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Digital image processing (DIP) methods have been applied in civil engineering 

for many years.  In this dissertation, DIP methods are applied to (1) quantify the 

mechanical properties of metallic and cementitious composites loaded in uni-axial 

tension, and (2) evaluate the effectiveness of removing paint from concrete surfaces.  DIP 

is an optical method to characterize the behavior of the visible domain on the surface of 

the specimen.  

Strain, an important measurement in mechanics of materials, can be measured by 

a digital image processing method known as Digital Image Correlation (DIC).  

Traditional DIC tracks the change in position of speckles on the surface of a specimen to 

determine the surface strain.  In this dissertation, a novel pattern, a painted rectangle on 

the specimen surface, is developed to measure strain.  This approach uses an edge 

detection method to track changes in the length of the rectangle.  It is a target-based 

deformation method, which explicitly considers the deformation of the target (rectangle) 

to calculate strain.  By computing the change in length of the rectangle in successive 

images, the strains are determined.   

Both pixel-level and subpixel-level accuracy levels for different accuracy 

requirements are studied.  The pixel-level is implemented using ImageJ software, while 

the subpixel-level is accomplished using two algorithms: Gaussian fitting and spline 



 
 

 
 

interpolation, both implemented using Matlab.  The two digital image methods (DIC 

speckles and rectangle edge detection) are compared with laser extensometry and strain 

gage measurements for uni-axial tension tests of A36 steel specimens.  The strain 

measurement results are comparable to the laser extensomety and strain gages if high 

quality images are captured.   

DIP methods only characterize the behavior of the visible domain on the surface 

of the specimen.  A combination of technologies (both traditional and emerging) may be 

necessary to fully characterize the mechanical response of a material or structure 

subjected to loading. 

Two digital image processing methods are established to evaluate the 

effectiveness of cleaning paint from concrete surfaces.  The principle of this evaluation is 

to select a suitable gray intensity threshold value for each paint color to distinguish it 

from the concrete color.  One method is histogram-based and selects the threshold value 

based on the histograms of the pixel values of the paint and concrete.  The other method 

is an edge-based method, which selects the gray intensity of the edge as the threshold 

value.  Based on the results from the binarized images produced by these two methods, 

the histogram-based method is more suitable for the darker paints and the edge-based 

method is more suitable for the white paint.  These methods could also be applied to 

evaluate the removal of corrosion by-products from steel or even stains from teeth.   

Five strain measurement methods are applied to measure the deformation of 

fabric reinforced cementitious matrix (FRCM) composites tested in uniaxial tension.  The 

five methods include: laser extensometry, clip-on extensometry, strain gages, and two 

digital image methods (DIC speckle and rectangle edge detection).  The strain gages 



 
 

 
 

failed prematurely due to cracking of the FRCM.  The two digital image methods can 

only analyze in-plane displacement.  For out-of-plane displacement, a 3-D DIC method 

must be used.  
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Chapter 1  Introduction 

The application of digital image processing (DIP) in civil engineering has grown 

rapidly in recent years.  Digital image technology can help engineers and scientists 

characterize the properties of materials, both at the micro- and macro-scopic levels.  

Through digital image processing, enormous information can be extracted from a digital 

image.  

Digital image correlation (DIC) was introduced as an optical strain measurement 

method as early as the 1970s.  Different from other optical methods such as holography 

and speckle interferometry, DIC uses white light as a lighting source.  By using a Charge-

Coupled Device (CCD) camera to acquire images for different levels of stress, the in-

plane displacement field can be obtained.  The correlation is determined by comparing 

the gray intensity changes of the object surface before and after deformation.  With 

advances in computer technology and digital camera, the accuracy of the DIC method 

increases quickly.  Compared with traditional strain measurement methods, the DIP 

method is a non-contact optical technique, having large dimension ranges for specimens, 

and able to provide full-field strain measurement.  

The correlation pattern used in the DIC method is typically either the natural 

texture of the material or painted speckles.  In this dissertation, a rectangle is used as a 

novel pattern for surface strain measurement.  In this case, strain is measured by tracking 

the length changes of the painted rectangle on the specimen surface.  This is an edge 

detection based method and is called rectangle edge detection.  Subpixel-level accuracy 

can be accomplished by locating the subpixel edge position of the rectangle.  
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Rectangle edge detection is a target-based deformation method.  In other words, 

the deformation of the rectangle is the study target.  For other strain measurement 

methods, such as laser extensometry or DIC, the strain of a specimen is measured using 

reflective tape or speckles as the target.  The relative movements of these targets are used 

to calculate strain.  However, the deformations of the target, such as tape or speckles, are 

neglected.    

DIP methods only characterize the behavior of the visible domain on the surface 

of the specimen.  A combination of technologies (both traditional and emerging) may be 

necessary to fully characterize the mechanical response of a material or structure 

subjected to loading. 

This dissertation includes four main chapters: 

Chapter 2: Review of several strain measurement methods, including strain gages, 

laser extensometry, clip-on extensometry and DIC methods.  This chapter also introduces 

the principle of the edge detection method. 

Chapter 3: The rectangle strain measurement method is introduced with two 

accuracy levels: pixel-level and subpixel-level.  To achieve subpixel accuracy, two 

algorithms (Gaussian fitting and spline interpolation) are studied.  Three tests are studied 

to compare the strain measurement methods.  Test 1 used a Nikon D3000 to record 

images of the rectangle; Test 2 used an iPhone 4S to capture images of the rectangle; Test 

3 used a Nikon D3000 to record images of speckles. 

Chapter 4: Two digital image processing methods (histogram-based and edge-

based) are established to quantify the extent of paint removed from a concrete substrate 

during abrasive blasting.  The histogram-based method selects the threshold value by 
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statistical analysis of the gray level intensities of the images.  The edge-based method 

takes the gray intensity of the edge of the paint as the threshold value.  The effect of 

varying the threshold values on the cleaning effectiveness is compared. 

Chapter 5: Five strain measurement techniques for a fabric reinforced 

cementitious matrix (FRCM) composite are compared.  These five strain measurement 

techniques include laser extensometry, clip-on extensometry, strain gages, and two DIC 

(speckle and rectangle) methods.  A comprehensive comparison of these five strain 

measurement methods is given. 

Chapter 6: Overall conclusions and suggestions for future research are discussed. 
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Chapter 2  Literature review 

2.1 Strain  measurement  methods 

Testing of mechanical properties of metals, composites, and ceramics has become 

widespread in collecting engineering design data.  These data are essential for design 

applications with various types of materials.  Strain and displacement measurements are 

major parts of material testing.  

When external forces are applied to a material, deformations and displacements 

occur.  Strain reflects the deformation of the material under loading, and is defined as 

elongation per unit length (Gere, 2001).  Several methods are used to describe the amount 

of strain. 

2.1.1  Resistance strain gage 

A strain gage is a strain measurement device invented by Arthur Ruge and 

Edward Simmons (Hannah & Reed, 1992) in the late 1930s.  The strain gage measures 

strain of a material by tightly bonding the material with a gage.  The strain gage has a 

sensing element: a thin metallic resistive foil.  When the material deforms, the metallic 

resistive foil deforms with it.  This deformation of the metallic foil causes a change in its 

electrical resistance.  The rate of change of the foil’s resistance is proportional to the 

strain in the material by some constant called the gage factor.  The gage factor (Fs) 

reflects the metal’s sensitivity to strain, and is defined by Equation (2-1): 

 
ε

0/ RR
Fs

Δ
=

 
(2-1) 
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Where Fs is the Gage factor (unitless), ΔR is the resistance change of the strain 

gage,  Ω (ohms), R0 is the Initial resistance of strain gage, Ω (ohms), and ε is the strain. 

Table 2-1 Gage factors of metals and alloy (Hannah & Reed, 1992) 

  Metal or alloy Trade name Typical gage factor Fs 

Iron − +4.0 

Copper − +2.6 

Silver − +3.0 

Nickel − -12.0 

Plantinum − +6.0 

Titanium(commercially pure) − -1.1 

Titanium(6AL4V alloy) − -0.2 

Aluminum − +0.85 

Copper-nickel 55-45 (constanta) Advance,Cupron, Copel, 

etc. 

+2.1 

Nickel-chromium 80-20 Nichrome V, Tophet A +2.2 

Copper-nickel-manganese 

(manganin) 

Manganin +0.6 

Iron-nickel-chromium 18-8 Stainless +2.6 

Iron-chromium-molybdenum Iso-elastic +3.5 

Platinum-tungsten 92-8 Alloy 479 +4.1 

 

The gage factor, Fs, depends on the metallic material used.  By selecting different 

metals or alloys, a wide range of strains can be measured by strain gages.  Table 2-1 

(Hannah & Reed, 1992) shows gage factors of some commonly used metals and alloys. 

In order to measure the change in resistance of a strain gage, the strain gage is 

connected to an electric circuit (Omega, 2014).  When the material deforms, the change 

in resistance, which corresponds to strain (Figliola & Beasley, 2011), causes a change in 
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electric current.  Therefore, strain is obtained by measuring this change in electric current.  

The Wheatstone bridge is one type of electric circuit used to detect changes in resistance 

(Kyowa Electronic Instruments, 2010).  A Wheatstone bridge is suitable for detection of 

minute resistance changes.  Figure 2-1 shows a schematic of a Wheatstone bridge circuit. 

In a Wheatstone circuit, there are four resistances R1, R2, R3, and R4 as shown in 

Figure 2-1, and R1=R2=R3=R4 or R1×R3=R2×R4.  Initially, the circuit requires an input 

voltage Vin,  and the output Vout=0.  This status is called a balanced bridge.  Then a strain 

gage is connected to the circuit in place of R4.  When the strain gage bears strain and 

resistance changes ∆R, the bridge becomes unbalanced.  The circuit outputs a nonzero 

value of Vout, which corresponds to the resistance change of the strain gage.  Equation 

(2-2) shows the linear relationship between voltage and strain.  

 insinout VFV
R
RV ×××=×
Δ

×= ε
4
1

4
1  (2-2) 

Depending on the number of active strain gages in the bridge circuit, the circuit 

can be separated into quarter-bridge, half- bridge and full bridge configurations (National 

Instruments, 2006).  The quarter-bridge has only one active strain gage.  The resistance 

change of the circuit is Rg+∆R.  In order to double the sensitivity of the bridge, a half-

bridge uses two active strain gages: one in tension with resistance Rg+∆R, and the other 

in compression with resistance Rg-∆R.  The output is approximately double that of a 

quarter bridge circuit.  A full bridge has four active strain gages with two gages in tension 

and two gages in compression.  It also has the highest sensitivity.  Figure 2-2 shows the 

schematic of these three bridge circuits. 
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Figure 2-1 Wheatstone bridge circuit schematic (Omega, 2014) 

  

(a) Quarter-Bridge circuit 
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 (b) Half-Bridge circuit 

 

 (c) Full-Bridge circuit 

Figure 2-2 Bridge circuits (National Instruments, 2006) 

Strain gages are very sensitive to ambient temperature since the metallic foil’s 

resistance varies when temperature changes.  To reduce the effect of temperature, two 

perpendicular strain gages are used (National Instruments, 2011).  

To fulfill all the different requirements of various strain measurement experiments, 

numerous strain gages are available.  To select the most suitable gage for a specific 

requirement, the following items (Hoffmann, 1989) must be considered: 

⎯ Mechanical conditions: principal measurement direction (uniaxial or biaxial) and 

type of loading (static or dynamic) 
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⎯ Dimension and arrangement of the measuring grid: number of strain gages and 

their arrangement (the dimensions of the strain gage must fit the measuring grid) 

⎯ Strain measurement range: gage factor 

⎯ Electrical conditions: measurement circuit and voltage type (direct voltage, 

alternating voltage, voltage with respect to ground etc.) 

⎯ Environmental temperature: thermal expansion coefficients of the alloy used in 

the strain gage and the service temperature range of strain gage 

2.1.2  Optical strain measurement method 

Optical strain measurement is known as a non-contact and non-destructive 

technique.  Laser technology has been used to measure displacement since the 1970s.  

The two most widely used technologies are holographic interferometry and speckle 

photography (Dandliker, 1980).  

Holographic interferometry and speckle photography are both based on electronic 

speckle pattern interferometry (ESPI), which produces fringe patterns by superposition of 

multiple speckle images.  In the early 1970s, Archbold (1970) discovered that double 

exposure speckles in combination with forthcoming optical Fourier transformation using 

an illuminated laser beam can be used to measure surface displacement.  Digital fringe 

analysis is easily achieved by using mirror surfaces (Schwider, 1990).  However, for 

diffusely reflecting surfaces, speckle noise arises.  The cross-correlation function of the 

intensity distribution (Yamaguchi, 1981) is applied in evaluating the speckle 

displacement and correlation.  In holographic and speckle interferometry, object 

deformations are observed as fringe patterns.  The orientation and spacing of fringes are 

related to the orientation and magnitude of the speckle displacement (Yamaguchi, 2003).  
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Advances in computing and image sensing offer a simple and fast technique to measure 

speckle displacement.  Speckle patterns are recorded with a charge coupled device (CCD) 

in matrix form which is used by a computer to calculate 2D cross-correlation of the sub-

images.  These calculations are used to obtain the distribution of speckle displacement 

(Yamaguchi, 1981; Noh & Yamaguchi, 1993; Wojciechowski, Pisarek, & Kityk, 2010).  

Holography can record objects in three dimensions, unlike conventional 

photography, which is in two dimensions only.  It is applicable to a wide range of scales, 

from a car to a small particle on the micrometer scale.  In the holography process, a laser 

produces two coherent lights with the same wavelength.  Coherence means that these two 

lights have the same frequency and wave direction, and have the same phase separation.  

One light is reflected from the object to a photosensitive surface.  At the same time, the 

other light illuminates the same photosensitive surface from a different angle.  The two 

lights cause interference fringes on the photosensitive surface (Martin, 1977; Wernicke, 

et al., 2001).  When the laser illuminates the surface, a three dimensional image of the 

object, which is identical to the original object, is produced.  If a small deformation is 

applied to object, the interference fringes alter.  Thus, information about the deformation 

information can be obtained.  

The principle of laser speckle photography is similar to that of conventional 

photography (Martin, 1977).  The difference is that laser speckle photography uses a 

coherent light source in place of daylight.  When laser coherent light illuminates an 

object, the speckles appear.  The size of the speckle is related to the laser’s wavelength, 

the distance between the observation point and the laser light and the grain size of the 

object.  If there are displacements applied to the object, the grain size will change (Kihm, 
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1997).  Therefore, the size of the speckles is changed (Schneider, J., Rupitsch, & Zagar, 

2007; Du & Chiang, 1998; Tay, Yap, Shang, & Tay, 1995).  A schematic of the laser 

speckle method is shown in Figure 2-3. 

Laser holography interferometry and speckle photography are both highly 

sensitive to deformation with high accuracy, but they are also very expensive. 

 

Figure 2-3 Schematic of the laser speckle method (Schneider, J., Rupitsch, & Zagar, 

2007) 

2.1.3  Extensometry 

By definition, strain can be directly measured by the change in dimensions of the 

specimen.  An extensometer is a device used to directly measure elongation of an object 

under axial loading.  By determining the displacement between two points, which are the 

bounds of the specific gage length, the strain measurement is obtained.  Compared to 



12 
 

 
 

other methods, the extensometer is the most direct method of strain measurement.  

Extensometry can be divided into contacting and non-contacting methods.  

2.1.3.1  Contacting 

A clip-on extensometer is a contacting, mechanical strain measurement device 

mounted directly onto the specimen.  It uses knife-edges to track the extension of the 

specimen (Dripke & GmbH, 2009).  The measurement of the clip-on extensometer can be 

as high as a few micrometers.  

Sensor arm extensometers, another type of contacting extensometers, have the 

advantages of automatic operation and a large measurement range while maintaining high 

accuracy.  Sensor arm extensometers apply minimum loading to the specimen, which 

minimizes damage to the specimen.  Since the sensor arms are in contact with specimen 

on both sides, bending strains are mostly counterbalanced (Becker & Dripke, 2011).  

Figure 2-4 shows a schematic of two types of contacting extensometers: clip-on 

and sensor arm extensometers.  Both the clip-on extensometer and sensor arm 

extensometer measure strain with knife-edges, which are perpendicular to the gage length.  

Since these contacting extensometers directly contact the specimens, the knife-edges can 

easily damage a fragile specimen.   
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Figure 2-4 Two kinds of contacting extensometers (Dripke & GmbH, 2009)  

Based on the measurement purpose, different mechanical extensometers with 

various gage lengths made from various materials are available.  Liu and Ding (1993) 

designed a simple mechanical extensometer for ceramic testing at temperatures of 

1400°C.  The extensometer uses its own weight for contacting and uses a capacitive 

transducer as the sensing element.  Fu et al. (1997) studied three kinds of axial 

extensometers: overhanging beam structure, bow-like structure with stiff arms, and bow–

like structure with flexible arms.  They found that the relationships between the strain, 

displacement, and the optimum structure parameters for ideal linearity could be inferred.  

Motoie et al. (1983) presented information about the design and construction of a 

compact extensometer, which utilizes a linear variable differential transformer (LVDT).  

In addition, this extensometer can be used to investigate the behaviors of metals at 

temperatures as high as 800°C.  Bulut (2009) designed a LVDT extensometer to measure 

strain with minimal controller synthesis (MCS) load control.  Mechanical extensometers 

have many applications, not only in mechanical and civil engineering, but also to 
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biomedical engineering and biomechanics.  Perusek et al. (2001) used paired sensors to 

measure global bone strain due to combined bending, compression, and tension.  In this 

paper, he provided air gap change calculations and angular displacements with error 

analysis and coordinate analysis for the sensor. 

2.1.3.2  Non-contacting 

In some cases, the specimen may be very small, restricting its fit into the grips of 

the loading device, or preventing a uniform loading rate in the loading direction.  In 

addition, some materials are very brittle and can be easily fractured by a traditional clip-

on extensometer.  In these cases, it can be difficult to measure strain using a contacting 

extensometer.  Therefore, a non-contacting extensometer may be used to avoid these 

problems.  Non-contacting extensometry has the capability of operating under high 

temperature (Yonekawa, et al., 2002), is easy to operate, is insensitive to electro-

magnetic interference, and is suitable for brittle materials (Zhu, Mobasher, & Rajan, 

2012). 

• Laser extensometry is the most common non-contacting optical strain 

measurement method.  A laser extensometer illuminates the object along the 

loading direction by the laser.  The reflections on the object surface produce 

diffuse scatterings, which are received by a camera and converted into electrical 

signals.  The distance of the reflecting fringes changes when the object is under 

tensile loading, allowing change in length to be measured (Grellmann, C., & 

Konig, 1997). 

• Video extensometry is a non-contacting method used to measure the strain by 

capturing continuous images of the specimen during loading, via a digital video 
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camera.  It requires two markers attached to the specimen to serve as the gage 

length.  The movement of the markers is used to measure the extension of the 

specimen.  The distance between the camera and specimen should remain 

constant (Coimbra & Greenwood, 2000).  Changes in gray intensity, shadows, 

and reflections can cause significant errors in the results (Wolverton, 

Bhattacharyya, & Kannarpady, 2009). 

Noh et al. (2003) developed an optical laser extensometer using a 

position sensitive detector (PSD), which is different from the conventional time 

based laser extensometer.  The time-based extensometer requires that the laser 

beam maintains a constant scanning linear velocity on the specimen.  The time is 

calculated by an abrupt signal detected when a laser beam scans a specimen with 

reflective tapes.  The distance is obtained by multiplying the time and linear 

velocity.  With PSD, the laser extensometer can give direct information on the 

position and the diffused reflection type of the specimen.   

• Digital image processing 

Digital image processing measures deformation of the specimen by 

tracking digital images of the specimen.  A high-resolution and high-speed 

digital camera can record the motion of the specimen under loading.  By using 

digital image analysis software to analyze the pictures of the specimen before and 

after loading, the deformation of the specimen can be determined.  

The digital image method records the process of the specimen throughout 

loading.  It is useful in analyzing the failure mechanism.  In addition, since it 

does not contact the specimen, it eliminates many sources of error.  Digital image 
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processing uses pixels as the unit of measurement.  With advanced imaging 

technology, the measurement accuracy of this method is as high as 10-4 pixel. 

2.2  Digital Image Correlation 

Digital Image Correlation (DIC) is a non-destructive measurement technique.  It 

is an optical metrology designed to measure surface deformation.  It is also a full-field 

image analysis method, which is used to evaluate the mechanical properties of a 

specimen by directly measuring displacement.  By correlating a series of images taken 

before, during, and after loading, the displacement of the specimen is measured.  

The DIC method is also known as the Digital Speckle Correlation Method 

(DSCM).  It is a non-interferometry optical measurement method.  The “speckle” implies 

that this technique is based on diffraction (Lagattu, Bridier, Villechaise, & Brillaud, 2006) 

of the surface, which is similar to the laser speckle method.  Instead of a coherent light 

source, DSCM uses non-interference light sources.  White-light is the most widely used 

light source in DSCM.  For this reason, it is also called the white-light digital speckle 

correlation method.  Since a white light source cannot cause speckles due to interference, 

virtual speckles have to be created.  DSCM uses optical textures of the surface (e.g. 

Figure 2-5 (a)) or surface can be sprayed with speckles (e.g. Figure 2-5 (b)).  DSCM 

measures the displacement of a solid by comparing the gray intensity changes of the solid 

(Pan, Qian, Xie, & Asundi, 2009) before and after deformation. 
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(a) Natural speckle pattern on the 
concrete surface     

(b) Painted speckle on the steel 
surface 

Figure 2-5 Speckle pattern 

In the 1960’s, Burch and Tokarski (1968) discovered the phenomena that a series 

of speckles appears when an object is illuminated by a coherent light source such as a 

laser.  Later, Leendertz (1970) applied this technique on metrological measurements.  

The laser speckle method is widely used in strain measurements.  As an interference 

method, however, the laser speckle method has some limitations: the laser speckle 

method requires a high stability (vibration-free) testing environment, and has a high cost.  

Chiang and Asundi (1979) developed a new technique that uses white-light instead of a 

laser.  This is called the white light digital speckle method.  After many years of 

experimentation and investigation, the DIC method has become well developed.  DIC has 

many applications, including measuring displacement (Asundi & North, 1998), velocity, 

predicting failure (Guo, Sun, He, & Xu, 2008) and analyzing fatigue analysis.  Strain 

measurement is one of the most useful applications of this technology because it achieves 

high accuracy (5×10-6) for a wide range of materials. 

The measurement process of DIC can be divided into three steps (Lagattu, 

Brillaud, & Lafarie-Frenot, 2004): 

1. Experimental setup (including specimen preparation),  

2. Data acquisition,  
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3. Computational analysis. 

The data analysis can also be separated into the following steps: The first step is 

to locate the region of interest (ROI) in the image, followed by overlaying a fixed grid as 

a reference image (as shown in Figure 2-6).  The location of the ROI can be extracted 

from the grid.  Then, the location change of the ROI after loading is tracked by image 

correlation using pattern recognition.  The corresponding ROI is matched to the reference 

image by superimposing the later images on the reference image.  Displacement is 

calculated by measuring the location change of the ROI.  

 

Figure 2-6 A grid on a reference image (Eberl, Thompson, Gianola, & Bundschuh, 2010) 

Digital images employed in the DIC method can be recorded by various digital 

image acquisition devices with different resolutions and accuracy.  From macro to micro 

scale, from full field measurement to specific areas, the DIC method can realize various 

measurement scales by using a variety of optical devices.  The devices includes charge 

coupled device (CCD) camera, scanning electron microscopy (SEM) ((Paciornik, 

Martinho, de Mauricio, & d’Almeida, 2003; Canal, González, Molina-Aldareguía, 

Segurado, & LLorca, 2012), atomic force microscopy (AFM) (Chasiotis & Knauss, 2001; 
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Cho, Chasiotis, Friedmann, & Sullivan, 2005), and a computed tomography (CT) scan 

device (Verhulp, Rietbergen, & Huiskes, 2004).    

Based on the measurement dimensions of the specimen, DIC can be divided into 

two general categories: 2D DIC and 3D DIC.  Two-dimensional (2D) DIC is used to 

obtain in-plane deformation measurement.  Out-of-plane deformation measurement 

requires three-dimensional (3D) DIC.  Rather than tracking in-plane point movement, 3D 

DIC tracks the movement of a unit volume within the specimen (Pan, Qian, Xie, & 

Asundi, 2009).  The 2D DIC method uses a single digital image acquisition device to 

track the deformation.  The 3D method requires two digital image acquisition devices that 

are calibrated (Helm, McNeill, & Sutton, 1996).  This system of two cameras is called 

stereo vision system, and can provide valuable three-dimensional information about the 

object (Sutton, Yan, Tiwari, Schreier, & Orteu, 2008).  The schematic diagram of 3D-

DIC is shown in Figure 2-7. 

 

Figure 2-7 Schematic of 3D-DIC system (Hu, Xie, Lu, Hua, & Zhu, 2010) 
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2.2.1  Theoretical background 

The principle of 2D DIC is to track the motion of specific points between a 

reference image and deformed images as shown in Figure 2‒8.  In order to compute the 

displacement of the region of interest, ROI, a grid is generated to locate the position.  

After loading, the change in location of the ROI is tracked by image correlation using a 

pattern matching technique.  In the pattern, a subset with the pixel in the center is used 

for the correlation.  The subset is an N×N pixel square.  A schematic of a subset is shown 

in Figure 2-9.  Usually, the sizes of the subsets range from 7×7 to 21×21 pixels.  Using 

these subsets to match instead of individual pixels is desirable because each subset 

contains a wider variation in gray levels that can be uniquely identified (Pan, Qian, Xie, 

& Asundi, 2009).  To find the similarity between the reference subset and the deformed 

subset, correlation criteria are involved.  Correlation is based on matching each pixel 

within a neighborhood and calculating the disparity.  The correlation criteria are the 

algorithms to achieve this.  The procedure maximizes the correlation coefficient, which is 

determined by evaluating the pixel intensity array of the two images. 

 

Figure 2-8 Correlation of pixel displacement by DIC (adapted from Pan 2009 
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Figure 2-9 Schematic of a 9×9 pixel subset 

For a small strain, deformation of the specimen may be within the subset or on the 

sub-pixel accuracy level.  Thus, before the subsets of two images are correlated, locations 

of pixels with intensities that fall within the subset must be defined.  The interpolation 

scheme, which provides sub-pixel accuracy, should be utilized.  For a homogeneous 

material, a lower order (zero or first order) interpolation (e.g. bilinear interpolation) is 

enough to approximate the variation of displacement (Jin & Bruck, 2005).  For a 

nonhomogeneous material, higher-order interpolation schemes (e.g. bicubic interpolation) 

are necessary.  Higher-order interpolation schemes involve more terms and provide 

higher registration accuracy and better convergence character (Schreier, Braasch, & 

Sutton, 2000; Knauss, Chasiotis, & Huang, 2003; Cheng, Sutton, Schreier, & McNeill, 

2002).  

2.2.2  Displacement measurement in 2D DIC 

The correlation is achieved by using a subset of a predetermined size surrounding 

the pixel of interest in the reference image and corresponding deformed image.  The 

accuracy of subpixel-level is achieved by sub-pixel registration algorithms and robust 
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correlation criteria.  Although the principle of DIC is straightforward, there are two main 

challenges in practical applications: accuracy and computational efficiency, which are 

usually contradictory.  Higher accuracy requires longer computational time using the 

same computer configuration.  

2.2.2.1  Correlation criteria   

The principle of image correlation for deformation measurement is to map a local 

displacement.  In the DIC method, the displacements are presented in terms of pixels.  

For a square subset containing n pixels, fi and gi are defined as the gray intensity of the 

reference image and the deformed image of the pixel, respectively.   

Various correlation criteria have been proposed and used in displacement 

measurement, including cross-correlation (CC), sum of absolute difference (SAD), sum 

of squared difference (SSD), parametric sum of squared difference (PSSD), sum of 

Hamming distances (SHD), and least-squares correlation criteria (Vendroux & Knauss, 

1998).  In order to decrease the error caused by the change of intensity of the subsets, the 

above criteria are modified to zero-mean cross-correlation (ZNCC) criterion, zero-mean 

normalized sum of squared difference (ZNSSD) criterion and parametric sum of squared 

difference (PSSDab) criterion with two additional parameters.  According to Tong (2005) 

and Pan et al. (2010), if the intensity of a pixel remains unchanged in the images during 

the deformation, using different correlation criteria do not affect the result of the 

displacement measurement.  However, in real tests, this condition is rarely satisfied.  To 

avoid significant error in displacement measurements caused by a mismatch of the 

intensity change model (Schreier, Braasch, & Sutton, 2000), a suitable correlation 

criterion must be selected to deal with the variations of intensity.   
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1) Cross-Correlation (CC) criteria 

The CC criteria can be divided into four types, according to the accuracy of 

possible intensity changes: direct CC, zero-mean cross-correlation (ZCC), normalized 

cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC).  The 

principle of all CC criteria is to maximize the cross-correlation coefficients.  

The coefficient of direct CC is shown in Equation (2-3) 

 ∑= iiCC gfC  (2-3) 

The coefficient of zero-mean cross-correlation (ZCC) involves subtracting the 

mean value of the subset intensity in Equation (2-4), 

 ∑ −×−= )]()[( ggffC iiZCC  (2-4) 
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: the mean intensity value of the deformed subset. 

By subtracting the mean value of the subset intensity, the ZCC criterion reflects 

the tolerance of the subset’s offset change between the deformed image and the reference 

image.  ZCC reduces the sensitivity of the DIC method to the offset change of the subset.  

The coefficient of normalized cross-correlation (NCC) uses the root-sum-square 

of the subset intensity, as shown in Equation (2-5), 

 
∑ ∑
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NCC reduces the effect of differing lighting in two images by dividing by the 

root-sum-square of subset intensity (Watman, Austin, Barnes, Overett, & Thompson, 

2004). 
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The coefficient of zero-mean normalized cross-correlation (ZNCC) combines the 

advantages of ZCC and NCC as defined by Equation (2-6). 

 
∑ ∑
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Where fff ii −=  and ggg ii −= . 

By combining the advantages of ZCC and NCC, the ZNCC criterion is the most 

robust and reliable criterion for processing images.  The combination minimizes the 

influence of intensity change (Tong, 2005; Pan, Wang, & Xie, 2009). 

2) Sum of absolute difference (SAD) criterion 

The SAD is calculated by subtracting pixels within a square neighborhood 

between the reference image and deformed image.  It is often used for motion estimation 

by means of landmark detection.  A landmark is a visual feature that is relatively unique 

within an image and is stable over time (Watman, Austin, Barnes, Overett, & Thompson, 

2004).  Unlike NCC and ZNCC, the SAD correlation criteria can identify areas within the 

same image that exhibit local differences.  The correlation is achieved by minimizing the 

coefficient of SAD.  Equations (2-7) and (2-8) give the correlation coefficients for direct 

SAD and ZNCC respectively. 

Direct SAD: 

 ∑ −= iiSAD gfC  (2-7) 

Zero-mean sum of absolute differences: 

 ∑ −−−= )()( iiiiZSAD ggffC  (2-8) 

3) Sum of squared difference criteria (SSD) 
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 The CC coefficients are closely related to the SSD coefficients (Tong, 2005).  

Maximization of the CC criteria coefficient is equivalent to minimization of the SSD 

criterion coefficient.  The sum of squared difference criteria can be divided into four 

types as the cross-correlation criteria was also divided.  

Direct SSD criterion: 

 ( )∑ −= 2
iiSSD gfC  (2-9) 

 Zero-mean sum of squared difference criterion (ZSSD), which corresponds to 

ZCC, 

 
[ ]2)()(∑ −×−= ggffC iiZSSD  

 
(2-10) 

 Normalized sum of squared difference criterion (NSSD), which corresponds to 

NCC, 

 ∑
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Zero-normalized sum of squared difference criterion (ZNSSD), which 

corresponds to ZNCC 

 ∑
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4) Least-square correlation (LSC) 

Least-square correlation is used in image matching.  The basic equation for the 

correlation coefficient is based on a statistical modeling (Gruen, 1985) by least squares 

estimation as shown in Equation (2-13).  
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2.2.2.2  Sub-pixel registration algorithms 

For micro scale strains, the displacement may be within several pixels.  Therefore, 

the location must be determined at the subpixel-level using one of two available methods.  

One is the direct method, which uses an appropriate model to represent the location of the 

pixel, such as Gaussian or interpolation models.  The details of these models are 

introduced in the next chapter.  This method directly affects the performance of a 

correlation algorithm (Hild & Roux, 2006).  The second method involves applying an 

optimization algorithm in order to determine accurate displacements.  Some widely used 

sub-pixel registration algorithms are introduced next. 

1) Newton-Raphson algorithm 

The Newton-Raphson (NR) algorithm (Bruck, McNeill, Sutton, & Peters, 1989) is 

the most widely used subpixel registration algorithms since it has a relatively high 

measurement accuracy and computational efficiency. 

The NR algorithm takes into account the deformation of a subset between the 

reference and the deformed image (Pan, Xie, Xu, & Dai, 2006).  An assumed subset point 

(x, y) in the reference image is mapped into the deformed image as (x′, y′) by using 

Equation (2-14) and (2-15).  
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Where u and v are displacement components for the subset centers in the x and y 

directions respectively, Δx and Δy are the distances from the subset center to the point (x, 

y). 

The above equation employs the first-order shape function.  For some applications, 

the NR algorithm involves second-order derivatives of the correlation function, which 

increases the computational complexity (Lu & Cary, 2000).  Increasing the order of 

algorithm greatly increases the required computation time.  Thus, unless special high sub-

pixel registration accuracy is required, using a linear shape function in the NR algorithm 

is appropriate.  

The NR algorithm is a non-linear numerical optimization algorithm that requires 

an accurate initial guess of the location.  Pan and Li (2011) improved the NR algorithm 

by effectively eliminating the repetitive and redundant calculations required for the 

conventional NR algorithm.  They proposed a reliability-guided displacement scanning 

strategy to obtain a reliable and accurate initial guess.  A pre-computed global 

interpolation coefficient look-up table is given to avoid the repetitive interpolation 

calculations at sub-pixel locations. 

2) Gradient-based method  

The gradient-based method was first developed as an optical flow method by 

Davis and Freeman (Davis & Freeman, 1998).  The fundamental assumption of the 

gradient-based method is that the gray level intensity of a point in a reference image is 
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same in the deformed image (Pan, Asundi, Xie, & Gao, 2009).  Assume f(x, y) and g(x´, 

y´) are the gray level intensity of a point in a reference image and a deformed image, 

respectively.  Then,  

 ),(),( yxgyxf ʹ′ʹ′=  (2-16) 

Where xuxx Δ++=ʹ′ , yvyy Δ++=ʹ′ . 

u and v are displacement components for the subset centers in the x and y 

directions, respectively.  Δx and Δy are the distances from the subset center to the point (x, 

y). 

Using a Taylor expansion of g(x´, y´) to determine derivatives in terms of u, v, Δx 

and Δy, the system can be solved using the least squares method. 

Zhou and Goodson (2001) applied an iterative spatial-gradient-based method to 

reduce the computational complexity of this method.  Bing Pan et al. (2009) modified the 

iterative spatial-gradient-based method proposed by Zhou and Goodson by introducing a 

linear intensity-change model.  This can reduce the sensitivity of changing lighting and 

gray intensity.  

3) Genetic Algorithm  

The Genetic Algorithm (GA) is an optimization method inspired by natural 

evolution: the Darwinian principle of survival and reproduction of the fittest (Mitchell, 

1998).  It is used for the 2D DIC method to optimize the correlation criterion to 

determine the deformation parameters. 

GA was first explored by Holland in the 1960s.  It is very different from classical 

optimization algorithms and can be easily applied to a variety of fields (Hwang, Horn, & 

Wang, 2008).  GA creates an initial population of random individuals, and then applies 
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crossover and mutation to generate new individuals.  Individuals are picked by some 

quality criteria to find the fittest, which is known as a fitness-proportionate selection 

(Wang & Hou, 2010; Pilch, Mahajan, & Chu, 2004).  Thus, the new generation has better 

individuals.  Repeat the process until the stop criteria is satisfied.  The best individual in 

the last generation is the approximate optimal solution.  

For the 2D DIC, an initial deformation vector map is randomly generated within a 

possible range.  The correlation criterion functions as a quality criterion.  When the 

convergence is met, the deformation vector is considered to be found. 

4) Other algorithms  

With the development of modern mathematics, new mathematical theories and 

recognition methods have been developed and applied to the DIC method to achieve 

subpixel accuracy.   

Artificial neural networks (ANNs) are introduced to estimate sub-pixel 

displacements for digital image correlation by Pitter et al. (2001).  The algorithm has 

been applied to thermally-stressed microelectronic devices.  Pan et al. (Pan, Asundi, Xie, 

& Gao, 2009) investigated the iterative least squares algorithm (ILS) and pointwise least 

squares algorithm (PLS) to calculate displacement and strain, respectively.  The goal of 

these new algorithms was to increase computational efficiency without sacrificing the 

sub-pixel measurement accuracy.  

2.2.3  Error in DIC  

The accuracy of DIC is affected by two major sources of error: experimental and 

numerical.  Experimental errors result from experimental devices, testing environment 

and test setup parameters.  Typical 2D DIC experimental devices consist of a digital 
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image acquisition device, a lighting source, and a loading device.  The noise of the 

optical device is directly related to the quality of the digital image, which can influence 

the accuracy of the correlation.  High resolution image acquisition devices produce high 

resolution images.  The light intensity is related to gray levels of the specimen (Haddadi 

& Belhabib, 2008), which influences the accuracy of the correlation.  Since overexposure 

and underexposure decrease accuracy, stable and suitable lighting is required to minimize 

the error associated with lighting.  Jerabek et al. (2010) found that the lighting intensity 

just below overexposure can provide the best result.  Overexposure will lose the detail in 

the information from the brightest parts of an image.  The environment of the test 

contributes to errors in displacement measurements.  Environmental errors are primarily 

due to vibrations caused by operation of the loading devices (Jerabek, Major, & Lang, 

2010).  These vibrations induce noise in the optical devices and desynchronize the timing 

between the photography and the ROI position (Haddadi & Belhabib, 2008).   

Numerical errors include subset (also known as sub-window) size, speckle pattern 

of the specimen, and correlation algorithm.  The DIC method divides the image into 

small sub-windows of N pixels or N×N pixels.  The center of each window box is 

considered as a “point” (Lagattu, Bridier, Villechaise, & Brillaud, 2006) to correlate.  The 

size of the subset is defined by pixels.  By discretizing the image into subsets, correlation 

of images can be realized.  The subset size selection is very important in the DIC method 

since it affects the accuracy significantly.  The subset size depends on the speckle pattern 

of the specimen.  Both too large and too small subset sizes induce inaccuracies.  While 

larger subsets decrease the errors (Haddadi & Belhabib, 2008), they also smooth the real 

localized displacement (Lecompte, et al., 2006), increasing the computation time.  
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Smaller subsets simplify the computation, but may not contain enough characteristics to 

achieve reliable displacement measurement (Pan, Xie, Wang, Qian, & Wang, 2008), thus, 

increasing errors (Haddadi & Belhabib, 2008).  To optimize the subset size, many studies 

have been undertaken.  Sun & Pang (2007) introduced the concept of subset entropy to 

quantify the subset image pattern quality.  They also proved the effects of subset size on 

homogeneous and nonhomogeneous displacement areas.  For homogeneous displacement, 

the subset size has a lower boundary to decrease random errors.  A subset size below the 

lower boundary may induce significant errors.  Similarly, nonhomogeneous displacement, 

subset size has an upper boundary due to increased systematic errors.  Bing Pan et al. 

(2008) developed the concept of subset entropy by using Sum of Square of Subset 

Intensity Gradients (SSSIG) as mathematical support.  

As mentioned earlier, the DIC method uses “artificial” speckles.  If the natural 

texture of the specimen surface has a random gray intensity distribution, DIC uses the 

natural texture as the speckle pattern.  If the natural texture of the specimen surface does 

not have a random gray intensity distribution, speckles must be spray painted onto the 

surface.  In this case, DIC uses the sprayed paint as the speckle pattern.  The quality of 

the speckle pattern has a significant effect on accuracy of displacement measurement 

(Lecompte, et al., 2006; Haddadi & Belhabib, 2008; Sun & Pang, 2007; Pan, Xie, Wang, 

Qian, & Wang, 2008).  Lecompte (2006) studied the influence of the mean speckle size 

and subset size on accuracy of DIC.  Mean speckle size was determined by an image 

morphology method.  Bing Pan et al. (2010) introduced a parameter called mean intensity 

gradient, which is another quality assessment of the speckle patterns.  Mean intensity 

gradient of speckle patterns is closely connected to systematic errors (mean bias error) 
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and random errors (standard deviation) of displacement measurement.  Larger mean 

intensity gradients corresponded to smaller mean bias and standard deviation errors.  

2.3  Edge detection 

2.3.1  Introduction to edge detection 

The edge of an image is detected by variation in intensity or brightness.  Edge 

detection in image processing refers to the process of identifying this change in an image.  

The CCD camera detects light and converts the incoming photons into electrical signal.  

In image acquisition, the CCD sensitive pixels receive light from both the local and the 

neighboring photosensitive pixel causing a gradual change based on the response signal, 

especially at edge points (Li & Xu, 2009).  Figure 2-10 (a) illustrates an ideal edge signal, 

which has a straight edge of signal change.  However, the real edge signal looks more 

like Figure 2-10 (b).  The edge pixel is not a single point, but a gradual transition between 

phases.  The subpixel edge is located within this transition. 

 

Figure 2-10 Edge signal of a one-dimensional image 

2.3.2  Edge detection methods 

There are many methods to detect edges, such as Canny edge detection (Canny, 

1983& 1986), Sobel operator (Oskoei & Hu, 2010), and Prewitt’s operator (Maini & 

Sggarwal, 2009).  
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Usually, a complete edge detection process involves smoothing, edge detection, 

and thresholding.  Smoothing is like a 2-D filter to convolve the image.  The procedure of 

the “convolve image” is to multiply the image singal function by a filter function.  The 

filter function is called the convolution kernel.  The aims of the smoothing is to remove 

the noise while keeping the image structure.  Here, the image signal (f) multiples the 

smoothing function (kernel h) to produce a modified image signal.  After smoothing, the 

signal is sensitive to large gradients and is flat in uniform areas.  In addition, because 

differentiation is applied directly, the edge detection algorithms often have problems, as 

shown in Figure 2-11 (Oskoei & Hu, 2010), such as no real solution, no unique solution, 

or a lack of stability.  By convolution of the raw image with kernel h, as shown in Figure 

2-12, regularized differentiation can be accomplished.  To reduce computations, a 

derivative of the kernel can be used in convolution to achieve a similar result.  The 

Gaussian filter is one of the most widely used smoothing filters since it was first 

proposed by Marr and Hilderth (1980) in 1980.  The second derivative of the Gaussian is 

called the Laplacian of a Gaussian (LOG), an orientation-independent operator used as a 

filter for edge detection (Basu, 2002).  
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(a) Signal function; (b) First derivative of the signal function 

Figure 2-11 The direct first derivative of a signal function that is affected by noise is not 

enough to localize a step change within it (Oskoei & Hu, 2010) 

 

(a) Signal function f; (b) Kernel h; (c) Modified function by convolution (h×f); (d) First 

derivative of the modified function 

Figure 2-12 By applying convolution, the first derivative of modified function reaches the 

local maximum (Oskoei & Hu, 2010) 
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There are many methods to achieve edge detection, which can be collected into 

two categories, as shown in Figure 2-13:  

- Gradient: the gradient method uses the maximum and minimum of the first 

derivative to find the edges. 

- Laplacian: the Laplacian method looks for the zero crossings in the second 

derivative to detect the edges. 

   

  (a)    (b)    (c) 

(a) Edge signal; (b) Detecting the local extreme by the 1st derivative of edge signal; (c) 

Detecting the zero-crossing by the 2nd derivative of edge signal 

Figure 2-13 The first derivative and second derivative methods to detect the edge 

Essentially, these two methods are the same.  The location where the first 

derivative of the edge signal reaches the maximum (or minimum) is the same as the 

location where the second derivative at this point will equal zero.   

2.3.2.1  Sobel operator 

The Sobel operator is based on a discrete derivative.  It consists of a pair of 

convolution kernels (3×3 matrix), which are perpendicular to each other.  These two 

kernels are designed to compute the gradient of gray intensity of an image in the vertical 



36 
 

 
 

and horizontal directions.  The gradient (G) at each point is a vector, which has both 

magnitude and direction.  The gradient components are known as Gx and Gy, which can 

be calculated by two kernels (Equation (2-17) and Equation (2-18), respectively).  The 

absolute magnitude of G is given by Equation (2-19) and its direction is calculated using 

Equation (2-20). 
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The Sobel operator is a fast and easy approach to detect edges.  However, since it 

does not involve smoothing the source image, it is sensitive to noise (Oskoei & Hu, 2010).  

Therefore, the Sobel operator is used as an intermediate step to calculate the gradient of a 

pixel in the other edge detection methods.   

2.3.2.2  Canny edge detection  

The Canny edge detection algorithm is the most common and widely used edge 

detection algorithm, especially in industry.  Canny (1986) proposed three criteria to 

improve the performance of edge detection algorithms to achieve an optimal result.  The 

optimal edge detector should satisfy the following conditions:  

• Good detection: the algorithm should mark many more real edge points than non-

edge points, maximizing the signal-to-noise ratio.  
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• Good localization: the edge marks should be as close to the true edge as possible.  

• Only one response to a single edge: multiple responses should be eliminated and 

the edge should be marked only once. 

Based on the above criteria, Canny edge detection can be summarized into four 

steps (Oskoei & Hu, 2010; Maini & Sggarwal, 2009): 

Step 1: Noise reduction.  Before detection and localization of edges, a Gaussian 

smoothing filter is applied to the image to reduce the noise.  

Step 2: Gradient computation.  The gradient of the image is computed by the 

Sobel operator.  The direction of the edge is calculated using the gradient in the x (Gx) 

and y (Gy) directions.  There are only four traceable directions in an image for a pixel.  

The edge directions must be categorized by one of the four closest possible directions.  

The four possible directions (as shown in Figure 2-14) are: 0 degrees (in horizontal 

direction); 45 degrees (along the positive diagonal); 90 degrees (in vertical direction); 

135 degrees (along the negative diagonal).   

 

Figure 2-14 Four possible directions 

Step 3: Non-maximum suppression.  After estimating the direction of the edge 

gradient, non-maximum suppression is applied to trace along the edge.  In the direction of 
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the edge, set the pixel values that are not considered to be an edge equal to zero.  If a 

pixel meets one of the following conditions, the point can be assumed to be an edge:  

• The rounded gradient angle is 0 degrees and the gradient magnitude is 

greater than the magnitude in the horizontal direction.  

• The rounded gradient angle is 45 degrees and the gradient magnitude is 

greater than the magnitude in the positive diagonal direction.  

• The rounded gradient angle is 90 degrees and the gradient magnitude is 

greater than the magnitude in the vertical direction.  

• The rounded gradient angle is 135 degrees and the gradient magnitude is 

greater than the magnitude in the negative diagonal direction.  

Step 4: Hysteresis thresholding.  Canny edge detection uses adaptive thresholding 

with hysteresis to eliminate streaking.  Hysteresis uses both an upper and a lower 

threshold.  First, the upper threshold is applied to select a genuine edge.  Then the lower 

threshold is used to thin the edge.  After thresholding, a binary image with only edge and 

non-edge pixel is obtained.  

2.3.3  Subpixel edge detection 

Subpixel edge detection is extremely important in the digital image correlation 

method.  Traditional edge detection methods like the Sobel operator and the Canny edge 

detector can only achieve pixel-level precision.  With increasing precision requirements 

in digital image processing techniques, subpixel edge detection is needed (Hyde & Davis, 

1983; Jensen & Anastassiou, 1995).  This technique breaks the limitation of resolution of 

the CCD image. 
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Most sub-pixel edge detection algorithms can be divided into three groups: fitting 

methods, interpolation methods, and moment-based methods.  

• Fitting methods use continuous functions to fit gray scales of the image.  The sub-

pixel edge location is at the inflection point of the continuous function.  The 

published fitting functions include the B-spline (Bouchara, Bertrand, Ramdani, & 

Haydar, 2007; Breder, Estrela, & de Assis, 2009), the Gaussian function (Shang, 

Chen, & Tian, 2010), the hyperbolic tangent (Wei, Tan, Liu, & Xiong, 2010), and 

the Erf function (Hagara & Kulla, 2011). 

• Interpolation methods use the traditional edge detection method to find a coarse 

edge, and then reach the subpixel accuracy by interpolating the image data to 

attain a finer grid of pixels.  The interpolation method can recover a high 

resolution image from a low resolution image (Wang & Ling, 2010).  By using 

the pixels in the neighborhood of the objective pixel of the original image, the 

pixel value is computed by interpolation based on the interpolation function.  The 

interpolation method includes nearest neighbor interpolation, bilinear 

interpolation (Chen, Huang, & Lee, 2005; Press, Teukolsky, Vetterling, & 

Flannery, 2007), and bicubic interpolation (Thévenaz, Blu, & Unser, 2000).  

• The Moment-based method formulates the edge detection as a statistical inference.  

By applying several moment-templates, the subpixel edge location is determined 

(Da & Zhang, 2010).  There are many proposed moment-based methods, 

including  Gray level moment (Tabatabai & Mitchell, 1984), Spatial-gray moment 

(SGM) (Lyvers & Mitchell, 1988), Zernike orthogonal moment (ZOM) (Cheng & 
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Wu, 2005; Yang & Pei, 2011), and Orthogonal Fourier-Mellin moment (OFMM) 

(Bin, Lei, Cui, Kang, & Liu, 2008).  

2.3.3.1  Gaussian curve fitting algorithm 

For the Gaussian curve fitting method, the gradient distribution curve of edge 

points is required.  This is achieved by sampling some edge points, and determining their 

gray intensity.  The gradient values of these points are obtained by measuring gray 

intensity.  A Gaussian curve is used to fit the gradient curve of the edge points.  The real 

edge is located at the extreme point of the curve, the zero-cross point of the first 

derivative or the zero-cross point of the second derivative (Shang, Chen, & Tian, 2010).   

The Gaussian curve expression in one dimension is expressed as Equation (2-21) 
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Where µ- the mean and σ-standard deviation 

In the Gaussian curve, the extreme point is the mean.  In other words, the mean is 

the location of the edge point.  Usually, the edge point is not located exactly on one pixel.  

Instead, it is located between pixels, as shown in Figure 2-15.  A precise Gaussian curve 

is important to achieve subpixel accuracy. 
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Figure 2-15 Gaussian curve for sub-pixel accuracy  

For ease of calculation, the above Gaussian function is transformed as follows: 
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This function is similar to the quadratic polynomial equation cbxaxy ++= 2 .  

To evaluate the parameters a, b and c, the least square method is used.  
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To minimize Π , the partial derivative of Π  with respect to a, b and c is found: 



42 
 

 
 

 
ggdh
gfeda

×−×

×−×
=  (2-24) 

 
d

agfb ×−
=  (2-25) 

 )(1
11

2

1
∑∑∑
===

×−×−=
n

i
i

n

i
i

n

i
i xbxay

n
c  (2-26) 

Then the partial differential equation is set equal to zero, resulting in: 
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Using Equations (2-27) to (2-31), the µ and σ of the Gaussian equation can be 

calculated as follows: 
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Where the subpixel edge location is at µ. 

2.3.3.2  Quadratic Polynomial Interpolation 

The edge in this investigation is a simple rectangle, which has only vertical and 

horizontal directions.  Given that the gradient distribution of a pixel is similar in the 
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vertical and horizontal directions, the same 1-dimensional algorithm is used in both 

directions.  

The process of subpixel edge detection by quadratic polynomial interpolation is: 

1. Use Canny edge detection to obtain the coarse edge location at the pixel-

level, (m,n). 

2. Based on the edge coordinates obtained from Canny edge detection, the 

Sobel operator (2-34) is used to calculate the gradient by surrounding a pixel’s gray value 

(Figure 2-16).  

 

Figure 2-16 Pixel (i, j) and surrounding pixels 
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(2-34) 

The gradient of three points in the x direction (m-1, n), (m, n), (m+1, n) is used to 

fit the quadratic polynomial cbxaxxG ++= 2)(  

 cmbmanmR +−+−=− )1()1(),1( 2  (2-35) 
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Solving the above system of equations, gives 

 
2

),(2),1(),1( nmRnmRnmRa −−++
=  (2-38) 

 
2

),1(),1(
)],(2),1(),1([

nmRnmR
mnmRnmRnmRb

−−+
+

−−++−=
 (2-39) 

 
),(

2
),1(),1(

2
),(2),1(),1( 2

nmRmnmRnmR

mnmRnmRnmRc

+
−−+

−

−−++
=

 (2-40) 

3. The parameters a, b and c are used in the polynomial function.  The edge 

should be located at the extreme value of the gradient polynomial function, given by 
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Solving the above equation, finds the horizontal subpixel edge as  

 )],(2),1(),1([2
),1(),1(

nmRnmRnmR
nmRnmRmx

−−++

−−+
−=

 
(2-42) 

Since Equation (2-42) is based on (m, n), the coarse edge point determined by the 

extreme gradient, Equations (2-43-A) and (2-43-B) have to satisfy: 

 ),1(),( nmRnmR −>  (2-43-A) 

 ),1(),( nmRnmR +>  (2-43-B) 

Similarly, by using three points in the y direction (m, n-1), (m, n), (m, n+1), the 

vertical subpxiel edge is given by:  
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where Equations (2-45-A) and (2-45-B) must be satisfied:   

 )1,(),( −> nmRnmR  (2-45-A) 

 )1,(),( +> nmRnmR  (2-45-B) 

The above polynomial interpolation is very easy and quick for computation.  

However, since only the nearest points to the edge point are involved, the result can 

include significant error.  In addition, by neglecting the orientations of gradients of points, 

the conditions in (2-43-A) and (2-45-A) are difficult to satisfy.  Many edge points will be 

lost based on the above equation.  

2.4  Camera calibration 

Camera calibration is an essential step in image analysis.  The goal of calibration 

is to determine the intrinsic and extrinsic parameters, such as the camera’s position and 

orientation, which affect the accuracy of measurements extracted from the images.  It is 

necessary in various applications including photogrammetry, remote sensing, motion 

planning, virtual reality, robot navigation, and object recognition.  After calibration, 3D 

computer vision can be extracted from 2D images.  Calibrated cameras can also be used 

to make real measurements since pixels and real dimensions are related by the camera 

calibration parameters.   
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2.4.1  Camera calibration parameters  

2.4.1.1  Coordinate system 

To understand camera calibration parameters, three coordinate systems need to be 

defined: world coordinates (global coordinates), camera coordinates, and image 

coordinates.  

The world coordinates are used to describe the position and orientation of 3D 

points.  For a multi-camera system, the world coordinates are also used to locate the 

cameras.  They are expressed as (Xw, Yw, Zw) by adding a subscript w. 

The camera coordinates are expressed as (Xc, Yc, Zc) by adding a subscript c.  The 

origin (0, 0, 0) of the camera coordinates is in the center of the camera and is  projected at 

(Xw0, Yw0, Zw0) in the world coordinates.  The Zc-axis is perpendicular to the image plane.   

The image coordinates are expressed with (x, y), which are 2D coordinates.  In the 

image coordinates, the origin (0, 0) is in the upper left pixel of the image.  The 

relationship between these coordinates is shown in Figure 2-17. 

   

Figure 2-17 Coordinate systems  
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2.4.1.2  Intrinsic parameters  

Focal length, f (α,β): the focal length of the lens is expressed in a 2×1 vector.  The 

ratio k=β/α is called the aspect ratio, which is not equal to 1 if the pixels in the CCD 

array are not square. 

Principal point (µ0, ν0): the principal point is the image center. 

Skew coefficient (s): the skew coefficient is the angle between the x and y pixel 

axes. 

Distortions (kc): the image distortion coefficients include 3 numbers that describe 

radial distortion (expressed as kc(1), kc(2) and kc(3)) and 2 numbers that describe 

tangential distortion (expressed as kc(4), kc(5)). 

To estimate the intrinsic parameters, camera matrix C is needed.  Camera matrix 

C is a 3×3 matrix describing the projection of the camera from a 3D point in the world to 

a 2D point in an image. 
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The 3D point in the camera coordinates (Xci, Yci, Zci) is projected by the camera to 

2D point in the image by means of the following changes: 

The projection of the point (Xci, Yci, Zci) to the image plane uses the pinhole model 

to find (xn, yn): 
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The pinhole model simply describes the mathematical relationship between a 3D 

point and its projection in the image coordinates.  
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Considering the displacement caused by lens distortion of the image point, the 

corrected point after lens distortion becomes (xd, yd): 
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(2-48) 

The image coordinates (distorted) are used to find the image point (xi, yi): 
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2.4.1.3  Extrinsic parameters 

Extrinsic parameters can transform the world coordinates to a camera coordinate.  

In addition, in the multi-camera system, the extrinsic parameters also describe the 

relationship between the cameras.  

Rotations (R): rotations reflect the orientation of the camera in the real world.  R 

is a 3×3 matrix, which relates the world coordinates to the camera coordinate system.  

The rotation can be represented by ω, φ and κ, which is defined as three elementary 

rotations around Xc, Yc, and Zc-axes, respectively.  

Translations (T): translations represent the position of the camera in the real world.  

T is a 3×1 coordinate vector. 

The point in the world coordinates (Xw, Yw, Zw) and camera coordinates (Xci, Yci, 

Zci) can be related by following rigid body motion equation: 
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Where, 
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2.4.2  Camera calibration technique 

A large amount of research (Heikkilä & Silvén, 1997; Tsai, 1987; Zhang, 1999) 

has been done in camera calibration.  Tsai (1987) proposed a two-stage calibration 

technique: the first step is to obtain the position and orientation; the second step is to 

estimate the intrinsic parameters of the camera.  Tsai’s method does not require an initial 

guess of parameters.  Based on Tsai’s method, Heikkilä and Silvén (1997) developed a 

four-step camera calibration procedure.  By adding two steps to compensate for distortion 

and correcting the distorted image coordinates, the accuracy was improved.  The Matlab 

toolbox for this four-step camera calibration is available online (Heikkilä, 2000).  Zhang 

(1999) proposed a flexible and robust way to calibrate the camera.  By photographing a 

chessboard plane at various angles, the intrinsic and extrinsic parameters can be 

calculated.  A software toolbox to determine these parameters was developed by Zhang 

(1999) 

The camera calibration method used in this thesis is the camera calibration 

toolbox developed by Jean Yves Bouguet (2010).  This method is primarily based on 

Zhang’s method.  Bouguet added two tangential distortion coefficients to improve the 

accuracy of the result.  
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Zhang uses a closed-form solution to estimate the intrinsic parameters.  A 

chessboard is used as the calibration plane.  The calibration grid coordinates must be 

defined first.  It is based on the calibration chessboard and is expressed as (X, Y, Z), as 

shown in Figure 2-18.  Its origin is in a corner of the chessboard.  The Z-axis is 

perpendicular to the calibration plane.  

 

Figure 2-18 Calibration grid coordinates (Bouguet, 2010) 

Assume the calibration plane is at Z=0 of the world coordinates.  The point in the 

calibration plane is denoted by M=[X, Y, 0, 1]T and the corresponding point in the 2D 

image is denoted by m= [u,v,1]T.  1 is added as the last element of M and m, because it is 

required for the later mathematical operations.  The intrinsic parameter is denoted by C 

and the ith column of the rotation matrix R by ri.  Thus, the extrinsic parameters are 

denoted by (R, t) = (r1, r2, r3, t).  
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H is a scale factor.  It relates a model point M to its image point m.  It can be 

obtained using the maximum likelihood criterion, and is designated as H= [h1  h2  h3].  

Thus: 

 [ ] [ ]trrChhh 21321 ∝  (2-52) 

The elements in the rotation matrix (r1, and r2) are orthonormal, giving: 

 02
1

1 =−− hCCh TT  (2-53) 

 2
1

21
1

1 hCChhCCh TTTT −−−− =  (2-54) 

The above equations are two basic constraints on the intrinsic parameters.  

Let 
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B is a symmetric matrix, defined by a 6D vector 
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Let the ith column vector of H be T
iiii hhhh ][ 321= .  Then 
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The two basic constraint Equations (2-53) and (2-54) can be rewritten as two 

homogeneous Equations (2-58) as follows: 
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Each homography provides two constraint equations.  In order to solve for b with 

6 degrees of freedom, at least three images from different perspectives must be used.  In 

practice, more images are taken in camera calibration to increase the accuracy.  

2.4.3  Camera calibration procedure 

The procedure outlined here was used to conduct the experiments reported in this 

dissertation. 

Step 1: Print a chessboard by a LaserJet printer and attach it to a rigid planar 

surface. 

Step 2: Find the appropriate focus using auto focus with the camera in position, 

then turn auto-focus off.  Keep the lens locked and take a few photographs of the 

chessboard at various angles by moving the chessboard, as shown in Figure 2‒19. 
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Figure 2-19 Photographs of chessboard at various orientations 

Step 3: Use the camera calibration toolbox (Bouguet, 2010) for Matlab to detect 

the grid corner points in the images and estimate the intrinsic parameters and extrinsic 

parameters for each image. 

Step 4: To decrease the error of the calibration, use the toolbox to recalibrate the 

intrinsic parameters by using the original intrinsic parameters as an initial guess for the 

next iteration of the calibration process. 

Step 5: Based on the intrinsic parameters of the camera, all the images can be 

undistorted. 
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Chapter 3 Optical strain measurement and analysis methods 

3.1  Background 

Optical strain measurement methods use an optical device to determine the strain.  

The optical device could be a microscope, laser, or camera.  In this thesis, the optical 

device used is a camera, and the strain is measured by analyzing the digital images it 

captures.  

Digital image correlation (DIC) is a well-known optical strain measurement 

method.  It is also known as particle image velocimetry (PIV) and is a non-contact, 

optical technology that tracks the movement of chosen targets.  A camera is used to 

capture a series of digital images which are analyzed relative to an initial undeformed 

state.  Images recorded during experimentation or monitoring are processed after the 

experiment is complete.  The images are digitally processed with the help of a computer 

using gray intensity analysis in the region of interest.  The results of the analysis 

determine displacement and strain.  

The digital image technique is applicable to a wide scale range, from as large as a 

few meters to as small as nanometers.  Specimens can be loaded under quasi-static or 

dynamic conditions.  Cameras with high frequencies, capture many images per second, 

and are readily available.  Advances in high-resolution digital cameras and increasing 

computing performance have improved the accuracy and precision of the DIC technique.  

As a result, DIC has found extensive applications both in the laboratory and in industry.  
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In this study, two types of patterns are used for strain measurement: random 

speckle and a painted rectangle.  DIC uses painted speckles as the pattern.  By tracking 

the position of the speckles, the displacement of the specimen can be determined.  A new 

approach developed in this thesis is the use of edge detection of a rectangle painted on the 

surface.  By measuring the position of the rectangles’ edges, the displacement can be 

found.  Two computer programs are used for different accuracy levels: ImageJ (National 

Institutes of Health, 2004) is used for pixel-level, and Matlab for subpixel-level analyses.  

At the subpixel-level, two algorithms are applied: Gaussian fitting (Shang, Chen, & Tian, 

2010) and spline interpolation (Hou & Andrews, 1978; Luu, Wang, Vo, Hoang, & Ma, 

2011).   

3.2  Digital speckle correlation method 

Speckles are widely used as a pattern in the DIC method, which is also called the 

digital speckle correlation method (DSCM).  The speckle may be a naturally occurring 

pattern on the specimen or it may be painted on.  The speckles should be randomly 

distributed over the surface.  

The process of strain measurement by DSCM is as follows:  first, an image of the 

undeformed specimen is taken as a reference image and is divided into several subsets.  

Each subset should have a unique gray intensity distribution, which functions as a marker 

for identifying each subset as the deformation occurs.  Then, a series of images are taken 

under loading, as the specimen deforms.  These images will be compared with the 

reference image once the experiment is completed.  A correlation criterion is applied to 

locate the target subsets.  This criterion looks for maximum similarity between the 

deformed and the reference image subset.  Displacement, as a vector, is measured from 
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the center of a reference subset to the center of the deformed subset.  A full field 

displacement map is obtained by determining the displacement each subset experiences, 

as a vector.  A diagram of the DIC method from the test is shown in Figure 3-1. 

 

Figure 3-1 The subset and displacement vector for the DIC speckle method 

This ability to produce a full field strain measurement map is one of the greatest 

advantages of DSCM.  Prior to the development of this technique, it was very difficult to 

relate local information to global characteristics such as full field surface strain. 

Post-processing of images was completed using Digital Image Correlation and 

Tracking (Eberl, Thompson, Gianola, & Bundschuh, 2010), which is a Matlab based code.  

The process of this algorithm is shown in Figure 3-2. 
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Figure 3-2 Flowchart of digital image correlation and tracking 

Step 1: Load all the images.  The reference image is the first image, which is used 

as a baseline for all displacement measurements. 

Step 2: Generate the grid.  This step asks the user to select a region of interest 

(ROI) within the reference image, which is then divided into several subsets.  The center 

of each subset serves as a marker for the image correlation.  The user selects the desired 

number of subsets.  More subsets provide more markers for the correlation, which may 

provide more detailed information about the specimen surface and decrease the noise in 

the measurements.  However, a very large number of subsets require much longer 

processing times and have higher requirements of the computer configuration.  

Step 3: Correlate all the markers.  This is the core step for DIC.  A built-in Matlab 

function called “cpcorr.m” is used to track the location of markers using cross-correlation 
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criterion, as shown in Equation (3-1).  The resolution of the marker position is as high as 

1/1000 pixel, which is subpixel-level.  “cpcorr.m ” can only track the position of markers 

by up to four pixels, making it suitable for small displacements.  For larger displacements, 

a reduction factor coefficient is necessary in order to use this function.  The image size is 

first reduced to fall into the range required by the code and then the measuring result is 

scaled-up for the original image.  The markers’ positions in the deformed images are 

recorded.  

 ∑= iiCC gfC  (3-1) 

Where fi is the gray intensity of pixels in the reference image, gi is the gray 

intensity of  pixels in the deformed image. 

Step 4: Find the displacement map.  By comparing the positions of markers in the 

reference and target images, the displacement map is obtained.  

Step 5: Strain measurement.  From the displacement map, the full field strain map 

is determined by a pointwise least squares method (Pan, Asundi, Xie, & Gao, 2009).  

3.3  Rectangle edge detection method 

The rectangle edge detection method calculates strain by locating the edges of a 

painted rectangle, then calculating the change in size.  Deformation of the specimen 

causes changes in the dimensions of the rectangle.  By detecting these changes, strain can 

be determined.  Length is defined by the distance between two parallel edges of the 

rectangle, such as between the left and right edges or the top and bottom edges.  

Therefore, strain measurement becomes an edge detection problem.  A schematic 

diagram of the rectangle is shown in Figure 3-3. 
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Figure 3-3 Schematic diagram of the rectangle 

3.3.1  Pixel-level 

The rectangle edge in a digital image must be defined.  The edge is determined by 

a sharp intensity change over a small distance (several pixels) in the image.  For the 

specimens used in this investigation, a black rectangle was painted on a white surface.  

Therefore, the edge can be readily defined as the boundary between the black pixel and 

white pixel.  However, in the real images, due to lighting conditions and the inherent 

characteristics of charge-coupled device (CCD) cameras, most pixels are not simply 

black or white.  Rather, they are  a shade of gray.  Creating a binary image is an option to 

solve this problem since, in binary, pixels are either black or white.  To create binary 

images, a threshold has to be selected that will mark the boundary between the shades of 

gray that are binarized to black and white.  Then, the strain can be calculated using 

Equation (3-2). 
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Where li is the length of the rectangle in the image i, and l0 is the length of the 

rectangle in the reference image. 

High elasticity materials experience large changes in the pixels during 

deformation, making pixel-level edge detection sufficient.  ImageJ is a software used for 

pixel-level rectangle length measurement in this thesis.  The flowchart of the ImageJ 

macro program is shown in Figure 3-4. 

 

Figure 3-4 Flowchart of ImageJ method 

Step 1: Crop all the photos so that only the black rectangle and the white 

background are visible.  By removing the complicated portions of the background, 

processing becomes simpler. 

Step 2: Change the RGB photos to 8-bit grayscale photos, and then threshold the 

photos to produce binary images.  The threshold value for each series of photos is the 
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same since these photos have the same lighting conditions, in theory.  The lighting 

conditions are kept consistent during the tests to ensure the photos show similar 

brightness.  The principle of selecting a threshold value is such that the binary image 

should have a clear edge without including too much noise outside the rectangle.  Since 

the cropped photos only contain one object (the rectangle) and one background, the 

threshold is selected at the average of the distribution means of the all discrete pixels 

(Wang & Bai, 2003), as shown in Figure 3-5. 

 

Figure 3-5 Photo threshold by ImageJ 

Step 3: Find the edge points.  Check the pixel colors, black or white, of each 

image line by line.  If adjacent pixels change, record this location as an edge.   

Step 4: The dimensions of the  rectangle are obtained for each line and column by 

detecting the four edges.  The height of the rectangle is measured from the top to the 
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bottom edges, and the width from the left to the right edges.  These dimensions are taken 

as the average value of the length of each line or column.   

Step 5: Strain is then calculated using the length change in pixels. 

3.3.2  Subpixel-level 

Materials with different stiffness experience different deformations under the 

same load.  For more ductile materials, the length change in the image may be several 

pixels.  For brittle materials, the length change may be less than a pixel.  Subpixel strain 

measurement is necessary in order to measure such small deformations.  

Subpixel analysis overcomes some of the limitations of pixel-level analysis and 

provides more detailed information.  Subpixels can only be approximated with 

probability, as their determination requires guessing.  These guesses should be based on 

existing pixel values.  Subpixel edge detection algorithms can be classified into three 

categories: fitting methods, interpolation methods and moment-based methods.  The first 

two methods are studied in this chapter.  The moment-based method is not discussed in 

this thesis, since it is a statistical method.  

The edge in an image is defined as the location where sharp gray intensity 

changes occur.  However, due to quality and noise of the image, the largest change in 

gray intensity at the edge is difficult to detect.  Rather than using the gray intensity of 

pixels, the gradient (change in gray level) is often chosen to detect edges.  When using 

the gradient, the edge is defined as the location where the largest gradient occurs.  Since 

pixel values are discrete, gradients are calculated by subtracting gray intensities of 

adjacent pixels.  The gradient is a vector, having both value and orientation.  For the left 

and right edges, gradient (Gx) is obtained by subtracting the previous column.  The lateral 
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rectangle length is the right edge position minus the left edge position.  For the top and 

bottom edges, the gradient (Gy) is obtained by subtracing the previous row, with the axial 

rectangle length being the bottom edge position minus the top edge position.   

3.3.2.1 Gaussian fitting 

Fitting methods attempt to build continuous functions to simulate the edge 

gradient by fitting curves to real edge points.  Using a Gaussian function to fit the  edge 

gradient curve of an image is called Gaussian fitting.  

For the rectangle, strain is measured in two directions: axially and laterally.  For 

each direction, neglecting rotation and shear, strain can be simply calculated by rL/L0.  

Therefore, a 1D Gaussian fitting function (3-3) is used to represent gradients of pixels 

around the edge in the gradient direction.  
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Where x is the pixel’s location, y is the pixel’s gradient intensity, µ is the mean of 

Gaussian function, σ is the standard derivation of Gaussian function, a is the height of the 

Gaussian curve’s peak. 

The mean, µ, of a Gaussian function is the location where the function reaches its 

highest value.  It is also considered to be the location of the subpixel edge.  The standard 

derivation, σ,  is the width of the Gaussian function. 

A Gaussian fitting Matlab program was created to calculate subpixel-level length 

measurements.  The code can be found in Appendix A and the process is described as in 

Figure 3‒6.  In this process, the following abbreviations are utilized: 

Subscript l: left 



64 
 

 
 

Subscript r: right 

Subscript t: top 

Subscript b: bottom 

Subscript m: measured 

i: image number (0,1, 2, 3…), 0 for the reference image (first image) 

l: the length of the rectangle 

µ: the mean of the Gaussian function 

σ: the standard deviation of the Gaussian function 

 

Figure 3-6 Flowchart of Gaussian fit method 
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Step 1: Calculate the gradient map of each image based on the gray intensity.  For 

axial length, the gradient value is found by subtracting the pixel value of the previous row 

from the current row.  For lateral length, the gradient value is found by subtracting the 

pixel value of the previous column from the current column. 

Step 2: Find the pixel-level edge.  The location of the largest gradient is the pixel-

level edge.   

Step 3: Select the data for the Gaussian fit.  Select eight adjacent pixels around the 

pixel-level edge, with four pixels on each side.  These eight pixels plus the pixel with 

largest gradient gives a total of nine pixels used for the Gaussian fit.   

Step 4: Find the parameters of the Gaussian function.  Use location (x) and 

gradient intensity (y) of these nine pixels to fit the Gaussian equation (3-3).  The least-

squares method is used to find the Gaussian parameters (µ and σ), where µ is the location 

of the subpixel edge and the convergence condition is 10-6 for variations in the Gaussian 

function. 

Step 5: Evaluate the goodness-of-fit using R2.  In order to evaluate the “goodness-

of-fit” of the Gaussian function, the coefficient of determination (R2) is considered.  
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Where y is the observed value,  yestimate is the predicated values, y - is the mean of 

the observed value. 

If R2 is a small number, the Gaussian curve is not considered suitable for the edge 

pixel intensity distribution, meaning that the Gaussian model is not reliable.  Too high a 

value of R2 can filter out too much data reducing the image information.  R2 ≥ 0.9 is 

selected as a criterion for finding a good Gaussian fit.  To determine the length of the 
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rectangle, two Gaussian fitting curves, one for each edge, must be fitted.  If the 

coefficients of determination for both sides are greater than or equal to 0.9, then the 

length is considered reliable.  Figure 3-7 shows the Gaussian fitting curves for a row in 

the black rectangle. 

 

Figure 3-7 Schematic of Gaussian fitting for a row 

Step 6: Find the slope of the edges of the rectangle (optional).  Rotation occurs if 

there is some angle between the specimen and the camera.  Figure 3‒8 shows a schematic 

diagram of the image taken of a rotated specimen.  The measured lateral length is lm and 

real lateral length is l.  l is calibrated by Equation (3-5).  The rotation angle α is the angle 

between the camera and the specimen.  This angle is calculated using the slope of the 

rectangle edge.  Strain after calibrating for this rotation is given in Equation (3-6). 

 αcosmll =  (3-5) 
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Figure 3-8 Schematic diagram of the rotated specimen image 

Under some conditions, rotation occurs during the test.  Suppose the first image is 

straight and the specimen rotates an angle αi with respect to the camera in the image i.  

The theoretical length of the rectangle in image i changes from li to lmi.  These two 

measurements are related as shown in Equation (3-7). 

 iimi ll αcos=  (3-7) 

Using Equation (3-7) in the strain calculation Equation (3-2), gives the measured 

strain in image i, εmi, which becomes: 
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Since the length change is very small, li ≈ l0, the difference between the real strain 

and measured value can be calculated by Equation (3-9).   
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This step is optional.  If the error in the strain measurement caused by rotation 

during the test is small (< 1°) and can be neglected, then this step is not necessary. 

Several errors caused by rotation are calculated in Table 3-1. 

Table 3-1 Error in strain caused by rotation 

Angle αi (degree) 0.5 1 2 3 

Error Δεi 3.8×10-5 1.5×10-4 6.1×10-4 3.8×10-3 

 

Step 7: Find the subpixel-level length of the rectangle.  Axial length is calculated 

by subtracting the top location, µt, from the bottom location, µb.  Lateral length is 

calculated by subtracting the left location, µl, from the right location, µr.   

3.3.2.2  Spline Interpolation 

Interpolation, another subpixel image analysis method, constructs new data points 

within the range of known data.  This makes it easy to apply since it does not need to 

consider the goodness of fit.  A spline interpolation is a special type of piecewise 

polynomial.  It uses low-degree (n < 4) polynomials to connect each known data point, 

and chooses the sectional polynomial that can smoothly fit all these points together.  

Interpolation methods construct a set of new data points within the range of known data 

points.  For an image, it is like inserting many pixels between existing pixels to increase 

resolution.  The values of these pixels are computed using interpolation of the pixels in 

the neighborhood of the edge pixels of the original image.  Many interpolation methods 

have been developed (Pang, Tan, & Chen, 2013; Xu, Wang, & Gu, 2013), such as linear, 
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bilinear and bicubic interpolation.  A spline interpolation function is considered to be 

highly accurate for subpixel edge detection (Hou & Andrews, 1978; Luu, Wang, Vo, 

Hoang, & Ma, 2011) and is studied in this thesis.  The cubic spline interpolation function 

is given in Equation (3-10).  

 ∑
=

=
3

0m

m
mxy α  (3-10) 

Where x is the pixel’s location, y is the pixel’s gradient intensity, α is the 

coefficient of the cubic spline function. 

A spline interpolation Matlab program was created to calculate subpixel-level 

length measurement.  The code is presented in Appendix B and the process is described 

in Figure 3-9. 

 

Figure 3-9 Flowchart of spline interpolation method 

Step 1: Calculate the gradient map of an image using gray intensity.  For axial 

length, the gradient value is found by each row’s gray intensity minus the previous row’s. 
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For the lateral length, the gradient value is found by each column’s gray intensity minus 

the previous column’s. 

Step 2: Find the pixel-level edge.  Find the location where the largest gradient 

occurs, which is the pixel-level edge. 

Step 3: Select the data for the spline interpolation: eight adjacent pixels around 

the pixel-level edge, with four adjacent pixels on each side.  The eight pixels plus the 

pixel with largest gradient (a total of nine pixels) are selected as known points to find a 

cubic spline function.   

Step 4: Interpolate from the known points to find the subpixel edge.  Interpolate 

using the known pixels to create new points with a 0.01 pixel step size.  0.01 is also the 

precision chosen for this specimen.  For different accuracy requirements, a different step 

size may be chosen.  Find the new location where the maximum gradient occurs, which is 

the subpixel-level edge, E.   

Step 5: Find the subpixel length of the rectangle.  Axial length is calculated as the 

location of the bottom edge minus the location of the top edge, Eb-Et.  Lateral length is 

the location of right edge minus the location of the left edge, Er-El. 

3.4  Experiments 

3.4.1  Specimen details 

An A36 steel bar was used to evaluate a variety of strain measurement methods, 

including the algorithms discussed previously.  The dimensions and mechanical 

properties of the specimen are shown in Table 3-2.  The dimensions of both the specimen 

and the painted rectangle were measured using an digital calipers.  The dimensions of the 

rectangle are not used in the analysis. 
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Table 3-2 Specimen properties 

Dimensions of the specimen 
Dimensions of the 

painted rectangle 
Mechanical properties 

Thickness 

(mm) 

Width 

(mm) 

Length 

(mm) 

Width 

(mm) 

Height 

(mm) 

Nominal yield 

strength (MPa) 

Nominal ultimate 

tensile strength (MPa) 

3.05 25.25 609.6 15.5 58.4 250 400 

 

 

Figure 3-10 Schematic diagram of paintings on the specimen 

The two ends of the specimen were bonded with four 26×38 mm aluminum tabs 

to protect the specimens from damage by the mechanical grips.  Strain gages and 

reflective tapes for laser extensometry were bonded to one side of the specimen.  On the 
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other side of the specimen, two patterns (speckles and a rectangle) were painted.  The 

patterns were located in the middle of the specimen and were separated by 20 mm, as 

shown in Figure 3-10. 

Prior to painting, the specimen surface was cleaned with acetone to remove 

surface debris.  For the speckle pattern, the specimen was first painted white as a 

background.  Once the white paint was dry, black speckles were sprayed onto the white 

surface using a spray paint.  The sizes of the speckles should have a wide distribution.  

During painting, the rest of the specimen was covered by tape to protect it from stray 

paint marks.  For the rectangle pattern, a rectangle template was drawn on the surface of 

the specimen and tape was used to protect the area outside of the rectangle.  Black paint 

was then sprayed evenly onto the rectangle.  When the paint was completely dried, the 

tape was removed, leaving a black rectangle on a white background.  The paintings on 

the specimen are shown in Figure 3-11. 

 

Figure 3-11 Rectangle and speckles painted on the specimen 
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3.4.2  Test setup 

The steel specimen was tested in uni-axial tension using a 53 kN test frame with a 

9.8 kN capacity load cell to record the load data.  Laser extensometry and a strain gage 

system were used during testing as reference strain measurement methods.  The laser 

extensometer (MTS Inc., Model: LX500) was mounted on a rigid frame, 305 mm from 

the specimen.  Two reflective tapes approximately 90 mm apart along the axial direction 

were used as the gage length for the laser extensometer.  Two strain gages (Omega SGD-

4/120-LY13) were also bonded to the specimen, orthogonal to each other.  One was along 

the axial direction and the other was along the lateral direction.  These strain gages were 

connected to a quarter-bridge circuit.  Each strain gage was calibrated before each test to 

determine the calibration factors used in the equation, describing the relationship between 

strain and electric current.  The schematic diagram of instrument setup on specimen is 

shown in Figure 3-12. 

 

Figure 3-12 Specimen instrumentations set up 
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Throughout testing, a lighting source was supplied by a 35 Watt bulb producing 

1050 Lumens to ensure even and consistent lighting conditions for image capture.  A 

Nikon D3000 10-megapixel digital camera with a 40-mm micro lens was used to record 

the digital images.  The camera lens was aimed directly at the patterns on the specimen, 

and the resolution of the images was 3872×2592 pixels.  The camera shutter speed and 

aperture were set manually.  Based on the lighting condition, the fastest shutter speed was 

chosen.  A remote control was used for this camera to avoid movement of the camera 

during operation.  An iPhone 4S with 1080p HD video was also used during the test to 

capture images.  These images have a resolution of 1920×1080.   

The laser extensometer and strain gage system data were collected by a data 

acquisition system.  The test was programmed to run under load control.  Initially, a 44 N 

preload was applied to align the grips.  Then, load increased incrementally by 2.2 kN 

until the load reached about 17.8 kN.  Following this loading, the specimen was unloaded 

until stress reached zero using the same increment of 2.2 kN.  Following each 

incremental load increase or decrease, the load was held stable for three minutes to record 

the images.  The diagram of load increment versus time is shown in Figure 3‒13.  
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Figure 3-13 Load increment versus time 

The specimen was tested three times using different digital imaging techniques as 

shown in Table 3-3.  Test 1 used the Nikon camera to capture the rectangle pattern, Test 

2 used the iPhone camera to capture the rectangle pattern, and Test 3 used the Nikon 

camera to record the speckle pattern.  The laser extensometer and the electronic strain 

gages were used in all three tests.  The test setup is shown in Figure 3-14. 

Table 3-3 Test matrix 

Test Camera Pattern 
Laser 

Extensometry 

Strain gage 

Axial Lateral 

Test 1 Nikon D3000 Rectangle √ √ √ 

Test 2 iPhone 4S Rectangle √ √ √ 

Test 3 Nikon D3000 Speckle √ √ √ 
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The maximum stress during the test, 218 MPa, is below the yield stress of 248 

MPa.  Therefore, the strain is within the proportional range.  This means that the 

deformation of the specimen is elastic and recoverable.  

 

Figure 3-14 Test setup 

3.4.3  Calibration of test equipment 

3.4.3.1  Strain calibration equations 

Prior to using the strain gages for measurement, the strain calibration equation for 

each gage was found.  The calibration equations describe the relationship between 

electrical signals measured in Volts and strain (ε).  The strain gage calibration equation 

used in this study is based on four known resistors. 
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For axial strain, the calibrated strain ranges from 6×10-4 to 3.318×10-3.  The 

calibration equation is shown in (3-11) with R2= 99.99%. 

 63 1063.1*)1005.1( −− ×+×−= Voltsε  (3-11) 

For the lateral strain, the calibrated strain ranges from 4×10-4 to 2.73×10-3.  The 

calibration equation is shown in (3-12) with R2= 99.99%. 

 63 1031.4*)1016.1( −− ×−×= Voltsε  (3-12) 

3.4.3.2  Camera calibration 

Camera calibration is an essential step in image analysis.  In this thesis, the 

camera was calibrated by Zhang’s method (1999).  The purpose of camera calibration is 

primarily to decrease the distortion caused by the lens.  The calibration results are shown 

in Table 3‒4.  

Table 3-4 Calibration result of instinct parameters 

Test 

Focal length 

f(α, β) 

(unitless) 

Principal point  

(µ0, ν0) 

(unitless) 

Skew 

(s) 

(unitless) 

Distortion 

(kc) 

(unitless) 

Test 1 [14574.26, 14301.40] 
[4154.35, 

804.14] 
0.00 

[0.22, -0.12, -0.029, 0.028, 

0.00] 

Test 2 [2243.54, 2183.98] 
[1396.20, 

563.49] 
0.00 

[0.055, -0.087, 

0.005,0.014,0.00] 

Test 3 [9361.78, 9336.87] 
[1760.94, 

662.57] 
0.00 

[0.004, 1.70,-0.01, -0.01, 

0.00] 

  

3.4.3.3  Camera setting 

Test 1 and Test 3 used a Nikon D3000 camera to record images.  The camera 

settings are shown in the Table 3-5.  Test 2 used an iPhone 4S camera to record images, 
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with no manual setting parameters available.  In order to ensure consistency between 

images, AF (Autofocus) and AE (automatic exposure) were locked on the iPhone 4S 

camera. 

Table 3-5 Camera settings 

Test White balance Shutter time (sec) Aperture (unitless) 

Test 1 Incandescent 1/40 f/3.2 

Test 3 Incandescent 1/50 f/3.5 

3.5  Data analysis 

The images taken during Test 1 were processed using three different data analysis 

methods: pixel-level analysis using ImageJ, and subpixel-level analysis using both 

Gaussian fitting and spline interpolation.  The Test 2 images were analyzed using the 

subpixel Gaussian fitting method.  The images taken during Test 3 were analyzed using 

the subpixel speckle correlation method.  The details of these analyses are described in 

the following sections. 

3.5.1  Nikon camera with rectangle data analysis: Test 1 

3.5.1.1  Pixel-level method using ImageJ 

The results of the pixel-level image analysis for axial and lateral length strain are 

shown in Table 3-6 and Figure 3-15.  ImageJ uses pixels as the unit to calculate the strain 

change by detecting the edges of the rectangle, which was painted on the surface of the 

specimen.  The reported axial lengths are the average values of more than 500 columns of 

the rectangle and the lateral lengths are the average values of more than 3000 rows.  The 

values keep one decimal place. 



79 
 

 
 

 

Figure 3-15 Comparison of strain measurements using pixel-level edge detection 

(rectangle) method 

From Table 3-6, it can be seen that since the strain is very small (on the order of 

10-4), it is difficult for the ImageJ software to detect these small changes in length.  This 

is particularly noticeable in lateral strain measurements.  Lateral strain is much smaller 

than axial strain, so it requires a higher accuracy method.  For sequential (consecutive) 

images, the ImageJ pixel-level method could not detect very small changes in length.  No 

change in length is observed between images 2 and 3, and between images 4 and 5 for 

example.  For this material, pixel-level strain measurement is not accurate enough.   
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Table 3-6 ImageJ (pixel-level) axial and lateral length of the rectangle  

using edge detection 

Image number 
Axial length 

(pixels) 

Axial strain 

ε×10-4 

Lateral length 

(pixels) 

Lateral strain 

ε'×10-4 

1 3317.9 0.00 861.9 0.00 

2 3318.5 1.81 861.7 -2.32 

3 3318.8 2.71 861.7 -2.32 

4 3319.1 3.62 861.6 -3.48 

5 3319.2 3.92 861.6 -3.48 

6 3319.9 6.03 861.4 -5.80 

7 3320.3 7.23 861.3 -6.96 

8 3320.7 8.44 861.1 -9.28 

9 3321.3 10.25 861.1 -9.28 

10 3320.6 8.14 861.1 -9.28 

11 3319.6 5.12 861.2 -8.12 

12 3319.8 5.73 861.3 -6.96 

13 3319.0 3.32 861.3 -6.96 

14 3318.1 0.60 861.3 -6.96 

15 3317.8 -0.30 861.4 -5.80 

16 3318.0 0.30 861.4 -5.80 

17 3318.5 1.81 861.7 -2.32 
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3.5.1.2  Subpixel measurement: One line data analysis 

When high accuracy is required, pixel-level image analysis is not sufficient.  For 

this reason, subpixel-level image methods were developed.  There are two primary 

methods, which are presented here: Gaussian fitting and spline interpolation.  First, the 

procedure and results for one row of pixels are presented.  Later, the macro results are 

also studied. 

1) Gaussian fitting 

One line of data from an image is used as an example to describe this data 

analysis process.  First, the position of the largest gradient must be located.  Then, four 

pixels to the left (Pixels 1-4), four pixels to the right (Pixels 6-9) and the pixel with 

highest gradient (Pixel 5) are selected to represent the edge.  Thus, nine pixels are used 

for Gaussian fitting.  For each line, there are two edges: left and right or top and bottom.  

Therefore, two Gaussian fittings must be considered.  

The parameters of the Gaussian equation were calculated by the least squares 

method (Shang, Chen, & Tian, 2010).  The mean value is the subpixel-level location of 

the edge.  The distributions of gradient values for the left and right sides are shown in 

Table 3-7 and Table 3-8, respectively.  
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Table 3-7 Distribution of gradient values for Gaussian fitting of the left edge 

Pixel number 1 2 3 4 5 6 7 8 9 

x 

(location) 
181 182 183 184 185 186 187 188 189 

y 

(gradient values) 
-3 -10 -2 34 76 25 3 -2 1 

yestimate  

(Gaussian values) 
0.00 0.02 2.07 33.27 76.27 24.89 1.16 0.01 0.00 

 

Table 3-8 Distribution of gradient values for Gaussian fitting of the right edge 

Pixel number 1 2 3 4 5 6 7 8 9 

x 

(location) 
976 977 978 979 980 981 982 983 984 

y 

(gradient values) 
14 5 17 15 24 11 21 12 4 

yestimate  

(Gaussian values) 
7.92 11.57 15.16 17.80 18.73 17.68 14.96 11.34 7.71 

 

Figure 3-16 and Figure 3-17 show two Gaussian fitting curves for two different 

fitting conditions.  The left edge seems to have a good fit since the gradients present a 

sharp peak.  However, the right edge appears to be a very poor fit since the gradients 

present a broad peak.  The coefficient of determination (R2) needs to be calculated in 

order to evaluate the fit of these curves.  If both the left and right edges have a reasonably 

good fit, R2> 0.9, then the subpixel length is considered reliable.  The curve fit method is 

only applicable to edge data that presents a Gaussian distribution.  If there is a lot of noise 

in the data around the edges, the data may not fit the selected curve distribution, causing a 

poor fit.   
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Figure 3-16 Gaussian fitting curve for the left edge 

 

Figure 3-17 Gaussian fitting curve for the right edge 
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From Figure 3-17 it can be seen that there is not a sharp change in the gray 

intensity for the right edge.  Therefore, it is difficult to find the edge using the gray 

intensity method presented here.  Instead, the gradient can be used to find the edge. 

2) Spline interpolation 

The process of the spline interpolation method involves first finding the pixel-

level edge location by finding the largest gradient.  Then eight adjacent pixels are 

selected (four pixels to the left and four pixels to the right of the largest gradient pixel) 

for the interpolation.  New data are interpolated based on the spline function with a step 

size of 0.01 pixels.  Then, the new location of the largest gradient is the subpixel-level 

edge. 

The lengths of the rectangle are about 3300 pixels in the axial direction and 860 

pixels in the lateral direction based on pixel-level edge detection.  A 0.01 pixel step size 

can provide very high accuracy in the strain measurement, with 3.0×10-6 pixel accuracy 

in the axial direction and 1.1×10-5 pixel accuracy in the lateral direction.  This is high 

enough for the strain measurements in the test, which are on the order of 10-4. 

The spline interpolation function consists of several piecewise polynomial 

functions.  For each pair of points, there is a spline interpolation function.  Since nine 

points are selected for spline interpolation, eight spline interpolation segments are created.  

The coefficients of the spline interpolation function Equation (3-10) are calculated and 

listed in Table 3-9 and Table 3-10 for the left and right edge, respectively. 
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Table 3-9 Coefficients of spline interpolations for the left edge 

 Function No. 1 2 3 4 5 6 7 8 

α0 2.0 2.0 3.1 -36.3 43.1 -14.0 1.0 1.0 

α1 1.5 7.5 13.5 22.7 -86.2 43.0 1.0 4.0 

α2 -10.5 -1.5 19.5 55.6 -7.9 -51.0 -7.0 -2.0 

α3 -3.0 -10.0 -2.0 34.0 76.0 25.0 3.0 -2.0 

 

Table 3-10 Coefficients of spline interpolation for the right edge 

Function No. 1 2 3 4 5 6 7 8 

α0 -9.5 -9.5 12.7 -16.3 19.7 -17.3 7.5 7.5 

α1 39.1 10.5 -18.1 20.0 -29.0 30.0 -21.9 0.5 

α2 -38.6 11.0 3.4 5.3 -3.7 -2.7 5.4 -16.0 

α3 14.0 5.0 17.0 15.0 24.0 11.0 21.0 12.0 

 

Unlike the Gaussian fitting, the spline interpolation method connects all the 

known data points.  Since it relies completely on the known data, the noise in the data can 

lead to poor results.  Figure 3‒18 shows the spline interpolation for the left edge of the 

rectangle.  This data has one peak, and is very similar to the Gaussian fit.  Figure 3-19 

shows the spline interpolation for the right edge.  This data has more than one peak, 

which is caused by irregular data (noise) around the right edge.  
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Figure 3-18 Spline interpolation for the left edge   

 

Figure 3-19 Spline interpolation for the right edge 
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3) Comparison of subpixel methods 

Comparison of the two studied subpixel edge detection methods for one row of 

data is shown in Table 3-11.  The left edge position varies by of 0.02 pixels and the right 

edge position varies by 0.04 pixels.   

Table 3-11 Comparison of the two subpixel methods for one line of data 

Subpixel methods Left edge position (pixels) Right edge position (pixels) 

Gaussian fitting 184.93 979.97 

Spline interpolation 184.95 979.93 

Difference 0.02 0.04 

 

In order to compare these two methods of subpixel edge detection, more data 

must be considered.  The edge locations of 50 lines are shown in Figure 3-20.  The 

differences between these two subpixel methods are calculated by subtracting the values 

calculated using spline interpolation from those calculated using the Gaussian fitting 

method, and are shown in Figure 3-21.  The x-axis shows the pixel number and the y-axis 

shows the subpixel location of the edge.  From these figures, most of the data falls within 

the range of 184 to 186 pixels for the edge location.  The maximum difference between 

the two methods is 1.50 pixels and minimum is 0.01 pixels.  The average difference 

between the methods is 0.25 pixels.  The spline interpolation method gives a wider range 

of edge locations than the Gaussian fit method.   

The Gaussian fit and interpolation methods both use the known data to estimate 

the unknown edge location.  Both can realize subpixel-level analysis in digital image 

processing.  The fitting method approximates a function to represent the variation in the 

data.  This approximate function is not necessary in the interpolation method.  The fit 
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method also considers the error existing in the known data by not requiring that every 

known data point satisfy the fit function.  The interpolation method does not consider the 

error in the known data, rather it relies solely on the known data.   

 

Figure 3-20 Left edge locations using two subpixel-level methods 
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Figure 3-21 Variations between the Gaussian fit and interpolation subpixel methods 

3.5.1.3  Macro strain measurement results 

The rectangle edge detection method was compared to the laser extensometer and 

strain gage system.  The axial strain measurement results are listed in Table 3‒12 and the 

lateral results in Table 3‒13.  Figure 3-22 shows a graph comparing the various strain 

measurement methods.   
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Figure 3-22 Comparison of axial strain measurement methods 

The strain measurement is on the order of 10-4.  The stress-strain curves of the 

specimen are limited to the elastic region.  Using the strain results obtained from the 

strain gage as the reference data, the other methods are compared, and the differences are 

shown in the last three columns of Table 3-12 for the axial strains and last two columns 

of Table 3-13 for the lateral strains.  The differences are calculated based on Equation 

(3-13). 

 
)(
)(*

gagestrain
gagestrain

Difference
ε
εε −

=  (3-13) 

Where, ε* is the strain measured by laser extensometry and two rectangle methods. 
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Image 1 is used as the baseline from which the strain is measured for the digital 

image methods and is captured after the specimen is installed in the loading system.  

Images 1 through 9 were captured as stress increased.  The stress reached its maximum 

value at Image 9, and then decreased back to the initial value (-6 MPa in this test).   

For the axial strain, the four strain measurement methods show similar stress-

strain curves with similar slopes.  However, these methods cannot provide exactly the 

same strain measurement results.  All methods give approximate values for strain.  Laser 

extensometry and strain gages are known to be reliable strain measurement techniques 

with high accuracy.  There is still about a 20% difference between these two techniques.  

The difference between the two subpixel rectangle methods is similar (18%).  Variation 

in the strain is larger for the highest and lowest stresses and smaller in the middle range 

stresses.   

For the lateral strain, measurements using the two rectangle methods have a large 

deviation from the strain gage measurements.  Therefore, the stress-strain curves have a 

large gap for increasing and decreasing stress.  The average differences between the 

Gaussian fitting and spline interpolation methods to the strain gages are 149% and 119%, 

respectively.   

The strain measured in Images 2 and 17 shows the largest deviation from the 

reference methods.  As loading is applied, mechanical noise is introduced and is most 

evident between static and loaded states, such as Images 2 and 17, when loading starts 

and ends, respectively.   
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The difference in strain measurements between these methods can be attributed to 

noise from the machines, resolution of the instruments, limitations of image resolution, 

and analysis algorithms.  

Table 3-14 Axial strain measurements from Image 3 

Strain Gage Rectangle using Gaussian 
fitting 

Rectangle using Spline 
interpolation 

ε×10-4 
(mm/mm) 

ε×10-4 
(mm/mm) 

ε×10-4 
(mm/mm) 

2.64 2.34 4.34 
 

Table 3-15 Lateral strain measurements from Image 8 

Strain Gage Rectangle using Gaussian 
fitting 

Rectangle using Spline 
interpolation 

ε'×10-4 
(mm/mm) 

ε'×10-4 
(mm/mm) 

ε'×10-4 
(mm/mm) 

-2.56 -4.10 -1.63 
 

The axial strain measurements from Image 3 are listed in Table 3‒14.  The lateral 

strain measurements from Image 8 are listed in Table 3‒15.  These two tables show a 

similar magnitude for the strain gage measured values.  The rectangle method using 

Gaussian fitting shows similar results for axial strain as the strain gage, but very different 

lateral strain results.  The rectangle method using spline interpolation shows a large 

deviation from the strain gage results in both the axial and lateral directions. 

For the axial strain measurement of Image 3, the difference between the two 

rectangle methods can be attributed to some noise in the data existing around the edge of 

the painted rectangle.  The Gaussian fitting method can filter out the noise data and 
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achieve results close to those of the strain gage.  The spline interpolation method uses the 

noise data and therefore has a much larger deviation from the accepted strain gage results.  

For the lateral strain measurement of Image 8, the two rectangle methods have 

large deviations from the strain gage.  These deviations could be the result of lighting 

differences between images.  The lighting source was on one side of the specimen.  For 

the lateral direction, the lighting distribution for the left and right edges is not even.  At 

the subpixel level, very small lighting changes can cause large differences in strain results.   

When comparing strains of the same magnitude in the axial and lateral directions, 

the lateral strains obtained from the DIC methods deviate from the strain gage 

measurements much more than the axial strains.  This observation is primarily due to the 

blurriness on the vertical edges and the shorter dimension of the rectangle in the lateral 

direction.  Since the rectangle's lateral dimension (about 860 pixels) is about 25% of the 

length of the axial dimension (about 3300 pixels), the same blurriness on all edges of the 

rectangle leads to a much higher error for lateral.  As a result, the errors due to blurriness 

on the vertical edges have a magnified effect (about 4×) on the change in the lateral strain 

between images. 

Figure 3-23 shows a portion of the gradient values of the right edges of Image 3 

and Image 8.  The highest value in these cells represents the highest pixel value change 

from neighboring pixels.  The darkest color represents the greatest gradient and is 

considered as the edge.  Both images are of the same position along the right edge.  A 

lighting change caused the position of the highest gradient to change.  In Image 3, the 

edge is sharp since the highest gradient is clear based on neighboring cells.  In Image 8, 

the edge is blurred since several cells have similar gradient values.  Similar gradient 
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values around the edge can cause multiple peaks in the interpolation method and cause 

error in lateral strain results. 

 

Figure 3-23 Part of the gradient map of the right edge of the painted rectangle from image 

3 and image 8 

Since the maximum load applied to the specimens is smaller than the nominal 

yield stress — the stress-strain diagrams appear linear.  From the slope of the line, the 

modulus of elasticity (E) of the specimen can be obtained (ASTM E111-04).  Table 3‒16 

lists the calculated moduli of elasticity, which are found using the slope of the stress-

strain curve (loading part) for each strain measurement method.  The modulus of 

elasticity of A36 steel should be approximately 200 GPa (ASTM A36/A36M-12, 2012).  

Except for laser extensometry, the measured modules for the other strain measurement 

methods are close to 200 GPa.  The modulus as measured by laser extensometry has 

about a 10% difference from the theoretical value.  This difference is likely attributed to 

slipping or sliding of the reflective tapes during the tension tests.  This observation is 

supported by Figure 3-22, which shows that the axial strain measured by the laser 

extensometer does not return to the initial strain of 0 at the start of loading.  This belief is 
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also confirmed by the axial strain measured by the strain gage, which does return to 0.  In 

addition, the maximum stress did not exceed the yield strength during the tension test.   

Table 3-16 Modulus of elasticity of the specimen as calculated from the different strain 
measurement methods 

 
Laser 

Extensometry Strain Gage Rectangle using 
Gaussian fitting 

Rectangle using 
spline 

interpolation 

Modulus of 
elasticity E 

(GPa) 
182.65 196.11 193.40 203.88 

Difference 
between Strain 

Gage (%) 
6.86% N/A 1.38% 3.97% 

R2 0.9969 0.9997 0.9923 0.9215 

 

3.5.1.4  Discussion 

A36 steel is a homogenous ductile material and the stress applied during the test is 

less than the yield stress.  Therefore, the stress-strain responses are approximately linear, 

as expected.  Axial strain results show a similar trend for all measurement methods.  

However, the lateral strain results have a large deviation. 

Laser extensometry and strain gages can realize real-time data collection.  The 

digital image methods collect data for post-processing.  All the strain measurement 

methods are discrete.   

Poisson’s ratio of A36 steel is 0.26.  Therefore, in theory, the lateral strain is 

about one fourth of the axial strain.  The width of the rectangle is about 1000 pixels and 

the height of the rectangle is about 3500 pixels.  This difference in the initial reference 

lengths of the rectangle may cause the differences in the accuracy of strain results in the 
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lateral and axial direction.  For example, for the same amount pixel changes, the accuracy 

of the axial strain is about 3.5 times of the lateral strain.  In addition, the lighting source 

used in the test was directed at the center of the specimen.  Since the shape of the 

specimen is long and narrow, this lighting arrangement can provide relatively similar 

lighting for both the top and bottom edges of the painted rectangle.  For the left and right 

edges, the lighting is not evenly distributed.  Since the middle of the left and right edges 

is brighter than the rest of the specimen, this may induce a large deviation in the lateral 

strain measurements.   

A camera with higher resolution or a zoom function, which increases the pixels 

per unit length in the image, may improve the accuracy in strain measurement.  Ideally, 

the painted rectangle should have the same width to height ratio as the image taken by the 

camera (4:3 or 16:9).  The dimensions of the specimen limit the size of the painted 

rectangle.  In this test, the rectangle size is about 862×3318 pixels, as shown in Figure 

3-24, which corresponds to a ratio of approximately 1:4.  

 

Figure 3-24 Specimen with paint rectangle 
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For the rectangle edge detection method, the strain measurement is based on the 

average length change of the painted rectangle.  The local deformation of the specimen is 

not been considered.  Therefore, the behavior near stress concentrations cannot be 

captured. 

The modulus of elasticity (E) can be easily calculated by finding the slope of the 

trend line from the stress-strain curve.  From Table 3‒16, we can see that the differences 

between elastic moduli are within 10%, which is a small variation.  The R2 values for all 

the methods except spline interpolation are greater than 0.99.  The value for the spline 

interpolation method is above 0.90.  This indicates that the stress-strain response does 

show a strong linear trend.  Of the two digital image methods, the Gaussian fitting 

method shows stronger linearity than the spline interpolation method. 

The interpolation method solely depends on known data.  Thus, if the data are 

reliable, interpolation can give very good results.  However, if there is considerable noise 

in the data, the interpolation data may be very poor.  The Gaussian fit method is also 

based on known data, but it includes regression to evaluate the trend in the data.  Fitting 

methods will filter some data, which have a large variation from the given model 

resulting in a low coefficient of determination.  Therefore, choosing a suitable model is 

vital for success of this method.  Additionally, a good initial guess for curve parameters is 

very important.  Based on the results of the two rectangle subpixel digital image methods, 

the Gaussian fitting method shows better results.   

3.5.2  IPhone with rectangle data analysis: Test 2 

In comparison to the Nikon D3000 camera, the iPhone 4S camera has limited 

manual settings and low image quality.  This camera does not provide detailed settings, 
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such as shutter time, aperture, and white balance.  The images from the iPhone camera 

are of a lower quality than those from the Nikon D3000.  The iPhone image resolution is 

1920×1080, while, the Nikon D3000 image resolution is 2872×2592.  However, the 

iPhone camera is very convenient and easy to use.  If the strain results obtained from the 

iPhone images closely match those from the laser extensometer and strain gages, it could 

be a very useful tool for strain measurement.  Test 2 used the iPhone 4S to capture the 

images that are used to measure the length changes of the rectangle dimensions.  All the 

images are processed using the Matlab Gaussian fitting method to obtain the subpixel-

level length of the rectangle. 

 Figure 3-25 and Table 3‒17 compare the strain measurement results using iPhone 

images to the other strain measurement techniques used.  The iPhone axial strain 

measurement results fall to the left of the other two strain measurement methods.  The 

first five axial strain measurements from the iPhone images roughly increase with the 

same trend as the laser and strain gage methods.  Later measurements read a smaller axial 

strain than the other methods.  For lateral strain measurement, the iPhone results vary 

greatly and have a large deviation from the strain gage results.  The two rectangle 

methods show a large variation with increasing and decreasing stress, but both methods 

show a similar stress-strain response.  
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 Figure 3-25 iPhone with rectangle axial strain comparison for Test 2 
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The large deviation between the two rectangle methods can be attributed to the 

low resolution of the images from the iPhone camera.  Small deformations are more 

difficult to detect in images of lower resolution.  The rectangle pixel measurement of the 

axial length in the iPhone image is about 1365 pixels, which is about one third of the 

Nikon D3000 at 3327 pixels.  This means that in order to detect the same strain change, 

the iPhone images require three times the accuracy of the Nikon images.  For the lateral 

strain, which is only about one-third the value of the axial strain, much higher accuracy is 

needed.  

The iPhone 4S camera uses complementary metal-oxide-semiconductor (CMOS) 

as the image sensor.  CMOS uses transistors at each pixel to move the charge through 

traditional wires, so each pixel is treated individually.  Compared to the CCD camera, 

CMOS cameras create images with higher noise.  In addition, CMOS requires a higher 

lighting level to create the same quality image as a CCD camera.   

The Gaussian fitting method is based on the CCD image sensor camera.  

Therefore, due to the limitations of the image quality and noise, the images from the 

iPhone 4S have a larger variation in strain measurement. 

3.5.3  Nikon camera with speckle data analysis: Test 3 

Speckles have been used in digital image correlation (DIC) as a pattern for many 

years as a full field strain measurement method.  Compared to the rectangle pattern, 

which uses only two edges of the rectangle, the DIC method tracks every speckle’s 

position change.  Therefore, the DIC method can provide a strain measurement map for 

the whole specimen surface.  The DIC method is, however, very sensitive to vibrations 

since it uses the relative movement of the speckle to measure strain.   
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The photographs from the Nikon D3000 are cropped to a resolution of 1468×2320 

(3,405,760) pixels, showing only the speckle patterned portion of the images.  The 

selected subset size is 21×21 pixels (about 0.28 × 0.28 mm).  This generates 6060 subsets 

for the correlation, which includes 2,672,460 (= 6060×21×21) pixels.  In Figure 3-26, the 

intersections of the red grid mark the center of each subset.  These intersections are used 

as markers for the correlation.  

 

Figure 3-26 Grid with 6060 subsets  

The displacement map for the DIC method is a vector map.  Displacements are 

calculated based on the new position of a marker minus the original position of that 

marker.  The length of the displacement vector represents the magnitude of the 
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displacement and the arrow represents its direction.  A portion of a displacement map 

from Image 6 is shown in Figure 3-27.  

 

Figure 3-27 Part of a displacement map for Image 6 

The displacement vectors in this map all present similar magnitudes and 

orientations.  This means the displacements of the markers of the specimen have a high 

degree of homogeneity.  Since the specimen is a homogeneous material and the shape is 

rectangular, the specimen should not have a stress concentration region in the center of 

the specimen.  No such stress concentration was observed, as expected.  Shear strain is 

not measured in this test. 

The results of the DIC method are listed in Table 3‒18.  Figure 3-28 shows that 

the results of strain measurement using the DIC speckle method have a large variation 

when compared to the other two strain measurement methods both in the axial and lateral 

directions.  The axial strain measurements by DIC speckle method have smaller values 

than the other two methods and the lateral measurements have larger values than the 

strain gage.  From the displacement map, we can see that the displacement shows a 
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deviation from the expected vertical direction.  If a horizontal force component causes the 

divergence, the same strain measurement results should be obtained from both laser 

extensometry and the strain gages.  If the location of the specimen or camera changes 

during the course of the test, the strain results from DIC will have a large deviation from 

the other two methods.   

Table 3-18 Strain comparisons with DIC speckle method for Test 3 

Image 

Number 

 

Stress 

(MPa) 

 

Laser 

extensometry 

(Axial) 

ε×10-4 

(mm/mm) 

Strain 

gage 

(Axial) 

ε×10-4 

(mm/mm) 

DIC speckle 

(Axial) 

ε×10-4 

(pixel/pixel) 

Strain 

gage 

(Lateral) 

ε×10-4 

(mm/mm) 

DIC speckle 

(Lateral) 

ε×10-4 

(pixel/pixel) 

1 0 0.00 0.00 0.00 0.00 0.00 

2 28 1.63 1.57 0.21 -0.44 -0.89 

3 54 3.24 3.15 1.22 -0.73 -1.58 

4 82 3.95 4.59 1.96 -1.15 -2.59 

5 109 5.85 6.09 2.77 -1.47 -2.78 

6 137 6.86 7.39 3.68 -1.99 -3.99 

7 163 8.19 8.83 4.56 -2.32 -4.72 

8 191 9.45 10.34 4.37 -2.68 -5.98 

9 218 10.65 11.89 4.33 -2.99 -5.15 

10 191 9.37 10.24 3.48 -2.73 -4.41 

11 164 8.78 8.96 3.04 -2.27 -4.24 

12 136 6.80 7.43 2.27 -1.97 -4.09 

13 109 5.79 6.17 0.67 -1.46 -3.21 

14 82 4.35 4.76 0.18 -1.07 -2.72 

15 54 2.46 3.06 0.50 -0.82 -0.36 

16 27 1.47 1.69 4.15 -0.36 3.86 
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Figure 3-28 Strain comparisons with DIC using Nikon camera 

The error in the location change measured by the DIC method can be attributed to 

the following two reasons.  First, the change in location of the camera or specimen 

caused the poor correlation.  A good correlation will result if many conditions are 

satisfied, including a high image quality, suitable lighting condition, and suitable speckle 

size and distribution.  It is difficult to meet all of these requirements for a good 

correlation.  The Matlab code used for the speckle DIC finds matching markers near to 

the original location of that marker.  If the location changes too much, it is difficult to 

match the correct markers.  The mismatches of markers lead to a poor correlation.  

Second, the displacement components in the horizontal direction can decrease the axial 

strain results and increase the lateral strain results.  If the camera rotates by a small 



108 
 

 
 

amount, it causes divergence of the measured displacements.  The axial strain is based on 

the vertical component of the displacement and the lateral strain is based on the 

horizontal component of the displacement.  Therefore, the measured axial strain is 

smaller than the real value and lateral strain is larger than the real value. 

The full-field axial strain measurement results from images 1, 8, and 16 are 

shown in Figure 3-29.  Each subset works as a unit in these full-field strain measurement 

maps.  The first image in this series serves as the baseline.  Each pixel in the full-field 

strain measurement map represents a 21×21 pixel subset from the original specimen 

image.  In other words, the size of the full-field strain measurement map is 60×101 

pixels, which represent 1260 ×2100 pixels in the original image.  The color of each pixel 

in the full-field maps represents the strain magnitude measurement at that position.  

Image 1 is the reference image and is taken as the baseline strain measurement.  Steel is a 

homogeneous material and the images are recorded in the middle part of the specimen.  

Therefore, the axial strain field is expected to be uniform in the images, but the color of 

each pixel in Image 8 and Image 16 is not uniform.  This can be attributed to vibrations in 

the test system and poor correlation in the digital image processing.   

Figure 3-29 DIC full-field strain measurement result 
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For the DIC method, the size, quantity, and diversity in intensity of the speckles 

can affect the correlation.  Figure 3-30 shows the speckles used for the DIC method.  The 

quantity of speckles is not sufficient to provide enough diversity for good correlation.  

Additionally, in the bottom left corner of the figure, the speckles are too small to 

correlate accurately.  For this area, detailed local deformation is difficult to determine.  

 

Figure 3-30 Speckles for DIC method 

3.6  Conclusions 

A new digital image strain measurement method was established by using a 

painted rectangle pattern.  Two accuracy levels, pixel-level and subpixel-level, were 

implemented using ImageJ and Matlab, respectively.  Two different subpixel-level 

algorithms, Gaussian fitting and spline interpolation were also evaluated using Matlab.  

The results using the painted rectangle pattern were compared to the DIC (speckle) 

method, and traditional strain measurement methods including laser extensometry and 

strain gages. 
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The rectangle edge detection method is a target-based deformation method, which 

explicitly considers the deformation of the target (rectangle) to calculate strain.  The DIC 

method uses the relative displacement change of subsets to determine the strain.  

However, the deformation of the subsets themselves is neglected.  

The pixel-level strain measurement method using ImageJ is not suitable for 

materials with very small strain capacities (in this study, ε ≈ 10-4).  For micro strain 

measurement, the subpixel-level strain measurement method must be used. 

A rectangle can be a suitable pattern to achieve subpixel-level accuracy of strain 

measurement.  Both the Gaussian fit and the spline interpolation methods provide similar 

accuracy as laser extensometry and strain gages if the resolution of images is suitable.   

In comparing the two subpixel rectangle methods, the Gaussian fitting method 

gives better results than the spline interpolation method.  For the Gaussian fitting method, 

the coefficient of determination (R2) is used to evaluate the goodness-of-fit.  The 

Gaussian fitting method can filter out some data by goodness-of-fit (R2).  The data was 

used only when R2 ≥ 0.9.  The interpolation method connects all the known data to find 

the unknown data.   

Young’s modulus (E) of a specimen was calculated by finding the slope of the 

axial stress-strain curves.  The four strain measurement methods used in this thesis (laser 

extensometry, strain gages, Gaussian fitting, and spline interpolation) show very similar 

moduli (difference < 10%).  Excluding spline interpolation, the other three methods have 

a coefficient of determination (R2) greater than 99%.  

The iPhone 4s is not recommended as a strain measurement device, since the 

results from the iPhone based images show a large deviation from the other methods.  
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However, with the rapid pace of development in the camera features of the iPhone, strain 

measurement using the iPhone may be possible soon. 

DIC is a full-field strain measurement method.  The strain result for each image is 

the average value of all the subsets.  The DIC result in this test has a large deviation from 

reference methods.  Since DIC uses the relative displacement of a subset to calculate 

strain, any vibration of the test system will decrease the accuracy of the DIC method.  

Correlation is another factor affecting the accuracy of the DIC method.  This method has 

to find the same subset in all the images.  If the correlation is poor, it will cause errors in 

the result.   

Image quality is a critical factor in the digital image method.  To obtain high 

quality images, a high-resolution camera, stable lighting, and vibration-free supports are 

required.  
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Chapter 4  Measuring paint removal efficacy by digital image analysis   

4.1 Background 

With the widespread repair and strengthening of concrete structures, surface 

preparation of the parent concrete substrate has become a vital factor in the subsequent 

bond and long-term performance of specialized coatings and repair materials 

(International Concrete Repair Institute, 2008).  These preparation activities typically 

involve the removal of existing coatings and paints (ASTM D4258-05, 2012; Schmidt, Li, 

& Spencer, 2001).  In some cases, only an aesthetic change is desired, which is often the 

case for graffiti removal from building façades (Gómez, Costela, García-Moreno, & 

Sastre, 2006). 

Quantifying the effectiveness (or efficiency) of contaminant removal has not been 

established, nor has its relationship to the mechanical properties of the concrete substrate.  

The only approach to gage cleaning efficiency is a qualitative visual inspection, which is 

highly subjective, unstandardized, and unrepeatable.  A potential approach for 

quantifying the cleaning efficiency of any surface preparation method lies in the field of 

digital image processing.  Over the past decade, the analysis of digital photographs has 

seen increasing use in civil infrastructure applications.  For example, Hutchinson and 

Chen (2006) formulated statistical-based methods to identify and evaluate concrete 

damage, especially surface cracks.  Zhu and Brilakis (2010) automated the digital 

imaging methods to rapidly identify concrete surface flaws.  Breul et al. (2008) 

demonstrated a field-based approach to measure concrete homogeneity and to control 
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concrete particle size distribution, all performed using digital image processing 

techniques.  No formal approach exists to measure the cleaning effectiveness of 

infrastructure surface preparation processes such as dry ice blasting, water jetting, and 

sandblasting.  While methods do exist to quantify the abrasive characteristics of these 

processes (such as scanning electron microscopy and profilometry), they do not measure 

the amount or fraction of paint removed.   

The study in this chapter investigates the efficacy of dry ice blasting to remove 

paint coatings bonded to flat concrete substrates.  Quantitative assessment of the cleaning 

efficiency is accomplished using gray-level thresholding and binary image conversion.  

Two threshold value selection methods are established here: histogram-based and edge-

based.   

This study is the first to offer a simple and repeatable image analysis approach 

that permits a quantitative assessment of cleaning effectiveness and paint removal.  This 

approach could allow future researchers to quantify coating removal and also measure the 

extent of surface spalling.  The research is also significant in that it utilizes software 

originally developed for medical imaging. 

4.2  Experimental Design 

4.2.1  Objectives 

The primary objective of this study was to develop a repeatable image processing 

method to quantify the paint removal efficacy of abrasive blasting.   

To simulate existing paint contamination on a concrete substrate (due to either 

graffiti or a prior aesthetic or protective paint coating), concrete prisms were 

manufactured under controlled conditions with discrete paint stripes. 
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4.2.2  Variables 

To investigate the role of concrete substrate properties, three mix designs were 

formulated with the primary independent variable being water-cement (w/c) ratio (Table 

4-1), which included 0.42, 0.50, and 0.56.  This range was intended to replicate typical 

w/c ratios (and subsequent compressive strengths and elastic moduli) of actual concrete 

structures.   

The primary response variable was cleaning efficiency, measured as the fraction 

of the total paint pixels removed from the surface of the concrete.  As demonstrated later, 

image thresholding is used to segregate pixels into binary classes to facilitate this 

measurement. 

Table 4-1 Fresh and hardened properties of concrete specimens 

 

4.2.3  Materials 

The constituent materials of the concrete mixes included Type I Portland cement, 

uniformly graded crushed stone with diameter of 19 mm and unit weight of 2463 kg/m3 

(coarse aggregate), sand with fineness modulus of 2.2 and unit weight of 2627 kg/m3 

(fine aggregate).  The five commercially available spray paints used to simulate graffiti 

were manufactured by Rust-Oleum®, as shown in Table 4-2. 

Air Density Slump *  f ' c
+E k c S a

 (%) Water Cement Coarse Fine (kg/m3) (cm) (MPa) (GPa) W/m-K (mm)
C1-1 40.6 0.08
C1-2 48.4 0.07
C2-1 28.7 0.17
C2-2 37.2 0.16
C3-1 28.5 0.16
C3-2 27.9 0.181.24

* Compressive strength at 28 days
+ Dynamic modulus at 302 days (just prior to dry ice cleaning)

2126 27.9 18.4C3 0.56 3 11% 19% 32% 38%

2230 10.2 42.4 1.35

C2 0.50 3 10% 20% 31% 37% 2206 21.6 30.4 1.43

Specimen 
ID Batch w /c 

Ratio
Mix Design (% Weight)

C1 0.42 3 9% 21% 32% 38%
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Table 4-2 Paint specifications 

ROI 
# 

  Abbreviated 
Color Name 

  Rust-Oleum® 
Mfr. # 

  
Paint Type 

      
2   Flat Black   1916830   Specialty Camouflage Aerosol 
3   Flat White   1690830   Multi-purpose Enamel 
4   Earth Brown   1918830   Specialty Camouflage Aerosol 
5   Red Primer   1667830   General Purpose Red Primer 
6   Army Green   1920830   Specialty Camouflage Aerosol 

4.3  Specimen Preparation 

4.3.1  Concrete prisms  

Specimens were plain concrete prisms measuring 76×102×406 mm, as shown in 

Figure 4-1.  Since surface roughness affects paint adhesion and subsequent cleaning 

efficiency, it was necessary to provide consistent surface roughness of the cast prisms.  

To accomplish this, the formwork was lined with one layer of 120-grit, fine grade 

sandpaper.  One day after casting, the prisms were removed from the formwork and the 

sandpaper was peeled from the prisms and discarded.  The prisms were cured at 22°C and 

100% relative humidity (RH) for 27 days, and then remained at ambient laboratory 

conditions of 20°C and 64% RH for the remainder of the study. 
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Figure 4-1 Prism dimensions and numbered regions of interest (ROI) (not to scale) 

4.3.2  Controlled painting of specimens 

Figure 4-1 shows the six regions of interest (ROI # i = 1 to 6) corresponding to 

the pristine (original) concrete color (i = 1) and the five unique paint stripes (i = 2 to 6) 

applied to each prism face.  During paint application, the remaining ROIs were covered 

to prevent inadvertent contamination.  The spray nozzle was oriented perpendicular to 

and positioned approximately 15 cm from the specimen surface.  Each paint stripe was 

applied using a constant and continuous spray (3 seconds) along the transverse y-

direction of the prism.  To provide a relatively uniform thickness and avoid build-up of 

paint at the start and end of each stripe, the spraying was extended 5 cm beyond both 

prism edges in the y-direction. 

4.4  Test Procedures 

4.4.1  Surface roughness via optical profilometry 

Since substrate roughness affects adhesion and cleaning effectiveness, the surface 

roughness of each prism was measured using a Nanovea PS50, 3-D, non-contacting, 

optical profilometer.  Moisture-free, compressed air at 34 kPa was used to remove any 
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latent dust on the surface prior to scanning.  On each prism face, at least three square 

areas were scanned to calculate a mean value of Sa, the arithmetic average of the surface 

roughness.  Each region measured 44×44 mm, providing a sampling area of 1936 mm2.  

The surface elevation of each region was measured at 32,767 points with the sensor's 

accuracy at 200 nm. 

4.4.2  Paint thickness via scanning electron microscopy (SEM) 

A Phillips XL30 Environmental Scanning Electron Microscope was used to 

estimate the thickness of a typical paint coating.  A 1-cm cube of specimen C3-2 with 

Earth Brown paint was excised from the prism and was prepared using a gold sputtering 

process.  Once inside the SEM, the accelerating voltage was 10.0 kV, while the working 

distance was 12 µm. 

4.4.3  Photography system 

Photographs of the concrete prism faces were recorded using a Nikon D3000 10-

megapixel digital camera.  The centroid of the camera's 18-mm lens was aligned with the 

centroid of the prism face at a distance of 53 cm.  The lighting conditions consisted of 

two 30-Watt fluorescent lamps with 2000-Lumen output and a color temperature of 

5000°K.  Each color photograph was taken without flash, measured 3872×2592 pixels, 

and was saved in tagged image file (TIF) format. 

4.4.4  Surface cleaning using abrasive blasting 

The details of the abrasive blasting system are not presented here since they are 

not relevant to the image processing method.  However, they can be found in the study 

reported by Millman and Giancaspro (2014) (Millman, 2013). 
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4.5  Image analysis and results 

4.5.1  Image analysis method and results 

Before analyzing the images, calibration was conducted using the previously 

applied method first develop by Zhang (1999).  The calibration parameters are shown in 

Table 4-3.  

Table 4-3 Camera calibration parameters 

Focal length 

f (α, β) 

Principal point 

(µ0, ν0) 

Skew 

(s) 

Distortion 

kc(1)    kc(2)   kc(3)   kc(4)   kc(5) 

4062.26 4064.30 1939.47 1328.16 0.00 -0.06 -0.12 0.00 0.00 0.00 

 

Prior to the abrasive blasting treatment, each painted ROI (shown earlier in Figure 

4-1 contained only the paint color.  After blasting, the cleaned ROIs contained the colors 

of both the paint and the underlying concrete substrate where the paint was removed.  

Therefore, the premise of the analytical approach was to apply binary image conversion 

to transform the pixel colors of the two materials (concrete and paint) into either black 

(binary value of 0) or white (binary value of 1).  The relative quantities of the black and 

white pixels can then be utilized to measure the fraction of paint removed (cleaned).  This 

approach circumvents the need for calibrating the length or setting a measurement scale 

in the ROI images of the cleaned prisms.  The sequence of analysis steps consisted of: 

1. Determine mean gray level intensities of the ROIs 

The 24-bit RGB color images have to be converted to 8-bit gray scale format.  8-

bit gray scale has 256 different gray intensities.  
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2. Establish gray level threshold values to separate each ROI paint color from the 

concrete color. 

3. Establish gray level classification ranges for each concrete batch and paint color. 

4. Apply thresholding to convert each ROI image into a binary representation. 

5. Count black and white pixels to calculate cleaning efficiency. 

All image analysis was conducted using ImageJ software, available online for free 

from the United States' National Institutes of Health (NIH) (National Institutes of Health, 

2004).  The analysis is based on each pixel of an image so it is a pixel-level analysis.  

Each ROI has at least 106 pixels.  The theoretical accuracy of pixel-level can be 

calculated by 1 pixel/106 pixels, which is 10-6.  This accuracy is high enough for 

measurement.  Sub-pixel-level accuracy is not necessary for this measurement.  In this 

analysis, the following abbreviations are utilized:  

Subscript P:  paint, 

Subscript C:  concrete, 

i: ROI # ranging from 1 to 6, 

Cj: concrete batch identification where 

j = 1 to 4. 

Step 1: Determine mean gray level intensities of the ROIs 

The RGB (Red-Green-Blue) color photographs of the painted prisms were 

converted to 8-bit grayscale.  Accordingly, the gray level intensity along the face of each 

prism could vary from a minimum of 0 (black) to a maximum of 255 (white).  Figure 4-2 
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shows the grayscale image and plot of gray level intensity along the length of a typical 

specimen after painting.  The Set Scale feature was used to calibrate the length scale in 

each specimen’s photograph using the specimen length measured prior to photographing.  

Although this step is unnecessary for the image analysis, it was simply used to determine 

the concentration of pixels of the ROIs.  Next, each specimen's ROIs (the concrete color 

and five paints) were extracted as separate images and saved in TIF format (6 grayscale 

ROI images per specimen, yielding 36 images).  As shown in Table 4-4, the average ROI 

area was 22.5 cm2 or 119,665 pixels. 

The mean gray level intensities, iPI , and standard deviations, iPσ , of each paint 

type were calculated using the Measure function, then tabulated as shown in Table 4-4.  

Because water-cement ratio affects the color of concrete, the mean gray level intensity 

( jCI ) and standard deviation ( jCσ ) were computed separately for each concrete batch.  

The "darker" paints were considered those whose mean gray level intensity was less than 

(darker than) that of the concrete batch colors.  Thus, the darker paints included Flat 

Black, Earth Brown, Red Primer, and Army Green.  The mean gray level intensity of the 

Flat White paint was 231, which was greater than (brighter than) that of the concrete 

batch colors. 

The probability density functions (PDFs) were plotted for each concrete batch and 

each paint color.  To statistically account for the color variations in the paints and 

concrete batches, it was assumed that the overall color range of each ROI was captured 

within six standard deviations (±3σ) of its mean gray level intensity, as shown in Figure 

4-3.  Therefore, it was called 3σ.  This equates to 99.74% of the area under each PDF.  

The lower "L" bounds of each PDF were calculated using:   
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 Concrete:  jCjCLjC
II σ3−=

 (4-1) 

 Paint:  iPiPLiP
II σ3−=  (4-2) 

While the upper "U" bounds were computed using: 

 Concrete:  jCjCUjC
II σ3+=  (4-3) 

 Paint:  iPiPUiP
II σ3+=  (4-4) 

 

Figure 4-2 Gray level intensity versus distance along prism (prior to cleaning) 
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Table 4-4 ROI properties and gray level intensity statistics based on 3σ 

 

 

Figure 4-3 Probability density functions (PDFs), identifying thresholds and standard 

deviations for paint and concrete 

Step 2:  Establish gray level threshold values to separate each ROI paint color from the 

concrete color 

In the photographs taken after abrasive blasting, it was necessary to numerically 

classify each pixel as either paint or concrete by defining gray level intensity thresholds, 

IT i, j.  Since each concrete batch had a unique mean gray level intensity, a total of 15 

(pixels) (cm2) (pixels/cm2) Mean St. Dev., 
σ

Lower 
Bound

Upper 
Bound

1 Concrete C1 (j =1) 105,034 19.2 5,468 150.0 12.7 111.8 188.2
1 Concrete C2 (j =2) 107,488 20.4 5,261 152.3 10.2 121.7 183.0
1 Concrete C3 (j =3) 102,316 19.7 5,189 170.8 11.4 136.6 205.0
2 Flat Black 131,364 24.8 5,302 14.3 2.5 6.9 21.6
3 Flat White 131,463 24.8 5,306 231.2 6.7 211.1 251.2
4 Earth Brown 131,050 24.6 5,317 21.6 4.7 7.7 35.6
5 Red Primer 126,224 23.7 5,316 47.4 7.6 24.6 70.1
6 Army Green 122,381 22.8 5,374 79.4 10.0 49.5 109.4

Average: 119,665 22.5 5,317

ROI 
#, i

ROI
Color

Average ROI Area Gray Level Intensity Parameters

0

Gray Level Intensity, I

PD
(%)

Cjσ3
Piσ3

C = Concrete
P = Paint

i = ROI #
j = Concrete batch #

L = Lower bound
U = Upper bound

255

Cjσ3

Piσ3

UiP
I jiTI , LjC

I
UjC

I
jCILiP

I
iPI

2/)(
UPiLCj

II −

ConcretePaint
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threshold values were calculated to distinguish each concrete batch color from each of the 

five paint colors.  For the darker colored paints, each threshold was calculated as the 

intensity halfway between the upper bound of the paint PDF (
UP

I ) and the lower bound 

of the concrete PDF (
LC

I ): 

 Dark Paints: 
2,

UiPLjC

UiPjiT

II
II

−
+=  (4-5) 

For the Flat White paint (ROI #3, i = 3), the PDF distribution was to the right of 

the concrete PDF shown earlier in Figure 4-3.  Hence, the threshold was calculated as: 

 White Paint: 
2

3
,3,

UjCLP

UjCjTjiT

II
III

−
+==  (4-6) 

Step 3: Establish gray level classification ranges for each concrete batch and paint color 

The mean gray level intensities for the dark paint colors (ROI #2, 4, 5, 6; all 

except Flat White) were lower than those of the four concrete batch colors.  Therefore, it 

is assumed that pixels with an intensity less (darker) than the threshold, jiTI ,  represent 

paint, while those pixels with an intensity greater (brighter) than the threshold represent 

concrete.  For classifying dark paints, the threshold intensity computed from Equation 

(2-17) represents the upper limit of the paint range, while the lower limit equals 0 (pure 

black).  The classification ranges become: 

 
Dark Paints: !"!#$!"!#$

Range Concrete

]255,[ and 

ePaint Rang

],0[ ,, jiTjiT II  
(4-7) 

Next, consider the lighter paint color of ROI #3 (Flat White).  Pixels with an 

intensity greater (brighter) than the threshold, jTI ,3 , are assumed to represent white paint, 
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while those pixels with an intensity less (darker) than the threshold represent concrete.  

The classification ranges become: 

 
White Paint: !"!#$!"!#$

RangePaint 

]255,[ and 

Range Concrete

],0[ ,3,3 jTjT II  
(4-8) 

The classification ranges for the five paint colors within each of the three batches 

are compiled in Table 4-5. 

Table 4-5 Gray level thresholds and classification range for binary conversion  

based on 3σ 

 

Step 4: Apply thresholding to convert each ROI image into a binary representation 

For any pixel, p, in an ROI image, its gray level intensity ( pI ) was evaluated for 

binary conversion based on the classification ranges determined in the previous step.  

Pixels with an intensity less (darker) than the threshold were converted to black 

( 0=BinpI ), while pixels with an intensity equal to or greater (lighter) than the threshold 

were converted to white ( 1=BinpI ).  The conditional statements used in the algorithm were: 

C1 C2 C3 C1 C2 C3
1 2 3 1 2 3

2 Flat Black 66.7 71.7 79.1 [0, 66.7] [0, 71.7] [0, 79.1]
3 Flat White 176.8 168.9 201.9 [176.8, 255] [168.9, 255] [201.9, 255]
4 Earth Brown 73.7 78.6 86.1 [0, 73.7] [0, 78.6] [0, 86.1]
5 Red Primer 90.9 95.9 103.4 [0, 90.9] [0, 95.9] [0, 103.4]
6 Army Green 110.6 115.5 123.0 [0, 110.6] [0, 115.5] [0, 123]

Threshold, I Tij
Gray Level Classification Ranges for 

Paints

ROI # 
i Paint

Concrete:
j :
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 Dark Paints:  
⎪⎩

⎪
⎨
⎧

⇒≥

⇒<<
=

range] Concrete[  if   1

range]Paint [0  if   0

,

,

jiTp

jiTp
Binp II

II
I  (4-9) 

 White Paint: 
⎪⎩

⎪
⎨
⎧

⇒≥

⇒<<
=

range]Paint [  if   1

range] Concrete[0  if   0

,3

,3

jTp

jTp
Binp II

II
I  (4-10) 

Figure 4-4 shows the binary conversion of the ROI images for specimen C3-2, 

including the gray level intensity histograms.  The vertical dashed lines in each ROI 

histogram correspond to the thresholds calculated earlier using Equation (4-5) and (4-6).  

To the left and right of each histogram are the RGB and binary image representations, 

respectively. 

Figure 4-4 Image analysis example for Earth Brown paint on C3-2 

 

Step 5: Count black and white pixels to calculate cleaning efficiency 

For each binary ROI image, the Overlay.size function in ImageJ was used to 

count the black and white pixels.  The relative amounts of pixels were used to determine 

the paint removal effectiveness as shown in equations (4-11) and (4-12).  

2550 92.3

(0) Binary (1)

73.0

% Black
(Paint)

% White 
(Concrete) 

27.0

Threshold

Gray Level Histogram Binary ImageRGB

Count: 146652 Min: 45
Mean: 96.431 Max: 253
StdDev: 55.479 Mode: 57 (8052)
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 Dark Paints: 
][][

][

10

1

==

=

+
=

BinpBinp

Binp
Clean ICountICount

ICount
e  (4-11) 

 
Light Paints: 

][][
][

10

0

==

=

+
=

BinpBinp

Binp
Clean ICountICount

ICount
e  

(4-12) 

The arithmetical mean height (or mean surface roughness), Sa, was calculated 

using ISO 25178-2 (International organization for standards, 2011): 

 ∫ −=
A

meanka dAZZAS )1(
 

(4-13) 

Where A is the area of the scanned region (µm2), Zk is the height or elevation (µm) 

at each discrete sampling location k, and Zmean is the average of all Zk measurements over 

the scanned area. 

The mean surface roughness values are shown in Table 4-1.  Table 4-4 presents 

the mean gray level intensities as well as the lower and upper bounds for the five paint 

colors.  Table 4-5 includes the gray level threshold values, jiTI , , and the corresponding 

classification ranges for binary conversion.  Table 4-6 and Figure 4-5 present the cleaning 

results.  

Table 4-6 Image analysis results for cleaning effectiveness based on 3σ 

Specimen 

ID 

  Cleaning effectiveness, e (%) 

  Flat 

Black 

Flat 

White 

Earth 

Brown 

Red 

Primer 

Army 

Green 
Average 

  

C1-1   20.5 7.9 48.1 24.7 25.5 25.3 

C1-2   17.7 5.2 27.6 45.1 29.0 24.9 

C2-1   29.7 8.7 22.9 11.1 16.2 17.7 

C2-2   3.2 2.4 13.0 15.5 27.7 12.4 

C3-1   25.4 8.5 19.7 27.0 33.9 22.9 

C3-2   30.0 7.7 24.7 14.2 7.4 16.8 
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Figure 4-5 Comparison of paint removal efficiency for all concrete batches based on 3σ 

4.5.2  Comparison with different threshold values 

The threshold value used in this chapter is based on the ±3σ from the mean 

intensity which is covered by 99.74% area of the PDF.  In order to compare the effect of 

threshold values on the result of the cleaning effectiveness, different threshold values are 

studied.  With 95.44% area of the PDF, there is ±2σ from the mean intensity (shown in 

Figure 4-6).  The threshold values based on 2σ are listed in Table 4-7.  The corresponding 

cleaning effectiveness is shown in Table 4-8.  The threshold values based on 1σ (with 

68.26% coverage in the PDF) are listed in Table 4-9.  The corresponding cleaning 

effectiveness is shown in Table 4-10.  The comparison of cleaning effectiveness for each 

paint using different threshold values is shown in Figure 4-7 to 4‒11.  Figure 4-12 

compares binary images of C2-1 flat white paint with different threshold values.  Figure 

4-13 compares binary images of C1-1 red primer with different threshold values. 
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Figure 4-6 Probability density function (PDF) and standard deviations 

 

Table 4-7 Thresholds and classification ranges for binary thresholding  

based on 2σ

 

C1 C2 C3 C1 C2 C3
1 2 3 1 2 3

2 Flat Black 71.8 75.5 83.6 [0, 71.8] [0, 75.5] [0, 83.6]
3 Flat White 154.0 150.2 181.5 [154.0, 255] [150.2, 255] [181.5, 255]
4 Earth Brown 77.7 81.4 89.5 [0, 77.7] [0, 81.4] [0, 89.5]
5 Red Primer 93.5 97.2 105.3 [0, 93.5] [0, 97.2] [0, 105.3]
6 Army Green 112.0 115.6 123.7 [0, 112.0] [0, 115.6] [0, 123.7]

j :

Paint Threshold, I Tij
Gray Level Classification Ranges for 

Paints

ROI # 
i

Concrete:
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Table 4-8 Cleaning effectiveness based on 2σ 

Specimen ID 
 

Cleaning effectiveness, e (%) 

 
Flat 

Black 

Flat 

White 

Earth 

Brown 

Red 

Primer 

Army 

Green 
Average 

 
C1-1 

 
18.8 4.0 46.1 23.2 23.6 23.1 

C1-2 
 

16.3 3.9 26.6 43.1 27.7 23.5 

C2-1 
 

28.9 4.9 22.5 10.7 16.2 16.6 

C2-2 
 

2.9 1.9 12.4 14.9 27.7 12.0 

C3-1 
 

24.7 2.9 19.3 26.5 33.9 21.4 

C3-2 
 

29.3 3.0 24.3 13.9 7.4 15.6 

 

Table 4-9 Thresholds and classification ranges for binary thresholding based on 1σ 

 

 

C1 C2 C3 C1 C2 C3
1 2 3 1 2 3

2 Flat Black 77.0 79.4 88.1 [0, 77.0] [0, 79.4] [0, 88.1]
3 Flat White 131.9 131.6 161.1 [131.9, 255] [131.6, 255] [161.1, 255]
4 Earth Brown 81.8 84.2 92.9 [0, 81.8] [0, 84.2] [0, 92.9]
5 Red Primer 96.1 98.5 107.2 [0, 96.1] [0, 98.5] [0, 107.2]
6 Army Green 113.3 115.8 124.4 [0, 113.3] [0, 115.8] [0, 124.4]

Gray Level Classification Ranges for 
Paints

ROI # 
i

Concrete:
j :

Paint Threshold, I Tij
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Table 4-10 Cleaning effectiveness based on 1σ 

Specimen ID 

  Cleaning effectiveness, e (%) 

  Flat 

Black 

Flat 

White 

Earth 

Brown 

Red 

Primer 

Army 

Green 
Average 

  

C1-1   17.1 2.1 44.2 21.8 22.9 21.6 

C1-2   14.8 3.0 25.7 41.2 27.0 22.3 

C2-1   28.2 2.8 22.1 10.5 16.2 16.0 

C2-2   2.6 1.5 11.8 14.7 27.7 11.7 

C3-1   23.9 1.2 18.9 26.0 33.4 20.7 

C3-2   28.5 1.3 23.9 13.6 7.3 14.9 

 

 

Figure 4-7 Comparison of flat black cleaning effectiveness with different threshold 

values  
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Figure 4-8 Comparison of flat white cleaning effectiveness with different 

threshold values 

 

Figure 4-9 Comparison of earth brown cleaning effectiveness with different 

threshold values 
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Figure 4-10 Comparison of red primer cleaning effectiveness with different threshold 

values 

 

Figure 4-11 Comparison of army green cleaning effectiveness with different threshold 

values 
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Figure 4-12 Binary image of the white paint ROI of C2-1 

A 

Figure 4-13 Binary image of the red primer paint ROI of C1-1 
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4.5.3  Threshold selection by gray levels of boundary 

The threshold values calculated in the previous section are the histogram-based, 

which is based on the histogram of the whole image or image selection to determine the 

threshold value.  In this section, another threshold selection method is studied: gray levels 

of the boundary (edge between paint and concrete).  This method selects the threshold 

values based on the gray intensity of the boundary in the digital image.   

The edge pixels in the digital images have a phenomenon called “double 

responding” (Wang & Bai, 2003).  This is because edge pixels come from two parts: one 

belongs to the object and has a similar gray intensity as the object; the other belongs to 

the background and has a similar gray intensity as the background.  Therefore, edge 

pixels of an object in the digital images have two peaks in the histogram.  One peak 

represents the gray intensity of the object and another represents the gray intensity of the 

background.  The histogram of the true boundary (subpixel edge) falls between these two 

peaks, shown in Figure 4-14.  By finding the gray intensity of the true boundary, the 

threshold value can be determined.  Since the threshold value of this method is based on 

the gray intensity of the edge, it is called an edge-based threshold value selection method.  
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Figure 4-14 Histogram of gray intensity of the true boundary (peak C) and histogram of 

“double-responding” edge points (peak A and peak B) (Wang & Bai, 2003) 

Since the digital images in this study only contain paint and concrete, the gray 

intensity of the real edge is selected as the threshold value.  The Gaussian fitting method 

introduced in Chapter 3 is used here to find the real edge (subpixel-level) and then an 

interpolation method is used to find the gray intensity of the real edge.  The analysis 

process for the gray levels of this boundary method is as follows: 

Step 1: Use the Gaussian fitting method to find the real edge of the paint. 

Crop the images so each paint and some of the concrete surface are visible and 

then covert the RGB image to 8-bit gray scale format, which contains 256 gray 

intensities.  For each ROI, observe the images and select an area with a clear edge 

between the paint and concrete, as shown in Figure 4-15.  Use the Gaussian fitting 

method, which is introduced in Chapter 3, to find the real (subpixel) edge of this area. 
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Figure 4-15 RGB and gray image of C1-1 

Step 2: Find the gray intensity of the true edge by the spline interpolation method. 

In reality, the subpixel edge is not located at a discrete pixel, but between the 

existing pixels.  Therefore, the corresponding gray intensity of the true edge cannot be 

found directly from a digital image.  The pixels near the edge are used to find the gray 

intensity, as shown in Figure 4-16.  Eight pixels near the edge (four on each side) are 

selected for the interpolation.  Spline interpolation is used to find the gray intensity of the 

true edge. 
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Figure 4-16 Gradient and gray intensity around the edge for flat black 

Step 3: The gray intensity of the true edge is the threshold value. 

Repeat steps 1 and 2 to find more edge locations on more rows and the 

corresponding gray intensities.  The average of these gray intensities is the threshold 

value.  The threshold value for each concrete and paint is listed in Table 4-11.   
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Table 4-11 Threshold values based on the gray levels of boundary  

 

The cleaning effectiveness of each concrete specimen is based on the gray levels 

of the boundary as shown in Table 4-12. 

Table 4-12 Cleaning effectiveness based on the gray levels of boundary 

 

4.5.4  Comparison of the two threshold selection methods 

The comparison of the two studied threshold selection methods for each paint is 

shown in Figures 4-17 to 4-21.  Figure 4-22 compares binary images of C2-1 white paint 

with different threshold values.  Figure 4-23 compares binary images of C1-1 red primer 

with different threshold values. 

1 2 1 2 1 2

2 Flat Black 106.1 106.3 99.4 86.7 113.9 114.7
3 Flat White 205.8 208.0 193.3 184.4 209.6 224.4
4 Earth Brown 84.4 109.9 80.7 107.3 106.4 103.4
5 Red Primer 98.6 121.6 80.6 122.9 110.9 107.9
6 Army Green 101.6 115.3 102.8 123.9 117.2 105.1

ROI # 
i

Concrete:
j :

Paint

C1 C3

Threshold, I Tij

C2

C1-1 10.2 15.0 42.8 20.9 33.4 24.5
C1-2 9.2 8.8 19.3 28.4 25.6 18.3
C2-1 25.1 17.2 22.5 14.6 21.0 20.1
C2-2 2.1 3.2 8.7 9.3 22.1 9.1
C3-1 20.4 14.7 17.2 25.1 37.0 22.9
C3-2 24.9 19.3 22.5 13.4 10.8 18.2

Specimen 
ID

Cleaning effectiveness, e (%)
Flat 

Black
Flat 

White
Earth 

Brown
Red 

Primer
Army 
Green

Average
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Figure 4-17 Comparison of flat black cleaning effectiveness with different threshold 

values 

 

Figure 4-18 Comparison of flat white cleaning effectiveness with different threshold 

values 
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Figure 4-19 Comparison of earth brown cleaning effectiveness with different threshold 

values 

 

Figure 4-20 Comparison of red primer cleaning effectiveness with different threshold 

values 



141 
 

 
 

 

Figure 4-21 Comparison of army green cleaning effectiveness with different threshold 

values 

 

Figure 4-22 Binary image of white paint of C2-1 with different threshold values 
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Figure 4-23 Binary image of red primer of C1-1 with different threshold values 

4.6  Discussion 

4.6.1  Baseline color measurements 

The mean gray level intensities of the three concrete batches (C1 through C3) 

were 150.0, 152.3, and 170.8, respectively.  In all three batches, the relative quantities of 

water, cement, coarse aggregate, and sand remained nearly equal to 10, 20, 31.5,and 37.5% 

respectively.  Although the mix designs had nearly the same proportions, it is well known 

that slight differences in w/c ratio can produce color differences in the concrete.  As 

expected, the lowest w/c ratio (0.42 for C1) had the darkest mean intensity (150.0), while 

the highest w/c ratio (0.56 for C3) had the brightest mean intensity (170.8).  To simplify 

the analysis, one could consider using an average gray level intensity of all three concrete 

batches in lieu of three individual values.  However, the aforementioned results 

demonstrate the sensitivity of the color to changes in w/c ratio.  Accordingly, three mean 

intensities were used (Table 4-4). 
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Although the lighting conditions were held constant in this study, slight variations 

in lighting would not be expected to substantially change the threshold values of the 

darker paints since their gray scale intensities differed greatly from that of the pristine 

concrete.  However, increasing the lighting intensity could produce reflections from 

lighter paints such as the Flat White.   

4.6.2  Surface roughness and paint thickness 

The average surface roughness, Sa, of all specimens in this study was 0.14 mm, 

which is relatively smooth.  For comparison purposes, the typical surface roughness of 

sandblasted concrete is 0.70 mm.  The typical paint thickness determined using scanning 

electron micrographs was approximately 1 µm. 

4.6.3  Effect of histogram-based threshold value 

As expected, the threshold value for each paint is decreased since the confidence 

interval of the PDF is narrower.  As the confidence of the PDF decreases from 99.74% to 

95.44% and 68.26%, the gray level classification ranges for the paints become larger (e.g. 

C1-1 flat black range changes from [0, 66.7] to [0, 71.8] and [0, 77.0] respectively).  This 

change progressively retains more pixels as paint during the binary process.  In other 

words, the cleaning effectiveness appears lower (e.g. C1-1 flat black clean effectiveness 

is 20.5% based on 3σ, 18.8% based on 2σ and 17.1% based on 1σ).  However, the 

cleaning effectiveness trend between batches is similar.  For example, C1-1 has the 

highest cleaning effectiveness in earth brown (48.1% based on 3σ , 46.1% based on 2σ 

and 44.2% based on 1σ), which is unchanged compared to the other paints.   

The difference in the cleaning effectiveness (e) is small for dark paints but 

significant for the white paint.  The threshold value of the white paint is very close to the 
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gray intensity of the concrete.  For example, the mean gray level intensity of the concrete 

C1-1 is 150.0 and the threshold value for white paint is 176.8 based on 3σ, 154.0 based 

on the 2σ and 131.9 based on 1σ.  In this condition, e is sensitive to the threshold value.  

Observation of the binary images of the white paint with two threshold values helps 

determine which threshold value better represents the figure of the concrete surface.  In 

this study, the threshold value based on 3σ is the best.  For the dark paint, for example 

C1-1 red primer (Figure 4-13), the changes in threshold values (90.9 based on 3σ, 93.5 

based on 2σ, and 96.1 based on 1σ), do not significantly change in the binary images.  

4.6.4  Comparison of two different threshold value selection methods 

Two threshold value selection methods were introduced: histogram-based and 

edge-based.  The histogram-based threshold value selection uses the gray intensity 

distribution of the paint and concrete to determine the threshold value.  In order to 

differentiate the gray intensity of the concrete from the paint in ROIs, the average gray 

intensities of all concrete images are considered.  The edge-based method used the gray 

intensity of the real edge as the threshold value.  The object (paint) and background 

(concrete) are distinguished by the gray intensity of the edge.   

Here, the 3σ histogram-based threshold value is used in comparison with the 

edge-based method.  The threshold values for most paints (excluding army green) based 

on the edge method are larger than the histogram-based method (e.g. the flat black for 

C1-1 is 106.1 based on the edge, and 66.7 based on the histogram).  For the army green, 

the average threshold values from the edge-based method are 108 for C1, 113 for C2 and 

111 for C3.  These values are similar to the values from the histogram-based method 

which are 111 for C1, 116 for C2 and 123 for C3, respectively.  The cleaning 
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effectiveness is lower for the most of the dark paints (excluding army green) and higher 

for the white paint in the edge-based method. 

The threshold value is determined from the boundary of the object and the 

background.  In the histogram of the ROIs, it is difficult to tell the regions of paint and 

background apart.  Therefore, the average gray intensity of many concrete images is used 

as the baseline in the histogram-based method.  Therefore, a batch of concrete has the 

same threshold value (e.g. the threshold value of flat black for C1-1 and C1-2 is the same, 

79.4).  The threshold values can be selected using one, two or three standard deviations 

from the gray intensity distribution in the histogram, giving a similar cleaning 

effectiveness values.  

 In the edge-based method, the boundary is found directly.  Each image in a batch 

has a different threshold value (e.g., the threshold value of flat black for C2-1 is 99.4 and 

C2-2 is 86.7).  Since the edge points are located between the paint and concrete, the gray 

intensities of the edge points are also around the average of the gray intensities of the 

paint and concrete.   

By observing the binary images, histogram-based threshold values are more 

suitable to use with dark paints and edge-based threshold values are more suitable to use 

with the white paint.  However, the differences are not significant.   

4.7  Conclusions 

In this study, digital image processing was undertaken to quantify the extent of 

paint removal from a concrete substrate during abrasive blasting.  Statistical analysis of 

the gray level intensities of the images was used to determine varying thresholds for 
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subsequent binary conversion.  Based on the results and observations made in this study, 

the following conclusions may be drawn: 

It is expected that measuring the extent of paint removal becomes more accurate 

as the contrast between the concrete and paint colors increase.  Accordingly, it may be 

beneficial if an inert dye is added to the concrete batch during mixing.  Judicious 

selection of the dye color could increase the contrast between the paint and underlying 

concrete, which would simplify the image analysis and generate more accurate and 

repeatable results.   

With increasing gray level classification ranges for the paint, more pixels are 

designated as paint are retained during the binary process.  The corresponding cleaning 

effectiveness decreases, but the overall trend remains similar.  Comparing the binary 

images with the original image allows for selection of the best binary image to represent 

the surface topography, allowing for determination of the corresponding threshold value. 

For the histogram-based threshold method, each batch of concrete had the same 

threshold value for the same paint.  For the edge-based threshold method, each image has 

a different threshold value for the same paint.  For the histogram-based method, the 

threshold value is based on the gray intensity of the paint and concrete, and their standard 

deviation.  For the edge-based method, the threshold value is close to the average of gray 

intensities of the paint and concrete. 
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Chapter 5  Comparison of strain measurement techniques for FRCM materials 

5.1  Background 

In this chapter, five strain measurement techniques for a fabric reinforced 

cementitious matrix (FRCM) are compared: clip-on extensometry, electrical strain gages, 

laser extensometry, and two digital images strain measurement techniques.  The two 

digital image strain measurement methods are speckle correlation and rectangle edge 

detection, which is the novel approach developed during graduate study.  

A clip-on extensometer is a contacting, mechanical strain measurement technique.  

It uses knife-edges directly attached to the specimen to track strain.  The gage length of 

the clip-on extensometer is usually fixed and is not suitable for small and delicate 

specimens, which can be damaged by the knife-edges.  

Electrical strain gages are a disposable strain measurement method.  The resistance of the 

strain gage changes corresponding to the deformation of the specimen.  During the test, a 

strain gage is connected to a quarter-bridge electrical circuit.  When the specimen 

deforms, variation of the electric current can be detected.  The electric current change 

corresponds to the strain. 

Laser extensometry is a non-contacting method with high accuracy (resolution of 

0.001 mm).  A laser extensometer illuminates the specimen surface and receives 

reflections from two reflective tapes, which are attached to the specimen.  The distance 

between the two reflective tapes is the gage length.   
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Digital image correlation (DIC) strain measurement techniques are non-contacting, 

optical methods intended to measure surface deformation.  There are two techniques 

studied in this chapter: speckle image correlation (DIC speckle) and rectangle edge 

detection.  The speckle image method correlates the changes in location of a series of 

painted surface speckles before and after deformation to determine the displacement field 

of the surface.  The rectangle edge method tracks the length change of a painted surface 

pattern to quantify the strain.   

5.2  Experimental Investigation  

5.2.1  Specimen preparation 

The test material is a fabric reinforced cementitious matrix (FRCM) (Arboleda, 

Yuan, Giancaspro, & Nanni, 2013; Arboleda, 2014).  The FRCM system consists of two 

primary materials: a cementitious matrix and a dry fiber network.  The matrix is a 

Portland cement-based mortar system with a small amount (< 5% in weight) of dry 

polymers.  The reinforced fiber network is PBO (polyparaphenylene benzobisoxazole) 

fabric.  The PBO fabric has a 0.046 mm nominal thickness and approximately 5 mm clear 

spacing in the warp direction, and 0.011 mm nominal thickness and approximately 15 

mm clear spacing in the weft direction.  The roving spacing is about 10 mm and 20 mm 

in the warp and weft direction, respectively.  

Tensile coupons measuring 500×50×10 mm were cut from larger panels.  The 

larger panels were 410×563 mm, and were manufactured using a manual impregnation 

technique in a rectangular mold.  In this process, a 5 mm thick layer of the cementitious 

matrix was placed, followed by a layer of the fabric, which was manually wetted with the 

wet cementitious material.  The top layer of matrix was then applied to form the surface 
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of the specimen.  The panels were cured for 28 days at 20°C and 70% relative humidity 

before cutting.  Individual coupons were cut using a diamond-tipped wet saw using a 

rigid fixture to ensure consistent specimen width.  100×50×2 mm steel tabs were bonded 

with a polyurethane construction adhesive to each specimen 24 hours prior to testing. 

 

Figure 5-1 PBO- FRCM system: PBO fabric (left), Mortar (right) 

5.2.2  Test matrix 

Seven specimens were tested using the five strain measurement methods.  The 

instrumentation configuration for each specimen is shown in Table 5-1.   

The laser extensometer was used in all seven tests.  The strain gages were applied 

to three specimens (FRCM-1, FRCM-3, and FRCM-4).  Four specimens were painted 

with a rectangle (FRCM-1, FRCM-2, FRCM-3, and DRCM-6) and the other three 

specimens were painted with speckles.  The image of all the specimens are shown in 

Appendix D.  A linear variable differential transformer (LVDT) was used for five 

specimens (FRCM-1, FRCM-2, FRCM-3, FRCM-4, and FRCM-7) to detect the out-of-

plane displacement.  The pattern (rectangle and speckles) painting method was previously 

introduced in Chapter 3. 
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Table 5-1 Test matrix with instrumentation configuration for each specimen 

Specimen 

name 
 

Laser gage 

length (mm) 
 

Strain gage 

length (mm) 
 

Digital image 

pattern (mm) 
 LVDT 

    

FRCM-1  102.215  150  
Rectangle 

 √ 

   
101×35 

 

FRCM-2  104.346  N/A  
Rectangle 

 √ 

   
55 ×35  

 

FRCM-3  196.060  150  
Rectangle 

 √ 

   
55×35  

 
FRCM-4  102.700  150  Speckle  √ 

    
FRCM-5  105.758  N/A  Speckle  N/A 

    
FRCM-6  104.838  N/A  

Rectangle 
 N/A 

   
52×35  

 
FRCM-7  101.105  N/A  Speckle  √ 

    
 

5.2.3  Test setup 

A 49 kN test frame was used to apply the tensile load, which was recorded using a 

load cell with a 9 kN capacity.  A clevis grip set up was used to provide sufficient 

degrees of freedom in order to minimize secondary moment or torsional loading 

conditions at the supports due to specimen geometry.  The test specimens were aligned 

with the grips and preloaded to 50 N. 

To directly compare the studied strain measurement techniques, the strain 

measurement devices were strategically arranged as shown in Figure 5-2  The reflective 

tapes (for the laser extensometer), clip-on extensometer, and the strain gages were 

arranged on one side of the specimen, while the patterns (speckles or rectangle) were 
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painted on the other side.  For porous surfaces such as concrete, the bleeding edges of the 

rectangle must be avoided.  The rectangle edge detection method uses the Gaussian 

fitting method to detect the length change of the rectangle to track strain.  This method is 

based on the gradient distribution around the edge represented as a Gaussian distribution.  

Bleeding creates a blurry localized edge and may change the gradient distribution curve 

near the edge.  White paint is used as a base before the black rectangle is painted, which 

improves contrast at the edges of the rectangle.  

Laser 
reflection 

targets

Strain gage

Clip-on 
extensometer

LVDT

50 mm

10
1m

m

15
0m

m

b

h

 

Figure 5-2 Specimen instrumentation set up 

The mechanical clip-on extensometer was made by Epsilon with an initial gage 

length of 101 mm.  The clip-on extensometer was mounted directly on the test specimen 

using knife-edges to measure axial strain.  The laser extensometer used in the tension 
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tests was manufactured by MTS Inc. with a 1/256 frequency setting for data reading.  It 

was mounted on a rigid frame, as shown in Figure 5-3, and directed perpendicular to the 

specimen at a distance of 300 mm from the specimen face.  The two reflective tapes, with 

a 3 mm width, were attached to the specimen with a gage length of 101 mm.  An Omega 

240- ohm strain gage with a 150 mm gage length was used in the tension tests.  The strain 

gage was bonded along the axial direction of the specimen and was connected to a 

quarter-bridge circuit.  The models of the devices are listed in Table 5-2. 

Table 5-2 Strain measurement devices 

Strain measurement device Manufacturer and model  

Mechanical clip-on extensometer  Epsilon, Model: 3542L-0400-050T-ST 

Laser extensometer MTS Inc., Model: LX500 

Strain gage Omega, SGD-150/240-LY40 
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Figure 5-3 Equipment set up 

Digital images were recorded using a charge coupled device (CCD) camera with a 

40 mm micro lens.  The image resolution is 3872×2592 pixels.  The camera was mounted 

on a rigid frame as shown in Figure 5-3, directed at the pattern on the specimen.  The 

camera was calibrated by taking images of a chessboard pattern of known dimensions at 

many different angles (Zhang 1999).  The camera shutter speed and focal ratio for each 

test is shown in Table 5‒3.  The parameters in Table 5‒3 were previously defined in 

Chapter 2.  Shutter speed and aperture were manually selected based upon the lighting 

conditions, which were controlled by using a lamp with a 35-Watt bulb supplying 1050 

Lumens.  In order to ensure a clear photo, the fastest shutter speed was selected based on 
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the lighting conditions.  After executing the first two tests on specimens FRCM-5 and 

FRCM-6, it was noted that the specimen experienced out-of plane displacement due to 

specimen curvature.  This movement caused loss of focus of the camera, which greatly 

affected the accuracy of the digital image correlation method.  A linear variable 

differential transformer (LVDT) was added to the test system to record this out-of-plane 

displacement of the specimen.  The LVDT was placed at the midsection of the specimen 

where the maximum displacement occurred.  Positive LVDT data values mean the 

distance from the specimen to camera decreased and negative LVDT data values mean 

the distance from the specimen to the camera increased.  In order to get clear photos, the 

camera needed to be kept at a fixed distance from the specimen.  Thus, the camera was 

placed on a movable, frictionless platform resting on stainless steel balls bearing.  The 

platform was connected to the middle of the specimen so it could move freely as the 

specimen deflected.   
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5.2.4  Test procedure 

All the data, including laser extensometer, clip-on extensometer, strain gage, load 

cell and LVDTs were collected using a data acquisition (DAQ) system.  The test was 

programmed to run under displacement control at a rate of 0.25 mm/min with 

measurements recorded continuously at a rate of 1 Hz.  To synchronize the digital images 

with the DAQ system, the test was paused every 0.25 mm of crosshead (stroke) 

displacement to take a series of images for subsequent DIC analysis.   

There were five strain measurement methods applied during testing.  Three of 

these, including the clip-on extensometer, laser extensometer and strain gage system were 

synchronized through the DAQ system.  The two digital image methods (speckles and 

rectangle) collected data during the test and were analyzed for strain measurement after 

the test was complete.  A series of consecutive photos of each specimen were taken 

during the tension tests.  All the photos were undistorted using the intrinsic parameters of 

the camera to remove any distortion caused by the lens of the camera.   

5.3  Analytical methods 

The digital images collected from the tests were processed using the Matlab codes 

introduced in Chapter 3.  The specimens with the speckle pattern were processed using 

the DIC speckle Matlab code.  The specimens with the rectangle pattern were processed 

using the Gaussian fitting subpixel Matlab code.  The details of the procedures for these 

two image analysis methods were introduced in Chapter 3. 
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5.4  Test results  

The data results of all the specimens (FRCM 1 to FRCM 7) are presented in Table 

5‒4 to Table 5‒10.  For FRCM-2 and FRCM-6, since there was a large out-of-plane 

displacement, the digital images from these tests were very blurred.  Therefore, the 

Gaussian fitting method could not be applied, so the rectangle edge detection method 

failed to provide results for these two specimens.  For FRCM-1, FRCM-3, and FRCM-4, 

the strain gages fail to provide data after several stress increments. 

Figure 5-4 to Figure 5-10 shows a comparison between the DIC method 

(rectangle or speckle) and the other strain measuring methods in a dual axis graph with a 

stress-strain curve for each axial strain instrument on the primary axis (on the left) and 

LVDT data for out-of-plane displacement versus strain on the secondary axis (on the 

right).  Positive LVDT data indicates that the distance from the specimen to the camera 

decreases during testing.  Negative LVDT data indicates that the distance from the 

specimen to the camera increases during testing.  For FRCM-5 and FRCM-6, the LVDT 

was not applied. 
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Table 5-4 Axial strain test results for FRCM-1 

Stress 

(MPa) 

Laser Extensometer 

ε×10-3 

(mm/mm) 

Clip-on Extensometer 

ε×10-3 

(mm/mm) 

Strain 

Gage 

ε×10-3 

(mm/mm) 

Rectangle edge 

detection 

ε×10-3 

(pixel/pixel) 

0.00 0.00 0.00 0.00 0.00 

0.29 -0.04 -0.14 -0.13 -0.22 

0.66 -0.10 -0.26 -0.32 -1.22 

0.98 -0.03 -0.31 -0.40 -2.23 

1.67 0.18 -0.20 -0.29 -2.77 

2.25 0.55 0.34 0.05 -1.25 

2.50 1.19 0.91 0.56 -0.06 

2.95 2.38 2.00 N/A 0.95 

3.02 4.26 3.73 N/A 2.16 

3.29 5.13 4.45 N/A 2.44 

3.65 5.69 5.08 N/A 2.63 

3.96 6.22 5.57 N/A 2.90 

4.30 6.59 6.03 N/A 3.30 

4.69 7.23 6.68 N/A 3.62 

5.01 7.78 7.19 N/A 4.29 

5.38 8.46 7.82 N/A 4.66 

5.78 9.06 8.43 N/A 4.96 

6.12 9.69 8.97 N/A 5.43 

6.40 10.16 9.40 N/A 5.79 

6.49 10.39 9.50 N/A 5.97 

6.65 10.73 9.71 N/A 6.45 

6.57 10.74 9.64 N/A 6.38 

6.20 10.53 9.45 N/A 6.41 
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Table 5-5 Axial strain test results for FRCM-2 

Stress 

(MPa) 

Laser Extensometer 

ε×10-3 

(mm/mm) 

Clip-on Extensometer 

ε×10-3 

(mm/mm) 

Rectangle edge detection 

ε×10-3 

(pixel/pixel) 

0.00 0.00 0.00 N/A 

1.07 0.03 -0.01 N/A 

1.93 0.41 0.29 N/A 

2.43 0.91 0.86 N/A 

2.73 2.52 2.44 N/A 

3.07 3.50 3.29 N/A 

3.22 3.78 3.66 N/A 

3.53 4.23 4.25 N/A 

3.84 5.54 5.29 N/A 

4.26 6.23 5.90 N/A 

4.67 6.87 6.49 N/A 

5.03 7.52 6.97 N/A 

5.42 8.05 7.48 N/A 

5.78 8.67 7.95 N/A 

6.08 9.12 8.31 N/A 

6.36 9.53 8.66 N/A 

6.55 9.83 8.89 N/A 

6.63 10.14 9.03 N/A 

6.59 10.41 9.05 N/A 

6.06 10.47 8.77 N/A 
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Table 5-6 Axial strain test results for FRCM-3 

Stress 
(MPa) 

Laser Extensometer 
ε×10-3 

(mm/mm) 

Clip-on Extensometer 
ε×10-3 

(mm/mm) 

Strain Gage 
ε×10-3 

(mm/mm) 

Rectangle edge 
detection 
ε×10-3 

(pixel/pixel) 

0.00 0.00 0.00 0.00 0.00 

0.54 -0.06 -0.10 -0.11 0.96 

0.99 -0.12 -0.25 -0.26 1.73 

1.40 -0.07 -0.24 -0.26 0.52 

1.92 0.07 -0.14 -0.16 -1.41 

2.52 0.53 0.18 0.17 -3.77 

2.81 1.49 1.18 N/A -6.84 

3.16 2.29 2.08 N/A -8.86 

3.47 3.19 3.33 N/A -9.83 

3.68 4.31 4.19 N/A -7.25 

3.93 5.07 4.80 N/A -5.14 

4.27 5.61 5.21 N/A -2.49 

4.57 5.94 5.63 N/A -1.01 

4.92 6.38 6.03 N/A -0.19 

5.14 6.68 6.36 N/A 0.26 

5.33 7.02 6.75 N/A 0.69 

5.61 7.39 7.15 N/A 0.94 

5.89 7.67 7.50 N/A 1.79 

6.16 8.01 7.87 N/A 2.82 

6.37 8.27 8.09 N/A 3.07 

6.59 8.51 8.40 N/A 3.92 

6.64 8.58 8.64 N/A 4.19 

6.75 8.59 8.75 N/A 4.29 

6.74 8.55 8.81 N/A 4.08 

5.83 8.05 8.57 N/A 2.44 

3.56 6.34 7.16 N/A -1.40 
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Table 5-7 Axial strain test results for FRCM-4 

Stress Laser 
Extensometer 

Clip-on 
Extensometer Strain Gage DIC Speckle 

(MPa) ε×10-3 ε×10-3 ε×10-3 ε×10-3 

 (mm/mm) (mm/mm) (mm/mm) (pixel/pixel) 
0.00 0 0 0 0 
0.57 -0.1 -0.1 -0.21 0.03 
1.23 -0.13 -0.13 -0.22 0.23 
2.61 0.41 0.41 0.3 1.36 
3.02 0.89 0.89 N/A 5.38 
3.08 2.84 2.84 N/A 6.19 
3.49 4.46 4.46 N/A 6.72 
3.24 5.27 5.27 N/A 7.17 
3.75 5.11 5.11 N/A 7.99 
4.24 5.51 5.51 N/A 8.67 
4.68 6.04 6.04 N/A 9.33 
5.10 6.74 6.74 N/A 9.99 
5.46 7.52 7.52 N/A 10.65 
5.91 8.27 8.27 N/A 11.22 
6.33 9.08 9.08 N/A 11.77 
6.69 9.68 9.68 N/A 12.27 
6.99 10.13 10.13 N/A 12.64 
7.26 10.48 10.48 N/A 12.93 
7.35 10.63 10.63 N/A 13.23 
7.31 10.59 10.59 N/A 13.3 
6.89 10.19 10.19 N/A 14.67 
5.70 8.94 8.94 N/A 15.64 
4.52 8.11 8.11 N/A 16.42 
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Table 5-8 Axial strain test results for FRCM-5 

Stress 

(MPa) 

Laser Extensometer 

ɛ×10-3 

(mm/mm) 

Clip-on Extensometer 

ɛ×10-3 

(mm/mm) 

DIC Speckle 

ɛ×10-3 

(pixel/pixel) 

0.00 0.07 0.00 0.00 

1.29 0.30 0.12 0.65 

2.22 0.71 0.43 4.32 

2.59 2.01 1.49 8.01 

2.91 3.76 2.74 8.76 

3.15 4.47 3.41 11.14 

3.47 5.11 4.11 12.03 

3.38 5.00 4.37 12.03 

3.74 4.98 4.47 13.50 

4.05 5.27 4.92 15.06 

4.18 5.46 5.17 15.16 

4.53 5.81 5.60 16.98 

4.83 6.26 6.11 17.58 
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Table 5-9 Axial strain test results for FRCM-6 

Stress 

(MPa) 

Laser Extensometer 

ɛ×10-3 

(mm/mm) 

Clip-on Extensometer 

ɛ×10-3 

(mm/mm) 

Rectangle edge detection 

ɛ×10-3 

(pixel/pixel) 

0.00 0.19 0.00 N/A 

0.15 0.13 -0.06 N/A 

0.66 -0.10 -0.29 N/A 

1.05 -0.36 -0.56 N/A 

1.77 -0.03 -0.23 N/A 

2.03 0.35 0.00 N/A 

2.25 1.70 1.20 N/A 

2.64 2.73 2.33 N/A 

3.03 3.34 3.04 N/A 

3.32 3.61 3.42 N/A 

3.20 3.41 3.20 N/A 

3.56 3.76 3.48 N/A 

3.95 4.14 3.76 N/A 

4.32 4.59 4.14 N/A 

4.69 5.17 4.56 N/A 

4.94 5.60 4.87 N/A 
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Table 5-10 Axial strain test results for FRCM-7 

Stress 

(MPa) 

Laser Extensometer 

ɛ×10-3 

(mm/mm) 

Clip-on Extensometer 

ɛ×10-3 

(mm/mm) 

DIC Speckle 

ɛ×10-3 

(pixel/pixel) 

0.00 -0.03 0.00 0.000 

0.46 0.16 0.25 0.018 

1.23 0.24 0.57 0.006 

2.32 0.23 0.53 0.030 

2.70 1.73 1.68 0.030 

3.16 3.05 2.84 0.064 

3.47 4.45 3.88 0.17 

3.56 5.87 5.10 0.20 

3.92 6.67 5.82 0.32 

4.25 7.42 6.52 0.56 

4.38 8.06 7.26 0.67 

4.85 8.86 7.74 0.84 

5.25 9.58 8.38 1.06 

5.68 10.34 9.00 1.30 

6.10 10.94 9.47 1.57 

6.52 11.63 10.04 1.88 

6.94 12.27 10.60 2.12 

7.23 12.82 10.98 2.70 

6.78 13.16 11.02 3.42 
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Figure 5-4 Comparison of axial strain measurements for FRCM 1 

 

Figure 5-5 Comparison of axial strain measurements for FRCM-2 
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Figure 5-6 Comparison of axial strain measurements for FRCM 3 

 

Figure 5-7 Comparison of axial strain measurements for FRCM 4 
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Figure 5-8 Comparison of axial strain measurements for FRCM 5 

 

Figure 5-9 Comparison of axial strain measurements for FRCM 6 
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Figure 5-10 Comparison of axial strain measurements for FRCM 7 

5.5  Discussion 

5.5.1  Comparison of the strain measurement methods 

From Figure 5-4, Figure 5-6 and Figure 5-7, the laser, clip-on extensometer and 

strain gage give coherent strain measurement results initially (when axial strain ε < 

0.001).  At the same time, the out-of-plane displacement increases rapidly.  After that, the 

strain gage fails and the out-of-plane displacement response becomes flat.  ε < 0.001 is 

the pre-crack region.  When tensile stress is applied to the specimen, the specimen 

presents out-of-plane displacement, as indicated by the LVDT data.  For any 

displacement beyond a certain point (5 mm for FRCM-1, 4.5 mm for FRCM-3 and 3 mm 

for FRCM-4), a crack occurs, absorbing the strain energy.  When the crack occurs within 

the gage area, the strain gage circuit fails and no further data can be recorded.  The laser, 
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clip-on extensometer, and DIC method show a plateau after the specimen cracks and then 

the strain increases again.  When the composite was in a state of saturated cracking (near 

3 MPa), the matrix failed, the fabric has been straightened and took most of the load.  

Specimen failure occurred when the fabric delaminated from the matrix and the 

composite material could not support any load. 

Laser extensometry and the clip-on extensometer showed similar strain 

measurement results for the full duration of the tension tests.  These results may be 

considered as the real strain of the specimen.  The strain gage can only be used in the 

beginning of the tension test, until the specimen cracks.  Before cracking, the strain gage, 

laser extensometry, and clip-on extensometer gave similar strain measurement results.  

When the crack crosses the region covered by the strain gage, it is broken and cannot 

provide correct strain measurement results.  Initially, the matrix of the composite material 

deforms as tensile stress is applied (pre-crack region).  Strain beyond the elastic 

deformation of the matrix causes cracking to occur.  These cracks manifest as a plateau in 

the stress-strain curve.  The specimen undergoes substantial deformation with only a 

small increase in stress.  The strain continues to increase as stress increases.  

From the stress-strain curves, the failure modes of the specimens can be deduced.  

However, it is difficult to use only one strain measurement method to characterize the 

failure.  The strain gages failed near the beginning of the test, so without digital images 

processed using the DIP method, it is difficult to explain unexpected data from the strain 

gages after cracking.  Since all the stress-strain curves present the same trend, any strain 

measurement method can be used in the deduction of failure modes.  
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5.5.2  Comparison of two DIC methods 

The two DIC methods show very different strain measurement results in 

comparison to the other methods.  This difference could be attributed to the out-of–plane 

displacement experienced by the FRCM specimens.  Results from the LVDT show that 

the specimen experienced large out-of-plane displacement.  This out-of-plane 

displacement may be caused by several factors.  One possibility is that the specimen was 

cast while the fabric was initially curved; upon loading, the fabric straightens and the 

entire composite material deforms out-of-plane.  Another possibility is that the entire 

composite specimen was initially curved prior to loading.  Upon loading, the specimen 

straightened out, which resulted in a change in out-of-plane displacement.  Another 

possibility is that the matrix cracked asymmetrically on the two sides of the specimen.  

This out-of-plane movement has a significant effect on the digital image strain 

measurement techniques.  The digital image methods measure the deflection of the 

specimen at the subpixel-level.  This requires that each photo captured by the camera 

have a clear image of the specimen at a high resolution.  For this reason, maintaining a 

constant focal distance from the camera lens to the specimen is critical during the test.   

For the rectangle edge detection method, the deformation in real space can be 

represented by pixels in the images.  All the images must have the same scale.  The strain 

measurement was based on the change in the pixels of the digital image.  The photos 

captured during tension tests were blurred and had different scales, as seen in Figure 5-11, 

which caused many errors in edge detection.  For specimens FRCM-2 and FRCM-6, the 

edges of the rectangle were too blurred to analyze.  The Gaussian fitting method could 

not be applied since the gradient intensities around the blurred edges do not present a 
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Gaussian distribution.  For specimens FRCM-1 and FRCM-3, the out-of-plane 

displacement caused a change in scale.  The axial length of the rectangle should increase 

as tensile loading is applied.  However, since the distance from the specimen to the 

camera increases, the measured axial length appears to decrease in these images.  When 

the out-of-plane displacement changes slowly, the distance between the specimen and 

camera is relatively constant.   

 

(a) Original image   (b) Blurred image 

Figure 5-11 Comparison of original and blurred images of FRCM-2 

The DIC speckle method measures the strain by correlating the images before, 

during, and after loading to generate a displacement map.  Then, the displacement map is 

used to find the strain map.  Changes in scale also cause errors in this correlation.  In DIC 

speckle, a grid is generated over the image to divide it into subsets for correlation.  The 

grid is superimposed on the later images by searching nearby to maximize matching.  

Mismatching introduces a bias in the measurement, which may cause larger or smaller 

measurements.  The specimens FRCM-4 and FRCM-5 show larger strain measurement 
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results compared to other methods.  The specimen FRCM-7 shows a smaller strain 

measurement result. 

5.6  Comprehensive comparison  

To comprehensively compare these five strain measurement methods, all factors 

related to measurement should be considered.  These include requirements for specimen 

preparation, set up of devices used in the experiment and relative costs.  The primary 

comparisons are given in Table 5‒11, Table 5‒12, and Table 5‒13. 

Table 5-11 Comparison of methods: Requirements for specimen preparation 

Strain measurement 

methods 
Requirements for specimen preparation Evaluation 

Clip-on extensometer Relative flat surface Simple 

Laser extensometry 
Apply reflective tape on the specimen surface 

No high laser reflective surface 
Simple 

Strain gage system Need to bond strain gage to the specimen surface Difficult 

DIC (Natural texture)  Nothing Simple 

DIC (Speckles) Paint speckles on the specimen surface Simple 

Rectangle edge 

detection 
Paint a rectangle on the specimen surface  Simple 
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Table 5-12 Comparison of methods: Experimental set up for strain measurement devices 

Strain measurement 

method 
Primary set up requirement Evaluation 

Clip-on extensometer Directly mount on the specimen Simple 

Laser extensometry 
Mount on a rigid frame with 305 mm distance 

from specimen 

Simple 

 

Strain gage system 
Perform a calibration before test for each strain 

gage 
Difficult 

Digital image methods 

(DIC and Rectangle 

edge detection) 

Calibrate camera if the setting of the system 

changed 

Stable, vibration-free supports 

Stable and evenly distributed lighting 

Difficult 

  

Table 5-13 Comparison of methods: Relative cost 

Strain measurement method Device and relative cost Evaluation 

Clip-on extensometer Clip-on extensometer (100sg) 
Expensive, 

reusable 

Laser extensometry 
Laser extensometer and reflective 

tape (750sg) 

Very 

expensive, 

reusable 

Strain gage system Bridge circuit and strain gage (1sg) 
Inexpensive, 

not resuable 

Digital image methods (DIC 

and Rectangle edge detection) 

Camera, lens and Matlab software 

(125sg) 

Inexpensive, 

reusable 

“sg”: the cost of 1 strain gage is used as a baseline 
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These tables show a comparison of the three primary factors to consider: 

requirements for specimen preparation, set-up of the device in the experiment and 

relative cost.  In the cost comparison, the price of one strain gage was used as the unit and 

the cost for other methods were compared with that cost. 

The clip-on extensometer is directly mounted on the specimen without any 

specimen preparation.  Sufficient tension must be provided to prevent slippage of the 

knife edges or clip-on wire forms mounted on the specimen.  DAQ allows for real-time 

data collection during the test. It was easy to setup, had high accuracy and relatively low 

cost.  However, for very brittle or soft specimens, the knife-edge can easily damage the 

specimen.  

Laser extensometry also has a low requirement for specimen preparation.  

Reflective tape can be directly applied to the specimen with various gage lengths, up to 

100mm.  Specimen with mirror-like surface must be avoided since they may cause 

redundant laser reflection.  These spurious reflections lead to incorrect readings of the 

laser extensometer.  Additionally, laser extensometry has high accuracy with non-contact 

features.  However, high price limits the usefulness of this method.  

The strain gages have high requirements for specimen surface preparation.  A 

smooth surface free of large discontinuities, voids, and elevations is necessary.  Surface 

preparation is extensive and includes removal of dust and other foreign debris particles, 

and neutralization of chemical residue on the surfaces of the specimen and strain gage.  

Gage alignment, adhesive bonding, and wire soldering can be a time-consuming, delicate 

procedure requiring prior training and ample experience.  Each strain gage also needs to 

be calibrated before testing to determine the relationship between electric current and 
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strain.  The strain gages are also highly sensitive to ambient temperature, which means 

calibration must be conducted in the same room as the test.  

The digital image method requires patterns on the specimen as marks to track.  If 

the specimen has a natural texture, preparation of the specimen is not necessary.  For 

other surfaces, painting a pattern is required.  A rigid base and frame are needed to 

support the equipment and maintain alignment of the camera with the specimen.  

Calibration of the camera is also needed.  DIC is not a real-time method and software for 

image analysis is a necessity.  The accuracy is based on the quality of images and 

experimental conditions.  The device for the digital image method serves multiple 

functions such as photography, which enormously lowers the cost.  

5.7  Conclusions  

For FRCM materials, clip-on and laser extensometry are recommended options 

for strain measurement since they can provide accurate results and are easy to implement.  

With an initial investment, these two methods can be reused for strain measurements.  

Strain gages are not ideal for this kind of material since the strain gages may fail 

to provide strain measurement results once cracking begins.  For more ductile materials, 

strain gages can be useful.  Additionally, it is important to consider that strain gages are 

sensitive to temperature.  In environmental studies, strain gages can be used if the change 

in temperature is considered during calibration.   

The DIC methods evaluated in this study are 2D (in plane) methods which are 

difficult to apply to specimens that show out-of-plane displacement or straightening 

behavior during the test.  3D DIC should be applied to study strain measurement for these 

types of materials. 
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Chapter 6 Conclusions and Recommendations 

6.1 Overview 

In this thesis, a new digital image strain measurement method was established by 

using a painted rectangle pattern and is termed as “rectangle edge detection” (RED).  

Two accuracy levels, pixel-level and subpixel-level, were implemented using ImageJ and 

Matlab, respectively.  For subpixel-level, two algorithms: Gaussian fitting and spline 

interpolation were also studied.   

The rectangle edge detection method has some advantages and disadvantages 

compared with traditional strain measurement methods such as strain gages, clip-on 

extensometry and laser extensometry.  

As a digital image processing (DIP) method, RED does not contact the specimen 

during testing and has no influence on the specimen.  Additionally, RED is applicable to 

a wide range of specimen dimensions.  From bridges to a micro size material, if digital 

images can be consistently recorded, RED can be applied.  In addition, RED could 

provide field measurements, which are important in many applications in civil 

engineering.   

RED also has some limitations.  It is a surface and in-plane strain measurement 

method.  Its application in the composite (FRCM) material studies in this thesis  indicated 

that, for the specimens showing out-of-plane displacement, it is difficult to record 

consistent images.  Using these images for data analysis causes large deviations in strain 

results.  For the RED method, analysis is based on the digital images and, therefore, the 

image quality is critical. 
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In this dissertation, RED is applied to two kinds of materials, A36 steel as a 

ductile material and FRCM composite as a brittle material.  If there is no out-of-plane 

displacement, RED method is suitable for both of these materials.  For brittle material, 

which is not suitable to use strain gage, RED method can be used as an alternative 

method in strain measurement.  

The algorithms in RED can also be used to evaluate paint removal effectiveness 

on concrete surfaces.  It provides a threshold value selection method in DIP and it is 

named edge-based threshold selection method. 

6.2 Conclusions   

 By comparing the RED strain measurement with digital image correlation (DIC) 

and other strain measurement methods, several conclusions can be drawn:  

The rectangle edge detection method is a target-based deformation method, which 

explicitly considers the deformation of the target (rectangle) to calculate strain.  DIC uses 

the relative displacement change of subsets to determine the strain.  However, the 

deformation of the subsets is neglected.  

A painted rectangle can be a suitable pattern to achieve subpixel-level accuracy in 

surface strain measurement.  Both the Gaussian fitting and the spline interpolation 

methods provide similar accuracy as laser extensometry and strain gages if the resolution 

of the images is high enough.   

In comparing the two subpixel rectangle methods, the Gaussian fitting method  

gives better results than the spline interpolation method.  The Gaussian fitting method can 

filter out some data by goodness-of-fit (R2) and converged data.  The interpolation 
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method connects all the known data to find the unknown data, which neglects any noise 

in the known data. 

The iPhone 4s is not recommended as a strain measurement device for now since 

the resolution and camera setting for iPhone cannot ensure consistency in recording 

images.  However, with the rapid pace of development in the camera features of the 

iPhone, accurate strain measurement using the iPhone may be possible soon. 

DIC is a full-field strain measurement method.  The strain result for each image is 

the average value of all the subsets.  Since DIC uses the relative displacement of subset to 

calculate strain, any vibration of the test system will decrease the accuracy of DIC 

method.  Correlation is another factor in determining the accuracy of DIC method.  The 

DIC method must find the same subset in all the images.  If the correlation is poor, it will 

cause errors in the result. 

In digital image processing, image quality is the most critical factor.  Consistent 

and high quality images must have similar brightness, suitable exposure, high resolution 

and good focus.  To obtain high quality images, a high resolution camera, stable lighting, 

and vibration-free supports are required.  

The digital image strain measurement methods (RED and 2D DIC) discussed in 

thesis are only suitable for in-plane strain measurement.  For the material with out-of-

plane displacement in tension tests, RED and 2D DIC methods will fail since the out-of-

plane displacement changes the focus length in images.  3D DIC can be used to measure 

out-of-plane displacement. 

DIP methods characterize the behavior of the visible domain on the surface of the 

specimen.  A combination of technologies (both traditional and emerging) may be 
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necessary to fully characterize the mechanical response of a material or structure 

subjected to loading. 

There is no specific way to determine the reliability of all the strain measurement 

methods.  When different strain measurement methods are used and give different results, 

there is no way to find which method is better without introducing a control strain 

measurement method that is assumed to be the true strain measurement.  

The rectangle edge detection method can also be applied in finding threshold 

value in digital image processing.  By selecting a suitable threshold value to separate the 

paint and concrete color, the paint removal effectiveness can be determined. 

6.3  Future work 

Further study in digital image processing in civil engineering could be undertaken.  

The most important advantage of the DIC method is that it can relate local deformation to 

global behavior.  However, this feature is not developed in RED method in this thesis.  

The reason DIC can measure full-field strain is that it divides the images into small 

subsets.  If many small rectangles are painted on the specimen surface, such as Figure 6-1, 

then full-field strain measurement can also be realized by the RED method.   
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Figure 6-1 Pattern for full-field strain measurement in RED 

The materials studied in this thesis are steel and brittle matrix composite, which 

are commonly used in civil engineering.  In other research fields, different materials can 

be investigated, such as polymer-based composites.  The required resolution of images 

for each strain range can also be studied. 

The strain discussed in this study does not include shear strain.  Shear strain could 

be measured by RED by calculating the angle change of the painted rectangle. 
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Appendix A: Gaussian fitting subpixel-level rectangle length calculation (Part of  

Matlab code) 

% This code uses Gaussian fitting method to find the subpixel-level rectangle  

% length in axial direction for multiple photos  

% The data will save in an Excel file  

 close all; 

clear all; 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Measurement range setting 

% This part has to change according to the photos 

height=200; 

halfwidth=250; 

halfpixelnumber=4; 

foldername='test 1 axial(r2-0.8)'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

files=dir('*.jpg');% 

tn=size(files); 
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for t=(1:tn)   % loop for picture 

imageName=files(t).name; 

 aa=imread(imageName); 

aagray=double(rgb2gray(aa)); 

[r,c]=size(aagray); 

aagray_flip=255-aagray; 

grad_axial=diff(aagray); 

grad_axial_flip=diff(aagray_flip); 

 % divide the picture into two parts: top and bottom 

grad_axial_top=grad_axial_flip(1:height,(round(c/2)-

halfwidth):(round(c/2)+halfwidth)); 

grad_axial_bottom=grad_axial((r-height):(r-1),(round(c/2)-

halfwidth):(round(c/2)+halfwidth)); 

 % find the size of two parts  

[rt,ct]=size(grad_axial_top); 

ii=1; 

 for i=(1:ct)    % loop for each line 

% find the postion of maximum y gradient value for each coloum: ymax_t 

% notice that for axial direction, the x is coloum, y is the pixel's gray value 

  y_axial_top=grad_axial_top(:,i); 

         y_axial_bottom=grad_axial_bottom(:,i); 

         ymaxpt=find(y_axial_top==max(max(y_axial_top))); 

         ymaxpb=find(y_axial_bottom==max(max(y_axial_bottom)));  
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% get the 4 pixels' value on the top and 4 pixels on the bottom for Gaussian fitting  

    xt=(ymaxpt-halfpixelnumber):(ymaxpt+halfpixelnumber); 

            ytop=y_axial_top((ymaxpt-halfpixelnumber):(ymaxpt+halfpixelnumber));  

            ytop=ytop'; 

            xb=(ymaxpb-halfpixelnumber):(ymaxpb+halfpixelnumber); 

            ybottom=y_axial_bottom((ymaxpb-

halfpixelnumber):(ymaxpb+halfpixelnumber));  

            ybottom=ybottom'; 

% define the initial fitting parameters (Very important, reflect the result! ) 

% use the pixel-level position as initial guess 

% Use min sum of square to find the parameters of Gaussian function  

beta0t=[y_axial_top(round(ymaxpt)),ymaxpt,1] 

[betat,rest]=lsqcurvefit(@(pp,x)(pp(1)*exp(-((x-

pp(2))./pp(3)).^2)),beta0t,xt,ytop); 

            beta0b=[y_axial_bottom(round(ymaxpb)),ymaxpb,1]; 

         [betab,resb]=lsqcurvefit(@(q,x)(q(1)*exp(-((x-

q(2))./q(3)).^2)),beta0b,xb,ybottom); 

         % calculate the coefficient of determination 

         yestimatet=betat(1)*exp(-((xt-betat(2))./betat(3)).^2); 

         ymeant=mean(ytop); 

         SStott=sum((ytop-ymeant).^2); 

         SSerrt=sum((ytop-yestimatet).^2); 

         Rt=1-SSerrt/SStott; 
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            yestimateb=betab(1)*exp(-((xb-betab(2))./betab(3)).^2); 

       ymeanb=mean(ybottom); 

         SStotb=sum((ybottom-ymeanb).^2); 

         SSerrb=sum((ybottom-yestimateb).^2); 

         Rb=1-SSerrb/SStotb; 

if (Rt>=0.8)& (Rb>=0.8) 

    % the first column is the position of the top line 

axial_length(ii,1,t)=betat(2); 

% the second column is the position of the bottom line 

axial_length(ii,2,t)=betab(2)+r-height; 

% the third column is the axial length 

axial_length(ii,3,t)=axial_length(ii,2,t)-axial_length(ii,1,t); 

% the fourth column is res of top 

axial_length(ii,4,t)=rest; 

% the fifth column is the top coefficient of determination Rt 

axial_length(ii,5,t)=Rt; 

% the sixth column is res of bottom 

axial_length(ii,6,t)=resb; 

% the seventh column is the bottom coefficient of determination Rb 

axial_length(ii,7,t)=Rb;  

else 

continue 

end 
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clear ymaxpt; 

clear ymaxpb; 

clear xt; 

clear xb; 

clear ytop; 

clear ybottom; 

end 

xlswrite(foldername,axial_length(:,:,t),t) 

 end     
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Appendix B: Spline interpolation subpixel-level rectangle length calculation 

(Part of Matlab code) 

% This code can use 1D spline interpolation method to find the subpixel-level  

% rectangle length in the axial direction for multiple photos  

% The data will save in an Excel file 

 close all; 

clear all; 

clc; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Measurement range setting 

% This part has to change according to the photos 

height=200; 

halfwidth=250; 

halfpixelnumber=4; 

foldername='test 1 axial(r2-0.8)'; 

resolution=0.01;    % parameter for the accuracy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

files=dir('*.jpg');% 

tn=size(files); 
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for t=(1:tn)   % loop for picture 

    imageName=files(t).name; 

    aa=imread(imageName); 

    aagray=double(rgb2gray(aa)); 

    [r,c]=size(aagray); 

    aagray_flip=255-aagray; 

    grad_axial=diff(aagray); 

    grad_axial_flip=diff(aagray_flip); 

 % divide the picture into two parts: top and bottom 

    grad_axial_top=grad_axial_flip(1:height,(round(c/2)-

halfwidth):(round(c/2)+halfwidth)); 

    grad_axial_bottom=grad_axial((r-height):(r-1),(round(c/2)-

halfwidth):(round(c/2)+halfwidth)); 

 % find the size of two parts  

    [rt,ct]=size(grad_axial_top); 

    ii=1; 

    for i=(1:ct)    % loop for each line 

    % find the postion of maximum y gradient value for each coloum: ymax_t 

    % notice that for axial direction, the x is coloum, y is the pixel's gray value 

         y_axial_top=grad_axial_top(:,i); 

         y_axial_bottom=grad_axial_bottom(:,i); 

         ymaxpt=find(y_axial_top==max(max(y_axial_top))); 

         ymaxpb=find(y_axial_bottom==max(max(y_axial_bottom)));  
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    % get the 4 pixels' value on the top and 4 pixels on the bottom for Gaussian 

fitting  

    xt=(ymaxpt-halfpixelnumber):(ymaxpt+halfpixelnumber); 

            ytop=y_axial_top((ymaxpt-halfpixelnumber):(ymaxpt+halfpixelnumber));  

            ytop=ytop'; 

            xb=(ymaxpb-halfpixelnumber):(ymaxpb+halfpixelnumber); 

            ybottom=y_axial_bottom((ymaxpb-

halfpixelnumber):(ymaxpb+halfpixelnumber));  

            ybottom=ybottom'; 

    % set 0.01 steps  

    xtq=(ymaxpt-halfpixelnumber):0.01:(ymaxpt+halfpixelnumber); 

    xbq=(ymaxpb-halfpixelnumber):0.01:(ymaxpb+halfpixelnumber); 

  % interpolation  

    ytq=interp1(double(xt),double(ytop),xtq,'spline'); 

    ybq=interp1(double(xb),double(ybottom),xbq,'spline'); 

  % find the subpixel-level edge 

    ytopposition=find(ytq==max(max(ytq))); 

    ybottomposition=find(ybq==max(max(ybq))); 

    [ytopsizer,ytopsizec]=size(ytopposition); 

    [Ybottomsizer, ybottomsizec] =size(ybottomposition) 

 

    ytopedge=xtq(1)+ytopposition*0.01; 

    ybottomedge=r-roihight+xbq(1)+ybottomposition*0.01; 
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    % the first coloumn is the position of the top line 

    axial_length(ii,1,t)=ytopedge; 

    % the second coloumn is the position of the bottom line 

    axial_length(ii,2,t)=ybottomedge; 

    % the third coloumn is the axial length 

    axial_length(ii,3,t)=ybottomedge-ytopedge;  

ii=ii+1; 

     clear ymaxpt; 

        clear ymaxpb; 

        clear xt; 

        clear xb; 

        clear ytop; 

        clear ybottom; 

        clear ytopedge; 

        clear ybottomedge; 

end 

    xlswrite(foldername,axial_length(:,:,t),t) 

 end 
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Appendix C Images of A36 test specimens 

 

Figure C-1 Test 1: Nikon with rectangle 
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Figure C-1 Test 1: Nikon with rectangle (continued) 
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Figure C-2 Test 2: iPhone 4s with rectangle 
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Figure C-2 Test 2: iPhone 4s with rectangle (continued) 
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Figure C-3 Test 3: Nikon with speckles
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Appendix D Images of FRCM test specimens 

 

Figure D-1 Images of FRCM-1
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Figure D-1 Images of FRCM-1 (continued) 
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Figure D-2 Images of FRCM-2 
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Figure D-2 Images of FRCM-2 (continued) 
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Figure D-3 Images of FRCM-3 
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Figure D-3 Images of FRCM-3 (continued) 
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Figure D-4 Images of FRCM-4 



214 
 

 
 

 

Figure D-4 Images of FRCM-4 (continued) 
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Figure D-5 Images of FRCM-5 
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Figure D-6 Images of FRCM-6 
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Figure D-7 Images of FRCM-7 
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Figure D-7 Images of FRCM-7 (continued) 
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