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Structural health monitoring (SHM) has gained significant popularity in the last 

decade. This growing interest, coupled with new sensing technologies, has resulted in an 

overwhelming amount of data in need of management and useful interpretation.  Acoustic 

emission (AE) testing has been particularly fraught by the problem of growing data and is 

made the focus of this dissertation.  The dissertation is divided into three studies, the first 

of which attempts to identify the computing resources necessary for the acquisition, 

management, and analysis of AE datasets. A computing framework capable of managing 

AE data is designed and implemented using the methods described in the first study. 

With a computing framework in place, the second study addresses the problem of 

unwanted signals in AE; these signals form a large part of most AE datasets and must be 

removed before a meaningful analysis can be performed. A semi-supervised data mining 

scheme for detecting and characterizing unwanted AE signals is proposed. The scheme is 

demonstrated on a synthetic dataset, and applications are presented for pencil lead-break 

and single-edge tension (SE(T)) datasets. This study suggests that underlying rules can be 

systematically derived from raw AE datasets. Finally, an artificial neural network (ANN) 

framework for crack-growth prediction is proposed. The ANN takes AE absolute energy 

 



 
 
 

and crack mouth opening displacement (CMOD) data from two SE(T) specimens as an 

input in order to forecast future values for each of these parameters. The predicted values 

are then input into linear-elastic fracture mechanics (LEFM) models in order to estimate 

the long-term crack evolution. The study concludes that ANNs can adequately model the 

complex relationships between non-destructive measurement parameters and the crack-

length evolution in structural members. 
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CHAPTER 1, INTRODUCTION 
 
 
 

A large majority of the bridges constructed in the 1950s and 1960s in the United 

States are reaching their design end of life. The American Society of Civil Engineers’ 

(ASCE) most recent report card of the national built infrastructure estimates that 

approximately 26% of all United States bridges are “deficient or functionally obsolete.” 

These statistics should come to no surprise, as bridges are commonly built with a design-

life of 50 years, and the average bridge in the United States is now 47 years old (Klotz et 

al. 2009). Furthermore, in steel structures, more than three-quarters of recorded failures 

have been related to fatigue-fracture failure modes (ASCE 1982).  

Regular visual inspection methods have been federally-mandated, but studies from 

the Federal Highway Administration (FHWA) show that visual bridge inspections are 

seldom performed in conjunction with other non-destructive techniques (Moore et al. 

2001a). The simplicity and cost of visual inspection makes this type of assessment 

particularly attractive to bridge owners; however, visual inspection is inherently 

dependent on the experience of the inspector and, as such, may be subject to significant 

variability (Moore et al. 2001b). Even though 10% of the visual inspections report crack 

conditions, there is clearly a growing need for dependable damage detection in civil 

structures.  The structural health monitoring (SHM) community has emerged from these 

needs, and it has spurred research and development of non-destructive testing and 
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evaluation (NDE) technologies that will play pivotal role in the health assessment and 

monitoring of current and new infrastructure. 

SHM 

SHM has developed to signify the implementation of damage detection and 

assessment of “fitness for purpose” in aerospace, mechanical, or civil structures. This 

process generally involves the observation of a structure or mechanical system over time 

using periodically spaced measurements, the extraction of damage-sensitive features from 

these measurements, and the analysis of these features to determine the current state of 

system health (Farrar and Worden 2007). An SHM system may consist of sensors, data 

acquisition and transmission systems, databases for effective data management, and 

health diagnosis methodologies (including data processing, data mining, damage 

detection, model updating, safety evaluation, reliability analysis, and damage prognosis). 

The number of SHM technologies is continuously growing, but research efforts have 

mainly been concentrated on the areas of (1) acoustic signals, (2) electromagnetic, (3) 

radiography, (4) fiber optics, (5) radar and radio frequency, (6) optics, and (7) 

piezoelectric ceramic (Chang et al. 2003). A more detailed description of SHM can be 

found in (Worden and Dulieu-Barton 2004). Though several NDE techniques exist, 

acoustic emission (AE) testing is particularly attractive since it allows analysts to observe 

the dynamics of material performance in real time. 

AE 

The process of AE occurs when a material suddenly releases localized stress energy, 

thereby causing a transient elastic wave that propagates through the material. AE is 

usually associated with irreversible dynamic processes such as friction, fracture, impacts, 
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crack growth, corrosion, and other types of damage (Liptai et al. 1972). AE sensing is 

considered a “passive” method since it does not itself input any energy into the observed 

system and, as such, allows analysts to test under typical operating conditions (Bray and 

Stanley 1997). As an SHM technique, AE testing aims to detect, locate, and assess the 

intensity of damage as it evolves in the presence of applied loads or adverse 

environmental conditions. The AE technique has been validated using different methods 

such as guided waves in pitch-catch, pulse-echo, or high-frequency impedance spectrum 

method in different materials like steel, concrete, aluminum, and fiber reinforce polymers 

(Raghavan and Cesnik 2007; Wang et al. 2008). 

Computing challenges in SHM 

SHM remains a research topic that is still making the transition to field 

demonstrations and subsequent field deployment. A significant challenge facing SHM is 

the lack of integrated computing technologies that allow for widespread deployment of 

SHM systems in small-scale laboratory and field settings. This lack of integration arises 

primarily from the fragmented ecosystem of current SHM hardware/software, which 

offers solutions related to specific SHM technologies without provisions for integration 

with other SHM technologies or allowing for open-ended data management and analysis. 

The computing challenges in AE testing are emblematic of the overall roadblocks found 

in SHM. More specifically, AE data acquisition (DAQ) systems offer proprietary 

solutions for data collection and visualization with sensors, hardware, and software being 

inextricably tied to the vendor companies. Moreover, due to the nature of AE, datasets 

produced during AE monitoring have been observed to be prohibitively large. Such large 

datasets are often impractical to analyze, manage, or even visualize using the limited 
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capabilities of proprietary AE DAQ software. Enabling small-scale implementation of 

SHM systems such as those using AE while allowing for acquisition, management, and 

analysis of large datasets would arguably facilitate the adoption of SHM technologies as 

they enter the mainstream. 

Research motivations and objectives 

The overarching goal of SHM could be reframed as a condition monitoring system’s 

ability to make automated decisions related to a structure’s current and future 

performance. In this context, the process of SHM is arguably one of statistical pattern 

recognition, a paradigm which has been discussed in detail by Farrar et al. (2001). This 

dissertation focuses on AE as a representative SHM technology, and it attempts to 

advance the practice by introducing modern data mining and machine learning techniques 

to the analysis of AE data. 

Understanding the current limitations of the SHM technology from a computational 

perspective is essential before undertaking new research; therefore, this dissertation 

devotes its first study to an overview of the present challenges in SHM. After identifying 

these challenges, the study outlines a methodology that allows analysts to specify 

computational requirements for small-scale SHM systems with large datasets in mind. 

The study concludes with the implementation of a computing framework that allows for 

the integrated acquisition, management, and analysis of large AE datasets in laboratory 

and field settings. 

With a computing framework in place suitable for the analysis of AE data, the 

dissertation moves onto the second study, which attempts to address what is possibly the 

most pressing pattern recognition problem in AE: the presence of unwanted signals (or 
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“noise”) in AE datasets. Removing these types of signals in AE datasets is essential to the 

meaningful application of the vast majority of AE techniques. The study designs and 

implements a data mining scheme that enhances the quality of AE datasets. More 

importantly, the scheme is able to produce characterization rules for both unwanted and 

meaningful signals. Rule extraction using this technique could lead to the finding of 

general AE “signatures” to particular damage mechanisms. The third and final study 

builds on the clean datasets obtained from the second study, and it demonstrates how 

meaningful information can be obtained from a properly sanitized dataset. Specifically, 

the study establishes a framework for fatigue-crack growth forecasting using a 

combination of AE and traditional fatigue-fracture measurements. Through these studies, 

this dissertation aims to highlight the importance of computation in SHM, while 

providing a snapshot of the knowledge discovery process required for meaningful 

interpretation of the ever-growing datasets that form part of current and future SHM 

applications. 

 



 
 
 

 
 
 

CHAPTER 2, STUDY 1: DETERMINING COMPUTING RESOURCES 
INVOLVED IN SMALL-SCALE STRUCTURAL HEALTH MONITORING 

WHEN MANAGING LARGE DATASETS 
 
 
 

Summary 

Structural health monitoring (SHM) technologies have been growing in popularity, 

and the increased complexity of SHM systems has resulted in overwhelmingly large 

datasets. After a brief review of the state-of-the-art and challenges in SHM, this study 

attempts to outline a methodology for specifying computing resources for managing large 

SHM datasets and presents an example of a laboratory implementation using acoustic 

emission (AE) monitoring. The objective of the work is to provide a general 

understanding of the basic computing resources required to implement a small-scale (i.e., 

less than 16 sensors) SHM system in the laboratory or in the field. The outlined data 

management methodology is divided into three parts: data acquisition, data storage, and 

data analysis. Each part is addressed in a simplified manner with reference to the selected 

AE example. 

Background 

Active research in the development of real-time, integrated, and automated SHM data 

acquisition systems has rapidly accelerated. Over the years, SHM data acquisition 

systems have become increasingly capable; however, the improved sensitivity, resolution, 

and processing power of these systems also results in higher data collection rates. While 

some SHM systems are capable of performing real-time data manipulation in situ, the 

6 
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majority of data collected during an SHM event is stored for subsequent analysis. There 

is no clear documentation in the literature on how to implement a basic SHM framework 

that can handle the large datasets produced by state-of-the-art data acquisition systems. 

This study is therefore intended to offer some guidance, as it presents general 

recommendations for specifying the computing resources that are typically involved in 

the management of large datasets arising from SHM in the laboratory and in the field. 

An overview of the challenges in SHM and the state-of-the-art 

The availability of multiple sensors, coupled with higher resolution, sampling 

frequencies, and real-time feature extraction by SHM data acquisition systems has 

enabled SHM researchers and practitioners to efficiently collect much more data in 

shorter periods of time (Catbas et al. 2008).  However, with the increased ability to 

collect large datasets, there is a growing need to develop systems to store, analyze, and 

interpret the results rapidly and effectively. Data analysis algorithms, methods, and 

approaches need to be developed to retrieve and deliver critical information in a timely 

manner. 

The conceptual problem of SHM data management has been recognized for over a 

decade (Farrar et al. 2001), and the flow of SHM information has been well defined. 

(Aktan et al. 2000) identified the SHM data problem partly as one of integrating data over 

complex information systems. Because such data typically exists in disconnected and 

nonrelational databases, the information systems will have to integrate legacy data with 

objective field data collected with different types of sensors. For SHM systems that are 

not linked or integrated, data has to be manually extracted, transferred, and merged. For 

these systems, data acquisition, presentation, analysis, and archival approaches do not 
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offer true real-time data acquisition, retrieval, organization, display, or analysis 

applications because of this lack of interconnectivity. Thus, SHM data management has 

become a two-fold challenge: that of managing increasingly large amounts of data 

through all of its stages, and that of merging disparate datasets arising from non-

integrated data acquisition systems. Once these two challenges have been met, real-time 

SHM may become of age. Standards organizations have recently begun to address the 

issue of data management. In 2004, American Society for Testing and Materials 

Subcommittee E07.11 published “E2339, Practice for DICONDE,” which allows wide-

scale adoption of a common standard for data storage and exchange (Howard 2011). 

Other efforts have been made by the scientific community to provide an easy data 

interchange among scientists. The HDF, NetCDF, and FITS are good examples of such 

standards (Gray et al. 2005). While the commercial world has standardized on relational 

data models such as SQL, no single data storage standard or tool has reached critical 

mass in the scientific community. Several successful implementations of integrated wired 

and wireless full-scale SHM systems in have been realized both in the U.S. (Harms et al. 

2010; Godinez-Azcuaga et al. 2012) and internationally (Fricker and Vogel 2007; Chae et 

al. 2012). The success documented in the literature is indicative that progress is indeed 

being made in the area of SHM, though this study attempts to make the implementation 

of SHM systems more intelligible to researchers and practitioners with limited access to 

the technologies involved. 

The large majority of data management problems in small SHM applications arise 

from the collection of small amounts of data, which lead to bad practices that are 

compounded when collecting larger datasets, such as those obtained from AE systems. 
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Data is typically collected in portable devices without any provisions for data reliability. 

This oversight means that data can easily be lost to disk damage, loss, or theft. Large 

datasets, however, pose problems that reach beyond data management. Attempting to 

analyze large datasets on spreadsheet software can become problematic as performance 

can quickly become prohibitively slow as datasets grow. When datasets grow even larger, 

analysis through conventional means on desktop workstations becomes virtually 

impossible. Trying to amend data management as an afterthought will usually result in a 

poorly defined data flow and will result in inefficient data processing. Data management, 

therefore, should span the whole data lifecycle from collection to obsolescence when data 

is archived or deleted. 

The main objective of this study is to provide a methodology for acquisition, storage, 

and analysis of large datasets as generated in small scale SHM applications in laboratory 

or field settings. It addresses the steps involved in basic data management, and it 

highlights general challenges that are encountered when working with large SHM 

datasets.  

Through this methodology, potential entrants to the area of SHM should have a 

general understanding of the computing resources required to implement an SHM system. 

Throughout this study, computing resources will refer to the primary information 

technology elements that are involved in the management of SHM data. The 

methodology is divided into three major parts: data acquisition, which highlights the 

management of data up to the point of persistent storage; data storage, which details the 

process of readying data for analysis; and, data analysis, which provides guidance on how 

to specify hardware and software required for analysis. Finally, an example of this 

 



10 
 
 

methodology presented to the reader. Specifically, this methodology is applied to the 

practical use of AE systems, which have been regularly observed to produce large 

datasets (Beattie 1997; Lei et al. 2004). Due to the analog nature of most SHM sensors, 

the approach followed for AE systems may be generalized to other SHM systems that 

rely on waveform sampling as the primary method of data acquisition. 

Methodology for data management in small-scale SHM systems 

Data acquisition: data collection rates 

In order to provide practical upper-bound approximations for required computing 

resources, the most onerous though still realistic SHM scenario should be envisioned. 

When choosing a sample test, it is critical to estimate the maximum number of sensors 

and parametrics that can potentially be used during simultaneous data collection. Any 

ensuing computing resources will be chosen to accommodate maximum data collection 

rates and, thus, will also be useful when estimating data transmission and persistent 

storage solutions. 

A correct estimate of both the rate of data collection and the storage capacity for all 

datasets is the first step in SHM data management. Approximating the rate of data 

collection is useful when determining whether special transmission links are needed 

between the SHM data acquisition box and an offsite storage server due to exceedingly 

high throughputs. If data acquisition rates surpass the rates of data transmission, data can 

be bottlenecked locally, filling the data acquisition system’s hard drive to capacity and 

losing important data. 

The rate of data collection is a function of several factors that are specific to each 

SHM setup. There is no universal expression for estimating actual data acquisition rates, 
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but approximations can be made based on each individual setup. A theoretical rate ceiling 

can be estimated based simply on A/D converter specifications. If all channels share the 

same A/D converter, then the maximum data collection rate (in bits) can be obtained by 

multiplying the A/D converter’s bitrate by its sampling rate. Maximum throughout speeds 

are virtually never achieved, so basing computing specifications on this number would be 

excessive. 

A better approximation of data collection rates should be based on test conditions and 

the data structure of collected data. In order to perfectly predict the rate of data collection, 

it is necessary to know the exact data structure, so that the size of each sample is also 

exactly known. If the exact data structure cannot be known, each sample’s size can be 

approximated based on the number of features gathered by the data acquisition software, 

plus the collection of all waveforms and parametrics corresponding to each hit—times the 

size in memory or disk of each of these types of data. 

Transfer to persistent storage 

Before putting an SHM system in place, how data will be transferred to its permanent 

storage location (if any) must be specified. Oftentimes, manual transfer of files from the 

field to a repository is the most convenient form of data transfer. There are three clear 

disadvantages to the manual transfer of data from a local drive in an SHM system to a 

storage or analysis station. First, when relying on manual transfer of data, the automation 

process is temporarily interrupted, leading to lack of automation and inefficiencies; 

second, portable storage devices rarely provide data redundancy, which makes the data 

vulnerable to corruption while it resides on an intermediate device; and third, the 

structure’s owner or SHM system manager risks filling local SHM system’s drive to 
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capacity, with the possible loss of important data. SHM data should thus be transferred 

via wired or wireless services, and the process should be periodic or constant, and it 

should be automated. When data is transferred through a network, the local SHM 

system’s drive should be used as a buffer so that data is not lost if the communication 

link inadvertently goes down. 

The upload bandwidth of the wired or wireless system used to transfer the data may 

become an issue if data is collected at a sufficiently high rate. Practical limits of data 

transfer technologies are well documented. For example, common copper-wired 

100BASE-TX Fast Ethernet provides an upload of 100Mbit/sec, and wireless 3G 

WCDMA networks provide a practical upload speed of approximately 64Kbit/sec (Kara 

et al. 2005). Data can be transmitted using standard network protocols such as FTP or any 

other TCP/IP or UDP-based service. If data is to be continuously streamed from the field, 

the maximum sustained upload speed should be greater than the rate of data collection. 

This requirement is especially important when choosing wireless technologies, which 

tend to have slower bandwidth allowances than their wired counterparts. 

Data storage: choosing a storage device 

Choosing a suitable data storage solution is an often-overlooked step of the data 

management process. Storage, at its core, is comprised of physical media such as hard 

drives, compact discs, or magnetic tapes. Persistent storage should be allocated in order 

to make data available to analysts for the duration of an experiment, project, or until it 

becomes obsolete. The data has to be readily available to the analyst, as large datasets 

may run the risk of being collected at a faster pace than they are analyzed. This practice 

would create data repositories that, in all likelihood, will never be accessed again. Thus, 
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stored SHM data should remain directly accessible to the analyst until it has been 

processed. After analysis, data may be archived or backed up to magnetic tapes so that it 

is retrievable when necessary. Estimating the amount of storage required for an SHM 

project can be difficult, due to the need of balancing the cost, capacity, and performance 

of the storage solution. For this reason, one of these criteria is often sacrificed at the 

expense of the other two more requirements. 

Determining when data will become obsolete is a subjective task, so it is best to keep 

it in a readily-accessible form of storage throughout the life of the structure being studied. 

In research settings, data should arguably be readily-accessible at all times during a 

project. The necessary storage capacity can be estimated by adding up the anticipated 

runtime of each data acquisition system multiplied by the average data collection rate of 

each device. Note that—following acquisition—any duplication, cleansing, 

consolidation, compression, or transformation of or within the data structure may result in 

different storage needs. If raw data is to be loaded into a database management system, 

then considerations must be made for database overhead, potential data compression, and 

changes in the database structure. 

As should always be the case with physical storage, data redundancy should be taken 

into account since a single drive failure in a non-redundant system will result in loss of 

data. The most common data redundancy solution is that of a redundant array of 

inexpensive disks (RAID). An array of disks in a RAID configuration can be arranged in 

a variety of different storage schemes or “levels.” Storage schemes differ primarily in 

whether they are striped (logically-segmented across multiple drives), striped with parity 

(logically-segmented across multiple drives with fault tolerance), or mirrored (replicated 
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across separate drives). An introduction to RAID and a description of several types of 

RAID levels and their performance can be found in (Patterson et al. 1989) and (Chen et 

al. 1994). In general terms, because data mirroring can significantly decrease the 

effective storage space of the RAID, striping with parity is often favored. 

The last few years have seen a dramatic increase in microprocessor performance, and 

computer system performance is doubling every 18–24 months—a phenomenon often 

identified as Moore’s Law (Moore 1965). On the other hand, the rate of increase in 

storage access speed is much lower than processor performance rate. Improvement in 

disk access times typically faces mechanical constraints, so it has been seen to grow at a 

rate of less than 10% per year. The performance of storage systems is becoming a major 

bottleneck in computing system performance, and it will limit the speedup of sequential 

as well as parallel systems, as implied by the Amdahl’s law: ‘‘speedup is limited by the 

slowest system component’’ (Amdahl 1967). In parallel systems (such as clusters), for 

example, it is necessary to improve I/O performance to balance increasing processor 

performance. Hence, providing large storage capacity with high access speed is now a 

critical issue to be considered in the design of computer systems. RAID levels, in 

addition to providing redundancy, may also increase I/O performance through the striping 

of data, so it is important that the storage solution chosen for an SHM system also 

benefits from this speedup (Cannataro et al. 2002). 

Data integration and database storage 

Bridge structures are often outfit with multiple data acquisition systems (Ko and Ni 

2005), which in a sense act as separate data sources that are then networked together. 

Related data that is acquired concurrently by multiple sources must be integrated into a 
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unified dataset or database. Data integration has been widely studied, and several 

conceptual models exist (Vassiliadis et al. 2005). The process of readying data for 

database storage is termed extract, transform, and load (ETL). The first part of the ETL 

process is to extract data from all the separate sources. During the extraction process, 

data may have different structures, semantics, and file formats. Data sources may be flat 

files or other databases. The transform stage requires a restructuring of data in order to 

meet analysis needs; this stage may include joining of feature sets, sorting, and data 

cleansing. The load phase loads data into the end target, which is usually a database. 

Small-scale SHM systems typically save a series of data files to disk and do not interact 

directly with databases. Therefore, data must undergo an ETL process before it can 

analyzed by the user. After data has undergone this process, all queries will be able to be 

performed on a unified relational database, and the leftover raw data will be ready for 

archiving (Figure 1a). 

 

Figure 1 – Data storage models: (a) conventional DBMS with 
intermediate file system; (b) conventional DBMS without 
intermediate file system (c) data storage without a DBMS 
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The ETL process may be performed manually, or it can be carried out by specialized 

ETL software or some database management systems (DBMS). Data extraction requires 

knowledge of the source’s data structure. ETL or DBMS applications may be capable of 

extracting data from known database and flat file formats. In the case of most SHM 

systems, data structures and data formats tend to be proprietary and not open-source. If 

data structures are not readily-available via SHM manufacturers’ user manuals, the ETL 

process may prove difficult. Reverse engineering methodologies exist for understanding 

data-structures and can be performed on proprietary data files, though it may require 

significant effort (Wong et al. 1995). Once the data structure is known, ETL and DBMS 

software can be programmed to parse the files or databases in order to extract all 

necessary data. Following the ETL process, raw data may be kept, or it may be discarded 

if no intermediate data storage is required. 

Alternatively, if the SHM project is of small scale, raw data may be left in its original 

format, and ETL processes can be carried out by analysis software, effectively bypassing 

the need for a database (Figure 1b). It must be noted that traditional DMBS software has 

lagged in supporting core scientific data types. Some researchers use databases for some 

of their work but, as a general rule, most scientists do not. Databases have been slow in 

adoption for several reasons including: a high learning curve; researcher and 

practitioner’s ability to manually manage small datasets; lack of support for certain data 

types (arrays, spatial, temporal, etc.); slow performance; an inability to access databases 

by some analysis software; and costs of setup and maintenance. All of these reasons are 

based on experience and considerable investment, though these limitations are only still 

true of older systems. While modern databases have considerably improved, the research 
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community has been slow to migrate (Gray et al. 2005). Still, the file-FTP modus 

operandi will not work efficiently on larger datasets so, despite the lack of database use 

in SHM systems, the industry will have to move towards non-procedural, indexed data 

management systems. Ideally, data flowing from SHM sites should be directly streamed 

and loaded into a database as it is acquired, rendering storage of individual files 

unnecessary (Figure 1c). However, this functionality will not be possible until the SHM 

industry recognizes database integration as an essential part of data acquisition software. 

Data analysis 

There exist a plethora of analysis algorithms for SHM data; a summary of the most 

common algorithms employed in SHM is given by (Doebling et al. 1996). Due to the 

limited processing power available in SHM systems, the majority of data analysis must 

be performed after acquisition and is typically outsourced to desktop workstations with 

greater memory and processing power than that of the SHM data acquisition systems. In 

order for the data to be analyzed in a reasonable amount of time, the specifications of the 

workstation doing the analysis must be carefully selected. It is possible that the analysis 

workstations will have to be clustered so that—by taking advantage of the parallelism—

data is able to be analyzed in an efficient manner. 

Specifying a computing platform depends not only on the desired ability for the 

computer to perform a task, but on the speed at which it performs it. Before acquiring 

dedicated analysis hardware, the algorithms that will be applied to the data must be 

identified in order to better specify memory and CPU requirements. Analysis algorithms 

can take data as an argument and produce results based on the data that is passed to them. 

As the amount of data grows, the time it takes for each algorithm to complete the analysis 
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may change; similarly, the amount of memory utilized can vary as the quantity of data 

becomes larger. There are theoretical methods for analysis of algorithms such as limiting 

behavior analysis, which describes the asymptotic behavior of functions as inputs become 

very large. In this type of analysis, algorithms behavior is represented in the form 

 ( ( )) as O g n n →∞ . (1) 

For example, an algorithm that grows in a linear fashion will have the form ( )O n , so 

doubling the input will, in theory, double the memory usage or runtime of the algorithm. 

An algorithm with 2( )O n  behavior will use four times more memory or take four times 

longer after doubling the input size. There is a considerable body of research in computer 

science dealing with limiting behavior of functions, where the theoretical asymptotic 

behavior of algorithms is studied. Theoretical analysis of SHM algorithms is only of 

marginal interest in small SHM applications, though it becomes important when scaling 

the algorithm to larger datasets. Further information on limiting behavior analysis can be 

found in (Knuth 1968, Bruijn 2010). 

A more practical approach to algorithm analysis is that of performance analysis—also 

called “profiling.” Profiling is achieved by instrumenting either the program source code 

or its executable using a tool called a profiler. A profiler may measure the usage of 

memory, the usage of particular instructions, or the frequency and duration of function 

calls. A profiler can be implemented on existing source code through augmentation of the 

code to include benchmark analysis tools (Srivastava and Eustace 1994). Third party 

profilers exist and are available in standalone or as part of compiler and interpreter 

software, such as Microsoft® Visual Studio and MATLAB®. Profiler tools will measure 

where a program spends most of its time and will provide a breakdown of allocated and 
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freed memory during execution. The two main drawbacks of utilizing profiler tools as 

predictors of algorithm behavior are that algorithm source code must be first be 

implemented in order to be tested, and that profiler benchmarks do not guarantee that 

algorithm behavior of larger input sizes will grow as predicted. Thus, algorithms should 

be thoroughly profiled on prototype datasets of varying sizes in order to better predict 

full-scale behavior.  

Software specification 

Computer architectures have changed in order to support the advent of more powerful 

hardware. The limitations of aging computer architectures become especially problematic 

in high-performance computing, where very large storage and RAM requirements must 

be supported by operating systems and other software. In recent years, 64-bit 

architectures have become more popular, as they allow for memory limits several orders 

of magnitude larger than those available in aging 32-bit systems, where maximum 

addressable memory is limited to 4GB. Most data acquisition products available 

commercially interface directly with 32-bit OS’s, which may limit the performance of the 

overall SHM system. If possible, systems with 64-bit architectures should be specified in 

order to avoid memory and storage limits. 

Hardware Specification 

Once the algorithms to be used have been identified, hardware must be specified to 

allow for data analysis within practical time limits. Due to I/O inefficiencies associated 

with saving temporary data to the hard disk during analysis, it is generally preferred to 

have algorithms performed entirely using processor cache and available RAM. If 

possible, hard disk use should be limited to the storage of algorithm output, and disk 
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caching should be kept to a minimum. Ideally, basic data transformations should be able 

to be performed entirely within the CPU or RAM. In the event that some analysis 

algorithms require more memory than is available, temporary data will have to be saved 

to disk at the expense of algorithmic efficiency. 

Computational runtime may also be monitored, especially when the duration of 

computation exceeds practical limits. In other words, how “soon” results are wanted can 

become the limiting factor when choosing an analysis system. In order to gain 

computational efficiency, algorithms can be parallelized across different cores, CPUs, or 

workstations. APIs such as OpenMP allow for multithreading, which is a form of shared 

memory multiprocessing; in this implementation, a master “thread” (a series of 

instructions executed consecutively) “forks” a specified number of slave “threads” and a 

task is divided among them. The threads then run concurrently, with the runtime 

environment allocating threads to different processors. Message passing interfaces (MPI) 

such as OpenMPI allow for processes to communicate with one another by sending and 

receiving messages; this protocol has become a de facto standard for communication 

among processes that model a parallel program running on a distributed memory system. 

Computer clusters—groups of computers linked by a communication interconnect (such 

as Fast Ethernet or fiber optic)—being the most common high-performance computing 

solution, often utilize a hybrid model of OpenMP and OpenMPI in order to take 

advantage of the shared memory parallelism within each compute node while allowing 

intranode communication. When handling large datasets, the analysis software and host 

operating system should take full advantage of the processor architecture. 
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The maximum theoretical speedup allowed by a parallel system is dictated by 

Amdahl’s Law (Amdahl 1967). The modern version of Amdahl’s law states that the 

computational speedup of a symmetric (identical nodes) computational system is given 

by: 

 1( , , )
1

( ) ( )

r c g
r gr

g g c

Speedup f n r f rf
perf r perf r n

=
⋅−

+
⋅

, (2) 

where rf  is the software fraction that is parallelizable, cn  is the total number of logical 

cores, and gr  is the number of groups of logical cores acting as a single core with 

reduced performance ( )gperf r  (typically taken to be equal to gr ) (Hill and Marty 

2008). In the case of computer clusters, it can be assumed that, in a hybrid 

OpenMP/OpenMPI mode, each node acts as a single compute core with performance 

( )perf r , where the total number of cores cn  is equal to gr  times the number of compute 

nodes. The specifications of the required computational system can be tweaked in order 

to reach the speedup needed to perform a typical analysis within the desired timeframe. 

Methodology applied to AE in small laboratory and field settings 

Data acquisition 

The methodology described previously was employed during the implementation of 

laboratory and field SHM systems using AE. The most taxing operating conditions 

during the testing process were envisioned based on the number of sensors and 

parametrics. 

The laboratory setup is the most demanding and consists of four reinforced concrete 

(RC) specimens subject to accelerated corrosion (Figure 2).  
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Figure 2 – AE monitoring of RC specimens subjected to accelerated corrosion 

AE sensors are attached to eight Physical Acoustics Corporation® (PAC®) PCI-2 

Rev. 3 AE DAQ boards (18-bit, 40MHz A/D converter, 4x sample averaging, 10MSPS). 

Parametrics are connected to the primary PCI-2 onboard parametric input (16-bit, 100Hz 

A/D converter, 100SPS per parametric input). In AE, sensor activity can be measured in 

terms of hits per second .Typical AE activity produces an average of 5hits per second per 

channel and a maximum of 50hits per second per channel. These hit rates are obtained by 

preliminary testing in the laboratory and confirmed in the literature. Parametrics are 

sampled at a rate of 100 samples per second per input (i.e., the maximum sampling rate 

allowed by the PCI-2 board). Waveforms corresponding to each hit are sampled at a rate 

of 40MHz and are stored as a fixed size vector of 2048 coordinates per waveform. Since 

the system is fully utilized, subsequent calculations are based on a SHM setup that is 

collecting data using all 16 AE sensors, plus 2 parametric inputs (Figure 3).  
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Figure 3 – Sample SHM test setup (AE equipment figures provided by PAC®) 

The theoretical upper-bound data collection rate can be found by multiplying the A/D 

converter’s bitrate by its sampling rate. In the case of the PAC® PCI-2 AE board, the A/D 

can output a stream of AE data at 10MHz with a depth of 18-bits, for a maximum data 

collection rate of 10.73MB/s per channel. In a similar fashion, the maximum data 

collection rate for each parametric input can be calculated to be equal to 200 Bytes/s per 

channel. For all 16 channels and two parametrics, the system will collect data at a rate of 

171.66MB/s. Knowing that no data is compressed or encrypted following data collection 

due to the limited processing power of field SHM systems, and assuming sufficient I/O 

headroom, then this speed can be considered to be the maximum cumulative data 

collection rate to be output by the A/D converters. 

Certain SHM technologies, where data collection rates are proportional to the 

threshold sensitivity of the sensors, tend to quantify sensor activity as a hit rate. 

Naturally, datasets where high hit rates are observed will be inevitably larger. 

Additionally, any assumed data collection rates should be comfortably greater than those 

expected from operating conditions in order to account for hit-rate uncertainty and data 

transmission protocol overheads. 
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Average hit rate can be translated into a data rate by estimating a size on disk for each 

of the recorded features and parametrics. (Doebling et al. 1996) detail some of the 

different types of data recorded by a typical modern AE system. Specifically, the PCI-2 

board can output up to 20 features per hit sample and 7 features per time sample, in 

addition to waveforms and parametrics (Table 1).  

 

If it is assumed that all of the features computed from each sample are stored into the 

data file as floating point numbers (a reasonable upper-bound approximation), then each 

feature can be considered to have a stored length of 4 bytes. For AE boards that accept 

non-AE inputs, each parametric must also be accounted for, so it is also reasonable to 

conservatively assume that each collected parametric has a size equal to the bitrate 

(2 bytes in this case). For hit-based data, all parametrics are sampled once per hit; time-

based parametrics, on the other hand, are sampled at regular intervals. It can be assumed 

that all parametric samples are also stored as a floating point numbers. Lastly, if 

waveforms are to be collected then (for a 2048-coordinate waveform, at an 18-bit depth) 

4,608 bytes must be allocated for each waveform. By adding the contribution of each of 

the features and parametrics, it is possible to arrive at an estimate for the data rate of an 

AE system in terms of the hit rate. These types of data acquisition rates are typically 

Table 1 – Types of recorded AE features 
Hit Data Items Time Data Items 

• Time of 
Test 

• Channel 
• Amplitude 
• Energy 
• Counts 
• Duration 
• RMS 

• ASL 
• Threshold 
• Rise Time 
• Counts to Peak 
• Average Frequency 
• Reverberation 

Frequency 
• Initiation Frequency 
• Waveforms 

• Signal Strength 
• Absolute Energy 
• Cycle Counter 
• Partial Powers 
• Frequency 

Centroid 
• Peak Frequency 
• Parametrics 

• Time of Test 
• Cycle Counter 
• Parametrics 

Per-Channel Items 
• RMS 
• ASL 
• Threshold 
• Absolute 

Energy 
Conditional Data 

• Alarm Data • Time Mark 
Data 
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reached during high-sensitivity, high-emissivity tests and serve as a conservative upper 

bound.  

The sample SHM system, at a hit rate of 50 hits per second per channel, would output 

data at a maximum rate of 3.6MB/s. It can be readily seen that waveform collection 

produces the greatest impact regarding data collection rates, as the same setup without 

waveform collection would output data at only 97.3KB/s. Maximum data collection rates 

are important when specifying transfer and I/O device performance. Average hit rate, 

though, is more closely associated with required persistent storage. In the sample setup, at 

a hit-rate of 5 hits per second per channel, data will be collected (including waveforms) at 

an average rate of 398.2KB/s. 

Data collection at a rate of 398.2KB/s makes it impossible to have it transferred via a 

wireless 3G network, so a wired system is required. In case that a wireless connection is 

essential, such as in remote field locations, data collection sensitivity or data sampling 

rates must be decreased. If bandwidth limitations become an issue, then data can be 

compressed prior to transmission, or some data (such as waveforms) can be stored locally 

rather than transmitted. Data compression is typically not possible at the time of 

collection as it would require significant additional processing capability, which is 

relatively limited in SHM systems due to stringent power requirements (Hill and Marty 

2008). Thus, most systems transmit raw data and leave any data manipulation to 

dedicated workstations. SHM data rates in the laboratory have been proven to be 

comparable to the rough estimates above; therefore, a high-bandwidth network is 

required. To avoid any transmission bottlenecks, all research-purposed SHM systems are 

connected to a local network rated at 100Mbit/sec or greater. The local SHM system’s 
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storage drive is used as a buffer in order to prevent data loss in the case of temporary 

network outages. The SHM system is configured to periodically push files of 1GB 

through the network after they have been collected. 

Data storage 

The storage capacity required to store all of the data acquired throughout the life of 

the laboratory study is approximated by adding up all of the SHM runtime and 

multiplying it by the average acquisition rate. In the referenced RC corrosion study, it is 

expected that two identical SHM tests (each consisting of 4 specimens) will be performed 

concurrently for 5 days/month for a project duration of 72 months. Consequently, at the 

average acquisition rate of 398.2KB/s, an effective storage capacity of 23.07TB is 

required to accommodate all the collected data. A 16-disk, 32TB network-attached 

storage (NAS) server was acquired and made available to all acquisition systems and 

analysis workstations with the purpose of storing all data for the lifetime of the project. 

Because of the importance of the acquired data, a double parity array (Figure 4) was 

specified, which allows for up to two drives to fail at any given time without any loss of 

data. In order to further increase the reliability of the NAS, a standby hot spare was added 

to the RAID volume. Since RAID 6 requires two drives for parity, and the hot spare does 

not form part of the RAID volume, then three of the sixteen drives must be allocated for 

redundancy. This configuration limits the 32TB NAS to only 26TB of effective storage, 

but it still allows for all of the data to be collected. Because physical drives are typically 

specified as having 1000MB/GB of capacity instead of the conventional 1024MB/GB, 

then a 26TB volume will be reported by the operating system as having a capacity of 

24.8TB. All data collection estimates should be similarly expressed in this fashion in 
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order to avoid a storage miscalculation. The specified NAS was benchmarked locally and 

it showed a 300MB/s-write and 360MB/s-read speed performance, which exceeds the 

throughput of the three bound 1000BASE-T LAN ports used to connect to it, limiting 

data I/O performance from other computers connecting to the NAS to the bandwidth of 

the network interconnect. Since most 32-bit commercial OSs have a limit of 16TB per 

storage volume, an industry standard 64-bit RedHat® Linux OS was specified for the 

NAS. 

 

Figure 4 – RAID 6 + spare storage diagram 

After a storage solution was chosen and the OS specified, a data storage model has to 

be adopted. Because the SHM setup is of a relatively small scale, it was determined that a 

database-less model was more efficient for this project (Figure 1b). This model requires 

data files to be parsed by analysis software such as MATLAB® or Wolfram® Mathematica. 

In this case, MATLAB® was chosen as the only data management tool. Prior to data 

analysis, all SHM files are parsed by custom MEX libraries, which perform ETL 

operations on the data and save it directly to RAM into temporary n-dimensional struct 

arrays with a snowflake logical schema (Figure 5). 
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Figure 5 – Snowflake database model diagram of sample SHM dataset 

This procedure is done only once per analysis and, even though it does not take 

advantage of the querying speed and efficiency of an integrated database, it allows the 

data analyst to investigate SHM data files without the need to implement a DBMS or 

learn the application programming interfaces (API) associated with database querying by 

third party software. 

Data analysis 

When trying to specify hardware to be used in a data analysis workstation, a 

representative data analysis algorithm is recommended to be used for profiling purposes. 

A K-means clustering algorithm with ( )O n time complexity, as applied to AE data by 

(Manson et al. 2001), was selected. (Figure 6) shows a normalized runtime profile of a k-

means algorithm as input datasets are doubled. From this figure, it is possible to estimate 

typically required computing resources involved in data visualization by extrapolating 
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algorithm behavior to larger data sizes. In (Figure 6), the first k-means benchmark of a 

1,419KB dataset took 0.98seconds (as measured by the profiler). A file 128 times larger 

(177.38MB) took 27.5 times longer (26.95 seconds). The polynomial regression of this 

data would predict that a K-means analysis of a 164.05GB (the average aggregate file 

size for one test, corresponding to a 5-day duration at a mean data acquisition rate of 

398.2KB/s) dataset would require over 70 days to run on a single 2.4Ghz CPU core. The 

average size of the data being analyzed should always be smaller than the available 

addressable memory. This criterion suggests that the analysis workstation requires an 

aggregate RAM size greater than the amount of data being analyzed at one time. 

Accordingly, a system with 192GB of RAM was specified in order to, as a bare 

minimum, allow for the parsing, memory allocation, and basic analysis of an entire set of 

files for one test.  

 

Figure 6 – Profiler benchmark of K-means clustering algorithm 

Lastly, in order to reduce the time of computation from the estimated 70 days to a 

more manageable time-frame of 72-hours, a speedup of 23.3X is required. Assuming that 

the typical parallel implementation of a K-means algorithm parallelizes approximately 
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96% of the execution and that each compute node has two eight-core CPUs ( 16gr = ), 

then the modified Amdahl’s law can be used to find the number of cores that will produce 

this speedup. Solving for cn  yields 117 required cores, with 8 compute nodes ( 128cn = ) 

being the smallest possible computer cluster configuration that would be commercially 

available. 

Once in place, the computer cluster’s speedup was tested using a profiler. In order to 

test theoretical speedups versus measured speedups, a K-means algorithm with 

approximately 96% parallelizable execution ( .96rf = ) was run by one compute node in 

an embarrassingly parallel mode ( 1 and 16g cr n= = , and a theoretical speedup of 10X). 

The measured speedup when utilizing all 16 cores in one node, as shown in (Figure 7), 

was found to be 9.4X. As expected, the observed speedup is slower than the theoretical 

speedup, a phenomenon that can be attritubed to communication latency inherent to the 

interconnect between each core or CPU. 

 

Figure 7 – Observed computational speedup of K-means algorithm 

 



31 
 
 

 
Figure 8 – Computer cluster diagram of implemented high-performance computing SHM solution 

(Figure 8) provides a diagram and illustration of the final hardware configuration for 

the computer cluster used in analysis. To keep consistency across all of the elements in 

the computer cluster, a RedHat® Linux OS was also specified for all of the nodes. For 

analysis and computation, an instance of MATLAB® (also 64-bit) was chosen as the 

primary software solution due to its cross-platform support, multithreaded and distributed 

computing capabilities, and ubiquity in the scientific community. 

Field SHM testing 

The same SHM setup shown in (Figure 3) was adopted to monitor the reinforced 

concrete (RC) pier cap of a bridge slated for repair (Figure 9). 
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Figure 9 – Field SHM set-up of RC pier cap slated for repair 

Since a wireless 3G modem was used to transfer the collected data, the AE threshold 

was adjusted to ensure that the data collection rate never exceeded the available 

bandwidth. A rate of six hits per minute per channel was found to provide adequate 

headroom when continuously transmitting data to the remote server. Evidently, this rate 

of data collection produces significantly smaller datasets. For example, continuous 

monitoring of this pier-cap for five years would require less than 1.2TB of storage, and 

analysis could be performed using a typical quad-core workstation. 

Concluding remarks 

The growth of SHM has led to an increased complexity of acquired datasets. The 

ability for engineers and researchers to be able to analyze the mounting quantities of 

SHM data has become a crucial challenge. The information technology demands of SHM 

systems have forced engineers to increasingly engage in interdisciplinary work. For this 

reason, high-performance computing has become a practical solution for the management 

and analysis of SHM datasets. Therefore, in order to allow for the continued growth of 

SHM—and as datasets grow even larger—these practices must become an integral part of 

the SHM process. 
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A methodology was presented that enables entrants to the field of SHM to 

determine required computing resources in their small-scale SHM projects. While this 

procedure is basic and not meant to be exhaustive, it provides a good foundation for 

researchers and practitioners interested in deploying larger SHM systems. A sample setup 

consisting of 16 AE sensors and two parametric inputs was presented with the purpose of 

specifying hardware and software resources required for managing datasets arising in 

laboratory experiments dealing with SHM of RC specimens subjected to accelerated steel 

corrosion. Similarly, field tests were conducted on a pier cap slated for repair. 

Based on the estimated requirements, a computer cluster with 8 compute nodes—

each with 16 cores and 24GB of RAM—was specified. The aggregate RAM is equal to 

192GB, and the number of logical cores is equal to 128, which matches or exceeds the 

specifications required for performing analysis of datasets of the estimated magnitude. In 

summary, acquired data flows from SHM data acquisition systems to a centralized data 

repository via Fast Ethernet. Once there, the data to be analyzed undergoes an ETL 

process at the time of analysis, and it is stored in RAM until analysis has finished. 

 



 
 
 

 
 
 

CHAPTER 3, STUDY 2: DATA QUALITY ENHANCEMENT AND 
KNOWLEDGE DISCOVERY FROM RELEVANT SIGNALS IN ACOUSTIC 

EMISSION 
 
 
 

Summary 

The increasing popularity of structural health monitoring (SHM) has brought with it a 

growing need for automated data management and data analysis tools. Of great 

importance are filters that can systematically detect unwanted signals in acoustic 

emission (AE) datasets.  This study presents a semi-supervised data mining scheme that 

detects data belonging to unfamiliar distributions. This type of outlier detection scheme is 

useful in detecting the presence of new AE sources, given a training dataset of unwanted 

signals. In addition to classifying new observations (herein referred to as “outliers”) 

within a dataset, the scheme generates a decision tree that classifies sub-clusters within 

the outlier context set. The obtained tree can be interpreted as a series of characterization 

rules for newly-observed data, and they can potentially describe the basic structure of 

different modes within the outlier distribution. The data mining scheme is first validated 

on a synthetic dataset, and an attempt is made to confirm the algorithms’ ability to 

discriminate outlier AE sources from a controlled pencil-lead-break (PLB) experiment. 

Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, 

where it is shown that extracted rules can adequately describe crack-growth related AE 

sources while filtering out background “noise.” Results show promising performance in 

34 



35 
 
 

filter generation, thereby allowing analysts to extract, characterize, and focus only on 

meaningful signals. 

Background 

Parametric analysis in AE 

Parametric analysis of AE in metals is not a new concept. Initial analyses of AE were 

based on emission rates, or “hit count” (Schofield 1972). Shortly after, as more powerful 

circuitry became available in AE systems, basic waveform parameters such as amplitude 

were able to be computed. The potential of amplitude analysis as a viable characterization 

method of emission signals was recognized in (Pollock 1973) and became the dominant 

practice for several years. More recently, with the advent of waveform recording 

capabilities, feature extraction (e.g., frequency, time-frequency, and wavelet transforms) 

in post-processing has been used extensively (Ni and Iwamoto 2000, Marec et al. 2008, 

Khamedi et al. 2010, Dijck and Hulle 2011). 

Pattern recognition, machine learning, and data mining in AE 

Farrar et al. (2001) described SHM primarily as a problem of pattern recognition, and 

the AE research community has since adopted this paradigm. Pattern recognition has 

been used in AE mainly as a technique for characterizing the structure and natural 

“signatures” in AE datasets (Marec 2008; Gutkin et al. 2011; Li et al. 2012; Sause et al. 

2012). 

More recently, pattern recognition in AE has evolved towards machine learning and 

data mining, which have been used mainly for classification, regression, and prediction. 

Current implementations are implementing data mining tools for hypothesis searching, 

rule extraction, and decision-making. For example, artificial neural networks have been 
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used to classify and predict background “noise” in aerospace composites (Bhat et al. 

2003); waveform classification in fiber reinforced polymer monitoring (Olivera and 

Marques 2008); and crack-related signal characterization in aluminum specimens (Qian 

et al. 2009). Finally, data mining as a rule extraction technique for classification of 

various AE signals has been used by (Omkar and Karanth 2008). 

Proposed data mining scheme for unwanted signal detection and characterization 

Because data mining techniques allow for the classification of statistically similar 

data, a natural application of these methodologies is to train and classify for unwanted 

signals. The definition of “unwanted signals,” being largely subjective, requires input 

from a trained analyst—that is, it requires manual labeling by a human before feeding 

data into any kind of data mining scheme. For temporal applications where unwanted 

periodic signals must be removed (e.g., fatigue testing and long term monitoring), the 

process can be made fairly automated. For example, in the case of bridge monitoring, it 

can be assumed that, in a new or otherwise undamaged structure, all AE activity 

occurring during service loads can be characterized as “background” emissions. 

If focus is made on the fatigue life of a member which is part of a structure being 

observed, the acoustic emissivity is expected to rise as cracks nucleate, propagate through 

the material, and eventually lead to uncontrolled failure. In the presence of background 

signals, emissions due to crack-growth can be masked by extraneous “noise”, and the 

onset of crack-growth can be especially difficult to discern. Because the types and 

distributions of the AE signals in fatigue testing are largely uncharacterized, identifying 

data points belonging to growing damage is particularly difficult. This problem is 
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exacerbated by the potential presence of multi-modal otherwise overlapping distributions 

for different AE sources, which makes signal differentiation considerably more difficult. 

This study works under the assumption that the distributions of unwanted and damage-

related signals are sufficiently distinct and differentiable. If this premise is accepted, then 

a data mining scheme that can classify new data as belonging to a specific (though 

arbitrary) distribution becomes especially useful. Statistical outlier methods that rely on 

assumptions of normality will be inadequate for this application. Therefore, an outlier test 

that is distribution-independent is required in AE applications, where the distributions are 

necessarily not Gaussian. Distribution-independent outlier detection methods exist, and 

some do not merely classify a single data object as being or not being an outlier but also 

give an outlier score or outlier factor signaling the degree to which a respective data 

object is an outlier (Breunig et al. 2000). A major problem with these outlier detection 

methods is how to interpret this outlier factor in order to decide whether or not the data 

object is, indeed, an outlier. A local-density-based outlier detection method providing an 

outlier “score” in the range [0, 1] that is directly interpretable as a probability of a data 

object for being an outlier is needed in order to reject new data with a certain degree of 

confidence. 

Local outlier probabilities (LoOP) 

The concept of a normalized local outlier probability (LoOP) in the range [0, 1] was 

introduced by (Kriegel et al. 2009). This section summarizes the LoOP procedure and 

lists all assumptions involved in its application. In the following, D is a set of n objects 

and d is a distance function used to distinguish outliers. The data object being considered 

for outlierness is denoted by o.  A probabilistic distance of o D∈ relative to a context set 
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S D⊆  (such as a neighborhood of k nearest neighbors) can be referred to as ( , )pdist o S . 

This distance can be i D nterpreted as the statistical extent of the context set S. The 

reciprocal of the probabilistic distance can be seen as an estimation for the density of S: 

 

1( )
( , )

pdens S
pdist o S

= . (3) 

Estimating the density of S by assuming the following property: 

 
: [ ( , ) ( , )]

2
s S P d o s pdist o S erf λ ∀ ∈ ≤ ≥  

 
, (4)

 

where erf is the Gaussian error function, represents the case of outliers being defined 

as objects that deviate more than a givenλ times the standard deviation σ  from the mean. 

Assuming that o is the center of S, where s is the vector of all objects in S, and the set of 

distances of s S∈ to o is approximately half-Gaussian, then the standard distance of S to 

o can be defined as: 

 

2( , )
( , ) s S

std

d o s
o S

S
σ ∈= ∑ . (5) 

The context set S, in this study, is computed as the k nearest neighbor query around o. 

Based on these considerations, the probabilistic set distance of o to S with significance 

factorλ is defined as: 

 ( , , ) : ( , )stdpdist o S o Sλ λ σ= ⋅ . (6) 

Intuitively, this probabilistic set distance estimates the density around o based on S. 

The significance parameter λ  gives control over the approximation of the density and 
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acts as a normalization factor. This parameter, however, only affects the contrast in the 

resulting outlier scores, and it does not affect the outlier ranking. The assumption that the 

k-nearest distances around o are half-gaussian does not limit this approach for other 

distributions, as asymmetrical distributions around o will result in greater probabilistic 

distances and, ultimately, a larger outlier score. 

A probabilistic local outlier factor (PLOF) can be calculated as the ratio of the 

probabilistic distance around o divided by the expected value of the probabilistic 

distances around each member in context set ( )S o : 

 
, ( )

( )

( , , ( )): 1
[ ( , , ( ))]S o

s S o

pdist o S oPLOF
E pdist s S sλ

λ
λ∈

= − . (7) 

Note that the calculated PLOF is not yet a probability, nor is it normalized. To 

achieve a normalization making the scaling of PLOF independent of the particular data 

distribution, the aggregate value nPLOF, for all objects in D, is obtained during PLOF 

computation: 

 
2: [( ) ]nPLOF E PLOFλ= ⋅ . (8) 

This value can be seen as a kind of standard deviation of PLOF values with an assumed 

mean of 0. In order to convert the not yet normalized PLOF value into a probability 

value, it can be assumed that the PLOF values are normally distributed around 1 with a 

standard deviation of nPLOF. The value of nPLOF needs to only be found for the 

training dataset and remains unchanged when testing new objects for outlierness. With 

this assumption, the Gaussian Error Function can be applied to obtain a probability value 

indicating the probability that a point o D∈ is an outlier: 
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2
s o

s o

PLOF
LoOP erf

nPLOF
λ   =   
⋅   

. (9) 

The LoOP value will be close to 0 for points within dense regions and close to 1 for 

density based outliers. The outlier tolerance value, p, is the number of allowed outliers 

within the training dataset. That is, after performing a LoOP analysis on the training 

dataset, λ is adjusted so that
( ) : [ ] 95%s o actualLoOP P p p∀ ≥ ≥ , where p is the outlier 

tolerance, and actualp is the actual number of outliers. This condition ensures that all 

outliers have an outlier probability of at least 95% for any givenλ . The relationship 

between p and actualp  is expected to behave linearly until a further decrease in p no longer 

affects the value of actualp . In order to determine a conservative value for actualp , a stable 

value for λ  can be found by varying the outlier tolerance, p, within the training dataset. 

The optimal value of λ  will correspond to the first point where decreasing p does not 

cause an increase in the value of λ , as indicated in the sample plot of λ  vs. p for the 

dataset examined in section 4.1 shown in Figure 10. At this point, the value of actualp  will 

also be constant for each decrease of p. Choosing the higher constant value of λ  in 

Figure 10 will result in a smaller value of actualp  (and a larger enclosing minimum 

volume), which will possibly cover any local outliers within the training set. An 

unconservative choice ofλ  may cause the algorithm to be overly tolerant and will result 

in an underestimated number of outliers in both the training and testing datasets. 

Onceλ has been estimated for the training dataset, it should remain constant during the 

testing phase. 
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Figure 10 – Significance factor vs. outlier tolerance 

Extending the LoOP procedure to act as a detection tool of new AE sources in testing 

datasets is trivial. When testing an object outside of the training dataset for outlierness, a 

neighborhood of k nearest neighbors, ( )S o , must be sampled from the training dataset D 

when calculating ( )s oLoOP . Using the values for λ  and nPLOF calculated during training 

ensures that all new objects that exceed a local outlier probability of 95% will also be 

classified as outliers, and that those that do not belong to the same distribution as the 

inliers. At this point, a binary class label ic , where index {1,2}i =  i represents the class 

cardinality, can be added to the feature set. Herein, inliers have the label 1 1c =  while 

outliers are labeled 2 1c = − . 

The performance of the LoOP algorithm depends on sufficiently populated context 

sets, which are generated through a search for a predetermined number of nearest 

neighbors. The number of nearest neighbors, k, should be sufficiently large to accurately 

represent the local distribution without being so large to be too computationally taxing. In 

small training datasets, very large values of k (e.g., k>50) can result in decreased 
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performance, as the ensuing local context sets may draw objects from more than one 

local distribution. The performance of k versus outlier detection accuracy in a typical AE 

dataset is examined in Figure 11. 

 
Figure 11 – Classification accuracy vs. number of nearest neighbors: AE dataset 

Unsupervised clustering 

As previously mentioned, the outlier detection algorithm will produce two separate 

classes—one positive and one negative. The positive class will, by convention, represent 

the inlier points within the testing dataset, and the negative class will represent the outlier 

data. Since the overarching goal of this data mining scheme is to extract rules for the 

characterization of unwanted signals, distinct “noise” sources must be reliably separated. 

Failing to further cluster the inlier (or outlier) context sets may result in rules that are not 

indicative of any particular AE source, as the rules will instead attempt to cover multiple 

emission sources at once. Rules that simply differentiate outliers from inliers, although 

possibly being more succinct, will not necessarily represent a single AE source and may 

fail to reveal interesting structures within the dataset. 
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A solution to this problem is to further cluster both of the sets found by the outlier 

detection algorithm, and assign a sub-cluster label ,i jc  to each outlier object, where index 

{1,..., }j K= is a sub-cluster class cardinality for the inlier and outlier class i. Obtaining a 

set of mutually exclusive clusters is not a particularly difficult task. A popular algorithm 

such as K-means (Lloyd 1982), if carefully implemented, can yield reproducible and 

accurate partitions from a dataset (Maitra et al. 2010). There are several clustering 

algorithms that do not require previous estimation of the number of clusters, K, such as 

DBSCAN (Ester et al. 1996) and CURE (Guha et al. 2001). In this study, the X-means 

algorithm provides an easily implementable solution based on the original K-means, with 

a provision for optimal cluster determination termed the Bayesian Information Criterion 

(BIC). 

The K-means algorithm, despite being the most prevalent clustering algorithm used in 

scientific and industrial applications (Berkhin 2002), has been documented to suffer from 

three major shortcomings: it scales poorly computationally; the number of clusters K has 

to be supplied by the user; and the search is prone to converging to local minima (the 

number of clusters K should not be confused with the number of k nearest neighbors used 

in LoOP). X-means tries to address these problems by introducing the BIC.  If 

{ }1,..., nX x x=  is the dataset to be clustered, let 1 2... KX X X X= ∪ ∪  be a clustered 

dataset made up of K clusters. Each cluster in X  can be modeled as a Gaussian 

distribution ( , )i iN µ Σ , where iµ  can be estimated as the sample mean vector and iΣ  can 

be estimated as the sample covariance matrix. Thus the number of free parameters f of 
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each cluster is equal to ( 1)K m⋅ + , where m is the number of features being clustered. 

Under these assumptions, the BIC can be computed as:   

 
1

( ) log( )log( ) log(2 ) log( ( )) log( ) 22 2 2

K
j j j

j j j j j
j

fX X m X KBIC X XX X X X Xπ
=

 ⋅ −= − − − Σ − −
 

∑ , (10)
 

The main benefit of the K-means algorithm lies on its simplicity: 

1. For each point x, find the centroid which is closest to x. Associate x with this 

centroid. 

2. Re-estimate centroid locations by taking, for each centroid, the center of mass of 

points associated with it. 

Extending this algorithm into the X-means algorithm to adaptively find new centroids 

involves two additional steps (Pelleg and Moore 2000): 

3. Find out if and where new centroids should appear by splitting each centroid in 

half along a randomly chosen vector, running K-means locally on the two 

children and parent context sets, and comparing their BIC scores. 

4. If the new jK X> or a predefined maximum number of clusters, stop and 

report the best scoring model found during the search; and, if 

( ) ( )jBIC X BIC X> , choose children centroids as new seeds and repeat steps 1-3 

until convergence. 

Running the X-means algorithm on each context set iD , where i is the inlier or outlier 

class obtained from the outlier detection procedure, should reveal a series of jK  clusters 

per set, where j is the sub-cluster class index. Each object should be assigned a class 

feature ,i jc , which will be used as the training class label during rule extraction. 
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Rule extraction 

Assuming sufficient distinction between AE sources, each class obtained through the 

X-means process will yield more easily interpretable rules than the set of all classes 

combined, which is implied by the search for statistical dissimilarity inherent in the BIC 

scoring process. In theory, if each class lies within mutually exclusive regions inside the 

Euclidean space, then each rule obtained through the rule extraction process should 

partition the hyperspace in such a way that each rule covers each class in its entirety. 

Even though there exist a plethora of algorithms for rule extraction, in the proposed 

study it is preferred that the obtained rules be order independent (i.e., not a decision list), 

and they be comprised of binary splits in order to create rules that are physically 

interpretable and, more importantly, easily programmable using the primitive Boolean 

filters available in commercial AE software. A decision tree produces such binary 

classification rules for continuous data, and despite shortcomings such as subtree 

replication, it ensures that each AE “hit” falls under only one class or AE source. Of all 

the decision trees, this study employs the J48 algorithm, which is an open source version 

of the popular C4.5 algorithm introduced by (Quinlan 1993). This algorithm produces a 

series of nested if-else binary conditionals or rules, which are usually displayed in the 

form of a binary tree when used on continuous datasets. 

The C4.5 algorithm constructs a decision tree through a divide-and-conquer strategy. 

In C4.5, each node in a tree is associated with a set of objects. At the beginning, only the 

root is present and associated with the whole training set trY . At each node, the following 

divide-and-conquer procedure is executed until the best local choice is found, with no 

backtracking allowed: 
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1. Compute the frequency for each class in Y, which is the set of objects associated 

at the node. 

2. If all objects in Y belong to the same class ,i jc , or the number of objects in Y is 

less than a certain value specified by the user, then the node is turned into a leaf 

labeled as majority class ,i jc . The classification error of the leaf is calculated as 

the weighted sum of the objects in Y whose class is not ,i jc . 

3. If Y contains objects belonging to two or more classes, where ,i jc NClass= , then 

the information gain ratio obtained from splitting Y  into two sets lY  should be 

calculated for each attribute, where, 
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4. The attribute with the highest gain ratio is selected as the condition attribute to be 

tested at the node. 

5. The threshold where to split the attribute is computed by choosing the best gain 

ratio from all possible splits in-between any two successive objects after sorting Y 

in ascending order by the values of that attribute. 

6. Iteratively perform steps 1-5 on the new Y obtained after applying the rule at the 

previous node. 

7. Calculate the classification error at each node, where the total error is the sum of 

the errors of each of its child nodes. If the calculated error is greater than the error 
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of classifying all cases in Y as belonging to the majority class in Y, then the node 

is turned into a leaf and all subtrees are removed. 

Programmable rules (i.e., rules that can be implemented in AE applications using 

primitive Boolean filters) can be extracted from a decision tree by turning each node into 

an if-else statement, and nesting these conditionals until reaching a classifying leaf node. 

Ideally, one nested rule should be able to cover all objects in each class, but in practice, 

the coverage of each rule may be reduced, and several rules may be required to represent 

each class. 

Experiments and discussion 

The proposed data mining scheme will be validated in three steps. First, it will be 

applied to a synthetic dataset where the results are intuitive and easily interpretable. 

Then, it will be applied to an AE dataset where AE sources are known and labeled a 

priori. The algorithm’s accuracy and rule generation under these conditions will be 

examined. This dataset will be used to determine a suitable number of nearest neighbors 

to be used when testing for outlierness and it will prove that statistically dissimilar AE 

sources can be systematically segregated. Finally, the scheme will be applied to AE 

datasets obtained from two SE(T) fatigue crack-growth steel specimens, where 

background “noise” is a common problem, and the results will be compared to 

conventional background “noise” removal practices. 

Performance on a synthetic dataset 

A training set of two-dimensional data consisting of two Gaussian distributions is 

generated synthetically. The mean and standard deviation of each distribution are chosen 

so that the minimum volumes enclosing each distribution do not overlap. A two-
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dimensional plot of this data is shown in Figure 12a. A similar two-dimensional testing 

dataset draws points from the same distribution as the training dataset in addition to 

drawing from two separate non-overlapping distributions. This synthetic testing dataset is 

plotted in Figure 12b. 

  
Figure 12 – Synthetic dataset: a) training data; b) testing data; c) outliers in testing data only; d) 

clustered outliers in testing data only 

Intuitively, all points in the leftmost two distributions in the testing dataset should be 

classified as inliers, where all points in the rightmost two distributions should be found to 

be outliers. Furthermore, clustering the outlier data should reveal two separate 
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distributions within the outliers, and the extracted classification rules should partition 

both dimensions somewhere between 1 and 2 and correctly point to each class. 

For the outlier detection step in the proposed data mining scheme, λ  was found to be 

equal to 2.4 with a percentage of training outliers, actualp , of 0.6%. For this dataset, the 

value of k when evaluating the k-nearest neighbors did not have a significant effect in the 

outlier detection accuracy, but it is suggested that 30k ≥  since it is commonly held that 

30 is the minimum sample from which one should draw statistical inferences (Weiss 

2012). This is particularly relevant with expected value calculations, which follow the 

central limit theorem that states that for 30k ≥ , the sample mean tends to approach a 

normal distribution with an increasingly smaller standard deviation. The sample mean of 

the probabilistic distances between nearest neighbors is used in the calculation of PLOF 

and exhibits this property, thus suggesting the need for setting 30k ≥ . Therefore, for this 

study, though smaller values of k could provide adequate results, the value is set to 30 to 

provide a more accurate representation of each local distribution without possibly 

choosing a k that is larger than a local distribution. The outliers obtained from the outlier 

detection step are shown in Figure 12c. Note that because the outlier detection algorithm 

is designed to be conservative when classifying objects as inliers, 0.6% inliers were 

incorrectly classified as outliers. This is, not coincidentally, the same percentage of 

outliers as in the testing dataset, since both datasets draw their inliers from identical 

distributions. 

The X-means clustering step, also as expected, correctly distinguishes between the 

two different outlier distributions. Since X-means is a hard clustering algorithm, all 

points are assigned to one of the two found clusters. The clustered outliers are depicted in 
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Figure 12d. In case of extremely large testing datasets, the X-means process can be made 

more efficient by first constructing a K-D tree with a uniformly sampled subset of the 

training dataset (Pelleg and Moore 2000). 

Efficiencies in the rule-extraction process can also be achieved by first discretizing 

the continuous dataset. Weighted proportional k-interval (WPKID) equal frequency 

discretization, as proposed by Yang and Webb (2003), will result in a faster runtime and 

may even improve the classification error for some classifiers. The final decision tree 

obtained from applying the C4.5 algorithm to the clustered dataset can be seen in 

Figure 13. 

  
Figure 13 – Decision tree with leaf nodes as clusters: synthetic dataset 

In this decision tree (as in the other decision trees in this study), the leaves are labeled 

“0” for inliers, “1” for Cluster 1, “2” for Cluster 2, and so on. This decision tree was 

found to have an overall classification accuracy of 99.7% when compared to the LoOP 

labels, though the generated rules are 100% accurate in segregating the right-most 

distributions in the testing dataset. As it has been shown, the resulting decision tree 

illustrates that the algorithm does in fact produce rules that are intuitive and accurate. 

Performance on a manually classified AE dataset 

AE data varies from the synthetically generated dataset in a few key ways. First, not 

all features measured from a single AE source are normally distributed. Second, the 
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number of features that are normally extracted from a typical AE “hit” is usually quite 

large. In this study, all AE datasets are composed of 15 unique features, all of which are 

assembled into a 15-dimensional matrix of n instances or “hits.” Features that are not 

considered are any constant, monotonically increasing or decreasing features, or unique 

ID features such as time of test, channel number, and threshold. All features obtained by 

the AE data acquisition system are positive scalars. 

AE monitoring data is typically plotted as a time-series of amplitude measurements 

also called an “amplitude vs. time” plot. However, because the “hit” time-of-test stamp is 

not considered in this study, the time-of-test dimension is not considered when finding 

outliers and plotting values such amplitude vs. time functions serves simply as a 

convenient presentation. Thus, points that seem to be outlying in a time series plot and 

are found to have very low LoOP scores will not be labeled as outliers. 

In order to generate an AE dataset suitable for validation of whether AE data can be 

discriminated using the proposed data mining scheme, a simple experiment was designed. 

A 29x2.0x0.5in A572-G50 steel specimen was placed on top of layered wood, styrofoam, 

and rubber supports in order to isolate it from external “noise.” The specimen was 

instrumented with six Physical Acoustic Corporation® (PAC®) R15I-AST resonant 

sensors in an identical layout to the sensor layout detailed in (Nemati 2012). The sensors 

were connected to a PAC® PCI-2 Rev. 3 AE data acquisition system. At the specimen 

midspan, a PAC® FieldCAL™ AE pulse generator was connected as shown in Figure 14.  
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Figure 14 – PLB and FieldCAL™ signal AE test setup 

A “noise” training dataset was collected by cycling the FieldCAL™ through all of its 

amplitude and frequency combinations for a duration of 180 seconds for each setting, as 

given in Figure 15a. 

 
Figure 15 – AE dataset (sensor 3): a) FieldCAL™ hits used for training; b) PLB hits used for 

testing; c) outliers in testing data only; d) clustered outliers in testing data only 
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The testing dataset was generated by collecting data from 221 pencil lead breaks (PLBs) 

at the specimen midspan. The PLBs were performed as per American Society for Testing 

and Materials (ASTM) E976 (2010) guidelines, where a 0.20in diameter, 0.11in long 

pencil lead is broken on the material surface in order to simulate a sudden crack 

propagating within the material. PLBs are typically characterized by being very high 

amplitude hits when performed within inches of a sensor. These hits were separated 

manually from any reflections by selecting the highest amplitude hit immediately 

following each PLB and are illustrated in Figure 15b. Even though data was collected by 

all six sensors, the aim of this study is to provide filters and characterization rules without 

the need for multiple sensors. While this study focuses only on the sensor closest to the 

PLB source, the other sensors are used for data validation and for spatial filtering. 

When running the LoOP algorithm on this AE dataset, the optimal value of k was 

found to be between 15 and 45 nearest neighbors (Figure 11). A value for k equal to 30 is 

used for this dataset, as it lies in this middle of the acceptable range for k and, as 

previously explained, it guarantees the nearest neighbor distributions are adequately 

represented. For the AE dataset, the value for λ  is estimated to be equal to 4.0 with a 

percentage of training outliers equal to 0.3%. The LoOP algorithm mislabels 2.7% of the 

PLBs as belonging to the FieldCAL™ distribution, with the other 97.3% of testing points 

correctly labeled as outliers, as shown in Figure 15c. The ability for the LoOP algorithm 

to successfully discriminate PLBs from the large dataset of background “noise” suggests 

that there can be sufficient distinction between hits of similar amplitude and peak 

frequency provided that other AE features have sufficient contrast. Even though the PLBs 

are tested for outlierness versus AE-like pulses of 150kHz and 90dBAE, which is the 
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theoretical “signature” of PLBs, there exist enough discriminating features to separate 

PLBs from this background “noise”. Moreover, when using a mix of PLBs and 

FieldCAL™ data as the testing dataset, all FieldCAL™ hits are also correctly identified as 

inliers by the LoOP algorithm. 

The clustering algorithm, not surprisingly, returns only one cluster for the set of 

outliers. A duration vs. average frequency plot, shown in Figure 15d, confirms that the 

PLBs are grouped into a single cluster. Other two-dimensional plots not shown reveal a 

similar cluster structure. In the decision tree generation phase, the C4.5 algorithm 

produces a two-level decision tree with only two features being considered as presented 

in Figure 16.  

 
Figure 16 – Decision tree with leaf nodes as clusters: AE dataset 

Interestingly, the two discriminating features are duration and average frequency, instead 

of more commonly used features like amplitude and peak frequency. The classification 

rule for PLBs characterizes them as hits with average frequency less than 125kHz and a 

duration greater than or equal to 12.5ms. This rule correctly classifies 98.6% of the 

testing dataset as outliers, and it matches the predicted outlier detection labels with 99.8% 

accuracy. These results suggest that the outlier detection performance of this scheme 

when used in AE data is satisfactory even when using the rules obtained from the 

decision tree. 
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Outlier detection in SE(T) fatigue-crack growth AE datasets 

With evidence that the outlier detection algorithm is able to discriminate between hits 

of similar amplitudes and peak frequencies provided that the other features are 

sufficiently dissimilar, a natural extension of the proposed data mining scheme is to 

utilize it as a background “noise” removal tool. Steel fatigue crack-growth testing is 

notoriously fraught with background “noise” problems, and “noise” damping, spatial 

filtering, and high amplitude thresholds are often used to obtain workable datasets 

(Berkovits and Fang 1995). Commercial systems such as the PAC® PCI-2 AE data 

acquisition system allow for the setting of conditional front-end filters, and all rules 

produced in the form of decision trees can be easily implemented using these tools. 

Additionally, post-processing filters found in AE data analysis software such as NOESIS® 

also follow the same conditional rules, and implementation is identical to that of front-

end filters within the AE data acquisition software. 

Removal of unwanted signals in fatigue crack-growth testing is facilitated by the 

abundance of collected data, particularly during early stages of testing prior to the onset 

of crack-growth. AE data collected before crack growth can safely be assumed to be 

caused by extraneous sources. Additionally, data collected under sub-critical stress 

intensities can be similarly labeled as background “noise.” While conducting this study, it 

was observed that the best training datasets are those which, when plotted as a time 

series, appear to be constant. Specifically, time-series plots of frequency parameters 

appeared to be particularly sensitive to crack-growth activity. Therefore, in the absence of 

a crack mouth opening displacement (CMOD) gauge or similar crack-growth measuring 
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device, it is advisable to use a training dataset that behaves in a constant fashion when 

viewed as a frequency time-series. 

This study focuses on two ASTM A572-G50 steel fatigue crack-growth raw datasets 

collected by Nemati (2012), where SE(T) specimens were outfitted with AE sensors in 

the same configuration as Figure 14. In addition to these sensors, a CMOD gauge was 

placed on the pre-notched crack opening, and an optical microscope was used to 

determine the visual onset of crack-growth. Both specimens are wedge-gripped, and they 

are subjected to constant tensile cyclic loads. 

When utilizing portions of the testing dataset as training data, it is essential that the 

chosen data points be relatively homogenous, and that there be enough instances for each 

type of hit or AE source in order to form well-represented neighborhoods. Therefore, data 

collected immediately following the start of a fatigue test should not be used since the 

fretting and friction phenomena associated with grip “noise” and frame engagement can 

be potentially similar to that of crack-growth activity. Grip and frame engagement-related 

emissions tend to subside shortly after test initiation, which can be seen as a marked drop 

in peak amplitude, followed by a period of constant emission rate. In this study, the 

period of constant AE activity detected by sensor 3 before the onset of crack-growth (as 

measured by the CMOD) is used as training data, as shown in Figure 17a. 
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Figure 17 – SE(T) specimen S9 dataset (sensor 3): a) raw data; b) outliers in testing dataset; c) 
dataset filtered using guard sensors; d) dataset filtered using guard sensors and outlier detection 

The entire dataset including the training portion is used for testing. Note that the training 

interval in the testing dataset will contain a number of outliers smaller or equal to the 

chosen outlier tolerance. 

Intuitively, outliers found using this methodology should be directly related to crack-

growth phenomena, except for early emissions due to grip and frame engagement, which 

are not accounted for in the training dataset. The rate of outliers is expected to increase 

proportionally to the crack-growth rate, and the peak emission rates and amplitudes 

should occur near the specimen’s failure. 
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The outliers obtained from the LoOP algorithm can be seen in Figure 17b. As expected, 

there is an initial short period of high activity followed by a span of little to no activity. 

Crack-growth initiation was measured to occur at 290,000 cycles, or 1.45 x 105 sec., 

which coincides remarkably well with reappearance of significant outliers at the 1.44 x 

105 sec. mark. 

Clustering exposes three subclasses within the outliers, and further examination 

reveals that the X-means algorithm groups those hits with a very large initial frequency, 

which are due to waveforms that cross the amplitude threshold only once prior to the 

waveform peak and whose rise time is limited to the granular resolution of the AE system 

(1µs). This hardware-related artifact is manifested in the counts to peak, rise-time, and 

initial frequency parameters. The second cluster is a similar grouping of hits with a 

duration of 1µs (again, due to the time-resolution of the system) and one total count, 

which is equivalent to an average frequency of 1000kHz. Neither of these clusters should 

be systematically eliminated since, even though they are spuriously clustered together 

due to issues of resolution, they may still correspond to legitimate crack-growth events. 

The rules obtained from the C4.5 algorithm, as illustrated in Figure 18, show that both 

spurious clusters share the same secondary node in the rule tree, which means that they 

can be both be described by a single rule: rms voltage ≥ 0.0015mV & duration ≤ 1.5µs.
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Figure 18 – Decision tree with leaf nodes as clusters: SE(T) specimen S9 

The branch leading to the three outlier clusters can be represented by the root node. That 

is, the value of rms voltage can adequately describe outlying emissions. Ten-fold cross-

validation of the testing dataset reports an accuracy of 99.8% when utilizing this rule to 

filter out background “noise.” This rule is order independent and can be applied at any 

point of the filtering process. For example, Figure 17c shows the same dataset filtered by 

spatial techniques. The preferred method of background “noise” removal in fatigue 

testing is that of guard sensor filtering. This method consists of removing hits based on 

the order in which they arrive to each sensor; if sensors detect an AE event in the 

direction opposite to the expected propagation, then all signals associated with that event 

are discarded. In this study, hits within 0.5sec. of all events where guard sensors were 

first to detect a hit are removed. This conventional filter removes approximately 90% of 

all data yet, just as in the raw dataset, the onset of crack-growth cannot be clearly 

discerned. Applying the first rule on the decision tree results in the filtered dataset in 

Figure 17d. This dataset closely resembles the original outlier dataset in Figure 17b, 

except for the conventional filter removing three large amplitude spikes. Conventional 

filters, as evidenced, may remove spurious spikes in historic index and cumulative plots, 
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but do not affect the change in hit rate which, for the elastic portion of the crack 

evolution, should behave proportionally to the crack-growth rate (Yoon et al. 2000). 

However, an outlier filter such as the one described in this study does, in fact, expose the 

onset of crack-growth without removing potentially relevant emissions. 

Depending on the number of clusters found by the X-means clustering algorithm, it 

can be seen that extracted rules may expose a structure within the data caused by 

segregation of frequency features derived from low resolution parameters, which tend to 

act like discrete attributes at certain values. Nonetheless, rule extraction can produce 

relevant rules that further segregate the outlier dataset. 

 

Figure 19 – SE(T) specimen S4 dataset (sensor 3): a) raw data; b) outliers in testing dataset 

Figure 19a shows a raw dataset from a similar SE(T) specimen than the one used in 

Figure 17 (tested at an R ratio (i.e., the ratio of the minimum load to the maximum load in 

a fatigue cycle) of 0.10), though this specimen is subjected to a significantly higher R 

ratio of 0.65. For this specimen, the amplitude time-series shows similar trends than the 

previous example. The training dataset is recorded after a 3-hour initial settling period of 

high emissivity and is stopped after 24 hours, approximately 44 hours before the 
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measured onset of crack-growth. The data obtained after the outlier detection step is 

shown in Figure 19b. The outliers appear a few minutes after the recorded onset of crack-

growth at 2.59 x 105sec. 

The cluster structure reveals a subset of the data with a very small rise time of 1 µs, 

which is again clustered due to initial frequency being directly calculated from this value 

and being discrete for waveforms with few counts to peak. The bulk of the clustered 

emissions is characterized by having a high absolute energy and a low average 

frequency. 

 
Figure 20 – Decision tree with leaf nodes as clusters: SE(T) specimen S4 

Upon examining the extracted rules in Figure 20, the decision tree’s left branch 

(composed of Cluster 2 and inliers) highlights the subset of spurious hits, while the right 

branch of the decision tree with a longer duration is characterized by Cluster 1 hits with a 

reverberation frequency < 118kHz and an average signal level > 26.6dBAE. Cluster 3 is 

characterized by a high reverberation frequency, low amplitude component and only 

occurs around sudden amplitude spikes above 45dBAE. Ten-fold cross-validation of the 

testing dataset reported an accuracy of 98.4% 
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The rule covering most of the outlier data (Cluster 1) is of particular interest once 

analyzed further since it can be related to the rule obtained for the previous example. Due 

to the direct mathematical relationship between average signal level (ASLAE) and rms 

voltage (RMS), the value for ASLAE can be linearly approximated as a function of RMS 

around the values of 24 and 30 dBAE by the expression 

 5000 19AEASL RMS= ⋅ + ,  (13) 

where the value of RMS is expressed in millivolts, and the resulting ASL is given in dBAE. 

Using this expression, it can be seen that an RMS value of 0.0015 corresponds, 

approximately, to 26.5dBAE. In other words, the rule leading to the outlier branch in 

Figure 18 is identical to the primary rule obtained for Cluster 1 in Figure 20. This 

similarity suggests that the extracted rules can, in fact, be generalized between similar 

specimens and, possibly, specific damage mechanisms for a given material. It is advised 

that, when trying to characterize failure mechanisms in terms of generalized rules, AE 

features with high resolution be used, and features directly calculated from one another 

(such as average signal level and rms voltage) be avoided. 

Concluding remarks 

The data mining scheme proposed in this study was found to perform satisfactorily, with 

classification accuracy for known datasets never falling below 95%. On synthetic 

datasets, outlier distributions were appropriately detected, and the scheme produced rules 

that are intuitive and correctly classify the data. In a controlled AE experiment involving 

PLBs and background “noise,” the PLBs were correctly classified as belonging to a 

different distribution from those in the training dataset. Rules obtained for PLB 

classification performed with promising accuracy, as the rules correctly described 98% of 
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the dataset. Applying the scheme to fatigue crack-growth data also showed satisfactory 

results, with “noise” being successfully removed and exposing AE belonging to crack-

related phenomena around the same time as the measured onset of crack-growth. Rules 

extracted from crack-related AE seemed to apply similarly across two tested specimens 

despite their different loading conditions. In particular, it was found that AE due to crack-

related phenomena could be characterized as having an average signal level ≥ 26.5dBAE 

for both of the specimens. While some of the extracted rules pointed towards spurious 

clusters commonly found as a consequence of low-resolution attributes, the rules 

obtained for these specimens hints at the possibility that AE “signatures” can be found for 

specific failure mechanisms and for different boundary conditions. Even though this 

study only suggests that rules can be generalized across similar specimens and boundary 

conditions, this methodology can be replicated when finding more general rules. If rules 

can, in fact, be generalized, then this scheme could not only produce efficient tests for 

outlierness within similar datasets but, if performed across enough specimens, could yield 

rules that effectively characterize the failure mechanisms that govern fatigue-fracture. 

Ultimately, it is hoped that rules that act as a general “signature” for AE from failure 

mechanisms can become part of warning systems and data filters in future SHM 

applications. 

 

 



 
 
 

 
 
 

CHAPTER 4, STUDY 3: NEURAL NETWORK FORECASTING OF ACOUSTIC 
EMISSION PARAMETERS FROM FATIGUE CRACK-GROWTH DATASETS 

 
 
 

Summary 

A major role of structural health monitoring structural health monitoring (SHM) and 

non-destructive evaluation (NDE) efforts is the assessment of current and future damage 

conditions in structural members. This study presents a framework for crack-growth 

forecasting of structural elements subjected to cyclic loading. The framework forecasts 

acoustic emission (AE) and crack mouth opening displacement (CMOD) measurements. 

Predicted values are the input for linear-elastic fracture mechanics (LEFM) models to 

determine crack size. Short-term and long-term forecasts are accomplished using 

variations of a nonlinear autoregressive exogenous artificial neural network (NARx 

ANN) design. The framework is validated and tested using data collected from two single 

edge (tension) (SE(T)) specimens. The achieved forecasting accuracies indicate that 

ANNs provide an adequate way to model the complex relationships between LEFM 

parameters and AE measurements. Moreover, the study suggests that averaging estimated 

crack sizes obtained from predicted AE values yields an accurate long-term prediction of 

both crack size and crack-growth trends. Results also show that AE parameters can be 

predicted in a short-term and long-term fashion, and that crack-growth can be accurately 

estimated given adequate models. 

64 
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Background 

AE and LEFM crack size estimation 

AE has been shown to occur during testing of metals in fatigue crack-growth 

experiments. It is well known that a portion of the energy released at the instant of crack 

growth is dissipated in the form of heat and elastic waves. AE is produced not only by the 

onset of yielding at the crack tip or crack extension, but also by the contact friction of 

fatigue crack surfaces due to closure (Morton 1973). Abrading surfaces produce frequent 

emissions, which have a slow rise time and low amplitude. AE from crack closure can 

occur even during tension-tension cyclic loading (Adams 1972). The premise behind AE 

monitoring in fatigue application is that the features extracted from waves that meet 

certain threshold criteria are an indication of the energy being released, which in turn can 

be used to estimate the current state of the crack using fracture mechanics theory. 

Generally, AE “hit” rates and certain extracted parameters have been shown to increase 

as the crack growth increases. 

These relationships have been the subject of research since the early 1970s. For 

example, in early studies, Harris and Dunegan (1974) proposed a bilinear empirical 

relationship between the “hit” rate and the stress intensity factor (SIF) range. Further 

studies found that similar proportionalities between the “hit” rate, rate of crack-growth, 

and SIF range (Morton et al. 1974; Lindley et al. 1978; Williams 1982; Lee 1989; Fang 

and Berkovits 1995; Daniel et al. 1997; Oh et al. 2004). Of particular relevance are 

power-law expressions linking AE parameters to LEFM parameters. 

Gong et al. (1992) proposed a relationship between the AE counts, η , and the SIF 

range, K∆ : 
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 ( )gd B K
dN
η
= ⋅ ∆ , (14) 

where B and p are constants for a particular material. A similar relationship between the 

AE abs. energy rate, U, and K∆  was introduced by (Yu et al. 2011): 

 , (15) 

with 'B  and 'p  being material and boundary condition constants. Combining the latter 

expression with the Paris-Erdogan Law (Paris and Erdogan 1963) yields the following 

relation: 

 ( )qda dUD
dN dN

= ⋅ , (16) 

where a is the crack size, and D and q are material and boundary condition constants. The 

above expression suggests there is a relationship between the crack-growth rate and the 

energy release rate. The energy released by crack extension, plastic deformation, and 

fracture events within the plastic zone, aU , can be expressed as follows (Dowling 2007): 

 
2

max

'a
K a bU

E
⋅ ⋅

= , (17) 

where maxK  is the maximum stress intensity factor, b  is the plate thickness 

corresponding to the maximum possible crack size, and 'E  is equal to Young’s modulus. 

For an existing geometry maxK  can be expressed by:  

 max max ( )aK a F
b

σ π= ⋅ ⋅ ⋅ , (18) 
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where σ is the nominal tensile stress on the SE(T) specimen cross-section due to axial 

load, and ( / )F a b  includes the effects of limited thickness and gripping conditions. By 

combining equations 17 and 18, a reasonable assumption can be formulated that the 

change in crack size, a∆ , and the accumulated AE energy released during crack-growth, 

U, are proportional and related by a similar power law, which can be represented by the 

following proposed expression: 

 ( )a U αβ∆ = ⋅ ∆ , (19) 

where β  and α  are material, geometry, and boundary condition constants. For a pre-

notched specimen, the new crack size after N cycles, Na , can be estimated by (as 0 0U = ): 

 0( )N Na U aαβ= ⋅ + , (20) 

where 0a  is initial pre-notched crack size, and NU  is the cumulative (cum.) AE absolute 

(abs.) energy after N cycles. Note that these proposed relationships are only presumed to 

be valid for the stable elastic portion of the crack evolution. 

Non-AE methods for determining crack size such as CMOD have also been 

developed for known materials and geometries. Nemati (2012) proposed a relationship 

for fixed-fixed support SE(T) specimens between the measured CMOD after N cycles, 

δ , and the ratio /a b : 

 '

4 N
N f

a aV
E b
σδ ⋅∆ ⋅   = ⋅   

  
, and (21) 
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, and (22) 

 
2 3 4 5

1.01  0.13 1.78 8.02 12.72 7.68a a a a a a
b b b b b b

γ            = − ⋅ + ⋅ − ⋅ + ⋅ − ⋅           
           

. (23) 

This LEFM relationship is also valid only while the length of the uncracked ligament 

remains predominantly elastic. 

Crack size estimation and life prediction models 

Damage prognosis is typically defined as estimating a structure’s remaining useful 

life, which is usually quantified as the number of cycles the structure can withstand 

before failure (Farrar et al. 2005). Unfortunately, estimating the remaining life typically 

requires knowledge of loading conditions, member geometry, and stress intensity factor 

thresholds. Several deterministic LEFM models have been proposed and are summarized 

by Kulkarni and Achenbach (2008). Probabilistic models based on grounds that crack-

growth is an inherently stochastic process have also been developed. By modeling 

different sources of uncertainty such as imprecision in measurement, variability of LEFM 

parameters, or even systematic errors, the remaining life or other parameters can be 

output as ranges with a certain degree of confidence. Of particular relevance to this study 

are (Rabiei et al. 2009; Mohanty et al. 2011; Zárate et al. 2012a), who used, respectively, 

count, amplitude, and AE abs. energy measurements as part of probabilistic models for 

remaining life prediction. While probabilistic models are able to output probabilistic 

estimates of the damage evolution, they require the analyst to make simplifying 

assumptions in order to model the uncertainty, and they also require knowledge of a 
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model relating measured and predicted values. Of greater importance, however, is the 

computational expense associated with probabilistic models, which are populated using 

Monte Carlo methods that require hundreds of millions of iterations before reaching 

“convergence” (Zárate et al. 2012b). 

An alternative to closed-form deterministic LEFM models and stochastic methods is 

that of ANNs, which have been used extensively in fatigue damage prognosis and have 

been shown to be effective in modeling material behavior, particularly when given 

sufficient training data (Flood and Kartam 1998).  Early work by Han (1995) on the 

fatigue life of weldments with weldment defects found that ANNs were effective in 

predicting the remaining weldment life with 50% accuracy. Pleune and Chopra (2000) 

found ANNs useful in characterizing the fatigue lives of carbon and low alloy steels as a 

function of steel type and its environment. Srinivasan et al. (2003) found ANNs to be 

superior to analytical approaches when relationships between LEFM input and output 

variables are unknown while maintaining life estimation accuracy within 50%. Genel 

(2004) studied the applicability of ANNs to the prediction of strain-life fatigue properties 

compared to analytical and empirical methods and concluded that ANNs can adequately 

capture these relationships. More recently, Mathew et al. (2008) used ANNs to model the 

relationship between temperature and nitrogen-alloyed 316L stainless steel LEFM 

parameters and found their network could predict the fatigue life with 50% accuracy. 

Steel fatigue-fracture research using ANNs with AE parameters as inputs has been 

particularly scarce. Hill et al (1993) used AE amplitude inputs to predict the ultimate 

strength of welds within 3% accuracy. Emamian et al. (2003) employed ANNs as a 

classification tool, using the principal components of AE fatigue data as inputs to the 
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network and classifying data as “crack-related” or “noise-related” with 90% accuracy. 

Kim et al. (2004) fed AE counts, energy, rise time, duration, and amplitude 

measurements averaged for every 4x10-3in. crack size increment into an ANN in order to 

correlate it with the SIF range; this study found that ANNs could fit experimental SIF 

data with a coefficient of determination, r2 ≥ 0.62, for all tested specimens. Lastly, 

Barsoum et al. (2009) utilized an ANN in the prediction of overall fatigue life using AE 

count data for less than half of the specimen’s life and reported prediction errors lower 

than 12%. 

ANN design for time-series forecasting 

Although all ANNs follow the same underlying principles, there are many network 

designs tailored to different applications. A broad definition of a practical ANN is that it 

is a collection of interconnected neurons that incrementally learn from data to capture 

essential linear and nonlinear trends and relationships in complex data, so that it provides 

reliable predictions for new situations containing even noisy or partial information. The 

fundamentals of ANNs are well understood, so this section will only aim to summarize 

the design and training procedure. Additional information regarding ANN fundamentals, 

design, and training may be found in (Samarasinghe 2007). 

Although the complex relationship between AE and LEFM has been examined in the 

literature, little effort has been made to make use of the temporal relationships that are 

inherent in fatigue-fracture applications. If it is assumed that the loading conditions in a 

structure remain constant over time, as is the case in constant-amplitude fatigue testing, 

then crack-growth can be modeled as a time series. It can be postulated that under these 
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loading conditions, the crack size at time t, ta , may be a function of one or several of its 

previous values so that, 

 2( , ,..., )t t T t T t n Ta f a a a− − ⋅ − ⋅= , (24) 

where T  is a user-defined time-step representing the prediction resolution, and t n Ta − ⋅  is 

the nth and earliest value of a contributing to ta . Such a model is considered to be 

autoregressive as it depends only on its past values. Similarly, it is possible to introduce 

an exogenous variable that also contributes to the value of a, so that: 

 2 2( , ,..., , , ,... )t t T t T t n T t T t T t n Ta f a a a x x x− − ⋅ − ⋅ − − ⋅ − ⋅= , (25) 

where x  is an exogenous variable sampled over time. This model, called autoregressive 

exogenous, is typically used, as the name implies, in applications where an autoregressive 

time series is also influenced by external inputs. Lastly, it can be assumed that ta  

depends only on previous values of the exogenous variable, x , yielding the following 

input-output expression: 

 2( , ,... )t t T t T t n Ta f x x x− − ⋅ − ⋅= . (26) 

While these relationships can serve as a basis for an ANN study directly relating 

crack size to itself and other exogenous inputs, in practice, an accurate crack size time 

history is rarely known in field or even experimental applications. Since knowledge of 

the crack size history is required in order to train the crack size models, in most cases, it 

may be difficult to train an ANN directly for crack size predictions. Instead, prediction of 

NDE-type measurements, such as AE or CMOD, may be more feasible and 

representative of practical applications where the actual crack size is unknown. If NDE 
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measurements are able to be predicted with accuracy, then the crack size at each time step 

can be estimated using the relationships presented in the background section. This hybrid 

ANN and LEFM model can be represented by: 

 2 2( ), and ( , ,... , , ,... )t t t t T t T t n T t T t T t n Ta y y f y y y x x xφ − − ⋅ − ⋅ − − ⋅ − ⋅= = , (27) 

where ( . )φ  is a model relating crack size to an NDE measurement, y, and ( ) . f  is an 

ANN relating this NDE measurement to its time history and an exogenous NDE 

measurement’s, x, time history. 

In this study, a nonlinear autoregressive exogenous input (NARx) ANN is used to 

model the relationship between NDE measurements and their future values. The NARx 

ANN consists of one input neuron layer, one nonlinear hidden neuron layer, and one 

linear output neuron. The ANN design is shown in Figure 21. 

 
Figure 21 – Schematic for NARx ANN design for one-step-

ahead prediction 

This design offers the advantage of having only one hidden layer with a user-specified 

number of neurons, making training significantly faster. Before training this ANN, the 

user must fix the number of delays, n, the prediction resolution, T, and the number of 

neurons in the hidden layer, NΣ ,—all of which are positive integers. Prediction of a time-
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step t k T+ ⋅  can be obtained directly from a single NARx ANN by modifying the model 

such that:  

 2 2( ), and ( , ,... , , ,... )
p p pt k T t k T t k T t T t T t n T t T t T t n Ta y y f y y y x x xφ+ ⋅ + ⋅ + ⋅ − − ⋅ − ⋅ − − ⋅ − ⋅= = , (28) 

where pk  is a positive integer denoting the prediction horizon. This relationship 

maintains the assumption that there is enough information in the variables’ time histories 

to adequately predict the output variable this far in advance. The NARx network is able 

to be used without either an exogenous or autoregressive variable by simply ignoring all 

neurons associated with that input. 

NARx ANNs, like all feed-forward ANNs, can be trained using typical back-

propagation algorithms, although more efficient training can be achieved using the 

Lavenberg-Marquardt Algorithm (LMA) (Hagan et al., 1996). LMA is a variation of the 

Newton’s method for minimizing functions that are sums of squares of other non-linear 

functions and can be written as follows: 

 ( ) 1

1
T

n n n n n nµ
−

+ = − +W W J J I J e , (29) 

where n  is the current iteration step, W  is the network weight matrix, J  is the Jacobian 

matrix, which is composed of the first derivatives of the network errors with respect to 

the weights, I  is the identity matrix, and e  is the error vector. The network weight 

matrix is randomized with small non-zero values (less than 0.5), and 0.001µ = . During 

training, µ is decreased by a factor of 10 after each successful epoch (i.e., a reduction in 

the performance function) and is increased by the same factor only when a tentative step 

would increase this measure. In this way, the performance function will always be 
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reduced in each training iteration. In this study, the performance function, E, is chosen to 

be the sum square error (SSE). Lastly, the activation function chosen for the hidden layer 

is the sigmoid hyperbolic tangent function, and all outputs are scaled using a linear 

function output neuron. 

Experiments and discussion 

Single edge notches provide well-defined load and fatigue crack size and shape 

environment for estimation of LEFM parameters. However, typical ASTM E647 (2011) 

specimens require AE sensors to be placed on the surfaces containing the crack tip. These 

sensor configurations rarely represent field conditions for early crack-growth stages. To 

overcome this limitation, Nemati (2012) designed a small-scale specimen in order to 

develop uniform stresses perpendicular to the plane of crack-growth, while allowing for 

AE sensors to be placed in the same surfaces expected to be used in the field 

(Figure 22 (left)). Six narrow-band Physical Acoustics Corporation (PAC®) R15I-AST 

sensors are deployed around a pre-notch. Sensors are spaced with 4in. spacing in a linear 

array. The two innermost sensors are placed 4in. away from the notch. The final sensor 

arrangement is depicted in Figure 22 (right). 
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Figure 22 – Left: Schematic of field deployment of AE sensors around welded stiffener; right: 

Experimental setup of small-scale specimen designed from field setup 

In addition to AE sensors, two 200X-magnification video cameras are mounted in order 

to visually monitor and measure the crack-tip evolution in real time. Crack size 

measurements are recorded from the magnified images using image-processing software. 

A displacement gauge is placed at the notch’s mouth and the CMOD is measured at a 

sampling frequency of 50Hz. AE sensors are connected to an MTS® data acquisition 

system (DAQ), and AE sensors are connected to a PAC® PCI-2 Rev. 3 AE DAQ. 

Specifics about experimental design and hardware setup parameters can be found in 

(Nemati 2012). 

This study focuses on two ASTM A572-G50 SE(T) specimens with a nominal length 

of 29in and gross cross-sectional area of 1in2. The choice of dimensions and materials is 

meant to represent the typical design characteristics of flexural beam flanges in steel 

bridges. The first specimen, S4, was tested at a peak load, Pmax, of 13kip and a minimum 
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load, Pmin, of 8.5kip; thus its R ratio, min max/ 0.65P P ≈ ; and, the pre-notch length, 0a , was 

measured to be 0.170in. The second specimen was subjected to a Pmax of 10.5kip, a Pmin 

of 1.0kip ( 0.1R ≈ ), and a pre-notch 0 0.105in.a =  The tensile load was cycled 

sinusoidally at a frequency of 2Hz. 

Data preprocessing 

AE testing is particularly fraught by the measurement of unwanted signals 

(sometimes loosely referred to as “noise”), even in controlled testing environments. 

There are many techniques used in order to ameliorate the background “noise” 

experienced during metal fatigue testing. Usually, setting high-amplitude acquisition 

thresholds helps to remove a large portion of the background signals. Surface dampening 

using modeling clay was found to be particularly useful at removing a significant portion 

of the “noise” coming from the hydraulic pump and grips. Band-pass filters are also put 

in place to filter out signals with very low (<20kHz) and very high (>300kHz) 

frequencies. Even with these precautions, background signals are still a problem. Post-

processing noise removal is accomplished using the outlier detection rules found in study 

2. This methodology of noise removal is useful in removing unwanted signals unrelated 

to crack-growth phenomena. The AE datasets for both specimens were filtered so that 

only signals related to crack-growth are present. Although AE parameters can be forecast 

for every sensor, this study focuses only on the sensor closest to the pre-notch, as this 

sensor is expected to detect the highest number of crack-growth-related emissions; 

moreover, the choice of a single sensor is done to highlight that crack-growth forecasting 

can be performed in situations where sensor arrays are sparse or only one sensor is 

deployed. 
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Data collected by the CMOD gauge is preprocessed in two steps. First, peak ( maxδ ) 

and minimum ( minδ ) CMOD readings for each loading cycle are each exported to a 

column vector. The two vectors are then subtracted from one another and the results are 

assigned to column vector δ . This vector represents the net CMOD as a function of the 

number of cycles. A locally weighted regression smoothing (LOESS) filter is applied to 

the ensuing vector using a span coefficient of 1%. This smoothing filter ensures that 

periodic fluctuations of the CMOD readings are replaced by a regressed line indicating 

the overall growing trend of the CMOD with increased number of cycles.  

While 15 features and all six sensors in the AE dataset are used in the background 

“noise” filtering step, this study is only concerned with the time history of the AE abs. 

energy, AEu , which is defined as the integral of the squared rectified voltage signal 

divided by the reference resistance (10kΩ) over the hit duration. AE abs. energy readings 

are measured in attoJoules (aJ). This measurement is assumed to be directly proportional 

to the total elastic energy released by crack-growth-related phenomena, aU , such that: 
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U Uψ
=

= = ⋅∑u , (30) 

where 𝜓𝜓 is an energy scaling parameter, and UN is the cumulative (cum.) sum of the AEu  

vector over N cycles. One problem of the raw U vs. N plot is that it is highly sensitive to 

outlier AE “hits” of very high energy. These types of AE hits are speculated to occur due 

to crack-surface fretting events that cause measured waveforms during this time-frame to 

have disproportionally high energies—sometimes orders of magnitude larger than the 

neighboring hit distribution. In order to address this problem, a trimmed mean outlier 

 
 



78 
 
 

removal method was employed. For a given user-specified window of time, the trimmed 

mean of the AEu vector, AEu , can be defined as: 
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where  .  is the cardinality operator, rt is the trimming percentage factor, and AEu  is 

sorted in ascending order, and floor(.) maps a number to the largest previous integer. As 

the name suggests, this method removes a certain proportion of the extreme order 

statistics from both tails of a distribution. Lehmann (1998) showed that the trimmed mean 

with 0.1rt ≈  is a safe factor for long-tailed data, as is the case with AE abs. energy. 

Another example of a trimmed mean is the sample median, which is obtained by setting 

( )1 /AE AErt = −u u . 

For each minute of AE acquisition, both the sample median, the trimmed mean 

( 0.1rt = ), and the conventional mean ( 0rt = ) are calculated from the AE abs. energy 

measurements. The cum. AE abs. energy, u , for that time period is approximated by: 

 AE AEu u= ⋅ u  ,  (32) 

and the total cum. AE abs. energy, NU , is calculated by summing all the values in the u  

vector after N cycles. Because the distribution for the AE abs. energy parameter is 

particularly long-tailed, higher values of rt  will result in reduced slopes in the U vs. N 

curves, slightly underestimating /dU dN . The final U and CMOD vectors that are passed 

into the ANN are sampled at a minimum resolution of 1 minute, equal to the unit of time 

between each trimmed mean AE abs. energy value. 

 
 



79 
 
 

The benefit of using a trimmed value for the AE abs. energy is readily seen when 

fitting the a vs. U curve to the 0( )a U aαβ= + model. The values for β and α can be 

estimated using a typical robust least-squares regression technique (Andersen 2009). The 

coefficient of determination r2 is used as a measure of wellness of fit. The best-fit model 

parameters for both specimens are summarized in Table 2. 

Table 2 – a vs. N best fit parameters 

specimen ŭ type α β r2 

S4 tr=0 4.019e-04 0.4104 0.9901 

S4 tr=0.1 3.169e-04 0.4398 0.9923 

S4 median 2.628e-04 0.4801 0.9948 

S9 tr=0 3.642e-07 0.9322 0.9527 

S9 tr=0.1 2.914e-07 0.9431 0.9551 

S9 median 2.428e-07 0.9725 0.9575 

 

In all regressions, the best fit was achieved using the sample median for the U 

calculation. As expected, the estimated values for α and β are, respectively, smaller and 

larger for each increase of rt . It should be noted that the wellness of fit is mostly 

improved when using the median measure in late stages of crack-growth and the rate of 

energy release is most unstable. For this reason, the sample median is used as the 

preferred trimmed mean type in this study. A plot of the a vs. U (obtained from the 

sample mean AE abs. energy) curves for both specimens and the best-fit models can be 

seen in Figure 23. 
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Figure 23 – Measured and best-fit crack size vs. cum. median AE abs. energy (sensor 3): a) 

specimen S4; b) specimen S9 

As is suggested by Nemati (2012), the wellness of fit of AE abs. energy models seems to 

be adversely affected under low R ratios. The model parameters obtained from this fit are 

later used in the estimation of the crack size from predicted values of U. Similarly, 

predicted values for the CMOD are input into the expression relating a and δ presented in 

section 2.1 in order to obtain a crack approximation. A plot of the measured and 

predicted crack sizes for the valid-reign of elastic crack-growth is presented in Figure 24. 

 
Figure 24 – Measured and estimated crack size (from measured values) vs. number of cycles: a) 

specimen S4; b) specimen S9 
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As can be seen, crack estimation using the CMOD measurements exhibits a greater error 

than the approximation from U. The crack size values estimated from U are fit to the 

measured crack size for each specimen, so they should naturally exhibit much lower 

errors assuming the fit is adequate. 

ANN training and testing 

The ANN is prototyped using the MATLAB® Neural Net Time Series toolbox. Once 

the ANN design parameters are fixed, the network is implemented in C++ using the 

Heaton Research, Inc.® Encog Machine Learning Framework. Calculations using Encog 

are parallelized using a hybrid OpenMP/OpenMPI approach over 128 cores. Both 

frameworks allow for feed-forward ANN design, leave-one-out cross-validation, and 

LMA training, though Encog was found to be appreciably more efficient. 

When training the ANN, its design parameters are required to be tuned by the analyst 

until a design with the lowest performance function value is found. In this case, the 

performance function used when comparing different ANN designs is the mean abs. 

percentage error (MAPE), as it measures the average deviation from the target for all 

validation and testing instances. The chosen NARx ANN has three design parameters that 

must be varied until the best-fit model is found. The first parameter to be optimized is the 

number of lags represented by the tapped delay line (i.e., how far back will each input 

variable draw values from). Generally, the number of lags should be enough to account 

for autocorrelation of the input variables; however, increasing the number of lags will 

result in added delays and increased computational power requirements. A good estimate 

of the number of required lags to consider in the tapped delay line is obtained by 
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examining the input autocorrelation, lr ,  which is simply a normalized comparison of the 

original and shifted time series for each input variable, given by: 

 
max

/ 0
1max

1/  and ( )( )
n l

l l t t l
t

r c c c x x x x
n

−

+
=

= = − −∑  ,  (33) 

where x is the training variable being considered, x  is the variable’s sample mean, /c  is 

the autocovariance at lag l, 0c  is the sample variance, and maxn is the number of training 

objects. It is typically necessary to account for all autocorrelations outside the confidence 

limits, which are calculated as max2 / n± . A sample autocorrelation for the CMOD input 

for specimen S4 can be seen in Figure 25a. 

 
Figure 25 – Sample autocorrelation plot (specimen S4 (sensor 3)): a) input autocorrelation; b) 

error autocorrelation 

In this autocorrelation plot, the first 320 lags are significantly positively correlated. This 

autocorrelation plot suggests that the ANN model should take into account delays up to 

320 minutes (or greater). The most autocorrelated variable was found to be the U input 

variable for specimen S9, which showed significant autocorrelation up to 625 lags. 

Generally, the number of lags, which is defined as the prediction resolution, T, times the 
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number of delays, n, must be greater than the largest significantly autocorrelated lag in 

any of the input variables. 

In order to verify the optimal number of lags, the number of neurons is fixed to 100, 

the prediction resolution is kept at its minimum, and the delay value is varied until the 

performance measure is minimized.  The network is trained and validated using the entire 

time series (with leave-one-out cross-validation to prevent overfitting), a minimum 

resolution of one minute, and 100 neurons in the hidden layer.  The optimal number of 

lags is found to be equal to 675, and the minimum MAPE is found to be equal to 9.4% for 

this design. Increasing delays to include lags past this point resulted in higher errors.  

Next, the number of neurons must be optimized. This is a very important parameter in 

ANN design, as it dominates the predictive ability of the model and is directly related to 

the computational time required to train the model. As a rule of thumb, increasing the 

number of neurons will minimize the MAPE and further increases will result in 

diminishing returns on this measure. The prediction resolution is kept at a minimum, and 

the number of delays at this resolution is determined based on the optimal number of lags 

found above. The number of neurons is increased from 1 to 500 in 25 neuron increments. 

The optimal number of neurons is found to be 275, with a MAPE of 5.03%, and a training 

time of 24 seconds. 

The prediction resolution, T, is the user-defined time-step between delays and 

predictions and, as previously mentioned, is related to the optimal number of lags. 

Smaller values for T will result in predictions closer in time at the expense of increasing 

the number of delays for each variable. A greater number of delays will cause a 

proportionally larger increase in training time. The optimal prediction resolution, thus, 
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should be a compromise between the desired granularity of the crack-prediction, the error 

associated with this prediction resolution, and the available computing power. In this 

study, a minimum prediction resolution is not required, so an optimal T may be found by 

specifying a maximum tolerated error of 5.0%, and choosing the largest value of T under 

this error. The maximum tolerated error is meant to represent a confidence threshold of 

95%. With this procedure in mind, T is varied from 1 to 60 minutes in steps of 5 minutes, 

and the MAPE is, again, used as the performance measure. A plot of the MAPE vs. T can 

be seen in Figure 26. 

 
Figure 26 – MAPE vs. prediction resolution for specimens S4 

and S9 for autoregressive exogenous model 

The largest value of T corresponding to a 5.01%MAPE =  for both specimens is found to 

be 25 minutes (3000 cycles). 

Once all the ANN parameters are found, the error time series is checked for 

autocorrelation. If the error is significantly autocorrelated, the ANN design must be 

modified in order to ensure that the error terms at each time-step are independent of one 

another and systematic error due to autocorrelated terms has been removed. The error 

 
 



85 
 
 

autocorrelation for all the plots was consistently below the significance threshold for all 

predicted outputs. Figure 25b presents a sample plot of the error autocorrelation for 

specimen S4. The final network design is thus fixed at 275 neurons, 675 lags (27 delays), 

and a prediction resolution of 25 minutes (3000 cycles). 

Once the ANN design is fixed, the network is tested for prediction using the 

following input-output combinations: 

1) Inputs: Cum. AE abs. energy (U)  Output: CMOD (δ)  

2) Inputs: Cum. AE abs. energy (U) and CMOD (δ)  Output: CMOD (δ)  

3) Input: Cum. AE abs. energy (U) Output: Cum. AE abs. energy (U) 

The NARx model is able to accommodate all three of these combinations. When the 

external variable is not used, the associated neurons and weights for the exogenous input 

are not considered in the training process. The ANN is tested using a training and 

validation period of 675 minutes (i.e., 81,000 cycles) (in order to accommodate all of the 

delays), and one instance per minute (i.e., one instance per 120 cycles). The testing 

horizon is increased over several time steps, and the ANN is retrained at each increase. 

The MAPE and MRAE errors, run times, and maximum prediction horizons for all tests 

are summarized in Table 3. 
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Table 3 – ANN testing results summary 

specimen ANN 
input(s) 

ANN 
output 

MAPE 
(%) 

MRAE 
(%) 

pred. 
horizon 
(cycles) 

run 
time 
(s) 

S4 U δ 6.3 13.0 +45,000 345 

S4 U, δ δ 5.0 9.2 +45,000 748 

S4 U U 5.3 12.5 +45,000 331 

S9 U δ 7.4 23.3 +201,000 1,610 

S9 U, δ δ 3.1 12.0 +201,000 3,477 

S9 U U 4.3 11.9 +201,000 1,590 

 

Predicted values for specimen S4 are shown in Figure 27 for each input-output 

combination. 

A plot MRAE vs. number of cycles is shown on Figure 27d in order to visualize the error 

evolution over the multi-step prediction. Figure 28 shows similar plots for the predicted 

values for specimen S9. 
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Figure 27 – Specimen S4 (sensor 3) target forecast vs. number of cycles:  a) U input and δ output; 

b) U and δ inputs and δ output; c) U input and U output; d) MRAE for each forecast 
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Figure 28 – Specimen S9 (sensor 3) target forecasts: a) U input and δ output; b) U and δ inputs and 

δ output; c) U input and U output; d) MRAE for each forecast 

Once the AE and LEFM parameters are predicted, they can be applied as inputs to the 

LEFM models presented in the background section. The CMOD model used in this study 

is applicable only to SE(T) specimens under fixed-fixed conditions. The cum. AE abs. 

energy model is presumed to work for different geometries, loading conditions, and 

materials. However, the model parameters seem to be particularly sensitive to the loading 

conditions and, at this stage, have to be fit for each specimen. Estimation of the crack size 

evolution will, therefore, be dependent on the accuracy of the applied models. A 

summary of the MAPE and MRAE values for each specimen and input-output 
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combination is presented in Table 4; moreover, the MAPE and MRAE values for the 

average predicted crack size is calculated for each specimen. 

Table 4 – LEFM model errors 
from predicted inputs  

 

specimen ANN 
input(s) 

ANN 
output 

LEFM 
model 

MAPE 
(%) 

MRAE 
(%) 

 

S4 U δ δa 1.9 3.1  

S4 U, δ δ δa 1.7 2.5  

S4 U U Ua 0.8 1.6  

S4 (pred. avg.)    1.0 1.7  

S9 U δ δa 3.2 6.9  

S9 U, δ δ δa 3.5 6.4  

S9 U U Ua 2.2 4.9  

S9 (pred. avg.)    1.4 4.5  

 

Finally, a plot of all estimated crack size vs. number of cycles for specimens S4 and S9 is 

shown in Figure 29. 

 
Figure 29 – Measured and estimated crack size vs. number of cycles (from predicted values): a) 

specimen S4; b) specimen S9 
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 Discussion 

One way of evaluating the performance of any forecast is to qualitatively examine 

each of the time systematic components of the predicted time series: level, trend, and 

periodic variation. Level describes the average value of the series, trend is the change in 

the series from one step to the next, and periodic variation describes the short-term 

cyclical behavior of the cycles. For each forecast, the model’s ability to capture each of 

these components is examined. 

The forecast values for specimen S4 adequately exhibit the level and trend of the 

measured target values; however, the larger periodic fluctuation of the CMOD is not 

present in the forecast. The model’s inability to predict types and magnitudes of 

fluctuations not previously observed can be attributed to the relative lack of fluctuation 

present in the training dataset compared to the target measurements. In other words, the 

forecast will generally not exhibit large fluctuations if the training dataset varies only 

slightly around the trend line. For this specimen, the exogenous autoregressive model 

offers the best quantitative measures (i.e., the lowest errors) for long-term forecasting 

with a MRAE under 9.2% for up to 45,000 cycles. For short-term forecasting, the 

autoregressive model predicted the measured values for up to 18,000 cycles with a MRAE 

under 5.0%.  

Forecast for specimen S9 was particularly accurate, exhibiting a very close adherence 

to the time series components of the measured values for up to 48,000 ahead with a 

MRAE under 2.5% for all 3 models. Long-term forecasting behavior exhibited similar 

level and growing trend, although prediction accuracy of the periodic fluctuation quickly 

degenerates; nonetheless, the predicted values display a fluctuation of the order of 
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magnitude of the training data. The forecasts for the autoregressive and exogenous 

autoregressive models are able to predict well into the future, with a MRAE smaller than 

12.0% for both of these models up to 201,000 cycles ahead. For short-term forecasting, 

the best model was, again, the autoregressive one, with a MRAE smaller than 2.5% up to 

102,000 cycles ahead. 

Crack estimates depend on the model accuracy and, as such, the overall crack size 

and crack-growth rate will depend directly on the model parameters. For specimen S4, 

the estimated crack levels using the predicted CMOD values tend to overestimate the 

crack size and crack-growth rates. The values estimated from the predicted AE abs. 

energy values similarly overestimate the crack-growth rate, although the crack size is 

slightly underestimated. Crack size estimates for specimen S9 were overestimated when 

using the CMOD predicted values and underestimated when using predicted AE abs. 

energy values. The crack-growth rate for all predictions for specimen S9 agreed with the 

measured values. For both specimens, the average of all predicted crack sizes was found 

to provide both good short-term and long-term estimates. The lower MAPE and MRAE 

values for the estimated crack sizes suggests that using inputs with large errors in LEFM 

models translates into much smaller errors in the LEFM models, provided that they 

adequately represent the relationship between the input values and the crack size. 

Concluding remarks 

In this study, the formulation, design, and validation of a deterministic crack-growth 

forecasting framework was presented, as applicable to structural elements subjected to 

cyclic loading using AE measurements. This framework predicts the short-term and long-

term values for cum. AE abs. energy and CMOD at different numbers of cycles during 
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elastic and stable crack-growth. The predicted values, then, become inputs to LEFM 

models in order to estimate the current and future crack sizes. The framework assumes 

that LEFM models for the structural element being monitored relating predicted values to 

the crack size are known a-priori. The presented LEFM model relating the cum. AE abs. 

energy and the crack size is found to adequately represent the crack evolution over the 

valid-reign of elastic crack growth. The framework is trained, validated, and tested using 

AE and CMOD data from two SE(T) specimens at different R ratios. AE and CMOD 

measurements are forecast using three different models for each specimen. The accuracy 

of the predicted values indicates that ANNs are able to adequately model autoregressive 

and exogenous relationships between AE and LEFM measurements and their future 

values. The MAPE for specimen S4’s best model was found to be 5.0% for a 45,000 

cycle-ahead prediction. For specimen S9, the lowest MAPE was measured to be 3.1% for 

a prediction 201,000 cycles ahead. In the case of long-term predictions, the 

autoregressive exogenous model was proven to better represent the measured values with 

MRAE values below 12.0%. For short-term predictions, the autoregressive model was 

found to be more effective, as it maintained a MRAE under 5% up to 18,000 cycles 

ahead. When estimating the future crack size, the average of all three models was found 

to be a good predictor with a MAPE less than 1.4% and a MRAE under 4.5% for all 

specimens. 

Laboratory and field predictions of AE and LEFM measurements using this 

framework are immediately feasible; however, crack estimation depends entirely on 

choosing a model and assuming knowledge of the parameters. If parameters for an 

applicable model are not known for a particular field or laboratory application, they can 
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be estimated using a subset of previously-collected data, given that the crack history is 

known. 

These frameworks are meant to form part of SHM applications, where knowledge of 

the current and future state of the structure is paramount. Once in place, systems utilizing 

this framework can incorporate predicted values as part of damage prognosis models. 

Moreover, once deployed, these frameworks can be used in warning systems in SHM 

systems, allowing bridge owners to be able to make repair decisions or limit traffic based 

on non-destructive crack-growth forecasts such as this. 

 

 
 



 
 
 

 
 
 

CHAPTER 5, CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

Contributions of dissertation 

This dissertation has been based on the premise that SHM practices are fundamental 

to the assessment and maintenance of current and future civil infrastructure. It has also 

been identified that computing practices are at the heart of modern SHM technologies, 

and it is essential to preface research efforts in this field by first identifying the required 

computing infrastructure. 

The first study in this dissertation outlines the technological boundary conditions in 

SHM, while attempting to address the main computational challenges that must be 

overcome in order to allow for the acquisition, management, and analysis of SHM data. 

A methodology is proposed which provides a foundation for specifying computing 

requirements in small-scale SHM applications. The methodology is demonstrated through 

the implementation of a high-performance computing framework meant to handle large 

datasets arising from AE monitoring laboratory and field experiments. This computing 

framework is critical to the development of new SHM techniques, which rely primarily 

on knowledge discovery through high-performance computing. 

In the second study, focus shifts to the challenges present in AE testing, which is 

chosen in this dissertation as a technology that is representative of data-intensive SHM 

practices. The study proposes an unwanted signal filtering methodology as part of a data 

mining scheme. In addition to filtering unwanted signals, the scheme allows for the 

94 



95 
 
 

extraction of characterization rules for both relevant and unwanted AE signals. It is 

intended that this data mining scheme be used as tool for finding general “signatures” of 

specific failure mechanisms. Once these “signatures” have been identified, they can be 

used in SHM systems to filter out unwanted AE activity and serve as a warning system in 

the presence of damage-related signals. The enhanced data quality achieved through use 

of this scheme may also be especially important when assessing current and expected 

future damage. 

The third and final study in this dissertation demonstrates the importance of good 

quality datasets and a proper computing framework, as they allow for the accurate and 

computationally efficient forecast of crack-growth damage in steel elements subject to 

fatigue fracture. The clean datasets obtained from the second study are used as inputs to 

an ANN that, when used in conjunction with traditional LEFM measurements, can 

provide accurate predictions of crack conditions in laboratory and field applications. The 

proposed methodology can be used in laboratory and field settings to forecast future 

measurements. In the presence of adequate models, predicted measurements can be 

reliably linked to current and expected damage conditions. 

Future work 

The outcomes of this research offer an important advancement to SHM, with 

particular benefits to AE testing. However, further research has been identified in critical 

areas that could improve the methodologies in this dissertation: 

• Design of a database system capable of supporting real-time loading and data 

mining would streamline the flow of SHM data. Identifying a data management 

system that integrates dissimilar datasets and allows for fast retrieval and 
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visualization of information is central to efforts of real-time decision-making in 

SHM. In the context of AE testing, allowing for the acquisition of data directly to 

a remote database with access to a computing engine would enable the techniques 

described in this research to be performed in situ. 

• A performance and computing efficiency analysis of statistical, nearest neighbor, 

clustering, classification, and spectral decomposition-based data mining 

techniques could result in more accurate characterization of AE signals and 

produce more reliable filters. Current and improved characterization 

methodologies can be used in the generation of damage “signatures” for common 

civil engineering materials such as reinforced concrete, steel, and fiber-reinforced 

polymers. 

• Exploration of alternative ANN forecasting strategies may lead to better damage 

predictions. In particular, serially-chained NARx configurations could lead to 

faster training times and enable multistep prediction without need for re-training. 

Similarly, multiple-input-multiple-output (MIMO) forecasting methods could 

produce more accurate forecasts in a single training step. 

• The methods presented in this thesis could be easily adapted to a variety of other 

AE SHM applications such as: the detection of the onset of corrosion in RC, 

improvement of AE source location techniques, and the unsupervised assessment 

of structures during structural load testing. 

• Robust assessment and prognosis applications should incorporate reliability and 

uncertainty models, though particular emphasis should be placed in efficient 
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computation techniques that would enable these types of analyses to be done in 

real time in both field and laboratory settings. 

Final remarks 

It is hoped that this dissertation provides entrants to the field of SHM with a good 

foundation for discerning the boundary conditions in data-intensive SHM applications. 

Furthermore, this dissertation is expected to be used as a tool for AE practitioners and 

provide them with advanced data quality enhancement and signal characterization tools. 

Finally, this work aims to serve as a demonstration that a proper computing framework, 

in conjunction with clean data, can be used in the implementation of knowledge 

discovery and prediction tools, which are expected to be fundamental in bringing SHM 

closer to the mainstream. 
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