nagasaka et al. 
(1993) 

3.3 
(23) 

9.84 
(250) 

9.96 
(253) 

8120 
(56) 

1.860 
(1200) 

 8990 
(62) 

0.017 
(100) 

121.8 
(840) 

1.57 
(40) 
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Table F2: Examples of calculations for beams of Table F1 

Reference ρf 

(%) 
nf kc 

ffv 
ksi(Mpa) 

ffb 
ksi(Mpa) 

Vc 
kips (kN) 

Vf 
kips (kN) Vf /Vc 

Vn 
kips (kN) 

Vexp 
kips (kN) 

Bias 
(λR) 

Yost et al. 
(2001) 1.10 1.41 0.162 - - 4.5 

(20.1) - 0 4.5 
(20.1) 

8.8 
(39.1) 1.95 

Nagasaka et 
al. (1993) 1.90 2.46 0.262 36.0 

(248) 
54.8 
(378) 

7.1 
(31.8) 

35.3 
(156.9) 4.97 42.4 

(188.7) 
43.6 

(194.0) 1.03 

Nagasaka et 
al. (1993)(1) 1.90 2.46 0.262 36.0 

(248) 
54.8 
(378) 

7.1 
(31.8) 

35.3 
(156.9) (1) 4.97(1) 28.6 

(127.2) (1) 
43.6 

(194.0) -(1) 

(1)Modified method: Vf≥3Vc: Vn=4Vc. Case is neglected. 
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APPENDIX G: STUDY IV - EXAMPLE OF SIMULATION TECHNIQUE 

The general procedure for generating random samples, xi, of a lognormal variable X with 

a coefficient of variation of δX≤0.20, may be described as (Nowak and Collins 2000): 

𝑥𝑚 = 𝜇𝑋𝑒𝑧𝑖𝛿𝑋     (G1) 

𝑧𝑚 = Φ−1(𝑢𝑚)      (G2) 

Where ui is a sample of a uniformly distributed variable between 0 and 1 and Φ-1is the 

inverse of the standard normal cumulative distribution.  κm is assumed to be uniformly 

distributed, therefore its random sample is generated by a simple interpolation over its 

range of distribution (0.60≤κm≤0.90): 

𝜅𝑚𝑚 = 0.60 + 0.30𝑢𝑚    (G3) 

The table below shows an example of a simulation for an NSM strengthened slab (Table 

5.5, Set 2, second row): 

Item Nominal 
Value (N) 

Bias  
(λ)  

CoV 
(δ)  

Mean  
(μ= λN) ui zi xi 

f’c ksi (MPa) 4.0 (27.6) 1.24 0.10 4.96 (34.2) 0.766 0.726 5.33(36.8) 
fy  ksi (MPa) 60 (414) 1.145 0.05 68.7 (474) 0.539 0.098 69.0 (476) 
ffu ksi (MPa) 250 (1725) 1.20 0.08 300 (2070) 0.630 0.332 308.1(2126) 
Ef ksi (GPa) 20000(138) 1.04 0.08 20800 (143) 0.544 0.111 20984(145) 
κm 0.70 1.071 0.115 0.75 0.663 - 0.799 
ds in.(mm) 6.5(165) 0.92 0.12 5.98 (152) 0.757 0.697 6.50 (165) 
c in.(mm) 1.5(38) 0.92 0.12 1.38 (35) 0.513 0.033 1.39 (35) 
df in.(mm) 8.0(203) - - 7.36 (187) - - 7.89 (200) 
b in.(mm) 12.0(305) 1.00 0.00 12.00 (305) - - 12.00 (305) 
As in.2(mm2) 0.288(186) 1.00 0.015 0.288 (184) 0.227 -0.749 0.285 (184) 
Af in.2(mm2) 0.02(12.9) 1.00 0.03 0.02 (12.9) 0.703 0.533 0.020 (12.9) 
Ps 1.00 1.02 0.06 1.02 0.330 -0.440 0.993 
Pf 1.00 1.00 0.06 1.00 0.682 0.473 1.029 
 

Excluding the last the two rows, the nominal values of flexural contribution can be 

calculated from the data in the second column, using ACI 440.2R-08 design guide:
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Mns=106.76 kip.in (12.06 kN.m), Mnf=26.88 kip.in (3.04 kN.m), Mn=Mns+Mnf=133.64 

kip.in (15.1 kN.m) 

These contributions for the ith random sample, denoted by subindex i, may be calculated 

from the same data in the last column: 

 Msi=122.72 kip.in (13.86 kN.m), Mfi=37.57 kip.in (4.24 kN.m), Mi=Msi+Mfi =160.29 

kip.in. (18.10 kN.m) 

Eventually, applying the professional factors from the last two rows, the random samples 

of resistance are obtained: 

 Rsi=Psi.Msi=121.86 kip.in(13.77 kN.m), Rfi= Pfi.Mfi =38.66 (4.37 kN.m), 

Ri=Rsi+Rfi=160.52 kip.in. (18.14 kN.m) 

Ri is one random sample of the flexural strength of a member defined by the nominal or 

deign values given in the table. The statistical parameters of R can be calculated from the 

samples, once the number of simulations is large enough to represent the population. This 

number can be decided on by repeating the simulation and measuring the consistency of 

the outcomes. Fig. G1 portrays how the sample size is determined in this study. For the 

slab in the example, the simulation is repeated 10 times, each time with n samples 

(n=1,10,100,…) resulting in 10 different values of mean strength , μR, for each sample 

size, n. Let μS and σS  represent the mean and standard deviation of the 10 values of μR for 

any given n. Fig. G1 shows how, as expected, the variation of the results declines as the 

sample size grows, so that by N=10,000 the outcome is virtually deterministic. To 

eliminate any reservation, in this study each simulation contains 20,000 samples.   
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Figure G1: Variation of calculated mean resistance vs. number of samples for the slab in 

example (1.0 kip.in=0.113 kN.m). 
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