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Abstract

Solar cells provide a renewable and clean energy by converting the sunlight to
electricity. However, it is important to reduce the cost of the solar cell and increase the
efficiency in order to be considered as a reliable energy source.

In this work, a theoretical analysis for a waveguide structure by using Finite
Difference (FD) methods is presented. The fundamental concepts of both Finite
Difference Time Domain method (FDTD) and Finite Difference Frequency Domain
method (FDFD) are reported in details.

Also, a new waveguide solar cell structure containing metamaterial is presented
in order to improve the absorption of light. Metamaterial is an artificial material with
negative electric permittivity and negative magnetic permeability which is used to
absorb a large amount of the incident light. Finite Difference Time Domain Method is
used to analyze the proposed waveguide structure.

We also used MEEP and MATLAB software to run the simulation of the

proposed waveguide structure.
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CHAPTER 1

1. Review of Solar Cell Structure and Materials

1.1 Introduction

Providing enough energy to deal with the increasing demand is one of the
greatest world issues. Sustainable energy development is multidimensional case with
environmental, economic, social and political aspects. Pollution and lack of energy
security are all consequences of using the non-renewable energy sources such as coal,
oil, natural gas and uranium. Moreover, the big challenge is the energy availability for
future generations. A promising source of energy which would be able to solve a part of
the energy crisis for the present and the future is the solar cell. Solar cells provide a
renewable and clean energy by converting the sunlight to electricity. However, it is
important to reduce the cost of the solar cell and increase the efficiency in order to be a

reliable energy source [1].

1.2 Solar Cell Structure
A solar cell is an electrical device that converts the energy of light into electricity

by the photovoltaic effect [2, 3]. The photovoltaic effect is the production of current
caused by the voltage difference across P-N junction, as a consequence of photons
absorption on the top layer of N-type material [4]. The N-type material is usually a
shiny effective material in order to send photons bouncing away before they enter the P-
junction. An anti-reflective coating is used to limit the reflection of sunlight. There are
also finger-like contacts in the top layer which reduce series resistance. The P-type
material is layered to a conductive back contact made of aluminum or some alloy. These

metal contacts and the fingers on the top electrode are made to facilitate plentiful light to



enter into the N-type and P-type layer and also a pathway for electrical flow out of

current. Figure 1.1 shows the basic structure of solar cell.

O Metal
\ contacts
wl« Anti-reflective

| — coating
«— N-dopedsilicon
| <——  P-Njunction

g

P-doped silicon

Metal backing

Glass

Figure 1.1: Basic structure of a silicon solar cell [5]

1.3 Solar Cell Mechanism
A photon with energy greater than the bandgap energy (hv > Ejq,)

incident on a semiconductor excites electrons from the valence band to
conduction band which allow for a current to flow. The maximum current density
Is given by the flux of photons with this energy. The excitation of the electron to
the conductive band causes a hole in the valence band.

A simple form of a solar cell is a large-area P-N junction. An electron-hole
pairs are formed from the energy of the incident light. The electron-hole pairs
separate at the junction, with electron (holes) diffusing across the depletion zone
to the P-type (N-type) region, where they become thermally free and generate a

current [6].

1.4 Limitations of Solar Cells
Regardless of the quality of today’s solar cells, the ultimate consumption rate of

the best of them today can’t exceed the limit of 30% of the sunlight [7]. This can be

attributed to the fact that the spectrum of sunlight covers a range of around 0.0012 eV to

4 eV, however, the semi-conductors respond only to part of the sunlight spectrum.
2



Photons will be able to free electrons and create a current if they have the band gap
energy. Meanwhile, if the energy of the photon is less than material’s band gap, it passes
through the cell without being absorbed causing a waste in incoming energy. Moreover,
the surface of the cell always reflects a significant portion of light though the surface
which is usually texturized and coated with anti-reflective coating. Furthermore, local
recombination of newly created holes and electrons may cause loss of some energy.
Finally, some losses of energy are due to manufacturing impurities in solar cells.
Despite these limitations, solar cells do not reduce emissions or any other

type of pollution, have no moving parts and require a little maintenance.

1.5 Solar Cell Materials
The current generated from light incident on P-N junction depends on both

the mobility of the carriers in material and the exposed surface area of the
junction. Thus, semiconductor materials with greater charge mobility and lower
cost are needed.

a. Silicon: Crystalline and Amorphous

Nowadays, more than 80% of solar cells produced are crystalline silicon solar

cells. Where, all of the other 20% are developed as amorphous silicon solar cells.

Commercially, a crystalline silicon solar cell has achieved efficiencies of as
much as 16%, while experimentally it has achieved efficiencies of more than 24%.
These solar cells have proven to be vigorous in their stability and reliability, even when
they are exposed to hard conditions over many years.

However, the use of crystalline silicon has many financial disadvantages. The
complex processing procedures and the requirement of large amounts of high purity
silicon stock raised the cost of these solar cells. As for the wafer-based cells, the wafer
sizes are restricted, and it should be externally assembled and connected to attain a large
surface area. Improving the cost and efficiency of wafer-based solar cells can be
arranged in either adding an epitaxial layer or dropping amorphous silicon on the wafer

surface.



The deposition of a high-quality epitaxial layer with a proper uniformity has
provided efficiencies greater than 19%, yet it was hard and costly to implement in the
market. However, the deposition of the doped amorphous silicon in order to form a
heterojunction has provided similar efficiencies, along with simplifying the processing.

Recently, the interest has been shifted from wafer-based silicon solar cells to
thin-films crystalline silicon. The film thickness is less than 10um. With the addition of
hydrogen in the growing crystalline layer, efficient grain-boundary passivation can be
attained giving the preferred layer properties with grain size more than 1um. Meanwhile,
the best efficiencies achieved are just below 10%.

In the 1970s, a hydrogenated amorphous silicon (A-Si:H) was presented as a
potential material for semiconductor devices. It has become the first thin-film material to
enter large-scale production for solar cells. The higher visible spectrum optical
absorption over crystalline silicon allows for film thickness much less than1um.

A-Si:H solar cells are produced with a P-I-N structure in order to reduce
recombination loses. Furthermore, A-Si:H solar cells have only reached an efficiency of
13% in the laboratory and 8% commercially.

Despite being produced by cheaper substrates, A-Si:H has low efficiency and
stability issues [1, 8-10].

b. Copper-Indium:Diselenide (CIS) and Copper-Indium:Gallium-

Diselenide (CIGS)

Copper-Indium:Diselenide (CIS) and Copper-Indium:Gallium-Diselenide (CIGS)
are a direct-gap polycrystalline P-type semiconductors. The minimum of the conduction
band and the maximum of the valence band have the same wave vector which leads to
achieve a high optical absorption. CIS and CIGS are used in heterojunctions with N-type
layers.

In the laboratory, CIS and CIGS have a significantly high efficiency which is
about 18.8% for polycrystalline thin-films. The high efficiency is caused by the effective
bandgap between 1.1to 1.2 eV.

CIS and CIGS solar cells offer good stability and reliability, except in

considering heat and humidity. While commercial production of these solar cells is

4



proposed to be significantly cheaper than for wafer-based crystalline silicon solar cells,

full scale production will face difficulties with the availability and price of Indium [11].

c. Cadmium Telluride (CdTe)

Cadmium telluride (CdTe) is a binary compound. CdTe has a direct
bandgap and high optical absorption, but the bandgap energy is about 1.45eV.
This causes a higher current densities and higher open-circuit voltage than with
CIS/CIGS. Their typical efficiencies are 16% in laboratory and 9% commercially.
Another advantage of CdTe solar cells is the significant enhancement of carrier
multiplication from CdTe nanocrystals. Carrier multiplication is the process
where the inelastic scattering of charge carriers and valence electrons generate
additional electron-hole pairs.

However, CdTe is produced from dangerous material (Cd) which

introduces dangers that requiring strict regulation [12].

d. Dye-Sensitized
Dye-sensitized photovoltaic solar cells have multilayer structure that separates
the process of light absorption and charge carrier transport.
In the laboratory, Dye-sensitized solar cells have achieved an efficiency of about
10%. However, the electrolytic Dye can suffer from stability issues, particularly outside
of prescribed temperature range, and additional costs for integrating into series

connected system [13].

e. Organic Polymers
Organic materials could be used to produce photovoltaics. However, it was
not until the 1990s that conducting organic polymer solar cells were offered an
efficiency of 2.9%. Recent researches in laboratory achieved efficiencies as high

as 5%.



Organic photovoltaics depend on the illumination of donor and acceptor
species. This illumination causes the separation of excitons, much like in
inorganic semiconductors. Organic solar cells are constructed out of several
organic polymers, usually embedded with fullerene which is acting as acceptor.

However, the performance of the organic solar cells suffers from several
issues. One of these issues is the correlation between the separation of the bound
electron-hole exciton, which is the primary difference between organic and
inorganic solar cells. Excitons experience stronger correlation in organic
polymers. The bound state formed by the electron-hole pair gives the charge
separation a particularity in efficiencies. Furthermore, recent researches work on
the construction of these polymers in order to increase the light absorption in the
spectrum of visible light, and also to deal with nonlinear optical properties.

Even with its infancy and low efficiencies, organic solar cells propose a
very attractive alternative to inorganic thin-films. Using the organic polymers
reduces the production cost of solar cells and that is beside the advantage of being
lightweight and flexible [14, 15].

f.  Nano-Scale Materials

Nanocrystals can be used as an effective and inexpensive solar cell.
Controlling the size and shape of nanocrystals allows the customization of
bandgap through absorption of light across the whole spectrum. The three
dimension confinement achieves greater impact ionization and results in multiple
charge carrier creation from a single photon. The confinement raises the density
of states along the band edge in a given dimension. With this property, and
control of the inter-crystal spacing, the nanocrystals can act as artificial atoms that

allow for tuning of discrete electronic states via size regulation [16, 17].



g. Metamaterial

In electromagnetic theory, electric permittivity & and magnetic
permeability p are the most important parameters to characterize the
electromagnetic property of a medium. The permittivity describes how an
electric field affects, and is affected by the medium. Whereas, the permeability
describes how a magnetic field affects, and is affected by the medium. And all
this is determined by the ability of a material to polarize in response to the
electric and magnetic field, respectively [18]. Figure 1.2 shows the material
parameter space characterized by electric permittivity and magnetic

permeability.

e<0,n>0 e>0pnu>0

(IT) (I)

e<0,nu<o0 e>0nu<o
(I11) (IV)

Figure 1.2: Material parameter space characterized by electric permittivity (¢) and magnetic

permeability (p).



Region (1) in the upper right quadrant employs material with simultaneously
positive permittivity and permeability, which include most dielectric materials.
Region (II) comprises of metals, ferroelectric materials, and doped
semiconductors which is able to exhibit negative permittivity at certain
frequencies. Region (IV) embraces some ferrite materials with negative
permeability. Region (11l) involves material with both negative permittivity and
permeability. So, this material is called double-negative material due to its double
negative values of permittivity and permeability. In this material, the directions of
the electric field (E), the magnetic field (H), and the wave propagation vector (K)
obey the left-hand rule instead of the right-hand rule in ordinary dielectric
materials, so it can be called left-handed materials (LHMSs). Moreover, when the
electromagnetic waves propagate on this material, the refraction is reversed. So,
they are also called negative index material. Furthermore, this material can
exhibit properties not found in nature, so it called a metamaterial. Where, the
prefix “meta” means “altered” or “beyond” [19], that is metamaterials can have
their electromagnetic properties altered to something beyond what had been found

in nature.

e Brief History of Metamaterial

In 1968, Victor Veselago theoretically analyzed the propagation of plane
wave in a material with both negative permittivity &€ and negative permeability u,
and that was the first study in this field [20].

Pendry et al.[21, 22] suggested and then experimentally proved that a
composite medium of periodically placed thin metallic wires can act as an
effective plasma medium for radiation with wavelength much larger than the
spatial periodicity of the structure. For frequencies lower than a particular
(plasma) frequency, the thin wire structure therefore displays a negative

permittivity &.



Smith et al.[23] constructed a metamaterial using the combination of
periodic rods and split rings. They implemented many experiments in microwave
range to emphasize its phenomenal prosperities.

In 2001, Shelby et al[24] were attained the first experimental investigation
of negative index of refraction.

Kong [25] studied the interaction of electromagnetic waves with stratified
isotropic metamaterials. He scrutinized the field solution of guided waves, the
reflection and transmission beams, and linear and dipole antennas in stratified
structure of metamaterials.

In 2003, Engheta [26] demonstrated the theory of metamaterials and their
electromagnetic properties, possible future applications and physical remarks.

Chew [27] had analyzed the metamaterial energy conservation property
and the realistic Sommerfeld Problem of a point source over a metamaterial half
space and a metamaterial slab. In 2006, Sabah et al[28] presented the reflected
and transmitted powers resulted from the interaction of electromagnetic waves
with a metamaterial. They studied the effects of the structure parameter, incidence
angle, and the frequency on the reflected and transmitted powers for lossless
metamaterial. The electromagnetic wave propagation though frequency dispersive
and lossy double negative slab embedded between two different semi-infinite

media was introduced by Sabah et al[29].

e Theoretical Aspects

Maxwell’s Equations can be used to characterize metamaterial. In order to
describe metamaterial, a transformation of Maxwell’s Equations need to be
considered.

Consider a plane wave propagates in an isotropic, homogenous medium.
The electric field is

E(w, k) = Egexpj(k.r — w.t) (1.1)

and the magnetic field is



H(w,K) = Hpexp j(K.T — w. t) (1.2)

In case of a free charges space, Maxwell’s Equations in the time domain:

V.B=0 (1.3)
0B
VXE=——2 (14)
ot
V.D = (1.5)
aD
VxH=— (16)
ot
and constitutive equations are
D = €¢E = )&, E (1.7)
B = pH = pou,E (1.8)
can be simplified into
Kk X E = pwH (1.9
kx H = —ewE (1.10)

where, D is the electric induction, B is the magnetic induction, ¢, is the
permittivity of vacuum, u, is the permeability of vacuum, &, is the permittivity of
the medium and g, is the permeability of the medium.
Since the permittivity and permeability are both negative, Eq. (1.9) and Eq. (1.10)
change to,
kX E = —pwH (1.11)
Kk X H = ewE (1.12)
Metamaterial properties come from its structure rather than from its
composition. Metamaterials consist of periodically distributed structured
elements, where the size and space of these elements are much smaller than the
wavelength of the Electromagnetic (EM) waves. As a consequence, the
microscopic detail of each individual structure cannot be affected by EM waves.
These collective of inhomogeneous objects can be characterized by an equivalent

homogenous material with effective relative permittivity (e, .¢) and permeability

10



(ureer) at the macroscopic level. Moreover, the effective relative permittivity and

permeability obey the Drude-Lorentz model [18] as

2
Wp eff (1.13)
Erorr(@) =1 — - b&
err(@) w(w + jVesr)
F w? 1.14
Ur,eff(a)) =1- ( )

w? — wi + jTw
where, w, o IS the effective plasma frequency, w, is the resonance frequency,
Yere 1S the damping factor, F is the filling ratio of the Split Ring Resonator (SRR),
and I is the damping term.
The advantage of metamaterial is that both the permittivity (e..¢) and
permeability (u.e¢) can be controlled using an accurately designed structures.
All the above mentioned are leading to find out the possibilities of design

and manufacture of a new solar cell waveguide.

11



CHAPTER 2

2. Finite Difference Approach

2.1 Introduction

Modeling and numerical simulation have grown increasingly as a tool for
understanding and analyzing any problem in science. The Finite Difference
approximations for derivative are one of the simplest methods to solve differential
equation. The beginning of Finite Difference method in numerical application was in

early 1950s [30] . Since then, many modifications were made on this application.

2.2 Finite Difference

Finite-Difference methods approximate the solutions of differential equations by
replacing derivative expressions with approximately equivalent difference quotients [30-
32]. First, we examine the finite difference approximations for derivatives and then
examine the accuracy of these approximations.

Consider a continuous and smooth one dimensional function f(x),with

fi=f(=hy) (2.1)
fa = f(hy) (2.2)
fs = £(0) (2.3)

Now, we can write f; and f, as Taylor series expansions around x=0 as

1 1 1
fi = f(=h1) = £(0) = T ha fD(0) + R P (0) — - hif P (0)

+0(h?)

(2.4)

1 1 1
fo=f(hy) = f(0) - ﬂhzf(l)(o) + zh%f(z)(O) - ah%fﬁ)(O)
+0(h3)

where, f™ is the nth derivative defined as
12

(2.5)



Fo ) = 21D (26)
Subtracting Eq. (2.4) from Eq. (2.5), we get an expression for the first derivative
fomfi = (a + BFO© + 503 - hDFO@ +0(D  @2)
thus,
) = 2 2, —hyr @) + 002y (28
hy, + hy

From Eqg. (2.8), the error caused by approximating the first derivative at x = 0 with
the differential expression

f-h
Mo
fro) = h2+h1

is O(h?) when hy = hy and is O(h) when h; # h,
The error caused by approximating the second derivative with the expression

2 hyf; — (hy + h)fs + hufy
(@) — 2
o0 =5n (e + 1)

is O(h?) when hy = hy and is O(h) when h; # h,.

From the above discussion, we can conclude that the error reflects the fact that a

(2.9)

(2.10)

finite part of Taylor series is used in the approximation.

2.3 Finite Difference Time Domain (FDTD)

The Finite Difference Time Domain (FDTD) is one of the most effective
numerical methods in the study of waveguides [33, 34]. As a direct solution to the
Maxwell’s Equations, FDTD method offers a simple way to model the complex periodic
structures.

FDTD method is based on numerically solution of Maxwell’s curl equations. In this
method, the time and space derivatives are approximated using finite difference
approximations. While the E and H fields are evaluated iteratively at alternative half-

time steps.

2.3.1 The Yee Algorithm

The FDTD algorithm was first proposed by Kane Yee in 1966, and then improved by

others in early 70s [35]. The algorithm describes the basics of the FDTD model to solve
13



Maxwell’s curl equations in time domain. First, we replace all the derivatives in
Ampere’s and Faraday’s Laws with finite differences and then discretize space and time
to keep the electric and magnetic fields staggered in both space and time. Next step is to
solve the resulting difference equations to obtain the update equations that express the
unknown future fields in terms of known previous fields. Thus, we can evaluate the
magnetic fields and then electric fields one time-step into the future. Now, we need to
repeat the previous two steps until the fields have been obtained over the desired
duration.

Yee used a special grid cell which called Yee cell and it discretizes the three
dimensional space into cubes. Figure 2.1 shows the unit cell of Yee lattice. As can be
seen from the figure, the electric fields are along the edges of the cube while the
magnetic fields are located at the center of the cube’s six surfaces. Each unit cell has
twelve magnetic fields and six electric fields. Since each electric field is shared by the
adjacent four unit cells, each unit cell possesses three electric fields, namely
E4, Ey and E,. Similar rule applies to magnetic fields and each unit cell possesses three
magnetic fields, Hy, Hyand H,. In a three dimension point of view, each magnetic field H
is surrounded by four circulating electric field E fields, which interprets the Ampere’s
Law. Similarly, every electric field E is surrounded by four circulating magnetic field H

fields, representing the Faraday’s Law.

14



Figure 2.1: The unit cell of Yee lattice

2.3.2 Discretization of Electromagnetic Waves

The time-dependent Maxwell’s curl equations are
OH

gy — 2.11
por =VXE (2.11)
oE
R 2.12
£5 VxH (2.12)

In the three-dimensional case, Eqg. (2.11) and Eq. (2.12) can be converted into
three scalar equations, forming six scalar equations in total
0H, O0E, OE,

Hor Ty "oz (2.13)
0H, OE, OE,

_ _9kx 2.14

Kot =0z ~ ox (214)
OH, OE, OE,

Mt Tax oy (2.15)
JE, 0H, OH,

9t "oy oz (2.16)

JOE, _0H, _0H, (2.17)
ot 0z 0x
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0E, 0H, 0H,

9t " ox oy (2.18)
For a function F of space and time, it can be discretized as
f(x,y,2zt) = f(ihx, jAy, kAz, nAt) = f(i, ], k) (2.19)

where, Ax, Ay and Az are the space discretization, and At is the time step. Now, using

the central difference approximation

1 1

af(x,y,z,t)Nf( 20 k) =" (i=5.4.k) (2.20)
0x ~ Ax

1 , 1

ofey,z ) [ (bitgk) =" (ij-5.k) (2.21)

ay Ay
N TN |

ofyzt) I (bik+3)=f"(bik=7) 2.22)
0z ~ Az

0 (6,y,2,6) _f20,5K) = 20 ), k) (2.23)
at - At

The three dimension finite difference time domain expressions for the Egs.
(2.13)- (2.18) respectively are

1
n+

1 1
H, <1]+ k+2)

n—s(. . 1 1
:Hx (l,]+§,k+z>

(2.24)
—i[m( '+1k+1)—5"(' 'k+l>]
llAy z l;] ) 2 VA l;]; 2
f L E4¢ e k+1) - B 4 o]
unz | \" Ty y(Lj+ 5.8
1
ntyfi, L l)
H, <l+2,],k+2
Hn_%('+1 'k+1)
= L _I_]) -
y 2 2
(2.25)

At g o1 . 1
—E[Ex (L+E,],k+1)—Ex (l+5,],k>]

+At [E"('+1'k+1) E""k+1]
b 2\t Lik+s 7 (], 2)
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nloo1 1
=H, <l+§,]+z,k>

(2.26)
At , 1 1
_E[E;(l+1,]+E,k>—Eg<l,]+§,k)]
At/ 1. o1
+M[Ex(l+§,]+1,k)—Ex(l+§,],k)]
E§+1<i+%,j,k)
=E§<i+%,j,k>
2.27)
At [ ntlro 1001 ntlf 1.1 (2.
+m[Hz 2(l+z,]+§,k>_H2 2(l+§,]_§,k>:|
At [tz 1. 1 ntg oo 11
_EA_Z Hy (l+z,],k+§>_H}, (l+§,],k_z)
1
B+ (0 +5.)
2
1
=E}}<i,j+5,k)
At [ nzy. 1 1 nir (o1 1 (2.28)
v LR R VAL RS EE)
At Hn+§(,+1 _+1 ) Hn+%. 1 .+1k
eax |z ! Ty 2 (=g tg k)
. 1 .. 1
E;+1(l,],k+§>=E§<l,],k+§)
At Hn+% o1 K 1 Hn+% 1 K 1
*omlh (gikeg) - (mgkeg)] @29)

At n+t 1 1 n+s 1 1
= T A H 2<.’ j _I _)_H 2 .I .__I 5.
eAy[x l]+2k+2 e ST 2k+2)]

2.3.3 Boundary Conditions

In numerical modeling, it’s not possible to handle an open region problem directly
since the data storage in a computer is limited by the size of memory. To solve this

problem, an Absorbing Boundary Conditions (ABCSs) is used to limit the computational

The ABCs can be divided into two different categories, the first one derived from

differential equations and the second one is based on the use of absorbing material.
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The most widely used ABCs in the first category is the one derived by Engquist
and Majda with discretization given by Mur [36, 37]. It is based on an approximation of
the outgoing wave equation being expressed using a Taylor approximation.

The material-based ABCs are realized by surrounding the computational domain
with a lossy material that dampens the outgoing fields.

Here, we discuss Mur’s second-order ABC and Berenger’s Perfect Matched layers
(PMLs).
a. Mur’s Absorbing Boundary Conditions (ABCs)

Engquist and Majda derived a theory for one-way wave equations that describes
wave propagation only in specified directions. For example, consider the two-
dimensional wave equation in Cartesian coordinates

02U 0°U 1 0%
a2 "oy 2o

where, U is a scalar field component and c is the phase velocity of the wave.

—0 (2.30)

We define the partial differential operator as
92 0% 1 92 1
:ﬁ-l_a_yz_c_zﬁ:l)’%—i_l)’%-l_c_zl)tz (231)
Using operator L to write the wave equation
LU=L*L"U=0 (2.32)

where, L~ and L* are the factors of the wave operator L, defined as

D
L~ =D, — ?'*\/1 — 52 (2.33)

and
D
L* =D, + ?t\/1 — 52 (2.34)
where,
Dy
s = D./c (2.35)

Using the Second-Order Taylor Series Expansion to approximate the square-root
function in Egs. (2.33) and (2.34), we have

J1-—s2=1 —%52 (2.36)
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Substituting Eqg. (2. 36) into Eq. (2.33) and Eq. (2.34), we obtain

Dt 1 /cDy\? D, cD?
+ Ztl 2 (Z22) | = -t 2.37
L7~ Det 1 Z(Dt)l D= +2Dt (2:37)
D 1 /cD,\? D, cD2 2.38
L D——tl——(—y) =D, + —+-2 (2:38)
c 2\ D, c 2D,
Now, substituting Eq. (2.38) into Eq. (2.32)
D, «c¢D; _ D cD;
— 4 — = 2.39
(Dx+ C+2Dt D, +2Dt U=0 (2.39)
Multiplying by D,
D? «¢Dj D? «¢Dj
D, D — DDy — —+—= = 2.40
<Xt+ c+2D>< t c-l_ZD,:2 v=0 (2:40)

Mur used a simple central-difference scheme in the Yee’s space with spatial
increments Ax and Ay and the time with time step At domain.
azUl? . 1 1 -1 -1
3 _ Uittt = Ulg; (YUl —Ulg; (2.41)
d0x0t 2At Ax Ax

The discretized version of the tangential field under discretization at the boundary is

calculated as follows

U|n+1 — Ul’i;l (U|n+1 + Ulg;l)

cAt + A
— (U}, + U,
+cAt+A( £+ Ulg,)
cAt)?
¥(U|3'+1
2A(cAt + A) N0

(cAt)?
— (U7,
+2A(cAt+A)( 141
Assuming Ax = Ay =A. Eq. (2.42) represents a Second-Order Mur ABC at the

(2.42)
—2U0g;+ Ulg 1)

- 20|} + UIY;,)

boundary x = 0.
The disadvantage of using the Second-Order Mur condition is in addition to use
the previous field values at time step (n), prior values at time step (n-1) are required and

thus must be stored in memory during the simulation.
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b. Perfect Matched Layers (PMLS)

The PML is typically pertinent to the continuous world. In continuous world the
PML should indeed work perfectly for all incident angles and for all frequencies. There
are different PML formulations. All PML’s act as a lossy material which is used to
absorb the fields traveling away from the interior of the grid.

The PML was originally proposed by Berenger in 1994 [38, 39]. He splits each
field component into two parts to create anisotropic (non-physical) medium with the
required phase velocity and conductivity to eliminate reflections at an interface between
a PML and non-PML region. The actual field components were the sum of these two
parts. Since Berenger first paper, others have described PML’s using different
approaches as Chew et al[40].

Using the Cartesian Coordinate, the six field components yield twelve

subcomponents, denoted by Ey, Ex, Eyx, Eyy,, Ezx, By Heyy Hygy Hyy, Hyy Hyg and Hyy
To get the actual field, we sum these components, for example
E, =E, +E, (2.43)

Now using these components, Maxwell’s equations can be replaced by the

following twelve equations,

0E,y 0(Hzy + Hyy)
=2 277 2.44
e— T OyExy % (2.44)
0Ey, 0(Hy, + Hyx) 245
SW + UzExz = — T ( ' )
0Ey, _ 0(Hyy + Hy,) (2.46)
ot 0z
OEy 0(Hyx + H,y)
& at + O-x yx = —T (247)
0E (Hy, + Hyy) 2 48
& 7 + O-szx = ax ( . )
OE  O(Hyy + Hyy)
z 2.49
£ T + ayEZy 3y ( )
0H,, a(sz +E,y)
— * =—— = =/ 2.50
Hgr T vty = dy (2:50)
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oH . 9(Ey; + Eyx)
l’t a:Z + O-ZHXZ - aZ ad
oHy, . = a( + Ey,)
Hgp t ety = re
0Hy, . 0(Ezx + Ezy)
Hgp t ety = =52
0(Ey; + Eyx)
lu‘ a;x + O—;HZX = - yzax 2
0H,, a( +Ey,)
SH,,
Ko T % ay

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

where, the parameters (ox,oy,cz,cs;,c;,c;) are homogeneous electric and

magnetic conductivities.

Applying the central difference approximation to the temporal and spatial partial

differential operator in order to get the relevant FDTD equations incorporating the PML

absorbing boundary conditions. For example, Eq. (2.44) becomes

L1 Al gy 1
n ) . -
By ?(Lj k) =5 L EE L 230,k
A +2£
1
+T 5 [HECj + 1, k)
Yy
(A_t+2€) ely

HZ (), k)+HZ,(6,j + 1,k) — H}ly(i,j,k)]

(2.56)

The PMLs is an isotropic and constructed in such a way without any loss in the

direction tangential to the interface between the lossless region and the PMLs. However,

in the PMLs there is always loss in the direction normal to the interface.

The PML scheme suppresses reflections better than Mur’s ABC does. However,

Mur’s condition is easier to use.

2.3.4 Stability Conditions

In FDTD method, the choice of space increment Ax and the time step At can affect

the velocity of propagation of numerical waves in finite difference grid approximation,

and therefore the numerical error. Here, the stability conditions using the one

dimensional scalar Helmhotz equation will be discussed.
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02U 02U

axz~ Hoe
where, U is the one dimension wave function that designates the time-dependent field.

=0 (2.57)

Using B, as the x-directed propagation constant, we express this wave function as

U(x,t) = exp(jB.x) exp(at) (2.58)
U(x,t) = exp(jB,pAx) exp(anAt) (2.59)
U(x,t) = exp(jBxpAx) &" (2.60)

where, & = exp(anAt).
Now, if the field U is stable, & must satisfy the condition

€ <1 (2.61)
Substituting Eq. (2.60) into Eq. (2.57), we get

1
)2 {expljBx(p + 1AxX]E" — 2exp|jBxpAx]E"

+ exp[jB,(p — DAx]E"}

C Agf)z {expjBpAx]E"* — 2exp|jB,pAx]E"
+ exp[jB.pAx]E" '} =0

Dividing Eq. (2.62) by exp[jB,pAx]€",

(2.62)

1
G (expliBsbx] = 2 + expl—jB, 021} — %{5 —248 =0 (263)
Dividing Eq. (2.63) by (A:;lz 3
OO s CxpliBe] =2 + expl-jdel) — (62 - 26 +1) =0 (264
Considering,
{exp[jpxAx] — 2 + exp[—jB.Ax]}
. Ax (2.65)
= 2(cos(Bebx) — 1) = ~4sin?(B, =)
We get,
4(At)? Ax
(E2— 26+ 1) + (w s’ (/;x 7))5 =0 (2.66)
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2(A6)? A
£2 _ 2¢ (1 _ gﬂ((At;)z sin? (ﬁx TX)) +1=0

Let us defined a parameter A, as

20002 Ax
 eu(Ax)? sin’ (ﬁx 7)

Thus, Eq. (2.67) becomes,
§2—-28A+1=0
The roots of Eq. (2.69) are

& =A++4A2 -1
§, =A—+JA2—1

According to Eq. (2.61) and since sin? 8 > 0, we get the relation
2
A=1- gi((AAtyz)Z sin? (ﬁx Az—x) <1
Now, the stability condition can be specify in terms of A
Case (1): A< -1
According to Eq. (2.72), and since 1 < |&,], the field is unstable.
Case(2): —1<A<1

Since &; and &, can be expressed as
§=A+JA2—1=A+jJ1- A2
$=A—\A2-1=A—jJ1—A?

then,
1§61l =&l =A*+1—-A*=0
Thus, the field is stable when
-1<A4<1
Now, from Eq. (2.68)

2(At)? _2< Ax

— — 1<1
= s,u(Ax)Zsm x2)+ <

(2.67)

(2.68)

(2.69)

(2.70)
(2.71)

(2.72)

(2.73)
(2.74)

(2.75)

(2.76)

(2.77)

from Eq. (2.72) the relation between the center terms and the right-hand term is always

satisfied, so we have to consider only the left-hand term and center term
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2(At)? A
< ——gu(( A2)2 sin? (ﬁx 7’“) +1 (2.78)

Considering the case in which the right-hand side reaches its maximum, that is
when sin?(0) = 1

2(At)?
_ o7 2.79
— eu(Ax)? (2.79)
Subtract (-1) from each sides
2(At)?
Thus, we get
(At)?
2.81
~ eu(Ax)? (2.81)
and therefore
1 -1
- 2 2.82
U ((Ax)z) > (At) ( )

Now, we can rewrite this relation as the restriction on the time step At

-1/2 -1/2 -1/2

where, u,, = 1, Ax is the spatial discretization width and At is the time step and ¢, &,

and v = ¢y /+/ €, are respectively the velocity of the light in the vacuum, the relative
permittivity of the medium, and velocity of the light in the medium.

For a three dimension structure, the corresponding restriction is

-1/2

1 1 1 1
A= ((Ax)z Tt (Az)Z) (284)

According to Eq. (2.84), the time step At must be bounded in order to avoid numerical

instability. Numerical instability is an undesirable possibility with explicit numerical
differential equation solvers that can cause the computed results to spuriously increase

without limit as time-marching continues.

2.4 Finite Difference Frequency Domain (FDFD)

The Finite Difference Frequency Domain (FDFD) is a numerical solution for

problems in electromagnetics which operates in the frequency domain [41-45]. The
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FDFD method is based on finite-difference approximations of the derivative operators in
the differential equation being solved. Because the method uses the frequency domain
equations, the results yield only a single-frequency, steady-state solution. FDFD
maintains the spatial features of FDTD method, but removes time stepping.

2.4.1 FDFD from Maxwell’s Equations

Using the differential form of Ampere’s Law and Faraday’s Law in frequency
domain are given as

Ampere’s Law jouH = =V X E (2.85)

Faraday’s Law jweE =V X H (2.86)

Consider a one dimension case, for x-directed propagation and E polarized along y-

direction are

J0E
JH
JweE, = — 6xZ (2.88)

Discretizing using the Leapfrog Method [46], we have the finite difference equations

Eylivs — Eyl;
jwuH =X 2.89
JwU Z|i+% Ax ( )
Hy|. 1—H,| 1
i+ i—=
jweEy |; = — zAx 2 (2.90)
Now, Eq. (2.89) and Eq. (2.90) can be written as a simple linear system as
AhHZIH_% + Ey|i+1 - Eyli =0 (291)
AeEy|i+Hz|i+%_Hz|i_%=O (2.92)

where, A, = joulAx and A, = jweAx.The FDFD method is useful when the source

wave can be approximated by a single frequency.
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CHAPTER 3

3. Plasmonic Thin Film Solar Cell

3.1 Introduction

In this chapter, a plasmonic thin-film solar cell with the periodic strip structure is
studied. The optical design of the device structure is important for optimizing the
performance for thin-film SCs.

Figure 3.1shows the schematic diagram of a solar structure model with the
textured back reflector (BR) and the antireflection (AR) coatings. As a light-trapping
configuration, the textured BRs are proposed for extending the optical path length [47-
49]. However, the configuration might suffer from the back surface recombination loss.
The textured AR coating is used to reduce the reflection of light at the top surface of the
SCs [50]. However, the AR coating cannot employ the sufficient light concentration. So,
a better light trapping and concentration schemes are needed for improving the

efficiency of SCs.
Air
Anti-reflection

Coatings

Absorbing
Material

 Back

Air

Figure 3.1: The schematic diagram of a solar cell structure[51].
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Surface Plasmon Resonances (SPRs) are the collective oscillation of the free
electrons that are restricted to surfaces and interact with light producing a polariton [52].
SPRs occur at the interface between a dielectric with the positive dielectric constant ¢
and a metal with the negative dielectric constante;”. However, SPRs only exist when
Re(—&™ > £2) is satisfied [53, 54]. Moreover, in order to excite the SPRs by light, it is
required a coupling technique that providing a wavevector mismatch [55-60].

Maxwell’s equations will be solved in order to describe the propagation and
scattering of sunlight within the solar cell. The Finite Different Frequency Domain
method (FDFD) is used to discretize the inhomogeneous wave function for modeling the
plasmonic thin-film solar cell [61-63].

3.2 Theoretical Modeling

A two-dimensional plasmonic thin-film silicon structure with a p-polarized
incident light with the electromagnetic component of H,, E, andE,,. The exp(jwt) time
convention is used. For the solar cells, all materials are non-magnetic (i.e. i, = 1). SPRs
are excited by the metallic periodic nanostructures and subwavelength scatterers. The

unit cell of the plasmonic thin film solar cell is shown in Figure 3.2.

0

PML & Mur
Air

P

Absorbing
Material

Jdad

ds

PML & Mur

Figure 3.2: The unit cell of the plasmonic thin-film solar cell [51].
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The structure contains four layers which include indium tin oxide (ITO),
absorbing materials, Au electrodes, and substrate with thickness of d;, d,, d3, and d,,
respectively. The distance between the two adjacent strips is ds and the periodicity is P.
The PML and the Mur absorbing boundary conditions are imposed at the top and the
bottom of the solar cell structure. The periodic boundary conditions (PBC) are employed
at the left and right sides of the unit cell. Figure 3.3 shows the inhomogeneous material
treatment. Where, the squares denote the five differences nodes. The center square is

enclosed by the four rectangular regions with varies dielectric constants [51].

Figure 3.3: The inhomogeneous material treatment.

3.2.1 Finite Difference Equations

For the two dimension isotropic and inhomogeneous media, the wave equation of
the total field H is given by [64]
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d 1 OH! d 1 OH!
- "z - "z 2yt —
0x (8r(x, y) 0x > + dy (er(x, y) 0y ) +koHz =0 (3.1)

where, €,.(x,y) is the complex dielectric constant, k32 is the wave number of free space.

Using the Second-Order central differences, we get
9] 1 OH:
dx \&-(x,y) 0x
A, N
Ax &r (H—i,])Ax

(3.2)

_HEG)) — HEG = 1)

e (i—2.7) s

where, A,is the spatial step in the x-direction. Now dielectric constants can be averaged

+0(A%)

as
1 1<1+1)
— 1 5\ T 3.3
er(i+%,j) 2\Er e (339
1 1<1+1)
— 1 5\ T 3.4
e (i—vg.j) 2\ & 54

where, the subscript 1, 2, 3, and 4 refer to the small rectangular regions as shown in
Figure 3.3.
Using the notations of

¢y =H;(i,j— 1) (3.5)
¢ = H;(i—1,)) (3.6)
3 = Hz(i,)) (3.7)
¢y =H;(i+ 1)) (3.8)
$s =H;(i,j+ 1) (3.9)
The continuous inhomogeneous wave equation can be discretized into FDFD equations
as
5
Z Cpr = 0 (3.10)
m=1
where,
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_ 1( 1 N 1 ) 1 311
Cl_z &1 &2 .Agzz (3.11)

1,1 1y 1
Cy —E(a-f‘a)A—% (312)

1,1 1 1 1 1 1
[ - _ _ _ _ 2

ca=—3 (Sﬂ toh SM) . < =t Ai) + K2 (3.13)

1,1 1y 1
Cy —§<a+a)A—% (314)
_ 1( 1 N 1 ) 1 3.15
=3 &3  Era) AL (3.15)

Now, the FDFD equation of scattered-field H; can be derived by

HE = H* + HS (3.16)

where, H! is the total magnetic field, H* is the incident magnetic field and Hf is the

scattered magnetic field.

3.2.2 Boundary Conditions

Boundary conditions are very crucial factors in the FDFD problems. If they are
not defined, a non-unique solution is acquired. In case of a zero boundary conditions, the
solution of the problem is zero.

As shown in Figure 3.2, the PML and Mur absorbing boundary condition are
imposed at the top and the bottom of the solar cell structure. The Periodic Boundary
Conditions (PBCs) are placed at the left and right sides of the unit cell.

The ABC’s along the y-direction are used to limit the spurious reflections of the
waves at the top and bottom boundaries of computational domain. The complex-
coordinate PML [40, 65] is a virtuous ABC which has the form of

0°H 1 0 (1 0H:
— (=== k2HS =0 3.17
0x2 +sy6y<sy 6y>+ 07z (3.17)
where,
o) .
1-— PML
5, = Jo weg , Within (3.18)
1 ,other
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where, g, is the permittivity of the free space, and w is the angular frequency of the

incident light.
The polynomial variation of the conductivities o is employed, i.e.
o 1\¢
C(l]—3
) = —| —=% i = 3.19
a(j) 5| =123, .......8 (3.19)
1\ C /j\¢
+=|=—(=) ,j = 3.20
o(j+5) Ay(L) =023 8 (3.20)

where, L is the layer number of the PML, Q is the order of the polynomial, and C is a
constant. For reducing the spurious numerical reflections, the optimized settings are set
to L =8, Q =3.7, and C = 0.02. After submitting the previous values in Egs. (3.19)
and (3.20), we get

3.7
0.02(J—>
o) =———2| ,j=123 .....8 (3.21)
A, \ 8
1\ 0.02 /j\*7
[ +=]=—(= = 3.22
o(j+5) » (2) j=0123......8 (3.22)
The convenient discretization form [41] for the coordinate-stretched term of Eq. (3.17) is
given by
10 (10HS
Sy 0y \s, dy
1 |G+ D) - HG))
~ s, (HA ., 1 3.23

H(0,)) = H3(i,j = 1)

5 (1-2) 8y

while the Perfectly Matched Layer (PML) do not work proficiently under periodic

boundary condition [66], the hybrid absorbing boundary condition is proposed to reduce
the spurious numerical reflections from the outmost boundary of the PML.

For example, at the top plane y = 0, the Second-Order Mur ABC can be written as
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l__“( Z;c aa )]H

Then, it can be discretized as
fHZ@ D+ LH A= 1L,) + fH(+ 1)) + fuHi (0, j+1) =0 (3.25)

=0 (3.24)

y=0

where,
f1 = 2exp(jokol, ) — 2k3AZ exp(jokod,) — 2 (3.26)
fo = fz = 1 —exp(jokod,) (3.27)
fa = 2k3AZ (3.28)

Due to the periodic geometry, the Floquet Theorem is used to implement the periodic
boundary conditions along the x-direction,

Hi(x + P,y) = H:(x,y)exp(—jokocos.P) (3.29)
then,

H(x,y) = Hy(x + P,y)exp(jokocosb. P) (3.30)
where, P is the periodicity and 6 is the incident angle with respect to x-direction.
However, it can be noticed that Eq. (3.30) is hard to be treated using FDTD method
compared to FDFD method, especially for the oblique incident case since the scattered-
field value is unknown at a future time in periodic device structures.

For the horizontal interface (y = y,) between media 1 and media 2, the one-
sided difference scheme is used, and the boundary condition for the scattered magnetic
field is

1 HS' 1 OHS? 1 0HI® 1 8Him®

298 1 . _— (3.31)

€r1 ay Er2 ay Er2 ay €r1 ay y=yn

Using the High-Order-Accurate One-Sided Differences, we get
oHs! 1.5HS(i,j) — 2HS (i,j — 1) + 0.5HS (i, j — 2) (3.32)
dy x=iAy Ay .

OHS? —1.5H5%(i,j) + 2HS%(i,j + 1) — 0.5HS%(i,j + 2) 323
dy xX=il, Ay ( - )
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3.2.3 Parameter Extraction

In this section, the parameters such as the Absorption Power Density n, the
Zeroth-Order Reflectance R, , and Transmittance T, are extracted. The above FDFD
equations and the boundary conditions to all free N nodes are applied in the solution
region leading to the formation of a sparse matrix equation since only the nearest
adjacent nodes affect the value of H; at each node.

Then, the scattered magnetic field can be solved by the iterative methods with
memory and computational complexity of O(N).

OH; _H5(i+1,)) — H5 (i)

= - + O(N) (3.34)
OH;  H3(j+1) — H(i))
5 = 5 + O(N) (3.35)

According to Egs. (3.34) and (3.35), the FDFD equation of H{ is derived, and then the

total electric field components are

1. 1 1 1 HL(i,j+ 1) — HL(i,))
tr: » _ ~ — . .
B0+ ~5 (s ) (L D)
1 1 1 1 HE(i+ 1,)) — HE(D, )
trs - . ~ — .
B+~ 3 (st o) ( s ) (3.37)
The absorbing material per unit time per unit area, i.e.
o,|E|? ds
nzkaz (3.38)
Sa
and since,
0, = —weglm(ey,) (3.39)
then,

n= As,
where, 7 is the power density, S, is the region of the absorbing material, Ag_ is the area
of S, and g, is the conductivity of the absorbing material.

The Zeroth-Order Reflectance R, and Transmittance T, are also vital parameters

for optimizing the SC structures and they can be used to compare between the theoretical
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and the experimental results. The Floquet’s Theorem expresses the incident wave as a

periodic function,

P(x) = exp(—jkx).U(x) (3.41)
P(x +d) = exp(—jk(x +d)).U(x + d) (3.42)
Since, U(x)is a periodic function, then U(x + d) = CU(x), where C is a complex
constant.
P(x + d) = exp(—jk(x + d)).CU(x) (3.43)
Now, let C = exp(jkd),
P(x + d) = exp(—jk(x + d)) .exp(jkd) . U(x) (3.44)
P(x + d) = exp(—jkx).U(x) = P(x) (3.45)
where, P(x) is a periodic function with period of d. Using Fourier series, we get
n=co
P(x) = B,exp(j ?x) (3.46)
UCx) = Z P, exp(jkx) (3.47)
n=—oo

where, k, = kycos(¢).

Now, for the two-dimensional periodic structure with period of P, the Flogquet modes are
Wp = exp(—jkyxpx) exp(—jkypy) (3.48)

where, kyp = kocos8 + 25, P = 0,41, £2, ......

From the dispersion relation

k2 = kZp + k2, (3.49)
kyp = £ [kZ — k2, (3.50)

then,

/ké—k,%p, k§ = kip
k2 k2|, k2 <i2

Based on the orthogonal properties of the Floquet modes, we get

kyp = (3.51)
k_j
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1 : i
) |5 Ji H ey exp ko cos 6 x) dx| (3.52)

P A2
and
1. , 2
_ |Ffo H;(x,y.)exp(jko cos 6 x) dx| (3.53)
Tp = e

where, P is the periodicity of the function, A is the amplitude of the incident light, y, is
the virtual boundaries for computing the Zeroth-Order Reflectance R,,, and y, is the

virtual boundaries for computing the Zeroth-Order Transmittance T;,.

3.2.4 Simulation Results

Consider a simple semi-infinite structure of A-Si/Au, the corresponding H, field
in the A-Si and Au layers can be written as
exp(jkS'y — jkex),  k$' =Bt +jas, y <0

3.54
exp(—jk;’uy — jkyx), kyt = B + jagt, y>0 (3:54)

Hz(xr:V) = {

where, k is the propagation constant, § is the phase constant, a is the attenuation
constant.

For the p-polarized plane wave and with the assumption that 4% and & are
predominately real, the reflection coefficient of the up-going wave in the A-Si layer
reflected by the Au layer is given by

gfukes] — ggifef

N efMkS + etk (3:59)
where,
(k3H? = &'k — k2 (3.56)
(kY2 = kg — K2 (357)
Now, the poles of Eq. (3.55) can be determined as,
efMkS + kit =0 (3.58)
K2 = k2 (;Jr%) (3.59)

So, the x-directed propagation constant is
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eSigAu 1/2
ke = ko <L> Sk = By + iy (3.60)

el + gfv
In the previous case, we considered that both &% and &' are predominately
real. But for the real state, the loss of them must not be ignored. So that, the condition
Re(—&f" > &5') must be satisfied in order to excite the SPRs. Now, considering the
complex dielectric constants and defending the attenuation and phase conditions for the
formation of SPRs, the y-directed propagation constants in the A-Si and Au layers are
the double-value functions of k, .Taking into account that the SPRs is a surface wave
decayed away from the dielectric-metal interface (y = 0), the attenuation constants
conditions are
a;t <0 (3.61)
and
ay* <0 (3.62)
When the incident wavelength goes through the zero-crossing point of 560 nm,
the eigenstates of Maxwell’s Equations for the semi-infinite A-Si/Au structure become
Surface Plasmon waves. As shown in Figure 3.4, the sign of the attenuation constant of

the field at A-Si layer is changed as the incident wavelength goes through 560 nm.
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Figure 3.4: The y-directed attenuation constants in the A-Si and Au layers [51].

According to the Drude model, the metallic dielectric function can be approximated as

2
ehu() ~ 1 — 28 (3.63)

(1.)2

where, wp : The plasma frequency of Au.
Thus, the SPRs exist at a long wavelength range where the metal is opaque. The SPRs
exist when the incident wavelength is larger than 560nm. Moreover, the SPRs would be
the eigenstates of the Maxwell’s Equations for the semi-infinite A-Si/Au structure if the
conditions in Egs. (3.61) and (3.62) are satisfied. Also, the SPRs should satisfy the phase
constants conditions, i.e.

5L <0 (3.64)
and

St <0 (3.65)
The phase constants conditions accede to the oscillation property of the SPRs. Figure 3.5
shows the contour plot of the eigenstate for E, field at 735nm, where the maximum

phase constant g, of the SPRs is executed by the resonance condition
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e+ st~ 0 (3.66)

y (nm)

Figure 3.5: The contour plot of the eigenstate for E, field at 735nm [51].

The field profile seems to be symmetric since k, gets larger at 735nm and hence, k;" in
Eqg. (3.56) and k;‘u in Eq. (3.57) are correspondent to each other.

For the periodic metal nanopatterns solar cell as shown in Figure 3.2, the
absorbing material is A-Si and the substrate is glass (SiO;). The complex dielectric
constants of the material (Au, A-Si, etc.) are taken from [67, 68], where the geometric
parameters of the device are set as d;=25nm, d,=120nm, d3=40nm, d,=30nm, ds=100nm,
and with a period of P=200nm. The y-directed incident field is the p-polarized plane
wave with the amplitude of 1 and the frequency spectrum from 400nm to 800nm. The
spatial step is set toA,= A,= 0.5nm. The Absorbed Power Density of the A-Si layer is

shown in Figure 3.6.
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Figure 3.6: The Absorbed Power Density (1) by the A-Si for the periodic strip structure and the
artificially periodic non-strip structure. The lower arrows from A to B refer to the absorption peaks
of the non-strip structure and the upper arrows from 1 to 6 refer to the absorption peaks of the strip

structure [51].

Now, using the planar Au layer, the non-strip structure can be modeled. Where,
d> =140nm is adopted for attaining the same A-Si area and the other parameters are not
changed. As shown in Figure 3.6, the A-Si bulk material has insufficient absorption from
650nm to 800nm because of its lower conductivity at the long wavelength region. The
absorption n as expressed in Eq. (3.40) is significantly enhanced at the long wavelength
region in both strip and non-strip structures. And this enhancement is related to the
substantial increase of |E|?.

The strip structure displays stronger absorption due to the excited SPRs and the
constructive interference between strips. Actuality, the external quantum efficiency can
be enhanced by the efficient absorption.

Along the +y directions, consider a multilayered medium structure. The
waveguide modes can approximately established by computing Generalized Reflection

Coefficient R; ;. of the medium between the i layer and the (i+1)" layer,
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5 Riiv1 + Ripyiqpe™ iy (din=dd

i,i+1 — = —27k: dir1—d;
1+ Ryjy1Rigy pype™ 2y (@i

(3.67)

where, (d;,; — d;) is the thickness of the (i+1)™ layer.
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Figure 3.7 : The Generalized Reflection Coefficients for locating the waveguide modes. The dips of
the Generalized Reflection Coefficients correspond to some absorption peaks of Figure 3.6 [51].

In case of a y-directed plane wave excitation, we have

kiv1y = Kiv1 = Koy/&ri1 (3.68)

As shown in Figure 3.7, the waveguide modes can be obtained from the local minima of

the Generalized Reflection Coefficient. From Figure 3.7, the waveguide modes

contribute to all the absorption peaks (A and B) of the non-strip structure. The interface

between the A-Si and Au layers can be treated as a good mirror for trapping the light in

the non-strip structure and this explains the absorption enhancement that happens in the

planar structure.
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In the non-strip structure, the SPRs cannot be excited because of the momentum
mismatch. However, in the strip structure, there are two different multilayered media as
shown in Figure 3.2. In the Au strips region, the medium is Air/ITO/A-Si/Au/SiO,/Air.
In the other region, the medium is Air/ITO/A-Si/SiO,/Air. As shown in Figure 3.6, the
waveguide modes of the former medium are due to the absorption peaks 1, 2, and 6,
where the absorption peaks 2 and 4 are contributed to the waveguide modes of the
medium without the Au strip.

As shown in Figure 3.4 and Figure 3.6, the SPRs is successfully excited by the
sub-scatterer strip at the wavelength 745nm. Based on the mode conversion theory, the
sub-wavelength strip can excite the evanescent wave components and that provides the
momentum mismatch Ak with the continuous spectrum up to 2m/d;. The x-directed

boundaries of the strip achieve better field concentration than the y-directed boundaries.

3.3 Conclusion

The FDFD is used to develop an efficient model of a thin-film plasmonic solar
cell with a periodic strip. The hybrid ABC shows better efficiency than the PML for the
periodic structure. The material discontinuities are treated using the inhomogeneous
wave equation and the one-sided difference scheme. The attenuation and phase constants
conditions of the SPRs are discussed for lossy material systems.

For the semi-infinite dielectric-metal structure, the SPRs exist if the vertical
phase and attenuation constants are negative in both dielectric and metal layers. The sub-
wavelength scatterers can excite the evanescent waves, which provide the size-
dependent continues spectrum components. Thus, the subwavelength scatterers can
excite the SPRs for the broadband light enhancement.

Using the waveguide mode, the Floquet mode and the SPRs, the absorption peaks
are explained for the periodic strip solar cell structure. Via changing the geometric
parameters, the peaks locations can be modified for optimizing the performance of the

solar cell.
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CHAPTER 4

4. Simulation of Thin Film Solar Cell Waveguide Structure Using

Finite Difference Time Domain

4.1 Introduction

For an efficient thin-film solar cell, we need to reduce the cost of its
manufacturing, and increase the power conversion efficiency. A light-trapping
scheme can help to achieve the previous purposes. Surface Plasmons are used as
an efficient light-trapping technique. The optical absorption of thin-film solar
cells can be improved by the extremely near-field enhancement inherent from the
Surface Plasmons. In this section, the plasmonic effect in thin-film solar cell is
studied. FDTD is used to simulate the same thin-film solar cell nanostructure as in
chapter 2. An incident p-polarized plane wave is propagating vertically into the
plasmonic solar cell. Auxiliary Differential Equation Technique (ADE) and
Lorentz model are applied to simulate the dispersive materials including the

absorbing material (amorphous silicon: A-Si) and metal (Au) [69].

4.2 Theoretical Modeling

The total electric field can be expressed as a sum of both the incident and
scattered electric field as
Etotat = Einc + Escart (4.1)
The total magnetic field can also be expressed as a sum of both the incident and
scattered magnetic field
Heotar = Hine + Hgcare (4.2)

For an incident field in free space, Ampere’s Law is
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€ aEinc
o ot
For dispersive medium, the total field can be expressed as

=V xH;py, 4.3)

P

OE otal

V X Hiotar = €0€wo 6(1)5 =+ Z Jp total (4.4)
P=1

where, P is the pole-pair of the Lorentz medium.

For Lorentz media, the polarization current density is

a]P,total . d 2 ]P,total
at ot?

where, &, IS the static permittivity.

O0E;ota
= £y(Es — £00) 03— (4.5)

0)1291 P,total T 26p T

Applying the finite difference to the partial differential terms

n+1 _n—-1 n+1 _ 2]1’1 + ]n—l
2 P,total P,total P,total P,total P,total
wpJptotal T 20p - >
2At (At)
(4.6)
n+1 __ En—l
= (g —¢ )(Uz total total
01%s TSP 2At
Hence, the update equation for the phasor polarization current is
Efotar — Etora
- ota ota
;’l};gtal = aPlg,total + fP]g,tgtal + VPT (47)
where,
2 — w3 (At)?
ap = # (4.8)
EpAt +1
SpAt — 1
== 4.9
P SpAt + 1 (4.9)
and
£0(Ec — £50) W3 (At)?
vy = 0(&s Jwp (At) (4.10)

SpAt + 1
By applying a time-averaging for the two terms at (n) and (n+ 1), the

polarization current J,,:4; Can be presented at time (n + %)
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+1
lp total — (]g total + ]g,total)

1
((1 + ap)Ip totar + EP]P total (4.11)

+ E(E?otéz Elsi >

Then, the electric field E can be updated from time step (n) to time step (n + 1)
using the following equation

P
En+1l ZP:l Yp 280800
tota P

n
total
280€0 + 2 ZP 1VP

2t 1
+ T VXxH" "2 (4.12)
28080 + 5 Np=1Vp

P
1 _
- 52(1 + ap)Jp totar T EP]ITDL,toltal}
P=1

Now, using Eq. (4.1), Eq. (4.11) can be rewritten as,

P
ETl+1 + En+1 — ZP:l Yp

n-—1
inc scat — P (Emc + Escat
4€g€co + Xip=1Vp

280 £
+ (ElnC

250500 ZZP lyPt
24t { +l n+d (4.13)

scat

+

VxH 2 +VxH

scat

1
28080 + jzgﬂ Yp

— —Z(l + ap)]p totar T $pJp total}

Submitting Eq. (4. 2) in Eq. (4.12) and assuming a dispersive medium of a single

Lorentz pole-pair (P = 1) , the resulting scattered electric field and total current
density for the Lorentz model is:
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En+1 — 1

scat —~  _ y
g€ T %

Y e )4
) {(SogooEgcat + ZE?ca% - (50 (goo - 1) + Z) Eglt'l
(4.14)
Y o
+ &g9(€e — DER,. + ZE{;;

At _ n+l
- 7 l(l + a) ' ]?otal + S;P]?otél —2- (V X Hsca%)l}

2—w?2(At)?
EAL+1

_ 8At-1
T SAt+1

£0(Es—Ec0) w?(AL)?
SAt+1

where , a = andy =

§

For solar cell, the electron-hole pair generation depends on the photon

energy absorbed by the absorbing material per unit time per unit area, i.e.

[, o(@|E@w,D|’ds  —we [, [Ime (0)]|E, 1) ds
- A, - A,

(4.15)

where,  is the power density, S represents the region of the absorbing material,
A, is the area of S, and o(w) = —weyIm[e,.(w)] is the conductivity of the

absorbing material.

4.2.1 Dispersion Relation

Consider a x-y plane as an interface plane, when a wave propagates in the

x-direction, we get

E; = (Ex1, 0, E,)exp(j(kex — wt)) exp(jk,,2) (4.16)
H; = (0, Hyy, 0)exp(j(kyx — wt)) exp(jk,,2) (4.17)
E; = (Exz, 0, Ezp)exp(ji(kex — wt)) exp(jk,22) (4.18)
H; = (0, Hy,, 0)exp(j(kyx — wt)) exp(jk,,2) (4.19)
Using Maxwell’s Equations,
JjkyExq + jk,1E,1 =0, E, = _:_leEm (4.20)
JjkyEyy + jk1E, =0, E,, = _:_szExZ (4.21)
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WEYEL

Hyl - k 1 x1 (422)
oo WE0Ez
vz = T B (4.23)

By applying the boundary conditions at z = 0,

Hyl = Hyz ) Exl = EXZ (424)
thus,
& _ &
k_zl = k., (4.25)
also,
1
kpy = —j(k2—e1k2)2, k2 > e,k (4.26)
1
ko = —j(k2—e,k?)2, k2 > e,k? (4.27)
then,
= (223 4.28
= kD) (4.28)

4.2.2 Simulation Results

For the two dimension thin film solar cell with periodic structure as shown
in Figure 4.1, the absorbing material is A-Si, the electrode is Au and the substrate
Is SiO,, the geometric parameters of the non-strip structure are set as d;=25nm,
d>=140nm, d;=40nm, d;=30nm, ds=100nm, and with a period of P=200nm, where
the strip structure has the same geometric parameters except that d,=140nm. The
y-directed incident field is the p-polarized plane wave with the amplitude of 1 and
the frequency spectrum is from 400nm to 800nm. The spatial step is set to

Ay= Ay= 0.5nm.

46



PML & Mur

-
<
=
-

Jgad
Jad

PML & Mur

Figure 4.1: The unit cell of the plasmonic thin-film solar cell [51].

In the interface between a metal and dielectric, and based on the relation in

Eq. (4.27), the momentum of surface plasmons [52, 71] is

Em€a

ks, = k( )% (4.29)

Emtéq
where, ¢, and &, are the permittivities of metal and absorbing material,

respectively. In order to excite the Surface Plasmons, the condition
Re(—¢,,) > Re(g,) (4.30)
should be satisfied. The momentum of Surface Plasmons, kg, , is larger than the

free space momentum, k, ,of the plane wave which ,in our study, is the sunlight.
So that, an additional momentum must be provided in order to excite the Surface

Plasmons.

The Generalized Reflection Coefficients of the strip and non-strip solar
cell structures calculated by the FDTD method is shown in Figure 4.2. The case of

strip structure shows much stronger absorption due to the excited Surface
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Plasmons. However, in the non-strip structure, the Surface Plasmons cannot be
excited due to the momentum mismatch.
1 T T T T T T T

— — — Strip (FOTDY
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Figure 4.2: The Generalized Reflection Coefficients of the strip and non-strip solar cell structures
calculated by the FDTD method [70].

The Absorbed Power Density of the A-Si layer is presented in Figure 4.3. It
shows that Surface Plasmons excitation increases the absorption for the strip
structure, where the Surface Plasmons cannot be excited in the non-strip structure
due to the momentum mismatch. Also, it confirms the strong optical absorption

of A-Si from 660-800nm which is similar to the results in Figure 4.2.
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Figure 4.3: The Absorbed Power Density of the A-Si layer in the strip and non-strip solar cell

structures [70].

4.3 Conclusions

The FDTD method is one of the simplest and strongest methods of the
computational electromagnetic field. Due to the feature of flexibility and its easy
implementation, FDTD method is a powerful tool in modeling inhomogeneous,
anisotropic and dispersive media with periodic structure.
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CHAPTER 5

5. Theoretical Approach of Metamaterials Waveguide Structure

5.1 Introduction

The Auxiliary Differential Equation method (ADE) is applied to simulate
dispersive material [34, 72, 73] as Metamaterials. In ADE, the relation between E
and D is expressed with a differential equation using the inverse Fourier
Transformation of the relationship between E(w) and D(w) into the time domain.

In dispersive material, both the permittivity and permeability depend on

frequency [74, 75]. The permittivity can be written as

P
£ (@) = 0+ ) 2p(®) (5.1)
P=1

where &, (w) is the relative permittivity, &, is the relative permittivity at infinite
frequency, P is the number of poles and y,(w) is the susceptibility which denote
the dispersive part of the relative permittivity.

Now, substituting Eq. (5.1) into Ampere’s Law

P
0(€E) d0(E)
VXH=0E+T=0E+808007+Z]P (5.2)
P=1
Jp = jweoxpE (5.3)

50



where, Eq. (5.2) represents the Ampere’s Law in time domain. Jp, IS the
polarization current density. The term J, has different forms for different

dispersive material and it must be considered in the update of the FDTD field.

5.2 The Auxiliary Differential Equation for Debye Material

The single pole model for Debye material can be expressed as

Ep — €xo,p Aep

s 2 4 = 5.4
xp(w) 1+ jwtp 1+ jwtp (5:4)

where &5 p Is the static or zero-frequency relative permittivity, Asp = 5p — €00 p IS
the change in relative permittivity due to the Debye pole, and 7, is the pole

relaxation time [76]. In case of Debye media with multiple poles, the permittivity

function is
Aep
5.5
£ (w) = emp+21+]mp (5.5)
A ( J )E 5.6
Jp = golep 1+ jwp (5.6)

where Jpis the phasor polarization current density associated with each pole. In
FDTD, the phasor polarization current density J, must be calculated in time
domain. Thus, we first multiply both sides of Eq. (5.6) by 1 + jwt,

(1+ jwtp)]p = gyAepjwE (5.7)
Then, using the inverse Fourier Transformation Eq. (5.7) can be transformed as:

dJp OE
Jp +Tp 5t sOAePE (5.8)

Now, both of Eq. (5.2) and Eq. (5.8) represent the ADEs for the Jp that is used to

update the electric field equation. A semi-implicit finite-difference scheme

centered at (n + %) is used for Eq. (5.8)

En+1 _ En
B = kel + B (—At ) (5.9)
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where,

At
1 E
1+ E

and

At

EOASPE
Br = — (5.11)

1+ E

Since the electric field is updated using Eq. (5.2) with centered at time(n + 2), the

polarization current density ] must be presenting at the same time step. In order to

achieve that, an averaging of Eq. (5.9) at time (n) and (n + 1) is applied,

nty 1 o1 1+ R E"t! —E" 5 12
Jp —E(]p'*'lp )_E( + kp)lp + Bp —ar (5.12)

Now, Eq. (5.2) can be written as

v Hn+% B En+1 + En N En+1 _ En
-7 2 A Y

\
1 En+1 — E™
+ 5; [(1 +kp)IE + B (—At )]

The electric field E can be updated from time step (n) to time step (n + 1) using

(5.13)

the following equation

En+1 _ 250800 + Z$=1ﬂP — oAt En
28080 + YXp=1 Bp + oAt

1
Vx H""2 (5.14)

N 2At
280800 + Np=1 Bp + 0AL

P
1
—s A+ kp)m]
P=1

5.3 The Auxiliary Differential Equation for Lorentz Material

A Lorentz material with P pole pairs can be described with a relative
permittivity function
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P
Aspw?

& (w) = €o +Z _ 5.15

r(®) g P_1w§+2]a)6p—w2 5.13)

where &, (w) is the relative permittivity, €, p is the relative permittivity at infinite

frequency, P is the number of poles, Aep = &5p — €4, p IS the change in relative
permittivity due to the Lorentz pole pair, wp is the frequency of the pole pair and
&p Is the damping coefficient [77]. The phasor polarization current is associated

with the pole pair of the susceptibility function

. golAepw? -
= E 5.16
e =Jjo <a),§ + 2jwdp — a)z) (5.16)

In FDTD, the phasor polarization current density J, must be calculated in time

domain. Thus, we first multiply both sides of Eq. (5.16) byw3 + 2jwd, — w?,
(w3 + 2jwdp — w?)]p = jweyAcpw3 E (5.17)

then, using the inverse Fourier Transformation Eq. (5.17) can be transformed as:

aJp 9?%Jp JE
(l)lzalp + Zé‘pﬁ - W = goAEp(l)I% E (518)

Now, both of Eq. (5.2) and Eq. (5.18) represent the ADEs for the Jp that is used to
update the electric field equation.

Now, applying the finite difference to the partial differential terms

n+l _ yn-—-1 n+1 __ Zln + ]n—l
(1)12)]?"'26[7 P P _Jp P P

2At (At)?
(5.19)
En+1 _ En—l
= gaAepw?
F0BEP WP TTONE
Thus, the update equation for the phasor polarization current density is
n+1l _ En—l
n+l _ n n-1 - (5_20)
P ap)p +$plp +vp AL
where,
2 — w2 (At)?
ap = 2~ wp(at)” (5.21)
SpAt + 1
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_ SpAt—1

==~ 5.22
P spAt +1 (5:22)

and

_ golepwi (At)?

_ 5.23
VP = s At + 1 (5.23)

By time-averaging for the two terms at (n) and (n + 1), the polarization current

density J can presented at time (n + %), we get

"“% L el
lp = E (]P + ]P)
(5.24)
— (e + Eapt + Lo @ Er
> p)Ip T Splp AL
Thus, Ampere’s Law takes the form of
+1 En+1 + E" En+1 — En"
vXHT ”(T)”O‘%(A—t)
b (5.25)
1 Yp
— n n-1 A n+l _ pn—-1
+ZZJG+aMh+&h + o (BT —En)]

Then, the electric field E can be updated from time step (n) to time step (n + 1)
using the following equation
En-1 4 2&0€ — OAL En

Entl — Yh=1Vp
260E0 + %Z,’izlyp + oAt

4ege + 20_1vp + oAL

2At 1
+ IV x H"*z (5.26)

260€0 + %Z,’;zlyp + oAt

P

=5 ) A+ + &I
pP=1

5.4 The Auxiliary Differential Equation of Drude Material

Consider a multi-pole Drude material with a permittivity function as [78]
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P
£1() = Eorp — Z . (5.27)

where, P is the number of poles, &, p is the relative permittivity at infinite
frequency, wp is the frequency of the P*"pole and y; is the inverse of the Pt pole
relaxation time [79]. The frequency domain polarization current for P*pole is

Jp = —jwe (zw—’z’> E (5.28)

w* — Jwyp
In order to calculate the phasor polarization current density in time

domain, we first multiply both side of Eq. (5.28) by w? — jwyp , We get

(w? — jowyp)]p = —jwe,wiE (5.29)

then, we use the inverse Fourier Transformation on the frequency domain

equation
0%]p dJp , OE
n — e (5.30)
9tz " YPgp T P0PP ¢
Now, we integrate both side of Eq. (5.30)
e +¥plp = €W E (5.31)
at
and then we perform the finite-difference to the partial differential terms,
n+1 n n+1 n n+1 n
p —Jp p - tJp 2 E +E 5.32
At +vp ) = EWwp > (5.32)
M+ = k)2 + (p(E™1 + EM) (5.33)
where,
2 —ypAt
kp = m (534)
and
ZAt
L = SoWp (5.35)
2 + ypAt
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Since the Ampere’s Law in Eq. (5.2), which is used to update the electric field, is

centered at time (n + %) , the polarization current density J] must be represented at

time (n + %). So, we apply a time-averaging for two terms at (n) and (n + 1)

1
n+

= 1 1
J, 2= E(]?“ +Jp) = > [(1+kp)Jp + Cp(E™*1 + E™)] (5.36)

Then, the Ampere’s Law takes the form

v x Hn+% B En+1 + En N E‘n+1 _ En
-7 2 Fofo \ T Ay

(5.37)

N| =

P
45 ) [+ keI + o (B + )]
pP=1

Thus, the update equation for electric field is

280800 - At Z£=1 ZP - O-At
2e0€0 + At YE_; {p + oL

n

En+1 —

+ 2ot V X H”*%
2e080 + At Xp_; {p + oAt (5.38)

P
1
—S ) a+ kp)m}
P=1

For dispersive material, the polarization current density J, must be

considered in the FDTD field update procedure.

5.5 Metamaterial as an Absorbed Material in the Proposed Structure

In this work, we will study the structure in Figure 4.1 with metamaterial as an
absorbed material as shown in Figure 5.1. The FDTD method will be used to analyze the
structure as in [70]. Metamaterial is purposed to improve the absorption of light. A slab
of metamaterial effectively enhances evanescent waves that usually decay in other

material and allow transmission of subwavelength to reach its maximum.
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Figure 5.1 :The unit cell of the plasmonic thin-film solar cell [51].

5.5.1 The Auxiliary Differential Equation for Metamaterial

The time-dependent Maxwell’s equations are,

oD
ot
0B
— =-VXE (5.40)
ot

Since the cells of the domain are considered to have the same side, the electromagnetic
field components are arranged on the cells as in the conventional FDTD method.
Now, using the central difference approximation for the time and space coordinates,

1 1 1 1
Dy (k) =Dy 2(k) _ Hy(k+2) —Hy(k —9) (5.41)
At Ax

n+l
y () —E, *(k-1) (5.42)
At Ax

1 - 1 1
Bi(k+3) =B} '(k+3) E,

where, Ax is the space increment and At is the time step.
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The above equations are used to update both the electric and magnetic field
material with both positive permeability and permittivity. In case of metamaterial,
the negative value of permeability and permittivity must be considered so,

D=¢(w)XE (5.43)
B=u(w)xH (5.44)
where, € and u are taken at a specific frequency in order to be negative. And they

can be expressed as[80]

(1)2
e(w) = g, (1 +— pe__ ) (5.45)
w, w

2
w(w) = py (1 + Gpm ) (5.46)

W, — W% + jTw
where, &, and pu, are the free space permittivity and permeability, w,, = 2mf,,
and w,m, = 21 fy,, are the electric and magnetic plasma frequency, wq, and wg,
are the low frequency edge of electric and magnetic forbidden band, 7, and t,,
are the electric and magnetic collision frequency.
In order to calculate the fields in the metamaterial layer, an Inverse Fourier
Transform is used to change S-domain equations into time domain Auxiliary
Differential Equations (ADE). Also, the central difference approximation method
IS used.
For metamaterial region, Eq. (5.43) becomes,

2
gowpe

D =& FE +
(@) = &k (w) wi, — w? + jT,w

E(w) (5.47)

thus, the second term of Eq. (5.47) can be represented by a new parameter S(w),
where,

2
an)pe

S(w) =

E 5.48
We — W? + jTew (@) 548

and Eq. (5.47) can be rewritten as,

D(w) = gyE(w) + S(w) (5.49)
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Sn_Sn—Z
2At

Tl_zsn—1+sn—2

Now, using jwS(w) < and (jw)?S(w) & > v

, and denoting

S(w) as S™ 1 in Eq. (5.48), the updated equation becomes,
Tg(sn _ Sn—Z) N Sn _ 2571—1 + Sn—Z

2 ¢cn-—-1 2 pn-1
wg,S™ 1 + = gqw2 E (5.50)
0 2t At? 07 pe
Hence, S™ can be calculated using the following equation,
St=aSt 4+ pSt2 4y EnE (5.51)
where, @ = 2(2—w(2)eAt2)’ g = TeAt—2 and y = ZAtZwlz,eeo.
TeAt+2 TeAt+2 TeAt+2

Thus, the updated equation of the electric field in the metamaterial layer in the
time domain can be obtained by,
pn —gn

E" = g— (5.52)
0

5.5.2 Results

For the two dimension thin film solar cell with periodic structure as shown
in Figure 5.1, the absorbing material is metamaterial, the electrode is Au and the
substrate is SiO,, the geometric parameters of the proposed structure are set as
d,=25nm, d,=120nm, d;=40nm, d,=30nm, ds=100nm, and with a period of
P=200nm. The y-directed incident field is the p-polarized plane wave with the
amplitude of 1 and the frequency spectrum is from 400nm to 800nm. The spatial
step is set to Ay= A,= 0.5nm.

Figure 5.2 shows the Generalized Reflection Coefficients of the proposed
solar cell structure with A-Si and metamaterial as an absorbed materials
calculated by the FDTD method. It can be noticed that a strong optical absorption
is observed from 550-640nm. The Generalized Reflection Coefficient reaches its

minimum at 800nm for A-Si, and at 580nm for metamaterial.
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Figure 5.2 : The Generalized Reflection Coefficients for the proposed solar cell structure with A-Si

and metamaterial as an absorbed materials calculated by the FDTD method.

Figure 5.3 shows the Reflection, Transmission and Loss in the proposed
structure with metamaterial as an absorbed material. The Absorption reaches its

maximum at 580nm which matches with the results of Figure 5.2.
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Figure 5.3: Reflection, Transmission and Loss in the proposed structure with metamaterial as an

absorbed material.

5.6 Conclusions

In conclusion, a theoretical analysis based on FDTD has been introduced,
discussed and implemented for newly waveguide structure containing Metamaterials for
solar energy applications. The FDTD results have been confirmed and a strong optical
absorption has been observed due to the Metamaterial layer.
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