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Sunken oil is difficult to locate because remote sensing techniques cannot as yet 

provide views of sunken oil over large areas.  Moreover, the oil may re-suspend and sink 

with changes in salinity, sediment load, and temperature, making deterministic fate 

models difficult to deploy and calibrate when even the presence of sunken oil is difficult 

to assess.  For these reasons, together with the expense of field data collection, there is a 

need for a statistical technique integrating limited data collection with stochastic transport 

modeling.  Predictive Bayesian modeling techniques have been developed and 

demonstrated for exploiting limited information for decision support in many other 

applications. These techniques brought to a multi-modal Lagrangian modeling 

framework, representing a near-real time approach to locating and tracking sunken oil 

driven by intrinsic physical properties of field data collected following a spill after oil has 

begun collecting on a relatively flat bay bottom.  

Methods include (1) development of the conceptual predictive Bayesian model and 

multi-modal Gaussian computational approach based on theory and literature review; (2) 

development of an object-oriented programming and combinatorial structure capable of 



 

 

managing data, integration and computation over an uncertain and highly dimensional 

parameter space; (3) creating a new bi-dimensional approach of the method of images to 

account for curved shoreline boundaries; (4) confirmation of model capability for 

locating sunken oil patches using available (partial) real field data and capability for 

temporal projections near curved boundaries using simulated field data; and (5) 

development of a stand-alone open-source computer application with graphical user 

interface capable of calibrating instantaneous oil spill scenarios, obtaining sets maps of 

relative probability profiles at different prediction times and user-selected geographic 

areas and resolution, and capable of performing post-processing tasks proper of a basic 

GIS-like software. 

The result is a predictive Bayesian multi-modal Gaussian model, SOSim (Sunken Oil 

Simulator) Version 1.0rc1, operational for use with limited, randomly-sampled, available 

subjective and numeric data on sunken oil concentrations and locations in relatively flat-

bottomed bays. The SOSim model represents a new approach, coupling a Lagrangian 

modeling technique with predictive Bayesian capability for computing unconditional 

probabilities of mass as a function of space and time. The approach addresses the current 

need to rapidly deploy modeling capability without readily accessible information on 

ocean bottom currents.  

Contributions include (1) the development of the apparently first pollutant transport 

model for computing unconditional relative probabilities of pollutant location as a 

function of time based on limited available field data alone; (2) development of a 



 

 

numerical method of computing concentration profiles subject to curved, continuous or 

discontinuous boundary conditions; (3) development combinatorial algorithms to 

compute unconditional multimodal Gaussian probabilities not amenable to analytical or 

Markov-Chain Monte Carlo integration due to high dimensionality; and (4) the 

development of software modules, including a core module containing the developed 

Bayesian functions, a wrapping graphical user interface, a processing and operating 

interface, and the necessary programming components that lead to an open-source, stand-

alone, executable computer application (SOSim – Sunken Oil Simulator).  

Extensions and refinements are recommended, including the addition of capability for 

accepting available information on bathymetry and maybe bottom currents as Bayesian 

prior information, the creation of capability of modeling continuous oil releases, and the 

extension to tracking of suspended oil (3-D).  

Keywords: sunken oil, Bayesian, Gaussian, model, stochastic, emergency response, 

recovery, statistical model, multimodal. 
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Chapter 1.  Introduction 

1.1 Motivation 

The ultimate impact of an oil spill stems from several factors, including its size, 

geographical location, political and practical context of the response, as well as the 

occurrence of suspended or sunken oil. Sunken oil can occur following a spill of heavy 

oil, or of lighter oil that entrains sediment or loses its light constituents in the short-term 

weathering process. The term sunken oil is used in this dissertation to refer to oil on the 

bottom, though some of the discussion and approach may also apply to oil suspended in 

the water column. As noted by the U.S. NOAA’s Coastal Response Research Center 

(CRRC, 2007), "In the past few years, spills of non-floating oil and oils that become 

submerged as a function of sediment entrainment have presented significant response 

challenges and have resulted in enormous dollar-per-barrel recovery costs. Currently, the 

ability to forecast submerged oil movement, estimate water column concentrations of 

large droplets, and efficiently recover sunken masses in an operationally expedient way is 

quite limited. Additionally, as this category of oil is difficult to locate, track, and retrieve, 

managers have difficulty maintaining public confidence with regard to response 

termination." Problems in locating and tracking sunken oil are further exacerbated by the 

expense of developing and deploying new remote sensing techniques, and because some 

oils may re-suspend and sink with changes in salinity, sediment load, and temperature.  

Many models have been used to simulate the drift and fate of oil slicks in one, two, or 

three dimensions using Eulerian or Lagrangian modeling techniques (Ojo et al, 2007; 
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Spaulding et al, 1994; Spaulding et al, 1997; Beegle-Krause, 2001; Yapa, 1994; Sugioka 

et al, 1999).  The spill-trajectory model developed and used most recently by the U.S. 

National Oceanic and Atmospheric Administration (NOAA) is the General NOAA Oil 

Modeling Environment (GNOME), developed by the Hazardous Materials Response 

Division (HAZMAT) Office of Response and Restoration.  GNOME includes statistical 

capability in the form of Best Guess and Minimum Regret solutions (Galt, 1998). 

However, existing models are not developed for the detection and mapping of sunken oil. 

Other possible approaches to locating and tracking sunken oil include electro-acoustic 

detection, mechanical detection, and inspection by divers, as summarized in the 

Technical Guidelines on Sunken Oil Assessment and Removal Techniques (NOAA, 

2006). However, integrated models for short and long-term sunken oil tracking with on-

scene calibration capability during emergency response have been identified as research 

needs (CRRC, 2007). 

The occurrence of sunken oil is difficult to predict in time and space before, during, 

and after cleanup, using either contaminant transport models or field data, for two 

reasons. First, hydrodynamic or particle tracking models may be difficult to deploy and 

calibrate for tracking of sunken oil, due to the site-specific and potentially transient 

nature of sunken oil occurrence and location under changing field and oil conditions, and 

limitations in the available information on advective/dispersive forces acting on sunken 

oil on the bottom. Second, the collection of field data on sunken oil locations is 

intrinsically expensive. Modeling techniques that accept near-real time field data as input 
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and account quantitatively for both uncertainty and variability are not well-developed, 

and have not been available to support response, cleanup, and damage assessment 

decisions. 

The use of Bayesian modeling techniques to incorporate non-numerical types of 

information in probabilistic assessments has exploded in recent years due to the 

development of new computational approaches (e.g. Markov Chain Monte Carlo). The 

approach allows integration of available numerical data together with any less-

quantitative information, with rigorous accounting for uncertainty in accordance with the 

laws of probability. Therefore, it represents an approach to exploiting available field data 

on sunken oil locations in time and their intrinsic physical characteristics and parameters 

together with statistical tools that make the prediction of future states possible. The 

Bayesian approach involves inclusion of non-numeric or numeric relative information to 

develop posterior probability distributions for uncertain quantities of interest. The 

intrinsic physical information contained in the collected field data along with the overall 

information about the spilt oil, the accident location, and a set of elapsed times are used 

to calibrate a spill scenario, that is, to obtain a posterior probability distribution. A 

posterior probability distribution can be used in predictive Bayesian theory to foretell the 

behavior of another possible observation without the need of performing further 

experimental sampling on the zone of possible observation. The result is an 

“extrapolated” prediction, an unconditional relative probability distribution that is wider 

than the posterior distribution because it now contains a degree of uncertainty. The 
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physical mechanisms driving the new (predictive) distribution are the same that had been 

able to develop the physical state and distribution of the sampled data set from the time of 

the spill until the sampling campaign time. The approach can be applied to continuously 

update calibrations so that predicted states reflect the most current physical changes and 

intrinsic uncertainties and variability induced by the environment on the measured data.  

Predictive Bayesian methods involve the development of unconditional probability 

distributions for the quantity of interest, by integrating over all physically-possible values 

of the uncertain parameters. The approach has been used in oil spill prevention and 

preparedness planning (Obie and Englehardt 1996; Douligeris et al., 1998) and for other 

applications including hurricane, environmental, health, and safety risk analysis 

(Aitchison and Dunsmore, 1975; Englehardt, 2004, 1995; Bloetscher et al., 2005; 

Englehardt and Swartout, 2004; Englehardt et al., 2003; Anex and Englehardt, 2001; 

Englehardt and Peng, 1996). For example, a predictive Bayesian compound Poisson 

model was developed to forecast changes in oil spill volumes onshore in the Gulf of 

Mexico in response to proposed changes in oil transportation and response equipment and 

policies, given geographically-defined historical oil spill data, shipping routes and 

volumes, and hydrodynamic modeling results (Obie and Englehardt, 1996; Douligeris et 

al., 1998). However, the approach has not been brought to bear on the problem of 

locating sunken oil. 
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1.2 Literature Review and Related Work 

The expression “oil spill” refers to a violent spillage of hydrocarbons concentrated in 

a specific area, surpassing the natural assimilation capacities of the surrounding 

environment. Sinking is the physical mechanism by which oil masses that are denser than 

the receiving water are transported to the bottom. The oil itself may be denser than 

seawater, or it may sink by chemical or physical means: chemically, the soluble fractions 

separate from denser fractions, leaving the latter with the capability of sinking; 

physically, oil may have incorporated enough sand to become denser than the water and 

therefore sink. 

1.2.1 Occurrence of Sunken Oil 

Vast quantities of crude oil and refined products are transported over long distances, 

incurring constant and substantial risks of accidents. In particular, roughly one half of the 

oil consumed worldwide is transported by sea, in ~9,130 oil tankers counted worldwide 

(ITOPF, 2009). High vessel densities in maritime routes and loading/offloading ports, 

longer journeys, and intricate aspects of geographical location all increase the risk of oil 

spills due to collision, negligence, grounding, or defects in a vessel’s structure. Insurance 

statistics indicate that most oil tanker accidents resulting in marine oil spills result from 

human error, including “… badly handled maneuvers, neglect maintenance, insufficient 

checking of systems, lack of communication between crew members, fatigue, or an 

inadequate response to a minor incident…” (Cedre, 2007). From a more practical point of 
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view, examination of the circumstances surrounding accidents (ITOPF, 2004) indicates a 

high percentage of spills due to groundings and collisions. Figure 1.1 shows statistics on 

the reasons of oil spill occurrences. 

 

Figure 1.1. Principal causes of oil spills in the world, Source: ITOPF, 2009. 

 

The nature of oil transported by sea varies from the lightest oil (highly volatile 

hydrocarbon or gasoline) that floats on the sea water and evaporates to the atmosphere, to 

heavy fuel oils, of which perhaps only 10% will evaporate (ITOPF, 2009) with much of 

the remainder sinking to the bottom. Processes that affect sinkable oil mass following a 

spill include evaporation, water and oil mixing and sedimentation. Figure 1.2 shows case-

based examples of the approximated fractions of spilled oil mass that undergo 

evaporation and all other processes in seawater.  
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Figure 1.2. Case-based fractions of oil spilt that undergo processes in the seawater and 
the atmosphere. Source: Cedre, 2009. 

 

In general, crude oils and certain heavy refined products and sludge deposits have the 

potential to sink, with sinking of oil generally becoming important from 1-8 days 

following a spill (Coastal Response Research Center, 2007). Sunken oil then accumulates 

on the bottom in reported thicknesses of about 2.5 inches, regardless of the size of the oil 

patches (Beegle-Krause et al., 2006). Sedimentation of thick and heavy oil occurs 

rapidly, and involves the majority of the oil minus a small percentage (< 10%) that 

evaporates and a portion that remains in bubbles in the water column for a short time. 

Evaporation and mixing with water diminish the sinkable fraction, while sediment 

entrainment increases sedimentation. Incorporation of water into the oil mass due to 

mixing may prevent sinking for periods of hours to days following the spill. For spills of 

light oil, sedimentation generally occurs over a long period of time and involves < 5% of 

the oil mass (Cedre, 2007).  



8 

 

 

Sinking of heavy oils (API gravities less than ~7.0) due to gravity is more likely in 

quiescent seawater where currents are under 0.1 knot (Research Planning Inc., 2001) 

because higher currents typically keep oil droplets suspended in the water column longer. 

According to NOAA event comparison charts, oils denser than local water have not been 

observed to impact the shoreline unless the source of the oil was within the surf zone or 

the oil moved into relatively denser water and thus became buoyant (Beegle-Krause et 

al., 2006). From Protocols for NRDA Surveys (Research Planning Inc., 2001), "... sunken 

oil can be buried by silt in harbors or sand in offshore areas within days to weeks. Once 

buried, it can remain for years, only to be exposed by storms or dredging operations." If 

near shore, sunken oil and tar can wash up on beaches following storms for years 

following a spill. Gravity will induce flow of the oil in the offshore direction, towards 

deeper water (Beegle-Krause et al., 2006).   

As reported in Protocols for NRDA Surveys (Research Planning Inc., 2001), heavy 

oil can temporarily accumulate in low-flow zones. In rivers, accumulation may occur in 

backwaters, sloughs, inactive scour pits, and in the lee of point bars, wing dams, and 

other man-made obstructions. In estuaries, potential accumulation areas include man-

made depressions (e.g., dredged channels, marinas and boat slips, prop scour pits, turning 

basins), natural scour pits active during periods of high flow, and abandoned channel 

meanders. Along the outer coast, accumulation may occur in troughs between offshore  
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bars, lagoons or pools protected by offshore rocks or coral, reef flats protected by reef 

crests, and in the lee of any obstruction of currents along the coast (e.g., rocks, jetties, and 

breakwaters). 

Oils lighter than the receiving water may sink by (a) adhering to sand-sized particles 

during mixing in the surf zone; (b) stranding on shore, picking up sand, then being eroded 

from the beach by waves and deposited in the near-shore zone; and (c) adhering to the 

substrate during low water, then not re-floating when water levels rise. The latter 

mechanism is more likely in rivers and streams where water levels may fluctuate. In 

general, sunken oil that is intrinsically lighter than surrounding water (i.e., that sank by 

mixing with sand) can re-float if the oil separates from the sand or bottom substrate. Such 

separation may occur upon warming, due to the reduction in viscosity.  

Sedimentation is of significant concern even if the oil has a light density, if a spill 

occurs in a nearshore environment where the oil can mix with sand or sediment causing it 

to sink, as happened in the Braer, Erika and Prestige incidents (ITOPF, 2009). In such 

cases the sunken oil is extremely difficult to detect and recover. In general, once on the 

bottom, most hydrocarbons easily enter gaps and flow by gravity so deep that it may be 

impossible to find by inspection. 

Sunken oil mats tend to remain stationary in the absence of storms; local bottom 

currents typically do not have enough energy to move the mat. Release and resuspension 

of parts of submerged oil mats by long period gravity wave energy occurs most often 
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along the near-shore shelf where water is shallower and wave energy extends closer to 

the bottom depth (Dean and Dalrymple, 1991). As a result of this increasing tendency to 

remain stationary following deposition in deeper water, the mats tend migrate in the 

offshore direction over time (Beegle-Krause et al., 2006). If the mat is broken up into 

particles during mixing, it does not tend to re-coalesce. There is a significant difference in 

the oil content of oil masses that sink by gravity and those that sink by entrainment and 

sedimentation. The former may contain only a few percent sediment, whereas oil-

contaminated sediments accumulated on the seafloor generally contains less than 1% oil 

(Research Planning Inc., 2001).  

Hydrocarbons that are not removed from certain ocean bottoms can seriously damage 

populations living within the sediment substrate. Sunken oil weathers slowly; therefore 

toxic components can persist and be a source of exposure during re-floatation or benthic 

transport. A spill of heavy fuel oil is likely to cause much more damage than a crude oil 

spill of a corresponding size. The duration of spillage also plays an important role. A 

sudden violent release will concentrate the effects on a smaller area as compared with a 

long, slow leak. 

Several properties affect the classification of oil as heavy or light, and consequently 

can modify the propensity of the oil to sink as explained above. These combined 

properties, including density, viscosity, pour point, solubility, chemical composition and 

potential for emulsification, along with associated short-term behavior in the environment 

and impacts to natural resources (Research Planning Inc., 1994), allowed for the 
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classification of oil into six broad categories. In general, Type 1 oils are very light, 

including gasoline and very volatile hydrocarbons. Type 2 are moderately volatile and 

soluble, including jet fuels, diesel fuel, number 2 fuel oil, and light crude oils. Type 3 oils 

include most crude oils, known by their persistence and diminished propensity to 

evaporate (about one third of the total mass evaporates within 24 hours). Type 4 oils may 

have little propensity to evaporate or dissolve, and high likelihood of sinking. Type 5 oils 

have essentially no evaporation potential, weather very slowly, and sink immediately, 

including heavy industrial fuel oils. Type 6 oils include heavy animal or plant oils. This 

classification of oils is tightly related to API gravity, a measurement of the relative 

density of petroleum liquids developed by the American Petroleum Institute and adopted 

by the oil industry worldwide. Type 1 oils may have API gravities around 31 °API, 

whereas a Type 4 oil can have an API gravity of less than about 10 °API, in which case 

the oil will typically sink in water. 

1.2.2 Transport and Accumulation 

The following points concerning characteristics of the initial fate and transport of 

sunken oil have been excerpted, adapted, interpreted, and/or condensed from the 

references cited: 

• After events of high bottom energy, sunken oil can be resuspended and sometimes 

mixed until it is broken up into small globules. These smaller globules of heavy 

oil are not expected to coalesce into a larger slick at some later time (Beegle-
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Krause et al., 2006), but rather to weather and degrade over long periods. At 

depth, the so-called “convergence zones” found in the surface are not found, and a 

mechanism for bringing the globules together no longer exists in the bottom 

(Beegle-Krause et al., 2006); 

• Long-term transport of heavy oil is seldom compared to long-term sediment 

transport on continental shelves. Events with sufficient energy are more likely to 

be caused by long-period waves than by the local bottom currents (Beegle-Krause 

et al., 2006); and 

• Sediment is typically transported greater distances along the shelf than across the 

shelf (Beegle-Krause et al., 2006). This observation could represent prior 

information for the development of Bayesian prior probability distributions for 

coefficients of advection and dispersion in directions perpendicular and parallel to 

shore. 

1.2.3 Mechanisms of Resuspension of Sunken Oil  

When a high-density oil spill occurs, a large portion of the oil will sink to the bottom 

to form large discrete mats in many areas and smaller globules in others (Beegle-Krause 

et al., 2006). Here, the term “globule” is equivalent to “tarball”, also used in the 

literature. Observational data in NOAA data bases suggest that oil remains in areas of 

heavier concentration until high-energy storms redistribute the oil. The following are 

excerpted or adapted from Beegle-Krause et al. (2006), except as noted: 
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• Literature suggests that average current conditions will not be sufficient to move 

the oil in a continuous manner (Beegle-Krause et al., 2006; Boehm et al., 1981). 

Rather, “The oil will remain stationary on the bottom until an event occurs with 

enough energy to stir it up into the water column;” 

•  “Tarmats occur when floating oil moves into the surf zone, collects sediment, and 

sinks;” 

• “With enough energy, tarmats in the bottom generally break up into smaller 

pieces of oil that spread out into a large area. Otherwise, the tarmats remain 

stationary and intact;”  

• “Outside the inner shelf, where coastal current jets form, long-period waves will 

be the only source of turbulent energy at the bottom other than large storms strong 

enough to mix the entire water column;” 

• “The oil will behave similarly to local sediments in terms of episodes of burial 

and re-exposure and mobilization into the water column;” 

• The energy required to move the oil varies with depth and site and is unknown. A 

break-up energy level has been estimated as 6 m2/Hz (Beegle-Krause, et al., 

2006).   

1.3 Objectives of this Dissertation 

Given the site-specific nature of the occurrence of sunken oil and the need to project 

its location in time, a statistical data-limited technique representing a cross between a 
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statistical static sampling plan and a contaminant transport model was proposed for 

development in this research.  General objectives of this dissertation include:  

1. To develop the first pollutant transport-statistical model to our knowledge 

capable of computing unconditional probabilities of relative pollutant mass as 

a function of time and space;  

2. Develop a method of computing Lagrangian relative concentration profiles 

subject to variable, continuous or discontinuous, irregular, approximately 

curved boundaries in two dimensions applied to Gaussian-distributed sources; 

3. Develop a combinatorial algorithm for the computation of multi-modal, highly 

dimensional functions such as likelihood functions, posteriors, conditionals, 

and ultimately predictive Bayesian unconditional functions when the 

dimensionality of the problem prevents both the use of Monte Carlo Methods 

and matrix algebra in computer algorithms 

4. Develop an open-source computer application (SOSim – Sunken Oil 

Simulator) with graphical user interface, capable of calibrating instantaneous 

oil spill scenarios using limited data, obtaining maps of relative probability 

profiles as processed by the transport-statistical model, at different prediction 

times and user-selected geographic areas and resolution, and capable of 

performing post-processing tasks proper of a basic GIS-like software. 

To meet current needs in terms of locating sunken oil during emergency response 

operations, it was determined that information on bottom “currents” and their potential 
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forcing of the movement of sunken oil was too limited to be a primary source of input 

information and driving mechanism for the model (Beegle-Krause et al, 2006). Rather, it 

was desirable to use the limited field data that is gathered after an oil spill. Among 

specific objectives of the stand-alone, open-source, executable model with graphical user 

interface (GUI), the following capabilities are included: 

• Assessing sunken oil locations based on irregularly-sampled, certain limited 

available physical data collected shortly after a spill event, 

• Projecting oil location in time based on subsequent limited field data that 

intrinsically carried updated physical information on parameters and 

variability, Providing updated predictions based on additional, relative field 

data, from possibly different and irregular geographical areas, as they become 

available. 

• Presenting unconditional probabilities of sunken oil in output maps that 

belong each to a user-requested prediction time, 

• Accounting for the time lapse before depositing on the bottom that an oil may 

experiment due to its potential for sinking and short-term weathering, 

• Multimodality, which is the capability of the predictive model to infer from 

the data whether or not the sunken oil is distributed in single or multiple 

patches, and to track and predict this multimodal behavior in time. 



16 

 

 

Specifically, a predictive Bayesian multimodal Gaussian model of sunken oil 

locations across a relatively flat-bottomed bay was proposed, to accept possibly 

irregularly-sampled field data at times shortly after each spill event when sunken oil has 

appeared on the bottom.  

The calibrated model also was to have capability for accepting input in the form of 

ranges of possible parameter values (not prior distributions on the parameters or expected 

values) based either on hydrodynamic data or professional judgment, to over-ride default 

ranges assigned in the research. In that way, physical information contained in the limited 

field data can be integrated with certain other assumed or measured ranges of parameters 

to assess and project the location of dispersing sunken oil masses both before and after 

cleanup begins, for spill response and decision-making, cleanup, and damage assessment. 

Finally, the model should be capable of being enhanced in the future to accept 

bathymetric information and other means of prior information as input. 

1.4 Scope of this Dissertation 

The scope of the research was limited to: 

• Sunken oil; 

• Relatively flat bay bottoms, dredged bays, reef flats and lagoons or pools 

protected by offshore rocks; bays with steeply sloped bottoms would require 
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capability for the use of bathymetric data as prior information, a possible 

future enhancement; 

• Resolution down to the scale of the tidal excursion (oil locations effectively 

averaged across this excursion); 

• Discrete accidental oil releases (as opposed to natural, progressive oil 

seepage); 

• Relatively uncomplicated continuous concave and convex shoreline 

geometries (although the method was also developed for discontinuous 

boundaries);  

• Out of the scope of the research is modeling in straits, inland water bodies, 

harbors, islet areas, and like geographies that are not addressed due to 

computational complications and the sometimes transient nature of small-

scale features. 

This dissertation describes the development of the Sunken Oil Simulation (SOSim) 

model, to be used for identifying sunken oil hotspots, tracking sunken oil following a 

spill, targeting cleanup activities, and supporting cleanup termination decisions. The 

model and the software represent a new approach to pollutant tracking by inference from 

limited field data alone. The dissertation also explains the design of a method developed 

and used to compute Lagrangian relative concentration profiles subject to curved, 

continuous or discontinuous boundary conditions; and explains the combinatorial 
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algorithm established for the calculation of likelihood functions, conditional functions, 

and predictive unconditional functions; subject to high parameter dimensionality. 

The final product of the research is a computer executable stand-alone software 

package created and tested under Microsoft Windows 32 bit operative system, 

programmed in the Python language (“Python is often compared to Tcl, Perl, Ruby, 

Scheme or Java”(Python Software Foundation, 2010)) and embedded in its own GUI. 

Included in this dissertation is a user’s manual for the open-source product (Appendix A). 

Because the model was developed using only open source software and GPL derivatives, 

its use is governed under the GPL (General Public License) license terms ( license terms 

included in the source code). This tool will allow the response coordinator to choose and 

customize response options, including actions at the source, at sea, approximated 

solutions near the shore, plan operations at predetermined times and locations based on 

projected sunken oil locations, and plan the overall cleanup and recovery phase to 

mitigate impacts.  

1.5 Organization of this Dissertation 

First, the objectives and scope of this dissertation are unveiled. Following in this first 

chapter, current information reported in the literature and relevant to the transport of 

sunken oil is reviewed. Chapter 2 outlines the methodologies employed in the research 

for the development of each objective. Based on the information of Chapter 1; a 

conceptual model for the predictive Bayesian model, and its analytical expressions, are 
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presented in Chapter 3. Chapter 3 also describes the functionalities of the model, the 

statistical approach to the development of SOSim, and the confirmation of the 

functionalities developed using limited real and synthetic data on sunken oil location, 

with conclusions regarding further testing and verification through the application of the 

model as a predictive, decision-making tool. Chapter 4 contains a complete description, 

discussion and testing of the method developed to address approximately curved 

boundary conditions under the light of the method of images. Chapter 5 presents the 

computational aspects of the Sunken Oil Simulator SOSim divided in 3 parts that 

correspond to each of the Python modules created for the software package. The new 

numerical methodology developed to solve the stochastic integral equation of the 

analytical Bayesian model subject to its high dimensionality is explained in detail in this 

chapter as it belongs to the core module of the SOSim package. The user manual of the 

computer application is included as an appendix in this dissertation. 
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Chapter 2.  Methods 

The conceptual map that summarizes the procedure and organization for developing 

the predictive sunken oil mass simulator SOSim is shown in Figure 2.1.  

 

Figure 2.1. Conceptual map for the development of the sunken oil mass simulator 
SOSim. 

 

The literature review developed in Chapter 1 was used together with the methods 

described in this chapter to develop the conceptual model targeting end user needs as 

named in the introduction, objectives, and scope of the research. The initial concept was a 
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predictive Bayesian superimposed 2-D Gaussian model incorporating computer 

algorithms to allow estimation of the highly parameterized model given limited, relative, 

subjective numerical data and possibly additional information on the surroundings after 

the oil has begun to sink. The model was to be capable of accepting limited available 

field data on oil spill concentrations, whether quantitative or qualitative in nature, 

sampled randomly in space, from multiple sampling campaigns, and to include default 

integration domains for advective velocities and coefficients of diffusion in two 

horizontal directions. Model input would include, other than general integration domains, 

the time, location and type of oil of the spill, location of all oil concentration data, and 

average time of sampling campaigns.  

The methods used are described in the chapter according to four identified areas of 

need, as follows:   

1. Predictive Bayesian Multimodal Gaussian Model Development 

Development of the multi-modal predictive Bayesian Gaussian transport 

model included: 

a. Development of an understanding of the factors relevant to the modeling of 

sunken oil fate and transport, particularly as related to the bathymetric 

characteristics of bays for which a Gaussian modeling approach would be 

applicable; 
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b. Development of analytical expressions that simulated the proposed modeling 

environment, comprising proposed capabilities such as multimodality and 

superposition, transitivity, and time and location multiplicity of sampling 

campaigns;   

c. Use of the method developed for computing Lagrangian concentration profiles 

subject to curved continuous boundary conditions; 

d. Use of the computational approach to be developed as an additional objective, 

that would allow a highly parameterized predictive Bayesian multimodal 

Gaussian model of sunken oil location, within the correct physical parameter 

domain, to be executed on a computer; 

e. Verification of the functionalities developed for the model using partial real 

and synthetic sunken oil location filed data sets. 

2. Development of Methods for Accounting for Approximately Curved Boundary 

Conditions 

Development of a method of computing Lagrangian relative concentration 

profiles subject to curved, continuous or discontinuous reflecting boundary 

conditions; included: 

a. Consideration of the approaches to modeling boundary conditions in two 

dimensions, subject to the variable geometry of different  modeling scenarios, 

and 



23 

 

 

b. Understanding and applying the mechanisms to guarantee oil mass 

conservation within the bay at all times and modeling scenarios. 

3. Development of Algorithms for Integration over Highly Dimensional Uncertain 

Parameter Space 

Development of the combinatorial algorithm for the calculation of likelihood 

functions, conditional functions, and predictive unconditional functions when the 

high dimensionality of the problem precludes both the use of Monte Carlo 

methods or matrix algebra in computer algorithms. 

4. Development of the Computer Application for the Model 

Software development, including the creation of modules to gather user 

information, to graphically interface with the user, to process input, to operate and 

control algorithms, was performed. The software is an open-source, stand-alone 

(when not executed from source), executable computer application (SOSim – 

Sunken Oil Simulator) that includes a GIS-like graphical user interface developed 

from scratch. 

2.1 Predictive Bayesian Multimodal Gaussian Model Development  

This section describes the different methods used to trace the path of development of 

the multi-modal, data-derived predictive Bayesian maximum likelihood model of sunken 

oil mass, without detailing the methodology for boundary condition modeling and 
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computer algorithms methodology, which pertain to the methods of objectives 2 and 3 

(explained in detail in Chapters 4 and 5). 

2.1.1 Understanding the Factors Relevant to the Modeling of Sunken Oil Fate and 

Transport 

The methodology to pursue this objective was the gathering, compilation and 

synthesizing of data on the occurrence and transport of sunken oil as reported for 

previous spills and as described in the specialized literature; and the later selection and 

maturing of the concepts that would be useful within a Bayesian approach.  Steps towards 

the objective allowed for: (a) the evaluation of possible methodologies and approaches, 

(b) understanding the processes of hydrodynamic fate and the transport governing the 

behavior of sunken oil mass as a basis for development of the conceptual model and 

specification of default possible values and/or ranges of possible values of model 

parameters, and (c) the determination of the appropriate geographical scale and resolution 

for the model.   

2.1.2 Methods for Developing the Analytical Expressions that Simulated the 

Proposed Modeling Environment 

Following the conceptual model, the arrangement of the mathematical model was 

possible by means of understanding the mechanics of the Bayes probability theory and 

knowing the implications of crossing multimodal Gaussian Bayesian statistical 

parameters with hydrodynamic concepts and, in detail, with the advection-diffusion 
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theory and its transient parameters. Methods of the information theory were also used for 

the mathematical model, as explained later in this dissertation, in particular for selecting 

the form of the statistical error function that should be part of the joint probability of oil 

concentrations given the unknown parameter space (the likelihood function).   

For the optimum multi-modal predictive Bayesian Gaussian statistical model of 

sunken oil locations across a bay that would produce assessments of sunken oil locations 

in time; input data for the mathematical model and computer algorithms were to include 

dates of spill occurrence and sampling campaign(s), field data collected after oil has 

begun to sink at and around a spill site (which would intrinsically include, related to the 

spill location and time, information on the physical driving forces, modeled using Fickian 

transport assumption), and approximated boundary conditions if applicable for the 

desired modeling zone.  Algorithms were to infer Bayesian posterior probability 

distributions for uncertain model parameters describing the dispersion and movement of 

sunken oil patches in time. 

The multimodal aspect of the Gaussian model was needed to accommodate oil 

partitioning in globules and mats as described in the specialized literature; also, to 

account for oil accumulating in multiple areas of the bay as a result of localized sediment 

entrainment, localized bathymetric catchment areas (this last works only as function of 

the location of the sampled data, not as predicted bathymetric accumulation given that 

bathymetry as prior information has not been incorporated), and other effects. The 

multimodal capability was provided by superimposing multiple 2-D Gaussian patches in 
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the model. Each patch was assigned a weighting parameter, representing the fraction of 

the total sunken oil contained in that patch, with all fractions summing to an arbitrary 

constant value of unity representing the unknown total sunken oil mass. Because the total 

mass of sunken oil was not expected to be known, the output of the model is referred to 

as relative oil mass. Thus, the traditional requirement for normalizing the area under the 

Gaussian distributions to a value of unity was not necessary and was relaxed. Because of 

the lack of a need to normalize individual Gaussian distributions, there was no need to 

normalize the likelihood functions used to develop the Bayesian posterior distributions. 

Therefore, Markov chain Monte Carlo (MCMC) computation was not required. Because 

of the computational demands of MCMC methods, the likelihood that the approach 

would not be successful for such a highly-parameterized model (23 parameters), and the 

relatively unskewed and regular nature of the parameter distributions to be integrated, it 

was decided to use a straightforward Riemann sum after a combinatorial methodology to 

obtain the final predictive result. Related modeling techniques and advances developed 

during the course of the research are described in Chapters 3 and 5.  

2.1.3 Methods for Confirming the Functionalities Developed 

The last step was to verify the capabilities of the model using one available real oil 

data set, as possible, and simulated submerged oil data; optimize programming 

procedures; and disseminate the software and results by means of related publications in 

specialized journals and conference proceedings. The need for synthetic data for 

verification was identified, due to the limited nature of available sunken oil data recorded 
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after a spill. Thus, the model results were not verified versus real data sets measured in 

time as needed. Partial real data was used for probation if the capabilities imposed by 

development. This partial input was interpreted from a graphical presentation of spatially-

defined qualitative data on oil spill concentrations on the bottom of the Gulf of Mexico 

following the DBL 152 spill (Barker, 2009). In addition, synthetic oil spill data 

hypothetically collected in two successive sampling campaigns for a double patch of 

sunken oil in a nearshore area were generated statistically, and used to verify aspects of 

model functionality including superposition, limited boundary effects, and multiple 

sampling times. 

Use of Available Qualitative Sunken Oil Concentration Data 

Data available for use in this research project was obtained from NOAA for the DBL 

152 spill, which occurred on 11 November 2005 in the Gulf of Mexico. The data were 

available only in the graphical form shown in Figure 2.2. Data were collected by 

dragging absorbent mop-like samplers, termed pom-poms, along the bottom, and 

recording the geographical trace of the pom-pom and the visually-estimated amount of oil 

collected as ≤ 1%, 5 -10%, 11-50%, 51-100%. This figure was interpreted by assigning 

each recorded relative concentration in percent to the midpoint of the drag trace shown in 

the figure. Coordinates of the spill location, also shown, and sampling points were 

approximated based on the figure. These data location and concentration is the result of 

the transport process that had been occurring between the time of accumulation of the oil 

on the bottom after the spill and the sampling campaign time; therefore, the information 
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gathered and input to the model is considered to hold intrinsically Gaussian transport 

parameters like the instantaneous relative location of a mean with respect to an initial 

location, a coefficient of diffusion, and variablility inherited from the environmental 

conditions of the ocean at the sampled location and time. The date of this sampling 

campaign was taken as 25 November 2005, as indicated in the figure. No further 

information was available, and therefore this information was taken as an example test 

case for the use of limited information in a spill scenario.  

 

Figure 2.2. Aerial plot presenting the results of a sampling campaign following the 2005 
DBL 152 spill near Port Arthur, TX. 
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Development of Synthetic Spatially-Defined Sunken Oil Concentration Data 

To verify additional functionality of the model including superposition, boundary 

effects, and multiple sampling times, synthetic data was generated. This was done by 

assuming a roughly bi-modal Gaussian distribution of oil on the bottom, that is, oil in 

patches (that might in turn have internal patchy character). However, real oil spill data 

will not be neatly Gaussian in shape and will come from a distribution of experimental 

error. Therefore, the bi-modal, bivariate Gaussian distribution was used as the assumed 

mean oil concentration on the bottom, with relative concentration then sampled from a 

distribution of variability around that mean, exponential in form. The exponential 

distribution is the most likely distribution of sampling error around a fixed mean, given 

that concentrations cannot be negative, by the Principle of Maximum Entropy (Jaynes, 

1957), as will be described more fully in Chapter 3 in reference to model development. 

Thus, the concentration, iC , at each assumed sampling point in space and time was 

sampled from an exponential error distribution with scale parameter λ, and mean 

λ1  equal to a superimposed bivariate Gaussian distribution as follows: 

• Mean concentration at the i-th of 90 (in space) x 2 (in time) samples was found by 

superposition of two assumed Gaussian patches of sunken oil, as ∑ =
=

2

1j jjiC Nγ , 

in which ( )jjjj ,,t ρσμX |,f=jN  is the j-th assumed patch of sunken oil and γj 

is the relative mass of oil contained in that patch. The oil was assumed to occur in 

a nearshore environment; 
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• To account for real experimental and natural variability, measured sample 

concentrations, iC , were then sampled from an exponential distribution with 

parameter iC/1=λ . 

2.2 Development of Methods for Accounting for Approximately Curved Boundary 

Conditions 

A method of computing Lagrangian relative concentration profiles subject to curved, 

continuous or discontinuous boundary conditions based on the method of images 

employed in groundwater hydraulics and water quality modeling was developed. The 

methodology incorporated two phases: 

Considering the state of the art about applicable approaches to modeling boundary 

conditions in two dimensions subject to variable geometry, it was necessary to create a 

new bi-dimensional technique for calculating any continuous curved boundary or any set 

of discontinuous curved boundaries with the method of images. A curved boundary 

results from a continuous number of line segments in any direction (a polyline), that are 

superimposed to the shoreline. Similar to the internal boundary condition of a finite 

difference model, the shorter the lines, the better the precision of the method. The 

graphical dissimilarity here is that the curved boundary is approximated by a continuous 

polyline, not by a staircase-like set of vertical and horizontal steps. Although not applied 

in the Sunken Oil Simulator (SOSim), the procedure can also be used for solving 

multiple, discontinuous bi-dimensional boundaries with the method of images, that is, by 
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using more than one polyline, or broken sets of line segments approximated to curves. 

The method requires the idealization of the shoreline, wherewith the application of 

Fickian transport law can remain pertinent.  The developed approach was applied to 

SOSim to calculate the approximate initial effect of the vicinity of coastlines in oil spill 

scenarios. The compete method is presented in Chapter 4 as a contribution to be used in 

other applications. 

Developing an understanding of the multi-order or repetitive nature of a mirror image 

process, and express it by means of an iterative algorithm. During a reflection process, a 

source is reflected with respect to a boundary and, the produced imaginary reflection is 

mirrored back with respect to all available boundaries, in a way that the source and the 

imaginary sides are constantly experimenting imbalances that will occur until the total 

original mass is equaled at both sides. The new approach is capable of accounting for 

multiple-order-image superposition with the aim to guarantee sunken oil mass 

conservation within the bay at all times and modeling scenarios. 

2.3 Development of Algorithms for Integration over Highly Dimensional 

Uncertain Parameter Space 

The computational approach that allowed a highly parameterized predictive Bayesian 

multimodal Gaussian model of sunken oil location was developed using combinatorial 

math methods across multidimensional parameters for stochastic function-solving and for 

maximum-likelihood estimation to identify the most likely oil patch(es). The need for 
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combinatorial math lays in the fact of multidimensionality. Each of the 23 parameters of 

the model could contain a variable, unknown number of elements. The number of 

elements within each parameter’s domain was fixed so the number of possible 

discretization values in each dimension was always the same and the number of total 

Riemann integration differentials was known. This approach allowed for the simulation 

of operations between every element of the parameter space as if the parameters and their 

dimensions were arrayed in matrix form. That is, for each possible subset of parameters 

of the domain, one possible target of every participating function is calculated and fed to 

the mathematical model, for every mode (or oil patch), and always in two dimensions. 

The superposition of modes happens repeating the same combinatorial method, but 

among combinations of previous results (see Chapter 5). Consecutively, the most likely 

oil patch(es) is identified using the maximum likelihood estimator method. The final 

integration is performed using a Riemann approach adapted to the combinatorial nature 

of the process. The complete methodology would not have been possible without the use 

of programming techniques and computer machines, as described in Chapter 5. 

2.4  Development of the Computer Application for the Model 

The software development was possible thanks to the Python programming language 

(Python Software Foundation, 2010) and derived modules like PyQt, PyQGIS, Numpy 

and Matplotlib, among others.  The principal method employed was programming 

oriented to objects, in which different classes represent different algorithms of the model; 
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within each class, functions called methods give the functionality for, and operate, the 

different capabilities of the model.  

The Python code provides the Bayesian model methods for: (1) graphically 

communicate with the user, through an object-oriented programmed graphical user 

interface and executable application; (2) calibration of instantaneous oil spill scenarios 

given limited available field data on oil concentrations in time and space; (3) obtaining 

sets of printable, georeferenced maps of relative probability profiles at different 

prediction times of a calibrated scenario; (4) altering or changing both the user-selected 

geographic areas (open sea or nearshore) and the desired output resolution subject to a 

predetermined scale and land proximity; and (5) performing post-processing tasks proper 

of a basic GIS-like software. 
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Chapter 3. Predictive Bayesian Data-Derived Gaussian Model of Sunken Oil Mass 

3.1 Introductory Remarks 

Sunken oil is difficult to locate because remote sensing techniques cannot as yet 

provide views of sunken oil over large areas.  Moreover, the oil may re-suspend and sink 

with changes in salinity, sediment load, and temperature, making deterministic fate 

models difficult to deploy and calibrate when even the presence of sunken oil is difficult 

to assess.  For these reasons, together with the expense of field data collection, there is a 

need for a statistical technique integrating limited data collection with transport 

modeling.   

Predictive Bayesian modeling techniques described in the next section have been 

developed and demonstrated for exploiting limited information for decision support in 

many applications. The Bayesian modeling approach allows integration of available 

numerical data together with any less-quantitative information, with rigorous accounting 

for uncertainty in accordance with the laws of probability. Predictive Bayesian methods 

involve the development of unconditional probability distributions for the quantity of 

interest, by integrating over all possible values of the uncertain parameters.  

The purpose of this chapter is to describe the development of a predictive Bayesian 

multi-modal 2-D Gaussian model for computing unconditional relative probabilities of 

sunken oil location as a function of time based on limited available spatial field data on 

relative, subjective sunken oil concentrations. Methods are developed to implement 
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integration over a highly dimensional uncertain parameter space. The method of images 

is extended for use with ideal curvilinear shoreline boundaries. An interactive graphical 

user interface is described. Model capability for locating sunken oil patches based on 

limited field data is confirmed versus data on the DBL-152 spill (Barker, 2009) and 

capability for projection in time is shown using simulated field data.  

3.2 Predictive Bayesian Gaussian Approach 

Predictive Bayesian distributions are distributions of unconditional (on knowledge of 

the parameter vector) probability.  The predictive distribution is obtained by multiplying 

the sampling distribution (e.g., the multinormal), by a Bayesian posterior distribution 

describing numerical and other knowledge of the parameter vector, and integrating the 

product over the uncertain parameter space according to the Theorem of Total 

Probability. The result is a distribution that evolves in shape, becoming progressively 

narrower as the level of available information increases, converging on the underlying 

distribution of variability. Figure 3.1 shows this evolution in a general, one-dimensional 

case. 
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Figure 3.1.  Distribution of physical variability assuming perfect information, or no 
uncertainty, and predictive Bayesian distributions based on limited data, and limited data 
with professional judgment, showing the decrease in information entropy with increased 

information availability. 

 

An unconditional probability distribution represents the probability of future 

outcomes based on experimental samples and refined prior information on its parameters. 

When prior information is either diffuse or constant relative to the sample information, it 

is said that the ‘refined information’ or posterior distribution, is solely proportional to the 

experimental samples (Winkler, 2003). Following this logic, the general predictive 

Bayesian analytical model that represents the unconditional probability of a particle of oil 
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at ( )yx,X = is the following expression, involving a conditional sampling distribution 

and a data-derived likelihood function, in which the integration is over an uncertain 

parameter space: 
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in which )|,(f jjjj ,,t ρσμX is the j-th Gaussian patch given knowledge of the range 

of parameters mean ( )
jyxj μμμ = , standard deviation ( )

jyxj σσσ = , correlation 

coefficient jρ , and sunken oil fraction jγ , with ∑ =1jγ  to maintain conservation of 

mass; tjj vμ = ; jv  is the average advective velocity vector (L/T) of the j-th Gaussian 

patch; t  is time (T); Dtj 22 =σ  is the standard deviation or measure of the effective 

“breadth” of the patch at time t ; D  is the horizontal average sunken oil coefficient of 

diffusion (L2/T); and ),|( γρσμCi ,,L  is the likelihood function of the observed 

concentration data, iC , at the irregular sampling locations and times, in which iC  

represents the vector of relative concentration data, ( Ii CCCC ,...,,...,, 21 ), at locations 

( ii yx , ) and times, it .  The parameter space is described as follows: 
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}),(,...,),{(  1 Jyxyx µµµµ=μ  

(3.2) 
}),(,...,),{(  1 Jyxyx σσσσ=σ  

},...,{  1 Jρρρ =  

},...,{  1 Jγγγ =  

Note that one of the patches has noγ  parameter since =4γ 1- ( 321 γγγ ++ )). 

In essence, field data are sampled from a distribution of sampling variability around a 

mean concentration. This mean is modeled by the value of the multimodal 2-D Gaussian 

distribution at that point in space. The distribution of sampling variability was assumed to 

be exponential in form, because the maximum Shannon entropy distribution around a 

fixed mean over a non-negative range is exponential (Shannon, 1948). This form is 

proposed as the most likely distribution of concentrations that might be observed at a 

point on a bay bottom, by the Principle of Maximum Entropy (Jaynes, 1957). That is, 

entropy is the average log of the inverse height of the density and so, assuming 

normalization, is a measure of distribution “breadth.” Therefore, maximizing entropy 

means maximizing the range of feasible outcomes and, all-the-more-so, the number of 

ways to satisfy the constraints. The maximum- entropy distribution is then realized 

because it can be obtained in overwhelmingly many more ways. For example, the 

Gaussian diffusion equation itself results if the entropy of a distribution of diffused mass 

is maximized subject to independent constraints in terms of the mean (or advective 

velocity, controlled by pressure gradient) and the variance (or coefficient of diffusion, 
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controlled by e.g. viscosity, temperature). Likewise, entropy can be the starting point in 

deriving many physical laws, if the governing constraints are known (Kapur, 1989; 

Jaynes, 1957). 

Assuming an exponential distribution of oil concentration sampling variability around 

the mean, modeled by the multimodal Gaussian distribution, the likelihood function in 

Equation (3.1) can be written in terms of the relative concentration as follows: 

∏ =
−=

I

i ii,,
1   )exp(),|L( ii CγρσμC λλ , (3.3) 

in which )|,,(f1
1 ∑ =

=
J

j jjjiiijji ,,tyx ργλ σμ .  That is, it is assumed that the 

concentration sampled at a point in space and time comes from an exponential 

distribution of sampling error with mean i 1 λ . 

The conceptual model, though Bayesian in character to address uncertainty and speed 

of computation was developed primarily to accept field (sampling) data, that is, to be 

data-driven only. Due to its structure, the capability for accepting prior information such 

as derived from bathymetry or professional judgment regarding model parameter values 

can be added as appropriate. 

3.2.1 Conditional bivariate Gaussian distribution 

Mass concentration in a fluid subject to advection and dispersion in any media can be 

shown, for example by maximizing the Shannon entropy of a distribution of (oil) 
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particles subject to a mean location and variance, to have a Gaussian concentration 

profile subject to bounds with real mean and real positive variance domains (Shannon, 

1948). Conditional on knowledge of the parameter vector, a bivariate Gaussian is adopted 

as the conditional sampling distribution for the two-dimensional Bayesian model of 

sunken oil locations on a relatively flat bay bottom. Therefore, we have that: 
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and jμ  and jσ represent the two dimensional means and covariance matrices, 

respectively, for each patch. In Equation (3.4), mm yx ,  are the coordinates of a point to be 

modeled, and jθ  represents the set of parameters jj σμ ,  and ρ  as described in the 

conceptual model. 

3.2.2 Bayesian posterior distribution 

A posterior probability distribution can be used in predictive Bayesian theory to foretell 

the behavior of another possible observation without the need of performing further 

experimental sampling on the zone of possible observation. 

Bayesian methods involve first assigning a joint (that is, multivariate, to address all 

uncertain parameters) prior probability distribution to the uncertain parameters of a 
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sampling distribution such as the Gaussian. This distribution is assigned based on non-

numerical forms of information, such as bathymetry that might affect sunken oil 

locations, as function of the unknown parameters. In the model developed, no prior 

information was assumed, such that the probability prior to data collection of finding oil 

on the bottom was constant spatially (for relatively flat ocean bottoms, dredged bays, reef 

flats and lagoons or pools protected by offshore rocks). Therefore, based on the Principle 

of Maximum entropy, the prior distribution was taken to be a uniform distribution over 

the uncertain parameter space. This can be done by setting the prior equal to unity as an 

arbitrary constant, so that it drops out of the equation, because normalization if required 

is obtained in a subsequent mathematical step.  

A Bayesian posterior distribution is obtained as a refinement (narrowing) of the prior 

distribution using Bayes Law: 

( ) ( ) ( )
( )I

I
I xxx

xxxLxxxf
...,,,g

|...,,,...,,,|
21

21
21

θεθθ = , (3.5) 

in which ( )θ|...,,, 21 IxxxL  is the likelihood function, ( )θε  is the prior, and 

( )Ixxx ...,,,g 21  is the probability that the data was observed, a normalizing constant with 

respect to θ , the parameter space. I is the total number of sampling points i .The total 

mass of sunken oil is generally unknown, and as a result the final predictive distribution 

need not be normalized, as a distribution of relative, not absolute, concentrations. 

Therefore, the normalizing constant, ( )Ixxx ...,,,g 21 , is also not needed, and the (un-
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normalized) posterior for the model becomes ( ) )(|...,,,)...,,,|( 2121 θεθαθ II xxxLxxxf  

( )θ|...,,, 21 IxxxL= . That is, =)...,,,|( 21 Ixxxf θ  ∏ =
−
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i ii1   )exp( iCλλ , where 
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The intrinsic physical information contained in the collected field data along with the 

overall information about the spilt oil, the accident location, and a set of elapsed times are 

used to calibrate a spill scenario, that is, to obtain a posterior probability distribution, 

which in this case is proportional to the likelihood function as shown.  

3.2.3 Multimodality and Superposition 

The model was developed as a multimodal Gaussian, to account for example for the 

presence of multiple patches of oil collecting on the bottom, or for oil concentrating more 

highly in deep bathymetric features at any or all times. The predictive model is able to 

infer from the data whether or not the sunken oil is distributed in single or multiple 

patches, and to track and predict this multimodal behavior in time. As a consequence, the 

assessed concentration profile can be, or become, either multimodal or unimodal in time. 

Results depend upon the data, as well as on boundary conditions, desired prediction 

times, and the resolution selected by the user. 
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The total mass of sunken oil is not typically known as a function of time, considering 

ongoing sinking and re-suspension processes. Therefore, computations of the model 

arbitrarily assume a constant mass of sunken oil with time, producing maps of relative 

sunken oil in space which identify areas with the most oil. As such, relative masses 

cannot be compared across time. Therefore, in an emergency response scenario, the 

occurrence of increases or decreases in the total mass of sunken oil over time would need 

to be assessed from the field data, for example, by inspection. With this basic assumption, 

the model can infer the relative mass of oil contained in each patch from the field data. 

This relative mass is represented by the parameter jγ , representing the fraction of total 

sunken oil that belongs to the j-th patch, which can be considered the mass weighting 

parameter among patches. Summation of the jγ  to a constant value over time was 

therefore one important test of internal model consistency used for verifying the model as 

it was developed.   

An expansion of the Bayesian Bivariate Gaussian analytical expression for multiple 

modes shows how superposition is mathematically attained in the model: 

( ) 1,|,)|,( == ∑∑ jjjoverall ttf γθγθ XX N . (3.7) 

That is, the overall conditional Gaussian sampling distribution is composed of the 

sum of any possible combinations of a weighting parameter, the fraction jγ , among 

patches and a bivariate normal distribution jN  with parameters ,
jyjx μ,μ  

jyjx , σσ  and 
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jρ , that represents a single mode or oil patch j , such that the sum of the weighting 

parameters is equal to one. To maintain this sum equal to unity over multi-dimensional 

integration operations with some computational efficiency, an algorithm based on 

combinatorial mathematics was developed, as described in the section Algorithm and 

Code Development. 

3.3 Assumed or Specified Parameter Domains 

An unconditional probability distribution represents the probability of future 

outcomes based on experimental samples and refined prior information on its parameters. 

When prior information on the parameters is either diffuse or constant relative to the 

sample information, it is said that the ‘refined information’ or posterior distribution, is 

solely proportional to the experimental samples (Winkler, 2003). This being the case, the 

model was developed primarily to be data-driven, as opposed to driven by prior 

information on the parameters.   

As such, the model was designed with capability for operation without specific 

information on (or distributions of) average advective velocity vectors and diffusion 

coefficients found on the bay bottom. Other explanations for such a design of the model 

include that: (1) empirically-derived relationships between transport parameters and the 

scale of a contaminant plume such as those developed by Okubo (Okubo, 1971), have 

been observed in the surface of the ocean; but (2) studies on the propagation or 

parallelization of surface phenomena to the bottom of the ocean have concluded that only 
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near a 1% of the total energy observed at the surface is replicated at the bottom, and is 

observed especially during storm events (Beegle-Krause et al., 2006), and therefore (3) 

experiments conducted on the surface do not apply and are unknown to occur at the 

bottom. As well, literature suggests that (4) average bottom current conditions will not be 

sufficient to move the oil in a continuous manner (Beegle-Krause et al., 2006; Boehm et 

al., 1981). Rather, with enough energy, tarmats in the bottom generally break up into 

smaller pieces of oil that spread out into a larger area, similarly to sediments in terms of 

episodes of burial and re-exposure and mobilization. Lastly, (5) the energy required to 

move the oil on the bottom varies with depth and site and is unknown.  A break-up 

energy level has been estimated as 6 m2/Hz (Beegle-Krause, et al., 2006).  

For all the previous reasons together, prior information on the physical parameters was 

not readily available to the model, and is considered ‘diffuse’ or constant, tending to one 

in obedience to Bayesian inference methods (Winkler, 2003). 

. Accordingly, default ranges of values were assigned for each of these parameters 

with the mere purpose of evaluating and integrating equation (3.1) over a wide set of 

physically-possible values. The default ranges are no more than assigned, changeable 

possible values with restricted domain (e.g. a coefficient of diffusion cannot be zero or 

negative in time); they are not expected values of the parameters. Currently, default 

ranges are wide, as shown in Table 3.1, having been assigned based on literature and 

professionally-judged values together with a margin of uncertainty. In the future, these 

ranges can be refined and can be based on the input of prior information. As of now, the 
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graphic user interface gives the user the possibility of changing input in the form of 

ranges of parameter values based either on hydrodynamic data or professional judgment, 

to over-ride default ranges assigned in the research. The default ranges are shown in 

Table 3.1.  

Table 3.1. Default parameter ranges of the model. 

Parameter Symbol Units Minimum Maximum 

Velocity in the east-to-west direction xv  dkm  -3.0 3.0 

Velocity in the north-to-south direction yv  dkm  -3.0 3.0 

Coefficient of diffusion, east-to-west 
direction 

xD  dkm2  0.01 0.89 

Coefficient of diffusion, north-to-south 
direction 

yD  dkm2  0.01 0.89 

Coefficient of correlation between 
directions 

ρ  [-] -0.999 0.999 

Mass conservation weighting parameter γ  [-] 0 (fixed) 1 (fixed) 

Displacement in the west or south direction from the initial point of bottom 

contamination implies that the velocity vector has a negative direction. Displacement in 

the east or north direction from the point of initial collection implies that the velocity 

vector has a positive direction. As the ranges of the parameters are not expected values 

and do not represent prior information on the parameters, the probability of the sunken oil 

transporting eastward or westward are set balanced (-3 to 3 km/d). The same applies for 

the southward and north velocities.    
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As observed, the default domain of the coefficients of diffusion is restricted to 

positive, non-zero values. The physical domain of non-default ranges, assigned by the 

user, is restricted by the graphic user interface of the model. 

The default range of the coefficient of correlation is defined based on its typical 

domain in a bivariate Gaussian distribution. 

The domain of the mass conservation weighting parameter is fixed. Since the total 

sunken oil mass is unknown, this range must (a) vary between and (b) be normalized with 

respect to, two known constants; in this case, between zero and the unit. 

The resulting prediction is not obtained through maximization of the likelihood 

function; rather, it is obtained after integration under the complete parameter space, a 

combinatorial method (Chapter 5) that does not allow tracing back something such a 

“most likely” set of source parameters. A relative probability is assigned to every user-

defined coordinate (modeling node) at the given user-defined prediction time by means of 

a single integration over the entire parameter space per coordinate. If no probability is 

found at any of the selected geographic locations (modeling nodes), no result will be 

shown for the area, which means that Equation (3.1) has the potential to not finding a 

solution if the parameter space is not suited to adjust probabilities of finding future states 

of the sampled data within a given zone.  The last is considered prove that the model does 

have the capability of accounting for the physical parameters and does not select a 

solution based on the maximization of the likelihood function. Since the default ranges of 
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integration over the parameter space are all physically possible, equifinality should be 

mathematically attained between the resulting prediction obtained through integration 

over the physically-possible unknown parameter space and another simulation that used 

another method to actually find the parameters that such simulation described. The 

fundamental problem of proving equifinality would be that the highly dimensional 

parameter space does not allow for the obtaining of a closed analytical maximizable 

expression that can be solved for the 23 parameters in question. Even random-walk or 

chain processes to find maximum likelihood estimators of the parameters would need a 

complex numerical computation.    

3.4 Projecting the Oil Mass in Time 

The concentration profile in a (one dimensional) media following the instantaneous 

introduction of a mass, M, can be found either starting with the Fick’s Law-based 

advection-diffusion equation and applying the inverse Fourier transform (Chin, 2006), or 

solving the random walk model for a particle (of oil) (Einstein, 1925). The result takes 

the form of a Gaussian distribution with variance growing in time: 
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in which xD is the uncertain diffusion coefficient of a Gaussian path in one dimension 

[L2/T], vt  is the distance the mass M  has traveled from the initial point x , v  is the 
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uncertain mean velocity vector of the Gaussian patch [L/T], and A  is the transverse area 

of mass introduction. In the model developed, the mass per unit area, M/A, of sunken oil 

is taken as an arbitrary constant. 

Comparing the fundamental solution of the diffusion equation (Equation 3.7) to the 

equation of a Gaussian distribution (Equation 3.4 in one dimension), it is seen that vt=µ  

and Dt2=σ . Furthermore, by the time oil mass reaches the bottom of the sea from the 

initial aerial spill location ( 00 , yx ), it will already be characterized by an initial velocity 

and an initial diffusion coefficient, which results in: 

tvxμ += 0    and   tDσσ 20 += . (3.9) 

Equations 3.8 are parameterizations of uncertain parameters that are used along the 

Gaussian model which varies as a function of user-defined times of oil mass prediction.  

The Gaussian nature of the sampling probability function and its parameterization in 

time ensures that no parameter will hold physically impossible values in time, for 

example, the standard deviation of a predicted Gaussian patch at a given time will always 

hold values smaller than those held by future states in time because the prediction time 

factor, t , is a known, unique coefficient within any single integration-solving process.   
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3.4.1 Incorporating Multiple Sampling Times 

In order to account for changes in sunken oil movement due to e.g. tidal action, storm 

events, and sediment entrainment, the model was built with capability for accepting data 

from multiple sampling campaigns (sampling campaigns performed at different times and 

different areas) that would lead to updated calibrations of oil spill scenarios. Input of data 

subsequent to the initial sampling campaign increases the number of product terms in the 

likelihood function, increasing the information content of the calibration and increasing 

information concerning oil movement, in particular.  

The likelihood function of the observed data, Ci, at each i-th irregular sampling 

location and times with respect to the uncertain parameter space is:  

∏ =
−=

I

i
,,

1
)exp(),|L( ii CγρσμC λλ  (3.3) 

in which Ci represents the vector ( Ii CCCC ,...,...,, 21 ) of measured concentrations at 

different location-times. The SOSim GUI allows up to ten different sampling campaigns 

or times, with an unrestricted number of sampling locations at each time.  

3.4.2 Taking Into Account the Potential for Sinking and the Short-Term 

Weathering 

The model infers oil location as a function of time by comparing the initial point of 

accumulation with data on its distribution at a later point in time. If only one sampling 

campaign is available, the initial point of accumulation is critical to these predictions in 
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time. While many times the spill location and time are known, and may represent the 

initial point of accumulation for floating oil, the initial time and point of accumulation are 

not as well known for sunken oil, depending on oil density, sediment entrainment, and 

other factors. In fact, while oil may take a week or more to start a weathering process that 

may result in sinking, Type 4, 5 and 6 oils start a process of sinking by gravity 

immediately after abrupt release or during a continuous spill event (each oil type at its 

own pace).   

For the SOSim model, the initial spill time is indicative of the major release at the 

actual coordinates of the accident at the surface, but the approximated time at which oil 

starts to collect at the bottom is really what defines the framework of the model with 

respect to time. The difference between the spill time and the time at which oil starts to 

collect at the bottom is considered a “retardation factor”, included in the model as a 

function of the oil type as identified by the user. Oil is identified as one of the accepted 

Types 1 through 6 described in the literature review, accounting for multiple properties of 

oils related to the potential for sinking by gravity and for weathering by evaporation 

and/or dissolution. Accordingly, all times that modify the likelihood of finding sunken oil 

at a given location are adjusted by the retardation factor, RF, as RFtt −= , in which RF 

reflects an assessed, generalized delay associated with the particular oil type before 

starting to collect at the bottom. It is assumed that no sampling campaigns will be useful 

if performed before the assessed retardation gap. 
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3.4.3 Development of Curved Boundary Capabilities by the Method of Images 

 An extension of the method of images (or method of image charges in 

electromagnetics, or reflection theory in physics) was used to approximate the overall 

initial mass retention effect of curvilinear coastal boundaries when the sunken oil is 

predicted to be transported near a coastal area. The physical reality of the ocean 

boundaries (the shoreline) is approximated to an ideal condition in which a “relatively-

flat ocean bottom” is truncated by a theoretically vertical barrier that is assumed to retain 

the sunken oil without compromising the oil’s mass conservation and the Fickian nature 

of the transport process; that is, it is assumed that phenomena that might occur close to a 

shoreline environment such as oil adsorption onto the barrier’s material or flow into the 

porous medium do not occur. Figure 3.2 replicates the physical approximation in one 

dimension.  The method, developed in Chapter 4, is used as a numerical approach to 

calculate the effect of the vicinity of coastlines in oil spill scenarios. 

The scheme used in this research also involves the assumption of uniqueness of the 

current modeling conditions, maintaining conservation of mass, while redistributing it 

consistent with each source and at each time within the nearby boundaries imposed by the  

geometry of the coastal zone, approximated and projected to the bottom (see Figure 3.2). 

A novel implementation using a polyline approximation of shoreline geometry was 

developed and executed in the model, as described in Chapter 4. 
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Figure 3.2. Graphical depiction of the physical idealization of the boundary conditions to 
apply the Method of Images in the SOSim model. 

 

Consider an example in which an oil patch is denominated ‘the source’. The source 

occurs at a certain point ( 00 , yx ) = ( x , 0) on the bottom of a bay and has a concentration 

distribution c ( yx, ). This point lies at some distance x  from the shoreline which, by 

definition, has a concentration gradient of zero. As the patch approaches the shore, oil at 

the leading edge begins landfall. It is then assumed that this oil mass is reflected back 

into the water, producing a retention in the nearshore environment by the principle of 

superposition. In one dimension the retention is easily computed as a sum of the 

inflowing mass and the reflected mass. However, in two dimensions when the shoreline 
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is not straight, reflections are not perpendicular with respect to only one line and 

calculations become cumbersome. Therefore, (relative) mass accumulation is computed 

in SOSim by setting up imaginary conditions to replicate the curve of the boundary. The 

method of images momentarily replaces the boundary by an “image source”, equal in 

concentration distribution but located at opposite coordinates (- x , 0) across the boundary. 

This new situation is equivalent to the original layout because superposition of the source 

and its image concentration distributions will simulate the zero concentration gradient at 

the boundary and will account for spreading and contention of oil. The result is then the 

summation of concentration distributions on the source side, and all results imagined to 

occur beyond the boundary can be ignored. Figure 3.2 depicts the concept.  

In the single boundary case described above, no other boundary has effect on any of 

the sources, and thus the reflection process stops at once and the case is considered of 

zero order. When multiple boundaries coexist, imaginary sources are not perpendicular 

with respect to only one line but instead it is assumed that they are perpendicular with 

respect to each segment of a boundary interpreted as a series of connected lines, where 

every single source is reflected with respect to each of the line segments. In the 

application of the method of images in groundwater hydraulics to modeling flow near 

aquifer boundaries, the source is reflected with respect to each horizontal or vertical 

aquifer boundary, and each subsequent reflection is in turn affected by the boundary that 

did not reflect it before (Bear, 1979, Todd and Mays, 2005).  The approach to considering 

perpendicular or parallel boundaries (that are not necessarily contiguous) used in 
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groundwater hydraulics, was adapted and implemented for the case of non-orthogonal 

contiguous line segments representing approximate geographical boundaries to sunken 

oil movement. That is, the requirement for perpendicular or parallel boundaries was 

relaxed using a new method developed to address the change in correlation between the x 

and y directions. The multi-reflection process creates a series of mass imbalances that 

must be balanced back with further operations. As a result, computation must be iterated 

to attain both mass conservation and zero-concentration gradient values at the shoreline.  

To approximate shorelines with polylines, the user is shown a map of the spill area, 

and instructed to click on the map to define up to 10 vertices (on a continuous coastline). 

These vertices are connected by straight lines to approximate the coastal zone contour. 

The algorithm allows the addition of as many superimposed terms as needed to the 

conditional Gaussian bivariate distribution. However, computational demands increase 

nonlinearly with the number of vertices, due to the nature of the numerical integrations 

across the multi-dimensional parameter space and the combinatorial numerical approach. 

Therefore, the program SOSim incorporates a limit of ten vertices.  

This approach, like many numerical methods, requires a stopping rule to define the 

limit of iteration needed to obtain an acceptable solution. In this research, it was found 

that the sum of second and lower order reflections provided sufficient detail to obtain an 

observable mass balance in the water body. Thus third and higher order reflections are 

neglected, greatly reducing computational demands (currently model runs require several 

hours on desktop computers). Also, because the Gaussian tail is mathematically infinite, 
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reflection is calculated beginning when a patch center reaches a distance of σ2  from the 

shoreline, and ending when the tails of the outgoing source and the incoming image have 

already “crossed” (refer to Figure 3.2) and no longer sum to a value higher than the 

concentration at the mean σ2± .  To prevent calculation of sunken oil projections at 

times beyond the estimated time of landfall, when the patches would appear to “bounce” 

off of the shoreline, a warning message is issued by SOSim when the requested 

prediction time is estimated a priori to be beyond the time of landfall. Such prediction 

times are beyond the reasonable capability of SOSim to assess relative concentrations. 

3.5 Integration to Obtain the Predictive Relative Concentration Profile 

Several different integration techniques were considered for the multivariate 

integration expressed in Equation (3.1), which expanded, is the equation solved in the 

model to obtain unconditional, relative probabilities of sunken oil mass: 
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where tjj vμ = ; jv  is the unknown average advective velocity vector (L/T) of the j-th 

Gaussian patch; t  is time (T); Dtj 22 =σ  is the standard deviation or measure of the 

effective “breadth” of the patch at time t ; D  is the unknown horizontal average sunken 

oil coefficient of diffusion (L2/T); and [ ]∏ =
−

I

i 1
)exp( iCλλ  is the likelihood function of 
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the observed concentration data, iC , at the irregular sampling locations and times, in 

which iC  represents the vector of relative concentration data, (C1, C2,…,Ci, … CI), at 

locations (xi, yi) and times, ti. jBm  is the expression 
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−−  for the jth sunken 

oil patch. The unknown parameter space is comprised of jjjj Dv γρ   and  ,, , as explained 

in Table 3.1. 

The first integration technique considered to solve equation (3.9) was an analytical 

solution, which is available for the predictive Bayesian multinormal distribution 

(Aitchison and Dunsmore, 1975). However, no solution is available for the multimodal 

analog that would allow the inference of varying numbers and weights of multiple 

patches of oil. Second, the use of Markov chain Monte Carlo (MCMC) simulation was 

considered, to generate vectors of random variates sampled from the Bayesian posteriors 

over which averages could be computed at each point in space and time. MCMC is the 

most popular approach to computation of Bayesian posteriors. However, the approach 

was not considered likely to estimate posteriors successfully, due to the high 

dimensionality of the model, without the development of new computational approaches. 

In addition, the principal advantage of the approach is the ability to compute the 

normalizing constant for the likelihood function, not needed in the SOSim model. 

Moreover, the distributions applicable to the uncertain parameters of a Gaussian 

distribution are not highly skewed, and are therefore relatively easy to integrate as a 
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discretized sum. Therefore, it was concluded that the most efficient approach would be a 

direct Riemann sum approximation. The approach involves approximating the volume 

under a surface (or area under a curve) as a sum of small differential volumes, partitioned 

over the domain of the parameter space.  

The Riemann sum requires one initial input: the approximate domain of the uncertain 

parameters. As mentioned, default values for this range are included in the model based 

on literature information and statistical principles, and handled as explained in the section 

Software Development. The Riemann sum integration, consumes considerable 

computational resources in the SOSim model because of model dimensionality and the 

programming structure required in the Python programming language used. Algorithms 

are explained under Software Development, including how the resolution of the 

integration (the number of discretizations of each parameter range) is related nonlinearly 

to the number of oil patches and to the precision of prediction.  

3.6 Verification of the Functionalities of the Model 

The capabilities of the model were verified using one real (as possible) and one 

synthetic data set. First, the ability of the model to locate sunken oil patches from limited 

available field data on the DBL-152 spill in the Gulf of Mexico, a major spill involving 

sunken oil, was confirmed. The event occurred 11 November 2005. Oil was observed to 

collect in a single patch about 28 nautical miles from shore near Port Arthur, TX, 14 days 

after the spill. In such cases when the spill is not expected to impact the shoreline, as 
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determined by the user when assigning the modeling geographic scale, shoreline 

boundary conditions are not taken into account by the model, saving considerable 

computational time. To then verify model functionality in terms of boundaries, 

superposition, and multiple sampling campaigns, the developments were tested using 

synthetic data on sunken oil collecting nearshore, initially in two overlapping patches and 

then dispersing along divergent paths. In the second scenario, two sampling campaigns 

are assumed. Shoreline boundaries are accounted for based on a polyline approximation 

of the shoreline entered interactively by the user using the graphical user interface (refer 

to Chapter 4 and Appendix A).  

Table 3.2 indicates required and optional input and default and optional output for 

this verification case. The international system (SI) of units (km, days) is used in model 

calculations, whereas geographical user input is in terms of coordinates expressed and 

shown on non-projected maps in the World Geodesic System (WGS). 

Table 3.2. Input and output for Verification Scenario 1: DBL 152 

Input Output 

Required input: 

• Spill coordinates and time: 29.205° N, 093.4683° 
W (United States Coast Guard, 2005), on 
November 11, 2005 (General Counsel for 
Natural Resources/NOAA Office of Response 
and Restoration, 2009). at zero hours (midnight, 
assumed as the initial hour of most significant 
loss) 

 

Default output: 

• Maps of relative 
concentration (unconditional 
probability) at desired times 
(Figure 3.6, 3.7 and 3.8) 

Optional (post-processing) 
output: 

• None for this scenario 



60 

 

 

Input Output 

• Subjective relative concentration data (Figure 3.4 
obtained from Figure 3.3) and  sampling time 
from Figure 3.3: November 25, 2005, 14  days 
after the spill 

• Desired prediction dates and times: 12 hours 
after sampling, 17.5 days after the spill, and 19.5 
days after the spill 

Optional input: 

• User-defined modeling area: approximately 0.2° 
around the spill, total about 0.4° longitude x 0.4° 
latitude 

• Interactive spatial scale and resolution: 40 grid 
nodes in each direction 

 

The sampling campaign provided by NOAA (Barker, 2009) shown in Figure 3.3 was 

interpreted as follows. The relative oil concentration, in percent, recorded for each 

sample taken was assigned to the midpoint of its graphically-depicted sampling path, 

through which the pompom sampler was apparently dragged prior to observing the 

amount of oil collected. Thus the distribution of subjective concentrations shown in the 

shaded area of Figure 3.3 and detailed in Figure 3.4 was assigned as input for SOSim. 
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Figure 3.3. Aerial plot presenting the results of a sampling campaign following the 2005 
DBL 152 spill near Port Arthur, TX. The shaded area contains the portion of the data 

used to confirm the ability of the model to locate sunken oil. 

 

The apparent date of data collection is shown in Figure 3.3 (November 25, 14 days 

after the spill) and the approximate time of most significant loss was assumed as 12:00 

AM (midnight). Note that the sampling points in Figure 3.3 are scattered randomly 

throughout the sampling area as was found expedient during the response effort. 

Therefore, SOSim was built with capability for accepting data at random points in space, 

as opposed to data sampled according to a lattice (regular) sampling plan.  
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Figure 3.4. Zoom of the shaded area of Figure 3.3, showing the recorded relative 
concentrations input to SOSim and their geographical location used to confirm the ability 

of the model to locate sunken oil.  
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Figure 3.5. General location of the DBL 152 spill at 29.205° N, 093.4683° W. 

 

All input data were entered following prompts of the graphic user interface, as 

described in the Users Manual (Appendix A). The map of assessed relative unconditional 

probabilities of finding sunken oil at 12:00 PM (noon)  on November 25, 2005, based on 

half the available data points as shown in Figure 3.4, is shown in Figure 3.6. Maps of 

such probabilities at 12:00 PM on November 28, 2005 and 12:00 PM on November 30th, 

2005, are shown in Figure 3.7 and Figure 3.8. Prediction times correspond to times of 

14.5, 17.5, and 19.5 days after the spill.  
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Figure 3.6. Relative probability of finding sunken oil 12 hours after the spill. 

 

Figure 3.6 shows relative probabilities a short time after the first sampling campaign. 

Given that the location and shape shown in the figure resemble the given data, it is 

deduced that the model has the capability of interpreting the sampling campaign well. 

The GUI prevents the user from requesting prediction times prior to the most recent 

sampling event.   
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If the user needs a prediction between sampling campaigns, only the sampling 

campaign(s) conducted prior to the requested prediction time should be entered and on 

file.  

 

 

Figure 3.7.  Relative probability of finding sunken oil 17.5 days after the spill. 

 

 



66 

 

 

 

 

Figure 3.8. Relative probability of finding sunken oil 19.5 days after the spill.  

 

Although red in Figures 3.6-3.8 represents the highest relative unconditional 

probability of finding oil in each figure, the concentration at such hotspots decreases in 

time as the sunken oil patches advance in space and disperse. That is, the hue scale is not 

constant from one figure to another. As shown, the formation of two satellite patches in 

addition to the main patch was predicted by SOSim by inference based on the data of the 
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single sampling campaign available and the assumed time of oil collection on the bay 

bottom. By way of comparison, NOAA Scientifics wrote “We envision the T/B DBL-152 

oil breaking up into smaller pieces and dispersing horizontally as it moves downcoast” 

(Beegle-Krause et al., 2006). This vision is not inconsistent with the figures developed 

using SOSim, in that the oil breaks into smaller patches and two of them spread while 

moving offshore and horizontally, with one headed towards land.  

3.6.1 Test Scenario 2: Synthetic Multi-Modal, Multiple Sampling Campaign Data 

on Relatively Flat-Bottom Bay within Coastal Environment 

Table 3.3 indicates required and optional input and default and optional output for 

this confirmation exercise: 

Table 3.3. Input and output for Scenario 2. 

Input Output 

Required input: 

• Assumed spill coordinates and time: ( 
32.80° N, 079.465° W), the 1st of January 
of 2010. 

• Synthetic subjective relative concentration 
data and sampling times: Figure 3.9, first 
sampling campaign at 4 AM on January the 
7th,, 2010, made of 90 data points; and 
second sampling campaign at 4 AM on 
January the 11th, 2010, also with 90 data 
points 

• Desired prediction dates and times: 4 AM 
January the 9th, (two days after the first 
sampling campaign and 8 days after the 

Default output: 

• Maps of relative concentration 
(unconditional probability) at 
desired times: Figure 3.11, Figure 
3.12 and Figure 3.13. 

Optional (post-processing) output: 

• Revised maps based on subsequent 
data (new sampled area), Figure 
3.12 and Figure 3.13. 
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Input Output 

spill), 4 AM January the 12th, (one day 
after the second sampling campaign), and 4 
AM, January the 14th, 13 days after the 
spill.  

Optional input: 

• User-defined modeling area: about 0.27° 
latitude x 0.27° longitude within the coastal 
area 

• Interactive spatial scale and resolution: 
default (25 x 25 grid nodes) 

 

The purpose of this second synthetic scenario was to test model capabilities in terms 

of projecting patch locations in time near curved shoreline boundaries using data from 

multiple sampling campaigns, as a sunken oil patch approaches a coast line. The 

statistical sampling procedure described in a previous chapter of this dissertation was 

used to simulate data for the exercise. Figure 3.9 depicts the simulated data and spill 

coordinates. Figures are rendered for the oceanic area sampled and affected by the initial 

spill; the general region showing the location of the spill is as in Figure 3.10. Each 

marker in Figure 3.9  represents one simulated sampling point, having a relative 

concentration in percent as indicated by the color key below the plot.    
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Figure 3.9. Synthetic data on relative sunken oil concentrations in percent, for samples 
assumed collected on two different days, (1) 6 days after the spill, and (2) 10 days after 

the spill. 

   

 The modeled spill is located at (32.8 °N, 079.465 °W), as shown in the figures. In 

Figure 3.9, both sampling campaigns 1 and 2 have been synthetically derived to represent 

two separate patches of oil collecting on the bottom, as indicated by the colors shown. 

The first sampling event covers an approximate area of 25 km2 (9.8 mi2) and the second 

an approximate area of 35 km2 (13.67 mi2).  
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Figure 3.10. General location of the simulated spill scenario of Scenario 2 

 

Figure 3.11 to Figure 3.13 show maps of relative unconditional probabilities of 

finding sunken oil, interpreted roughly as relative sunken oil concentrations, on the 

bottom given the imposed boundary conditions, within the user-selected geographical 

area. 
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Figure 3.11. Relative probability of finding sunken oil 8 days after the spill (1 day after 
the first sampling campaign). 

 

Although the first sampling campaign represents two overlapping patches, so close to 

each other that the model infers a single patch.   
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Figure 3.12. Relative probability of finding sunken oil 11 days after the spill (5 days after 
the first sampling campaign and 1 day after the second sampling campaign), updated 

based on the second data set. 

 

Figure 3.12 represents an updated prediction considering the second sampling 

campaign. After 11 days the oil mass is dispersed and is not predicted to impact the 

shoreline significantly. 
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Figure 3.13. Relative probability of finding sunken oil 13 days after the spill (3 days after 
the second sampling campaign). 

 

After 13 days of the assumed oil spill and using an updated calibration file resulting 

from one synthetic offshore sampling campaign and one synthetic nearshore sampling 

campaign, the sunken oil is predicted to impact an ideal barrier close to the coastal zone 

and to be retained as a result, as shown in the 2-D output map of Figure 3.13. In 

subsequent versions of the model, the effect of bathymetry, such as slope away from the 
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shoreline, can be considered as prior information to refine these results. Predicting oil 

locations following resuspension of the oil by storm events would generally require data 

to be collected after the storm. Overall, results observed are considered conservative and 

representative for a relatively flat-bottomed bay environment, given current model 

capabilities.  

3.7 Assessment of the Physical Parameter Domain 

A likelihood function represents the observed values of an experiment as function of 

the parameter space ( Θ ). A joint likelihood function is the joint probability of several 

experimental observations as function of Θ . Irregularly-sampled points that belong to 

one (or different) sunken oil concentration sampling campaign(s) are the observed values. 

In predictive Bayesian inference, the parameter space is unknown although possible 

parameter ranges of integration have been utilized merely with the aim to restrain the 

limits of the stochastic integration, as described in previous sections. The integration is 

performed using a combinatorial algorithm (explained in Chapter 5) that samples 

parameter values from the restrained domain in an organized and uniformly stepped 

manner to calculate the necessary distributions including the superimposed joint 

likelihood function. Many invalid combinations (such as those in which superposed oil 

patches ( j ) did not conserve the original mass by ∑ −
≠

J

j j1
1γ  or those with 

superposition values close to the computational precision limits) are discarded, while 

many others are factored in the likelihood function. An analysis of the joint likelihood of 
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the observations obtained as function of the possible and valid combinations of 

parameters of the domain allows for the assessment of the physical relevance of the 

selected integration range. The exercise has been performed using the observations of the 

limited sampling campaign of the BDL-152 oil spill shown in Figure 3.3, for which 

predictions have been mapped in the previous section. Figure 3.14 has been obtained for 

the valid combinations of the parameter domain ( kθ ), where K  is the total number of 

non-discarded parameter combinations. 

 

Figure 3.14. Assessment of the likelihood of the observed limited data of the DBL-152 
case as function of valid parameter combinations ( kθ ) within the parameter space ( Θ ). 
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It is deduced from Figure 3.14 that there is one valid combination of parameters kθ  

that maximizes the likelihood of the observations that have been input to the simulator. 

This likelihood analysis plot also shows that only a few possible parameter sets are 

driving the model. Using a data mining programming technique over the combinatorial 

algorithm, it was possible to trace back the parameter set ( kθ ) that produced such 

maximum; they are shown in Table 3.4. 

Table 3.4. Parameter set that produces the maximum likelihood of being observed given 
the parameter space ( Θ ) for the limited data obtained of the DBL-152 oil spill. 

Parameter 
Sunken oil patch j  

1 2 3 4 

Advective 
velocity 

x 
(km/d) -1.5 -1.5 -2.25 1.5 

(ft/s) -0.057 -0.057 -0.085 0.057 

y 
(km/d) 1.5 1.5 -1.5 -1.5 

(ft/s) 0.057 0.057 -0.057 -0.057 

Coefficient of 
Diffusion 

x 
(km2/d) 0.67 0.67  0.89 0.89 

(ft2/s) 83.47 83.47 110.88 110.88 

y 
(km2/d) 0.89 0.56  0.45 0.56 

(ft2/s) 110.88 69.76 56.06 69.76 

Coefficient of correlation jρ  [-] -0.24975 -0.4995 0.999 0.24975 

Weighting parameter jγ  [-] 0.625 0.25 0.125 0 
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The parameter set ( kθ ) indicates that the data is inferred to be distributed in three 

sunken oil patches, each carrying 62.5%, 25% and 12.5% of the total mass. The fourth 

patch and its parameters are discarded since the sunken oil weighting parameter 04 =γ  

(contains no oil mass). From the values, it is concluded that the default parameter range 

for the advective velocity is adequate but the upper boundary of the default range of the 

coefficient of diffusion in the x  (E-W) direction could be extended since the current 

maximum (0.89 km2/d) is repeatedly taken as a sign of the possible need of a larger 

maximum value (see Table 3.1 to review the default possible ranges of the parameters). 

Maximum-likelihood parameters on the boundary of the range imply that the physics of 

the problem might be likely to occur at values that are out of the proposed range. In this 

case, the oil patch may be dispersing at a higher rate. The Gaussian coefficient of 

correlation has a standard domain that needs not to be changed. The same applies to the 

weighting parameter, which represents the total oil mass to be conserved at all times 

distributed among patches.  

Other than the default parameter range, its discretization can also be analyzed using 

the values in Table 3.4. Peaks or modes are repeatedly observed along patches, from 

which it is assessed that a denser selection of parameters around those values is required 

to attain optimum precision.  However, there are currently only 9 (uniformly distributed) 

discretization values per parameter range; with enhanced computational processing 

power, the number of discretizations can be increased, which would imply an increment 
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of the resolution of the Bayesian inference and the improvement of the precision of the 

parameter values that maximize the likelihood (Table 3.4). 

Lastly, Gaussian distributions using the parameter values of Table 3.4 can be plotted 

for each patch using the parameterizations tvxμ += 0    and   tDσσ 20 += , and 

assuming =0x (0, 0),  =0σ 0 (unrealistic) and 1=t ,  to theoretically compare with the 

experimental data set of DBL 152. Figure 3.15 shows the resulting plot. 

 

Figure 3.15. Graphical representation of the superimposed Gaussian distributions that 
maximize the likelihood function obtained by SOSim for the DBL 152 limited data 

campaign. 
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A subjective interpretation of Figure 3.15 would state that there is a possible match 

with the sampled data shown in Figure 3.3: the first and second patches overlap and 

approximate to one patch that embodies the data points located to the northwest and 

around the spill site, the third patch shows a distribution with a prolonged tail in the 

southwest direction which can be interpreted to account for the rest of the data.   

The analysis of the parameters that would maximize the likelihood of observing the 

DBL 152 data set suggests equifinality. However, the assessment of the physical 

parameter domain, a default input of the Sunken Oil Simulator SOSim, would lead to 

stronger conclusions if performed for various real data sets not available at this point. 

3.8 Discussion and Importance of Results 

As described in this chapter, the model was shown able to utilize irregularly-sampled, 

limited available field data on relative occurrences or concentrations collected from a 

relatively flat bay bottom shortly after a spill event to predict locations of sunken oil.  

Sampled data intrinsically includes, related to the spill location and time, information on 

the physical forces that drive the transport process, identified as Fickian in nature. The 

model also offers capability for updating of results based on additional, relative data that 

modifies the calibration files (understood as the likelihood function), from possibly 

different and irregular geographical areas, as they become available. The model is able to 

present unconditional probabilities of sunken oil in output maps at user-requested times 

of prediction. The model accounts for the time between spill and time of deposition on 
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the bottom that oil may experience due to its potential for sinking and short-term 

weathering. The software has also proven multimodality capability, that is the aptitude of 

the predictive model to infer from the data whether or not the sunken oil is distributed in 

single or multiple patches, and to track and predict this multimodal behavior in time. 

Finally, the model has the functionality of inferring oil location in time based on 

subsequent synthetic data together with the approximation of the initial effect of 

boundaries. However, SOSim is not intended for modeling the incidence of sunken oil 

mats on the shore, but to simulate sunken oil from offshore spills including the 

approximate retention effect imposed by an idealized coastal zone. Also,   much further 

confirmation of temporal capability is recommended.   

The proposed predictive Bayesian multi-modal Gaussian model, SOSim Version 

1.0rc1, is operational for use with limited, randomly-sampled, available subjective and 

numeric data on sunken oil concentrations in relatively flat-bottomed bays. Model 

operation and the approach in different spill modalities (for example, for continuous-

discharge, abrupt bathymetry or deep water rig accidents), however, is recommended for 

continued development.  

The SOSim model represents a new approach, coupling a Lagrangian modeling 

technique with predictive Bayesian capability for computing unconditional probabilities 

of mass as a function of space and time. The resulting prediction is not obtained through 

maximization of a likelihood function (although equifinality is suggested by a maximum 

likelihood assessment of the input parameter range); rather, it is obtained after integration 
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under the complete parameter space, a combinatorial method for computing 

unconditional multimodal probability distributions (details in Chapter 5).  The result is an 

unconditional relative probability distribution that is wider than the posterior distribution 

resulting from the sampled data, because it now contains a degree of uncertainty. 

The physical mechanisms driving the new distribution are the same that had been able 

to develop the physical state and distribution of the sampled data set from the time of the 

spill until the sampling campaign time. The approach can be applied to continuously 

update calibrations so that predicted states reflect the most current physical changes and 

intrinsic uncertainties and variability induced by the environment on the measured data.  

Incorporated are new methods for computation of two-dimensional boundary conditions 

by images (details in Chapter 4), and combinatorial techniques for computing 

unconditional multimodal probability distributions (details in Chapter 5). The approach 

addresses the current need of NOAA to rapidly deploy modeling capability without 

readily accessible information on ocean bottom currents. Another aspect is the stand-

alone application developed, including a user-friendly interactive graphical user interface 

that can be employed without the need for knowledge of Bayesian or other modeling 

techniques, to track sunken oil during emergency response missions.
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Chapter 4. Computing Lagrangian Relative Concentration Profiles Subject to Curved, 
Continuous or Discontinuous Reflecting Boundary Conditions 

4.1 Overview 

Lagrangian Bayesian Gaussian modeling techniques are not readily enabled for 

complex boundary conditions.  Methods to implement such boundary conditions, that 

could be used along stochastic modeling of sunken oil in a bay, include the consideration 

of the existing method of images in two dimensions (Todd and Mays, 2005, Bear, 1979), 

the detailed study of the variable geometry offered by the different modeling scenarios, 

the creation of numerical procedures to implement variations of the method of images, 

and the understanding of the mechanisms to guarantee oil mass conservation within the 

bay at all times and modeling scenarios. However, the implementation is limited to 

Gaussian-distributed sources. 

This chapter explains in detail the method developed for use in the Bayesian Sunken 

Oil Simulator (SOSim) model to compute relative bi-dimensional Gaussian probability 

(or relative concentration) profiles in the sea subject to curved, continuous reflecting 

boundary conditions.  In SOSim, the boundaries correspond to the shoreline and the 

modeling area is the sea. Although SOSim was designed to model scenarios that only 

include bays and relatively flat-bottomed sea waters; and although scenarios with 

discontinuous, multiple or small-scale land shapes such as oceanic areas with isles, islets, 

or straits, are not addressed in SOSim (due to computational demand), the method 

developed and described in this chapter is theoretically capable of accounting for any 



83 

 

 

kind of boundaries and modeling areas including discontinuous, multiple and (untested) 

small-scale geographic features. The approach developed in this research involves the 

assumption of uniqueness of the current modeling conditions (that is, variability from one 

modeling scenario to another), maintaining conservation of mass, while redistributing it 

consistent with each source and at each time within the boundaries imposed by the 

coastline geometry. 

4.2 Methods and Background 

The method of images employed in groundwater hydraulics and water quality 

modeling is the foundation of the approach. The methodology incorporated two phases: 

(1) the revision of the standard method of images in two dimensions and (2) the creation 

of single and general case scenarios, along with geometric approximations and 

engineered computed algorithms that matched such approximations.  

4.2.1 Revision of the Standard Method of Images in Two Dimensions Applied to 

Groundwater Hydraulics 

A discharging well at a certain point ( 00 , yx ) of an aquifer has a discharge flow rate 

Q . This point lies at some distance a  from an impermeable boundary to the west 

direction, and some distance b to another impermeable boundary to the south direction. 

The impermeable boundaries, by definition, have a flow gradient of zero. Figure 4.1 

shows the sectional view of the example in the dimension east-west. Figure 4.2 depicts 
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the situation in two dimensions. In the case of groundwater hydraulics, the discharge 

through the well affects the steady state of the aquifer, causing a cone of depression to 

form. The cone of depression is modeled using certain equations, which will be compared 

to a Gaussian distribution in the case of this dissertation. Under the presence of an 

impermeable boundary, the flow gradient zero is obtained by superimposing the cones of 

depression of the discharge (source) well and its image’s. Figure 4.1 shows the resultant 

cone of depression. 

 

Figure 4.1. Sectional views of a discharging well near an impermeable boundary and the 
equivalent system using the method of images (Todd and Mays, 2005). 
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Figure 4.2. Typical 2-D layout of an image well system used in hydraulics of 
groundwater, where a is the perpendicular distance from the source to the vertical 

boundary and b is the perpendicular distance to the horizontal boundary. 

 

In two dimensions, Image 1 and Image 2 in Figure 4.2 are the images with respect to 

the east-west boundary and the north-south boundary respectively; however, Image 3 is a 

representation of new reflections of Image 1 with respect to the north-south boundary and 

of Image 2 with respect to the east-west boundary. Without Image 3, the flow in the 

system would not be balanced and the gradient would not be zero at the boundaries.  

The methodology can be explained to a greater extent by examining the example of a 

rectangular aquifer surrounded by impermeable boundaries (e.g. land) and recharge 

boundaries (e.g. a lake), in Figure 4.3. 
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Figure 4.3. Plan of an image-well system for a rectangular aquifer (Adapted from Todd 
and Mays, 2005). 

 

When two boundaries are parallel to each other, “analysis by the image-well theory 

requires the use of an image-well system extending to infinity. Each successively added 

secondary image well produces a residual effect at the opposite boundary.” (Todd and 

Mays, 2005). This effect will be progressively less as the system becomes balanced. 
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Figure 4.4. Image well system for a discharging well in an aquifer bounded by two 
impermeable barriers intersecting at 45° (Todd and Mays, 2005). 

 

Figure 4.4 shows how the flow balance is attained when the boundaries are not 

perpendicular to each other. At 45°, the source and 7 image wells ( iI ) must be considered 

for superposition.  
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4.2.2 Methods for the Adjustment of the Method of Images to Variable, 

Continuous or Discontinuous, Irregular, Approximately Curved Boundaries 

in Two Dimensions Applied to Gaussian Distributed Sources 

Methods include the creation of single and general case scenarios, along with 

geometric approximations and engineered computed algorithms that matched such 

approximations. For the algorithms, basic trigonometric laws were employed. The Python 

programming language was used to automate all the procedures. The method of images 

presented in the precious section was taken in account at all times during the 

development of the method for finding concentration profiles subject to variable, 

continuous or discontinuous, irregular, and approximately curved boundaries in two 

dimensions applied to Gaussian distribution sources. 

4.3 Discussion of the Method of Images to Provide Predictive Gaussian 

Distributed Sources with Variable, Continuous or Discontinuous, Irregular, 

Approximately Curved Boundary Conditions 

The physical reality of the ocean boundaries (the shoreline) is approximated to an 

ideal condition in which a “relatively-flat ocean bottom” is truncated by a theoretically 

vertical barrier that is assumed to retain the sunken oil without compromising the oil’s 

mass conservation and the Fickian nature of the transport process; that is, it is assumed 

that phenomena that might occur close to a shoreline environment such as oil adsorption 

onto the barrier’s material or flow into the porous medium do not occur. Figure 4.5 
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replicates the physical approximation in one dimension.  This is used as a numerical 

approach to calculate the effect of the vicinity of coastlines in oil spill scenarios. 

 

Figure 4.5. Graphical depiction of the Method of Images in one dimension applied to 
sunken oil distributions. 

 

Consider an example in which an oil patch is denominated ‘the source’. The source 

occurs at a certain point ( 00 , yx ) = ( x , 0) on the bottom of a bay and has a concentration 

distribution c ( yx, ). This point lies at some distance x  from the shoreline which, by 

definition, has a concentration gradient of zero. As the patch approaches the coastal zone, 

oil (a concentration hotspot or mass in a general case) at the leading edge begins landfall. 

It is then assumed that this mass is reflected back into the water, producing an 
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accumulation in the nearshore environment by the principle of superposition applied in 

the image theory. In one dimension the reflection is easily computed as a sum of the 

inflowing mass and the reflected mass. However, in two dimensions, when the shoreline 

is straight but does not form an orthogonal angle, reflections are not perpendicular with 

respect to one line or the other (or to only one line as in 1-D), and calculations become 

cumbersome.  

Therefore, a new method for computing (relative) mass accumulation by setting up 

imaginary conditions to replicate the curve of the boundary is necessary. The method of 

images momentarily replaces the boundary by an “image source” or a “reflection”, equal 

in concentration distribution but located at opposite coordinates (- x , 0) across the 

boundary (see Figure 4.5).  

This new situation is equivalent to the original layout because superposition of the 

source and its reflection concentration distributions will simulate the zero concentration 

gradient at the boundary and will account for spreading and contention of oil. The result 

is then the summation of concentration distributions on the source side, and all results 

imagined to occur beyond the boundary can be ignored. Figure 4.5 depicts the concept. 

In two dimensions, the method needs to consider that (1) the coastline has a curved 

shape and can be continuous or discontinuous, making the use of the bi-dimensional 

image systems shown in Figure 4.2 or Figure 4.4 by themselves, inappropriate; (2) trying 

to approximate the coastline to a system with multiple-consecutive orthogonal boundaries 
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or to a system with multiple-consecutive angles is possible, but highly demanding 

computationally, plus geometrically intricate because of the fact that each image must 

sequentially reflect with respect to all other existing orthogonal boundary (or contiguous 

angle in the case of consecutive angles) with the aim to attain mass conservation; (3) each 

modeling scenario in this dissertation is user-defined and the source(s) occurs within an 

unknown parameter space, therefore, using a general geometrical approximation of any 

set of boundaries is desirable; and (4) the Gaussian distribution that describes the 

unknown source(s) is geometrically advantageous because its parameters (known or 

within an algorithm that uses them as unknowns) can be combined and used along the 

reflecting method of images in a way that orthogonal or consecutive known angles are 

not necessary. The accommodation of the method of images to variable, continuous or 

discontinuous, irregular, approximately curved boundaries in two dimensions applied to 

Gaussian-distributed sources is explained next by the use of a single-segment boundary 

and then expanded to consecutive segments for better record. 

4.3.1 Single line segment case: 

Consider the reflection of the Gaussian patch shown in Figure 4.6. The boundary in 

this figure is sloped and the usual solution is to approximate it to two orthogonal 

boundaries and solve the case as in Figure 4.2. However, if the figure was rotated such 

that the line segment-shaped border becomes vertical or horizontal, the image will be 

automatically placed where it is shown in Figure 4.6, as it would be reflected in a mirror.  
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Figure 4.6. Reflection of a Gaussian patch across a sloped single line segment boundary. 

 

Note that the shape of the source in Figure 4.6 is reflected including its direction (it is 

no longer a point source like it is assumed in well hydraulics). The reflection of the 

complete shape can be attained in two ways: (1) by reflecting every point ( ii yx , ) that 

composes the distribution with respect to the line segment, or (2) by using general 

trigonometry to (a) find the image of the Gaussian mean (
ryrx µµ , ), (b) find the 

correlation coefficient ( rρ ) that corresponds to the imaginary Gaussian patch, and (c) 

find the imaginary, distorted standard deviation in each direction (
ryrx σσ , ) for the 

reflected patch. Both options are used in SOSim.  The first is expected to occur 

automatically because every point in the unknown parameter space participates in the 



93 

 

 

Bayesian algorithm thanks to the baseline programming structure for use of 

combinatorial math. The second is implemented as a shape and mass conservation control 

technique and is described next. 

The image of the Gaussian mean coordinate, (
ryrx µµ , ), is found using trigonometry, 

the source’s mean ( yx µµ , ), and two points on the straight boundary section ( 11, yx ) and 

( 22 , yx ), as shown in the Figure 4.7.  

 

Figure 4.7. Geometry of the reflection of the Gaussian mean with respect to a single line 
boundary. 
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The solution in this case where the reflection takes place with respect with only one 

boundary is straightforward and evident from Figure 4.7. In the case of multiple and 

variable boundaries, where the concentration profile near boundary conditions depends 

on every boundary, the solution is demanding and requires a numerical algorithm, shown 

in Figure 4.8. In addition, consider the fact that the mean is an unknown, transient 

( tx vμ += 0 ) parameter in the model of this dissertation, which makes the general 

solution dependent upon the baseline programming structure that uses combinatorial 

math among unknown parameters.  

 

Figure 4.8. Algorithm to find the Gaussian mean of the imaginary Gaussian puff, 
(

ryrx µµ , ), from the mean of the source and two points of a line traced on the single 
boundary. 

 

The standard deviation of the imaginary puff also changes with the reflection 

(although this may not be evident in many cases). This can be addressed by using the 

geometry employed to locate the imaginary Gaussian mean in Figure 4.7.  Two points 
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analogous to the mean need to be reflected and then related to the standard deviations: 

( yxx µσµ ,+ ) and ( yyx σµµ +, ). The standard deviations of the image are then 

( ) rxrxxrx µσµσ −+=  and ( )
ryryyry µσµσ −+= . Figure 4.9 shows the graphical 

approximation. 

 

Figure 4.9. Approximation to the relationship between source and imaginary standard 
deviations. 

 

The last parameter of a bivariate Gaussian concentration profile that is transformed by 

a reflection with respect to an inclined boundary is the coefficient of correlation. The 

coefficient of correlation is the statistical relationship of dependence between two (or 

more) random variables, in this case, between the X and Y directions of the Gaussian 

distributions in the Lagrangian system. The coefficient of correlation in a bivariate 
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Gaussian distribution is not a slope traced between the two directions, but it reflects the 

noisiness and the direction of the linear relationship (see Figure 4.10). 

 

Figure 4.10. Set of bi-dimensional Gaussian profiles showing correlation coefficients 
between x and y directions. Note that the correlation coefficient reveals the direction and 

noisiness of the linear relationship (figure adapted from Wikipedia.org).  

 

Resuming the reflection through a single line segment boundary case, the relative 

direction between the source Gaussian distribution and the land boundary (given by 

source correlation coefficient, sρ , and the slope of the boundary segment, m , 

respectively) is used towards finding the correlation coefficient of the Gaussian 

reflection, rρ , shown in Figure 4.11. The standard deviations of the imaginary Gaussian 

patch are confirmed in the Bayesian algorithm by use of the relationship 

( ) rryrx yxCov ρσσ ,= , where ( )yxCov ,  is the covariance of the x and y directions given 

by )])([( ),(
rr yx yxEyxCov µµ −−= , and rρ  is the correlation coefficient of the image, 

found by means of the trigonometric algorithm shown in Figure 4.12. 
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Figure 4.11. Relative directions of Gaussian source and single line segment boundary, 
used to find the parameters of the imaginary Gaussian puff.  

 

The solution to the case shown in the general Figure 4.6 has been explained by the 

use of a single-segment boundary based on the advantages that the parameters and the 

geometry of a Gaussian distribution carry. Nevertheless, a general geometrical 

approximation of any set of boundaries is developed in the following section in order to 

automate and accommodate the method of images to variable, continuous or 

discontinuous, irregular, approximately curved boundaries in two dimensions applied to 

Gaussian-distributed sources.  



98 

 

 

 

 

Figure 4.12. Algorithm to find the correlation coefficient of the imaginary Gaussian puff, 
rρ , from the slope of the single line segment boundary, m , and the correlation 

coefficient of the Gaussian source, sρ . 
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4.3.2 General case: 

                                                  (a) 

 
 
 
 
 
 
 
 
(b)                      
 

Figure 4.13. (a) A geographic land mass to the northwest of the Peninsula of Florida, on 
the Gulf of Mexico, is approximated by a set of continuous non-horizontal and non-

vertical lines, joined by circular vertices. (b) Zoomed in bay that can be represented by a 
polyline of only 10 vertices. 
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Figure 4.13 shows how a curved boundary results from a continuous number of line 

segments with any slope (a polyline), that are superimposed to the shoreline. Similar to 

the internal boundary condition of a finite difference model, the shorter the lines, the 

better the precision of the method. The graphical dissimilarity here is that the curved 

boundary is approximated by a continuous polyline, not by a staircase-like set of vertical 

and horizontal steps. The adjustment of the image theory to curved boundaries is also 

believed (not tested in this dissertation) to be functional for discontinuous land masses 

given that reflection can work with respect to any and all lines. SOSim, however, was 

designed to incorporate only one continuous polyline, and does not have the functionality 

of calculating oil mass accumulation in areas such as shown in Figure 4.13. 

 
(a) 

 
(b) 

Figure 4.14. Geographic scenarios that can be approximated by polylines. Vertices are 
shown as circles. (a) Bay in Louisiana State, (b) the Caribbean waters between the 

southernmost point of Florida and the northern part of Cuba. 
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Figure 4.14 shows real example scenarios with discontinuous and/or multiple bi-

dimensional boundary conditions which can be solved using the general procedure with 

more than one polyline. 

In the single boundary case described above, no other boundary has effect on any of 

the sources, and thus there is a single reflection per source (or keeps reflecting to the 

same place in both sides); this case will conserve the mass, and is considered of zero 

order. When multiple boundaries coexist, reflections are not perpendicular with respect to 

only one line but instead it is assumed that one reflection can occur with respect to each 

perpendicular projection to a line. The boundary is interpreted as a series of connected 

lines, where every single source is reflected with respect to each of the line segments.  

In the application of the method of images in groundwater hydraulics to modeling 

flow near aquifer boundaries, the source is reflected with respect to each horizontal or 

vertical aquifer boundary, and each subsequent reflection is in turn affected by the 

boundary that did not reflect it before (Bear, 1979, Todd and Mays, 2005), as shown in 

Figure 4.2,Figure 4.3 and Figure 4.4.  

Another approximation to solve angled boundary conditions (Bear, 1979, Todd and 

Mays, 2005) is also used in groundwater hydraulics, which is restricted to a single angle 

at a time, for a given source (Figure 4.4). In every case, each of the image points are 

employed to feed one function that must be superimposed to the function of the source. 

The superposition process is no other than the summation of all the function as terms in 
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the final equation. The concentration profile of use is one which belongs to the modeling 

area (the aquifer in groundwater hydraulics, the sea in the case of this dissertation and 

SOSim). 

The approach of considering perpendicular or parallel boundaries (that are not 

necessarily contiguous) is now adapted to non-orthogonal continuous or discontinuous 

line segments representing geographical boundaries to particle movement.  

 

Figure 4.15. Hypothetical approximation to the reflection of a bivariate Gaussian 
distribution with respect to multiple, continuous line boundaries. 
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Figure 4.15 shows the approximate reflection of a bivariate Gaussian distribution with 

respect to multiple, continuous line boundaries. Note that lines are labeled -1-, -2-, and -

3- from north to south. The source is first reflected with respect to -1-, -2-, and -3-, and 

the results of this first reflection are bluish patches labeled 1, 2 and 3. If the mass of the 

image is the same of its source, it is evident that a superposition will result in a mass 

imbalance between both land and ocean sides in this called “first-order reflection” as will 

be explained below. The imbalance is countered by (1) reflecting the bluish patch 1 with 

respect to all 3 lines, including with respect to the boundaries that did and did not reflect 

it before; (2) reflecting the bluish patch 2 with respect to all 3 lines, and (3) repeating the 

same for the bluish patch 3. The consequential images are 3 per bluish patch, are shown 

in yellowish color in Figure 4.15, and are labeled with double nomenclature, e.g. 1-2, 

which means a patch product of the reflection of the bluish distribution 1 with respect to 

the line boundary -2-. These yellowish images are called of “second-order reflection”. 

Certainly, the geometry of the case shown in Figure 4.15 is unique. A model in which 

boundary conditions are to be selected by the user on a map of a graphical user interface 

needs a generalization of the geometry. Such generalization needs to be built based on 

only one required input: the coordinates of the polyline vertices and the mean of the 

concentration source (of transient and Bayesian unknown nature in the model developed 

in this dissertation). The variability of both the parameters of the Bayesian model and the 

boundary conditions for each scenario that needed to be modeled in SOSim gave way to 

the construction of a general geometry approximation with the objective of creating 
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computer algorithms for express calculation of the images’ Gaussian parameters. The 

algorithms are described after presenting the repetitive nature of the reflection process 

and its relationship with the mass conservation principle. 

Repetitive Nature of a Reflection Process and Mass Conservation 

Let the correlation coefficient of the a Gaussian source or patch be sρ , and the 

correlation coefficient of its correspondent image or reflection be rρ  (refer to Figure 

4.11). Any time that the model considers a sρ  of a source, an algorithm needs to 

calculate rρ for each of the applicable reflections to be superimposed. There will be as 

many rρ  coefficients as line segments ( K ) are in the curve approximation (refer to 

bluish patches in Figure 4.15).  In addition, as consequence of the superposition of the K  

Gaussian functions, the equation that counts the effects of the curved boundary 

conditions will have K  terms for the first reflection order only (refer to yellowish 

patches in Figure 4.15).  

During a reflection process, a source is reflected with respect to a boundary segment 

and, the produced imaginary reflection is mirrored back with respect to all available 

boundaries, in a way that the source and the imaginary sides are constantly experimenting 

mass imbalances that will occur to one side and then the other, until the total original 

mass of the source is equaled at both sides. Each time that a new reflection is needed in 

order to balance the mass, it is considered that a new reflection order is a need to add. Let 
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Figure 4.15 explain the concept of reflection orders. Based on the figure, in which the 

curved boundary condition is approximated to a total of 3 boundary segments, it can be 

observed that per each source s (or zero order term), there will be 31 =K number of first 

order terms and 92 =K  number of second order terms. Generalizing, there will be nK  

number of terms of order n  per source function in a geographic condition approximated 

by K=Ξ  number of boundary segments. Notice that the increment of terms is not linear 

but follows a power law, which translates in the augmentation of computational demands 

as the reflection order increases. A bivariate Gaussian distribution represents each patch: 
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Equation (3.4) will adopt the resulting superposition until the mass is balanced by 

receiving all the patches as sum terms, as follows: 
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The total number of reflection orders N  is achieved when there are negligible mass 

imbalances between the land and the ocean modeling areas. The repetitive nature of the 

reflection process towards mass conservation is solved by the use of iterative algorithms 

as described before in this dissertation and as explained in detail in the section below.   

Modifying the Gaussian Parameters 

For the theory of images to work for multiple, continuous or discontinuous line 

boundaries as shown in Figure 4.15, the parameters of the Gaussian source(s) need to be 

transformed multiple times in an iterative manner by using general numerical algorithms 

that find their base in the previously explained case of a single linear boundary. The first 

parameters to transform are the Gaussian means, ( yx µµ , ). Figure 4.7 is comparable to 

Figure 4.16, in which the geometry of the first-order reflection of the Gaussian mean is 

shown for the analogous case of a 4-vertices polyline boundary.  
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Figure 4.16. Geometry of the first-order reflection of the Gaussian mean with respect to 
multiple line boundaries. 

 

Statistical means of the bluish imaginary patches must be found before a second-

order reflection can be performed. One cycle per each first-order image 1, 2 and 3 must 

be performed following. Figure 4.17 tries to make clear how the second-order cycle 

works for the first-order image 3. 
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Figure 4.17. Example geometry of one of the second-order reflection cycles to obtain 
imaginary Gaussian means with respect to multiple line boundaries. 

 

Although Figure 4.17 shows only one of the second-order cycles, it can be concluded 

from the plot that the process is cumbersome and requires a general geometry approach 

that has been developed in this dissertation. Figure 4.18 summarizes the iterative 

algorithm programmed to control the production of the Gaussian means of the successive 

line-based and ordered reflections. 
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Figure 4.18. Iterative algorithm to control the production of the Gaussian means of the 
successive line-based and ordered reflections. 

 

As in the single-line boundary case, the standard deviations of the imaginary puffs are 

also different, although not noticeably sometimes. This is addressed by using the same 

geometry of Figure 4.7 for each reflection and the iterative algorithm employed to locate 

the imaginary Gaussian means (Figure 4.18) but with the pairs ( knyknxknx ,  ,  ,  ,µσµ + ) and 

( knyknyknx ,  ,  ,  , σµµ + )  as the variable input, instead of ( knyknx ,  ,  , µµ ).  The output is 

analogous to the standard deviation vector by ( ) knrxrknxknxknrx ,,,,,,     µσµσ −+=  and 

( ) knryrknyknyknry ,,,,,,     µσµσ −+= . His result is controlled in the Bayesian calculations 
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by testing the covariance of the patches. It is important to have in mind that in the 

predictive Bayesian model developed in this dissertation all parameters are unknown, and 

therefore all the algorithms are operated under the light of a baseline programming 

structure that allows for combinatorial math among the complete domain of the 

parameters. 

The modification of the Gaussian parameters due to the application of the method of 

images to approximately curved boundaries is not complete without addressing the 

adjustment of coefficients of correlation of all possible reflections. Refer to the upper-

right part of Figure 4.15, where the source has an angle sα with the horizontal, the first-

order reflection 1 has a resultant angle 1rβ  with the horizontal, and the second-order 

reflection 1-2 has a resultant angle 12rβ  with the horizontal. Analogously with Figure 

4.11, sα  is the angular direction of sρ and 1rβ is the angular direction of 1rρ , where the 

last is found by using the algorithm in Figure 4.12 with sρ and 1m  as input. Similarly, 

12rβ is the angular direction of 12rρ , which is calculated by using the algorithm in Figure 

4.12 with 1rρ  and 2m as input. By inspecting the procedure described it can be observed 

that the algorithm must be used in a repetitive, controlled way across each boundary line 

and each order of reflection in an iterative fashion explained with Figure 4.19. 
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Figure 4.19. Iterative algorithm to control the production of the correlation coefficients of 
the successive line-based and ordered reflections. 

 

The computer program contains all the algorithms described previously, embedded in 

the Core module. The activities in green shapes included in Figure 4.18 and Figure 4.19 

are main processes within the Bayesian method with combinatorial structure. In SOSim, 

however, the iterative process is truncated after counting the second reflection order 

towards superposition (Equation (4.1)) because of computational run time limitations; 

nevertheless, tests demonstrate that the shape of the prediction and the mass balance are 

adequate and the method can be used in other applications.   



112 

 

 

Start and stop of the reflection process 

There are two different start and stop rules to consider in the process. The first start-

stop rule is related to the times at which the source function starts and finishes a 

superposition with an imaginary function; and the second rule is to manage the 

appropriate time to stop the iteration process, which is the time when mass balance has 

been reached.  

The algorithms of Figure 4.18 and Figure 4.19 have a starting time, 0t , that is 

accomplished only when the mean of a source is located at a distance of two standard 

deviations ( σ2± ) from any boundary segment, close enough to produce an imminent 

image across the boundary and commence a superposition process. Because the Gaussian 

tail is mathematically infinite, the superposition process starts as the first tales of source 

(traveling inland) and imaginary functions (traveling outland) begin to overlap.  The time 

to stop the reflection process, ft , obeys to the same conditional but now corresponds to 

the time in which the tails of the functions no longer overlap (subject to the magnitude of 

σ2± ), after which the gradient zero at the boundary will persist without the need of 

superposition. In the Sunken Oil Simulator (SOSim), both the mean and the standard 

deviation are vector unknown parameters, reason why this start-stop rule was immersed 

in the Bayeasian algorithms. When the prediction time is passed ft , the algorithm is 

automatically aborted by means of an a priori estimation of the time of landfall.  



113 

 

 

The time at which consecutive reflection orders no longer create imbalances in the 

total mass between the modeling area and the imaginary inland portion is designated as 

the ideal time to stop the iterative process. The methodology developed includes an 

automatic decision algorithm that checks for imbalances and decides whether or not to 

proceed with calculations of subsequent reflection orders. In the software SOSim, 

nevertheless, it was found that the sum of second and lower order reflections provided 

sufficient detail to obtain an observable mass balance in the water body, and third and 

higher order reflections can be neglected, greatly reducing computational demands.  

Figure 4.20 shows a test scenario in which a single Gaussian source hits the coastline, 

drawn as a four-vertex (red points) polyline (green line) that approximates the 

geographical region shown in Figure 4.20 (a). The land portion has not been colored 

green as in other figures with the aim of allowing for the review of the imaginary portion 

of the result. Figure 4.20 (b) shows a Gaussian patch incoming to the coastline when no 

boundary conditions are in effect (no accumulation in time or mass conservation), figure 

(c) shows the result of the new methodology after superposing all the zero and first-order 

reflections with respect to the complete boundary, and figure (d) shows the profile after 

accounting for the complete zero, first and second-order reflection processes. 
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                              (a) 

 
                               (b) 

 
                             (c) 

 
                                (d) 

 

Figure 4.20. Relative mass distribution among ocean and the imaginary land counterpart 
for a Gaussian source that hits the coastline shown in (a), approximated by polylines 
when (b) no boundary conditions are in effect, (c) after accounting for zero and first-
order reflection processes, and (d) after accounting for zero, first and second-order 

reflection processes.  
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Note that the differences between Figure 4.20 (c) and (d) are minimal at the shown 

prediction time, which suggests that a reasonable mass conservation has been attained 

only after the zero and first order reflection process. Accumulation tests can also be 

performed because the method developed is a dynamic system in nature, given the 

transient character of the Gaussian mean and the standard deviation worked with in this 

dissertation. 

4.4 Conclusions 

The analysis presented indicates that the new variation of the method of images 

developed to allow assessment of pollutant locations using predictive Bayesian Gaussian 

models given variable, continuous or discontinuous, irregular, approximately curved 

boundary conditions has been successful. The new method allows the effect of boundary 

conditions to be modeled even under the restrictions implied by the lack of known 

parameters. In addition, the use of computer programs eases the exercise of intricate 

geometries generalized in numerical algorithms, opening the possibility of modeling 

complicated curved boundary conditions as desired. 
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Chapter 5. SOSim System Development, including a Combinatorial Algorithm 
for the Computation of Multi-Modal, Highly Dimensional Stochastic Functions 

This chapter describes the SOSim development from the point of view of the software 

design, including the programming environment chosen, algorithms established for 

implementation of the Bayesian approach and the model functionalities for the creation of 

the operative, processing, and graphic interfaces. 

5.1 Python: The Programming Language 

The Python programming language was chosen for development of the SOSim model 

based on the following criteria: 

• The programming software is non-proprietary or non-commercial and open 

source,  

• The programming environment supports relatively rapid prototyping and testing, 

• The language is robust in terms of functioning in various operating environments 

with minimal damage, alteration or loss of functionality, and 

• The source code is viewable at all times. 

That is, by choosing Python, the resulting versatility of the model can lead to a 

generalized use any by public and by agencies that perform emergency response to spills 

in an expedited way.  
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Python is a general-purpose, high-level programming language first released by 

Guido Van Rossum in 1991 in The Netherlands. Python is flexible, applicable to many 

programming domains and available on many platforms. The language has an open, 

community-based development model managed by the non-profit Python Software 

Foundation (PSF). Python’s design philosophy emphasizes programmer productivity and 

code readability (core syntax and semantics are minimalistic, employing white spaces and 

easy commands). Python supports multiple programming paradigms (primarily object 

oriented) and features a fully dynamic type system and automatic memory management, 

similar to Perl, Ruby, Scheme, and Tcl.  

The Python programming language has an open, general public license (GPL) that 

allows source code modification, addition of original code as “imported” packages, and 

publication of derived work (as GPL). Packages that are created around the world are 

available to the Python community. Python has also been used as an extension language 

for many existing systems, including GIS, Web programming, security systems, data 

bases, numerical tools, and the R statistical package. 

The SOSim model, although using and relying for much of its functionality on several 

existing Python packages and modules, consists of three principal Python modules 

developed as part of this dissertation: the graphical user interface (GUI) module, the 

operating and processing interface (OPI) module, and the core module. The GUI module 

(ui_SOSim.py in the SOSim source code) automatically lays out and retains 

characteristics of widgets, labels, canvases and templates in the graphical user interface, 
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retains raw user input, and imports Windows palettes and display.  The OPI module 

(SOSimOPI.py in the SOSim source code) is the executable file. It imports and links all 

other modules, captures input information entered by the user in the GUI module, and 

operates interrelated buttons and activities of the GUI; it filters, organizes, and processes 

the input; passes ready-to-use variables and attributes to the core code; accepts modeling 

results back from the core module; processes the results; and sends display signals to the 

canvas layout of the GUI module to allow it to depict relative sunken oil concentrations 

on a map for further user interaction. It also controls modal behavior of the main 

windows, pop outs, menus and toolbars. The core module (SOSimCore.py in the SOSim 

source code) uses variables and attributes passed by the OPI module to compute the 

predictive Bayesian relative concentrations, saves output files, and passes results of the 

Bayesian process back to the OPI module for display by the GUI or for further use. The 

GUI has the capability to communicate with the core module through the OPI module 

during a model run, after a predictive result has been presented, to allow the user to 

request the modeling of contiguous or other areas as needed. 

5.2 Methodology for Software Development 

The SOSim software is in essence a PyQGIS - PyQt application. PyQGIS are the 

Python bindings of the Quantum Geographic Information System (QGIS) software, 

consisting of three modules written in Python (QGIS Organization, 2009). QGIS is an 

official project of the Open Source Geospatial Foundation (OSGeo), distributed under the 

GNU General Public License. The main components of QGIS are the GDAL library and 

http://www.osgeo.org/�
http://www.gnu.org/copyleft/gpl.html�
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the GRASS geographic information system, both written in Python. QGIS is multi-

platform and supports numerous vector, raster, and database formats and functionalities. 

The use of the PyQGIS bindings allowed the researcher to use all the functionalities of 

QGIS through scripting in Python, to build an original interactive GIS computer 

application, one of the contributions of this dissertation. The major result of using 

PyQGIS in SOSim is its interactive map canvas that is embedded in PyQt as a widget.  

PyQt are the Python bindings of the Qt project, a C++ toolkit for cross-platform 

application development owned by Nokia. Like some versions of the Nokia’s Qt, PyQt is 

open source, free software developed by the British firm Riverbank Computing and 

distributed under a variety of licenses including GNU General Public License (GPL) and 

commercial license. PyQt is implemented as a Python extension module, in such a way 

that it can be incorporated into a customized Python installation and used from the 

Python console or any editor. Computer applications developed in PyQt have the 

capability to support Linux, Unix, Mac OS X and Microsoft Windows. Version 1.0.2 of 

PyQGIS under OSGeo4W Kore distribution and version 4.4.3 of PyQt were used to 

develop the SOSim model. GUI programming aids were adapted from Summerfield 

(2007) and online developer communities (QGIS Organization, 2009; Qt Development 

Frameworks, 2009). 

SOSim is composed of three new Python modules: the graphical user interface (GUI) 

module, the operating and processing interface (OPI) module, and the core module. In the 

GUI module, the graphic method offered by the Qt Designer was employed. Qt Designer 
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is the Qt’s graphic utility to sketch main windows and dialogs and to layout the widgets 

in it (Qt Development Frameworks, 2009). The OPI module used in its algorithms several 

Python classes and methods of a collection of existing modules, including the called Sys, 

Os, Re, Math, Numpy, Calendar, String, Time, Shutil, Pickle, PyQt4, and QGIS. The 

SOSimCore module used methods from classes in the modules Math, Future, Numpy, 

Time, Itertools, Pickle, and Matplotlib with the qt4agg backend. The executable binding 

used the Py2exe and the Sip modules. The application was packed into a binary installer 

using the Inno Setup module. 

The SOSim computer application falls in the category of software derived from 

Python, PyQt and PyQGIS among others. As such, the Python Software Foundation 

requires that the application developed be open source and have a GPL license (PSF, 

2001). The terms for distribution, expansion and derivation of new tools from the current 

version 1.0rc1 of SOSim are included in the executable and source code distribution as 

required by law (Free Software Foundation, 2007). 

5.3 Algorithm Development in SOSim Modules  

SOSim is developed in three new Python modules: the graphical user interface (GUI) 

module (SOSimGUI.py), the operating and processing interface (OPI) module 

(SOSimOPI.py), and the core module (SOSimCore.py). The three modules interact and 

are connected as shown in Figure 5.1. The objectives, algorithms, and output features of 

each of them are described in this section. 
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Figure 5.1. SOSim composition and interaction between modules. 

 

5.3.1 SOSim GUI: Graphical User Interface 

The graphical user interface (GUI) maps the output predictive relative concentrations 

geographically, presenting to the user the inferred location of sunken oil as a function of 

time, while controlling, with user input, the modeling area and shoreline boundaries used 

in the computations.  
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A preview of the GUI is shown in the Users Manual in Appendix A. The GUI was 

developed using the Qt Designer (as described in the methods section) and code 

embedded in the initialization method of the OPI module. The GUI contains three basic 

layouts other than the main toolbars and menus: (1) the pre-run layout or input section, 

where the user is prompted for input information concerning the spill, sampling 

campaign(s) and time(s), land boundary, desired modeling area, and prediction times, (2) 

the canvas layout, where results are displayed in interactive, georeferenced maps, and (3) 

the post-run layout or output section, which contains tools that allow the user to display 

the results at different times of prediction, run the model for contiguous areas, save 

results, print images, and perform other formatting tasks. 

The GUI is the point of connection between the user and the OPI module; this last 

performing all required processing of raw input from users and providing the core 

module with the appropriate information. Among the most important tasks of the GUI, 

controlled through the OPI module, are: 

• Collection of basic information on the spill in terms of the time of occurrence and 

coordinates (longitude and latitude) of the most significant loss; 

• Display of the location of the spill on the map canvas within a 2-degree radius 

around the spill to allow selection of the desired modeling area; 



123 

 

 

• Assignment of the resolution and scale (rectangular) of the results based on 

default values or a user-defined number of modeling nodes in each direction: 

north-south and west-east, within the desired or default modeling area; 

• Setting of customized dates and times at which sunken oil mass prediction is 

desired, 

• Acceptance of output from the core module and geo-referenced by the OPI 

module, for display of it on the local map; presentation of relative probabilities of 

finding sunken oil, (0-1), on a relative, color-coded scale, with hotspots in red (1) 

fading to blue (0). Although probabilities of sunken oil decrease in time, the hue 

is re-rendered in every time calculation, such that the areas with the highest 

probability of finding sunken oil are shown in red at each modeled time, 

independently of relative probabilities shown for other times of prediction; and 

• Display of post-run results at different prediction times and for contiguous 

modeling areas. 

Detailed information on the operation of each of the features just described can be 

found in the Users Manual (Appendix A). 

 

 



124 

 

 

5.3.2 SOSim OPI: Operating and Processing Interface Module: Internal 

Processing of Input 

The OPI module of SOSim is the largest module in terms of length of code and 

productivity, but it is not the most demanding of processing power. The OPI module is 

also the messenger and translator between the GUI and the Core modules. Detailed 

mathematical algorithms were created and implemented in the OPI module of SOSim to 

convert user input into programmable structures, process input as needed, generate local 

and global variables for all module’s processes, compile graphical interactions, operate 

interrelated buttons, actions, signals and toolbars of the GUI, and process/control 

information needed for the predictive Bayesian calculations. These algorithms are 

several, and are included as methods in two Python classes developed in SOSimOPI: 

SOSimMainWindow and DrawPolylineMapTool. Each class, by definition of object-

oriented programming, contains methods. The term methods refers to functions that 

perform unique activities to define and to provide different actions to its class, to be used 

by an extra parameter which is the object that it is to run on, and which belongs within  

the same class. The algorithms are extensive and vary in complexity. The most important 

are listed below. 

• Interrelated and single operation of signals, actions, dialog boxes, menus and 

toolbars; 
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• Maintenance of scale and units across statistical calculations; plotting and 

interactive tools and devices;  

• Operation of the interactive tool to assign boundary conditions, translation into 

mathematical expressions, and solving for geometry of boundary conditions;  

• Differentiation of types of oil and calculation of the slick’s sinking retardation;  

• Storage and processing of input data from single or multiple sampling campaigns;  

• Processing, storage, and passage to the core module of user input; 

• Processing of results from the core module into maps and processing of optional 

post-run operations, which include management of prediction times and 

performance of partial recalculations to view results for contiguous modeling 

areas. Useful documentation functions including saving the results as images and 

printing are also included in the software under the OPI module. 

• Uploading, saving, and using different files and images on disk (I/O) including 

calibration files; management of variable and default values, structures and map 

registry,  relative time and locations management; and post-run functionality. 
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Unit Conversions: Geographical Versus Modeling Units 

 

Figure 5.2. Algorithm for conversion of coordinate systems. 

 

Sampling campaigns should be recorded and accepted by the model in World 

Geodesic System (WGS) units (degrees, minutes and seconds expressed in decimal 

degrees in the GUI prompts). Interaction of the user with the canvas of the graphic user 

interface also results in operations in WGS units, because none of the embedded maps are 

projected to a flat surface. Equations 3.4 to 3.8, on the other hand, all require distances in 

planar units (SI or metric system). Therefore, conversions using the Universal Transverse 

Mercator (UTM) projection are used to translate WGS input into distances in kilometers 

that can be used in the diffusion, advection, and statistical equations, and to convert 
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gridded model output back to WGS format for graphical presentation in map format. The 

process, other than involving the creation of global Python functions for the conversions, 

engages certain computational algorithms to guarantee that (a) precision is not lost in the 

double conversion process (error is on the order of 1e-9), and (b) operations over points 

located at overlapping borders of UTM zones are correctly converted without affecting 

precision and guaranteeing that user inquiries concerning the locations of sunken oil are 

accurately displayed on the map canvas of the GUI application.  

5.3.3 SOSim Core: Combinatorial Algorithm for the Computation of Multi-

Modal, Highly Dimensional Likelihood Functions, Posteriors, Conditionals, 

and Unconditional Probability Functions  

This section describes a numerical method developed to solve a stochastic integral 

equation that cannot be solved analytically or by Markov chain Monte Carlo simulation 

due to its high dimensionality. SOSim, the Sunken Oil Simulator requires such a 

numerical method that is capable of analyzing and using complete proposed parameters 

domains towards finding the most likely combination of the unknown parameters to 

predict a state in time, grounded on a statistical description of subjective and limited data. 

The state in time that needs to be predicted corresponds to the location of sunken oil in 

relatively flat ocean beds and its transport in time, which follows a set of Bayesian 

analytical expressions developed in this research and explained in a different chapter. 
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The analytical model, as seen from Equation (3.1), includes 6 unknown parameters 

per each predicted source (up to four included), that is, a total of 23 unknown parameters 

(refer to Chapter 3 for explanation) after applying superposition of sources. Equation 

(3.1) corresponds to a stochastic calculus integral equation:  

( )∫ ∑ ∂∂∂∂
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=
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j
jjyjxjyjxjj ρσσµµγ  (5.1) 

This model cannot be solved analytically and must be solved numerically. One 

known solution methodology for solving stochastic integrals are the Markov Chain 

Monte Carlo (MCMC) processes, which have been proven to work accurately for several 

parameters, around 5 or 6 in amount. As Equation (3.1) embraces 23 parameters, the 

dimensionality of the problem did not allow for MCMC use. A matrix approach was also 

attempted without success because such a highly-dimensional structure was beyond 

Python’s built-in memory and processing capabilities. A combinatorial method that 

would allow for inspection and use of the complete domain of every unknown parameter 

towards calculation of functions, and that would have the capability of finding the most 

likely fields of the domains, was the target of the development of this new method. As a 

consequence, functions, and ultimately the stochastic integral, were solved using the most 

likely set among possible combinations of unknown parameters. Such were arranged in 

data structures characterized by their simplicity in terms of programmable structure, 

storing, and recovery for further use.  
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Bayesian computations are distributed throughout three Python classes located in the 

core module of SOSim. Each class, by definition of object-oriented programming, 

contains methods. As stated before, the term methods refers to functions that perform 

unique activities to define and to provide different actions to its class, to be used by an 

extra parameter which is the object that it is to run on, and which belongs within  the 

same class. 

Initializing the Bayesian Parameters 

The first class of SOSimCore, called Preliminars, involves calculating and passing 

initial setup, global constants and global variables to the other two classes, named LF and 

Model, whenever needed. Initial setup includes, for each of the four patches: an assumed 

integration domain for the coefficient of diffusion, D , and velocity, v , vectors; the 

domain of the correlation coefficient, ρ , from -0.999 – 0.999; and the domain of and 

restrictions on the weighting parameter, γ .   Global constants include the number of 

discretization elements, w, of the domain of the parameters (the same number for all 

parameters) and the magnitude of the partial differential elements, ρ∂∂∂ ,, vD  and γ∂ , 

based on w. Global variables are directly related to the programming structure of the 

Bayesian algorithm, and are produced within the Preliminars class using the doAll( ) 

method. Note that in order to facilitate reference to the parameters in this report, 

parameters have been divided in two types: the Gaussian parameters and weighting 

parameters. The first group includes jj ,σμ  and jρ , a total of 5 parameters per patch and 
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20 overall for four possible patches. In the second group there are the weighting 

parameters jγ , one per patch. The weighting parameters each have the same domain, {0, 

1}, but a shared and conditional codomain, ∑
=

=
J

j
j

1
1γ , so that one of the four weighting 

parameters is not variable but is fixed by the values of the remaining three. 

The doAll( ) method starts by finding all possible quadruplets of the weighting 

parameter, γ , of each patch; that is, by placing all quadruplets of weighting parameters 

321 ,, γγγ  and 4γ  that sum to one in a global variable GammaPossible of type Python list. 

This operation is performed accounting for the order of the patches. Thus, further 

combinatorial operations involving only the possible values of weighting parameters will 

have the same sorting and can therefore be related. Other important global variables 

defined in the doAll( ) method are: the number of valid weighting parameter 

combinations that sum to one (valid); the total number of positions (sze) that would result 

in a hypothetical array of 5 dimensions (one per Gaussian parameter in a single patch) in 

which each dimension is discretized equally (using the discretization constant w); and the 

number of possible sums of bivariate Gaussian combinations times weighting parameter 

values among patches (newsze), that would honor the conservation of mass restriction on 

the weighting parameters.  
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Calibrating the Bayesian Model: Calculation of the Likelihood Function 

The second class of the core module of SOSim is named LF, standing for Likelihood 

Function. This class executes all operations needed to compute Equation (3.3):  

∏ =
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j jjjiiijj ,,tyx ργλ σμ  and ( )jjjiiij ,,tyx ρσμ|,,f  is the bivariate 

Gaussian probability function modified by a variable number of Gaussian terms 

representing superimposed reflected images in the case that a sampling campaign occurs 

in the nearshore environment. Expanding the function for open-ocean conditions,  
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The initialization arguments of the LF class include input from the Preliminars class 

(parameters settings and variables) and input from the GUI through the OPI module 

(processed spill coordinates, ii yx , , and sampling campaigns, s , in terms of processed 

longitudes, latitudes, concentrations, and sampling times, st ). Equation 3.3 is solved 

using the LF class’ method calculateLV. The first step in solving this equation is to find 
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λ  at each sampled point i , by finding, for each sampling point, the inverse of the sum of 

the bivariate Gaussian distributions of all patches, maintaining complete and balanced 

sunken oil mass within their collective volume.  

In order to evaluate the complete parameter space at each sampling point, the concept 

of a hypothetical array of 5 dimensions, one for each Gaussian parameter within a single 

patch, was adopted, in which each dimension takes u = w+1 discretized values 

representing the endpoints of the w discretizations of the parameter range. Now, 

proceeding conceptually to fill all positions within the array with the corresponding result 

of the bivariate Gaussian distribution ( )jjjsiij ,,tyx ρσμ|,,f , it can be seen that the 

values of ( )jjjsiij ,,tyx ρσμ|,,f  at time it change from one sampling point, (xi, yi), to 

another. In the calculateLV method code, since a matrix analysis of this dimensionality is 

not possible in Python, a set of nested loops finds and annotates to disk the 

( )jjjsiij ,,tyx ρσμ|,,f  value for each and all positions within the hypothetical array, 

that is for each sampling point at every sampling time. Thus, each annotation of 

( )jjjsiij ,,tyx ρσμ|,,f  becomes an element of a Python list object, which is stored on 

disk to reduce memory footprint.  

To this point, the description has been of an array corresponding to the first patch. 

However, it can be seen that because the possible domain of the Gaussian parameters is 

the same for all four patches, the array described (stored in a Python list object) is the 

same, such that it contains the same values, for all patches.  Once the value of 
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( )jjjsiij ,,tyx ρσμ|,,f  at all positions is recorded, the superposition of patches is 

computed using the four identical 5-D conjectural arrays (actually, Python list objects, 

hypothetical structures with all values positioned in a list on file). Referring to the set of 

values of ( )jjjsiij ,,tyx ρσμ|,,f  at each position, for the j-th patch, as jN , 

superposition consists mathematically of summing 44332211 NNNN γγγγ +++ , in all 

possible ways (to use the entire domain of the weighting parameters jγ ) such that 

weighting parameters sum to unity, 1
4

1

=∑
=j

jγ .  Because the 5-D hypothetical array is the 

same for every patch, 4,3,2,1,, kkkkjk NNNNN ==== , in which the subscript k , 

Kk ≤≤1 = 5u , is a position index indicating a sampling point and time and a point in the 

uncertain parameter space.  

Figure 5.3 illustrates the computation of superposition using all possible 

combinations of jk ,N  values, for jγ . As shown, the X-axis contains weighting 

parameters, jγ , discretized in steps of 0.1. The Y-axis represents the patches, j = 1 - 4. 

The Z-axis represents the values jk ,N . The line traced in the Y-Z plane joins one 

parameter vector-sample (position), k , of a patch with another one, representing just one 

of the possible combinations of jk ,N . The line traced in the X-Y plane represents one 

possible combination of values of jγ . The superposition combination in this figure would 

be the product of the jk ,N  values indicated by a star for the first patch, plus the product 
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of the jk ,N  values indicated by a star for the second patch, and so on for the remaining 

two patches.  Exploration of all the possible combinations and the summations is 

performed in the code using the GammaPossible variable array and the validList( ) 

generator.  

 

Figure 5.3.  Representation of the superposition concept in three dimensions. 

 

GammaPossible is one of the variables produced by the Preliminars class under the 

doAll( ) method. In its initialized form, GammaPossible is an empty list. One sub-list is 

added at a time when four counters traveling through four zero-to-one γ domains 
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encounter four fractions that sum to one, e.g.: a sub list [0.2, 0.4, 0.3, 0.1] is added to the 

GammaPossible list for the example shown in Figure 5.3. All possible combinations that 

comply with 1
4

1

=∑
=j

jγ  are appended to GammaPossible in this fashion. Components to 

assemble the superposition list, representing λ1  in Equation (3.3), are completed with 

the GammaPossible list, but require an organized one-by-one generation that is attained 

in the next step.  

A generator is a Python structure comparable to a function: the generator, instead of 

returning a final, condensed variable, has the capability of ‘yielding’ one individual result 

of a loop calculation at a time, at the point requested by the developer, until the series is 

exhausted. Generators are resource-efficient and add versatility to the code while 

reducing memory footprint and, in most cases, run time. The generator validList( ) yields 

individual superposition values as long as the iterating loop has not been exhausted. The 

computational methodology for the generator includes looping over the Y-Z plane of 

Figure 5.3 (sumComb argument in the code) to find possible combinations of jk ,N , and 

coupling them with each of the GammaPossible sublists that are equivalent to all possible 

combinations in the X-Y plane of the same figure. Individual superposition yielding for 

each weighting parameter combination z in GammaPossible is called later in the process 

of building λ . The total number of elements yielded by the validList( ) generator is  

( )5uZ , in which Z is the number of ways of combining the four weighting parameters jγ  
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such that 1
4

1

=∑
=j

jγ , and the exponent five accounts for the number of Gaussian 

parameters per patch. The validList( ) generator is staged, meaning that it has the 

capability to divide the total number of elements yielded into different Z groups of 

5u yieldings each, depending on the particular combination z being analyzed. 

Continuing in the calculateLV method of the LF class, the components needed to 

compute Equation 3.3 are now available. A local variable supValue is set equal to each 

superposition result using a validList( ) generator object, to compute likelihood values for 

each z , according to Equation 3.3. The precision limits in Python are set at 

approximately 30010−  and 30010 , and so variables holding superposition results of such 

orders of magnitude must be avoided to prevent numerical error. If supValue > 1e-300, 

then a likelihood value izkLVComb , ,  is calculated as 
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izkizk
izk C

supValuesupValue
LVComb
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 ,  ,

0.1exp1 for every i -th sampling point, z-th 

combination, and k-th  possible element within. If izkLVComb  , ,  is different from zero, 

this kth term is included as a term in the sum for the likelihood function of the currently 

analyzed combination, z , and if izkLVComb  , ,  is equal to zero, it is discarded.  The 

summation ( )∑
=

I

i
izkLVComb

1
 , ,ln  for each z  is performed across sampling points, i , not 

across the k elements of the array according to the definition of a likelihood function. 
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This process leaves a sum for each z , which is still a 1-D array with k positions. Note 

that ( ) ∏∑
==

=
I

i
izk

I

i
izk LVCombLVComb

1
 , ,

1
 , ,ln .  

To compute this sum in code, the variable Likelihood is of type 2-D array, with Z  

positions in the first dimension and k positions per z  element. The Likelihood variable 

can also be understood as one K-element, 1-D array per each possible weighing 

parameter combination z . While the loop for a point i  is being performed, each value in 

the k position is added to the natural log of the zkLVComb  ,  value that is being produced 

for the current sampling point. This procedure is repeated until all sampling points in all 

campaigns are exhausted. As a result, the likelihood function remains a 2-D array with 

K elements per each z  combination, each position inheriting the combinatorial nature of 

its immediate predecessor, LVComb .  The last set of instructions performed by the 

calculateLV method occurs outside of the looping structure because the information from 

all the sampling points and sampling times is already contained in the Likelihood local 

variable. The maximum among the z -dimensions of the 2-D array is computed and the 

selected maximum (a 1-D array with K  elements that belong to the most likely 

combination, z , of weighting parameters, jγ ), becomes  the natural log of the final 

likelihood function. The preceding maximum likelihood of jγ calculation allows for the 

knowledge of the most likely values of the weighting parameters that have been selected 

to be employed in successive computations. Then for every position, k , in Likelihood, 

the numerical value is transformed back to the linear domain as kLikelihood = 
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)exp( kLikelihood . The Likelihood array is then the likelihood function. The LF class 

accomplishes these tasks and frees memory by writing the Likelihood array to disk for 

further use.  

Predicting: Calculation of the Conditional Gaussian Function 

The third Python class of the core module of the software developed to perform the 

Bayesian calculations is the Model class. The main objective of the Model class is to 

complete the computation of Equation 3.1, by computing the conditional bivariate 

Gaussian distribution, multiplying this result by the likelihood function, and integrating 

over the parameter space. The latter is found in the code of the method calculateCG( ). 

However, the Model class includes many other Python methods that share responsibilities 

with the SOSimOPI.py module, such as assigning boundary conditions to the Gaussian 

equations, managing coordinate systems (WGS v. UTM), and managing model spatial 

resolution, units and mapping.  

The calculateCG( ) method uses a programming approach similar to that described 

for computing the bivariate Gaussian distribution values and superposition for the 

likelihood function. The principal difference is that the conditional distribution is 

computed at the nodes, mX , of a regular grid defined for the region of the spill, and user-

specified times, t , of prediction, instead of at the locations, (xi, yi), and times, st , of field 

sample collection. The arguments passed to the calculateCG( ) method include grid 
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coordinates, prediction times and a Boolean variable indicating the presence of land 

within the modeling area.  

Consider again the hypothetical 5-D array (one dimension for each parameter of a 

single Gaussian patch), in which each dimension has u discretized values. Again, the 

parameter space is evaluated over the bivariate Gaussian function, written for this case as 

( )jjjmj ,,t ρσμX |,f . The function is evaluated using the same nested programming 

structure as described for the likelihood function, with each position written to a Python 

list object stored on disk. Again, because the same parameter domain is used for all four 

patches, the new Python list object is identical for all patches.  After the value of 

( )
jjjmj ,,t ρσμX |,f , modified or not by the boundary conditions, is written to the list for 

all positions, superposition is performed as before, with the difference that the most likely 

combination of weighting parameters has already been selected by the likelihood function 

using the data. That is, letting ( )
jjjmj ,,t ρσμX |,f  = jCN , the sum 

44332211 CNCNCNCN γγγγ +++  is computed subject to 1
4

1

=∑
=j

jγ , which has been 

already accomplished.  The procedure depicted in Figure 5.3 is used to find the 1-D array 

of superimposed values, mkCG  , , each value representing a possible parameter vector, for 

each node, ( )mm yx , , of the user-defined modeling grid. The number of possible elements 

is now the total number of elements yielded by the validList( ) generator when it uses the 

jCN  values as one of its arguments and the most likely weighting parameter 
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combination, z , as another argument (instead of the complete GammaPossible list of 

possible combinations).  

Integrating 

The mkCG  ,  arrays are used directly in the integration, according to Equation (3.1), of 

the product of the conditional Gaussian sampling distribution by the Bayesian posterior 

distribution, the latter of which is equivalent to the likelihood function.  The likelihood 

function, kLF , consists of a single array of K elements, one element for each possible 

parameter vector.  The conditional Gaussian distribution, on the other hand, consists of 

one K -element array, mkCG  , , for each point, mX . The conditional Gaussian array at 

each point, mX , is multiplied on a one-to-one element basis with the likelihood function, 

as mkk CGLF  ,× .  The resulting K -element array is multiplied by the product of the 

Gaussian parameters’ differentials and summed at each point, mX , as 

deltaCGLFSOM
K

k
mkkm ×








×= ∑

=1
 , , in which mSOM  stands for the relative probability of 

finding sunken oil mass at mX , K  is the total number of elements ( )5uZ , and delta is the 

product of the Gaussian parameters’ differentials. Subsequently, the method mapping( ) 

of the class Model rearranges results to perform plotting, and creates the corresponding 

input for the mapping methods of the OPI and GUI modules.  
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The procedure of the LF class is repeated always that the user requests a calibration 

based on data input. The process that the Model class performs, on the other hand, uses 

any existing calibration file or one expressly created and is executed when a prediction in 

time is bidden by the user.   The Preliminars class always runs before either the LF or the 

Model classes.  

Mapping 

The Model class includes one last method called Mapping( ). This method does not 

map by itself, but it rearranges all saved-to-disk raw mSOM  time variables into 

numerical arrays and creates portable files that can later be processed by the 

georeferencer unit of the OPI module. At a later stage, the results will be processed to be 

displayed by the GUI and be modified as the user whishes by use of the post-processing 

layout of the same module.   

5.4 Software Operation 

The details of SOSim operation are described in the Users Manual, another product of 

this research (Appendix A). Characteristics of operation and interpretation of results 

include: 

1. If sunken oil mass is predicted to extend beyond the selected graphical domain for 

the prediction times requested, maps may be developed from partial re-runs for 

contiguous areas;  
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2. Resolution of prediction within any desired area of a plot can be enhanced by 

running the model for a “zoomed-in” area, following each model run; and  

3. Color hues are not constant from figure to figure, but show relative probabilities 

from high to low at each time. This also implies that a result generated by 

zooming into another plot will show independent hotspots, not constant in color 

with respect to the parent figure. 

5.4.1 Binary and Source Packages and Support Documentation 

The SOSim set of modules along with all its dependencies were consolidated in a 

distributable, executable Windows 32 package named SOSim 1.0rc1 (release candidate). 

This first release candidate is expected to work with any Microsoft Windows 32-bit 

operating system without the need of previous Python installation, or by the installation 

and use of the source package, as is explained in the User Manual, appended and created 

as part of this dissertation. The electronic version of the Users Manual contains an 

electronic demo that supplements the manuscript. The User Manual guides the user 

through the installation and operation of SOSim. Knowledge of statistics is not required. 

Input of information as required for modeling a spill, including accident coordinates, 

sampling data (basic Microsoft Excel® skills are required to assemble a sampling 

campaign file), and criteria to define desired prediction times.  The Users Manual and 

Demo are distributed with the binary file SOSim.exe. 
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5.5 Discussion and Importance of Results 

A complete programming environment has been developed to allow interactive 

computation and geographic representation of unconditional probabilities by integration 

over a highly dimensional uncertain parameter space. The new methodology, in turn, is 

the core tool for the Bayesian simulation of sunken oil occurrences in relatively flat 

bottoms of the ocean after sudden spills.  

The SOSim predictive Bayesian statistical software stands as a decision tool that is 

expected to be useful for identifying sunken oil hotspots, addressing the need for tracking 

of sunken oil following a spill, and to target cleanup activities and to support cleanup 

termination decisions using a minimum of resources from responder teams.  

Results are displayed in interactive maps of geographic areas, produced based on user 

input supplied to an interactive graphical user interface. The model was developed with 

the intent of being used on desktop computers for maximum accessibility, and therefore 

the intrinsic computational limits and approaches incorporated into the model are 

consistent with this vision. However its performance can be enhanced considerably if this 

condition is relaxed.  
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CONCLUSIONS 

A novel statistical data-limited technique representing a cross between a statistical 

static sampling plan and a contaminant transport model is developed conceptually, 

analytically, and numerically in this thesis. Specific achievements of the development  

include  the derivation of unconditional probabilities of relative pollutant mass as a 

function of time and space; the development of a method of computing Lagrangian 

relative concentration profiles subject to variable, continuous or discontinuous, irregular, 

approximately curved boundaries in two dimensions applied to Gaussian-distributed 

sources; a combinatorial algorithm for the computation of multi-modal, highly 

dimensional stochastic functions, and the successful assembly of a software package to 

house the model, including a graphical user interface and a processing and operative 

module that allows for stand-alone model execution. The complete tool developed in this 

research was named the Sunken Oil Simulator – SOSim–, and is expected to be used as a 

decision-making tool for agencies, planners, and emergency responders of oil spills.  

During the testing and confirmation cases presented in this dissertation, the model 

was shown able to utilize irregularly-sampled, limited available field data collected 

shortly after a spill event and recreate the data sets at their time of occurrence by the use 

of the predictive technique employed. The model also has the checked capability of 

updating based on additional, relative synthetic data that modifies the calibration files 

(understood as the likelihood function), from possibly different and irregular 

geographical areas, as they become available. The model is able to present unconditional 
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probabilities of sunken oil in output maps that belong each to a user-requested prediction 

time. The model accounts for the time lapse before depositing on the bottom that oil may 

experiment due to its potential for sinking and short-term weathering. The software has 

also demonstrated multimodality capability, which is the aptitude of the predictive model 

to infer from the data whether or not the sunken oil is distributed in single or multiple 

patches, and to track and predict this multimodal behavior in time, as possibly tested. 

Finally, the model has the functionality of inferring oil location in time based on 

subsequent synthetic data together with shoreline boundaries and the values or estimated 

ranges of values of the coefficients of advection and diffusion, and this works according 

with the expectations; however, the model itself is not considered verified in real life 

since one more real data set was necessary for comparison of results obtained in time. 

Nevertheless, the functionalities intended to arm the model with have been confirmed and 

equifinality based on a maximum-likelihood assessment of the parameters has been 

shown. The Sunken Oil Simulator is open to continued verification as this is 

recommended for refinement.  

The new variation of the method of images to provide predictive Gaussian-distributed 

sources with variable, continuous or discontinuous, irregular, approximately curved 

boundary conditions assumed to occur nearby the coastal zone has been successful. The 

new method is considered an innovation, especially for the field of stochastic modeling, 

since the effect of boundary conditions can be modeled even under the restrictions 

implied by the lack of known parameters. In addition, the use of computer programs 
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eases the exercise of intricate geometries generalized in numerical algorithms, opening 

the possibility of modeling complicated curved boundary conditions as desired. 

A complete programming environment has been developed in order to make possible 

the functioning of a new methodology created for the numerical analysis and solution of a 

stochastic analytical model. The new methodology, in turn, is the core tool for the 

Bayesian simulation of sunken oil occurrences in relatively flat bottoms of the ocean after 

sudden spills. Accurate operation of the functionalities of the model, demonstrated in 

Chapter 3 of this dissertation, suggest that the combinatorial methodology is applicable to 

probabilistic contaminant transport modeling when collectively established along 

interfacing modules that feed it correctly and later retain its results for processing, 

arranging and proper displaying.  

The SOSim predictive Bayesian statistical software stands as a decision tool that is 

expected to be useful for identifying sunken oil hotspots, addressing the need for tracking 

of sunken oil following a spill, and to target cleanup activities and to support cleanup 

termination decisions using a minimum of resources from responder teams. The model 

and the software represent a new approach to pollutant tracking by inference from limited 

field data alone. It also poses a novel mapping of unconditional relative probabilities of 

finding sunken pollutant mass in space and time with rigorous accounting of uncertainty.  

The model was developed in the open-source Python programming language, for 

potential interface with new response, cleanup, and damage assessment models. 
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Limitations of the model are principally in terms of the types of information that can 

be exploited as model input, and model resolution. Model refinements and enhancements 

are suggested, including the addition of the capability of predicting sunken oil locations 

in non-flat ocean bottoms, that is, the inclusion of bathymetry as prior information; also, 

bottom current information is becoming available, e.g. for the Gulf of Mexico which 

supports high density oil vessel traffic and drilling operations, and capability for entering 

such information as prior information would be recommended. Other prior information 

may be related to such factors as oil type and geographical environment of the spill, 

factors that may imply the possible development of Bayesian prior probability 

distributions for coefficients of advection and dispersion in directions perpendicular and 

parallel to shore. Finally, given adequate processing power, several aspects of model 

resolution could be enhanced, including resolution of the uncertain parameter space to be 

integrated over, resolution of the geographical area to be modeled, the number of vertices 

allowed to approximate the shoreline, and the number of different polyline boundaries to 

account for separated landforms such islands and straits. With additional processing 

power, it may be possible to implement the model in three dimensions, for application to 

oil suspended in the water column. 
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1. Introduction 

SOSim is a modeling tool developed to help locate sunken oil in relatively flat bays 

based on limited available field data collected shortly after a spill, when oil has begun 

appearing on the bottom. This User Manual will guide the operator through model 

installation to model operation and results management, to obtain maps of relative 

probabilities of finding sunken oil at user-specified times of prediction that are not 

conditional upon the values of uncertain parameters of the model.  

1.1. What is SOSim? 

SOSim is a predictive Bayesian multi-modal Gaussian model of relative probabilities 

of finding sunken oil at points on a bay bottom and in time, designed to accept primary 

information in the form of limited field data at one or more sampling times. The 

predictive relative probabilities produced are not conditional on the values of uncertain 

model parameters such as the water velocity and coefficients of dispersion on the bay 

bottom. These probabilities can be interpreted as relative oil concentrations, depicted to 

occur on the bottom in somewhat more disperse patches than are actually occurring due 

to uncertainty in the advective and dispersive forces acting on the oil at depth. Due to the 

lack of information on the total oil sinking as a function of time, the model cannot assess 

absolute concentrations, but rather relative concentrations showing oil “hotspots” and 

areas where oil may not be collecting. All the functionalities designed for the model have 

been tested and verified, but a formal verification of the results has not been possible yet 
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as it depends on deployable data distributed in two sets in time: one to be used as input, 

and one more to compare results with. It is expected to convert the current release 

candidate version 1.0rc1 to a 1.0.2 version as soon as the complete data sets are gathered 

after a spill occurence. 

SOSim has been programmed in Python in its entirety. The SOSim model, although 

using and relying for much of its functionality on several existing Python packages and 

modules, consists of three principal Python modules developed by the author of this User 

Manual: the graphical user interface (GUI) module, the operating and processing 

interface (OPI) module, and the core module. The GUI module (ui_SOSim.py in the 

electronic source package) automatically layouts and keeps characteristics of widgets, 

labels, canvases and templates in the graphic user interface, holds raw user’s input and 

imports Windows palettes and display.  The OPI module (SOSimOPI.py in the electronic 

source package) is the executable file. It imports and links all other modules together, it 

captures the input information  that is entered by the user in the GUI module and operates 

interrelated buttons and activities of the GUI; it filters, organizes, and processes the 

input,; passes ready-to-use variables and attributes to the core code; accepts modeling 

results back from the core module; processes the results; and sends display signals to the 

GUI module’s canvas layout for it to depict relative sunken oil concentrations on a map  

for further user interaction. It also controls modal behavior of the main windows, pop 

outs, menus and toolbars. The core module (SOSimCore.py in the electronic source 

package) uses variables and attributes passed by the OPI module to compute the 
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predictive Bayesian relative concentrations, saves output files, and passes results back to 

the OPI module for display by the GUI or for further use. The GUI has the capability to 

communicate with the core module through the OPI module during a model run, after a 

predictive result has been presented, to allow the user to request the modeling of 

contiguous or other areas as needed. 

The GUI contains three basic layouts other than the main toolbars and menus: (1) the 

pre-run layout or input section, where the user is prompted for input information 

concerning the spill, sampling campaign(s) and time(s), land boundary, desired modeling 

area, and prediction times, (2) the canvas layout, where results are displayed in 

interactive, georeferenced maps, and (3) the post-run layout or output section, which 

contains tools that allow the user to display the results at different times of prediction, run 

the model for contiguous areas, save results, print images, and perform other formatting 

tasks. 

1.2. Why Python? 

The Python programming language was chosen for development of the SOSim model 

based on the following criteria: 

• The programming software is non-proprietary or non-commercial and open 

source,  

• The programming environment supports relatively rapid prototyping and testing, 
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• The language is robust in terms of functioning in various operating environments 

with minimal damage, alteration or loss of functionality, and 

• The source code is viewable at all times. 

Python is a general-purpose, high-level programming language first released by 

Guido Van Rossum in 1991 in The Netherlands. Python is flexible, applicable to many 

programming domains and available on many platforms. The language has an open, 

community-based development model managed by the non-profit Python Software 

Foundation. Python’s design philosophy emphasizes programmer productivity and code 

readability (core syntax and semantics are minimalistic, employing white spaces and easy 

commands). Python supports multiple programming paradigms (primarily object 

oriented) and features a fully dynamic type system and automatic memory management, 

similar to Perl, Ruby, Scheme, and Tcl.  

The Python programming language has an open, general public license (GPL) that 

allows source code modification, addition of original code as “imported” packages, and 

publication of derived work (as GPL). Packages that are created around the world are 

available to the Python community. Python has also been used as an extension language 

for many existing systems, including GIS, Web programming, numerical tools, and the R 

statistical package. 
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1.3. Objectives of this User Manual: A Guide to the SOSim GUI 

The objective of this user manual is to guide the operator through installation and 

operation of SOSim. The GUI is the point of connection between the user and the 

processing modules, which perform all required processing of raw input from users and 

provide the core module with the appropriate information. Among the most important 

tasks of the GUI, aided by the OPI module, are: 

• Collection of basic information on the spill in terms of time of occurrence, and 

coordinates (longitude and latitude); 

• Display of the location of the spill on the map canvas within a 2-degree radius 

around the spill to allow selection of the desired modeling area; 

• Storage and processing of input data from single or multiple sampling campaigns; 

• Assignment of the resolution and scale (rectangular) of the results based on 

default values or a user-defined number of modeling nodes in each direction: 

north-south and west-east, within the desired or default modeling area; 

• Setting of customized dates and times at which sunken oil mass prediction is 

desired, 

• Processing, storage, and passage to the core module of user input; 

• Acceptance of output from the core module and geo-referencing of it on the local 

map; presentation of relative probabilities of finding sunken oil, (0-1), on a 

relative, color-coded scale, with hotspots in red (1) fading to blue (0). Although 
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probabilities of sunken oil decrease in time, the hue is re-rendered in every time 

calculation, such that the areas with the highest probability of finding sunken oil 

are shown in red at each modeled time, independently of relative probabilities 

shown for other times of prediction; and 

• Processing of optional post-run operations include display of results at different 

prediction times and performance of partial recalculations to view results for 

contiguous modeling areas. Useful documentation functions including saving the 

results as images and printing are also included in the GUI. 

1.4. Scope of Model Applicability 

Version 1.0rc1 of SOSim is designed for application to: 

• Sunken oil; 

• Relatively flat bay bottoms, dredged bays, reef flats and lagoons or pools 

protected by offshore rocks; bays with steeply sloped bottoms would require 

capability for the use of bathymetric data as prior information, a possible future 

enhancement; 

• Resolution down to the scale of the tidal excursion (oil locations effectively 

averaged across this excursion); 

• Prediction up to the time that the majority of the oil mass is predicted to reach the 

shoreline; 
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• Discrete accidental oil releases (as opposed to natural, progressive oil seepage); 

and 

• Relatively uncomplicated concave and convex shoreline geometries; modeling in 

straits, inland water bodies, harbors, islet areas, and like geographies are not 

addressed due to computational limitations and the sometimes transient nature of 

small-scale features. 
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2. Installation 

2.1. Hardware Requirements 

SOSim Version 1.0rc1 has been developed for use within the Microsoft Windows 32 

bit operating system environment, though porting to other platforms including the Mac 

OS and Microsoft Windows 64 bit could be considered for future versions. To achieve 

reasonable performance in terms of computational speed (hours), a 3.0 GHz processor or 

better is required. In cases in which the machine will be expected to perform tasks in 

addition to SOSim, an active duo or second processor is required.  

SOSim can run on a computer with a page file (virtual memory) of minimum 2.3 GB. 

Nevertheless, it is recommended that the memory card is of a minimum of 3.0 GB. 

Memory requirements of SOSim are determined by the fact that Python can allocate 

memory only up to a total of 2.3 GB, including memory required for all machine 

functions prior to running the model, when implemented on the Windows 32 bit platform 

(this limitation is not expected if the model is developed in the future for the Windows 64 

bit OS). The total memory used by all processes before starting to run SOSim is typically 

about 512 MB on machines not having many applications installed and many idle 

processes to run by default, except for Windows 7 and some editions of Windows Vista 

which may consume up to 1 GB when idle. Therefore, for the majority of spill cases to be 

solved with optimal resolution and including recalculations, it is estimated that a 

computer would require an available memory of about 1.7 GB (that is, a difference of 

about 1.7 GB between the 2.3 GB limit and the kernel memory taken up by idle 
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processes). Indirect warning messages provided by the GUI will guide the user in setting 

the best possible resolution to achieve optimal performance in terms of memory.  

2.2. Software Prerequisites 

If installing from the binary package, everything needed is included with the 

executable file. If installing from source, the required programs and modules, with 

required installation locations, are given in Table 2.1. Three of these packages 

(Matplotlib, Dateutil and Pytz) are included in labeled folders in the SOSim distribution 

along with the source code folder. The three individual folders must be placed in the 

directory C:\OSGeo4W\apps\Python25\Lib\site-packages once the OSGeo4W package is 

installed, as shown in the table.  In addition, some environment variables, paths, and 

dynamic link libraries (.DLLs) must be changed/added to the machine or a given module 

when installing from source, as described the Installation section.  

Table 2.1. Software dependencies for SOSim installation from source 

Package/Module Install in folder Link 

OSGeo4W 1.0 
Kore for Win32 C http://trac.osgeo.org/osgeo4w/ 

Matplotlib v. 
0.91.2 

C:\OSGeo4W\apps\Python
25\Lib\site-packages 

http://pypi.python.org/pypi/matplotl
ib/0.91.2 

Dateutil v. 1.2-mpl C:\OSGeo4W\apps\Python
25\Lib\site-packages 

http://pypi.python.org/pypi/python-
dateutil/1.2 

Pytz 2007g-mpl C:\OSGeo4W\apps\Python
25\Lib\site-packages 

http://pypi.python.org/pypi/pytz/200
7g 
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2.3. Installation from the Executable File 

To install SOSim from the executable file, double-click on the SOSim.exe folder and 

follow the instructions of the installation wizard. 

2.4. Alternate Installation from Source 

When using the source code of SOSim, Python must be installed from the OSGeo4W 

console, as given in Table 2.1. This installation procedure is recommended only for users 

familiar with Python programming. Steps required are as follows.  

1. Install, compile, or copy/paste from the SOSim distribution the software/modules 

indicated in Table 2.1 in the required locations; 

2. Add to your system or edit the environment variables listed below,1

                                                 

 

 

 

1 To change an environment variable in a Windows 32 bit machine, right-click on your “My 
Computer” icon and select “Properties”. In the System Properties box, under “Advanced”, select 
“Environment Variables” at the bottom. System variables are in the lower part of the box and you only 
have access to then if you have administrator privileges over the machine. Screen the list to see of the 
environment variable that you need already exists; if it does, click on it and on “Edit”, then type a 
semicolon after the existing text and type the given path following, without spaces. If the environment 
variable does not exist, click on “New” and type the name in capital letters, then the given path. 
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PATH:    C:\OSGeo4W\apps\qgis;%PATH% 

PYTHONPATH:  C:\OSGeo4W\apps\qgis\python 

QGISHOME:  C:\OSGeo4W\apps\qgis 

Environment variables must be changed from an account with “administrator” access 

privileges, and for all users. To edit/add environment variables, go to “System” in the 

control panel and click on the “Environment Variables” button under the “Advanced” 

tab. Then manage the “System variables” as instructed. 

3. Find the qgis_core.dll and qgis_gui.dll libraries in C:\OSGeo4W\apps\qgis\bin. 

Copy and paste them to C:\OSGeo4W\apps\qgis\python\qgis for their use by the 

Python distribution from the OSGeo4W console; 

4. Copy the folder “SourceCode” that comes with the SOSim package to the folder 

C:\OSGeo4W\apps\Python25\Scripts. Add this location to your system path in 

Python; and 

5. Open the module “SOSimOPI.py” and edit the current module’s “path2” variable 

to the tree file that directs to your Desktop; if this is not done, graphic results will 

not be displayed and may not be automatically saved. 

Now the OPI together with the GUI and essential source code is callable using the 

“execfile” Python command from the OSGeo4W console in two ways: (1) from the DOS 

directory cd C:\OSGeo4W\apps\Python25\Scripts\SourceCode by typing SOSimOPI.py; 
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or (2) from any DOS tree location, type: python, then import sys, then 

sys.path.append(“C:/OSGeo4W/apps/Python25/Scripts/SourceCode”), and lastly 

execfile(“C:\OSGeo4W\apps\Python25\Scripts\SourceCode\SOSimOPI.py”). The SOSim 

GUI will then pop up. 
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3. Input 

 

Figure 3.1. Main screen of the computer application, before starting a new project. 

 

Required input is prompted in the area located to the left of the canvas (see Figure 

3.1) . The results of the prediction depend on the input. In particular, movement of the oil 

will be predicted based on relative oil concentrations at the field sampling points at and 

around a spill site, the time and location of the spill and of the samples collected, and 

shoreline boundaries. Other essential model input determining output characteristics 
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including run time and resolution includes basic geographic information about the spill, 

extent of the modeling area, desired spatial resolution of the graphical output, geographic 

conditions within the modeling area such as proximity to the shoreline, and the dates at 

which predictions are desired. The GUI’s input area is organized according to 

functionality, as described in the following sections. 

3.1. Spill Information 

Information on the spill name, oil type, location, and time are entered as shown in 

Figure 3.2. 

 

Figure 3.2. Spill Information input prompts in the GUI. 

 

This spill information is used to set the geographic system of reference for the run. 

Required information includes the spill time and the coordinates at which the accident 

most likely occurred. A spill name is also prompted for use in saving and distinguishing 

output figures and files. The oil type refers to the classification of oils into six generally 
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accepted classes by weight and other properties affecting their behavior in the 

environment (Research Planning Inc, 1994), as explained below under Oil Type.  

The following conditions apply to the Spill Information input section: 

• Only a point source spill occurring at a pair of coordinates, in degrees of 

longitude and latitude) can be modeled; 

• Spill Name prompt: allows the user to set the title of the spill, e.g. “DBL-152”. 

Characters /, \, *, <, >, “, | and ? are not accepted but blanks between words are 

recognized. If a change in typing is required, an informational message will pop 

up after all inputs to the Spill Information panel have been entered; 

• Oil Type: set the spin box from 1 to 6 according to the type of spilled oil, as 

follows (Research Planning Inc, 1994). Type 1 oils are very light, perhaps ~31 

°API gravity, including gasoline and very volatile hydrocarbons. Type 2 are 

moderately volatile and soluble, including jet fuels, diesel fuel, number 2 fuel oil, 

and light crude oils. Type 3 includes most crude oils, characterized by their 

persistence and diminished propensity to evaporate (about one third of the total 

mass evaporates within 24 hours). Type 4 oils may have ~10 °API gravity, little 

propensity to evaporate or dissolve, and high likelihood of sinking. Type 5 oils 

have essentially no evaporation potential, weather very slowly, and sink 

immediately, including heavy industrial fuel oils. Type 6 oils include heavy 

animal or plant oils. 
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• Spill Time: set the spin box to the time at which the most significant oil loss 

occurred. Notice that you can edit the hour and minutes using either the mouse 

cursor or the arrows of the spin box, or both.  Then, set the day, month and year of 

the spill using the smart calendar that pops up when you click in the drop-down 

menu located to the right. The date line edit can also be changed manually using 

the mouse cursor and the keyboard. 

• Longitude: this line prompts for a decimal quantity in degrees (WGS) 

corresponding to the longitude coordinate at which the spill occurred. All 

quantities must be greater than zero and must have decimal figures that can be 

zero. In front of the prompt the user shall select the radio button “E” (longitude 

east) or “S” (longitude south), which will assign a direction to the quantity you 

typed and will guide the canvas to the world’s geographic meridian closest to the 

longitude of the spill site. 

• Latitude: this line prompts for a decimal quantity in degrees (WGS) 

corresponding to the latitude coordinate at which the spill occurred. All quantities 

must be greater than zero and must have decimal figures that can be zero. In front 

of the prompt, select the radio button “N” (latitude north) or “S” (latitude south), 

which will assign a direction to the quantity you typed, will guide the canvas to 

the world’s geographic parallel closest to the latitude of the spill site, and will 

mark the spill site with an X (Figure 3.3). 
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• If you wish to modify the spill name at this point, you would have to proceed with 

the change and then repeat the last step ‘Latitude’. 

 

Figure 3.3. Marked spill site after selection of longitude, latitude values and directions. 

 

3.2. Sampling Campaign(s) 

Oil movement on the bottom is inferred by the model based principally on the 

relationship between the location and time of the spill, and the locations and relative 

concentrations at subsequent sampling times. For purposes of SOSim input, a sampling 
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campaign is defined as a set of qualitative measurements of relative oil concentration on 

the bottom, taken at approximately the same time. Spill and sample coordinates are 

entered in WGS (World Geodesic System) units (decimal degrees of longitude and 

latitude). Time differences from sampling point to point of up to a few hours may not 

need to be considered, as the model was not designed to track possible cyclic excursions 

of the oil due to the tidal cycle. SOSim version 1.0rc1 accepts and has capability for 

processing up to 10 different sampling campaigns.  

Each sampling campaign file must be created in a separate Microsoft Excel 

spreadsheet, closely following the instructions below: 

• The spreadsheet must use only the first 4 columns: A, B, C and D 

• A title (field name) for the column must be included in the first line of each 

column, 

• In Column A, enter index numbers for the data points, beginning with the numeral 

“1” to be entered on line 2; 

• In Column B, enter the longitude coordinate, in decimal degrees, at which the 

sample was collected, starting on line 2; 

• In Column C, enter the latitude coordinate, in decimal degrees, at which the 

sample was collected, starting on line 2; 

• In Column D, enter a positive or zero value for the measured relative oil 

concentration on a relative scale of range scale of 0 – 100 (that is, enter a 
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percentage of oil without the percent sign), starting on line 2. If quantitative 

measurements are available, measurements can be entered with accuracy of up to 

several decimal places.  

When complete, the Excel file must be saved as a “.txt (tab-delimited)” file in the 

location of your preference. Figure 3.4 shows an example of the Excel file. 

 

Figure 3.4. Creation of a sampling campaign file. Recording spatial coordinates and 
observed relative concentration values (scale 0 to 100) for each sampling point in an 

Excel file. 
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To upload each sampling campaign file, make use of the prompts and buttons in the 

Sampling Campaign(s) panel of the user interface shown in Figure 3.5.  

 

Figure 3.5. Sampling Campaign input prompts and buttons in the GUI. 

 

The following descriptions and conditions apply: 

• Sampling Campaign Number: adjust the number in the spin box to that of the 

sampling campaign that you want to upload and process. A campaign number 

greater than 10 is not accepted; 

• Start at: Time, Date: set the spin box to the time representing the midpoint of the 

sampling campaign. Note that you can edit the hour and minutes by using either 

the mouse cursor or the arrows of the spin box, or both.  Set the day, month, and 

year of the sampling campaign using the smart calendar that pops up when you 

click in the drop-down menu located to the right. Notice that the date line edit can 

also be changed manually with the mouse cursor. It is not necessary that the dates 

of previously uploaded campaigns have earlier sampling dates than the campaign 
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currently being uploaded, but the dates of all sampling campaigns must be 

subsequent to the spill date entered and subsequent to the assessed retardation 

gap, during which oil may be still sinking depending on its type. A warning 

message will guide you in case of error. Sampling dates of different campaigns 

can even be the same (different response teams can take samples in different areas 

at the same time). Nevertheless, it is recommended that sampling be conducted at 

different times in order for the model to better account for changes in sunken oil 

movement due to e.g. tidal action, storm events, and sediment entrainment. 

• Upload Sampling Campaign Data File button: this button opens an explorer 

dialog box that allows you to browse for your “.txt (tab-delimited)” Excel file 

containing the sampling campaign information which you want to upload. It is 

recommended that every sampling campaign file have a different name and be 

identified with a number. If the sampling campaign entered happens to be during 

the assessed sinking retardation time, the sampling campaign will be invalidated, 

and a warning issued. 

• Remove Sampling Campaign button: this button automatically removes from the 

record the data of the campaign that corresponds to the current number in the 

Sampling Campaign Number spin box. A confirmation message pops up to 

confirm the deletion, along with the number of the sampling campaign that was 

removed. However, deletion of the file does not change the numbers of any other 

uploaded campaigns, so that there will now be a campaign number with no 

assigned data. 
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• Use Existing Calibration File button: this button allows the modeler to use an 

existing calibration file, which must have been named and saved by the user after 

a previous calibration. By clicking on this button, a search dialog box will open 

and will prompt for the directory and file location. An informational message will 

confirm that the calibration file has been loaded when found. 

An example uploaded sampling campaign data file is shown in Figure 3.6. 

 

Figure 3.6. Example uploaded sampling campaign data file. 
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3.3. Modeling Area and Grid 

The modeling area is the geographical area over which the user wishes to predict oil 

locations in time. Due to limitations in terms of computational time and the 

corresponding resolution of the statistical computations and output, assignment of 

modeling areas larger than 50 km wide by 50 km long (approximately 0.50 longitude by 

0.5 latitude degrees) is not recommended. However, assignment of larger regions is 

allowed by SOSim, for example to allow the user to first check the overall movement or 

direction of a spill before modeling smaller areas. In that case, a warning message will 

pop up requesting permission from the user to assign such a large area, and warning of 

the disadvantage in doing so. An alternate approach for viewing results over a larger area, 

is conduct a run for the principal area first, then conduct partial re-runs of the program for 

contiguous regions using the post processing “Pan-posteriori” and “Recalculate” set of 

tools located to the right of the screen, once their use become available after processing 

the current run. However, in this case the results for each area modeled will have a new 

color scale, not continuous with the first (because the highest relative concentration 

predicted for each run will be colored dark red, for example, though these concentrations 

will not likely be equal), making interpretation more difficult. 

The grid is a set of orthogonal points in the west-east and north-south directions 

defined on a Cartesian plane, representing the area to be modeled. Results of the 

prediction are calculated and plotted at every node in the grid. The more nodes requested 

in each direction, the better the spatial resolution of the mapped output and the longer the 



180 

 

 

run time. These characteristics are entered in the panel “Modeling Area and Grid” shown 

in Figure 3.7: 

 

Figure 3.7. Modeling Area and Grid input prompts and buttons in the GUI. 

 

Information is entered as follows: 

• Select Area from Map button: this button is a map tool that enables a selection 

cursor. To select the modeling area, left click on the map point that corresponds to 

the north-east corner of the desired modeling area. Then drag the pointer, without 

releasing the left button, to the south-east corner of the area to be mapped. 

Release the mouse left button to set the area (Figure 3.8). It is not necessary to 

include the spill site (marked with an X) within the modeling area, though it may 

be helpful to model the vicinity around the spill site first; 
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Figure 3.8. Selecting the modeling area in the GUI. 

 

• Auto Select Area button: this button automatically zooms in and selects a region 

of 0.25 degrees longitude by 0.25 degrees latitude around the spill site (approx. 25 

by 25 km or approx. 15.6 by 15.6 miles). This feature can be used along with the 

post processing “Pan-posteriori” and “Recalculate” set of tools when the user 

plans to consecutively run SOSim for contiguous geographical regions of the 

same size so as to obtain a mosaic of a large area; and 
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• Number of Grid Nodes: as mentioned previously, resolution of the output is 

defined by the number of nodes desired in the west-east and north-south 

directions within the modeling area. Two options are available to the user. The 

first is the Default radio button, which assigns 25 nodes in each direction. Using 

this option, if the modeling area is been defined using the Auto Select Area button, 

then a node is placed every 0.01 degrees (approximately every kilometer). The 

second is the Define radio button, which makes available one prompt line in each 

direction, for the user to assign equal or different numbers of east-west and north-

south nodes. 

3.4. Land Boundaries 

Shoreline boundaries are accounted for by SOSim if the user indicates that land is 

present in the area to be modeled. Two options are available to the user, as indicated in 

Figure 3.9: 

 

Figure 3.9. Land Boundaries input buttons and spin box in the GUI. 

 

Limitations on the boundary conditions accepted by SOSim v. 1.0rc1 include (a) only 

one mass of land can be defined in each modeling area (e.g. a single polyline within a 
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single modeling area), (b) irregularly-shaped geographic features close to shore, such as 

islets and mangroves, should be considered part of a single land mass, and (c) the 

maximum number of vertices is set at 10. This latter restriction is not inherent to internal 

model computations, but was fixed so as to limit run times on desktop computers to the 

order of one day. Input is entered as follows: 

• Boundaries spin box: by default, this box is set to 6, but can spin from 2 to 10. 

The number set in this box is the number of vertices that the user wishes to select 

on the map so as to mimic the boundary conditions by the use of a polyline. If the 

number is not changed before clicking on the Select from Map button, the number 

of vertices defaults to 6. 

• Select  from Map button: clicking on this button enables two functionalities. First 

is a message box that instructs the user to "Please select X points on the land 

border shown on the canvas.” where X is the number in the spin box, 6 by default. 

Straight shorelines can be approximated by two points, slightly curved shorelines 

may be approximated with three points, and so on, offering the potential to greatly 

reduce run time. Second, the map tool with which the user defines these points is 

enabled. To select each point, click the left mouse button at a point on the 

shoreline depicted in the GUI canvas, release it in the same position, and then 

proceed to the next point. A thin yellow line will follow and connect these points 

to create a 2 to 10-vertex polyline approximating the actual boundary. Note that if 

a very large modeling area is selected that includes land, but all shorelines are far 
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from the spill and dispersing oil, the predicted results will be negligibly different 

from the results that could be obtained much more quickly by selecting the “No 

Nearby Boundaries” option; and 

• No Nearby Boundaries button: this button communicates to the model the lack of 

need for computing reflection of sunken oil from shoreline boundaries within the 

modeling area, for example when the geographic area to be modeled includes 

only open sea.  

3.5. Prediction Times 

 

Figure 3.10. Prediction Times input buttons in the GUI. 

 

The selection of prediction times is the last segment of required input. In order to 

enter these times, all previous input sections must be completed. An error message pops 

up if input information is missing. Projection times are the dates and hours the user 

wishes to view predicted sunken oil relative concentrations. The user can request up to 

five times of prediction per model run. However, computational run time will be longer 

for each projection time requested, and it is recommended that one time at a time is 
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modeled with the aim to plan and make timely decisions about subsequent run needs. 

Times are input to the panel shown in Figure 3.10. 

SOSim v. 1.0rc1 calculations are based on the assumption that sunken oil impacting 

the shoreline will be reflected back into the water. This assumption allows modeling of 

accumulation at the shoreline. However, the assumption may not be realistic at times 

after which the majority of the oil mass is predicted to reach the nearshore environment. 

At these later times, predictions may indicate a “bouncing” of the patch off of the 

shoreline. To attempt to avoid this potentially unrealistic result, a warning message will 

pop up if the requested prediction time is estimated by the model a priori to be after the 

time of predicted landfall. The user should be aware that such predictions in the 

nearshore environment may potentially occur, even in some cases if no a priori warning 

is issued. In general, predictions of substantial sunken oil occurrence at the shoreline 

should be interpreted with care. 

Input is entered as follows: 

• Prediction number spin box: Assign a whole number index to each desired time 

of prediction. If the index number is not changed in the spin box when adding a 

new date and hour, a warning message will appear; 

• At  hour spin box and time line prompt: Complete these fields with, respectively: 

(a) the hour, including minutes if desired, and (b) the date, from the smart 
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calendar pop-up, at which predictions are desired. The user must confirm final 

entry by clicking the OK button; 

• OK button: Add the current hour and time to a list of prediction times, and assign 

it to the index position indicated by the “Prediction number” spin box. The GUI 

will then estimate whether the time entered is likely to be within the time required 

for the oil mass to reach the shoreline, if the oil is apparently moving towards the 

shore. If the time entered is determined to be potentially after the time of landfall, 

a warning message will pop up. Any prediction time prior to the most current 

sampling campaign cannot be modeled as the likelihood is affected by all 

sampling campaigns. A message will appear requesting that only sampling 

campaigns prior to the requested prediction time be on file. 

• Delete button: If desired, you can use this button to cancel the addition of the 

prediction time that corresponds to the current value in the “Prediction number” 

spin box. If a prediction time is deleted by mistake, the hour and date can be 

added using a different, new index or “Prediction number”. 

3.6. Default Input 

Default input corresponds to internal parameter ranges that may be modified by an 

expert in oceanography or Bayesian modeling with the aim to optimize the precision of 

the predictive capabilities of the simulator based on the changing conditions of the 

modeling scenario or the specifics of a known situation given the occurrence of an oil 
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spill. Default input may be modified every time that SOSim is launched if the default 

ranges need to be changed.  

To modify the default input, go to the Options menu of SOSim and click on Modify 

Default Settings. A tabbed widget will guide you through the 3 settings that can be 

modified, including the default initial parameters range, the default number of grid nodes 

and the default resolution. Change the settings as required; observing that some values 

are restricted by the software given mathematic and physical constraints. Figure 3.11 

shows the preview of the Parameters Range tab. 

 

Figure 3.11. Modify default input settings dialog box. 



188 

 

 

 

4. Processing 

This section describes operation of the model from the moment that the input 

information is complete until production of the default output requested by the user. 

Output can be (1) only a calibration file to be saved for further processing, (2) a 

calibration file plus map predictions for requested scenarios based on the last, or (3) 

recalculations based on previous predictions and a saved or recently created calibration 

file. Figure 4.1 shows the processing buttons of the GUI. 

 

Figure 4.12. Processing buttons 

 

4.1. The Calibrate, Calibrate + Run, and Recalculate Buttons 

Calibrate button: this button is used if it is intended only to calibrate the model by 

using only the sampling campaign(s) uploaded files, the spill information, and the 

characteristics of the geographic area. No prediction times need be selected to run a 

calibration. When finished, the calibration files can be saved by the user for future use. 
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Calibrate + Run button: this button is used to instruct SOSim to first calibrate the 

model using the sampling campaign files and then immediately begin computations for 

prediction. This button is intended to obtain the results of a complete scenario by 

investing time in only one initial configuration. Overnight calibration-and-runs sessions 

are possible using this button. No changes to the input are allowed at this point until the 

core module has completed the Bayesian processing stage.   

Recalculate button: this button has several uses. First, the button may be used to 

generate results for the same spill scenario at a different time prediction, without data 

entry and recalibration. Second, the button may be used to obtain a new prediction 

following a change in resolution, boundaries, or geographical area (post processing and 

optional output), again without additional data entry or recalibration. Third, the button 

can be used to generate results using an existing calibration file that has been imported 

using the “Use Existing Campaign” button, in the Sampling Campaign(s) section. 

4.2. Run Time and Progress Bar 

Run time increases as function of (a) the number of output nodes, or geographical 

resolution, selected by the user, (b) the existence of boundary conditions within the 

selected modeling area, and (c) the number of vertices in the polyline representing the 

shoreline, if present. A longer time of calculation (about 5 times longer) should be 

allowed when modeling spills within a coastal area. The progress bar indicates the total 

number of operations completed. 
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5. Output 

Output is produced as a map representation of predicted relative oil concentrations 

within the modeling area. There are two classes of output: the default and the optional 

output.  

5.1. Default Output 

The map at the first requested time of prediction is automatically displayed in the 

GUI canvas immediately after the processing stage is completed.  In addition, a portable 

raster map (PNG format) of this result is saved to the desktop, along with a corresponding 

world file required for automatic georeferencing in any geographic information system. If 

more than one time of prediction was initially requested, map results corresponding to all 

prediction times will be available for the user to display on the canvas and save to disk, as 

the user requests with the “next” and “previous” buttons located to the right of the 

display. 

Output maps are color-coded such that dark red areas are predicted to have high 

relative sunken oil concentrations (near 100), and dark blue areas are predicted to have 

low relative concentrations (near zero). Predicted relative concentrations are effectively 

averaged across smaller scale patchiness of the sunken oil, and across cyclic movement 

due to tidal excursions. Also, total sunken oil masses are not known as a function of time. 
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In fact, although relative concentrations may decrease with time due to oil dispersion, 

total sunken oil mass may simultaneously be changing due to sinking and re-suspension. 

Therefore, colors are not related from one time of prediction to another (that is, the same 

colors in different maps do not indicate the same relative concentration values). Rather, a 

scale of dark red to dark blue is presented at each time, indicating relative spatial 

probabilities of finding sunken oil at each time independently. The same interpretation 

applies whether individual prediction times are requested as part of the same run or in 

separate runs. It should be noted that the internal calculations of SOSim assume a 

constant total sunken oil mass in time, so as to maintain internal consistency and quality 

control checks on the integration computations. However, this assumption does not affect 

model output.  

5.2. Optional Output 

Optional output includes (1) map results for areas that are either contiguous to the 

current modeling area, zoomed-in within the current modeling area, or zoomed-out to 

include a larger area; and ( 2) maps updated with new or revised sampling campaign data. 

Optional output is obtained as follows. 

 

Figure 5.13. Pan View button set 
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To model areas contiguous to a current output map: 

• Under the section “Pan View” (Figure 5.1), select the direction in which the 

desired contiguous region is located with respect to the current output map in the 

display. For example, if the desired new modeling area is the continuation of a 

coastal region that extends to the north, select the button “N” under the “Pan 

View” section. 

The canvas will move towards an area of the same map scale and size in the selected 

direction; 

• A pop-up message will request the user to complete the boundary conditions for 

the new area, along with the desired resolution (number of nodes in the east-west 

and south-north directions) for this contiguous case. Of course, any change in 

resolution may result in changes to the grid of the output map. If the new area is 

being modeled with the intention of creating a mosaic of multiple runs, a constant 

resolution is recommended; 

• Prediction times can be changed, but be aware that in order to see the continuation 

of the original output, the same times of prediction are required; and 

• Press the “Recalculate” button in the “Pan View” panel. Pressing this button 

instead of the “Run” button will instruct SOSim to use previous input information 
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regarding the sampling campaigns and the spill, and will require much shorter 

runtime than would be required to rerun the case from scratch using the “Run” 

button. 

To model zoomed-in areas of a current output map, or larger zoomed-out areas: 

• From the panel “Modeling Area” press the “Select Modeling Area” button. Use 

the tool as before, making sure to select the resolution (number of nodes in each 

direction) and new boundary conditions desired before starting the run. The 

“Zoom in” tool under the “Map” toolbar also works to select a modeling area, if 

the user subsequently confirms the nodes and boundaries; 

• Change times of prediction, if desired; and 

• Press the “Recalculate” button under the “Pan View” section. Pressing this button 

instead of the “Run” button will instruct SOSim to use previous input information 

regarding the sampling campaigns and the spill, and will require much shorter 

runtime than would be required to rerun the case from scratch using the “Run” 

button. 

To update the current output map based on new or revised sampling campaign data: 

• If a sampling campaign is no longer needed or requires revision, remove it using 

the “Remove Sampling Campaign” button, making sure to select the correct 
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campaign number from the drop-down menu; upload the new sampling campaign 

data as usual; and  

• If the modeling area, boundaries, and prediction times are not to be changed, then 

press the “Run” button. The “Recalculate” button is not useful in this case 

because the model run must be computed from scratch using the new field data, 

conserving only the desired prediction date(s), areas, boundaries and initial spill 

information. 
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6. Post Processing 

Post processing activities include uploading previous raster output for viewing in a 

GIS (geographic information system), saving output, saving calibration files for further 

use, and printing images. The post processing tools are located in the “Map” toolbar of 

the GUI. SOSim Version 1.0rc1 provides only for saving the output of a current project, 

but not for saving the contents of the prompts to be opened as a project later. 
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7. Portability of Results 

To allow the posting of SOSim output data to the World Wide Web for rapid, long-

distance, widely-accessible transfer of information, output image data is produced and 

saved in Portable Network Graphics (PNG extension) format. PNG is an extensible file 

format for the lossless, portable, well-compressed storage of raster images. As a 

complement of any output map created by SOSim, a corresponding world or 

georeferencing file (with PGW extension) is created and saved. The PGW file must 

accompany its parent PNG raster file in order for any output map to be ported to any GIS 

(geographic information system) that supports common PNG raster images, including but 

not limited to ArcGIS, QGIS, GRASS, and SOSim itself. PNG figures can be imported, 

inserted, printed, and used like any other common image file. 
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8. Software Portability 

SOSim version 1.0rc1 comes in an executable package for the Microsoft Windows 32 

bit platform, allowing easy portability among computers having this common operating 

system. Portability to other OS platforms may be considered for future versions. 
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