
Durham E-Theses

Veri�cation of Pointer-Based Programs with Partial

Information

LUO, CHENGUANG

How to cite:

LUO, CHENGUANG (2011) Veri�cation of Pointer-Based Programs with Partial Information, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/578/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/578/
 http://etheses.dur.ac.uk/578/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Verification of Pointer-Based
Programs with Partial Information

Chenguang Luo

A Thesis presented for the degree of

Doctor of Philosophy

School of Engineering and Computing Sciences

University of Durham

England

September, 2010

Dedicated to
Dad and Mom

for all their care and sacrifice

and also to
Shan

for all her love and support

Abstract

The proliferation of software across all aspects of people’s life means that software

failure can bring catastrophic result. It is therefore highly desirable to be able to

develop software that is verified to meet its expected specification. This has also

been identified as a key objective in one of the UK Grand Challenges (GC6) (Jones

et al., 2006; Woodcock, 2006). However, many difficult problems still remain in

achieving this objective, partially due to the wide use of (recursive) shared mutable

data structures which are hard to keep track of statically in a precise and concise

way.

This thesis aims at building a verification system for both memory safety and

functional correctness of programs manipulating pointer-based data structures, which

can deal with two scenarios where only partial information about the program is

available. For instance the verifier may be supplied with only partial program spec-

ification, or with full specification but only part of the program code. For the first

scenario, previous state-of-the-art works (Nguyen et al., 2007; Chin et al., 2007;

Nguyen and Chin, 2008; Chin et al., 2010) generally require users to provide full

specifications for each method of the program to be verified. Their approach seeks

much intellectual effort from users, and meanwhile users are liable to make mistakes

in writing such specifications. This thesis proposes a new approach to program

verification that allows users to provide only partial specification to methods. Our

approach will then refine the given annotation into a more complete specification

by discovering missing constraints. The discovered constraints may involve both

numerical and multiset properties that could be later confirmed or revised by users.

Meanwhile, we further augment our approach by requiring only partial specification

to be given for primary methods of a program. Specifications for loops and auxil-

v

iary methods can then be systematically discovered by our augmented mechanism,

with the help of information propagated from the primary methods. This work is

aimed at verifying beyond shape properties, with the eventual goal of analysing both

memory safety and functional properties for pointer-based data structures. Initial

experiments have confirmed that we can automatically refine partial specifications

with non-trivial constraints, thus making it easier for users to handle specifications

with richer properties.

For the second scenario, many programs contain invocations to unknown com-

ponents and hence only part of the program code is available to the verifier. As

previous works generally require the whole of program code be present, we target

at the verification of memory safety and functional correctness of programs ma-

nipulating pointer-based data structures, where the program code is only partially

available due to invocations to unknown components. Provided with a Hoare-style

specification {Pre} prog {Post} where program prog contains calls to some unknown

procedure unknown, we infer a specification mspecu for unknown from the calling

contexts, such that the problem of verifying prog can be safely reduced to the prob-

lem of proving that the procedure unknown (once its code is available) meets the

derived specification mspecu. The expected specification mspecu is automatically

calculated using an abduction-based shape analysis specifically designed for a com-

bined abstract domain. We have implemented a system to validate the viability of

our approach, with encouraging experimental results.

vi

Declaration

The work in this thesis is based on research carried out at the Innovative Computing

Group, School of Engineering and Computing Sciences, Durham University, Eng-

land. No part of this thesis has been submitted elsewhere for any other degree or

qualification and it is all my own work unless referenced to the contrary in the text.

Copyright c© 2010 by CHENGUANG LUO.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

vii

viii

Acknowledgements

I would like to express my obligations to all the people who have helped me in

the years for this PhD. First of all, I am extremely grateful to my supervisor Dr

Shengchao Qin who initiated my research career and encouraged me to make an

impact with my research. His wisdom enlightened me from the very beginning,

his persistent support provided me with the spirit to overcome difficulties, and his

thoughtful insights showed me the future directions to head for. Meanwhile his

personal invitations (once and again) for me to join his family parties to enjoy my

best Chinese food in the UK are also memorable.

I want to acknowledge my main colleague and office-mate Guanhua He. His

knowledge over program analysis, his proficiency in functional programming, and

his invaluable discussions on our research always benefited me. In addition, it is

exceptionally amusing to be his neighbour for two years.

The work in this dissertation has been improved much through collaboration

and discussion with my collaborators, Dr Florin Craciun and Prof Wei-Ngan Chin.

Both are professionals in my area of research with great wisdom and rich experience.

Dr Craciun inspired me on the work to deal with verification of programs invoking

unknown components and helped me all the way through it. Meanwhile Prof Chin

illuminated my work to refine program specifications with his expertise. I sincerely

appreciate their help and support here.

Another research group that I want to bow to is the East London Massive, es-

pecially Dr Hongseok Yang and Prof Peter W. O’Hearn. I will always remember

the times when I met Prof O’Hearn in Shanghai and when I saw Dr Yang in both

Durham and York. Their continuous encouragement and precious discussions pro-

vided me with the confidence to continue with and improve our work.

ix

When I just finished my first year of study, my progress examiners Prof Malcolm

Munro and Dr Rafael Bordini confirmed my work and asked many questions which

arouse my initiative to find my solutions to them. I am obliged to both of them,

especially Prof Munro who is always well respected in our school.

I wish to present my gratitude to Prof Iain Stewart and Dr Hongseok Yang for

accepting to join my thesis committee and examine my work. I appreciate their

insightful comments and valuable suggestions to improve this thesis.

I am still urged to say thanks to all my fellow research associates/PhD stu-

dents/MSc students in School of Engineering and Computing Sciences (in chrono-

logical order of my being acquainted with each of you) Yonghong Xiang, Qingzheng

Zheng, Geng Sun, Wei Xiong, Fan Yang, Wei Lu, Yan Zhuang, Ying Yang, Rui Liu,

Dingli Hu, Bindi Chen, Lu Chen and Hao Xia. It would have been a great pity had

I missed any of you and it was always a great time to become an acquaintance of

all of you. I will always remind me of the auld lang syne with you.

I acknowledge my alma mater, Durham University, for her provision of the Doc-

toral Fellowship. Without this essential support I would have never had the oppor-

tunity to study here as a happy PhD student.

Finally, I could not have completed this thesis without the love and support from

my family. My parents have always been caring for me even from thousands of miles

away in any forms that a person may or may not imagine. They also have made

so many sacrifices for me to gain my current achievement (and I cannot express

sufficient appreciation to them for any further trouble that I may cause to them as

their son). My grandparents always asked me to video-call them to ensure that I was

living happily such that they did not have to worry. Also my brothers and sisters

frequently imparted their latest news to me to cheer me up. And last but not least,

I must acknowledge my wife (including her family), for her everlasting companion

and deep love. All my effort would have been in vain had her never appeared in

(the toughest time of) my life, and I could not possibly thank her enough (but I

still have to) because of her courage and determination to share our lives with each

other.

x

Contents

Abstract v

Declaration vii

Acknowledgements ix

1 Introduction 1

1.1 A Brief Overview of Approaches to Software Quality Assurance . . . 3

1.2 Motivation . 5

1.3 Objectives . 8

1.4 Challenges . 9

1.5 Evaluation Criteria . 12

1.6 Organisation of the Thesis . 13

1.7 Summary . 14

2 Literature Review 15

2.1 Hoare Logic and Program Verification 16

2.2 Separation Logic . 17

2.3 Abstract Interpretation . 20

2.4 Verification of Shape Properties . 23

2.5 Program Analysis for General Program Properties 28

2.6 Pointer, Alias and Shape Analysis . 29

2.7 Verification of Programs with Unknown Components 34

2.8 Model Checking . 36

2.9 Summary . 37

xi

Contents

3 Language and Semantics 39

3.1 Programming Language . 40

3.1.1 Grammar . 40

3.1.2 Operational Semantics . 43

3.2 Separation Logic . 44

3.3 Specification Language . 48

3.3.1 Shape Predicates and Lemmas 50

3.3.2 Well-Formedness and Well-Foundedness 54

3.3.3 Precondition and Postcondition 56

3.3.4 The Semantic Model . 57

3.4 Summary . 60

4 Refining Partial Specifications for Verification 61

4.1 Introduction . 62

4.2 The Approach . 65

4.2.1 An Illustrative Example . 65

4.2.2 Refinement for the Specification of insert 71

4.2.3 Another Illustrative Example 72

4.3 The Verification . 78

4.3.1 Refining Partial Specifications 78

4.3.2 Pure Abduction Mechanism 83

4.3.3 Symbolic Execution Rules . 85

4.3.4 Soundness . 90

4.4 Related Work . 92

4.5 Summary . 95

5 Synthesising Specifications for Loops/Auxiliary Methods 97

5.1 Introduction . 98

5.2 The Approach . 100

5.2.1 First Illustrative Example Revisited 101

5.2.2 Second Illustrative Example Revisited 104

5.3 Programming Language . 107

xii

Contents

5.4 The Verification . 107

5.4.1 The Overall Approach . 107

5.4.2 Specification Synthesis for Auxiliary Methods

and Loops . 111

5.4.3 Revised Symbolic Execution Rules 116

5.4.4 Soundness . 117

5.5 Related Work . 118

5.6 Summary . 119

6 Verifying Programs with Unknown Components 121

6.1 Introduction . 122

6.2 The Approach . 124

6.3 Programming Language . 131

6.4 Enhanced Abduction Mechanism . 133

6.5 Verification . 136

6.5.1 Main Verification Algorithm 136

6.5.2 Case Analysis Algorithm . 141

6.5.3 Verifying Sequential Unknown Calls 143

6.5.4 Abstract Semantics . 148

6.5.5 Soundness . 153

6.6 Summary . 154

7 Experiments and Evaluation 155

7.1 Experimental Results . 155

7.1.1 Partial Specification Refinement 155

7.1.2 Specification Synthesis for Auxiliary Methods

and Loops . 160

7.1.3 Verification of Programs with Unknown Components 162

7.2 Evaluation . 167

7.3 Summary . 170

xiii

Contents

8 Conclusion 171

8.1 Main Results . 171

8.2 Future Works . 173

8.2.1 Arrays . 173

8.2.2 Automation Level . 174

8.2.3 User Interaction . 175

8.2.4 Sequential Invocations to Unknown Components 175

8.3 Summary . 176

Bibliography 177

A Soundness Proofs 195

A.1 Soundness of Specification Refinement 195

A.2 Soundness of Shape Specification Synthesis 200

A.3 Soundness of Verification for Programs with Unknown Components . 201

B Shape Predicates and Program Code Used in Experiments 207

B.1 Shape Predicate Definitions . 208

B.2 Program Code . 208

xiv

List of Figures

2.1 The Hip/Sleek verification system. 27

3.1 A core (Java-like) imperative language. 41

3.2 Operational semantics. 45

3.3 The specification language. 51

3.4 The insertion sort program for singly linked lists. 57

3.5 The semantic model. 58

3.6 The semantic model for pure constraints. 59

4.1 The insertion sort program for singly linked lists. 66

4.2 Algorithm to convert a sorted doubly-linked list to a node-balanced

tree. 73

4.3 Transferring from a sorted doubly-linked list to a node-balanced BST. 74

4.4 Refining method specifications. 78

4.5 Symbolic execution. 80

4.6 Pure constraint abstraction generation algorithm. 82

4.7 Pure abduction rules. 84

5.1 The insertion sort program for singly linked lists. 102

5.2 Algorithm to convert a sorted doubly-linked list to a node-balanced

tree. 105

5.3 The programming language for the specification synthesis framework. 108

5.4 Main verification algorithm. 109

5.5 Pre-processing algorithm. 110

5.6 Precondition synthesis algorithm. 112

xv

List of Figures

5.7 Postcondition synthesis algorithm. 113

5.8 Shape candidate generation algorithm. 114

6.1 A program sort calling an unknown procedure unknown to be verified.125

6.2 Verification of sort calling an unknown procedure unknown (part 1). 126

6.3 Verification of sort calling an unknown procedure unknown (part 2). 128

6.4 A core (C-like) imperative language. 132

6.5 Abduction rules. 134

6.6 The main verification algorithm. 138

6.7 The case analysis algorithm. 142

6.8 Algorithm for sequential unknown calls (part 1). 145

6.9 Algorithm for sequential unknown calls (part 2). 146

xvi

List of Tables

7.1 Experimental results for list-processing programs. 156

7.2 Experimental results for tree-processing programs. 157

7.3 Experimental results for list-processing programs. 160

7.4 Experimental results for tree-processing programs. 161

7.5 Experimental results (lists, part 1). 163

7.6 Experimental results (lists, part 2). 164

7.7 Experimental results (trees, part 1). 165

7.8 Experimental results (trees, part 2). 166

7.9 Experimental results (sorting). 167

xvii

List of Tables

xviii

Chapter 1

Introduction

Since the invention of computers in the last century, computer-based systems are

playing an increasingly more significant role across all aspects of people’s lives.

Accordingly, software systems behind these computer systems are being widely used

as their souls.

Such proliferation of software means that software failure can bring catastrophic

result. The worst aftermath of software failure could be that, under safety-critical

circumstances, it can put human lives in danger. Two extreme examples include

the Patriot missile system failure resulting in 28 US soldiers killed and another 98

injured, which was caused by float rounding problem (Information Management and

Technology Division, 1992), and the Therac-25 radiation therapy machine having

overdosed at least six people with three deaths, attributed to its race hazard (Leve-

son and Turner, 1993). Currently such safety-critical systems are even more wide-

spread like the embedded systems in airplanes and automobile vehicles, as well as

contemporary medical devices, any of which is highly responsible for human lives.

1

What is more, misbehaviour of software also causes great economical loss. Some

notorious cases follow the Ariane-5 explosion due to an overflow error in the conver-

sion from 64-bit float to 16-bit integer which cost over 370 million US dollars (Lions,

1996), and the loss of another 125 million US dollars by a Mars Orbiter crash re-

sulted from improper usage of Imperial units and metric units (Stephenson et al.,

1999). Other less severe examples can be witnessed by the “blue screens” of unex-

pected system halt from Microsoft Windows as well as “segmentation faults” from

POSIX-oriented operating systems, which cause frustration and loss of productivity.

According to Research Triangle Institute (2002), the annual cost incurred by inad-

equate software quality in the United States is between 22.2 billion and 59.5 billion

US dollars, which corresponds to approximately 0.2 to 0.6 percent of the country’s

gross domestic product (GDP).

Nowadays, to satisfy the fast development of demand from all aspects of the soci-

ety, computer software is still growing in both scale and complexity, and its quality

assurance draws increasing number of eyeballs accordingly. This has also been iden-

tified as a key objective in one of the UK Grand Challenges (GC6) (Jones et al.,

2006; Woodcock, 2006). Cousot has ever addressed this point as “it is preferable to

verify that mission-critical or safety-critical software programs do not go wrong be-

fore running them” (Cousot and Cousot, 2010). Hence people are trying to search

for innovative ways such as verification and analysis leading to software that has

better quality and thus is more dependable.

2

1.1. A Brief Overview of Approaches to Software Quality Assurance

1.1 A Brief Overview of Approaches to Software

Quality Assurance

There are various approaches to the reduction of software bugs and the improvement

of software quality. A brief (and not exhaustive) overview includes programming

language design, software testing, model checking, program verification, program

analysis, and so forth.

To eliminate certain kinds of programming errors, the design of suitable program-

ming languages that totally prevent them may sound a nice idea (Jim et al., 2002;

Condit et al., 2007). A case in point is the programming languages with garbage

collectors, such as Java (Venners, 1999), which claim to free programmers from heap

space exhaustion caused by forgetting to deallocate heap objects. However, this ap-

proach could not solve the class of errors that already exist in current software or

software not developed with such language (say C programs). Meanwhile, the design

of these languages may introduce extra complications, for instance the garbage col-

lector thread in Java virtual machine will block any other threads and thus making

it not very suitable for some real-time systems (Petit-Bianco, 1998).

Another significant approach to software quality guarantee is testing. It is an in-

vestigation conducted to provide people with information about the quality of the

product or service (software) under test (Kaner, 2006). Currently it is the most

prevalent approach employed by people, by setting out certain input for the pro-

gram to execute and observing whether or not it proceeds as expected. For example,

for a piece of code x = x/(y + 1), when supplied with a test-case x = 0, y = −1 we

will discover a bug of unprotected division by zero. As can be seen, this approach

is relatively easy and straightforward to be applied in the process of software devel-

opment, as essentially it only requires to run the program (although there are also

3

1.1. A Brief Overview of Approaches to Software Quality Assurance

many investigations and tools to assist such process (Hetzel and Hetzel, 1991; Craig

and Jaskiel, 2002)). Yet one of its most severe defect is that it is not exhaustive,

and hence cannot prove the absence of bugs (as in many cases we cannot exhaust all

inputs to a program for testing). There are methods to alleviate this problem, such

as systematic testing (Godefroid, 1997; Musuvathi et al., 2002) to design test-cases

covering more (or even all of) program execution paths, but it still does not provide

a bug-free proof for every input.

Compared with the “dynamic” method of testing, a number of “static” approaches

attract more and more attention, such as software model checking, program verifica-

tion and program analysis. These approaches do not require running the program;

instead they analyse the code in some way to prove that the program satisfies cer-

tain properties (hence they are categorised as “static”) (Nielson et al., 2005). Un-

like testing, these properties usually exhaust all possible inputs to the program (say

“deadlock-free” or “termination” under all circumstances), so they guarantee that

the program is free of bugs with respect to these properties. The expense to achieve

such merits is that some specific techniques to transform/analyse the program are

necessary, such as abstraction (to avoid undecidability). Meanwhile these methods

are generally quite costly in terms of time/space complexity due to the static rea-

soning performed over the sophisticated software which they check/verify/analyse.

Of all these three approaches, model checking was originally developed to verify

finite-state systems (such as the design of circuits) by exhausting the whole set

of computation states according to some specifications (McMillan, 1992). Later it

was extended to the field of software quality assurance with the help of abstraction

techniques to reduce the scale of possible software states (Ball et al., 2001). In

this thesis we would rather focus on the other two approaches, namely, program

verification and program analysis. Program verification uses a deductive reasoning

system to verify whether a program conforms to user-supplied specifications (Floyd,

4

1.2. Motivation

1967; Hoare, 1969). These specifications contain additional information that ex-

presses developer’s designs and other application-specific properties, which allows

program verifiers to generate logical formulae whose validity entails the consistency

of the program. For instance, a verifier will accept as consistent a piece of code with

annotation:

{true} if (x > y) z = x else z = y {(x > y ∧ z = x) ∨ (x ≤ y ∧ z = y)}

which addresses that whatever state the if-statement starts with (true), z will be

assigned as the larger value of x and y. Note that the specifications cover infinite

concrete variable values, which is distinct from testing. One problem that verifica-

tion has resides with the annotations: they must be supplied by programmers, which

work is both tedious and error-prone. Therefore program analysis is born to solve

this problem, by analysing the program code and inferring the specifications that

the program should conform to, instead of asking the users to provide them (Niel-

son et al., 2005). To illustrate, for the previous example it may analyse the bare

code to find out the specifications in the curly brackets. This eases much of the

programmers’ work; however, due to the complexity of programs, the analysis could

be very expensive for some interesting program properties. This trade-off partially

motivates the work presented in this thesis, as will be described in the next section.

1.2 Motivation

As aforesaid, it is highly desirable to develop software with assured quality, and one

feasible approach to achieving this objective is program verification and analysis.

However, although research on this aspect has a long and distinguished history

since Floyd (1967); Hoare (1969), it remains a challenging problem to automatically

verify programs written in mainstream imperative languages such as C, C++, C]

and Java. This is in part due to the wide use of (recursive) shared mutable data

5

1.2. Motivation

structures allocated in heap memory, for example singly or doubly linked lists, binary

trees, and their variants like sorted lists and binary search trees. Compared with

previous concentration of program verification on simpler properties as valuation of

variables (say x 6= 0 and y ≥ x + 1), these data structures are much more difficult

to keep track of in a precise and concise way for program verification/analysis.

The emergence of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002)

brings dramatic advances in automated verification and analysis of such heap-

manipulating programs. As an extension of Hoare logic (Hoare, 1969), it presents a

framework to reason about these programs by modelling the program memory (both

stack and heap) in a natural and accurate manner. Therefore, on the basis of sep-

aration logic, many works witness the progress of verifying the heap-manipulating

programs, such as the Smallfoot tool (Berdine et al., 2005b) for the verification

on lists’ pointer safety (i.e. program properties asserting that pointers cannot go

wrong), the verification on termination (Berdine et al., 2006), the verification for

object-oriented programs (Chin et al., 2008; Parkinson and Bierman, 2008), and

Dafny (Leino, 2010), and Hip/Sleek (Nguyen et al., 2007; Chin et al., 2007; Nguyen

and Chin, 2008; Chin et al., 2010) for more general properties (including both shape

information like linked lists and trees, and relevant quantitative information like list

length and sortedness, and tree height and binary search property, etc). Here (and

throughout the thesis) we use “shape” information/properties to denote the types

of components of data structures located in memory and the spatial relationship

among these components, for example “pointer x points to the head of a singly

linked list, which is disjoint from a binary tree whose root is referenced by pointer

y”, and so on.

On the analysis side, the SpaceInvader tool (Distefano et al., 2006; Yang et al.,

2008; Calcagno et al., 2009) automatically infers method specifications and loop

invariants on pointer safety for list-manipulating programs. Other works such as

6

1.2. Motivation

THOR (Magill et al., 2007, 2008, 2010) incorporate simple numerical information

to allow automated synthesis of properties like list length. Their success proves

the necessity and feasibility for program analysis to help automate the verification

process.

Among these works, one state-of-the-art verification system is Hip/Sleek (Nguyen

et al., 2007; Chin et al., 2007; Nguyen and Chin, 2008; Chin et al., 2010). Its capa-

bility covers the verification of memory safety, such as lists’ pointer safety properties

handled by Smallfoot and SpaceInvader, and some relatively simple numerical prop-

erties (also of lists) handled by THOR. Moreover, it also targets at both memory

safety and functional correctness of programs. To achieve this objective, it allows

users to specify their preferred level of program correctness by defining predicates to

depict the data structures employed in their programs. Users may describe the spa-

tial relationship amongst components of their data structures, or their quantitative

features like size/height/sortedness, or even collections of values stored in the data

structures. Reasoning about these predicates enables Hip/Sleek to verify both

memory safety and functional correctness of heap-manipulating programs.

Besides its power and benefit, Hip/Sleek can still be improved in many aspects.

One observation is that, same as many other existing verification systems, it requires

ample information for verification, say the whole of program code and corresponding

specifications. Two accompanying questions are: what if (part of) such information

is not available? If it is unavailable, can we still discover such missing part of

information to complete the verification? This forms the motivation of this thesis.

A first incentive to improve Hip/Sleek dwells in its requirement of user-supplied

annotations. Such annotations include the specification for each method and the

invariant for each loop in programs. Hip/Sleek’s reliance on users to provide these

annotations severely increases users’ workload and can be a source of handmade

7

1.3. Objectives

errors. This situation would be made better if some program analysis techniques

could be exploited in such verification systems to reduce human labour by enabling

them to write fewer such annotations.

Another motivation of my thesis is based on the requirement of Hip/Sleek to have

access to the whole code being verified, which is usually not satisfied in contemporary

programs making use of many third-party codes and/or libraries. In this case, part of

the program code to be verified could be unknown to the verifier, and Hip/Sleek (as

well as many other similar verification systems) does not have any solution but can

only report “some procedure invoked in the program is not defined”. Therefore,

it should be quite useful if we enhance Hip/Sleek so that it can deal with such

partially available programs with unknown components.

1.3 Objectives

The main objective of my thesis is to improve Hip/Sleek-like verifiers for heap-

manipulating programs such that they can deal with two scenarios where only partial

information about the program code is available. In one of the scenarios, users

are just expected to provide partial specifications of the program, and thus their

workload is reduced; in the other case the program may contain invocations to

unknown components and hence only part of the program is available to the verifier.

The success of such an effort would pave the way for a more powerful software verifier

capable of handling the above two cases. More specifically, we want to achieve the

following goals to enable our verifier to accept the following:

• Partial specifications. Original Hip/Sleek requires full specifications of

programs to verify them. Our first objective is to allow users to provide only

8

1.4. Challenges

shape information about data structures but not other information on numer-

ical or content part, in order that their workload is reduced.

• Partially available programs with unknown components. When a pro-

gram contains unknown components, we may still want to verify it, by finding

some extra obligations that the unknown part of the program should conform

to.

Meanwhile, during the meantime of realising these objectives, we will target at ver-

ifying both memory safety properties and functional correctness properties, by pro-

viding users with the flexibility to specify different kinds of data structure invariants

and correctness properties in the same framework, which can then be verified using

the same machinery. This is in contrast to specialised approaches, such as Rug-

ina (2004); Habermehl et al. (2010), which are designed to work with restricted,

“built-in” data structures.

1.4 Challenges

We face several challenges when working on this thesis. These challenges correspond

to the two major objectives: verification automation by inferring missing information

from the given program and partial specifications, and verification for programs with

unknown components.

• Verification automation. The challenge presented by verification automa-

tion is mainly attributed to the inference of missing constraints to complete

the given partial specifications. Such completion may require certain form of

fixed-point calculation in the presence of loops/recursive calls over a combined

9

1.4. Challenges

domain, as our verification generally works with both structural properties and

other relevant numerical/content properties. Details of difficulties are listed

as follows:

– Incomplete information during verification. Because user-provided

specifications may be incomplete, both preconditions and postconditions

can be too weak due to missing information. This has two consequences:

a too weak precondition may lead to infeasible abstract program states

during verification (as it might have missed some information necessary

for memory safety), while a too weak postcondition is neither sound for

recursive invocation nor satisfactory in terms of precision. Therefore we

need some techniques to recover information at both sides.

– Combination of various domains/theories. As introduced, we ex-

pect programs to operate on different domains and data structures and

we are able to handle many of these properties over multiple domains.

For example, one single program can handle both lists and numbers at

the same time, and our verification should fully capture all its behav-

iour (instead of only some behaviour over shapes). Therefore we have

to combine provers and decision procedures for a range of theories that

we work on. Existing methods, such as Nelson and Oppen (1979), often

put restrictions that significantly affect the expressivity of the constituent

theories. When we reason about structural and quantitative aspects of

data structures at the same time, we definitely need some way to combine

theories.

– Abstraction. Reasoning about programs in their full details is imprac-

tical. Thus we utilise abstractions to filter out irrelevant details so as to

keep the reasoning within the reach of automated tools. Moreover, ab-

straction can improve efficiency as well. Choosing the right abstraction

that keeps as much of relevant details and drops as much of irrelevant de-

10

1.4. Challenges

tails is a non-trivial problem. Furthermore, we may also need abstraction

to handle infinite structures in programs, such as recursive data struc-

tures, loops and recursion for termination purposes.

– Aliasing. Aliasing has long been an elusive problem for program veri-

fiers. Aliases manifest themselves in many different forms (Bornat, 2000):

variable aliasing, parameter aliasing, etc. The major difficulty caused by

aliases is that updates to one component may affect other seemingly un-

related components.

• Verification for programs with unknown components. In this part,

the main challenge is the part of program that is not available, which causes

unknown state of the program during verification. This is detailed in the

aspects below that we need to sidestep:

– Unknown components. The unknown components in the partially

available programs prevent the verification process from obtaining their

code and therefore behaviour (as we do not have any knowledge about

those components), so we cannot progress with the remainder of the

program. We need to search for possible techniques to circumvent them

before continuing with the verification.

– Verification framework. As aforementioned, a program verifier should

be a deductive reasoning system over program code and specifications.

However, in the scenario where some code is missing, we must revise

slightly the whole framework of verification to cater for it. This results in

a verification framework based on both traditional program reasoning and

abductive reasoning, which will be portrayed in more detail in Chapter 6.

– Combination of various domains/theories. This issue plus the un-

known components presents a new challenge for us, as we also work with

a combined domain to express multiple sorts of program properties.

11

1.5. Evaluation Criteria

1.5 Evaluation Criteria

The goal of this thesis is to develop mechanisms for verification of heap-manipulating

programs with respect to both memory safety and functional correctness, based on

only partial information (either specifications or program code). Accordingly we set

the evaluation criteria for this thesis in two aspects, viz., successful program veri-

fication with only partial specifications or only partial program code, respectively.

This is detailed as follows:

• One objective is to allow users to provide only partial specifications

for verification, in order to reduce the amount of annotations pro-

vided by users. With the thesis’ work, users should only provide shape

information about data structures but not the information on numerical/con-

tent part. Our proposed verifier will take over the rest of the work to refine the

specification by discovering the missing part to make the specification become

sound with respect to the program being verified.

• The other objective is to verify partially available programs with

unknown components. When the program code is only partially available

because of the existence of unknown components, we should still be able to

verify the program in some way, by discovering an obligation for the unknown

components to satisfy in order that the whole program is verified as correct.

• Both objectives should be fulfilled with proper implementation and

experiments to prove their feasibility. The targeted experimental pro-

grams are programs implementing classical algorithms for pointer-based data

structures, which manipulate the heap memory with subtle operations, result-

ing in rich specifications expressing shape, numerical and content properties

of the algorithms.

12

1.6. Organisation of the Thesis

1.6 Organisation of the Thesis

The current thesis comprises 8 chapters including this introductory chapter. The

remainder of the thesis is organised as follows.

Chapter 2 presents a survey of the state-of-the-art works that are relevant to my

work. It mainly introduces contemporary program verification and program analysis

techniques, as well as separation logic as the foundation of my work to model abstract

program memory states.

Chapter 3 presents the programming language we aim to verify, together with its

operational semantics for soundness issue. The specification language describing the

abstract domain will also be introduced with examples and semantics.

Chapter 4 presents the first contribution of this thesis, namely, the refinement of

partial specifications for verification. It illustrates the main approach with some

examples and formalises the pure abduction mechanism and the program analysis

for verification purpose thereafter.

Chapter 5 presents the thesis’ second contribution: the synthesis of specifications

for auxiliary methods. It first illustrates how the users’ workload can be further cut

down for the example in the previous chapter, followed by the formalisation details.

Chapter 6 presents the third contribution of the thesis, viz. the verification of

programs with unknown components. In a similar fashion as previous chapters, there

is a motivating example to illuminate the approach, before the formal mechanism

of enhanced abduction and framework of verification are gathered.

13

1.7. Summary

Chapter 7 presents our system implementation, the experimental results, and our

observations and experience with the evaluation of the proposed approaches.

Chapter 8 concludes the thesis and discusses possible future works.

1.7 Summary

This chapter has presented an overall view of this thesis. It introduces briefly the

current approaches to software quality assurance, sets out the motivation and ob-

jectives of this thesis, describes the challenges faced and the criteria to evaluate the

work accomplished by the whole thesis. Finally it exhibits the organisation of the

remainder of this thesis.

14

Chapter 2

Literature Review

The general idea of program verification and analysis has a long and distinguished

history in computer science. As early as in the 1960s and 1970s, provident people

have already foreseen the potential need of approaches to formal reasoning of increas-

ingly sophisticated computer programs (Floyd, 1967; Hoare, 1969; Dijkstra, 1976).

After having developed for over 40 years, this field has witnessed many significant

techniques (such as modelling, verification and analysis) grown up, and it always

encourages prominent researchers to pay their effort and form an active community

of research. Upon their achievements, this chapter will provide a brief survey from

the initialisation to the state-of-the-art in this area, so as to locate the position of

my thesis among them.

As we target at the verification of pointer-based programs with partial information,

the survey presented here mainly comprises relevant research of this work. Its main

content is divided into two parts. The first part is about some techniques exploited

in our work, including Hoare logic which we use to verify programs, separation logic

to model the memory state of programs, and abstract interpretation which we take

15

2.1. Hoare Logic and Program Verification

as the standard framework to analyse programs. The second part concerns appli-

cations of these techniques to verify/analyse programs, including the verification of

shape (and related) properties, some program analyses built on the basis of abstract

interpretation, shape analysis to infer shape properties about programs, and verifi-

cation of software systems with unknown components. Finally we will take a note of

model checking, which represents another important stream of program verification

(yet fairly different from what is used in this thesis).

2.1 Hoare Logic and Program Verification

Hoping to verify that people’s programs will run according to their intention, the

first two outrunners of Hoare logic are R. W. Floyd and C. A. R. Hoare, with

two foundational papers for program verification (Floyd, 1967; Hoare, 1969). They

introduce the concept of partial and total correctness and set up the logical base of

program verification. Especially the latter one proposes an approach that uses an

elucidation of sets of axioms and rules of inference which can be used in deductive

reasoning and proofs of the properties of computer programs to set up the axiomatic

semantics of computer programs. Therefore such semantics is sometimes called

Hoare logic from then on. A later work (Dijkstra, 1976) presents the notion of

weakest precondition proven as equivalent as the former. Burstall (1974) integrates

operational semantics for programs with the formal verification method mentioned

here.

Since then a large number of publications are devoted to Hoare logic. The total cor-

rectness version of Hoare calculus is presented in Manna and Pnueli (1974), capable

of proving that a program can terminate and is logically correct, which extends

Hoare’s method by proving correctness and termination at once. The notions of

16

2.2. Separation Logic

expressiveness and relative completeness are introduced in Cook (1978), which finds

that Hoare logic is only complete in a certain sense, relative to his interpretive se-

mantics. Clarke (1979) researches on the expressiveness of finite interpretations,

with the result that certain programming languages can not possess a sound and

relatively complete Hoare calculus, because the halting problem is undecidable for

the languages, even if the underlying interpretation is finite. Lipton (1977) claims

that the only expressive interpretations should be the standard interpretation of

Peano arithmetic and the finite interpretation.

The verification and analysis presented in this thesis are essentially founded on

the basis of Hoare logic. As will be seen in later chapters, our abstract program

semantics used for symbolic executions of programs are based on Hoare logic, or

more specifically separation logic (as an extension of Hoare logic), which is surveyed

in the next section.

2.2 Separation Logic

For the modelling of program’s memory state, we use the technique of separation

logic (O’Hearn and Pym, 1999; Reynolds, 1999; O’Hearn et al., 2001; Reynolds,

2002). In this section we will have a brief introduction to its history.

As a prototype of separation logic, O’Hearn and Pym (1999) introduces a logic of

bunched implications (BI) which is merged from two parts: additive intuitionistic

logic and multiplicative intuitionistic linear logic. Models of propositional BI’s proofs

are given by bi-cartesian doubly closed categories, combining freely semantics from

both logic families. This work also develops a first-order predicate version of BI

with newly invented universal and existential quantifiers.

17

2.2. Separation Logic

However, BI is no more than a theoretical logic model until Reynolds has presented

his work (Reynolds, 1999) to reason about resource-sensitive programs, whose logic

model is analogous to BI’s. Generally it is an extension of Hoare’s approach to

proving the correctness of imperative programs that perform destructive updates to

data structures containing more than one pointer to the same location. It invents an

“independent conjunction” P & Q that holds only when P and Q are both true and

depend upon distinct areas of storage, whose semantics is exactly the same as the

linear conjunction of BI. It is a nice coincidence that they come to the same point

from two different ways, which happened several times in the history of computer

science such as Turing’s computing machine and Church’s λ-calculus.

After that these two branches of research group have cooperated to deliver a series of

works (O’Hearn et al., 2001; Reynolds, 2002) to set up the foundation of separation

logic which can be used to reason about heap memory state. Reynolds (2002)

adds two more connectives to classical logic: separation conjunction ∗ and spacial

implication −∗. The formula ∆1 ∗ ∆2 asserts that two heaps described by ∆1 and ∆2

are domain-disjoint, while ∆1−∗ ∆2 asserts that if the current heap is extended with a

disjoint heap described by ∆1, then ∆2 holds in the extended heap. Such connectives

are supported by a low-level storage model based on both the stack and the heap

memory. In this model, four sets are assumed: Loc of memory locations, Val of

primitive values (with 0 ∈ Val denoting null), Var of variables (program and logical

variables), and ObjVal of object values stored in the heap, with c[f1 7→ν1, . . . , fn 7→νn]

denoting an object value of data type c where ν1, . . . , νn are current values of the

corresponding fields f1, . . . , fn. Then a concrete memory state h, s, consisting of

heap and stack, is from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal

s ∈ Stacks =df Var → Val ∪ Loc

This model supports the basic program operations such as lookup, update, allocation

and deallocation with a series of Hoare logic style reasoning rules. It also provides

18

2.2. Separation Logic

unrestricted memory address arithmetic. In the paper the frame rule

{P} C {Q}
{P ∗R} C {Q ∗R} mods(C) ∩ fv(R) = ∅

is emphasised as the base of local reasoning, because it allows the reasoning of pro-

grams to concentrate on programs’ footprint, namely, the variables that the program

actually manipulates, instead of a large global heap state. This is important as it

entitles the reasoning with the potential to scale up. Separation logic’s assertion

language is also formalised on a possible worlds model of BI. The soundness and

relative completeness are also discussed in the paper, as well as latest results of sep-

aration logic with the illustration of its possible applications in the field of program

reasoning.

For separation logic itself, there are some other works to address. Yang and O’Hearn

(2002) presents a semantic analysis of the soundness and relative completeness of

separation logic for the frame axiom to be inferred automatically, with the result

that it can be avoided when writing specifications. Calcagno et al. (2001) discusses

on some computability and complexity results of separation logic, where it points

out that the validity of separation logic formulae is not decidable; however the

validity over a restricted subset of separation logic formulae is fortunately decidable

with certain complexity. Following it, Berdine et al. (2004) provides a fragment

of separation logic whose entailment checking problem is decidable with a sound

and complete algorithm to solve it, which plays an important theoretical role in

their later works of program analysis. Calcagno et al. (2007) studies the semantic

structures lying behind separation logic by the concept of local action, which is a

state transformer that mutates the state in a local way. It formulates local actions for

a class of models called separation algebras, abstracting from the memory and other

specific concrete models used in work on separation logic. Local actions provide a

semantics for a generalised form of (sequential) separation logic, and allow a general

soundness proof for a separation logic for concurrency.

19

2.3. Abstract Interpretation

2.3 Abstract Interpretation

As for the analysis of programs, Cousot has proposed a series of foundational

works (Cousot and Cousot, 1976, 1977; Cousot and Halbwachs, 1978) to introduce

the framework of abstract interpretation. The first one (Cousot and Cousot, 1976)

introduces the basic way to use “abstract” (symbolic) values associated with vari-

ables instead of the “concrete” values during real execution of the program. For

example, if we choose two domains, one being natural numbers N as the concrete

domain recording concrete values of variables, and the other being the set S of

integer intervals as the abstract domain, then we define two functions α and γ as

α(N) = [min(N), max(N)], N ⊆ N
γ(s) = s, s ⊆ N

where we write [n, +∞) as [n, +∞] for expression convenience. Here we call α the

abstraction function and γ the concretisation function, since the first one maps

a set of concrete values to an abstract value, and the second one runs in the re-

versed way. Note that we have the relationship ∀N ∈ P(N) ·N ⊆ γ(α(N)) and

∀s ∈ S · s = α(γ(s)). Thus these two functions create a Galois connection to link

the two domains together. In an analysis when we are confronted with an infinite

increasing chain 1, 2, 3, . . . as the value sequence of some variable, we can condense

it as an abstract value [1, +∞] in S to force convergence. The paper then interprets

the basic operations of the programming language in this setting accordingly.

On the basis of the first work, the second one (Cousot and Cousot, 1977) proposes

an approach to an approximation of fixed-point to construct a unified lattice model

for static program analysis. Its general idea is to have some ordering over both

concrete and abstract states and an induced (complete) semi-lattice over them, and

regard the (recursive) program being analysed as a transition function f , which is

monotonic over the concrete domain (and lifted to the abstract domain). Then the

20

2.3. Abstract Interpretation

least fixed-point of f (lfp f) can be considered as the semantics of f , which may be

computed with a fixed-point iteration process.

The third work (Cousot and Halbwachs, 1978) is a utilisation of the first two to

discover the assertions (of linear type) that can be deduced from the semantics of

the program. It can often discover relations which are never stated explicitly in the

program.

After that Cousots still have consequent works to make the framework of abstract

interpretation more complete. Cousot and Cousot (1979) exhibits a systematic way

to design program analysis frameworks. It shows a (both forward and backward)

deductive semantics of programs as the standard of soundness, based on which

it studies the design of a space of approximate assertions, and the design of the

approximate predicate transformer induced by such assertions. In this way it brings

forward some global program analysis methods. This framework is an excellent

foundation for other program analysis practice, while its semantics is rectified again

in a later work (Cousot, 1981).

For the approximation methods in the fixed-point calculation of abstract interpre-

tation, Cousot and Cousot (1977) also introduces some initial ways which are still

frequently referenced today. One is static in that it can be understood as the sim-

plification of the equation involved in the concrete semantics into an approximate

abstract equation, whose solution provides the abstract semantics. Galois connec-

tions are used in this method to formalise this discrete approximation process. The

second is dynamic in that it takes place during the iterative resolution of the abstract

equation (or system of equations). This separation introduces additional flexibility

allowing for both expressiveness and efficiency. It also introduces the idea of using

widening and narrowing operators (∇ and 4) to accelerate/force convergence for

fixed-point approximation (especially when the lattice is of infinite height and does

21

2.3. Abstract Interpretation

not satisfy the ascending chain condition). An instance of this follows the previous

example of natural real numbers and intervals. For this example we may have a

widening operator ∇ by choosing a finite ramp

0 = r0 < r1 < · · · < rk = +∞

and the widening’s definition is

∅∇ [l′, h′] = [l′, h′], or

[l, h]∇ [l′, h′] =
[if l′ < l then max{ri|ri ≤ l′} else l,

if h′ > h then min{ri|h′ ≤ ri} else h]

such that if we choose rk−1 = 1, then when we have an infinite ascending chain

during the analysis [0, 0], [0, 1], [0, 2], . . . we can use ∇ to widen each state with its

consecutive state in order to make the chain converge as [0, 0], [0, 1], [0, +∞]. This

idea is essential in the work because it offers a way to deal with infinite lattices

not satisfying the ascending chain condition or to speed up convergence in case of

combinatorial explosion.

In this thesis we also apply a technique related to abstract interpretation to im-

plement our analysis, viz. constraint abstraction (Gustavsson and Svenningsson,

2001). Its kernel idea is to view the program being analysed as a transition function

(constraint), then abstract this function as an appropriate form according to the

program’s denotational semantics, and solve the obtained constraint abstraction on

the program state lattice to get the analysis result. For example, for a while loop

while(x > 0) { x = x− 1; y = y + 1; }

to start in a state {x>0 ∧ y=0}, we can utilise constraint abstraction to infer its

invariant, as the invariant reflects the transition from the initial state to the current

state by the while loop. We denote the constraint abstraction representing this loop

as Q(x, y, x′, y′) where x and y are initial values of variables x and y, and x′ and y′

are their current values, then Q can be computed from the loop body as

Q(x, y, x′, y′) ≡ (x≤0 ∧ x=x′ ∧ y=y′) ∨ (x>0 ∧ Q(x−1, y+1, x′, y′))

22

2.4. Verification of Shape Properties

where we can observe that Q is inductively defined on itself, suggesting the recursive

nature of the while loop. For this constraint abstraction, we may execute a stan-

dard fixed-point iteration process armed with widening operations from Cousot and

Cousot (1977) to find one of its fixed-points as x−x′ = y′−y, which is exactly the

loop invariant that we are after.

2.4 Verification of Shape Properties

From this section on we will turn away from techniques we use to relevant works of

this thesis. Our aim of research is to provide a verification system to verify shape

and relevant properties of heap-manipulating programs with partial information. In

this field there have been active similar efforts, especially for the verification and

analysis of memory consumption and manipulation, as discussed below.

Smallfoot (Berdine et al., 2005b) is a verification tool based on separation logic.

It makes use of a symbolic execution designed to work with a fixed set of shape

predicates, most notably the list segment predicate (Berdine et al., 2005a). It is

the first attempt to use separation logic in the verification of pointer safety and

simple shape properties. The data structures and properties that they verify are

quite simple compared with our user-defined predicates.

Another work on this aspect, Java Modelling Language (JML), is a behavioural

interface specification language designed to specify the behaviours and interfaces

of Java programs (Leavens et al., 2000; Burdy et al., 2005; Leavens et al., 2006).

The design of JML is heavily influenced by the model-based approach of Larch,

in particular the Larch/C++ works by Leavens and others (Cheon and Leavens,

1994; Leavens and Baker, 1999). The language has attracted significant research

23

2.4. Verification of Shape Properties

attention, resulting in a number of tools supporting JML, ranging from run-time

assertion checking tools (Cheon, 2003) to static time verifiers (Cataño and Huisman,

2003; Cok and Kiniry, 2004). There have also been efforts to apply JML on a larger

scale (Poll et al., 2001; Schmitt et al., 2006).

For the features of JML, its specifications, which consist of Java expressions and

some additional keywords, are embedded as specially-formatted comments in Java

source code. JML supports specification constructs such as model fields, ghost fields,

and model methods. A model field is an abstract representation of some concrete

states; the link between these two are given using the JML’s represents clause,

which syntactically distinguishes whether the relationship is functional, or relational.

Our approach, on the other hand, uses predicate parameters in lieu of specification

variables. The dependency of the predicate parameters and concrete program states

are captured by the predicate definitions, which can capture both functional and

relational dependencies in a uniform manner.

Extended Static Checking for Java (ESC/Java) (Flanagan et al., 2002), developed

at Compaq Systems Research Centre, aims to detect more errors than “traditional”

static checking tools, but is not designed to be a program verification system. The

stated goals of ESC/Java are scalability and usability. For that, it forgoes soundness

for the potential benefits of more automation and faster verification time. However,

it is not a sound checker in the sense that it may miss errors, i.e. it cannot guarantee

the absence of certain class of errors. The ESC/Java effort is continued with ES-

C/Java2 (Cok and Kiniry, 2004), which adds support for current versions of Java,

and verifies more JML constructs. One significant addition is the support for model

fields and method calls within annotations (Cok, 2005).

Spec] (Barnett et al., 2004b) is a programming system developed at Microsoft Re-

search. It is an attempt at verifying programs written in the C] programming

24

2.4. Verification of Shape Properties

language. It adds constructs tailored to program verification such as pre- and post-

conditions, frame conditions, non-null types, object invariants, etc. Spec] programs

are verified by the Boogie verifier (Barnett et al., 2006), which uses Simplify (Detlefs

et al., 2005) and Z3 (de Moura and Bjørner, 2008) to discharge its proof obligations.

Spec] also supports runtime assertion checking.

Spec] supports object invariants but leaves the decision of when to enforce/assume

object invariants to the user. It adds special fields to each object, which can be

mentioned explicitly in method pre- and post-conditions. The values of these fields

determine if the object invariant is enforced by the corresponding method con-

tract (Barnett et al., 2004a). In order to verify object invariant modularly, Spec]

employs an ownership scheme that allows an object o to own its representation —-

objects that are reachable from o and are part of o’s abstract state. The owner-

ship scheme in Spec] forces a top-down unpacking of the objects for updates, and a

bottom-up packing for re-establishing the object invariant. The packing and unpack-

ing of objects are done explicitly by having programmers writing special commands

in method bodies.

There is yet another success in shape analysis and verification, that is, Hob and

Jahob. The former one is designed to verify data structure consistency proper-

ties (Lam, 2007), which incorporates multiple analyses, called analysis plug-ins,

to verify diverse properties of global data structures (Kuncak et al., 2006). Dif-

ferent analysis plug-ins communicate program states by using boolean algebra of

sets with cardinality constraints. The language is expressive enough to allow Hob

to encode and verify a number of application-specific properties. Apart from this

common specification language, each analysis plug-in maintains its own internal

representation of program states. Hob provides a way for the plug-ins to link their

own representation with the common abstraction by using abstraction modules.

The analysis-plug-in architecture has the important flexibility of allowing different

25

2.4. Verification of Shape Properties

analyses with different precision/scalability trade-offs to work on different modules

of the same program, which could open up the possibility of having larger programs

verified.

Jahob (Kuncak et al., 2006; Kuncak, 2007) continues Hob’s effort in using different

analyses to verify complex properties of linked data structures. However, Jahob

deviates from Hob in some important aspects. Instead of using specially-designed

implementation and specification languages like Hob does, it uses a subset of Java

as its implementation language and a subset of the Isabelle/HOL (Nipkow et al.,

2002) language as its specification language; it also works on instantiable data struc-

tures, as opposed to Hob’s global data structures. Jahob develops a technique to

combine multiple theorem provers (Klarlund and Møller, 2001; Nipkow et al., 2002;

Detlefs et al., 2005) to reason about expressive logical formulas in Higher Order

Logic (HOL). It makes full use of each theorem prover’s advantageous point, which

is the key feature of this verification system.

Finally, our work is based on the improvement of another state-of-the-art program

verifier Hip/Sleek (Nguyen et al., 2007; Chin et al., 2007; Nguyen and Chin, 2008).

Its overview is given in Figure 2.1. The front-end of the system is a standard Hoare-

style forward verifier Hip, which invokes the separation logic prover Sleek. The

Hip verifier comprises a set of forward verification rules to systematically check that

the precondition is satisfied at each call site, and that the declared postcondition is

successfully verified (assuming the given precondition) for each method definition.

For the separation logic prover Sleek, given two program states ∆1 and ∆2, it

attempts to prove that ∆1 entails ∆2; if it succeeds, it returns a frame R such that

∆1 ` ∆2 ∗ R. As discussed previously, it can express and process multiple types

of program properties such as shape, quantitative and content ones in program

states ∆. We want to keep all its merits and improve it by dealing with partial

information in verification. Meanwhile, we also use the Sleek tool as our main

26

2.4. Verification of Shape Properties

HIP: Hoare-style
Forward Verifier

SLEEK: Entailment
Prover

Program
Code

User Supplied Items

Automated Verification System

Pre/Post
Shape

Predicates

Figure 2.1: The Hip/Sleek verification system.

solver for entailment checking.

Our project will be different from the aforementioned ones in the techniques em-

ployed (like separation logic and entailment checking) in that we can describe the

shape properties in a more natural way from the user’s perspective and still remain

expressive and computationally feasible. Meanwhile we also try to verify programs

that are provided with only partial information by inferring constraints to complete

the partial specification and to describe the missing part of the partial program.

27

2.5. Program Analysis for General Program Properties

2.5 Program Analysis for General Program Prop-

erties

To automate the verification process, program analysis techniques are widely ap-

plied on the basis of abstract interpretation. This section surveys those analyses

for general program properties, such as numerical properties like the value range

of program variables. The pioneer work in this field is what we have already intro-

duced (Cousot and Cousot, 1976). It begins with the basic “program units” to study

each’s behaviour in an intra-procedural analysis, and then the behaviour among dif-

ferent procedures is put into consideration to form the inter-procedural analysis. In

this way it initialises the research in this area. Next we will survey some more recent

ones.

Reps et al. (1995) shows how to analyse programs precisely with finite abstract

domains and distributive transfer functions. Its means is to transform such dataflow

analysis problems into a special kind of graph reachability problem. It promises

precision while also controls the time complexity in polynomial scale.

For more recent works, Müller-Olm and Seidl (2004); Popeea and Chin (2006); Gul-

wani and Tiwari (2007) present precise inter-procedural analyses with linear equal-

ities. The first (Müller-Olm and Seidl, 2004) applies linear algebra techniques to

precise dataflow analysis to describe analyses determined for each program point

identities that are valid among the program variables whenever control reaches that

program point (as their main approach). They fully interpret assignment state-

ments with affine expressions on the right hand side to compute the set of all affine

relations and polynomial relations of bounded degree. Their complexity is worth

noting to be linear to program size and polynomial to the number of variables. The

second (Popeea and Chin, 2006) also introduces the notion of affinity to characterise

28

2.6. Pointer, Alias and Shape Analysis

how closely related a pair of polyhedra is. Then they try to find related elements in

the polyhedron (base) domain to allow the formulation of precise hull and widening

operators lifted to the disjunctive (powerset extension of the) polyhedron domain.

In this way they effectively prevent the original convex-hull’s loss of precision. The

third (Gulwani and Tiwari, 2007) uses a backward analysis to propagate information

with “generic assertions” facilitating inter-procedural analysis and simplify such as-

sertions with unification. Their analysis and implementation are constructed on this

technique. In our work, we can utilise their achievements as solvers to some part of

our combined domain, for example, the numerical constraint abstraction generated

from the original program we want to verify.

2.6 Pointer, Alias and Shape Analysis

As a significant branch of program analysis, the analysis of pointer and memory

safety became a heated research topic in early 1990s (Landi and Ryder, 1992; Choi

et al., 1993). Pointer analysis is a static code analysis technique that establishes

which pointers, or heap references, can point to which variables or storage locations,

and such result may be used in a program verification for pointer-related properties.

Pointer analysis itself still has several branches such as alias analysis (Emami, 1993)

and shape analysis (Sagiv et al., 2002), which are investigated in sequence.

For aliasing analyses, Chatterjee et al. (1999); Cheng and Hwu (2000) propose two

modular approaches. The first (Chatterjee et al., 1999) presents a modular tech-

nique for flow-sensitive and context-sensitive dataflow analysis of statically typed

object-oriented programming languages such as C++ and Java, namely, relevant

context inference. It can be used to analyse complete programs as well as partial

programs such as libraries and is totally statical. The main part of their method is

29

2.6. Pointer, Alias and Shape Analysis

a modular way of analysing the method bodies separately before the calling context

information, while they also study all the valid program paths in an analysis. The

second work (Cheng and Hwu, 2000) is similar in the light that it uses access paths

as well to perform a modular pointer analysis, while it addresses the context in the

analysis, including program flow and context sensitivity, to avoid the overhead of

representing context-sensitive transfer functions.

Recently Yorsh et al. (2008) shows how to combine finite type state with aliasing

analysis. It advocates that their framework for generating procedure summaries is

both precise (applying the summary in a given context yields the same result as

re-analysing the procedure in that context) and concise (the summary exploits the

commonalities in the exact ways the procedure manipulates abstract values). For

this sake they define a class of abstract domains and transformers, which can be

instantiated to perform the analysis.

In the field of shape analysis, there are also a series of distinguished works. Sagiv

et al. (1999, 2002) represent the initial works on this aspect. It is a summating

work as it provides a parametric framework for shape analysis that can be instan-

tiated in different ways to create different shape analysis algorithms that provide

varying degrees of efficiency and precision. Many works have been built on this

framework, such as Möller and Schwartzbach (2001) and Wies et al. (2007), etc. It

is also extended by Lee et al. (2005) which exhibits a grammar-based shape analysis

with grammar annotations in order to express the shape of complex data structures

precisely.

Rinetzky et al. (2005) presents a shape analysis method that uses a characterisation

of a procedure’s behaviour in which parts of the heap not relevant to the procedure

are ignored. Actually this shares the same idea as separation logic does, but its

semantics is LSL, and their static analysis algorithm is founded on the abstract

30

2.6. Pointer, Alias and Shape Analysis

interpretation of LSL.

Similar as our motivation, Lahiri and Qadeer (2006) bases shape analysis on ver-

ification. Its main technical contribution is a novel method for verifying linked

lists based on two new predicates that characterise reachability of heap cells; these

two predicates also allow reasoning about both acyclic and cyclic lists. Meanwhile,

it proposes a concept of well-foundedness which is useful for our preceding work

Hip/Sleek (Nguyen et al., 2007).

Hackett and Rugina (2005) uses local reasoning about individual heap locations,

instead of global reasoning about entire heap abstractions. They build the shape

abstraction and analysis on top of a pointer analysis, and decompose the shape

abstraction into a set of independent configurations, each of which characterises one

single heap location. One key feature of their analysis is that it can be used to

enable the static detection of memory errors in programs with explicit deallocation.

Manevich (2009) presents some new “partially disjunctive” shape analyses aimed at

taming the size of the state space by abstracting disjunctions, as well as soundly

approximating program statements. It implements and applies these analyses to

prove properties of sequential programs and fine-grained concurrent programs, with

respect to several properties, including cleanness properties, shape invariants, and

linearisability of concurrent data structure implementations.

Another important stream of analysis work done in separation logic is Berdine

et al. (2005a); Distefano et al. (2006); Gotsman et al. (2006); Yang et al. (2008);

Calcagno et al. (2009). Among them, Distefano et al. (2006) follows the method of

Smallfoot’s symbolic execution of certain separation logic formulae called symbolic

heaps (Berdine et al., 2005a). As a result, it also uses the linked list and its segment

predicates, as in their former verification work, to perform intra-procedure inference

31

2.6. Pointer, Alias and Shape Analysis

on while-loops. Gotsman et al. (2006) proposes an inter-procedural shape analysis

that makes use of spatial locality (i.e. the fact that most procedures modify only a

small subset of the heap) in its representation of abstract states. In fact they uses

separation logic itself to express the shape properties. However, they only use the

original pointing-to assertion provided by separation logic instead of one more level

of abstraction. They track reachability information indirectly and aliasing informa-

tion directly, which is an important feature of their work. Following these works,

two other significant papers (Yang et al., 2008; Calcagno et al., 2009) prove the fea-

sibility of their approaches by successfully analysing parts of medium- and large-size

scales software, including device drivers and system software such as OpenSSH and

Linux distributions. They accomplished these objectives by tuning the join operator

used in the analysis and applying abductive reasoning to discover full specifications

for programs.

There are also works addressing program analyses for both shape and other program

properties on the basis of separation logic. THOR (Magill et al., 2007, 2008) advo-

cates to separate the analysis of shape properties from that of other properties, by

deriving an approximated numerical program from the original heap-manipulating

program. This idea is similar as this thesis. In the development of the THOR tool,

Magill et al. (2007, 2008) propose an adaptive shape analysis where additional nu-

merical analysis can be used to help gain better precision. Its abstraction mechanism

is also employed in C-to-gate hardware synthesis (Cook et al., 2009). Very recently,

Magill et al. (2010) formulates a novel instrumentation process which inserts nu-

merical instructions into programs, based on their shape analysis and user-provided

predicates. Instrumented programs can then be used to generate pure numerical

programs for further analysis.

With respect to the content of data structure, Ireland (2007) proposes a coopera-

tive approach. In that work the author applies the symbolic evaluation technique

32

2.6. Pointer, Alias and Shape Analysis

of THOR’s, and specifies the loop invariant as a combination of two parts: the

shape part and the schematic content part. This approach concentrates more on

the automation of the analysis, at the cost of generating possibly unsound invari-

ants. Therefore a middle-out proof planning procedure is employed to rule out such

invariants. As an improvement, Maclean et al. (2009) attempts to refine the ob-

tained invariants and uses IsaPlanner (Dixon, 2005) to handle meta-variables and

goal-naming issues. With these techniques it can perform analysis (for instance over

its illustrative array example) for both memory safety and functional correctness.

Combining the two features above together, Bouajjani et al. (2010) can handle both

numerical and (restricted) content of linked lists at the same time. They synthesise

list-related invariants over infinite data domains using graph heap representation.

The synthesised invariants are able to capture various aspects of data structures,

such as the size, the sum or the multiset of linked list, relations of the data at linearly

ordered or successive positions.

The above groups of works mainly focus on list data structure. For non-linear data

structures, Chang et al. (2007); Chang and Rival (2008) design an abstract domain

in separation logic that is parameterised both by an abstract domain for pure data

properties and by user-supplied specifications of the data structure invariants to

check. It supports various types of invariants about shape and data and features

a mechanism for materialising summaries. Upon this domain, they build a shape

analysis using abstract interpretation and a widening operator over the combined

shape and data domain.

Compared in general with the works stated above, this thesis focuses more on the

verification of shape and its relevant properties, whereas it also exploits shape analy-

sis techniques to deal with the partial information in target programs. To handle

memory safety as well as functional correctness of heap-manipulating programs, we

33

2.7. Verification of Programs with Unknown Components

work on a combined abstract domain which is more complex than previous works,

and we aim to infer both preconditions and postconditions for methods starting

from partial information, which is outstanding from the aforementioned results.

2.7 Verification of Programs with Unknown Com-

ponents

Program analysis techniques are employed to discover unknown program specifica-

tions/invariants, while there are also techniques to verify programs with unknown

components, where some program code is not available to the verifier.

Black-box testing (Beizer, 1996) views the unknown components in programs as

black-boxes to test their functionality. It has certain patterns for users to design

pairs of input and output, and use them to test whether the program meets people’s

expectations. This approach is now widely applied in software industry; however, in

essence it is a method of testing instead of verification; therefore it cannot formally

prove the absence of program bugs. Especially in safety-critical systems a bug failed

to be found by such testing may cause catastrophic result, as described in Chap-

ter 1. The same problem also applies to some similar approaches like specification

mining (Ammons et al., 2002). For unknown components of a program, It discovers

possible specifications for them by observing the program’s execution and traces,

which is also dynamically performed and bears the same non-exhaustion problem.

For such problem, static verifiers/analysers are more proficient, as they can ex-

plore all possible program states. However, for programs with unknown compo-

nents, existing verifiers/analysers usually do not perform very well. For example,

SpaceInvader (Calcagno et al., 2009) simply assumes the program and the unknown

34

2.7. Verification of Programs with Unknown Components

procedure have disjoint memory footprints so that the unknown call can be safely

ignored due to the hypothetical frame rule (O’Hearn et al., 2004), whereas this as-

sumption does not hold in many cases. Some other verification approaches (Emami

et al., 1994; Gopan and Reps, 2007) attempt to take into account all possible im-

plementations for the unknown component. The first one (Emami et al., 1994) is

founded on a points-to analysis with context-sensitive inter-procedural information

which captures all calling contexts. The second one (Gopan and Reps, 2007) looks

at library functions’ low-level implementation to construct summary information for

linked libraries with no source code available. However, for these methods, there

can be too many such candidates in general, and hence the verification might be

infeasible for large-scaled programs.

It is also notable that the similar problem is addressed by some model checking

works. (Model checking is yet another stream of program correctness proof which

will be introduced in the next section.) Peled et al. (1999) tries to test whether an im-

plementation with unknown structure satisfies some given properties, and proposes

an approach by learning and adjusting the checking process via experiments, known

as black box checking. Li et al. (2002) represents a decompositional approach able

to check feature-oriented (open) software designs which may cause false alarms. Xie

and Dang (2005) is also a decompositional method integrating features from both

testing and model checking. They reduce the testing of the global system down to

the testing of each black-box, and generate test sequences for each individual box

using an automata-theoretic approach. Their method is sound and complete, but

the properties that it may test are very limited.

Compared with the approaches above, our work is exhaustive in finding a specific

type of program bugs, is sound with respect to program semantics, and meanwhile

still have the potential to scale up because we do not consider all possible implemen-

tations to an unknown component. The program properties that we focus on include

35

2.8. Model Checking

strong program invariants about data structure’s shape, size, relational information

and content, which are rather difficult for existing tools that can verify programs

with unknown components.

2.8 Model Checking

Model checking (Clarke and Emerson, 1981) represents a fairly different approach

to the proof of software correctness. It was originally designed to verify finite-state

systems by exhausting the whole set of computation states according to some spec-

ification described in temporal logic, and achieved great success on circuit design

and implementation (McMillan, 1992). Such success intrigued researchers’ interest in

applying model checking to the field of software. The key technique for such applica-

tion is abstraction (like predicate abstraction (Ball et al., 2001) and counterexample-

guided abstraction refinement (Clarke et al., 2000, 2003)), as software usually has in-

finite computation states which are beyond the capability of model checking. These

abstractions are even borrowed in some analysis works, such as Sagiv et al. (2002);

Balaban et al. (2005). With appropriate abstraction techniques, model checking

tools are generally automatic and thus requires no user intervention. Some repre-

sentatives of such tools include the general framework of model checkers SPIN (Holz-

mann, 2004), the SLAM model checker for drivers (Ball and Rajamani, 2001), the

BLAST model checker for C programs with lazy counterexample-guided abstrac-

tion refinement (Henzinger et al., 2003) and Java PathFinder for Java programs by

NASA (Visser et al., 2003). In this thesis, we employ a slightly different Hoare logic

based approach to verify the program properties (including shape and others) with

user-provided predicates of abstraction and program analysis techniques.

36

2.9. Summary

2.9 Summary

This chapter has surveyed the state-of-the-art in the field of software quality as-

surance, especially program verification and analysis. It mainly covers two types

of topics, one being the foundational techniques that we use in this thesis, and the

other being some related works by peers in the similar area of program verification

and analysis.

37

2.9. Summary

38

Chapter 3

Language and Semantics

In this chapter our programming and specification languages are introduced to-

gether with their semantics. We use a standard object-based programming language

(to write the programs being verified) and a predicate-based specification language

(to express program specifications and abstract program states). Our predicates

are inductively defined as in Hip/Sleek (Nguyen et al., 2007; Chin et al., 2007;

Nguyen and Chin, 2008; Chin et al., 2010), and can capture recursive data struc-

tures with sophisticated program properties involving not only structural aspects

but also quantitative aspects as well as content of data structures. In what follows,

we will first define the programming language, then give a brief introduction to the

separation logic we use as a base for our specification language, and finally design

the specification language itself.

39

3.1. Programming Language

3.1 Programming Language

3.1.1 Grammar

The programming language used in our system is a typed object-based language

which may be viewed as a subset of popular type-safe programming languages such

as Java or C]. Its grammar is formally defined in Figure 3.1.

A program Prog in our language consists of a list of type declarations tdecl and a list

of procedure definitions meth. The type declarations include class types classt used

in programs, user-defined predicates spred for specifications, and lemmas lemma.

(We will leave spred and lemma until Section 3.3 as they are more for the spec-

ification language.) Compared with those fully-fledged object-oriented languages,

our language has omitted some features orthogonal to this thesis’ interest, such as

inheritance and dynamic dispatch, concurrency, array, exception, and so on. The

semantics of most constructs of the language are understood in the usual sense that

one would find in languages such as Java or C], except for the class declaration,

which declares a class type without instance procedures or dynamic dispatch. Other

than that, they behave like normal classes: instances of a class type can be (dynam-

ically) allocated, their fields read (v.f) and updated (v.f = w), references to them

passed to and from procedures, etc. (In this sense they are more like a struct in

the C language.) A type t can either be a class type or a primitive built-in type.

For the users to express program specifications, our language includes annotations

for procedures and loops. Each procedure meth is decorated with its specifications

mspec. Note that annotations for loops are not written in the traditional style of loop

invariants, but rather in the same way as procedure contracts (where Φpr ∗→Φpo).

This facilitates our conversion from loops to tail-recursive procedures so as to treat

40

3.1. Programming Language

Program Prog ::= tdecl meth

Type declaration tdecl ::= classt | spred | lemma

Class declaration classt ::= class c { field }
Field declaration field ::= t v

Type t ::= c | τ

Procedure declaration meth ::= t mn ((t v); (t v)) mspec {e}
Built-in type τ ::= int | bool | void

Expression e ::= d heap-insensitive atomic

| d[v] heap-sensitive atomic

| v=e assignment

| e1; e2 sequence

| t v; e local variable

| if (v) e1 else e2

| while v {e} where Φpr ∗→Φpo

Heap-insensitive atomic d ::= - skip

| null null reference

| kτ constant

| v variable

| new c(v) allocation

| mn(u; v) method call

Heap-sensitive atomic d[v] ::= v.f field read

| v.f=w field write

| free(v) deallocation

Figure 3.1: A core (Java-like) imperative language.

41

3.1. Programming Language

them in the same manner as normal procedures. For this sake, we support both pass-

by-value and pass-by-reference parameters, which are separated with a semicolon ;

where the ones before ; are pass-by-value and the ones after are pass-by-reference.

The grammar for these annotations will be presented in Section 3.3. The meaning

of a pair of precondition and postcondition is that if the procedure is invoked in a

program state satisfying its precondition, the procedure will not have any memory

faults such as null or dangling pointer dereferences. Furthermore, if the procedure

terminates, it terminates in a state that satisfies the postcondition. Otherwise, if

the program state does not satisfy the precondition, then the verification fails and

a catastrophic error is reported with its location in the program. In other words,

we adopt the partial correctness semantics of Hoare triples with tight interpreta-

tion (Yang and O’Hearn, 2002).

Without loss of generality, our language is expression-oriented, so the body of a

method is an expression composed of standard instructions and constructors of the

language. e is the (recursively defined) program constructor, and d and d[v] are

atomic instructions. Here d[v] has some specific requirement over the memory state

(such that v must be allocated at a valid part of heap memory) and is therefore

named heap-sensitive atomic instruction, whereas d does not have such require-

ments and is called heap-insensitive atomic instruction. As will be seen in later

chapters, these two sorts of instructions are treated differently during the analysis

of a program.

We have some further assumptions over the programs, so that they are well-formed

according to the following rules. Each program should be type-safe. Classes, predi-

cates and procedures should have distinct names. Local variables in the same scope

are distinct. Meanwhile, we do not allow the syntactic sugar for local variables to

hide variables from outer scopes or procedure parameters.

42

3.1. Programming Language

3.1.2 Operational Semantics

This section defines the operational semantics of our programming language. Before

doing that, we first define the semantic domains. Locations in our system correspond

to object identifiers (which can be practically regarded as memory locations). Val-

ues include primitive values, locations, and the special value null that does not

correspond to any object identifier. Objects are finite partial maps that map field

names to values. Primitive values include integer numbers and boolean values.

The operational semantics for our language is a small-step semantics which are

essentially transitions between machine configurations. Each machine configuration

is a triple consisting of:

• Heap h. We model heaps as finite partial maps from locations to objects.

Objects are expected to conform to their defined class types.

• Stack s. Stacks are modelled as finite partial maps from variables to values.

Note that it is viewed as a “stackable” mapping, where a variable v may occur

several times, and s(v) always refers to the value of the variable v that was

popped in most recently.1

• Current program code e. Program execution terminates when e is -, a value

of type void.

For simplicity, we assume that all while loops are already transformed to tail-

recursive methods with pass-by-reference parameters. Each reduction step can then

1A more formal definition for s would mark different occurrences of the same variable with

different “frame” numbers. We omit the details here.

43

3.2. Separation Logic

be formalised as a small-step transition of the form:

〈s, h, e〉↪→〈s1, h1, e1〉

The full set of transitions is given in Figure 3.2. We explain some of the notations

used in them. The operation [v 7→ ν] + s “pushes” the variable v to s with the

value ν, and ([v 7→ ν] + s)(v) = ν. The operation s− v “pops out” variables v from

the stack s. s[v 7→k] is a mapping which keeps all the mappings in s except that

of v (which is now specified to be mapped to k). We also abuse this notation

for a class type identifier c to denote a region of heap (mappings) in the form

c[f1 7→s(v1), . . . , fn 7→s(vn)], which is essentially a heap location where fields fi are

further mapped to values s(vi), i = 1, . . . , n. ⊥ represents an arbitrary value. We

also introduce an intermediate construct as results returned by expressions/method

calls ret(v, e), where v will be dropped from s after the evaluation/invocation of e,

to simulate the behaviour of stack. Whenever such a result is yielded, we assume it

is stored in a special logical variable res, although res is never explicitly put in the

stack s.

3.2 Separation Logic

Our specification language is built on top of separation logic (O’Hearn and Pym,

1999; Reynolds, 1999; Ishtiaq and O’Hearn, 2001; Reynolds, 2002), designed for rea-

soning about programs that manipulate shared mutable pointer-based data struc-

tures. The distinguished feature of separation logic is its local reasoning about data

structures linked with pointers and allocated in heap (Distefano et al., 2006). It

means that reasoning about a command concerns only the part of the heap that the

command accesses, a.k.a. the command’s footprint. Note that local reasoning is

not registered patent for separation logic; it also exists in the original formulation of

Hoare logic (Hoare, 1969) with the substitution treatment in assignment. However,

44

3.2. Separation Logic

OS-VAR 〈s, h, v〉↪→〈s, h, s(v)〉

OS-CONST 〈s, h, k〉↪→〈s, h, k〉

OS-SEQ 〈s, h, -; e〉↪→〈s, h, e〉

OS-ASSIGN-1 〈s, h, v=k〉↪→〈s[v 7→k], h, -〉

OS-FIELD-READ 〈s, h, v.f〉↪→〈s, h, h(s(v))(f)〉

OS-LOCAL 〈s, h, {t v; e}〉↪→〈[v 7→⊥]+s, h, ret(v, e)〉

OS-RET-1 〈s, h, ret(v, k)〉↪→〈s−{v}, h, k〉

OS-PROG

〈s, h, e1〉↪→〈s1, h1, e3〉
〈s, h, e1; e2〉↪→〈s1, h1, e3; e2〉

OS-ASSIGN-2

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, v=e〉↪→〈s1, h1, v=e1〉

OS-RET-2

〈s, h, e〉↪→〈s1, h1, e1〉
〈s, h, ret(v, e)〉↪→〈s1, h1, ret(v, e1)〉

OS-FIELD-WRITE

r = h(s(v1))[f 7→s(v2)] h1 = h[s(v1)7→r]

〈s, h, v1.f = v2〉↪→〈(s, h1, -)〉

OS-IF-1

s(v)=true

〈s, h, if (v) e1 else e2〉↪→〈s, h, e1〉

OS-IF-2

s(v)=false

〈s, h, if (v) e1 else e2〉↪→〈s, h, e2〉

OS-NEW

class c {t1 f1, .., tn fn}
ι/∈dom(h) r=c[f1 7→s(v1), .., fn 7→s(vn)]

〈s, h, new c(v)〉↪→〈s, h[ι 7→ r], ι〉

OS-CALL

s1=[wi 7→s(vi)]
m−1
i=1 + s

t0 mn((ti wi)
m−1
i=1 ; (ti wi)

n
i=m) {e}

〈s, h,mn(v)〉↪→〈s1, h, ret({wi}m−1
i=1 , [vi/wi]

n
i=me)〉

Figure 3.2: Operational semantics.

45

3.2. Separation Logic

such local reasoning is lost if heap-based data structure and aliasing are introduced

to the programming language. This loss of locality is noted as the pointer swing

problem by Hoare and He (1999). In this scenario, separation logic restores the

capability to reason locally by means of two technical novelties: 1) the separation

conjunction ∗ and 2) tight interpretation of Hoare triples (Yang and O’Hearn, 2002).

A key insight leading to separation logic is that program logics for reasoning about

heap-manipulating programs should be explicit about the heap. In other words,

program heaps should be part of the model of a program logic. The satisfiability

of a separation logic formula ∆ in a program state is thus typically enforced by the

semantics relation

s, h |= ∆

where s is a model of the program stack, h the program heap.

Some novel notations that separation logic has introduced include the points-to re-

lationship 7→ and empty heap emp, and two new connectives (separation conjunction

∗ and spatial implication −∗). A points-to formula x 7→ y describes a singleton heap

with only one cell at address x that stores value y. Formula emp holds on empty

heaps. Formula ∆1 ∗∆2 describes a heap that can be partitioned into two domain-

disjoint heaps described by ∆1 and ∆2. Formula ∆1 −∗∆2 describes a heap that

if extended with a disjoint heap represented by ∆1, then ∆2 holds in the extended

heap. In other words, ∆1 −∗∆2 captures the heap described by ∆2, where the heap

corresponding to ∆1 is “taken away”. The formal semantics of these operators will

be defined formally in Section 3.3.4.

Tight interpretation is another key aspect of separation logic, which ensures that

“well-specified programs do not go wrong” (Reynolds, 2005). Under this interpre-

tation, a valid Hoare triple {∆1} e {∆2} guarantees that command e should never

encounter a memory fault if started in a program state satisfying ∆1. One signifi-

cant prerequisite of this interpretation requires the precondition ∆1 of a command

46

3.2. Separation Logic

to guarantee that all memory locations accessed by the command, except for the

freshly allocated ones, are allocated beforehand. In the setting of separation logic,

a memory location x is considered allocated if the points-to fact x 7→ is present.

More specifically, Hoare triples for heap-accessing commands in separation logic are

as follows:

• Field read:

{x 7→ [v1, . . . , vi, . . . , vn]} x.fi {x 7→ [v1, . . . , vi, . . . , vn] ∧ res=vi}

where res is the special variable denoting the resulted value of an expression.

• Field write:

{x 7→ [v1, ..., vi−1, vi, vi+1, ..., vn]} x.fi=v {x 7→ [v1, ..., vi−1, v, vi+1, ..., vn]}

The above axioms illustrate the main characteristics of separation logic: in order

to analyse a heap-accessing command, it must be explicitly proved that the heap

location under consideration is allocated. Meanwhile, the reward is that any other

heap locations can be ignored safely.

The interplay of separation conjunction and tight interpretation makes local reason-

ing possible, which is formalised by the frame rule in separation logic:

{∆1} e {∆2}
{∆1 ∗∆3} e {∆2 ∗∆3} mods(e) ∩ fv(∆3) = ∅

where mods(e) returns the set of variables modified by command e. Note that

mods(e) includes neither modified fields, nor the variables used to reach these fields.

fv(∆3) returns the set of free variables occurring in formula ∆3. The crucial power

of the frame rule is that it allows a global property to be derived from a local one,

without necessity to look at other parts of the program.

47

3.3. Specification Language

3.3 Specification Language

Our specification language is on the basis of a predicate-based specification method-

ology, wherein the main annotation construct is the shape predicate, each of which

describes a data structure. Our aim of using this scheme is to allow users to design

their own predicates for shapes and relevant properties (numerical and content ones),

to capture the desired level of program correctness to be verified. The advantages of

this methodology include that it unifies heterogeneous techniques and annotations

in a homogeneous way for the verification of linked data structures. Predicates also

eliminate the need for an explicit ownership scheme; they capture sufficient infor-

mation for us to perform verification of properties that involve closures. Finally, it

permits us to easily decompose the properties to be verified for a shape predicate,

which is beneficial for our aim of various levels of program correctness.

Before concrete examples of our shape predicates given in the next section, we intro-

duce the grammar for the specification language in Figure 3.3. Each shape predicate

spred has a name c, a list of parameters v, and a body Φ. Each predicate also has a

parameter root, written to the left of the predicate name c, which denotes a root

pointer to the data structure captured by the predicate. A root pointer is one from

which all objects in the data structure can be reached. root is a reserved identifier

used only in predicate definitions. Φ is a normalised state which is essentially a

separation logic formula in disjunctive normal form. The procedure specifications

mspec are written in these states where Φpr and Φpo denote the precondition and

postcondition, respectively. Each disjunct σ consists of a heap formula κ and a pure

formula π. The heap formula κ consists of ∗-conjoined atomic heap formulae p::c〈v〉.
Such atomic heap formula p::c〈v〉 can denote either (i) a points-to fact p 7→ c[v] if c

is a class name, or (ii) a predicate instance c(p, v) if c is a predicate name. The pure

part π consists of heap-independent formulae, such as formulae for Presburger arith-

48

3.3. Specification Language

metic, formulae for pointer equality/disequality and formulae in multiset theory. As

shown in the figure, Presburger arithmetic formulae (s) is made up of integer con-

straints, variables, addition, subtraction, scalar multiplication, maximum/minimum

values and cardinality of multiset. For multiset (bag) theory, we allow expression

of (quantified) value membership, subset relationship and bag arithmetic (such as

union, intersection and subtraction). To make automated verification possible, we

require that there is a sound and terminating procedure to decide the validity of

heap-independent logic.

For the verification of programs, we regard σ as a conjunctive abstract program

state, and use SH to denote a set of such conjunctive states. During a verification

process, the abstract program state at each program point will be a disjunction of σ’s

denoted as ∆, and we name the set of such formulae as PSH. Note that constraint

abstractions (Q(v)) may occur in ∆ during the analysis. A closed-form ∆ (containing

no constraint abstractions) can be normalised to the Φ form (Nguyen et al., 2007).

Meanwhile, we also have counterparts of σ and ∆ in the pure (heap-independent)

domain, say ω and Υ. We distinguish them here because later in our verification

approach we will reduce the heap-relevant abstract states down to heap-independent

pure states, and use existing provers to solve the pure constraints composed by these

pure states.

Using entailment provided by the Sleek prover (Nguyen et al., 2007), we define a

partial order over the abstract states

∆ ¹ ∆′ =df ∆ ` ∆′ ∗ true

A last notation to be described here, lemma, represents the lemmas defined in the

program. They provide ways to soundly coerce predicates beyond their original de-

finitions, and to specify the entailment relationship among predicates. For instance,

49

3.3. Specification Language

we can view a sorted list as a normal list as well, and our entailment prover will be

capable of reasoning that a sorted list implies a normal list. Concrete examples of

lemmas are also given in the subsequent sections.

Finally, when we write abstract program states or program specifications, we use

three kinds of variables: program variables, logical variables related to program

variables’ shapes (such as a list’s length), and logical variables to record intermediate

states. For the first two groups we use variables without subscription (such as x and

xn), and denote a program variable’s initial value as unprimed, and its current (and

hence latest) value as primed (Nguyen et al., 2007; Chin et al., 2007). For the third

group, we use subscript ones like x1 and xn1. For instance, for a code segment

x = x + 1; x = x − 2 starting with state {x>1}, we have the following reasoning

procedure:

{x′=x ∧ x>1} x=x+1 {x>1 ∧ x′=x+1} x=x-2 {x>1 ∧ x′=x1−2 ∧ x1=x+1}

where the final value of x is recorded in variable x′ and x1 keeps an intermediate

state of x.

3.3.1 Shape Predicates and Lemmas

Our specification language allows user to describe both the shape of data structures

as well as their quantitative properties and contents, and to use them to capture

the desired level of program correctness. Shape invariants of the data structures

are described using separation logic. Quantitative invariants, such as numerical

properties and content of collections, are described using arithmetic or multiset

formulae. For example, with a singly-linked list node

class Node { int val; Node next; }
50

3.3. Specification Language

Shape predicate spred ::= root::c〈v〉 ≡ Φ

Lemma lemma ::= root::c〈v〉 ∧ π ←− Φ

Specification mspec ::= requires Φpr ensures Φpo

Abstract state ∆ ::= Q(v) | Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
Normalised state Φ ::=

∨
σ

Conjunctive state σ ::= ∃v·κ∧π

Heap formula κ ::= emp | v::c〈v〉 | κ1 ∗ κ2

Pure state Υ ::= P(v) | ∨
ω | Υ1∧Υ2 | Υ1∨Υ2 | ∃v·Υ

Pure conj. state ω ::= ∃v·π
Pure formula π ::= γ∧φ | π1 ∧ π2

Aliasing γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2

Pure constr. φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
Boolean b ::=true | false | v | b1 =b2

Numerical constr. a ::=s1=s2 | s1≤s2

Presburger arith. s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) |
min(s1,s2) | |B|

Bag constr. ϕ ::= v∈B | B1=B2 | B1<B2 | B1vB2 | ∀v∈B·φ | ∃v∈B·φ
Bag arith. B ::= B1tB2 | B1uB2 | B1−B2 | {} | {v}

Figure 3.3: The specification language.

51

3.3. Specification Language

as data structure, a user interested in pointer-safety may define a predicate to depict

the list shape as in Distefano et al. (2006); Calcagno et al. (2009):

root::list〈〉 ≡ (root=null) ∨ (∃i, q · root::Node〈i, q〉 ∗ q::list〈〉)

The sole parameter root for the predicate list is the root pointer referring to the

list. As mentioned earlier, we use a uniform notation p::c〈v〉 to denote either a

singleton heap or a predicate. If c is a class type node, the notation represents a

singleton heap, p7→c[v], e.g. the root::Node〈i, q〉 above. If c is a predicate name,

then the data structure pointed to by p has the shape c with parameters v, e.g.,

the q::list〈〉 above. In the inductive case, the separation conjunction ∗ ensures

that two heap portions (representing respectively the head node and the tail list)

are domain-disjoint. Our predicates use existential quantifiers for local values and

pointers, such as i and q.

Yet another user may be interested to track also the length of a list to analyse

quantitative measures, such as heap/stack resource usage. Therefore the predicate

can be defined in a similar manner as in Magill et al. (2008):

ll〈n〉 ≡ (root=null ∧ n=0) ∨ (root::Node〈 , q〉 ∗ q::ll〈m〉 ∧ n=m+1)

where we use the following shortened notation: (i) default root parameter in LHS

may be omitted, (ii) unbound variables, such as q and m, are implicitly existentially

quantified, and (iii) denotes existentially quantified anonymous variable. The

parameter n of the predicate represents an abstract value. Such value is not taken

from a concrete heap location, but rather is computed from the pure formulae, which

are usually based on the structure of the underlying heap. During a verification,

this value is derived automatically by entailment, when a predicate is proved from

a program state.

Meanwhile, this predicate may still be extended to support a higher-level of correct-

52

3.3. Specification Language

ness with multiset (bag) property to capture the list’s content:

llB〈S〉 ≡ (root=null ∧ S=∅) ∨ (root::Node〈v, q〉 ∗ q::llB〈S1〉 ∧ S={v}tS1)

which also implicitly suggests the list’s length with |S|. This predicate can be

strengthened furthermore if necessary, so as to verify a sorting algorithm:

sllB〈S〉 ≡ (root=null ∧ S=∅) ∨
(root::Node〈v, q〉 ∗ q::sllB〈S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≤x))

The constraint ∀x∈S1·v≤x guarantees the sortedness property is adhered in the

predicate. Therefore, it can be seen that the user is expected to provide predicate

definitions in terms of their required correctness level and program properties. These

predicates may be non-trivial but can be reused multiple times for specifications

of different methods. We have also built a library of predicates with respect to

commonly-used data structures and useful program properties.

One more note about the predicates is that we allow users to write lemmas to

express their coercion relationship, which informally means some ways to observe a

predicate other than its original definition. For example, if we define a predicate for

a list segment with length n as

ls〈p, n〉 ≡ (root=p ∧ n=0) ∨ (root::Node〈 , q〉 ∗ q::ls〈p, m〉 ∧ n=m+1)

where p represents the next field of the list’s tail (last node). In this case, we may

use lemma to present one more way to view a list as

root::ll〈n〉 ∧ n=m+k←− root::ls〈p, m〉 ∗ p::ll〈k〉

which says a list of length n can be combined from two parts, one being a list segment

with m nodes ending at p and the other a list with length k pointed to by p, with an

additional constraint n=m+k. Also we can write a similar lemma to express that a

list segment can be formed in an analogous way from two shorter list segments:

root::ls〈q, n〉 ∧ n=m+k←− root::ls〈p, m〉 ∗ p::ls〈q, k〉
53

3.3. Specification Language

Such lemma is beneficial for our abstraction, abduction and specification synthesis

procedures introduced in later chapters, since it provides another perspective to

view the predicates other than their original definition. Therefore it offers more

opportunity for the techniques above to succeed.

3.3.2 Well-Formedness and Well-Foundedness

To ensure the soundness and termination of our reasoning procedures, as in Nguyen

et al. (2007), we require the shape predicates and specifications written with them

be well-formed. To define this concept we first need to clarify the reachability of a

heap constraint node from a variable:

Definition 3.3.1 (Reachability) Given a heap constraint κ = p::c〈v〉 ∗ κ1, node

p::c〈v〉 is reachable from a variable q if and only if the following recursively defined

relation holds:

reach(κ, q, p::c〈v〉) =df (p = q) ∨
(κ1 = q::cq〈. . . , r, . . .〉∗κ2 ∧ reach(κ2, r, p::c〈v〉))

On the basis of such reachability we define the well-formedness of predicate:

Definition 3.3.2 (Well-Formed Predicate) A shape predicate root::c〈v〉 ≡ Φ is

well-formed if (i) every class node and shape predicate in Φ is reachable from either

the parameters v or one of the special variables (root/res), (ii) Φ is in a dis-

junctive normal form
∨

(∃v · κ∧γ∧φ) where κ is for heap nodes, γ is for pointer

constraints, and φ is for arithmetic and multiset formulae.

The well-formed condition is significant in the light that all heap nodes of a heap

formula must be reachable from the parameters and/or special variables. When

54

3.3. Specification Language

our entailment checking procedure (Sleek) checks an entailment relationship, this

condition allows it to correctly match nodes from the consequence with nodes from

the antecedent.

Another potential problem during the reasoning is that arbitrary recursive shape

relation can lead to non-termination entailment checking. To avoid that problem,

we propose to use only well-founded shape predicates in our framework:

Definition 3.3.3 (Well-Founded Predicate) A shape predicate is said to be well-

founded if it satisfies four conditions, namely: (i) it is a well-formed predicate, (ii)

the parameter root may only be bound to a class node and not a predicate, (iii) only

root is allowed to be bound to a class node and (iv) every predicate is reachable from

root.

The shape predicates given in the last section are all well-founded. In contrast, the

following three shape definitions are not well-founded (Nguyen et al., 2007):

foo〈n〉 ≡ root::foo〈m〉 ∧ n=m+1

goo〈〉 ≡ root::Node〈 , 〉 ∗ q::goo〈〉
too〈〉 ≡ root::Node〈 , q〉 ∗ q::Node〈 , 〉

For foo, the root identifier is bound to a shape predicate. For goo, the heap node

pointed by q is not reachable from variable root (therefore it is even not well-

formed). For too, an extra object node is bound to a non-root variable. The first

example may cause non-termination of entailment proof: when we want to rearrange

a heap part of foo to expose an object from it we simply get another foo which re-

quires another unfolding leading to non-termination. The second example captures

an unreachable (junk) heap that cannot be located by our entailment procedure.

The last example is just a syntactic restriction to facilitate termination proof of

entailment checking, and can be easily overcome by introducing intermediate pred-

icates.

55

3.3. Specification Language

3.3.3 Precondition and Postcondition

We allow procedures to be annotated with preconditions and postconditions. A pre-

condition is an assertion that should be satisfied when a procedure is called, therefore

the procedure body can assume it when the procedure starts. A postcondition is an

assertion that should be established when the procedure exits, therefore the caller

can assume it after the call, if the procedure is successfully verified. According to

separation logic semantics, a precondition furthermore guarantees the existence of

all memory locations that the procedure accesses, and thus guarantees executions

free of memory errors.

For example, using the llB and sllB predicates, we can specify insertion sort algo-

rithm operating on linked lists. The algorithm recursively sorts the tail of the input

list, and inserts the first element into a sorted list such that order is maintained. Its

code is in Figure 3.4.

From the code we can see the insert sort procedure sorts a singly-linked list. As

its precondition x::llB〈S〉∧ |S|≥1 suggests, it takes in an unsorted list starting from

x with content S, whose size should be at least one (this constraint is equivalent to

x6=null and S6=∅, which, if the user specifies, can be captured by our entailment

checker). Upon successful return it gives a sorted list with the same content, as

captured by the postcondition res::sllB〈T〉 ∧ S=T.

The procedure insert inserts an object pointed to by x into a sorted list referenced

by r. The separation conjunction ∗ constrains the object x not to belong to the list

r, thereby the resulting list has one more element. Meanwhile, the returned pointer

res points to a sorted list whose content is the union of the two inputs’, as the

postcondition indicates.

56

3.3. Specification Language

1 class Node { int val; Node next; }

2 Node insert_sort(Node x)

3 requires x::llB〈S〉 ∧ |S|≥1
4 ensures res::sllB〈T〉 ∧ S=T {

5 if (x.next == null) return x;

6 else { Node s = x.next;

7 Node r = insert_sort(s);

8 return insert(r, x);

9 }

10 }

11 Node insert(Node r, Node x)

12 requires r::sllB〈S〉 ∗ x::Node〈v, 〉
13 ensures res::sllB〈T〉 ∧ T=St{v} {

14 if (r == null) {

15 x.next = null; return x;

16 } else if (x.val <= r.val) {

17 x.next = r; return x;

18 } else {

19 r.next = insert(r.next, x);

20 return r;

21 }

22 }

Figure 3.4: The insertion sort program for singly linked lists.

3.3.4 The Semantic Model

The semantics of our specification formulae is adapted from what is given for the

“early versions” of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002),

57

3.3. Specification Language

except that we have extensions to handle user-defined shape predicates and related

pure properties. We assume sets Loc of memory locations, Val of primitive values

(with 0 ∈ Val denoting null), Var of variables (program and logical variables), and

ObjVal of object values stored in the heap, with c[f1 7→ν1, . . . , fn 7→νn] denoting an

object value of class c where ν1, . . . , νn are current values of the corresponding fields

f1, . . . , fn. Let s, h |= ∆ denote the model relation, i.e. the stack s and heap h

satisfy ∆, with h, s from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal

s ∈ Stacks =df Var → Val ∪ Loc

Note that each heap h is a finite partial mapping while each stack s is a total

mapping, as in the classical separation logic (Ishtiaq and O’Hearn, 2001; Reynolds,

2002). The detailed model definition is in Figure 3.5.

s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |= ∃v · κ ∧ π iff ∃ν · s[v 7→ ν], h |= κ and s[v 7→ ν] |= π

s, h |= κ1 ∗ κ2 iff ∃h1, h2 · h1⊥h2 and h = h1 · h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= emp iff dom(h) = ∅
s, h |= p::c〈v1, . . . , vn〉 iff IsObj(c) and s(p) ∈ Loc and h = [s(p) 7→ r] and

r = c[f1 7→s(v1), . . . , fn 7→s(vn)]

or IsPred(c) and s, h |= [p/root]Φ

s |= π1 ∧ π2 iff s |= π1 and s |= π2

s |= π iff s |=A π

Figure 3.5: The semantic model.

We do not provide a semantics for the placeholder Q of constraint abstraction here, as

its meaning is described by the formula it represents. For pure formulae π, as noted

58

3.3. Specification Language

in the last line of Figure 3.5, their semantics are defined with a specific notation

|=A, which is preserved by the pure constraint provers that we use for soundness

purpose. Its definition is given in Figure 3.6.

s |=A γ1 ∧ γ2 iff s |=A γ1 and s |=A γ2

s |=A p1 ./ p2 iff s(p1) ./ s(p2), where ./∈ {=, 6=}
s |=A p ./ null iff s(p) ./ 0, where ./∈ {=, 6=}
s |=A true always

s |=A false never

s |=A v iff s(v) = true

s |=A b1 = b2 iff s(b1) = s(b2)

s |=A v1 = v2 iff s(v1) = s(v2)

s |=A v1 ≤ v2 iff s(v1) ≤ s(v2)

s |=A φ1 ∧ φ2 iff s |=A φ1 and s |=A φ2

s |=A φ1 ∨ φ2 iff s |=A φ1 or s |=A φ2

s |=A ¬φ iff s |=A φ does not hold

s |=A ∃v · φ iff s |=A [k/v]φ for some k

s |=A ∀v · φ iff s |=A [k/v]φ for all k

s |=A v ∈ B iff s(v) ∈ s(B)

s |=A B1 = B2 iff s(B1) = s(B2)

s |=A B1 < B2 iff s(B1) ⊂ s(B2)

s |=A B1 v B2 iff s(B1) ⊆ s(B2)

s |=A ∀v ∈ B · φ iff s |=A [k/v]φ for all k ∈ s(B)

s |=A ∃v ∈ B · φ iff s |=A [k/v]φ for some k ∈ s(B)

Figure 3.6: The semantic model for pure constraints.

59

3.4. Summary

3.4 Summary

This chapter defines the programming language as our verification target as well as

the specification language to depict program contracts, where the latter is founded

on the basis of separation logic (Reynolds, 2002). For the purpose to prove our

approach’s soundness, we introduce the operational semantics of the programming

language and the semantic model for the specification language. Meanwhile, we also

illustrate the language settings with several informal examples.

60

Chapter 4

Refining Partial Specifications for

Verification

Automatically verifying the functional correctness of heap-manipulating programs

with complex data structures is a challenging task. This process can greatly ben-

efit from human assistance through specification annotations. However, it requires

much intellectual effort from users, and meanwhile users are liable to make mistakes

in writing such specifications. In this chapter, we propose a new approach to pro-

gram verification that allows users to provide only partial specifications to methods.

Our approach will then refine the given annotations into more complete specifica-

tions by discovering missing constraints. The discovered constraints may involve

both numerical and multiset properties that could be later confirmed or revised by

users. Therefore, with our approach, we are able to increase the level of verification

automation and save users’ effort.

61

4.1. Introduction

4.1 Introduction

As discussed in previous chapters, the research on software verification has a long

and distinguished history dating back to the 1960’s. Nevertheless, it remains a

challenging problem to automatically verify heap-manipulating programs written in

mainstream imperative languages. This is in part due to the shared mutable data

structures lying in programs, and the need to track related “pure” properties, such as

structural numerical information (size and height), relational numerical information

(balanced and sortedness properties), and content information (multiset of symbolic

values). These properties, intertwined with each other, are non-trivial to reason

about in a precise and concise way. The crux is that they span over several abstract

domains (shape, numerical and multiset), each of which has infinite state space and

various reasoning rules, resulting in an even larger combined state space and hence

making the whole verification work exceptionally complicated.

Human assistance is often essential in (semi-) automated program verification. The

user may supply annotations at certain program point, such as loop invariants

and/or method specifications. These annotations can greatly narrow down the pos-

sible program states at that point, and avoid fixed-point calculation which could be

expensive and may be less precise than the user’s insight.

However, an obvious disadvantage of user annotation concerns its scalability, since

programs to be verified may be complicated and their functions are also diverse.

Accordingly their specifications are difficult to compose, especially for a complex

program of many modules and methods. Therefore, it is not preferable to require

the user to provide specification for each method and invariant for each loop when

verifying a relatively large software system, as such workload would counteract the

guarantee of program correctness brought by verification. Meanwhile, human is

62

4.1. Introduction

liable to make mistakes. A programmer may under-specify with too weak a precon-

dition or over-specify with too strong a postcondition. Such mistakes could lead to

failed verification, and it may be difficult for the user to discover whether the error

is due to a real bug in the program, or an inappropriately supplied annotation.

To balance verification quality and human effort, we provide a novel approach to

the verification of heap-manipulating programs. Under our framework, the user is

expected to provide partial specifications for programs with only shape information.

Our verification will then take over the rest of the work to refine those partial specifi-

cations with derived (pure) constraints which should be satisfied by the program, or

report a possible program bug if the given specifications are rejected by our verifier.

This is more beneficial compared with previous works (Nguyen et al., 2007; Chin

et al., 2007; Nguyen and Chin, 2008), where users must provide full specifications

to verify programs, including not only shape information but also pure properties

such as size and multiset.

As introduced in Chapter 3, we allow users to design their own predicates and use

such predicates to capture their required correctness level and program properties.

For example, with the data structure class Node { int val; Node next; } defined

in the last chapter, we may have four different predicates to express various program

properties according to our demand: list, ll, llB and sllB (page 50). Based on

these predicates, the user is expected to provide partial specifications for procedures

in programs. Say, for the main procedure of the insertion sort algorithm in the

previous chapter (page 57) taking x as an input parameter that is expected to be non-

null, the user may provide x::llB〈S〉 as precondition and x::sllB〈T〉 as postcondition,

and our approach will refine the specification as x::llB〈S〉 ∧ |S|≥1 for pre, and

x::sllB〈T〉∧S=T for post. Here we need the user annotations as initial specification,

because we reserve the flexibility of verification with respect to different program

properties at various correctness levels. For example, our approach can also verify

63

4.1. Introduction

the same algorithm, but for the following refined specifications:

requires x::list〈〉 ∧ x6=null ensures x::list〈〉
requires x::ll〈m〉 ∧ m>0 ensures x::ll〈n〉 ∧ m=n

requires x::llB〈S〉 ∧ |S|≥1 ensures x::llB〈T〉 ∧ S=T

requires x::llB〈S〉 ∧ |S|≥1 ensures x::ll〈n〉 ∧ |S|=n

where the discovered missing constraints are shown in shaded form. This can help

reduce the number of redundant specifications considered.

To summarise, our proposal for refining partial specification is aimed at harness-

ing the synergy between human’s insights and machine’s capability at automated

program analysis. In particular, human’s guidance can help narrow down on the

most important of the numerous specifications that are possible with each program

code, while automation by machine is important for minimising on the tedium faced

by users, and to support easier adoption of automated verification technology. Our

proposal has the following characteristics:

• Specification completion: This verification refines the specification from three

aspects, namely, the constraints needed in the precondition for memory and

code safety, the constraints in postcondition to link the method’s pre- and

post-states, and the constraints that the method’s post-state satisfies.

• Flexibility: We allow the user to define their own predicates for the program

properties they want to verify, so as to provide different levels of correctness.

Meanwhile we aim at, and have covered much of, both memory safety and

functional correctness of pointer-manipulating programs such as data struc-

ture shapes, pointer safety, structural/relational numerical constraints, and

multiset information.

• Reduction of user annotations: Our approach uses program analysis techniques

effectively to reduce users’ annotations, as will be exhibited by our experiments

64

4.2. The Approach

in Chapter 7.

The remainder of this chapter is organised as follows. We will first depict our

approach informally using a motivating example in Section 4.2, and present technical

details thereafter in Section 4.3. More related works and concluding remarks come

at last.

4.2 The Approach

In this section, we use two motivating examples to informally illustrate our approach.

The first example is about the insertion sort in the previous chapter, while the second

example is more sophisticated involving both lists and trees, and a transformation

between their shapes, which witnesses our approach’s enhanced capability compared

with related works.

4.2.1 An Illustrative Example

We illustrate our approach using method insert sort in Figure 4.1. We show how

our verification infers missing constraints to improve the user-supplied incomplete

specification.

The program code of insert sort and insert are exactly the same as that in Fig-

ure 3.4. Their difference resides in the annotations, as the one in Figure 4.1 does

not have pure constraints (quantitative or content ones). As may be observed, the

main procedure’s specification just addresses that the algorithm will transfer an un-

sorted list into a sorted one, yet without any further obligations over the length of

65

4.2. The Approach

1 class Node { int val; Node next; }

2 Node insert_sort(Node x)

3 requires x::llB〈S〉

4 ensures res::sllB〈T〉 {

5 if (x.next == null) return x;

6 else { Node s = x.next;

7 Node r = insert_sort(s);

8 return insert(r, x);

9 }

10 }

11 Node insert(Node r, Node x)

12 requires r::sllB〈S〉 ∗ x::Node〈v, 〉

13 ensures res::sllB〈T〉 {

14 if (r == null) {

15 x.next = null; return x;

16 } else if (x.val <= r.val) {

17 x.next = r; return x;

18 } else {

19 r.next = insert(r.next, x);

20 return r;

21 }

22 }

Figure 4.1: The insertion sort program for singly linked lists.

66

4.2. The Approach

the list or its content. This has two problems: one is unsoundness and the other is

loss of precision. Here the second problem suggests that the specification loses the

information that the content of the transferred list should be identical as the input,

which is crucial for the functional correctness proof of the algorithm but missing

in the postcondition. The first problem is more severe as the given precondition

even does not guarantee memory safety of the program execution (when the input

list is empty the program will fail). Meanwhile, the second problem also applies to

insert’s partial specifications. Therefore we need to infer such constraints in order

that the specifications become both sound and precise.

To verify insert sort, our approach proceeds in two steps. Firstly, starting from the

partial precondition, a forward analysis is conducted to compute the postcondition

of the method in the form of a constraint abstraction, as mentioned in Chapter 2.

This constraint abstraction is effectively a transfer function for the method, which

may be recursively defined. During this analysis, abductive reasoning may be used

whenever the current state fails to establish the precondition of the next program

command. Secondly, instead of a direct fixed-point computation in the combined

abstract domain (with shape, numerical and multiset information), a “pure” con-

straint abstraction (without heap shape information) is derived from the generated

constraint abstraction and the user-given partial postcondition. This pure con-

straint abstraction is then solved by fixed-point solvers in pure (numerical/multiset)

domains, such as Nipkow et al. (2002); Popeea and Chin (2006).

The constraint abstraction of a code segment (say, a method) in our settings is

an abstraction form of that code’s postcondition, given a certain precondition. As

the code may contain loops or recursive calls, its constraint abstraction can also be

recursive, or in an open form, accordingly. To illustrate, for the following while loop

while (x > 0) { x = x− 1; y = y + 2; }
67

4.2. The Approach

and its precondition

x≥0 ∧ y=0

we have its constraint abstraction as

Q(x, x′, y, y′) ::= x≤0 ∧ x=x′ ∧ y=y′ ∨ x>0 ∧ Q(x−1, x′, y+2, y′)

where we denote x and y as their values before the loop, and the primed versions as

their current values. Such constraint abstraction presents the invariant of the while

loop. Its fixed-point can normally be achieved with a standard fixed-point calcula-

tion process, with result 2(x−x′) = y′ − y. However, such fixed-point calculation is

generally in the pure domain at present, whereas our constraint abstraction should

be more complicated involving both shape and pure constraints, requiring us to split

them for solution somehow.

As for the example, our forward analysis runs on the body of insert sort to con-

struct the constraint abstraction. For lines 5-9, it produces a disjunction as the

effect of if-else (according to the if-else rule in page 90):

Q(x, S, res, T) ::= (post-state of if) ∨ (post-state of else)

where Q represents the post-state of the if-else statement (as well as the method),

and its parameters x, S, res and T are the (program and logical) variables involved

in the state.

For the if branch, after the unfolding over x::llB〈S〉 (rule unfold in page 86), we

know from the condition that the input sorted list x has only one node, and thus its

post-state will be

∃v · x::Node〈v, null〉 ∧ res=x ∧ S={v}

Meanwhile, for the else branch, the sorted list will firstly be unrolled by one node

at line 6 (rule unfold), making x.next point to s (rule assign in page 90), which

68

4.2. The Approach

references a sub-list one node shorter than the input list beginning from x:

∃Ss, v · x::Node〈v, s〉 ∗ s::llB〈Ss〉 ∧ S=Sst{v}

After that, insert sort is invoked recursively with s. It will consume the precon-

dition (s::llB〈Ss〉) and ensure the postcondition (in terms of Q, partially according

to the rule in page 88; however it will be substituted as described later). In that

case, the state immediately after symbolic execution of line 7 is

Q(x, S, res, T) ::= ∃v · x::Node〈v, null〉 ∧ res=x ∧ S={v} ∨
∃v, s, Ss, r, Sr · x::Node〈v, s〉 ∗ Q(s, Ss, r, Sr) ∧ |S|>1 ∧ S=Sst{v}

Here the first disjunctive branch corresponds to the base case in the method body,

and the second branch captures the effect of the recursive call (with Q). Note

that existential variables (not in the parameter list of Q) are local variables whose

quantification may be omitted for brevity (as we will do so later).

Then the forward analysis continues over line 8 to invoke insert. Before the invoca-

tion we must ensure insert’s precondition is satisfied. However, part of its require-

ment, the sorted list referenced by r, is within the instance of constraint abstraction

Q(s, Ss, r, Sr) in the second branch. For this purpose we replace Q(s, Ss, r, Sr) with

r::sllB〈Sr〉 ∧ P(s, Ss, r, Sr) to make explicit the heap portion referred to by r before

we analyse the call insert(r, x) (rule call-inf in page 88). This is safe because the

following entailment relationship is added to our assumption:

Q(x, S, res, T) ` res::sllB〈T〉 ∧ P(x, S, res, T) (4.1)

which signifies that Q can be abstracted as a sorted list referenced by res plus some

pure constraints P (also in constraint abstraction form, whose definition is to be

derived in the next step). Based on this fact we may complete the replacement and

invoke insert, whose specification can be obtained in a same manner as:1

requires r::sllB〈S〉 ∗ x::Node〈v, 〉 ensures res::sllB〈T〉 ∧ T=St{v}

1We should apply the current approach over insert to refine its specifications with missing

constraints beforehand. This process is introduced in Section 4.2.2.

69

4.2. The Approach

which indicates that the returned sorted list has the same content as the input list

(x) plus {v}. Applying it, we obtain the following post-state for insert sort:

Q(x, S, res, T) ::= x::Node〈v, null〉 ∧ res=x ∧ S={v} ∨
res::sllB〈Sres〉 ∧ P(s, Ss, r, Sr) ∧ |S|>1 ∧ S=Sst{v} ∧ Sres=Srt{v}

The first disjunctive branch corresponds to the base case, and the second branch

captures the effect of the recursive call as well as insert. In the base case, the

method’s return pointer (res) points to one node with value v. The recursive branch

signifies that the post-state of the method concerns the recursive call and the call

to insert (over s and r), as the constraint abstraction denotes. Note that T will be

not available (as well as its relationship with Sres) until the next step.

In the second step, we first derive the definition of the pure constraint abstraction P

from the above post-state Q. Each disjunctive branch of Q is used to entail the user-

given post-shape (with appropriate instantiations of the parameters). The obtained

frames form (via disjunction) the definition of P. For insert sort, according to the

entailment relationship (4.1), we obtain the following pure constraint abstraction:

P(x, S, res, T) ::= (T=S ∧ |S|=1) ∨
(P(s, Ss, r, Sr) ∧ |S|>1 ∧ S=Sst{v} ∧ T=Srt{v})

We then use pure fixed-point solvers (Nipkow et al., 2002; Popeea and Chin, 2006)

to obtain a closed-form formula |S|≥1 ∧ T=S for P. On the basis of (4.1), we now

obtain the closed-form approximation for Q:

Q(x, S, res, T) ::= res::sllB〈T〉 ∧ |S|≥1 ∧ T=S

The obtained pure formula is then used to refine the method’s specification as

requires x::llB〈S〉 ∧ |S|≥1 ensures res::sllB〈T〉 ∧ T=S

which imposes more requirement in the precondition, stating that there should be

at least one node in the list to be sorted for the sake of memory safety. With

that obligation, the method guarantees that the result list is sorted and its content

remains the same as the input list.

70

4.2. The Approach

4.2.2 Refinement for the Specification of insert

The process to verify insert and refine its specification is analogous to the one for

insert sort. In the first step, we apply the forward analysis over insert to obtain

the constraint abstraction representing the whole method as follows:

Q(r, S, x, v, res, T) ::= x::Node〈v, null〉 ∧ res=x ∧ r=null ∧ S=∅ ∨
x::Node〈v, r〉 ∗ r::sllB〈S〉 ∧ res=x ∧ (∀u∈S·v≤u) ∨
r::Node〈u, p〉 ∗ Q(q, Sq, x, v, p, Tp) ∧ res=r ∧ u<v

Then a replacement of the constraint abstraction instance with the post-shape is

performed to yield

Q(r, S, x, v, res, T) ::= x::Node〈v, null〉 ∧ res=x ∧ r=null ∧ S=∅ ∨
x::Node〈v, r〉 ∗ r::sllB〈S〉 ∧ res=x ∧ (∀u∈S·v≤u) ∨
r::Node〈u, p〉 ∗ p::sllB〈Tp〉 ∧ P(q, Sq, x, v, p, Tp) ∧ res=r ∧ u<v

Note that we do not have the relation S=Sqt{u} until we perform the entailment

checking in the next step.

In the second step, applying the entailment relationship

Q(r, S, x, v, res, T) ` res::sllB〈T〉 ∧ P(r, S, x, v, res, T)

we reduce the constraint abstraction into the pure domain for solution:

P(r, S, x, v, res, T) ::= res=x ∧ r=null ∧ S=∅ ∧ T={v} ∨
res=x ∧ T=St{v} ∧ (∀u∈S·v≤u) ∨
P(q, Sq, x, v, p, Tp) ∧ res=r ∧ S=Sqt{u} ∧ T=Tpt{u} ∧ u<v

which gives T=St{v}. Therefore we refine the original shape-only specification as

requires r::sllB〈S〉 ∗ x::Node〈v, 〉 ensures res::sllB〈T〉 ∧ T=St{v}

71

4.2. The Approach

4.2.3 Another Illustrative Example

In this section we illustrate our approach with another more interesting example,

which involves both linear data structures (lists) and non-linear ones (trees) as well

as subtle pure properties.

Let us consider the method sdl2nbt shown in Figure 4.2. In the user-given (partial)

specification, two predicates are used. The predicate below is used to represent

sorted doubly-linked list segments:

sdlB〈p, q, S〉 ≡ (root=q ∧ S=∅) ∨ (root::Node2〈v, p, r〉 ∗ r::sdlB〈root, q, S1〉 ∧
root6=q ∧ S={v} t S1 ∧ (∀x∈S1·v≤x))

where the parameters p and q denote the prev field of root and the next field of

the list’s last node, respectively. Meanwhile S is a multiset parameter to represent

the list’s content. We can see in the base case of definition that S=∅, and in the

recursive case that all values stored after root must be no less than root’s value.

The predicate below is used to specify node-balanced trees with binary search prop-

erty:

nbt〈S〉 ≡ (root=null ∧ S=∅) ∨
(root::Node2〈v, p, q〉 ∗ p::nbt〈Sp〉 ∗ q::nbt〈Sq〉 ∧ S={s} t Sp t Sq ∧

(∀x∈Sp·x≤s) ∧ (∀x∈Sq·s≤x) ∧ −1≤|Sp|−|Sq|≤1)

where S captures the content of the tree. We require the difference in node numbers

of the left and right sub-trees be within one, as the node-balanced property indicates.

Now let us return to the program itself. Taking a sorted doubly-linked list (head)

as input, sdl2nbt will convert it into a node-balanced tree together with binary

search properties, as indicated in lines 2 and 3. Its algorithm proceeds as follows:

first it finds the “centre” node in the list (root), where the difference of numbers of

72

4.2. The Approach

0 class Node2 { int val; Node2 prev;

Node2 next; }

1 Node2 sdl2nbt(Node2 head, Node2 tail)

2 requires head::sdlB〈p, q, S〉
3 ensures res::nbt〈Sres〉
4 {

5 Node2 root = head;

6 Node2 end = head;

7 while(end != tail) {

8 end = end.next;

9 if (end != tail) {

10 end = end.next;

11 root = root.next;

12 }

13 } where head::sdlB〈p,q,S〉 ∗→ head::sdlB〈ph,qh,Sh〉
∗ root::sdlB〈pr, qr, Sr〉 ∗ end::sdlB〈pe, qe, Se〉

14 if (head == root)

15 root.prev = null;

16 else

17 root.prev = sdl2nbt(head, root);

18 Node2 tmp = root.next;

19 if (tmp == tail)

20 root.next = null;

21 else {

22 tmp.prev = null;

23 root.next = sdl2nbt(tmp, tail);

24 }

25 return root;

26 }

Figure 4.2: Algorithm to convert a sorted doubly-linked list to a node-balanced tree.

73

4.2. The Approach

its left and right nodes is at most one, as Figure 4.3 (a) indicates (lines 5-13). Then

it applies the algorithm recursively on both list segments on the centre’s left and

right hand sides, and regards the centre node as the tree’s root, whose left and right

children are the resulted subtrees’ roots from the recursive calls, as in Figure 4.3 (b)

and (c) (lines 14-25). As the data structure of doubly-linked list and binary tree are

homomorphic (line 0), we reuse the nodes in the input list instead of creating a new

tree, making this algorithm in-place. The parameter head in line 1 denotes the first

node of the input list, and tail is where the list’s last node’s next field points to.

When using this method tail should be set as null initially.

1 2 3 4 5 6
null

head root

tail

end

1

2

3

4

5

6

root
(a)

(b)

1

2

3

4

5

6

root

(c)

Figure 4.3: Transferring from a sorted doubly-linked list to a node-balanced BST.

Our framework allows the user to verify and/or refine a number of properties about

this code. Firstly, the transformation of shapes from initial to final states (namely,

from a doubly-linked list to a binary tree) must be captured. Secondly, some struc-

tural numerical information should be inferred, so as to prove the node counts before

and after the method invocation are the same and the node-balanced property of

the tree, etc. Meanwhile, we also want to derive relational numerical information as

lists’ sortedness and trees’ binary search property, and finally multiset information

74

4.2. The Approach

like the symbolic content of the list’s and the tree’s (in order to prove the values

stored in the list and the resulted tree are the same). Finally, some obligation for

memory safety should be found in the precondition, to ensure the input list is non-

empty (otherwise the dereference in line 15/17 will fail). To deal with all these

properties, we expect the user to provide shape information for the method’s (and

loop’s) specifications as in Figure 4.2. Based on that, we compute the remaining

constraints, viz. the missing parts of pure specifications.

As for the example, as the user has provided the pre- and post-shapes for method

sdl2nbt, our verification proceeds in two steps: generating the constraint abstrac-

tion, and solving it. The first step is mainly a forward analysis over the program to

find its postcondition, so as to generate the constraint abstraction. Before this step,

we assume that the while loop in lines 7-13 is already verified with its specification

refined using the same approach. Therefore we take the while loop’s postcondition

as

head::sdlB〈null, root, Sh〉 ∗ root::sdlB〈p, tail, Sr〉 ∧
end=tail ∧ S=ShtSr ∧ (∀x∈Sh, y∈Sr·x≤y) ∧ 0≤|Sr|−|Sh|≤1

which indicates that the original list segment starting from head is cut into two

pieces with a cutpoint root, where both are still sorted and the content is also

preserved. Meanwhile, the essential constraint (the underlined part, saying the list

beginning with head is at most one node shorter than that with root) to ensure the

node-balanced property is derived as well.

When the forward analysis finishes, it generates the following constraint abstraction

75

4.2. The Approach

as the postcondition of the method:

Q(head, p, q, S, res, Sres) ::=

root::Node2〈v, null, null〉 ∧ head=root=res ∧ tmp=q=tail ∧ p=null ∧
S={v} ∨

head::Node2〈s, null, root〉 ∗ root::Node2〈v, resh, null〉 ∧ res=root ∧
tmp=q=tail ∧ p=null ∧ S={s, v} ∧ s≤v ∨

resh::nbt〈Shres〉 ∗ resr::nbt〈Srres〉 ∗ root::Node2〈v, resh, resr〉 ∧
P(head, p, root, Sh, resh, S

h
res) ∧ P(tmp, null, tail, Sr, resr, S

r
res) ∧

head6=root ∧ root=res ∧ tmp6=tail ∧ q=tail ∧
S=Sht{v}tSr ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

where P stands for corresponding pure constraint abstraction as in the previous ex-

ample. The first two disjunctive branches are base cases of the method’s invocation,

and the last denotes the effect of recursive calls combined into the postcondition.

The first case represents the scenario where there is only one node in the original list

(with res as the method’s return value). The second is for the case of two nodes,

one referenced by head, pointing to the other one, root. In this case the value of

head is no more than that of root. The third case is defined recursively with the

constraint abstraction itself, meaning that the post-state concerns the root node

and the post-states of two recursive calls over head and tmp, respectively. Note that

Sres does not appear in Q’s definition. Since it stands for pure properties in user-

provided post-shape, it will be involved when we abstract Q against that post-shape

in the next step.

The second step solves the constraint abstraction Q by finding its closed-form ap-

proximation. Instead of performing a fixed-point iteration directly on Q over the

combined domain, we first derive a pure constraint abstraction P (with the help of

Sleek) from Q and the user-provided heap part of postcondition. Then we are able

to use existing conventional solvers (Nipkow et al., 2002; Popeea and Chin, 2006)

to compute the pure fixed-point. For the sdl2nbt method, we generate the pure

76

4.2. The Approach

constraint abstraction P based on the following entailment relation:

Q(head, p, q, S, res, Sres) ` res::nbt〈Sres〉 ∧ P(head, p, q, S, res, Sres)

which produces the following pure constraint abstraction P:

P(head, p, q, S, res, Sres) ::=

head=root=res ∧ tmp=q=tail ∧ p=null ∧ S=Sres={v} ∨
head6=root ∧ res=root ∧ tmp=q=tail ∧ p=null ∧

S=Sres={s, v} ∧ s≤v ∨
P(head, p, root, Sh, resh, S

h
res) ∧ P(tmp, null, tail, Sr, resr, S

r
res) ∧

head6=root ∧ root=res ∧ tmp6=tail ∧ q=tail ∧ S=Sht{v}tSr ∧
Sres=Shrest{v}tSrres ∧ (∀x∈Sh, y∈Sr·x≤v≤y) ∧ 0≤|Sr|−|Sh|≤1

Note that the heap information is already eliminated from P; instead the constraints

over Sres are included during the entailment checking procedure. This allows us to

solve P to refine the user-provided shape-only specification.

After solving P, we achieve the following constraint:

p=null ∧ q=tail ∧ S=Sres ∧ |S|≥1

with which we can refine the method’s specifications as

requires head::sdlB〈p, q, S〉 ∧ p=null ∧ q=tail ∧ |S|≥1
ensures res::nbt〈Sres〉 ∧ S=Sres

which proposes more requirements in the precondition, as the head’s prev field

should be null, and the whole list’s last node’s next field must point to tail.

Meanwhile, there should be at least one node in the list for the sake of memory

safety. With those obligations, the method guarantees that the result is a node-

balanced tree with binary search property, whose content is the same as the input

list.

77

4.3. The Verification

4.3 The Verification

In this section, we formulate our verification algorithm for methods with partial spec-

ifications given, together with the pure abduction mechanism and forward analysis

rules it uses.

4.3.1 Refining Partial Specifications

Algorithm CA Gen Solve(T ,mn, e, Φpr, Φpo, u, v)

1 ∆ := Symb Exec(T ,mn, e, Φpr)

2 if ∆ = fail then return fail end if

3 Normalise ∆ to DNF, and denote as
∨m

i=1 ∆i

4 w:={u, v, v′} ∪ pureV({u, v, v′}, Φpr ∨ Φpo)

5 ∆P := Pure CA Gen(Φpo, Q(w)::=
∨m

i=1 ∆i)

6 if ∆P = fail then return fail end if

7 π := Pure CA Solve(P(w)::=∆P)

8 R := t mn ((t u); (t v)) requires

! ex quan(Φpr, π) ensures ex quan(Φpo, π)

9 if HipVerify(T ,mn, R) then return T ∪ {R} \
! { tmn ((t u); (t v)) requiresΦpr ensuresΦpo }

10 else return fail end if

end Algorithm

Figure 4.4: Refining method specifications.

The algorithm for refinement (CA Gen Solve) is given in Figure 4.4. As illustrated

78

4.3. The Verification

in Section 4.2, the verification proceeds in two steps for a method with shape in-

formation given in specification, namely (1) forward analysis (at lines 1-2) and (2)

pure constraint abstraction generation and solving (at lines 3-10).

Lines 1-2 analyse the method body starting from the given pre-shape to compute the

post-state in constraint abstraction form. Along the analysis, missing pure require-

ments are derived (via our abduction mechanism) to strengthen the precondition.

The forward analysis (line 3 in Figure 4.5 invoked by line 1 in Figure 4.4) is conducted

using a set of symbolic execution rules to be explained in Section 4.3.3. If the

symbolic execution of the method body succeeds (suggesting that the pre-shape

is sufficiently strong), the verification moves on to the second step (lines 3-10).

However, if the symbolic execution fails at some point, where the current symbolic

state cannot meet the requirement of the next instruction, it can be due to the lack

of pure (i.e. numerical/multiset) constraints in the precondition. To deal with this,

we enhance the symbolic execution with pure abduction mechanism (whose details

are given later). For example, if we have x::ll〈n〉 as the current state and we require

x::Node〈 , p〉 to update the value of p, then it will fail as x::ll〈n〉 does not necessarily

guarantee x::Node〈 , p〉. In this case we conduct the pure abduction as

x::ll〈n〉 ∧ [n≥1] ¤ x::Node〈 , p〉 ∗ true

to compute the missing pure information (in the squared bracket) such that the left

hand side (including the newly gained pure part) entails the right hand side.

The Symb Exec in Figure 4.5 is our symbolic execution algorithm. The variable er-

rLbls (initialised at line 1) is to record the program locations in which previous pure

abductions occurred. Whenever the symbolic execution fails, it returns a state ∆

that contains the pure abduction result and the location l where failure was detected,

as shown in line 3. If the current abduction location l is not recorded in errLbls, it

79

4.3. The Verification

Algorithm Symb Exec(T ,mn, e, Φpr)

1 errLbls := ∅

2 do

3 (∆, l) := |[e]|T (Φpr, 0)

4 if l>0 ∧ l /∈errLbls then

5 T := T \ {t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo}

6 Φpr := ex quan(Φpr, ∆)

7 T := T ∪ {t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo}

8 errLbls := errLbls ∪ {l}

9 else if l>0 ∧ l∈errLbls then return fail

10 end if

11 while l > 0

12 return ∆

end Algorithm

Figure 4.5: Symbolic execution.

80

4.3. The Verification

indicates that this is a new failure. The abduction result is added to the precondition

of the current method to obtain a stronger Φpr (which also replaces the previous one

in T), before the algorithm enters again the symbolic execution loop with variable

errLbls updated to add in the new failure location l.2 This loop is repeated until

symbolic execution succeeds with no memory error, or a previous failure point was

re-encountered. The latter indicates either a program bug or a specification error.

For example, for a method void foo (...) {node w = new node(0, null); goo(w); ...}
invoking a method goo(x) whose precondition is x::ll〈n〉∧n≥2, our verification will

perform an abduction to get n≥2 since it is not implied by the current state. How-

ever, as n is for the shape of local variable w, it will be quantified away when n≥2
is propagated back, ending up with true being added to foo’s precondition. In the

next round of symbolic execution, our verification will have the same abduction at

the same point. Such case is reported as fail. In this way, the symbolic execution

continues until it reports an error or reaches the end of the method body (exiting

line 11).

Back to the main algorithm CA Gen Solve, the verification next builds a heap-based

constraint abstraction mechanism, named Q(w), for the post-state in lines 3-5. This

constraint abstraction is possibly recursive. We then make use of another algorithm

in Figure 4.6, named Pure CA Gen, to extract a pure constraint abstraction P(w)

without any heap property. This algorithm tries to derive a branch Pi for each

branch ∆i of Q. For every ∆i it proceeds in two steps. In the first step (lines 2-4),

it replaces the recursive occurrence of Q in ∆i with σ ∗ P(w). In the second step

(lines 5-7) it tries to derive Pi via the entailment. If the entailment fails, then pure

abduction is used to discover any missing pure constraint σ′i for ρ∆i to allow the

entailment to succeed. In this case, σ′i is incorporated into σi (and eventually Pi).

2ex quan(Φpr,XPure(∆)) is to combine Φpr with a pure approximation of ∆ where XPure is a

strengthened version of that in Nguyen et al. (2007), as it also takes pure parts in ∆ and keeps

them in the resulted pure constraints.

81

4.3. The Verification

Once this is done, we use some existing fixed-point analysis (Nipkow et al., 2002;

Popeea and Chin, 2006) to derive non-recursive constraint π, as a simplification of

P(w). This result is then incorporated into the pre/post specifications in line 8,

before we perform a post-verification in line 9 using the Hip verifier (Chin et al.,

2010), to ensure the strengthened precondition is strong enough for memory safety.

Algorithm Pure CA Gen(σ, Q(w)::=
∨m

i=1 ∆i)

1 for i = 1 to m

2 Denote all appearances of Q(w) in ∆i as Qj(wj), j = 1, ..., p

3 Denote substitutions ρj = [([wj/w]σ ∗ P(wj))/Qj(wj)]

4 Let substitution ρ := ρ1 ◦ ρ2 ◦ ... ◦ ρp as applying all

! substitutions defined above in sequence

5 if (ρ∆i ` σ ∗ σi or ρ∆i ∧ [σ′i] ¤ σ ∗ σi) and ispure(σi)

6 then Pi := σi

7 else return fail end if

8 end for

9 return
∨m

i=1 Pi

end Algorithm

Figure 4.6: Pure constraint abstraction generation algorithm.

Two auxiliary functions used in the algorithm are described here. The function

pureV(V, ∆) retrieves from ∆ the shapes referred to by all pointer variables from V ,

and returns the set of logical variables used to record numerical (size and bag) prop-

erties in these shapes, for example, pureV({x}, x::ll〈n〉) returns {n}. This function

is used in the algorithm to ensure that all free variables in Φpr and Φpo are added

into the parameter list of the constraint abstraction Q. The function ex quan(∆, π)

82

4.3. The Verification

is to strengthen the state ∆ with the abduction result π:

ex quan(∆, π) =df ∆ ∧ ∃(fv(π) \ fv(∆)) · π

It is used to incorporate the discovered missing pure constraints into the original

specification. For example, ex quan(x::ll〈n〉, 0<m ∧ m≤n) returns x::ll〈n〉 ∧ 0<n.

4.3.2 Pure Abduction Mechanism

We assume that the user has supplied necessary shape information in the specifi-

cations for primary methods. When an entailment fails (during symbolic execution

or pure constraint abstraction derivation), we use our pure abduction mechanism

(Figure 4.7) to discover missing pure constraints. Note that we focus on pure ab-

duction in this chapter (as it is sufficient and efficient for our approach), though it

might be possible to adapt the shape abduction technique (Calcagno et al., 2009)

(to those with strong invariants) in case that shape information is missing from the

given precondition, which will be introduced in Chapter 6. For example, if we have

x::ll〈n〉 as the current state and we require ∃v, p · x::Node〈v, p〉 to update the value

of p, then it will fail as x::ll〈n〉 does not necessarily guarantee ∃v, p · x::Node〈v, p〉.
In this case we conduct the pure abduction as

x::ll〈n〉 ∗ [n≥1] ¤ ∃v, p · x::Node〈v, p〉 ∗ true

to compute the missing pure information (in the squared bracket) such that the left

hand side (including the newly gained pure part) entails the right hand side. Later

this information will be used to strengthen the program’s precondition.

Our pure abduction deals with three different cases. The first rule applies when

the left hand side (σ) does not entail the right hand side (σ1) but the right hand

side entails the left hand side with some pure formula (σ′) as the frame; for in-

stance, in x::ll〈n〉 0 x::Node〈 , null〉, the right hand side can entail the left hand

83

4.3. The Verification

σ 0 σ1 ∗ true σ1 ` σ ∗ σ′ ispure(σ′) σ ∧ σ′ ` σ1 ∗ σ2

σ ∧ [σ′] ¤ σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true
σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 ` σ1 ∗ σ′ or σ0 ∧ [σ′0] ¤ σ1 ∗ σ′

ispure(σ′) σ ∧ σ′ ` σ1 ∗ σ2

σ ∧ [σ′] ¤ σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true
σ1 ∧ [σ′1] ¤ σ ∗ σ′ ispure(σ′)

σ ∧ σ′ ` σ1 ∗ σ2

σ ∧ [σ′] ¤ σ1 ∗ σ2

Figure 4.7: Pure abduction rules.

side with pure frame n=1. The abduction then checks to ensure x::ll〈n〉 ∧ n=1 `
x::Node〈 , null〉∗σ2 for some σ2, and returns the result n=1. Note the check ispure(σ′)

ensures that σ′ contains no heap information.

In the second rule, neither side entails the other (first row), say σ = x::sllB〈S〉 and

σ1 = ∃p, u, v · x::Node〈u, p〉 ∗ p::Node〈v, null〉. As the shape predicates in the an-

tecedent are formed by disjunctions according to their definitions (like the sllB),

certain branches of σ may entail σ1. As the rule suggests, to accomplish abduction

σ ∧ [σ′] ¤ σ1 ∗ σ2, we first unfold σ (second row) and try entailment or further ab-

duction with the results (σ0) against σ1 (third row). If it succeeds with a pure frame

σ′, then we confirm the abduction by checking σ ∧ σ′ ` σ1 ∗ σ2 (fourth row). For

the example above, the abduction returns |S|=2 (σ′) and discovers the nontrivial

frame S={u, v} ∧ u≤v (σ2). Note the function data no returns the number of object

nodes in a state, for instance it returns one for x::Node〈v, p〉∗p::ll〈m〉. (This syntac-

84

4.3. The Verification

tic check is important for the termination of the abduction.) The unroll unfolds all

shape predicates once in σ, normalises the result to a disjunctive form (
∨u

i=1 σi), and

returns the result as a set of formulae ({σ1, ..., σu}). An instance is that it expands

x::Node〈v, p〉 ∗ p::ll〈m〉 to be {x::Node〈v, p〉 ∧ p=null∧ m=0,∃u, q, k · x::Node〈v, p〉 ∗
p::Node〈u, q〉 ∗ q::ll〈k〉 ∧ m=k+1}.

In the third rule, neither side entails the other, and the second rule does not apply,

This happens frequently during the abstraction stage in the verification when we

need to fold up a “concrete” state of nodes against an abstracted shape predicate,

say, σ = ∃p, u, v · x::Node〈u, p〉 ∗ p::Node〈v, null〉, σ1 = ∃S · x::sllB〈S〉. In this case

the antecedent cannot be unfolded as they are object nodes. As the rule suggests,

it reverses two sides of the entailment and applying the second rule to uncover the

pure constraints σ′1 and σ′ (second row). It checks that adding σ′ to the left hand

side (σ) does entail the right hand side (σ1) (third row) before it returns σ′. For the

example above, the abduction returns u≤v which is essential for the two nodes to

form a sorted list (right hand side).

4.3.3 Symbolic Execution Rules

This section defines the symbolic execution rules used in the first step of the con-

straint abstraction generation. If the program contains recursive calls to itself, the

postcondition will be in a recursive (open) form.

The type of our symbolic execution is defined as

|[e]| =df AllSpec → (PSH × Int) → (PSH × Int)

where AllSpec contains all the specifications of all methods (extracted from the

program Prog). The integer (label) in both input and output is used to record a

85

4.3. The Verification

program location where abduction is needed. If the integer remains zero after the

symbolic execution of e, then the output state denotes the post-state of e. However,

a positive number indicates that an abduction must have occurred and the resulting

state (the abduction result) will be propagated back to the the method’s precondition

by our verification, so that the next round of symbolic execution should succeed in

the same location.

The foundation of the symbolic execution is the basic transition functions from a

conjunctive abstract state to a conjunctive or disjunctive abstract state below:

unfold(x) =df SH → PSH[x] Unfolding

exec(d[x]) =df AllSpec → (SH[x]× Int) → (SH× Int) Heap-sensitive execution

exec(d) =df AllSpec → (SH× Int) → (SH× Int) Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element

has x exposed as the head of an object node (x::c〈v〉), and PSH[x] contains all the

(disjunctive) abstract states, each of which is composed by such conjunctive states.

Here unfold(x) unfolds the symbolic heap so that the cell referred to by x is ex-

posed for access by heap sensitive commands d[x] via the second transition function

exec(d[x]). The third function defined for other (heap insensitive) commands d does

not require such exposure of x.

For the unfolding operation unfold(x), there are two possible scenarios. If x refers to

an object node in the current state σ, no unfolding is required and the exec operation

can proceed directly. However, if x refers to a (user-defined) shape predicate, then

unfold(x) will unfold the current state σ according to the definition of the predicate

in order to expose the object node referred to by x:

isobj(c)

σ ` x::c〈v〉 ∗ σ′

unfold(x)σ Ã σ

isspred(c) σ ` x::c〈u〉 ∗ σ′

root::c〈v〉≡Φ

unfold(x)σ Ã σ′ ∗ [x/root, u/v]Φ

The test isobj(c) returns true only if c is an object node and isspred(c) returns true

86

4.3. The Verification

only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.f, x.f := w, or

free(x)) assumes that the unfolding unfold(x) has been done prior to the execution.

The first three rules below are for normal symbolic execution where the current

state is sufficiently strong for safe execution. The last two rules handle the cases

where the symbolic execution fails and abductive reasoning can be used to discover

missing pure information.

isobj(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi)(T)(σ, 0) Ã (σ′ ∗ x::c〈v1, .., vn〉 ∧ res=vi, 0)

isobj(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi := w)(T)(σ, 0) Ã (σ′ ∗ x::c〈v1, .., vi−1, w, vi+1, .., vn〉, 0)

isobj(c) σ ` x::c〈u〉 ∗ σ′

exec(free(x))(T)(σ, 0) Ã (σ′, 0)

isobj(c) σ 0 x::c〈u〉∗true σ∗[σ′] ¤ x::c〈u〉∗true
exec(d[x])(T)(σ, 0) Ã (σ′, lbl(d[x]))

isobj(c) σ 0 x::c〈u〉∗true σ∗[σ′] 7 x::c〈u〉∗true
exec(d[x])(T)(σ, 0) Ã (false, lbl(d[x]))

Note that the second to last rule uses an abductive reasoning (via Sleek) to dis-

cover the missing numerical information σ′. Here we use a mapping lbl(−) to map

any instruction in the program being analysed to a unique positive integer label

(namely the aforementioned program location). The rule changes the second ele-

ment of the result to lbl(d[x]) which will be used by the verification to record the

instruction causing an abduction, quits the current execution, propagates the dis-

covered information back to the precondition of the current method, and restarts

the symbolic execution with the strengthened precondition. The last rule covers

the scenario in which the abduction fails. Then the execution cannot continue and

returns (false, lbl(d[x])).

87

4.3. The Verification

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)(σ, 0) Ã (σ ∧ res=k, 0) exec(v)(T)(σ, 0) Ã (σ ∧ res=v, 0)

isobj(c)

exec(new c(v))(T)(σ, 0) Ã (σ ∗ res::c〈v〉, 0)

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]

m
i=1 ◦ [y′i/v

′
i]

n
i=1 ρl = [ri/y

′
i]

n
i=1 fresh logical ri

exec(mn(x1..xm; y1..yn))(T)(σ, 0) Ã ((ρl σ
′) ∗ (ρo Φpo), 0)

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]

m
i=1 ◦ [y′i/v

′
i]

n
i=1 ρl = [ri/y

′
i]

n
i=1 fresh logical ri

exec(mn(x1..xm; y1..yn))(T)(σ, 0) Ã ((ρl σ
′) ∗ (ρo (Φpo∧P(u, v))), 0)

t mn...∈T ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ 0 ρΦpr ∗ true σ ∧ [σ′] ¤ ρΦpr ∗ true

exec(mn(x1..xm; y1..yn))(T)(σ, 0) Ã (σ′, lbl(mn(...)))

t mn...∈T ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ 0 ρΦpr ∗ true σ ∧ [σ′] 7 ρΦpr ∗ true

exec(mn(x1..xm; y1..yn))(T)(σ, 0) Ã (false, lbl(mn(...)))

Note that the first three rules deal with constant (k), variable (v) and object node

creation (new c(v)), respectively, while the remaining rules handle method invoca-

tion. The fourth rule is used for the invocation of another method mn which has

already been annotated, and the call site meets the precondition of mn, as checked

by the entailment σ ` ρΦpr ∗ σ′. In this case, the execution succeeds and moves

on. The fifth rule is for a recursive call to the current method, similar as above

except that a constraint abstraction is in place as postcondition. The last two rules

are for the cases where the call site cannot establish the precondition of the callee

method and where abductive reasoning is employed. In both cases, the execution

discontinues. The sixth rule returns the abduction result σ′, which is a pure formula

88

4.3. The Verification

and will be propagated back by the verification to strengthen the caller method’s

precondition. The last rule captures the scenario in which the abduction fails. Note

that the operator ◦ is used to compose two substitutions: the substitution ρ2◦ρ1

works by first applying ρ1 and then ρ2.

To keep presentation simple, we assume there are no mutual recursions in the pro-

grams to analyse; therefore each method to be analysed should only call itself re-

cursively. This assumption does not lose generality, as we can always transform

mutual recursion into single recursion (Rubio-Sánchez et al., 2008) to have only one

constraint abstraction Q in our verification for one method.

The following rule for all commands signifies that when starting from a configuration

in which the second element is positive (i.e. a faulty state), the execution will

not change the state. This rule is used to skip all remaining instructions when

abductive reasoning is used as a new round of symbolic execution with strengthened

precondition should be started instead:

l > 0
exec(−)(T)(σ, l) Ã (σ, l)

We can now lift unfold’s domain to PSH using the following operation unfold†:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and similarly for exec:

exec†(d)(T)(
∨

σi, l) =df (
∨

σ′i, max{li}) where (σ′i, li)=exec(d)(T)(σi, l)

The symbolic execution rules for program constructors e can now be defined using

the lifted transition functions above. Firstly, no change will be made if starting

from a faulty state, as the first rule shows. In all other cases, the symbolic execution

89

4.3. The Verification

transforms one abstract state to another w.r.t. the program instruction:

|[−]|T (∆, l) =df (∆, l), where l > 0

|[d[x]]|T (∆, 0) =df exec†(d[x])(T)(unfold†(x)∆, 0)

|[d]|T (∆, 0) =df exec†(d)(T)(∆, 0)

|[e1; e2]|T (∆, 0) =df |[e2]|T ◦ |[e1]|T (∆, 0)

|[v := e]|T (∆, 0) =df [v1/v
′, r1/res](|[e]|T (∆, 0)) ∧ v′=r1, fresh v1, r1

(∆′
1, l1) = |[e1]|T (v∧∆, 0) (∆′

2, l2) = |[e2]|T (¬v∧∆, 0)

|[if (v) e1 else e2]|T (∆, 0) =df (∆′
1 ∨∆′

2, max{l1, l2})

4.3.4 Soundness

We have defined the underlying operational semantics of our language in Chapter 3.

Its concrete program state consists of stack s and heap h. We have also defined the

relation s, h |= ∆ and the transition 〈s, h, e〉↪→∗〈s′, h′, ν〉. Before proceeding to the

soundness definition, recalling that we have both unprimed variables (for their initial

values in abstract states) and primed ones (for their current values), we realise that

the concrete program states should always be linked to the primed ones. For this

reason we have the following definition:

Definition 4.3.1 (Poststate) Given an abstract state ∆, Post(∆) captures the

relation between primed variables of ∆. That is,

Post(∆) =df ρ(∃V ·∆), where

V = {v1, . . . , vn} denotes all unprimed program variables in ∆, and

ρ = [v1/v
′
1, . . . , vn/v

′
n].

For example, for ∆ = x′::Node〈v′, y′〉 ∧ v′=v ∧ y′=null, we have Post(∆) =

x::Node〈v, y〉 ∧ y=null.

Then we define the soundness of our refinement as follows:

90

4.3. The Verification

Definition 4.3.2 (Soundness) For a method definition t mn ((t u); (t v)) {e},
if our verification refines its specification as t mn ((t u); (t v)) requires Φpr en-

sures Φpo {e}, then for all s, h |= Post(Φpr), if 〈s, h, e〉↪→∗〈s′, h′, -〉, then we have

s′, h′ |= Post(Φpo).

The soundness of our analysis is ensured by the soundness of the following: the en-

tailment prover, the pure abduction mechanism, the abstract semantics (with respect

to the underlying operational semantics), the pure constraint abstraction generation

process, and the fixed-point calculation. Among the above, the soundness of the en-

tailment prover and pure fixed-point calculation are already confirmed (Chin et al.,

2010; Nipkow et al., 2002; Popeea and Chin, 2006), and hence we will concentrate

on the soundness of abstract semantics and pure constraint abstraction derivation.

Lemma 4.3.3 (Sound pure abduction) If σ1 ∧ [σ′] ¤ σ2 ∗ σ3, then ∀s, h |=
Post(σ1 ∧ σ′), we have s, h |= Post(σ2 ∗ σ3).

Proof This is ensured by the entailment relationship in the premise of each of

the pure abduction rules and the soundness of the entailment checking (Chin et al.,

2010). 2

Lemma 4.3.4 (Sound abstract semantics) If |[e]|T (∆, 0) = (∆1, 0), then for all

s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there always exists ∆0 such

that

s1, h1 |= Post(∆0) and |[e1]|T (∆0, 0) = (∆1, 0)

Proof The proof is done by structural induction over program constructors and

is in Appendix A. 2

Lemma 4.3.5 (Sound pure constraint abstraction) Given a method with pre/-

post shape templates pre and post, if our analysis successfully computes a constraint

91

4.4. Related Work

abstraction Q in the first step without abduction, and derives a pure constraint P in

the second step, then we have Q ` post ∧ P.

Proof This proof follows directly our procedure to compute the pure constraint

abstraction from the shape one. It is also in Appendix A. 2

Then based on the discussion above we have:

Theorem 4.3.6 (Soundness) Our verification is sound with respect to the under-

lying operational semantics.

4.4 Related Work

In recent years, dramatic advances have been made in automated verification of

pointer safety for heap-manipulating programs. We highlight some of them here.

The local shape analysis by Distefano et al. (2006) is able to infer automatically loop

invariants for list-processing programs, which forms the early-version SpaceInvader

tool. Gotsman et al. (2006) proposes an interprocedural shape analysis for the

SLAyer tool. Berdine et al. (2007) extends the local shape analysis (Distefano et al.,

2006) to handle higher-order list predicate so that more complicated real-world data

structures can be analysed. Yang et al. (2008) proposs a novel abstraction operation

which significantly improves the scalability of the analysis. Recently, more large

industrial code can be verified by the SpaceInvader tool using the compositional

analysis with bi-abductive inference (Calcagno et al., 2009; Distefano, 2009).

Several shape analyses also tried to make good use of size information. In the devel-

opment of the THOR tool, Magill et al. (2007) proposes an adaptive shape analysis

where additional numerical analysis can be used to help gain better precision. Its ab-

92

4.4. Related Work

straction mechanism is also employed in C-to-gate hardware synthesis (Cook et al.,

2009). Very recently, Magill et al. (2010) formulates a novel instrumentation process

which inserts numerical instructions into programs, based on their shape analysis

and user-provided predicates. Instrumented programs can then be used to generate

pure numerical programs for further analysis. Ireland (2007) applies the symbolic

evaluation technique of THOR’s, and specifies the loop invariant as a combination

of two parts: the shape part and the schematic content part. It can also handle

the content of data structures. Different from their work, we take both shape and

pure information into consideration when performing the abstraction, and derive

the pure abstraction from the shape constraint abstraction. Our approach can be

more precise as we have more information for the abstraction. Furthermore, we

can directly handle data structures with stronger invariants, like sortedness and

height-balanced, which have not been addressed in THOR, to the best of our knowl-

edge. Gulwani et al. (2009) combines a set domain with its cardinality domain in a

general framework. Compared with these, our approach can handle data structures

with stronger invariants like sortedness, height-balanced and multiset-related invari-

ants, which have not been addressed in the previous works. Another piece of work,

by Chang et al. (2007) and Chang and Rival (2008), employs inductive checkers

and checker segments to express shape and numerical information. Compared with

their work, ours addresses specification refinement with pure properties (including

numerical and multiset ones) in both pre- and postconditions by processing shape

and pure information in two phases with the help of pure abduction. Meanwhile, our

previous loop invariant synthesis (Qin et al., 2010) also infers strong loop invariants

with a one-phase heavyweight abstract interpretation. Compared with this thesis, it

is limited to loop analysis, whereas this thesis tackles not only loops but also meth-

ods; meanwhile this thesis is more lightweight as it solves the constraint abstraction

in two phases where the second phase (pure constraint abstraction solving) utilises

existing provers and is hence more modular and efficient.

93

4.4. Related Work

There are also many other approaches to expressing heap-based domains than sepa-

ration logic. Hackett and Rugina (2005) can deal with AVL-trees but is customised

to handle only tree-like structures with height property. The shape analysis frame-

work TVLA (Sagiv et al., 2002) is based on three-valued logic. It is capable of han-

dling complicated data structures and properties, such as sortedness. LRP (Yorsh

et al., 2006) is fully decidable over multiple linked data structures and has a finite

model property. Guo et al. (2007) reports a global shape analysis that discover

inductive structural shape invariants from the code. Kuncak et al. (2002) develops

a role system to express and track referencing relationships among objects, where

an object’s role (type) depends on, and changes according to, the mutation of its

referencing. Bouajjani et al. (2010) synthesises list-related invariants over infinite

data domains using graph heap representation. The synthesised invariants are able

to capture various aspects of data structures, such as the size, the sum or the content

of linked list, relations of the data at linearly ordered or successive positions. Com-

pared with these works, separation logic based approach benefits from the frame

rule and hence supports local reasoning. Meanwhile, our approach heads towards

program functional correctness including multiset-related properties, which many of

previous works do not generally handle.

There are also numerous works on automated assertion discovery, for example those

based on abstract interpretation (Cousot and Cousot, 1977). Compared with our

work, they mainly focus on finding numerical program properties, and hence our

work is complementary to theirs in the light that we also discover heap/shape infor-

mation. Meanwhile, we can utilise such works as our pure solver, for example the

disjunction inference (Popeea and Chin, 2006).

On the verification side, Smallfoot (Berdine et al., 2005b) is the first verification

system based on separation logic. The Hip/Sleek verification system (Nguyen

et al., 2007; Nguyen and Chin, 2008) supports user-defined shape predicates over

94

4.5. Summary

the combined shape and numerical domain. The Sleek tool has played a very im-

portant role in our verification. The PALE system (Möller and Schwartzbach, 2001)

transforms constraints in the pointer assertion logic (PAL) into monadic second-

order logic (MSO) and discharge them with MONA (Henriksen et al., 1995). It can

also be used for analysis purpose once a graph type has been abstractly described

with PAL. Hob (Wies et al., 2006) is a modular program verification tool for shape

properties. It models relationship of objects and data structures with contents of

abstract sets and uses set algebra to reason about those properties. It also allows

new plug-ins to be developed to improve its power. Based on Hob, Jahob (Kun-

cak, 2007) takes Java as its target language and allows more general specification

language with relations, specification of data structures, and combination of rea-

soning techniques not only at the level of modules, but also procedures, individual

statements, and verification conditions. Havoc (Chatterjee et al., 2007) is another

verification tool for C language about heap-allocated data structures, using a novel

reachability predicate. There is another recent work on refining specifications via

counterexample-guided abstraction refinement (Taghdiri, 2008) which is goal-driven

and incrementally improves for given safety requirements. Among these works, our

verification is distinguished because we free users from writing whole specifications

by requiring only partial specifications.

4.5 Summary

We have reported in this chapter a new approach to program verification that ac-

cepts partial specifications of methods, and refines them by discovering missing

constraints for numerical and multiset properties, aiming at both memory safety

and functional correctness for pointer-based data structures. We employed two ex-

amples to illustrate our approach and demonstrate its viability. More detailed proof

95

4.5. Summary

of the feasibility of our approach can be found from the system that we built and

the experimental results in Chapter 7.

96

Chapter 5

Synthesising Specifications for

Loops/Auxiliary Methods

We have showed how our approach allows partial specifications to be given for pro-

grams to be verified and refines these specifications into more complete ones by

discovering missing constraints. In this chapter, we further augment our approach

to provide the user with more flexibility and automation. We propose a framework

where some procedures are the main procedures of the whole program (for example

program entry point with relatively simpler specifications and invoking other pro-

cedures) which are annotated with partial specifications, namely, primary methods.

In contrast, specifications for loops and auxiliary methods (which are invoked by the

primary methods) can then be systematically discovered by our augmented mech-

anism, with the help of information propagated from the primary methods. This

mechanism brings more agility to our verification and may reduce users’ annotation

to a further extent.

97

5.1. Introduction

5.1 Introduction

In the previous chapter, we demonstrated an approach to the reduction of user-

supplied specifications for program verification, which only requires users to provide

annotations expressing shape information of programs’ input and output, and will

help users to refine such specifications with inferred obligations for numerical and/or

content constraints, such that the shape-only specifications become sound. However,

a direct question to this approach is: is there any opportunity for the specifications

to be reduced further?

This question may be originated from the requirement of our verification, which runs

in a modular way by refining the partial specifications for each method. Therefore,

to verify a whole program, users still need to annotate every procedure with its shape

specifications. Sometimes this could be difficult for the users: they might be more

familiar with some of the procedures which are main methods to implement certain

functions, but less knowledgeable about some other procedures which are invoked

by those main methods to perform auxiliary functions. Meanwhile, it is quite often

that such procedures for auxiliary functions have sophisticated annotations, while

the main procedures, in contrast, come up with relatively simple specifications. For

example, this situation applies to the insertion method of an AVL-tree, which has

several procedures for tree rotations with quite complex specifications.

As an answer to this question, we propose a solution by dividing the procedures in a

program into two types: primary procedures which are the main/entry methods to

implement some functions, and auxiliary ones invoked by the primary procedures.

As an instance, the insert sort procedure in the previous chapter (page 66) can

be regarded as a primary procedure, and its callee insert as an auxiliary one. In

this setting, we allow the user to annotate only the primary procedures with shape-

98

5.1. Introduction

based specifications, and leave blank for the auxiliary ones.1 For the procedures

marked as primary by the user, we still employ previous chapter’s algorithm to in-

fer their missing constraints. For the auxiliary ones, as the user does not provide

a pair of (shape-only) specifications, we will first synthesise their specifications of

shape information based on its calling context in the caller procedure, and utilise

the same algorithm presented in the previous chapter to obtain the remaining con-

straints. This approach may increase the time-consumption of verification (as it has

to synthesise the shape specifications) and lose some modularity (as such synthesis

requires calling context information from the caller during the verification of callee;

we denote it as semi-modular since it is still modular if we regard a primary method

and its affiliating auxiliary methods as a whole integrity). However, at such expense

we can further reduce users’ workload of marking annotations and provide them

with more flexibility as they can omit the auxiliary procedures’ specifications if they

want to.

To summarise, our division of auxiliary methods from primary ones and synthesis

of auxiliary methods’ specifications represent one more step towards an automated

verification of heap-manipulating programs. It applies more program analysis tech-

niques in the verification process and offers more agility to end-users by enabling

them to choose primary methods to annotate and auxiliary methods to leave for

computers. By such a choice they can further balance the trade-off between hu-

man intelligence’s assistance to the verification and its level of automation. This

framework has the following characteristics:

• Further reduction of user annotations: As it is not necessary to annotate the

auxiliary methods, user annotations are further reduced compared with the

1The user can also choose to annotate an auxiliary method for time-saving or precision purposes;

in such a situation this approach degenerates into the one in the previous chapter.

99

5.2. The Approach

results from the last chapter. This will also be exhibited by our experiments

in subsequent chapters.

• Flexibility: Apart from allowing users to define their own predicates, we enable

them to decide which methods to annotate and which not. They are now more

involved in the verification process, because if they are dissatisfied by the time

cost or precision achieved of some automatically calculated specifications, then

they can specify those by themselves; and vice versa.

• Semi-automation: We classify our approach as semi-automatic, because the

user is allowed to interfere and guide the verification at any point, which is

linked to the previous feature.

The rest of this chapter is organised as follows. Section 5.2 illustrates how our

improved method works for the motivating examples in the last chapter. Section 5.3

revises our programming language according to this improvement. Then Section 5.4

formulates how such synthesis of specifications for auxiliary methods is performed.

The last section will discuss about related works and conclude this chapter.

5.2 The Approach

This section reviews the two illustrative examples in Section 4.2.1 to describe our

approach informally.

100

5.2. The Approach

5.2.1 First Illustrative Example Revisited

We first illustrate our approach of specification synthesis using method insert

in Figure 5.1. We show how our synthesis infers missing specifications for auxiliary

methods so that the refinement of both primary and auxiliary methods’ specifica-

tions may continue.

Most of the program in Figure 5.1 is identical as the one in the last chapter, including

all the code and the shape-only specification provided for procedure insert sort.

The focus is now on insert, which inserts a node x into a sorted list r. It judges

three cases and has a non-tail-recursive call to itself in the last case (to insert x after

list r’s head). It could be noticed that now the formerly existing partial specification

for insert is gone.

As can be imagined from the fact above, currently the program is divided into

two parts: the primary (entry) procedure for the implementation of the algorithm,

i.e. insert sort, and the auxiliary (invoked) procedure insert. For these two

procedures, we suppose that the user chooses not to provide a specification for the

auxiliary one, and hence we must synthesise its specifications so that the refinement

of its specifications can continue.

To achieve this objective, we alter slightly the way in which we verify the whole pro-

gram. Previously we first refine the shape specification for insert (when insert

has its user-supplied annotation) to obtain a completed specification for it, and ap-

ply such specification in the verification of insert sort (in line 8 of the program).

Now as we do not have insert’s annotation, we firstly begin with the verification

of insert sort since it has shape specifications to start with. Then, when the for-

ward analysis reaches line 8 to invoke insert, we assume that the current program

101

5.2. The Approach

1 class Node { int val; Node next; }

2 Node insert_sort(Node x)

3 requires x::llB〈S〉

4 ensures res::sllB〈T〉 {

5 if (x.next == null) return x;

6 else { Node s = x.next;

7 Node r = insert_sort(s);

8 return insert(r, x);

9 }

10 }

11 Node insert(Node r, Node x)

12 if (r == null) {

13 x.next = null; return x;

14 } else if (x.val <= r.val) {

15 x.next = r; return x;

16 } else {

17 r.next = insert(r.next, x);

18 return r;

19 }

20 }

Figure 5.1: The insertion sort program for singly linked lists.

state satisfies its precondition, and try to discover its pre-shape accordingly. For

insert’s post-shape, we conduct another analysis over its procedure body to syn-

thesise it. Finally, when both pre-shape and post-shape are ready for insert, we

102

5.2. The Approach

exploit the means in Chapter 4 to refine its specification with (possible) extra quan-

titative/multiset constraints, and use this specification so as to continue to verify

insert sort.2

Let us roll back to the forward analysis of insert sort. When it approaches line

8, the abstract program state at the call site is

x::Node〈v,s〉 ∗ r::sllB〈Sr〉

Then insert should be invoked; however we do not know its specifications. As afore-

mentioned, the pre-shape is directly synthesised from the abstract program state at

the call site. To synthesise post-shapes, we unroll the recursive call once, symbol-

ically execute the unrolled method body (starting from the pre-shape) to obtain a

post-state, and then use the post-state to filter out any invalid post-shapes from

the set of possible post-shapes (drawn from all available shape predicates). For this

example, the possible post-shape candidates can be (a) x::sllB〈S1〉 ∗ res::sllB〈S2〉,
and (b) res::sllB〈S〉, etc. The symbolic execution gives the following post-state:

x::Node〈v, null〉 ∧ x=res ∨
x::Node〈v, r〉 ∗ r::sllB〈S1〉 ∧ x=res ∧ (∀u∈S1·v≤u) ∨
r::Node〈u, x〉 ∗ x::Node〈v, null〉 ∧ r=res ∧ u≤v ∨
r::Node〈u, x〉 ∗ x::Node〈v, r1〉 ∗ r1::sllB〈S1〉 ∧ r=res ∧ u≤v ∧ (∀w∈S1·v≤w)

which does not entail the candidate (a), so we filter it out. Taking (b) as the

post-shape, we now have a shape specification for insert:

requires r::sllB〈S〉 ∗ x::Node〈v, 〉 ensures res::sllB〈T〉

Then we can employ the same refinement process for primary procedures to obtain

the specification

requires r::sllB〈S〉 ∗ x::Node〈v, 〉 ensures res::sllB〈T〉 ∧ T=St{v}

2Note that here we actually pay more attention to the postcondition of the specification, as it

is more important for us to proceed with the remaining verification.

103

5.2. The Approach

for insert and continue with the verification of insert sort.

5.2.2 Second Illustrative Example Revisited

Now we prove that our approach is also feasible for the second example in the

previous chapter.

The code we verify now is in Figure 5.2. In this example there is only one procedure

to verify; therefore it is the primary procedure with shape annotations. The auxil-

iary procedure in this scenario is the while loop in lines 7-13. Compared with the

previous example in Figure 4.2, we note that the very sophisticated annotation for

the while loop head::sdlB〈p, q, S〉 ∗→ head::sdlB〈ph, qh, Sh〉 ∗root::sdlB〈pr, qr, Sr〉 ∗
end::sdlB〈pe, qe, Se〉 has already gone. This fact again signifies the importance to

eliminate auxiliary procedures’ annotations, because such procedures often help the

primary ones handle auxiliary tasks with complicated input/output, and accordingly

their annotations are usually more complex than the primary procedures’ counter-

parts.

The task of this while loop is to discover the centre node of the given list segment

referenced by head. It traverses the list segment with two pointers root and end.

The end pointer goes towards the list segment’s tail twice as fast as root. When

end arrives at the tail of the segment (tail), root will point to the list segment’s

centre node.

We utilise the same framework as in the last example to verify the whole program.

Firstly the verification begins with the outer primary procedure sdl2nbt until the

loop at line 7. This time it does not have user annotations; as aforementioned, our

verification must first synthesise its pre- and post-states with shape information,

104

5.2. The Approach

0 class Node2 { int val; Node2 prev;

Node2 next; }

1 Node2 sdl2nbt(Node2 head, Node2 tail)

2 requires head::sdlB〈p, q, S〉
3 ensures res::nbt〈Sres〉
4 {

5 Node2 root = head;

6 Node2 end = head;

7 while(end != tail) {

8 end = end.next;

9 if (end != tail) {

10 end = end.next;

11 root = root.next;

12 }

13 }

14 if (head == root)

15 root.prev = null;

16 else

17 root.prev = sdl2nbt(head, root);

18 Node2 tmp = root.next;

19 if (tmp == tail)

20 root.next = null;

21 else {

22 tmp.prev = null;

23 root.next = sdl2nbt(tmp, tail);

24 }

25 return root;

26 }

Figure 5.2: Algorithm to convert a sorted doubly-linked list to a node-balanced tree.

105

5.2. The Approach

and then proceed with its constraint abstraction. For pre-shape it is straightfor-

ward as the program state before the loop will provide relevant shape information.

For post it is done by checking the loop body (unrolled once)’s symbolic execution

result against all possible abstracted shapes. For the previous example, we first

generate all possible shapes according to the variables accessed by the loop, such

as (a) head::sdlB〈ph, qh, Sh〉 ∗ root::sdlB〈pr, qr, Sr〉, and (b) head::sdlB〈ph, qh, Sh〉 ∗
root::nbt〈hr, br, Sr〉, and many so forth. Then the unrolled loop body is symboli-

cally executed several times to filter out any invalid shape as an invariant. In the

example’s case, executing the loop body will yield the following result:

head::Node2〈v, p, end〉 ∧ head=root ∧ end=tail ∨
head::Node2〈vh, p, root〉 ∗ root::Node2〈vr, head, end〉 ∧ end=tail

(5.1)

where (b) is directly filtered out since (5.1) ` (b) ∗ true fails. However (a) remains

a candidate, as both (5.1) ` (a) ∗ true holds. Therefore, regarding (a) as a possible

shape post, we can employ the same approach for the whole method to generate a

constraint abstraction for the while loop, and solve it to obtain its postcondition

head::sdlB〈null, root, Sh〉 ∗ root::sdlB〈p, tail, Sr〉 ∧
end=tail ∧ S=ShtSr ∧ (∀x∈Sh, y∈Sr·x≤y) ∧ 0≤|Sr|−|Sh|≤1

to continue with the verification.

One more note for the while loop in this example is that the symbolic execution

may actually permit more than one shapes to enter as candidates, for instance,

head::sdlB〈ph, qh, Sh〉. Generally this does not affect the analysis result, as we al-

low the analysis to continue with all possible postconditions computed from this

while loop, and always choose the most precise final result. In the motivating ex-

ample, both head::sdlB〈ph, qh, Sh〉 and (a) are valid shape postconditions for the

loop, but later the former one will cause the analysis to fail in line 15/17, because it

inappropriately approximated the invariant and hence lost information about root.

Since we synthesise all possible shapes, we can always select those shapes sufficiently

strong to support further analysis to obtain a meaningful result.

106

5.3. Programming Language

5.3 Programming Language

To cater for our specification synthesis approach, we have revised the programming

language definition slightly. As shown in Figure 5.3, the language now allows both

primary procedures and auxiliary procedures. Their status is decided implicitly by

the specifications they have: the procedures with shape specifications are primary

procedures, and the ones without any specification are auxiliary ones (in need of

synthesis).

5.4 The Verification

This section formulates our whole framework to verify a program consisting of both

primary and auxiliary methods, as well as the algorithms for shape specification

synthesis.

5.4.1 The Overall Approach

Generally speaking, our whole framework of verification is still founded on the gener-

ation of constraint abstractions from the program being verified and also solving such

constraint abstractions. For the primary methods, we expect the user to provide

shape information in both pre- and postconditions to help the constraint abstrac-

tion generation. For loops and auxiliary methods, we produce a set of candidate

abstractions for their specifications from both their program body and the current

state to invoke them, such that their corresponding constraint abstractions can be

built and solved in a same way as primary methods. The overall algorithm is listed

in Figure 5.4.

107

5.4. The Verification

Program Prog ::= tdecl meth

Type declaration tdecl ::= classt | spred | lemma

Class declaration classt ::= class c { field }
Field declaration field ::= t v

Type t ::= c | τ

Procedure declaration meth ::= t mn ((t v); (t v)) {e}
| t mn ((t v); (t v)) mspec {e}

Built-in type τ ::= int | bool | void
Expression e ::= d heap-insensitive atomic

| d[v] heap-sensitive atomic

| v=e assignment

| e1; e2 sequence

| t v; e local variable

| if (v) e1 else e2

| while v {e}
Heap-insensitive atomic d ::= - skip

| null null reference

| kτ constant

| v variable

| new c(v) allocation

| mn(u; v) method call

Heap-sensitive atomic d[v] ::= v.f field read

| v.f=w field write

| free(v) deallocation

Figure 5.3: The programming language for the specification synthesis framework.

108

5.4. The Verification

Algorithm Verify(T ,S,mn, σ, x, y)

1 case mn of

2 | while (w) {e0} → f := fresh name(); e := if (w) {e0; f(x; y)};
! (u, v) := (x, y); ([(Φi

pr, Φ
i
po)], n) := Preproc(T ,S, f,x, y, e0, σ,x, y);

! prim := false;

3 | t mn ((t u0); (t v0)) {e0} → f := mn; e := e0; (u, v) := (u0, v0);

! ([(Φi
pr, Φ

i
po)], n) := Preproc(T ,S, f,u, v, e0, σ,x, y); prim := false;

4 | t mn ((t u0); (t v0)) (requires Φpr
i ensures Φpo

i)m
i=1 {e0} → f := mn;

! e := e0; (u, v) := (u0, v0); n := m; (Φi
pr, Φ

i
po)

m
i=1 := (Φpr

i , Φpo
i)m

i=1;

! prim := true;

5 end case

6 sps := ∅

7 for i := 1 to n do

8 sp := CA Gen Solve(T , f, e, Φi
pr, Φ

i
po, u, v)

9 if prim = false and sp 6= fail then return (f, sp)

10 else if prim = true then sps := sps ∪ sp

11 end if

12 end for

13 return (f, sps)

end Algorithm

Figure 5.4: Main verification algorithm.

109

5.4. The Verification

Our verification algorithm takes as input all available specifications and shapes, and

the code segment to be verified, together with an optional conjunctive program state

and two variable sequences (mainly for loops and auxiliary procedures). It runs in

two steps. The first step recognises whether the procedure is transformed from a

loop (line 2) or an auxiliary one (line 3), or a primary procedure with user-supplied

shape specifications (line 4). If it is a loop originally or an auxiliary procedure, then

it will undergo a pre-processing step (Figure 5.5) which discovers a list of candidate

shape specifications for that procedure.

Algorithm Preproc(T ,S, f, u, v, e, σ,x, y)

1 sps := [];

2 prs := SynPre(S, f,u, v, σ,x, y)

3 for Φpr ∈ prs do

4 pos := SynPost(T ,S, f, e, Φpr, u, v)

5 sps := concat(sps, pos)

6 end for

7 return (sps, |sps|)

end Algorithm

Figure 5.5: Pre-processing algorithm.

The pre-processing algorithm Preproc in Figure 5.5 mainly invokes the shape synthe-

sis procedures to discover all possible pre- and post-shapes for loops and auxiliary

procedures, as shown in lines 1 and 4. Then the list of shape pairs (specifications)

are returned and used in further analysis. The details of shape synthesis algorithms

will be introduced in Section 5.4.2.

After the first step, the procedure to be verified is guaranteed with some shape

110

5.4. The Verification

specifications. Then the second step will generate constraint abstractions and solve

them according to the shapes given in the specifications (at line 8 and described in

detail in Section 4.3.1). The solutions are then used to refine the shape specifications

with pure constraints.

For the auxiliary procedures and loops, we apply a lazy scheme: as the pre-processing

may yield several possible shape specifications in a list (ordered with heuristics such

that the specifications with more possibility to make the whole verification succeed

are closer to the list head), we try to verify each in sequence. Once a specification can

be verified against the program, then it is returned and the other ones are omitted.

This is reasonable as our main purpose is to verify and refine the specification for

the primary procedure, and thus we view the specifications gained for the auxiliary

procedures as affiliated results. In this way we try to make our verification more

scalable, as will be described in later sections.

5.4.2 Specification Synthesis for Auxiliary Methods

and Loops

For auxiliary procedures, as we do not expect the user to provide specification

annotations, we conduct a pre-analysis (Figure 5.6 and Figure 5.7) to synthesise the

pre- and post-shapes before invoking the constraint abstraction generation algorithm

(Figure 4.4). Loops are dealt with by analysing their tail-recursive versions in the

same way.

The pre-shape synthesis algorithm SynPre (Figure 5.6) takes in as input the set of

shape predicates (S), the auxiliary method name (f), its formal parameters (u, v),

the current symbolic state in which f is called (σ), and the corresponding actual

parameters (x, y) of the invocation. The algorithm first obtains possible shape

111

5.4. The Verification

Algorithm SynPre(S, f,u, v, σ,x, y)

1 C := ShpCand(S, u, v)

2 for σC ∈ C do

3 if σ 0 [x/u, y/v]σC

4 then C := C\{σC}

5 end if

6 end for

7 return C

end Algorithm

Figure 5.6: Precondition synthesis algorithm.

candidates from the parameters u, v with ShpCand (line 1), tests for each shape

whether it is a sound abstraction for the method’s pre-shape with entailment (line

3), then picks up a sound abstraction for the method’s pre-shape with entailment,

and filter out the ones which fail (line 4). Finally the pre-shape abstraction is

returned. While we use an enumeration strategy here, the number of possible shape

candidates per type is small as it is strictly limited by what the user provides in the

primary methods, and further filtered and prioritised by our system.

To synthesise post-shapes (SynPost in Figure 5.7), we also assign C as possible shape

candidates (line 1). We unroll f ’s body e once (i.e. replace recursive calls to f in e

with a substituted e) and symbolically execute it with the algorithm in Figure 4.5

(line 3), assuming f has a specification requires Φpr ensures false (line 2). The

postcondition false is used to ensure that the execution only considers the effect of

the program branches with no recursive calls (to f itself). We then use ∆ to find out

appropriate abstraction of post-shape (line 5), which is paired with Φpr and returned

112

5.4. The Verification

Algorithm SynPost (T ,S, f, e, Φpr, u, v)

1 C := ShpCand(S, u, v)

2 T ′ := T ∪ {f(u, v) requires Φpr ensures false {e}}

3 ∆ := Symb Exec(T ′, f, syn unroll(f, e), Φpr)

4 for σC ∈ C do

5 if ∆∧[σ] 7 σC then C := C\{σC} end if

6 end for

7 return pair spec list(Φpr, C)

end Algorithm

Figure 5.7: Postcondition synthesis algorithm.

as result. The function pair spec list forms an ordered list of pre-/post-shape pairs,

each of which has Φpr as pre-shape and a Φpo in C as post-shape.

As can be seen, the generation of possible shape candidates plays an important role

in our synthesis. Its implementation is a recursive algorithm, each recursion of which

decides whether or not to include a given variable and its shape in the produced

separation conjunction as result. The algorithm is listed in Figure 5.8.

This algorithm is the foundation of ShpCand. It invokes length to obtain the length

of a list, and isCompatible(v, S) is a type checker to test whether variable v’s type

is consistent with the shape predicate S, namely, whether the recursive branches of

S’s definition look like root::c〈v〉 ∗ . . . where c is the type of v. Therefore, based

on ShpCandRec, the definition of ShpCand is straightforward as follows:

ShpCand(S, u, v) =df ShpCandRec(S, concat(u, v), 1)

Now we illustrate ShpCand with an example. If we have two parameters x and y

113

5.4. The Verification

Algorithm ShpCandRec (S, v, d)

1 R := ∅
2 if d = length(v) then

3 for S ∈ S do

4 if isCompatible(vd, S) then

5 R := R∪{vd::S〈u〉}, where u are fresh logical variables

6 end if

7 R := R∪{emp}
8 end for

9 else

10 R0 := ShpCandRec(S, v, d+1)

11 for σ ∈ R0 do

12 for S ∈ S do

13 if isCompatible(vd, S) then

14 R := R∪{vd::S〈u〉 ∗ σ}, where u are fresh logical variables

15 end if

16 end for

17 R := R∪{σ}
18 end for

19 end if

20 return R

end Algorithm

Figure 5.8: Shape candidate generation algorithm.

114

5.4. The Verification

with type Node, and the user has defined two shape predicates llB and sllB with

Node, then the list of all possible shape candidates for the two variables (C) will be

[x::sllB〈S〉 ∗ y::sllB〈T〉, x::llB〈S〉 ∗ y::sllB〈T〉, x::sllB〈S〉 ∗ y::llB〈T〉, x::llB〈S〉 ∗
y::llB〈T〉, x::sllB〈S〉, y::sllB〈S〉, x::llB〈S〉, y::llB〈S〉, emp]. Then elements of this

list will be checked against appropriate abstract states (line 3 in Figure 5.6 and line

5 in Figure 5.7) where most elements should be reduced because they are not sound

abstractions. For example, in the previous list, only x::llB〈S〉 ∗ y::llB〈T〉 remains

in the list and participates in further verification. Meanwhile, for any candidate

variable, ShpCand only picks up compatible shape predicates from S, which reduces

more shape candidates. For instance, if the data structure manipulated by the

method is of type Node, then ShpCand rules out shape predicates specifying other

types of data structures, for example doubly-linked lists and trees, etc.

Our shape synthesis generally keeps only highly relevant abstractions. For the while

loop in Section 5.2.2, we filtered out 24 (of 26) abstractions. Generally, in case that

there are several abstractions as candidate specifications, we employ some other

mechanisms to reduce them further. Firstly, we prioritise post-shapes with same (or

stronger) predicates as in precondition since it is more likely that the output will

have the same or similar shape predicates as the input, e.g. x is expected to remain

as sllB (or stronger) if it points to sllB as input. Secondly, we employ a lazy

scheme when refining the synthesised pre/post-shapes (to complete specifications).

We retrieve (and remove) the pre/post-shape pair from the head of the list, (1)

use the refinement algorithm (Figure 4.4) to obtain a specification for the auxiliary

method, and (2) continue the analysis for the primary method. If the analysis for

the primary method succeeds, we will ignore all other synthesised pre/post-shapes

from the list. If either (1) or (2) fails, we will try the next one from the list.

Note that our synthesis of shape specification could only cater to one predicate per

parameter/result. In cases where more complex shape specifications are needed,

we allow users to specify them directly for the respective auxiliary method. These

115

5.4. The Verification

mechanisms help to keep attempts over candidate specifications at a minimum level.

A final note on this synthesis approach is on the fact that it carries on with primary

procedure’s verification until the call site of an auxiliary procedure, and then verifies

the auxiliary procedure before completing the verification for the primary procedure.

Therefore, it is at the expense of loss of modularity, if we consider both primary

and auxiliary procedures as having equivalent status (both are procedures of the

program). However, from a pragmatic perspective, we tend to regard this approach

as semi-modular, since if we take every primary procedure and its affiliated auxiliary

procedures as an integrated part, then this approach is modular in this sense. As

long as such “integrated parts” in programs are not oversized, it will not affect the

scalability of our approach.

5.4.3 Revised Symbolic Execution Rules

Applying the framework described in this chapter, we need to make some slight

alterations to the symbolic execution rules when we invoke the algorithm in Fig-

ure 4.5 (line 3) to cater for the newly added feature of auxiliary procedures. The

added rules are as follows:

(x, y) = vars(w, e) (f, T1) = Verify(T ,S, while(w){e}, σ,x, y) T ′ = T ∪T1

exec(while(w){e})(T)(σ, 0) Ã exec(f(x; y))(T ′)(σ, 0)

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) /∈ T (f, T1) = Verify(T ,S,mn, σ,x, y) T ′ = T ∪T1

exec(mn(x1..xm; y1..yn))(T)(σ, 0) Ã exec(mn(x1..xm; y1..yn))(T ′)(σ, 0)

where the set S is supposed to contain all the shape definitions provided by user.

As can be seen, these two new rules are used for the invocation of a while loop

or an auxiliary method which has not been verified, where we employ the verifica-

tion algorithm in Figure 5.4 recursively to obtain its postcondition. Therefore we

116

5.4. The Verification

know that when the verification over a procedure’s body meets an invocation to a

loop/auxiliary procedure, these two rules will be triggered to fill in the specifications

of the loop/auxiliary procedure, allowing the verification of its caller to carry on.

5.4.4 Soundness

The approach presented in this chapter is essentially an extension of the one in the

previous chapter. Its soundness definition also follows the previous one, referring to

the underlying operational semantics:

Definition 5.4.1 (Soundness) For a method definition t mn ((t u); (t v)) {e},
if our analysis synthesises its specification as t mn ((t u); (t v)) requires Φpr en-

sures Φpo {e}, then for all s, h |= Post(Φpr), if 〈s, h, e〉↪→∗〈s′, h′, -〉, then we have

s′, h′ |= Post(Φpo).

Therefore the soundness of the whole approach can be reduced to the soundness

of our synthesis of shape specifications. To prove this, we need to review our pre-

condition/postcondition synthesis algorithms. From these two algorithms, we can

see that our synthesised pre-shape must satisfy the abstract state at the calling

context (because of the entailment relationship), and the post-shape is checked to

see whether it could possibly be abstracted as the execution result of the unfolded

program. From the soundness of entailment checking and abduction, we have

Theorem 5.4.2 (Soundness) Our verification is still sound with respect to the

underlying operational semantics, with the specification synthesis mechanism added.

Detailed proof can be found in Appendix A.

117

5.5. Related Work

5.5 Related Work

The verification framework in this chapter, which divides the program into primary

and auxiliary procedures, applies some program analysis techniques to synthesise

raw specifications for auxiliary procedures and complete them. Its counterparts in

the state-of-the-art are introduced in the previous chapter in several categories. The

shape-only analyses include Distefano et al. (2006); Gotsman et al. (2006); Berdine

et al. (2007); Yang et al. (2008); Calcagno et al. (2009). Some works capable of

handling numerical or content information include Magill et al. (2007, 2008, 2010);

Ireland (2007); Maclean et al. (2009); Gulwani et al. (2009); Chang et al. (2007);

Chang and Rival (2008). On the contrary to these works, we only apply program

analysis techniques over loops/auxiliary procedures, and we do not attempt to com-

pute a fixed-point for their postcondition (instead we just unroll the procedure

body once to execute it symbolically, resulting in a sound approximation of the

post-shape). Our approach runs in this way mainly because we want to minimise

the cost of such synthesis, compared with their relatively high cost of fixed-point it-

eration. A potential expense of this choice could be a coarsely generated post-shape

as the synthesis result; however such expense will be digested by our specification

refinement introduced in Chapter 4. Meanwhile, it is possible for us to employ fixed-

point calculation in the synthesis of post-shape; yet it is an orthogonal problem to

this approach as addressed in our other works (Luo et al., 2010b; Qin et al., 2010).

On the verification side, compared with the previous works (Berdine et al., 2005b;

Nguyen et al., 2007; Wies et al., 2006; Kuncak, 2007; Chatterjee et al., 2007;

Taghdiri, 2008), our verification is now even more distinguished than in the pre-

vious chapter because we further free users from writing specifications for loops and

auxiliary methods and we will discover these annotations for them.

118

5.6. Summary

5.6 Summary

In this chapter we augment our proposed approach to the refinement of specifications

by requiring only partial specification for primary procedures. Specifications for

loops and auxiliary procedures can then be systematically discovered, with the help

of information propagated from the primary methods. On the basis of this technique

we have slightly altered our framework of verification which now provides more

flexibility for the end user.

119

5.6. Summary

120

Chapter 6

Verifying Programs with Unknown

Components

Verification of programs with invocations to unknown components is a practical

problem, because in many scenarios not all code of programs to be verified is avail-

able. Those unknown components also pose a challenge for their verification. This

chapter addresses this problem with an attempt to verify both memory safety and

functional correctness of such programs using pointer-based data structures. Pro-

vided with a Hoare-style specification {Φpr} prog {Φpo} where program prog con-

tains calls to some unknown components unknown, we infer a specification mspecu

for unknown from the calling contexts, such that the problem of verifying prog can

be safely reduced to the problem of proving that unknown (once its code is avail-

able) meets the derived specification mspecu. The expected specification mspecu

for unknown is automatically calculated using an abduction-based shape analysis

specifically designed for our combined abstract domain.

121

6.1. Introduction

6.1 Introduction

A recent prevalent trend of component-based software engineering (Kozaczynski

and Booch, 1998) poses great challenge for quality assurance and verification of

programs. This methodology involves the integration of software components from

both native development and third-parties, and thus the source code of some com-

ponents/procedures might be unknown for verification. This problem is quite prac-

tical and has multiple forms in various scenarios. For example, some programs may

have calls to third-party library procedures whose code is not accessible (e.g. in

binary form). Some components may be invoked by remote procedure calls only

with a native interface such as COM/DCOM (Sessions, 1998). Still, some compo-

nents could be used for dynamic upgrading of running systems whose cost of being

stopped/restarted is too expensive to bear (Szyperski, 2003). Other scenarios in-

clude function pointers (e.g. in C), interface method invocation (e.g. in OO) and

mobile code, which all contain procedures not available for static verification.

To verify such programs, existing approaches generally do not provide elegant solu-

tions:

• Black-box testing (Beizer, 1996) regards the unknown components as black-

boxes to test their functionality, which cannot formally prove the absence of

program bugs. Especially in safety-critical systems a bug failed to be found

by testing may cause catastrophic result, as described in Chapter 1.

• Likewise, specification mining (Ammons et al., 2002) discovers possible spec-

ifications for the (unknown part of the) program by observing its execution

and traces, which is also dynamically performed and bears the same problem.

• For static verifiers/analysers, SpaceInvader (Calcagno et al., 2009) simply as-

sumes the program and the unknown procedure have disjoint memory foot-

122

6.1. Introduction

prints so that the unknown call can be safely ignored due to the hypothetical

frame rule (O’Hearn et al., 2004), whereas this assumption does not hold in

many cases.

• Some methods (Emami et al., 1994; Gopan and Reps, 2007) try to take into

account all possible implementations for the unknown component; however

there can be too many such candidates in general, and hence the verification

might be infeasible for large-scaled programs.

• Finally, some verifiers will just stop at the first unknown procedure call and

provide an incomplete verification (Nguyen et al., 2007), which is obviously

undesirable.

Approach and contributions. Compared with the methods stated above, the

approach that we propose in this chapter is a different one to the verification of

programs that are partially available due to the unknown component/procedure

calls. Given a specification S = {Φpr} prog {Φpo} for the program prog containing

calls to an unknown component unknown, our solution is to proceed with the veri-

fication for the known fragments of prog, and at the same time infer a specification

Su that is expected for the unknown component unknown based on the calling con-

text(s). The problem of verifying the program prog against the specification S can

now be safely reduced to the problem of verifying the component unknown against

the inferred specification Su, provided that the verification of the known fragments

does not cause any problems. The inferred specification is subject to a later ver-

ification when an implementation or a specification for the unknown component

becomes available. This is essentially an improvement of our previous work (Luo

et al., 2010a) by extending the program properties to be verified from simple pointer

safety to functional correctness of linked data structures. Such properties include

structural numerical ones like size and height, relational numerical ones like sort-

edness, and multiset ones like symbolic content. This chapter makes the following

123

6.2. The Approach

technical contributions:

• We propose a novel framework in a combined abstract domain (involving both

shape and pure properties) for the verification of memory safety and functional

correctness of partially available programs with unknown components.

• Our approach is essentially top-down, as it can be used to infer the specification

for callee procedures based on the specification for the caller procedure. Hence

it may benefit the general software development process as a complement for

current bottom-up approaches (Nguyen et al., 2007; Calcagno et al., 2009).

• We have invented an abduction mechanism which can be applied in this com-

bined domain. It not only can infer shape-based anti-frames for an entailment,

but also can discover corresponding pure information (numerical and/or mul-

tiset) as well. We also defined a partial order as a guidance for the quality of

abduction results.

Outline. Section 6.2 employs a motivating example to informally illustrate our

approach. Section 6.3 presents the programming language (catering for unknown

calls) for our analysis. Section 6.4 introduces our abductive reasoning. Section 6.5

depicts our verification algorithms, followed by some concluding remarks.

6.2 The Approach

In this section, we illustrate informally, via an example, how our approach verifies

a program by inferring the specification for the unknown procedure it invokes.

Example 6.2.1 (Motivating example) Our goal is to verify the program sort

against the given specification shown in Figure 6.1. According to the specification,

124

6.2. The Approach

0 Node sort(Node x)

requires x::llB〈S〉
ensures res::sllB〈S〉

1 {

2 if (x == null) return null;

3 else {

4 Node y = unknown(x);

5 Node z = y.next;

6 Node w = sort(z);

7 y.next = w;

8 return y;

9 } }

Figure 6.1: A program sort calling an unknown procedure unknown to be verified.

the procedure takes in a non-empty linked list (llB) x and returns a sorted list

(sllB) referenced as res. The (symbolic) content of these two lists are identical (S).

Note that sort calls an unknown procedure unknown at line 4. As we do not have

available knowledge about it, the discovery of its specifications is essential for both

the verification and our understanding of the program (such that we may find out

what sorting algorithm this program implements).

The verification process of the program is illustrated in Figure 6.2 and Figure 6.3.

We conduct a forward analysis on the program body starting with the precondition

x::llB〈S〉 (line 0). The results of our analysis (e.g. the abstract states) are marked

as comments in the code. The analysis carries on until it reaches the unknown

procedure call at line 4.

125

6.2. The Approach

0 Node sort(Node x) requires x::llB〈S〉 ensures res::sllB〈S〉
1 { // res is the value returned by the procedure

1a // Forward analysis begins with current state σ : x::llB〈S〉
2 if (x == null) return null;

2a // σ : x::llB〈S〉 ∧ x=null ∧ res=null

2b // Check whether current state meets the postcondition: σ ` res::sllB〈S〉
2c // It succeeds, and verification on this branch terminates

3 else {

3a // σ : x::llB〈S〉 ∧ x6=null

3b // Unknown call appears afterwards; extract its precondition from σ

3c // Φupr := Local(σ, {x}) := x::llB〈S〉 ∧ x6=null

3d // Also distinguish the frame part not touched by unknown call

3e // R0 := Frame(σ, {x}) := emp ∧ x6=null

4 Node y = unknown(x);

4a // We know nothing about the effect of the unknown call, and thus

4b // begin to discover its post-effect starting from emp (saved in σ′)

4c // σ′0 : emp ∧ x=a ∧ y=resu σ := R0 ∗ σ′0 σ′ := σ′0

Figure 6.2: Verification of sort calling an unknown procedure unknown (part 1).

126

6.2. The Approach

As afore-shown, the current state before line 4 is x::llB〈S〉 ∧ x6=null (σ at line 3a),

from which we generate the precondition for the unknown call. We split σ into

two disjoint parts: the local part Φupr (line 3c) that is depended on, and possibly

mutated by, the unknown procedure; and the frame part R0 (line 3e) that is not

accessed by the unknown procedure. Intuitively, the local part of a state w.r.t. a

set of variables X is the part of the heap reachable from variables in X (together

with pure information); while the frame part denotes the unreachable heap part

(together with pure information). For example, for a program state x::Node〈a, w〉 ∗
y::Node〈b, z〉 ∗ z::Node〈c, null〉 ∧ w=z, its local part w.r.t. {x} is x::Node〈a, w〉 ∗
z::Node〈c, null〉∧w=z, and its frame part w.r.t. {x} is y::Node〈b, z〉∧w=z. We will

have their formal definitions in Section 6.5. Thus we take Φupr (line 3c) as a crude

precondition for the unknown procedure, since it denotes the part of program state

that is accessible, and hence potentially usable, by the unknown call. The frame

part R0 is not touched by the unknown call and will remain in the post-state, as

shown in line 4c.

At line 4c, the abstract state after the unknown call (σ) consists of two parts: one

is the aforesaid frame R0 not accessed by the call, and the other is the procedure’s

postcondition which is unfortunately not available. Our next step is to discover the

postcondition by examining the code fragment after the unknown call (lines 4d to

8e mainly in Figure 6.3). For this task, a traditional approach might be a backward

reasoning from the caller’s postcondition towards the unknown call’s postcondition.

However, this is proven infeasible for separation logic based shape domain by pre-

vious works (Calcagno et al., 2009), and hence we employ another approach with a

forward reasoning from the unknown call towards the caller’s postcondition, using

abduction to accumulate the unknown call’s postcondition.

127

6.2. The Approach

4d // Next instruction (y.next) requires y be a Node

4e // But entailment checking σ ` y::Node〈v, p〉 fails

4f // Therefore this must be part of the unknown call’s post-effect; we use

4g // abduction to find it and add it to current state and unknown call’s post

4h // σ ∗ [σ′1] ¤ y::Node〈v, p〉 (s.t. σ ∗ σ′1 ` y::Node〈v, p〉 ∗ true)
4i // σ′1 : y::Node〈v, p〉 σ := σ ∗ σ′1 σ′ := σ′ ∗ σ′1

5 Node z = y.next;

5a // Current state σ : y::Node〈v, z〉
5b // Next instruction invokes this procedure recursively and requires its pre

5c // But σ ` z::llB〈S1〉 fails again due to lack of knowledge about unknown call

5d // Again we use abduction to find the missing part of unknown call’s post-effect

5e // σ ∗ [σ′2] ¤ z::llB〈S1〉 (s.t. σ ∗ σ′2 ` z::llB〈S1〉 ∗ true)
5f // σ′2 : z::llB〈S1〉 σ := σ ∗ σ′2 σ′ := σ′ ∗ σ′2

6 Node w = sort(z);

6a // Current state σ : y::Node〈v, z〉 ∗ w::sllB〈S1〉 (w already refers to a sorted list)

7 y.next = w;

7a // Current state σ : y::Node〈v, w〉 ∗ w::sllB〈S1〉
8 return y;

8a // σ : y::Node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y; it should imply sort’s postcondition

8b // But σ ` res::sllB〈S〉 still fails, suggesting more post-effect of unknown call

8c // A final abduction is conducted to find it: σ ∗ [σ′3] ¤ res::sllB〈S〉
8d // σ′3 : S={v}tS1 ∧ ∀u∈S1·v≤u σ := σ ∗ σ′3 σ′ := σ′ ∗ σ′3

8e // All abduction results will be combined at last to form unknown call’s post

9 } }

9a // Φupr : a::llB〈S〉 ∧ a6=null (a is the unknown procedure’s formal parameter)

9b // Φupo : resu::Node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}tS1 ∧ ∀u∈S1·v≤u

Figure 6.3: Verification of sort calling an unknown procedure unknown (part 2).

128

6.2. The Approach

Initially, we assume the unknown procedure having an empty heap σ′0 as its post-

condition1, and gradually discover the missing parts of the postcondition during

the symbolic execution of the code fragment after the unknown call. To do that,

our analysis keeps track of a pair (σ, σ′) at each program point, where σ refers to

the current heap state, and σ′ denotes the expected postcondition discovered so far

for the unknown procedure. The notations σ′i are used to represent parts of the

discovered postcondition.

At line 5, y.next is dereferenced, whose value is then assigned to z. For such

dereference to succeed, it requires that y be pointing to a node in the heap in the

current state. However, we only have an empty heap here (σ in line 4c). This

is not necessarily due to a program error; it might be attributed to the fact that

the unknown call’s postcondition is still unknown. Therefore, our analysis performs

an abduction (line 4h) to infer the missing part σ′1 for σ such that σ ∗ σ′1 implies

that y points to a Node. As shown in line 4i, σ′1 is inferred to be y::Node〈v, p〉,
which is accumulated into σ′ as part of the expected postcondition of the unknown

procedure. (We will explain the details for abduction in Section 6.4.) Now the heap

state combined with the inferred σ′1 meets the requirement of the dereference, and

thus the forward analysis continues.

At line 6, the procedure sort is called recursively. Here the current heap state still

does not satisfy the precondition of sort (as shown in line 5c). Blaming the lack of

knowledge about the unknown call’s postcondition, we conduct another abduction

(line 5e) to infer the missing part σ′2 for σ such that σ∗σ′2 entails the precondition of

sort w.r.t. some substitution [z/x]. Updated with the abduction result z::llB〈S1〉,
the program state now meets the precondition of sort, which is later transformed

1Note that we introduce fresh logical variables a and resu to record the value of x and y when

unknown returns.

129

6.2. The Approach

to w::sllB〈S1〉 as the effect of sorting over z.

After that, line 7 links y and the sorted list w together. Then y is returned as

the procedure’s result at last. The corresponding state σ at line 8a is expected to

establish the postcondition of sort for the overall verification to succeed. However,

it does not (as shown in line 8b). Again this might be because part of the unknown

call’s postcondition is still missing. Therefore, we perform a final abduction (line

8c) to infer the missing σ′3 as follows:

(y::Node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y) ∗ [σ′3] ¤ res::sllB〈S〉

such that σ ∗ σ′3 implies the postcondition. In this case, our abductor returns σ′3 as

a sophisticated pure constraint S={v}tS1 ∧ ∀u∈S1·v≤u as the result which is then

added into σ′, as shown in line 8d.

Finally, we generate the expected pre/post-specification for the unknown proce-

dure (lines 9a and 9b). The precondition is obtained from the local pre-state of

the unknown call, Φupr at line 3c, by replacing all variables that are aliases of a

with the formal parameter a. The postcondition is obtained from the accumulated

abduction result, σ′, after performing a similar substitution (which also involves

formal parameter resu). Our discovered specification for the unknown procedure

Node unknown(Node a) is:

Φupr : a::llB〈S〉 ∧ a6=null

Φupo : ∃b · resu::Node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}tS1 ∧ ∀u∈S1·v≤u

This derived specification has two implications. The first is that the entire program

is verified on the condition that unknown meets such specification. The second is a

hint of the behaviours of both the caller (sort) and the callee (unknown), that is,

unknown should take as input a list and returns another list with identical content

as the input, whose smallest element is exactly at its head. After calling it, sort

only needs to sort the rest of the list to accomplish the whole task of sorting. From

130

6.3. Programming Language

this we may guess that sort could be a selection-sort algorithm if unknown always

selects the smallest element and puts it on the list head, or it could be bubble-sort

algorithm if unknown is a bubbling procedure to exchange two adjacent elements in

descending order. Therefore this enhances our understanding of the whole program,

and we can verify it as soon as we have the code of unknown.

6.3 Programming Language

To accommodate the unknown procedures, we augment the programming language

in Figure 3.1 with unknown components as in Figure 6.4. A program Prog still

consists of two parts: type declarations and procedure declarations. The type decla-

rations remains the same as in Chapter 3. The procedure declarations now include

meth and munk, of which the second contains invocations to unknown procedures

while the first does not.

The main part of the language is not altered much: it is still expression-oriented; e is

the (recursively defined) program constructor and d and d[x] are atomic instructions;

we still allow both call-by-value and call-by-reference method parameters, etc.

To address the unknown calls, we employ unknown constructors u and v to denote

expressions that involve invocations to the unknown procedures (unk(x, y)). An

unknown block v is defined as a sequence of normal expressions sandwiching an

unknown expression u, which can be a single unknown call, or a sequence of unknown

calls, or an if-conditional statement/while loop containing an unknown block. Our

aim is to discover the specifications for the unknown procedures in u and v to verify

the whole program.

131

6.3. Programming Language

Program Prog ::= tdecl meth munk

Type declaration tdecl ::= classt | spred | lemma

Class declaration classt ::= class c { field }
Field declaration field ::= t x

Type t ::= c | τ

Procedure declaration meth ::= t mn ((t x); (t y)) mspec {e}
Unknown proc. decl. munk ::= t mn ((t x); (t y)) mspec {v}

Built-in type τ ::= int | bool | void
Expression e ::= d heap-insensitive atomic

| d[x] heap-sensitive atomic

| v=e assignment

| e1; e2 sequence

| t x; e local variable

| if (x) e1 else e2

| while x {e} where Φpr ∗→Φpo

Heap-insensitive atomic d ::= . . . (Same as in Chapter 3)

Heap-sensitive atomic d[x] ::= . . . (Same as in Chapter 3)

Unknown expression u ::= unk(x; y)

| unk(x0; y0); e1; unk1(x1; y1); e2; . . . ;

en−1; unkn(xn; yn)

| if (x) v else e

| if (x) e else v

| if (x) v1 else v2

| while x {v} where Φpr ∗→Φpo

Unknown block v ::= e1; u; e2

Figure 6.4: A core (C-like) imperative language.

132

6.4. Enhanced Abduction Mechanism

The operational semantics of the programming language stays the same as in Chap-

ter 3. All the unknown procedure calls are regarded as invocations to procedures

whose effect over the pair (s, h) is not known to us. However, to retain the soundness

of our verification, we require that such effect conforms to the unknown procedures’

specifications once these specifications are discovered.

As we aim to verify both memory safety and functional correctness of programs, our

specification language also stays the same as in Chapter 3 in order to express the

multiple program properties (shape, numerical and content) and provide support

for reasoning over them.

6.4 Enhanced Abduction Mechanism

As shown in Section 6.2, when analysing the code after an unknown call, it is possible

that the current state cannot meet the required precondition for the next instruction

due to the lack of information about the unknown procedure. Therefore we need

to infer the unknown procedure’s specification with abduction (or abductive reason-

ing) (Giacobazzi, 1994; Calcagno et al., 2009). It works as follows: for a failed en-

tailment checking σ1 ` σ2 ∗ true, it attempts to compute an anti-frame σ′, such that

σ1 ∗ σ′ ` σ2 ∗ true succeeds. For instance, the entailment checking emp ` x::llB〈S〉
fails as the antecedent contains an empty heap. Then x::llB〈S〉 will be found to

strengthen the antecedent and validate the entailment emp ∗ x::llB〈S〉 ` x::llB〈S〉.
Compared with some previous works of abduction over the shape domain, such

as Calcagno et al. (2009) and our pure abduction in Chapter 4, the abduction de-

scribed here is more enhanced, as it tries to discover both shape and pure information

where applicable. Comparatively, the abduction in Calcagno et al. (2009) only works

on shape domain with the list segment predicate, and our pure abduction only finds

133

6.4. Enhanced Abduction Mechanism

pure constraints although it operates in a combined shape/pure domain.

An abduction σ1 ∗ [σ′] ¤ σ2 can also be written as σ1 ∗ [σ′] ¤ σ2 ∗ σ3, where σ′ is

the abduction result (the anti-frame), while σ3 is the frame part obtained with

entailment checking σ1 ∗ σ′ ` σ2 ∗ true. Its rules are exhibited in Figure 6.5.

σ 0 σ1 ∗ true σ1 ` σ ∗ σ′ σ ∗ σ′ ` σ1 ∗ σ2

σ ∗ [σ′] ¤ σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 ` σ1 ∗ σ′ or σ0 ∗ [σ′0] ¤ σ1 ∗ σ′ σ′′=XPure(σ′) σ ∧ σ′′ ` σ1 ∗ σ2

σ ∧ [σ′′] ¤ σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true
σ1 ∗ [σ′1] ¤ σ ∗ σ′ σ′′=XPure(σ′) σ ∧ σ′′ ` σ1 ∗ σ2

σ ∧ [σ′′] ¤ σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ ∗ σ1 0 false

σ ∗ [σ1] ¤ σ1 ∗ σ2

Figure 6.5: Abduction rules.

Our abduction deals with four different cases with their corresponding rules. The

first rule triggers when the LHS (σ) does not imply the RHS (σ1) but the RHS

implies the LHS with some formula (σ′) as the frame. This rule is quite general and

applies in many cases, such as the state immediately after an unknown call where

we start with emp as the heap state. For the example above emp 0 x::llB〈S〉, the

RHS can entail the LHS with frame x::llB〈S〉. The abduction then checks whether

σ plus the frame information σ′ implies σ1 ∗ σ2 for some σ2 (emp in this example),

and returns the result x::llB〈S〉.

In the case described by the second rule, neither side implies the other, e.g. for

134

6.4. Enhanced Abduction Mechanism

x::sllB〈S〉 as LHS (σ) and ∃p, u, v · x::Node〈u, p〉 ∗ p::Node〈v, null〉 as RHS (σ1).

As the shape predicates in the antecedent σ are formed by disjunctions accord-

ing to their definitions (like sllB), its certain disjunctive branches may imply σ1.

As the rule suggests, to accomplish abduction σ ∗ [σ′′] ¤ σ1 ∗ σ2, we first unfold

σ (σ0 ∈ unroll(σ)) and try entailment or further abduction with the results (σ0)

against σ1. If it succeeds with a frame σ′, then we first obtain a pure approx-

imation of σ′ with XPure (Nguyen et al., 2007), and confirm the abduction by

ensuring σ ∧ σ′′ ` σ1 ∗ σ2. For the example above, the abduction returns |S|=2 as

the anti-frame σ′ and discovers the nontrivial frame S={u, v} ∧ u≤v (σ2). Note the

function data no returns the number of object nodes in a state, e.g. it returns one

for x::Node〈v, p〉 ∗ p::llB〈T〉. The unroll unfolds all shape predicates once in σ, nor-

malises the result to a disjunctive form (
∨n

i=1 σi), and returns the result as a set of

formulae ({σ1, . . . , σn}). An instance is that it expands x::Node〈v, p〉 ∗ p::llB〈T〉 to

be {x::Node〈v, p〉∧p=null∧T=∅,∃u, q, T1 ·x::Node〈v, p〉∗p::Node〈u, q〉∗q::llB〈T1〉∧
T=T1∪{u}}. The XPure is a strengthened version of that in Nguyen et al. (2007),

as it also takes pure parts in σ′ and keeps them in the resulted pure constraints.

In the third rule, neither side entails the other, and the second rule does not apply,

for example ∃p, u, v·x::Node〈u, p〉∗p::Node〈v, null〉 as LHS (σ) and ∃S·x::sllB〈S〉 as

RHS (σ1). In this case the antecedent cannot be unfolded as they are already object

nodes. As the rule suggests, it reverses two sides of the entailment and applies the

second rule to uncover the constraints σ′1 and σ′. Then it checks that the LHS (σ),

with σ′ added, does imply the RHS (σ1) before it returns σ′. For the example above,

the abduction returns u≤v which is essential for the two nodes to form a sorted list

(σ1).

When an abduction is needed, the first three rules should be tried first; if they do

not succeed in finding a solution, then the last rule is invoked to simply add the

consequence to the antecedent, provided that they are consistent. It is effective for

135

6.5. Verification

situations like x::Node〈 , 〉 0 y::Node〈 , 〉, where we should add y::Node〈 , 〉 to the

LHS directly (since the other three rules do not apply here).

One observation on abduction is that there can be many solutions of the anti-frame

σ′ for the entailment σ1 ∗ σ′ ` σ2 ∗ true to succeed. For instance, false is always

a solution but should be avoided where possible. For all possible solutions to an

abduction, we can compare their “quality” with a partial order ¹ over SH defined

by the entailment relationship (`):

σ1 ¹ σ2 =df σ2 ` σ1 ∗ true

and the smaller (weaker) one in two abduction solutions is regarded as better. We

prefer to find solutions that are (potentially locally) minimal with respect to ¹
and consistent. However, such solutions are generally not easy to compute and

could incur excess cost (with additional disjunction in the analysis). Therefore, our

abductive inference is designed more from a practical perspective to discover anti-

frames that should be suitable as specifications for unknown procedures, and the

partial order¹ is used to guide the decision choices of our abduction implementation,

but not to find the theoretically best solution.

6.5 Verification

This section presents our algorithms to verify programs with unknown calls.

6.5.1 Main Verification Algorithm

Our main verification algorithm is given in Figure 6.6. It verifies an unknown block v

(the third parameter) against the given specifications mspecv (the second parameter).

136

6.5. Verification

The first parameter includes the specifications of already available procedures which

might be invoked as well as the unknown ones in the program to be verified. Upon

successful verification, this algorithm returns specifications that should be met by

the unknown procedures in v. If the verification fails, it suggests that the current

program cannot meet one or more given specifications due to a potential program

bug. The specifications for unknown procedures will be expressed in terms of special

variables a, b, etc. as in the earlier example.

The algorithm initialises in the first two lines. It distinguishes the body of the

unknown block v (as an unknown expression u in between two normal expressions

e1 and e2), sets up the set mspecu to store discovered specifications (line 1), and

finds the program variables that are potentially accessed by v and u, respectively

(prog var in line 2). Note that x0 and x are the variables read by v and u, and y0

and y are those mutated. For example, if v contains an assignment y = x then x

will be in x0 and y in y0.

After the initialisation, for each specification (requires Φpr ensures Φpo) to verify

against (line 3), the algorithm works in three steps. The first step is to compute

the preconditions of u (lines 4–7). It first conducts a symbolic execution from Φpr

over e1 (the program segment before u) to obtain its post-state, from which the

preconditions for u will be extracted (line 4). The symbolic execution is essentially

a forward analysis whose details are presented later. If the post-states include false,

then it means the given Φpr cannot guarantee e1’s memory safety, and thus fail is

returned (line 5). Otherwise, each post-state of e1 is processed by function Local

as a candidate precondition for u (line 7). Intuitively, it extracts the part of each

σ reachable from the variables that may be accessed by u, namely, x and y. The

function Local is defined as follows:

Local(∃z · κ ∧ π, {x}) =df ∃fv(σ) ∪ {z} \ ReachVar(κ ∧ π, {x}) ·
ReachHeap(κ ∧ π, {x}) ∧ π

137

6.5. Verification

Algorithm Verify(T ,mspecv, v)

1 Denote v as { e1; u; e2} ; mspecu := ∅

2 (x0, y0) := prog var(v) ; (x, y) := prog var(u)

3 foreach (requires Φpr ensures Φpo) ∈ mspecv do

4 S0 := |[e1]|T {Φpr ∧ y′
0=y0}

5 if false ∈ S0 then return fail endif

6 foreach σ ∈ S0 do

7 Φu
pr := Local(σ, {x, y})

8 z := fv(Φu
pr) \ {x, y}

9 S := |[e2]|AT {([b/y] Frame(σ, {x, y})∧x=a∧y=b∧z=c, emp∧x=a∧y=b∧z=c)}

10 S′ := { (σ, σ′) | (σ, σ′)∈S ∧ σ ` Φpo ∗ true } ∪
{ (σ ∗ σ′′, σ′ ∗ σ′′) | (σ, σ′)∈S ∧ σ 0 Φpo∗true ∧ σ∗[σ′′] ¤ Φpo∗true }

11 if ∃(σ, σ′)∈S′ . fv(σ′) * ReachVar(σ, {a, b}) then return (fail, σ′) endif

12 foreach (σ, σ′) ∈ S′ do

13 Φu
pr := [a/x, b/y, c/z] Φu

pr

14 Φu
po := sub alias(σ′, {a, b, c})

15 g := (fv(Φu
pr) ∩ fv(Φu

po)) \ {a, b}

16 mspecu := mspecu ∪ {(requires ∃(fv(Φu
pr)\(g ∪ {a, b})) · Φu

pr ensures Φu
po)}

17 end foreach

18 end foreach

19 end foreach

20 Tu := CaseAnalysis(T ,mspecu, u)

21 return T]Tu

end Algorithm

Figure 6.6: The main verification algorithm.

138

6.5. Verification

where fv(σ) stands for all free (program and logical) variables occurring in σ, and

ReachVar(κ ∧ π, {x}) is the minimal set of variables satisfying the following relation:

{x} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ∧π, {x}) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |
∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉 ∗ κ1)} ⊆ ReachVar(κ∧π, {x})

That is, it is composed of aliases of x as well as variables reachable from x. And

the formula ReachHeap(κ∧π, {x}) denotes the part of κ reachable from {x} and is

formally defined as the ∗-conjunction of the following set of formulae:

{κ1 | ∃z1, z2, κ2 · z1∈ReachVar(κ∧π, {x}) ∧ κ=κ1∗κ2 ∧ κ1=z1::c〈. . . , z2, . . .〉}

The second step is to discover the postconditions for u (lines 9–11). This is mainly

completed with another symbolic execution with abduction over e2 (line 9), whose

details are also introduced later. Here we denote u’s post-state as emp, since its

knowledge is not available yet. Therefore, the initial state for the symbolic execution

of e2 is simply the frame part of state not touched by u. The function Frame is

formally defined as

Frame(∃z · κ ∧ π, {x}) =df ∃z · UnreachHeap(κ ∧ π, {x}) ∧ π

where UnreachHeap(∃z · κ ∧ π, {x}) is the formula consisting of all ∗-conjuncts from

κ which are not in ReachHeap(∃z · κ ∧ π, {x}).

The conjunctions x=a ∧ y=b ∧ z=c in line 9 are to keep track of variable snapshot

accessed by u using the special variables a, b and c. Then the symbolic execution

returns a set S of pairs (σ, σ′) where σ is a possible post-state of e2 and σ′ records the

discovered effect of u. However, maybe u still has some effect that is only exposed

in the expected postcondition Φpo for the whole program; therefore we need to check

whether or not σ can establish Φpo. If not, another abduction σ∗[σ′′] ¤ Φpo is invoked

to discover further effect σ′′ which is then added into σ′.

139

6.5. Verification

There can still be some complication here. Note that the effect discovered during

e2’s symbolic execution may not be attributed all over to u; it is also possible that

there is a bug in the program, or the given specification is not sufficient. As a

consequence of that, the result σ′ returned by our abduction may contain more in-

formation than what can be expected from u, in which case we cannot simply regard

the whole σ′ as the postcondition of u. For example, consider the code fragment

unk(x); z=y.next with the precondition x::Node〈 , null〉. Before the assignment

(and dereference of y.next) we use abduction to get y::Node〈 , 〉. However, noting

the fact y/∈ReachVar(σ, {x}) where σ = emp∗y::Node〈 , 〉 is the state immediately

after the unknown call with the abduction result, we know that from the unknown

call’s parameters (x), y is not reachable, and hence the unknown call will never es-

tablish a state to satisfy y::Node〈 , 〉. In that case we are assured that the program

being verified cannot meet its given specification.

To detect such a situation, we introduce the check in line 11. It tests whether the

whole abduction result is reachable from variables accessed by u. If not, then the

unreachable part cannot be expected from u, which indicates a possible bug in the

program or some inconsistency between the program and its given specification. In

such cases, the algorithm returns an additional formula that can be used by a further

analysis to either identify the bug or strengthen the specification. Recall the example

presented in the previous paragraph: since y::Node〈 , 〉 cannot be established by

the unknown call, if we add it to the precondition of the code fragment (to form a

new precondition x::Node〈 , null〉 ∗ y::Node〈 , 〉), then the verification with the new

specification can move on and will potentially succeed.

The third step (lines 12–17) is to form the derived specifications for u in terms

of variables a, b and g. Here g denotes logical variables not explicitly accessed by

u, but occurring in both pre- and postconditions (ghost variables). The formula

sub alias(σ′, {a, b, c}) is obtained from σ′ by replacing all variables with their aliases

140

6.5. Verification

in {a, b, c}. It is defined as

sub alias(σ′, {x}) =df ({[x/x0] | x∈{x} ∧ x0∈aliases(σ′, x)} σ′)∧
∧ {x = x0 | x, x0∈{x} ∧ x0∈aliases(σ′, x)}

where a set of substitutions before a formula σ′ denotes the result of applying each

of those substitutions to σ′ (where the ordering is not important), and aliases(σ′, x)

returns all the aliases of x in σ′.

Finally, at line 20, the obtained specifications mspecu for u are passed to the case

analysis algorithm (given in Figure 6.7) to derive the specifications of unknown

procedures invoked in u.

6.5.2 Case Analysis Algorithm

In order to discover specifications for unknown procedures invoked in u, the algo-

rithm in Figure 6.7 conducts a case analysis according to the structure of u. In the

first case (line 2), u is simply a single unknown call. In this situation, the algorithm

returns all the pre-/postcondition pairs from mspecu as the unknown procedure’s

specifications.

In the second case (line 4), u is an if-conditional and both branches contain an

unknown block. The algorithm uses the main algorithm to verify the two branches

separately with preconditions Φpr∧x and Φpr∧¬x respectively, where Φpr is one of

the preconditions of the whole if. The results obtained from the two branches are

then combined using the] operator:

R1]R2 =df {(f, Refine(mspec1
f ∪mspec2

f)) | (f,mspec1
f)∈R1 ∧ (f,mspec2

f)∈R2}

where Refine is used to eliminate any specification (requires Φpr ensures Φpo) from

a set if there exists a “stronger” one (requires Φ′
pr ensures Φ′

po) such that Φ′
pr¹Φpr

141

6.5. Verification

Algorithm CaseAnalysis(T ,mspecu, u)

1 switch u

2 case unk(x; y)

3 return { (unk(x; y),mspecu)}

4 case if (x) v1 else v2

5 mspecT := {(requires Φpr∧x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

6 mspecF := {(requires Φpr∧¬x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

7 R1 := Verify(T ,mspecT , v1)

8 R2 := Verify(T ,mspecF , v2)

9 return R1]R2

10 case if (x) v else e

11 mspecT := {(requires Φpr∧x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

12 R := Verify(T ,mspecT , v)

13 if ∃(requires Φpr ensures Φpo) ∈ mspecu, σ ∈ |[e]|T {Φpr ∧ ¬x} ·
σ=false ∨ σ 0 Φpo∗true then return fail

14 else return R endif

15 case if (x) e else v (Similar to the previous case)

16 case while x { v} where ∆pr ∗→∆po

17 return Verify(T , requires ∆pr ensures ∆po, v)

18 case unk0(x0; y0) { ; ei; unki(xi; yi)}n
i=1

19 return { (unki(xi; yi), SeqUnkCalls(T ,mspecu, u))}n
i=0

end Algorithm

Figure 6.7: The case analysis algorithm.

142

6.5. Verification

and Φpo¹Φ′
po. It is defined as

Refine(∅) =df ∅
Refine({(requires Φpr ensures Φpo)} ∪ Spec) =df

if ∃(requires Φ′
pr ensures Φ′

po)∈Spec · Φ′
pr¹Φpr ∧ Φpo¹Φ′

po

then Refine(Spec) else {(requires Φpr ensures Φpo)} ∪ Refine(Spec)

and] is to refine the union of two specification sets.

The third and fourth cases (lines 10 and 15) are for if-conditionals which contain

only one unknown block in one of the two branches. This is handled in a similar

way as in the second case. The only difference is, for the branch without unknown

blocks, we need to verify it with the underlying semantics (line 13).

The fifth case is the while loop. As we assume that its specification (∆pr ∗→∆po)

is already given for verification in mspecu, we simply verify its body with the main

algorithm (line 17).

In the last case (line 21), where u consists of multiple unknown procedure calls in

sequence, another algorithm SeqUnkCalls is invoked to deal with it.

6.5.3 Verifying Sequential Unknown Calls

We provide a solution to the most complicated case (unknown procedure calls in

sequence) under a strong assumption, namely, we can find a common specification

to capture all these unknown procedures’ behaviours. First we illustrate the brief

idea using two sequential unknown procedure calls as an example, followed by the

general algorithm.

143

6.5. Verification

Suppose we have

{Φpr} {unk0(x0; y0); e; unk1(x1; y1)} {Φpo}

where e is the only known code fragment within the block. The algorithm works

in three steps. In the first step, it extracts the precondition for the first procedure,

say Φu
pr, from the given precondition Φpr by extracting the part of heap that may

be accessed by the call via x0 and y0, which is similar to the first step of the main

algorithm Verify. Aiming at a general specification for both unknown calls, it then

assumes that the second procedure has a similar precondition Φu
pr. In the second

step, it symbolically executes the code fragment e with the help of the abductor,

to discover a crude postcondition, say Φ0
po, expected from the first unknown call.

This is similar to the second step of the main algorithm Verify, except that the

postcondition for e is now assumed to be Φu
pr. In the third step, the algorithm takes

Φ0
po (with appropriate variable substitutions) as the postcondition of the second

unknown call, and checks whether or not the derived post (Φ0
po) satisfies Φpo. If not,

it invokes another abduction to strengthen Φ0
po to obtain the final postcondition Φu

po

for the unknown procedures. Note that this strengthening does not affect soundness:

the strengthened Φu
po can still be used as a general postcondition for both unknown

procedures.

Figure 6.8 and Figure 6.9 present the algorithm to infer specifications for n (n ≥ 2)

unknown calls in sequence.

As aforementioned, given a block of (n+1) unknown procedure calls with n pieces

of known code blocks sandwiched among them (unk0(x0; y0) {; ei; unki(xi; yi)}n
i=1

in line 1), and the specification (requires Φpr ensures Φpo) (line 3) for such a block,

our approach generally works in three steps: first, to compute a precondition for the

unknown calls; second, to verify each code fragment ei (i = 1, . . . , n) with abduction

to collect expected behaviour of the unknown calls (as part of their postcondition);

144

6.5. Verification

Algorithm SeqUnkCalls(T ,mspecu, u)

1 Denote u as unk0(x0; y0) {; ei; unki(xi; yi)}n
i=1

2 R := ∅

3 foreach (requries Φpr ensures Φpo) ∈ mspecu do

4 Φu
pr := Local(Φpr, {x0, y0})

5 z0 := fv(Φu
pr) \ {x0, y0}

6 Φu
pr := [a/x0, b/y0, c/z0]Φ

u
pr

7 S′0 := {(Φpr ∧ y0
′=y0, emp ∧ a=x0 ∧ b=y0 ∧ c=z0)}

8 for i := 1 to n do

9 Si := |[ei]|AT { (Φi−1
po ∗ [b/yi−1] Frame(σi−1, {xi−1, yi−1}), Φi−1

po) |
(σi−1, σ

′
i−1)∈S′i−1 ∧ Φi−1

po = ([xi−1/a, yi−1/b, zi−1/c] sub alias(

σ′i−1, {a, b, c})) ∧ a=xi−1 ∧ b=yi−1 ∧ c=zi−1} where zi−1 is fresh

10 S′i := {(σ, σ′) | (σ, σ′)∈Si ∧ ρσ ` ∃c · Φu
pr∗true} ∪ {(σ ∗ σ′′, σ′ ∗ σ′′) |

(σ, σ′)∈Si ∧ ρσ 0 ∃c · Φu
pr∗true ∧ ρσ∗[σ′′] ¤ ∃c · Φu

pr}
where ρ=[a/xi, b/yi]

11 if ∃(σ, σ′)∈S′i · fv(σ′) * ReachVar(σ, {a, b}) then return (fail, σ′) endif

12 end for

Figure 6.8: Algorithm for sequential unknown calls (part 1).

145

6.5. Verification

13 Sn+1 := { (Φn
po∗[b/yn]Frame(σn, {xn, yn}), Φn

po) | (σn, σ
′
n)∈S′n ∧

Φn
po = ([xn/a, yn/b, zn/c] sub alias(σ′n, {a, b, c})) ∧
a=xn ∧ b=yn ∧ c=zn} where zn is fresh

14 S′n+1 := {(σ, σ′) | (σ, σ′)∈Sn+1 ∧ σ ` Φpo∗true} ∪ {(σ ∗ σ′′, σ′ ∗ σ′′) |
(σ, σ′)∈Sn+1 ∧ σ 0 Φpo∗true ∧ σ∗[σ′′] ¤ Φpo}

15 if ∃(σ, σ′)∈S′n+1 · fv(σ′) * ReachVar(σ, {a, b}) then return (fail, σ′) endif

16 foreach (σ, σ′) ∈ S′n+1 do

17 Φu
po := sub alias(σ′, {a, b, c})

18 g := fv(Φu
pr) ∩ fv(Φu

po) \ {a, b}

19 R := Refine(R ∪ {(requires ∃fv(Φu
pr) \ (g ∪ {a, b}) · Φu

pr ensures Φu
po)})

20 end foreach

21 end foreach

22 return R

end Algorithm

Figure 6.9: Algorithm for sequential unknown calls (part 2).

146

6.5. Verification

third, to guarantee that the collected postcondition satisfies Φpo. If not, then another

abduction is conducted to strengthen the gained postcondition to ensure this.

The first step is completed by lines 4 to 6. The local part of Φpr is extracted w.r.t.

the first unknown call’s parameters x0 and y0. Other free variables are distinguished

as z0, which may be ghost variables. Finally the precondition is found in terms of

special logical variables a, b and c.

The second step is performed over each ei; unki(xi; yi). Its main idea is to take the

postcondition generated for the last unknown call (Φi−1
po), plus the frame part during

the entailment check against Φi−1
pr , as the post-state of unki−1(xi−1; yi−1), and try

to verify ei beginning with such a state, using abduction when necessary (line 9).

After the verification we get Si containing abstract states before unki(xi; yi), and we

want those states to satisfy its precondition Φu
pr subject to substitution. Note that

during the verification of ei and the last satisfaction checking we may use abduction

to strengthen the program state, whose results reflect the expected behaviour of

unki−1(xi−1; yi−1) and are accumulated as its expected postcondition. Hence we

achieve a sufficiently strong postcondition for each unknown call.

The third step is similar to the first algorithm: it checks whether the final abstract

state entails the postcondition of the whole block, and strengthens the final abstract

state with abduction if it cannot. Then the ghost variables are recognised and

processed analogously to the first algorithm. Finally the strongest specifications

discovered for those unknown procedures are returned.

Note that our current solution tries to find a common specification (requires Φpr

ensures Φpo) suitable for all the unknown procedures. Generally we may allow the

unknown procedures to have different specifications. In theory, this can be achieved

by a more in-depth analysis which examines the known code fragments in between

147

6.5. Verification

those unknown calls. That is, by analysing the code fragment ei we would hopefully

obtain a postcondition for the (i−1)-th procedure and a precondition for the i-th.

In the case of two unknown calls unk0(x0; y0); e1; unk1(x1; y1), the precondition for

unk0 and the postcondition for unk1 can be obtained as usual (by analysing the

code before unk0 and after unk1 respectively). To derive the postcondition Φ0
po

for unk0 and the precondition Φ1
pr for unk1, we initialise Φ0

po to be emp to start a

forward analysis over e1 with abduction, to accumulate (via abduction) the expected

behaviour of unk0 (for e1 to be verified) as Φ0
po, and extract a formula (which is

relevant to the footprint of unk1) from the abstract state at the end of e1 as Φ1
pr.

However, our initial experiments show that, unless the fragment e1 is sufficiently

complex to expose enough information expected from unk0, the derived Φ0
po and

Φ1
pr can be rather weak. As a consequence, the derived specification for unk0 can

be too weak (with a weak postcondition) and the one for unk1 can be too strong

(with a weak precondition). It remains an open problem how we might tune the

derived results to obtain more reasonable specifications. We conjecture that certain

heuristics might help and we will explore this further in our future work.

6.5.4 Abstract Semantics

As shown in the algorithms, we use two kinds of abstract semantics to analyse the

program: an underlying semantics and another semantics based on both the first

one and abduction to improve the postcondition of unknown calls.

Our underlying abstract semantics is generally similar as the one in Chapter 4 yet

with some subtle differences (such as procedure invocation). Its type is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains procedure specifications (extracted from the program Prog).

148

6.5. Verification

For some expression e, given its precondition, the semantics will calculate the post-

condition.

The foundation of the semantics is the basic transition functions from a conjunctive

abstract state (σ) to a conjunctive or disjunctive abstract state (σ or ∆) below:

unfold(x) : SH → PSH[x] Unfolding

exec(d[x]) : AllSpec → SH[x] → SH Heap-sensitive execution

exec(d) : AllSpec → SH → SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element

has x exposed as the head of an object node (x::c〈v〉), and PSH[x] contains all the

(disjunctive) abstract states, each of which is composed by such conjunctive states.

Here unfold(x) rearranges the symbolic heap so that the cell referred to by x is ex-

posed for access by heap sensitive commands d[x] via the second transition function

exec(d[x]). The third function defined for other (heap insensitive) commands d does

not require such exposure of x.

The unfolding function is defined by the following two rules:

isobj(c)

σ ` x::c〈v〉 ∗ σ′

unfold(x)σ Ã σ

isspred(c) σ ` x::c〈u〉 ∗ σ′

root::c〈v〉≡Φ

unfold(x)σ Ã σ′ ∗ [x/root, u/v]Φ

The test isobj(c) returns true only if c is an object node and isspred(c) returns true

only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w, or

free(x)) assumes that the rearrangement unfold(x) has been done prior to the exe-

149

6.5. Verification

cution:

isobj(c) σ ` x::c〈v1, . . . , vn〉 ∗ σ′

exec(x.fi)(T)σ Ã σ′ ∗ x::c〈v1, . . . , vn〉 ∧ res=vi

isobj(c) σ ` x::c〈v1, . . . , vn〉 ∗ σ′

exec(x.fi := w)(T)σ Ã σ′ ∗ x::c〈v1, . . . , vi−1, w, vi+1, . . . , vn〉
isobj(c) σ ` x::c〈u〉 ∗ σ′

exec(free(x))(T)σ Ã σ′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ Ã σ ∧ res=k exec(x)(T)σ Ã σ ∧ res=x

isobj(c)

exec(new c(v))(T)σ Ã σ ∗ res::c〈v〉

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]

m
i=1 ◦ [y′i/v

′
i]

n
i=1 ρl = [ri/y

′
i]

n
i=1 fresh logical ri

exec(mn(x1, . . . , xm; y1, . . . , yn))(T)σ Ã (ρlσ
′) ∗ (ρoΦpo)

Note that the first three rules deal with constant (k), variable (x) and object node

creation (new c(v)), respectively, while the last rule handles method invocation. In

the last rule, the call site is ensured to meet the precondition of mn, as signified by

σ ` ρΦpr ∗ σ′. In this case, the execution succeeds and the post-state of the method

call involves mn’s postcondition as signified by ρoΦpo.

A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨

σi =df

∨
(exec(d)(T)σi)

Based on the transition functions above, we can define the abstract semantics for a

150

6.5. Verification

program expression e as follows:

|[d[x]]|T ∆ =df exec†(d[x])(T) ◦ unfold†(x)∆

|[d]|T ∆ =df exec†(d)(T)∆

|[e1; e2]|T ∆ =df |[e2]|T ◦ |[e1]|T ∆

|[x := e]|T ∆ =df [x1/x
′, r1/res](|[e]|T ∆) ∧ x′=r1 fresh logical x1, r1

|[if (v) e1 else e2]|T ∆ =df (|[e1]|T (v∧∆)) ∨ (|[e2]|T (¬v∧∆))

∆ ` Φpr ∗ R
|[while x {e} where Φpr ∗→Φpo]|T ∆ =df R ∗ Φpo ∧ ¬x

Next we define the abstract semantics with abduction used in our analysis, whose

type is

|[e]|A : AllSpec → P(SH× SH) → P(SH× SH)

It takes a piece of program and a specification table, to map a (disjunctive) set of

pair of symbolic heaps to another such set (where the first in the pair is the current

state and the second is the abduction result).

This semantics also consists of the basic transition functions which compose the

atomic instructions’ semantics and then the program constructors’ semantics. Here

the basic transition functions are lifted as

Unfold(x)(σ, σ′) =df

let ∆=unfold(x)σ and S={(σ1, σ
′) |σ1 ∈ ∆}

in if (false /∈ ∆) then S

else if (∆ ` x=a for some a∈SVar) and

(σ′ 0 a::c〈y〉 ∗ true for fresh {y}⊆LVar)

then S ∪ {(σ1 ∗ x::c〈y〉, σ′ ∗ x::c〈y〉) |σ1 ∈ ∆}
else S ∪ {(false, σ′)}

Exec(ds)(σ, σ′) =df let σ1=exec(ds)σ in {(σ1, σ
′)}

where ds is either d[x] or d, except procedure call

151

6.5. Verification

In the definition of Unfold we view ∆ as a disjunctive set of conjunctive formulae,

and mean by σ ∈ ∆ that σ is one branch of ∆. Meanwhile SVar is a set of special

logical variables used to record the program’s footprint. In the definition of Exec we

need special treatment for instructions that may alter variable values, say procedure

call. As can be seen in the rule below, when a call-by-reference variable y is assigned

to a new value after the call, the original value is still preserved with a substitution

ρ = [y0/y] where y0 is fresh. Doing this allows us to keep the connection among the

history values of a variable and its latest value, which may be essential as a link

from the unknown procedure’s postcondition to its caller’s postcondition.

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ1 and σ′1=emp, or σ ∗ [σ′1] ¤ ρΦpr ∗ σ1

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]

m
i=1 ◦ [y′i/v

′
i]

n
i=1 ρl = [ri/y

′
i]

n
i=1 fresh logical ri

Exec(mn(x1, .., xm; y1, .., yn))(T)(σ, σ′) Ã {(σ2, ρo(σ
′ ∗ σ′1)) |σ2 ∈ (ρlσ1)∗(ρoΦpo)}

A similar lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x){(σi, σ
′
i)} =df

⋃
(Unfold(x)(σi, σ

′
i))

Exec†(ds)(T){(σi, σ
′
i)} =df

⋃
(Exec(ds)(T)(σi, σ

′
i))

Based on the above transition functions, the abstract semantics with abduction is

as follows:

|[d[x]]|AT {(σ, σ′)} =df Exec†(d[x])(T) ◦ Unfold†(x){(σ, σ′)}
|[d]|AT {(σ, σ′)} =df Exec†(d)(T){(σ, σ′)}
|[e1; e2]|AT {(σ, σ′)} =df |[e2]|AT ◦ |[e1]|AT {(σ, σ′)}
|[if (v) e1 else e2]|AT {(σ, σ′)} =df (|[e1]|AT {(v∧σ, σ′)}) ∪ (|[e2]|AT {(¬v∧σ, σ′)})

|[e]|AT {(σ, σ′)} = {(σ1, σ
′
1)} ρ = [x1/x

′, r1/res] fresh logical x1, r1

|[x := e]|AT {(σ, σ′)} =df {((ρσ1) ∧ x′=r1, ρσ′1)}
σ ` Φpr ∗ σR and σ′1=emp, or σ ∗ [σ′1] ¤ Φpr ∗ σR for each (σ, σ′)

|[while x {e} where Φpr ∗→Φpo]|T {(σ, σ′)} =df {(σR ∗ σpo ∧ ¬x, σ′ ∗ σ′1) |σpo∈Φpo}
which is used in both the first and the third verification algorithms.

152

6.5. Verification

6.5.5 Soundness

Informally, in the presence of unknown procedure calls, the soundness of the veri-

fication signifies that, a program is successfully verified against its specifications, if

all the unknown procedures that it invokes conform to the specifications discovered

by the verification algorithm. Therefore, the correctness of the program depends on

a (possible) further verification for the unknown procedures. It can be defined as

follows:

Definition 6.5.1 (Soundness) Suppose that for specification table T , program to

be verified v = {e1; u; e2} and its specifications mspecv, our verification succeeds and

returns Tu as the specification table for unknown procedures invoked in v. We say

our verification is sound, if the following holds:

∀σ ∈ |[e1; u; e2]|T]TU
([x0/a, y0/b]Φpr) · σ ` [x0/a, y0/b, y′

0/b
′]Φpo ∗ true

which means that, with respect to the underlying semantics, if all the unknown pro-

cedures can be verified to satisfy their specifications in Tu, then the whole program v

should meet all the specifications in mspecv.

The soundness of our verification algorithm is guaranteed with several aspects: the

soundness of the entailment checking, the soundness of our abduction, and the

soundness of our abstract semantics. The proof for entailment checking is by struc-

tural induction over abstract domain (Nguyen et al., 2007). For abduction, as its

rules show, the abduction result σ′ is always checked together with the antecedent

σ such that they can entail the consequence, and hence its soundness follows that

of entailment checking’s. Finally, the soundness of abstract semantics is proven by

induction over program constructors. Therefore we have

Theorem 6.5.2 (Soundness) Our verification of programs with partially available

code is sound.

153

6.6. Summary

Detailed proof can be found in Appendix A.

6.6 Summary

It is a both practical and challenging problem to verify both memory safety and func-

tional correctness of heap-manipulating imperative programs with unknown proce-

dure calls. We propose an approach to solving it by inferring expected specifications

for unknown procedures from their calling contexts. Then the program is proven

correct on condition that the invoked unknown procedures meet the inferred specifi-

cations. We employ a forward program analysis over a combined domain and invent

a novel abduction for it to synthesise the specifications of the unknown procedure.

As a proof of concept, we have also implemented a system to test the viability of

the proposed approach, whose results will be discussed in the next chapter. Our

main future work is to explore more general solution for unknown calls in sequence

to achieve more reasonable specifications for them.

154

Chapter 7

Experiments and Evaluation

This chapter presents the experimental results from the systems we implemented as

a proof of theory, and the evaluations of this thesis’ work according to the criteria

proposed in Chapter 1.

7.1 Experimental Results

7.1.1 Partial Specification Refinement

We have implemented a verification system with Objective Caml to evaluate our ap-

proach to partial specification refinement. Our experimental results were achieved

with an Intel Core 2 CPU 2.66GHz with 8Gb RAM. The four columns in Table 7.1

and Table 7.2 describe respectively the analysed programs, the analysis time in sec-

onds, and the methods’ (given and inferred) preconditions and postconditions. All

formulae with a grey background are inferred by our analysis. For some programs,

155

7.1. Experimental Results

Prog. Time Pre Post

create∗

0.379 emp ∧ n≥0 res::llB〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
1.752 emp ∧ n≥0 res::dllB〈r,S〉∧ n=|S|∧∀v∈S·1≤v≤n
0.954 emp ∧ n≥0 res::sllB2〈S〉∧ n=|S|∧∀v∈S·1≤v≤n

sort ∗

insert

0.591 x::ll〈n〉 ∧ n≥1 x::ll〈m〉 ∧ m=n+1

0.789 x::dll〈p, n〉 ∧ n≥1 x::dll〈q, m〉 ∧ n≥1 ∧ m=n+1 ∧ p=q

0.504 x::sll〈n, xs, xl〉∧ v≥xs x::sll〈m, mn, mx〉 ∧ xs=mn∧
mx=max(xl,v)∧m=n+1

tail

insert

0.566 x::ll〈n〉 ∧ n≥1 x::ll〈m〉 ∧ m=n+1

0.628 x::sll〈n, xs, xl〉∧ v≥xl x::sll〈m, mn, mx〉 ∧ v=mx∧
mn=xs ∧ m=n+1

rand ∗

insert

0.522 x::ll〈n〉 ∧ n≥1 x::ll〈m〉 ∧ m=n+1

0.830 x::dll〈p, n〉 ∧ n≥1 x::dll〈q, m〉 ∧ m=n+1 ∧ p=q

— x::sll〈n, xs, xl〉∧ (fail) x::sll〈m, mn, mx〉∧ (fail)

delete
0.630 x::llB〈S〉 ∧ |S|≥2 x::llB〈T〉 ∧ ∃a.S=Tt{a}
1.024 x::sllB〈S〉 ∧ |S|≥2 x::sllB〈T〉 ∧ ∃a.S=Tt{a}

delete 1.252 x::dllB〈p, S〉 ∧ |S|≥2 x::dllB〈q, T〉 ∧ ∃a.S=Tt{a} ∧ p=q

travrs

0.296 x::ll〈m〉∧ n≥0∧m≥n x::ls〈p, k〉 ∗ res::ll〈r〉 ∧ p=res∧
k=n ∧ m=n+r

2.205 x::sllB〈S〉 ∧ n≥0∧|S|≥n
x::slsB〈p, T〉 ∗ res::sllB〈S2〉∧ p=res

∧|T|=n∧S=TtS2∧∀u∈T,v∈S2·u≤v

append∗

0.512 x::ll〈xn〉∗y::ll〈yn〉∧ xn≥1 x::ll〈m〉 ∧ m=xn+yn

0.660
x::dll〈xp, xn〉 ∗
y::dll〈yp, yn〉 ∧ xn≥1

x::dll〈q, m〉 ∧ m=xn+yn ∧ q=xp

0.948
x::sll〈xn, xs, xl〉∧ xl≤ys
∗ y::sll〈yn, ys, yl〉

x::sll〈m, rs, rl〉 ∧ yl=rl∧
m≥1+yn ∧ m=xn+yn

dispatch3 0.786 lst::ll2〈n, s〉 gtl′::ll2〈n1,s1〉∗ltl′::ll2〈n2,s2〉∧ n=

n1+n2∧s=s1+s2∧s1≥3n1∧s2<3n2+1

Table 7.1: Experimental results for list-processing programs.

156

7.1. Experimental Results

Prog. Time Pre Post

travrs 0.532 x::bt〈S, h〉 x::bt〈T, k〉 ∧ S=T ∧ h=k

count 0.709 x::bt〈S, h〉 x::bt〈T, k〉 ∧ res=|S| ∧ S=T ∧ h=k

height 0.913 x::bt〈S, h〉 x::bt〈T, k〉 ∧ res=h=k ∧ S=T

insert 1.276 x::bt〈S, h〉 ∧ |S|≥1 ∧ h≥1 x::bt〈T, k〉 ∧ T=St{v} ∧ h≤k≤h+1

delete 0.970 x::bt〈S, h〉 ∧ |S|≥2 ∧ h≥2 x::bt〈T, k〉∧ ∃a·S=Tt{a}∧h−1≤k≤h

search 1.583 x::bst〈sm, lg〉 x::bst〈mn, mx〉 ∧ sm=mn ∧ lg=mx∧
0≤res≤1

bst

insert
1.720 x::bst〈sm, lg〉

x::bst〈mn, mx〉 ∧ (v<sm∧v=mn∧
lg=mx ∨ lg<v∧v=mx∧sm=mn∨
sm=mn∧lg=mx)

avl ins 11.12 x::avl〈S, h〉 res::avl〈T, k〉∧ T=St{v}∧h≤k≤h+1

sdl2nbt 5.826
x::sdlB〈p,q,S〉∧ |S|≥1∧
p=null ∧ q=tail

res::nbt〈T〉 ∧ T=S

Table 7.2: Experimental results for tree-processing programs.

we have verified them with different pre/post shape templates. Programs with star

∗ have different versions for various data structures.

The results highlight the refinement of both pre- and postconditions based on user-

provided shape specifications, even for complicated data structure such as AVL trees.

Firstly, our approach can compute non-trivial pure constraints for postcondition.

For example, the program create’s code is listed as follows:

Node create(int n) {

if (n == 0) return null;

else {

Node r = create(n - 1);

return new Node(n, r);

}

157

7.1. Experimental Results

}

After the refinement we obtain the value range in the created list (between one and

n). For delete which removes a random node from the list, we know the content of

the result list is subsumed by that of the input list. For a sample program dispatch3

from Bouajjani et al. (2010) which divides a list into two lists where one only con-

tain values no less than three and the other less than three, we obtain a detailed

quantitative relationship n=n1+n2∧s=s1+s2∧s1≥3n1∧s2<3n2+1. For list-sorting

algorithms, we confirm the content of the output is the same as that of the input.

For tree-processing programs (insert, delete and avl ins), we obtain that the

height difference between the input and output trees is at most one. Meanwhile, we

can calculate non-trivial requirements in precondition for memory safety or func-

tional correctness. For many programs we can get the constraints for precondition

such that the input list/tree should have at least one (or two) nodes for the sake of

memory safety. A more interesting example is the travrs method which takes in a

list with length m and an integer n and then traverses towards the tail of the list for

n steps:

Node travrs(Node x, int n) {

if (n == 0) return x;

else return travrs(x.next, n - 1);

}

For this program, the analysis discovers m≥n in the precondition to ensure memory

safety. Another example is the append method concatenating two sorted lists into

one:

void append(Node x, Node y) {

158

7.1. Experimental Results

Node w = x.next;

if (w == null) x.next = y;

else append(w, y);

}

To ensure that the result list is sorted, the analysis figures out that the minimum

value in the second list must be no less than the maximum value in the first list.

Without those discovered constraints the program will either cause memory violation

or cannot meet the specification.

A second highlight is our flexibility by supporting multiple predicates. Our analysis

tries to refine different specifications for the same program at various correctness lev-

els (with different predicates), for instance sort insert, tail insert and append.

For rand insert, which inserts a node into a random place (after the head) of a

list, we confirm that the list’s length is increased by one, but cannot verify the list

is kept sorted if it was before the insertion, as the result indicates.

We have also tried our approach over part of the FreeRTOS kernel (Barry, 2006). For

its list processing programs list.h and list.c (472 lines with intensive manipulation

over composite sorted doubly-linked lists) it took 2.85 seconds for our system to

refine all the specifications given for the main functions, which further confirms the

viability of our approach.

159

7.1. Experimental Results

Prog. Time Pre Post

create (main) emp ∧ n≥0 res::sllB2〈S〉∧ n=|S|∧∀v∈S·1≤v≤n
alloc 0.214 emp res::Node〈n, r〉

travrs (main) x::sllB〈S〉 ∧ n≥0∧|S|≥n
x::slsB〈p, T〉 ∗ res::sllB〈S2〉∧ p=res

∧|T|=n∧S=TtS2∧∀u∈T,v∈S2·u≤v

next 0.135 x::sllB〈S〉 ∧ |S|≥0 x::Node〈v, res〉 ∗ res::sllB〈S1〉 ∧
S={v}tS1

append (main) x::ll〈xn〉∗y::ll〈yn〉∧ xn≥1 x::ll〈m〉 ∧ m=xn+yn

travrs 0.619 x::ll〈n〉 ∧ n≥1 x::ls〈res, m〉 ∗ res::Node〈v, null〉
Sorting (main) x::llB〈S〉 ∧ |S|≥1 res::sllB〈T〉 ∧ T=S (‡)
merge 4.107 x::sllB〈Sx〉 ∗ y::sllB〈Sy〉 res::sllB〈T〉 ∧ T=SxtSy
flatten 2.693 x::bstB〈S〉 res::sllB〈T〉 ∧ T=S

insert 0.824 r::sllB〈S〉 ∗ x::Node〈v, 〉 res::sllB〈T〉 ∧ T=St{v}

Table 7.3: Experimental results for list-processing programs.

7.1.2 Specification Synthesis for Auxiliary Methods

and Loops

For specification synthesis, we have extended the system in the previous section for

evaluation purpose. Our experimental results were achieved with the same hard-

ware environment. The four columns in Table 7.3 describe respectively the analysed

programs, the analysis time in seconds, and the methods’ (given and inferred) pre-

conditions and postconditions. The programs whose names have (main) denote the

primary procedures (without a timing report as most of them are already shown

in the previous section). The programs with time information exhibit the auxil-

iary procedures whose specifications are wholly synthesised and inferred (as their

background is totally grey).

For the experimental results, it can be seen that our approach effectively reduces

160

7.1. Experimental Results

Prog. Time Pre Post

bst

insert
(main) x::bst〈sm, lg〉

x::bst〈mn, mx〉 ∧ (v<sm∧v=mn∧
lg=mx ∨ lg<v∧v=mx∧sm=mn∨
sm=mn∧lg=mx)

alloc 0.255 emp res::Node2〈v, null, null〉
avl ins (main) x::avl〈S, h〉 res::avl〈T, k〉∧ T=St{v}∧h≤k≤h+1

height 0.775 x::avl〈S, h〉 x::avl〈T, k〉 ∧ T=S ∧ h=k=res

sdl2nbt (main)
x::sdlB〈p,q,S〉∧ |S|≥1∧
p=null ∧ q=tail

res::nbt〈T〉 ∧ T=S

loop1 0.496

head::sdlB〈p,q,S〉∧
p=null ∧ q=tail∧
head=root=end

head::sdlB〈null, q, Sh〉 ∧ end=tail∗
root::sdlB〈p, tail, Sr〉 ∧ S=ShtSr∧
(∀x∈Sh, y∈Sr·x≤y) ∧ 0≤|Sh|−|Sr|≤1

Table 7.4: Experimental results for tree-processing programs.

user annotations by synthesising specifications for auxiliary methods, given raw

specifications of primary methods. For example, we have manually set some of the

instructions in the programs in the previous section as auxiliary procedures and tried

to generate their specifications, such as alloc, next and travrs in list-processing

programs and alloc for bst insert. For new test suites, we have analysed a number

of list-sorting algorithms with at least one auxiliary method each. Note that all the

list-sorting algorithms have the same specification for their primary methods (line ‡),
while the annotations found by our approach for auxiliary methods are diverse (the

grey lines below ‡). From the automatically derived specifications, we can see that

the auxiliary method merge for merge sort merges two sorted lists into one, and the

auxiliary method flatten for tree sort flattens a binary search tree into a sorted

list. As another example, avl ins also has some auxiliary (recursive) methods such

as calculation of tree’s height and double rotation, which are automatically analysed

as well.

One observation over the experimental results is that some of the derived specifica-

161

7.1. Experimental Results

tions are quite complex if written by hand, for example loop1. If we require users

to provide these specifications for auxiliary methods (even shape-only), it is still

quite tedious and error-prone. On the contrary, the users now have the option to

leave such work for our system, which witnesses the value of our improvement of the

verification process.

7.1.3 Verification of Programs with Unknown Components

For the verification of program with unknown components, we have implemented the

verification algorithms and the abstract semantics with Objective Caml and eval-

uated them over some heap-manipulating programs. The results are in Table 7.5,

Table 7.6, Table 7.7, Table 7.8 and Table 7.9. In each table, the first and sec-

ond columns denote the programs used for evaluation and their time consumption,

respectively. During the experiments, we manually hide some instructions in the

original programs as calls to unknown procedures, whose specifications we try to

discover during the verification process. Accordingly, the third column in the first

two tables contain both the specifications of the programs to be verified (upper line),

and the derived specifications for the unknown procedure (lower line). For the third

table, as we use the same specification x::llB〈S〉 ∗→ res::sllB〈T〉∧T=S to verify all

the sorting algorithms, the third column (from the second line on) states the discov-

ered specification for the unknown call only. Similar as previous examples, some of

the programs with the same name have different versions, say, the ones processing

(sorted) singly-linked lists (ll and sll) are different from their counterparts for

doubly-linked lists (dll).

It can be seen that all programs are successfully verified, with some obligations on

the unknown calls discovered. We note down two observations on the experimental

results. The first is that the discovered specifications for the unknown procedures

162

7.1. Experimental Results

Prog. Time Main spec. (Φpr ∗→Φpo) & Derived unknown spec. (Φu
pr ∗→Φu

po)

create∗

0.405
emp ∧ n≥0 ∗→ res::llB〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
emp ∧ a≥1 ∗→ res::Node〈c, b〉 ∧ 1≤c≤n

1.895
emp ∧ n≥0 ∗→ res::dllB〈rp, S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
emp ∧ a≥1 ∗→ res::Node2〈c, d, b〉 ∧ 1≤c≤n

1.020
emp ∧ n≥0 ∗→ res::sllB2〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
emp ∧ a≥1 ∗→ res::Node〈c, b〉 ∧ a−1≤c≤a

sort ∗

insert

0.667
x::ll〈n〉 ∧ n≥1 ∗→ x::ll〈m〉 ∧ m=n+1

a::Node〈b, c〉 ∗ c::ll〈d〉 ∗→ a::Node〈b, e〉 ∗ e::ll〈d+1〉

0.842
x::dll〈p, n〉 ∧ n≥1 ∗→ x::dll〈q, m〉 ∧ n≥1 ∧ m=n+1 ∧ p=q

a::Node2〈b, g, c〉 ∗ c::dll〈a, d〉 ∗→ a::Node2〈b, g, e〉 ∗ e::dll〈a, d+1〉

0.764

x::sll〈n,xs,xl〉 ∧ v≥xs ∗→
x::sll〈n+1,mn,mx〉 ∧ mn=xs ∧ mx=max(xl,v)

a::Node〈b,c〉∗c::sll〈d,g,h〉∧b≤f≤g ∗→ a::Node〈b,e〉∗e::sll〈d+1,f,h〉

tail

insert

0.498
x::ll〈n〉 ∧ n≥1 ∗→ x::ll〈m〉 ∧ m=n+1

a::Node〈b, null〉 ∗→ a::ll〈2〉

0.627

x::sll〈n, xs, xl〉 ∧ v≥xl ∗→
x::sll〈m, mn, mx〉 ∧ v=mx ∧ mn=xs ∧ m=n+1

a::Node〈b, null〉 ∧ b≤c ∗→ a::sll〈2, b, c〉

rand ∗

insert

0.514
x::ll〈n〉 ∧ n≥1 ∗→ x::ll〈m〉 ∧ m=n+1

a::Node〈b, c〉 ∗ c::ll〈d〉 ∗→ a::Node〈b, e〉 ∗ e::ll〈d+1〉

0.697
x::dll〈p, n〉 ∧ n≥1 ∗→ x::dll〈q, m〉 ∧ m=n+1 ∧ p=q

a::Node2〈b, g, c〉 ∗ c::dll〈a, d〉 ∗→ a::Node2〈b, g, e〉 ∗ e::dll〈a, d+1〉

Table 7.5: Experimental results (lists, part 1).

163

7.1. Experimental Results

Prog. Time Main spec. (Φpr ∗→Φpo) and Derived unknown spec. (Φu
pr ∗→Φu

po)

delete∗

0.646
x::llB〈S〉 ∧ |S|≥2 ∗→ x::llB〈T〉 ∧ ∃a·S=Tt{a}
a::Node〈b, c〉 ∗ c::Node〈d, e〉 ∗ e::llB〈E〉 ∗→ a::Node〈b, e〉 ∗ e::llB〈E〉

0.916

x::sllB〈S〉 ∧ |S|≥2 ∗→ x::sllB〈T〉 ∧ ∃a·S=Tt{a}
a::Node〈b, c〉 ∗ c::Node〈d, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤d≤f ∗→
a::Node〈b, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤f

1.430

x::dllB〈p, S〉 ∧ |S|≥2 ∗→ x::dllB〈q, T〉 ∧ ∃a·S=Tt{a} ∧ p=q

a::Node2〈b, f, c〉 ∗ c::Node〈d, a, e〉 ∗ e::dllB〈c, E〉 ∗→
a::Node〈b, f, e〉 ∗ e::dllB〈a, E〉

append

0.523
x::ll〈xn〉 ∗ y::ll〈yn〉 ∧ xn≥1 ∗→ x::ll〈m〉 ∧ m=xn+yn

a::ll〈b〉 ∗→ a::ls〈res, c〉 ∗ res::ll〈d〉 ∧ b=c+d

0.861

x::sll〈xn, xs, xl〉 ∗ y::sll〈yn, ys, yl〉 ∧ xl≤ys ∗→
x::sll〈m, rs, rl〉 ∧ yl=rl ∧ m≥1+yn ∧ m=xn+yn

a::sllB〈A〉 ∗→ a::slsB〈A1〉 ∗ res::sllB〈R〉 ∧ A=A1tR ∧ ∀b∈A1,c∈R·b≤c

Table 7.6: Experimental results (lists, part 2).

are usually more general than what we expect. Bear in mind that we have replaced

some instructions from those programs with unknown calls. We have compared the

inferred specifications for those unknown calls with the original instructions. The re-

sults show that the specifications derived by our algorithm not only fully capture the

behaviours of those instructions, but also suggest other possible implementations.

A case in point is list’s append:

void append(Node x, Node y) {

Node w = unknown(x);

if (w.next == null) w.next = y;

else append(w.next, y);

}

As can be seen in the code, its “unknown call” was originally an evaluation of x.

164

7.1. Experimental Results

Prog. Time Main spec. (Φpr ∗→Φpo) and Derived unknown spec. (Φu
pr ∗→Φu

po)

Binary tree processing programs

travrs 0.417

x::bt〈S, h〉 ∗→ x::bt〈T, k〉 ∧ S=T ∧ h=k

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, d′, e′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1, or

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, e′, d′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1

count 0.705

x::bt〈S, h〉 ∗→ x::bt〈T, k〉 ∧ res=|S| ∧ S=T ∧ h=k

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, d′, e′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1, or

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, e′, d′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1

height 0.821

x::bt〈S, h〉 ∗→ x::bt〈T, k〉 ∧ res=h=k ∧ S=T

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, d′, e′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1, or

a::bt〈A, b〉 ∧ a6=null ∗→ a::Node2〈c, e′, d′〉 ∗ d′::bt〈D, f〉 ∗ e′::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1

insert 1.354
x::bt〈S, h〉 ∧ |S|≥1 ∧ h≥1 ∗→ x::bt〈T, k〉 ∧ T=St{v} ∧ h≤k≤h+1

a::Node2〈b, null, null〉 ∗→ a::bt〈A, 2〉 ∧ A={b, c}

delete 1.019

x::bt〈S, h〉 ∧ |S|≥2 ∧ h≥2 ∗→ x::bt〈T, k〉 ∧ ∃a · S=Tt{a} ∧ h−1≤k≤h
a::Node2〈b,c,null〉∗c::Node2〈d,null,null〉 ∗→ a::Node2〈b,null,null〉, &

a::Node2〈b,null,c〉∗c::Node2〈d,null,null〉 ∗→ a::Node2〈b,null,null〉

Table 7.7: Experimental results (trees, part 1).

165

7.1. Experimental Results

Prog. Time Main spec. (Φpr ∗→Φpo) and Derived unknown spec. (Φu
pr ∗→Φu

po)

Binary search tree and AVL tree processing programs

search 1.851
x::bst〈sm, lg〉 ∗→ x::bst〈mn, mx〉 ∧ sm=mn ∧ lg=mx ∧ 0≤res≤1
a::bst〈b, c〉∧a6=null ∗→ a::Node2〈d, e′, f′〉∗e′::bst〈b, g〉∗f′::bst〈h, c〉∧g≤d≤h

bst

insert
1.822

x::bst〈sm, lg〉 ∗→ x::bst〈mn, mx〉 ∧ (v<sm∧v=mn∧lg=mx∨
lg<v∧v=mx∧sm=mn ∨ sm=mn∧lg=mx)

a::Node2〈b, null, c〉 ∗ c::bst〈d, e〉 ∧ f<b<d ∗→ a::bst〈f, e〉, and

a::Node2〈b, c, null〉 ∗ c::bst〈d, e〉 ∧ e<b<f ∗→ a::bst〈d, f〉

avl ins 5.202
x::avl〈S, h〉 ∗→ res::avl〈T, k〉 ∧ T=St{v} ∧ h≤k≤h+1

a::avl〈A, b〉 ∗→ a::avl〈A, b〉 ∧ res=b

sdl2nbt 5.238

x::sdlB〈p,q,S〉 ∧ |S|≥1 ∧ p=null ∧ q=tail ∗→ res::nbt〈T〉 ∧ T=S

a::sdlB〈null, c, A〉 ∧ a=b=d ∗→ a::sdlB〈null, b, A1〉 ∗ b::sdlB〈e, c, B〉 ∧
d=c ∧ A=A1tB ∧ (∀f∈A1, g∈B·f≤g) ∧ 0≤|B|−|A1|≤1

Table 7.8: Experimental results (trees, part 2).

Armed with list segment predicates and corresponding lemmas, we are able to infer

that the unknown call may actually traverse the list for arbitrary number of nodes,

provided it does not go beyond the list’s tail. To conclude, our verification always

tries its best to find a sound (with respect to the program being verified) and general

(with respect to the unknown call) specification for unknown procedures invoked.

The second observation is that the precision of specifications discovered for unknown

procedures depends on their callers’ given specification. As can be seen we have

verified several list-processing programs where each one has various specifications.

Within these programs we want to point out that the ones with specifications of

both normal lists and sorted lists share the same code (but just with two different

specifications). Such examples include create, sort insert, delete, and so on.

For create, it creates a list containing numbers from 1 to n in descending order:

Node create(int n) {

166

7.2. Evaluation

Prog. Time Main spec. (Φpr ∗→Φpo) or Derived unknown spec. (Φu
pr ∗→Φu

po)

Sorting (main) x::llB〈S〉 ∗→ res::sllB〈T〉 ∧ T=S

merge 4.099 a::sllB〈A〉 ∗ b::sllB〈B〉 ∗→ res::sllB〈R〉 ∧ R=AtB
flatten 2.680 a::bstB〈A〉 ∗→ res::sllB〈R〉 ∧ R=A

insert 1.667 a::sllB〈A〉 ∗ b::Node〈c, d〉 ∗→ res::sllB〈R〉 ∧ R=At{c}
unknown 1.824 a::llB〈A〉∧a6=null ∗→ res::Node〈c, b〉∗b::llB〈B〉∧A={c}tB∧∀d∈B·c≤d

Table 7.9: Experimental results (sorting).

if (n == 0) return null;

else {

Node r = create(n - 1);

Node s = unknown(n, r);

return s;

}

}

We can see from this program that once incorporated with llB as specification

predicates, the unknown call is expected to return a node whose value c is within

1 to n. Comparatively, when verified for sortedness, c is inferred to be between

a−1 and a, as for sortedness to hold. For delete’s sorted version, we also have the

extra information that the list with one node removed is still a sorted list (with the

multiset value constraints), whose result is stronger than the normal list version.

7.2 Evaluation

The main contribution of this thesis consists of mechanisms for program verification

based on only partial information (either specifications or program code). The miss-

167

7.2. Evaluation

ing part of information is inferred with some program analysis techniques making

use of information available to the verifier. Our verification system captures program

properties over a combined domain of both structural properties and quantitative/-

content features, for which we have exploited new techniques such as fixed-point

calculation and abductive reasoning over the combined domain. We now evaluate

such contributions against the criteria set out in Chapter 1 as follows.

• For the first objective to allow users to provide only partial specifi-

cations for verification, in order to reduce the amount of annotations

provided by users, we provide a specification refinement framework

to enable the verifier to accept partial specifications. Under our frame-

work, users are asked to provide only shape information about data structures

but not the information on numerical/content part. Our verifier takes over

the rest of the work to refine the specification by inferring the missing part

with an analysis of the program, such that the specification becomes sound

with respect to the program being verified. To achieve this, we design a fixed-

point computation process for the various program properties which we are

interested in. With the help of entailment checking (Chin et al., 2010), the

proposed process reduces the fixed-point computation over the combined do-

main down to the fixed-point calculation over a traditional numerical/content

domain which we could deal with existing theorem provers. Meanwhile, for

the unsoundness brought in by the incomplete specifications, we develop an

abductive reasoning to discover the missing constraints and complete such

specifications.

• Meanwhile, for the first objective, we still stride one step further to

reduce even more user-provided specifications by designing a mech-

anism to infer auxiliary methods’ specifications, such that we can

verify such methods without annotations. In such situation where the

168

7.2. Evaluation

methods of a program are divided into primary and auxiliary ones, users may

choose to provide partial specifications only for the primary methods. Then

we try to infer specifications for the remaining auxiliary methods that the

primary methods invoke to allow the verification to continue. The technical

contributions include specification synthesis (based on the prior point) and its

induced flexible user-guided verification.

• For the second objective to verify partially available programs with

unknown components, we develop a framework to discover necessary

obligations for those unknown components. When the program code is

only partially available because of the unknown components, we propose a

novel verification framework by inferring a specification for its unknown part

from the program contexts, such that the problem of verifying the whole pro-

gram can be safely reduced to the problem of proving that the unknown part

(once its code is available) meets the derived specification. The expected spec-

ification for the unknown program part is automatically calculated using an

abduction-based shape analysis specifically designed for our combined domain.

Meanwhile this approach is essentially top-down, as it can be used to infer the

specification for callee procedures based on the specification for the caller pro-

cedure. Hence it may benefit the general software development process as a

complement for current bottom-up approaches to verification (Nguyen et al.,

2007; Calcagno et al., 2009).

• For the third objective of experiments over heap-manipulating pro-

grams, we have accomplished them with the results presented earlier

in this chapter. From the results it can be seen that all three approaches

that we have developed can successfully verify those programs which are cor-

rect according to given specifications, and report failures for the programs

which will never meet the specifications supplied. The programs cover a wide

range of classical algorithms (insertion, deletion, sorting, etc.) for common

169

7.3. Summary

data structures (lists and trees, and their sorted and/or balanced versions).

Their properties that we verified are also quite rich, from shape information of

data structure to numerical information such as size and height, and from re-

lational information like minimum/maximum values, to multiset information

as content.

On the basis of the contributions above, we review the evaluation criteria proposed

in Chapter 1. For the first objective, we have completely fulfilled it with our spec-

ification refinement and synthesis mechanisms. For the second objective, we have

developed an initial solution where a certain set of programs with unknown compo-

nents can now be verified against our interested shape and pure properties, whereas

there is still some space for improvement to enlarge the set of programs that can

be verified. For the third objective, we have successfully proven the soundness and

basic feasibility of our designed theories with the experiments; an ongoing work is

to test our verifier with larger-sized systems for its scalability. To conclude, we have

accomplished the core part of the requirements stated in the criteria in Chapter 1,

and especially all the requirements for the first object. We will discuss possible

improvement to this thesis in the next chapter.

7.3 Summary

This chapter has reported the experimental results obtained from our implemented

systems, where the results exhibit the soundness and feasibility of our approach.

Based on the results we investigated our achievement in terms of the previously pro-

posed evaluation criteria, with the conclusion that our contributions have generally

met the requirement of those criteria.

170

Chapter 8

Conclusion

The goal of this thesis is to build a verification system for both memory safety

and functional correctness of programs manipulating pointer-based data structures,

which can deal with two scenarios where only partial information about the program

is available. In one of the scenarios, the program is annotated only with partial

specifications; in the other scenario the program’s code is partially available due to

invocations to unknown components. This thesis aims to solve these two problems

of program verification.

8.1 Main Results

To handle the two scenarios stated above, this thesis clearly defines a programming

language as the target to be verified, which is simple yet has the essential prop-

erties of a practical programming language that can manipulate heap-based data

structures. The operational semantics of such language is also declared. To capture

various levels of program correctness, we exploit a specification language based on

171

8.1. Main Results

separation logic, which allows users to define their own predicates to specify the

program properties that they want to verify. This language is quite expressive as it

covers aspects from shape to numerical and from relational to content. Its semantic

model is introduced as well. Such programming language and specification language

serve as the foundation of this thesis’ work.

Based on the two languages, this thesis develops solutions to the aforesaid two

scenarios. For the first scenario, we propose a new approach to program verifica-

tion allowing users to provide only partial specification with shape information to

methods. Our approach will then refine the given annotations into more complete

specifications by discovering missing constraints. The discovered constraints may

involve both quantitative and multiset properties that could be later confirmed or

revised by users. On the basis of this result, we further augment our approach by

requiring only partial specification to be given for primary methods of a program.

Specifications for loops and auxiliary methods can then be systematically discov-

ered by our augmented mechanism, with the help of information propagated from

the primary methods. This work is aimed at verifying beyond shape properties,

with the eventual goal of analysing both memory safety and functional properties

for pointer-based data structures.

For the second scenario, we have proposed a top-down verification framework to

deal with the verification of such heap-manipulating programs with invocations to

unknown components. Provided with a Hoare-style specification {Φpr} prog {Φpo}
where program prog contains calls to some unknown procedure unknown, we infer a

specification mspecu for unknown from the calling contexts, such that the problem

of verifying prog can be safely reduced to the problem of proving that the procedure

unknown (once its code is available) meets the derived specification mspecu. The

expected specification mspecu is automatically calculated using an abduction-based

shape analysis specifically designed for a combined abstract domain.

172

8.2. Future Works

As a proof of both theories, we have implemented systems to validate their viability.

It has been confirmed with experiments that, in the first scenario, we can automat-

ically refine partial specifications with non-trivial constraints, thus making it easier

for users to handle specifications with richer properties; in the second scenario, we

can verify a considerable set of programs with unknown components with specifi-

cations of such unknown components discovered. With comparisons between preset

evaluation criteria and our achievements, we draw the conclusion that our objectives

are generally met to a large extent. Meanwhile, there are also some aspects of the

work that can be further improved, which are introduced in the following section.

8.2 Future Works

In this section, we propose some suggestions on the limitations of this thesis and

how to improve them further.

8.2.1 Arrays

In this thesis, we address verification of programs manipulating pointer-based linked

data structures but not general “heap-manipulating programs”, because our current

work cannot handle programs which make use of arrays. So far, we have employed

reasoning tools for reachability and its relevant properties, described in the form

of predicates in our specification language. To handle arrays and pointer arith-

metics, we will have to exploit some other techniques, such as Calcagno et al. (2006)

and Gulwani et al. (2008). The work (Calcagno et al., 2006) is founded on sepa-

ration logic, where some restrictions are added over pointer arithmetics such that

they are under control of the verification. Gulwani et al. (2008) constructs a lifted

173

8.2. Future Works

abstract domain which is capable of representing universally quantified facts such

as “∀i · (0≤i<n) → a[i]=0”. It might be possible to incorporate these techniques to

arrays in our verifier in order to verify a wider class of heap-manipulating programs.

8.2.2 Automation Level

We verify programs with partial specifications by refining such specifications and

dividing procedures into primary and auxiliary ones. Its aim is to increase the

automation level of the verification and to release users from writing complicated

annotations. Following this path, one potential future work is to raise its automa-

tion further with more in-depth program analysis techniques. We have investigated

this facet as a loop invariant inference (Luo et al., 2010b; Qin et al., 2010). Different

from the work reported in this thesis, it conducts a fixed-point iteration process

directly over the combined abstract domain, equipped with newly designed abstrac-

tion mechanism, and join and widening operators. Using these techniques and the

abduction defined in Chapter 6, we intend to build a verification system similar

as Calcagno et al. (2009), such that users do not need to annotate anything; instead

all the possible specifications of a program will be computed automatically for users

to choose from. This approach can be regarded as “fully automatic”; however a

significant problem that we can foresee is its scalability —- as our domain is far

more sophisticated than that of Calcagno et al. (2009), our analysis will be much

more expensive than theirs accordingly. We envisage that this analysis should re-

quire some heuristics for better performance, or users may provide some hint for

the analysis to conduct abstraction. We have now achieved some results Luo et al.

(2010b); Qin et al. (2010) whereas the work is still ongoing.

174

8.2. Future Works

8.2.3 User Interaction

We already allow users to interact with our verification system by supplying anno-

tations as they want to. However, it is still possible to enable users to interact with

the system in other forms, such as dynamic program execution, or rather testing.

As aforementioned in Chapter 2, static program verification and analysis generally

provides more coverage of program execution paths as well as a proof of absence of

bugs; yet it is generally more expensive and less accessible to end users, whereas

testing is simpler and more broadly applied in software quality assurance processes.

Therefore if there are ways to combine them for our verifier such that the verifi-

cation result can be improved, then it will be a real advantage. In this proposed

aspect of improvement, we want to allow users to provide either static constraints

as refinement (in which our analysis may degenerate down to a “pure” verification)

or testing data to discharge some of the complexity of the verification to run-time

checks. This idea shares some similarity with Gupta et al. (2009), where the authors

strengthen static constraint generation with information from both static abstract

interpretation (analysis) and dynamic execution of the program (testing). Such

strengthening brings in additional linear constraints that may simplify the solver’s

work and make constraint solving more scalable. If we can successfully apply such

idea to our combined domain for shape, numerical and multiset properties, then it

should benefit greatly the whole verification process.

8.2.4 Sequential Invocations to Unknown Components

The most challenging part of our verification for partially available programs is the

verification of sequential invocation to unknown components. Our current solution

tries to find a common specification (requires Φpr ensures Φpo) suitable for all the

175

8.3. Summary

unknown procedures. Generally we may allow the unknown procedures to have

different specifications, possibly with a more in-depth analysis which examines the

available code fragments in between those unknown calls. In the case of two unknown

calls unk0(x0; y0); e1; unk1(x1; y1), the precondition for unk0 and the postcondition

for unk1 can be obtained as usual (by analysing the code before unk0 and after unk1

respectively). To derive the postcondition Φ0
po for unk0 and the precondition Φ1

pr for

unk1, we initialise Φ0
po to be emp to start a forward analysis over e1 with abduction,

to accumulate (via abduction) the expected behaviour of unk0 (for e1 to be verified)

as Φ0
po, and extract a formula (which is relevant to the footprint of unk1) from

the abstract state at the end of e1 as Φ1
pr. However, our initial experiments show

that, unless the fragment e1 is sufficiently complex to expose enough information

expected from unk0, the derived Φ0
po and Φ1

pr can be rather weak. As a consequence,

the derived specification for unk0 can be too weak (with a weak postcondition)

and the one for unk1 can be too strong (with a weak precondition). It remains

an open problem how we might tune the derived results to obtain more reasonable

specifications. We conjecture that certain heuristics might help and we will explore

this further in our future work.

8.3 Summary

This chapter summarises the whole thesis with its achieved results and potential

ways of improvement. The results include the solutions to the verification of heap-

manipulating programs with partial specifications and partial code, respectively.

The improvement concerns the following facets: an enlarged set of programs with

arrays to verify, more automation level, improved user interaction, and the verifica-

tion of programs with sequential invocations to unknown components. These facets

depict a roadmap for future works of this thesis.

176

Bibliography

Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

2002. ISBN 1-58113-450-9.

Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate ab-

straction. In International Conference on Verification, Model Checking, and Ab-

stract Interpretation, 2005.

Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety

properties of interfaces. In SPIN Workshop on Model Checking Software, 2001.

Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Auto-

matic predicate abstraction of c programs. ACM SIGPLAN Notices, 36:203–213,

2001.

Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram

Schulte. Verification of object-oriented programs with invariants. Journal of

Object Technology, 3:27–56, 2004a.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-

ming system: An overview. In Construction and Analysis of Safe, Secure, and

Interoperable Smart Devices, 2004b.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.

177

BIBLIOGRAPHY

Leino. Boogie: A modular reusable verifier for object-oriented programs. In

International Symposium on Formal Methods for Components and Objects, 2006.

Richard Barry. FreeRTOS Reference Manual - API Functions and Configuration

Options. Online published, 2006.

Boris Beizer. Techniques for Functional Testing of Software and Systems. John

Wiley & Sons, Inc., 1996.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment

of separation logic. In IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, 2004.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with

separation logic. In Asian Symposium on Programming Languages and Systems,

2005a.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. In International Symposium

on Formal Methods for Components and Objects, 2005b.

Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic

termination proofs for programs with shape-shifting heaps. In International Con-

ference on Computer Aided Verification, 2006.

Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,

Thomas Wies, and Hongseok Yang. Shape analysis for composite data structures.

In International Conference on Computer Aided Verification, 2007.

Richard Bornat. Proving pointer programs in hoare logic. In International Confer-

ence on Mathematics of Program Construction, 2000.

Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, Ahmed Rezine, and Mihaela

Sighireanu. Invariant synthesis for programs manipulating lists with unbounded

data. In International Conference on Computer Aided Verification, 2010.

178

BIBLIOGRAPHY

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,

Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of jml tools

and applications. International Journal on Software Tools for Technlogy Transfer,

7:212–232, 2005.

Rod M. Burstall. Program proving as hand simulation with a little induction. In In-

ternational Federation for Information Processing Congress, pages 308–312, 1974.

Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and

complexity results for a spatial assertion language for data structures. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Com-

puter Science, volume 2245, pages 108–119, 2001.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Be-

yond reachability: Shape abstraction in the presence of pointer arithmetic. In

International Static Analysis Symposium, pages 182–203, 2006.

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and

abstract separation logic. In Annual IEEE Symposium on Logic in Computer

Science, 2007.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-

positional shape analysis by means of bi-abduction. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, 2009.

Néstor Cataño and Marieke Huisman. Chase: A static checker for jml’s assignable

clause. In International Conference on Verification, Model Checking, and Abstract

Interpretation, 2003.

Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

2008.

179

BIBLIOGRAPHY

Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis with

structural invariant checkers. In International Static Analysis Symposium, 2007.

Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant context

inference. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 1999.

Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A

reachability predicate for analyzing low-level software. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, 2007.

Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer analysis

using access paths: design, implementation, and evaluation. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2000.

Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language.

PhD thesis, Department of Computer Science, Iowa State University, 2003.

Yoonsik Cheon and Gary T. Leavens. A quick overview of larch/c++. Journal of

Object-Oriented Programming, 7:39–49, 1994.

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated

verification of shape, size and bag properties. In IEEE International Conference

on Engineering of Complex Computer Systems, 2007.

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhanc-

ing modular oo verification with separation logic. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, 2008.

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated

verification of shape, size and bag properties via user-defined predicates in sepa-

ration logic. Science of Computer Programming, In press:N/A, 2010.

180

BIBLIOGRAPHY

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive inter-

procedural computation of pointer-induced aliases and side effects. In ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 1993.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking. In

International Conference on Computer Aided Verification, 2000.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of ACM, 50:752–794, 2003.

Edmund M. Clarke. Programming language constructs for which it is impossible to

obtain good hoare-like axioms. Journal of ACM, 26:129–147, 1979.

Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skeletons

for branching time temporal logic. In Workshop of Logic of Programs, volume

131, 1981.

David R. Cok. Reasoning with specifications containing method calls and model

fields. Journal of Object Technology, 4:77–103, 2005.

David R. Cok and Joseph R. Kiniry. Esc/java2: Uniting esc/java and jml: Progress

and issues in building and using esc/java2, including a case study involving the use

of the tool to verify portions of an internet voting tally system. In Construction

and Analysis of Safe, Secure, and Interoperable Smart Devices, 2004.

Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C.

Necula. Dependent types for low-level programming. In European Symposium on

Programming, 2007.

Byron Cook, Ashutosh Gupta, Stephen Magill, Andrey Rybalchenko, Jiri Simsa,

Satnam Singh, and Viktor Vafeiadis. Finding heap-bounds for hardware synthesis.

In International Conference on Formal Methods in Computer-Aided Design, 2009.

181

BIBLIOGRAPHY

Stephen A. Cook. Soundness and completeness of an axiom system for program

verification. SIAM Journal on Computing, 7:70–90, 1978.

Patrick Cousot. Semantic foundations of program analysis. In Program Flow Analy-

sis: Theory and Applications. Prentice-Hall, 1981.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of

programs. In International Symposium on Programming, pages 106–130, 1976.

Patrick Cousot and Radhia Cousot. Logics and Languages for Reliability and Secu-

rity, chapter N/A. IOS Press, 2010.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

pages 238–252, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-

works. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 1979.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints

among variables of a program. In ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, 1978.

Rick D. Craig and Stefan P. Jaskiel. Systematic Software Testing. Artech House,

Inc., 2002.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

2008.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for

program checking. Journal of ACM, 52:365–473, 2005.

182

BIBLIOGRAPHY

Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

Dino Distefano. Attacking large industrial code with bi-abductive inference. In

International Workshop on Formal Methods for Industrial Critical Systems, 2009.

Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis

based on separation logic. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, 2006.

Lucas Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University of

Edinburgh, 2005.

Maryam Emami. A practical inter-procedural alias analysis for an optimizing/paral-

leling c compiler. Master’s thesis, School of Computer Science, McGill University,

1993.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interpro-

cedural points-to analysis in the presence of function pointers. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, 1994.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2002.

Robert W. Floyd. Assigning meanings to programs. In Proceedings of Symposia in

Applied Mathematics (Mathematical Aspects of Computer Science), 1967.

Roberto Giacobazzi. Abductive analysis of modular logic programs. In International

Symposium on Logic Programming, 1994.

Patrice Godefroid. Model checking for programming languages using verisoft. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

1997.

183

BIBLIOGRAPHY

Denis Gopan and Thomas Reps. Low-level library analysis and summarization. In

International Conference on Computer Aided Verification, 2007.

Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis

with separated heap abstractions. In International Static Analysis Symposium,

2006.

Sumit Gulwani and Ashish Tiwari. Computing procedure summaries for interpro-

cedural analysis. In European Symposium on Programming, 2007.

Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters to

quantified logical domains. In ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, 2008.

Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework for

tracking partition sizes. In ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, pages 239–251, 2009.

Bolei Guo, Neil Vachharajani, and David I. August. Shape analysis with inductive

recursion synthesis. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2007.

Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs.

In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, 2009.

Jörgen Gustavsson and Josef Svenningsson. Constraint abstractions. In Programs

as Data Objects II, 2001.

Peter Habermehl, Radu Iosif, and Tomáš Vojnar. Automata-based verification of

programs with tree updates. Acta Informatica, 47:1–31, 2010.

Brian Hackett and Radu Rugina. Region-based shape analysis with tracked loca-

tions. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 2005.

184

BIBLIOGRAPHY

Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert

Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in

practice. In International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, 1995.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Soft-

ware verification with BLAST. In SPIN Workshop on Model Checking Software,

2003.

William C. Hetzel and Bill Hetzel. The Complete Guide to Software Testing. John

Wiley & Sons, Inc., 1991.

Charles A. R. Hoare. An axiomatic basis of computer programming. Communica-

tions of the ACM, 12:576–583, 1969.

Charles A. R. Hoare and Jifeng He. A trace model for pointers and objects. In

European Conference on Object-Oriented Programming, 1999.

Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2004.

Information Management and Technology Division. Patriot missile defense: Software

problem led to system failure at dhahran, saudi arabia. Technical report, General

Accounting Office, US, 1992.

Andrew Ireland. A cooperative approach to loop invariant discovery for pointer

programs. In Workshop on Invariant Generation, 2007.

Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for muta-

ble data structures. In ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, 2001.

Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of c. In USENIX Annual Technical

Conference, 2002.

185

BIBLIOGRAPHY

Cliff Jones, Peter O’Hearn, and Jim Woodcock. Verified software: A grand challenge.

IEEE Computer, 39:93–95, April 2006.

Cem Kaner. Exploratory testing after 23 years. In Conference of the Association

for Software Testing, 2006.

Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, De-

partment of Computer Science, University of Aarhus, 2001.

Wojtek Kozaczynski and Grady Booch. Component-based software engineering.

IEEE Software, 15:34–36, 1998.

Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS Depart-

ment, Massachusetts Institute of Technology, 2007.

Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 2002.

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin C. Rinard. Modular plug-

gable analyses for data structure consistency. IEEE Transactions on Software

Engineering, 32:988–1005, 2006.

Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked

lists. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, 2006.

Patrick Lam. The Hob System for Verifying Software Design Properties. PhD thesis,

Massachusetts Institute of Technology, 2007.

William Landi and Barbara G. Ryder. A safe approximate algorithm for inter-

procedural pointer aliasing. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, 1992.

186

BIBLIOGRAPHY

Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition tech-

nique for more expressive specifications. In International Symposium on Formal

Methods, 1999.

Gary T. Leavens, Clyde Ruby, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and

Bart Jacobs. JML: notations and tools supporting detailed design in Java. In

International Conference on Object-Oriented Programming, Systems, Languages

and Applications, 2000.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:

a behavioral interface specification language for Java. ACM SIGSOFT Software

Engineering Notes, 31:1–38, 2006.

Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification of pointer

programs using grammar-based shape analysis. In European Symposium on Pro-

gramming, 2005.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-

ness. In International Conferences on Logic for Programming, Artificial Intelli-

gence and Reasoning, 2010.

Nancy G. Leveson and Clark S. Turner. Investigation of the therac-25 accidents.

IEEE Computer, 26:18–41, 1993.

Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying crosscutting features

as open systems. ACM SIGSOFT Software Engineering Notes, 27:89–98, 2002.

Jacques-Louis Lions. Ariane 5 - flight 501 failure - report by the inquiry board.

Technical report, Académie des Sciences, France, 1996.

Richard J. Lipton. A necessary and sufficient condition for the existence of hoare

logics. In IEEE Symposium on Foundations of Computer Science, 1977.

187

BIBLIOGRAPHY

Chenguang Luo, Florin Craciun, Shengchao Qin, Guanhua He, and Wei-Ngan Chin.

Verifying pointer safety for programs with unknown calls. Journal of Symbolic

Computation, 45:1163–1183, 2010a.

Chenguang Luo, Guanhua He, Shengchao Qin, and Wei-Ngan Chin. Loop invariant

synthesis in a combined domain (extended abstract). In Verified Software: Theory,

Tools and Experiments, 2010b.

Ewen Maclean, Andrew Ireland, Robert Atkey, and Lucas Dixon. Refinement and

term synthesis in loop invariant generation. In Workshop of Invariant Generation,

2009.

Stephen Magill, Josh Berdine, Edmund M. Clarke, and Byron Cook. Arithmetic

strengthening for shape analysis. In International Static Analysis Symposium,

2007.

Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Thor: A tool for

reasoning about shape and arithmetic. In International Conference on Computer

Aided Verification, 2008.

Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic nu-

meric abstractions for heap-manipulating programs. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, 2010.

Roman Manevich. Partially Disjunctive Shape Analysis. PhD thesis, Tel-Aviv Uni-

versity, 2009.

Zohar Manna and Amir Pnueli. Axiomatic approach to total correctness of programs.

Acta Informatica, 3:243–264, 1974.

Ken L. McMillan. Symbolic model checking —- an approach to the state explosion

problem. PhD thesis, SCS, Carnegie Mellon University, 1992.

Anders Möller and Michael I. Schwartzbach. The pointer assertion logic engine.

ACM SIGPLAN Notices, 36:221–231, 2001.

188

BIBLIOGRAPHY

Markus Müller-Olm and Helmut Seidl. Precise interprocedural analysis through

linear algebra. In ACM SIGACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages, pages 330–341, 2004.

Madanlal S. Musuvathi, David Park, David Y. W. Park, Andy Chou, Dawson R.

Engler, and David L. Dill. Cmc: A pragmatic approach to model checking real

code. In Symposium on Operating Systems Design and Implementation, 2002.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1:245–257, 1979.

Huu Hai Nguyen and Wei-Ngan Chin. Enhancing program verification with lemmas.

In International Conference on Computer Aided Verification, 2008.

Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated

verification of shape and size properties via separation logic. In International

Conference on Verification, Model Checking, and Abstract Interpretation, 2007.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer, 2005.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof

Assistant for Higher-Order Logic. Springer, 2002.

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin

of Symbolic Logic, 5:215–244, 1999.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In International Workshop on Computer

Science Logic, 2001.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and informa-

tion hiding. In ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, 2004.

189

BIBLIOGRAPHY

Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and

inheritance. In ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, 2008.

Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In IFIP

TC6 WG6.1 Joint International Conference on Formal Description Techniques

for Distributed Systems and Communication Protocols and Protocol Specification,

Testing and Verification, 1999.

Alexandre Petit-Bianco. Java garbage collection for real-time systems. Dr Dobb’s

Journal of Software Tools and Professional Programmers, 23:8, 1998.

Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of the javacard api

in jml. In Working Conference on Smart Card Research and Advanced Applica-

tions, 2001.

Corneliu Popeea and Wei-Ngan Chin. Inferring disjunctive postconditions. In Asian

Computing Science Conference, 2006.

Shengchao Qin, Guanhua He, Chenguang Luo, and Wei-Ngan Chin. Loop invariant

synthesis in a combined domain. In International Conference on Formal Engi-

neering Methods, 2010.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, 1995.

Research Triangle Institute. The economic impacts of inadequate infrastructure for

software testing. Technical report, National Institute of Standards and Technol-

ogy, 2002.

John C. Reynolds. Separation logic: a logic for shared mutable data structures. In

Annual IEEE Symposium on Logic in Computer Science, 2002.

190

BIBLIOGRAPHY

John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In

Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, 1999.

John C. Reynolds. An overview of separation logic. In Verified Software: Theory,

Tools and Experiments, 2005.

Noam Rinetzky, Jörg Bauer, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. A

semantics for procedure local heaps and its abstractions. ACM SIGPLAN Notices,

40:296–309, 2005.

Manuel Rubio-Sánchez, Jaime Urquiza-Fuentes, and Cristóbal Pareja-Flores. A

gentle introduction to mutual recursion. In Annual Conference on Innovation

and Technology in Computer Science Education, 2008.

Radu Rugina. Quantitative shape analysis. In International Static Analysis Sym-

posium, 2004.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. In ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, 1999.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via

3-valued logic. ACM Transactions on Programming Languages and Systems, 24:

217–298, 2002.

Peter Schmitt, Isabel Tonin, Claus Wonnemann, Eric Jenn, Stéphane Leriche, and

James J. Hunt. A case study of specification and verification using jml in an

avionics application. In International Workshop on Java Technologies for Real-

time and Embedded Systems, 2006.

Roger Sessions. COM and DCOM: Microsoft’s vision for distributed objects. John

Wiley & Sons, Inc., 1998.

Arthur G. Stephenson, Daniel R. Mulville, Frank H. Bauer, Greg A. Dukeman, Peter

Norvig, Edward J. Weiler, Lia S. LaPiana, Peter J. Rutledge, David Folta, and

191

BIBLIOGRAPHY

Robert Sackheim. Mars climate orbiter mishap investigation board phase i report.

Technical report, NASA, US, 1999.

Clemens Szyperski. Component technology: what, where, and how? In International

Conference on Software Engineering, 2003.

Mana Taghdiri. Automating Modular Verification by Refining Specifications. PhD

thesis, EECS Department, Massachusetts Institute of Technology, 2008.

Bill Venners. Inside the Java Virtual Machine. McGraw-Hill Professional, 1999.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda.

Model checking programs. Automated Software Engineering Journal, 10:3–12,

2003.

Thomas Wies, Viktor Kuncak, Karen Zee, Andreas Podelski, and Martin Rinard.

On verifying complex properties using symbolic shape analysis. In The Computing

Research Repository, 2006.

Thomas Wies, Viktor Kuncak, Karen Zee, Andreas Podelski, and Martin Rinard.

On verifying complex properties using symbolic shape analysis. In Workshop of

Heap Analysis and Verification, 2007.

Jim Woodcock. Verified software grand challenge. In International Symposium on

Formal Methods, 2006.

Gaoyan Xie and Zhe Dang. Testing systems of concurrent black-boxes —- an

automata-theoretic and decompositional approach. In International Workshop

on Formal Approaches to Software Testing, 2005.

Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In

International Conference on Foundations of Software Science and Computation

Structures, 2002.

192

BIBLIOGRAPHY

Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino

Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In

International Conference on Computer Aided Verification, 2008.

Greta Yorsh, Er Rabinovich, Mooly Sagiv, Antoine Meyer, and Ahmed Bouajjani. A

logic of reachable patterns in linked data-structures. In International Conference

on Foundations of Software Science and Computation Structures, 2006.

Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise

procedure summaries. ACM SIGPLAN Notices, 43:221–234, 2008.

193

BIBLIOGRAPHY

194

Appendix A

Soundness Proofs

A.1 Soundness of Specification Refinement

We have defined the underlying operational semantics of our language in Chapter 3.

Its concrete program state consists of stack s and heap h. We have also defined the

relation s, h |= ∆ and the transition 〈s, h, e〉↪→∗〈s′, h′, ν〉. Before proceeding to the

soundness definition, recalling that we have both unprimed variables (for their initial

values in abstract states) and primed ones (for their current values), we realise that

the concrete program states should always be linked to the primed ones. For this

reason we have the following definition:

Definition A.1.1 (Poststate) Given an abstract state ∆, Post(∆) captures the

relation between primed variables of ∆. That is,

Post(∆) =df ρ(∃V ·∆), where

V = {v1, . . . , vn} denotes all unprimed program variables in ∆, and

ρ = [v1/v
′
1, . . . , vn/v

′
n].

For example, for ∆ = x′::Node〈v′, y′〉 ∧ v′=v ∧ y′=null, we have Post(∆) =

195

A.1. Soundness of Specification Refinement

x::Node〈v, y〉 ∧ y=null.

Then we define the soundness of our refinement as follows:

Definition A.1.2 (Soundness) For a method definition t mn ((t u); (t v)) {e},
if our verification refines its specification as t mn ((t u); (t v)) requires Φpr en-

sures Φpo {e}, then for all s, h |= Post(Φpr), if 〈s, h, e〉↪→∗〈s′, h′, -〉, then we have

s′, h′ |= Post(Φpo).

The soundness of our verification is ensured by the soundness of the following: the

entailment prover, the pure fixed-point calculation, the pure abstraction derivation,

and the abstract semantics (w.r.t. the concrete semantics). Among the above,

the soundness of the entailment prover and pure fixed-point calculation are already

confirmed (Chin et al., 2010; Nipkow et al., 2002; Popeea and Chin, 2006), and hence

we will concentrate on the soundness of abstract semantics and pure abstraction

derivation.

Lemma A.1.3 (Sound pure abduction) If σ1 ∧ [σ′] ¤ σ2 ∗ σ3, then ∀s, h |=
Post(σ1 ∧ σ′), we have s, h |= Post(σ2 ∗ σ3).

Proof This is ensured by the entailment relationship in the premise of each of

the pure abduction rules and the soundness of the entailment checking (Chin et al.,

2010). 2

Lemma A.1.4 (Sound abstract semantics) If |[e]|T (∆, 0) = (∆1, 0), then for all

s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there always exists ∆0 such

that

s1, h1 |= Post(∆0) and |[e1]|T (∆0, 0) = (∆1, 0)

Proof The proof is done by structural induction over program constructors:

196

A.1. Soundness of Specification Refinement

• Case null | k | v | v.f . Straightforward.

• Case v = e. There are two cases according to the operational semantics:

– e is not a value. From operational semantics, there is e1 s.t. 〈s, h, e〉↪→〈s1,

h1, e1〉, and 〈s, h, v=e〉↪→〈s1, h1, v=e1〉. From abstract semantics for as-

signment, if |[e]|T (∆, 0) = (∆2, 0), and ∆1=[v1/v
′, r1/res](∆2)∧v′=r1. By

induction hypothesis, there exists ∆0, s1, h1 |= ∆0 and |[e1]|T (∆0, 0) =

(∆2, 0). It concludes from the assignment rule that |[v = e1]|T (∆0, 0) =

(∆1, 0).

– e is a value. Trivial.

• Case new c(v). From abstract semantics for new, we have |[new c(v)]|T (∆, 0) =

(∆1, 0), where ∆1 = ∆ ∗ res::c〈v′1, . . . , v′n〉. Let ∆0 = ∆1. From the opera-

tional semantics, we have 〈s, h, new c(v)〉↪→〈s, h+[ι 7→ r], ι〉, where ι /∈ dom(h).

From s, h |= ∆, we have s, h+[ι 7→ r] |= ∆0. Moreover, |[ι]|T (∆0, 0) = (∆1, 0).

• Case v1.f = v2. Take ∆0 = ∆. It concludes immediately from the exec rule

for field update and the underlying operational semantics.

• Case free(x). Denote ∆ as
∨

i(x::c〈yi〉 ∗ σi) and ∆0 as
∨

i σi, then from free’s

operational semantics we know that if s, h |= Post(∆) and 〈s, h, free(x)〉 ↪→
〈s1, h1, -〉, then s1, h1 |= Post(∆0) and ∆0 = ∆1.

• Case e1; e2. We consider the case where e1 is not a value (otherwise it is

trivial). From the operational semantics, we have 〈s, h, e1〉↪→〈s1, h1, e3〉. From

the abstract semantics rule for sequence, we have ` {∆}e1{∆2}. By induction

hypothesis, there exists ∆0 s.t. s1, h1 |= Post(∆0), and ` {∆0}e3{∆2}. By the

sequential rule we have |[e3; e2]|T (∆0, 0) = (∆1, 0).

• Case if (v) e1 else e2. There are two possibilities in the operational seman-

tics:

197

A.1. Soundness of Specification Refinement

– s(v)=true. We have 〈s, h, if (v) e1 else e2〉↪→〈s, h, e1〉. Let ∆0=(∆∧v′).

It is obvious that s, h |= ∆0. From the if-conditional rule of abstract se-

mantics, we have:

|[e1]|T (∆0, 0) = (∆2, 0)

|[e2]|T (∆∧¬v′, 0) = (∆3, 0)

And we also have (due to sound weakening of postcondition)

|[e1]|T (∆0, 0) = (∆2∨∆3, 0)

That is, |[e1]|T (∆0, 0) = (∆1, 0).

– s(v) = false. Analogous.

• Case mn(v1...n). For the method invocation rule, we know ∆`[v′j/vj]
n
j=1Φ

i
pr ∗∆i,

for i = 1, . . . , p. Take ∆0 =
∨p

i=1[v
′
j/vj]

n
j=1Φ

i
pr∗∆i. From the operational se-

mantics and the above heap entailment, we have s1, h1 |= ∆0. Then the

method invocation rule implies ∀i∈1 . . . p · |[e1]|T ([v′j/vj]
n
j=1Φ

i
pr∗∆i, 0) =

(∆i∗Φi
po, 0). Therefore we have |[e1]|T (∆0, 0) = (∆1, 0) which concludes.

• Case while (v) {e}. It can be converted to tail-recursive method call with all

parameters passed by reference, and thus follows the above case. 2

Lemma A.1.5 (Sound pure constraint abstraction) Given a method with pre/

post shape templates pre and post, if our analysis successfully computes a constraint

abstraction Q in the first step without abduction, and derives a pure constraint P in

the second step, then we have Q ` post ∧ P.

Proof This proof follows directly our procedure to compute the pure constraint

abstraction from the shape one, plus the soundness of entailment checking and

abduction. Denote the shape constraint abstraction as

Q ::=
∨
i

Qi

and the provided post-shape post, we use

Qi ` post ∧ Pi

198

A.1. Soundness of Specification Refinement

to derive each Pi, and construct

P ::=
∨
i

Pi

Therefore, our result Q ` post ∧ P can be obtained from the fact that
∨

i Qi ` post∧
(
∨

i Pi). 2

Then based on the discussion above we have:

Theorem A.1.6 (Soundness) Our verification is sound with respect to the under-

lying operational semantics.

We have one more note about the post verification conducted in line 12 of our main

algorithm in Figure 4.4. Such verification is used to confirm that the strength-

ened precondition can guarantee memory safety. This added precaution is because

sometimes our refinement of precondition might not be sufficient for the program

to execute without inappropriate memory access, which could be attributed to the

fact that users have not provided a good enough predicate to describe the obliga-

tion of memory safety. For example, if our verification is only supplied with a list

predicate which does not contain its length information, then we can never obtain

the prerequisite “the input length should be at least n”, even if the memory safety

requires that. Hence our post verification will rule out this case. However it does

not affect the soundness of our verification: the memory violation will incur false

as an abstract state which implies any postcondition we may discover. The only

reason we need it is as aforesaid —- to leave only meaningful refined specifications

(which has safety guarantee for the program) in our results.

199

A.2. Soundness of Shape Specification Synthesis

A.2 Soundness of Shape Specification Synthesis

The soundness definition of shape specification synthesis follows the one in the pre-

vious section, referring to the underlying operational semantics:

Definition A.2.1 (Soundness) For a method definition t mn ((t u); (t v)) {e},
if our analysis refines its specification as t mn ((t u); (t v)) requires Φpr ensures

Φpo {e}, then for all s, h |= Post(Φpr), if 〈s, h, e〉↪→∗〈s′, h′, -〉, then we have s′, h′ |=
Post(Φpo).

Therefore the soundness of the whole approach can be reduced to the soundness

of our synthesis of shape specifications. To prove this, we need to review our pre-

condition/postcondition synthesis algorithms. From these two algorithms, we can

see that our synthesised pre-shape must satisfy the abstract state at the calling

context (because of the entailment relationship), and the post-shape is checked to

see whether it could possibly be abstracted as the execution result of the unfolded

program. From the soundness of entailment checking and abduction, we have

Theorem A.2.2 (Soundness) Our verification is still sound with respect to the

underlying operational semantics, with the specification synthesis mechanism added.

Proof The soundness is proven with the following claims:

• For pre-shape synthesis, we can see in line 3 of Figure 5.6 that for each chosen

shape candidate σC , we always have σ ` [x/u, y/v]σC where σ is the abstract

state in the calling context.

• For post-shape synthesis, line 5 of Figure 5.7 suggests that the chosen shape

candidate σC has the potential to establish the expected post-state ∆ (the sym-

bolic execution result of the unfolded program), possibly with some additional

200

A.3. Soundness of Verification for Programs with Unknown Components

pure constraints σ (which are to be discovered by the following refinement

process, should the refinement succeed).

• Finally, we already know that the entailment checking, the pure abduction,

the symbolic execution and the refinement are all sound with respect to the

underlying semantics. This concludes the proof. 2

A.3 Soundness of Verification for Programs with

Unknown Components

Informally, in the presence of invocations to unknown components, the soundness

of the verification signifies that, a program is successfully verified against its specifi-

cations, if all the unknown procedures that it invokes conform to the specifications

discovered by the verification algorithm. Therefore, the correctness of the program

depends on a (possible) further verification for the unknown procedures. It can be

defined as follows:

Definition A.3.1 (Soundness) Suppose that for specification table T , program to

be verified v = {e1; u; e2} and its specifications mspecv, our verification succeeds and

returns Tu as the specification table for unknown procedures invoked in v. Then we

say our verification is sound, if the following holds:

∀σ ∈ |[e1; u; e2]|T]TU
{[x0/a, y0/b]Φpr} · σ ` [x0/a, y0/b, y′

0/b
′]Φpo ∗ true

which means that, with respect to the underlying semantics, if all the unknown pro-

cedures can be verified to satisfy their specifications in Tu, then the whole program v

should meet all the specifications in mspecv.

201

A.3. Soundness of Verification for Programs with Unknown Components

To prove that our verification is sound, we proceed with the soundness of three

aspects, that is, entailment checking, abduction and abstract semantics for forward

analysis. The soundness of entailment checking is already stated in Section A.1. For

the soundness of abduction, we have

Lemma A.3.2 (Sound abduction) If σ1 ∗ [σ′] ¤ σ2 ∗ σ3, then ∀s, h |= Post(σ1 ∗
σ′), we have s, h |= Post(σ2 ∗ σ3).

Proof This is ensured by the entailment relationship in the premise of each of

the first three abduction rules and the soundness of the entailment checking (Chin

et al., 2010). For the last rule, it is sound as well because σ ∗ σ1 ` σ1 ∗ true. 2

Lemma A.3.3 (Sound underlying abstract semantics) If |[e]|T ∆ = ∆1, then

for all s, h, if s, h |= Post(∆) and 〈s, h, e〉↪→〈s1, h1, e1〉, then there always exists ∆0

such that

s1, h1 |= Post(∆0) and |[e1]|T ∆0 = ∆1

Proof The proof is done by structural induction over program constructors:

• Case null | k | v | v.f . Directly obtained from definition.

• Case new c(v). From abstract semantics for new, we have |[new c(v)]|T ∆ =

∆1, where ∆1 = ∆ ∗ res::c〈v′1, . . . , v′n〉. Let ∆0 = ∆1. From the operational

semantics, we have 〈s, h, new c(v)〉↪→〈s, h+[ι 7→ r], ι〉, where ι /∈ dom(h). From

s, h |= ∆, we have s, h+[ι 7→ r] |= ∆0. Moreover, |[ι]|T ∆0 = ∆1.

• Case free(x). Denote ∆ as
∨

i(x::c〈yi〉 ∗ σi) and ∆0 as
∨

i σi, then from free’s

operational semantics we know that if s, h |= Post(∆) and 〈s, h, free(x)〉 ↪→
〈s1, h1, -〉, then s1, h1 |= Post(∆0) and ∆0 = ∆1.

• Case v1.f = v2. Take ∆0 = ∆. It concludes immediately from the exec rule

for field update and the underlying operational semantics.

202

A.3. Soundness of Verification for Programs with Unknown Components

• Case v = e. There are two cases according to the operational semantics:

– e is a value. Straightforward.

– e is not a value. From the underlying operational semantics, there is e1

s.t. 〈s, h, e〉↪→〈s1, h1, e1〉, and 〈s, h, v=e〉↪→〈s1, h1, v=e1〉. From abstract

semantics for assignment, if we have ∆1=[v1/v
′, r1/res](∆2)∧v′=r1 where

|[e]|T ∆ = ∆2, By induction hypothesis, there exists ∆0, s1, h1 |= ∆0 and

|[e1]|T ∆0 = ∆2. It concludes from the assignment rule that |[v = e1]|T ∆0 =

∆1.

• Case e1; e2. We consider the case where e1 is not a value (otherwise it is

straightforward). From the operational semantics, we have 〈s, h, e1〉 ↪→ 〈s1, h1,

e3〉. From the abstract semantics rule for sequence, we have ` {∆}e1{∆2}. By

induction hypothesis, there exists ∆0 s.t. s1, h1 |= Post(∆0), and ` {∆0}e3{∆2}.
By the sequential rule we have |[e3; e2]|T ∆0 = ∆1.

• Case if (v) e1 else e2. There are two possibilities in the operational seman-

tics:

– s(v)=true. We have 〈s, h, if (v) e1 else e2〉↪→〈s, h, e1〉. Let ∆0=(∆∧v′).

It is obvious that s, h |= ∆0. From the if-conditional rule of abstract se-

mantics, we have:

|[e1]|T ∆0 = ∆2

|[e2]|T ∆∧¬v′ = ∆3

And we also have (due to sound weakening of postcondition)

|[e1]|T ∆0 = ∆2∨∆3

That is, |[e1]|T ∆0 = ∆1.

– s(v) = false. Same.

• Case mn(v1...n). For the method invocation rule, we know ∆`[v′j/vj]
n
j=1Φ

i
pr ∗∆i,

for i = 1, . . . , p. Take ∆0 =
∨p

i=1[v
′
j/vj]

n
j=1Φ

i
pr∗∆i. From the operational se-

mantics and the above heap entailment, we have s1, h1 |= ∆0. Then the

203

A.3. Soundness of Verification for Programs with Unknown Components

method invocation rule implies ∀i∈1 . . . p · |[e1]|T [v′j/vj]
n
j=1Φ

i
pr∗∆i = ∆i∗Φi

po.

Therefore we have |[e1]|T ∆0 = ∆1 which concludes.

• Case while (v) {e}. It can be converted to tail-recursive method call with all

parameters passed by reference, and thus follows the above case. 2

Lemma A.3.4 (Sound abstract semantics with abduction) If |[e]|AT (emp,

emp) = (∆1, ∆
′
1), then for all s, h, if s, h |= Post(∆′

1) and 〈s, h, e〉↪→〈s1, h1, e1〉, then

there always exists ∆0 such that

s1, h1 |= Post(∆0) and |[e1]|T ∆0 = ∆1

Proof Generally there are two types of constructors which may alter the result

from abduction: heap-sensitive commands d[x] and procedure invocation. We in-

vestigate them respectively.

• Case d[x]. As we know that |[d[x]]|AT (emp, emp) =df Exec†(d[x])(T) ◦ Unfold†(x)

(emp, emp), we consider the lifted unfolding operation (Unfold) to produce the

abduction result. From its definition (Section 6.5.4), since the current abstract

state is emp, the unfold must fail and false ∈ ∆. Then in the remaining

two cases of if in its definition, the second one is the trivial case where we

conclude with ∆0 = false. For the first one, as x::c〈y〉 is added to both the

current state and the abduction result, from the induction assumption proven

in Lemma A.3.3 we know that we can find such ∆0, and the conclusion holds.

• Case mn(x1, . . . , xm; y1, . . . , yn)(T)(σ, σ′). There are two scenarios here: σ `
ρΦpr ∗ σ1 and σ′1=emp, or σ ∗ [σ′1] ¤ ρΦpr ∗ σ1. In the first scenario, the rule

degenerates to the case in the underlying semantics. In the second one, ∆′
1 is

assigned by the abduction, where the entailment relationship ∆′
1 ` ρΦpr ∗ true

is established. Therefore this case follows the induction assumption from

Lemma A.3.3. 2

204

A.3. Soundness of Verification for Programs with Unknown Components

On the basis of above we have

Theorem A.3.5 (Soundness) Our verification of programs with unknown compo-

nents is sound.

205

A.3. Soundness of Verification for Programs with Unknown Components

206

Appendix B

Shape Predicates and Program

Code Used in Experiments

This chapter presents the definitions of shape predicates and program code used in

the experiments which are not introduced in the previous chapters. These predi-

cates and code mainly constitute a proof of theory over the classic algorithms ma-

nipulating data structures, and for the sake of length does not include the part of

FreeRTOS (Barry, 2006), whose code can be found in its website.

207

B.1. Shape Predicate Definitions

B.1 Shape Predicate Definitions

Below are the definitions of the shape predicates not previously defined:

dll〈p, n〉 ≡ (root=p ∧ n=0) ∨
(root::Node2〈v, p, q〉 ∗ q::dll〈root, n1〉 ∧ n=n1+1)

dllB〈p, S〉 ≡ (root=p ∧ S=∅) ∨
(root::Node2〈v, p, q〉 ∗ q::dllB〈root, S1〉 ∧ S=S1t{v})

sll〈n, mn, mx〉 ≡ (root=null ∧ n=0 ∧ mn=mx) ∨
(root::Node〈v, q〉 ∗ q::sll〈n1, k, mx〉 ∧ n=n1+1 ∧ mn≤k)

sllB2〈S〉 ≡ (root=null ∧ S=∅) ∨
(root::Node〈v, q〉 ∗ q::sllB2〈S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≥x))

slsB〈p, S〉 ≡ (root=p ∧ S=∅) ∨
(root::Node〈v, q〉 ∗ q::slsB〈p, S1〉 ∧ S={v}tS1 ∧ (∀x∈S1·v≤x))

bt〈S, h〉 ≡ (root=null ∧ S=∅ ∧ h=0) ∨ (root::Node2〈v, p, q〉 ∗
p::bt〈Sp, hp〉 ∗ q::bt〈Sq, hq〉 ∧ S=SptSq ∧ h=1+max(hp, hq))

bst〈sm, lg〉 ≡ (root=null ∧ sm=lg) ∨
(root::Node2〈v, p, q〉 ∗ p::bst〈sm, mn〉 ∗ q::bst〈mx, lg〉 ∧ mn<v<mx)

avl〈S, h〉 ≡ (root=null ∧ S=∅ ∧ h=0) ∨ (root::Node2〈v, p, q〉 ∗ p::bt〈Sp, hp〉 ∗
q::bt〈Sq, hq〉 ∧ S=SptSq ∧ h=1+max(hp, hq) ∧ −1≤hp−hq≤1)

B.2 Program Code

Below is the program code that we have done experiments with, which is not men-

tioned in the main text:

Node2 create2(int n) {

if (n == 0) return null;

208

B.2. Program Code

else {

Node2 r = create2(n - 1);

Node2 s = new Node2(n, null, r);

if (r != null) r.prev = s;

return s;

}

}

void sort_insert(Node x, int v) {

if (x.next == null)

x.next = new Node(v, null);

else if (v <= x.next.val)

x.next = new Node(v, x.next);

else

sort_insert(x.next, v);

}

void sort_insert2(Node2 x, int v) {

if (x.next == null)

x.next = new Node2(v, x, null);

else if (v <= x.next.val) {

x.next = new Node2(v, x, x.next);

x.next.next.prev = x.next;

} else

sort_insert2(x.next, v);

}

void tail_insert(Node x, int v) {

if (x.next == null)

209

B.2. Program Code

x.next = new Node(v, null);

else

tail_insert(x.next, v);

}

void rand_insert(Node x, int v) {

int a, b;

if (x.next == null)

x.next = new Node(v, null);

else if (a == b)

x.next = new Node(v, x.next);

else

rand_insert(x.next, v);

}

void rand_insert2(Node2 x, int v) {

int a, b;

if (x.next == null)

x.next = new Node2(v, x, null);

else if (a == b) {

x.next = new Node2(v, x, x.next);

x.next.next.prev = x.next;

} else

rand_insert2(x.next, v);

}

void delete(Node x) {

int a, b;

if (x.next.next == null)

210

B.2. Program Code

x.next = null;

else if (a == b)

x.next = x.next.next;

else

delete(x.next);

}

void delete2(Node2 x) {

int a, b;

if (x.next.next == null)

x.next = null;

else if (a == b) {

x.next = x.next.next;

x.next.next.prev = x;

} else

delete2(x.next);

}

void append2(Node2 x, Node2 y) {

Node2 w = x.next;

if (w == null) {

x.next = y;

y.prev = x;

} else

append2(w, y);

}

void travrs2(Node2 x) {

if (x.prev != null)

211

B.2. Program Code

travrs2(x.prev);

if (x.next != null)

travrs2(x.next);

}

int count(Node2 x) {

int l = 0, r = 0;

if (x.prev != null)

l = count(x.prev);

if (x.next != null)

r = count(x.next);

return 1 + l + r;

}

int height(Node2 x) {

int l = 0, r = 0;

if (x.prev != null)

l = height(x.prev);

if (x.next != null)

r = height(x.next);

if (l >= r)

return 1 + l;

else

return 1 + r;

}

void insert2(Node2 x, int v) {

Node2 p = x.prev;

Node2 q = x.next;

212

B.2. Program Code

int a, b;

if (a == b) {

if (p != null)

insert2(p, v);

else

x.prev = new Node2(v, null, null);

} else {

if (q != null)

insert2(q, v);

else

x.next = new Node2(v, null, null);

}

}

void delete2(Node2 x) {

Node2 p = x.prev;

Node2 q = x.next;

int a, b;

if (a == b) {

if (p.prev == null && p.next == null)

x.prev = null;

else

delete2(p);

} else {

if (q.prev == null && q.next == null)

x.next = null;

else

delete2(q);

}

213

B.2. Program Code

}

int search(Node2 x, int v) {

Node2 p = x.prev;

Node2 q = x.next;

if (x.val == v)

return 1;

else if (v < x.val) {

if (p != null)

return search(p, v);

else

return 0;

} else {

if (q != null)

return search(q, v);

else

return 0;

}

}

void bst_ins(Node2 x, int v) {

Node2 p = x.prev;

Node2 q = x.next;

if (v < x.val) {

if (p == null)

x.prev = new Node2(v, null, null);

else

bst_ins(p, v);

} else {

214

B.2. Program Code

if (q == null)

x.next = new Node2(v, null, null);

else

bst_ins(q, v);

}

}

Node2 avl_ins(Node2 x, int v) {

if (x == null)

return new Node2(v, null, null);

else if (v < x.val) {

x.prev = avl_ins(x.prev, v);

if (height(x.prev) - height(x.next) == 2) {

if (height(x.prev.prev) > height(x.prev.next))

x = rot_lft(x);

else

x = rot_2_lft(x);

}

} else {

x.next = avl_ins(x.next, v);

if (height(x.next) - height(x.prev) == 2) {

if (height(x.next.next) > height(x.next.prev))

x = rot_rit(x);

else

x = rot_2_rit(x);

}

}

return x;

}

215

B.2. Program Code

Node append3(Node x, Node y) {

if (x == null) return y;

else {

x.next = append3(x.next, y);

return x;

}

}

Node flatten(Node2 x) {

if (x == null)

return null;

else {

Node r = flatten(x.prev);

Node s = flatten(x.next);

Node t = new Node(x.val, null);

Node a = append3(r, t);

Node b = append3(a, s);

return b;

}

}

Node merge_sort(Node x) {

if (x == null){

return x;

} else if (x.next == null) {

return x;

} else {

int half = length(x) / 2;

216

B.2. Program Code

Node ctr = split(x, half);

// Same split as the loop in Figure 4.2

Node l = merge_sort(x);

Node r = merge_sort(ctr);

return merge(l, r);

}

}

Node merge(Node x, Node y) {

if (x == null)

return y;

else if (y == null)

return x;

if (x.next == null)

return insert(y, x);

// Same insert as the one in Figure 4.1

else if (y.next == null)

return insert(x, y);

else if (x.val <= y.val) {

Node t1 = merge(x.next, y);

x.next = t1;

return x;

} else {

Node t1 = merge(x, y.next);

y.next = t1;

return y;

}

}

217

B.2. Program Code

Node2 create2(int n) {

if (n == 0) return null;

else {

Node2 r = create2(n - 1);

Node2 s = unknown(n, r);

if (r != null) r.prev = s;

return s;

}

}

void sort_insert(Node x, int v) {

if (x.next == null)

x.next = new Node(v, null);

else if (v <= x.next.val)

unknown(x, v);

else

sort_insert(x.next, v);

}

void sort_insert2(Node2 x, int v) {

if (x.next == null)

x.next = new Node2(v, x, null);

else if (v <= x.next.val)

unknown(x, v);

else

sort_insert2(x.next, v);

}

void tail_insert(Node x, int v) {

218

B.2. Program Code

if (x.next == null)

unknown(x, v);

else

tail_insert(x.next, v);

}

void rand_insert(Node x, int v) {

int a, b;

if (x.next == null)

x.next = new Node(v, null);

else if (a == b)

unknown(x, v);

else

rand_insert(x.next, v);

}

void rand_insert2(Node2 x, int v) {

int a, b;

if (x.next == null)

x.next = new Node2(v, x, null);

else if (a == b)

unknown(x, v);

else

rand_insert2(x.next, v);

}

void delete(Node x) {

int a, b;

if (x.next.next == null)

219

B.2. Program Code

x.next = null;

else if (a == b)

unknown(x);

else

delete(x.next);

}

void delete2(Node2 x) {

int a, b;

if (x.next.next == null)

x.next = null;

else if (a == b)

unknown(x);

else

delete2(x.next);

}

void travrs3(Node2 x) {

Node2 y, z;

unknown(x; y, z);

if (y != null)

travrs3(y);

}

int count(Node2 x) {

Node2 y, z;

int l = 0, r = 0;

unknown(x; y, z);

if (y != null)

220

B.2. Program Code

l = count(y);

if (z != null)

r = count(z);

return 1 + l + r;

}

int height(Node2 x) {

Node2 y, z;

int l = 0, r = 0;

unknown(x; y, z);

if (y != null)

l = height(y);

if (z != null)

r = height(z);

if (l >= r)

return 1 + l;

else

return 1 + r;

}

void insert2(Node2 x, int v) {

Node2 p = x.prev;

Node2 q = x.next;

int a, b;

if (a == b) {

if (p != null)

insert2(p, v);

else

unknown(x, v);

221

B.2. Program Code

} else {

if (q != null)

insert2(q, v);

else

x.next = new Node2(v, null, null);

}

}

void delete2(Node2 x) {

Node2 p = x.prev;

Node2 q = x.next;

int a, b;

if (a == b) {

if (p.prev == null && p.next == null)

unknown1(x);

else

delete2(p);

} else {

if (q.prev == null && q.next == null)

unknown2(x);

else

delete2(q);

}

}

int search(Node2 x, int v) {

Node2 p, q;

unknown(x; p, q);

if (x.val == v)

222

B.2. Program Code

return 1;

else if (v < x.val) {

if (p != null)

return search(p, v);

else

return 0;

} else {

if (q != null)

return search(q, v);

else

return 0;

}

}

void bst_insert(Node2 x, int v) {

Node2 p = x.prev;

Node2 q = x.next;

if (v < x.val) {

if (p == null)

unknown1(x, v);

else

bst_insert(p, v);

} else {

if (q == null)

unknown2(x, v);

else

bst_insert(q, v);

}

}

223

B.2. Program Code

Node2 avl_ins(Node2 x, int v) {

if (x == null)

return new Node2(v, null, null);

else if (v < x.val) {

x.prev = avl_ins(x.prev, v);

if (unknown(x.prev) - height(x.next) == 2) {

if (height(x.prev.prev) > height(x.prev.next))

x = rot_lft(x);

else

x = rot_2_lft(x);

}

} else {

x.next = avl_ins(x.next, v);

if (height(x.next) - height(x.prev) == 2) {

if (height(x.next.next) > height(x.next.prev))

x = rot_rit(x);

else

x = rot_2_rit(x);

}

}

return x;

}

Node merge_sort(Node x) {

if (x == null){

return x;

} else if (x.next == null) {

return x;

224

B.2. Program Code

} else {

int half = length(x) / 2;

Node ctr = split(x, half);

Node l = merge_sort(x);

Node r = merge_sort(ctr);

return unknown(l, r);

}

}

225

